WorldWideScience

Sample records for ternary phase diagram

  1. Development of a new combinatorial mask for addressable ternary phase diagramming: application to rare earth doped phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, R.; Kubota, H.; Tanigawa, T.; Murakami, M.; Yamamoto, Y.; Matsumoto, Y.; Koinuma, H

    2004-02-15

    We report on the computer-aided design of a novel mask for the addressable ternary phase diagram to serve a quick screening of multi-component functional materials. Masking patterns were optimized to make a triangular ternary diagram with each composition changed from 0 to 100% by simulating the deposition process under the condition of synchronous control of the mask motion, target exchange, and laser pulses. Fabrication of a ternary M{sub 0.01}Y{sub 1.99}O{sub 3} (M=Eu, Tm, Tb) phosphor material demonstrates of the direct mapping relationship between the film composition and its cathode luminescence (CL) property.

  2. Thermodynamic Calculations of Ternary Polyalcohol and Amine Phase Diagrams for Thermal Energy Storage Materials

    Science.gov (United States)

    Shi, Renhai

    Organic polyalcohol and amine globular molecular crystal materials as phase change materials (PCMs) such as Pentaglycerine (PG-(CH3)C(CH 2OH)3), Tris(hydroxymethyl)aminomethane (TRIS-(NH2)C(CH 2OH)3), 2-amino-2methyl-1,3-propanediol (AMPL-(NH2)(CH3)C(CH2OH)2), and neopentylglycol (NPG-(CH3)2C(CH2OH) 2) can be considered to be potential candidates for thermal energy storage (TES) applications such as waste heat recovery, solar energy utilization, energy saving in buildings, and electronic device management during heating or cooling process in which the latent heat and sensible heat can be reversibly stored or released through solid state phase transitions over a range of temperatures. In order to understand the polymorphism of phase transition of these organic materials and provide more choice of materials design for TES, binary systems have been studied to lower the temperature of solid-state phase transition for the specific application. To our best knowledge, the study of ternary systems in these organic materials is limited. Based on this motivation, four ternary systems of PG-TRIS-AMPL, PG-TRIS-NPG, PG-AMPL-NPG, and TRIS-AMPL-NPG are proposed in this dissertation. Firstly, thermodynamic assessment with CALPHAD method is used to construct the Gibbs energy functions into thermodynamic database for these four materials based on available experimental results from X-Ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC). The phase stability and thermodynamic characteristics of these four materials calculated from present thermodynamic database with CALPHAD method can match well the present experimental results from XRD and DSC. Secondly, related six binary phase diagrams of PG-TRIS, PG-AMPL, PG-NPG, TRIS-AMPL, TRIS-NPG, and AMPL-NPG are optimized with CALPHAD method in Thermo-Calc software based on available experimental results, in which the substitutional model is used and excess Gibbs energy is expressed with Redlich-Kister formalism. The

  3. Kinetic Phase Diagrams of Ternary Al-Cu-Li System during Rapid Solidification: A Phase-Field Study.

    Science.gov (United States)

    Yang, Xiong; Zhang, Lijun; Sobolev, Sergey; Du, Yong

    2018-02-08

    Kinetic phase diagrams in technical alloys at different solidification velocities during rapid solidification are of great importance for guiding the novel alloy preparation, but are usually absent due to extreme difficulty in performing experimental measurements. In this paper, a phase-field model with finite interface dissipation was employed to construct kinetic phase diagrams in the ternary Al-Cu-Li system for the first time. The time-elimination relaxation scheme was utilized. The solute trapping phenomenon during rapid solidification could be nicely described by the phase-field simulation, and the results obtained from the experiment measurement and/or the theoretical model were also well reproduced. Based on the predicted kinetic phase diagrams, it was found that with the increase of interface moving velocity and/or temperature, the gap between the liquidus and solidus gradually reduces, which illustrates the effect of solute trapping and tendency of diffusionless solidification.

  4. Identification of phases of various oil, surfactant/ co-surfactants and water system by ternary phase diagram.

    Science.gov (United States)

    Syed, Haroon K; Peh, Kok K

    2014-01-01

    The objective of this study was to select appropriate surfactants or blends of surfactants and oil to study the ternary phase diagram behavior and identify various phases obtained from the oil and surfactant/surfactant mixture combinations of different HLB. The phases include conventional emulsion, gel/viscous and transparent/translucent microemulsion. Pseudoternary phase diagrams of water, oil and S/Smix of various HLB values range of 9.65-15 were constructed by using water titration method at room temperature. Visual analysis, conductivity and dye dilution test (methylene blue) were performed after each addition and mixing of water, to identify phases as microemulsion, o/w or w/o emulsion (turbid/milky) and transparent gel/turbid viscous. High gel or viscous area was obtained with Tween 80 and surfactant mixture of Tween 80 and Span 80 with all oils. The results indicated that non-ionic surfactants and PG of different HLB values exhibited different pseudoternary phase diagram characteristics but no microemulsions originated from mineral and olive oils. The w/o emulsion occupied a large area in the ternary phase triangle when HLB value of the surfactant/Smix decreased. The o/w emulsion area was large with increasing HLB value of surfactant/Smix.

  5. The Computerised Calculus in the Prognosis of the Phase Equilibrium Diagram of the Ternary System Al-Cu-Si

    OpenAIRE

    Florentina A. Cziple

    2006-01-01

    The paper presents a model for establishing the mathematical functions of the liquidus and solidus curves, from the binary diagrams Al-Si, Si-Cu, Cu-Al and their use in the prognosis of the phase equilibrium diagram from the ternary system Al-Cu-Si. We have studied the model of the non-ideal liquid solution of the regular type. The calculus and graphic plotting of the equations for the binary systems has been performed on the computer with the software programmes MathC...

  6. The Computerised Calculus in the Prognosis of the Phase Equilibrium Diagram of the Ternary System Al-Cu-Si

    Directory of Open Access Journals (Sweden)

    Florentina A. Cziple

    2006-10-01

    Full Text Available The paper presents a model for establishing the mathematical functions of the liquidus and solidus curves, from the binary diagrams Al-Si, Si-Cu, Cu-Al and their use in the prognosis of the phase equilibrium diagram from the ternary system Al-Cu-Si. We have studied the model of the non-ideal liquid solution of the regular type. The calculus and graphic plotting of the equations for the binary systems has been performed on the computer with the software programmes MathCad 2000 Professional, Statistica 5, Curve Expert, and for the ternary system Al-Cu-Si, with the 3D StudioMax software

  7. 600 °C isothermal section of the Al–Cr–Zn ternary phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    He, Zuxin [School of Materials Science and Engineering, Changzhou University, 213164 Jiangsu (China); Jiangsu Key Laboratory of Material Surface Science and Technology, Changzhou University, 213164 Jiangsu (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, 213164 Jiangsu (China); Su, Xuping, E-mail: sxping@cczu.edu.cn [School of Materials Science and Engineering, Changzhou University, 213164 Jiangsu (China); Jiangsu Key Laboratory of Material Surface Science and Technology, Changzhou University, 213164 Jiangsu (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, 213164 Jiangsu (China); Peng, Haoping; Liu, Ya; Wu, Changjun; Wang, Jianhua [School of Materials Science and Engineering, Changzhou University, 213164 Jiangsu (China); Jiangsu Key Laboratory of Material Surface Science and Technology, Changzhou University, 213164 Jiangsu (China)

    2015-11-15

    600 °C isothermal section of the Al–Cr–Zn system has been determined by Scanning Electron Microscopy-Energy Dispersive X-ray spectrometry (SEM-EDS), and X-ray Diffraction (XRD). Eleven three-phase regions have been identified experimentally at 600 °C. The τ{sub 3} and τ{sub 4} ternary compounds were identified in this isothermal section and the crystal structures of both phases are cubic. The lattice parameters of τ{sub 3} and τ{sub 4} are a = 2.1536 nm and a = 1.8323 nm, respectively. The formerly reported τ{sub 1} phase was not found. The formerly reported τ{sub 2} phase is an extension of Al{sub 7}Cr. The highest Zn content in γ{sub 2} and ν phases is 7.1 at at.% and 6.7 at.%, respectively. The Zn solubility in Al{sub 7}Cr phase can be up to 10.4 at.%, while that in Al{sub 4}Cr phase is less than 4 at.%. The clearly phase relation of the Al–Cr–Zn system can lead us to better understand the effect of Cr on the corrosion behavior of metals in the Zn–Al bath and the Hot-dip galvanizing process. - Highlights: • Isothermal section of the Al–Cr–Zn system at 600 °C was determined. • Eleven three-phase regions were identified experimentally at 600 °C. • Existence of the γ{sub 2} and ν phases was confirmed at 600 °C. • X-ray diffraction patterns of the ternary phases τ{sub 3} and τ{sub 4} were proposed for the first time.

  8. 700 °C isothermal section of Al–Cr–Si ternary phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhe [School of Mechanical Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Hunan 411105 (China); Li, Zhi, E-mail: lizhiclsj@xtu.edu.cn [School of Mechanical Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Hunan 411105 (China); Wang, Xinming; Liu, Yongxiong; Wu, Yu; Zhao, Manxiu; Yin, Fucheng [School of Mechanical Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Hunan 411105 (China)

    2014-02-10

    Highlights: • Fourteen three-phase regions (one could be indirectly deduced) and τ{sub 1}, τ{sub 2} and τ{sub 3} have been determined experimentally in Al–Cr–Si isothermal section at 700 °C. • The Al{sub 11}Cr{sub 2} phase does not exist at 700 °C and τ{sub 3} is not an extension phase of Al{sub 11}Cr{sub 4} in the Al–Cr–Si system. • The solubility of Si in AlCr{sub 2} is relatively low in the Al–Cr–Si system, but the CrSi{sub 2} phase possesses a relatively high solubility of Al. The maximum Al solubility in CrSi{sub 2}, CrSi and Cr{sub 5}Si{sub 3} at 700 °C reaches 25.9, 3.5 and 9.0 at.%, respectively. - Abstract: The isothermal section of Al–Cr–Si system at 700 °C was determined by means of scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and X-ray powder diffraction. In the 700 °C isothermal section, fourteen three-phase regions exist, three ternary compound named τ{sub 1}, τ{sub 2} and τ{sub 3} are confirmed to be stable and the Al{sub 11}Cr{sub 2} phase is not observed in this section. The solubility of Si in AlCr{sub 2} is relatively low in the Al–Cr–Si system, but the CrSi{sub 2} phase possesses a relatively high solubility of Al. The maximum Al solubility in CrSi{sub 2}, CrSi and Cr{sub 5}Si{sub 3} at 700 °C reaches 25.9, 3.5 and 9.0 at.%, respectively.

  9. Pseudo-ternary phase diagrams of lecithin-based microemulsions: influence of monoalkylphosphates.

    Science.gov (United States)

    Trotta, M; Ugazio, E; Gasco, M R

    1995-06-01

    The formation of macroscopically homogeneous, stable, fluid, optically transparent, isotropic solutions (microemulsions) was delineated, at 25 degrees C, for systems containing water, soybean lecithin, sodium monoalkylphosphate (hexyl or ocytl), alcohol and isopropyl myristate. Six straight or branched alcohols (1-butanol, 2-butanol, isobutanol, 1-pentanol, 2-pentanol, 3-pentanol) were investigated as co-surfactants. A constant lecithin/alcohol mixing ratio was used, while the aqueous phase consisted of a solution of alkylphosphates at different concentrations. An increase of the microemulsion domain was seen by increasing the concentration of the alkylphosphate. With 0.2m hexylphosphate, as aqueous phase, the microemulsion domain consisted of a single, region, that, in the presence of butylic alcohols, spanded the greater portion of the phase diagram. In the presence of amyl alcohols the area of this region was much smaller. With 0.2 m octylphosphate the realm of existence of the microemulsions, except for 1-pentanol, consisted of two regions separated by a liquid-crystal region. With all the alcohols examined, the liquid-crystal phase solubilized a larger amount of oil in the presence of octylphosphate than in the presence of hexylphosphate. The stability ranges of microemulsions in systems containing soybean, lecithin, alcohol, water, and isopropyl myristate can be greatly increased by using a second hydrophobic amphiphile, such as hexylphosphate, to adjust the hydrophilic-lipophilic balance or the spontaneous peaking properties of lecithin-alcohol systems.

  10. The Establishment, Plotting and Statistic– Mathematical Interpretation of the Liquidus Surface from the Phase Equilibrium Diagram of the Ternary System Al-Cu-Si

    OpenAIRE

    Florentina A. Cziple

    2006-01-01

    The paper forwards the conclusions of a survey performed on a mathematical model of the phase equilibrium from the ternary system Al-Cu-Si. The author presents the calculus of the statistic equation of the liquidus surface model from this diagram, the plotting and statistical-mathematical interpretation of the results obtained.

  11. The Establishment, Plotting and Statistic– Mathematical Interpretation of the Liquidus Surface from the Phase Equilibrium Diagram of the Ternary System Al-Cu-Si

    Directory of Open Access Journals (Sweden)

    Florentina A. Cziple

    2006-10-01

    Full Text Available The paper forwards the conclusions of a survey performed on a mathematical model of the phase equilibrium from the ternary system Al-Cu-Si. The author presents the calculus of the statistic equation of the liquidus surface model from this diagram, the plotting and statistical-mathematical interpretation of the results obtained.

  12. System Cu-Rh-O: Phase diagram and thermodynamic properties of ternary oxides CuRhO2 and CuRh204

    OpenAIRE

    Jacob, KT; Uda, T.; Waseda, Y; Okabe, TH

    1999-01-01

    An isothermal section of the phase diagram for the system Cu-Rh-O at 1273 K has been established by equilibration of samples representing eighteen different compositions, and phase identification after quenching by optical and scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive analysis of X-rays (EDX). In addition to the binary oxides Cu2O, CuO, and Rh2O3, two ternary oxides CuRhO2 and CuRh2O4 were identified. Both the ternary oxides were in equilibrium with me...

  13. Isothermal section of the ternary phase diagram U–Fe–Ge at 900 °C and its new intermetallic phases

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, M.S., E-mail: mish@itn.pt [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); CCTN, IST/CFMCUL, University of Lisbon, Nuclear and Technological Campus, P-2695-066 Bobadela (Portugal); Berthebaud, D.; Lignie, A.; El Sayah, Z.; Moussa, C.; Tougait, O. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, Université Rennes 1, UMR CNRS 6226, 263 Avenue du Général Leclerc, 35042 Rennes (France); Havela, L. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Gonçalves, A.P. [CCTN, IST/CFMCUL, University of Lisbon, Nuclear and Technological Campus, P-2695-066 Bobadela (Portugal)

    2015-08-05

    Highlights: • Isothermal section of the U–Fe–Ge at 900 °C was investigated. • Ten ternary compounds and four significant solubility ranges were found. • Three new compounds and a solid solution were discovered. - Abstract: The isothermal section at 900 °C of the U–Fe–Ge ternary system was assessed using experimental results from X-ray diffraction and observations by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy chemical analysis. The phase diagram at this temperature is characterized by the formation of fourteen stable phases: four homogeneity ranges and ten intermetallic compounds. Among these, there is an extension of the binary compound UFe{sub 2} into the ternary system (UFe{sub 2−x}Ge{sub x,}x < 0.15), three ternary line compounds, U{sub 2}Fe{sub 17−x}Ge{sub x} (2 < x < 3.7), UFe{sub 1−x}Ge{sub 2} (0.58 < x < 0.78), UFe{sub 6+x}Ge{sub 6−x} (x < 0.7), and ten ternary stoichiometric compounds, U{sub 2}Fe{sub 3}Ge, U{sub 6}Fe{sub 16}Ge{sub 7}, UFe{sub 4}Ge{sub 2}, U{sub 6}Fe{sub 22}Ge{sub 13}, UFeGe, U{sub 3}Fe{sub 4}Ge{sub 4}, UFe{sub 2}Ge{sub 2}, U{sub 34}Fe{sub 3.32}Ge{sub 33}, U{sub 3}Fe{sub 2}Ge{sub 7}, and U{sub 9}Fe{sub 7}Ge{sub 24}.

  14. Preparation and Evaluation of Tretinoin Microemulsion Based on Pseudo-Ternary Phase Diagram

    Directory of Open Access Journals (Sweden)

    Fatemeh Leis

    2012-06-01

    Full Text Available Purpose: The aim of the present research was to formulate a transparent microemolsion as a topical delivery system for tretinoin for the treatment of acne. Methods: Microemulsion formulations prepared by mixing appropriate amount of surfactant including Tween 80 and Labrasol, co-surfactant such as propylene glycol (PG and oil phase including isopropyl myristate – transcutol P (10:1 ratio. The prepared microemolsions were evaluated regarding their particle size, zeta potential, conductivity, stability, viscosity, differential scanning calorimetry (DSC, scanning electron microscopy (SEM, refractory index (RI and pH. Results: The results showed that maximum oil was incorporated in microemolsion system that was contained surfactant to co-surfactant ratio (Km of 4:1. The mean droplets size range of microemulsion formulation were in the range of 14.1 to 36.5 nm and its refractory index (RI and pH were 1.46 and 6.1, respectively. Viscosity range was 200-350 cps. Drug release profile showed 49% of the drug released in the first 8 hours of experiment belong to ME-7. Also, Hexagonal and cubic structures were seen in the SEM photograph of the microemulsions. Conclusion: physicochemical properties and in vitro release were dependent upon the contents of S/C, water and, oil percentage in formulations.Also, ME-7 may be preferable for topical tretinoin formulation.

  15. Isothermal section of the phase diagram and crystal structures of the compounds in the ternary system Tm-Cu-Sb at 870 K

    Science.gov (United States)

    Fedyna, L. O.; Fedorchuk, A. O.; Mykhalichko, V. M.; Shpyrka, Z. M.; Fedyna, M. F.

    2017-07-01

    The isothermal section of the Tm-Cu-Sb phase diagram at 870 K was constructed using X-ray phase analysis. The existence of one ternary compound was confirmed - TmCu1-xGe2 (x = 0.109) (structure type HfCuSi2, space group P4/nmm, Pearson code tP8-0.22, a = 4.24170(2), c = 9.73942(9) Å). New ternary copper antimonides Tm3Cu20+xSb11-x (x = 2) (structure type Dy3Cu20+xSb11-x, space group F-43 m, Pearson code cF272, a = 16.55784(4) Å) and TmCu4-xSb2 (x = 1.065) (structure type ErFe4Ge2 (LTM), space group Pnnm, Pearson code oP14-2.13, a = 7.00565(6), b = 7.83582(6), c = 4.25051(3) Å) were found. The crystal structures of compounds were refined by full-profile Rietveld method using X-ray powder diffraction data. The solubility of the third component in all binary phases was found to be negligible. The crystal structures of known ternary antimonides were analyzed and relationship among the crystal structures of compounds in the ternary system Tm-Cu-Sb was illustrated.

  16. Stereo 3D spatial phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Jinwu, E-mail: kangjw@tsinghua.edu.cn; Liu, Baicheng, E-mail: liubc@tsinghua.edu.cn

    2016-07-15

    Phase diagrams serve as the fundamental guidance in materials science and engineering. Binary P-T-X (pressure–temperature–composition) and multi-component phase diagrams are of complex spatial geometry, which brings difficulty for understanding. The authors constructed 3D stereo binary P-T-X, typical ternary and some quaternary phase diagrams. A phase diagram construction algorithm based on the calculated phase reaction data in PandaT was developed. And the 3D stereo phase diagram of Al-Cu-Mg ternary system is presented. These phase diagrams can be illustrated by wireframe, surface, solid or their mixture, isotherms and isopleths can be generated. All of these can be displayed by the three typical display ways: electronic shutter, polarization and anaglyph (for example red-cyan glasses). Especially, they can be printed out with 3D stereo effect on paper, and watched by the aid of anaglyph glasses, which makes 3D stereo book of phase diagrams come to reality. Compared with the traditional illustration way, the front of phase diagrams protrude from the screen and the back stretches far behind of the screen under 3D stereo display, the spatial structure can be clearly and immediately perceived. These 3D stereo phase diagrams are useful in teaching and research. - Highlights: • Stereo 3D phase diagram database was constructed, including binary P-T-X, ternary, some quaternary and real ternary systems. • The phase diagrams can be watched by active shutter or polarized or anaglyph glasses. • The print phase diagrams retains 3D stereo effect which can be achieved by the aid of anaglyph glasses.

  17. Solubilization properties of nonionic surfactants. Part 1. Evolution of the ternary phase diagrams with temperature, salinity, HLB (hydrophile-lipophile balance), and ACN (alkane carbon number)

    Energy Technology Data Exchange (ETDEWEB)

    Buzier, M.; Ravey, J.C.

    1983-01-01

    From investigations of ternary systems with nonionic polyoxyethylene glycol alkyl ethers, brine, and alkanes, a classification of the oil-water solubilization properties of these surfactants can be made in terms of the evolution of the whole of the ternary diagrams. A simple relation between the different parameters characterizing the systems is proposed which uses the concepts of the equivalence between temperature and other parameters (HLB, alcane carbon number, salinity). 30 references.

  18. The phase diagrams of the mixed-spin ternary-alloy consisting of half-integer spins: Standard-random approach

    Science.gov (United States)

    Albayrak, Erhan

    2018-02-01

    The ternary-alloy in the form ABpC1-p is investigated on the Bethe lattice with the odd numbered shells containing only A atoms (spin-1/2), while the even shells randomly containing either B (spin-3/2) or C (spin-5/2) atoms with different concentrations p and 1 - p, respectively. The phase diagrams are calculated on the (p ,kTc /JAB) and (R = |JAC | /JAB ,kTc /JAB) planes for given values of R and p, respectively, with the coordination numbers z = 3 , 4 , 5 and 6 by studying the thermal variations of the order-parameters. It is found that there exist a critical value of R, i.e. Rc ≅ 0.653, which is independent of z. In addition, the critical temperatures increase as z increases. The present work is an extension of the previous work [1] and it only differs from it by the implementation technique of randomness into the model. The obtained phase diagrams are in agreement with the site-dependent random case [1] except at low temperatures. On the other hand, there is an overall agreement with the literature.

  19. Phase diagrams and crystal growth

    Science.gov (United States)

    Venkrbec, Jan

    1980-04-01

    Phase diagrams are briefly treated as generalized property-composition relationships, with respect to crystal technology optimization. The treatment is based on mutual interaction of three systems related to semiconductors: (a) the semiconducting material systems, (b0 the data bank, (c) the system of crystallization methods. A model is proposed enabling optimatization on the path from application requirements to the desired material. Further, several examples of the selection as to the composition of LED and laser diode material are given. Some of molten-solution-zone methods are being successfully introduced for this purpose. Common features of these methods, the application of phase diagrams, and their pecularities compared with other crystallization methods are illustrated by schematic diagrams and by examples. LPE methods, particularly the steady-state LPE methods such as Woodall's ISM and Nishizawa's TDM-CVP, and the CAM-S (Crystallization Method Providing Composition Autocontrol in Situ) have been chosen as examples. Another approach of exploiting phase diagrams for optimal material selection and for determination of growth condition before experimentation through a simple calculation is presented on InP-GaP solid solutions. Ternary phase diagrams are visualized in space through calculation and constructions based on the corresponding thermodynamic models and anaglyphs. These make it easy to observe and qualitatively analyze the crystallization of every composition. Phase diagrams can be also used as a powerful tool for the deduction of new crystallization methods. Eutectic crystallization is an example of such an approach where a modified molten-solution-zone method can give a sandwich structure with an abrupt concentration change. The concentration of a component can range from 0 to 100% in the different solid phases.

  20. Ternary system Tm-Cu-Ge: isothermal section of the phase diagram at 870 K and crystal structures of the compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fedyna, L.O.; Bodak, O.I.; Tokaychuk, Ya.O.; Fedyna, M.F.; Mokra, I.R

    2004-03-24

    The isothermal section of the Tm-Cu-Ge phase diagram at 870 K was constructed using X-ray phase analysis. The existence of three ternary compounds was confirmed: TmCu{sub 2}Ge{sub 2} (structure type CeAl{sub 2}Ga{sub 2}, space group I4/mmm, Pearson code tI10, a=3.99155(8) A, c=10.3285(2) A), Tm{sub 2}CuGe{sub 6} (structure type Ce{sub 2}CuGe{sub 6}, space group Amm2, Pearson code oS18, a=4.061(1) A, b=3.957(4) A, c=20.76(2) A) and Tm{sub 6}Cu{sub 8}Ge{sub 8} (structure type Gd{sub 6}Cu{sub 8}Ge{sub 8}, space group Immm, Pearson code oI22, a=13.7407(3) A, b=6.5995(1) A, c=4.1368(1) A). A new ternary copper germanide TmCu{sub 1.24}Ge{sub 0.76} (structure type CaIn{sub 2}, space group P6{sub 3}/mmc, Pearson code hP6, a=4.42254(8) A, c=7.0477(2) A) was found. The crystal structures of TmCu{sub 2}Ge{sub 2}, Tm{sub 6}Cu{sub 8}Ge{sub 8} and TmCu{sub 1.24}Ge{sub 0.76} were refined by full-profile Rietveld method using X-ray powder diffraction data. The binary compound Tm{sub 0.9}Ge{sub 2} (structure type ZrSi{sub 2}) dissolves up to 5 at.% of Cu. The lattice parameters refined for the sample Tm{sub 31}Cu{sub 5}Ge{sub 64} (a=4.042(1) A, b=15.793(4) A, c=3.906(2) A) slightly increased, compared with Tm{sub 0.9}Ge{sub 2}. The solubility of the third component in the other binary phases was found to be negligible.

  1. Phosphatidylcholine: cholesterol phase diagrams.

    Science.gov (United States)

    Thewalt, J L; Bloom, M

    1992-10-01

    Two mono-cis-unsaturated phosphatidylcholine (PC) lipid molecules, having very different gel-liquid crystalline phase transition temperatures as a consequence of the relative positions of the double bond, exhibit PC:cholesterol phase diagrams that are very similar to each other and to that obtained previously for a fully saturated PC:cholesterol mixture (Vist, M. R., and J. H. Davis. 1990. Biochemistry 29:451-464). This leads to the conjecture that PC:cholesterol membrane phase diagrams have a universal form which is relatively independent of the precise chemical structure of the PC molecule. One feature of this phase diagram is the observation over a wide temperature range of a fluid but highly conformationally ordered phase at bilayer concentrations of more than approximately 25 mol% cholesterol. This ;liquid ordered' phase is postulated to be the relevant physical state for many biological membranes, such as the plasma membrane of eukaryotic cells, that contain substantial amounts of cholesterol or equivalent sterols.

  2. Phase field crystal modeling of ternary solidification microstructures

    OpenAIRE

    Berghoff, Marco; Nestler, Britta

    2015-01-01

    In the present work, we present a free energy derivation of the multi-component phase-field crystal model [1] and illustrate the capability to simulate dendritic and eutectic solidification in ternary alloys. Fast free energy minimization by a simulated annealing algorithm of an approximated crystal is compared with the free energy of a fully simulated phase field crystal structure. The calculation of ternary phase diagrams from these free energies is described. Based on the free energies rel...

  3. Engineering Holographic Superconductor Phase Diagrams

    OpenAIRE

    Chen, Jiunn-Wei; Dai, Shou-Huang; Maity, Debaprasad; Zhang, Yun-Long

    2016-01-01

    We study how to engineer holographic models with features of a high temperature superconductor phase diagram. We introduce a field in the bulk which provides a tunable "doping" parameter in the boundary theory. By designing how this field changes the effective masses of other order parameter fields, desired phase diagrams can be engineered. We give examples of generating phase diagrams with phase boundaries similar to a superconducting dome and an anti-ferromagnetic phase by including two ord...

  4. Sn–Ag–Cu nanosolders: Melting behavior and phase diagram prediction in the Sn-rich corner of the ternary system

    Science.gov (United States)

    Roshanghias, Ali; Vrestal, Jan; Yakymovych, Andriy; Richter, Klaus W.; Ipser, Herbert

    2015-01-01

    Melting temperatures of Sn–Ag–Cu (SAC) alloys in the Sn-rich corner are of interest for lead-free soldering. At the same time, nanoparticle solders with depressed melting temperatures close to the Sn–Pb eutectic temperature have received increasing attention. Recently, the phase stability of nanoparticles has been the subject of plenty of theoretical and empirical investigations. In the present study, SAC nanoparticles of various sizes have been synthesized via chemical reduction and the size dependent melting point depression of these particles has been specified experimentally. The liquidus projection in the Sn-rich corner of the ternary SAC system has also been calculated as a function of particle size, based on the CALPHAD-approach. The calculated melting temperatures were compared with those obtained experimentally and with values reported in the literature, which revealed good agreement. The model also predicts that with decreasing particle size, the eutectic composition shifts towards the Sn-rich corner. PMID:26082567

  5. Investigation of the La2O3-Nb2O5-WO3 ternary phase diagram: Isolation and crystal structure determination of the original La3NbWO10 material

    KAUST Repository

    Vu, T.D.

    2015-05-23

    In the course of the exploration of the La2O3-WO3-Nb2O5 ternary phase diagram, a new compound with the formula La3NbWO10 was discovered. Its structure was determined from a combination of powder X-ray and neutron diffraction data. It crystallizes in the tetragonal space group P42/nmc (no. 137) with the lattice parameters: a=10.0807(1) Å; c=12.5540(1) Å. The structure is built up from infinite ribbons of octahedra (W/Nb)O5 which are perpendicular to each other, lanthanum ions being distributed around these ribbons. The electrical properties of this compound were investigated on sintered pellets by means of complex impedance spectroscopy. © 2015 Elsevier Inc. All rights reserved.

  6. Using a Ternary Diagram to Display a System's Evolving Energy Distribution

    Science.gov (United States)

    Brazzle, Bob; Tapp, Anne

    2016-01-01

    A ternary diagram is a graphical representation used for systems with three components. They are familiar to mineralogists (who typically use them to categorize varieties of solid solution minerals such as feldspar) but are not yet widely used in the physics community. Last year the lead author began using ternary diagrams in his introductory…

  7. Phase Relations in Ternary Systems in the Subsolidus Region: Methods to Formulate Solid Solution Equations and to Find Particular Compositions

    Science.gov (United States)

    Alvarez-Montan~o, Victor E.; Farías, Mario H.; Brown, Francisco; Mun~oz-Palma, Iliana C.; Cubillas, Fernando; Castillon-Barraza, Felipe F.

    2017-01-01

    A good understanding of ternary phase diagrams is required to advance and/or to reproduce experimental research in solid-state and materials chemistry. The aim of this paper is to describe the solutions to problems that appear when studying or determining ternary phase diagrams. A brief description of the principal features shown in phase diagrams…

  8. Phase diagrams for sonoluminescing bubbles

    NARCIS (Netherlands)

    Hilgenfeldt, Sascha; Lohse, Detlef; Brenner, Michael P.

    1996-01-01

    Sound driven gas bubbles in water can emit light pulses. This phenomenon is called sonoluminescence (SL). Two different phases of single bubble SL have been proposed: diffusively stable and diffusively unstable SL. We present phase diagrams in the gas concentration versus forcing pressure state

  9. Investigation of strain effects on phase diagrams in the ternary nitride alloys (InAlN, AlGaN, InGaN)

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, Ranim; Chen, Jun; Ruterana, Pierre [CIMAP, UMR 6252, CNRS-ENSICAEN-CEA-UNICAEN, Caen (France); Bere, Antoine [Laboratoire de Physique et de Chimie de l' Environnement, Universite Ouaga I Pr Joseph KI-ZERBO, Ouagadougou (Burkina Faso)

    2017-09-15

    In this work, we used a modified Stillinger-Weber potential and a methodology of free energy calculation based on numerical computation of the configuration partition function of an alloy, to make a comprehensive study of the properties of group-III nitride ternary compounds (In{sub x}Ga{sub 1-x}N; In{sub x}Al{sub 1-x}N; Al{sub x}Ga{sub 1-x}N). The wurtzite structure was used; and the critical temperatures for the random ternary alloys are determined as 2717 K for In{sub x}Al{sub 1-x}N, 1718 K for In{sub x}Ga{sub 1-x}N, and 177 K for Al{sub x}Ga{sub 1-x}N, respectively. Therefore, Al{sub x}Ga{sub 1-x}N has no unstable mixing region at typical growth temperatures around 1100 C. In contrast, In{sub x}Al{sub 1-x}N and In{sub x}Ga{sub 1-x}N exhibit a wide unstable region, which means that being thick layers, their stability as homogeneous alloys is probably limited. In agreement with other reports, it is also pointed out that the critical temperature T{sub c} may be decreased when the layers are grown under strain. Although the compression and extension have the same effect below 1.5% strain, it is shown, for the first time, that when the compressive strain goes beyond, T{sub c} abruptly increases in contrast to the case of tensile strain where it continues to decrease. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Phase diagram of Hertzian spheres

    NARCIS (Netherlands)

    Pàmies, J.C.; Cacciuto, A.; Frenkel, D.

    2009-01-01

    We report the phase diagram of interpenetrating Hertzian spheres. The Hertz potential is purely repulsive, bounded at zero separation, and decreases monotonically as a power law with exponent 5/2, vanishing at the overlapping threshold. This simple functional describes the elastic interaction of

  11. Phase diagram of boron crystals

    Science.gov (United States)

    Shirai, Koun

    2017-05-01

    The current status of study on the phase diagram of boron is given from the theoretical viewpoint. Boron is the last elemental crystal whose phase diagram is missing. In the last decade, several new structures of boron allotropes were found, while some were disproven. Presently, even the number of allotropes of boron is uncertain. A simple reason for this is that there are many and complicated structures, and some are minimally different from the others. A theoretical study thus requires very high accuracy. The difficulty, however, is not merely a technical difficulty of computational scale. The physics involved is quite different from what is obtained by band theory, which is the most successful theory of solids. It is only recent that a fundamental problem of metal/insulator has been solved. We come to know that the interrelationships between nonstoichiometry, partially occupied sites, and the balance of intra/inter-icosahedral bonding, which were considered to be uncorrelated properties, inevitably determine the relative stability of various structures. The configuration of the defects in boron crystals is not capricious but there is some correlation among the defects. Many problems were solved on this ground, and contributed to the creation of the phase diagram. However, there are still many unsolved problems and some newly arose. In particular, for the tetragonal phase, sharp discrepancies are present in both experiment and theory. Thus, the problem of tetragonal phase is described in more detail. From the viewpoint of material research, the phase diagram provides the basis for searching new materials. State-of-the-art methods of structural prediction have stimulated researchers’ interest.

  12. Determination of the electroporation onset of bilayer lipid membranes as a novel approach to establish ternary phase diagrams: example of the L-α-PC/SM/cholesterol system

    NARCIS (Netherlands)

    van Uitert, I.; le Gac, Severine; van den Berg, Albert

    2010-01-01

    The lipid matrix of cell membranes contains phospholipids belonging to two main classes, glycero- and sphingolipids, as well as cholesterol. This matrix can exist in different phases, liquid disordered (l(d)), liquid ordered (l(o)) and possibly solid (s(o)), or even a combination of these. The

  13. Phase diagrams for surface alloys

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Ruban, Andrei; Stoltze, Per

    1997-01-01

    of the heat of segregation from the bulk and the sign of the excess interactions between the atoms in the surface (the surface mixing energy). We also consider the more complicated cases a with ordered surface phases, nonpseudomorphic overlayers, second layer segregation, and multilayers. The discussion......We discuss surface alloy phases and their stability based on surface phase diagrams constructed from the surface energy as a function of the surface composition. We show that in the simplest cases of pseudomorphic overlayers there are four generic classes of systems, characterized by the sign...... is based on density-functional calculations using the coherent-potential approximation and on effective-medium theory. We give self-consistent density-functional results for the segregation energy and surface mixing energy for all combinations of the transition and noble metals. Finally we discuss...

  14. Phase diagrams of novel Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2}–Tl{sub 2}SnSe{sub 3} quasi-ternary system following DTA and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barchiy, I.E.; Tatzkar, A.R. [Department of Chemistry, Uzhgorod National University, Pidgirna St., 46, Uzhgorod 88000 (Ukraine); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska St., 50, Lviv 79010 (Ukraine); Plucinski, K., E-mail: kpluc2006@wp.pl [Electronics Department, Military University Technology, Warsaw, Kaliskiego 2, Warsaw 00-908 (Poland)

    2016-06-25

    Phase relation in the Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2}–Tl{sub 2}SnSe{sub 3} quasiternary system were studied by the DTA and X-ray diffraction in combination with mathematical modeling. The phase diagrams of the Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2} and Tl{sub 2}SnSe{sub 3}–TlSbSe{sub 2} systems, the perspective views of the phase interaction in the ternary system, the liquidus surface projection, the isothermal section at 423 K were built for the first time. The Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2}–Tl{sub 2}SnSe{sub 3} system is of the invariant eutectic type and is characterized by the formation of limited solid solutions following initial ternary compounds. New complex compounds are not formed. - Highlights: • Two Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2},Tl{sub 2}SnSe{sub 3}–TlSbSe{sub 2} systems were explored. • Invariant processes in the ternary system were determined. • New complex compounds were not observed in ternary system.

  15. High temperature phase equilibria and phase diagrams

    CERN Document Server

    Kuo, Chu-Kun; Yan, Dong-Sheng

    2013-01-01

    High temperature phase equilibria studies play an increasingly important role in materials science and engineering. It is especially significant in the research into the properties of the material and the ways in which they can be improved. This is achieved by observing equilibrium and by examining the phase relationships at high temperature. The study of high temperature phase diagrams of nonmetallic systems began in the early 1900s when silica and mineral systems containing silica were focussed upon. Since then technical ceramics emerged and more emphasis has been placed on high temperature

  16. Phase diagram of ammonium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Dunuwille, Mihindra; Yoo, Choong-Shik, E-mail: csyoo@wsu.edu [Department of Chemistry and Institute for Shock Physics, Washington State University, Pullman, Washington 99164 (United States)

    2013-12-07

    Ammonium Nitrate (AN) is a fertilizer, yet becomes an explosive upon a small addition of chemical impurities. The origin of enhanced chemical sensitivity in impure AN (or AN mixtures) is not well understood, posing significant safety issues in using AN even today. To remedy the situation, we have carried out an extensive study to investigate the phase stability of AN and its mixtures with hexane (ANFO–AN mixed with fuel oil) and Aluminum (Ammonal) at high pressures and temperatures, using diamond anvil cells (DAC) and micro-Raman spectroscopy. The results indicate that pure AN decomposes to N{sub 2}, N{sub 2}O, and H{sub 2}O at the onset of the melt, whereas the mixtures, ANFO and Ammonal, decompose at substantially lower temperatures. The present results also confirm the recently proposed phase IV-IV{sup ′} transition above 17 GPa and provide new constraints for the melting and phase diagram of AN to 40 GPa and 400°C.

  17. Ferroelectric phase diagram of PVDF:PMMA

    NARCIS (Netherlands)

    Li, M.; Stingelin, N.; Michels, J.J.; Spijkman, M.-J.; Asadi, K.; Feldman, K.; Blom, P.W.M.; Leeuw, D.M. de

    2012-01-01

    We have investigated the ferroelectric phase diagram of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA). The binary nonequilibrium temperature composition diagram was determined and melting of α- and β-phase PVDF was identified. Ferroelectric β-PVDF:PMMA blend films were made

  18. Ferroelectric Phase Diagram of PVDF : PMMA

    NARCIS (Netherlands)

    Li, Mengyuan; Stingelin, Natalie; Michels, Jasper J.; Spijkman, Mark-Jan; Asadi, Kamal; Feldman, Kirill; Blom, Paul W. M.; de Leeuw, Dago M.

    2012-01-01

    We have investigated the ferroelectric phase diagram of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA). The binary nonequilibrium temperature composition diagram was determined and melting of alpha- and beta-phase PVDF was identified. Ferroelectric beta-PVDF:PMMA blend films

  19. INLAND DISSOLVED SALT CHEMISTRY: STATISTICAL EVALUATION OF BIVARIATE AND TERNARY DIAGRAM MODELS FOR SURFACE AND SUBSURFACE WATERS

    Science.gov (United States)

    We compared the use of ternary and bivariate diagrams to distinguish the effects of atmospheric precipitation, rock weathering, and evaporation on inland surface and subsurface water chemistry. The three processes could not be statistically differentiated using bivariate models e...

  20. Experimental investigation and thermodynamic calculation of phase equilibria in the Mg–Pb–Zn ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Yang, Shuiyuan [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Liu, Xingjun [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005 (China); Duh, Jenq-Gong [Department of Materials Science and Engineering, National Tsing Hua Universtiy, Hsinchu, Taiwan (China); Wang, Cuiping, E-mail: wangcp@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China)

    2016-03-01

    The phase equilibria of the Mg–Pb–Zn ternary system were investigated using electron probe microanalysis (EPMA), back scattered electron (BSE) imaging and X-ray diffraction (XRD) methods. Three isothermal sections of the Mg–Pb–Zn ternary system at 200 °C, 300 °C and 400 °C were experimentally established. The phase equilibria of Mg–Pb binary and Mg–Pb–Zn ternary system were thermodynamically assessed by using CALPHAD (Calculation of Phase Diagrams) method on the basis of the presently determined experimental data. A consistent set of thermodynamic parameters has been derived for describing the Gibbs free energies of each solution phase and intermetallic compound in the Mg–Pb and Mg–Pb–Zn systems. The calculated phase diagrams and thermodynamic properties in the Mg–Pb and Mg–Pb–Zn systems are in good agreement with experimental data. - Highlights: • Three isothermal sections of the Mg–Pb–Zn system were experimentally determined. • The phase equilibria of Mg–Pb binary system are thermodynamically reassessed. • The calculated phase diagrams in the Mg–Pb–Zn ternary system are in good agreement with experimental data.

  1. The Prognosis of the Phase Equilibrium Diagram of the System Al-Cu-Si

    OpenAIRE

    Florentina Cziple

    2007-01-01

    The paper presents a model for establishing the mathematical functions of the liquidus and solidus curves, from the binary diagrams Al-Si, Si-Cu, Cu-Al and their use in the prognosis of the phase equilibrium diagram from the ternary system Al-Cu-Si. We have studied the model of the non-ideal liquid solution of the regular type. The calculus and graphic plotting of the equations for the binary systems has been performed on the computer

  2. More statistics on intermetallic compounds - ternary phases.

    Science.gov (United States)

    Dshemuchadse, Julia; Steurer, Walter

    2015-05-01

    How many different intermetallic compounds are known so far, and in how many different structure types do they crystallize? What are their chemical compositions, the most abundant ones and the rarest ones? These are some of the questions we are trying to find answers for in our statistical analysis of the structures of the 20,829 intermetallic phases included in the database Pearson's Crystal Data, with the goal of gaining insight into some of their ordering principles. In the present paper, we focus on the subset of 13,026 ternary intermetallics, which crystallize in 1391 different structure types; remarkably, 667 of them have just one representative. What makes these 667 structures so unique that they are not adopted by any other of the known intermetallic compounds? Notably, ternary compounds are known in only 5109 of the 85,320 theoretically possible ternary intermetallic systems so far. In order to get an overview of their chemical compositions we use structure maps with Mendeleev numbers as ordering parameters.

  3. Phase diagram of a 4-component lipid mixture: DSPC/DOPC/POPC/chol.

    Science.gov (United States)

    Konyakhina, Tatyana M; Wu, Jing; Mastroianni, James D; Heberle, Frederick A; Feigenson, Gerald W

    2013-09-01

    We report the first 4-component phase diagram for the lipid bilayer mixture, DSPC/DOPC/POPC/chol (distearoylphosphatidylcholine/dioleoylphosphatidylcholine/1-palmitoyl, 2-oleoylphosphatidylcholine/cholesterol). This phase diagram, which has macroscopic Ld+Lo phase domains, clearly shows that all phase boundaries determined for the 3-component mixture containing DOPC transition smoothly into the boundaries for the 3-component mixture containing POPC, which has nanoscopic phase domains of Ld+Lo. Our studies start from two published ternary phase diagrams, and show how these can be combined into a quaternary phase diagram by study of a few hundred samples of intermediate compositions. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Neutron Damage and MAX Phase Ternary Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michael [Drexel Univ., Philadelphia, PA (United States); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcua-Duaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kohse, Gordon [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-06-17

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  5. The use of Ternary Diagrams in the Analysis and the Mathematical Modeling of Bank Assets Structure

    Directory of Open Access Journals (Sweden)

    Ramona Mariana CALINICA

    2012-04-01

    Full Text Available The objectives pursued in this paper are: to obtain by means of ternary diagrams imagistic representations of the structure of assets in credit banking institutions operating in Romania in case of stability, turbulence and intense manifestation of the crisis; identifying functional discontinuities and achieve a comparative database. The ultimate goal of this paper is reporting the results obtained from comparative database to find out what signals preceding a turbulent situation in the banking sector and how far away is the banking system by the normal situation.

  6. Phase diagram of spiking neural networks.

    Science.gov (United States)

    Seyed-Allaei, Hamed

    2015-01-01

    In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probability of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations, and trials and errors, but here, I take a different perspective, inspired by evolution, I systematically simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable. I stimulate networks with pulses and then measure their: dynamic range, dominant frequency of population activities, total duration of activities, maximum rate of population and the occurrence time of maximum rate. The results are organized in phase diagram. This phase diagram gives an insight into the space of parameters - excitatory to inhibitory ratio, sparseness of connections and synaptic weights. This phase diagram can be used to decide the parameters of a model. The phase diagrams show that networks which are configured according to the common values, have a good dynamic range in response to an impulse and their dynamic range is robust in respect to synaptic weights, and for some synaptic weights they oscillates in α or β frequencies, independent of external stimuli.

  7. Phase Diagrams of Strongly Interacting Theories

    DEFF Research Database (Denmark)

    Sannino, Francesco

    2010-01-01

    We summarize the phase diagrams of SU, SO and Sp gauge theories as function of the number of flavors, colors, and matter representation as well as the ones of phenomenologically relevant chiral gauge theories such as the Bars-Yankielowicz and the generalized Georgi-Glashow models. We finally report...

  8. Uranium phase diagram from first principles

    Science.gov (United States)

    Yanilkin, Alexey; Kruglov, Ivan; Migdal, Kirill; Oganov, Artem; Pokatashkin, Pavel; Sergeev, Oleg

    2017-06-01

    The work is devoted to the investigation of uranium phase diagram up to pressure of 1 TPa and temperature of 15 kK based on density functional theory. First of all the comparison of pseudopotential and full potential calculations is carried out for different uranium phases. In the second step, phase diagram at zero temperature is investigated by means of program USPEX and pseudopotential calculations. Stable and metastable structures with close energies are selected. In order to obtain phase diagram at finite temperatures the preliminary selection of stable phases is made by free energy calculation based on small displacement method. For remaining candidates the accurate values of free energy are obtained by means of thermodynamic integration method (TIM). For this purpose quantum molecular dynamics are carried out at different volumes and temperatures. Interatomic potentials based machine learning are developed in order to consider large systems and long times for TIM. The potentials reproduce the free energy with the accuracy 1-5 meV/atom, which is sufficient for prediction of phase transitions. The equilibrium curves of different phases are obtained based on free energies. Melting curve is calculated by modified Z-method with developed potential.

  9. Inland dissolved salt chemistry: statistical evaluation of bivariate and ternary diagram models for surface and subsurface waters

    Directory of Open Access Journals (Sweden)

    Stephen T. THRELKELD

    2000-08-01

    Full Text Available We compared the use of ternary and bivariate diagrams to distinguish the effects of atmospheric precipitation, rock weathering, and evaporation on inland surface and subsurface water chemistry. The three processes could not be statistically differentiated using bivariate models even if large water bodies were evaluated separate from small water bodies. Atmospheric precipitation effects were identified using ternary diagrams in water with total dissolved salts (TDS 1000 mg l-1. A principal components analysis showed that the variability in the relative proportions of the major ions was related to atmospheric precipitation, weathering, and evaporation. About half of the variation in the distribution of inorganic ions was related to rock weathering. By considering most of the important inorganic ions, ternary diagrams are able to distinguish the contributions of atmospheric precipitation, rock weathering, and evaporation to inland water chemistry.

  10. Metastable phases and 'metastable' phase diagrams

    Science.gov (United States)

    Brazhkin, V. V.

    2006-10-01

    The work discusses the qualitative nature of phase transitions for metastable states of substances. The objects of the physics of condensed media are primarily the equilibrium states of substances with metastable phases viewed as an exception, while in chemistry the overwhelming majority of organic substances under investigation are metastable. It turns out that at normal pressure many simple molecular compounds based on light elements (these include: most hydrocarbons; nitrogen oxides, hydrates, and carbides; carbon oxide (CO); alcohols, glycerin) are metastable substances too, i.e. they do not match the Gibbs free energy minimum for a given atomic chemical composition. At moderate temperatures and pressures, the phase transitions for particular metastable phases are reversible throughout the entire experimentally accessible time period with the equilibrium thermodynamics laws obeyed. At sufficiently high pressures (1-10 GPa), most molecular phases irreversibly transform to more energy efficient polymerized phases. These transformations are not consistent with the equality of the Gibbs free energies between the phases before and after transition, i.e. they are not phase transitions in the 'classical' meaning. The resulting polymeric phases at normal pressure can exist at temperatures above the melting one for an initial metastable molecular phase. Striking examples of such polymers are polyethylene and a polymerized modification of CO. Many energy-intermediate polymeric phases can apparently be synthesized by the 'classical' chemistry techniques at normal pressure. At higher pressures (10-100 GPa) polymerized modifications transform to a mixture of simple stable phases.

  11. Experimental investigation and thermodynamic calculations of the Bi–In–Ni phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Premović, Milena [University in Priština, Faculty of Technical Science, Kosovo, Mitrovica (Serbia); Minić, Duško, E-mail: dminic65@open.telekom.rs [University in Priština, Faculty of Technical Science, Kosovo, Mitrovica (Serbia); Manasijević, Dragan [University of Belgrade, Technical Faculty, Bor (Serbia); Ćosović, Vladan [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Belgrade (Serbia); Živković, Dragana [University of Belgrade, Technical Faculty, Bor (Serbia); Dervišević, Irma [University in Priština, Faculty of Technical Science, Kosovo, Mitrovica (Serbia)

    2015-06-10

    Highlights: • Calculated constitutive binary system based on literature data. • Experimentally determined (DTA) temperatures of phase transformations compared with analytical calculation. • Definition of several vertical sections. • Calculated horizontal section, confirmed by experimental SEM–EDS and XRD method. • Calculated liquidus surface projection and determined invariant reaction occurred in ternary Bi–In–Ni system. - Abstract: Phase diagram of the Bi–In–Ni ternary system was investigated using differential thermal analysis (DTA), scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), and X-ray powder diffraction (XRD) analysis. Experimentally obtained results were compared with the results of thermodynamic calculation of phase equilibria based on calculation of phase diagram (CALPHAD) method and literature data. Phase transition temperatures of alloys with overall compositions along three selected vertical sections In–Bi{sub 0.8}Ni{sub 0.2}, x(Bi) = 0.6 and Bi–In{sub 0.5}Ni{sub 0.5} were measured by DTA. Liquidus temperatures were experimentally determined and compared with the results of thermodynamic calculation. Identification of coexisting phases in samples equilibrated at 100 °C, 300 °C and 350 °C was carried out using SEM–EDS and XRD methods. The obtained results were compared with the calculated isothermal sections of the Bi–In–Ni ternary system at corresponding temperatures. Calculated liquidus projection and invariant equilibria of the Bi–In–Ni ternary system were presented.

  12. Phase diagram of nucleosome core particles.

    Science.gov (United States)

    Mangenot, S; Leforestier, A; Durand, D; Livolant, F

    2003-11-07

    We present a phase diagram of the nucleosome core particle (NCP) as a function of the monovalent salt concentration and applied osmotic pressure. Above a critical pressure, NCPs stack on top of each other to form columns that further organize into multiple columnar phases. An isotropic (and in some cases a nematic) phase of columns is observed in the moderate pressure range. Under higher pressure conditions, a lamello-columnar phase and an inverse hexagonal phase form under low salt conditions, whereas a 2D hexagonal phase or a 3D orthorhombic phase is found at higher salt concentration. For intermediate salt concentrations, microphase separation occurs. The richness of the phase diagram originates from the heterogeneous distribution of charges at the surface of the NCP, which makes the particles extremely sensitive to small ionic variations of their environment, with consequences on their interactions and supramolecular organization. We discuss how the polymorphism of NCP supramolecular organization may be involved in chromatin changes in the cellular context.

  13. Dynamic visualisation of municipal waste management performance in the EU using Ternary Diagram method.

    Science.gov (United States)

    Pomberger, R; Sarc, R; Lorber, K E

    2017-03-01

    This contribution describes the dynamic visualisation of European (EU 28) municipal waste management performance, using the Ternary Diagram Method. Municipal waste management performance depends primarily on three treatment categories: recycling & composting, incineration and landfilling. The framework of current municipal waste management including recycling targets, etc. is given by the Waste Framework Directive - 2008/98/EC. The proposed Circular Economy Package should stimulate Europe's transition towards more sustainable resources and energy oriented waste management. The Package also includes a revised legislative proposal on waste that sets ambitious recycling rates for municipal waste for 2025 (60%) and 2030 (65%). Additionally, the new calculation method for monitoring the attainment of the targets should be applied. In 2014, ca. 240 million tonnes of municipal waste were generated in the EU. While in 1995, 17% were recycled and composted, 14% incinerated and 64% landfilled, in 2014 ca. 71% were recovered but 28% landfilled only. Considering the treatment performance of the individual EU member states, the EU 28 can be divided into three groups, namely: "Recovery Countries", "Transition Countries" and "Landfilling Countries". Using Ternary Diagram Method, three types of visualization for the municipal waste management performance have been investigated and extensively described. Therefore, for better understanding of municipal waste management performance in the last 20years, dynamic visualisation of the Eurostat table-form data on all 28 member states of the EU has been carried out in three different ways: 1. "Performance Positioning" of waste management unit(s) at a specific date; 2. "Performance dynamics" over a certain time period and; 3. "Performance development" expressed as a track(s). Results obtained show that the Ternary Diagram Method is very well suited to be used for better understanding of past developments and coherences, for monitoring of

  14. Topological phase diagram of superconducting carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Milz, Lars; Marganska-Lyzniak, Magdalena; Grifoni, Milena [Institut I - Theoretische Physik Universitaet Regensburg (Germany)

    2016-07-01

    The topological superconducting phase diagram of superconducting carbon nanotubes is discussed. Under the assumption of a short-ranged pairing potential, there are two spin-singlet states: an s-wave and an exotic p + ip-wave that are possible because of the special structure of the honeycomb lattice. The consequences for the possible presence of Majorana edge states in carbon nanotubes are addressed. In particular, regions in the magnetic field-chemical potential plane possibly hosting localized Majorana modes are discussed.

  15. The Prognosis of the Phase Equilibrium Diagram of the System Al-Cu-Si

    Directory of Open Access Journals (Sweden)

    Florentina Cziple

    2007-10-01

    Full Text Available The paper presents a model for establishing the mathematical functions of the liquidus and solidus curves, from the binary diagrams Al-Si, Si-Cu, Cu-Al and their use in the prognosis of the phase equilibrium diagram from the ternary system Al-Cu-Si. We have studied the model of the non-ideal liquid solution of the regular type. The calculus and graphic plotting of the equations for the binary systems has been performed on the computer

  16. Application of quaternary phase diagrams to compound semiconductor processing. Progress report, April 1, 1988--December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Schwartzman, A.

    1988-12-31

    This paper considers the application of quaternary phase diagrams to understanding and predicting the behavior of II-VI thin film interfaces in photovoltaic devices under annealing conditions. Examples, listed in a table, include semiconductor/insulator/semiconductor (SIS) layered structures, II-VI/II-VI and III-V/II-VI epitaxial heterojunctions and oxidation of ternary compounds. Solid solubility is taken into account for quaternary phase diagrams of semiconductor systems. Using free energies of formation, a method to calculate the quaternary phase diagrams was developed. The Ga-As-II-VI and Cd-Te-Zn-O phase diagrams are reviewed as examples of quaternary phase diagrams without and with solid solubility.

  17. Phase Diagram of Spiking Neural Networks

    Directory of Open Access Journals (Sweden)

    Hamed eSeyed-Allaei

    2015-03-01

    Full Text Available In computer simulations of spiking neural networks, often it is assumed that every two neurons of the network are connected by a probablilty of 2%, 20% of neurons are inhibitory and 80% are excitatory. These common values are based on experiments, observations. but here, I take a different perspective, inspired by evolution. I simulate many networks, each with a different set of parameters, and then I try to figure out what makes the common values desirable by nature. Networks which are configured according to the common values, have the best dynamic range in response to an impulse and their dynamic range is more robust in respect to synaptic weights. In fact, evolution has favored networks of best dynamic range. I present a phase diagram that shows the dynamic ranges of different networks of different parameteres. This phase diagram gives an insight into the space of parameters -- excitatory to inhibitory ratio, sparseness of connections and synaptic weights. It may serve as a guideline to decide about the values of parameters in a simulation of spiking neural network.

  18. Experimental investigation and thermodynamic assessment of phase equilibria in the Nb–Si–Zr ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Guo, Y.H. [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Yang, S.Y.; Shi, Z.; Wang, C.P. [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Liu, X.J., E-mail: lxj@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China)

    2015-09-05

    Highlights: • The sections of Nb–Si–Zr system at 1373, 1473 and 1573 K were determined. • Large solubilities of Nb in αZr{sub 5}Si{sub 4}, Zr{sub 3}Si{sub 2} and Zr{sub 2}Si phases were observed. • The thermodynamic assessment of Nb–Si–Zr ternary system was carried out. - Abstract: In this study, the phase equilibria of Nb–Si–Zr at 1373 K, 1473 K and 1573 K were experimentally determined by means of back-scattered electron (BSE), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). The results show that there were five three-phase regions and sixteen two-phase regions in the studied isothermal sections, and no any ternary compounds were found. The solubility of Si in the Nb–Zr side is very small. Large solubilities of Nb in αZr{sub 5}Si{sub 4}, Zr{sub 3}Si{sub 2} and Zr{sub 2}Si phases were observed, otherwise the solubilities of Nb in ZrSi{sub 2}, αZrSi and Zr{sub 3}Si phases are relatively small. Based on the present experimental results, the thermodynamic assessment of Nb–Si–Zr system was carried out using the CALPHAD (Calculation of Phase Diagrams) method. The current calculated phase diagrams are in reasonable agreement with the present experimental data.

  19. Supernova neutrinos and antineutrinos: ternary luminosity diagram and spectral split patterns

    Energy Technology Data Exchange (ETDEWEB)

    Fogli, Gianluigi; Marrone, Antonio; Tamborra, Irene [Dipartimento Interateneo di Fisica ' ' Michelangelo Merlin' ' , Via Amendola 173, 70126 Bari (Italy); Lisi, Eligio, E-mail: gianluigi.fogli@ba.infn.it, E-mail: eligio.lisi@ba.infn.it, E-mail: antonio.marrone@ba.infn.it, E-mail: irene.tamborra@ba.infn.it [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari (Italy)

    2009-10-01

    In core-collapse supernovae, the ν{sub e} and ν-bar {sub e} species may experience collective flavor swaps to non-electron species ν{sub x}, within energy intervals limited by relatively sharp boundaries (''splits''). These phenomena appear to depend sensitively upon the initial energy spectra and luminosities. We investigate the effect of generic variations of the fractional luminosities (l{sub e}, l{sub ē}, l{sub x}) with respect to the usual ''energy equipartition'' case (1/6, 1/6, 1/6), within an early-time supernova scenario with fixed thermal spectra and total luminosity. We represent the constraint l{sub e}+l{sub ē}+4l{sub x} = 1 in a ternary diagram, which is explored via numerical experiments (in single-angle approximation) over an evenly-spaced grid of points. In inverted hierarchy, single splits arise in most cases, but an abrupt transition to double splits is observed for a few points surrounding the equipartition one. In normal hierarchy, collective effects turn out to be unobservable at all grid points but one, where single splits occur. Admissible deviations from equipartition may thus induce dramatic changes in the shape of supernova (anti)neutrino spectra. The observed patterns are interpreted in terms of initial flavor polarization vectors (defining boundaries for the single/double split transitions), lepton number conservation, and minimization of potential energy.

  20. Partially crystalline systems in lyophilization: I. Use of ternary state diagrams to determine extent of crystallization of bulking agent.

    Science.gov (United States)

    Chatterjee, Koustuv; Shalaev, Evgenyi Y; Suryanarayanan, Raj

    2005-04-01

    Two model ternary systems: water-glycine-raffinose and water-glycine-trehalose were investigated to determine the extent of glycine crystallization in frozen solutions. The use of such partially crystalline systems allows primary drying to be carried out substantially above the collapse temperature. Differential scanning calorimetry (DSC) and variable temperature X-ray diffractometry (XRD) were used to monitor phase transitions in frozen systems as well as to determine the T'g. Aqueous solutions containing different glycine to carbohydrate weight ratios were first cooled to -60 degrees C and then warmed to room temperature. In both raffinose and trehalose systems, when the initial glycine to sugar (raffinose pentahydrate or trehalose dihydrate) ratio was or=1, partial glycine crystallization was observed during warming. The presence of amorphous glycine caused the T'g to be substantially lower than that of the solution containing only the carbohydrate. To determine the extent of glycine crystallization, the solutions were annealed for 5 h just above the temperature of glycine crystallization. The T'g observed in the second warming curve was very close to that of the carbohydrate solution alone, indicating almost complete glycine crystallization. These studies enabled the construction of the water-rich sections of the raffinose-glycine-water and trehalose-glycine-water state diagrams. These diagrams consist of a kinetically stable freeze-concentrated solution and a doubly unstable glassy region, which readily crystallizes during cooling or subsequent warming. In addition, there is an intermediate region, where during the experimental timescale, there appears to be hindered glycine nucleation but unhindered crystal growth. To obtain substantially crystalline glycine in the frozen solutions, the glycine to carbohydrate ratios should be >or=1. Copyright (c) 2005 Wiley-Liss, Inc.

  1. Simulation analysis and ternary diagram of municipal solid waste pyrolysis and gasification based on the equilibrium model.

    Science.gov (United States)

    Deng, Na; Zhang, Awen; Zhang, Qiang; He, Guansong; Cui, Wenqian; Chen, Guanyi; Song, Chengcai

    2017-07-01

    A self-sustained municipal solid waste (MSW) pyrolysis-gasification process with self-produced syngas as heat source was proposed and an equilibrium model was established to predict the syngas reuse rate considering variable MSW components. Simulation results indicated that for constant moisture (ash) content, with the increase of ash (moisture) content, syngas reuse rate gradually increased, and reached the maximum 100% when ash (moisture) content was 73.9% (60.4%). Novel ternary diagrams with moisture, ash and combustible as axes were proposed to predict the adaptability of the self-sustained process and syngas reuse rate for waste. For wastes of given components, its position in the ternary diagram can be determined and the syngas reuse rate can be obtained, which will provide guidance for system design. Assuming that the MSW was composed of 100% combustible content, ternary diagram shows that there was a minimum limiting value of 43.8% for the syngas reuse rate in the process. Copyright © 2017. Published by Elsevier Ltd.

  2. Thermochemical and phase diagram studies of the Bi-Ni-Sn system

    Energy Technology Data Exchange (ETDEWEB)

    Milcheva, N. [Faculty of Chemistry, University of Plovdiv, 24 Tsar Asen str., 4000 Plovdiv (Bulgaria); Broz, P. [Masaryk University, Faculty of Science, Kotlarska 2, 61137 Brno (Czech Republic); Masaryk University, Central European Institute of Technology, CEITEC, Kamenice 753/5, 625 00, Brno (Czech Republic); Bursik, J. [Institute of Physics of Materials, Academy of Sciences, Zizkova 22, 61662 Brno (Czech Republic); Vassilev, G.P., E-mail: gpvassilev@uni.plovdiv.bg [Faculty of Chemistry, University of Plovdiv, 24 Tsar Asen str., 4000 Plovdiv (Bulgaria)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer We study the phase diagram Bi-Ni-Sn by using scanning electron microscopy and differential scanning calorimetry. Black-Right-Pointing-Pointer The samples are positioned in 3 isopleths with constant Ni contents of 0.05, 0.10 and 0.15 mol fraction. Black-Right-Pointing-Pointer It has been confirmed that a ternary eutectic reaction appears at around 116-129 Degree-Sign C. Black-Right-Pointing-Pointer Experimental liquidus temperatures were obtained and compared to calculated ones. Black-Right-Pointing-Pointer Six groups of thermal arrests were registered (except the eutectic and liquidus related peaks). - Abstract: The phase diagram Bi-Ni-Sn was studied by means of SEM (scanning electron microscopy)/EDS (energy-dispersive solid state spectrometry), by DSC (differential scanning calorimetry) and RT-XRD (room temperature X-Ray diffraction) in order to attain more information about this ternary phase diagram. The samples were positioned in three isopleths with nickel contents of: 0.05 (section 1), 0.10 (section 2) and 0.15 (section 3) mole fractions, respectively. The mole fractions of Sn corresponding to the particular sections were as follows: from 0.19 to 0.76 (section 1), from 0.18 to 0.72 (section 2); from 0.17 to 0.68 (section 3). Mixtures of pure metals were sealed under vacuum in amorphous silica ampoules and annealed at 350 Degree-Sign C. A binary Bi-Sn eutectic sample was synthesized and used as internal standard. The existence of a previously reported ternary eutectic reaction was confirmed. Liquidus temperatures were identified and the results were compared to CALPHAD-type calculations. It was found that ternary samples' liquidus temperatures were higher than the calculated ones. Six more groups of thermal arrests were registered except the eutectic and liquidus related peaks.

  3. Thermochemical and phase diagram studies of the Sn-Zn-Ni system

    Energy Technology Data Exchange (ETDEWEB)

    Gandova, V.D. [Faculty of Chemistry, University of Plovdiv, 24 Tsar Asen Str., 4000 Plovdiv (Bulgaria); Broz, P. [Masaryk University, Faculty of Science, Department of Chemistry, Kotlarska 2, 61137 Brno (Czech Republic); Bursik, J. [Institute of Physics of Materials, Academy of Sciences, Zizkova 22, 61662, Brno (Czech Republic); Vassilev, G.P., E-mail: gpvassilev@excite.com [Faculty of Chemistry, University of Plovdiv, 24 Tsar Asen Str., 4000 Plovdiv (Bulgaria)

    2011-09-20

    Highlights: {yields} Sn-Zn-Ni phase diagram in the vicinity of the Sn-Zn system. {yields} Unidentified compositions (UX1-UX4) are repeatedly observed. {yields} This indicates up to 6 ternary compounds in the system. {yields} A ternary eutectic reaction at around 190 {sup o}C is found. - Abstract: The phase diagram Sn-Zn-Ni was studied by means of DSC and electron microprobe analysis. The samples were positioned in three isopleth sections with nickel contents of 0.04 (section 1), 0.08 (section 2) and 0.12 (section 3) mole fractions. The mole fractions of Sn corresponding to the particular sections were as follows: from 0.230 to 0.768 (section 1), from 0.230 to 0.736 (section 2); from 0.220 to 0.704 (section 3). Mixtures of pure metals were sealed under vacuum in quartz ampoules and annealed at 350 {sup o}C. The solid phases identified in the samples were: {gamma}-(i.e. Ni{sub 5}Zn{sub 21}), (Zn) and the ternary phase T1. Unidentified compositions were observed. One of them: UX1 (X{sub Ni} = 0.071 {+-} 0.005, X{sub Sn} = 0.439 {+-} 0.009 and X{sub Zn} = 0.490 {+-} 0.010) might indicate another (stable or metastable) ternary compound (T3) in the system Sn-Zn-Ni. Considering the data obtained by combining DSC with microstructure observations, the studied alloys could be divided in two groups (A and B). A ternary eutectic reaction at around 190 {sup o}C is common for the A-group alloys. The phases taking part in this reaction are, probably, Ni{sub 5}Zn{sub 21}, (Zn), ({beta}Sn) and liquid. B-group samples do not show ternary eutectic reaction and are also characterized by the presence of the ternary compound T1 (absent in the A-group alloys). Four other groups of thermal arrests were registered (TA{sub 1}-TA{sub 4}). It was found that TA{sub 2} peaks were characteristic for most of the A-group samples, while TA{sub 1} peaks were registered with all B-group samples.

  4. Cu-Zn binary phase diagram and diffusion couples

    Science.gov (United States)

    Mccoy, Robert A.

    1992-01-01

    The objectives of this paper are to learn: (1) what information a binary phase diagram can yield; (2) how to construct and heat treat a simple diffusion couple; (3) how to prepare a metallographic sample; (4) how to operate a metallograph; (5) how to correlate phases found in the diffusion couple with phases predicted by the phase diagram; (6) how diffusion couples held at various temperatures could be used to construct a phase diagram; (7) the relation between the thickness of an intermetallic phase layer and the diffusion time; and (8) the effect of one species of atoms diffusing faster than another species in a diffusion couple.

  5. Lattice investigations of the QCD phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Jana

    2016-12-15

    To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.

  6. Phase equilibria of the Mo-Al-Ho ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yitai; Chen, Xiaoxian; Liu, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry

    2017-08-15

    Investigation into the reactions and phase equilibria of transition metal elements (i.e. Mo, Zr, Cr, V and Ti), Al and rare earths is academically and industrially important for the development of both refractory alloys and lightweight high-temperature materials. In this work, the equilibria of the Mo-Al-Ho ternary system at 773 K have been determined by using X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. A new ternary phase Al{sub 4}Mo{sub 2}Ho has been found and the other ternary phase Al{sub 43}Mo{sub 4}Ho{sub 6} is observed. Ten binary phases in the Al-Mo and Al-Ho systems, including Al{sub 17}Mo{sub 4} rather than Al{sub 4}Mo, have been determined to exist at 773 K. The homogeneity ranges of AlMo{sub 3} and Al{sub 8}Mo{sub 3} phase are 7.5 at.% and 1 at.%, respectively. According to the phase-disappearing method, the maximum solubility of Al in Mo is about 16 at.%.

  7. Phase diagram of Nitrogen at high pressures and temperatures

    Science.gov (United States)

    Jenei, Zsolt; Lin, Jung-Fu; Yoo, Choong-Shik

    2007-03-01

    Nitrogen is a typical molecular solid with relatively weak van der Waals intermolecular interactions but strong intramolecular interaction arising from the second highest binding energy of all diatomic molecules. The phase diagram of solid nitrogen is, however, complicated at high pressures, as inter-molecular interaction becomes comparable to the intra-molecular interaction. In this paper, we present an updated phase diagram of the nitrogen in the pressure-temperature region of 100 GPa and 1000 K, based on in-situ Raman and synchrotron x-ray diffraction studies using externally heated membrane diamond anvil cells. While providing an extension of the phase diagram, our results indicate a ``steeper'' slope of the δ/ɛ phase boundary than previously determined^1. We also studied the stability of the ɛ phase at high pressures and temperatures. Our new experimental results improve the understanding of the Nitrogen phase diagram. 1. Gregoryanz et al, Phys. Rev. B 66, 224108 (2002)

  8. Pb–Te–O phase equilibrium diagram and the lead telluride thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Berchenko, Nicolas, E-mail: nberchen@univ.rzeszow.pl [Centre of Microelectronics and Nanotechnology, Rzeszow University, Rejtana 16A, Rzeszow 35-959 Poland (Poland); Fadeev, Sergey, E-mail: savchyn.lviv@mail.ru [Lviv Ivan Franko National University, Dragomanov st., 50, Lviv 79005 (Ukraine); Savchyn, Volodymyr, E-mail: fadeyev.serzh@ukr.net [Lviv Polytechnic State University, Bandera st., 12, Lviv 79646 (Ukraine); Kurbanov, Kurban, E-mail: baron_02@mail.ru [Kremenchuk Flight College of National Aviation University, 17/6 Peremogy Street, Kremenchuk, Poltava region 39600 (Ukraine); Trzyna, Malgorzata, E-mail: malgorzata.trzyna@gmail.com [Centre of Microelectronics and Nanotechnology, Rzeszow University, Rejtana 16A, Rzeszow 35-959 Poland (Poland); Cebulski, Jozef, E-mail: cebulski@univ.rzeszow.pl [Center for Innovation and Transfer of Natural Sciences and Engineering Knowledge, Rzeszow University, Rejtana 16A, Rzeszow 35-959 Poland (Poland)

    2014-03-01

    Highlights: • Pb–Te–O diagram can correctly predict oxidation products in a wide range of temperatures. • Account for temperature change of Gibbs energies is necessary for correct evaluation of oxidation. • The main product of PbTe oxidation at temperatures < 673 K is PbTeO{sub 3}. • TOF SIMS detects the presence of ternary oxides at PbTe surface at 293 K. • Products of PbTe oxidation are significantly changed at temperatures above 673 K. - Abstract: To clarify the behavior of thermally oxidized PbTe the phase equilibrium diagram was calculated taking into account the change of the standard Gibbs energies of formation with the temperature up to 873 K. The X-ray diffractometry (XRD) studies of thermally oxidized PbTe are, summarized. In good agreement with XRD studies the Pb–Te–O diagram predicts the formation of the lead tellurite PbTeO{sub 3} at the relatively low temperatures (<673 K). At higher temperatures (>673 K) it predicts the formation of other ternary PbTe oxides (Pb{sub 3}TeO{sub 5}, Pb{sub 5}TeO{sub 7}, and Pb{sub 2}TeO{sub 4}) detected in PbTe sintered material at high-temperature oxidation. This must be considered when choosing a method of preparing the nanostructured PbTe composites and when analyzing their properties. This should be considered when choosing processing techniques structured material.

  9. Ternary diagram of extract proteins / solvent systems: Sesame, soybean and lupine proteins

    Directory of Open Access Journals (Sweden)

    Mohamed, S. S.

    2004-09-01

    Full Text Available Solvent extraction as a method of extracting protein from oilseed meals offers the advantage of higher efficiency. Unfortunately, the published literature points to the gap in the work concerned with the necessary equilibrium diagram to design due process equipment for such extracts. Initiated by this lack of basic knowledge, the present study has been undertaken to provide the equilibrium data for three different ternary systems, namely: sesame protein / sodium hydroxide solution system, soybean protein / sodium hydroxide solution system and lupine protein / sodium hydroxide solution system. These oilseed meals were selected because of their high protein content (53.4 %, 46.2 % and 42.3 % protein, respectively. The study also concentrated on the evaluation of the major parameters affecting the extraction process, i.e. the normality of the sodium hydroxide solution used as extracting solvent and the initial oilseed solvent to meal feeding ratio. The results obtained indicate that the best normality of sodium hydroxide solution used for extracting soybean and lupine protein is 0.02N, while 0.04N solution is required for extracting sesame protein. Also, operating at a liquid to solid feed ratio of 30:1 and 50:1 for soybean, sesame and lupine, respectively, is enough to reach a high protein extract. Correlations were presented for each locus of under flow compositions, graphically acquired, and the data are compared with those calculated by analytical solutions.La extracción con disolventes es un método de extracción de proteínas de las harinas de semillas oleaginosas que ofrece la ventaja de su elevada eficacia. Desafortunadamente, la bibliografía coincide en el vacío existente con respecto a los diagramas de equilibrio necesarios para el diseño de los equipos adecuados. Debido a esta falta de conocimientos, el presente estudio se ha llevado a cabo para obtener datos de tres sistemas ternarios: sistema proteína de sésamo / disolución de

  10. Infrared thermography method for fast estimation of phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Palomo Del Barrio, Elena [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Cadoret, Régis [Centre National de la Recherche Scientifique, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France); Daranlot, Julien [Solvay, Laboratoire du Futur, 178 Av du Dr Schweitzer, 33608 Pessac (France); Achchaq, Fouzia, E-mail: fouzia.achchaq@u-bordeaux.fr [Université de Bordeaux, Institut de Mécanique et d’Ingénierie, Esplanade des Arts et Métiers, 33405 Talence (France)

    2016-02-10

    Highlights: • Infrared thermography is proposed to determine phase diagrams in record time. • Phase boundaries are detected by means of emissivity changes during heating. • Transition lines are identified by using Singular Value Decomposition techniques. • Different binary systems have been used for validation purposes. - Abstract: Phase change materials (PCM) are widely used today in thermal energy storage applications. Pure PCMs are rarely used because of non adapted melting points. Instead of them, mixtures are preferred. The search of suitable mixtures, preferably eutectics, is often a tedious and time consuming task which requires the determination of phase diagrams. In order to accelerate this screening step, a new method for estimating phase diagrams in record time (1–3 h) has been established and validated. A sample composed by small droplets of mixtures with different compositions (as many as necessary to have a good coverage of the phase diagram) deposited on a flat substrate is first prepared and cooled down to ambient temperature so that all droplets crystallize. The plate is then heated at constant heating rate up to a sufficiently high temperature for melting all the small crystals. The heating process is imaged by using an infrared camera. An appropriate method based on singular values decomposition technique has been developed to analyze the recorded images and to determine the transition lines of the phase diagram. The method has been applied to determine several simple eutectic phase diagrams and the reached results have been validated by comparison with the phase diagrams obtained by Differential Scanning Calorimeter measurements and by thermodynamic modelling.

  11. Phase diagrams for geoscientists an atlas of the Earth's interior

    CERN Document Server

    Gasparik, Tibor

    2014-01-01

    Presented in this new, full-color edition, with the first polychrome phase diagrams to be published, this geoscientific atlas is backed by the author's unrivalled dataset, and amounts to the most complete survey yet of phase relations in Earth's chemistry.

  12. Reexamination of Kerker's conditions by means of the phase diagram

    Science.gov (United States)

    Lee, Jeng Yi; Miroshnichenko, Andrey E.; Lee, Ray-Kuang

    2017-10-01

    For passive electromagnetic scatterers, we explore a variety of extreme limits on directional scattering patterns in a phase diagram, regardless of the details on the geometric configurations and material properties. By demonstrating the extinction cross sections with the power conservation intrinsically embedded in the phase diagram, we give an alternative interpretation for Kerker's first and second conditions, associated with zero backward scattering (ZBS) and nearly zero forward scattering (NZFS). Physical boundaries and limitations for these directional radiations are illustrated along with a generalized Kerker's condition with implicit parameters. By taking the dispersion relations of gold silicon core-shell nanoparticles into account, we reveal the realistic parameters to experimentally implement ZBS and NZFS at optical frequencies by means of a phase diagram.

  13. Phase diagrams of low-density polyethylene-alkylbenzene systems

    Science.gov (United States)

    Ilyasova, A. N.; Kudryavtsev, Y. V.; Lebedeva, T. N.; Levashova, I. V.; Flyagina, Yu. A.; Pochivalov, K. V.

    2017-03-01

    Complete phase diagrams for mixtures of low-density polyethylene with p- and m-xylene are plotted by optical means in developing the concept of which partially crystalline polymers are microstructured liquids. It is shown that in contrast to the ones presented in the literature, both diagrams contain the solubility boundary curve of the low-molecular weight component in the polymer, above which the polyethylene has the structure of a single-phase gel (crosslinks formed by crystallites and amorphous regions saturated with xylene). At the figurative point on the diagrams, a situation is observed in which the dissolution of all the liquid contained in the initial two-phase system in the polymer is accompanied by its simultaneous complete amorphization. The parameters of the figurative point allow us to estimate the thermodynamic affinity of different alkylbenzenes toward polyethylene.

  14. Construction of a DOPC/PSM/cholesterol phase diagram based on the fluorescence properties of trans-parinaric acid.

    Science.gov (United States)

    Nyholm, Thomas K M; Lindroos, Daniel; Westerlund, Bodil; Slotte, J Peter

    2011-07-05

    Cell membranes have a nonhomogenous lateral organization. Most information about such nonhomogenous mixing has been obtained from model membrane studies where defined lipid mixtures have been characterized. Various experimental approaches have been used to determine binary and ternary phase diagrams for systems under equilibrium conditions. Such phase diagrams are the most useful tools for understanding the lateral organization in cellular membranes. Here we have used the fluorescence properties of trans-parinaric acid (tPA) for phase diagram determination. The fluorescence intensity, anisotropy, and fluorescence lifetimes of tPA were measured in bilayers composed of one to three lipid components. All of these parameters could be used to determine the presence of liquid-ordered and gel phases in the samples. However, the clearest information about the phase state of the lipid bilayers was obtained from the fluorescence lifetimes of tPA. This is due to the fact that an intermediate-length lifetime was found in samples that contain a liquid-ordered phase and a long lifetime was found in samples that contained a gel phase, whereas tPA in the liquid-disordered phase has a markedly shorter fluorescence lifetime. On the basis of the measured fluorescence parameters, a phase diagram for the 1,2-dioleoyl-sn-glycero-3-phosphocholine/N-palmitoyl sphingomyelin/cholesterol system at 23 °C was prepared with a 5 mol % resolution. We conclude that tPA is a good fluorophore for probing the phase behavior of complex lipid mixtures, especially because multilamellar vesicles can be used. The determined phase diagram shows a clear resemblance to the microscopically determined phase diagram for the same system. However, there are also significant differences that likely are due to tPA's sensitivity to the presence of submicroscopic liquid-ordered and gel phase domains. © 2011 American Chemical Society

  15. Phase diagram of the Bi[sub 2]O[sub 3]-SrO-CaO quasiternary system

    Energy Technology Data Exchange (ETDEWEB)

    Shimpo, R.; Nakamura, Y. (Univ. of Tokyo (Japan))

    1993-06-01

    Numerous reports have been published on the superconductivity, structure, and physical properties of the Bi-Sr-Ca-Cu-O system, including the ceramic superconductors of Bi[sub 2]Sr[sub 2]Ca[sub 2]Cu[sub 3]O[sub y] and Bi[sub 2]Sr[sub 2]CaCu[sub 2]O[sub y]. On the phase diagrams of the system, numbers of studies have so far been presented, but there exist several regions in the proposed phase diagram of the Bi[sub 2]O[sub 3]-SrO-CaO quasiternary system, which have been presented by several investigators, are different from each other because the ternary system includes a number of solid solution phases of which the phase equilibrium relations are complicated. In this study, isothermal sections of the phase diagram for the Bi[sub 2]O[sub 3]-SrO-CaO ternary system at 973 and 1,023 K have been investigated. Experiments were conducted in air, because this system does not include copper oxides and, therefore, it is considered that the oxygen contents in the interceramic compounds in this system are substantially not affected by the oxygen potential.

  16. Magnetic phase diagram of Ho/Er alloys

    DEFF Research Database (Denmark)

    Cowley, R.A.; Simpson, J.A.; Bryn-Jacobsen, C.

    1998-01-01

    are found, arising from the competition between the exchange and anisotropic crystal-field interactions, the latter of which are of opposite sign for Ho and Er. The magnetic phase diagram has five distinct phases with long-range magnetic order: basal-plane helical, tilted helical, cycloidal, c......-axis longitudinally modulated, and conical. The cycloid and tilted helix have both incommensurate and commensurate q = 1/4c* forms, and all of the thin films have a conical structure at low temperatures, even though corresponding films of pure Ho and Er do not exhibit this phase. There is a pentacritical point......, and probably a disordered phase which is completely surrounded in the phase diagram by magnetic phases with long-range order. A Landau theory is developed to describe these results....

  17. Phase diagram of compressively strained nickelate thin films

    Directory of Open Access Journals (Sweden)

    A. S. Disa

    2013-09-01

    Full Text Available The complex phase diagrams of strongly correlated oxides arise from the coupling between physical and electronic structure. This can lead to a renormalization of the phase boundaries when considering thin films rather than bulk crystals due to reduced dimensionality and epitaxial strain. The well-established bulk RNiO3 phase diagram shows a systematic dependence between the metal-insulator transition and the perovskite A-site rare-earth ion, R. Here, we explore the equivalent phase diagram for nickelate thin films under compressive epitaxial strain. We determine the metal-insulator phase diagram for the solid solution of Nd1-yLayNiO3 thin films within the range 0 ≤ y ≤ 1. We find qualitative similarity between the films and their bulk analogs, but with an overall renormalization in the metal-insulator transition to lower temperature. A combination of x-ray diffraction measurements and soft x-ray absorption spectroscopy indicates that the renormalization is due to increased Ni–O bond hybridization for coherently strained thin films.

  18. A study of phase separation in ternary alloys

    Indian Academy of Sciences (India)

    Keywords. Ternary systems; Cahn–Hilliard equations; spinodal decomposition. Abstract. We have studied the evolution of microstructure when a disordered ternary alloy is quenched into a ternary miscibility gap. We have used computer simulations based on multicomponent Cahn–Hilliard (CH) equations for A and B, ...

  19. Phase diagram for droplet impact on superheated surfaces

    NARCIS (Netherlands)

    Staat, Erik-Jan; Tran, Tuan; Geerdink, B.M.; Riboux, G.; Sun, Chao; Gordillo, J.M.; Lohse, Detlef

    2015-01-01

    We experimentally determine the phase diagram for impacting ethanol droplets on a smooth, sapphire surface in the parameter space of Weber number We versus surface temperature T. We observe two transitions, namely the one towards splashing (disintegration of the droplet) with increasing We, and the

  20. Phase Stability Diagrams for High Temperature Corrosion Processes

    Directory of Open Access Journals (Sweden)

    J. J. Ramos-Hernandez

    2013-01-01

    Full Text Available Corrosion phenomena of metals by fused salts depend on chemical composition of the melt and environmental conditions of the system. Detail knowledge of chemistry and thermodynamic of aggressive species formed during the corrosion process is essential for a better understanding of materials degradation exposed to high temperature. When there is a lack of kinetic data for the corrosion processes, an alternative to understand the thermodynamic behavior of chemical species is to utilize phase stability diagrams. Nowadays, there are several specialized software programs to calculate phase stability diagrams. These programs are based on thermodynamics of chemical reactions. Using a thermodynamic data base allows the calculation of different types of phase diagrams. However, sometimes it is difficult to have access to such data bases. In this work, an alternative way to calculate phase stability diagrams is presented. The work is exemplified in the Na-V-S-O and Al-Na-V-S-O systems. This system was chosen because vanadium salts is one of the more aggressive system for all engineering alloys, especially in those processes where fossil fuels are used.

  1. Investigating the QCD phase diagram with hadron multiplicities at NICA

    Energy Technology Data Exchange (ETDEWEB)

    Becattini, F. [Universita di Firenze (Italy); INFN, Firenze (Italy); Stock, R. [Goethe University, Frankfurt am Main (Germany)

    2016-08-15

    We discuss the potential of the experimental programme at NICA to investigate the QCD phase diagram and particularly the position of the critical line at large baryon-chemical potential with accurate measurements of particle multiplicities. We briefly review the present status and we outline the tasks to be accomplished both theoretically and the experimentally to make hadronic abundances a sensitive probe. (orig.)

  2. Nonequilibrium patterns in phase-separating ternary membranes

    Science.gov (United States)

    Gómez, Jordi; Sagués, Francesc; Reigada, Ramon

    2009-07-01

    We present a nonequilibrium approach for the study of a two-dimensional phase-separating ternary mixture. When the component that promotes phase separation is dynamically exchanged with the medium, the separation process is halted and actively maintained finite-size segregation domains appear in the system. In addition to this effect, already reported in our earlier work [J. Gómez, F. Sagués, and R. Reigada, Phys. Rev. E 77, 021907 (2008)], the use of a generic Ginzburg-Landau formalism and the inclusion of thermal fluctuations provide a more dynamic description of the resulting domain organization. Its size, shape, and stability properties are studied. Larger and more circular and stable domains are formed when decreasing the recycling rate, increasing the mobility of the exchanged component, and the mixture is quenched deeper. We expect this outcome to be of applicability in raft phenomenology in plasmatic cell membranes.

  3. Phase diagram of matrix compressed sensing

    Science.gov (United States)

    Schülke, Christophe; Schniter, Philip; Zdeborová, Lenka

    2016-12-01

    In the problem of matrix compressed sensing, we aim to recover a low-rank matrix from a few noisy linear measurements. In this contribution, we analyze the asymptotic performance of a Bayes-optimal inference procedure for a model where the matrix to be recovered is a product of random matrices. The results that we obtain using the replica method describe the state evolution of the Parametric Bilinear Generalized Approximate Message Passing (P-BiG-AMP) algorithm, recently introduced in J. T. Parker and P. Schniter [IEEE J. Select. Top. Signal Process. 10, 795 (2016), 10.1109/JSTSP.2016.2539123]. We show the existence of two different types of phase transition and their implications for the solvability of the problem, and we compare the results of our theoretical analysis to the numerical performance reached by P-BiG-AMP. Remarkably, the asymptotic replica equations for matrix compressed sensing are the same as those for a related but formally different problem of matrix factorization.

  4. Phase Diagrams of Electrostatically Self-Assembled Amphiplexes

    Energy Technology Data Exchange (ETDEWEB)

    V Stanic; M Mancuso; W Wong; E DiMasi; H Strey

    2011-12-31

    We present the phase diagrams of electrostatically self-assembled amphiplexes (ESA) comprised of poly(acrylic acid) (PAA), cetyltrimethylammonium chloride (CTACl), dodecane, pentanol, and water at three different NaCl salt concentrations: 100, 300, and 500 mM. This is the first report of phase diagrams for these quinary complexes. Adding a cosurfactant, we were able to swell the unit cell size of all long-range ordered phases (lamellar, hexagonal, Pm3n, Ia3d) by almost a factor of 2. The added advantage of tuning the unit cell size makes such complexes (especially the bicontinuous phases) attractive for applications in bioseparation, drug delivery, and possibly in oil recovery.

  5. Magnetic phase diagrams of classical triangular and kagome antiferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Gvozdikova, M V [Department of Physics, Kharkov National University, 61077 Kharkov (Ukraine); Melchy, P-E; Zhitomirsky, M E, E-mail: mike.zhitomirsky@cea.fr [Service de Physique Statistique, Magnetisme et Supraconductivite, UMR-E9001 CEA-INAC/UJF, 17 rue des Martyrs, 38054 Grenoble (France)

    2011-04-27

    We investigate the effect of geometrical frustration on the H-T phase diagrams of the classical Heisenberg antiferromagnets on triangular and kagome lattices. The phase diagrams for the two models are obtained from large-scale Monte Carlo simulations. For the kagome antiferromagnet, thermal fluctuations are unable to lift degeneracy completely and stabilize translationally disordered multipolar phases. We find a substantial difference in the temperature scales of the order by disorder effect related to different degeneracy of the low- and the high-field classical ground states in the kagome antiferromagnet. In the low-field regime, the Kosterlitz-Thouless transition into a spin-nematic phase is produced by unbinding of half-quantum vortices.

  6. Phase diagram of the lattice SU(2) Higgs model

    Energy Technology Data Exchange (ETDEWEB)

    Bonati, C., E-mail: bonati@df.unipi.i [Dipartimento di Fisica and INFN, Pisa (Italy); Cossu, G., E-mail: cossu@post.kek.j [Scuola Normale Superiore and INFN, Pisa (Italy); D' Elia, M., E-mail: Massimo.Delia@ge.infn.i [Dipartimento di Fisica and INFN, Genova (Italy); Di Giacomo, A., E-mail: digiaco@df.unipi.i [Dipartimento di Fisica and INFN, Pisa (Italy)

    2010-03-21

    We perform a detailed study of the phase diagram of the lattice Higgs SU(2) model with fixed Higgs field length. Consistently with previsions based on the Fradkin-Shenker theorem we find a first order transition line with an endpoint whose position we determined. The diagram also shows cross-over lines: the cross-over corresponding to the pure SU(2) bulk is also present at nonzero coupling with the Higgs field and merges with the one that continues the line of first order transition beyond the critical endpoint. At high temperature the first order line becomes a crossover, whose position moves by varying the temperature.

  7. Mapping Isobaric Aging onto the Equilibrium Phase Diagram.

    Science.gov (United States)

    Niss, Kristine

    2017-09-15

    The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model. Based on the presented data and the idea that aging happens through quasiequilibrium states, we suggest a mapping of the out-of-equilibrium states during isobaric aging to the equilibrium phase diagram. This mapping implies the existence of isostructural lines in the equilibrium phase diagram. The relaxation time is found to depend on the bath temperature, density, and a just single structural parameter, referred to as an effective temperature.

  8. Magnetic phase diagram of HoxTm1-x alloys

    DEFF Research Database (Denmark)

    Sarthour, R.S.; Cowley, R.A.; Ward, R.C.C.

    2000-01-01

    The magnetic phase diagram of the competing anisotropy system, Ho/Tm, has been determined by neutron-scattering techniques and the results compared with calculations based on a mean-field model. The crystal-field interactions in Ho favor alignment of the magnetic moments in the basal plane whereas......, with long-range order, were identified and the magnetic phase diagram, including a pentacritical point, determined. A mean-field model was used to explain the results and the results are in good agreement with the experimental results....... in Tm they favor alignment along the c axis. Single-crystal alloys were grown with molecular-beam epitaxy techniques in Oxford. The components of the magnetic moment alone the c direction and in the basal plane were determined from the neutron-scattering measurements. Five distinct magnetic phases...

  9. Phase diagram of a reentrant gel of patchy particles

    Energy Technology Data Exchange (ETDEWEB)

    Roldán-Vargas, Sándalo; Smallenburg, Frank; Sciortino, Francesco [Department of Physics, Sapienza, Università di Roma, Piazzale Aldo Moro 2, I-00185 Roma (Italy); Kob, Walter [Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, 34095 Montpellier (France)

    2013-12-28

    We study the phase diagram of a binary mixture of patchy particles which has been designed to form a reversible gel. For this we perform Monte Carlo and molecular dynamics simulations to investigate the thermodynamics of such a system and compare our numerical results with predictions based on the analytical parameter-free Wertheim theory. We explore a wide range of the temperature-density-composition space that defines the three-dimensional phase diagram of the system. As a result, we delimit the region of thermodynamic stability of the fluid. We find that for a large region of the phase diagram the Wertheim theory is able to give a quantitative description of the system. For higher densities, our simulations show that the system is crystallizing into a BCC structure. Finally, we study the relaxation dynamics of the system by means of the density and temperature dependences of the diffusion coefficient. We show that there exists a density range where the system passes reversibly from a gel to a fluid upon both heating and cooling, encountering neither demixing nor phase separation.

  10. Confinement in Polyakov gauge and the QCD phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Marhauser, Marc Florian

    2009-10-14

    We investigate Quantum Chromodynamics (QCD) in the framework of the functional renormalisation group (fRG). Thereby describing the phase transition from the phase with confined quarks into the quark-gluon-plasma phase. We focus on a physical gauge in which the mechanism driving the phase transition is discernible. We find results compatible with lattice QCD data, as well as with functional methods applied in different gauges. The phase transition is of the expected order and we computed critical exponents. Extensions of the model are discussed. When investigating the QCD phase diagram, we compute the effects of dynamical quarks at finite density on the running of the gauge coupling. Additionally, we calculate how these affect the deconfinement phase transition, also, dynamical quarks allow for the inclusion of a finite chemical potential. Concluding the investigation of the phase diagram, we establish a relation between confinement and chiral symmetry breaking, which is tied to the dynamical generation of hadron masses. In the investigations, we often encounter scale dependent fields. We investigate a footing on which these can be dealt with in a uniform way. (orig.)

  11. Cu–Ni nanoalloy phase diagram – Prediction and experiment

    OpenAIRE

    Sopoušek Jiří; Vřešťál Jan; Pinkas Jiří; Brož Pavel; Buršík Jiří; Stýskalík Aleš; Škoda David; Zobač Ondřej; Lee Joonho

    2014-01-01

    The Cu-Ni nanoalloy phase diagram respecting the nanoparticle size as an extra variable was calculated by the CALPHAD method. The samples of the Cu-Ni nanoalloys were prepared by the solvothermal synthesis from metal precursors. The samples were characterized by means of dynamic light scattering (DLS), infrared spectroscopy (IR), inductively coupled plasma optical emission spectroscopy (ICP/OES), transmission electron microscopy (TEM, HRTEM), and differential scanning calorimetry (DSC). The n...

  12. A tool for modelling of microsegregation: an approximation method for partition coefficients in experimentally determined multicomponent phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Roosz, A.; Szoeke, J. [Miskolc Univ. (Hungary). Dept. of Materials Science; Rettenmayr, M. [Darmstadt Univ. of Technology (Germany). Materials Science Dept.

    2000-12-01

    A complete set of partition coefficients of all alloying elements in multicomponent systems is an essential input for solidification models. An approximation method for partition coefficients in experimentally determined phase diagrams has been developed. The equilibria of the binary boundary systems and the eutectic valleys are used as a basis for the approximation in ternary systems. The method has been verified by a comparison of approximated and known (calculated by the CALPHAD method) partition coefficients in the Al-Cu-Si system. The ratio of the end points of calculated tie-lines is in excellent agreement with approximated partition coefficients. In the empirical Al-Cu-Si phase diagram, the approximated partition coefficients yield solid concentrations that are close to the measured solidus surface. (orig.)

  13. Phase diagram of KHF2 and non-equilibrium effects

    Science.gov (United States)

    Hobson, M. C.; Kellner, J. D.

    1978-01-01

    The equilibrium diagram for the KHF2-H2O system was constructed from cooling and heating curves for the compositions between 5 wt% and 40 wt% KHF2 and the results are shown. The phase diagrams shown is typical of that of a two component system with miscible liquid phases and whole solid phases consist of pure components. A eutectic point was found at approximately 15% KHF2 which remains completely liquid down to a temperature of -9.0 C. No hydrate formation was observed and no anomalous behavior such as the occurrence of solid transitions or metastable states was observed. The effect of rapid freezing on the equilibrium diagram did not appear, and cooling curves exhibited only one halt. Also, at rapid freezing rates, the supercooling of the solutions was smaller than those observed at the slow cooling rates. The existence of a eutectic composition and the slow rate of dissolution of the salt are used to interpret heat absorption behavior in practical applications of the KHF2-H2O system.

  14. Linear antenna microwave plasma CVD diamond deposition at the edge of no-growth region of C-H-O ternary diagram

    Energy Technology Data Exchange (ETDEWEB)

    Potocky, Stepan; Babchenko, Oleg; Hruska, Karel; Kromka, Alexander [Institute of Physics AS CR, v.v.i., Cukrovarnicka 10, 16200 Praha (Czech Republic)

    2012-12-15

    The process parametric window for diamond deposition using the chemical vapor deposition at low pressures is quite limited where addition of oxygen in the gas phase broadens this window. The lower boundary of the lens-shaped domain in C-H-O ternary diagram concurs with the H{sub 2}-CO tie-line (C/(C + O) = 0.5). In this work, we present the set of experiments where the ratio of C/(C + O) was kept at a constant value 0.385. The effect of hydrogen concentration (ratio O/(O + H) varied from 0.047 to 0.364) on plasma characteristics and deposited NCD films were investigated. Raman spectroscopy confirmed the diamond character of all deposited coatings while scanning electron microscopy showed transformation from not closed to continuous film and further decrease of grain size and finally growth of diamond nanowires while decreasing hydrogen concentration in a gas mixture. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures.

    Science.gov (United States)

    Feigenson, Gerald W

    2009-01-01

    Understanding the phase behavior of biological membranes is helped by the study of more simple systems. Model membranes that have as few as 3 components exhibit complex phase behavior that can be well described, providing insight for biological membranes. A number of different studies are in agreement on general findings for some compositional phase diagrams, in particular, those that model the outer leaflet of animal cell plasma membranes. These model mixtures include cholesterol, together with one high-melting lipid and one low-melting lipid. An interesting finding is of two categories of such 3-component mixtures, leading to what we term Type I and Type II compositional phase diagrams. The latter have phase regions of macroscopic coexisting domains of [Lalpha+Lbeta+Lo] and of [Lalpha+Lo], with domains resolved under the light microscope. Type I mixtures have the same phase coexistence regions, but the domains seem to be nanoscopic. Type I mixtures are likely to be better models for biological membranes.

  16. Quarks and gluons in the phase diagram of quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Welzbacher, Christian Andreas

    2016-07-14

    In this dissertation we study the phase diagram of strongly interacting matter by approaching the theory of quantum chromodynamics in the functional approach of Dyson-Schwinger equations. With these quantum (field) equations of motions we calculate the non-perturbative quark propagator within the Matsubara formalism. We built up on previous works and extend the so-called truncation scheme, which is necessary to render the infinite tower of Dyson-Schwinger equations finite and study phase transitions of chiral symmetry and the confinement/deconfinement transition. In the first part of this thesis we discuss general aspects of quantum chromodynamics and introduce the Dyson-Schwinger equations in general and present the quark Dyson-Schwinger equation together with its counterpart for the gluon. The Bethe-Salpeter equation is introduced which is necessary to perform two-body bound state calculations. A view on the phase diagram of quantum chromodynamics is given, including the discussion of order parameter for chiral symmetry and confinement. Here we also discuss the dependence of the phase structure on the masses of the quarks. In the following we present the truncation and our results for an unquenched N{sub f} = 2+1 calculation and compare it to previous studies. We highlight some complementary details for the quark and gluon propagator and discus the resulting phase diagram, which is in agreement with previous work. Results for an equivalent of the Columbia plot and the critical surface are discussed. A systematically improved truncation, where the charm quark as a dynamical quark flavour is added, will be presented in Ch. 4. An important aspect in this investigation is the proper adjustment of the scales. This is done by matching vacuum properties of the relevant pseudoscalar mesons separately for N{sub f} = 2+1 and N f = 2+1+1 via a solution of the Bethe-Salpeter equation. A comparison of the resulting N{sub f} = 2+1 and N{sub f} = 2+1+1 phase diagram indicates

  17. Phase diagram and entanglement of two interacting topological Kitaev chains

    Science.gov (United States)

    Herviou, Loïc; Mora, Christophe; Le Hur, Karyn

    2016-04-01

    A superconducting wire described by a p -wave pairing and a Kitaev Hamiltonian exhibits Majorana fermions at its edges and is topologically protected by symmetry. We consider two Kitaev wires (chains) coupled by a Coulomb-type interaction and study the complete phase diagram using analytical and numerical techniques. A topological superconducting phase with four Majorana fermions occurs until moderate interactions between chains. For large interactions, both repulsive and attractive, by analogy with the Hubbard model, we identify Mott phases with Ising-type magnetic order. For repulsive interactions, the Ising antiferromagnetic order favors the occurrence of orbital currents spontaneously breaking time-reversal symmetry. By strongly varying the chemical potentials of the two chains, quantum phase transitions towards fully polarized (empty or full) fermionic chains occur. In the Kitaev model, the quantum critical point separating the topological superconducting phase and the polarized phase belongs to the universality class of the critical Ising model in two dimensions. When increasing the Coulomb interaction between chains, then we identify an additional phase corresponding to two critical Ising theories (or two chains of Majorana fermions). We confirm the existence of such a phase from exact mappings and from the concept of bipartite fluctuations. We show the existence of negative logarithmic corrections in the bipartite fluctuations, as a reminiscence of the quantum critical point in the Kitaev model. Other entanglement probes such as bipartite entropy and entanglement spectrum are also used to characterize the phase diagram. The limit of large interactions can be reached in an equivalent setup of ultracold atoms and Josephson junctions.

  18. Phase diagrams and heterogeneous equilibria a practical introduction

    CERN Document Server

    Predel, Bruno; Pool, Monte

    2004-01-01

    This graduate-level textbook provides an introduction to the practical application of phase diagrams. It is intended for students and researchers in chemistry, metallurgy, mineralogy, and materials science as well as in engineering and physics. Heterogeneous equilibria are described by a minimum of theory illustrated by practical examples and realistic case discussions from the different fields of application. The treatment of the physical and energetic background of phase equilibria leads to the discussion of the thermodynamics of mixtures and the correlation between energetics and composition. Thus, tools for the prediction of energetic, structural, and physical quantities are provided. The authors treat the nucleation of phase transitions, the production and stability of technologically important metastable phases, and metallic glasses. Furthermore, the text also concisely presents the thermodynamics and composition of polymer systems.

  19. Moving through three-dimensional phase diagrams of monoclonal antibodies.

    Science.gov (United States)

    Rakel, Natalie; Baum, Miriam; Hubbuch, Jürgen

    2014-01-01

    Protein phase behavior characterization is a multivariate problem due to the high amount of influencing parameters and the diversity of the proteins. Single influences on the protein are not understood and fundamental knowledge remains to be obtained. For this purpose, a systematic screening method was developed to characterize the influence of fluid phase conditions on the phase behavior of proteins in three-dimensional phase diagrams. This approach was applied to three monoclonal antibodies to investigate influences of pH, protein and salt concentrations, with five different salts being tested. Although differences exist between the antibodies, this extensive study confirmed the general applicability of the Hofmeister series over the broad parameter range analyzed. The influence of the different salts on the aggregation (crystallization and precipitation) probability was described qualitatively using this Hofmeister series, with a differentiation between crystallization and precipitation being impossible, however. © 2014 American Institute of Chemical Engineers.

  20. Intrinsic Ferroelastic Nanoscale Structure and Ideal Phase Diagrams of HTSC

    Science.gov (United States)

    Phillips, J. C.

    2001-03-01

    HTSC occurs in oxide (not halide) perovskite and pseudoperovskite materials known for strong internal ferroelastic stresses. These stresses are relieved by domain formation, leaving residual giant Electron-Phonon (E-P) interactions. (This possibility led Bednorz and Mueller to discover HTSC.) Many experiments, reviewed by Jung, show domain formation in the HTSC cuprates (also CMR manganites) with domain diameters 3 nm. The popular parabolic generic phase diagram for HTSC is incomplete and misleading. It is based on LSxCO, where the Srx dopants have low mobility compared to Ox mobility in other HTSC; samples are not fully equilibrated even after annealing for months at high T. Nearly ideal phase diagrams occur in YBCO and Hg cuprate. With increasing x, Tc is at first insulating and then an Intermediate Phase (IP) appears continuously where Tc is represented by one or more plateaus. XAFS (Haskell, Stern) shows that local Orthorhombic Order (OO) exists, but is different from, non-zero macroscopic OO only for 0.15 related to ideal HTSC phase diagrams by a THREE-dimensional topological model that also explains atomic-level anomalies in neutron and infrared spectra, as well as pseudogaps. The platform is very broad: it also supports IPs in (1) semiconductor impurity bands, with E-dopant P interactions 25x normal E-P interactions, near the metal-insulator transition, and (2) in network glasses near the stiffness transition (Thorpe), where (NEW) the glass transition in the IP is nearly reversible (Boolchand). The model gives correct scaling exponents where observed.

  1. The intrinsic electronic phase diagram of iron-pnictide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hess, C.; Kondrat, A.; Narduzzo, A.; Hamann-Borrero, J.E.; Klingeler, R.; Grafe, H.; Lang, G.; Hammerath, F.; Paar, D.; Alfonsov, A.; Kataev, V.; Werner, J.; Behr, G.; Buechner, B. [Leibniz-Institute for Solid State and Materials Research, IFW Dresden, 01171 Dresden (Germany)

    2009-07-01

    We present a detailed study of the intrinsic electronic phase diagram of the oxypnictide superconductors in the normal state based on the analysis of the electrical resistivity {rho} of both LaO{sub 1-x}F{sub x}FeAs and SmO{sub 1-x}F{sub x}FeAs for a wide range of doping. Our data give clear-cut evidence for unusual normal state properties in these new materials. As a function of doping {rho} of LaO{sub 1-x}F{sub x}FeAs shows a clear transition from pseudogap to Fermi liquid-like behavior, mimicking the phase diagram of the cuprates. Moreover, our data reveal a correlation between the strength of the pseudogap signatures and the stability of the superconducting phase. The pseudogap signatures, which are clearly connected with the structural and magnetic transitions of the parent material, become stronger in SmO{sub 1-x}F{sub x}FeAs where superconductivity is enhanced and vanish when superconductivity is reduced in the doping region with Fermi liquid-like behavior. We further present evidence for the connection between the pseudogap signatures in electrical transport and the slowing-down of spin fluctuation.

  2. Phase diagram of a lattice of pancake vortex molecules

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y., E-mail: y.tanaka@aist.go.j [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Crisan, A. [University of Birmingham, Birmingham (United Kingdom); National Institute of Materials Physics, Bucharest (Romania); Shivagan, D.D.; Iyo, A.; Shirage, P.M. [National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan); Tokiwa, K.; Watanabe, T. [Tokyo University of Science, Noda (Japan); Terada, N. [Kagoshima University, Kagoshima (Japan)

    2009-10-15

    On a superconducting bi-layer with thickness much smaller than the penetration depth, lambda, a vortex molecule might form. A vortex molecule is composed of two fractional vortices and a soliton wall. The soliton wall can be regarded as a Josephson vortex missing magnetic flux (degenerate Josephson vortex) due to an incomplete shielding. The magnetic energy carried by fractional vortices is less than in the conventional vortex. This energy gain can pay a cost to form a degenerate Josephson vortex. The phase diagram of the vortex molecule is rich because of its rotational freedom.

  3. Phase Diagram of the Two-Chain Hubbard Model

    Science.gov (United States)

    Park, Youngho; Liang, Shoudan; Lee, T. K.

    1999-01-01

    We have calculated the charge gap and spin gap for the two-chain Hubbard model as a function of the on-site Coulomb interaction and the interchain hopping amplitude. We used the density matrix renormalization group method and developed a method to calculate separately the gaps numerically for the symmetric and antisymmetric modes with respect to the exchange of the chain indices. We have found very different behaviors for the weak and strong interaction cases. Our calculated phase diagram is compared to the one obtained by Balents and Fisher using the weak coupling renormalization group technique.

  4. Magnetic phase diagrams from non-collinear canonical band theory

    DEFF Research Database (Denmark)

    Shallcross, Sam; Nordstrom, L.; Sharma, S.

    2007-01-01

    A canonical band theory of non-collinear magnetism is developed and applied to the close packed fcc and bcc crystal structures. This is a parameter-free theory where the crystal and magnetic symmetry and exchange splitting uniquely determine the electronic bands. In this way, we are able...... to construct phase diagrams of magnetic order for the fcc and bcc lattices. Several examples of non-collinear magnetism are seen to be canonical in origin, in particular, that of gamma-Fe. In this approach, the determination of magnetic stability results solely from changes in kinetic energy due to spin...

  5. Phase diagram of polar states in doped ferroelectric systems

    Science.gov (United States)

    Wang, Dong; Ke, Xiaoqin; Wang, Yunzhi; Gao, Jinghui; Wang, Yu; Zhang, Lixue; Yang, Sen; Ren, Xiaobing

    2012-08-01

    We report a complete phase diagram that describes the relationships among all polar states in doped ferroelectrics, including the paraelectric (polar liquid), ferroelectric (polar crystal), relaxor (polar glass), and precursory states (partially frozen nanopolar domains). We employ a model that considers a randomly distributed local polarization field associated with point defects, which breaks the symmetry of the Landau free energy with respect to polarization. In the meantime, the model also takes into account the effect of point defects on the overall stability of the ferroelectric phase. Based on this model, the phase field simulations reproduce all the polar states and important characteristics associated with ferroelectric-glass (relaxor) transition observed in experiments, including rugged free energy, wide relaxation time, nanosized ferroelectric domain structure, “diffuse” transition, temperature dependence of third-order dielectric susceptibility, nonergodicity, frequency dependence of dielectric loss, and domain switching.

  6. Magnetic phase diagram of graphene nanorings in an electric field.

    Science.gov (United States)

    Zhou, Aiping; Sheng, Weidong

    2015-10-14

    Magnetic properties of graphene nanorings are investigated in the presence of an electric field. Within the formalism of Hubbard model, the graphene nanorings of various geometric configurations are found to exhibit rich phase diagram. For a nanoring system which has degenerate states at the Fermi level, the system is shown to undergo an abrupt phase transition from the antiferromagnetic to a nonmagnetic state in an electric field applied cross its zigzag edges. However, the nanoring is found to always stay in the antiferromagnetic state when the electric field is applied cross its armchair edges. For the other nanoring system with a finite single-particle gap, the magnetic moments of its antiferromagnetic ground state is seen to decrease gradually to zero with the electric field applied cross the zigzag edges. When the electric field is applied cross the armchair edges, the nanoring is shown to undergo several magnetic phase transitions before settling itself in a nonmagnetic ordering.

  7. Fusion Diagrams in the - and - Systems

    Science.gov (United States)

    Asadov, M. M.; Akhmedova, N. A.

    2014-10-01

    A calculation model of the Gibbs energy of ternary oxide compounds from the binary components was used. Thermodynamic properties of -- ternary systems in the condensed state were calculated. Thermodynamic data of binary and ternary compounds were used to determine the stable sections. The probability of reactions between the corresponding components in the -- system was estimated. Fusibility diagrams of systems - and - were studied by physical-chemical analysis. The isothermal section of the phase diagram of -- at 298 K is built, as well as the projection of the liquid surface of --.

  8. Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix.

    Science.gov (United States)

    Nikitchenko, Andrei; Azovtsev, Andrei V; Pertsev, Nikolay A

    2017-11-20

    Ferroelectric crystallites embedded into a dielectric matrix experience temperature-dependent elastic strains caused by differences in the thermal expansion of the crystallites and the matrix. Owing to the electrostriction, these lattice strains may affect polarization states of ferroelectric inclusions significantly, making them different from those of a stress-free bulk crystal. Here, using a nonlinear thermodynamic theory, we study the mechanical effect of elastic matrix on the phase states of embedded single-domain ferroelectric nanocrystals. Their equilibrium polarization states are determined by minimizing a special thermodynamic potential that describes the energetics of an ellipsoidal ferroelectric inclusion surrounded by a linear elastic medium. To demonstrate stability ranges of such states for a given material combination, we introduce an original phase diagram, where the inclusion's shape anisotropy and temperature are used as two parameters. The "shape-temperature" phase diagrams are calculated numerically for PbTiO3 and BaTiO3 nanocrystals embedded into representative dielectric matrices generating tensile (silica glass) or compressive (potassium silicate glass) thermal stresses inside ferroelectric inclusions. The developed phase maps demonstrate that the joint effect of thermal stresses and matrix-induced elastic clamping of ferroelectric inclusions gives rise to several important features in the polarization behavior of PbTiO3 and BaTiO3 nanocrystals. In particular, the Curie temperature displays a nonmonotonic variation with the ellipsoid's aspect ratio, being minimal for spherical inclusions. Furthermore, the diagrams show that the polarization orientation with respect to the ellipsoid's symmetry axis is controlled by the shape anisotropy and the sign of thermal stresses. Under certain conditions, the mechanical inclusion-matrix interaction qualitatively alters the evolution of ferroelectric states on cooling, inducing a structural transition in

  9. Aggregation of flexible polyelectrolytes: Phase diagram and dynamics

    Science.gov (United States)

    Tom, Anvy Moly; Rajesh, R.; Vemparala, Satyavani

    2017-10-01

    Similarly charged polymers in solution, known as polyelectrolytes, are known to form aggregated structures in the presence of oppositely charged counterions. Understanding the dependence of the equilibrium phases and the dynamics of the process of aggregation on parameters such as backbone flexibility and charge density of such polymers is crucial for insights into various biological processes which involve biological polyelectrolytes such as protein, DNA, etc. Here, we use large-scale coarse-grained molecular dynamics simulations to obtain the phase diagram of the aggregated structures of flexible charged polymers and characterize the morphology of the aggregates as well as the aggregation dynamics, in the presence of trivalent counterions. Three different phases are observed depending on the charge density: no aggregation, a finite bundle phase where multiple small aggregates coexist with a large aggregate and a fully phase separated phase. We show that the flexibility of the polymer backbone causes strong entanglement between charged polymers leading to additional time scales in the aggregation process. Such slowing down of the aggregation dynamics results in the exponent, characterizing the power law decay of the number of aggregates with time, to be dependent on the charge density of the polymers. These results are contrary to those obtained for rigid polyelectrolytes, emphasizing the role of backbone flexibility.

  10. Navigating at Will on the Water Phase Diagram

    Science.gov (United States)

    Pipolo, S.; Salanne, M.; Ferlat, G.; Klotz, S.; Saitta, A. M.; Pietrucci, F.

    2017-12-01

    Despite the simplicity of its molecular unit, water is a challenging system because of its uniquely rich polymorphism and predicted but yet unconfirmed features. Introducing a novel space of generalized coordinates that capture changes in the topology of the interatomic network, we are able to systematically track transitions among liquid, amorphous, and crystalline forms throughout the whole phase diagram of water, including the nucleation of crystals above and below the melting point. Our approach, based on molecular dynamics and enhanced sampling or free energy calculation techniques, is not specific to water and could be applied to very different structural phase transitions, paving the way towards the prediction of kinetic routes connecting polymorphic structures in a range of materials.

  11. Thermodynamic optimization and phase equilibria in the ternary system Ni–Sn–Zn

    Energy Technology Data Exchange (ETDEWEB)

    Gandova, V., E-mail: gandova_71@abv.bg [University of Food Technologies, Inorganic and Physical Chemistry Department, 26 Mariza avenue, 4000 Plovdiv (Bulgaria); Vassilev, G.P. [University of Plovdiv, Faculty of Chemistry, 24 Tsar Asen str., 4000 Plovdiv (Bulgaria)

    2014-10-01

    Highlights: • Thermodynamic description of the Ni–Sn–Zn system was obtained. • Six isothermal sections were calculated. • Third constituents solubility in binary phases’ extensions were taken into account. • Good correlation between calculated and experimental data was obtained. - Abstract: Recent experimental results obtained by differential scanning calorimetry, Scanning Electron Microscopy and other methods were used to develop a thermodynamic description of the ternary system Ni–Sn–Zn. Four ternary non-stoichiometric compounds (T1–T4), mentioned in the literature, were described using three-sublattice models. Previously known optimizations of the binary subsystems were remodeled to comply with the new experimental data. The solubility of the respective ternary components, i.e., Zn in Ni–Sn phases and Sn in Ni–Zn phases, were taken into account and optimized ternary parameters were derived. Six isothermal sections were calculated using Thermo-Calc software.

  12. Phase relationships in the {Ho, Er}–Ni–Sn ternary systems at 673 K and crystal structure of new ternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, L., E-mail: romakal@franko.lviv.ua [Ivan Franko L’viv National University, Kyryl & Mephodiy Str. 6, 79005 L’viv (Ukraine); Romaniv, I. [Ivan Franko L’viv National University, Kyryl & Mephodiy Str. 6, 79005 L’viv (Ukraine); Romaka, V.V. [Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Pavlyuk, V. [Ivan Franko L’viv National University, Kyryl & Mephodiy Str. 6, 79005 L’viv (Ukraine)

    2015-05-15

    Highlights: • Ho–Ni–Sn and Er–Ni–Sn phase diagrams were constructed at 673 K. • Eight ternary compounds exist in both investigated systems. • HoNi{sub x}Sn{sub 2} (up to 7 at.% Ni) and ErNi{sub x}Sn{sub 2} (up to 5 at.% Ni) solid solutions were found. - Abstract: The phase equilibria of the Ho–Ni–Sn and Er–Ni–Sn ternary systems were studied at 673 K in the whole concentration range using electron probe microanalysis (EPMA) and X-ray powder diffraction (XPD). Each system is characterized by formation of eight ternary compounds at 673 K: Ho{sub 6}Ni{sub 2}Sn, Er{sub 6}Ni{sub 2}Sn (Ho{sub 6}Ni{sub 2}Ga-type), Ho{sub 2}Ni{sub 2}Sn, Er{sub 2}Ni{sub 2}Sn (Mo{sub 2}FeB{sub 2}-type), HoNi{sub 5}Sn, ErNi{sub 5}Sn (CeCu{sub 4.38}In{sub 1.62}-type), HoNi{sub 1.73}Sn, ErNi{sub 1.72}Sn (YbNi{sub 1.705}Sn-type), HoNiSn, ErNiSn (TiNiSi-type), HoNiSn{sub 2}, ErNiSn{sub 2} (LuNiSn{sub 2}-type), HoNiSn{sub 4}, ErNiSn{sub 4} (LuNiSn{sub 4}-type), and Ho{sub 2}NiSn{sub 6}, Er{sub 2}NiSn{sub 6} (Lu{sub 2}NiSn{sub 6}-type). The interstitial solid solutions HoNi{sub x}Sn{sub 2} (up to 7 at.% Ni) and ErNi{sub x}Sn{sub 2} (up to 5 at.% Ni) based on the RSn{sub 2} (ZrSi{sub 2}-type) binary compounds were found.

  13. The Lipid domain Phase diagram in a Dipalmitoyl-PC/Docosahaexnoic Acid-PE/Cholesterol System

    Science.gov (United States)

    Lor, Chai; Hirst, Linda

    2011-03-01

    Lipid domains in bilayer membrane and polyunsaturated fatty acids (PUFAs) are thought to play an important role in cellular activities. In particular, lipids containing docosahaexnoic acid are an interesting class of PUFAs due to their health benefits. In this project, we perform oxidation measurements of DHA-PE to determine the rate of oxidation in combination with antioxidants. A ternary diagram of DPPC/DHA-PE/cholesterol is mapped out to identify phase separation phenomena using atomic force microscope (AFM). Fluorescence microscopy is also used to image lipid domains in a flat bilayer with fluorescent labels. As expected, we observe the phase, shape, and size of lipid domains changes with varying composition. Moreover, we find that the roughness of the domains changes possibly due to overpacking of cholesterol in domains. This model study provides further understanding of the role of cholesterol in the bilayer membrane leading towards a better understanding of cell membranes. NSF award # DMR 0852791, ``CAREER: Self-Assembly of Polyunsaturated Lipids and Cholesterol In The Cell Membrane.''

  14. High-throughput continuous hydrothermal synthesis of an entire nanoceramic phase diagram.

    Science.gov (United States)

    Weng, Xiaole; Cockcroft, Jeremy K; Hyett, Geoffrey; Vickers, Martin; Boldrin, Paul; Tang, Chiu C; Thompson, Stephen P; Parker, Julia E; Knowles, Jonathan C; Rehman, Ihtesham; Parkin, Ivan; Evans, Julian R G; Darr, Jawwad A

    2009-01-01

    A novel High-Throughput Continuous Hydrothermal (HiTCH) flow synthesis reactor was used to make directly and rapidly a 66-sample nanoparticle library (entire phase diagram) of nanocrystalline Ce(x)Zr(y)Y(z)O(2-delta) in less than 12 h. High resolution PXRD data were obtained for the entire heat-treated library (at 1000 degrees C/1 h) in less than a day using the new robotic beamline I11, located at Diamond Light Source (DLS). This allowed Rietveld-quality powder X-ray diffraction (PXRD) data collection of the entire 66-sample library in <1 day. Consequently, the authors rapidly mapped out phase behavior and sintering behaviors for the entire library. Out of the entire 66-sample heat-treated library, the PXRD data suggests that 43 possess the fluorite structure, of which 30 (out of 36) are ternary compositions. The speed, quantity and quality of data obtained by our new approach, offers an exciting new development which will allow structure-property relationships to be accessed for nanoceramics in much shorter time periods.

  15. Phase diagram for ortho-para-hydrogen monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, N S [Physics Department, University of Florida, PO Box 118400, Gainesville, FL 32611-8400 (United States); Kokshenev, V B [Departamento de FIsica, Universidade Federal de Minas Gerais, Caixa Postal 702, 30123-970, Belo Horizonte, Minas Gerais (Brazil)

    2003-04-01

    The phase diagram for orientational ordering of hydrogen monolayers on graphite and boron nitride is revised in view of current theory and experimental observations from nuclear magnetic resonance (NMR) studies recently reported for ortho-H{sub 2} concentrations 0.35 {<=} c {<=} 0.92 and temperatures 0.14 {<=} T {<=} 1.80 K. The characteristic interaction coupling {gamma}{sub 0} = 0.50 {+-} 0.03 K and the crystalline field amplitude V{sub 0} = 0.70 {+-} 0.10 K are derived from experimental data, and distinct types of the local orientationally ordered structures are analysed using a proposed model for site-diluted uniaxial quadrupoles on a triangular plane lattice of hexagonal symmetry. The long-range periodic pinwheel structure and the short-range quadrupolar glass (QG) phase are stable above the 2D site-percolation limit, c{sub p} = 0.72, and for 0.48 < c < c{sub p}, respectively, where quadrupolar-order effects dominate. At very low T, the QG phase shows instability with respect to local dipole-like polarization effects and the ground state changes to a hindered rotor state. Two para-rotational local ordered PRA and PRB structures driven, respectively, by positive and negative crystalline fields are well distinguished, experimentally and theoretically, and are rather different from the unique PR phase suggested earlier by Harris and Berlinsky.

  16. Experimental Study of the Al-Mg-Sr Phase Diagram at 400°C

    Directory of Open Access Journals (Sweden)

    D. Kevorkov

    2014-01-01

    Full Text Available The Al-Mg-Sr system is experimentally studied at 400°C using EPMA and XRD techniques. It was determined that the intermetallic phases in the Al-Mg-Sr system have a tendency to form extended substitutional solid solutions. Two ternary phases were found in this system. Solubility limits of binary and ternary phases were determined and the phase equilibria among phases were established. The isothermal section of the Al-Mg-Sr system at 400°C has been constructed using results of the phase analysis and experimental literature data.

  17. Liquid-ordered phases induced by cholesterol: a compendium of binary phase diagrams.

    Science.gov (United States)

    Marsh, Derek

    2010-03-01

    Mixtures of phospholipids with cholesterol are able to form liquid-ordered phases that are characterised by short-range orientational order and long-range translational disorder. These L(o)-phases are distinct from the liquid-disordered, fluid L(alpha)-phases and the solid-ordered, gel L(beta)-phases that are assumed by the phospholipids alone. The liquid-ordered phase can produce spatially separated in-plane fluid domains, which, in the form of lipid rafts, are thought to act as platforms for signalling and membrane sorting in cells. The areas of domain formation are defined by the regions of phase coexistence in the phase diagrams for the binary mixtures of lipid with cholesterol. In this paper, the available binary phase diagrams of lipid-cholesterol mixtures are all collected together. It is found that there is not complete agreement between different determinations of the phase diagrams for the same binary mixture. This can be attributed to the indirect methods largely used to establish the phase boundaries. Intercomparison of the various data sets allows critical assessment of which phase boundaries are rigorously established from direct evidence for phase coexistence. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Universal phase diagrams with superconducting domes for electronic flat bands

    Science.gov (United States)

    Löthman, Tomas; Black-Schaffer, Annica M.

    2017-08-01

    Condensed matter systems with flat bands close to the Fermi level generally exhibit, due to their very large density of states, extraordinarily high critical ordering temperatures of symmetry-breaking orders, such as superconductivity and magnetism. Here we show that the critical temperatures follow one of two universal curves with doping away from a flat band depending on the ordering channel, which completely dictates both the general order competition and the phase diagram. Notably, we find that orders in the particle-particle channel (superconducting orders) survive decisively farther than orders in the particle-hole channel (magnetic or charge orders) because the channels have fundamentally different polarizabilities. Thus, even if a magnetic or charge order initially dominates, superconducting domes are still likely to exist on the flanks of flat bands. We apply these general results to both the topological surface flat bands of rhombohedral ABC-stacked graphite and to the Van Hove singularity of graphene.

  19. "Property Phase Diagrams" for Compound Semiconductors through Data Mining.

    Science.gov (United States)

    Srinivasan, Srikant; Rajan, Krishna

    2013-01-21

    This paper highlights the capability of materials informatics to recreate "property phase diagrams" from an elemental level using electronic and crystal structure properties. A judicious selection of existing data mining techniques, such as Principal Component Analysis, Partial Least Squares Regression, and Correlated Function Expansion, are linked synergistically to predict bandgap and lattice parameters for different stoichiometries of GaxIn1-xAsySb1-y, starting from fundamental elemental descriptors. In particular, five such elemental descriptors, extracted from within a database of highly correlated descriptors, are shown to collectively capture the widely studied "bowing" of energy bandgaps seen in compound semiconductors. This is the first such demonstration, to our knowledge, of establishing relationship between discrete elemental descriptors and bandgap bowing, whose underpinning lies in the fundamentals of solid solution thermodyanamics.

  20. Phase Diagram and Electronic Structure of Praseodymium and Plutonium

    Directory of Open Access Journals (Sweden)

    Nicola Lanatà

    2015-01-01

    Full Text Available We develop a new implementation of the Gutzwiller approximation in combination with the local density approximation, which enables us to study complex 4f and 5f systems beyond the reach of previous approaches. We calculate from first principles the zero-temperature phase diagram and electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierls effect and the Madelung interaction and not the dependence of the electron correlations on the lattice structure.

  1. Modelling of phase diagrams of nanoalloys with complex metallic phases: application to Ni-Sn.

    Science.gov (United States)

    Kroupa, A; Káňa, T; Buršík, J; Zemanová, A; Šob, M

    2015-11-14

    A method for modelling of size-dependent phase diagrams was developed by combining the semiempirical CALPHAD method and ab initio calculations of surface stresses for intermetallic phases. A novel approach was devised for the calculation of surface energy, free of systematic errors from the selection of different parameters of the software (e.g. number of the k-points) and for handling layered structures and off-stoichiometric slabs. Our approach allows the determination of complex size-dependent phase diagrams of systems with intermetallic phases, which was not possible up to now. The method was verified for the modelling of the phase diagram of the Ni-Sn system and basic comparison with rare experimental results was shown. There is reasonable agreement between the calculated and experimental results. The modelling of size-dependent phase diagrams of real systems allows the prediction of phase equilibria existing in nanosystems and possible changes in material properties. There is a need for such knowledge and the existence of reliable data for simpler systems is crucial for further application of this approach. This should motivate future experimental work.

  2. Phase diagrams of exceptional and supersymmetric lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Wellegehausen, Bjoern-Hendrik

    2012-07-10

    In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.

  3. Experimental investigation of phase equilibria in the Ni-Nb-V ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingjun; Yang, Shuiyuan; Wang, Cuiping [Xiamen Univ. (China). Dept. of Materials Science and Engineering; Xiamen Univ. (China). Fujian Provincial Key Lab. of Materials Genome; Zhang, Xianjie; Jiang, Hengxing; Shi, Zhan [Xiamen Univ. (China). Dept. of Materials Science and Engineering

    2017-09-15

    The phase equilibria of the Ni-Nb-V ternary system at 1000 C and 1200 C were established using electron probe microanalysis, X-ray diffraction and differential scanning calorimetry. The results of the investigation revealed that: (1) The Nb solubility in (Ni) and σ{sup '} phases was less than 10 at.%; (2) A ternary compound τ (NiNbV) was confirmed, in which V had a large solubility; (3) A new liquid region was evident at 1200 C, but was absent at 1000 C; (4) The lattice constants of Ni{sub 3}Nb and Ni{sub 6}Nb{sub 7} phase decreased with increase in V content in the Ni{sub 3}Nb and Ni{sub 6}Nb{sub 7}. The phase equilibria of the Ni-Nb-V ternary system will contribute to its thermodynamic assessment.

  4. Phase diagram for ortho-para-hydrogen monolayers

    CERN Document Server

    Sullivan, N S

    2003-01-01

    The phase diagram for orientational ordering of hydrogen monolayers on graphite and boron nitride is revised in view of current theory and experimental observations from nuclear magnetic resonance (NMR) studies recently reported for ortho-H sub 2 concentrations 0.35 <= c <= 0.92 and temperatures 0.14 <= T <= 1.80 K. The characteristic interaction coupling GAMMA sub 0 = 0.50 +- 0.03 K and the crystalline field amplitude V sub 0 = 0.70 +- 0.10 K are derived from experimental data, and distinct types of the local orientationally ordered structures are analysed using a proposed model for site-diluted uniaxial quadrupoles on a triangular plane lattice of hexagonal symmetry. The long-range periodic pinwheel structure and the short-range quadrupolar glass (QG) phase are stable above the 2D site-percolation limit, c sub p = 0.72, and for 0.48 < c < c sub p , respectively, where quadrupolar-order effects dominate. At very low T, the QG phase shows instability with respect to local dipole-like polariz...

  5. Data and analyses of phase relations in the Ce-Fe-Sb ternary system.

    Science.gov (United States)

    Zhu, Daiman; Xu, Chengliang; Li, Changrong; Guo, Cuiping; Zheng, Raowen; Du, Zhenmin; Li, Junqin

    2018-02-01

    These data and analyses support the research article "Experimental study on phase relations in the Ce-Fe-Sb ternary system" Zhu et al. (2017) [1]. The data and analyses presented here include the experimental results of XRD, SEM and EPMA for the determination of the whole liquidus projection and the isothermal section at 823 K in the Ce-Fe-Sb system. All the results enable the understanding of the constituent phases and the solidification processes of the as-cast alloys as well as the phase relations and the equilibrium regions at 823 K in the Ce-Fe-Sb ternary system over the entire composition.

  6. Matrix model approximations of fuzzy scalar field theories and their phase diagrams

    Energy Technology Data Exchange (ETDEWEB)

    Tekel, Juraj [Department of Theoretical Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynska Dolina, Bratislava, 842 48 (Slovakia)

    2015-12-29

    We present an analysis of two different approximations to the scalar field theory on the fuzzy sphere, a nonperturbative and a perturbative one, which are both multitrace matrix models. We show that the former reproduces a phase diagram with correct features in a qualitative agreement with the previous numerical studies and that the latter gives a phase diagram with features not expected in the phase diagram of the field theory.

  7. Extended phase diagram of R NiC2 family: Linear scaling of the Peierls temperature

    Science.gov (United States)

    Roman, Marta; Strychalska-Nowak, Judyta; Klimczuk, Tomasz; Kolincio, Kamil K.

    2018-01-01

    Physical properties for the late-lanthanide-based R NiC2 (R =Dy , Ho, Er, and Tm) ternary compounds are reported. All the compounds show antiferromagnetic ground state with the Néel temperature ranging from 3.4 K for HoNiC2 to 8.5 K for ErNiC2. The results of the transport and galvanomagnetic properties confirm a charge density wave state at and above room temperature with transition temperatures TCDW=284 , 335, 366, and 394 K for DyNiC2, HoNiC2, ErNiC2, and TmNiC2, respectively. The Peierls temperature TCDW scales linearly with the unit cell volume. A similar linear dependence has been observed for the temperature of the lock-in transition T1 as well. Beyond the intersection point of the trend lines, the lock-in transition is no longer observed. In this Rapid Communication we demonstrate an extended phase diagram for the R NiC2 family.

  8. Phase Behaviour and Structural Aspects of Ternary Clathrate Hydrate Systems. The Role of Additives

    NARCIS (Netherlands)

    Mooijer-Van den Heuvel, M.M.

    2004-01-01

    In this study an experimental and modelling approach is applied to obtain fundamental insight into the phase behaviour of ternary systems, in which clathrate hydrates are formed. Proper interpretation of the phase behaviour requires knowledge on the clathrate hydrate structure in these systems,

  9. Phase Diagram Characterization Using Magnetic Beads as Liquid Carriers.

    Science.gov (United States)

    Blumenschein, Nicholas; Han, Daewoo; Steckl, Andrew J

    2015-09-04

    Magnetic beads with ~1.9 µm average diameter were used to transport microliter volumes of liquids between contiguous liquid segments with a tube for the purpose of investigating phase change of those liquid segments. The magnetic beads were externally controlled using a magnet, allowing for the beads to bridge the air valve between the adjacent liquid segments. A hydrophobic coating was applied to the inner surface of the tube to enhance the separation between two liquid segments. The applied magnetic field formed an aggregate cluster of magnetic beads, capturing a certain liquid amount within the cluster that is referred to as carry-over volume. A fluorescent dye was added to one liquid segment, followed by a series of liquid transfers, which then changed the fluorescence intensity in the neighboring liquid segment. Based on the numerical analysis of the measured fluorescence intensity change, the carry-over volume per mass of magnetic beads has been found to be ~2 to 3 µl/mg. This small amount of liquid allowed for the use of comparatively small liquid segments of a couple hundred microliters, enhancing the feasibility of the device for a lab-in-tube approach. This technique of applying small compositional variation in a liquid volume was applied to analyzing the binary phase diagram between water and the surfactant C12E5 (pentaethylene glycol monododecyl ether), leading to quicker analysis with smaller sample volumes than conventional methods.

  10. Energy spectrum and phase diagrams of two-sublattice hard-core boson model

    Directory of Open Access Journals (Sweden)

    I.V. Stasyuk

    2013-06-01

    Full Text Available The energy spectrum, spectral density and phase diagrams have been obtained for two-sublattice hard-core boson model in frames of random phase approximation approach. Reconstruction of boson spectrum at the change of temperature, chemical potential and energy difference between local positions in sublattices is studied. The phase diagrams illustrating the regions of existence of a normal phase which can be close to Mott-insulator (MI or charge-density (CDW phase diagrams as well as the phase with the Bose-Einstein condensate (SF phase are built.

  11. Inhomogeneous hard-core bosonic mixture with checkerboard supersolid phase: Quantum and thermal phase diagram

    Science.gov (United States)

    Heydarinasab, F.; Abouie, J.

    2017-09-01

    We introduce an inhomogeneous bosonic mixture composed of two kinds of hard-core and semi-hard-core bosons with different nilpotency conditions and demonstrate that in contrast with the standard hard-core Bose-Hubbard model, our bosonic mixture with nearest- and next-nearest-neighbor interactions on a square lattice develops the checkerboard supersolid phase characterized by the simultaneous superfluid and checkerboard solid orders. Our bosonic mixture is created from a two-orbital Bose-Hubbard model including two kinds of bosons: a single-orbital boson and a two-orbital boson. By mapping the bosonic mixture to an anisotropic inhomogeneous spin model in the presence of a magnetic field, we study the ground-state phase diagram of the model by means of cluster mean field theory and linear spin-wave theory and show that various phases such as solid, superfluid, supersolid, and Mott insulator appear in the phase diagram of the mixture. Competition between the interactions and magnetic field causes the mixture to undergo different kinds of first- and second-order phase transitions. By studying the behavior of the spin-wave excitations, we find the reasons of all first- and second-order phase transitions. We also obtain the temperature phase diagram of the system using cluster mean field theory. We show that the checkerboard supersolid phase persists at finite temperature comparable with the interaction energies of bosons.

  12. High-field phase-diagram of Fe arsenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Y.J.; Jaroszynski, J.; Yamamoto, A.; Gurevich, A.; Riggs, S.C.; Boebinger, G.S.; Larbalestier, D. [National High Magnetic Field Laboratory, Florida State University, Tallahassee-FL 32310 (United States); Wen, H.H. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhigadlo, N.D.; Katrych, S.; Bukowski, Z.; Karpinski, J. [Laboratory for Solid State Physics, ETH Zuerich, CH-8093 Zuerich (Switzerland); Liu, R.H.; Chen, H.; Chen, X.H. [Hefei National Laboratory for Physical Science a Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Balicas, L., E-mail: balicas@magnet.fsu.ed [National High Magnetic Field Laboratory, Florida State University, Tallahassee-FL 32310 (United States)

    2009-05-01

    Here, we report an overview of the phase-diagram of single-layered and double-layered Fe arsenide superconductors at high magnetic fields. Our systematic magneto-transport measurements of polycrystalline SmFeAsO{sub 1-x}F{sub x} at different doping levels confirm the upward curvature of the upper critical magnetic field H{sub c2}(T) as a function of temperature T defining the phase boundary between the superconducting and metallic states for crystallites with the ab planes oriented nearly perpendicular to the magnetic field. We further show from measurements on single-crystals that this feature, which was interpreted in terms of the existence of two superconducting gaps, is ubiquitous among both series of single- and double-layered compounds. In all compounds explored by us the zero temperature upper critical field H{sub c2}(0), estimated either through the Ginzburg-Landau or the Werthamer-Helfand-Hohenberg single gap theories, strongly surpasses the weak-coupling Pauli paramagnetic limiting field. This clearly indicates the strong-coupling nature of the superconducting state and the importance of magnetic correlations for these materials. Our measurements indicate that the superconducting anisotropy, as estimated through the ratio of the effective masses gamma = (m{sub c}/m{sub ab}){sup 1/2} for carriers moving along the c-axis and the ab-planes, respectively, is relatively modest as compared to the high-T{sub c} cuprates, but it is temperature, field and even doping dependent. Finally, our preliminary estimations of the irreversibility field H{sub m}(T), separating the vortex-solid from the vortex-liquid phase in the single-layered compounds, indicates that it is well described by the melting of a vortex lattice in a moderately anisotropic uniaxial superconductor.

  13. Conformational properties of rigid-chain amphiphilic macromolecules : The phase diagram

    NARCIS (Netherlands)

    Markov, V. A.; Vasilevskaya, V. V.; Khalatur, P. G.; ten Brinke, G.; Khokhlov, A. R.

    The coil-globule transition in rigid-chain amphiphilic macromolecules was studied by means of computer simulation, and the phase diagrams for such molecules in the solvent quality-persistence length coordinates were constructed. It was shown that the type of phase diagram depends to a substantial

  14. Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the PLLA/Dioxane/Water Ternary System for Applications in the Biomedical Field.

    Science.gov (United States)

    Ruggiero, Flavia; Netti, Paolo Antonio; Torino, Enza

    2015-12-01

    Fundamental understanding of thermodynamic of phase separation plays a key role in tuning the desired features of biomedical devices. In particular, phase separation of ternary solution is of remarkable interest in processes to obtain biodegradable and biocompatible architectures applied as artificial devices to repair, replace, or support damaged tissues or organs. In these perspectives, thermally induced phase separation (TIPS) is the most widely used technique to obtained porous morphologies and, in addition, among different ternary systems, polylactic acid (PLLA)/dioxane/water has given promising results and has been largely studied. However, to increase the control of TIPS-based processes and architectures, an investigation of the basic energetic phenomena occurring during phase separation is still required. Here we propose an experimental investigation of the selected ternary system by using isothermal titration calorimetric approach at different solvent/antisolvent ratio and a thermodynamic explanation related to the polymer-solvents interactions in terms of energetic contribution to the phase separation process. Furthermore, relevant information about the phase diagrams and interaction parameters of the studied systems are furnished in terms of liquid-liquid miscibility gap. Indeed, polymer-solvents interactions are responsible for the mechanism of the phase separation process and, therefore, of the final features of the morphologies; the knowledge of such data is fundamental to control processes for the production of membranes, scaffolds and several nanostructures. The behavior of the polymer at different solvent/nonsolvent ratios is discussed in terms of solvation mechanism and a preliminary contribution to the understanding of the role of the hydrogen bonding in the interface phenomena is also reported. It is the first time that thermodynamic data of a ternary system are collected by mean of nano-isothermal titration calorimetry (nano-ITC). Supporting

  15. Compositional regions of single phases at 1800 Degree-Sign C in Mo-rich Mo-Si-B ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Seong-Ho, E-mail: fy11001@mail.kankyo.tohoku.ac.jp [Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Yoshimi, Kyosuke; Maruyama, Kouichi [Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi 980-8579 (Japan); Tu, Rong; Goto, Takashi [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan)

    2012-08-30

    Single-phase regions in Mo-rich Mo-Si-B alloys at 1800 Degree-Sign C were experimentally determined using a field-emission (FE) gun-type electron probe micro-analyzer (EPMA) in this study. A quantitative analysis by FE-EPMA was conducted with the calibration method we applied in our previous study to improve the accuracy in the B measurements. The compositional ranges of the determined Mo solid solution, silicide and boride phases were in good agreement with those of Mo-Si and Mo-B binary phase diagrams. On the other hand, the determined solubility of B in Mo solid solution, Mo{sub 3}Si and T{sub 1} (Mo{sub 5}Si{sub 3}) were quite different from that indicated in previously reported ternary phase diagrams. The compositional region of the T{sub 2} (Mo{sub 5}SiB{sub 2}) single-phase ranges from 9.7 to 13.3 at% for Si and from 23.5 to 26.8 at% for B. The following two points were made clear by the ternary phase diagram as determined in this study. One is that no stoichiometric T{sub 2} composition is in the T{sub 2} single-phase region, confirming no T{sub 2} single-phase material can be obtained at the stoichiometric composition at 1800 Degree-Sign C. The another is that the T{sub 2} region of this study expands to a Si-rich area from the stoichiometric composition.

  16. Phase diagram of the system Ca–Ti–O at 1200 K

    Indian Academy of Sciences (India)

    Phase relations in the system Ca–Ti–O have been established by equilibration of several samples at 1200 K for prolonged periods and identification of phases in quenched samples by optical and scanning electron microscopy, XRD and EDS. Samples representing 20 compositions in the ternary system were analyzed.

  17. Theoretical phase diagrams for [N(CD3)4]2ZnCl4 crystal

    Science.gov (United States)

    Sannikov, D. G.

    2013-11-01

    A theoretical phase diagram of [N(CD3)4]2ZnCl4 crystal is constructed in the plane of two thermodynamic-potential coefficients. The orientation of the temperature ( T) and pressure ( P) axes is chosen in the diagram. The first diagram is used as a basis to construct the second theoretical T-P phase diagram, expanded to the region of weak negative pressures for nondeuterated [N(CH3)4]2ZnCl4 crystal. It is suggested that this region can be observed for deuterated [N(CD3)4]2ZnCl4 crystal.

  18. Experimental study of the phase relations in the Fe-Cr-Si ternary system at 700 C

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi; Zhou, Zhe; Wang, Xinming; Liu, Yongxiong; Wu, Yu; Zhao, Manxiu; Yin, Fucheng [Xiangtan Univ., Hunan (China). School of Mechanical Engineering; Xiangtan Univ., Hunan (China). Key Lab. of Materials Design and Preparation Technology of Hunan Province

    2014-09-15

    The 700 C isothermal section of the Fe-Cr-Si ternary phase diagram has been determined experimentally by means of scanning electron microscopy coupled with energy dispersive X-ray spectroscopy and X-ray powder diffraction. Ten three-phase regions exist in the 700 C isothermal section. The binary σ phase contains 0-17.6 at.% Si and 31.4-59.2 at.% Cr; the Fe{sub 5}Si{sub 3} phase is stable at 700 C because of the dissolution of Cr. At this temperature, Fe and Cr cannot be entirely substituted by each other to form the FeSi or CrSi phases: the maximum possible Cr content in FeSi{sub 2}, Fe{sub 5}Si{sub 3} and D0{sub 3} is 3.9, 20.7 and 15.2 at.%, respectively, and the maximum soluble Fe in CrSi{sub 2}, Cr{sub 5}Si{sub 3} and Cr{sub 3}Si is 2.5, 20.4 and 16.8 at.%, respectively.

  19. Phase equilibria in the ternary In-Ni-Sn system at 700 °C.

    Science.gov (United States)

    Schmetterer, C; Zemanova, A; Flandorfer, H; Kroupa, A; Ipser, H

    2013-04-01

    The phase equilibria of the ternary system In-Ni-Sn were investigated experimentally at 700 °C using X-ray diffraction (XRD) and scanning electron microscopy (SEM) including electron micro probe analysis (EMPA) and energy dispersive X-ray spectroscopy (EDX). A corresponding isothermal section was established based on these results. This particular temperature was chosen because it allowed obtaining reliable results within reasonable time. The existence of the ternary phase InNi 6 Sn 5 was confirmed whereas the ternary compound In 2 NiSn, reported earlier in literature, was found to be part of a large solid solution field based on binary InNi. The ternary solubility of the binary phases was established, and continuous solid solutions were found between the isostructural phases Ni 3 Sn LT and InNi 3 as well as between Ni 3 Sn 2 HT and InNi 2 . In addition, this isothermal section could be well reproduced by CALPHAD modelling. The resulting calculated isotherm at 700 °C is presented, too, and compared with the experimental results.

  20. Experimental investigation of phase equilibria in the Nb-Si-Ta ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Wang, Cuiping; Yao, Jun; Yang, Shuiyuan; Zhan Shi; Liu, Xingjun [Xiamen Univ. (China). Dept. of Materials Science and Engineering; Xiamen Univ. (China). Fujian Provincial Key Laboratory of Materials Genome; Kang, Yongwang [Beijing Institute of Aeronautical Materials (China). Science and Technology on Advanced High Temperature Structural Materials Lab.

    2016-12-15

    The phase equilibria in the Nb-Si-Ta ternary system at 1 373 K, 1 473 K and 1 573 K were investigated by means of back-scattered electron imaging, electron probe microanalysis and X-ray diffraction. The isothermal sections at 1 373 K, 1 473 K and 1 573 K consist of two three-phase regions and seven two-phase regions, without any ternary compounds. The compounds of NbSi{sub 2} and TaSi{sub 2}, αNb{sub 5}Si{sub 3} and αTa{sub 5}Si{sub 3} form continuous solid solutions, respectively. The solubilities of Nb in Ta{sub 3}Si and Ta{sub 2}Si phases are extremely large, whereas the solubility of Si in the β(Nb, Ta) phase is relatively small.

  1. Ternary mixture of fatty acids as phase change materials for thermal energy storage applications

    Directory of Open Access Journals (Sweden)

    Karunesh Kant

    2016-11-01

    Full Text Available The present study deals with the development of ternary mixtures of fatty acids for low temperature thermal energy storage applications. The commercial grade fatty acids such as Capric Acid (CA, Lauric Acid (LA, Palmitic Acid (PA and Stearic Acid (SA, have been used to prepare stable, solid–liquid phase change material (PCM for the same. In this regard, a series of ternary mixture i.e. CA–LA–SA (CLS and CA–PA–SA (CPS have been developed with different weight percentages. Thermal characteristics of these developed ternary mixture i.e. melting temperature and latent heat of fusion have been measured by using Differential Scanning Calorimeter (DSC technique. The synthesized materials are found to have melting temperature in the range of 14–21 °C (along with adequate amount of latent heat of fusion, which may be quite useful for several low temperature thermal energy storage applications.

  2. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun [Xiamen Univ. (China). College of Materials and Fujian Provincial Key Lab. of Materials Genome

    2017-08-15

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr{sub 7}Ni{sub 10}, ZrNi, ZrNi{sub 5}, Zr{sub 14}Cu{sub 51}, and Zr{sub 2}Cu{sub 9}, show a remarkable ternary solubility. A new ternary compound named τ{sub 3} (Zr{sub 31.1-30.7} . Cu{sub 28.5-40.3}Ni{sub 40.4-29.0}) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  3. Phase equilibra in binary Lennard-Jones mixtures: phase diagram simulation

    Science.gov (United States)

    Canongia Lopes, J. N.

    A three-box version of the Gibbs ensemble Monte Carlo method was used to determine the phase diagram type of several binary mixtures of one-centre Lennard-Jones particles. The method can be used to establish a direct link between the intermolecular potential modelling the interactions in a given system and its fluid phase diagram, without the knowledge of the corresponding equation of state governing its pV T behaviour. As an example of the application of the method, closed-loop behaviour in an isotropic system could be found using a set of Lennard-Jones parameters exhibiting a cross-interaction diameter with a negative deviation from the Lorentz-Berthelot combination rule.

  4. Phase stability in nanoscale material systems: extension from bulk phase diagrams

    Science.gov (United States)

    Bajaj, Saurabh; Haverty, Michael G.; Arróyave, Raymundo; Goddard Frsc, William A., III; Shankar, Sadasivan

    2015-05-01

    Phase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different phases. The CALPHAD approach for material surfaces (also termed ``nano-CALPHAD'') is employed to investigate these changes in three binary systems by calculating their phase diagrams at nano dimensions and comparing them with their bulk counterparts. The surface energy contribution, which is the dominant factor in causing these changes, is evaluated using the spherical particle approximation. It is first validated with the Au-Si system for which experimental data on phase stability of spherical nano-sized particles is available, and then extended to calculate phase diagrams of similarly sized particles of Ge-Si and Al-Cu. Additionally, the surface energies of the associated compounds are calculated using DFT, and integrated into the thermodynamic model of the respective binary systems. In this work we found changes in miscibilities, reaction compositions of about 5 at%, and solubility temperatures ranging from 100-200 K for particles of sizes 5 nm, indicating the importance of phase equilibrium analysis at nano dimensions.Phase diagrams of multi-component systems are critical for the development and engineering of material alloys for all technological applications. At nano dimensions, surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase stability. In this work, it is shown that these surfaces at small dimensions affect the relative equilibrium thermodynamics of the different phases. The CALPHAD approach for material surfaces (also termed ``nano-CALPHAD'') is employed to investigate these changes in three binary systems by

  5. The effect of the head group on branched-alkyl chain surfactants in glycolipid/n-octane/water ternary system.

    Science.gov (United States)

    Nainggolan, Irwana; Radiman, Shahidan; Hamzah, Ahmad Sazali; Hashim, Rauzah

    2009-10-01

    Two novel glycolipids have been synthesized and their phase behaviour studied. They have been characterized using FT-IR, FAB and 13C NMR and 1H NMR to ensure the purity of novel glycolipids. The two glycolipids are distinguished based on the head group of glycolipids (monosaccharide/glucose and disaccharide/maltose). These two novel glycolipids have been used as surfactant to perform two phase diagrams. Phase behaviours that have been investigated are 2-hexyldecyl-beta-D-glucopyranoside (2-HDG)/n-octane/water ternary system and 2-hexyldecyl-beta-D-maltoside (2-HDM)/n-octane/water ternary system. SAXS and polarizing optical microscope have been used to study the phase behaviours of these two surfactants in ternary phase diagram. Study of effect of the head group on branched-alkyl chain surfactants in ternary system is a strategy to derive the structure-property relationship. For comparison, 2-HDM and 2-HDG have been used as surfactant in the same ternary system. The phase diagram of 2-hexyldecyl-beta-D-maltoside/n-octane/water ternary system exhibited a Lalpha phase at a higher concentration regime, followed with two phases and a micellar solution region in a lower concentration regime. The phase diagram of 2-HDG/water/n-octane ternary system shows hexagonal phase, cubic phase, rectangular ribbon phase, lamellar phase, cubic phase as the surfactant concentration increase.

  6. Gas Hydrate Stability and Sampling: The Future as Related to the Phase Diagram

    Directory of Open Access Journals (Sweden)

    E. Dendy Sloan

    2010-12-01

    Full Text Available The phase diagram for methane + water is explained, in relation to hydrate applications, such as in flow assurance and in nature. For natural applications, the phase diagram determines the regions for hydrate formation for two- and three-phase conditions. Impacts are presented for sample preparation and recovery. We discuss an international study for “Round Robin” hydrate sample preparation protocols and testing.

  7. Experimental investigation of phase equilibria in the Co-Ni-Zr ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingjun; Yang, Shuiyuan; Yu, Wenjie; Wang, Cuiping [Xiamen Univ. (China). Fujian Key Laboratory of Materials Genome; Xiong, Huaping; Cheng, Yaoyong; Wu, Xin [Beijing Institute of Aeronautical Materials (China). Div. of Welding and Forging

    2016-10-15

    The phase equilibria of the Co-Ni-Zr ternary system at 1 000 C, 1 100 C and 1 200 C were experimentally investigated by means of back-scattered electron imaging, electron probe microanalysis and X-ray diffraction on the equilibrated ternary alloys. In this study, no ternary compound is found. The (αCo, Ni) phase region extends from the Ni-rich corner to the Co-rich corner with small solubility of Zr at three sections. At 1 000 C and 1 100 C, Ni{sub 5}Zr, Co{sub 2}Zr and Ni{sub 10}Zr{sub 7} phases have large solid solution ranges, but Ni{sub 10}Zr{sub 7} phase disappears at 1 200 C. The Ni{sub 7}Zr{sub 2}, NiZr, Co{sub 11}Zr{sub 2}, Co{sub 23}Zr{sub 6} and CoZr phases exhibit nearly linear compounds in the studied sections, and have large composition ranges. Additionally, some differences in phase relationship exist among the above three isothermal sections.

  8. The use of phase diagrams and thermodynamic databases for electronic materials

    Science.gov (United States)

    Liu, X. J.; Kainuma, R.; Ohnuma, I.; Ishida, K.; Oikawa, K.

    2003-12-01

    Phase diagrams and a thermodynamic database constructed by the Calculation of Phase Diagrams approach offer powerful tools for alloy design and materials development. This article presents recent progress on the thermodynamic database for microsolders and copper-based alloys, which is useful for the development of lead-free solders and prediction of interfacial phenomena between solders and the copper substrate in electronic packaging technology. In addition, examples of phase diagram applications are presented to facilitate the development of Co-Cr-based magnetic recording media in hard disks and new ferromagnetic shape-memory alloys.

  9. Phase diagram of inverse patchy colloids assembling into an equilibrium laminar phase.

    Science.gov (United States)

    Noya, Eva G; Kolovos, Ismene; Doppelbauer, Günther; Kahl, Gerhard; Bianchi, Emanuela

    2014-11-14

    We numerically study the phase behavior of colloidal particles with two charged patches at the poles and an oppositely charged equatorial belt. Interactions between particles are described using the inverse patchy colloid model, where the term inverse emphasizes the difference with respect to conventional patchy particles: as a consequence of the heterogeneous charge distribution, the patches on the particle surface repel each other, whereas the patches and non-patch regions mutually attract. For the model parameters considered in this work, the system exhibits an unusual equilibrium phase diagram characterized by a broad region where a novel structure composed of parallel colloidal monolayers is stable.

  10. Experimental determination of the phase equilibria in the Co–Cr–Ta ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, C.C. [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Yang, S.Y.; Liu, X.J. [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Wang, C.P., E-mail: wangcp@xmu.edu.cn [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China)

    2014-09-01

    Highlights: • Three isothermal sections at 800, 1000, and 1100 °C were established. • A large solubility of Cr is identified in the Co{sub 6}Ta{sub 7} phase. • The high–temperature phase (Co,Cr){sub 2}Ta(HT) was found to be stabilized at low temperatures. - Abstract: The phase equilibria in the Co–Cr–Ta ternary system were experimentally investigated by using backscattered electron (BSE), wavelength dispersive X-ray analyzer (WDX) and X-ray diffraction (XRD). Three isothermal sections of the Co–Cr–Ta ternary system at 800 °C, 900 °C and 1100 °C were experimentally determined. The experimental results show that: (1) No ternary compound is found in this system; (2) A large solubility of Cr is identified in the Co{sub 6}Ta{sub 7} phase; (3) The (Co, Cr){sub 2}Ta(HT) phase is stabilized at temperatures below it stability limits in Co–Ta and Cr–Ta binary systems in the range of Cr concentrations from 4 to 61 at.% and from 24 to 41 at.% Ta.

  11. The non-equilibrium phase diagrams of flow-induced crystallization and melting of polyethylene.

    Science.gov (United States)

    Wang, Zhen; Ju, Jianzhu; Yang, Junsheng; Ma, Zhe; Liu, Dong; Cui, Kunpeng; Yang, Haoran; Chang, Jiarui; Huang, Ningdong; Li, Liangbin

    2016-09-09

    Combining extensional rheology with in-situ synchrotron ultrafast x-ray scattering, we studied flow-induced phase behaviors of polyethylene (PE) in a wide temperature range up to 240 °C. Non-equilibrium phase diagrams of crystallization and melting under flow conditions are constructed in stress-temperature space, composing of melt, non-crystalline δ, hexagonal and orthorhombic phases. The non-crystalline δ phase is demonstrated to be either a metastable transient pre-order for crystallization or a thermodynamically stable phase. Based on the non-equilibrium phase diagrams, nearly all observations in flow-induced crystallization (FIC) of PE can be well understood. The interplay of thermodynamic stabilities and kinetic competitions of the four phases creates rich kinetic pathways for FIC and diverse final structures. The non-equilibrium flow phase diagrams provide a detailed roadmap for precisely processing of PE with designed structures and properties.

  12. A composite phase diagram of structure H hydrates using Schreinemakers' geometric approach

    Science.gov (United States)

    Mehta, A.P.; Makogon, T.Y.; Burruss, R.C.; Wendlandt, R.F.; Sloan, E.D.

    1996-01-01

    A composite phase diagram is presented for Structure H (sH) clathrate hydrates. In this work, we derived the reactions occurring among the various phases along each four-phase (Ice/Liquid water, liquid hydrocarbon, vapor, and hydrate) equilibrium line. A powerful method (though seldom used in chemical engineering) for multicomponent equilibria developed by Schreinemakers is applied to determine the relative location of all quadruple (four-phase) lines emanating from three quintuple (five-phase) points. Experimental evidence validating the approximate phase diagram is also provided. The use of Schreinemakers' rules for the development of the phase diagram is novel for hydrates, but these rules may be extended to resolve the phase space of other more complex systems commonly encountered in chemical engineering.

  13. Binary Solid-Liquid Phase Diagram of Phenol and t-Butanol: An Undergraduate Physical Chemistry Experiment

    Science.gov (United States)

    Xu, Xinhua; Wang, Xiaogang; Wu, Meifen

    2014-01-01

    The determination of the solid-liquid phase diagram of a binary system is always used as an experiment in the undergraduate physical chemistry laboratory courses. However, most phase diagrams investigated in the lab are simple eutectic ones, despite the fact that complex binary solid-liquid phase diagrams are more common. In this article, the…

  14. Phase diagram for one-way traffic flow with local control

    Science.gov (United States)

    Lykov, A. A.; Malyshev, V. A.; Melikian, M. V.

    2017-11-01

    We consider one-way road deterministic traffic model with N particles. The simplest local control protocol, which reminds physical interaction is considered. We obtain complete phase diagram uniformly in N and study in detail its stable and unstable domains.

  15. PHASE DIAGRAM OF GELATINE-POLYURONATE COLLOIDS: ITS APPLICATION FOR MICROENCAPSULATION AND NOT ONLY

    Directory of Open Access Journals (Sweden)

    Alexei Baerle

    2016-06-01

    Full Text Available Phase state and the charge of colloidal particles in the gelatine-polyuronate system were studied. A method for comparative evaluation of molecular weight of colloids by means of viscosimetric measurements and electrophoresis was developed. It is shown that the Diagram {Phase state = f (composition, pH} contains six well-defined regions. The diagram explains and predicts the behaviour of protein-polysaccharide colloids, which are included in beverages or forms the shells of oil-containing microcapsules.

  16. Phase relationships in the quasi-ternary LaO1.5–SiO2–MgO system at 1773 K

    Science.gov (United States)

    Kobayashi, Kiyoshi; Sakka, Yoshio

    2012-01-01

    Phase relationships in the LaO1.5–SiO2–MgO quasi-ternary system at 1773 K were investigated by powder x-ray diffraction (XRD) analysis applying single- and multiple-phase Rietveld methods. Most of the formed phases satisfied the Gibbs’ phase rule, except for the samples containing LaO1.5 and a liquid phase at 1773 K. The detection of segregated MgO phases was difficult in the XRD profiles of the compositional samples around the oxyapatite single phase because the MgO peaks were weak and heavily overlapped by peaks from the oxyapatite and La(OH)3 phases. The solid solubility limit of MgO in oxyapatite was determined not only from the chemical composition of the oxyapatite phase, which was confirmed by XRD, but also from several phase boundary compositions among the two-phase and three-phase regions based on the Gibbs’ phase rule. Formation of a liquid phase at 1773 K was observed in a wide range of compositions and considered when constructing the phase diagram. PMID:27877506

  17. Phase relationships in the quasi-ternary LaO1.5–SiO2–MgO system at 1773 K

    Directory of Open Access Journals (Sweden)

    Kiyoshi Kobayashi and Yoshio Sakka

    2012-01-01

    Full Text Available Phase relationships in the LaO1.5–SiO2–MgO quasi-ternary system at 1773 K were investigated by powder x-ray diffraction (XRD analysis applying single- and multiple-phase Rietveld methods. Most of the formed phases satisfied the Gibbs' phase rule, except for the samples containing LaO1.5 and a liquid phase at 1773 K. The detection of segregated MgO phases was difficult in the XRD profiles of the compositional samples around the oxyapatite single phase because the MgO peaks were weak and heavily overlapped by peaks from the oxyapatite and La(OH3 phases. The solid solubility limit of MgO in oxyapatite was determined not only from the chemical composition of the oxyapatite phase, which was confirmed by XRD, but also from several phase boundary compositions among the two-phase and three-phase regions based on the Gibbs' phase rule. Formation of a liquid phase at 1773 K was observed in a wide range of compositions and considered when constructing the phase diagram.

  18. Phase relationships in the quasi-ternary LaO1.5-SiO2-MgO system at 1773 K.

    Science.gov (United States)

    Kobayashi, Kiyoshi; Sakka, Yoshio

    2012-08-01

    Phase relationships in the LaO 1.5 -SiO 2 -MgO quasi-ternary system at 1773 K were investigated by powder x-ray diffraction (XRD) analysis applying single- and multiple-phase Rietveld methods. Most of the formed phases satisfied the Gibbs' phase rule, except for the samples containing LaO 1.5 and a liquid phase at 1773 K. The detection of segregated MgO phases was difficult in the XRD profiles of the compositional samples around the oxyapatite single phase because the MgO peaks were weak and heavily overlapped by peaks from the oxyapatite and La(OH) 3 phases. The solid solubility limit of MgO in oxyapatite was determined not only from the chemical composition of the oxyapatite phase, which was confirmed by XRD, but also from several phase boundary compositions among the two-phase and three-phase regions based on the Gibbs' phase rule. Formation of a liquid phase at 1773 K was observed in a wide range of compositions and considered when constructing the phase diagram.

  19. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O

    Science.gov (United States)

    Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.

    2017-10-01

    This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.

  20. Effect of surfactant and surfactant blends on pseudoternary phase diagram behavior of newly synthesized palm kernel oil esters

    Directory of Open Access Journals (Sweden)

    Mahdi ES

    2011-06-01

    Full Text Available Elrashid Saleh Mahdi1, Mohamed HF Sakeena1, Muthanna F Abdulkarim1, Ghassan Z Abdullah1,3, Munavvar Abdul Sattar2, Azmin Mohd Noor11Department of Pharmaceutical Technology, 2Department of Physiology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia; 3Department of Pharmaceutical Technology, International Medical University, Bukit Jalil, Kuala Lumpur, MalaysiaBackground: The purpose of this study was to select appropriate surfactants or blends of surfactants to study the ternary phase diagram behavior of newly introduced palm kernel oil esters.Methods: Nonionic surfactant blends of Tween® and Tween®/Span® series were screened based on their solubilization capacity with water for palm kernel oil esters. Tween® 80 and five blends of Tween® 80/Span® 80 and Tween® 80/Span® 85 in the hydrophilic-lipophilic balance (HLB value range of 10.7–14.0 were selected to study the phase diagram behavior of palm kernel oil esters using the water titration method at room temperature.Results: High solubilization capacity was obtained by Tween® 80 compared with other surfactants of Tween® series. High HLB blends of Tween® 80/Span® 85 and Tween® 80/Span® 80 at HLB 13.7 and 13.9, respectively, have better solubilization capacity compared with the lower HLB values of Tween® 80/Span® 80. All the selected blends of surfactants were formed as water-in-oil microemulsions, and other dispersion systems varied in size and geometrical layout in the triangles. The high solubilization capacity and larger areas of the water-in-oil microemulsion systems were due to the structural similarity between the lipophilic tail of Tween® 80 and the oleyl group of the palm kernel oil esters.Conclusion: This study suggests that the phase diagram behavior of palm kernel oil esters, water, and nonionic surfactants is not only affected by the HLB value, but also by the structural similarity between palm kernel oil esters and the surfactant

  1. First principles total energy study of NbCr{sub 2} + V Laves phase ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Ormeci, A. [Koc Univ., Istanbul (Turkey); Chen, S.P.; Wills, J.M.; Albers, R.C. [Los Alamos National Lab., NM (United States)

    1999-04-01

    The C15 NbCr{sub 2} + V Laves phase ternary system is studied by using a first-principles, self-consistent, full-potential total energy method. Equilibrium lattice parameters, cohesive energies, density of states and formation energies of substitutional defects are calculated. Results of all these calculations show that in the C15 NbCr{sub 2} + V compounds, V atoms substitute Cr atoms only.

  2. The native point defects of ternary C14 Laves phase Mg2Cu3Si: Ab initio investigation

    Science.gov (United States)

    Shi, Xue-Feng; Yao, Xiao-Jing; Yang, Yan; Tang, Bi-Yu

    2017-10-01

    Nine possible native point defects in ternary C14 Laves phase Mg2Cu3Si are investigated from ab initio calculation based on density function theory. The two-dimensional phase diagram of chemical potentials is determined, and then defect formation energy is calculated. The energetic results show that CuSi and CuMg are more favorable over a broad range of chemical potentials. The formation enthalpies for defective Mg2Cu3Si also demonstrate the same stability. Local distortions around point defects increase from SiCu to SiMg, showing that the polyhedral symmetry and coordination number for constituent atoms will affect the structure of defects. The electronic structure shows the strong (Cu, Si)-Si covalent bonding, also indicates that the CuMg is favorable because the weak Mg-Cu bonding is replaced by the strong Cu-Cu bonding, whereas MgCu and MgSi are unfavorable because the strong Cu-Si bonding is replaced by the weak Mg-(Cu, Si) bonding.

  3. Phase diagrams of diblock copolymers in electric fields: a self-consistent field theory study.

    Science.gov (United States)

    Wu, Ji; Wang, Xianghong; Ji, Yongyun; He, Linli; Li, Shiben

    2016-04-21

    We investigated the phase diagrams of diblock copolymers in external electrostatic fields by using real-space self-consistent field theory. The lamella, cylinder, sphere, and ellipsoid structures were observed and analyzed by their segment distributions, which were arranged to two types of phase diagrams to examine the phase behavior in weak and strong electric fields. One type was constructed on the basis of Flory-Huggins interaction parameter and volume fraction. We identified an ellipsoid structure with a body-centered cuboid arrangement as a stable phase and discussed the shift of phase boundaries in the electric fields. The other type of phase diagrams was established on the basis of the dielectric constants of two blocks in the electric fields. We then determined the regions of ellipsoid phase in the phase diagrams to examine the influence of dielectric constants on the phase transition between ellipsoidal and hexagonally packed cylinder phases. A general agreement was obtained by comparing our results with those described in previous experimental and theoretical studies.

  4. Interaction of tantalum, chromium, and phosphorus at 1070 K: Phase diagram and structural chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Lomnytska, Ya. [Ivan Franko National University of Lviv, Kyryla and Mefodiya Street 6, UA-79005 Lviv (Ukraine); Babizhetskyy, V., E-mail: v.babizhetskyy@googlemail.com [Ivan Franko National University of Lviv, Kyryla and Mefodiya Street 6, UA-79005 Lviv (Ukraine); Oliynyk, A. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada); Toma, O. [Laboratory MOLTECH – Anjou, UMR-CNRS 6200, University of Angers, 49045 Angers (France); Dzevenko, M. [Ivan Franko National University of Lviv, Kyryla and Mefodiya Street 6, UA-79005 Lviv (Ukraine); Mar, A. [Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G2 (Canada)

    2016-03-15

    The phase diagram of Ta–Cr–P at 1070 K has been constructed. • New ternary compounds Ta{sub 0.92(2)}Cr{sub 0.08(2)}P{sub 2} and Ta{sub 0.93(3)}Ti{sub 0.07(3)}P{sub 2} were established. • Ta{sub 1.0−0.8}Cr{sub 1.0−1.2}P and Ta{sub 0.86+x}Ti{sub 0.15-x}P{sub 2}(x= 0−0.07) exhibit homogeneity ranges. • The binary compounds reveal homogeneity ranges by Ta/Cr and Cr/Ta substitutions.

  5. The water/n-octane/octyl-beta-D-glucoside/1-octanol system: phase diagrams and phase properties.

    Science.gov (United States)

    Reimer, Johan; Nilsson, Markus; Alvarez Chamorro, Marta; Söderman, Olle

    2005-07-01

    The partial phase diagram of D2O/n-octyl-beta-D-alkyl-glucoside(C8G1)/n-octane has been determined at T=25 degrees C. The diagram contains a funnel-shaped micellar phase originating from the water corner of the phase diagram D2O/C8G1 with the stem forming a narrow three-phase region, in which the three phases in equilibrium are two microemulsions of similar composition and an excess oil phase. The microemulsions have been characterized with NMR self-diffusion measurements. At high surfactant concentration and no or low n-octane content, branched micelles exist. As the n-octane content is increased, discrete micelles are formed. Upon further addition of n-octane, the phase separation into two microemulsion phases is induced. Possible mechanisms causing the phase separation are discussed. The phase diagram of D2O/(C8G1)/1-octanol has been determined at 25 degrees C. Ten different phase regions were identified. The phases have been characterized with SAXS and deuterium heavy water NMR, and the swelling of the lamellar phase was investigated with SAXS.

  6. Investigation of phase equilibria in the quaternary Ce-Mn-In-Ge system and isothermal sections of the boundary ternary systems at 800 °C

    Energy Technology Data Exchange (ETDEWEB)

    Oliynyk, Anton O.; Djama-Kayad, Kadar; Mar, Arthur, E-mail: arthur.mar@ualberta.ca

    2015-02-15

    Highlights: • Ce-Mn-In, Mn-In-Ge, Ce-In-Ge, and Ce-Mn-Ge systems at 800 °C were examined. • Ce{sub 3}Mn{sub 2}Ge{sub 3} and Ce{sub 43}Mn{sub 18}Ge{sub 39} are new high-temperature phases with close composition. • Two new quaternary phases, Ce{sub 4}Mn{sub 2}InGe{sub 4} and Ce{sub 2}Mn{sub 2}InGe{sub 2}, were discovered. - Abstract: Part of the quaternary Ce-Mn-In-Ge phase diagram has been examined through powder X-ray diffraction and energy-dispersive X-ray analysis. Two new quaternary (Ce{sub 4}Mn{sub 2}InGe{sub 4} and Ce{sub 2}Mn{sub 2}InGe{sub 2}) and two ternary (Ce{sub 3}Mn{sub 2}Ge{sub 3} and Ce{sub 43}Mn{sub 18}Ge{sub 39}) phases were found. The isothermal sections of the boundary ternary systems (Ce-Mn-In, Mn-In-Ge, Ce-In-Ge, and Ce-Mn-Ge) were determined at 800 °C. Among these, the Ce-Mn-Ge system deserves particular attention because the phase equilibria are complex. Relative to the previously reported phase diagram evaluated at a lower temperature (400 °C), three ternary phases (CeMn{sub 2}Ge{sub 2}, Ce{sub 2}MnGe{sub 6}, and CeMnGe) persist, Ce{sub 2}MnGe{sub 5} does not form, and two new phases with very close composition (Ce{sub 3}Mn{sub 2}Ge{sub 3} and Ce{sub 43}Mn{sub 18}Ge{sub 39}) appear at 800 °C. Ce{sub 3}Mn{sub 2}Ge{sub 3} (orthorhombic Hf{sub 3}Ni{sub 2}Si{sub 3}-type) has a small homogeneity range (2%) deviating from the ideal composition, whereas Ce{sub 43}Mn{sub 18}Ge{sub 39} (tetragonal La{sub 2+x}MnGe{sub 2+y}-type) has negligible homogeneity. Magnetic measurements on Ce{sub 4}Mn{sub 2}InGe{sub 4} suggest ferromagnetic behaviour.

  7. Miscibility Phase Diagrams of Giant Vesicles Containing Sphingomyelin

    Science.gov (United States)

    Veatch, Sarah L.; Keller, Sarah L.

    2005-04-01

    Saturated sphingomyelin (SM) lipids are implicated in lipid rafts in cell plasma membranes. Here we use fluorescence microscopy to observe coexisting liquid domains in vesicles containing SM, an unsaturated phosphatidylcholine lipid (either DOPC or POPC), and cholesterol. We note similar phase behavior in a model membrane mixture without SM (DOPC/DPPC/Chol), but find no micron-scale liquid domains in membranes of POPC/PSM/Chol. We delineate the onset of solid phases below the miscibility transition temperature, and detail indirect evidence for a three-phase coexistence of one solid and two liquid phases.

  8. Conductivity, calorimetry and phase diagram of the NaHSO4–KHSO4 system

    DEFF Research Database (Denmark)

    Hind, Hamma-Cugny; Rasmussen, Søren Birk; Rogez, J.

    2006-01-01

    Physico-chemical properties of the binary system NaHSO4-KHSO4 were studied by calorimetry and conductivity, The enthalpy of mixing has been measured at 505 K in the full composition range and the phase diagram calculated. The phase diagram has also been constructed from phase transition...... temperatures obtained by conductivity for 10 different compositions and by differential thermal analysis. The phase diagram is of the simple eutectic type, where the eutectic is found to have the composition Χ(KHSO4)=0.44 (melting point ≈ 406 K). The conductivities in the liquid region have been fitted...... to polynomials of the form κ(X)=A(X)+B(X)(T-Tm)+C(X)(T-Tm)2, where Tm is the intermediate temperature of the measured temperature range and X, the mole fraction of KHSO4. The possible role of this binary system as a catalyst solvent is also discussed. (C) 2005 Elsevier B.V. All rights reserved....

  9. Equilibrium p-T phase diagram of boron: experimental study and thermodynamic analysis.

    Science.gov (United States)

    Solozhenko, Vladimir L; Kurakevych, Oleksandr O

    2013-01-01

    Solid-state phase transformations and melting of high-purity crystalline boron have been in situ and ex situ studied at pressures to 20 GPa in the 1500-2500 K temperature range where diffusion processes become fast and lead to formation of thermodynamically stable phases. The equilibrium phase diagram of boron has been constructed based on thermodynamic analysis of experimental and literature data. The high-temperature part of the diagram contains p-T domains of thermodynamic stability of rhombohedral β-B106, orthorhombic γ-B28, pseudo-cubic (tetragonal) t'-B52, and liquid boron (L). The positions of two triple points have been experimentally estimated, i.e. β-t'-L at ~ 8.0 GPa and ~ 2490 K; and β-γ-t' at ~ 9.6 GPa and ~ 2230 K. Finally, the proposed phase diagram explains all thermodynamic aspects of boron allotropy and significantly improves our understanding of the fifth element.

  10. The topological pressure-temperature phase diagram of fluoxetine nitrate: monotropy unexpectedly turning into enantiotropy

    Science.gov (United States)

    Céolin, René; Rietveld, Ivo B.

    2017-04-01

    The phase behavior of pharmaceuticals is important for regulatory requirements and dosage form development. Racemic fluoxetine nitrate possesses two crystalline forms for which initial measurements indicated that they have a monotropic relationship with form I the only stable form. By constructing the topological pressure-temperature phase diagram, it has been shown that unexpectedly form II has a stable domain in the phase diagram and can be easily obtained by heating and grinding. The pressure necessary to obtain form II is only 11 MPa, which is much lower than most pressure used for tableting in the pharmaceutical industry.

  11. Phase diagram of two-dimensional hard rods from fundamental mixed measure density functional theory.

    Science.gov (United States)

    Wittmann, René; Sitta, Christoph E; Smallenburg, Frank; Löwen, Hartmut

    2017-10-07

    A density functional theory for the bulk phase diagram of two-dimensional orientable hard rods is proposed and tested against Monte Carlo computer simulation data. In detail, an explicit density functional is derived from fundamental mixed measure theory and freely minimized numerically for hard discorectangles. The phase diagram, which involves stable isotropic, nematic, smectic, and crystalline phases, is obtained and shows good agreement with the simulation data. Our functional is valid for a multicomponent mixture of hard particles with arbitrary convex shapes and provides a reliable starting point to explore various inhomogeneous situations of two-dimensional hard rods and their Brownian dynamics.

  12. Phase diagrams of vortex matter with multi-scale inter-vortex interactions in layered superconductors.

    Science.gov (United States)

    Meng, Qingyou; Varney, Christopher N; Fangohr, Hans; Babaev, Egor

    2017-01-25

    It was recently proposed to use the stray magnetic fields of superconducting vortex lattices to trap ultracold atoms for building quantum emulators. This calls for new methods for engineering and manipulating of the vortex states. One of the possible routes utilizes type-1.5 superconducting layered systems with multi-scale inter-vortex interactions. In order to explore the possible vortex states that can be engineered, we present two phase diagrams of phenomenological vortex matter models with multi-scale inter-vortex interactions featuring several attractive and repulsive length scales. The phase diagrams exhibit a plethora of phases, including conventional 2D lattice phases, five stripe phases, dimer, trimer, and tetramer phases, void phases, and stable low-temperature disordered phases. The transitions between these states can be controlled by the value of an applied external field.

  13. Existence of the phase drainage diagram in proton exchange membrane fuel cell fibrous diffusion media

    Science.gov (United States)

    Medici, E. F.; Allen, J. S.

    It is well established that drainage in porous media can be characterized by two nondimensional numbers: the capillary number, Ca, and the viscosity ratio, M. Both quantities are useful to distinguish which force (viscous or capillary) is governing the fluid displacement behavior. This information is summarized in the Ca- M phase diagram. The Ca- M phase diagram is strongly dependent upon fluid properties and the porous medium morphology and wettability. Experimental evidence suggests that the morphology of the porous medium has an important role in the behavior in the fluid displacement. In this work, Ca- M phase diagram of fuel cell diffusion media layer (DM) is explored using a pseudo-Hele-Shaw experimental setup. This phase diagram will be explored together with the characteristic pressure curves of each displacement type. This Ca- M phase diagram will provide a fundamental resource for understanding the dynamics of the diffusion process and transport characteristics taking place inside of the DM as well as a characterization method for DMs.

  14. Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability

    Science.gov (United States)

    Hautier, Geoffroy; Ong, Shyue Ping; Jain, Anubhav; Moore, Charles J.; Ceder, Gerbrand

    2012-04-01

    The evaluation of reaction energies between solids using density functional theory (DFT) is of practical importance in many technological fields and paramount in the study of the phase stability of known and predicted compounds. In this work, we present a comparison between reaction energies provided by experiments and computed by DFT in the generalized gradient approximation (GGA), using a Hubbard U parameter for some transition metal elements (GGA+U). We use a data set of 135 reactions involving the formation of ternary oxides from binary oxides in a broad range of chemistries and crystal structures. We find that the computational errors can be modeled by a normal distribution with a mean close to zero and a standard deviation of 24 meV/atom. The significantly smaller error compared to the more commonly reported errors in the formation energies from the elements is related to the larger cancellation of errors in energies when reactions involve chemically similar compounds. This result is of importance for phase diagram computations for which the relevant reaction energies are often not from the elements but from chemically close phases (e.g., ternary oxides versus binary oxides). In addition, we discuss the distribution of computational errors among chemistries and show that the use of a Hubbard U parameter is critical to the accuracy of reaction energies involving transition metals even when no major change in formal oxidation state is occurring.

  15. The phase diagram of scalar field theory on the fuzzy disc

    Energy Technology Data Exchange (ETDEWEB)

    Rea, Simone; Sämann, Christian [Maxwell Institute for Mathematical Sciences, Department of Mathematics,Heriot-Watt University,Colin Maclaurin Building, Riccarton, Edinburgh EH14 4AS (United Kingdom)

    2015-11-17

    Using a recently developed bootstrapping method, we compute the phase diagram of scalar field theory on the fuzzy disc with quartic even potential. We find three distinct phases with second and third order phase transitions between them. In particular, we find that the second order phase transition happens approximately at a fixed ratio of the two coupling constants defining the potential. We compute this ratio analytically in the limit of large coupling constants. Our results qualitatively agree with previously obtained numerical results.

  16. Diffusion-Driven Dissolution or Growth of a Liquid Drop Embedded in a Continuous Phase of Another Liquid via Phase-Field Ternary Mixture Model.

    Science.gov (United States)

    Lamorgese, Andrea; Mauri, Roberto

    2017-11-14

    We simulate the diffusion-driven dissolution or growth of a single-component (resp. two-component) drop embedded in a continuous phase of a binary (resp. single-component) liquid. Our theoretical approach follows a standard diffuse-interface model of partially miscible ternary liquid mixtures, which is based on a regular solution model assumption together with a Flory-Huggins and Cahn-Hilliard representation of the excess and nonlocal components of the Gibbs free energy of mixing. Based on 2D simulation results, we show that for a single-component drop embedded in a continuous phase of a binary liquid (which is highly miscible with either one component of the continuous phase but essentially immiscible with the other) the size of the drop can either shrink to zero or reach a stationary value, depending on whether the global composition of the mixture is within the one-phase region or the unstable range of the phase diagram. On the other hand, for an isolated two-component drop embedded in a continuous phase of a single-component liquid (which is essentially immiscible with either one component of the drop but miscible with the other) the size of the drop can either grow or shrink and, in particular, it will eventually go to zero if the global composition of the mixture is within the one-phase region; otherwise, for system locations in the unstable range the size of the drop tends to a constant value as the composition within the drop reaches its final equilibrium value.

  17. The Sr-poor part of the Sr–{Pd,Pt}–{Si,Ge} systems: Phase equilibria and crystal structure of ternary phases

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, V.V.; Falmbigl, M.; Grytsiv, A.; Rogl, P., E-mail: peter.franz.rogl@univie.ac.at

    2015-01-05

    Highlights: • Phase diagrams of the Sr-poor part of Sr–{Pd,Pt}–Si (900 °C) and Sr–{Pd,Pt}–Ge (700 °C) systems were constructed. • The crystal structure for three novel compounds SrPd{sub 0.3}Si{sub 1.7}, SrPt{sub 0.3}Si{sub 1.7} and SrPd{sub 5.9}Si{sub 6.1} was refined. • DFT calculations predicted metallic behavior for SrPdSi{sub 3}, SrPtSi{sub 3}, SrPd{sub 0.3}Si{sub 1.7} and SrPd{sub 6}Si{sub 6}. - Abstract: Phase relations have been established by electron probe microanalysis (EPMA) and X-ray powder diffraction (XPD) for the Sr-poor part of four ternary systems: Sr–{Pd,Pt}–Si at 900 °C and Sr–{Pd,Pt}–Ge at 700 °C. In the Sr–Pd–Si system the formation of the silicide SrPdSi{sub 3} (BaNiSn{sub 3}-type) was confirmed and a small homogeneity region was found. Furthermore, two novel compounds were detected and their crystal structure was refined from X-ray powder patterns: SrPd{sub 0.3}Si{sub 1.7} (AlB{sub 2}-type) and SrPd{sub 5.9}Si{sub 6.1} (own-type). In the Sr–Pt–Si ternary system a novel compound with AlB{sub 2}-type was discovered (SrPt{sub 0.3}Si{sub 1.7}), whereas SrPtSi{sub 3} with the BaNiSn{sub 3}-type was confirmed. Two more compounds were detected by EPMA, but their crystal structure remains unknown. In the Sr–{Pd,Pt}–Ge systems no new compounds were observed, but the existence of SrPdGe{sub 3} and SrPtGe{sub 3} (both adopt the BaNiSn{sub 3} structure type), and SrPt{sub 4}Ge{sub 12}, crystallizing in the LaFe{sub 4}Sb{sub 12} structure type, was corroborated. For selected ternary silicides the electronic structure was evaluated by DFT calculations.

  18. Phase relations and crystal structures in the ternary systems Sr-{Ag, Au}-{Si, Ge}

    Energy Technology Data Exchange (ETDEWEB)

    Zeiringer, Isolde [Institute of Physical Chemistry, University of Vienna, Waehringerstrasse 42, 1090 Vienna (Austria); Grytsiv, Andriy [Christian Doppler Laboratory for Thermoelectric Research, Vienna (Austria); Bauer, Ernst [Christian Doppler Laboratory for Thermoelectric Research, Vienna (Austria); Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria); Giester, Gerald [Institute of Mineralogy and Crystallography, University of Vienna, Althanstrasse14, 1090 Vienna (Austria); Rogl, Peter [Institute of Physical Chemistry, University of Vienna, Waehringerstrasse 42, 1090 Vienna (Austria); Christian Doppler Laboratory for Thermoelectric Research, Vienna (Austria)

    2015-07-15

    Phase equilibria in the isothermal sections of the ternary systems Sr-{Ag, Au}-{Si, Ge} were determined in the (Si) or (Ge) rich part up to 33.3 at % Sr after annealing at 700 C (Sr-{Ag, Au}-Ge) or 800 C (Sr-{Ag, Au}-Si). Tentative liquidus projections were constructed for the Si, Ge-rich part of all the four phase diagrams. These systems are characterized by a series of ternary compounds, exhibiting in some cases extended homogeneity regions at a constant Sr content. Compounds in the Si, Ge-rich region essentially form along two sections: at 33.3 at % Sr (AlB{sub 2}-family) and at 20 at % Sr (BaAl{sub 4}-family of structure types). The crystal structures of the novel equilibrium phases were derived by X-ray single crystal diffraction: Sr{sub 2}Ag{sub 1+x}Si{sub 3-x-y}□{sub y} [Sr{sub 2}LiSi{sub 3} type; x = 0.17, y = 0.43: a = 8.4488(2), b = 14.6376(2), c = 18.4018(2) Aa], SrAg{sub 2-x}Si{sub 2+x} [ThCr{sub 2}Si{sub 2} type; x = 0.1: a = 4.37664(6), c = 10.4517(2) Aa], Sr(Au{sub 1-y}□{sub y})(Si{sub 1-x}Au{sub x}){sub 3} [BaNiSn{sub 3} type; x = 0.59, y = 0.64: a = 4.4594(2), c = 10.1013(6) Aa] and SrAu{sub 5-x}□{sub x}Si{sub 2} [BaAu{sub 5}Si{sub 2} type; x = 0.7: a = 8.7557(3), b = 6.9945(2), c = 9.8873(3) Aa]. The crystal structures of Sr(Ag{sub x}Ge{sub 1-x}){sub 2} [AlB{sub 2} type; x = 0.25: a = 4.3431(2), c = 4.5938(1) Aa], SrAg{sub 2-x}Ge{sub 2+x} [ThCr{sub 2}Si{sub 2} type; x = 0.2: a = 4.4476(2), c = 10.822(1) Aa] and Sr(Au{sub x}Ge{sub 1-x}){sub 2} [AlB{sub 2} type; x = 0.25: a = 4.3263(2), c = 4.5852(7) Aa] were evaluated by X-ray powder Rietveld analysis. Composition dependent polymorphism was observed among the BaAl{sub 4}-type derivative structures for SrAu{sub 2-x}Ge{sub 2+x}: CaBe{sub 2}Ge{sub 2} type [x = 0.45: a = 4.4796(2), c = 10.6315(5) Aa], BaCu{sub 2}Sb{sub 2} type [x = 0.35: a = 4.4866(2), c = 31.808(1) Aa] and ThCr{sub 2}Si{sub 2} type [x = 0.2: a = 4.5214(4), c = 10.336(1) Aa]. Similarly, Sr(Au{sub x}Si{sub 1-x}){sub 2} exhibits

  19. Color superconductivity. Phase diagrams and Goldstone bosons in the color-flavor locked phase

    Energy Technology Data Exchange (ETDEWEB)

    Kleinhaus, Verena

    2009-04-29

    The phase diagram of strongly interacting matter is studied with great experimental and theoretical effort and is one of the most fascinating research areas in modern particle physics. It is believed that color superconducting phases, in which quarks form Cooper pairs, appear at very high densities and low temperatures. Such phases could appear in the cores of neutron stars. In this work color superconducting phases are studied within the Nambu-Jona-Lasinio model. First of all, the phase diagram of neutral matter in beta equilibrium is calculated for two different diquark couplings. To this end, we determine the dynamical quark masses self-consistently together with the order parameters of color superconductivity. The interplay between neutrality and quark masses results in an interesting phase structure, in particular for the smaller diquark coupling. In the following, we additionally include a conserved lepton number to map the situation in the first few seconds of the evolution of a protoneutron star when neutrinos are trapped. This has a huge influence on the phase structure and favors the 2SC phase compared to the CFL phase. In the second part of this work we concentrate on the CFL phase which is characterized by a special symmetry breaking pattern. The properties of the resulting nine pseudoscalar Goldstone bosons (GB) are studied by solving the Bethe-Salpeter equation for quark-quark scattering. The GB are the lowest-lying excitations in the CFL phase and therefore play an important role for the thermodynamics of the system. The properties of the GB can also be described by the low-energy effective theory (LEET) for the CFL phase. There the respective low-energy constants are derived for asymptotically high densities where the strong force is weak and can be treated perturbatively. Our aim is the comparison of our results with these predictions, on the one hand to check our model in the weak-coupling limit and on the other hand to derive information about

  20. Phase diagram of coacervate complexes containing reversible coordination

    NARCIS (Netherlands)

    Wang, J.; Cohen Stuart, M.A.; Gucht, van der J.

    2012-01-01

    Phase separation of coacervate complexes from cationic PDMAEMA [poly(N,N-dimethylaminoethyl methacrylate)] and anionic reversible coordination polymers are studied in the present work. The coordination polymers are formed from zinc and a bis-ligand L2EO4

  1. Wetting phase diagrams of polyacid brush with a triple point.

    NARCIS (Netherlands)

    Mercurieva, A.A.; Iakovlev, P.A.; Zhulina, E.B.; Birshtein, T.M.; Leermakers, F.A.M.

    2006-01-01

    The (pre)wetting behavior of an annealed polyelectrolyte (PE) brush by an electrolyte solution that is strongly segregated from an apolar phase is analyzed. In this complex interface, there are interactions on various length scales. There are short-range interactions with the (uncharged) surface,

  2. First-Order Transitions and the Magnetic Phase Diagram of CeSb

    DEFF Research Database (Denmark)

    Lebech, Bente; Clausen, Kurt Nørgaard; Vogt, O.

    1980-01-01

    might exist in the magnetic phase diagram of CeSb at 16K for a field of approximately 0.3 T. The present study concludes that the transitions from the paramagnetic to the magnetically ordered states are of first order for fields below 0.8 T. Within the experimental accuracy no change has been observed......The high-temperature (14-17K) low-magnetic field (0-0.8 T) region of the phase diagram of the anomalous antiferromagnet CeSb has been reinvestigated by neutron diffraction in an attempt to locate a possible tricritical point. Previous neutron diffraction studies indicated that a tricritical point...

  3. Phase Diagrams of the Aqueous Two-Phase Systems of Poly(ethylene glycol)/Sodium Polyacrylate/Salts

    OpenAIRE

    Adalberto Pessoa Junior; Hans-Olof Johansson; Eloi Feitosa

    2011-01-01

    Aqueous two-phase systems consisting of polyethylene glycol (PEG), sodium polyacrylate (NaPAA), and a salt have been studied. The effects of the polymer size, salt type (NaCl, Na2SO4, sodium adipate and sodium azelate) and salt concentrations on the position of the binodal curve were investigated. The investigated PEG molecules had a molar mass of 2,000 to 8,000 g/mol, while that of NaPAA was 8,000 g/mol. Experimental phase diagrams, and tie lines and calculated phase diagrams, based on Flory...

  4. Phase diagram study of a dimerized spin-S zig-zag ladder.

    Science.gov (United States)

    Matera, J M; Lamas, C A

    2014-08-13

    The phase diagram of a frustrated spin-S zig-zag ladder is studied through different numerical and analytical methods. We show that for arbitrary S, there is a family of Hamiltonians for which a fully-dimerized state is an exact ground state, being the Majumdar-Ghosh point for a particular member of the family. We show that the system presents a transition between a dimerized phase to a Néel-like phase for S = 1/2, and spiral phases can appear for large S. The phase diagram is characterized by means of a generalization of the usual mean field approximation. The novelty in the present implementation is to consider the strongest coupled sites as the unit cell. The gap and the excitation spectrum is analyzed through the random phase approximation. Also, a perturbative treatment to obtain the critical points is discussed. Comparisons of the results with numerical methods like the Density Matrix Renormalization Group are also presented.

  5. T-p phase diagrams and the barocaloric effect in materials with successive phase transitions

    Science.gov (United States)

    Gorev, M. V.; Bogdanov, E. V.; Flerov, I. N.

    2017-09-01

    An analysis of the extensive and intensive barocaloric effect (BCE) at successive structural phase transitions in some complex fluorides and oxyfluorides was performed. The high sensitivity of these compounds to a change in the chemical pressure allows one to vary the succession and parameters of the transformations (temperature, entropy, baric coefficient) over a wide range and obtain optimal values of the BCE. A comparison of different types of schematic T-p phase diagrams with the complicated T( p) dependences observed experimentally shows that in some ranges of temperature and pressure the BCE in compounds undergoing successive transformations can be increased due to a summation of caloric effects associated with distinct phase transitions. The maximum values of the extensive and intensive BCE in complex fluorides and oxyfluorides can be realized at rather low pressure (0.1-0.3 GPa). In a narrow temperature range around the triple points conversion from conventional BCE to inverse BCE is observed, which is followed by a gigantic change of both \\vertΔ S_BCE\\vert and \\vertΔ T_AD\\vert .

  6. Magnetic phase diagram and quantum phase transitions in a two-species boson model

    Science.gov (United States)

    Belemuk, A. M.; Chtchelkatchev, N. M.; Mikheyenkov, A. V.; Kugel, K. I.

    2017-09-01

    We analyze the possible types of ordering in a boson-fermion model. The Hamiltonian is inherently related to the Bose-Hubbard model for vector two-species bosons in optical lattices. We show that such a model can be reduced to the Kugel-Khomskii type spin-pseudospin model, but in contrast to the usual version of the latter model, we are dealing here with the case of spin S =1 and pseudospin 1 /2 . We show that the interplay of spin and pseudospin degrees of freedom leads to a rather nontrivial magnetic phase diagram including the spin-nematic configurations. Tuning the spin-channel interaction parameter Us gives rise to quantum phase transitions. We find that the ground state of the system always has the pseudospin domain structure. On the other hand, the sign change of Us switches the spin arrangement of the ground state within domains from a ferro- to antiferromagnetic one. Finally, we revisit the spin (pseudospin)-1/2 Kugel-Khomskii model and see the inverse picture of phase transitions.

  7. Theory of multiple phase separations in binary mixtures: Phase diagrams, thermodynamic properties, and comparisons with experiments

    Science.gov (United States)

    Goldstein, Raymond E.; Walker, James S.

    1983-02-01

    The lattice-gas models of phase separating binary liquid mixtures, introduced by Walker and Vause, are studied in detail and generalized within a high-temperature series expansion. This approximation allows for a straightforward study of rather complex, orientationally specific pair interactions, like those found in real systems. These theories can predict much of the complex miscibility phenomena often found in these mixtures, which are characterized by hydrogen-bonding interactions. Such phenomena include up to five critical solution points as a function of temperature. By comparisons with experiments, we determine the model parameters, thus mapping these experiments onto the global phase diagrams. These experiments include studies of the dependence of liquid/liquid miscibility on temperature, pressure, concentration of electrolytes, and addition of a dilute third component. Specifically, we make direct comparison with various experiments on the binary systems 2-butanol+H2O, 3-methyl pyridine+H2O(D2O), gylcerol +o- methoxy phenol and ethanol+H2O+electrolytes. Very simple and often easily interpreted trends in the parameters are found and quantitative agreement with experiments is possible with minimum parametric freedom. Explicit predictions of critical exponent renormalization in several systems are made. In addition, suggestions are made for a number of light scattering and specific heat experiments, some of which may demonstrate incipient critical behavior, such as the onset of long range correlations, in systems not undergoing phase separation.

  8. Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, V.V., E-mail: romakav@lp.edu.ua [Department of Applied Material Science and Materials Engineering, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Romaka, L.; Horyn, A. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Rogl, P. [Institute of Materials Chemistry and Research, University of Vienna, Währingerstrasse 42, A-1090 Wien (Austria); Stadnyk, Yu; Melnychenko, N. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Orlovskyy, M.; Krayovskyy, V. [Department of Applied Material Science and Materials Engineering, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine)

    2016-07-15

    The phase equilibria in the Gd–Ni–Sb and Lu-Ni-Sb ternary systems were studied at 873 K by X-ray and metallographic analyses in the whole concentration range. The interaction of the elements in the Gd–Ni–Sb system results the formation of five ternary compounds at investigated temperature: Gd{sub 5}Ni{sub 2}Sb (Mo{sub 5}SiB{sub 2}-type), Gd{sub 5}NiSb{sub 2} (Yb{sub 5}Sb{sub 3}-type), GdNiSb (MgAgAs-type), Gd{sub 3}Ni{sub 6}Sb{sub 5} (Y{sub 3}Ni{sub 6}Sb{sub 5}-type), and GdNi{sub 0.72}Sb{sub 2} (HfCuSi{sub 2}-type). At investigated temperature the Lu-Ni-Sb system is characterized by formation of the LuNiSb (MgAgAs-type), Lu{sub 5}Ni{sub 2}Sb (Mo{sub 5}SiB{sub 2}-type), and Lu{sub 5}Ni{sub 0.56}Sb{sub 2.44} (Yb{sub 5}Sb{sub 3}-type) compounds. The disordering in the crystal structure of half-Heusler GdNiSb and LuNiSb was revealed by EPMA and studied by means of Rietveld refinement and DFT modeling. The performed electronic structure calculations are in good agreement with electrical transport property studies. - Graphical abstract: Crystal structure model and electron localization function of Lu{sub 5}Ni{sub 2}Sb. Display Omitted - Highlights: • Gd-Ni-Sb and Lu-Ni-Sb phase diagrams were constructed at 873 K. • GdNiSb and LuNiSb are characterized by disordered crystal structure. • Crystal structure optimization with DFT calculations confirmed crystal structure disorder in GdNiSb and LuNiSb.

  9. Magnetic phase diagram of magnetoelectric LiMnPO4

    DEFF Research Database (Denmark)

    Toft-Petersen, Rasmus; Andersen, Niels Hessel; Li, Haifeng

    2012-01-01

    The nature of the spin-flop (SF) transition in the magnetoelectric quasi-2D Heisenberg system LiMnPO4 is studied in fields applied along the a axis. A refinement of the magnetic structure using neutron diffraction data in the SF phase reveals that the spins reorient from being parallel...... to the a axis to be nearly along the c axis at magnetic fields between 4 and 4.7 T, depending on temperature. The low-field antiferromagnetic phase boundary is shown to join the spin-flop line tangentially at the so-called bicritical point, where there is a suppression of the ordering temperature....... At the bicritical field, we observe an increased intensity of the Lorentz broadened elastic scattering at magnetic Bragg peaks above TN as compared to zero field and 10 T, without an increase in peak width. This suggests an increased density of fluctuations at the bicritical field as compared to zero field....

  10. The Molybdenum titanium Phase Diagram Evaluated from Ab initio Calculations

    Science.gov (United States)

    2016-10-07

    computational thermodynamics CALPHAD approach [13] and the Thermo-Calc software [14]. These studies led to two conflicting descriptions of the stability of...Department of Materials Science, NRCN, P.O.Box 9001, Beer-Sheva 84190, Israel. 2 Department of Mechanical Engineering and Materials Science, Duke University... thermodynamic properties of this binary system are not well known and two conflicting descriptions of the β-phase stability have been presented in the

  11. Phase Diagram Characterization Using Magnetic Beads as Liquid Carriers

    OpenAIRE

    Blumenschein, Nicholas; Han, Daewoo; Steckl, Andrew J.

    2015-01-01

    Magnetic beads with ~1.9 µm average diameter were used to transport microliter volumes of liquids between contiguous liquid segments with a tube for the purpose of investigating phase change of those liquid segments. The magnetic beads were externally controlled using a magnet, allowing for the beads to bridge the air valve between the adjacent liquid segments. A hydrophobic coating was applied to the inner surface of the tube to enhance the separation between two liquid segments. The applied...

  12. METHODOLOGICAL NOTES: Metastable phases, phase transformations, and phase diagrams in physics and chemistry

    Science.gov (United States)

    Brazhkin, Vadim V.

    2006-07-01

    Concepts of a 'phase' and a 'phase transition' are discussed for stable and metastable states of matter. While condensed matter physics primarily considers equilibrium states and treats metastable phases as exceptions, organic chemistry overwhelmingly deals with metastable states. It is emphasized that many simple light-element compounds — including most hydrocarbons; nitrogen oxides, hydrides, and carbides; carbon monoxide CO; alcohols and glycerin — are also metastable at normal pressure in the sense that they do not correspond to a minimum Gibbs free energy for a given chemical composition. At moderate temperatures and pressures, the phase transformations for these metastable phases are reversible with the fulfilment of all laws of equilibrium thermodynamics over the entire range of experimentally accessible times. At sufficiently high pressures (> 1-10 GPa), most of the metastable molecular phases irreversibly transform to lower-energy polymer phases, stable or metastable. These transitions do not correspond to the equality of the Gibbs free energy for the involved phases before and after the transition and so they are not first-order in the 'classical' sense. At normal pressure, the resulting polymer phases can exist at temperatures above the melting point of the original metastable molecular phase, as the examples of polyethylene and polymerized CO dramatically illustrate. As pressure is increased further to 20-50 GPa, the PV contribution to Gibbs free energy gives rise to stable high-density atomic phases. Many of the intermediate-energy polymer phases can likely be synthesized by methods of 'classical' chemistry at normal pressure.

  13. Phase diagram for the Eigen quasispecies theory with a truncated fitness landscape.

    Science.gov (United States)

    Saakian, David B; Biebricher, Christof K; Hu, Chin-Kun

    2009-04-01

    Using methods of statistical physics, we present rigorous theoretical calculations of Eigen's quasispecies theory with the truncated fitness landscape which dramatically limits the available sequence space of information carriers. As the mutation rate is increased from small values to large values, one can observe three phases: the first (I) selective (also known as ferromagnetic) phase, the second (II) intermediate phase with some residual order, and the third (III) completely randomized (also known as paramagnetic) phase. We calculate the phase diagram for these phases and the concentration of information carriers in the master sequence (also known as peak configuration) x0 and other classes of information carriers. As the phase point moves across the boundary between phase I and phase II, x0 changes continuously; as the phase point moves across the boundary between phase II and phase III, x0 has a large change. Our results are applicable for the general case of a fitness landscape.

  14. Water Phase Diagram Is Significantly Altered by Imidazolium Ionic Liquid

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    We report unusually large changes in the boiling temperature, saturated vapor pressure, and structure of the liquid-vapor interface for a range of 1-butyl-3-methyl tetrafluoroborate, [C4C1IM][BF4]-water mixtures. Even modest molar fractions of [C4C1IM][BF4] significantly affect the phase behavior...... of water, as represented, for instance, by strong negative deviations from Raoult's law, extending far beyond the standard descriptions. The investigation was carried out using classical molecular dynamics employing a specifically refined force field. The changes in the liquid-vapor interface and saturated...

  15. Phase Behavior at High Pressure of the Ternary System: CO2, Ionic Liquid and Disperse Dye

    Directory of Open Access Journals (Sweden)

    Helen R. Mazzer

    2012-01-01

    Full Text Available High pressure phase behavior experimental data have been measured for the systems carbon dioxide (CO2 + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6] and carbon dioxide (CO2 + 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim] [PF6] + 1-amino-2-phenoxy-4-hydroxyanthraquinone (C.I. Disperse Red 60. Measurements were performed in the pressure up to 18 MPa and at the temperature (323 to 353 K. As reported in the literature, at higher concentrations of carbon dioxide the phase transition pressure increased very steeply. The experimental data for the binary and ternary systems were correlated with good agreement using the Peng-Robinson equation of state. The amount of water in phase behavior of the systems was evaluated.

  16. On a generalized phase diagram of simultaneous transport processes - a two velocity universal plane of invariance

    Energy Technology Data Exchange (ETDEWEB)

    Som, A. [General Electric Company, SC (United States)

    2001-07-01

    The problem concerning void fraction as an additional degree of freedom for a discontinuous density continuum e.g., two-phase systems, is theoretically investigated. A generalized phase diagram has been found to signify the evolution of two-phase systems. With due regard to the objective property of motion, the transformation functions and its properties clearly expose the invariance of relative velocity with superficial velocities as the vector quantities. A fundamental one-to-one mapping involving Euclidean point spaces has been derived demonstrating a two-velocity universal plane of invariance as two-phase equation-of-state. The utility of the phase diagram for steady-state operations is doubtless because of the fundamental property of motion. (author)

  17. Magnetoelectric phase diagrams of multiferroic GdMn2O5

    Science.gov (United States)

    Bukhari, S. H.; Kain, Th.; Schiebl, M.; Shuvaev, A.; Pimenov, Anna; Kuzmenko, A. M.; Wang, X.; Cheong, S.-W.; Ahmad, J.; Pimenov, A.

    2016-11-01

    Electric and magnetic properties of multiferroic GdMn2O5 in external magnetic fields were investigated to map out the magnetoelectric phases in this material. Due to strong magnetoelectric coupling, the dielectric permittivity is highly sensitive to phase boundaries in GdMn2O5 , which allowed us to construct the field-temperature phase diagrams. Several phase transitions are observed which are strongly field dependent with respect to field orientation and strength. The phase diagram for a magnetic field along the crystallographic a axis corresponds well to a polarization step, as induced by 90∘ rotation of Gd magnetic moments. Our results support the model of two ferroelectric sublattices, Mn-Mn and Gd-Mn, with strong R -Mn (4 f -3 d ) interaction for the polarization in R Mn2O5 .

  18. Critical assessment and optimization of phase diagrams and thermodynamic properties of RE–Zn systems-part I: Sc–Zn, La–Zn, Ce–Zn, Pr–Zn, Nd–Zn, Pm–Zn and Sm–Zn

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhijun; Pelton, Arthur D.

    2015-08-25

    Highlights: • All phase diagram and thermodynamic data critically assessed for 7 (10) binary systems. • All phases described by optimized thermodynamic models. • All systems assessed simultaneously thereby exploiting trends in rare earth series. • Results will be combined with RE–Zn, Mg–Zn and ternary optimizations. • Final product will be a database for multicomponent Mg–RE–Zn systems. - Abstract: All available phase diagram and thermodynamic data for the Sc–Zn, La–Zn, Ce–Zn, Pr–Zn, Nd–Zn, Pm–Zn and Sm–Zn systems have been collected and critically assessed. Optimized model parameters for the thermodynamic properties of all phases have been obtained. Trends in the properties of the rare earth (RE)–Zn systems as one traverses the rare earth series have been exploited for purposes of estimating missing data and for checking existing data for consistency.

  19. Phase diagram of the triangular extended Hubbard model.

    Science.gov (United States)

    Tocchio, Luca F; Gros, Claudius; Zhang, Xue-Feng; Eggert, Sebastian

    2014-12-12

    We study the extended Hubbard model on the triangular lattice as a function of filling and interaction strength. The complex interplay of kinetic frustration and strong interactions on the triangular lattice leads to exotic phases where long-range charge order, antiferromagnetic order, and metallic conductivity can coexist. Variational Monte Carlo simulations show that three kinds of ordered metallic states are stable as a function of nearest neighbor interaction and filling. The coexistence of conductivity and order is explained by a separation into two functional classes of particles: part of them contributes to the stable order, while the other part forms a partially filled band on the remaining substructure. The relation to charge ordering in charge transfer salts is discussed.

  20. Solute redistribution during phase separation of ternary Fe-Cu-Si alloy

    Science.gov (United States)

    Luo, S. B.; Wang, W. L.; Xia, Z. C.; Wu, Y. H.; Wei, B.

    2015-06-01

    Ternary Fe48Cu48Si4 immiscible alloy was rapidly solidified under the containerless microgravity condition inside a drop tube. Liquid phase separation took place in the alloy melt and led to the formation of various segregated structures. The core-shell structure consisting of Fe-rich and Cu-rich zones and the homogenously dispersed structure were the major structural morphologies. Phase field simulation results revealed that the two-layer core-shell was the final structure of liquid phase separation. The solute redistribution of liquid Fe48Cu48Si4 alloy experienced the macroscopic solute distribution induced by liquid phase separation, the secondary phase separation within the separated liquid phases and the solute trapping during rapid solidification. Energy dispersive spectroscopy analysis showed that the solute Si was enriched in the Fe-rich zone whereas depleted in the Cu-rich zone. In addition, both αFe and (Cu) phases in the Fe-rich zone exhibited a conspicuous solute trapping effect. As compared with (Cu) phase, αFe phase had a stronger affinity with solute Si.

  1. The NaNO2-NaNO3 system – a revised phase diagram

    DEFF Research Database (Denmark)

    Berg, Rolf W.; Kerridge, D.H.; Larsen, Peter Halvor

    2004-01-01

    Three earlier determinations of the phase diagram of the sodium nitrite/sodium nitrate binary system resulted in considerably different conclusions, ranging from simple eutectic to continuous solid solution types, together with different sub-solidus lines. Recent melting enthalpy measurements hav...

  2. Electronic phase diagram in the half-filled ionic Hubbard model with site-dependent interactions

    Science.gov (United States)

    Hoang, Anh-Tuan; Nguyen, Thi-Hai-Yen; Le, Duc-Anh

    2018-02-01

    The ionic Hubbard model with spatially alternating interactions, which may be realized by cold atoms in optical lattices, is studied by mean of the coherent potential approximation. The paramagnetic phase diagram for the half-filled model at zero temperature is obtained. The possibility of enlarging an intermediate metallic region in the parameter space is addressed.

  3. Separable interactions and liquid 3He : V. Phase diagram in the presence of a Hubbard interaction

    NARCIS (Netherlands)

    Capel, H.W.; Nijhoff, F.W.; Breems, A. den

    1986-01-01

    A comparison is made between the various extrema of the Landau expansion of liquid 3He derived in a previous paper. As an application the phase diagram is investigated in the presence of an external magnetic field assuming that the Hubbard interaction is small as compared to the pairing interaction

  4. Phase diagrams on an unsignalized intersection for the cases of different maximum velocities of vehicles

    Science.gov (United States)

    Li, Qi-Lang; Wang, Bing-Hong; Liu, Mu-Ren

    2012-01-01

    Using the cellular automaton traffic flow model, we investigate an unsignalized intersection which consists of two perpendicular one-lane roads. Both the roads cross at a point and the intersecting roads are cyclic. Each vehicle may pass or occupy the intersection where all the vehicles on both roads are not allowed to turn. Different from Ishibashi and Fukui's studies in which the update is carried out for both roads in turn, the parallel update is proposed and its detailed rules are presented in our model. In this work, the cases of different maximum vehicle velocities on both roads are considered. Based on simulation results and the principle for constructing phase diagrams, phase diagrams are mapped out and their specific flow formulas for all the regions in the phase diagrams are obtained for various vehicle densities, which are seldom done in previous studies. One also finds that the topology of phase diagrams depends on the update rules of eastbound and northbound roads and their maximum velocities of vehicles.

  5. Phase diagram and segregation of Ag-Co nanoalloys: insights from theory and simulation

    Science.gov (United States)

    Zhao, Zheng; Fisher, Adrian; Cheng, Daojian

    2016-03-01

    Understanding the phase diagram is the first step to identifying the structure-performance relationship of a material at the nanoscale. In this work, a modified nanothermodynamical model has been developed to predict the phase diagrams of Ag-Co nanoalloys with the size of 1 ˜ 100 nm, which also overcomes the difference in the predicted results between theory and simulation for the first time. Based on this modified model, the phase diagrams of Ag-Co nanoalloys with various polyhedral morphologies (tetrahedron, cube, octahedron, decahedron, dodecahedron, rhombic dodecahedron, truncated octahedron, cuboctahedron, and icosahedron) have been predicted, showing good agreement with molecular dynamics simulations at the nanoscale of 1 ˜ 4 nm. In addition, the surface segregation of Ag-Co nanoalloys has been predicted with a Co-rich core/Ag-rich surface, which is also consistent with the simulation results. Our results highlight a useful roadmap for bridging the difference between theory and simulation in the prediction of the phase diagram at the nanoscale, which will help both theorists and experimentalists.

  6. State-of-the-art models for the phase diagram of carbon and diamond nucleation

    NARCIS (Netherlands)

    Ghiringhelli, L.M.; Valeriani, C.; Los, J.H.; Meijer, E.J.; Fasolino, A.; Frenkel, D.

    2008-01-01

    We review recent developments in the modelling of the phase diagram and the kinetics of crystallization of carbon. In particular, we show that a particular class of bond-order potentials (the so-called LCBOP models) account well for many of the known structural and thermodynamic properties of carbon

  7. Renormalization group improved computation of correlation functions in theories with nontrivial phase diagram

    DEFF Research Database (Denmark)

    Codello, Alessandro; Tonero, Alberto

    2016-01-01

    We present a simple and consistent way to compute correlation functions in interacting theories with nontrivial phase diagram. As an example we show how to consistently compute the four-point function in three dimensional Z2-scalar theories. The idea is to perform the path integral by weighting...

  8. Calculated Phase Diagram for the γ⇌α Transition in Ce

    DEFF Research Database (Denmark)

    Johansson, Børje; Abrikosov, I. A.; Aldén, Magnus

    1995-01-01

    We have calculated the pressure-temperature phase diagram of the γ⇌α isostructural transition in Ce on the basis of the Mott transition model. The theory correctly describes the linear variation of the transition temperature with pressure and the existence of a critical point. The quantitative ag...

  9. Phase diagram of the system Ca–Ti–O at 1200 K

    Indian Academy of Sciences (India)

    Administrator

    graphite anode and molten CaCl2 electrolyte. Keywords. Phase diagram; system Ca–Ti–O; calciothermic reduction of TiO2; reaction pathway. 1. Introduction. Although titanium and its alloys have excellent properties such as high strength, low density and very good corro- sion resistance, their use is restricted by high cost.

  10. Low-pressure phase diagram of crystalline benzene from quantum Monte Carlo

    CERN Document Server

    Azadi, Sam

    2016-01-01

    We study the low-pressure (0 to 10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo (QMC) and density functional theory (DFT) methods. We consider the $Pbca$, $P4_32_12$, and $P2_1/c$ structures as the best candidates for phase I and phase II. We perform diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. We use density functional perturbation theory to compute phonon contribution in the free-energy calculations. Our DFT enthalpy-pressure phase diagram indicates that the $Pbca$ and $P2_1/c$ structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature $Pbca$ to $P2_1/c$ phase transition occurs at 2.1(1) GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations show an estimate of 50.6$\\pm$0.5 kJ/mol for crystalline benzene lattice energy.

  11. Calculation of the P-T phase diagram of nitrogen using a mean field model

    Science.gov (United States)

    Enginer, Y.; Algul, G.; Yurtseven, H.

    2017-12-01

    The P-T phase diagram is calculated at low and moderate pressures by obtaining the phase line equations for the transitions considered in nitrogen using the Landau phenomenological model. For some transitions, a quadratic coupling between the order parameters is taken into account in the expansion of free energies in terms of the order parameters. A quadratic function in T and P is fitted to the experimental P-T data from the literature and the fitted parameters are determined. It is shown that the model studied here describes the observed data adequately, which can also be used to predict the thermodynamic properties of the phases of the molecular nitrogen within the temperatures and pressures of the P-T phase diagram of this system.

  12. Bifurcation analysis and phase diagram of a spin-string model with buckled states

    Science.gov (United States)

    Ruiz-Garcia, M.; Bonilla, L. L.; Prados, A.

    2017-12-01

    We analyze a one-dimensional spin-string model, in which string oscillators are linearly coupled to their two nearest neighbors and to Ising spins representing internal degrees of freedom. String-spin coupling induces a long-range ferromagnetic interaction among spins that competes with a spin-spin antiferromagnetic coupling. As a consequence, the complex phase diagram of the system exhibits different flat rippled and buckled states, with first or second order transition lines between states. This complexity translates to the two-dimensional version of the model, whose numerical solution has been recently used to explain qualitatively the rippled to buckled transition observed in scanning tunneling microscopy experiments with suspended graphene sheets. Here we describe in detail the phase diagram of the simpler one-dimensional model and phase stability using bifurcation theory. This gives additional insight into the physical mechanisms underlying the different phases and the behavior observed in experiments.

  13. Phase diagrams of hexadecane-CO 2 mixtures from histogram-reweighting Monte Carlo

    Science.gov (United States)

    Virnau, P.; Müller, M.; González MacDowell, L.; Binder, K.

    2002-08-01

    We investigate the phase behaviour of a hexadecane-CO 2 mixture with a coarse-grained off-lattice model. CO 2 is described by a single Lennard-Jones sphere and hexadecane by a chain of five LJ monomers with additional FENE interactions. Interaction parameters are derived from the critical points of pure hexadecane and CO 2 using a modified Lorentz-Berthelot mixing rule for the mixture. Simulations are based on grand-canonical histogram-reweighting Monte Carlo. A method to calculate interfacial tensions is described in detail. The analysis of the model includes simulated phase diagrams and interfacial tensions for pure hexadecane and CO 2 as well as a general phase diagram with complete critical lines for their mixture. We find evidence that a small change of interaction parameters between different species leads to qualitatively different phase behavior.

  14. Phase diagrams for an ideal gas mixture of fermionic atoms and bosonic molecules

    DEFF Research Database (Denmark)

    Williams, J. E.; Nygaard, Nicolai; Clark, C. W.

    2004-01-01

    We calculate the phase diagrams for a harmonically trapped ideal gas mixture of fermionic atoms and bosonic molecules in chemical and thermal equilibrium, where the internal energy of the molecules can be adjusted relative to that of the atoms by use of a tunable Feshbach resonance. We plot...... diagrams obtained in recent experiments on the Bose-Einstein condensation to Bardeen-Cooper-Schrieffer crossover, in which the condensate fraction is plotted as a function of the initial temperature of the Fermi gas measured before a sweep of the magnetic field through the resonance region....

  15. Ordered CoSn-type ternary phases in Co3Sn3-xGex

    DEFF Research Database (Denmark)

    Allred, Jared M.; Jia, Shuang; Bremholm, Martin

    2012-01-01

    CoSn is the prototype compound of the B35 structure, which has long been of interest due to its rarity and unusually low packing density. We report the synthesis and properties of the solid solution Co3Sn3-xGex for 0 ⩽ x ⩽ 2, in order to clarify the conditions necessary to stabilize such a phase....... By taking advantage of the chemical differences between the two crystallographically inequivalent Sn sites in the structure, we observe ordered ternary phases, nominally Co3SnGe2 and Co3Sn2Ge. The electron count and unit cell configuration remain unchanged from CoSn; these observations thus help to clarify...

  16. Correlated process of phase separation and microstructure evolution of ternary Co-Cu-Pb alloy

    Science.gov (United States)

    Yan, N.; Wang, W. L.; Luo, S. B.; Hu, L.; Wei, B.

    2013-11-01

    The phase separation and rapid solidification of liquid ternary Co45Cu42Pb13 immiscible alloy have been investigated under both bulk undercooling and containerless processing conditions. The undercooled bulk alloy is solidified as a vertical two-layer structure, whereas the containerlessly solidified alloy droplet is characterized by core-shell structures. The dendritic growth velocity of primary α(Co) phase shows a power-law relation to undercooling and achieves a maximum of 1.52 m/s at the undercooling of 112 K. The Pb content is always enriched in Cu-rich zone and depleted in Co-rich zone. Numerical analyses indicate that the Stokes motion, solutal Marangoni convection, thermal Marangoni convection, and interfacial energy play the main roles in the correlated process of macrosegregation evolution and microstructure formation.

  17. Discovery of a ternary pseudobrookite phase in the earth-abundant Ti-Zn-O system.

    Science.gov (United States)

    Perry, Nicola H; Stevanovic, Vladan; Lim, Linda Y; Mason, Thomas O

    2016-01-28

    We combine theory with experiment in searching for "missing", stable materials within the Zn-Ti-O chemical system, leading to the discovery of a new pseudobrookite phase, ZnxTi3-xO5-δ. This ternary system was chosen for (1) technological relevance, (2) earth abundance, and (3) the fact that many compounds in this system are predicted from enthalpies of formation to be borderline stable, suggesting an important role of entropic contributions in their stabilization and making this chemical system a perfect test bed for exploring the limits of theoretical predictions. The initial set of exploratory experimental syntheses, via sintering in evacuated ampoules and quenching, resulted in a single phase ZnxTi3-xO5-δ composition with x ≈ 0.6 and an almost stoichiometric oxygen content, as evaluated by X-ray fluorescence, energy dispersive spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The theoretically calculated lowest energy crystal structure for the closest stoichiometric ZnTi5O10 composition matched that measured experimentally by synchrotron X-ray diffraction (allowing for differences attributable to cation disorder). The measured broad optical absorption, n-type electrical conductivity, and stability in acidic media are comparable to those of other ternary pseudobrookites and Ti-O Magnéli phases, suggesting comparable applicability as a robust electrode or catalyst support in electrochemical devices or water remediation. However, the new phase decomposes upon heating in air as it oxidizes. The success of the present approach to identify a "missing material" in an earth-abundant and applications-rich system suggests that future efforts to experimentally realize and theoretically confirm missing materials in this and similar systems are warranted, both scientifically and technologically.

  18. The p-T phase diagram for ferroelectric bis-thiourea pyridinium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Bilski, P. [Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Czarnecki, P., E-mail: pczarnec@amu.edu.pl [Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland); Lewicki, S.; Wasicki, J. [Faculty of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)

    2011-08-15

    Highlights: > Bis-thiourea pyridinium nitrate has been studied at high pressures up to 1 GPa. > p-T phase diagram has been obtained by NMR and dielectric method. > The triple point is observed in p-T diagram. > The continuous phase transition is changed to discontinuous at the pressure 450 Mpa. - Abstract: The effect of temperature and pressure on physical properties of the ferroelectric bis-thiourea pyridinium nitrate inclusion compound has been studied by dielectric spectroscopy and nuclear magnetic resonance (NMR). At ambient pressure the ferroparaelectric phase transition observed at T{sub 2} = 216 K is continuous in contrast to the nonferroelectric phase transition observed at T{sub 1} = 273 K. Under small pressures, the temperatures of the phase transitions T{sub 1} and T{sub 2} increase with increasing pressure. Starting from about 250 MPa, T{sub 1} temperature decreases with increasing pressure, while T{sub 2} temperature increases with increasing pressure. At 450 MPa and 245 K a triple point is observed. Bis-thiourea pyridinium nitrate undergoes a continuous phase transition from the ferroelectric to paraelectric phase under 450 MPa, while above this pressure the phase transition from the ferroelectric to paraelectric phase is discontinuous. The change in the phase transition character is related to the crystallographic change in the group-subgroup relation between the ferro- and paraelectric phases taking place with increasing pressure.

  19. Experimental Approach to the QCD Phase Diagram - Beam Energy Scan at RHIC

    Science.gov (United States)

    Odyniec, G.

    2009-04-01

    The QCD phase diagram appears to be the most important single figure of our field. While recent progress in Lattice QCD (LQCD) and model calculations is impressive, the location of phase boundaries and the exact position of the hypothetical critical point (CP) remains unknown. The available theoretical estimates, however, indicate that the critical point might be in the region of the phase diagram probed by current heavy ion experiments. The Beam Energy Scan (BES) program at RHIC, described in this paper, was launched to expand the experimental study where theory cannot yet reach. Both large RHIC experiments, STAR and PHENIX, are in the process of preparing for the first run. Particularly STAR with its large, uniform acceptance and excellent particle identification capabilities, is uniquely positioned to cover this physics in unprecedented depth and detail.

  20. Origin of Invariant Gel Melting Temperatures in the c-T Phase Diagram of an Organogel.

    Science.gov (United States)

    Christ, Elliot; Blanc, Christophe; Al Ouahabi, Abdelaziz; Maurin, David; Le Parc, Rozenn; Bantignies, Jean-Louis; Guenet, Jean-Michel; Collin, Dominique; Mésini, Philippe J

    2016-05-17

    Binary c-T phase diagrams of organogelators in solvent are frequently simplified to two domains, gel and sol, even when the melting temperatures display two distinct regimes, an increase with T and a plateau. Herein, the c-T phase diagram of an organogelator in solvent is elucidated by rheology, DSC, optical microscopy, and transmitted light intensity measurements. We evidence a miscibility gap between the organogelator and the solvent above a threshold concentration, cL. In this domain the melting or the formation of the gel becomes a monotectic transformation, which explains why the corresponding temperatures are nonvariant above cL. As shown by further studies by variable temperature FTIR and NMR, different types of H-bonds drive both the liquid-liquid phase separation and the gelation.

  1. Isomorphs in the phase diagram of a model liquid without inverse power law repulsion

    DEFF Research Database (Denmark)

    Veldhorst, Arnold Adriaan; Bøhling, Lasse; Dyre, J. C.

    2012-01-01

    the dynamics of the viscous Buckingham liquid is mimicked by a corresponding model with purely repulsive inverse-power-law interactions. The results presented here closely resemble earlier results for Lennard-Jones type liquids, demonstrating that the existence of strong correlations and isomorphs does......It is demonstrated by molecular dynamics simulations that liquids interacting via the Buckingham potential are strongly correlating, i.e., have regions of their phase diagram where constant-volume equilibrium fluctuations in the virial and potential energy are strongly correlated. A binary...... Buckingham liquid is cooled to a viscous phase and shown to have isomorphs, which are curves in the phase diagram along which structure and dynamics in appropriate units are invariant to a good approximation. To test this, the radial distribution function, and both the incoherent and coherent intermediate...

  2. Considerations Concerning Matrix Diagram Transformations Associated with Mathematical Model Study of a Three-phase Transformer

    Directory of Open Access Journals (Sweden)

    Mihaela Poienar

    2014-09-01

    Full Text Available The clock hour figure mathematical model of a threephase transformer can be expressed, in the most plain form, through a 3X3 square matrix, called code matrix. The lines position reflect the modification in the high voltage windings terminal and the columns position reflect the modification in the low voltage winding terminal. The main changes on the transformer winding terminal are: the circular permutation of connection between windings; terminal supply reversal; reverse direction for the phase winding wrapping; reversal the beginning with the end for a phase winding; the connection conversion from N in Z between phase winding or inverse. The analytical form of these changes actually affect the configuration of the mathematical model expressed through a transformations diagram proposed and analyzed in two ways: bipolar version and unipolar version (fanwise. In the end of the paper are presented about the practical exploitation of the transformations diagram.

  3. How little data is enough? Phase-diagram analysis of sparsity-regularized X-ray computed tomography

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Sauer; Sidky, E. Y.

    2015-01-01

    We introduce phase-diagram analysis, a standard tool in compressed sensing (CS), to the X-ray computed tomography (CT) community as a systematic method for determining how few projections suffice for accurate sparsity-regularized reconstruction. In CS, a phase diagram is a convenient way to study...... and express certain theoretical relations between sparsity and sufficient sampling. We adapt phase-diagram analysis for empirical use in X-ray CT for which the same theoretical results do not hold. We demonstrate in three case studies the potential of phase-diagram analysis for providing quantitative answers...... measurements does not lead to improved performance compared with standard structured sampling patterns. Finally, we show preliminary results of how well phase-diagram analysis can predict the sufficient number of projections for accurately reconstructing a large-scale image of a given sparsity by means...

  4. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40

    Science.gov (United States)

    Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2015-09-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification.

  5. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    Science.gov (United States)

    Wang, W. L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-11-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate.

  6. Liquid-liquid phase separation of freely falling undercooled ternary Fe-Cu-Sn alloy

    Science.gov (United States)

    Wang, W .L.; Wu, Y. H.; Li, L. H.; Zhai, W.; Zhang, X. M.; Wei, B.

    2015-01-01

    The active modulation and control of the liquid phase separation for high-temperature metallic systems are still challenging the development of advanced immiscible alloys. Here we present an attempt to manipulate the dynamic process of liquid-liquid phase separation for ternary Fe47.5Cu47.5Sn5 alloy. It was firstly dispersed into numerous droplets with 66 ~ 810 μm diameters and then highly undercooled and rapidly solidified under the containerless microgravity condition inside drop tube. 3-D phase field simulation was performed to explore the kinetic evolution of liquid phase separation. Through regulating the combined effects of undercooling level, phase separation time and Marangoni migration, three types of separation patterns were yielded: monotectic cell, core shell and dispersive structures. The two-layer core-shell morphology proved to be the most stable separation configuration owing to its lowest chemical potential. Whereas the monotectic cell and dispersive microstructures were both thermodynamically metastable transition states because of their highly active energy. The Sn solute partition profiles of Fe-rich core and Cu-rich shell in core-shell structures varied only slightly with cooling rate. PMID:26552711

  7. The Relationship of the Chemical Bonding Topology of High Critical Temperature Copper Oxide Superconductors to that of the Chevrel Phases and the Ternary Lanthanide Rhodium Borides.

    Science.gov (United States)

    1987-12-11

    to those of the ternary molybdenum chalcogenides and ternary lanthanide rhodium borides in which the conducting skeleton is constructed from metal...Bonding Topology of High Critical Temperature Copper Oxide Superconductors to That of The Chevrel Phases and the Ternary Lanthanide Rhodium Borides by R...REPORT NUMBER P Rhodium Borides 7 AUTHOR(s ) S. CONTRACT OR GRANT NUMIER(*) f, % .0, R.B. King N00014-84-K-0365 S. PERFORMING ORGANIZATION NAME AND

  8. High-Pressure Phase Behavior of Polycaprolactone, Carbon Dioxide, and Dichloromethane Ternary Mixture Systems

    Energy Technology Data Exchange (ETDEWEB)

    Gwon, JungMin; Kim, Hwayong [Seoul National University, Seoul (Korea, Republic of); Shin, Hun Yong [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Soo Hyun [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2015-04-15

    The high-pressure phase behavior of a polycaprolactone (Mw=56,145 g/mol, polydispersity 1.2), dichloromethane, and carbon dioxide ternary system was measured using a variable-volume view cell. The experimental temperatures and pressures ranged from 313.15 K to 353.15 K and up to 300 bar as functions of the CO{sub 2}/dichloromethane mass ratio and temperature, at poly(D-lactic acid) weight fractions of 1.0, 2.0, and 3.0%. The correlation results were obtained from the hybrid equation of state (Peng-Robinson equation of state + SAFT equation of state) for the CO{sub 2}-polymer system using the van der Waals one-fluid mixing rule. The three binary interaction parameters were optimized by the simplex method algorithm.

  9. Lyapunov exponents and phase diagrams reveal multi-factorial control over TRAIL-induced apoptosis.

    Science.gov (United States)

    Aldridge, Bree B; Gaudet, Suzanne; Lauffenburger, Douglas A; Sorger, Peter K

    2011-11-22

    Receptor-mediated apoptosis proceeds via two pathways: one requiring only a cascade of initiator and effector caspases (type I behavior) and the second requiring an initiator-effector caspase cascade and mitochondrial outer membrane permeabilization (type II behavior). Here, we investigate factors controlling type I versus II phenotypes by performing Lyapunov exponent analysis of an ODE-based model of cell death. The resulting phase diagrams predict that the ratio of XIAP to pro-caspase-3 concentrations plays a key regulatory role: type I behavior predominates when the ratio is low and type II behavior when the ratio is high. Cell-to-cell variability in phenotype is observed when the ratio is close to the type I versus II boundary. By positioning multiple tumor cell lines on the phase diagram we confirm these predictions. We also extend phase space analysis to mutations affecting the rate of caspase-3 ubiquitylation by XIAP, predicting and showing that such mutations abolish all-or-none control over activation of effector caspases. Thus, phase diagrams derived from Lyapunov exponent analysis represent a means to study multi-factorial control over a complex biochemical pathway.

  10. Equilibrium p-T Phase Diagram of Boron: Experimental Study and Thermodynamic Analysis

    Science.gov (United States)

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.

    2013-01-01

    Solid-state phase transformations and melting of high-purity crystalline boron have been in situ and ex situ studied at pressures to 20 GPa in the 1500–2500 K temperature range where diffusion processes become fast and lead to formation of thermodynamically stable phases. The equilibrium phase diagram of boron has been constructed based on thermodynamic analysis of experimental and literature data. The high-temperature part of the diagram contains p-T domains of thermodynamic stability of rhombohedral β-B106, orthorhombic γ-B28, pseudo-cubic (tetragonal) t'-B52, and liquid boron (L). The positions of two triple points have been experimentally estimated, i.e. β–t'–L at ~ 8.0 GPa and ~ 2490 K; and β–γ–t' at ~ 9.6 GPa and ~ 2230 K. Finally, the proposed phase diagram explains all thermodynamic aspects of boron allotropy and significantly improves our understanding of the fifth element. PMID:23912523

  11. Liquid-liquid phase equilibria for ternary systems of several polyethers with NaCl and H2O

    NARCIS (Netherlands)

    Milosevic, M.; Staal, K.J.J.; Schuur, Boelo; de Haan, A.B.

    2014-01-01

    Liquid–liquid extraction using polymers followed by induced phase separation is a potential energy reducing technology for water–salt separation. Ternary equilibrium data have been determined and reported for the (block co)poly ethers–sodium chloride–water systems at two different temperatures at

  12. Using Fluid Inclusions to Bring Phase Diagrams to Life in a Guided Inquiry Instructional Setting

    Science.gov (United States)

    Farver, J. R.; Onasch, C.

    2011-12-01

    A fundamental concept in mineralogy, petrology, and geochemistry is the generation and interpretation of phase diagrams for various systems. We have developed an exercise to strengthen student's familiarity with and confidence in employing phase diagrams by using fluid inclusions. The activity follows the 5Es (Engagement, Exploration, Explanation, Extension, Evaluation) guided inquiry instructional model in order to best facilitate student learning. The exercise follows an activity adapted from Brady (1992) wherein students collect data to generate the phase diagram for the Ice-Water-NaCl system. The engagement activity involves using a USGS-type fluid inclusion heating-cooling stage with a camera and projection system. We typically employ either a doubly-polished quartz sample or a cleaved section of fluorite and select a typical two phase (L + V) aqueous inclusion. Students first observe the inclusion at room temperature and pressure and are asked to predict what would happen if the sample is heated. Students then watch as the sample is heated to its homogenization temperature (Th) and are asked to explain what they see. The sample is then cooled until completely frozen and then slowly warmed until the first ice melting (at the eutectic, Te) and then until all ice melts (Tm). Again, students are asked to explain what they see and, if necessary, they are guided to remember the earlier phase diagram activity. The process is then repeated while students follow along the appropriate phase diagrams. In this fashion, students literally see the changes in phases present and their relative abundances as they move through the phase diagram. The engagement activity generates student interest in the exercise to insure minds-on as well as hands-on exploration. The exploration activities involve students observing and describing a wide range of fluid inclusion types (e.g., CO2, daughter crystals, multiple inclusion trails, etc) and hands-on collection of Th and Tm data for a

  13. Topological Phase Diagrams of Bulk and Monolayer TiS2−xTex

    KAUST Repository

    Zhu, Zhiyong

    2013-02-12

    With the use of ab initio calculations, the topological phase diagrams of bulk and monolayer TiS2−xTex are established. Whereas bulk TiS2−xTex shows two strong topological phases [1;(000)] and [1;(001)] for 0.44phases in three and two dimensions simultaneously.

  14. Stepwise shock compression with relation to phase diagram of C70 fullerite

    Science.gov (United States)

    Borodina, Tatiana; Khishchenko, Konstantin; Milyavskiy, Vladimir

    2009-06-01

    Phase transitions of C70 fullerite with different initial phase compositions under stepwise shock compression are experimentally studied to pressure of 52 GPa and temperature of about 1700 K. The crystalline phase of fullerite C70 with a hexagonal close-packed structure remain practically unchanged under stepwise shock loading up to pressure of 8 GPa. Shock-induced transformation of the hexagonal phase into the face centered cubic phase is observed at pressures in the range 9 to 23.5 GPa. The amount of transformed material increases with the shock intensity. Upon further increase of the shock pressure, the destruction of C70 molecules occurs. This destruction is accompanied by a formation of the graphite phase of carbon. Pressure--temperature history of C70 specimens is estimated with the use of equation of state C60 fullerite [K.V. Khishchenko et al. Diamond and Relat. Mat. 2007 (16) 1204]. Analyzing this pressure-temperature history along with the tentative phase diagram of C70 [B. Sundqvist. Advances in Phys. 1999 (48) 1], we conclude that the observed conversion of the hexagonal to the cubic phase can not be described in the framework of this diagram.

  15. Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: Experimental and micromagnetic modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, M., E-mail: mrivera@fisica.unam.m [Imperial College London, Department of Chemistry, South Kensington Campus, London SW7 2AZ (United Kingdom); Rios-Reyes, C.H. [Universidad Autonoma Metropolitana-Azcapotzalco, Departamento de Materiales, Av. San Pablo 180, Col. Reynosa Tamaulipas, C.P. 02200, Mexico D.F. (Mexico); Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico); Mendoza-Huizar, L.H. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Mineral de la Reforma, Hidalgo, C.P. 42181 (Mexico)

    2011-04-15

    The magnetic transition from mono- to multidomain magnetic states of cobalt clusters electrodeposited on highly oriented pyrolytic graphite electrodes was studied experimentally using Magnetic Force Microscopy. From these images, it was found that the critical size of the magnetic transition is dominated by the height rather than the diameter of the aggregate. This experimental behavior was found to be consistent with a theoretical single-domain ferromagnetic model that states that a critical height limits the monodomain state. By analyzing the clusters magnetic states as a function of their dimensions, magnetic exchange constant and anisotropy value were obtained and used to calculate other magnetic properties such as the exchange length, magnetic wall thickness, etc. Finally, a micromagnetic simulation study correctly predicted the experimental magnetic transition phase diagram. - Research highlights: > Electrodeposition of cobalt clusters. > Mono to multidomain magnetic transition. > Magnetic phase diagram.

  16. Phase diagram of structure of radial electric field in helical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Toda, S.; Itoh, K.

    2002-01-01

    A set of transport equations in toroidal helical plasmas is analyzed, including the bifurcation of the radial electric field. Multiple solutions of E{sub r} for the ambipolar condition induces domains of different electric polarities. A structure of the domain interface is analyzed and a phase diagram is obtained in the space of the external control parameters. The region of the reduction of the anomalous transport is identified. (author)

  17. Phase diagram of the two-dimensional negative-U Hubbard model

    Science.gov (United States)

    Scalettar, R. T.; Loh, E. Y.; Gubernatis, J. E.; Moreo, A.; White, S. R.

    1989-01-01

    Theoretical arguments and numerical calculations are used to discuss the phase diagram of the two-dimensional negative-U Hubbard model. The results are consistent with (1) a vanishing transition temperature at half-filling but with a ground state having both superconducting and charge-density-wave long-range order, and (2) a Kosterlitz-Thouless transition at a finite temperature into a superconducting state with power-law decay of the pairing correlations away from half-filling.

  18. Insulator-insulator and insulator-conductor transitions in the phase diagram of aluminium trichloride

    Directory of Open Access Journals (Sweden)

    Romina Ruberto

    2009-01-01

    Full Text Available We report a classical computer-simulation study of the phase diagram of AlCl3 in the pressure-temperature (p, T plane, showing (i that melting from a layered crystal structure occurs into a molecular liquid at low (p, T and into a dissociated ionic liquid at high (p, T, and (ii that a broad transition from a molecular insulator to an ionic conductor takes place in the liquid state.

  19. Urea-temperature phase diagrams capture the thermodynamics of denatured state expansion that accompany protein unfolding

    Science.gov (United States)

    Tischer, Alexander; Auton, Matthew

    2013-01-01

    We have analyzed the thermodynamic properties of the von Willebrand factor (VWF) A3 domain using urea-induced unfolding at variable temperature and thermal unfolding at variable urea concentrations to generate a phase diagram that quantitatively describes the equilibrium between native and denatured states. From this analysis, we were able to determine consistent thermodynamic parameters with various spectroscopic and calorimetric methods that define the urea–temperature parameter plane from cold denaturation to heat denaturation. Urea and thermal denaturation are experimentally reversible and independent of the thermal scan rate indicating that all transitions are at equilibrium and the van't Hoff and calorimetric enthalpies obtained from analysis of individual thermal transitions are equivalent demonstrating two-state character. Global analysis of the urea–temperature phase diagram results in a significantly higher enthalpy of unfolding than obtained from analysis of individual thermal transitions and significant cross correlations describing the urea dependence of and that define a complex temperature dependence of the m-value. Circular dichroism (CD) spectroscopy illustrates a large increase in secondary structure content of the urea-denatured state as temperature increases and a loss of secondary structure in the thermally denatured state upon addition of urea. These structural changes in the denatured ensemble make up ∼40% of the total ellipticity change indicating a highly compact thermally denatured state. The difference between the thermodynamic parameters obtained from phase diagram analysis and those obtained from analysis of individual thermal transitions illustrates that phase diagrams capture both contributions to unfolding and denatured state expansion and by comparison are able to decipher these contributions. PMID:23813497

  20. Phase diagram of the uniaxial and biaxial soft-core Gay-Berne model.

    Science.gov (United States)

    Berardi, Roberto; Lintuvuori, Juho S; Wilson, Mark R; Zannoni, Claudio

    2011-10-07

    Classical molecular dynamics simulations have been used to explore the phase diagrams for a family of attractive-repulsive soft-core Gay-Berne models [R. Berardi, C. Zannoni, J. S. Lintuvuori, and M. R. Wilson, J. Chem. Phys. 131, 174107 (2009)] and determine the effect of particle softness, i.e., of a moderately repulsive short-range interaction, on the order parameters and phase behaviour of model systems of uniaxial and biaxial ellipsoidal particles. We have found that isotropic, uniaxial, and biaxial nematic and smectic phases are obtained for the model. Extensive calculations of the nematic region of the phase diagram show that endowing mesogenic particles with such soft repulsive interactions affect the stability range of the nematic phases, and in the case of phase biaxiality it also shifts it to lower temperatures. For colloidal particles, stabilised by surface functionalisation, (e.g., with polymer chains), we suggest that it should be possible to tune liquid crystal behaviour to increase the range of stability of uniaxial and biaxial phases (by varying solvent quality). We calculate second virial coefficients and show that they are a useful means of characterising the change in effective softness for such systems. For thermotropic liquid crystals, the introduction of softness in the interactions between mesogens with overall biaxial shape (e.g., through appropriate conformational flexibility) could provide a pathway for the actual chemical synthesis of stable room-temperature biaxial nematics. © 2011 American Institute of Physics

  1. Phase Diagrams of the Aqueous Two-Phase Systems of Poly(ethylene glycol/Sodium Polyacrylate/Salts

    Directory of Open Access Journals (Sweden)

    Adalberto Pessoa Junior

    2011-03-01

    Full Text Available Aqueous two-phase systems consisting of polyethylene glycol (PEG, sodium polyacrylate (NaPAA, and a salt have been studied. The effects of the polymer size, salt type (NaCl, Na2SO4, sodium adipate and sodium azelate and salt concentrations on the position of the binodal curve were investigated. The investigated PEG molecules had a molar mass of 2,000 to 8,000 g/mol, while that of NaPAA was 8,000 g/mol. Experimental phase diagrams, and tie lines and calculated phase diagrams, based on Flory-Huggins theory of polymer solutions are presented. Due to strong enthalpic and entropic balancing forces, the hydrophobicity of the added salt has a strong influence on the position of the binodal, which could be reproduced by model calculations.

  2. Prediction of Superconductivity in 3d Transition-Metal Based Antiperovskites via Magnetic Phase Diagram

    Science.gov (United States)

    Shao, Dingfu; Lu, Wenjian; Tong, Peng; Lin, Shuai; Lin, Jianchao; Sun, Yuping

    2014-05-01

    We theoretically studied the electronic structure, magnetic properties, and lattice dynamics of a series of 3d transition-metal antiperovskite compounds AXM3 by density function theory. Based on the Stoner criterion, we drew the magnetic phase diagram of carbon-based antiperovskites ACM3. In the phase diagram, compounds with non-magnetic ground state but locating near the ferromagnetic boundary are suggested to have high N(EF) that may cause sizeable electron-phonon coupling and make the compounds superconducting. To approve this deduction, we systematically calculated the phonon spectra and electron-phonon coupling of a series of Cr-based antiperovskites ACCr3 and ANCr3. The results show that AlCCr3, GaCCr3, and ZnNCr3 could be moderate coupling BCS superconductors. The influence of spin fluctuation on superconductivity are discussed. Furthermore, other potential superconducting AXM3 including some new Co- and Fe-based antiperovskite superconductors are predicted from the magnetic phase diagram.

  3. Gold-copper nano-alloy, "Tumbaga", in the era of nano: phase diagram and segregation.

    Science.gov (United States)

    Guisbiers, Grégory; Mejia-Rosales, Sergio; Khanal, Subarna; Ruiz-Zepeda, Francisco; Whetten, Robert L; José-Yacaman, Miguel

    2014-11-12

    Gold-copper (Au-Cu) phases were employed already by pre-Columbian civilizations, essentially in decorative arts, whereas nowadays, they emerge in nanotechnology as an important catalyst. The knowledge of the phase diagram is critical to understanding the performance of a material. However, experimental determination of nanophase diagrams is rare because calorimetry remains quite challenging at the nanoscale; theoretical investigations, therefore, are welcomed. Using nanothermodynamics, this paper presents the phase diagrams of various polyhedral nanoparticles (tetrahedron, cube, octahedron, decahedron, dodecahedron, rhombic dodecahedron, truncated octahedron, cuboctahedron, and icosahedron) at sizes 4 and 10 nm. One finds, for all the shapes investigated, that the congruent melting point of these nanoparticles is shifted with respect to both size and composition (copper enrichment). Segregation reveals a gold enrichment at the surface, leading to a kind of core-shell structure, reminiscent of the historical artifacts. Finally, the most stable structures were determined to be the dodecahedron, truncated octahedron, and icosahedron with a Cu-rich core/Au-rich surface. The results of the thermodynamic approach are compared and supported by molecular-dynamics simulations and by electron-microscopy (EDX) observations.

  4. Dark energy in six nearby galaxy flows: Synthetic phase diagrams and self-similarity

    Science.gov (United States)

    Chernin, A. D.; Teerikorpi, P.; Dolgachev, V. P.; Kanter, A. A.; Domozhilova, L. M.; Valtonen, M. J.; Byrd, G. G.

    2012-09-01

    Outward flows of galaxies are observed around groups of galaxies on spatial scales of about 1 Mpc, and around galaxy clusters on scales of 10 Mpc. Using recent data from the Hubble Space Telescope (HST), we have constructed two synthetic velocity-distance phase diagrams: one for four flows on galaxy-group scales and the other for two flows on cluster scales. It has been shown that, in both cases, the antigravity produced by the cosmic dark-energy background is stronger than the gravity produced by the matter in the outflow volume. The antigravity accelerates the flows and introduces a phase attractor that is common to all scales, corresponding to a linear velocity-distance relation (the local Hubble law). As a result, the bundle of outflow trajectories mostly follow the trajectory of the attractor. A comparison of the two diagrams reveals the universal self-similar nature of the outflows: their gross phase structure in dimensionless variables is essentially independent of their physical spatial scales, which differ by approximately a factor of 10 in the two diagrams.

  5. Uhlenbeck-Ford model: Phase diagram and corresponding-states analysis

    Science.gov (United States)

    Paula Leite, Rodolfo; Santos-Flórez, Pedro Antonio; de Koning, Maurice

    2017-09-01

    Using molecular dynamics simulations and nonequilibrium thermodynamic-integration techniques we compute the Helmholtz free energies of the body-centered-cubic (bcc), face-centered-cubic (fcc), hexagonal close-packed, and fluid phases of the Uhlenbeck-Ford model (UFM) and use the results to construct its phase diagram. The pair interaction associated with the UFM is characterized by an ultrasoft, purely repulsive pair potential that diverges logarithmically at the origin. We find that the bcc and fcc are the only thermodynamically stable crystalline phases in the phase diagram. Furthermore, we report the existence of two reentrant transition sequences as a function of the number density, one featuring a fluid-bcc-fluid succession and another displaying a bcc-fcc-bcc sequence near the triple point. We find strong resemblances to the phase behavior of other soft, purely repulsive systems such as the Gaussian-core model (GCM), inverse-power-law, and Yukawa potentials. In particular, we find that the fcc-bcc-fluid triple point and the phase boundaries in its vicinity are in good agreement with the prediction supplied by a recently proposed corresponding-states principle [J. Chem. Phys. 134, 241101 (2011), 10.1063/1.3605659; Europhys. Lett. 100, 66004 (2012), 10.1209/0295-5075/100/66004]. The particularly strong resemblance between the behavior of the UFM and GCM models are also discussed.

  6. Cluster Mean-Field Approach to the Steady-State Phase Diagram of Dissipative Spin Systems

    Directory of Open Access Journals (Sweden)

    Jiasen Jin

    2016-07-01

    Full Text Available We show that short-range correlations have a dramatic impact on the steady-state phase diagram of quantum driven-dissipative systems. This effect, never observed in equilibrium, follows from the fact that ordering in the steady state is of dynamical origin, and is established only at very long times, whereas in thermodynamic equilibrium it arises from the properties of the (free energy. To this end, by combining the cluster methods extensively used in equilibrium phase transitions to quantum trajectories and tensor-network techniques, we extend them to nonequilibrium phase transitions in dissipative many-body systems. We analyze in detail a model of spin-1/2 on a lattice interacting through an XYZ Hamiltonian, each of them coupled to an independent environment that induces incoherent spin flips. In the steady-state phase diagram derived from our cluster approach, the location of the phase boundaries and even its topology radically change, introducing reentrance of the paramagnetic phase as compared to the single-site mean field where correlations are neglected. Furthermore, a stability analysis of the cluster mean field indicates a susceptibility towards a possible incommensurate ordering, not present if short-range correlations are ignored.

  7. Fabrication of Colloidal Laves Phases via Hard Tetramers and Hard Spheres: Bulk Phase Diagram and Sedimentation Behavior

    Science.gov (United States)

    2017-01-01

    Colloidal photonic crystals display peculiar optical properties that make them particularly suitable for application in different fields. However, the low packing fraction of the targeted structures usually poses a real challenge in the fabrication stage. Here, we propose a route to colloidal photonic crystals via a binary mixture of hard tetramers and hard spheres. By combining theory and computer simulations, we calculate the phase diagram as well as the stacking diagram of the mixture and show that a colloidal analogue of the MgCu2 Laves phase—which can serve as a precursor of a photonic band-gap structure—is a thermodynamically stable phase in a large region of the phase diagram. Our findings show a relatively large coexistence region between the fluid and the Laves phase, which is potentially accessible by experiments. Furthermore, we determine the sedimentation behavior of the suggested mixture, by identifying several stacking sequences in the sediment. Our work uncovers a self-assembly path toward a photonic structure with a band gap in the visible region. PMID:28787126

  8. Development of PEX explosives phase diagram studies. Quarterly report, October--December, 1971

    Energy Technology Data Exchange (ETDEWEB)

    Faubion, B.D.

    1972-12-31

    Experiments have been carried out to determine the solid-liquid phase diagrams of binary mixtures of FEFO, EDNP, BDNPA and BDNPF. Cooling curves for the mixtures give no indication of crystal formation. Penetration measurements indicate a glass transition for all of the mixtures below {minus}40 C. The existence of glassy states for the mixtures was confirmed by visual observation with a polarizing microscope. Thermomicroscopy has been used in the preliminary study of the phase behavior of four binary mixtures. So far no eutectic has been observed.

  9. Phase diagram and dynamic response functions of the Holstein-Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Koller, W. [Department of Mathematics, Imperial College, 180 Queen' s Gate, London SW7 2AZ (United Kingdom); Meyer, D. [Department of Mathematics, Imperial College, 180 Queen' s Gate, London SW7 2AZ (United Kingdom)]. E-mail: d.meyer@ic.ac.uk; Hewson, A.C. [Department of Mathematics, Imperial College, 180 Queen' s Gate, London SW7 2AZ (United Kingdom); O-bar no, Y. [Department of Physics, Niigata University, Ikarashi, Niigata 950-2181 (Japan)

    2005-04-30

    We present the phase diagram and dynamical correlation functions for the Holstein-Hubbard model at half-filling and at zero temperature. The calculations are based on the dynamical mean field theory (DMFT). The effective impurity model is solved using exact diagonalization (ED) and the numerical renormalization group (NRG). Excluding long-range order, we find three different paramagnetic phases, metallic, bipolaronic and Mott insulating, depending on the Hubbard interaction U and the electron-phonon coupling g. We present the behaviour of the one-electron spectral functions and phonon spectra close to the metal-insulator transitions.

  10. Tuning the phase diagrams: the miscibility studies of multilactate liquid crystalline compounds

    Czech Academy of Sciences Publication Activity Database

    Bubnov, Alexej; Tykarska, M.; Hamplová, Věra; Kurp, K.

    2016-01-01

    Roč. 89, č. 9 (2016), s. 885-893 ISSN 0141-1594 R&D Projects: GA ČR GA13-14133S; GA MŠk(CZ) LD14007; GA ČR GA15-02843S Grant - others:EU - ICT(XE) COST Action IC1208 Institutional support: RVO:68378271 Keywords : miscibility study * binary mixture * polar smectic phase * lactic acid derivative * miscibility study * phase diagram * self-assembling behaviour Subject RIV: JJ - Other Materials Impact factor: 1.060, year: 2016

  11. Energetics and phase diagrams of Fe-Cr and Co-Cr systems from first principles

    Directory of Open Access Journals (Sweden)

    Vreštzál J.

    2002-01-01

    Full Text Available The first principles computations of the total energies of complex phases have been addressed recently. The structural energy differences, calculated by FLAPW (Full potential augmented plane wave method, enable us to utilize a more complete physical information about total energy of intermetallic phases and to propose a new model for their thermodynamic description. Our approach is based on the two-sublattice model, similarly as for solid solution phases, but the structural energy differences for end-members in the metastable or unstable structures are obtained by means of first-principles electronic structure calculations. Phase diagrams of Fe-Cr and Co-Cr systems containing the intermetallic sigma-phase (5 inequivalent lattice sites, 30 atoms in repeat cell are described here as an example of application of our new model.

  12. Phase diagram of interacting spinless fermions on the honeycomb lattice: A comprehensive exact diagonalization study

    Science.gov (United States)

    Capponi, Sylvain; Läuchli, Andreas M.

    2015-08-01

    We investigate the phase diagram of spinless fermions with nearest- and next-nearest-neighbor density-density interactions on the honeycomb lattice at half-filling. Using exact diagonalization techniques of the full Hamiltonian and constrained subspaces, combined with a careful choice of finite-size clusters, we determine the different charge orderings that occur for large interactions. In this regime, we find a two-sublattice Néel-like state, a charge modulated state with a tripling of the unit cell, a zigzag phase, and a charge ordered state with a 12-site unit cell we call Néel domain wall crystal, as well as a region of phase separation for attractive interactions. A sizable region of the phase diagram is classically degenerate, but it remains unclear whether an order-by-disorder mechanism will lift the degeneracy. For intermediate repulsion, we find evidence for a Kekulé or plaquette bond-order wave phase. We also investigate the possibility of a spontaneous Chern insulator phase (dubbed topological Mott insulator), as previously put forward by several mean-field studies. Although we are unable to detect convincing evidence for this phase based on energy spectra and order parameters, we find an enhancement of current-current correlations with the expected spatial structure compared to the noninteracting situation. While for the studied t -V1-V2 model, the phase transition to the putative topological Mott insulator is preempted by the phase transitions to the various ordered states, our findings might hint at the possibility for a topological Mott insulator in an enlarged Hamiltonian parameter space, where the competing phases are suppressed.

  13. Tensiometric investigation of the interaction and phase separation in a polymer mixture–ionic surfactant ternary system

    Directory of Open Access Journals (Sweden)

    JAROSLAV M. KATONA

    2010-06-01

    Full Text Available The interaction and phase separation in a ternary mixture composed of hydroxypropyl methyl cellulose (HPMC, sodium carboxymethyl cellulose (NaCMC, and sodium dodecylsulfate (SDS were investigated by tensiometry. Surface tension measurements of binary mixtures (0.7 % HPMC and 0.00–2.00 % SDS and of ternary mixtures (0.7 % HPMC, 0.3 % NaCMC, and 0.00–2.00 % SDS were performed. The measurements indicated interaction between HPMC and SDS, which resulted in HPMC–SDS complex formation. The critical association concentration, CAC, and polymer saturation point, PSP, were determined. Phase separation of ternary HPMC/SDS/NaCMC mixtures occurs at SDS concentration > CAC, i.e., when the HPMC–SDS complex is formed. The volume of the coacervate increases with increasing SDS concentration, and at SDS concentrations > 1.00 %, the coacervate vanishes. The surface tensions (s of ternary HPMC/SDS/NaCMC mixtures in the pre-coacervation region and at the onset of the coacervation region are similar to the σ of the corresponding binary HPMC–SDS mixtures, while in the coacervation and post coacervation region, they are close to the s of the corresponding SDS solutions

  14. Investigations of binary and ternary phase change alloys for future memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Pascal

    2012-09-13

    The understanding of phase change materials is of great importance because it enables us to predict properties and tailor alloys which might be even better suitable to tackle challenges of future memory applications. Within this thesis two topics have been approached: on the one hand the understanding of the alloy In{sub 3}Sb{sub 1}Te{sub 2} and on the other hand the so called resistivity drift of amorphous Ge-Sn-Te phase change materials. The main topic covers an in depth discussion of the ternary alloy In{sub 3}Sb{sub 1}Te{sub 2}. At first glance, this alloy does not fit into the established concepts of phase alloys: e.g. the existence of resonant bonding in the crystalline phase is not obvious and the number of p-electrons is very low compared to other phase change alloys. Furthermore amorphous phase change alloys with high indium content are usually not discussed in literature, an exception being the recent work by Spreafico et al. on InGeTe{sub 2}. For the first time a complete description of In{sub 3}Sb{sub 1}Te{sub 2} alloy is given in this work for the crystalline phase, amorphous phase and crystallization process. In addition comparisons are drawn to typical phase change materials like Ge{sub 2}Sb{sub 2}Te{sub 5}/GeTe or prototype systems like AgInTe{sub 2} and InTe. The second topic of this thesis deals with the issue of resistivity drift, i.e. the increase of resistivity of amorphous phase change alloys with aging. This drift effect greatly hampers the introduction of multilevel phase change memory devices into the market. Recently a systematic decrease of drift coefficient with stoichiometry has been observed in our group going from GeTe over Ge{sub 3}Sn{sub 1}Te{sub 4} to Ge{sub 2}Sn{sub 2}Te{sub 4}. These alloys are investigated with respect to constraint theory.

  15. Phase diagram and quantum criticality of disordered Majorana-Weyl fermions

    Science.gov (United States)

    Wilson, Justin; Pixley, Jed; Goswami, Pallab

    A three-dimensional px + ipy superconductor hosts gapless Bogoliubov-de Gennes (BdG) quasiparticles which provide an intriguing example of a thermal Hall semimetal (ThSM) phase of Majorana-Weyl fermions. We study the effect of quenched disorder on such a topological phase with both numerical and analytical methods. Using the kernel polynomial method, we compute the average and typical density of states for the BdG quasiparticles; based on this, we construct the disordered phase diagram. We show for infinitesimal disorder, the ThSM is converted into a diffusive thermal Hall metal (ThDM) due to rare statistical fluctuations. Consequently, the phase diagram of the disordered model only consists of ThDM and thermal insulating phases. Nonetheless, there is a cross-over at finite energies from a ThSM regime to a ThDM regime, and we establish the scaling properties of the avoided quantum critical point which marks this cross-over. Additionally, we show the existence of two types of thermal insulators: (i) a trivial thermal band insulator (ThBI), and (ii) a thermal Anderson insulator (AI). We also discuss the experimental relevance of our results for three-dimensional, time reversal symmetry breaking, triplet superconducting states.

  16. APPLICATION OF VORONOI DIAGRAM TO MASK-BASED INTERCEPTING PHASE-SPACE MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [Fermilab; Ha, G. [POSTECH

    2017-05-19

    Intercepting multi-aperture masks (e.g. pepper pot or multislit mask) combined with a downstream transversedensity diagnostics (e.g. based on optical transition radiation or employing scintillating media) are commonly used for characterizing the phase space of charged particle beams and the associated emittances. The required data analysis relies on precise calculation of the RMS sizes and positions of the beamlets originated from the mask which drifted up to the analyzing diagnostics. Voronoi diagram is an efficient method for splitting a plane into subsets according to the distances between given vortices. The application of the method to analyze data from pepper pot and multislit mask based measurement is validated via numerical simulation and applied to experimental data acquired at the Argonne Wakefield Accelerator (AWA) facility. We also discuss the application of the Voronoi diagrams to quantify transverselymodulated beams distortion.

  17. Global Phase Diagram of a Three-Dimensional Dirty Topological Superconductor.

    Science.gov (United States)

    Roy, Bitan; Alavirad, Yahya; Sau, Jay D

    2017-06-02

    We investigate the phase diagram of a three-dimensional, time-reversal symmetric topological superconductor in the presence of charge impurities and random s-wave pairing. Combining complimentary field theoretic and numerical methods, we show that the quantum phase transition between two topologically distinct paired states (or thermal insulators), described by thermal Dirac semimetal, remains unaffected in the presence of sufficiently weak generic randomness. At stronger disorder, however, these two phases are separated by an intervening thermal metallic phase of diffusive Majorana fermions. We show that across the insulator-insulator and metal-insulator transitions, normalized thermal conductance displays single parameter scaling, allowing us to numerically extract the critical exponents across them. The pertinence of our study in strong spin-orbit coupled, three-dimensional doped narrow gap semiconductors, such as Cu_{x}Bi_{2}Se_{3}, is discussed.

  18. Variation of the strange-quark chemical potential in the phase diagram of nuclear matter

    CERN Document Server

    Panagiotou, A D; Gerodimou, E

    2002-01-01

    On the basis of lattice calculations, we require the existence of a deconfined quark matter region (0phase, which goes asymptotically into the ideal quark-gluon plasma domain, in the phase diagram of nuclear matter. We consider empirically the dynamics of this region in terms of the order parameters and mass-scaled partition functions and derive an EoS. Then, the strange-quark chemical potential is expressed in a functional form of the temperature and light-quark chemical potential and its variation throughout the 3-region phase diagram is studied. We propose the change of the sign of the strange-quark chemical potential, from positive in the hadronic region to negative beyond, to be a unique, concise and well-defined indication of the quark- deconfinement phase transition in nuclear matter. Analysis of the nucleus-nucleus collision data from AGS and SPS is presented giving strong support to our proposal. (23 refs).

  19. Phase diagram in two-dimensional Hubbard model: variational cluster approximation

    Science.gov (United States)

    Kocharian, Armen; Fang, Kun; Fernando, Gayanath; Balatsky, Alexander; Palandage, Kalum

    2014-03-01

    The Variational Cluster Approximation (VCA) is used to rigorously calculate the intrinsic phase diagram in bipartite two-dimensional (2d) Hubbard structures such as square and honeycomb lattice geometries with attraction and repulsion of electrons. The Mott-Hubbard gap, manifested as a smooth metal-insulator transition at finite U > 0 in both square and honeycomb lattices at half filling (n = 1), is in agreement with the generic 2d phase diagram. However, a density variation with the chemical potential displays their distinct structural differences away from half filling. Near n = 1 at equilibrium we found discontinuous transition in square lattices signaling a phase separation instability into an inhomogeneous state with hole rich (metallic) and hole poor (n = 1 -insulating) regions. In contrast, a smooth density transition in honeycomb geometry describes a continuous evolution of homogenous (metallic) state. Incorporation of long-range input in VCA using U >0 and U topological insulators as well as comparison to other studies is discussed. The VCA provides strong support for spontaneous phase separation instability found in our quantum cluster calculations. The authors acknowledge the BNL and LANL computing facilities supported by the U.S. DOE, Office of Basic Energy Sciences, under Contracts No.DE-AC02-98CH10886, No.DE-AC52-06NA25396 and Sandia National Laboratories (Contract DE-AC04-94AL85000).

  20. Thermodynamics at the nanoscale: phase diagrams of nickel-carbon nanoclusters and equilibrium constants for phase transitions.

    Science.gov (United States)

    Engelmann, Yannick; Bogaerts, Annemie; Neyts, Erik C

    2014-10-21

    Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy. Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition, allowing more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.

  1. Electrochemical phase diagrams of Ni from ab initio simulations: role of exchange interactions on accuracy

    Science.gov (United States)

    Huang, Liang-Feng; Rondinelli, James M.

    2017-11-01

    The stabilities of Ni metal and its derived compounds, including oxides, hydroxides, and oxyhydroxides under electrochemical conditions, can be readily predicted from the Ni Pourbaix diagram, where the formation free energies of the involved species are utilized to construct the phase stability map with respect to electrode potential and pH. We calculate and analyze the crystal structures, electronic structures, and thermodynamic energies of Ni metal and its compounds using different exchange-correlation functionals to density-functional-theory (DFT), including the semilocal LDA and GGA density functionals, the nonlocal metaGGA, and the hybrid density functionals. Next, we simulate the corresponding Ni Pourbaix diagrams to compare systematically the performance of the functional to each other and to experimental observations. We show that the structures and energies obtained from experimental databases may not be sufficiently accurate to describe direct electrochemical observations, and we explain how the electronic exchange within the density functionals plays a key role in determining the accuracy of the DFT calculated electronic, thermodynamic, and electrochemical properties. We find that only the hybrid density functional produces reliable results owing to the fractional contribution of exact Fock exchange included therein. Last, based on our accurate Ni Pourbaix diagram, we construct band-gap and magnetic electrochemical maps which can facilitate more experimental measurements and property assessments under variable potential and pH in the future.

  2. Phase diagram of the three states Potts model with next nearest neighbour interactions on the Bethe lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ganikhodjaev, Nasir [Faculty of Science, IIUM, 25200 Kuantan (Malaysia); Institute of Mathematics and Information Technology, 100125 Tashkent (Uzbekistan); Mukhamedov, Farrukh [Faculty of Science, IIUM, 25200 Kuantan (Malaysia); Pah, Chin Hee [Faculty of Science, IIUM, 25200 Kuantan (Malaysia)], E-mail: pahchinhee@gmail.com

    2008-12-22

    We have found an exact phase diagram of the Potts model with competing nearest neighbor and next nearest neighbor interactions on the Bethe lattice of order two. The diagram consists of five phases: ferromagnetic, paramagnetic, modulated, antiphase and paramodulated, all meeting at the multicritical point (T=0,p=1/3). We report on a new phase which we denote as paramodulated, found at low temperatures and characterized by zero average magnetization lying inside the modulated phase. Such a phase, inherent in the Potts model has no analogues in the Ising setting.

  3. Phase diagram, thermodynamic investigations, and modelling of systems relevant to lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Fuertauer, Siegfried; Beutl, Alexander; Flanorfer, Hans [Vienna Univ. (Austria). Dept. of Inorganic Chemistry - Functional Materials; Li, Dajian; Cupid, Damian [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics (IAM-AWP); Henriques, David; Giel, Hans; Markus, Thorsten [Mannheim Univ. of Applied Sciences (Germany). Inst. for Thermo- and Fluiddynamics

    2017-11-15

    This article reports on two consecutive joint projects titled ''Experimental Thermodynamics and Phase Relations of New Electrode Materials for Lithium-Ion Batteries'', which were performed in the framework of the WenDeLIB 1473 priority program ''Materials with new Design for Lithium Ion Batteries''. Hundreds of samples were synthesized using experimental techniques specifically developed to deal with highly reactive lithium and lithium-containing compounds to generate electrochemical, phase diagram and crystal structure data in the Cu-Li, Li-Sn, Li-Sb, Cu-Li-Sn, Cu-Li-Sb and selected oxide systems. The thermochemical and phase diagram data were subsequently used to develop self-consistent thermodynamic descriptions of several binary systems. In the present contribution, the experimental techniques, working procedures, results and their relevance to the development of new electrode materials for lithium ion batteries are discussed and summarized. The collaboration between the three groups has resulted in more than fifteen (15) published articles during the six-year funding period.

  4. Using Empirical Phase Diagrams to Understand the Role of Intramolecular Dynamics in Immunoglobulin G Stability

    Science.gov (United States)

    Ramsey, Joshua D.; Gill, Michelle L.; Kamerzell, Tim J.; Price, E. Shane; Joshi, Sangeeta B.; Bishop, Steven M.; Oliver, Cynthia N.; Middaugh, C. Russell

    2013-01-01

    Understanding the relationship between protein dynamics and stability is of paramount importance to the fields of biology and pharmaceutics. Clarifying this relationship is complicated by the large amount of experimental data that must be generated and analyzed if motions that exist over the wide range of timescales are to be included. To address this issue, we propose an approach that utilizes a multidimensional vector-based empirical phase diagram (EPD) to analyze a set of dynamic results acquired across a temperature-pH perturbation plane. This approach is applied to a humanized immunoglobulin G1 (IgG1), a protein of major biological and pharmaceutical importance whose dynamic nature is linked to its multiple biological roles. Static and dynamic measurements are used to characterize the IgG and to construct both static and dynamic empirical phase diagrams. Between pH 5 and 8, a single, pH-dependent transition is observed that corresponds to thermal unfolding of the IgG. Under more acidic conditions, evidence exists for the formation of a more compact, aggregation resistant state of the immunoglobulin, known as A-form. The dynamics-based EPD presents a considerably more detailed pattern of apparent phase transitions over the temperature-pH plane. The utility and potential applications of this approach are discussed. PMID:19072858

  5. Magnetic Properties and Magnetic Phase Diagrams of Trigonal DyNi3Ga9

    Science.gov (United States)

    Ninomiya, Hiroki; Matsumoto, Yuji; Nakamura, Shota; Kono, Yohei; Kittaka, Shunichiro; Sakakibara, Toshiro; Inoue, Katsuya; Ohara, Shigeo

    2017-12-01

    We report the crystal structure, magnetic properties, and magnetic phase diagrams of single crystalline DyNi3Ga9 studied using X-ray diffraction, electrical resistivity, specific heat, and magnetization measurements. DyNi3Ga9 crystallizes in the chiral structure with space group R32. The dysprosium ions, which are responsible for the magnetism in this compound, form a two-dimensional honeycomb structure on a (0001) plane. We show that DyNi3Ga9 exhibits successive phase transitions at TN = 10 K and T'N = 9 K. The former suggests quadrupolar ordering, and the latter is attributed to the antiferromagnetic order. It is considered that DyNi3Ga9 forms the canted-antiferromagnetic structure below T'N owing to a small hysteresis loop of the low-field magnetization curve. We observe the strong easy-plane anisotropy, and the multiple-metamagnetic transitions with magnetization-plateaus under the field applied along the honeycomb plane. For Hallel [2\\bar{1}\\bar{1}0], the plateau-region arises every 1/6 for saturation magnetization. The magnetic phase diagrams of DyNi3Ga9 are determined for the fields along principal-crystal axes.

  6. Universal criterion and phase diagram for switching a magnetic vortex core in soft magnetic nanodots

    OpenAIRE

    Lee, Ki-Suk; Kim, Sang-Koog; Yu, Young-Sang; Choi, Youn-Seok; Guslienko, Konstantin Yu.; Jung, Hyunsung; Fischer, Peter

    2008-01-01

    The universal criterion for ultrafast vortex-core switching between the up- and down-core bistates in soft magnetic nanodots was investigated by micromagnetic simulations along with analytical calculations. Vortex-core switching occurs whenever the velocity of vortex-core motion reaches the critical velocity that is expressed as (e.g. m/s for Permalloy), where Aex is the exchange stiffness, and is the gyromagnetic ratio. On the basis of the above results, phase diagrams for the vortex-core sw...

  7. Phase diagram for Bi1-xCaxMnO3 (x < 0.5)

    Science.gov (United States)

    Qin, Yuhai; Tyson, Trevor; Cheong, Sang-Wook; Xu, Xiaonong

    2007-03-01

    The multiferroic BiMnO3 system, in which ferroelectronic and ferromagnetic orders can coexist, has attracted much research work in the past years for its potential technological applications. For the more general system Bi1-xCaxMnO3, the phase diagram for the Ca rich region (x > 0.4) has been established [1]. In order to understand the multiferroic behavior near the x=0 system, the hole-doped region (0Physical Review B: Condensed Matter and Materials Physics 63, 134412/1 (2001).

  8. Interdependent binary choices under social influence: Phase diagram for homogeneous unbiased populations

    Science.gov (United States)

    Fernández del Río, Ana; Korutcheva, Elka; de la Rubia, Javier

    2012-07-01

    Coupled Ising models are studied in a discrete choice theory framework, where they can be understood to represent interdependent choice making processes for homogeneous populations under social influence. Two different coupling schemes are considered. The nonlocal or group interdependence model is used to study two interrelated groups making the same binary choice. The local or individual interdependence model represents a single group where agents make two binary choices which depend on each other. For both models, phase diagrams, and their implications in socioeconomic contexts, are described and compared in the absence of private deterministic utilities (zero opinion fields).

  9. Metal-Hydrogen Phase Diagrams in the Vicinity of Melting Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, V.I.

    1999-01-06

    Hydrogen-metal interaction phenomena belong to the most exciting challenges of today's physical metallurgy and physics of solids due to the uncommon behavior of hydrogen in condensed media and to the need for understanding hydrogen's strong negative impact on properties of some high-strength steels and.alloys. The paper cites and summarizes research data on fundamental thermodynamic characteristics of hydrogen in some metals that absorb it endothermally at elevated temperatures. For a number of metal-hydrogen systems, information on some phase diagrams previously not available to the English-speaking scientific community is presented.

  10. Interpretation of bent-crystal rocking curves using phase-space diagrams

    CERN Document Server

    Ren, B; Chapman, L D; Wu, X Y; Zhong, Z; Ivanov, I; Huang, X

    2000-01-01

    In developing a double bent-Laue crystal monochromator for synchrotron-based monochromatic computed tomography system, we applied a special projection of the phase-space diagram to interpret the shape of bent crystal rocking curves. Unlike the rigorous approach of the ray-tracing method, this graphical method provides direct pictures that allow checks of the physical significance of the shapes of the rocking curves, thereby providing quick guidelines for matching two bent crystals. The method's usefulness is demonstrated with our crexperimental results, and its limitations are discussed.

  11. Construction and Validation of Binary Phase Diagram for Amorphous Solid Dispersion Using Flory–Huggins Theory

    OpenAIRE

    Bansal, Krishna; Baghel, Uttam Singh; Thakral, Seema

    2015-01-01

    Drug–polymer miscibility is one of the fundamental prerequisite for the successful design and development of amorphous solid dispersion formulation. The purpose of the present work is to provide an example of the theoretical estimation of drug–polymer miscibility and solubility on the basis of Flory–Huggins (F–H) theory and experimental validation of the phase diagram. The F–H interaction parameter, χd-p, of model system, aceclofenac and Soluplus, was estimated by two methods: by melting poin...

  12. The quark-gluon-plasma phase transition diagram, Hagedorn matter and quark-gluon liquid

    OpenAIRE

    Zakout, Ismail; Greiner, Carsten

    2010-01-01

    In order to study the nuclear matter in the relativistic heavy ion collisions and the compact stars, we need the hadronic density of states for the entire ($\\mu_B-T$) phase transition diagram. We present a model for the continuous high-lying mass (and volume) spectrum density of states that fits the Hagedorn mass spectrum. This model explains the origin of the tri-critical point besides various phenomena such as the quarkyonic matter and the quark-gluon liquid. The Hagedorn mass spectrum is d...

  13. Phase diagrams for quantum Brownian motion on two-dimensional Bravais lattices

    Science.gov (United States)

    Zhang, Grace H.

    2017-11-01

    We study quantum Brownian motion (QBM) models for a particle in a dissipative environment coupled to a periodic potential. We review QBM for a particle in a one-dimensional periodic potential and extend the study to that for a particle in two-dimensional (2D) periodic potentials of four Bravais lattice types: square, rectangular, triangular (hexagonal), and centered rectangular. We perform perturbative renormalization group analyses to derive the zero temperature flow diagrams and phase boundaries for a particle in these potentials, and observe localization behavior dependent on the anisotropy of the lattice parameters.

  14. Phase diagram of the AlVO{sub 4}-MoO{sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Kurzawa, M.; Dabrowska, G. [Politechnika Szczecinska, Szczecin (Poland)

    1996-12-31

    The behaviour of MoO{sub 3} towards AlVO{sub 4} at temperatures up to 1000 C within the whole concentration range has been investigated by DTA and XRD. The results are presented in the form of a phase diagram. The AlVO{sub 4}-MoO{sub 3} system has been found to be a real two-component system only within the limits of the AlVO{sub 4}-AlVMoO{sub 7} subsolidus area. (author). 31 refs, 1 fig., 1 tab.

  15. Phase diagram of silicon using a DFT-based neural network potential

    Science.gov (United States)

    Andreussi, Oliviero; Behler, Joerg; Parrinello, Michele

    2008-03-01

    The phase diagram of silicon is computed by means of Classical Molecular Dynamics. A recently developed [Behler and Parrinello, Phys. Rev. Lett. 98 146401 (2007)] neural-network potential based on Density Functional Theory calculations in the Local Density Approximation is used. This potential was shown to be several orders of magnitude faster than corresponding LDA-DFT calculations, while the accuracy is essentially maintained. Results on the liquid-solid coexistence curve are in good agreement with ab-initio calculations and demonstrate the quality of the neural-network potential.

  16. Phase Diagram of Symmetric Two-Dimensional Traffic Model II. Higher-Velocity Case

    Science.gov (United States)

    Fukui, Minoru; Ishibashi, Yoshihiro

    2017-11-01

    The phase diagram for a symmetric two-dimensional traffic system with cars moving with a maximum velocity of 2 (a kind of the extended Biham-Middleton-Levine model) is studied. It turns out that the critical car density giving rise to the complete stop transition can be well fitted by the formula previously proposed for the flow in the jam flow phase. A notable discrepancy between the velocities obtained by cellular automaton simulations and from the formula is found in the high-velocity range in the jam flow phase. The discrepancy is attributed to the probabilistic nature of the sequence of cars moving with different velocities, which prevents the formation of a wide-range ordered flow pattern, reducing the total flow in the system.

  17. Phase diagram of 4D field theories with chiral anomaly from holography

    Energy Technology Data Exchange (ETDEWEB)

    Ammon, Martin; Leiber, Julian; Macedo, Rodrigo P. [Theoretisch-Physikalisches Institut, Friedrich-Schiller University of Jena,Max-Wien-Platz 1, 07743 Jena (Germany)

    2016-03-23

    Within gauge/gravity duality, we study the class of four dimensional CFTs with chiral anomaly described by Einstein-Maxwell-Chern-Simons theory in five dimensions. In particular we determine the phase diagram at finite temperature, chemical potential and magnetic field. At high temperatures the solution is given by an electrically and magnetically charged AdS Reissner-Nordstroem black brane. For sufficiently large Chern-Simons coupling and at sufficiently low temperatures and small magnetic fields, we find a new phase with helical order, breaking translational invariance spontaneously. For the Chern-Simons couplings studied, the phase transition is second order with mean field exponents. Since the entropy density vanishes in the limit of zero temperature we are confident that this is the true ground state which is the holographic version of a chiral magnetic spiral.

  18. Optical measurements of the phase diagram of Langmuir monolayers of fatty acid-alcohol mixtures

    Science.gov (United States)

    Fischer, Birgit; Teer, Ellis; Knobler, Charles M.

    1995-08-01

    The surface pressure-temperature diagram of Langmuir monolayers of mixtures of heneicosanoic acid with heneicosanol has been determined from 10 °C to 40 °C by direct observation with Brewster angle microscopy. The measurements focused on the way in which the boundary between the L'2 and L2 phases change with composition. As previously observed by Shih et al. [J. Chem. Phys. 101, 9132 (1994)], it moves to lower pressure and higher temperature with increasing concentration of alcohol. We have discovered that the boundary between the Ov and L2 phases, which had not been studied before, moves in the opposite direction and that the L'2 and Ov phase regions merge, an unanticipated result.

  19. Global phase diagram and quantum spin liquids in a spin-1/2 triangular antiferromagnet

    Science.gov (United States)

    Gong, Shou-Shu; Zhu, W.; Zhu, J.-X.; Sheng, D. N.; Yang, Kun

    2017-08-01

    We study the spin-1 /2 Heisenberg model on the triangular lattice with the nearest-neighbor J1>0 , the next-nearest-neighobr J2>0 Heisenberg interactions, and the additional scalar chiral interaction Jχ(S⃗i×S⃗j) .S⃗k for the three spins in all the triangles using large-scale density matrix renormalization group calculation on cylinder geometry. With increasing J2 (J2/J1≤0.3 ) and Jχ (Jχ/J1≤1.0 ) interactions, we establish a quantum phase diagram with the magnetically ordered 120∘, stripe, and noncoplanar tetrahedral phase. In between these magnetic order phases, we find a chiral spin liquid (CSL) phase, which is identified as a ν =1 /2 bosonic fractional quantum Hall state with possible spontaneous rotational symmetry breaking. By switching on the chiral interaction, we find that the previously identified spin liquid in the J1-J2 triangular model (0.08 ≲J2/J1≲0.15 ) shows a phase transition to the CSL phase at very small Jχ. We also compute the spin triplet gap in both spin liquid phases, and our finite-size results suggest a large gap in the odd topological sector but a small or vanishing gap in the even sector. We discuss the implications of our results on the nature of the spin liquid phases.

  20. Composite optical fiber polarizer with ternary copolymer overlay for large range modulation of phase difference

    Science.gov (United States)

    Cui, Minxin; Tian, Xiujie; Zou, Gang; Zhu, Bing; Zhang, Qijin

    2017-04-01

    In this work, a ternary copolymer composed of (E)-2-(4-((4-isocyanophenyl) diazenyl) phenoxy) ethyl methacrylate (2-CN), methacrylisobutyl polyhedral oligomeric silsesquioxane (MAPOSS) and 2,2,2-trifluoroethyl methacrylate (TFEMA) is synthesized and used as the overlay for composite optical fiber, in which cage-like POSS component and fluorine-containing component are used to reduce refractive index, and azobenzene component is used to finely manipulate the refractive indices in two orthogonal directions through photo-induced orientation under irradiation of polarized light. Before irradiation, the refractive index of terpolymer (1.4503) is slightly higher than that of the core material (1.4489) of commercial silica single-mode fiber, which is obtained by optimizing the amount of each monomer. After the irradiation of 435 nm polarized light, refractive indices of the overlay in two orthogonal directions decrease, and two values have been finely manipulated so that one is higher and another is lower than the refractive index of the fiber core by optimizing irradiation time. In this way, a radial loss type fiber polarization modulator is obtained. By changing the polarization direction of the irradiation at 435 nm, the polarization of propagating light at 1550 nm in the fiber can also be modulated continuously. The maximum change of phase difference is about 300°, making the device useful as a quarter-wave plate or a half-wave plate.

  1. Theoretical study of physical properties and oxygen incorporation effect in nanolaminated ternary carbides 211-MAX phases

    KAUST Repository

    Kanoun, Mohammed

    2012-01-01

    In this chapter, we employ ab initio approaches to review some important physical properties of nanolaminated ternary carbides MAX phases. We fi rstly use an all electron full-potential linearized augmented plane-wave method within the generalized gradient approximation and the density functional theory approaches, to explore the existence of a steric effect on the M site in these compounds. The elastic properties are also reported in order to assess the mechanical stability. The substitution of oxygen for carbon in Ti 2 SnC M n +1 AX n, forming Ti 2 SnC 1- x O x, is examined next, where we simulated the effect of oxygen incorporation on mechanical and electronic properties using projector augmented wave method. We show that oxygen has interesting effects on both of elastic and electronic properties, that the bulk modulus decreases when oxygen concentration increases. The bonding in Ti 2 SnC 1- x O x has a tendency to a covalent-ionic nature with the presence of metallic character. © 2012 Woodhead Publishing Limited.

  2. Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane-carbon dioxide-water hydrate system.

    Science.gov (United States)

    Michalis, Vasileios K; Tsimpanogiannis, Ioannis N; Stubos, Athanassios K; Economou, Ioannis G

    2016-09-14

    Molecular dynamics simulation is used to predict the phase equilibrium conditions of a ternary hydrate system. In particular, the direct phase coexistence methodology is implemented for the determination of the three-phase coexistence temperature of the methane-carbon dioxide-water hydrate system at elevated pressures. The TIP4P/ice, TraPPE-UA and OPLS-UA forcefields for water, carbon dioxide and methane respectively are used, in line with our previous studies of the phase equilibria of the corresponding binary hydrate systems. The solubility in the aqueous phase of the guest molecules of the respective binary and ternary systems is examined under hydrate-forming conditions, providing insight into the predictive capability of the methodology as well as the combination of these forcefields to accurately describe the phase behavior of the ternary system. The three-phase coexistence temperature is calculated at 400, 1000 and 2000 bar for two compositions of the methane-carbon dioxide mixture. The predicted values are compared with available calculations with satisfactory agreement. An estimation is also provided for the fraction of the guest molecules in the mixed hydrate phase under the conditions examined.

  3. Quantitative Comparison of Ternary Eutectic Phase-Field Simulations with Analytical 3D Jackson-Hunt Approaches

    Science.gov (United States)

    Steinmetz, Philipp; Kellner, Michael; Hötzer, Johannes; Nestler, Britta

    2018-02-01

    For the analytical description of the relationship between undercoolings, lamellar spacings and growth velocities during the directional solidification of ternary eutectics in 2D and 3D, different extensions based on the theory of Jackson and Hunt are reported in the literature. Besides analytical approaches, the phase-field method has been established to study the spatially complex microstructure evolution during the solidification of eutectic alloys. The understanding of the fundamental mechanisms controlling the morphology development in multiphase, multicomponent systems is of high interest. For this purpose, a comparison is made between the analytical extensions and three-dimensional phase-field simulations of directional solidification in an ideal ternary eutectic system. Based on the observed accordance in two-dimensional validation cases, the experimentally reported, inherently three-dimensional chain-like pattern is investigated in extensive simulation studies. The results are quantitatively compared with the analytical results reported in the literature, and with a newly derived approach which uses equal undercoolings. A good accordance of the undercooling-spacing characteristics between simulations and the analytical Jackson-Hunt apporaches are found. The results show that the applied phase-field model, which is based on the Grand potential approach, is able to describe the analytically predicted relationship between the undercooling and the lamellar arrangements during the directional solidification of a ternary eutectic system in 3D.

  4. Mixtures of cationic lipid O-ethylphosphatidylcholine with membrane lipids and DNA: phase diagrams.

    Science.gov (United States)

    Koynova, Rumiana; MacDonald, Robert C

    2003-10-01

    Ethylphosphatidylcholines are positively charged membrane lipid derivatives, which effectively transfect DNA into cells and are metabolized by the cells. For this reason, they are promising nonviral transfection agents. With the aim of revealing the kinds of lipid phases that may arise when lipoplexes interact with cellular lipids during DNA transfection, temperature-composition phase diagrams of mixtures of the O-ethyldipalmitoylphosphatidylcholine with representatives of the major lipid classes (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, cholesterol) were constructed. Phase boundaries were determined using differential scanning calorimetry and synchrotron x-ray diffraction. The effects of ionic strength and of DNA presence were examined. A large variety of polymorphic and mesomorphic structures were observed. Surprisingly, marked enhancement of the affinity for nonlamellar phases was observed in mixtures with phosphatidylethanolamine and cholesterol as well as with phosphatidylglycerol (previously reported). Because of the potential relevance to transfection, it is noteworthy that such phases form at close to physiological conditions, and in the presence of DNA. All four mixtures exhibit a tendency to molecular clustering in the gel phase, presumably due to the specific interdigitated molecular arrangement of the O-ethyldipalmitoylphosphatidylcholine gel bilayers. It is evident that a remarkably broad array of lipid phases could arise in transfected cells and that these could have significant effects on transfection efficiency. The data may be particularly useful for selecting possible "helper" lipids in the lipoplex formulations, and in searches for correlations between lipoplex structure and transfection activity.

  5. High Pressure-Temperature Phase Diagram of 1,1-diamino-2,2-dinitroethylene

    Science.gov (United States)

    Bishop, Matthew; Chellappa, Raja; Liu, Zhenxian; Preston, Daniel; Sandstrom, Mary; Dattelbaum, Dana; Vohra, Yogesh; Velisavljevic, Nenad

    2013-06-01

    1,1-diamino-2,2-dinitroethelyne (FOX-7) is a less sensitive energetic material with performance comparable to commonly used secondary explosives such as RDX and HMX. At ambient pressure, FOX-7 exhibits complex polymorphism with at least three structurally distinct phases (α, β, and γ) . In this study, we have investigated the high P-T stability of FOX-7 polymorphs using synchrotron mid-infrared (MIR) spectroscopy. At ambient pressure, our MIR spectra confirmed the known α --> β (110 °C) and β --> γ (160 °C) phase transitions; as well as, indicated an additional phase transition, γ --> δ (210°C), with the δ phase being stable up to 250 °C prior to melt/decomposition. In situ MIR spectra obtained during isobaric heating at 0.9 GPa revealed that the α --> β transition occurs at 180 °C, while β --> β + δ phase transition shifted to 300 °C with suppression of γ phase. Decomposition was observed above 325 °C. Based on multiple high P-T measurements, we have established the first high P-T phase diagram of FOX-7. This work was, in part, supported by the US DOE under contract No. DE-AC52-06NA25396 and Science Campaign 2 Program. MB acknowledges additional support from the NSF BD program. Use of NSLS (DE-AC02-98CH10886) beamline U2A (COMPRES, No.EAR01-35554, CDAC).

  6. Novel phase diagram behavior and materials design in heterostructural semiconductor alloys.

    Science.gov (United States)

    Holder, Aaron M; Siol, Sebastian; Ndione, Paul F; Peng, Haowei; Deml, Ann M; Matthews, Bethany E; Schelhas, Laura T; Toney, Michael F; Gordon, Roy G; Tumas, William; Perkins, John D; Ginley, David S; Gorman, Brian P; Tate, Janet; Zakutayev, Andriy; Lany, Stephan

    2017-06-01

    Structure and composition control the behavior of materials. Isostructural alloying is historically an extremely successful approach for tuning materials properties, but it is often limited by binodal and spinodal decomposition, which correspond to the thermodynamic solubility limit and the stability against composition fluctuations, respectively. We show that heterostructural alloys can exhibit a markedly increased range of metastable alloy compositions between the binodal and spinodal lines, thereby opening up a vast phase space for novel homogeneous single-phase alloys. We distinguish two types of heterostructural alloys, that is, those between commensurate and incommensurate phases. Because of the structural transition around the critical composition, the properties change in a highly nonlinear or even discontinuous fashion, providing a mechanism for materials design that does not exist in conventional isostructural alloys. The novel phase diagram behavior follows from standard alloy models using mixing enthalpies from first-principles calculations. Thin-film deposition demonstrates the viability of the synthesis of these metastable single-phase domains and validates the computationally predicted phase separation mechanism above the upper temperature bound of the nonequilibrium single-phase region.

  7. Analysis of the Fe-Ce-O-C- M phase diagrams ( M = Ca, Mg, Al, Si) by constructing a component-solubility surface

    Science.gov (United States)

    Mikhailov, G. G.; Makrovets, L. A.; Smirnov, L. A.; Dresvyankina, L. E.

    2016-06-01

    Analysis of the ternary phase diagrams of Ce2O3- and CeO2-containing oxide systems allowed us to find the oxide compounds that form during steel deoxidizing with cerium and with cerium together with aluminum, calcium, magnesium, or silicon. The temperature dependences of the equilibrium constants of formation of Ce2O3 oxides and Ce2O3 · Al2O3, Ce2O3 · 11Al2O3, Ce2O3 · 2SiO2, 7Ce2O3 · 9SiO2 and Ce2O3 · SiO2 compounds are found. Surfaces for the component solubility in metallic melts Fe-Al-Ce-O-C, Fe- Ca-Ce-O-C, Fe-Mg-Ce-O-C, and Fe-Si-Ce-O-C are constructed. Nonmetallic inclusions that form in the course of experimental melts of St20 steel after its deoxidizing with silicocalcium and rare-earth metal (REM)-containing master alloys in a ladle furnace after degassing are studied. Phase inhomogeneity of the inclusions is found. As a rule, they consist of phases classified into the following three groups: oxide-sulfide, sulfide-oxide, and multiphase oxide-sulfide melt. Calcium aluminates are found to be components of complex sulfide-oxide noncorrosive inclusions.

  8. Sn-Sb-Se based binary and ternary alloys for phase change memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung-Min

    2008-10-28

    In this work, the effect of replacing Ge by Sn and Te by Se was studied for a systematic understanding and prediction of new potential candidates for phase change random access memories applications. The temperature dependence of the electrical/structural properties and crystallization kinetics of the Sn-Se based binary and Sn-Sb-Se based ternary alloys were determined and compared with those of the GeTe and Ge-Sb-Te system. The temperature dependence of electrical and structural properties were investigated by van der Pauw measurements, X-ray diffraction, X-ray reflectometry. By varying the heating rate, the Kissinger analysis has been used to determine the combined activation barrier for crystallization. To screen the kinetics of crystallization, a static laser tester was employed. In case of binary alloys of the type Sn{sub x}Se{sub 1-x}, the most interesting candidate is SnSe{sub 2} since it crystallizes into a single crystalline phase and has high electrical contrast and reasonably high activation energy for crystallization. In addition, the SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloy system also might be sufficient for data retention due to their higher transition temperature and activation energy for crystallization in comparison to GeTe-Sb{sub 2}Te{sub 3} system. Furthermore, SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloys have a higher crystalline resistivity. The desired rapid crystallization speed can be obtained for Sn{sub 1}Sb{sub 2}Se{sub 5} and Sn{sub 2}Sb{sub 2}Se{sub 7} alloys. (orig.)

  9. Morphological phase diagrams of C60 and C70 films on graphite

    Science.gov (United States)

    Sato, Kazuma; Tanaka, Tomoyasu; Akaike, Kouki; Kanai, Kaname

    2017-10-01

    The morphologies of C60 and C70 fullerene films vacuum-deposited onto graphite at various deposition rates and grown at several temperatures were investigated using atomic force microscopy. These fullerene films on graphite are model systems of physisorption of organic molecules that likely exhibit little chemical interaction with the graphite's surface. The morphologies of C60 and C70 films grown on graphite can be understood well from growth models previously reported. Comparison of the morphological phase diagrams obtained for C60 and C70 indicate that the diffusion properties of the adsorbed molecule are key in determining the morphology of the obtained film. The low diffusion rate of C70 resulted in various film morphologies for all deposition conditions tested. Also, the obtained phase diagrams can be understood by the results of fractal dimension analysis on the C60 and C70 islands. The fundamental understanding of film growth obtained using these ideal physisorption systems will aid in understanding film growth by other molecular adsorption systems.

  10. Phase Diagram and Breathing Dynamics of Red Blood Cell Motion in Shear Flow

    Science.gov (United States)

    Bagchi, Prosenjit; Yazdani, Alireza

    2011-11-01

    We present phase diagrams of red blood cell dynamics in shear flow using three-dimensional numerical simulations. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling and swinging motion, and is characterized by an extreme variation of the cell shape. We identify such complex shape dynamics as `breathing' dynamics. During the breathing motion, the cell either completely aligns with the flow direction and the membrane folds inward forming two cusps, or, it undergoes large swinging motion while deep, crater-like dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is dependent on shear rate only. Supported by NSF.

  11. Phase diagrams and switching of voltage and magnetic field in dilute magnetic semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo, R. [Departamento de Matematica Aplicada y Ciencias de la Computacion, Universidad de Cantabria, 39005 Santander (Spain); Carretero, M.; Bonilla, L.L. [G. Millan Institute, Fluid Dynamics, Nanoscience and Industrial Maths., Universidad Carlos III de Madrid, 28911 Leganes (Spain); Unidad Asociada al Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco, Madrid (Spain); Platero, G. [Instituto de Ciencia de Materiales, CSIC, 28049 Cantoblanco, Madrid (Spain)

    2010-04-15

    The response of an n-doped dc voltage biased II-VI multi-quantum well dilute magnetic semiconductor nanostructure having its first well doped with magnetic (Mn) impurities is analyzed by sweeping wide ranges of both the voltage and the Zeeman level splitting induced by an external magnetic field. The level splitting versus voltage phase diagram shows regions of stable self-sustained current oscillations immersed in a region of stable stationary states. Transitions between stationary states and self-sustained current oscillations are systematically analyzed by both voltage and level splitting abrupt switching. Sudden voltage or/and magnetic field changes may switch on current oscillations from an initial stationary state, and reciprocally, current oscillations may disappear after sudden changes of voltage or/and magnetic field changes into the stable stationary states region. The results show how to design such a device to operate as a spin injector and a spin oscillator by tuning the Zeeman splitting (through the applied external magnetic field), the applied voltage and the sample configuration parameters (doping density, barrier and well widths, etc.) to select the desired stationary or oscillatory behavior. Phase diagram of Zeeman level splitting {delta} vs. dimensionless applied voltage {phi} for N = 10 QWs. White region: stable stationary states; black: stable self-sustained current oscillations. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. New Wang-Landau approach to obtain phase diagrams for multicomponent alloys

    Science.gov (United States)

    Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka

    2017-10-01

    We develop an approach to apply the Wang-Landau algorithm to multicomponent alloys in a semi-grand-canonical ensemble. Although the Wang-Landau algorithm has great advantages over conventional sampling methods, there are few applications to alloys. This is because calculating compositions in a semi-grand-canonical ensemble via the Wang-Landau algorithm requires a multidimensional density of states in terms of total energy and compositions, and constructing it is difficult from the viewpoints of both implementation and computational cost. In this study, we develop a simple approach to calculate the alloy phase diagram based on the Wang-Landau algorithm, and show that a number of one-dimensional densities of states could lead to compositions in a semi-grand-canonical ensemble as a multidimensional density of states could. Finally, we apply the present method to Cu-Au and Pd-Rh alloys and confirm that the present method successfully describes the phase diagram with high efficiency, validity, and accuracy.

  13. Finite-connectivity spin-glass phase diagrams and low-density parity check codes.

    Science.gov (United States)

    Migliorini, Gabriele; Saad, David

    2006-02-01

    We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate , an RS critical transition point at while the critical RSB transition point is located at , to be compared with the corresponding Shannon bound . For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed.

  14. Phase diagram of dense two-color QCD within lattice simulations

    Directory of Open Access Journals (Sweden)

    Braguta V.V.

    2017-01-01

    Full Text Available We present the results of a low-temperature scan of the phase diagram of dense two-color QCD with Nf = 2 quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential we observe the hadronic phase, where the theory is in a confining state, chiral symmetry is broken, the baryon density is zero and there is no diquark condensate. At the critical point μ = mπ/2 we observe the expected second order transition to Bose-Einstein condensation of scalar diquarks. In this phase the system is still in confinement in conjunction with nonzero baryon density, but the chiral symmetry is restored in the chiral limit. We have also found that in the first two phases the system is well described by chiral perturbation theory. For larger values of the chemical potential the system turns into another phase, where the relevant degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation takes place on the Fermi surface. In this phase the system is still in confinement, chiral symmetry is restored and the system is very similar to the quarkyonic state predicted by SU(Nc theory at large Nc.

  15. Study of the phase diagram of dense two-color QCD within lattice simulation

    CERN Document Server

    Braguta, V V; Kotov, A Yu; Molochkov, A V; Nikolaev, A A

    2016-01-01

    In this paper we carry out a low-temperature scan of the phase diagram of dense two-color QCD with $N_f=2$ quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential we observe the hadronic phase, where the theory is in a confining state, chiral symmetry is broken, the baryon density is zero and there is no diquark condensate. At the critical point $\\mu = m_{\\pi}/2$ we observe the expected second order transition to Bose-Einstein condensation of scalar diquarks. In this phase the system is still in confinement in conjunction with nonzero baryon density, but the chiral symmetry is restored in the chiral limit. We have also found that in the first two phases the system is well described by chiral perturbation theory. For larger values of the chemical potential the system turns into another phase, where the relevant degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation takes place on the Fermi surface. In this phase t...

  16. Magnetic structures, phase diagram and spin waves of magneto-electric LiNiPO4

    DEFF Research Database (Denmark)

    Jensen, Thomas Bagger Stibius

    2007-01-01

    LiNiPO4 is a magneto-electric material, having co-existing antiferromagnetic and ferroelectric phases when suitable magnetic fields are applied at low temperatures. Such systems have received growing interest in recent years, but the nature of the magneticelectric couplings is yet to be fully...... understand. Hopefully, studying LiNiPO4 will shed further light on the subject, especially since the crystal structure of LiNiPO4 is rather simple compared to most relevant multiferroic materials. Although the study of the magnetic-electric couplings is of main interest to the many scientists guiding me...... through the last three years, it is not the primary subject of this thesis. The objective of the phD project has been to provide groundwork that may be beneficiary to future studies of LiNiPO4. More specifically, we have mapped out the magnetic HT phase diagram with magnetic fields below 14.7 T applied...

  17. Thermodynamic studies of mixtures for topical anesthesia: Lidocaine-salol binary phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Lazerges, Mathieu [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France); Rietveld, Ivo B., E-mail: ivo.rietveld@parisdescartes.fr [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France); Corvis, Yohann; Ceolin, Rene; Espeau, Philippe [Laboratoire de Chimie Physique (EA 4066), Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75270 Paris Cedex 06 (France)

    2010-01-10

    The lidocaine-salol binary system has been investigated by differential scanning calorimetry, direct visual observations, and X-ray powder diffraction, resulting in a temperature-composition phase diagram with a eutectic equilibrium. The eutectic mixture, found at 0.423 {+-} 0.007 lidocaine mole-fraction, melts at 18.2 {+-} 0.5 {sup o}C with an enthalpy of 17.3 {+-} 0.5 kJ mol{sup -1}. This indicates that the liquid phase around the eutectic composition is stable at room temperature. Moreover, the undercooled liquid mixture does not easily crystallize. The present binary mixture exhibits eutectic behavior similar to the prilocaine-lidocaine mixture in the widely used EMLA topical anesthetic preparation.

  18. High-pressure high-temperature phase diagram of organic crystal paracetamol

    Science.gov (United States)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  19. Automated Generation of Phase Diagrams for Binary Systems with Azeotropic Behavior

    DEFF Research Database (Denmark)

    Cismondi, Martin; Michelsen, Michael Locht; Zabaloy, Marcelo S.

    2008-01-01

    's azeotropic end points (AEPs). These can exist on vapor-liquid (VL) critical lines (CAEPs), on liquid-liquid-vapor (LLV) lines (HAEPs), and on pure-compound vapor pressure lines (PAEPs). Next, for the chosen binary system, we generate one or two azeotropic lines. Each of these lines has, as its starting point......, one of the previously identified AEPs. We calculate the azeotropic lines using a numerical continuation method that solves the nonlinear azeotropic system of equations under a range of conditions and efficiently tracks entire azeotropic curves. We have integrated our strategy for calculating...... azeotropic lines into a general algorithm for the single-run computation of binary global phase equilibrium diagrams (GPEDs). GPEDs are defined by pure-compound, critical, LLV, and azeotropic lines. We implemented this general algorithm in the computer program GPEC (Global Phase Equilibrium Calculations...

  20. Phase diagram of SU(2) with 2 flavors of dynamical adjoint quarks

    CERN Document Server

    Catterall, Simon; Sannino, Francesco; Schneible, Joe

    2008-01-01

    We report on numerical simulations of SU(2) lattice gauge theory with two flavors of light dynamical quarks in the adjoint of the gauge group. The dynamics of this theory is thought to be very different from QCD -- the theory exhibiting conformal or near conformal behavior in the infrared. We make a high resolution survey of the phase diagram of this model in the plane of the bare coupling and quark mass on lattices of size 8^3 \\times 16. Our simulations reveal a line of first order phase transitions extending from beta=0 to beta=beta_c \\sim 2.0. For beta > beta_c the line is no longer first order but continues as the locus of minimum meson mass. For beta > 2.0 we observe the critical pion and rho masses to be light, independent of bare coupling and approximately degenerate. We discuss possible interpretations of these observations and corresponding continuum limits.

  1. A non-classical phase diagram for virus-bacterial co-evolution mediated by CRISPR

    Science.gov (United States)

    Han, Pu; Deem, Michael

    CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. Due to the cost of CRISPR, bacteria can lose the acquired immunity. We will show an intriguing phase diagram of the virus extinction probability, which when the rate of losing the acquired immunity is small, is more complex than that of the classic predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape the recognition by CRISPR, and this co-evolution leads to a non-trivial phase structure that cannot be explained by the classical predator-prey model.

  2. Calculation of ternary Si-Fe-Al phase equilibrium in vacuum distillation by molecular interaction volume model

    Directory of Open Access Journals (Sweden)

    Liu K.

    2014-01-01

    Full Text Available The vacuum distillation of aluminum from Si-Fe-Al ternary alloy with high content of Al is studied by a molecular interaction volume model (MIVM in this paper. The vapor-liquid phase equilibrium of the Si-Fe-Al system in vacuum distillation has been calculated using only the properties of pure components and the activity coefficients. A significant advantage of the model lies in its ability to predict the thermodynamic properties of liquid alloys using only binary infinite dilution activity coefficients. The thermodynamic activities and activity coefficients of components of the related Si-Fe, Si- Al and Fe-Al binary and the Si-Fe-Al ternary alloy systems are calculated based on the MIVM. The computational activity values are presented graphically, and evaluated with the reported experiment data in the literature, which shows that the prediction effect of the proposed model is of stability and reliability.

  3. Optimization of the thermodynamic properties and phase diagrams of P2O5-containing systems

    Science.gov (United States)

    Hudon, Pierre; Jung, In-Ho

    2014-05-01

    P2O5 is an important oxide component in the late stage products of numerous igneous rocks such as granites and pegmatites. Typically, P2O5 combines with CaO and crystallizes in the form of apatite, while in volatile-free conditions, Ca-whitlockite is formed. In spite of their interest, the thermodynamic properties and phase diagrams of P2O5-containg systems are not well known yet. In the case of the pure P2O5 for example, no experimental thermodynamic data are available for the liquid and the O and O' solid phases. As a result, we re-evaluated all the thermodynamic and phase diagram data of the P2O5 unary system [1]. Optimization of the thermodynamic properties and phase diagrams of the binary P2O5 systems was then performed including the Li2O-, Na2O-, MgO-, CaO-, BaO-, MnO-, FeO-, Fe2O3-, ZnO-, Al2O3-, and SiO2-P2O5 [2] systems. All available thermodynamic and phase equilibrium data were simultaneously reproduced in order to obtain a set of model equations for the Gibbs energies of all phases as functions of temperature and composition. In particular, the Gibbs energy of the liquid solution was described using the Modified Quasichemical Model [3-5] implemented in the FactSage software [6]. Thermodynamic modeling of the Li2O-Na2O-K2O-MgO-CaO-FeO-Fe2O3-Al2O3-SiO2 system, which include many granite-forming minerals such as nepheline, leucite, pyroxene, melilite, feldspar and spinel is currently in progress. [1] Jung, I.-H., Hudon, P. (2012) Thermodynamic assessment of P2O5. J. Am. Ceram. Soc., 95 (11), 3665-3672. [2] Rahman, M., Hudon, P. and Jung, I.-H. (2013) A coupled experimental study and thermodynamic modeling of the SiO2-P2O5 system. Metall. Mater. Trans. B, 44 (4), 837-852. [3] Pelton, A.D. and Blander, M. (1984) Computer-assisted analysis of the thermodynamic properties and phase diagrams of slags. Proc. AIME Symp. Metall. Slags Fluxes, TMS-AIME, 281-294. [4] Pelton, A.D. and Blander, M. (1986) Thermodynamic analysis of ordered liquid solutions by a modified

  4. Experiments on a strongly correlated material: photoresponse, phase diagram and hydrogen doping of vanadium dioxide

    Science.gov (United States)

    Kasirga, T. Serkan

    The metal-insulator transition (MIT) in vanadium dioxide (VO2) has attracted waves of attention after its rst observation by Morin in 1959. There are several reasons for the interest in this material. First, its metal-insulator transition is at an easily accessible temperature which allows investigators to study the eect of strong electronic correlations with little eort. Second reason is VO2 oers many applications, although most of them are mundane, a few may have signicant eects on dierent areas of technology. However, even after over half a century there is still a debate about the nature of the MIT and non of the applications proposed have been realized. The main culprit for this is the diculties in studying the bulk crystals of VO 2. In bulk crystals, defects in the crystal, impurities and domain structure causes irreproducible results. This combined with the theoretical challenges made studying VO2 and realization of applications impractical. However, recent discovery of the growth technique for growing the nano-scale crystals, revitalized the interest in VO2. In this dissertation I present the experimental studies that we performed on VO2. I discussed the ndings from three major studies we performed; photoresponse, finding the strain-temperature phase diagram and hydrogen doping of VO2. We used scanning photocurrent microscopy technique to reveal the light-matter interaction in VO2. Suspended nanobeam devices are used in the experiments and results revealed that photoresponse of VO2 is dominated by the thermal eects and there is no photovoltaic contribution. Results are published in Nature Nanotechnology in 2012 . In the second study, we determined the strain-temperature phase stability diagram of VO2. This is the first ever determination of the phase diagram of a solid state phase transition. Also our studies revealed that the triple point coincides with the critical point, which has important implications for both theoretical studies of the MIT in VO 2 and

  5. Partial phase diagrams of Pb-Mo-O system and the standard molar Gibbs energy of formation of PbMoO4 and Pb2MoO5

    Science.gov (United States)

    Aiswarya, P. M.; Ganesan, Rajesh; Gnanasekaran, T.

    2017-09-01

    Partial phase diagrams of Pb-Mo-O system have been established at 773 K and 998 K based on phase equilibration studies. Standard molar Gibbs energy of formation of ternary oxides PbMoO4 and Pb2MoO5 were determined by measuring the equilibrium oxygen partial pressures over relevant phase fields using emf cells and are given by the following expressions: ΔfGm° ± 0.7(kJmol-1) = - 1030.1 + 0.3054(T /K) (T : 772to 1017K) ΔfGm° ± 0.8(kJmol-1) = - 1248.1 + 0.3872(T /K) (T : 741to 1021K)

  6. Finite size and Coulomb corrections: from nuclei to nuclear liquid vapor phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Moretto, L.G.; Elliott, J.B.; Phair, L. [Lawrence Berkeley National Laboratory, Nuclear Science Division (United States)

    2003-07-01

    In this paper we consider the problem of obtaining the infinite symmetric uncharged nuclear matter phase diagram from a thermal nuclear reaction. In the first part we shall consider the Coulomb interaction which, because of its long range makes the definition of phases problematic. This Coulomb effect seems truly devastating since it does not allow one to define nuclear phase transitions much above A {approx} 30. However there may be a solution to this difficulty. If we consider the emission of particles with a sizable charge, we notice that a large Coulomb barrier Bc is present. For T << Bc these channels may be considered effectively closed. Consequently the unbound channels may not play a role on a suitably short time scale. Then a phase transition may still be definable in an approximate way. In the second part of the article we shall deal with the finite size problem by means of a new method, the complement method, which shall permit a straightforward extrapolation to the infinite system. The complement approach consists of evaluating the change in free energy occurring when a particle or cluster is moved from one (finite) phase to another. In the case of a liquid drop in equilibrium with its vapor, this is done by extracting a vapor particle of any given size from the drop and evaluating the energy and entropy changes associated with both the vapor particle and the residual liquid drop (complement)

  7. Phase diagram and neutron spin resonance of superconducting NaFe1 -xCuxAs

    Science.gov (United States)

    Tan, Guotai; Song, Yu; Zhang, Rui; Lin, Lifang; Xu, Zhuang; Tian, Long; Chi, Songxue; Graves-Brook, M. K.; Li, Shiliang; Dai, Pengcheng

    2017-02-01

    We use transport and neutron scattering to study the electronic phase diagram and spin excitations of NaFe1 -xCuxAs single crystals. Similar to Co- and Ni-doped NaFeAs, a bulk superconducting phase appears near x ≈2 % with the suppression of stripe-type magnetic order in NaFeAs. Upon further increasing Cu concentration the system becomes insulating, culminating in an antiferromagnetically ordered insulating phase near x ≈50 % . Using transport measurements, we demonstrate that the resistivity in NaFe1 -xCuxAs exhibits non-Fermi-liquid behavior near x ≈1.8 % . Our inelastic neutron scattering experiments reveal a single neutron spin resonance mode exhibiting weak dispersion along c axis in NaFe0.98Cu0.02As . The resonance is high in energy relative to the superconducting transition temperature Tc but weak in intensity, likely resulting from impurity effects. These results are similar to other iron pnictides superconductors despite that the superconducting phase in NaFe1 -xCuxAs is continuously connected to an antiferromagnetically ordered insulating phase near x ≈50 % with significant electronic correlations. Therefore, electron correlations is an important ingredient of superconductivity in NaFe1 -xCuxAs and other iron pnictides.

  8. Phase diagram of germanium telluride encapsulated in carbon nanotubes from first-principles searches

    Science.gov (United States)

    Wynn, Jamie M.; Medeiros, Paulo V. C.; Vasylenko, Andrij; Sloan, Jeremy; Quigley, David; Morris, Andrew J.

    2017-12-01

    Germanium telluride has attracted great research interest, primarily because of its phase-change properties. We have developed a general scheme, based on the ab initio random structure searching (AIRSS) method, for predicting the structures of encapsulated nanowires, and using this we predict a number of thermodynamically stable structures of GeTe nanowires encapsulated inside carbon nanotubes of radii under 9 Å . We construct the phase diagram of encapsulated GeTe, which provides quantitative predictions about the energetic favorability of different filling structures as a function of the nanotube radius, such as the formation of a quasi-one-dimensional rock-salt-like phase inside nanotubes of radii between 5.4 and 7.9 Å . Simulated TEM images of our structures show excellent agreement between our results and experimental TEM imagery. We show that, for some nanotubes, the nanowires undergo temperature-induced phase transitions from one crystalline structure to another due to vibrational contributions to the free energy, which is a first step toward nano-phase-change memory devices.

  9. Solid-liquid equilibria in the ternary system NaBr-KBr-H2O at 398 K

    Science.gov (United States)

    Cui, Rui-Zhi; Zhang, Ting-Ting; Wang, Wei; Sang, Shi-Hua

    2017-09-01

    The solubilities of the ternary system NaBr-KBr-H2O were investigated by isothermal method at 398 K. On the basis of the experimental data, the phase diagram was plotted. In the phase diagram of ternary system NaBr-KBr-H2O at 398 K, no complex salt or solid solution was found. It belongs to simple co-saturation type. There are only one invariant point, two univariant curves, and two crystallization fields corresponding to NaBr and KBr. Using the equilibrium solubilities data of the ternary system at 398 K, mixing ioninteraction parameter ΨNa,K,Br of Pitzer's equation was fitted by multiple linear regression method. Based on the Pitzer model and its extended Harvie-Weare (HW) model, the solubilities of phase equilibrium in the ternary system NaBr-KBr-H2O at 398 K were calculated. The phase diagram of the ternary system was plotted. The results show that calculated values have a good agreement with measured experimental data. It can demonstrate the accuracy of the experimental data, and it also shows that reasonable parameters of the Pitzer model can be used in ternary system NaBr-KBr-H2O at 398 K.

  10. Summation of all petal-shaped diagrams in O(N) model near the phase transition temperature

    CERN Document Server

    Bordag, M

    2002-01-01

    The temperature phase transition in the theory of the N-component scalar field is studied. The weak phase transition of the first order is obtained in the approximation of summation of all petal-shaped diagrams. By the N -> infinity it becomes the phase transition of the second order. The comparison with other approaches is carried out. The necessary data on the Legendre transformation of the second order and Schwinger-Dyson equations are presented. The gap equations are solved in the approximation of summation of all petal-shaped diagrams for the arbitrary N

  11. Correlation between viscous-flow activation energy and phase diagram in four systems of Cu-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ning Shuang [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Bian Xiufang, E-mail: xfbian@sdu.edu.c [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Ren Zhenfeng [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2010-09-01

    Activation energy is obtained from temperature dependence of viscosities by means of a fitting to the Arrhenius equation for liquid alloys of Cu-Sb, Cu-Te, Cu-Sn and Cu-Ag systems. We found that the changing trend of activation energy curves with concentration is similar to that of liquidus in the phase diagrams. Moreover, a maximum value of activation energy is in the composition range of the intermetallic phases and a minimum value of activation energy is located at the eutectic point. The correlation between the activation energy and the phase diagrams has been further discussed.

  12. The phase diagram and the magnetic structure of nuclear spins in elemental copper below 60 nK

    DEFF Research Database (Denmark)

    Siemensmeyer, K.; Steiner, M.; Weinfurther, H.

    1992-01-01

    The phase diagram for nuclear magnetic order is elemental copper and the corresponding ordering vectors were investigated by neutron diffraction at nanokelvin temperatures. The intermediate phase is characterized by an ordering vector (O 2/3 2/3). This is the first time that this type of order...

  13. Dynamical phase diagram of quantum spin chains with long-range interactions

    Science.gov (United States)

    Halimeh, Jad C.; Zauner-Stauber, Valentin

    2017-10-01

    Using an infinite matrix product state (iMPS) technique based on the time-dependent variational principle (TDVP), we study two major types of dynamical phase transitions (DPT) in the one-dimensional transverse-field Ising model (TFIM) with long-range power-law (∝1 /rα with r interspin distance) interactions out of equilibrium in the thermodynamic limit—DPT-I: based on an order parameter in a (quasi-)steady state, and DPT-II: based on nonanalyticities (cusps) in the Loschmidt-echo return rate. We construct the corresponding rich dynamical phase diagram, while considering different quench initial conditions. We find a nontrivial connection between both types of DPT based on their critical lines. Moreover, and very interestingly, we detect a new DPT-II dynamical phase in a certain range of interaction exponent α , characterized by what we call anomalous cusps that are distinct from the regular cusps usually associated with DPT-II. Our results provide the characterization of experimentally accessible signatures of the dynamical phases studied in this work.

  14. Electronic phase diagram of LixCoO2 revisited with potentiostatically deintercalated single crystals

    Science.gov (United States)

    Ou-Yang, T. Y.; Huang, F.-T.; Shu, G. J.; Lee, W. L.; Chu, M.-W.; Liu, H. L.; Chou, F. C.

    2012-01-01

    Electronic phase diagram of LixCoO2 has been reexamined using potentiostatically de-intercalated single-crystal samples. Stable phases of x˜0.87, 0.72, 0.53, 0.50, 0.43, and 0.33 were found and isolated for physical property studies. A-type and chain-type antiferromagnetic orderings have been suggested from magnetic susceptibility measurement results in x˜0.87 and 0.50 below approximately 10 and 200 K, respectively, similar to those found in NaxCoO2 system. There is no Li vacancy superlattice ordering observed at room temperature for the electronically stable phase Li0.72CoO2 as revealed by synchrotron x-ray Laue diffraction. The peculiar magnetic anomaly near ˜175 K as often found in powder samples of x˜0.46-0.78 cannot be isolated through this single-crystal potentiostatic method, which supports the previously proposed explanation to be a surface stabilized phase of significant thermal hysteresis and aging character.

  15. Monte Carlo modeling the phase diagram of magnets with the Dzyaloshinskii - Moriya interaction

    Science.gov (United States)

    Belemuk, A. M.; Stishov, S. M.

    2017-11-01

    We use classical Monte Carlo calculations to model the high-pressure behavior of the phase transition in the helical magnets. We vary values of the exchange interaction constant J and the Dzyaloshinskii-Moriya interaction constant D, which is equivalent to changing spin-spin distances, as occurs in real systems under pressure. The system under study is self-similar at D / J = constant , and its properties are defined by the single variable J / T , where T is temperature. The existence of the first order phase transition critically depends on the ratio D / J . A variation of J strongly affects the phase transition temperature and width of the fluctuation region (the ;hump;) as follows from the system self-similarity. The high-pressure behavior of the spin system depends on the evolution of the interaction constants J and D on compression. Our calculations are relevant to the high pressure phase diagrams of helical magnets MnSi and Cu2OSeO3.

  16. Quantum phase diagram of the half filled Hubbard model with bond-charge interaction

    Energy Technology Data Exchange (ETDEWEB)

    Dobry, A.O., E-mail: dobry@ifir-conicet.gov.a [Facultad de Ciencias Exactas Ingenieria y Agrimensura, Universidad Nacional de Rosario and Instituto de Fisica Rosario, Bv. 27 de Febrero 210 bis, 2000 Rosario (Argentina); Aligia, A.A. [Centro Atomico Bariloche and Instituto Balseiro, Comision Nacional de Energia Atomica, 8400 Bariloche (Argentina)

    2011-02-21

    Using quantum field theory and bosonization, we determine the quantum phase diagram of the one-dimensional Hubbard model with bond-charge interaction X in addition to the usual Coulomb repulsion U at half-filling, for small values of the interactions. We show that it is essential to take into account formally irrelevant terms of order X. They generate relevant terms proportional to X{sup 2} in the flow of the renormalization group (RG). These terms are calculated using operator product expansions. The model shows three phases separated by a charge transition at U=U{sub c} and a spin transition at U=U{sub s}>U{sub c}. For UU{sub s}, the system is in the spin-density wave phase as in the usual Hubbard model. For intermediate values U{sub c}phase, which is absent in the ordinary Hubbard model with X=0. We obtain that the charge transition remains at U{sub c}=0 for X{ne}0. Solving the RG equations for the spin sector, we provide an analytical expression for U{sub s}(X). The results, with only one adjustable parameter, are in excellent agreement with numerical ones for X

  17. Spin Structures and Phase Diagrams of Extended Spatially Completely Anisotropic Triangular Lattice Antiferromagnets

    Science.gov (United States)

    Sakakida, Keishiro; Shimahara, Hiroshi

    2017-12-01

    Motivated by recently discovered organic antiferromagnets, we examine an extended triangular lattice that consists of two types of triangles of bonds with exchange coupling constants Jℓ and J'ℓ (ℓ= 1, 2, and 3), respectively. The simplified system with Jℓ = J'ℓ > 0 is the spatially completely anisotropic triangular lattice (SCATL) antiferromagnet examined previously. The extended system, which we call an extended SCATL (ESCATL), has two different spatial anisotropy parameters J3/J2 and J'3/J'2 when J1 = J'1 is assumed. We derive classical phase diagrams and spin structures. It is found that the ESCATL antiferromagnet exhibits two up-up-down-down (uudd) phases when the imbalance of the anisotropy parameters is significant, in addition to the three Néel phases that occur in the SCATL. When the model parameters vary, these collinear phases are continuously connected by the spiral-spin phase. Using the available model parameters for the organic compounds λ-(BETS)2XCl4 (X = Fe and Ga), we examine the stabilities of the spin structures of the independent π-electron system, which is considered to primarily sustain the magnetic order, where BETS represents bis(ethylenedithio)tetraselenafulvalene. It is found that one of the uudd phases has an energy close to the ground-state energy for λ-(BETS)2FeCl4. We discuss the relevance of the magnetic anion FeCl4 and the quantum fluctuation to the magnetism of these compounds. When J'3 = 0, the system is reduced to a trellis lattice antiferromagnet. The system exhibits a stripe spiral-spin phase, which comprises one-dimensional spiral-spin states stacked alternately.

  18. Phase diagram of the spin-3/2 Blume-Capel model in three dimensions.

    Science.gov (United States)

    Grollau, S

    2002-05-01

    We use a thermodynamically self-consistent theory to obtain the phase diagram of the ferromagnetic spin-3/2 Blume-Capel model on the simple cubic lattice. The theory is based on an Ornstein-Zernike approximation where the direct correlation function is truncated and the dependence upon the thermodynamic variables is determined by a set of two coupled partial differential equations. Within this framework, we localize the critical line in zero external field with high accuracy and in good agreement with previous Monte Carlo analysis. At low temperature, in contrast with Monte Carlo results, we find a first-order transition line ending at a critical end point whose coordinates are given by (k(B)T(c)/Jc=0.213+/-0.003,Delta(c)/Jc=0.491+/-0.001).

  19. Magnetic phase diagram of the anisotropic double-exchange model a Monte Carlo study

    CERN Document Server

    Yi, H S; Hur, N H

    2000-01-01

    The magnetic phase diagram of highly anisotropic double-exchange model systems is investigated as a function of the ratio of the anisotropic hopping integrals, i.e., t sub c /t sub a sub b , on a three-dimensional lattice by using Monte Carlo calculations. The magnetic domain structure at low temperature is found to be a generic property of the strong anisotropy region. Moreover, the t sub c /t sub a sub b ratio is crucial in determining the anisotropic charge transport due to the relative spin orientation of the magnetic domains. As a result, we show the anisotropic hopping integral is the most likely cause of the magnetic domain structure. It is noted that the competition between the reduced interlayer double-exchange coupling and the thermal frustration of the ordered two-dimensional ferromagnetic layer seems to be crucial in understanding the properties of layered manganites.

  20. Melt-gas phase equilibria and state diagrams of the selenium-tellurium system

    Science.gov (United States)

    Volodin, V. N.; Trebukhov, S. A.; Burabaeva, N. M.; Nitsenko, A. V.

    2017-05-01

    The partial pressures of saturated vapor of the components in the Se-Te system are determined and presented in the form of temperature-concentration dependences from which the boundaries of the melt-gas phase transition are calculated at atmospheric pressure and vacuums of 2000 and 100 Pa. The existence of azeotropic mixtures is revealed. It is found that the points of inseparably boiling melts correspond to 7.5 at % of Se and 995°C at 101325 Pa, 10.9 at % at 673°C and 19.5 at % at 522°C in vacuums of 2000 and 100 Pa, respectively. A complete state diagram is constructed, including the fields of gas-liquid equilibria at atmospheric and low pressures, the boundaries of which allow us to assess the behavior of selenium and tellurium upon distillation fractionation.

  1. Magnetic phase diagram of ErNi2B2C

    DEFF Research Database (Denmark)

    Jensen, A.; Toft, K.N.; Abrahamsen, A.B.

    2004-01-01

    The magnetic phase diagram of the superconductor ErNi2B2C (T-c = 11 K and T-N = 6 K) has been studied by neutron diffraction as a function of temperature and magnetic field applied along the symmetry directions [010], [110] and [001] of the tetragonal crystal structure. A series of commensurate...... magnetic structures, consistent with a transversely polarized spin-density wave with modulation vectors Q = n/ma* (0.55 less than or equal to n/m field model that has been established from...... an analysis of bulk magnetization and zero-field neutron diffraction data. The model accounts for most of the observed features but fails to explain the occurrence of a small component Qdelta approximate to -0.005b* observed close to H-c2 when the field is applied along [110]. (C) 2004 Elsevier B.V. All...

  2. Unusual Phase Diagram of CeOs4Sb12

    Energy Technology Data Exchange (ETDEWEB)

    Ho, P. -C. [Fresno State Univ., Fresno, CA (United States); Goddard, P. A. [Warwick Univ., Coventry (United Kingdom); Maple, M. B. [Univ. of California, San Diego, CA (United States); Singleton, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-01

    Filled skutterudite compounds, with the formula MT4X12, where M is an alkali metal, alkaline-earth, lanthanide, or actinide, T is Fe, Ru, or Os, and X is P, As, or Sb, display a wide variety of interesting phenomena caused by strong electron correlations [1]. Among these, the three compounds CeOs4Sb12, PrOs4Sb12, and NdOs4Sb12, formed by employing Periodic Table neighbors for M, span the range from an antiferromagnetic (AFM) semimetal (M = Ce) via a 1.85 K unconventional (quadrupolar-fluctuation mediated) superconductor (M = Pr) to a 1 K ferromagnet (FM; M = Nd). In the course of an extended study of these compounds, we uncovered an unusual phase diagram for CeOs4Sb12.

  3. Phase diagrams of the multitrace quartic matrix models of noncommutative Φ4 theory

    Science.gov (United States)

    Ydri, B.; Ramda, K.; Rouag, A.

    2016-03-01

    We report a direct and robust calculation, free from ergodic problems, of the nonuniform-to-uniform (stripe) transition line of noncommutative Φ24 by means of an exact Metropolis algorithm applied to the first nontrivial multitrace correction of this theory on the fuzzy sphere. In fact, we reconstruct the entire phase diagram including the Ising, matrix, and stripe boundaries together with the triple point. We also report that the measured critical exponents of the Ising transition line agrees with the Onsager values in two dimensions. The triple point is identified as a termination point of the one-cut-to-two-cut transition line and is located at (b ˜,c ˜)=(-1.55 ,0.4 ), which compares favorably with a previous Monte Carlo estimate.

  4. The solid-liquid phase diagrams of binary mixtures of even saturated fatty acids differing by six carbon atoms

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Mariana C. [LPT, Department of Chemical Process, School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13083-970, Campinas-SP (Brazil); EXTRAE, Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, P.O. Box 6121, 13083-862, Campinas-SP (Brazil); CICECO, Departamento de Quimica da Universidade de Aveiro, 3810-193 Aveiro (Portugal); Rolemberg, Marlus P. [DETQI, Department of Chemical Technology, Federal University of Maranhao (UFMA), Sao Luis, Maranhao (Brazil); Meirelles, Antonio J.A. [EXTRAE, Department of Food Engineering, Faculty of Food Engineering, University of Campinas, UNICAMP, P.O. Box 6121, 13083-862, Campinas-SP (Brazil); Coutinho, Joao A.P. [CICECO, Departamento de Quimica da Universidade de Aveiro, 3810-193 Aveiro (Portugal); Kraehenbuehl, M.A., E-mail: mak@feq.unicamp.br [LPT, Department of Chemical Process, School of Chemical Engineering, University of Campinas, UNICAMP, P.O. Box 6066, 13083-970, Campinas-SP (Brazil)

    2009-12-10

    This study was aimed at using the solid-liquid phase diagrams for three binary mixtures of saturated fatty acids, especially the phase transitions below the liquidus line. These mixtures are compounded by caprylic acid (C{sub 8:0}) + myristic acid (C{sub 14:0}), capric acid (C{sub 10:0}) + palmitic acid (C{sub 16:0}), lauric acid (C{sub 12:0}) + stearic acid (C{sub 18:0}), differing by six carbon atoms between carbon chains. The phase diagrams were obtained by differential scanning calorimetry (DSC). The polarized light microscopy was used to complement the characterization for a full grasp of the phase diagram. Not only do these phase diagrams present peritectic and eutectic reactions, but also metatectic reactions, due to solid-solid phase transitions common, in fatty acids. These findings have contributed to the elucidation of the phase behavior of these important biochemical molecules with implications in various industrial production.

  5. Study of Monte Carlo Simulation Method for Methane Phase Diagram Prediction using Two Different Potential Models

    KAUST Repository

    Kadoura, Ahmad

    2011-06-06

    Lennard‐Jones (L‐J) and Buckingham exponential‐6 (exp‐6) potential models were used to produce isotherms for methane at temperatures below and above critical one. Molecular simulation approach, particularly Monte Carlo simulations, were employed to create these isotherms working with both canonical and Gibbs ensembles. Experiments in canonical ensemble with each model were conducted to estimate pressures at a range of temperatures above methane critical temperature. Results were collected and compared to experimental data existing in literature; both models showed an elegant agreement with the experimental data. In parallel, experiments below critical temperature were run in Gibbs ensemble using L‐J model only. Upon comparing results with experimental ones, a good fit was obtained with small deviations. The work was further developed by adding some statistical studies in order to achieve better understanding and interpretation to the estimated quantities by the simulation. Methane phase diagrams were successfully reproduced by an efficient molecular simulation technique with different potential models. This relatively simple demonstration shows how powerful molecular simulation methods could be, hence further applications on more complicated systems are considered. Prediction of phase behavior of elemental sulfur in sour natural gases has been an interesting and challenging field in oil and gas industry. Determination of elemental sulfur solubility conditions helps avoiding all kinds of problems caused by its dissolution in gas production and transportation processes. For this purpose, further enhancement to the methods used is to be considered in order to successfully simulate elemental sulfur phase behavior in sour natural gases mixtures.

  6. Neutron-diffraction studies of the nuclear magnetic phase diagram of copper

    DEFF Research Database (Denmark)

    Annila, A.J.; Clausen, Kurt Nørgaard; Oja, A.S.

    1992-01-01

    -field phase and the intermediate-field structure is of first order. The change from (0 2/3 2/3) at intermediate fields to (100) at zero field is associated with a large region (0.02 less-than-or-equal-to B less-than-or-equal-to 0.06 mT) of coexisting-(100) and (0 2/3 2/3)-type Bragg peaks, and can......We have studied the spontaneous antiferromagnetic (AF) order in the nuclear spin system of copper by use of neutron-diffraction experiments at nanokelvin temperatures. Copper is an ideal model system as a nearest-neighbor-dominated spin-3/2 fcc antiferromagnet. The phase diagram has been...... investigated by measuring the magnetic-field dependence of the (100) reflection, characteristic of a type-I AF structure, and of a Bragg peak at (0 2/3 2/3). The results suggest the presence of high-field (100) phases at 0.12 less-than-or-equal-to B less-than-or-equal-to B(c) almost-equal-to 0.26 mT, for B...

  7. Phase diagram of multiferroic KCu3As2O7(OD ) 3

    Science.gov (United States)

    Nilsen, Gøran J.; Simonet, Virginie; Colin, Claire V.; Okuma, Ryutaro; Okamoto, Yoshihiko; Tokunaga, Masashi; Hansen, Thomas C.; Khalyavin, Dmitry D.; Hiroi, Zenji

    2017-06-01

    The layered compound KCu3As2O7(OD ) 3 , comprising distorted kagome planes of S =1 /2 Cu2 + ions, is a recent addition to the family of type-II multiferroics. Previous zero-field neutron diffraction work has found two helically ordered regimes in KCu3As2O7(OD ) 3 , each showing a distinct coupling between the magnetic and ferroelectric order parameters. Here, we extend this work to magnetic fields up to 20 T using neutron powder diffraction, capacitance, polarization, and high-field magnetization measurements, hence determining the H -T phase diagram. We find metamagnetic transitions in both low-temperature phases around μ0Hc˜3.7 T, which neutron powder diffraction reveals to correspond to rotations of the helix plane away from the easy plane, as well as a small change in the propagation vector. Furthermore, we show that the sign of the ferroelectric polarization is reversible in a magnetic field, although no change is observed (or expected on the basis of the magnetic structure) due to the transition at 3.7 T. We finally justify the temperature dependence of the polarization in both zero-field ordered phases by a symmetry analysis of the free energy expansion, and attempt to account for the metamagnetic transition by adding anisotropic exchange interactions to our existing model for KCu3As2O7(OD ) 3 .

  8. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    Science.gov (United States)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  9. Liquid part of the phase diagram and percolation line for two-dimensional Mercedes-Benz water

    Science.gov (United States)

    Urbic, T.

    2017-09-01

    Monte Carlo simulations and Wertheim's thermodynamic perturbation theory (TPT) are used to predict the phase diagram and percolation curve for the simple two-dimensional Mercedes-Benz (MB) model of water. The MB model of water is quite popular for explaining water properties, but the phase diagram has not been reported till now. In the MB model, water molecules are modeled as two-dimensional Lennard-Jones disks, with three orientation-dependent hydrogen-bonding arms, arranged as in the MB logo. The liquid part of the phase space is explored using grand canonical Monte Carlo simulations and two versions of Wertheim's TPT for associative fluids, which have been used before to predict the properties of the simple MB model. We find that the theory reproduces well the physical properties of hot water but is less successful at capturing the more structured hydrogen bonding that occurs in cold water. In addition to reporting the phase diagram and percolation curve of the model, it is shown that the improved TPT predicts the phase diagram rather well, while the standard one predicts a phase transition at lower temperatures. For the percolation line, both versions have problems predicting the correct position of the line at high temperatures.

  10. Phase behaviour of 2D MnWO x and FeWO x ternary oxide layers on Pd(1 0 0)

    Science.gov (United States)

    Doudin, N.; Kuhness, D.; Blatnik, M.; Netzer, F. P.; Surnev, S.

    2017-06-01

    The structure and properties of ternary oxide materials at the nanoscale are poorly explored both on experimental and theoretical levels. With this work we demonstrate the successful on-surface synthesis of two-dimensional (2D) ternary oxide, MnWO x and FeWO x , nanolayers on a Pd(1 0 0) surface and the understanding of their new structure and phase behaviour with the help of state-of-art surface structure and spectroscopy techniques. We find that the 2D MnWO x and FeWO x phases, prepared under identical thermodynamic conditions, exhibit similar structural properties, reflecting the similarity of the bulk MnWO4 and FeWO4 phases with the wolframite structure. Structure models of prototypical 2D ternary oxide phases are proposed and discussed in the light of new structure architecture concepts which have no analogues in the bulk.

  11. Phase diagram with an enhanced spin-glass region of the mixed Ising-XY magnet LiHoxEr1-xF4

    DEFF Research Database (Denmark)

    Piatek, J. O.; Dalla Piazza, B.; Nikseresht, N.

    2013-01-01

    We present the experimental phase diagram of LiHoxEr1-xF4, a dilution series of dipolar-coupled model magnets. The phase diagram was determined using a combination of ac susceptibility and neutron scattering. Three unique phases in addition to the Ising ferromagnet LiHoF4 and the XY antiferromagnet...

  12. Phase Diagram and Transformations of Iron Pentacarbonyl to nm Layered Hematite and Carbon-Oxygen Polymer under Pressure

    Science.gov (United States)

    Ryu, Young Jay; Kim, Minseob; Yoo, Choong-Shik

    2015-10-01

    We present the phase diagram of Fe(CO)5, consisting of three molecular polymorphs (phase I, II and III) and an extended polymeric phase that can be recovered at ambient condition. The phase diagram indicates a limited stability of Fe(CO)5 within a pressure-temperature dome formed below the liquid- phase II- polymer triple point at 4.2 GPa and 580 K. The limited stability, in turn, signifies the temperature-induced weakening of Fe-CO back bonds, which eventually leads to the dissociation of Fe-CO at the onset of the polymerization of CO. The recovered polymer is a composite of novel nm-lamellar layers of crystalline hematite Fe2O3 and amorphous carbon-oxygen polymers. These results, therefore, demonstrate the synthesis of carbon-oxygen polymer by compressing Fe(CO)5, which advocates a novel synthetic route to develop atomistic composite materials by compressing organometallic compounds.

  13. Investigation of phase diagrams and physical stability of drug-polymer solid dispersions.

    Science.gov (United States)

    Lu, Jiannan; Shah, Sejal; Jo, Seongbong; Majumdar, Soumyajit; Gryczke, Andreas; Kolter, Karl; Langley, Nigel; Repka, Michael A

    2015-01-01

    Solid dispersion technology has been widely explored to improve the solubility and bioavailability of poorly water-soluble compounds. One of the critical drawbacks associated with this technology is the lack of physical stability, i.e. the solid dispersion would undergo recrystallization or phase separation thus limiting a product's shelf life. In the current study, the melting point depression method was utilized to construct a complete phase diagram for felodipine (FEL)-Soluplus® (SOL) and ketoconazole (KTZ)-Soluplus® (SOL) binary systems, respectively, based on the Flory-Huggins theory. The miscibility or solubility of the two compounds in SOL was also determined. The Flory-Huggins interaction parameter χ values of both systems were calculated as positive at room temperature (25 °C), indicating either compound was miscible with SOL. In addition, the glass transition temperatures of both solid dispersion systems were theoretically predicted using three empirical equations and compared with the practical values. Furthermore, the FEL-SOL solid dispersions were subjected to accelerated stability studies for up to 3 months.

  14. A Centrality and Event Plane Detector for STAR to Complete the Phase Diagram of Quantum Chromodynamics

    Science.gov (United States)

    Halal, George; STAR Collaboration

    2017-09-01

    The properties of the nearly perfect liquid, Quark Gluon Plasma (QGP), which filled the universe a microsecond after the Big Bang are studied by colliding heavy-ions at relativistic energies. Our project focuses on building and testing an Event Plane Detector (EPD) for the STAR experiment and analyzing the data collected from collisions. When a minimum ionizing particle hits one of the optically-isolated tiles of this detector, which are made of scintillator plastic, it lights up. The light then travels through a wavelength-shifting fiber embedded in the tile to a clear optical fiber to be detected by silicon photo-multipliers. This detector is an improved version of the Beam-Beam Counter, which is currently at STAR. It will help us measure the centrality and event plane of collisions with more precision. Data collected will aid us in mapping out the transition phase between the QGP and hadronic matter, which evolved into the chemical elements we see today, and in searching for a unique critical point in the phase diagram of Quantum Chromodynamics matter. In 2017, a commissioning run has taken place at RHIC, colliding protons at 510 GeV and gold ions at 54.4 GeV. Some data analysis from one eighth of the EPD that is installed will also be discussed.

  15. Critical assessment and optimization of phase diagrams and thermodynamic properties of RE–Zn systems – Part II – Y–Zn, Eu–Zn, Gd–Zn, Tb–Zn, Dy–Zn, Ho–Zn, Er–Zn, Tm–Zn, Yb–Zn and Lu–Zn

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhijun; Pelton, Arthur D.

    2015-08-25

    Highlights: • All phase diagram and thermodynamic data critically assessed for 7 (10) binary systems. • All phases described by optimized thermodynamic models. • All systems assessed simultaneously thereby exploiting trends in rare earth series. • Results will be combined with RE–Zn, Mg–Zn and ternary optimizations. • Final product will be a database for multicomponent Mg–RE–Zn systems. - Abstract: All available phase diagram and thermodynamic data for the Y–Zn, Eu–Zn, Gd–Zn, Tb–Zn, Dy–Zn, Ho–Zn, Er–Zn, Tm–Zn, Yb–Zn and Lu–Zn systems have been collected and critically assessed. Optimized model parameters for the thermodynamic properties of all phases have been obtained. Trends in the properties of the rare earth (RE)–Zn systems as one traverses the rare earth series have been exploited for purposes of estimating missing data and for checking existing data for consistency.

  16. Thermodynamic investigation of the τ{sub 4}-Al–Fe–Si intermetallic ternary phase: A density-functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Amirkhanyan, Lilit [Institute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Str. 23, D-09596 Freiberg (Germany); Weissbach, Torsten, E-mail: torsten.weissbach@physik.tu-freiberg.de [Institute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Str. 23, D-09596 Freiberg (Germany); Gruber, Thomas [Institute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Str. 23, D-09596 Freiberg (Germany); Zienert, Tilo; Fabrichnaya, Olga [Institute of Material Science, TU Bergakademie Freiberg, Gustav-Zeuner-Str. 5, D-09595 Freiberg (Germany); Kortus, Jens [Institute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Str. 23, D-09596 Freiberg (Germany)

    2014-06-15

    Highlights: • The heat capacity of τ{sub 4}-Al–Fe–Si is calculated ab initio via DFT and QHA. • Calorimetry measurements of the heat capacity between 930 and 1050 K are shown. • The ab initio method is more accurate than the Neumann–Kopp empirical formula. • Thermal and elastic properties are calculated. - Abstract: With the increasing use of light materials, controlling the purity and composition of these materials during production becomes more important. Phase diagrams calculated using thermodynamic data are an important tool in modeling of phase formation and composition. Here we discuss the measurement and calculation of thermodynamic data for the ternary τ{sub 4} compound from the Al–Fe–Si system. We focus on the heat capacity, a central quantity which is used for temperature extrapolations of the Gibbs energy. The measurement is restricted to a narrow temperature interval, therefore calculations are used to gain data over a wide temperature range. Calculations using density-functional theory in combination with the quasi-harmonic approximation (DFT–QHA) are compared to a simple empiric formula known as the Neumann–Kopp (N–K) rule. The DFT–QHA calculations are in good agreement with the differential scanning calorimetry (DSC) measurement. Both calculations reproduce the same order of magnitude of the heat capacity as seen in measurements. However the N–K approximated c{sub p} shows systematic deviations from the expected behavior, and the difference between the two calculations increases with temperature. Above the melting point of Al, which is still below the melting point of the compound τ{sub 4}, the N–K method is not applicable.

  17. Understanding the bond-energy, hardness, and adhesive force from the phase diagram via the electron work function

    Science.gov (United States)

    Lu, Hao; Huang, Xiaochen; Li, Dongyang

    2014-11-01

    Properties of metallic materials are intrinsically determined by their electron behavior. However, relevant theoretical treatment involving quantum mechanics is complicated and difficult to be applied in materials design. Electron work function (EWF) has been demonstrated to be a simple but fundamental parameter which well correlates properties of materials with their electron behavior and could thus be used to predict material properties from the aspect of electron activities in a relatively easy manner. In this article, we propose a method to extract the electron work functions of binary solid solutions or alloys from their phase diagrams and use this simple approach to predict their mechanical strength and surface properties, such as adhesion. Two alloys, Fe-Ni and Cu-Zn, are used as samples for the study. EWFs extracted from phase diagrams show same trends as experimentally observed ones, based on which hardness and surface adhesive force of the alloys are predicted. This new methodology provides an alternative approach to predict material properties based on the work function, which is extractable from the phase diagram. This work may also help maximize the power of phase diagram for materials design and development.

  18. Phase Diagram of the Bose Condensation of Interwell Excitons in GaAs/AlGaAs Double Quantum Wells

    DEFF Research Database (Denmark)

    Dremin, A. A.; Timofeev, V. B.; Larionov, A. V.

    2002-01-01

    observed in the experiment was attributed to Bose–Einstein condensation in a quasi-two-dimensional system of interwell excitons. In the temperature interval studied (0.5–3.6) K, the critical exciton density and temperature were determined and a phase diagram outlining the exciton condensate region...

  19. Molecular Simulation of the Phase Diagram of Methane Hydrate: Free Energy Calculations, Direct Coexistence Method, and Hyperparallel Tempering.

    Science.gov (United States)

    Jin, Dongliang; Coasne, Benoit

    2017-10-24

    Different molecular simulation strategies are used to assess the stability of methane hydrate under various temperature and pressure conditions. First, using two water molecular models, free energy calculations consisting of the Einstein molecule approach in combination with semigrand Monte Carlo simulations are used to determine the pressure-temperature phase diagram of methane hydrate. With these calculations, we also estimate the chemical potentials of water and methane and methane occupancy at coexistence. Second, we also consider two other advanced molecular simulation techniques that allow probing the phase diagram of methane hydrate: the direct coexistence method in the Grand Canonical ensemble and the hyperparallel tempering Monte Carlo method. These two direct techniques are found to provide stability conditions that are consistent with the pressure-temperature phase diagram obtained using rigorous free energy calculations. The phase diagram obtained in this work, which is found to be consistent with previous simulation studies, is close to its experimental counterpart provided the TIP4P/Ice model is used to describe the water molecule.

  20. Quantum phase diagram of the integrable px+ipy fermionic superfluid

    DEFF Research Database (Denmark)

    Rombouts, Stefan; Dukelsky, Jorge; Ortiz, Gerardo

    2010-01-01

    We determine the zero-temperature quantum phase diagram of a px+ipy pairing model based on the exactly solvable hyperbolic Richardson-Gaudin model. We present analytical and large-scale numerical results for this model. In the continuum limit, the exact solution exhibits a third-order quantum pha...

  1. High pressure phase equilibrium of ternary and multicomponent alkane mixtures in the temperature range from (283–473) K

    DEFF Research Database (Denmark)

    Regueira Muñiz, Teresa; Liu, Yiqun; Wibowo, Ahmad A.

    2017-01-01

    Asymmetric multicomponent alkane mixtures can be used as model systems for reservoir fluids. We have prepared two ternary mixtures, methane/n-butane/n-decane and methane/n-butane/n-dodecane, and two multicomponent mixtures composed of methane/n-butane/n-octane/n-dodecane/n-hexadecane/n-eicosane a......Asymmetric multicomponent alkane mixtures can be used as model systems for reservoir fluids. We have prepared two ternary mixtures, methane/n-butane/n-decane and methane/n-butane/n-dodecane, and two multicomponent mixtures composed of methane......-Redlich-Kwong (SRK), Peng-Robinson (PR), Perturbed Chain Statistical Associating Fluid Theory (PC-SAFT), and Soave-Benedict-Webb-Rubin (Soave-BWR), have been used to predict phase equilibrium of the measured systems. PR and PC-SAFT give better results than others and Soave-BWR gives poor phase envelope predictions...... the fractions just below the saturation pressures are difficult to predict. Moreover GERG-2008 has also been tested with the measured methane/n-butane/n-decane system. It over predicts the saturation pressures but predicts low pressure liquid fractions quite accurately....

  2. Self-trapping phase diagram for the strongly correlated extended Holstein-Hubbard model in two-dimensions

    Science.gov (United States)

    Sankar, I. V.; Chatterjee, Ashok

    2014-07-01

    The two-dimensional extended Holstein-Hubbard model is investigated in the strong correlation regime to study the nature of self-trapping transition and the polaron phase diagram in the absence of superconductivity. Using a series of canonical transformations followed by zero-phonon averaging the extended Holstein-Hubbard model is converted into an effective extended Hubbard model which is subsequently transformed into an effective t- J model in the strong correlation limit. This effective t- J model is finally solved using the mean-field Hartree-Fock approximation to show that the self-trapping transition is continuous in the anti-adiabatic limit while it is discontinuous in the adiabatic limit. The phase diagrams for the localization-delocalization transition, namely the phase line and the phase surface separating the small polaron and large polaron states are also shown.

  3. Figure S1. Ternary phase diagram of C18TAB/SDS/H2O at 298K ...

    Indian Academy of Sciences (India)

    Administrator

    SDS/H2O system, the dilute surfactant region has a maximum total surfactant composition of. 0.1wt%. Regions: Dotted-shade - micelle; unmarked zone -. ; cross marked zone - turbid solution with precipitate; broken line - equimolar composition.

  4. Experimental investigations and phase-field simulations of triple-phase-separation kinetics within liquid ternary Co-Cu-Pb immiscible alloys.

    Science.gov (United States)

    Wu, Y H; Wang, W L; Yan, N; Wei, B

    2017-05-01

    The phase-separation kinetics and microstructure evolution mechanisms of liquid ternary Co_{43}Cu_{40}Pb_{17} immiscible alloys are investigated by both the drop tube technique and phase-field method. Two successive phase separations take place during droplet falling and lead to the formation of a three-phase three-layer core-shell structure composed of a Co-rich core, a Cu-rich middle layer, and a Pb-rich shell. The Pb-rich shell becomes more and more conspicuous as droplet diameter decreases. Meanwhile, the Co-rich core center gradually moves away from the core-shell center. Theoretical analyses show that a larger temperature gradient inside a smaller alloy droplet induces the accelerated growth of the surface segregation shell during triple-phase separation. The residual Stokes motion and the asymmetric Marangoni convection result in the appearance of an eccentric Co-rich core and the core deviation degree is closely related to the droplet size and initial velocity. A three-dimensional phase-field model of ternary immiscible alloys, which considers the successive phase separations under the combined effects of Marangoni convection and surface segregation, is proposed to explore the formation mechanisms of three-phase core-shell structures. The simulated core-shell morphologies are consistent with the experimental observations, which verifies the model's validity in reproducing the core-shell dynamic evolution. Numerical results reveal that the development of three-phase three-layer core-shell structures can be attributed to the primary and then secondary phase separations dominated simultaneously by Marangoni convection and surface segregation. Furthermore, the effects of droplet temperature gradient on the growth kinetics of the surface segregation shell are analyzed in the light of phase-field theory.

  5. Experimental investigations and phase-field simulations of triple-phase-separation kinetics within liquid ternary Co-Cu-Pb immiscible alloys

    Science.gov (United States)

    Wu, Y. H.; Wang, W. L.; Yan, N.; Wei, B.

    2017-05-01

    The phase-separation kinetics and microstructure evolution mechanisms of liquid ternary C o43C u40P b17 immiscible alloys are investigated by both the drop tube technique and phase-field method. Two successive phase separations take place during droplet falling and lead to the formation of a three-phase three-layer core-shell structure composed of a Co-rich core, a Cu-rich middle layer, and a Pb-rich shell. The Pb-rich shell becomes more and more conspicuous as droplet diameter decreases. Meanwhile, the Co-rich core center gradually moves away from the core-shell center. Theoretical analyses show that a larger temperature gradient inside a smaller alloy droplet induces the accelerated growth of the surface segregation shell during triple-phase separation. The residual Stokes motion and the asymmetric Marangoni convection result in the appearance of an eccentric Co-rich core and the core deviation degree is closely related to the droplet size and initial velocity. A three-dimensional phase-field model of ternary immiscible alloys, which considers the successive phase separations under the combined effects of Marangoni convection and surface segregation, is proposed to explore the formation mechanisms of three-phase core-shell structures. The simulated core-shell morphologies are consistent with the experimental observations, which verifies the model's validity in reproducing the core-shell dynamic evolution. Numerical results reveal that the development of three-phase three-layer core-shell structures can be attributed to the primary and then secondary phase separations dominated simultaneously by Marangoni convection and surface segregation. Furthermore, the effects of droplet temperature gradient on the growth kinetics of the surface segregation shell are analyzed in the light of phase-field theory.

  6. The effect of four-spin exchanges on the honeycomb lattice diagram phase of S=3/2 J1-J2 Antiferromagnetic Heisenberg model

    Directory of Open Access Journals (Sweden)

    F Keshavarz

    2017-02-01

    Full Text Available In this study, the effect of four-spin exchanges between the nearest and next nearest neighbor spins of honeycomb lattice on the phase diagram of S=3/2 antiferomagnetic Heisenberg model is considered with two-spin exchanges between the nearest and next nearest neighbor spins. Firstly, the method is investigated with classical phase diagram. In classical phase diagram, in addition to Neel order, classical degeneracy is also seen. The existance of this phase in diagram phase is important because of the probability of the existence of quantum spin liquid in this region for such amount of interaction. To investigate the effect of quantum fluctuation on the stability of the obtained classical phase diagram, linear spin wave theory has been used. Obtained results show that in classical degeneracy regime, the quantum fluctuations cause the order by disorder in the spin system and the ground state is ordered

  7. Magnetic phase diagram of layered manganites in the highly doped regime.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J. F.; Ling, C. D.; Millburn, J. E.; Argyriou, D. N.; Berger, A.; Medarde, M.

    2000-11-02

    The naturally layered colossal magnetoresistive (CMR) manganites La{sub 2{minus}2x}Sr{sub 1+2x}Mn{sub 2}O{sub 7} exhibit an extremely varied range of magnetic and electronic behavior over a very narrow composition range between x = 0.3 and x = 0.5. The successful synthesis in our laboratories of compounds with nominally greater than 50 percent Mn{sup 4+} concentration has now allowed the study of this heretofore unexplored region of the phase diagram. Here we present detailed neutron diffraction measurements of these compounds with doping levels 0.5 < x <1.0. As predicted by simple theories, the type-A layered antiferromagnetic (AF) structure is found at x{approximately}0.5 and the type-G ''rocksalt'' AF structure at x = 1.0. Between these two extremes is found a C-type structure (ferromagnetic rods parallel to b coupled antiferromagnetically to all neighboring rods) stabilized by orbital ordering of y{sup 2} states. Also in this Mn{sup 4+}-rich regime is found a region in which no long-range magnetic order is observed. We discuss how semi-empirical models can explain the variety of magnetic structures and how structural trends as a function of doping corroborate the unifying notion of a shift from in-plane to axial orbital occupation as the Mn{sup 4+} concentration is decreased.

  8. Phase diagram of insulating crystal and quantum Hall states in ABC-stacked trilayer graphene

    Science.gov (United States)

    Côté, R.; Rondeau, Maxime; Gagnon, Anne-Marie; Barlas, Yafis

    2012-09-01

    In the presence of a perpendicular magnetic field, ABC-stacked trilayer graphene's chiral band structure supports a 12-fold degenerate N=0 Landau level (LL). Along with the valley and spin degrees of freedom, the zeroth LL contains additional quantum numbers associated with the LL orbital index n=0,1,2. Remote interlayer hopping terms and external potential difference ΔB between the layers lead to LL splitting by introducing a gap ΔLL between the degenerate zero-energy triplet LL orbitals. Assuming that the spin and valley degrees of freedom are frozen, we study the phase diagram of this system resulting from competition of the single particle LL splitting and Coulomb interactions within the Hartree-Fock approximation at integer filling factors. In some range [ΔLLc,1,ΔLLc,2] of the gap ΔLL, the uniform QH state is unstable to the formation of a crystal state at integer filling factors while outside of this range, the ground state is a uniform quantum Hall state where the electrons occupy the lowest unoccupied LL orbital index. The transition between the uniform and crystal states should be characterized by a Hall plateau transition as a function of ΔLL at a fixed filling factor. We also study the properties of this crystal state and discuss its experimental detection.

  9. Construction and Validation of Binary Phase Diagram for Amorphous Solid Dispersion Using Flory-Huggins Theory.

    Science.gov (United States)

    Bansal, Krishna; Baghel, Uttam Singh; Thakral, Seema

    2016-04-01

    Drug-polymer miscibility is one of the fundamental prerequisite for the successful design and development of amorphous solid dispersion formulation. The purpose of the present work is to provide an example of the theoretical estimation of drug-polymer miscibility and solubility on the basis of Flory-Huggins (F-H) theory and experimental validation of the phase diagram. The F-H interaction parameter, χ d-p, of model system, aceclofenac and Soluplus, was estimated by two methods: by melting point depression of drug in presence of different polymer fractions and by Hildebrand and Scott solubility parameter calculations. The simplified relationship between the F-H interaction parameter and temperature was established. This enabled us to generate free energy of mixing (ΔG mix) curves for varying drug-polymer compositions at different temperatures and finally the spinodal curve. The predicted behavior of the binary system was evaluated through X-ray diffraction, differential scanning calorimetry, and in vitro dissolution studies. The results suggest possibility of employing interaction parameter as preliminary tool for the estimation of drug-polymer miscibility.

  10. Ionic effects on the temperature-force phase diagram of DNA.

    Science.gov (United States)

    Amnuanpol, Sitichoke

    2017-12-01

    Double-stranded DNA (dsDNA) undergoes a structural transition to single-stranded DNA (ssDNA) in many biologically important processes such as replication and transcription. This strand separation arises in response either to thermal fluctuations or to external forces. The roles of ions are twofold, shortening the range of the interstrand potential and renormalizing the DNA elastic modulus. The dsDNA-to-ssDNA transition is studied on the basis that dsDNA is regarded as a bound state while ssDNA is regarded as an unbound state. The ground state energy of DNA is obtained by mapping the statistical mechanics problem to the imaginary time quantum mechanics problem. In the temperature-force phase diagram the critical force F c (T) increases logarithmically with the Na + concentration in the range from 32 to 110 mM. Discussing this logarithmic dependence of F c (T) within the framework of polyelectrolyte theory, it inevitably suggests a constraint on the difference between the interstrand separation and the length per unit charge during the dsDNA-to-ssDNA transition.

  11. Experimental investigation of the dissolution of fractures. From early stage instability to phase diagram

    Science.gov (United States)

    Osselin, Florian; Budek, Agnieszka; Cybulski, Olgierd; Kondratiuk, Pawel; Garstecki, Piotr; Szymczak, Piotr

    2016-04-01

    Dissolution of natural rocks is a fundamental geological process and a key part of landscape formation and weathering processes. Moreover, in current hot topics like Carbon Capture and Storage or Enhanced Oil Recovery, mastering dissolution of the host rock is fundamental for the efficiency and the security of the operation. The basic principles of dissolution are well-known and the theory of the reactive infiltration instability has been extensively studied. However, the experimental aspect has proved very challenging because of the strong dependence of the outcome with pore network, chemical composition, flow rate... In this study we are trying to tackle this issue by using a very simple and efficient device consisting of a chip of pure gypsum inserted between two polycarbonate plates and subjected to a constant flow rate of pure water. Thanks to this device, we are able to control all parameters such as flow rate, fracture aperture, roughness of the walls... but also to observe in situ the progression of the dissolution thanks to the transparency of the polycarbonate which is impossible with 3D rocks. We have been using this experimental set-up to explore and investigate all aspects of the dissolution in a fracture, such as initial instability and phase diagram of different dissolution patterns, and to compare it with theory and simulations, yielding very good agreement and interesting feedbacks on the coupling between flow and chemistry in geological media

  12. Model and phase-diagram analysis of photothermal instabilities in an optomechanical resonator

    Science.gov (United States)

    Bigongiari, Alessandra; Ortu, Antonio; Fuso, Francesco; Arimondo, Ennio; Mannella, Riccardo; Ciampini, Donatella

    2017-10-01

    A study of the phototermal instabilities in a Fabry-Perot cavity is reported, where one mirror consists of a silicon-nitride membrane coated by the molecular organic semiconductor tris(8-hydroxyquinoline) aluminum and silver layers. We propose a theoretical model to describe the back-action associated with the delayed response of the cavity field to the radiation pressure force and the photothermal force. For the case under investigation, the photothermal force response occurs on a timescale that is comparable to that of mirror oscillations and dominates over the radiation pressure force. A phase diagram analysis has been performed to map the stability of the static solution as a function of the control parameters. The model equations are integrated numerically and the time history is compared to experimental measurements of the transmitted field and displacement of the membrane. In both experimental and theoretical data we observe large amplitude oscillations when the cavity length is scanned at a low speed compared to the growth rate of the instability. The perturbation is found to evolve through three regimes: sinusoidal oscillations, double peaks and single peaks followed by a lethargic regime. When the cavity length is scanned in opposite directions, dynamical hysteresis is observed, whose extension has a power law dependence on the scanning rate.

  13. Phase diagrams of dune shape and orientation depending on sand availability.

    Science.gov (United States)

    Gao, Xin; Narteau, Clément; Rozier, Olivier; Courrech du Pont, Sylvain

    2015-09-30

    New evidence indicates that sand availability does not only control dune type but also the underlying dune growth mechanism and the subsequent dune orientation. Here we numerically investigate the development of bedforms in bidirectional wind regimes for two different conditions of sand availability: an erodible sand bed or a localized sand source on a non-erodible ground. These two conditions of sand availability are associated with two independent dune growth mechanisms and, for both of them, we present the complete phase diagrams of dune shape and orientation. On an erodible sand bed, linear dunes are observed over the entire parameter space. Then, the divergence angle and the transport ratio between the two winds control dune orientation and dynamics. For a localized sand source, different dune morphologies are observed depending on the wind regime. There are systematic transitions in dune shape from barchans to linear dunes extending away from the localized sand source, and vice-versa. These transitions are captured fairly by a new dimensionless parameter, which compares the ability of winds to build the dune topography in the two modes of dune orientation.

  14. Stability phase diagram of a perpendicular magnetic tunnel junction in noncollinear geometry

    Science.gov (United States)

    Strelkov, N.; Timopheev, A.; Sousa, R. C.; Chshiev, M.; Buda-Prejbeanu, L. D.; Dieny, B.

    2017-05-01

    Experimental measurements performed on MgO-based perpendicular magnetic tunnel junctions show a strong dependence of the stability voltage-field diagrams as a function of the direction of the magnetic field with respect to the plane of the sample. When the magnetic field is applied in-plane, systematic nonlinear phase boundaries are observed for various lateral sizes. The simulation results based on the phenomenological Landau-Lifshitz-Gilbert equation including the in-plane and out-of-plane spin transfer torques are consistent with the measurements if a second-order anisotropy contribution is considered. Furthermore, performing the stability analysis in linear approximation allowed us to analytically extract the critical switching voltage at zero temperature in the presence of an in-plane field. This study indicates that in the noncollinear geometry investigations are suitable to detect the presence of the second-order term in the anisotropy. Such higher order anisotropy term can yield an easy-cone anisotropy which reduces the thermal stability factor but allows for more reproducible spin transfer torque switching due to a reduced stochasticity of the switching. As a result, the energy per write event decreases much faster than the thermal stability factor as the second-order anisotropy becomes more negative. Easy-cone anisotropy can be useful for fast-switching spin transfer torque magnetic random access memories provided the thermal stability can be maintained above the required value for a given memory specification.

  15. Single-Crystal Growth of the Ternary BaFe2As2 Phase Using the Vertical Bridgman Technique

    Science.gov (United States)

    Morinaga, Rei; Matan, Kittiwit; Suzuki, Hiroyuki S.; Sato, Taku J.

    2009-01-01

    Ternary Ba-Fe-As system has been studied to determine a primary solidification field of the BaFe2As2 phase. We found that the BaFe2As2 phase most likely melts congruently and primarily solidifies either in the FeAs excess or BaxAs100-x excess liquid. Knowing the primary solidification field, we have performed the vertical Bridgman growth using the starting liquid composition of Ba15Fe42.5As42.5. Large single crystals of the typical size 10×4×2 mm3 were obtained and their quality was confirmed by X-ray Laue and neutron diffraction.

  16. Studies of the QCD Phase Diagram with Heavy-Ion Collisions at J-PARC

    Science.gov (United States)

    Sako, Hiroyuki

    To clarify phase structures in the QCD phase diagram is an ultimate goal of heavy-ion collision experiments. Studies of internal structures of neutron stars are also one of the most important topics of nuclear physics since the discovery of neutron stars with two-solar mass. For these physics goals, J-PARC heavy-ion project (J-PARC-HI) has been proposed, where extremely dense matter with 5-10 times the normal nuclear density will be created. Heavy-ion beams up to Uranium will be accelerated to 1-19 AGeV/c, with the designed world's highest beam rate of 1011 Hz. The acceleration of such high-rate beams can be realized by a new heavy-ion linac and a new booster ring, in addition to the existing 3-GeV and 50-GeV proton synchrotrons. To study the above physics goals, following physics observables will be measured in extremely high statistics expected in J-PARC-HI. To search for the critical point, high-order event-by-event fluctuations of conserved charges such as a net-baryon number, an electric charge number, and a strangeness number will be measured. To study the chiral symmetry restoration, dilepton spectra from light vector meson decays will be measured. Also, collective flows, particle correlations will be measured to study the equation of state and hyperon-hyperon and hyperon-nucleon interactions related to neutron stars. Strange quark matter (strangelet) and multi-strangeness hypernuclei will be searched for which may be related directly to the matter constituting the neutron star core. In this work, the physics goals, the experimental design, and expected physics results of J-PARC-HI will be discussed.

  17. Magnetic Hamiltonian and phase diagram of the quantum spin liquid Ca10Cr7O28

    Science.gov (United States)

    Balz, Christian; Lake, Bella; Nazmul Islam, A. T. M.; Singh, Yogesh; Rodriguez-Rivera, Jose A.; Guidi, Tatiana; Wheeler, Elisa M.; Simeoni, Giovanna G.; Ryll, Hanjo

    2017-05-01

    A spin liquid is a new state of matter with topological order where the spin moments continue to fluctuate coherently down to the lowest temperatures rather than develop static long-range magnetic order as found in conventional magnets. For spin liquid behavior to arise in a material the magnetic Hamiltonian must be "frustrated", where the combination of lattice geometry, interactions, and anisotropies gives rise to competing spin arrangements in the ground state. Theoretical Hamiltonians which produce spin liquids are spin ice, the Kitaev honeycomb model, and the kagome antiferromagnet. Spin liquid behavior, however, in real materials is rare because they can only approximate these Hamiltonians and often have weak higher-order terms that destroy the spin liquid state. Ca10Cr7O28 is a new quantum spin liquid candidate with magnetic Cr5 + ions that possess quantum spin number S =½ . The spins are entirely dynamic in the ground state and the excitation spectrum is broad and diffuse, as is typical of spinons which are the excitations of a spin liquid. In this paper we determine the Hamiltonian of Ca10Cr7O28 using inelastic neutron scattering under high magnetic field to induce a field-polarized paramagnetic ground state and spin-wave excitations that can be fitted to extract the interactions. We further explore the phase diagram by using inelastic neutron scattering and heat capacity measurements and establish the boundaries of the spin liquid phase as a function of magnetic field and temperature. Our results show that Ca10Cr7O28 consists of distorted kagome bilayers with several isotropic ferromagnetic and antiferromagnetic interactions where, unexpectedly, the ferromagnetic interactions are stronger than the antiferromagnetic ones. This complex Hamiltonian does not correspond to any known spin liquid model and points to new directions in the search for quantum spin liquid behavior.

  18. Deposition and Phase Transformations of Ternary Al-Cr-O Thin Films

    OpenAIRE

    Khatibi, Ali

    2011-01-01

    This thesis concerns the ternary Al-Cr-O system. (Al1-xCrx)2O3 solid solution thin films with 0.6

  19. The use of Nile Red to monitor the aggregation behavior in ternary surfactant-water-organic solvent systems

    NARCIS (Netherlands)

    Stuart, MCA; van de Pas, JC; Engberts, JBFN; Pas, John C. van de

    Ternary systems of surfactants, water and organic solvents were studied by monitoring the steady-state fluorescence of the versatile solvatochromic probe Nile Red. We found not only that Nile Red can be used throughout the whole isotropic regions in the phase diagram, but also that subtle changes in

  20. 25th anniversary article: exploring nanoscaled matter from speciation to phase diagrams: metal phosphide nanoparticles as a case of study.

    Science.gov (United States)

    Carenco, Sophie; Portehault, David; Boissière, Cédric; Mézailles, Nicolas; Sanchez, Clément

    2014-01-22

    The notions of nanoscale "phase speciation" and "phase diagram" are defined and discussed in terms of kinetic and thermodynamic controls, based on the case of metal phosphide nanoparticles. After an overview of the most successful synthetic routes for these exotic nanomaterials, the cases of InP, Ni2 P, Ni12 P5 and Pdx Py are discussed in detail to highlight the relationship between composition, structure, and size at the nanoscale. The influence of morphology is discussed next by comparing the behavior of Cu3 P nanophases with those of Nix Py , FeP/Fe2 P, and CoP/Co2 P. Perspectives provide the reader with methodological guidelines for further investigation of nanoscale "phase diagrams", and their use for optimized synthesis of new functional nanomaterials. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Phase diagram of the Blume-Emery-Griffiths model on the simple cubic lattice calculated by the linear chain approximation

    CERN Document Server

    Albayrak, E

    2000-01-01

    The linear chain approximation is used to study the temperature dependence of the order parameters and the phase diagrams of the Blume-Emery-Griffiths model on the simple cubic lattice with dipole-dipole, quadrupole-quadrupole coupling strengths and a crystal-field interaction. The problem is approached introducing first a trial one-dimensional Hamiltonian whose free energy can be calculated exactly by the transfer matrix method. Then using the Bogoliubov variational principle, the free energy of the model is determined. It is assumed that the dipolar and quadrupolar intrachain coupling constants are much stronger than the corresponding interchain constants and confined the attention to the case of nearest-neighbor interactions. The phase transitions are examined and the phase diagrams are obtained for several values of the coupling strengths in the three different planes. A comparison with other approximate techniques is also made.

  2. Local probe investigations of the electronic phase diagrams of iron pnictides and chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Materne, Philipp

    2015-09-24

    In this work, the electronic phase diagrams of Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} and Fe{sub 1+y}Te were investigated using muon spin relaxation and Moessbauer spectroscopy. Single crystals of Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} with x = 0.00, 0.35, 0.50, and 0.67 were examined. The undoped 122 parent compound CaFe{sub 2}As{sub 2} is a semi metal and shows antiferromagnetic commensurate spin density wave order below 167 K. By hole doping via Na substitution, the magnetic order is suppressed and superconductivity emerges including a Na-substitution level region, where both phases coexist. Upon Na substitution, a tilting of the magnetic moments out of the ab-plane is found. The interaction of the magnetic and superconducting order parameter in this coexistence region was studied and a nanoscopic coexistence of both order parameters is found. This is proven by a reduction of the magnetic order parameter of 7 % in x = 0.50 below the superconducting transition temperature. This reduction was analysed using Landau theory and a systematic correlation between the reduction of the magnetic order parameter and the ratio of the transition temperatures, T{sub c}/T{sub N}, for the 122 family of the iron pnictides is presented. The magnetic phase transition is accompanied by a tetragonal-to-orthorhombic phase transition. The lattice dynamics at temperatures above and below this magneto-structural phase transition were studied and no change in the lattice dynamics were found. However, the lattice for finite x is softer than for the undoped compound. For x = 0.67, diluted magnetic order is found. Therefore, the magnetism in Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} is persistent even at optimal doping. The superconducting state is investigated by measuring the temperature dependence of the magnetic penetration depth, where two superconducting gaps with a weighting of nearly 50:50 are obtained. A temperature independent anisotropy of the magnetic penetration depth γ{sub

  3. Phase diagram of a non-Abelian Aubry-André-Harper model with p -wave superfluidity

    Science.gov (United States)

    Wang, Jun; Liu, Xia-Ji; Xianlong, Gao; Hu, Hui

    2016-03-01

    We study theoretically a one-dimensional quasiperiodic Fermi system with topological p -wave superfluidity, which can be deduced from a topologically nontrivial tight-binding model on the square lattice in a uniform magnetic field and subject to a non-Abelian gauge field. The system may be regarded as a non-Abelian generalization of the well-known Aubry-André-Harper model. We investigate its phase diagram as a function of the strength of the quasidisorder and the amplitude of the p -wave order parameter through a number of numerical investigations, including a multifractal analysis. There are four distinct phases separated by three critical lines, i.e., two phases with all extended wave functions [(I) and (IV)], a topologically trivial phase (II) with all localized wave functions, and a critical phase (III) with all multifractal wave functions. Phase (I) is related to phase (IV) by duality. It also seems to be related to phase (II) by duality. Our proposed phase diagram may be observable in current cold-atom experiments, in view of simulating non-Abelian gauge fields and topological insulators/superfluids with ultracold atoms.

  4. The extension of the phase rule to nano-systems and on the quaternary point in one-component nano phase diagrams.

    Science.gov (United States)

    Kaptay, George

    2010-12-01

    The phase rule of Gibbs has been extended to nano-systems in this paper. For that, first the total number of atoms or stable molecules (N) in the system is selected as a new independent thermodynamic variable to characterize the size of nano-systems. N is preferred to r (the radius of the system) as the volume and radius are functions of other independent variables (p, T, composition) and therefore r is not an independent variable. As follows from the extended phase rule, the maximum number of phases and the degree of freedom at a given number of phases is increased by 1 for nano-systems compared to macro-systems, due to the new independent thermodynamic parameter N. The extended phase rule can serve as the basis to work out topological details of nano phase diagrams. As an example, an existence of a quaternary point is predicted in one component nano phase diagram of thallium (in contrast to usual one component phase diagrams with triple points at most). At given values of p = 7.2E-12 bar, T = 544 K, and N = 1.2E5, HCP (hexagonal closely packed solid), BCC (body centered cubic solid), liquid and vapour phases of pure TI are predicted to be in equilibrium.

  5. Bridging and depletion mechanisms in colloid-colloid effective interactions: A reentrant phase diagram

    Science.gov (United States)

    Fantoni, Riccardo; Giacometti, Achille; Santos, Andrés

    2015-06-01

    A general class of nonadditive sticky-hard-sphere binary mixtures, where small and large spheres represent the solvent and the solute, respectively, is introduced. The solute-solute and solvent-solvent interactions are of hard-sphere type, while the solute-solvent interactions are of sticky-hard-sphere type with tunable degrees of size nonadditivity and stickiness. Two particular and complementary limits are studied using analytical and semi-analytical tools. The first case is characterized by zero nonadditivity, lending itself to a Percus-Yevick approximate solution from which the impact of stickiness on the spinodal curves and on the effective solute-solute potential is analyzed. In the opposite nonadditive case, the solvent-solvent diameter is zero and the model can then be reckoned as an extension of the well-known Asakura-Oosawa model with additional sticky solute-solvent interaction. This latter model has the property that its exact effective one-component problem involves only solute-solute pair potentials for size ratios such that a solvent particle fits inside the interstitial region of three touching solutes. In particular, we explicitly identify the three competing physical mechanisms (depletion, pulling, and bridging) giving rise to the effective interaction. Some remarks on the phase diagram of these two complementary models are also addressed through the use of the Noro-Frenkel criterion and a first-order perturbation analysis. Our findings suggest reentrance of the fluid-fluid instability as solvent density (in the first model) or adhesion (in the second model) is varied. Some perspectives in terms of the interpretation of recent experimental studies of microgels adsorbed onto large polystyrene particles are discussed.

  6. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow

    Science.gov (United States)

    Levant, Michael; Steinberg, Victor

    2016-12-01

    In this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid ηo. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC. The main results of these studies are the following. (i) We completely characterize the RBC dynamical states and reconstruct their phase diagram in the case of the RBC in-shear-plane orientation in a planar linear flow and find it in a good agreement with that obtained in early experiments in a shear flow for human RBCs. (ii) The value of the critical shear stress σc of the TU-TT(SW) transition surprisingly coincides with that found in early experiments in spite of a significant difference in the degree of RBC shape deformations in both the SW and INT states. (iii) We describe the INT regime, which is stationary, characterized by strong RBC shape deformations and observed in a wide range of the shear stresses. We argue that our observations cast doubts on the main claim of the recent numerical simulations that the only RBC spheroidal stress-free shape is capable to explain the early experimental data. Finally, we suggest that the amplitude dependence of both θ and the shape deformation parameter D on σ can be used as the quantitative criterion to determine the RBC stress-free shape.

  7. Rabi lattice models with discrete gauge symmetry: Phase diagram and implementation in trapped-ion quantum simulators

    Science.gov (United States)

    Nevado, Pedro; Porras, Diego

    2015-07-01

    We study a spin-boson chain that exhibits a local Z2 symmetry. We investigate the quantum phase diagram of the model by means of perturbation theory, mean-field theory, and the density matrix renormalization group method. Our calculations show the existence of a first-order phase transition in the region where the boson quantum dynamics is slow compared to the spin-spin interactions. Our model can be implemented with trapped-ion quantum simulators, leading to a realization of minimal models showing local gauge invariance and first-order phase transitions.

  8. Calculation of liquid-liquid phase separation in a ternary system of a polymer in a mixture of a solvent and a nonsolvent

    NARCIS (Netherlands)

    Altena, Frank W.; Smolders, C.A.

    1982-01-01

    A numerical method for the calculation of the binodal of liquid-liquid phase separation in a ternary system is described. The Flory-Huggins theory for three-component systems is used. Binodals are calculated for polymer/solvent/nonsolvent systems which are used in the preparation of asymmetric

  9. Superconductivity of the filled skuterrudite PrOs{sub 4}Sb{sub 12}: Phase diagram and characterisations

    Energy Technology Data Exchange (ETDEWEB)

    Measson, M.-A. [Departement de Recherche Fondamentale sur la Matiere Condensee, SPSMS, CEA Grenoble, 38054 Grenoble (France)]. E-mail: mmeasson@cea.fr; Brison, J.P. [Centre de Recherches sur les Tres Basses Temperatures, CNRS, 25 avenue des Martyrs, BP166, 38042 Grenoble Cedex (France)]. E-mail: brison@grenoble.cnrs.fr; Seyfarth, G. [Centre de Recherches sur les Tres Basses Temperatures, CNRS, 25 avenue des Martyrs, BP166, 38042 Grenoble Cedex (France); Braithwaite, D. [Departement de Recherche Fondamentale sur la Matiere Condensee, SPSMS, CEA Grenoble, 38054 Grenoble (France); Lapertot, G. [Departement de Recherche Fondamentale sur la Matiere Condensee, SPSMS, CEA Grenoble, 38054 Grenoble (France); Salce, B. [Departement de Recherche Fondamentale sur la Matiere Condensee, SPSMS, CEA Grenoble, 38054 Grenoble (France); Flouquet, J. [Departement de Recherche Fondamentale sur la Matiere Condensee, SPSMS, CEA Grenoble, 38054 Grenoble (France); Lhotel, E. [Centre de Recherches sur les Tres Basses Temperatures, CNRS, 25 avenue des Martyrs, BP166, 38042 Grenoble Cedex (France); Paulsen, C. [Centre de Recherches sur les Tres Basses Temperatures, CNRS, 25 avenue des Martyrs, BP166, 38042 Grenoble Cedex (France); Sugawara, H. [Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hashioji, Tokyo 192-0397 (Japan); Sato, H. [Department of Physics, Tokyo Metropolitan University, Minami-Ohsawa 1-1, Hashioji, Tokyo 192-0397 (Japan); Canfield, P.C. [Ames Laboratory Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Izawa, K. [Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5 Kashiwa, Chiba 277-8581 (Japan); Matsuda, Y. [Institute for Solid State Physics, University of Tokyo, Kashiwanoha 5-1-5 Kashiwa, Chiba 277-8581 (Japan)

    2005-04-30

    We present a precise (H-T) phase diagram of the double superconducting transition in the specific heat of the heavy fermion superconductor PrOs{sub 4}Sb{sub 12}, down to 350mK, on a sample which exhibits two sharp distinct anomalies at T{sub c1}=1.89K and T{sub c2}=1.72K. Comparison with an existing phase diagram based on transport measurements will be reviewed. The intrinsic or extrinsic nature of this double transition is discussed in light of some characterisations of the superconducting transition of different samples and with respect to the historical case of UPt{sub 3}. Finally, we give a detailed analysis of H{sub c2} which shows the importance of the multiband character of the electronic structure of PrOs{sub 4}Sb{sub 12} and gives strong support to an even parity order parameter.

  10. Organic alloy systems suitable for the investigation of regular binary and ternary eutectic growth

    Science.gov (United States)

    Sturz, L.; Witusiewicz, V. T.; Hecht, U.; Rex, S.

    2004-09-01

    Transparent organic alloys showing a plastic crystal phase were investigated experimentally using differential scanning calorimetry and directional solidification with respect to find a suitable model system for regular ternary eutectic growth. The temperature, enthalpy and entropy of phase transitions have been determined for a number of pure substances. A distinction of substances with and without plastic crystal phases was made from their entropy of melting. Binary phase diagrams were determined for selected plastic crystal alloys with the aim to identify eutectic reactions. Examples for lamellar and rod-like eutectic solidification microstructures in binary systems are given. The system (D)Camphor-Neopentylglycol-Succinonitrile is identified as a system that exhibits, among others, univariant and a nonvariant eutectic reaction. The ternary eutectic alloy close to the nonvariant eutectic composition solidifies with a partially faceted solid-liquid interface. However, by adding a small amount of Amino-Methyl-Propanediol (AMPD), the temperature of the nonvariant eutectic reaction and of the solid state transformation from plastic to crystalline state are shifted such, that regular eutectic growth with three distinct nonfaceted phases is observed in univariant eutectic reaction for the first time. The ternary phase diagram and examples for eutectic microstructures in the ternary and the quaternary eutectic alloy are given.

  11. Multiple spin-flop phase diagram of BaCu{sub 2}Si{sub 2}O{sub 7}

    Energy Technology Data Exchange (ETDEWEB)

    Glazkov, V N; Zheludev, A [Laboratorium fuer Festkoerperphysik, ETH Zurich, 8093 Zuerich (Switzerland); Dhalenne, G; Revcolevschi, A, E-mail: glazkov@kapitza.ras.ru [Laboratoire de Physico-Chimie de l' Etat Solide, Universite Paris-Sud, 91405 Orsay Cedex (France)

    2011-03-02

    The quasi-one-dimensional compound BaCu{sub 2}Si{sub 2}O{sub 7} demonstrates numerous spin-reorientation transitions both for a magnetic field applied along the easy axis of magnetization and a magnetic field applied perpendicular to it. The magnetic phase diagram for all three principal orientations is obtained by magnetization and specific heat measurements. Values of all critical fields and low-temperature values of magnetization jumps are determined for all transitions.

  12. Ground-state phase diagram of an anisotropic spin-1/2 model on the triangular lattice

    Science.gov (United States)

    Luo, Qiang; Hu, Shijie; Xi, Bin; Zhao, Jize; Wang, Xiaoqun

    2017-04-01

    Motivated by a recent experiment on the rare-earth material YbMgGaO4 [Y. Li et al., Phys. Rev. Lett. 115, 167203 (2015), 10.1103/PhysRevLett.115.167203], which found that the ground state of YbMgGaO4 is a quantum spin liquid, we study the ground-state phase diagram of an anisotropic spin-1 /2 model that was proposed to describe YbMgGaO4. Using the density matrix renormalization-group method in combination with the exact-diagonalization method, we calculate a variety of physical quantities, including the ground-state energy, the fidelity, the entanglement entropy and spin-spin correlation functions. Our studies show that in the quantum phase diagram, there is a 120∘ phase and two distinct stripe phases. The transitions from the two stripe phases to the 120∘ phase are of the first order. However, the transition between the two stripe phases is not of the first order, which is different from its classical counterpart. Additionally, we find no evidence for a quantum spin liquid in this model. Our results suggest that additional terms may also be important to model the material YbMgGaO4. These findings will stimulate further experimental and theoretical works in understanding the quantum spin-liquid ground state in YbMgGaO4.

  13. NIR photoluminescence of bismuth-doped CsCdBr{sub 3} – The first ternary bromide phase with a univalent bismuth impurity center

    Energy Technology Data Exchange (ETDEWEB)

    Romanov, Alexey N., E-mail: alexey.romanov@list.ru [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation); Veber, Alexander A. [Universität Erlangen-Nürnberg, Lehrstuhl für Glas und Keramik, Martensstraße 5, 91058 Erlangen (Germany); Vtyurina, Daria N. [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation); Kouznetsov, Mikhail S.; Zaramenskikh, Ksenia S.; Lisitsky, Igor S. [State Scientific-Research and Design Institute of Rare-Metal Industry “Giredmet” JSC, 5-1 B.Tolmachevsky Lane, 119017 Moscow (Russian Federation); Fattakhova, Zukhra T.; Haula, Elena V. [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation); Loiko, Pavel A.; Yumashev, Konstantin V. [Center for Optical Materials and Technologies, Belarusian National Technical University, 65/17 Nezavisimosti Avenue, 220013 Minsk (Belarus); Korchak, Vladimir N. [N.N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 4 Kosygina Street, 119991 (Russian Federation)

    2015-11-15

    Single crystals of ternary bromide phase CsCdBr{sub 3} doped with univalent bismuth cations are prepared for the first time by the Bridgman method. Bi{sup +} impurity center emits a broadband long-lived near-infrared photoluminescence with a maximum at ~1053 nm. The characteristics of this photoluminescence and its relations with the energy spectrum of Bi{sup +} impurity center are discussed. A comparison of Bi{sup +} photoluminescence in CsCdBr{sub 3} and ternary chlorides (studied previously) is performed. - Highlights: • Single crystals of Bi{sup +}-doped ternary bromide CsCdBr{sub 3} were prepared. • Broadband NIR photoluminescence was observed from Bi{sup +}-doped CsCdBr{sub 3}. • Single optical center is responsible for NIR emission in Bi{sup +}-doped CsCdBr{sub 3}.

  14. On the solid–liquid phase diagrams of binary mixtures of even saturated fatty alcohols: Systems exhibiting peritectic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Carareto, Natália D.D. [EXTRAE, Department of Food Engineering, Food Engineering Faculty, University of Campinas, UNICAMP, CEP 13083-862 Campinas, SP (Brazil); Santos, Adenílson O. dos [Social Sciences, Health and Technology Center, University of Maranhão, UFMA, CEP 65900-410 Imperatriz, MA (Brazil); Rolemberg, Marlus P. [Institute of Science and Technology, University of Alfenas, UNIFAL, Rodovia José AurélioVilela, CEP 37715400 Poços de Caldas, MG (Brazil); Cardoso, Lisandro P. [Institute of Physics GlebWataghin, University of Campinas, UNICAMP, C.P. 6165, CEP 13083-970 Campinas, SP (Brazil); Costa, Mariana C. [School of Applied Science, University of Campinas, UNICAMP, CEP 13484-350 Limeira, SP (Brazil); Meirelles, Antonio J.A., E-mail: tomze@fea.unicamp.br [EXTRAE, Department of Food Engineering, Food Engineering Faculty, University of Campinas, UNICAMP, CEP 13083-862 Campinas, SP (Brazil)

    2014-08-10

    Highlights: • SLE of binary mixtures of saturated fatty alcohols was studied. • Experimental data were obtained using DSC and stepscan DSC. • Microscopy and X-ray diffraction used as complementary techniques. • Systems presented eutectic, peritectic and metatectic points. - Abstract: The solid–liquid phase diagrams of the following binary mixtures of even saturated fatty alcohols are reported in the literature for the first time: 1-octanol (C8OH) + 1-decanol (C10OH), 1-decanol + 1-dodecanol (C12OH), 1-dodecanol + 1-hexadecanol (C16OH) and 1-tetradecanol (C14OH) + 1-octadecanol (C18OH). The phase diagrams were obtained by differential scanning calorimetry (DSC) using a linear heating rate of 1 K min{sup −1} and further investigated by using a stepscan DSC method. X-ray diffraction (XRD) and polarized light microscopy were also used to complement the characterization of the phase diagrams which have shown a complex global behavior, presenting not only peritectic and eutectic reactions, but also the metatectic reaction and partial immiscibility on solid state.

  15. Gold–Copper Nano-Alloy, “Tumbaga”, in the Era of Nano: Phase Diagram and Segregation

    Science.gov (United States)

    2015-01-01

    Gold–copper (Au–Cu) phases were employed already by pre-Columbian civilizations, essentially in decorative arts, whereas nowadays, they emerge in nanotechnology as an important catalyst. The knowledge of the phase diagram is critical to understanding the performance of a material. However, experimental determination of nanophase diagrams is rare because calorimetry remains quite challenging at the nanoscale; theoretical investigations, therefore, are welcomed. Using nanothermodynamics, this paper presents the phase diagrams of various polyhedral nanoparticles (tetrahedron, cube, octahedron, decahedron, dodecahedron, rhombic dodecahedron, truncated octahedron, cuboctahedron, and icosahedron) at sizes 4 and 10 nm. One finds, for all the shapes investigated, that the congruent melting point of these nanoparticles is shifted with respect to both size and composition (copper enrichment). Segregation reveals a gold enrichment at the surface, leading to a kind of core–shell structure, reminiscent of the historical artifacts. Finally, the most stable structures were determined to be the dodecahedron, truncated octahedron, and icosahedron with a Cu-rich core/Au-rich surface. The results of the thermodynamic approach are compared and supported by molecular-dynamics simulations and by electron-microscopy (EDX) observations. PMID:25338111

  16. Investigation of the phase relations in the U-Al-Ge ternary system: Influence of the Al/Ge substitution on the properties of the intermediate phases

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, C.; El Sayah, Z. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, UMR CNRS 6226, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Chajewski, G. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław (Poland); Berche, A.; Dorcet, V. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, UMR CNRS 6226, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Pikul, A.P. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław (Poland); Pasturel, M. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, UMR CNRS 6226, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Joanny, L. [ScanMAT – CMEBA, University of Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Stepnik, B. [AREVA/CERCA, 10 Rue Juliette Récamier, 69006 Lyon (France); Tougait, O., E-mail: tougait@univ-rennes1.fr [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, UMR CNRS 6226, Université Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex (France); Unité de Catalyse et de Chimie du Solide, UMR CNRS 8181, Université de Lille, 59695 Villeneuve d' Ascq (France)

    2016-11-15

    The phase relations within the U-Al-Ge ternary system were studied for two isothermal sections, at 673 K for the whole Gibbs triangle and at 1173 K for the concentration range 25–100 at% U. The identification of the phases, their composition ranges and stability were determined by x-ray powder diffraction, scanning electron microscopy coupled to energy dispersive spectroscopy and differential thermal analysis. The tie-lines and the solubility domains were determined for the U-Ge and U-Al binaries, the UAl{sub 3}-UGe{sub 3} solid-solution and for the unique ternary intermediate phase U{sub 3}Al{sub 2−x}Ge{sub 3+x}. The experimental isopleth section of the pseudo-binary UAl{sub 3}-UGe{sub 3} reveals an isomorphous solid solution based on the Cu{sub 3}Au-type below the solidus. The U{sub 3}Al{sub 2−x}Ge{sub 3+x} solid solution extends for −0.1≤x≤1.35 and −0.2≤x≤1.5 at 673 K and 1173 K respectively. It crystallizes in the I-centered tetragonal symmetry. The reciprocal lattice of several compositions of the U{sub 3}Al{sub 2−x}Ge{sub 3+x} solid solution was examined by electron diffraction at room temperature, revealing the presence of a c-glide plane. Their crystal structure was refined by single crystal x-ray diffraction suggesting an isomorphous solid solution best described with the non-centrosymmetric space group I4cm in the paramagnetic domain. The magnetic measurements confirm the ferromagnetic ordering of the solid solution U{sub 3}Al{sub 2−x}Ge{sub 3+x} with an increase of Tc with the Al content. The thermal variation of the specific heat bear out the magnetic transitions with some delocalized character of the uranium 5f electrons. - Graphical abstract: The phase relations within the U-Al-Ge ternary system were experimentally assessed for two isothermal sections, at 673 K for the whole Gibbs triangle and at 1173 K for the concentration range 25–100 at% U. A complete UAl{sub 3}-UGe{sub 3} solid-solution based on the Cu{sub 3}Au-type forms

  17. Ternary fission

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary ...

  18. Ternary fission

    Indian Academy of Sciences (India)

    Recently, we have studied the various aspects associated with the ternary fission process. A model, called the three-cluster model (TCM) [1–6] has been put forth. This accounts for the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the ...

  19. Thermodynamic description of the Al-Cu-Yb ternary system supported by first-principles calculations

    Directory of Open Access Journals (Sweden)

    Huang G.

    2016-01-01

    Full Text Available Phase relationships of the ternary Al-Cu-Yb system have been assessed using a combination of CALPHAD method and first principles calculations. A self-consistent thermodynamic parameter was established based on the experimental and theoretical information. Most of the binary intermetallic phases, except Al3Yb, Al2Yb, Cu2Yb and Cu5Yb, were assumed to be zero solubility in the ternary system. Based on the experimental data, eight ternary intermetallic compounds were taken into consideration in this system. Among them, three were treated as line compounds with large homogeneity ranges for Al and Cu. The others were treated as stoichiometric compounds. The calculated phase diagrams were in agreement with available experimental and theoretical data.

  20. An Excel Macro to Plot the HFE-Diagram to Identify Sea Water Intrusion Phases.

    Science.gov (United States)

    Giménez-Forcada, Elena; Sánchez San Román, F Javier

    2015-01-01

    A hydrochemical facies evolution diagram (HFE-D) is a multirectangular diagram, which is a useful tool in the interpretation of sea water intrusion processes. This method note describes a simple method for generating an HFE-D plot using the spreadsheet software package, Microsoft Excel. The code was applied to groundwater from the alluvial coastal plain of Grosseto (Tuscany, Italy), which is characterized by a complex salinization process in which sea water mixes with sulfate or bicarbonate recharge water. © 2014, National GroundWater Association.

  1. Phase diagram of Script N = 4 super-Yang-Mills theory with R-symmetry chemical potentials

    Science.gov (United States)

    Yamada, Daisuke; Yaffe, Laurence G.

    2006-09-01

    The phase diagram of large Nc, weakly-coupled Script N = 4 supersymmetric Yang-Mills theory on a three-sphere with non-zero chemical potentials is examined. In the zero coupling limit, a transition line in the μ-T plane is found, separating a ``confined'' phase in which the Polyakov loop has vanishing expectation value from a ``deconfined'' phase in which this order parameter is non-zero. For non-zero but weak coupling, perturbative methods may be used to construct a dimensionally reduced effective theory valid for sufficiently high temperature. If the maximal chemical potential exceeds a critical value, then the free energy becomes unbounded below and no genuine equilibrium state exists. However, the deconfined plasma phase remains metastable, with a lifetime which grows exponentially with Nc (not Nc2). This metastable phase persists with increasing chemical potential until a phase boundary, analogous to a spinodal decomposition line, is reached. Beyond this point, no long-lived locally stable quasi-equilibrium state exists. The resulting picture for the phase diagram of the weakly coupled theory is compared with results believed to hold in the strongly coupled limit of the theory, based on the AdS/CFT correspondence and the study of charged black hole thermodynamics. The confinement/deconfinement phase transition at weak coupling is in qualitative agreement with the Hawking-Page phase transition in the gravity dual of the strongly coupled theory. The black hole thermodynamic instability line may be the counterpart of the spinodal decomposition phase boundary found at weak coupling, but no black hole tunneling instability, analogous to the instability of the weakly coupled plasma phase is currently known.

  2. Studies of nuclei under the extreme conditions of density, temperature, isospin asymmetry and the phase diagram of hadronic matter

    Energy Technology Data Exchange (ETDEWEB)

    Mekjian, Aram [Rutgers Univ., Piscataway, NJ (United States). Dept. of Physics and Astronomy

    2016-10-18

    The main emphasis of the entire project is on issues having to do with medium energy and ultra-relativistic energy and heavy ion collisions. A major goal of both theory and experiment is to study properties of hot dense nuclear matter under various extreme conditions and to map out the phase diagram in density or chemical potential and temperature. My studies in medium energy nuclear collisions focused on the liquid-gas phase transition and cluster yields from such transitions. Here I developed both the statistical model of nuclear multi-fragmentation and also a mean field theory.

  3. Phase diagram of a generalized off-diagonal Aubry–André model with p-wave pairing

    Science.gov (United States)

    Liu, Tong; Wang, Pei; Chen, Shu; Xianlong, Gao

    2018-01-01

    Off-diagonal Aubry–André (AA) model has recently attracted a great deal of attention as they provide condensed matter realization of topological phases. We numerically study a generalized off-diagonal AA model with p-wave superfluid pairing in the presence of both commensurate and incommensurate hopping modulations. The phase diagram as functions of the modulation strength of incommensurate hopping and the strength of the p-wave pairing is obtained by using the multifractal analysis. We show that with the appearance of the p-wave pairing, the system exhibits mobility-edge phases and critical phases with various number of topologically-protected zero-energy modes. Predicted topological nature of these exotic phases can be realized in a cold atomic system of incommensurate bichromatic optical lattice with induced p-wave superfluid pairing by using a Raman laser in proximity to a molecular Bose–Einstein condensation.

  4. Enthalpy and phase behavior of coal derived liquid mixtures: Technical progress report for the period January-March 1987. [M-cresol/quinoline/tetralin ternary mixture

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.; Kidnay, A.J.

    1987-04-30

    On July 15, 1984, work was initiated on a program to study the enthalpy and phase behavior of coal derived liquid model compound mixtures. The objectives of this program are to study the enthalpy and phase behavior of a selected ternary model compound system, representative of interactions present in coal derived liquids. Measurements will be made in a Freon 11 reference fluid boil-off calorimeter, and an equilibrium flash vaporization apparatus. These experimental systems have already been developed. Previous studies have indicated that existing data and correlations developed for petroleum fluids are not applicable to coal derived liquids. This is due to the presence of significant concentrations of polar associating heteroatomics in the predominantly aromatic coal liquids. Thus, the ternary system will include an aromatic, a basic nitrogen compound, and a cresol. It is presently planned to study the m-cresol/quinoline/tetralin ternary mixture. Measurements will be made over a wide range of temperature (200 to 750/sup 0/F) and pressure (20 to 1500 psia), for the three pure compounds, the three binary mixtures and selected compositions of the ternary. Both enthalpy and phase behavior measurements will be made. This set of data will be useful as a standard for fitting and evaluating thermodynamic correlations and equations of state that are applicable to associating fluid mixtures, and thus to coal derived liquids. In particular we will attempt to fit both the enthalpy and phase behavior data with a single equation of state using local composition mixing rules and common interaction parameters. During the eleventh quarter, enthalpy measurements have been obtained for the ternary mixtures of m-cresol/quinoline/tetralin with molar ratios 2/3:1/6:1/6 and 1/6:2/3:1/6 m-cresol:quinoline:tetralin. The results are presented in Appendix A. The project has progressed very will during this quarter, and the enthalpy measurements have been completed. 2 refs., 2 figs., 2 tabs.

  5. Third Law of Thermodynamics and The Shape of the Phase Diagram for Systems With a First-Order Quantum Phase Transition.

    Science.gov (United States)

    Kirkpatrick, T R; Belitz, D

    2015-07-10

    The third law of thermodynamics constrains the phase diagram of systems with a first-order quantum phase transition. For a zero conjugate field, the coexistence curve has an infinite slope at T=0. If a tricritical point exists at T>0, then the associated tricritical wings are perpendicular to the T=0 plane, but not to the zero-field plane. These results are based on the third law and basic thermodynamics only, and are completely general. As an explicit example we consider the ferromagnetic quantum phase transition in clean metals, where a first-order quantum phase transition is commonly observed.

  6. Optimisasi Bubuk Slag Nikel Dengan Sistem Ternary C-A-S

    OpenAIRE

    Ashad, Hanafi; Nasution, Amrinsyah; Imran, Iswandi; Soegiri, Saptahari

    2008-01-01

    . This papers study concerning optimization of nickel slag powder as substitution material to partial cement by C-A-S (CaO-Al2O3-SiO2) ternary system. Optimization conducted to determine procentage of nickel slag powder in the consuming calcium hydroxide compound as hydration product of tricalcium silicate (C3S) and dicalcium silicate (C2S) cement with water so that form secondary of calcium silicate hydrate (CSH) compound. By the phase diagram C-A-S ternary system, procentage of optimum nick...

  7. Coexistence of several sillenite-like phases in pseudo-binary and pseudo-ternary systems based on Bi2O3

    Science.gov (United States)

    Dapčević, Aleksandra; Poleti, Dejan; Karanović, Ljiljana; Rogan, Jelena; Dražič, Goran

    2013-11-01

    A series of polycrystalline samples containing sillenite-like (doped γ-Bi2O3) phases were prepared by high-temperature reactions from α-Bi2O3 powder and different oxides in six pseudo-binary Bi2O3-MxOy (M = Mn, Ti, V) and six pseudo-ternary Bi2O3-M1xOy-M2xOy (M1 = Pb, Zn, Ti and M2 = Zn, Ti, Si) systems. The products were characterized by XRD, SEM/EDX, HRTEM, SAED and DTA techniques. It is shown that for pseudo-binary systems, the phase composition of specimens depends on dopant content, while, for pseudo-ternary systems, depends on dopants radii, as well. In pseudo-binary systems, single-phase sillenites are obtained if the dopant content is in accordance with formula Bi12M4+O20, for M = Mn and Ti, and Bi(M0.85+)O, for M = V. However, two coexisting sillenite-like phases, doped compound and nominally undoped solid solution, are found if a half of that dopant quantity is applied. In pseudo-ternary systems, the phase-pure double-doped sillenite specimens are identified if ionic radii of dopants differ less than 40%. Otherwise, two coexisting sillenites were obtained. The possibility to prepare the undoped γ-Bi2O3 phase was also discussed.

  8. Ground-state phase diagram of an (S, S') = (1, 2) spin-alternating chain with competing single-ion anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Tonegawa, T [Department of Mechanical Engineering, Fukui University of Technology, Fukui 910-8505 (Japan); Okamoto, K [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Sakai, T [Japan Atomic Energy Agency (JAEA), Spring-8, Hyogo 679-5148 (Japan); Kaburagi, M, E-mail: tonegawa@ccmails.fukui-ut.ac.j [Graduate School of Intercultural Studies, Kobe University, Kobe 657-8501 (Japan)

    2009-01-01

    Employing various numerical methods, we determine the ground-state phase diagram of an (S, S') = (1, 2) spin-alternating chain with antiferromagnetic nearest-neighboring exchange interactions and uniaxial single-ion anisotropies. The resulting phase diagram consists of eight kinds of phases including two phases which accompany the spontaneous breaking of the translational symmetry and a ferrimagnetic phase in which the ground-state magnetization varies continuously with the uniaxial single-ion anisotropy constants for the S=1 and S =2 spins. The appearance of these three phases is attributed to the competition between the uniaxial single-ion anisotropies of both spins.

  9. Ternary phase behaviour and vesicle formation of a sodium N-lauroylsarcosinate hydrate/1-decanol/water system

    Science.gov (United States)

    Akter, Nasima; Radiman, Shahidan; Mohamed, Faizal; Rahman, Irman Abdul; Reza, Mohammad Imam Hasan

    2011-08-01

    The phase behaviour of a system composed of amino acid-based surfactant (sodium N-lauroylsarcosinate hydrate), 1-decanol and deionised water was investigated for vesicle formation. Changing the molar ratio of the amphiphiles, two important aggregate structures were observed in the aqueous corner of the phase diagram. Two different sizes of microemulsions were found at two amphiphile-water boundaries. A stable single vesicle lobe was found for 1∶2 molar ratios in 92 wt% water with vesicles approximately 100 nm in size and with high zeta potential value. Structural variation arises due to the reduction of electrostatic repulsions among the ionic headgroups of the surfactants and the hydration forces due to adsorbed water onto monolayer's. The balance of these two forces determines the aggregate structures. Analysis was followed by the molecular geometrical structure. These findings may have implications for the development of drug delivery systems for cancer treatments, as well as cosmetic and food formulations.

  10. Mapping the phase diagram for neon to a quantum Lennard-Jones fluid using Gibbs ensemble simulations.

    Science.gov (United States)

    Georgescu, Ionuţ; Brown, Sandra E; Mandelshtam, Vladimir A

    2013-04-07

    In order to address the issue of whether neon liquid in coexistence with its gas phase can be mapped to a quantum Lennard-Jones (LJ) fluid, we perform a series of simulations using Gibbs ensemble Monte Carlo for a range of de Boer quantum parameters Λ=ℏ/(σ√(mε)). The quantum effects are incorporated by implementing the variational gaussian wavepacket method, which provides an efficient numerical framework for estimating the quantum density at thermal equilibrium. The computed data for the LJ liquid is used to produce its phase diagram as a function of the quantum parameter, 0.065 ≤ Λ ≤ 0.11. These data are then used to fit the experimental phase diagram for neon liquid. The resulting parameters, ε = 35.68 ± 0.03 K and σ = 2.7616 ± 0.0005 Å (Λ = 0.0940), of the LJ pair potential are optimized to best represent liquid neon in coexistence with its gas phase for a range of physically relevant temperatures. This multi-temperature approach towards fitting and assessing a pair-potential is much more consistent than merely fitting a single data point, such as a melting temperature or a second virial coefficient.

  11. Magnetic phase diagram of multiferroic delafossite CuFe{sub 1-y}Ga{sub y}O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Terada, N; Kitazawa, H [National Institute for Materials Science, Tsukuba, Ibaraki, Japan 305-0047 (Japan); Nakajima, T; Mitsuda, S, E-mail: terada.noriki@nims.go.j [Department of Physics, Faculty of Science, Tokyo University of Science, Tokyo 162-8601 (Japan)

    2009-01-01

    We report magnetic susceptibility measurements on nonmagnetic impurity-doped multiferroic CuFe{sub 1-y}Ga{sub y}O{sub 2} with 0 <= y <= 0:08. The temperature versus Ga concentration magnetic phase diagram was obtained. Comparing the presently obtained phase diagram of CuFe{sub 1-y}Ga{sub y}O{sub 2} with that of CuFe{sub 1-x}Al{sub x}O{sub 2}, we find that the stability of 4SL ground state for substitution of nonmagnetic ions does not depend on the nonmagnetic ionic radius significantly. On the other hand, the FEIC phase in CuFe{sub 1-y}Ga{sub y}O{sub 2} exists in a wider region of 0:02 <= y <= 0:05 than CuFe{sub 1-x}Al{sub x}O{sub 2}. We thus find that the local lattice distortion caused by large difference in ionic radii between Al3{sup +} and Fe3{sup +} affects the stability of the FEIC phase for nonmagnetic ion substitution significantly.

  12. Non-classical phase diagram for virus bacterial coevolution mediated by clustered regularly interspaced short palindromic repeats.

    Science.gov (United States)

    Han, Pu; Deem, Michael W

    2017-02-01

    CRISPR is a newly discovered prokaryotic immune system. Bacteria and archaea with this system incorporate genetic material from invading viruses into their genomes, providing protection against future infection by similar viruses. The condition for coexistence of prokaryots and viruses is an interesting problem in evolutionary biology. In this work, we show an intriguing phase diagram of the virus extinction probability, which is more complex than that of the classical predator-prey model. As the CRISPR incorporates genetic material, viruses are under pressure to evolve to escape recognition by CRISPR. When bacteria have a small rate of deleting spacers, a new parameter region in which bacteria and viruses can coexist arises, and it leads to a more complex coexistence patten for bacteria and viruses. For example, when the virus mutation rate is low, the virus extinction probability changes non-montonically with the bacterial exposure rate. The virus and bacteria coevolution not only alters the virus extinction probability, but also changes the bacterial population structure. Additionally, we show that recombination is a successful strategy for viruses to escape from CRISPR recognition when viruses have multiple proto-spacers, providing support for a recombination-mediated escape mechanism suggested experimentally. Finally, we suggest that the re-entrant phase diagram, in which phages can progress through three phases of extinction and two phases of abundance at low spacer deletion rates as a function of exposure rate to bacteria, is an experimentally testable phenomenon. © 2017 The Author(s).

  13. Phase diagrams and physicochemical properties of Li+,K+(Rb+)//borate-H2O systems at 323 K

    Science.gov (United States)

    Feng, Shan; Yu, Xudong; Cheng, Xinglong; Zeng, Ying

    2017-11-01

    The phase and physicochemical properties diagrams of Li+,K+(Rb+)//borate-H2O systems at 323 K were constructed using the experimentally measured solubilities, densities, and refractive indices. The Schreinemakers' wet residue method and the X-ray diffraction were used for the determination of the compositions of solid phase. Results show that these two systems belong to the hydrate I type, with no solid solution or double salt formation. The borate phases formed in our experiments are RbB5O6(OH)4 · 2H2O, Li2B4O5(OH)4 · H2O, and K2B4O5(OH)4 · 2H2O. Comparison between the stable phase diagrams of the studied system at 288, 323, and 348 K show that in this temperature range, the crystallization form of salts do not changed. With the increase in temperature, the crystallization field of Li2B4O5(OH)4 · H2O salt at 348 K is obviously larger than that at 288 K. In the Li+,K+(Rb+)//borate-H2O systems, the densities and refractive indices of the solutions (at equilibrium) increase along with the mass fraction of K2B4O7 (Rb2B4O7), and reach the maximum values at invariant point E.

  14. Phase Diagrams of Three-Dimensional Anderson and Quantum Percolation Models Using Deep Three-Dimensional Convolutional Neural Network

    Science.gov (United States)

    Mano, Tomohiro; Ohtsuki, Tomi

    2017-11-01

    The three-dimensional Anderson model is a well-studied model of disordered electron systems that shows the delocalization-localization transition. As in our previous papers on two- and three-dimensional (2D, 3D) quantum phase transitions [https://doi.org/10.7566/JPSJ.85.123706" xlink:type="simple">J. Phys. Soc. Jpn. 85, 123706 (2016), https://doi.org/10.7566/JPSJ.86.044708" xlink:type="simple">86, 044708 (2017)], we used an image recognition algorithm based on a multilayered convolutional neural network. However, in contrast to previous papers in which 2D image recognition was used, we applied 3D image recognition to analyze entire 3D wave functions. We show that a full phase diagram of the disorder-energy plane is obtained once the 3D convolutional neural network has been trained at the band center. We further demonstrate that the full phase diagram for 3D quantum bond and site percolations can be drawn by training the 3D Anderson model at the band center.

  15. Liquid gallium-lead mixture phase diagram, surface tension near the critical mixing point, and prewetting transition.

    Science.gov (United States)

    Osman, S M; Grosdidier, B; Ali, I; Abdellah, A Ben

    2013-06-01

    Quite recently, we reported a semianalytical equation of state (EOS) for the Ga-Pb alloy [Phys. Rev. B 78, 024205 (2008)], which was based on the first-order perturbation theory of fluid mixtures, within the simplified random phase approximation, in conjunction with the Grosdidier et al. model pair potentials for Ga-Ga and Pb-Pb with a suitable nonadditive pair potential between Ga-Pb unlike pairs. In the present work, we employ the present EOS to calculate the Ga-Pb phase diagram along the immiscibility gap region. The accuracy of the EOS is tested by consulting the empirical binodal curve. A statistical-mechanical-based theory for the surface tension is employed to obtain an analytical expression for the alloy surface tension. We calculated the surface tension along the bimodal curve and at extreme conditions of temperatures and pressures. The surface tension exhibits reasonably well the prewetting transition of Pb atoms at the surface of the Ga-rich liquid alloy and could qualitatively explain the prewetting phenomena occurring in the Ga-rich side of the phase diagram. The predicted prewetting line and wetting temperature qualitatively agree with the empirical measurements.

  16. Conduvtivity, NMR, Thermal Measurements and Phase Diagram of the K2S2O7-KHSO4 System

    DEFF Research Database (Denmark)

    Eriksen, Kim Michael; Fehrmann, Rasmus; Hatem, Gerard

    1996-01-01

    .94. The conductivities of the solid and molten K2S2O7-KHSO4 system were measured at 13 different compositions in the whole composition range, X(KHSO4)= 0-1. The conductivity of the molten mixtures were fitted to polynomia of the second degree.The results indicated delocalization of the conducting ions compared......The phase diagram of the catalytically important K2S2O7-KHSO4 molten salt solvent system has been investigated by electrochemical, thermal and spectroscopic methods.It is of the simple eutectic type with a temperature of fusion of 205C for the eutectic composition, X(KHSO4)= 0...

  17. Hg sub 2x (CuIn) sub 1-x Se sub 2 alloys: phase diagram and lattice parameter values

    Energy Technology Data Exchange (ETDEWEB)

    Grima Gallardo, P. (Physique des Milieux Condenses, Univ. Pierre et Marie Curie, 75 - Paris (France))

    1992-03-16

    Polycrystalline samples of Hg{sub 2x}(CuIn){sub 1-x}Se{sub 2} alloys are prepared by the melt and anneal technique. Differential thermal analysis (DTA) measurements are carried out on the alloys and the T(x) diagram is determined. Debye-Scherrer X-ray photographs are used to determine equilibrium conditions and lattice parameter values. It is found that single phase solid solutions occur at all values of composition. Experimental data for the chalcopyrite-zincblende transition temperature line are compared with an extension of Rincon's model for the order-disorder transition temperature in chalcopyrites. The agreement is notable. (orig.).

  18. Geometric thermal phase diagrams for studying the thermal dynamic stability of hollow gold nanoballs at different temperatures.

    Science.gov (United States)

    Jiang, Luyun; Sun, Wei; Gao, Yajun; Zhao, Jianwei

    2014-04-14

    Thermal stability is one of the main concerns for the synthesis of hollow nanoparticles. In this work, molecular dynamics simulation gave an insight into the atomic reconstruction and energy evolution during the collapse of hollow gold nanoballs, based on which a mechanism was proposed. The stability was found to depend on temperature, its wall thickness and aspect ratio to a great extent. The relationship among these three factors was revealed in geometric thermal phase diagrams (GTPDs). The GTPDs were studied theoretically, and the boundary between different stability regions can be fitted and calculated. Therefore, the GTPDs at different temperatures can be deduced and used as a guide for hollow structure synthesis.

  19. The Effect of Deformation Defect of the Shear Modulus of a Lubricant on the Boundary Friction Phase Diagram

    Science.gov (United States)

    Lyashenko, I. A.; Manko, N. N.

    2015-09-01

    An analysis of an ultrathin lubricant layer squeezed between two atomically-smooth solid surfaces during their reciprocal motion is performed. Considering the deformation defect of the shear modulus, the effect of additive fluctuations of stress, strain, and temperature on melting of the lubricating material is investigated. The influence of the system parameters of the phase diagram is investigated for the case where the temperature intensity noise and the friction surface temperature control the regions of dry, liquid and stick-slip friction. The plots of effective potential and probability distribution are constructed as a function of stress, whose form controls the mode of friction.

  20. Simulation of Few Bifurcation Phase Diagrams of Belousov-Zhabotinsky Reaction with Eleven Variable Chaotic Model in CSTR

    Directory of Open Access Journals (Sweden)

    B. Swathi

    2009-01-01

    Full Text Available Simulation of the Gyorgyi, Rempe and Field eleven variable chaotic model in CSTR [Continuously Stirred Tank Reactor] is performed with respect to the concentrations of malonic acid and [Ce(III]. These simulation studies show steady state, periodic and non-periodic regions. These studies have been presented as two variable bifurcation phase diagrams. We also have observed the bursting phenomenon under different set of constraints. We have given much importance on computer simulation work but not included the experimental methods in this paper.

  1. Phase diagram of the hexagonal lattice quantum dimer model: Order parameters, ground-state energy, and gaps

    Science.gov (United States)

    Schlittler, Thiago M.; Mosseri, Rémy; Barthel, Thomas

    2017-11-01

    The phase diagram of the quantum dimer model on the hexagonal (honeycomb) lattice is computed numerically, extending on earlier work by Moessner, Sondhi, and Chandra. The different ground state phases are studied in detail using several local and global observables. In addition, we analyze imaginary-time correlation functions to determine ground state energies as well as gaps to the first excited states. This leads in particular to a confirmation that the intermediary so-called plaquette phase is gapped. On the technical side, we describe an efficient world-line quantum Monte Carlo algorithm with improved cluster updates that increase acceptance probabilities by taking account of potential terms of the Hamiltonian during the cluster construction. The Monte Carlo simulations are supplemented with variational computations.

  2. Phase diagram of the two-dimensional 16-band d-p model for iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yanagi, Y., E-mail: yanagi@phys.sc.niigata-u.ac.j [Department of Physics, Niigata University, Ikarashi, Niigata 950-2181 (Japan); Yamakawa, Y. [Department of Physics, Niigata University, Ikarashi, Niigata 950-2181 (Japan); Ono, Y. [Department of Physics, Niigata University, Ikarashi, Niigata 950-2181 (Japan); Center for Transdisciplinary, Research, Niigata University, Ikarashi, Niigata 950-2181 (Japan)

    2010-12-15

    The electronic state of the Fe{sub 2}As{sub 2} plane in iron-based superconductors is investigated on the basis of the two-dimensional 16-band d-p model. Using the random phase approximation for the on-site Coulomb interaction between Fe d electrons, we obtain the phase diagram including the magnetic ordered states and the superconductivity. It is found that the s{sub {+-}-}wave superconductivity, where the gap functions have different signs between the electron pockets and the hole pockets, is realized near the incommensurate magnetic ordered phase with q{approx}({pi},{pi}). The absolute values of the gap functions on the Fermi surfaces are almost isotropic but largely depend on the energy bands.

  3. Structural phase transition and phase diagram of half doped organometallic compound [(CH3)2NH2]Mn0.5Ni0.5(HCOO)3

    Science.gov (United States)

    Chakraborty, Tirthankar; Swain, Diptikanta; Yadav, Ruchika; Row, T. N. Guru; Elizabeth, Suja

    2017-11-01

    Structural phase transition in half doped compound [(CH3)2NH2]Mn0.5Ni0.5(HCOO)3 is investigated. Differential scanning calorimetry data indicated this to be a distinct transition with enthalpy 465.6 J/mol. Powder X-ray diffraction at different temperature shows structural phase transition from trigonal R-3c to monoclinic Cc through co-existing mixed phase. Based on the experimental results, a phase diagram has been proposed. This phase transition is confirmed to be of first order nature by specific heat measurement. Entropy change and latent heat of the phase transition are also calculated from specific heat which are found to be 2.53 J/mol-K and 412 J/mol respectively.

  4. Prediction of high-Tc conventional superconductivity in the ternary lithium borohydride system

    Science.gov (United States)

    Kokail, Christian; von der Linden, Wolfgang; Boeri, Lilia

    2017-12-01

    We investigate the superconducting ternary lithium borohydride phase diagram at pressures of 0 and 200 GPa using methods for evolutionary crystal structure prediction and linear-response calculations for the electron-phonon coupling. Our calculations show that the ground state phase at ambient pressure, LiBH4, stays in the P n m a space group and remains a wide band-gap insulator at all pressures investigated. Other phases along the 1 :1 :x Li:B:H line are also insulating. However, a full search of the ternary phase diagram at 200 GPa revealed a metallic Li2BH6 phase, which is thermodynamically stable down to 100 GPa. This superhydride phase, crystallizing in a F m 3 ¯m space group, is characterized by sixfold hydrogen-coordinated boron atoms occupying the fcc sites of the unit cell. Due to strong hydrogen-boron bonding this phase displays a critical temperature of ˜100 K between 100 and 200 GPa. Our investigations confirm that ternary compounds used in hydrogen-storage applications should exhibit high-Tc conventional superconductivity in diamond anvil cell experiments, and suggest a viable route to optimize the superconducting behavior of high-pressure hydrides, exploiting metallic covalent bonds.

  5. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  6. Binary Phase Diagrams and Thermodynamic Properties of Silicon and Essential Doping Elements (Al, As, B, Bi, Ga, In, N, P, Sb and Tl)

    Science.gov (United States)

    Mostafa, Ahmad; Medraj, Mamoun

    2017-01-01

    Fabrication of solar and electronic silicon wafers involves direct contact between solid, liquid and gas phases at near equilibrium conditions. Understanding of the phase diagrams and thermochemical properties of the Si-dopant binary systems is essential for providing processing conditions and for understanding the phase formation and transformation. In this work, ten Si-based binary phase diagrams, including Si with group IIIA elements (Al, B, Ga, In and Tl) and with group VA elements (As, Bi, N, P and Sb), have been reviewed. Each of these systems has been critically discussed on both aspects of phase diagram and thermodynamic properties. The available experimental data and thermodynamic parameters in the literature have been summarized and assessed thoroughly to provide consistent understanding of each system. Some systems were re-calculated to obtain a combination of the best evaluated phase diagram and a set of optimized thermodynamic parameters. As doping levels of solar and electronic silicon are of high technological importance, diffusion data has been presented to serve as a useful reference on the properties, behavior and quantities of metal impurities in silicon. This paper is meant to bridge the theoretical understanding of phase diagrams with the research and development of solar-grade silicon production, relying on the available information in the literature and our own analysis. PMID:28773034

  7. Binary Phase Diagrams and Thermodynamic Properties of Silicon and Essential Doping Elements (Al, As, B, Bi, Ga, In, N, P, Sb and Tl).

    Science.gov (United States)

    Mostafa, Ahmad; Medraj, Mamoun

    2017-06-20

    Fabrication of solar and electronic silicon wafers involves direct contact between solid, liquid and gas phases at near equilibrium conditions. Understanding of the phase diagrams and thermochemical properties of the Si-dopant binary systems is essential for providing processing conditions and for understanding the phase formation and transformation. In this work, ten Si-based binary phase diagrams, including Si with group IIIA elements (Al, B, Ga, In and Tl) and with group VA elements (As, Bi, N, P and Sb), have been reviewed. Each of these systems has been critically discussed on both aspects of phase diagram and thermodynamic properties. The available experimental data and thermodynamic parameters in the literature have been summarized and assessed thoroughly to provide consistent understanding of each system. Some systems were re-calculated to obtain a combination of the best evaluated phase diagram and a set of optimized thermodynamic parameters. As doping levels of solar and electronic silicon are of high technological importance, diffusion data has been presented to serve as a useful reference on the properties, behavior and quantities of metal impurities in silicon. This paper is meant to bridge the theoretical understanding of phase diagrams with the research and development of solar-grade silicon production, relying on the available information in the literature and our own analysis.

  8. Segregation of receptor-ligand complexes in cell adhesion zones: phase diagrams and the role of thermal membrane roughness

    Science.gov (United States)

    Różycki, B.; Lipowsky, R.; Weikl, T. R.

    2010-09-01

    The adhesion zone of immune cells, the 'immunological synapse', exhibits characteristic domains of receptor-ligand complexes. The domain formation is probably caused by a length difference of the receptor-ligand complexes, and has been investigated in experiments in which T cells adhere to supported membranes with anchored ligands. For supported membranes with two types of anchored ligands, MHCp and ICAM1, which bind to the T-cell receptor (TCR) and the receptor LFA1 in the cell membrane, the coexistence of domains of the TCR-MHCp and LFA1-ICAM1 complexes in the cell adhesion zone has been observed for a wide range of ligand concentrations and affinities. For supported membranes with long and short ligands that bind to the same cell receptor CD2, in contrast, domain coexistence has been observed for a quite narrow ratio of ligand concentrations. In this paper, we determine detailed phase diagrams for cells adhering to supported membranes with a statistical-physical model of cell adhesion. We find a characteristic difference between the adhesion scenarios in which two types of ligands in a supported membrane bind (i) to the same cell receptor or (ii) to two different cell receptors, which helps us to explain the experimental observations. Our phase diagrams fully include thermal shape fluctuations of the cell membranes on nanometer scales, which lead to a critical point for the domain formation and to a cooperative binding of the receptors and ligands.

  9. Phase diagram of interfacial growth modes by vapor deposition and its application for ZnO nanostructures

    Science.gov (United States)

    Shu, Da-Jun; Xiong, Xiang; Liu, Ming; Wang, Mu

    2017-09-01

    Interfacial growth from vapor has been extensively studied. However, a straightforward picture of the growth mode under different growth conditions is still lacking. In this paper, we develop a comprehensive interfacial growth theory based on the stochastic approach. Using a critical interisland separation, we construct a general phase diagram of the growth modes. It has been revealed that if the Ehrlich-Schwoebel barrier EES is smaller than a critical value, the interfacial growth proceeds in a layer-by-layer (LBL) mode at any deposition rate. However, if EES is larger than the critical value, LBL growth occurs only at very small or very large deposition rates relative to the intralayer hopping rate, and multilayer (ML) growth occurs at a moderate deposition rate. Experiments with zinc oxide growth by chemical vapor deposition have been designed to qualitatively demonstrate the theoretical model. By changing the flux of the carrier gas (nitrogen gas) in chemical vapor deposition, we realize LBL, ML, and then reentrance of LBL homoepitaxial growth of ZnO successively. Moreover, we find that surface kinetics of ZnO is suppressed by decreasing oxygen partial pressure by comparing the experimental observations and theoretical models, which is supported by our recent first-principles calculations. Since the influence of the substrate and the growth species on growth can approximately be represented by binding energy and surface kinetics, we suggest that the phase diagram is essential for interfacial growth of different materials by vapor deposition.

  10. Optical measurements of the phase diagrams of Langmuir monolayers of fatty acid, ester, and alcohol mixtures by Brewster-angle microscopy

    Science.gov (United States)

    Teer, Ellis; Knobler, Charles M.; Lautz, Carsten; Wurlitzer, Stefan; Kildae, John; Fischer, Thomas M.

    1997-02-01

    Surface pressure-temperature phase diagrams have been determined by Brewster-angle microscopy for Langmuir monolayers of heneicosanoic acid with the esters methyl and ethyl heneicosanoate and octadecanoic acid with methyl, ethyl, and propyl octadecanoate. The behavior is similar to that found previously in mixtures of an acid and an alcohol. In each case with increasing ester concentration the L2/L2' phase boundary moves toward lower pressure and higher temperature while the L2/Ov boundary moves toward lower pressure and lower temperature. The L2' and Ov phases eventually merge and the boundary with the L2 phase moves to zero pressure. The phase diagram of eicosyl acetate is similar to that of the fatty acids. We attribute the variations in the diagrams to the extent of hydrogen bonding between the head group and the subphase.

  11. Phase equilibria in a ternary fullerenol-d(C60(OH)22-24)-SmCl3-H2O system at 25°C

    Science.gov (United States)

    Yur'ev, G. O.; Keskinov, V. A.; Semenov, K. N.; Charykov, N. A.

    2017-05-01

    The solubility in a ternary fullerenol-d (C60(OH)22-24)-SmCl3-H2O system at 25°C is studied via isothermal saturation in ampules. The solubility diagram is shown to be a simple eutonic one that consists of two branches corresponding to the crystallization of fullerenol-d (C60(OH)22-24 · 30H2O) and samarium(III) chloride SmCl3 · 6H2O crystallohydrates and contains one nonvariant eutonic point corresponding to saturation with both crystallohydrates. The long branch of C60(OH)22-24 · 30H2O crystallization shows the effect of fullerenol-d salting out of saturated solutions; in contrast, the short branch of SmCl3 · 6H2O crystallization shows the pronounced salting-in effect of samarium(III) chloride.

  12. X-ray absorption near-edge structure of hexagonal ternary phases in sputter-deposited TiAlN films

    Energy Technology Data Exchange (ETDEWEB)

    Gago, R., E-mail: rgago@icmm.csic.es [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Soldera, F. [Department of Materials Science and Engineering, Saarland University, D-66123 Saarbruecken (Germany); Hübner, R.; Lehmann, J.; Munnik, F. [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden (Germany); Vázquez, L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Redondo-Cubero, A. [Instituto Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, 2686-953 Sacavém (Portugal); Endrino, J.L. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, E-28049 Madrid (Spain); Abengoa Research S.L., c/Energía Solar 1, Palmas Altas, E-41014 Seville (Spain)

    2013-06-05

    Highlights: ► Growth of ternary TiAlN films with nearly single-phase wurzite structure. ► Soft X-rays XANES measurements of ternary TiAlN films with wurzite structure. ► Identification of ternary TiAlN hexagonal phases by XANES. ► Correlation of XANES measurements with reported theoretical calculations. -- Abstract: Titanium aluminium nitride (TiAlN) coatings have been grown by reactive (Ar/N{sub 2}) direct-current magnetron sputtering from a Ti{sub 50}Al{sub 50} compound target. The film composition has been quantified by ion beam analysis showing the formation of Al-rich nitrides (Ti/Al ∼ 0.3), with stoichiometric films for N{sub 2} contents in the gas mixture equal or above ∼25%. The surface morphology of the films has been imaged by atomic force microscopy, showing very smooth surfaces with roughness values below 2 nm. X-ray and electron diffraction patterns reveal that the films are nanocrystalline with a wurzite (w) structure of lattice parameters larger (∼2.5%) than those for w-AlN. The lattice expansion correlates with the Ti/Al ratio in stoichiometric films, which suggests the incorporation of Ti into w-AlN. The atomic environments around Ti, Al and N sites have been extracted from the X-ray absorption near-edge structure (XANES) by recording the Ti2p, Al1s and N1s edges, respectively. The analysis of the XANES spectral lineshape and comparison with reported theoretical calculations confirm the formation of a ternary hexagonal phase.

  13. High-pressure phase diagram of the drug mitotane in compressed and/or supercritical CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Favareto, Rogerio [Department of Chemical Engineering, State University of Maringa (UEM), Av. Colombo, 5790, Bloco D-90, 87020-900 Maringa, PR (Brazil); Pereira, Jose R.D. [Department of Physique, State University of Maringa (UEM), Av. Colombo, 5790, Bloco G-56, 87020-900 Maringa, PR (Brazil); Santana, Cesar C. [College of Chemical Engineering, State University of Campinas (UNICAMP), Cx. Postal 6066, 13083-970 Campinas, SP (Brazil); Madureira, Ed H. [College of Veterinary Medicine and Zootechny, University of Sao Paulo (USP), Av. Duque de Caxias Norte, 225, 13635-900 Pirassununga, SP (Brazil); Cabral, Vladimir F. [Department of Chemical Engineering, State University of Maringa (UEM), Av. Colombo, 5790, Bloco D-90, 87020-900 Maringa, PR (Brazil); Tavares, Frederico W. [School of Chemical, Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Ilha do Fundao, 21949-900 Rio de Janeiro, RJ (Brazil); Cardozo-Filho, Lucio, E-mail: cardozo@deq.uem.b [Department of Chemical Engineering, State University of Maringa (UEM), Av. Colombo, 5790, Bloco D-90, 87020-900 Maringa, PR (Brazil)

    2010-02-15

    This work provides experimental phase diagram of mitotane, a drug used in the chemotherapy treatment of adrenocortical carcinoma, in compressed and/or supercritical CO{sub 2}. The synthetic-static method in a high-pressure variable-volume view cell coupled with a transmitted-light intensity probe was used to measure the solid-fluid (SF) equilibrium data. The phase equilibrium experiments were determined in temperature ranging from (298.2 to 333.1) K and pressure up to 22 MPa. Peng-Robinson equation of state (PR-EoS) with classical mixing rule was used to correlate the experimental data. Excellent agreement was found between experimental and calculated values.

  14. Impact of Intragranular Substructure Parameters on the Forming Limit Diagrams of Single-Phase B.C.C. Steels

    Directory of Open Access Journals (Sweden)

    Gérald Franz

    2013-11-01

    Full Text Available An advanced elastic-plastic self-consistent polycrystalline model, accounting for intragranular microstructure development and evolution, is coupled with a bifurcation-based localization criterion and applied to the numerical investigation of the impact of microstructural patterns on ductility of single-phase steels. The proposed multiscale model, taking into account essential microstructural aspects, such as initial and induced textures, dislocation densities, and softening mechanisms, allows us to emphasize the relationship between intragranular microstructure of B.C.C. steels and their ductility. A qualitative study in terms of forming limit diagrams for various dislocation networks, during monotonic loading tests, is conducted in order to analyze the impact of intragranular substructure parameters on the formability of single-phase B.C.C. steels.

  15. Phase diagram and dynamics of Rydberg-dressed fermions in two dimensions

    Science.gov (United States)

    Khasseh, Reyhaneh; Abedinpour, Saeed H.; Tanatar, B.

    2017-11-01

    We investigate the ground-state properties and the collective modes of a two-dimensional two-component Rydberg-dressed Fermi liquid in the dipole-blockade regime. We find instability of the homogeneous system toward phase-separated and density ordered phases, using the Hartree-Fock and random-phase approximations, respectively. The spectral weight of collective density oscillations in the homogenous phase also signals the emergence of density-wave instability. We examine the effect of exchange hole on the density-wave instability and on the collective-mode dispersion using the Hubbard local-field factor.

  16. Phase diagrams of mixtures of a polymer and a cholesteric liquid crystal under an external field.

    Science.gov (United States)

    Matsuyama, Akihiko

    2014-11-14

    We present a mean field theory to describe phase behaviors in mixtures of a polymer and a cholesteric liquid crystal under an external magnetic or electric field. Taking into account a chiral coupling between a polymer and a liquid crystal under the external field, we examine twist-untwist phase transitions and phase separations in the mixtures. It is found that a cholesteric-nematic phase transition can be induced by not only the external field but also concentration and temperature. Depending on the strength of the external field, we predict cholesteric-paranematic (Ch+pN), nematic-paranematic (N+pN), cholesteric-nematic (Ch+N) phase separations, etc., on the temperature-concentration plane. We also discuss mixtures of a non-chiral nematic liquid crystal and a chiral dopant.

  17. Phase Equilibrium Measurements and Modeling of 1-Propanethiol+1-Butanethiol + CH4 in Methane Ternary System at 303, 336, and 368 K and Pressure Up to 9 MPa

    DEFF Research Database (Denmark)

    Awan, Javeed A.; Coquelet, Christophe; Tsivintzelis, Ioannis

    2016-01-01

    New vapor-liquid equilibrium (VLE) data for 1-propanethiol + 1-butanethiol + CH4 ternary system is reported. Measurements were performed at three different temperatures (303, 336, and 368 K), and the pressure ranged from 1 to 9 MPa. The total system pressure was maintained by CH4. The inlet mole...... fraction of 1-propanethiol (x = 5.43 x 10-1) and 1-butanethiol (x = 4.56 x 10-1) in the liquid phase were same in all experiments. A static analytic method was used for performing phase equilibrium measurements. The new VLE data have been modeled successfully with cubic-plus-association (CPA) equation...

  18. Structure and phase diagram of nucleosome core particles aggregated by multivalent cations.

    Science.gov (United States)

    Bertin, Aurélie; Mangenot, Stéphanie; Renouard, Madalena; Durand, Dominique; Livolant, Françoise

    2007-11-15

    The degree of compaction of the eukaryotic chromatin in vivo and in vitro is highly sensitive to the ionic environment. We address the question of the effect of multivalent ions on the interactions and mutual organization of the chromatin structural units, the nucleosome core particles (NCPs). Conditions of precipitation of NCPs in the presence of 10 mM Tris buffer and various amounts of either magnesium (Mg(2+)) or spermidine (Spd(3+)) are explored, compared, and discussed in relation to theoretical models. In addition, the structure of the aggregates is analyzed by complementary techniques: freeze-fracture electron microscopy, cryoelectron microscopy, and x-ray diffraction. In Mg(2+)-NCP aggregates, NCPs tend to stack on top of one another to form columns that are not long-range organized. In the presence of Spd(3+), NCPs precipitate to form a dense isotropic phase, a disordered phase of columns, a two-dimensional columnar hexagonal phase, or a three-dimensional crystal. The more ordered phases (two-dimensional or three-dimensional hexagonal) are found close to the precipitation line, where the number of positive charges carried by cations is slightly larger than the number of available negative charges of the NCPs. All ordered phases coexist with the dense isotropic phases. Formation of hexagonal and columnar phases is prevented by an excess of polycations.

  19. Magnetic phase diagram of the heavy fermion superconductor PrOs sub 4 Sb sub 1 sub 2

    CERN Document Server

    Tayama, T; Sugawara, H; Aoki, Y; Sato, H

    2003-01-01

    We investigated the magnetic phase diagram of the first Pr-based heavy fermion superconductor PrOs sub 4 Sb sub 1 sub 2 by means of high-resolution dc magnetization measurements in low temperatures down to 0.06 K. The temperature dependence of the magnetization M(T) at 0.1 kOe exhibits two distinct anomalies at T sub c sub 1 =1.83 K and T sub c sub 2 =1.65 K, in agreement with the specific heat measurements at zero field. Increasing magnetic field H, both T sub c sub 1 (H) and T sub c sub 2 (H) move toward lower temperatures without showing a tendency of intersecting to each other. Above 10 kOe, the transition at T sub c sub 2 (H) appears to merge into a line of the peak effect which is observed near the upper critical field H sub c sub 2 in the isothermal M(H) curves, suggesting a common origin for these two phenomena. The presence of the field-induced ordered phase (called phase A here) is confirmed for three principal directions above 40 kOe, with the anisotropic A-phase transition temperature T sub A :T s...

  20. Quantum vortex melting and phase diagram in the layered organic superconductor κ -(BEDT-TTF)2Cu(NCS ) 2

    Science.gov (United States)

    Uji, S.; Fujii, Y.; Sugiura, S.; Terashima, T.; Isono, T.; Yamada, J.

    2018-01-01

    Resistance and magnetic torque measurements have been performed to investigate vortex phases for a layered organic superconductor κ -(BEDT-TTF) 2Cu (NCS) 2 [BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene], which is modeled as stacks of Josephson junctions. At 25 mK, the out-of-plane resistivity increases at 0.6 T, has a step feature up to 4 T, and then increases again, whereas the in-plane resistivity monotonically increases above 4 T. The results show that both pancake vortices (PVs) and Josephson vortices (JVs) are in solid phases for μ0H 4 T, both PVs and JVs are in liquid phases. These melting transitions are predominantly induced by quantum fluctuations (not by thermal fluctuations). In the magnetic torque curves, the irreversibility transition is clearly observed, roughly corresponding to the melting transition of the PVs but no anomaly is found at the JV melting transition. The detailed vortex phase diagram is determined in a wide temperature region.

  1. Phase diagram of Janus particles: The missing dimension of pressure anisotropy

    Science.gov (United States)

    Rezvantalab, Hossein; Beltran-Villegas, Daniel J.; Larson, Ronald G.

    2017-08-01

    Brownian dynamics simulations of single-patch Janus particles under sedimentation equilibrium reveal that the phases found at fixed temperature and volume fraction are extremely sensitive to small changes in lateral box dimension. We trace this sensitivity to an uncontrolled parameter, namely, the pressure component parallel to the hexagonally ordered layers formed through sedimentation. We employ a flexible-cell constant-pressure scheme to achieve explicit control over this usually overlooked parameter, enabling the estimation of phase behavior under given pressure anisotropy. Our results show an increase in the stability range of an orientationally ordered lamellar phase with lateral layer compression and suggest a novel mechanism to control solid-solid phase transitions with negligible change in system volume, thus showing prospect for design of novel structures and switchable crystals from anisotropic building blocks.

  2. Phase diagrams of lipid mixtures relevant to the study of membrane rafts

    DEFF Research Database (Denmark)

    Goni, Felix; Alonso, Alicia; Bagatolli, Luis

    2008-01-01

    The present paper reviews the phase properties of phosphatidylcholine-sphingomyelin-cholesterol mixtures, that are often used as models for membrane "raft" microdomains. The available data based on X-ray, microscopic and spectroscopic observations, surface pressure and calorimetric measurements, ...

  3. Experimentally Determined Phase Diagram for the Barium Sulfide-Copper(I) Sulfide System Above 873 K (600 °C)

    Science.gov (United States)

    Stinn, Caspar; Nose, Katsuhiro; Okabe, Toru; Allanore, Antoine

    2017-12-01

    The phase diagram of the barium sulfide-copper(I) sulfide system was investigated above 873 K (600 °C) using a custom-built differential thermal analysis (DTA) apparatus. The melting point of barium sulfide was determined utilizing a floating zone furnace. Four new compounds, Ba2Cu14S9, Ba2Cu2S3, Ba5Cu4S7, and Ba9Cu2S10, were identified through quench experiments analyzed with wavelength dispersive X-ray spectroscopy (WDS) and energy dispersive X-ray analysis (EDS). A miscibility gap was observed between 72 and 92 mol pct BaS using both DTA experiments and in situ melts observation in a floating zone furnace. A monotectic was observed at 94.5 mol pct BaS and 1288 K (1015 °C).

  4. Phase Diagram of Hydrogen and a Hydrogen-Helium Mixture at Planetary Conditions by Quantum Monte Carlo Simulations.

    Science.gov (United States)

    Mazzola, Guglielmo; Helled, Ravit; Sorella, Sandro

    2018-01-12

    Understanding planetary interiors is directly linked to our ability of simulating exotic quantum mechanical systems such as hydrogen (H) and hydrogen-helium (H-He) mixtures at high pressures and temperatures. Equation of state (EOS) tables based on density functional theory are commonly used by planetary scientists, although this method allows only for a qualitative description of the phase diagram. Here we report quantum Monte Carlo (QMC) molecular dynamics simulations of pure H and H-He mixture. We calculate the first QMC EOS at 6000 K for a H-He mixture of a protosolar composition, and show the crucial influence of He on the H metallization pressure. Our results can be used to calibrate other EOS calculations and are very timely given the accurate determination of Jupiter's gravitational field from the NASA Juno mission and the effort to determine its structure.

  5. Research Update: Magnetic phase diagram of EuTi1−xBxO3 (B = Zr, Nb

    Directory of Open Access Journals (Sweden)

    Ling Li

    2014-11-01

    Full Text Available We report the magnetic phase diagram of EuTi1−xBxO3 (B = Zr, Nb, determined from magnetization and heat capacity measurements. Upon Zr-doping, the antiferromagnetic ordering temperature TN of EuTi1−xZrxO3 gradually decreases from 5.6 K (x = 0 to 4.1 K (x = 1. Whereas a similar decrease in TN is observed for small amounts of Nb doping (x ≤ 0.05, ferromagnetism is induced in EuTi1−xNbxO3 with x > 0.05. The ferromagnetic interaction between localized Eu 4f spins mediated by itinerant electrons introduced by Nb doping results in the ferromagnetism in EuTi1−xNbxO3.

  6. Phase diagram and complex patterns in the modeling of the bromate-oxalic acid-Ce-acetone oscillating reaction

    Directory of Open Access Journals (Sweden)

    Janaina A. M. Pereira

    2007-06-01

    Full Text Available Simulations have been carried out on the bromate - oxalic acid - Ce(IV - acetone oscillating reaction, under flow conditions, using Field and Boyd's model (J. Phys. Chem. 1985, 89, 3707. Many different complex dynamic behaviors were found, including simple periodic oscillations, complex periodic oscillations, quasiperiodicity and chaos. Some of these complex oscillations can be understood as belonging to a Farey sequence. The many different behaviors were systematized in a phase diagram which shows that some regions of complex patterns were nested with one inside the other. The existence of almost all known dynamic behavior for this system allows the suggestion that it can be used as a model for some very complex phenomena that occur in biological systems.

  7. Pressure and temperature phase diagram of Gd{sub 2}Ti{sub 2}O{sub 7} under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Catillon, G. [Université Paris-Est, G2I, EA4119, 5 Blvd. Descartes, F-77454 Marne la Vallée Cedex 2 (France); Chartier, A., E-mail: alain.chartier@cea.fr [CEA, DEN, DMN, SCCME, F-91191 Gif-Sur-Yvette Cedex (France)

    2014-11-21

    The pressure and temperature phase diagram of Gd{sub 2}Ti{sub 2}O{sub 7} under irradiation are calculated by means of molecular dynamics calculations. The critical temperature for amorphization obeys a linear law with pressure. Gd{sub 2}Ti{sub 2}O{sub 7} under irradiation transits towards the fluorite above this temperature and amorphizes below. The configuration of the Ti interstitial reveals to be the key of the amorphizability of Gd{sub 2}Ti{sub 2}O{sub 7}. Its stability depends upon disorder and pressure. Low pressure promotes the stabilization of Ti linked-polyhedra that drive the system to the amorphous state under irradiation. Conversely, high pressure activates its destabilization to interstitials that recombine with vacancies, driving the system to the fluorite structure under irradiation.

  8. Phase diagram of two-color QCD in a Dyson-Schwinger approach

    Energy Technology Data Exchange (ETDEWEB)

    Buescher, Pascal Joachim

    2014-04-28

    We investigate two-color QCD with N{sub f}=2 at finite temperatures and chemical potentials using a Dyson-Schwinger approach. We employ two different truncations for the quark loop in the gluon DSE: one based on the Hard-Dense/Hard-Thermal Loop (HDTL) approximation of the quark loop and one based on the back-coupling of the full, self-consistent quark propagator (SCQL). We compare results for the different truncations with each other as well as with other approaches. As expected, we find a phase dominated by the condensation of quark-quark pairs. This diquark condensation phase overshadows the critical end point and first-order phase transition which one finds if diquark condensation is neglected. The phase transition from the phase without diquark condensation to the diquark-condensation phase is of second order. We observe that the dressing with massless quarks in the HDTL approximation leads to a significant violation of the Silver Blaze property and to a too small diquark condensate. The SCQL truncation, on the other hand, is found to reproduce all expected features of the μ-dependent quark condensates. Moreover, with parameters adapted to the situation in other approaches, we also find good to very good agreement with model and lattice calculations in all quark quantities. We find indictions that the physics in recent lattice calculations is likely to be driven solely by the explicit chiral symmetry breaking. Discrepancies w.r.t. the lattice are, however, observed in two quantities that are very sensitive to the screening of the gluon propagator, the dressed gluon propagator itself and the phase-transition line at high temperatures.

  9. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow

    Science.gov (United States)

    Yazdani, Alireza Z. K.; Bagchi, Prosenjit

    2011-08-01

    We present phase diagrams of the single red blood cell and biconcave capsule dynamics in dilute suspension using three-dimensional numerical simulations. The computational geometry replicates an in vitro linear shear flow apparatus. Our model includes all essential properties of the cell membrane, namely, the resistance against shear deformation, area dilatation, and bending, as well as the viscosity difference between the cell interior and suspending fluids. By considering a wide range of shear rate and interior-to-exterior fluid viscosity ratio, it is shown that the cell dynamics is often more complex than the well-known tank-treading, tumbling, and swinging motion and is characterized by an extreme variation of the cell shape. As a result, it is often difficult to clearly establish whether the cell is swinging or tumbling. Identifying such complex shape dynamics, termed here as “breathing” dynamics, is the focus of this article. During the breathing motion at moderate bending rigidity, the cell either completely aligns with the flow direction and the membrane folds inward, forming two cusps, or it undergoes large swinging motion while deep, craterlike dimples periodically emerge and disappear. At lower bending rigidity, the breathing motion occurs over a wider range of shear rates, and is often characterized by the emergence of a quad-concave shape. The effect of the breathing dynamics on the tank-treading-to-tumbling transition is illustrated by detailed phase diagrams which appear to be more complex and richer than those of vesicles. In a remarkable departure from the vesicle dynamics, and from the classical theory of nondeformable cells, we find that there exists a critical viscosity ratio below which the transition is independent of the viscosity ratio, and dependent on shear rate only. Further, unlike the reduced-order models, the present simulations do not predict any intermittent dynamics of the red blood cells.

  10. Effect of lipid composition on the structure and theoretical phase diagrams of DC-Chol/DOPE-DNA lipoplexes.

    Science.gov (United States)

    Muñoz-Ubeda, Mónica; Rodríguez-Pulido, Alberto; Nogales, Aurora; Martín-Molina, Alberto; Aicart, Emilio; Junquera, Elena

    2010-12-13

    Lipoplexes constituted by calf-thymus DNA (CT-DNA) and mixed cationic liposomes consisting of varying proportions of the cationic lipid 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride (DC-Chol) and the zwitterionic lipid, 1,2-dioleoyl-sn-glycero-3-phosphoetanolamine (DOPE) have been analyzed by means of electrophoretic mobility, SAXS, and fluorescence anisotropy experiments, as well as by theoretically calculated phase diagrams. Both experimental and theoretical studies have been run at several liposome and lipoplex compositions, defined in terms of cationic lipid molar fraction, α, and either the mass or charge ratios of the lipoplex, respectively. The experimental electrochemical results indicate that DC-Chol/DOPE liposomes, with a mean hydrodynamic diameter of around (120 ± 10) nm, compact and condense DNA fragments at their cationic surfaces by means of a strong entropically driven electrostatic interaction. Furthermore, the positive charges of cationic liposomes are compensated by the negative charges of DNA phosphate groups at the isoneutrality L/D ratio, (L/D)(ϕ), which decreases with the cationic lipid content of the mixed liposome, for a given DNA concentration. This inversion of sign process has been also studied by means of the phase diagrams calculated with the theoretical model, which confirms all the experimental results. SAXS diffractograms, run at several lipoplex compositions, reveal that, irrespectively of the lipoplex charge ratio, DC-Chol/DOPE-DNA lipoplexes show a lamellar structure, L(α), when the cationic lipid content on the mixed liposomes α ≥ 0.4, while for a lower content (α = 0.2) the lipoplexes show an inverted hexagonal structure, H(II), usually related with improved cell transfection efficiency. A similar conclusion is reached from fluorescence anisotropy results, which indicate that the fluidity on liposome and lipoplexes membrane, also related with better transfection results, increases as long as the

  11. Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.

    Science.gov (United States)

    Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay

    2017-12-12

    The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 1014 cm-2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.

  12. Phase diagram of a lattice of vortex molecules in multicomponent superconductors and multilayer cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y; Shivagan, D D; Iyo, A; Shirage, P M [National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568 (Japan); Crisan, A [National Institute of Materials Physics, Bucharest 077125 (Romania); Tokiwa, K; Watanabe, T [Department of Applied Electronics, Tokyo University of Science, Noda 278-851 (Japan); Terada, N [Department of Nano-Structures and Advanced Materials, Graduate School of Science and Engineering, Kagoshima University, Korimoto, Kagoshima 890-0065 (Japan)], E-mail: y.tanaka@aist.go.jp

    2008-08-15

    The Abrikosov lattice in the multilayer cuprate superconductor CuBa{sub 2}Ca{sub 3}Cu{sub 3}O{sub y} (Cu-1223) has been experimentally and theoretically demonstrated to be composed of vortex molecules. Cu-1223 is considered to be a typical multicomponent superconductor. We show that in such a system the rotational freedom around the axis of the vortex molecular tube generates orientational disorder and the orientational glass (or crystal) phase, which is never present in conventional vortex lattices consisting of axisymmetric vortices. The emergence of the orientational glass phase and orientational order phase with orthorhombic distortion is a general property of vortex molecule lattices of the multiband type of multicomponent superconductors.

  13. HP-67 calculator programs for thermodynamic data and phase diagram calculations

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, L.

    1978-05-25

    This report is a supplement to a tabulation of the thermodynamic and phase data for the 100 binary systems of Mo with the elements from H to Lr. The calculations of thermodynamic data and phase equilibria were carried out from 5000/sup 0/K to low temperatures. This report presents the methods of calculation used. The thermodynamics involved is rather straightforward and the reader is referred to any advanced thermodynamic text. The calculations were largely carried out using an HP-65 programmable calculator. In this report, those programs are reformulated for use with the HP-67 calculator; great reduction in the number of programs required to carry out the calculation results.

  14. Ternary CoS{sub 2}/MoS{sub 2}/RGO electrocatalyst with CoMoS phase for efficient hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan-Ru; Shang, Xiao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Gao, Wen-Kun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Dong, Bin, E-mail: dongbin@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Chi, Jing-Qi; Li, Xiao; Yan, Kai-Li; Chai, Yong-Ming [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Yun-Qi, E-mail: liuyq@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chen-Guang [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China)

    2017-08-01

    Highlights: • Ternary CoS{sub 2}/MoS{sub 2}/RGO with CoMoS phase as electrocatalyst for HER was prepared. • CoMoS phase have the metallic nature and highly intrinsic activity for HER. • RGO support ensures good distribution of CoMoS phase and enhances the conductivity. • The introduction of CoMoS and RGO may be a novel strategy for efficient HER of MoS{sub 2}. - Abstract: CoMoS phase with metallic character plays crucial role on enhancing the activity of MoS{sub 2} electrocatalysts for hydrogen evolution reaction (HER). However, only Co atoms located in the edges of MoS{sub 2} can create CoMoS phase, so it is a challenge to obtain CoMoS phase with homogeneous distribution limited by the layered MoS{sub 2} and doping method of Co. Herein, we reported a simple one-pot hydrothermal method to prepare novel ternary CoS{sub 2}/MoS{sub 2}/RGO with CoMoS phase for HER using reduced graphene oxide (RGO) as support. XPS proves the formation of CoMoS phase, implying the enhanced activity for HER. RGO support ensures the well distribution of CoMoS phase and enhances the conductivity of CoS{sub 2}/MoS{sub 2}/RGO. Compared to CoS{sub 2}/RGO, MoS{sub 2}/RGO and CoS{sub 2}/MoS{sub 2}, the obtained CoS{sub 2}/MoS{sub 2}/RGO shows superior activity for HER with an onset overpotential of −80 mV (vs. RHE), small Tafel slope of 56 mV dec{sup −1}, high exchange current density of 11.4 μA cm{sup −2} and rigid electrochemical durability. The enhanced performances for HER may be ascribed to the formation of CoMoS phase with high activity and the existence of RGO support with good electrical conductivitys in ternary CoS{sub 2}/MoS{sub 2}/RGO. Therefore, the introduction of CoMoS phase and RGO into MoS{sub 2} could effectively enhance electrocatalytic properties for HER.

  15. The effect of gauche molecular conformations on the phase diagram of a Langmuir monolayer

    NARCIS (Netherlands)

    Zangi, R; Rice, SA

    2003-01-01

    Experimental and simulation studies have shown that the gauche conformational degrees of freedom of long-chain amphiphile molecules assembled in a dense Langmuir monolayer play an important role in determining the structures of the several phases that the monolayer supports. Nevertheless, for

  16. Binary phase diagram of monolayers of simple 1,2-diol derivatives

    DEFF Research Database (Denmark)

    Wolf, C. De; Bringezu, F.; Brezesinski, G.

    1998-01-01

    direction. Extrapolation of a plot of 1/cos(t) versus lateral pressure yields transition pressures to a phase with upright oriented molecules. Both pure compounds and all mixtures investigated show a non-zero lattice distortion at zero tilt angle indicating a probable herringbone packing of the molecules...

  17. The magnetic and nematic phase diagram of Ba1-xSrxFe2-yNiyAs2

    Science.gov (United States)

    Gong, Dongliang; Li, Shiliang; SC8, National Lab for superconductivity, IOP, CAS Team

    The correlation between magnetic and nematic orders has been widely studied in iron-based superconductors. The magnetic and nematic phase transitions may be both first order as in SrFe2As2,o or both second order as in BaFe2-xNixAs2. Within spin-nematic scenario, it is possible for a system to establish the nematic phase as second order while keeping the magnetic transition first-ordered. Experimentally, it is rather hard to distinguish a second-order transition from a weakly first-order transition. Here we have systematically studied the nematic susceptibility and magnetic susceptibility in the iron-based superconductor Ba1-xSrxFe2-yNiyAs2 by elastoresistivity and magnetic susceptibility measurements, respectively. The evolutions of the nematic and magnetic transitions from first order to second order can be continuously tuned by the substitution of Sr by Ba. Our results give a phase diagram that is consistent with the spin-nematic theory. Chinese Academy of Sciences, Ministry of Science and Technology of China, e National Science Foundation of China, China Academy of Engineering Physics.

  18. Compression and phase diagram of lithium hydrides at elevated pressures and temperatures by first-principles calculations

    CERN Document Server

    Chen, Yang M; Wu, Qiang; Geng, Hua Y; Yan, Xiao Z; Wang, Yi X; Wang, Zi W

    2016-01-01

    High pressure and high temperature properties of AB (A = $^6$Li, $^7$Li; B = H, D, T) are investigated with first-principles method comprehensively. It is found that the H$^{-}$ sublattice features in the low-pressure electronic structure near the Fermi level of LiH are shifted to that dominated by the Li$^{+}$ sublattice in compression. The lattice dynamics is studied in quasi-harmonic approximation, from which the phonon contribution to the free energy and the isotopic effects are accurately modelled with the aid of a parameterized double-Debye model. The obtained equation of state (EOS) matches perfectly with available static experimental data. The calculated principal Hugoniot is also in accordance with that derived from shock wave experiments. Using the calculated principal Hugoniot and the previous theoretical melting curve, we predict a shock melting point at 56 GPa and 1923 K. In order to establish the phase diagram for LiH, the phase boundaries between the B1 and B2 solid phases are explored. The B1-...

  19. Phase equilibria in the Zr-Si-B ternary system (Zr-Si-ZrB{sub 2} region) at 1 173 K

    Energy Technology Data Exchange (ETDEWEB)

    Han, Feng; Luo, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Lab. of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Lab. of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry

    2017-10-15

    The isothermal section of the Zr-Si-B ternary system (Zr-Si-ZrB{sub 2} region) at 1 173 K has been experimentally determined. All equilibrated alloys were characterized via X-ray powder diffraction and scanning electron microscopy equipped with energy-dispersive X-ray analysis. A ternary phase Zr{sub 5}(Si{sub 0.86}B{sub 0.14}){sub 3} was found at 1 173 K. The experimental results show that the isothermal section consists of 11 single-phase regions, 26 two-phase regions and 13 three-phase regions. The existence of eight compounds, i.e. ZrSi{sub 2}, ZrSi, Zr{sub 5}Si{sub 4}, Zr{sub 3}Si{sub 2}, Zr{sub 2}Si, ZrB, ZrB{sub 2} and Zr{sub 5}(Si{sub 0.86}B{sub 0.14}){sub 3} in this system has been confirmed in the Zr-Si-ZrB{sub 2} region at 1 173 K.

  20. Studies on the phase diagram of boron employing a neural network potential

    Energy Technology Data Exchange (ETDEWEB)

    Morawietz, Tobias; Behler, Joerg [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum (Germany); Parrinello, Michele [Department of Chemistry and Applied Biosciences, ETH Zuerich (Switzerland)

    2009-07-01

    The crystalline phases of elemental boron have a structural complexity unique in the periodic table. The complex connection pattern of the icosahedral building blocks forms a formidable challenge for the construction of accurate but efficient potentials. We present a high-dimensional neural network potential for boron, which is based on first-principles calculations and can be systematically improved. The potential is several orders of magnitude faster to evaluate than the underlying density-functional theory calculations and allows to perform long molecular dynamics and metadynamics simulations of large system. By a stepwise refinement of the potential and an application of the potential in metadynamics simulations we show that starting from random atomic positions the structure of {alpha}-boron is predicted in agreement with experiment. Further, pressure-induced phase transitions of {alpha}-boron are discussed.

  1. Study of QCD Phase Diagram with Non-Zero Chiral Chemical Potential

    CERN Document Server

    Braguta, V V; Kotov, A Yu; Petersson, B; Skinderev, S A

    2015-01-01

    In this paper we report on lattice simulations of SU(3)-QCD with non-zero chiral chemical potential. We focus on the influence of the chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical Wilson fermions. We find that the critical temperature rises as the chiral chemical potential grows.

  2. Phase diagrams in blends of poly(3-hydroxybutyric acid with various aliphatic polyesters

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available Phase behavior with immiscibility, miscibility, crystalline morphology, and kinetic analysis in blends of poly(3-hydroxybutyric acid (PHB with aliphatic polyesters such as poly(butylene adipate (PBA, poly(ethylene adipate (PEA, poly(trimethylene adipate (PTA, or poly(ethylene succinate (PESu, respectively, were explored mainly using differential scanning calorimeter (DSC and polarized-light optical microscopy (POM. Immiscibility phase behavior with reversible upper-critical-solution-temperature (UCST is common in the PHB/polyester blends. The polyester/polyester blend of PHB/PTA is partially miscible with no UCST in melt and amorphous glassy states within a composition range of PTA less than 50 wt%. The miscible crystalline/crystalline blend exhibits ring-banded spherulites at Tc = 50~100°C, with inter-ring spacing dependent on Tc. All immiscible or partially miscible PHB/polyester blends, by contrast, exhibit disrupted ringbanded spherulites or discrete spherical phase domains upon cooling from UCST to crystallization. The blends of PHB with all other aliphatic polyesters, such as PESu, PEA, PBA, etc. are only partially miscible or immiscible with an upper critical solution temperature (UCST at 180~221°C depending on blend composition. UCST with reversibility was verified.

  3. Ternary CoS2/MoS2/RGO electrocatalyst with CoMoS phase for efficient hydrogen evolution

    Science.gov (United States)

    Liu, Yan-Ru; Shang, Xiao; Gao, Wen-Kun; Dong, Bin; Chi, Jing-Qi; Li, Xiao; Yan, Kai-Li; Chai, Yong-Ming; Liu, Yun-Qi; Liu, Chen-Guang

    2017-08-01

    CoMoS phase with metallic character plays crucial role on enhancing the activity of MoS2 electrocatalysts for hydrogen evolution reaction (HER). However, only Co atoms located in the edges of MoS2 can create CoMoS phase, so it is a challenge to obtain CoMoS phase with homogeneous distribution limited by the layered MoS2 and doping method of Co. Herein, we reported a simple one-pot hydrothermal method to prepare novel ternary CoS2/MoS2/RGO with CoMoS phase for HER using reduced graphene oxide (RGO) as support. XPS proves the formation of CoMoS phase, implying the enhanced activity for HER. RGO support ensures the well distribution of CoMoS phase and enhances the conductivity of CoS2/MoS2/RGO. Compared to CoS2/RGO, MoS2/RGO and CoS2/MoS2, the obtained CoS2/MoS2/RGO shows superior activity for HER with an onset overpotential of -80 mV (vs. RHE), small Tafel slope of 56 mV dec-1, high exchange current density of 11.4 μA cm-2 and rigid electrochemical durability. The enhanced performances for HER may be ascribed to the formation of CoMoS phase with high activity and the existence of RGO support with good electrical conductivitys in ternary CoS2/MoS2/RGO. Therefore, the introduction of CoMoS phase and RGO into MoS2 could effectively enhance electrocatalytic properties for HER.

  4. Elastic properties and stress-temperature phase diagrams of high-temperature phases with low-temperature lattice instabilities

    Science.gov (United States)

    Thomas, John C.; Van der Ven, Anton

    2014-12-01

    The crystal structures of many technologically important high-temperature phases are predicted to have lattice instabilities at low temperature, making their thermodynamic and mechanical properties inaccessible to standard first principles approaches that rely on the (quasi) harmonic approximation. Here, we use the recently developed anharmonic potential cluster expansion within Monte Carlo simulations to predict the effect of temperature and anisotropic stress on the elastic properties of ZrH2, a material that undergoes diffusionless transitions among cubic, tetragonal, and orthorhombic phases. Our analysis shows that the mechanical properties of high-temperature phases with low-temperature vibrational instabilities are very sensitive to temperature and stress state. These findings have important implications for materials characterization and multi-scale simulations and suggest opportunities for enhanced strain engineering of high-temperature phases exhibiting soft-mode instabilities.

  5. Universal Off-Equilibrium Scaling of Critical Cumulants in the QCD Phase Diagram.

    Science.gov (United States)

    Mukherjee, Swagato; Venugopalan, Raju; Yin, Yi

    2016-11-25

    Exploiting the universality between the QCD critical point and the three-dimensional Ising model, closed form expressions derived for nonequilibrium critical cumulants on the crossover side of the critical point reveal that they can differ in both magnitude and sign from equilibrium expectations. We demonstrate here that key elements of the Kibble-Zurek framework of nonequilibrium phase transitions can be employed to describe the dynamics of these critical cumulants. Our results suggest that observables sensitive to critical dynamics in heavy-ion collisions should be expressible as universal scaling functions, thereby providing powerful model-independent guidance in searches for the QCD critical point.

  6. Experimental phase diagram of zero-bias conductance peaks in superconductor/semiconductor nanowire devices.

    Science.gov (United States)

    Chen, Jun; Yu, Peng; Stenger, John; Hocevar, Moïra; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Stanescu, Tudor D; Frolov, Sergey M

    2017-09-01

    Topological superconductivity is an exotic state of matter characterized by spinless p-wave Cooper pairing of electrons and by Majorana zero modes at the edges. The first signature of topological superconductivity is a robust zero-bias peak in tunneling conductance. We perform tunneling experiments on semiconductor nanowires (InSb) coupled to superconductors (NbTiN) and establish the zero-bias peak phase in the space of gate voltage and external magnetic field. Our findings are consistent with calculations for a finite-length topological nanowire and provide means for Majorana manipulation as required for braiding and topological quantum bits.

  7. Phase Equilibria in the Fe-Mo-Ti Ternary System at 1173 K (900 °C) and 1023 K (750 °C)

    Science.gov (United States)

    Knowles, A. J.; Jones, N. G.; Jones, C. N.; Stone, H. J.

    2017-09-01

    Alloys with fine-scale eutectic microstructures comprising Ti-based A2 and TiFe B2 phases have been shown to have excellent mechanical properties. In this study, the potential of alloys with further refined A2-B2 microstructures formed through solid-state precipitation has been explored by analyzing a series of six alloys within the Fe-Mo-Ti ternary system. Partial isothermal sections of this system at 1173 K (900 °C) and 1023 K (750 °C) were constructed, from which the ternary solubility limits of the A2 (Ti, Mo), B2 TiFe, D85 Fe7Mo6, and C14 Fe2Ti phases were determined. With these data, the change in solubility of Fe in the A2 phase with temperature, which provides the driving force for precipitation of B2 TiFe, was determined and used to predict the maximum potential volume fraction of B2 TiFe precipitates that may be formed in an A2 (Ti, Mo) matrix.

  8. Conductivity, Thermal Measurements, and Phase Diagram of the Na2S2O7-NaHSO4 System

    DEFF Research Database (Denmark)

    Hatem, G.; Gaune-Escard, M.; Rasmussen, Søren Birk

    1999-01-01

    The conductivity of the Na2S2O7-NaHSO4 binary system has been measured for 15 different compositions in the full composition range, and in the temperature range 400-700 K.Phase transition temperatures were obtained, and the phase diagram constructed. It is of thesimple eutectic type, where......, as found earlier for theK2S2O7-KHSO4 system. For each composition measured of the Na2S2O7-NaHSO4 system inthe molten state, the conductivity has been expressed by equations of the form = A(X) +B(X)(T - Tm) + C(X)(T-Tm)^2, where Tm is the intermediate temperature of the measuredtemperature range....... the eutectic is found to have the composition X(CsHSO4) = 0.97, ascalculated from the measured thermodynamic properties, and to melt at 179°C. The partialenthalpy and entropy of mixing have been obtained, and the negative entropy points to astructural order of the melt, presumably due to hydrogen bonding...

  9. Phase diagram of dirty two-band superconductors and observability of impurity-induced s +i s state

    Science.gov (United States)

    Silaev, Mihail; Garaud, Julien; Babaev, Egor

    2017-01-01

    We investigate the phase diagram of dirty two-band superconductors. This paper primarily focuses on the properties and observability of the time-reversal symmetry-breaking s +i s superconducting states, which can be generated in two-band superconductors by interband impurity scattering. We show that such states can appear in two distinct ways. First, according to a previously discussed scenario, the s +i s state can form as an intermediate phase at the impurity-driven crossover between s± and s++ states. We show that there is a second scenario where domains of the s +i s state exists in the form of an isolated dome inside the s± domain, completely detached from the transition between s± and s++ states. We demonstrate that in both cases the s +i s state generated by impurity scattering exists in an extremely small interval of impurity concentrations. Although this likely precludes direct experimental observation of the s +i s state formation due to this mechanism, this physics leads to the appearance of a region inside both the s± and s++ domains with unusual properties due to softening of normal modes.

  10. TES buffer-induced phase separation of aqueous solutions of several water-miscible organic solvents at 298.15 K: Phase diagrams and molecular dynamic simulations

    Science.gov (United States)

    Taha, Mohamed; Lee, Ming-Jer

    2013-06-01

    Water and the organic solvents tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, 1-propanol, 2-propanol, tert-butanol, acetonitrile, or acetone are completely miscible in all proportions at room temperature. Here, we present new buffering-out phase separation systems that the above mentioned organic aqueous solutions can be induced to form two liquid phases in the presence of a biological buffer 2-[[1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl]amino]ethanesulfonic acid (TES). The lower liquid phase is rich in water and buffer, and the upper phase is organic rich. This observation has both practical and mechanistic interests. The phase diagrams of these systems were constructed by experimental measurements at ambient conditions. Molecular dynamic (MD) simulations were performed for TES + water + THF system to understand the interactions between TES, water, and organic solvent at molecular level. Several composition-sets for this system, beyond and inside the liquid-liquid phase-splitting region, have been simulated. Interestingly, the MD simulation for compositions inside the phase separation region showed that THF molecules are forced out from the water network to start forming a new liquid phase. The hydrogen-bonds, hydrogen-bonds lifetimes, hydrogen-bond energies, radial distribution functions, coordination numbers, the electrostatic interactions, and the van der Waals interactions between the different pairs have been calculated. Additionally, MD simulations for TES + water + tert-butanol/acetonitrile/acetone phase separation systems were simulated. The results from MD simulations provide an explanation for the buffering-out phenomena observed in [TES + water + organic solvent] systems by a mechanism controlled by the competitive interactions of the buffer and the organic solvent with water. The molecular mechanism reported here is helpful for designing new benign separation materials.

  11. Phase diagram and universality of the Lennard-Jones gas-liquid system

    KAUST Repository

    Watanabe, Hiroshi

    2012-01-01

    The gas-liquid phase transition of the three-dimensional Lennard-Jones particles system is studied by molecular dynamics simulations. The gas and liquid densities in the coexisting state are determined with high accuracy. The critical point is determined by the block density analysis of the Binder parameter with the aid of the law of rectilinear diameter. From the critical behavior of the gas-liquid coexisting density, the critical exponent of the order parameter is estimated to be β = 0.3285(7). Surface tension is estimated from interface broadening behavior due to capillary waves. From the critical behavior of the surface tension, the critical exponent of the correlation length is estimated to be ν = 0.63(4). The obtained values of β and ν are consistent with those of the Ising universality class. © 2012 American Institute of Physics.

  12. Electron doped layered nickelates: Spanning the phase diagram of the cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Botana, Antia S.; Pardo, Victor; Norman, Michael R.

    2017-07-01

    Pr4Ni3O8 is an overdoped analog of hole-doped layered cuprates. Here we show via ab initio calculations that Ce-doped Pr4Ni3O8 (Pr3CeNi3O8) has the same electronic structure as the antiferromagnetic insulating phase of parent cuprates.We find that substantial Ce doping should be thermodynamically stable and that other 4+ cations would yield a similar antiferromagnetic insulating state, arguing this configuration is robust for layered nickelates of low-enough valence. The analogies with cuprates at different d fillings suggest that intermediate Ce-doping concentrations near 1/8 should be an appropriate place to search for superconductivity in these low-valence Ni oxides.

  13. Phase diagram of the two-dimensional O(3) model from dual lattice simulations

    CERN Document Server

    Bruckmann, Falk; Kloiber, Thomas; Sulejmanpasic, Tin

    2016-01-01

    We have simulated the asymptotically free two-dimensional O(3) model at nonzero chemical potential using the model's dual representation. We first demonstrate how the latter solves the sign (complex action) problem. The system displays a crossover at nonzero temperature, while at zero temperature it undergoes a quantum phase transition when mu reaches the particle mass (generated dynamically similar to QCD). The density follows a square root behavior universal for repulsive bosons in one spatial dimension. We have also measured the spin stiffness, known to be sensitive to the spatial correlation length, using different scaling trajectories to zero temperature and infinite size. It points to a dynamical critical exponent z=2. Comparisons to thermodynamic Bethe ansaetze are shown as well.

  14. Phase diagram of the restricted primitive model: charge-ordering instability

    Directory of Open Access Journals (Sweden)

    O.V.Patsahan

    2004-01-01

    Full Text Available We study the phase behaviour of the restricted primitive model (RPM using a microscopic approach based on the method of collective variables with a reference system. Starting from the Hamiltonian of the RPM we derive the functional of the grand partition function given in terms of the two collective variables: the collective variables ρk and ck describing fluctuations of the total number density and charge density, respectively. Within the framework of the Gaussian approximation we found the boundary of stability with respect to fluctuations of the charge density. It is shown that due to the approximated character of the theory the boundary of stability is very sensitive to the particular choice of the long-range part of potential inside the hard core. This point is discussed in more detail.

  15. Entanglement and quantum phase diagrams of symmetric multi-qubit systems

    Science.gov (United States)

    Calixto, Manuel; Castaños, Octavio; Romera, Elvira

    2017-10-01

    For general symmetric multi-qubit systems, the behavior of one- and two-qubit entanglement for Dicke, spin coherent and parity-adapted (even and odd) spin coherent states is determined. These quantum correlations are quantified by linear and von Neumann entropies of the corresponding one- and two-qubit reduced density matrices of the multi-qubit system. These states play a fundamental role in the study of Hamiltonian systems written in terms of collective generators of the angular momentum algebra like, for example, the Lipkin-Meshkov-Glick (LMG) model. Here we shall use these entanglement measures as a signature to characterize the different quantum phases that appear in these models.

  16. Hadron formation in relativistic nuclear collisions and the QCD phase diagram.

    Science.gov (United States)

    Becattini, Francesco; Bleicher, Marcus; Kollegger, Thorsten; Schuster, Tim; Steinheimer, Jan; Stock, Reinhard

    2013-08-23

    We study particle production in ultrarelativistic nuclear collisions at CERN SPS and LHC energies and the conditions of chemical freeze-out. We determine the effect of the inelastic reactions between hadrons occurring after hadronization and before chemical freeze-out employing the ultrarelativistic quantum molecular dynamics hybrid model. The differences between the initial and the final hadronic multiplicities after the rescattering stage resemble the pattern of data deviation from the statistical equilibrium calculations. By taking these differences into account in the statistical model analysis of the data, we are able to reconstruct the original hadrochemical equilibrium points in the (T, μ(B)) plane which significantly differ from chemical freeze-out ones and closely follow the parton-hadron phase boundary recently predicted by lattice quantum chromodynamics.

  17. The phase diagrams of KCaF3 and NaMgF3 by ab initio simulations

    Science.gov (United States)

    Jakymiw, Clément; Vočadlo, Lidunka; Dobson, David P.; Bailey, Edward; Thomson, Andrew R.; Brodholt, John P.; Wood, Ian G.; Lindsay-Scott, Alex

    2017-09-01

    ABF3 compounds have been found to make valuable low-pressure analogues for high-pressure silicate phases that are present in the Earth's deep interior and that may also occur in the interiors of exoplanets. The phase diagrams of two of these materials, KCaF3 and NaMgF3, have been investigated in detail by static ab initio computer simulations based on density functional theory. Six ABF3 polymorphs were considered, as follows: the orthorhombic perovskite structure (GdFeO3-type; space group Pbnm); the orthorhombic CaIrO3 structure (Cmcm; commonly referred to as the "post-perovskite" structure); the orthorhombic Sb2S3 and La2S3 structures (both Pmcn); the hexagonal structure previously suggested in computer simulations of NaMgF3 (P63/mmc); the monoclinic structure found to be intermediate between the perovskite and CaIrO3 structures in CaRhO3 (P21/m). Volumetric and axial equations of state of all phases considered are presented. For KCaF3, as expected, the perovskite phase is shown to be the most thermodynamically stable at atmospheric pressure. With increasing pressure, the relative stability of the KCaF3 phases then follows the sequence: perovskite → La2S3 structure → Sb2S3 structure → P63/mmc structure; the CaIrO3 structure is never the most stable form. Above about 2.6 GPa, however, none of the KCaF3 polymorphs are stable with respect to dissociation into KF and CaF2. The possibility that high-pressure KCaF3 polymorphs might exist metastably at 300 K, or might be stabilised by chemical substitution so as to occur within the standard operating range of a multi-anvil press, is briefly discussed. For NaMgF3, the transitions to the high-pressure phases occur at pressures outside the normal range of a multi-anvil press. Two different sequences of transitions had previously been suggested from computer simulations. With increasing pressure, we find that the relative stability of the NaMgF3 phases follows the sequence: perovskite → CaIrO3 structure → Sb2S3

  18. Experimental consideration of capillary chromatography based on tube radial distribution of ternary mixture carrier solvents under laminar flow conditions.

    Science.gov (United States)

    Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2011-01-01

    A capillary chromatography system has been developed based on the tube radial distribution of the carrier solvents using an open capillary tube and a water-acetonitrile-ethyl acetate mixture carrier solution. This tube radial distribution chromatography (TRDC) system works under laminar flow conditions. In this study, a phase diagram for the ternary mixture carrier solvents of water, acetonitrile, and ethyl acetate was constructed. The phase diagram that included a boundary curve between homogeneous and heterogeneous solutions was considered together with the component ratios of the solvents in the homogeneous carrier solutions required for the TRDC system. It was found that the TRDC system performed well with homogeneous solutions having component ratios of the solvents that were positioned near the homogeneous-heterogeneous solution boundary of the phase diagram. For preparing the carrier solutions of water-hydrophilic/hydrophobic organic solvents for the TRDC system, we used for the first time methanol, ethanol, 1,4-dioxane, and 1-propanol, instead of acetonitrile (hydrophilic organic solvent), as well as chloroform and 1-butanol, instead of ethyl acetate (hydrophobic organic solvent). The homogeneous ternary mixture carrier solutions were prepared near the homogeneous-heterogeneous solution boundary. Analyte mixtures of 2,6-naphthalenedisulfonic acid and 1-naphthol were separated with the TRDC system using these homogeneous ternary mixture carrier solutions. The pressure change in the capillary tube under laminar flow conditions might alter the carrier solution from homogeneous in the batch vessel to heterogeneous, thus affecting the tube radial distribution of the solvents in the capillary tube.

  19. c-T phase diagram and Landau free energies of (AgAu)55 nanoalloy via neural-network molecular dynamic simulations

    Science.gov (United States)

    Chiriki, Siva; Jindal, Shweta; Bulusu, Satya S.

    2017-10-01

    For understanding the structure, dynamics, and thermal stability of (AgAu)55 nanoalloys, knowledge of the composition-temperature (c-T) phase diagram is essential due to the explicit dependence of properties on composition and temperature. Experimentally, generating the phase diagrams is very challenging, and therefore theoretical insight is necessary. We use an artificial neural network potential for (AgAu)55 nanoalloys. Predicted global minimum structures for pure gold and gold rich compositions are lower in energy compared to previous reports by density functional theory. The present work based on c-T phase diagram, surface area, surface charge, probability of isomers, and Landau free energies supports the enhancement of catalytic property of Ag-Au nanoalloys by incorporation of Ag up to 24% by composition in Au nanoparticles as found experimentally. The phase diagram shows that there is a coexistence temperature range of 70 K for Ag28Au27 compared to all other compositions. We propose the power spectrum coefficients derived from spherical harmonics as an order parameter to calculate Landau free energies.

  20. Structural and electronic phase diagrams of CeFeAsO1-xFx and SmFeAsO1-xFx

    OpenAIRE

    Maeter, Hemke; Borrero, Jorge Enrique Hamann; Goltz, Til; Spehling, Johannes; Kwadrin, Andrej; Kondrat, Agnieszka; Veyrat, Louis; Lang, Guillaume; Grafe, Hans-Joachim; Hess, Christian; Behr, Günter; Büchner, Bernd; Luetkens, Hubertus; Baines, Chris; Amato, Alex

    2012-01-01

    We have studied the structural and electronic phase diagrams of CeFeAsO1-xFx and SmFeAsO1-xFx by a detailed analysis of muon spin relaxation experiments, synchrotron X-ray diffraction, M\\"ossbauer spectroscopy, electrical resistivity, specific heat, and magnetic susceptibility measurements (Full abstract in the main document).

  1. Parametric diagram

    DEFF Research Database (Denmark)

    Hermund, Anders

    2010-01-01

    This paper will introduce the PhD research into applied 3d modeling and parametric design outlining the idea of a parametric diagram linked to philosophical and applied examples.......This paper will introduce the PhD research into applied 3d modeling and parametric design outlining the idea of a parametric diagram linked to philosophical and applied examples....

  2. Critical point in the phase diagram of primordial quark-gluon matter from black hole physics

    Science.gov (United States)

    Critelli, Renato; Noronha, Jorge; Noronha-Hostler, Jacquelyn; Portillo, Israel; Ratti, Claudia; Rougemont, Romulo

    2017-11-01

    Strongly interacting matter undergoes a crossover phase transition at high temperatures T ˜1012 K and zero net-baryon density. A fundamental question in the theory of strong interactions, QCD, is whether a hot and dense system of quarks and gluons displays critical phenomena when doped with more quarks than antiquarks, where net-baryon number fluctuations diverge. Recent lattice QCD work indicates that such a critical point can only occur in the baryon dense regime of the theory, which defies a description from first principles calculations. Here we use the holographic gauge/gravity correspondence to map the fluctuations of baryon charge in the dense quark-gluon liquid onto a numerically tractable gravitational problem involving the charge fluctuations of holographic black holes. This approach quantitatively reproduces ab initio results for the lowest order moments of the baryon fluctuations and makes predictions for the higher-order baryon susceptibilities and also for the location of the critical point, which is found to be within the reach of heavy-ion collision experiments.

  3. Variation in emulsion stabilization behavior of hybrid silicone polymers with change in molecular structure: Phase diagram study.

    Science.gov (United States)

    Mehta, Somil C; Somasundaran, P; Kulkarni, Ravi

    2009-05-15

    Silicone oils are widely used in cosmetics and personal care applications to improve softness and condition skin and hair. Being insoluble in water and most hydrocarbons, a common mode of delivering them is in the form of emulsions. Currently most applications use polyoxyethylene (non-ionic) modified siloxanes as emulsifiers to stabilize silicone oil emulsions. However, ionically grafted silicone polymers have not received much attention. Ionic silicones have significantly different properties than the non-ionic counterpart. Thus considerable potential exists to formulate emulsions of silicones with different water/silicone oil ratios for novel applications. In order to understand the mechanisms underlying the effects of hydrophilic modifications on the ability of hybrid silicone polymers to stabilize various emulsions, this article focuses on the phase diagram studies for silicone emulsions. The emulsifying ability of functional silicones was seen to depend on a number of factors including hydrophilicity of the polymer, nature of the functional groups, the extent of modification, and the method of emulsification. It was observed that the region of stable emulsion in a phase diagram expanded with increase in shear rate. At a given shear rate, the region of stable emulsion and the nature of emulsion (water-in-oil or oil-in-water) was observed to depend on hydrophilic-hydrophobic balance of the hybrid silicone emulsifier. At a fixed amount of modification, the non-ionically modified silicone stabilized an oil-in-water emulsion, whereas the ionic silicones stabilized inverse water-in-oil emulsions. This was attributed to the greater hydrophilicity of the polyoxyethylene modified silicones than the ionic counterparts. In general, it is postulated that with progressive increase in hydrophilicity of hybrid silicone emulsifiers, their tendency to stabilize water-in-oil emulsion decreases with corresponding increase in oil-in-water emulsion. Further, this behavior is

  4. Electronic phase diagram of half-doped perovskite manganites on the plane of quenched disorder versus one-electron bandwidth

    Science.gov (United States)

    Tomioka, Y.; Ito, T.; Sawa, A.

    2018-01-01

    For half-doped manganese oxides that have a perovskite structure, R E1 -xA ExMn O3 (x =0.5 ) (RE and AE are rare-earth and alkaline-earth elements, respectively), the phase competition (stability) between the antiferromagnetic charge- or orbital-ordered insulator (CO/OO AFI), ferromagnetic metal (FM), layered (A-type) antiferromagnetic phase [AF(A)], and spin-glass-like insulator (SGI), have been studied using single crystals prepared by the floating zone method. The CO/OO AFI, FM, AF(A), and SGI are displayed on the plane of the disorder (the variance of the RE and AE cations) versus the effective one-electron bandwidth (the averaged ionic radius of the RE and AE). In the plane of the disorder versus the effective one-electron bandwidth, similar to the phase diagram of R E1 -xA ExMn O3 (x =0.45 ), the CO/OO AFI, FM, and SGI dominate at the lower-left, right, and upper regions, respectively. However, the CO/OO AFI for x =0.5 is more stable than that for x =0.45 , and it expands to the plane points that correspond to the R E0.5S r0.5Mn O3 (R E =Nd and Sm) specimens as the hole concentration is commensurate with the ordering of M n3 + /M n4 + with a ratio of 1/1. The y -dependent electronic phases for R E0.5(Sr1-yB ay ) 0.5Mn O3 (0 ≤y ≤0.5 ) (R E =Sm , N d0.5S m0.5 , Nd, and Pr) show that the AF(A) intervenes between the CO/OO AFI and FM. Besides the region around (La1-yP ry ) 0.5S r0.5Mn O3 (0 ≤y ≤1 ) that has a smaller disorder, the AF(A) also exists at the regions around R E0.5(Sr1-yB ay ) 0.5Mn O3 (0 indicates that the AF(A) is rather robust against the increased disorder, even though an ordering of the (x2-y2 ) orbital occurs. This study has comprehensively investigated the effects of the disorder on the AF(A) as well as on the competition between the CO/OO AFI, FM, and AF(A) that is unique to x =0.5 . The comparison of phase diagrams between x =0.45 and 0.5 brings further insights into the understanding of the rich electronic phases of manganites.

  5. Phase structure and tensile creep of recycled poly(ethylene terephthalate/short glass fibers/impact modifier ternary composites

    Directory of Open Access Journals (Sweden)

    2009-04-01

    Full Text Available Binary and ternary composites of recycled poly(ethylene terephtalate (rPET, short glass fibres (SGF and/or impact modifier (IM were prepared by melt compounding and injection moulding. SEM images of rPET/IM fracture surfaces indicated that IM particles of about 1–2 µm in diameter were uniformly distributed in the rPET matrix, but with a poor adhesion level. Microphotographs of PET/SGF composites evidenced brittle fracture proceeding through the matrix and strong adhesion between components. In ternary composites SGF were evenly distributed, while IM particles were no longer detectable. Tensile creep of rPET and prepared composites was investigated under short and long term testing conditions at various stress levels. Main part of the tensile creep corresponded to the elastic time-independent component, while the timedependent component was rather limited even at relatively high stresses. While SGF accounted for a significant decrease in the overall creep compliance, the incorporation of IM induced a small decrease in the compliance and a non-linear viscoelastic behavior. In ternary composites, the reinforcing effects of SGF was dominating. Under a constant stress, the logarithm of compliance grew linearly with the logarithm of time. The creep rate, which resulted to be generally very small for all tested materials, was slightly reduced by SGF and increased by IM.

  6. Discovery of the Ternary Nanolaminated Compound Nb2GeC by a Systematic Theoretical-Experimental Approach

    Science.gov (United States)

    Eklund, Per; Dahlqvist, Martin; Tengstrand, Olof; Hultman, Lars; Lu, Jun; Nedfors, Nils; Jansson, Ulf; Rosén, Johanna

    2012-07-01

    Since the advent of theoretical materials science some 60 years ago, there has been a drive to predict and design new materials in silicio. Mathematical optimization procedures to determine phase stability can be generally applicable to complex ternary or higher-order materials systems where the phase diagrams of the binary constituents are sufficiently known. Here, we employ a simplex-optimization procedure to predict new compounds in the ternary Nb-Ge-C system. Our theoretical results show that the hypothetical Nb2GeC is stable, and excludes all reasonably conceivable competing hypothetical phases. We verify the existence of the Nb2GeC phase by thin film synthesis using magnetron sputtering. This hexagonal nanolaminated phase has a and c lattice parameters of ˜3.24Å and 12.82 Å.

  7. Neutron diffraction investigation of the H -T phase diagram above the longitudinal incommensurate phase of BaCo2V2O8

    Science.gov (United States)

    Grenier, B.; Simonet, V.; Canals, B.; Lejay, P.; Klanjšek, M.; Horvatić, M.; Berthier, C.

    2015-10-01

    The quasi-one-dimensional antiferromagnetic Ising-like compound BaCo2V2O8 has been shown to be describable by the Tomonaga-Luttinger liquid theory in its gapless phase induced by a magnetic field applied along the Ising axis. Above 3.9 T, this leads to an exotic field-induced low-temperature magnetic order, made of a longitudinal incommensurate spin-density wave, stabilized by weak interchain interactions. By single-crystal neutron diffraction we explore the destabilization of this phase at a higher magnetic field. We evidence a transition at around 8.5 T towards a more conventional magnetic structure with antiferromagnetic components in the plane perpendicular to the magnetic field. The phase diagram boundaries and the nature of this second field-induced phase are discussed with respect to previous results obtained by means of nuclear magnetic resonance and electron spin resonance, and in the framework of the simple model based on the Tomonaga-Luttinger liquid theory, which obviously has to be refined in this complex system.

  8. Calculation of solid-fluid phase equilibria and three-dimensional phase diagrams for binary systems of naphthalene and supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Nitta, Tomoshige; Katayama, Takashi (Osaka Univ. (Japan). Dept. of Chemical Engineering); Ikeda, Kazufumi

    1993-04-01

    Algorithms for calculating phase equilibria of solid-fluid and fluid-fluid systems are described, together with the characteristics of phase diagrams of binary mixtures of naphthalene and the supercritical fluids such as ethylene, carbon dioxide, fluoroform, and chlorotrifluoromethane, as calculated from the Soave-Redlich-Kwong equation of state. The sublimation enthalpy, the molar heat capacity difference between vapor and solid, and the molar volume of the solid are determined for naphthalene by the least-squares method from experimental data for the sublimation pressure and the melting curve. The binary parameters k[sub ij] and c[sub ij] for the Soave-Redlich-Kwong constants a and b are determined from the solubilities of solid naphthalene in the supercritical fluids. An algorithm for calculating the phase equilibrium based on phase stability analysis, in which the search region is contracted by using the bisection principle, is developed for use in determining the true, thermodynamically most stable solution from among the various combinations of gas, liquid, and solid.

  9. Investigations on the Phase Diagram and Interaction Parameter of Poly(styrene-b-1,3-cyclohexadiene) Copolymers

    KAUST Repository

    Misichronis, Konstantinos

    2017-03-15

    A series of linear diblock copolymers containing polystyrene (PS) and poly(1,3-cyclohexadiene) (PCHD) with high 1,4-microstructure (>87%) was synthesized by anionic polymerization and high vacuum techniques. Microphase separation in the bulk was examined by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and compared to computational analysis of the predicted morphological phase diagram for this system. Because of the high conformational asymmetry between PS and PCHD, these materials self-assemble into typical morphologies expected for linear diblock copolymer systems and atypical structures. Rheological measurements were conducted and revealed order–disorder transition temperatures (TODT), for the first time for PS-b-PCHD copolymers, resulting in a working expression for the effective interaction parameter χeff = 32/T – 0.016. Furthermore, we performed computational studies that coincide with the experimental results. These copolymers exhibit well-ordered structures even at high temperatures (∼260 °C) therefore providing a better insight concerning their microphase separation at the nanoscale which is important for their potential use in nanotechnology and/or nanolithography applications.

  10. Phase diagram of the correlated quarter-filled-band organic salt series (o-DMTTF)2X (X = Cl, Br, I)

    Science.gov (United States)

    Foury-Leylekian, P.; Auban-Senzier, P.; Coulon, C.; Jeannin, O.; Fourmigué, M.; Pasquier, C.; Pouget, J.-P.

    2011-11-01

    The 2:1 family of organic salts (o-DMTTF)2X (X = Cl, Br, I) exhibits regular stacks and a high-symmetry structure, which provide a perfect three-quarter-filling-band system allowing a rich phase diagram in the presence of strong electronic correlations. In this paper, we present a detailed study of this series combining complementary experimental techniques such as resistivity, thermopower, electron spin resonance, static magnetic measurements, and x-ray diffraction. In particular, we show that at ambient pressure (o-DMTTF)2X with X = Br and Cl undergoes two successive phase transitions setting successively a 4kF charge density and bond order wave order, then a spin-Peierls (SP) ground state. We discuss the symmetry of these phases and its relationship with the transport and magnetic properties. These phases are also followed under pressure by transport experiments, allowing the establishment of a generic phase diagram for this series of salts, where, with the onset of a one-dimensional to three-dimensional deconfinement transition, the 4kF order vanishes and the SP ground state transforms into a Peierls one. Interestingly, this phase diagram differs significantly from the one previously reported in other three-quarter-filled systems such as (TMTTF)2X and δ-(EDT-TTF-CONMe2)2X.

  11. Electronic diagrams

    CERN Document Server

    Colwell, Morris A

    1976-01-01

    Electronic Diagrams is a ready reference and general guide to systems and circuit planning and in the preparation of diagrams for both newcomers and the more experienced. This book presents guidelines and logical procedures that the reader can follow and then be equipped to tackle large complex diagrams by recognition of characteristic 'building blocks' or 'black boxes'. The goal is to break down many of the barriers that often seem to deter students and laymen in learning the art of electronics, especially when they take up electronics as a spare time occupation. This text is comprised of nin

  12. Neutron scattering investigations of the properties of the x - T phase diagram of Rb sub 1 sub - sub x (NH sub 4) sub x I mixed crystals

    CERN Document Server

    Smirnov, L S; Savenko, B N

    2002-01-01

    The x - T phase diagram of Rb sub 1 sub - sub x (NH sub 4) sub x I is studied using samples with the ammonium concentration 0.01phase transition from alpha-phase to beta-phase is observed at ammonium concentrations x = 0.50 and x = 0.66. Inelastic incoherent neutron scattering detects a region of the orientional glass state at ammonium concentrations 0.29

  13. Two types of phase diagrams for two-species Bose-Einstein condensates and the combined effect of the parameters

    Science.gov (United States)

    Li, Z. B.; Liu, Y. M.; Yao, D. X.; Bao, C. G.

    2017-07-01

    Under the Thomas-Fermi approximation, an approach is proposed to solve the coupled Gross-Pitaevskii equations (CGP) for the two-species Bose-Einstein condensate analytically. The essence of this approach is to find out the building blocks to build the solution. By introducing the weighted strengths, relatively simpler analytical solutions have been obtained. A number of formulae have been deduced to relate the parameters when the system is experimentally tuned at various status. These formulae demonstrate the combined effect of the parameters, and are useful for the evaluation of their magnitudes. The whole parameter space is divided into zones, where each supports a specific phase. All the boundaries separating these zones have analytical expressions. Based on the division, the phase diagrams against any set of parameters can be plotted. In addition, by introducing a model for the asymmetric states, the total energies of the lowest symmetric and asymmetric states have been compared. Thereby, in which case the former will be replaced by the latter has been evaluated. The CGP can be written in a matrix form. For repulsive inter-species interaction V AB , when the parameters vary and cross over the singular point of the matrix, a specific state transition will happen and the total energy of the lowest symmetric state will increase remarkably. This provides an excellent opportunity for the lowest asymmetric state to emerge as the ground state. For attractive V AB , when the parameters tend to a singular point, the system will tend to collapse. The effects caused by the singular points have been particularly studied.

  14. Liquid - liquid equilibria of the water + butyric acid + decanol ternary system

    Directory of Open Access Journals (Sweden)

    S.I. Kirbaslar

    2006-09-01

    Full Text Available Liquid-liquid equilibrium (LLE data for the water + butyric acid + decanol ternary system were determined experimentally at temperatures of 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining the solubility curve and the tie lines. The reliability of the experimental tie line data was confirmed with the Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium of the system using the interaction parameters for groups CH3, CH2, COOH, OH and H2O determined experimentally. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  15. Applications of Phase Diagrams in Metallurgy and Ceramics: Proceedings of a Workshop Held at the National Bureau of Standards, Gaithersburg, Maryland, January 10-12, 1977. Volumes 1 [and] 2.

    Science.gov (United States)

    Carter, G. C., Ed.

    This document is a special National Bureau of Standards publication on a Workshop on Applications of Phase Diagrams in Metallurgy and Ceramics. The purposes of the Workshop were: (1) to assess the current national and international status of phase diagram determinations and evaluations for alloys, ceramics and semiconductors; (2) to determine the…

  16. Separating NaCl and AlCl3·6H2O Crystals from Acidic Solution Assisted by the Non-Equilibrium Phase Diagram of AlCl3-NaCl-H2O(-HCl Salt-Water System at 353.15 K

    Directory of Open Access Journals (Sweden)

    Huaigang Cheng

    2017-08-01

    Full Text Available Extracting AlCl3·6H2O from acid leaching solution through crystallization is one of the key processes to extracting aluminum from fly ash, coal gangue and other industrial solid wastes. However, the obtained products usually have low purity and a key problem is the lack of accurate data for phase equilibrium. This paper presented the non-equilibrium phase diagrams of AlCl3-NaCl-H2O (HCl salt-water systems under continuous heating and evaporation conditions, which were the main components of the acid leaching solution obtained through a sodium-assisted activation hydrochloric acid leaching process. The ternary system was of a simple eutonic type under different acidities. There were three crystalline regions; the crystalline regions of AlCl3·6H2O, NaCl and the mixture AlCl3·6H2O/NaCl, respectively. The phase diagram was used to optimize the crystallization process of AlCl3·6H2O and NaCl. A process was designed to evaporate and remove NaCl at the first stage of the evaporation process, and then continue to evaporate and crystallize AlCl3·6H2O after solid-liquid separation. The purities of the final salt products were 99.12% for NaCl and up to 97.35% for AlCl3·6H2O, respectively.

  17. Phase separation in ternary system of Ni{sub 3}Mn{sub x}Al{sub 1−x} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, N.V., E-mail: nvolkova@imp.uran.ru [M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, Ekaterinburg 620137 (Russian Federation); Kourov, N.I. [M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, Ekaterinburg 620137 (Russian Federation); Marchenkov, V.V. [M.N. Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, ul. S. Kovalevskoi 18, Ekaterinburg 620137 (Russian Federation); Ural Federal University, 620002 Ekaterinburg (Russian Federation)

    2016-03-01

    The concentration dependence of the resistance of the alloys of Ni{sub 3}Mn{sub x}Al{sub 1−x} system is described in the framework of the percolation theory in the model of an effective medium. The regions corresponding to the alloys of terminal compositions are present in the entire volume of the samples. The formation of an infinite cluster occurs near the percolation threshold x=0.3 for the phase of the Ni{sub 3}Al and x=0.7 for the phase of the Ni{sub 3}Mn type. This makes it possible to suppose that in the ternary Ni{sub 3}Mn{sub x}Al{sub 1−x} alloys in the intermediate region of concentrations there is realized an inhomogeneous heterophase structure.

  18. New investigation of phase equilibria in the system Al-Cu-Si

    Energy Technology Data Exchange (ETDEWEB)

    Ponweiser, Norbert [University of Vienna, Department of Inorganic Chemistry/Materials Chemistry, Waehringer Strasse 42, 1090 Wien (Austria); Richter, Klaus W., E-mail: klaus.richter@univie.ac.at [University of Vienna, Department of Inorganic Chemistry/Materials Chemistry, Waehringer Strasse 42, 1090 Wien (Austria)

    2012-01-25

    Highlights: Black-Right-Pointing-Pointer Isothermal sections at 500 and 700 Degree-Sign C investigated. Black-Right-Pointing-Pointer Vertical sections (partial at 10 at.% Si, complete at 40 at.% Si) determined. Black-Right-Pointing-Pointer Partial ternary reaction scheme (Scheil diagram) established. Black-Right-Pointing-Pointer New ternary compound identified. - Abstract: The phase equilibria and invariant reactions in the system Al-Cu-Si were investigated by a combination of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and electron probe micro analysis (EPMA). Isothermal phase equilibria were investigated within two isothermal sections. The isothermal section at 500 Degree-Sign C covers the whole ternary composition range and largely confirms the findings of previous phase diagram investigations. The isothermal section at 700 Degree-Sign C describes phase equilibria only in the complex Cu-rich part of the phase diagram. A new ternary compound {tau} was found in the region between (Al,Cu)-{gamma}{sub 1} and (Cu,Si)-{gamma} and its solubility range was determined. The solubility of Al in {kappa}-CuSi was found to be extremely high at 700 Degree-Sign C. In contrast, no ternary solubility in the {beta}-phase of Cu-Al was found, although this phase is supposed to form a complete solid solution according to previous phase diagram assessments. Two isopleths, at 10 and 40 at.% Si, were investigated by means of DTA and a partial ternary reaction scheme (Scheil diagram) was constructed, based on the current work and the latest findings in the binary systems Al-Cu and Cu-Si. The current study shows that the high temperature equilibria in the Cu-rich corner are still poorly understood and additional studies in this area would be favorable.

  19. H-T phase diagram and the nature of vortex-glass phase in a quasi-two-dimensional superconductor: Sn-metal layer sandwiched between graphene sheets

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masatsugu; Suzuki, Itsuko S.; Walter, Juergen

    2004-02-15

    The magnetic properties of a quasi-two-dimensional (2D) superconductor, Sn-metal graphite (MG), are studied using DC and AC magnetic susceptibility. Sn-MG has a unique layered structure where Sn metal layer is sandwiched between adjacent graphene sheets. This compound undergoes a superconducting transition at T{sub c}=3.75 K at H=0. The H-T diagram of Sn-MG is similar to that of a quasi-2D superconductors. The phase boundaries of vortex liquid, vortex glass, and vortex lattice phase merge into a multicritical point located at T*=3.4 K and H*=40 Oe. There are two irreversibility lines denoted by H{sub gl} (de Almeida-Thouless type) and H{sub gl{sup '}} (Gabay-Toulouse type), intersecting at T{sub 0}{sup '}=2.5 K and H{sub 0}{sup '}=160 Oe. The nature of slow dynamic and nonlinearity of the vortex glass phase is studied.

  20. The happy marriage between electron-phonon superconductivity and Mott physics in Cs3C60: A first-principle phase diagram

    Science.gov (United States)

    Capone, Massimo; Nomura, Yusuke; Sakai, Shiro; Giovannetti, Gianluca; Arita, Ryotaro

    The phase diagram of doped fullerides like Cs3C60 as a function of the spacing between fullerene molecules is characterized by a first-order transition between a Mott insulator and an s-wave superconductor with a dome-shaped behavior of the critical temperature. By means of an ab-initio modeling of the bandstructure, the electron-phonon interaction and the interaction parameter and a Dynamical Mean-Field Theory solution, we reproduce the phase diagram and demonstrate that phonon superconductivity benefits from strong correlations confirming earlier model predictions. The role of correlations is manifest also in infrared measurements carried out by L. Baldassarre. The superconducting phase shares many similarities with ''exotic'' superconductors with electronic pairing, suggesting that the anomalies in the ''normal'' state, rather than the pairing glue, can be the real common element unifying a wide family of strongly correlated superconductors including cuprates and iron superconductors

  1. SCADA Diagram

    OpenAIRE

    Rose, Matthew

    2004-01-01

    Matthew Rose worked at the Naval Postgraduate School as a graphic designer from February 2002-November 2011. His work for NPS included logos, brochures, business packs, movies/presentations, posters, the CyberSiege video game and many other projects. This material was organized and provided by the artist, for inclusion in the NPS Archive, Calhoun. Includes these files: Plan_ver.ai; powerline.jpg; SCADA diagram.ai; SCADA diagram.pdf; SCADA diagramsmall.pdf; SCADA2.pdf

  2. New investigation of phase equilibria in the system Al-Cu-Si.

    Science.gov (United States)

    Ponweiser, Norbert; Richter, Klaus W

    2012-01-25

    The phase equilibria and invariant reactions in the system Al-Cu-Si were investigated by a combination of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and electron probe micro analysis (EPMA). Isothermal phase equilibria were investigated within two isothermal sections. The isothermal section at 500 °C covers the whole ternary composition range and largely confirms the findings of previous phase diagram investigations. The isothermal section at 700 °C describes phase equilibria only in the complex Cu-rich part of the phase diagram. A new ternary compound τ was found in the region between (Al,Cu)-γ(1) and (Cu,Si)-γ and its solubility range was determined. The solubility of Al in κ-CuSi was found to be extremely high at 700 °C. In contrast, no ternary solubility in the β-phase of Cu-Al was found, although this phase is supposed to form a complete solid solution according to previous phase diagram assessments. Two isopleths, at 10 and 40 at.% Si, were investigated by means of DTA and a partial ternary reaction scheme (Scheil diagram) was constructed, based on the current work and the latest findings in the binary systems Al-Cu and Cu-Si. The current study shows that the high temperature equilibria in the Cu-rich corner are still poorly understood and additional studies in this area would be favorable.

  3. Diffusion Concept in Phase Stability of High Temperature Composites

    National Research Council Canada - National Science Library

    Zhao, Ji-Cheng

    2003-01-01

    A high-efficiency "diffusion multiple" approach was employed to determine the phase diagrams of nine ternary systems Nb-Ti-Si, Nb-Cr- Si, Nb-Cr-Ti, Ti-Cr-Si, Nb-Si-Al, Nb-Cr-Al, Nb-Ti-Al, Ti-Si-Al, and Ti-Cr-Al...

  4. Phase diagram of binary colloidal rod-sphere mixtures from a 3D real-space analysis of sedimentation-diffusion equilibria.

    Science.gov (United States)

    Bakker, Henriëtte E; Dussi, Simone; Droste, Barbera L; Besseling, Thijs H; Kennedy, Chris L; Wiegant, Evert I; Liu, Bing; Imhof, Arnout; Dijkstra, Marjolein; van Blaaderen, Alfons

    2016-11-16

    Self-assembly of binary particle systems offers many new opportunities for materials science. Here, we studied sedimentation equilibria of silica rods and spheres, using quantitative 3D confocal microscopy. We determined not only pressure, density and order parameter profiles, but also the experimental phase diagram exhibiting a stable binary smectic liquid-crystalline phase (Sm2). Using computer simulations we confirmed that the Sm2-phase can be stabilized by entropy alone, which opens up the possibility of combining new materials properties at a wide array of length scales.

  5. Magnetic Properties and Phase Diagram of Ni50Mn_{50-x}Ga_{x/2}In_{x/2} Magnetic Shape Memory Alloys

    Science.gov (United States)

    Xu, Xiao; Yoshida, Yasuki; Omori, Toshihiro; Kanomata, Takeshi; Kainuma, Ryosuke

    2016-12-01

    Ni50Mn50- x Ga x/2In x/2 magnetic shape memory alloys were systematically prepared, and the magnetic properties as well as the phase diagram, including atomic ordering, martensitic and magnetic transitions, were investigated. The B2- L21 order-disorder transformation showed a parabolic-like curve against the Ga+In composition. The martensitic transformation temperature was found to decrease with increasing Ga+In composition and to slightly bend downwards below the Curie temperature of the parent phase. Spontaneous magnetization was investigated for both parent and martensite alloys. The magnetism of martensite phase was found to show glassy magnetic behaviors by thermomagnetization and AC susceptibility measurements.

  6. Phase equilibria in ternary (carbon dioxide + tetrahydrofuran + water) system in hydrate-forming region: Effects of carbon dioxide concentration and the occurrence of pseudo-retrograde hydrate phenomenon

    Energy Technology Data Exchange (ETDEWEB)

    Sabil, Khalik M. [Delft University of Technology, Laboratory of Process Equipment, Mechanical, Maritime and Materials Eng, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Chemical Engineering Programme, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); Witkamp, Geert-Jan [Delft University of Technology, Laboratory of Process Equipment, Mechanical, Maritime and Materials Eng, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Peters, Cor J., E-mail: C.J.Peters@tudelft.n [Delft University of Technology, Laboratory of Process Equipment, Mechanical, Maritime and Materials Eng, Leeghwaterstraat 44, 2628 CA Delft (Netherlands); Chemical Engineering Programme, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia); The Petroleum Institute, Chemical Engineering Program, Bu Hasa Building, Room 2203, P.O. Box 2203, Abu Dhabi (United Arab Emirates)

    2010-01-15

    In the present work, the three- and four-phase hydrate equilibria of (carbon dioxide (CO{sub 2}) + tetrahydrofuran (THF) + water) system are measured by using Cailletet equipment in the temperature and pressure range of (272 to 292) K and (1.0 to 7.5) MPa, respectively, at different CO{sub 2} concentration. Throughout the study, the concentration of THF is kept constant at 5 mol% in the aqueous solution. In addition, the fluid phase transitions of L{sub W}-L{sub V}-V -> L{sub W}-L{sub V} (bubble point) and L{sub W}-L{sub V}-V -> L{sub W}-V (dew point) are determined when they are present in the ternary system. For comparison, the three-phase hydrate equilibria of binary (CO{sub 2} + H{sub 2}O) are also measured. Experimental measurements show that the addition of THF as a hydrate promoter extends hydrate stability region by elevating the hydrate equilibrium temperature at a specified pressure. The three-phase equilibrium line H-L{sub W}-V is found to be independent of the overall concentration of CO{sub 2}. Contradictory, at higher pressure, the phase equilibria of the systems are significantly influenced by the overall concentration of CO{sub 2} in the systems. A liquid-liquid phase split is observed at overall concentration of CO{sub 2} as low as 3 mol% at elevated pressure. The region is bounded by the bubble-points line (L{sub W}-L{sub V}-V -> L{sub W}-L{sub V}), dew points line (L{sub W}-L{sub V}-V -> L{sub W} + V) and the four-phase equilibrium line (H + L{sub W} + L{sub V} + V). At higher overall concentration of CO{sub 2} in the ternary system, experimental measurements show that pseudo-retrograde behaviour exists at pressure between (2.5 and 5) MPa at temperature of 290.8 K.

  7. Phase equilibria in the Mo-Fe-P system at 800 °C and structure of ternary phosphide (Mo(1-x)Fe(x))3P (0.10 ≤ x ≤ 0.15).

    Science.gov (United States)

    Oliynyk, Anton O; Lomnytska, Yaroslava F; Dzevenko, Mariya V; Stoyko, Stanislav S; Mar, Arthur

    2013-01-18

    Construction of the isothermal section in the metal-rich portion (ternary phases: (Mo(1-x)Fe(x))(2)P (x = 0.30-0.82) and (Mo(1-x)Fe(x))(3)P (x = 0.10-0.15). The occurrence of a Co(2)Si-type ternary phase (Mo(1-x)Fe(x))(2)P, which straddles the equiatomic composition MoFeP, is common to other ternary transition-metal phosphide systems. However, the ternary phase (Mo(1-x)Fe(x))(3)P is unusual because it is distinct from the binary phase Mo(3)P, notwithstanding their similar compositions and structures. The relationship has been clarified through single-crystal X-ray diffraction studies on Mo(3)P (α-V(3)S-type, space group I42m, a = 9.7925(11) Å, c = 4.8246(6) Å) and (Mo(0.85)Fe(0.15))(3)P (Ni(3)P-type, space group I4, a = 9.6982(8) Å, c = 4.7590(4) Å) at -100 °C. Representation in terms of nets containing fused triangles provides a pathway to transform these closely related structures through twisting. Band structure calculations support the adoption of these structure types and the site preference of Fe atoms. Electrical resistivity measurements on (Mo(0.85)Fe(0.15))(3)P reveal metallic behavior but no superconducting transition.

  8. Solid-liquid equilibria for a pyrrolidinium-based common-cation ternary ionic liquid system, and for a pyridinium-based ternary reciprocal ionic liquid system: an experimental study and a thermodynamic model.

    Science.gov (United States)

    Mirarabrazi, Meysam; Stolarska, Olga; Smiglak, Marcin; Robelin, Christian

    2017-12-20

    The present paper describes an experimental study and a thermodynamic model for the phase diagrams of the common-cation ternary system [C 4 MPyrr]Cl-[C 4 MPyrr]Br-[C 4 MPyrr]BF 4 (where [C 4 MPyrr] refers to 1-butyl-1-methyl-pyrrolidinium) and of the ternary reciprocal system [C 2 Py], [C 4 Py]‖Cl, Br (where [C n Py] refers to 1-alkyl-pyridinium). Phase equilibria were measured by Differential Scanning Calorimetry (DSC) for two isoplethal sections in the common-cation pyrrolidinium-based ternary system. Phase diagram measurements were recently performed for the four common-ion binary subsystems and the two diagonal sections in the pyridinium-based ternary reciprocal system. In each case, the Modified Quasichemical Model was used to model the liquid solution, and the Compound Energy Formalism was used for the relevant solid solutions. For the ternary reciprocal system, the missing thermodynamic properties of the pure compounds were assessed using the Volume-based Thermodynamics (VBT) from Glasser and Jenkins, making it possible to estimate the exchange Gibbs free energy for the reaction [C 2 Py]Br (liquid) + [C 4 Py]Cl (liquid) = [C 2 Py]Cl (liquid) + [C 4 Py]Br (liquid). The experimental diagonal sections [C 4 Py]Br-[C 2 Py]Cl and [C 4 Py]Cl-[C 2 Py]Br were satisfactorily reproduced using solely the optimized model parameters for the four common-ion binary subsystems.

  9. The plutonium–oxygen phase diagram in the 25–900 °C range: Non-existence of the PuO{sub 1.515} phase

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, John M.; Dinh, Long N., E-mail: Dinh1@llnl.gov; McLean, William

    2015-03-15

    Evaluation of data for phases formed in the Pu–O system at temperatures below 900 °C shows that the observed oxides are not at equilibrium. Results are consistent with coexistence of a hexagonal solid solution (hex-PuO{sub 1.5+z}, 0 ⩽ z ⩽ 0.010) and a cubic phase (cub-PuO{sub 1.60}) in equilibrium at 800 °C, but fail to confirm that the O/Pu ratio of the body-centered-cubic (bcc) oxide formed near the sesquioxide composition is 1.515 (1.52) or that bcc-PuO{sub 1.515} is formed by the peritectic reaction of hex-PuO{sub 1.510} with cub-PuO{sub 1.60}. Stable Pu(IV)/Pu(III) ratios observed for products of the Pu–H{sub 2}O reaction correspond to members of the Pu{sub n}O{sub 2n−2} homologous series, but a product is not formed at O/Pu = 1.515. Metastable bcc-PuO{sub 1.50} (n = 4) and stable hex-PuO{sub 1.5+z} coexist below 285 °C, the point at which reversible eutectic decomposition of cubic PuO{sub 1.60} (n = 5) produces a non-equilibrium mixture of bcc-PuO{sub 1.50} and sub-stoichiometric dioxide (PuO{sub 2−y}). Transformation of bcc-PuO{sub 1.50} to stable hex-PuO{sub 1.50} and reactions of the hexagonal oxide to form higher-composition cubic phases are kinetically hindered. An alternative diagram describing non-equilibrium chemical behavior of the Pu–O system is presented.

  10. Simulation of phase diagram and transformation structure evolution by the use of Monte Carlo method; Monte Carlo ho wo katsuyoshita heiko jotaizu to hentai soshiki keisei no simulation

    Energy Technology Data Exchange (ETDEWEB)

    Matsumiya, T. [Nippon Steel Corporation, Tokyo (Japan)

    1996-08-20

    The Monte Carlo method was used to simulate an equilibrium diagram, and structural formation of transformation and recrystallization. In simulating the Cu-A equilibrium diagram, the calculation was performed by laying 24 face centered cubic lattices including four lattice points in all of the three directions, and using a simulation cell consisting of lattice points of a total of 24{sup 3}{times}4 points. Although this method has a possibility to discover existence of an unknown phase as a result of the calculation, problems were found left in handling of lattice mitigation, and in simulation of phase diagrams over phases with different crystal structures. In simulation of the transformation and recrystallization, discussions were given on correspondence of 1MCS to time when the lattice point size is increased, and on handling of nucleus formation. As a result, it was estimated that in three-dimensional grain growth, the average grain size is proportional to 1/3 power of the MCS number, and the real time against 1MCS is proportional to three power of the lattice point size. 11 refs., 8 figs., 2 tabs.

  11. Phase diagram study for the PbO-ZnO-CaO-SiO{sub 2} -“Fe{sub 2}O{sub 3} ” system in air with CaO/SiO{sub 2} in 1.1 and PbO/(CaO+SiO{sub 2}) in 2.4 weight ratios

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Rodriguez, Josue; Romero-Serrano, Antonio; Hernandez-Ramirez, Aurelio; Cruz-Ramirez, Alejandro, E-mail: romeroipn@hotmail.com [Instituto Politecnico Nacional-ESIQIE, Zacatenco, Mexico City (Mexico); Almaguer-Guzman, Isaias; Benavides-Perez, Ricardo; Flores-Favela, Manuel [Servicios Administrativos Penoles S.A de C.V., Torreon, Coahuila (Mexico)

    2017-07-15

    An experimental study on the phase equilibrium and the liquidus isotherms for the PbO-ZnO-CaO-SiO{sub 2} -“Fe{sub 2}O{sub 3} ” system with CaO/SiO{sub 2} in 1.1 and PbO/(CaO+SiO{sub 2}) in 2.4 weight ratios, respectively, was carried out in the temperature range 1100-1300 deg C (1373-1573 K). High temperature phases were determined by the equilibrium-quenching method. Results are presented in the form of pseudo-ternary sections “Fe{sub 2}O{sub 3} ”-ZnO-(PbO+CaO+SiO{sub 2}). X-Ray diffraction (XRD) and SEM-EDS results showed that the phase equilibria in this system are dominated by the high melting temperature spinel and zincite phases. It was observed that if the system is at a temperature below 1300 deg C and the total (Fe{sub 2}O{sub 3} + ZnO) is greater than 20 wt%, spinel and/or zincite will be present in the slag system. As an application of the phase diagram, the liquid phase compositions below the liquidus surface were estimated, then their viscosities were calculated using FACTSage software. (author)

  12. Phase equilibrium modeling for high temperature metallization on GaAs solar cells

    Science.gov (United States)

    Chung, M. A.; Davison, J. E.; Smith, S. R.

    1991-01-01

    Recent trends in performance specifications and functional requirements have brought about the need for high temperature metallization technology to be developed for survivable DOD space systems and to enhance solar cell reliability. The temperature constitution phase diagrams of selected binary and ternary systems were reviewed to determine the temperature and type of phase transformation present in the alloy systems. Of paramount interest are the liquid-solid and solid-solid transformations. Data are being utilized to aid in the selection of electrical contact materials to gallium arsenide solar cells. Published data on the phase diagrams for binary systems is readily available. However, information for ternary systems is limited. A computer model is being developed which will enable the phase equilibrium predictions for ternary systems where experimental data is lacking.

  13. Study of fatigue and fracture behavior of NbCr{sub 2}-based alloys: Phase stability in Nb-Cr-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.H.; Liaw, P.K. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Materials Science and Engineering; Liu, C.T. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    Phase stability in a ternary Nb-Cr-Ni Laves phase system was studied in this paper. Their previous study in NbCr{sub 2}-based transition-metal Laves phases has shown that the average electron concentration factor, e/a, is the dominating factor in controlling the phase stability of NbCr{sub 2}-based Laves phases when the atomic size ratios are kept identical. Since Ni has ten out-shell electrons, the substitution of Ni for Cr in NbCr{sub 2} will increase the average electron concentration of the alloy, thus leading to the change of the crystal structures from C15 to C14. In this paper, a number of pseudo-binary Nb(Cr,Ni){sub 2} alloys were prepared, and the crystal structures of the alloys after a long heat-treatment at 1000 C as a function of the Ni content were determined by the X-ray diffraction technique. The boundaries of the C15/C14 transition were determined and compared to their previous predictions. It was found that the electron concentration and phase stability correlation is obeyed in the Nb-Cr-Ni system. However, the e/a ratio corresponding to the C15/C14 phase transition was found to move to a higher value than the predicted one. The changes in the lattice constant, Vickers hardness and fracture toughness were also determined as a function of the Ni content, which were discussed in light of the phase stability difference of the alloys.

  14. Anti-mackay polyicosahedral clusters in La-Ni-Mg ternary compounds: synthesis and crystal structure of the La(43)Ni(17)Mg(5) new intermetallic phase.

    Science.gov (United States)

    Solokha, Pavlo; De Negri, Serena; Pavlyuk, Volodymyr; Saccone, Adriana

    2009-12-21

    The crystal structure of the complex La(43)Ni(17)Mg(5) ternary phase was solved and refined from X-ray single crystal diffraction data. It is characterized by a very large unit cell and represents a new structure type: La(43)Ni(17)Mg(5) - orthorhombic, Cmcm, oS260, a = 10.1895(3), b = 17.6044(14), c = 42.170(3) A, Z = 4, wR1 = 0.0598, wR2 = 0.0897, 4157 F(2) values, 176 variables. The crystal structures of the La-rich La-Ni-Mg intermetallic phases La(4)NiMg, La(23)Ni(7)Mg(4), and La(43)Ni(17)Mg(5) have been comparatively analyzed. The constitutive fragments of these structures are binary polyicosahedral core-shell clusters of Mg(4)La(22) and Mg(5)La(24) compositions together with binary polytetrahedral clusters of nickel and lanthanum atoms. The structures of the Mg-La clusters are described in detail as a unique feature of the analyzed intermetallic phases; the dodecahedral Voronoi polyhedra are proposed as a useful tool to characterize polyicosahedral clusters. The arrangements of the building units in the studied phases show some regularities; particularly the i(4)3, i(5)3 and L-i(4) units, made up of polyicosahedral clusters and analogous to the Kreiner i(3) and L units, are proposed as structural blocks.

  15. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films

    Directory of Open Access Journals (Sweden)

    Huaping Wu

    2016-01-01

    Full Text Available The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO3 thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110 orientation leads to a lower symmetry and more complicated phase transition than the (111 orientation in BaTiO3 films. The increase of compressive strain will dramatically enhance the Curie temperature TC of (110-oriented BaTiO3 films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110- and (111-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  16. Effect of crystal orientation on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Huaping, E-mail: wuhuaping@gmail.com, E-mail: hpwu@zjut.edu.cn [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Ma, Xuefu; Zhang, Zheng; Zeng, Jun; Chai, Guozhong [Key Laboratory of E& M (Zhejiang University of Technology), Ministry of Education & Zhejiang Province, Hangzhou 310014 (China); Wang, Jie [Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)

    2016-01-15

    The influence of crystal orientations on the phase diagrams, dielectric and piezoelectric properties of epitaxial BaTiO{sub 3} thin films has been investigated using an expanded nonlinear thermodynamic theory. The calculations reveal that crystal orientation has significant influence on the phase stability and phase transitions in the misfit strain-temperature phase diagrams. In particular, the (110) orientation leads to a lower symmetry and more complicated phase transition than the (111) orientation in BaTiO{sub 3} films. The increase of compressive strain will dramatically enhance the Curie temperature T{sub C} of (110)-oriented BaTiO{sub 3} films, which matches well with previous experimental data. The polarization components experience a great change across the boundaries of different phases at room temperature in both (110)- and (111)-oriented films, which leads to the huge dielectric and piezoelectric responses. A good agreement is found between the present thermodynamics calculation and previous first-principles calculations. Our work provides an insight into how to use crystal orientation, epitaxial strain and temperature to tune the structure and properties of ferroelectrics.

  17. Prediction of phase equilibria in the In–Sb–Pb system

    Directory of Open Access Journals (Sweden)

    DUSKO MINIC

    2008-03-01

    Full Text Available Binary thermodynamic data, successfully used for phase diagram calculations of the binary systems In–Sb, Pb–Sb and In–Pb, were used for the prediction of the phase equilibria in the ternary In–Sb–Pb system. The predicted equilibrium phase diagram of the vertical Pb–InSb section was compared with the results of differential thermal analysis DTA and optical microscopy. The calculated phase diagram of the isothermal section at 300 °C was compared with the experimentally (SEM, EDX determined composition of phases in the chosen alloys after annealing. Very good agreement between the binary-based thermodynamic prediction and the experimental data was found in all cases. The calculated liquidus projection of the ternary In–Sb–Pb system is also presented.

  18. The structure and physical properties of the ternary CuZnPt{sub 6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ziya, A.B. [Department of Physics, Bahauddin Zakariya University, Multan-60800 (Pakistan); Institute of Materials Science, University of Tsukuba, Tsukuba 305-8573 (Japan)], E-mail: amer_ziya@yahoo.com; Takahashi, M.; Ohshima, K. [Institute of Materials Science, University of Tsukuba, Tsukuba 305-8573 (Japan)

    2008-07-01

    The ternary addition of Zn to the binary Cu-Pt system was found to result in a complete miscibility at a stoichiometric composition of CuZnPt{sub 6}. The equilibrium ground state structure is face-centered cubic (fcc) (A{sub 1}-type). The results are associated with the alloying behavior in the ternary CuMPt{sub 6} (M=3d metals) system reported previously. They verify the fact that the Pt-based primary solid solution found in binary MPt{sub 3} alloys extends its region in the phase diagram to the composition of Cu:M:Pt=1:1:6. The Debye temperature ({theta}{sub D}) obtained is smaller than that of pure Pt, whereas no significant effect is observed on the linear thermal expansion and magnetic property of the alloy.

  19. Isothermal section of the Er-Cu-Ga ternary system at 973 K

    Energy Technology Data Exchange (ETDEWEB)

    Belgacem, B. [Unite de Recherche de Chimie des Materiaux et de l' Environnement (UR11ES25), ISSBAT, Universite de Tunis ElManar, 9 Avenue Dr. Zoheir Safi, 1006 Tunis (Tunisia); Pasturel, M., E-mail: mathieu.pasturel@univ-rennes1.fr [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Materiaux, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes (France); Tougait, O. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Materiaux, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes (France); Nouri, S. [Unite de Recherche de Chimie des Materiaux et de l' Environnement (UR11ES25), ISSBAT, Universite de Tunis ElManar, 9 Avenue Dr. Zoheir Safi, 1006 Tunis (Tunisia); Bekkachi, H. El; Peron, I. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Materiaux, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes (France); Hassen, R. Ben [Unite de Recherche de Chimie des Materiaux et de l' Environnement (UR11ES25), ISSBAT, Universite de Tunis ElManar, 9 Avenue Dr. Zoheir Safi, 1006 Tunis (Tunisia); Noeel, H. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Materiaux, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes (France)

    2012-08-05

    Highlights: Black-Right-Pointing-Pointer The isothermal section at 973 K of the Er-Cu-Ga ternary phase diagram has been established for the first time. Black-Right-Pointing-Pointer Eight extensions of binary compounds in the ternary domain have been identified, as well as six ternary intermediate solid solutions characterized by an important Cu/Ga mutual substitution. Black-Right-Pointing-Pointer Magnetic properties of Er{sub 3}(Cu,Ga){sub 11} are reported for the first time and confirms the paramagnetic Curie-Weiss behavior of all the six intermediate intermetallics. - Abstract: Phase relations in the Er-Cu-Ga ternary system have been established at 973 K by means of powder X-ray diffraction complemented by energy dispersive spectroscopy coupled to scanning electron microscopy. The isothermal section of the phase diagram comprises eight extensions of binaries into the ternary system, ErCu{sub 1-x}Ga{sub x} (x {<=} 0.5), ErCu{sub 2-x}Ga{sub x} (x {<=} 1.1), ErCu{sub 5-x}Ga{sub x} (x {<=} 0.5), Er{sub 5}Cu{sub x}Ga{sub 3-x} (x {<=} 0.60), Er{sub 3}Cu{sub x}Ga{sub 2-x} (x {<=} 0.24), ErCu{sub x}Ga{sub 1-x} (x {<=} 0.10), ErCu{sub x}Ga{sub 2-x} (x {<=} 0.30) and ErCu{sub x}Ga{sub 3-x} (x {<=} 0.35), as well as six ternary intermediate phases, ErCu{sub x}Ga{sub 2-x} (0.4 {<=} x {<=} 0.7), Er{sub 14}Cu{sub 51-x}Ga{sub x} (5.5 {<=} x {<=} 11.0), ErCu{sub 5-x}Ga{sub x} (0.8 {<=} x {<=} 2.3), Er{sub 2}Cu{sub 17-x}Ga{sub x} (4.9 {<=} x {<=} 8.0), ErCu{sub 12-x}Ga{sub x} (5.7 {<=} x {<=} 6.7) and Er{sub 3}Cu{sub x}Ga{sub 11-x} (1.5 {<=} x {<=} 4.4), all deriving from binary structure-types.

  20. Phase diagram of the selenium-sulfur system in the pressure range 1 × 10-5-1 × 10-1 MPa

    Science.gov (United States)

    Volodin, V. N.; Burabaeva, N. M.; Trebukhov, S. A.; Ersaiynova, A. A.

    2016-11-01

    The partial pressures of the components in the saturated vapor of the Se-S system were determined and presented as the temperature-concentration dependences. Based on these data, the boundaries of the melt-vapor phase transition at atmospheric pressure and in vacuum (1350, 100, and 10 Pa) were calculated. A complete phase diagram was constructed, which included the vapor-liquid equilibrium fields at atmospheric and low pressures, whose boundaries allowed us to determine the behavior of sulfur and selenium during distillation separation.