Sample records for ternary compound semiconductors

  1. Ternary chalcopyrite semiconductors

    CERN Document Server

    Shay, J L; Pamplin, B R


    Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications covers the developments of work in the I-III-VI2 and II-IV-V2 ternary chalcopyrite compounds. This book is composed of eight chapters that focus on the crystal growth, characterization, and applications of these compounds to optical communications systems. After briefly dealing with the status of ternary chalcopyrite compounds, this book goes on describing the crystal growth of II-IV-V2 and I-III-VI2 single crystals. Chapters 3 and 4 examine the energy band structure of these semiconductor compounds, illustrat

  2. Crystal Growth of Ternary Compound Semiconductors in Low Gravity Environment (United States)

    Su, Ching-Hua


    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). There are two sections of the flight experiment: (I) crystal growth of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT) and (II) melt growth of CdZnTe by directional solidification. The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions.

  3. Theoretical prediction and experimental confirmation of unusual ternary ordered semiconductor compounds in Sr-Pb-S system. (United States)

    Hao, Shiqiang; Zhao, Li-Dong; Chen, Chang-Qiang; Dravid, Vinayak P; Kanatzidis, Mercouri G; Wolverton, Christopher M


    We examine the thermodynamics of phase separation and ordering in the ternary Ca(x)Pb(1-x)S and Sr(x)Pb(1-x)S systems by density-functional theory combined with a cluster expansion and Monte Carlo simulations. Similar to most other ternary III-V or IV-VI semiconductor alloys, we find that bulk phase separation is thermodynamically preferred for PbS-CaS. However, we predict the surprising existence of stable, ordered ternary compounds in the PbS-SrS system. These phases are previously unreported ordered rocksalt-based compounds: SrPb3S4, SrPbS2, and Sr3PbS4. The stability of these predicted ordered phases is confirmed by transmission electron microscopy observations and band gap measurements. We believe this work paves the way for a combined theory-experiment approach to decipher complex phase relations in multicomponent chalcogenide systems.

  4. Compound Semiconductor Radiation Detectors

    CERN Document Server

    Owens, Alan


    Although elemental semiconductors such as silicon and germanium are standard for energy dispersive spectroscopy in the laboratory, their use for an increasing range of applications is becoming marginalized by their physical limitations, namely the need for ancillary cooling, their modest stopping powers, and radiation intolerance. Compound semiconductors, on the other hand, encompass such a wide range of physical and electronic properties that they have become viable competitors in a number of applications. Compound Semiconductor Radiation Detectors is a consolidated source of information on all aspects of the use of compound semiconductors for radiation detection and measurement. Serious Competitors to Germanium and Silicon Radiation Detectors Wide-gap compound semiconductors offer the ability to operate in a range of hostile thermal and radiation environments while still maintaining sub-keV spectral resolution at X-ray wavelengths. Narrow-gap materials offer the potential of exceeding the spectral resolutio...

  5. Einstein relation in compound semiconductors and their nanostructures

    CERN Document Server

    Bhattacharya, Sitangshu


    Deals with the Einstein relation in compound semiconductors and their nanostructures. This book considers materials such as nonlinear optical, III-V, ternary, quaternary, II-VI, IV-VI, Bismuth, stressed compounds, quantum wells, quantum wires, nipi structures, carbon nanotubes, heavily doped semiconductors, and inversion layers.

  6. Compound semiconductor device physics

    CERN Document Server

    Tiwari, Sandip


    This book provides one of the most rigorous treatments of compound semiconductor device physics yet published. A complete understanding of modern devices requires a working knowledge of low-dimensional physics, the use of statistical methods, and the use of one-, two-, and three-dimensional analytical and numerical analysis techniques. With its systematic and detailed**discussion of these topics, this book is ideal for both the researcher and the student. Although the emphasis of this text is on compound semiconductor devices, many of the principles discussed will also be useful to those inter

  7. Compound semiconductor device modelling

    CERN Document Server

    Miles, Robert


    Compound semiconductor devices form the foundation of solid-state microwave and optoelectronic technologies used in many modern communication systems. In common with their low frequency counterparts, these devices are often represented using equivalent circuit models, but it is often necessary to resort to physical models in order to gain insight into the detailed operation of compound semiconductor devices. Many of the earliest physical models were indeed developed to understand the 'unusual' phenomena which occur at high frequencies. Such was the case with the Gunn and IMPATI diodes, which led to an increased interest in using numerical simulation methods. Contemporary devices often have feature sizes so small that they no longer operate within the familiar traditional framework, and hot electron or even quantum­ mechanical models are required. The need for accurate and efficient models suitable for computer aided design has increased with the demand for a wider range of integrated devices for operation at...

  8. II-VI semiconductor compounds

    CERN Document Server


    For condensed matter physicists and electronic engineers, this volume deals with aspects of II-VI semiconductor compounds. Areas covered include devices and applications of II-VI compounds; Co-based II-IV semi-magnetic semiconductors; and electronic structure of strained II-VI superlattices.

  9. More statistics on intermetallic compounds - ternary phases. (United States)

    Dshemuchadse, Julia; Steurer, Walter


    How many different intermetallic compounds are known so far, and in how many different structure types do they crystallize? What are their chemical compositions, the most abundant ones and the rarest ones? These are some of the questions we are trying to find answers for in our statistical analysis of the structures of the 20,829 intermetallic phases included in the database Pearson's Crystal Data, with the goal of gaining insight into some of their ordering principles. In the present paper, we focus on the subset of 13,026 ternary intermetallics, which crystallize in 1391 different structure types; remarkably, 667 of them have just one representative. What makes these 667 structures so unique that they are not adopted by any other of the known intermetallic compounds? Notably, ternary compounds are known in only 5109 of the 85,320 theoretically possible ternary intermetallic systems so far. In order to get an overview of their chemical compositions we use structure maps with Mendeleev numbers as ordering parameters.

  10. The role of In in III-nitride ternary semiconductors

    CERN Multimedia

    Redondo cubero, A

    This proposal aims to study the role of In in the outstanding efficiency of luminescent devices based on group III-nitride ternary semiconductors. To study the microscopic environments of In in GaInN and AlInN, Perturbed Angular Correlation (PAC) experiments will be performed using the PAC-probes $^{111m}$Cd($^{111}$Cd), $^{115}$Cd($^{115}$In) and $^{117}$Cd($^{117}$In). Temperature dependent PAC measurements using the $^{111}$In($^{111}$Cd) probe indicated that In in GaN and AlN forms a complex with a defect, possibly a nitrogen vacancy (V$_{N}$), which is stable up to high temperatures and might be involved in the luminescence mechanisms. Analysing these results two questions arose: \\\\ \\\\1. Does the fact that the actual measurement is performed with the daughter nucleus $^{111}$Cd (being an acceptor) influence the probe-defect interaction? This question can be answered by performing measurements with the complementary probe $^{117}$Cd($^{117}$In). \\\\ \\\\ 2. What is the significance of $\\textit{a...

  11. Surface properties and photocatalytic activity of KTaO3, CdS, MoS2 semiconductors and their binary and ternary semiconductor composites

    National Research Council Canada - National Science Library

    Bajorowicz, Beata; Cybula, Anna; Winiarski, Michał J; Klimczuk, Tomasz; Zaleska, Adriana


    Single semiconductors such as KTaO3, CdS MoS2 or their precursor solutions were combined to form novel binary and ternary semiconductor nanocomposites by the calcination or by the hydro/solvothermal...

  12. Neutron Damage and MAX Phase Ternary Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michael [Drexel Univ., Philadelphia, PA (United States); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcua-Duaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kohse, Gordon [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)


    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  13. Electron paramagnetic resonance study of ternary Cu compounds ...

    Indian Academy of Sciences (India)

    Abstract. We report here electron paramagnetic resonance (EPR) measurements at 9 and 34 GHz, and room temperature (T ), in powder and single crystal samples of the ternary compounds of copper nitrate or copper chloride with glycine and 1,10-phenanthroline [Cu(Gly)(phen)(H2O)]·NO3·1.5H2O (1) and.

  14. Lattice anisotropy in uranium ternary compounds

    DEFF Research Database (Denmark)

    Maskova, S.; Adamska, A.M.; Havela, L.


    Several U-based intermetallic compounds (UCoGe, UNiGe with the TiNiSi structure type and UNiAl with the ZrNiAl structure type) and their hydrides were studied from the point of view of compressibility and thermal expansion. Confronted with existing data for the compounds with the ZrNiAl structure...

  15. Reliability and radiation effects in compound semiconductors

    CERN Document Server

    Johnston, Allan


    This book discusses reliability and radiation effects in compound semiconductors, which have evolved rapidly during the last 15 years. Johnston's perspective in the book focuses on high-reliability applications in space, but his discussion of reliability is applicable to high reliability terrestrial applications as well. The book is important because there are new reliability mechanisms present in compound semiconductors that have produced a great deal of confusion. They are complex, and appear to be major stumbling blocks in the application of these types of devices. Many of the reliability problems that were prominent research topics five to ten years ago have been solved, and the reliability of many of these devices has been improved to the level where they can be used for ten years or more with low failure rates. There is also considerable confusion about the way that space radiation affects compound semiconductors. Some optoelectronic devices are so sensitive to damage in space that they are very difficu...

  16. Hardness and Microstructure of Binary and Ternary Nitinol Compounds (United States)

    Stanford, Malcolm K.


    The hardness and microstructure of twenty-six binary and ternary Nitinol (nickel titanium, nickel titanium hafnium, nickel titanium zirconium and nickel titanium tantalum) compounds were studied. A small (50g) ingot of each compound was produced by vacuum arc remelting. Each ingot was homogenized in vacuum for 48 hr followed by furnace cooling. Specimens from the ingots were then heat treated at 800, 900, 1000 or 1100 degree C for 2 hr followed by water quenching. The hardness and microstructure of each specimen was compared to the baseline material (55-Nitinol, 55 at.% nickel - 45 at.% titanium, after heat treatment at 900 degC). The results show that eleven of the studied compounds had higher hardness values than the baseline material. Moreover, twelve of the studied compounds had measured hardness values greater 600HV at heat treatments from 800 to 900 degree C.

  17. Ultrathin ternary semiconductor TlGaSe2 phototransistors with broad-spectral response (United States)

    Yang, Shengxue; Wu, Minghui; Wang, Hui; Cai, Hui; Huang, Li; Jiang, Chengbao; Tongay, Sefaattin


    Ternary layered III-III-VI2-type metal chalcogenides are a comparatively new group of semiconductors and have attracted strong interest due to their distinct optical and electrical properties in view of potential applications in nonlinear optical, acousto-optical and optoelectronic devices. Here, we report on the fabrication of two-terminal phototransistors based on ultrathin direct-bandgap TlGaSe2 sheets for the first time. Devices exhibit typical p-type conducting behaviors with current on/off ratio of ~102 and gate-tunable transport characteristics. The photocurrent presents stable and reproducible response for various wavelengths of light from ultraviolet (UV) to near-infrared region, confirming the broadband photodetection capability. Photoresponsive behavior of ultrathin TlGaSe2 phototransistors can be modulated by the incident optical power density or wavelength, as well as bias or back-gate voltages. Owing to the presence of direct bandgap, devices possess high photoresponsivity (270 mA W-1) under white light in vacuum, and it is higher than that of single-layer MoS2 phototransistor and graphene photodetectors, accompanying by a fast response time of ~0.2 s. Our studies introduce ternary alloy monochalcogenides phototransistors, and expand the library of ultrathin flexible semiconductors.

  18. Compound semiconductor materials, devices and circuits (United States)

    Shealy, J. R.; Eastman, L. F.; Wolf, E. D.; Tasker, P. J.; Krusius, J. P.


    This one year research program on compound semiconductor materials growth, devices and circuits has focused on: (1) organometallic vapor phase epitaxy (OMVPE) of GaInP/GaAs and AlInP/GaInP superlattices; (2) enhancement of heterostructure device speed performance via strain layer superlattices and mushroom gates in modulation doped FET's (MODFET's), and inserted tunnel barriers heterojunction bipolar devices (HBT); (3) fabrication and characterization of MODFET devices with gate lengths to 50 nm; (4) self-consistent Monte Carlo transport formulation and its application to small graded heterostructure devices; (5) optical modulation based on the quantum confined Stark effect; and (6) femtosecond spectroscopy of hot carrier processes using the visible Rh6G laser and a new UV BaB2O4 laser.

  19. CdS{sub x}Te{sub 1-x} ternary semiconductors band gaps calculation using ground state and GW approximations

    Energy Technology Data Exchange (ETDEWEB)

    Kheloufi, Nawal; Bouzid, Abderrazak, E-mail:


    We present band gap calculations of zinc-blende ternary CdS{sub x}Te{sub 1-x} semiconductors within the standard DFT and quasiparticle calculations employing pseudopotential method. The DFT, the local density approximation (LDA) and the Generalized Gradient Approximation (GGA) based calculations have given very poor results compared to experimental data. The quasiparticle calculations have been investigated via the one-shot GW approximation. The present paper discuses and confirms the effect of inclusion of the semicore states in the cadmium (Cd) pseudopotential. The obtained GW quasiparticle band gap using Cd{sup +20} pseudopotential has been improved compared to the obtained results from the available pseudopotential without the treatment of semicore states. Our DFT and quasiparticle band gap results are discussed and compared to the available theoretical calculations and experimental data. - Graphical abstract: Band gaps improvement concerning the binary and ternary alloys using the GW approximation and Cd{sup 20+} pseudopotential with others levels of approximations (the LDA and GGA approximation employing the Cd{sup 12+} and the LDA within Cd{sup 20+} pseudopotential). - Highlights: • The direct Γ- Γ and indirect Γ- X and Γ- L bands gaps show a nonlinear behavior when S content is enhanced. • The quasiparticle band gap result for the investigated semiconductors is improved using the GW approximation. • All CdS{sub x}Te{sub 1-x} compounds in all compositions range from 0 to 1 are direct band gap semiconductors.

  20. Heteroepitaxial growth of 3-5 semiconductor compounds by metal-organic chemical vapor deposition for device applications (United States)

    Collis, Ward J.; Abul-Fadl, Ali


    The purpose of this research is to design, install and operate a metal-organic chemical vapor deposition system which is to be used for the epitaxial growth of 3-5 semiconductor binary compounds, and ternary and quaternary alloys. The long-term goal is to utilize this vapor phase deposition in conjunction with existing current controlled liquid phase epitaxy facilities to perform hybrid growth sequences for fabricating integrated optoelectronic devices.

  1. EDITORIAL: Enhance your outlook with Compound Semiconductor (United States)

    Bedrock, Claire


    An overwhelming proportion of the articles published in this journal come under the heading of applied research. In this field research findings impact tomorrow's products, and so it's important to keep tabs on these developments. Grant applications, for example, can carry extra weight when the potential benefits to industry are outlined alongside the gains to fundamental science. What's more, it's just plain interesting to track how key breakthroughs in understanding can drive improvements in commercial devices. Within our publication group we offer free resources that can help you keep pace with trends in part of this sector. Compound Semiconductor magazine and its associated website,, cover III-V, III-N, SiC and SiGe research in academia and industry, alongside all the business news and key manufacturing technology. A high proportion of our authoritative and timely content is exclusive, and you can access it for free by completing a simple registration procedure at Three examples of feature articles published this year in Compound Semiconductor include: • Non-polar GaN reaches tipping point by Steven DenBaars, Shuji Nakamura and Jim Speck from the University of California, Santa Barbara. Although conventional GaN LEDs are a great commercial success, they suffer from an intrinsic weakness—internal electric fields that pull apart the electrons and holes and ultimately limit efficiency. However, this problem can be overcome by growing nitrides on alternate crystal planes. Although early attempts were unsuccessful, due to high defect densities in the epilayers, this is not the case with growth on the latest Mitsubishi substrates that can lead to external quantum efficiencies of 45%. In this article the authors describe the development of their non-polar material, and their promising results for LEDs and laser diodes. • Inverting the triple junction improves efficiency and flexibility by Paul Sharps and

  2. First-principles study of ternary Li-Al-Te compounds under high pressure (United States)

    Wang, Youchun; Tian, Fubo; Li, Da; Duan, Defang; Xie, Hui; Liu, Bingbing; Zhou, Qiang; Cui, Tian


    The ternary Li-Al-Te compounds were investigated by the first-principle evolutionary calculation based on density function theory. Apart from the known structure, I-42d LiAlTe2 and P3m1 LiAlTe2, several new structures were discovered, P-3m1 LiAlTe2, Pnma LiAlTe2, C2/c Li9AlTe2, Immm Li9AlTe2 and P4/mmm Li6AlTe. We determined that the I-42d LiAlTe2 firstly changed to P-3m1 phase at 6 GPa, and then into the Pnma structure at 65 GPa, Pnma phase was stable up at least to 120 GPa. I-42d LiAlTe2 was a pseudo-direct band gap semiconductor, but P-3m1 LiAlT2 was an indirect band gap semiconductor. This may be caused by the pressure effect. Subsequently, it was metallized under pressure. Pnma LiAlTe2 was also metallic at the pressure we studied. C2/c Li9AlTe2 was stable above 4 GPa, then turned into Immm phase at 60 GPa. C2/c Li9AlTe2 was an indirect band gap semiconductor. The results show that P4/mmm Li6AlTe was stable and metallized in the pressure range of 0.7-120 GPa. The calculations of DOS and PDOS indicate that the arrangement of electrons near Fermi energy can be affected by the increase of Li. The calculated ELF results and Bader charge analysis indicate that there was no covalent bond between Al and Te atoms for high-pressure Pnma LiAlTe2, Li9AlTe2 and Li6AlTe. For Li9AlTe2 and Li6AlTe, different from LiAlTe2, Al atoms not connect with Te atoms, but link with Li atoms. The results were further proved by Mulliken population analysis. And the weak covalent bonds between Li and Al atoms stem from the hybridization of Li s and Al p presented in PDOS diagrams. We further deduced that the pressure effect and the increase of Li content may result in the disappearance of Al-Te bonds for Li-Al-Te compound under extreme pressure.

  3. Physics and chemistry of III-V compound semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wilmsen, C.W.


    This book brings together fundamental and practical knowledge on the physics and chemistry of the III-V compounds with metals and dielectrics. The authors provide concise overviews of these areas with many tables and graphs which compare and summarize the literature. The major divisions of the book cover semiconductor surface interactions, Schottky diodes and ohmic contacts, the deposited insulator, electrical properties of insulator-semiconductor interfaces, inversion layer transport, interfacial constraints on MIS devices, and oxide semiconductor interfaces.

  4. Reactive codoping of GaAlInP compound semiconductors (United States)

    Hanna, Mark Cooper [Boulder, CO; Reedy, Robert [Golden, CO


    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  5. Surface Properties and Photocatalytic Activity of KTaO3, CdS, MoS2 Semiconductors and Their Binary and Ternary Semiconductor Composites

    Directory of Open Access Journals (Sweden)

    Beata Bajorowicz


    Full Text Available Single semiconductors such as KTaO3, CdS MoS2 or their precursor solutions were combined to form novel binary and ternary semiconductor nanocomposites by the calcination or by the hydro/solvothermal mixed solutions methods, respectively. The aim of this work was to study the influence of preparation method as well as type and amount of the composite components on the surface properties and photocatalytic activity of the new semiconducting photoactive materials. We presented different binary and ternary combinations of the above semiconductors for phenol and toluene photocatalytic degradation and characterized by X-ray powder diffraction (XRD, UV-Vis diffuse reflectance spectroscopy (DRS, scanning electron microscopy (SEM, Brunauer–Emmett–Teller (BET specific surface area and porosity. The results showed that loading MoS2 onto CdS as well as loading CdS onto KTaO3 significantly enhanced absorption properties as compared with single semiconductors. The highest photocatalytic activity in phenol degradation reaction under both UV-Vis and visible light irradiation and very good stability in toluene removal was observed for ternary hybrid obtained by calcination of KTaO3, CdS, MoS2 powders at the 10:5:1 molar ratio. Enhanced photoactivity could be related to the two-photon excitation in KTaO3-CdS-MoS2 composite under UV-Vis and/or to additional presence of CdMoO4 working as co-catalyst.

  6. Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport (United States)

    Su, Ching-Hua; Sha, Yi-Gao


    The studies on the crystal growth and characterization of II-VI wide band gap compound semiconductors, such as ZnTe, CdS, ZnSe and ZnS, have been conducted over the past three decades. The research was not quite as extensive as that on Si, III-V, or even narrow band gap II-VI semiconductors because of the high melting temperatures as well as the specialized applications associated with these wide band gap semiconductors. In the past several years, major advances in the thin film technology such as Molecular Beam Epitaxy (MBE) and Metal Organic Chemical Vapor Deposition (MOCVD) have demonstrated the applications of these materials for the important devices such as light-emitting diode, laser and ultraviolet detectors and the tunability of energy band gap by employing ternary or even quaternary systems of these compounds. At the same time, the development in the crystal growth of bulk materials has not advanced far enough to provide low price, high quality substrates needed for the thin film growth technology.

  7. Structure and properties of intermetallic ternary rare earth compounds

    Energy Technology Data Exchange (ETDEWEB)

    Casper, Frederick


    The so called material science is an always growing field in modern research. For the development of new materials not only the experimental characterization but also theoretical calculation of the electronic structure plays an important role. A class of compounds that has attracted a great deal of attention in recent years is known as REME compounds. These compounds are often referred to with RE designating rare earth, actinide or an element from group 1-4, M representing a late transition metal from groups 8-12, and E belonging to groups 13-15. There are more than 2000 compounds with 1:1:1 stoichiometry belonging to this class of compounds and they offer a broad variety of different structure types. Although many REME compounds are know to exist, mainly only structure and magnetism has been determined for these compounds. In particular, in the field of electronic and transport properties relatively few efforts have been made. The main focus in this study is on compounds crystallizing in MgAgAs and LiGaGe structure. Both structures can only be found among 18 valence electron compounds. The f electrons are localized and therefor not count as valence electrons. A special focus here was also on the magnetoresistance effects and spintronic properties found among the REME compounds. An examination of the following compounds was made: GdAuE (E=In,Cd,Mg), GdPdSb, GdNiSb, REAuSn (RE=Gd,Er,Tm) and RENiBi (RE=Pr,Sm,Gd-Tm,Lu). The experimental results were compared with theoretic band structure calculations. The first half metallic ferromagnet with LiGaGe structure (GdPdSb) was found. All semiconducting REME compounds with MgAgAs structure show giant magnetoresistance (GMR) at low temperatures. The GMR is related to a metal-insulator transition, and the value of the GMR depends on the value of the spin-orbit coupling. Inhomogeneous DyNiBi samples show a small positive MR at low temperature that depends on the amount of metallic impurities. At higher fields the samples show a

  8. Application of quaternary phase diagrams to compound semiconductor processing. Progress report, April 1, 1988--December 31, 1988

    Energy Technology Data Exchange (ETDEWEB)

    Schwartzman, A.


    This paper considers the application of quaternary phase diagrams to understanding and predicting the behavior of II-VI thin film interfaces in photovoltaic devices under annealing conditions. Examples, listed in a table, include semiconductor/insulator/semiconductor (SIS) layered structures, II-VI/II-VI and III-V/II-VI epitaxial heterojunctions and oxidation of ternary compounds. Solid solubility is taken into account for quaternary phase diagrams of semiconductor systems. Using free energies of formation, a method to calculate the quaternary phase diagrams was developed. The Ga-As-II-VI and Cd-Te-Zn-O phase diagrams are reviewed as examples of quaternary phase diagrams without and with solid solubility.

  9. Handbook of compound semiconductors growth, processing, characterization, and devices

    CERN Document Server

    Holloway, Paul H


    This book reviews the recent advances and current technologies used to produce microelectronic and optoelectronic devices from compound semiconductors. It provides a complete overview of the technologies necessary to grow bulk single-crystal substrates, grow hetero-or homoepitaxial films, and process advanced devices such as HBT's, QW diode lasers, etc.

  10. Nanometre-scale electronics with III-V compound semiconductors. (United States)

    del Alamo, Jesús A


    For 50 years the exponential rise in the power of electronics has been fuelled by an increase in the density of silicon complementary metal-oxide-semiconductor (CMOS) transistors and improvements to their logic performance. But silicon transistor scaling is now reaching its limits, threatening to end the microelectronics revolution. Attention is turning to a family of materials that is well placed to address this problem: group III-V compound semiconductors. The outstanding electron transport properties of these materials might be central to the development of the first nanometre-scale logic transistors. © 2011 Macmillan Publishers Limited. All rights reserved

  11. Direct femtosecond observation of charge carrier recombination in ternary semiconductor nanocrystals: The effect of composition and shelling

    KAUST Repository

    Bose, Riya


    Heavy-metal free ternary semiconductor nanocrystals are emerging as key materials in photoactive applications. However, the relative abundance of intra-bandgap defect states and lack of understanding of their origins within this class of nanocrystals are major factors limiting their applicability. To remove these undesirable defect states which considerably shorten the lifetimes of photogenerated excited carriers, a detailed understanding about their origin and nature is required. In this report, we monitor the ultrafast charge carrier dynamics of CuInS2 (CIS), CuInSSe (CISSe), and CuInSe2 (CISe) nanocrystals, before and after ZnS shelling, using state-of-the-art time-resolved laser spectroscopy with broadband capabilities. The experimental results demonstrate the presence of both electron and hole trapping intra-bandgap states in the nanocrystals which can be removed significantly by ZnS shelling, and the carrier dynamics is slowed down. Another important observation remains the reduction of carrier lifetime in the presence of Se, and the shelling strategy is observed to be less effective at suppressing trap states. This study provides quantitative physical insights into the role of anion composition and shelling on the charge carrier dynamics in ternary CIS, CISSe, and CISe nanocrystals which are essential to improve their applicability for photovoltaics and optoelectronics.

  12. Equilibrium compositional distribution in freestanding ternary semiconductor quantum dots: the case of In(x)Ga(1-x)As. (United States)

    Pandey, Sumeet C; Maroudas, Dimitrios


    We report the findings of a systematic computational study that addresses the effects of surface segregation on the atomic distribution at equilibrium of constituent group-III atoms in freestanding ternary semiconductor In(x)Ga(1-x)As nanocrystals. Our analysis is based on density functional theory calculations in conjunction with Monte Carlo simulations of the freestanding nanocrystals using a DFT-re-parameterized valence force field description of interatomic interactions. We have determined the equilibrium concentration profiles as a function of nanocrystal size (d), composition (x), and temperature (T). The ranges of d, x, and T are explored and demonstrate surface segregation and phase separation that leads to different extents of alloying in the nanocrystal core and in the near-surface regions. We find that formation of core/shell-like quantum dots characterized by an In-deficient core and an In-rich shell with a diffuse interface is favored at equilibrium. The analysis elucidates the relationship between the constituent species distribution in the nanocrystal and the parameters that can be tuned experimentally to design synthesis routes for tailoring the properties of ternary quantum dots.

  13. Equilibrium Compositional Distribution in Freestanding Ternary Semiconductor Quantum Dots: The Case of In(x)Ga(1-x)As

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Sumeet C.; Maroudas, Dimitrios


    We report the findings of a systematic computational study that addresses the effects of surface segregation on the atomic distribution at equilibrium of constituent group-III atoms in freestanding ternary semiconductor InxGa1-xAs nanocrystals. Our analysis is based on density functional theory calculations in conjunction with Monte Carlo simulations of the freestanding nanocrystals using a DFT-re-parameterized valence force field description of interatomic interactions. We have determined the equilibrium concentration profiles as a function of nanocrystal size (d), composition (x), and temperature (T). The ranges of d, x, and T are explored and demonstrate surface segregation and phase separation that leads to different extents of alloying in the nanocrystal core and in the near-surface regions. We find that formation of core/shell-like quantum dots characterized by an In-deficient core and an In-rich shell with a diffuse interface is favored at equilibrium. The analysis elucidates the relationship between the constituent species distribution in the nanocrystal and the parameters that can be tuned experimentally to design synthesis routes for tailoring the properties of ternary quantum dots.

  14. On the site preferences of ternary additions to triple defect B2 intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pike, L.M.; Chen, S.L.; Chang, Y.A. [Univ. of Wisconsin, Madison, WI (United States)] [and others


    Knowledge of the site preference of ternary solute additions is essential to developing an understanding of how these solutes affect the properties of B2 intermetallic compounds. A quasichemical model will be presented which is able to predict the site preferences of dilute solute additions to triple defect B2 compounds. The only parameters required are enthalpies of formation at the stoichiometric composition. General equations are developed which can be used to determine site occupations and defect concentrations for dilute as well as non-dilute solute additions. These equations use atom pair bond enthalpies as the parameters. It is found that the site preferences of dilute additions are not always in agreement with predictions based on the solubility lobes in ternary Gibbs isotherms, Predictions for dilute additions to NiAl and FeAl are compared to experimental results found in the literature. Satisfactory correlation is found between the model and the experimental results. In addition, the predictions from the model on vacancy concentrations in Fe doped NiAl are compared to recent experimental results by the authors.

  15. Investigating compositional effects of atomic layer deposition ternary dielectric Ti-Al-O on metal-insulator-semiconductor heterojunction capacitor structure for gate insulation of InAlN/GaN and AlGaN/GaN

    Energy Technology Data Exchange (ETDEWEB)

    Colon, Albert; Stan, Liliana; Divan, Ralu; Shi, Junxia


    Gate insulation/surface passivation in AlGaN/GaN and InAlN/GaN heterojunction field-effect transistors is a major concern for passivation of surface traps and reduction of gate leakage current. However, finding the most appropriate gate dielectric materials is challenging and often involves a compromise of the required properties such as dielectric constant, conduction/valence band-offsets, or thermal stability. Creating a ternary compound such as Ti-Al-O and tailoring its composition may result in a reasonably good gate material in terms of the said properties. To date, there is limited knowledge of the performance of ternary dielectric compounds on AlGaN/GaN and even less on InAlN/GaN. To approach this problem, the authors fabricated metal-insulator-semiconductor heterojunction (MISH) capacitors with ternary dielectrics Ti-Al-O of various compositions, deposited by atomic layer deposition (ALD). The film deposition was achieved by alternating cycles of TiO2 and Al2O3 using different ratios of ALD cycles. TiO2 was also deposited as a reference sample. The electrical characterization of the MISH capacitors shows an overall better performance of ternary compounds compared to the pure TiO2. The gate leakage current density decreases with increasing Al content, being similar to 2-3 orders of magnitude lower for a TiO2:Al2O3 cycle ratio of 2:1. Although the dielectric constant has the highest value of 79 for TiO2 and decreases with increasing the number of Al2O3 cycles, it is maintaining a relatively high value compared to an Al2O3 film. Capacitance voltage sweeps were also measured in order to characterize the interface trap density. A decreasing trend in the interface trap density was found while increasing Al content in the film. In conclusion, our study reveals that the desired high-kappa properties of TiO2 can be adequately maintained while improving other insulator performance factors. The ternary compounds may be an excellent choice as a gate material for both

  16. Electronic and Thermoelectric Properties of Ternary Chalcohalide Semiconductors: First Principles Study (United States)

    Khan, Wilayat; Hussain, Sajjad; Minar, Jan; Azam, Sikander


    Ternary chalcohalides have been widely utilized for different device applications. The thermoelectric properties of SbSI, SbSeI and SbSBr have been investigated by theoretical simulations, and the findings have been performed using BoltzTraP code, based on semi-classical Boltzmann transport theory. In this study, we simulated the electronic structures using the Englo-Vosko generalized gradient approximation employed in the WIEN2k program. From the electronic band structures, we found a combination of light and heavy bands around the Fermi level in the valence band, which strongly affect the effective masses of the carriers. The entire thermoelectric parameters, like the electrical, the electronic part of the thermal conductivities, the Seebeck coefficient and the power factor have been analysed as functions of temperature and chemical potential. The correlation between the effective masses and the thermoelectric properties is also included in the discussion because the effective mass reveals the mobility of the carriers which in turn affect the thermoelectric properties. The substitution of sulfur reveals high electrical conductivity and a smaller Seebeck coefficient based on effective mass leads to the increase in the power factor.

  17. Polar intermetallic compounds of the silicon and arsenic family elements and their ternary hydrides and fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Escamilla, E.A.


    An investigation has been made on the effects of hydrogen and fluoride in the solid state chemistry of alkaline-earth and divalent rare-earth metal pnictide (Pn) and tetrelide (Tt) phases A{sub 5}(Pn,Tt,){sub 3}Z{sub x}, where A = Ca, Sr, Ba, Sm, Eu, Yb; Pn = As, Sb, Bi; Tt = Si, Ge, Sn, Pb and Z = H, F. Several trivalent rare-earth-metal pnictides, RE{sub 5}Pn{sub 3} (RE = Y, La, Gd, Tb, Dy, Ho, Er, Tm) and alkaline-earth-metal trielides, A{sub 5}Tr{sub 3}Z{sub x} (Tr = Ga, In, Tl) have been included in an effort to complete observed structural trends. Two main experimental techniques were followed throughout this work, (a) reactions in absence of hydrogen or under continuous high vacuum, and (b) reactions with binary metal hydrides, AH{sub x}, in closed containers. The results demonstrate that all the phases reported with the {beta}-Yb{sub 5}Sb{sub 3}-type structure in the A{sub 5}Pn{sub 3} systems are hydrogen-stabilized compounds. Reactions in absence of hydrogen lead to compounds with the Mn{sub 5}Si{sub 3}-type structure. The structure type {beta}-Yb{sub 5}Sb{sub 3} (= Ca{sub 5}SB{sub 3}F) was found to be characteristic of ternary systems and inaccurately associated with phases that form in the Y{sub 5}Bi{sub 3}-type. A new series of isomorphous Zintl compounds with the Ca{sub 16}Sb{sub 11}-type structure were prepared and studied as well. All the alkaline-earth-metal tetrelides, A{sub 5}Tt{sub 3}, that crystallize in the Cr{sub 5}B{sub 3}-type structure can be interstitially derivatized by hydrogen or fluoride. Binary and ternary compounds were characterized by Guinier powder patterns, single crystal X-ray and powder neutron diffraction techniques. In an effort to establish property-structure relationships, electrical resistivity and magnetic measurements were performed on selected systems, and the results were explained in terms of the Zintl concepts, aided by extended Hueckel band calculations.

  18. Surface Bonding Effects in Compound Semiconductor Nanoparticles: II

    Energy Technology Data Exchange (ETDEWEB)

    Helen H. Farrell


    Small nanoparticles have a large proportion of their atoms either at or near the surface, and those in clusters are essentially all on the surface. As a consequence, the details of the surface structure are of paramount importance in governing the overall stability of the particle. Just as with bulk materials, factors that determine this stability include “bulk” structure, surface reconstruction, charge balance and hybridization, ionicity, strain, stoichiometry, and the presence of adsorbates. Needless to say, many of these factors, such as charge balance, hybridization and strain, are interdependent. These factors all contribute to the overall binding energy of clusters and small nanoparticles and play a role in determining the deviations from an inverse size dependence that we have previously reported for compound semiconductor materials. Using first-principles density functional theory calculations, we have explored how these factors influence particle stability under a variety of conditions.

  19. "Property Phase Diagrams" for Compound Semiconductors through Data Mining. (United States)

    Srinivasan, Srikant; Rajan, Krishna


    This paper highlights the capability of materials informatics to recreate "property phase diagrams" from an elemental level using electronic and crystal structure properties. A judicious selection of existing data mining techniques, such as Principal Component Analysis, Partial Least Squares Regression, and Correlated Function Expansion, are linked synergistically to predict bandgap and lattice parameters for different stoichiometries of GaxIn1-xAsySb1-y, starting from fundamental elemental descriptors. In particular, five such elemental descriptors, extracted from within a database of highly correlated descriptors, are shown to collectively capture the widely studied "bowing" of energy bandgaps seen in compound semiconductors. This is the first such demonstration, to our knowledge, of establishing relationship between discrete elemental descriptors and bandgap bowing, whose underpinning lies in the fundamentals of solid solution thermodyanamics.

  20. Phase relationships in the {Ho, Er}–Ni–Sn ternary systems at 673 K and crystal structure of new ternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, L., E-mail: [Ivan Franko L’viv National University, Kyryl & Mephodiy Str. 6, 79005 L’viv (Ukraine); Romaniv, I. [Ivan Franko L’viv National University, Kyryl & Mephodiy Str. 6, 79005 L’viv (Ukraine); Romaka, V.V. [Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Pavlyuk, V. [Ivan Franko L’viv National University, Kyryl & Mephodiy Str. 6, 79005 L’viv (Ukraine)


    Highlights: • Ho–Ni–Sn and Er–Ni–Sn phase diagrams were constructed at 673 K. • Eight ternary compounds exist in both investigated systems. • HoNi{sub x}Sn{sub 2} (up to 7 at.% Ni) and ErNi{sub x}Sn{sub 2} (up to 5 at.% Ni) solid solutions were found. - Abstract: The phase equilibria of the Ho–Ni–Sn and Er–Ni–Sn ternary systems were studied at 673 K in the whole concentration range using electron probe microanalysis (EPMA) and X-ray powder diffraction (XPD). Each system is characterized by formation of eight ternary compounds at 673 K: Ho{sub 6}Ni{sub 2}Sn, Er{sub 6}Ni{sub 2}Sn (Ho{sub 6}Ni{sub 2}Ga-type), Ho{sub 2}Ni{sub 2}Sn, Er{sub 2}Ni{sub 2}Sn (Mo{sub 2}FeB{sub 2}-type), HoNi{sub 5}Sn, ErNi{sub 5}Sn (CeCu{sub 4.38}In{sub 1.62}-type), HoNi{sub 1.73}Sn, ErNi{sub 1.72}Sn (YbNi{sub 1.705}Sn-type), HoNiSn, ErNiSn (TiNiSi-type), HoNiSn{sub 2}, ErNiSn{sub 2} (LuNiSn{sub 2}-type), HoNiSn{sub 4}, ErNiSn{sub 4} (LuNiSn{sub 4}-type), and Ho{sub 2}NiSn{sub 6}, Er{sub 2}NiSn{sub 6} (Lu{sub 2}NiSn{sub 6}-type). The interstitial solid solutions HoNi{sub x}Sn{sub 2} (up to 7 at.% Ni) and ErNi{sub x}Sn{sub 2} (up to 5 at.% Ni) based on the RSn{sub 2} (ZrSi{sub 2}-type) binary compounds were found.

  1. Heusler compounds as ternary intermetallic nanoparticles: Co{sub 2}FeGa

    Energy Technology Data Exchange (ETDEWEB)

    Basit, Lubna; Wang Changhai; Jenkins, Catherine A; Balke, Benjamin; Ksenofontov, Vadim; Fecher, Gerhard H; Felser, Claudia [Johannes Gutenberg - Universitaet, Institut fuer analytische und anorganische Chemie, 55099 Mainz (Germany); Mugnaioli, Enrico; Kolb, Ute [Johannes Gutenberg - Universitaet, Institut fuer Physikalische Chemie, Elektronenmikroskopie-Zentrum Mainz (EMZM), 55099 Mainz (Germany); Nepijko, Sergej A; Schoenhense, Gerd [Johannes Gutenberg - Universitaet, Institut fuer Physik, 55099 Mainz (Germany); Klimenkov, Michael, E-mail: felser@uni-mainz.d [Institut fuer Materialforschung I, Forschungszentrum Karlsruhe GmbH, 76021 Karlsruhe (Germany)


    This work describes the preparation of ternary nanoparticles based on the Heusler compound Co{sub 2}FeGa. Nanoparticles with sizes of about 20 nm were synthesized by reducing a methanol impregnated mixture of CoCl{sub 2} {center_dot} 6H{sub 2}O, Fe(NO{sub 3}){sub 3} {center_dot} 9H{sub 2}O and Ga(NO{sub 3}){sub 3} {center_dot} xH{sub 2}O after loading on fumed silica. The dried samples were heated under pure H{sub 2} gas at 900 {sup 0}C. The obtained nanoparticles-embedded in silica-were investigated by means of x-ray diffraction (XRD), transmission electron microscopy, temperature dependent magnetometry and Moessbauer spectroscopy. All methods clearly revealed the Heusler-type L2{sub 1} structure of the nanoparticles. In particular, anomalous XRD data demonstrate the correct composition in addition to the occurrence of the L2{sub 1} structure. The magnetic moment of the particles is about 5{mu}{sub B} at low temperature in good agreement with the value of bulk material. This suggests that the half-metallic properties are conserved even in particles on the 10 nm scale.

  2. Novel red-emission of ternary ZnCdSe semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Shu-Ru, E-mail: [National Formosa University, Graduate Institute of Materials Science and Green Energy Engineering (China); Wang, Kuan-Wen [National Central University, Institute of Materials Science and Engineering (China); Chen, Hong-Shuo; Chen, Hong-Hong [National Formosa University, Graduate Institute of Materials Science and Green Energy Engineering (China)


    The effect of chain lengths of fatty acids on the physical properties of CdSe and ZnCdSe semiconductor nanocrystals (NCs) synthesized by the colloidal chemistry procedure is investigated. The fatty acids, lauric acid (LA), and stearic acid (SA), with different lengths of carbon chains, are used to prepare CdSe and ZnCdSe NCs when hexyldecylamine (HDA) is applied as the sole surfactant. For CdSe–SA and ZnCdSe–SA, they have the same emission wavelength at 592 nm and the same particle size of 3.3 nm; however, their quantum yield (QY) is 75 and 16 %, respectively. In contrast, the emission wavelength of CdSe–LA and ZnCdSe–LA NCs is 609 and 615 nm, the particle size is about 3.5 and 4 nm under the same reaction time, and the QY of them are 33 and 59 %, respectively. The X-ray diffraction pattern shows that ZnCdSe NCs all have the wurtzite structure, and their main peaks are located between those of pure CdSe and ZnSe materials. The main phase of ZnCdSe–SA and ZnCdSe–LA is ZnSe and CdSe, respectively, implying that alloyed ZnCdSe NC can be prepared and ZnSe and CdSe phase can be promoted by SA and LA, respectively. Moreover, the QY of red-emission ZnCdSe–LA is higher than 50 %. These results suggest that the growth rate of CdSe as well as ZnCdSe NC can be enhanced by using LA as complex reagent and HDA as sole surfactant. It is expected that the reported effective synthetic strategy can be developed as a very practical, easy and not time-consuming approach to prepare red emissive NCs with high QY and high reproducibility.

  3. Structural trends in off stoichiometric chalcopyrite type compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Stephan, Christiane


    Energy supply is one of the most controversial topics that are currently discussed in our global community. Most of the energy delivered to the customer today has its origin in fossil and nuclear power plants. Indefinable risks and the radioactive waste repository problem of the latter as well as the global scarcity of fossil resources cause the renewable energies to grow more and more important for achieving sustainability. The main renewable energy sources are wind power, hydroelectric power and solar energy. On the photovoltaic (PV) market different materials are competing as part of different kinds of technologies, with the largest contribution still coming from wafer based crystalline silicon solar cells (95 %). Until now thin film solar cells only contribute a small portion to the whole PV market, but large capacities are under construction. Thin film photovoltaic shows a number of advantages in comparison to wafer based crystalline silicon PV. Among these material usage and production cost reduction are two prominent examples. The type of PV materials, which are analyzed in this work, are high potential compounds that are widely used as absorber layer in thin film solar cells. These are compound semiconductors of the type CuB{sup III}C{sup VI}{sub 2} (B{sup III} = In, Ga and C{sup VI} = Se, S). Several years of research have already gone into understanding the efficiency limiting factors for solar cell devices fabricated from this compound. Most of the studies concerning electronic defects are done by spectroscopic methods mostly performed using thin films from different kinds of synthesis, without any real knowledge regarding the structural origin of these defects. This work shows a systematic fundamental structural study of intrinsic point defects that are present within the material at various compositions in CuB{sup III}C{sup VI}{sub 2} compound semiconductors. The study is done on reference powder samples with well determined chemical composition and

  4. Fabrication and Characterization of Copper System Compound Semiconductor Solar Cells

    Directory of Open Access Journals (Sweden)

    Ryosuke Motoyoshi


    Full Text Available Copper system compound semiconductor solar cells were produced by a spin-coating method, and their cell performance and structures were investigated. Copper indium disulfide- (CIS- based solar cells with titanium dioxide (TiO2 were produced on F-doped SnO2 (FTO. A device based on an FTO/CIS/TiO2 structure provided better cell performance compared to that based on FTO/TiO2/CIS structure. Cupric oxide- (CuO- and cuprous oxide- (Cu2O- based solar cells with fullerene (C60 were also fabricated on FTO and indium tin oxide (ITO. The microstructure and cell performance of the CuO/C60 heterojunction and the Cu2O:C60 bulk heterojunction structure were investigated. The photovoltaic devices based on FTO/CuO/C60 and ITO/Cu2O:C60 structures provided short-circuit current density of 0.015 mAcm−2 and 0.11 mAcm−2, and open-circuit voltage of 0.045 V and 0.17 V under an Air Mass 1.5 illumination, respectively. The microstructures of the active layers were examined by X-ray diffraction and transmission electron microscopy.

  5. Coherent and ultrafast optoelectronics in III-V semiconductor compounds

    Energy Technology Data Exchange (ETDEWEB)

    Foerst, M.; Nagel, M.; Awad, M.; Waechter, M.; Kurz, H. [Institut fuer Halbleitertechnik, RWTH Aachen University, 52074 Aachen (Germany); Dekorsy, T. [Universitaet Konstanz, Fachbereich Physik, 78457 Konstanz (Germany)


    III-V compound semiconductors offer a fascinating multitude of phenomena which have become accessible via ultrafast time-resolved spectroscopy. Coherent vibronic and electronic dynamics are prepared by excitation with taylored femtosecond laser pulses. The analysis of their temporal dephasing or decay provides deep insights into the interaction between electronic and vibronic degrees of freedom and the surrounding bath in high purity quantum structures. In contrast to coherent electronic or vibronic states, deliberately introduced growth defects can be used to drastically shorten the lifetime of optically excited carriers. Sub-picosecond carrier lifetimes open the possibility to realize ultrafast saturable absorbers and optoelectronic transducer elements. They are particularly important as key elements in THz technology, such as efficient THz emitters, detectors, and for on-chip THz technology. This paper summarizes the most distinguished results relevant in the context of ultrafast optoelectronics and THz technology obtained in close collaboration with the Paul-Drude-Institute Berlin over the past decade. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. HfxAlyO ternary dielectrics for InGaAs based metal-oxide-semiconductor capacitors (United States)

    Krylov, Igor; Ritter, Dan; Eizenberg, Moshe


    The electrical properties of HfxAlyO compound dielectric films and the HfxAlyO/InGaAs interface are reported for various dielectric film compositions. Despite the same trimethylaluminum (TMA) pre-deposition treatment, dispersion in accumulation and capacitance-voltage (C-V) hysteresis increased with hafnium content. Different kinds of border traps were identified as being responsible for the phenomena. After anneal, the density of states in the HfxAlyO/InGaAs interface varied quite weakly with dielectric film composition. The optimal composition for obtaining high inversion charge density in metal oxide semiconductor gate stacks is determined by a tradeoff between leakage and dielectric constant, with the optimum atomic cation ratio ([Hf]/[Al]) of ˜1.

  7. Thermochemical stability of Li-Cu-O ternary compounds stable at room temperature analyzed by experimental and theoretical methods

    Energy Technology Data Exchange (ETDEWEB)

    Lepple, Maren [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics; Technische Univ. Darmstadt (Germany). Eduard-Zintl-Inst. of Inorganic and Physical Chemistry; Rohrer, Jochen; Albe, Karsten [Technische Univ. Darmstadt (Germany). Fachgebiet Materialmodellierung; Adam, Robert; Rafaja, David [Technical Univ. Freiberg (Germany). Inst. of Materials Science; Cupid, Damian M. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics; Austrian Institute of Technology GmbH, Vienna (Austria). Center for Low-Emission Transport TECHbase; Seifert, Hans J. [Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen (Germany). Inst. for Applied Materials - Applied Materials Physics


    Compounds in the Li-Cu-O system are of technological interest due to their electrochemical properties which make them attractive as electrode materials, i.e., in future lithium ion batteries. In order to select promising compositions for such applications reliable thermochemical data are a prerequisite. Although various groups have investigated individual ternary phases using different experimental setups, up to now, no systematic study of all relevant phases is available in the literature. In this study, we combine drop solution calorimetry with density function theory calculations to systematically investigate the thermodynamic properties of ternary Li-Cu-O phases. In particular, we present a consistently determined set of enthalpies of formation, Gibbs energies and heat capacities for LiCuO, Li{sub 2}CuO{sub 2} and LiCu{sub 2}O{sub 2} and compare our results with existing literature.

  8. Discovery of the Ternary Nanolaminated Compound Nb2GeC by a Systematic Theoretical-Experimental Approach (United States)

    Eklund, Per; Dahlqvist, Martin; Tengstrand, Olof; Hultman, Lars; Lu, Jun; Nedfors, Nils; Jansson, Ulf; Rosén, Johanna


    Since the advent of theoretical materials science some 60 years ago, there has been a drive to predict and design new materials in silicio. Mathematical optimization procedures to determine phase stability can be generally applicable to complex ternary or higher-order materials systems where the phase diagrams of the binary constituents are sufficiently known. Here, we employ a simplex-optimization procedure to predict new compounds in the ternary Nb-Ge-C system. Our theoretical results show that the hypothetical Nb2GeC is stable, and excludes all reasonably conceivable competing hypothetical phases. We verify the existence of the Nb2GeC phase by thin film synthesis using magnetron sputtering. This hexagonal nanolaminated phase has a and c lattice parameters of ˜3.24Å and 12.82 Å.

  9. Ion implantation in compound semiconductors for high-performance electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Zolper, J.C.; Baca, A.G.; Sherwin, M.E.; Klem, J.F.


    Advanced electronic devices based on compound semiconductors often make use of selective area ion implantation doping or isolation. The implantation processing becomes more complex as the device dimensions are reduced and more complex material systems are employed. The authors review several applications of ion implantation to high performance junction field effect transistors (JFETs) and heterostructure field effect transistors (HFETs) that are based on compound semiconductors, including: GaAs, AlGaAs, InGaP, and AlGaSb.

  10. Towards tailoring the magnetocaloric response in FeRh-based ternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barua, Radhika, E-mail:; Jiménez-Villacorta, Félix; Lewis, L. H. [Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)


    In this work, we demonstrate that the magnetocaloric response of FeRh-based compounds may be tailored for potential magnetic refrigeration applications by chemical modification of the FeRh lattice. Alloys of composition Fe(Rh{sub 1−x}A{sub x}) or (Fe{sub 1−x}B{sub x})Rh (A = Cu, Pd; B = Ni; 0 < x < 0.06) were synthesized via arc-melting and subsequent annealing in vacuum at 1000 °C for 48 h. The magnetocaloric properties of the FeRh-based systems were determined using isothermal M(H) curves measured in the vicinity of the magnetostructural temperature (T{sub t}). It is found that the FeRh working temperature range (δT{sub FWHM}) may be chemically tuned over a wide temperature range, 100 K ≤ T ≤ 400 K. While elemental substitution consistently decreases the magnetic entropy change (ΔS{sub mag}) of the FeRh-based ternary alloys from that of the parent FeRh compound (ΔS{sub mag},{sub FeRh} ∼ 17 J/kg K; ΔS{sub mag,FeRh-ternary =} 7–14 J/kg K at H{sub app} = 2 T), the net refrigeration capacity (RC), defined as the amount of heat that can be transferred during one magnetic refrigeration cycle, of the modified systems is significantly higher (RC{sub FeRh} ∼ 150 J/kg; RC{sub FeRh-ternary =} 170–210 J/kg at H{sub app} = 2 T). These results are attributed to stoichiometry-induced changes in the FeRh electronic band structure and beneficial broadening of the magnetostructural transition due to local chemical disorder.

  11. Spin-filter and spin-gapless semiconductors: The case of Heusler compounds

    Energy Technology Data Exchange (ETDEWEB)

    Galanakis, I. [Department of Materials Science, School of Natural Sciences, University of Paras, GR-26504 Patra (Greece); Özdoğan, K. [Department of Physics, Yildiz Technical University, 34210 Istanbul (Turkey); Şaşıoğlu, E. [Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany and Department of Physics, Fatih University, 34500, Büyükçekmece, Istanbul (Turkey)


    We review our recent first-principles results on the inverse Heusler compounds and the ordered quaternary (also known as LiMgPdSn-type) Heusler compounds. Among these two subfamilies of the full-Heusler compounds, several have been shown to be magnetic semiconductors. Such material can find versatile applications, e.g. as spin-filter materials in magnetic tunnel junctions. Finally, a special case are the spin-gapless semiconductors, where the energy gap at the Fermi level for the one spin-direction is almost vanishing, offering novel functionalities in spintronic/magnetoelectronic devices.

  12. Superconductivity in the ternary rare-earth (Y, La, and Lu) compounds RPd2Si2 and RRh2Si2

    NARCIS (Netherlands)

    Palstra, T.T.M.; Lu, G.; Menovsky, A.A.; Nieuwenhuys, G.J.; Kes, P.H.; Mydosh, J.A.


    We have investigated the superconducting and metallurgical properties of the ternary compounds RPd2Si2 and RRh2Si2 with R = Y, La, and Lu. All RPd2Si2 compounds and LaRh2Si2 were found to be type-I superconductors below 1 K. A detailed metallurgical analysis shows that segregation of second phases

  13. TbNb6Sn6: the first ternary compound from the rare earth–niobium–tin system

    Directory of Open Access Journals (Sweden)

    Viktor Hlukhyy


    Full Text Available The title compound, terbium hexaniobium hexastannide, TbNb6Sn6, is the first ternary compound from the rare earth–niobium–tin system. It has the HfFe6Ge6 structure type, which can be analysed as an intergrowth of the Zr4Al3 and CaCu5 structures. All the atoms lie on special positions; their coordination geometries and site symmetries are: Tb (dodecahedron 6/mmm; Nb (distorted icosahedron 2mm; Sn (Frank–Caspar polyhedron, CN = 14–15 6mm and overline{6}m2; Sn (distorted icosahedron overline{6}m2. The structure contains a graphite-type Sn network, Kagome nets of Nb atoms, and Tb atoms alternating with Sn2 dumbbells in the channels.

  14. A New Class of Ternary Compound for Lithium-Ion Battery: from Composite to Solid Solution. (United States)

    Wang, Jiali; Wu, Hailong; Cui, Yanhua; Liu, Shengzhou; Tian, Xiaoqing; Cui, Yixiu; Liu, Xiaojiang; Yang, Yin


    Searching for high-performance cathode materials is a crucial task to develop advanced lithium-ion batteries (LIBs) with high-energy densities for electrical vehicles (EVs). As a promising lithium-rich material, Li 2 MnO 3 delivers high capacity over 200 mAh g -1 but suffers from poor structural stability and electronic conductivity. Replacing Mn 4+ ions by relatively larger Sn 4+ ions is regarded as a possible strategy to improve structural stability and thus cycling performance of Li 2 MnO 3 material. However, large difference in ionic radii of Mn 4+ and Sn 4+ ions leads to phase separation of Li 2 MnO 3 and Li 2 SnO 3 during high-temperature synthesis. To prepare solid-solution phase of Li 2 MnO 3 -Li 2 SnO 3 , a buffer agent of Ru 4+ , whose ionic radius is in between that of Mn 4+ and Sn 4+ ions, is introduced to assist the formation of a single solid-solution phase. The results show that the Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system evolves from mixed composite phases into a single solid-solution phase with increasing Ru content. Meanwhile, discharge capacity of this ternary system shows significantly increase at the transformation point which is ascribed to the improvement of Li + /e - transportation kinetics and anionic redox chemistry for solid-solution phase. The role of Mn/Sn molar ratio of Li 2 RuO 3 -Li 2 MnO 3 -Li 2 SnO 3 ternary system has also been studied. It is revealed that higher Sn content benefits cycling stability of the system because Sn 4+ ions with larger sizes could partially block the migration of Mn 4+ and Ru 4+ from transition metal layer to Li layer, thus suppressing structural transformation of the system from layered-to-spinel phase. These findings may enable a new route for exploring ternary or even quaternary lithium-rich cathode materials for LIBs.

  15. Heterojunctions Based on II-VI Compound Semiconductor One-Dimensional Nanostructures and Their Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Xiwei Zhang


    Full Text Available Wide band gap II-VI semiconductor nanostructures have been extensively studied according to their great potentials for optoelectronic applications, while heterojunctions are fundamental elements for modern electronic and optoelectronic devices. Subsequently, a great deal of achievements in construction and optoelectronic applications of heterojunctions based on II-VI compound semiconductor one-dimensional nanostructures have been obtained in the past decade. Herein, we present a review of a series of progress in this field. First, construction strategies towards different types of heterojunctions are reviewed, including core-shell heterojunctions, one-dimensional axial heterojunctions, crossed nanowires heterojunctions, and one-dimensional nanostructure/thin film or Si substrate heterojunctions. Secondly, optoelectronic applications of these constructed heterojunctions, such as photodetectors, solar cells, light emitting diodes, junction field effect transistors, etc., are discussed briefly. This review shows that heterojunctions based on II-VI compound semiconductor 1-D nanostructures have great potential for future optoelectronic applications.

  16. Pulsed laser ablation growth and doping of epitaxial compound semiconductor films

    Energy Technology Data Exchange (ETDEWEB)

    Lowndes, D.H.; Rouleau, C.M.; Geohegan, D.B.; Budai, J.D.; Poker, D.B. [Oak Ridge National Lab., TN (United States). Solid State Div.; Puretzky, A.A. [Inst. of Spectroscopy, Troitsk (Russian Federation); Strauss, M.A.; Pedraza, A.J.; Park, J.W. [Univ. of Tennessee, Knoxville, TN (United States)


    Pulsed laser ablation (PLA) has several characteristics that are potentially attractive for the growth and doping of chemically complex compound semiconductors including (1) stoichiometric (congruent) transfer of composition from target to film, (2) the use of reactive gases to control film composition and/or doping via energetic-beam-induced reactions, and (3) low-temperature nonequilibrium phase formation in the laser-generated plasma ``plume.`` However, the electrical properties of compound semiconductors are far more sensitive to low concentrations of defects than are the oxide metals/ceramics for which PLA has been so successful. Only recently have doped epitaxial compound semiconductor films been grown by PLA. Fundamental studies are being carried out to relate film electrical and microstructural properties to the energy distribution of ablated species, to the temporal evolution of the ablation pulse in ambient gases, and to beam assisted surface and/or gas-phase reactions. In this paper the authors describe results of ex situ Hall effect, high-resolution x-ray diffraction, transmission electron microscopy, and Rutherford backscattering measurements that are being used in combination with in situ RHEED and time-resolved ion probe measurements to evaluate PLA for growth of doped epitaxial compound semiconductor films and heterostructures. Examples are presented and results analyzed for doped II-VI, I-III-VI, and column-III nitride materials grown recently in this and other laboratories.

  17. N-doping of organic semiconductors by bis-metallosandwich compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, Stephen; Qi, Yabing; Kahn, Antoine; Marder, Seth; Kim, Sang Bok; Mohapatra, Swagat K.; Guo, Song


    The various inventions disclosed, described, and/or claimed herein relate to the field of methods for n-doping organic semiconductors with certain bis-metallosandwich compounds, the doped compositions produced, and the uses of the doped compositions in organic electronic devices. Metals can be manganese, rhenium, iron, ruthenium, osmium, rhodium, or iridium. Stable and efficient doping can be achieved.

  18. A new ternary magnetically ordered heavy fermion compound Pr2Rh3Ge: magnetic, electronic and thermodynamic properties (United States)

    Falkowski, M.; Strydom, A. M.


    The results of the magnetic, electron transport, heat capacity and heat conduction measurements on the new rhombohedral ternary compound Pr2Rh3Ge have been investigated. The synthesized polycrystalline compound was found to crystallize in the ternary ordered variant of the cubic Laves phase MgCu2 -type of structure with the space group R\\overline{3} m, as previously reported. Pr2Rh3Ge exhibits a ferromagnetic behaviour below TC = 8.5 K, which was found to be unstable in low applied magnetic fields, revealing characteristics usually attributed to the long-range order. In the entire paramagnetic region electrical resistivity shows monotonous metallic conductivity character. We estimated that the Sommerfeld coefficient γ  =  315 mJ/Pr-mol · K2 of Pr2 Rh3 Ge is very large with comparison to ordinary metals which indicate the existence of heavy fermion behaviour of itinerant charge carriers at low temperatures or enhanced density of the quasi-particle state at the Fermi level. The crucial role of the crystalline electric field effects on the ground state properties of Pr3+ (J  =  4) has been also observed. We think that the heavy fermion behaviour in Pr2 Rh3 Ge results from the dynamic low-lying crystal-field fluctuations, since there is no sign of Kondo effect in electrical resistivity and no enhancement of the slope S(T)/T in thermoelectric power data at low temperatures. It suggests that the conduction electrons at the Fermi level does not correlate with the 4f 2 states of Pr3+ atoms and hence there is no place for a typical spin Kondo effect, as it is commonly observed in Ce- and Yb-based heavy fermion systems.

  19. Study on the oscillatory behaviour of the lattice parameter in ternary iron-nitrogen compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gil Rebaza, A.V.; Desimoni, J. [Departamento de Fisica, Facultad de Ciencias Exactas, UNLP, CC No 67, 1900 La Plata (Argentina); Peltzer y Blanca, E.L., E-mail: [Grupo de Estudio de Materiales y Dispositivos Electronicos (GEMyDE), Facultad de Ingenieria, UNLP, IFLYSIB-CONICET, CC No. 565, 1900 La Plata (Argentina)


    The structural properties of the XFe{sub 3}N (X=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn) cubic ternary iron based nitrides as well as the preferential occupation site of X in the structure were studied using Full Potential Linearized Augmented Plane Wave method, within the Density Functional Theory formalism, Wien2k code, the exchange-correlation potential described with the Perdew-Burke-Ernzerhof expression, based in the Local Spin Density Approximation and Generalized Gradient Approximation. According the calculations, the Sc, Co, Ni, Cu and Zn, atoms preferred the corner sites of the cubes, while Ti, V, Cr and Mn occupy the centre of the faces of the equilibrium structures. The equilibrium structure lattice parameters have an oscillatory behaviour with the atomic number of X, with decreasing amplitude as the atomic number of X increases. This trend do not correlated with the atomic radii of X.

  20. Isothermal section of the phase diagram and crystal structures of the compounds in the ternary system Tm-Cu-Sb at 870 K (United States)

    Fedyna, L. O.; Fedorchuk, A. O.; Mykhalichko, V. M.; Shpyrka, Z. M.; Fedyna, M. F.


    The isothermal section of the Tm-Cu-Sb phase diagram at 870 K was constructed using X-ray phase analysis. The existence of one ternary compound was confirmed - TmCu1-xGe2 (x = 0.109) (structure type HfCuSi2, space group P4/nmm, Pearson code tP8-0.22, a = 4.24170(2), c = 9.73942(9) Å). New ternary copper antimonides Tm3Cu20+xSb11-x (x = 2) (structure type Dy3Cu20+xSb11-x, space group F-43 m, Pearson code cF272, a = 16.55784(4) Å) and TmCu4-xSb2 (x = 1.065) (structure type ErFe4Ge2 (LTM), space group Pnnm, Pearson code oP14-2.13, a = 7.00565(6), b = 7.83582(6), c = 4.25051(3) Å) were found. The crystal structures of compounds were refined by full-profile Rietveld method using X-ray powder diffraction data. The solubility of the third component in all binary phases was found to be negligible. The crystal structures of known ternary antimonides were analyzed and relationship among the crystal structures of compounds in the ternary system Tm-Cu-Sb was illustrated.

  1. III-V compound semiconductor transistors—from planar to nanowire structures


    Riel, Heike; Wernersson, Lars-Erik; Hong, Minghwei; del Alamo, Jesús A.


    Conventional silicon transistor scaling is fast approaching its limits. An extension of the logic device roadmap to further improve future performance increases of integrated circuits is required to propel the electronics industry. Attention is turning to III-V compound semiconductors that are well positioned to replace silicon as the base material in logic switching devices. Their outstanding electron transport properties and the possibility to tune heterostructures provide tremendous opport...

  2. (Liquid + liquid) equilibrium for ternary mixtures of {l_brace}heptane + aromatic compounds + [EMpy][ESO{sub 4}]{r_brace} at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Mirkhani, S.A. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Vossoughi, M., E-mail: [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Pazuki, G.R. [Department of Chemical Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Safekordi, A.A. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Heydari, A.; Akbari, J. [Department of Chemistry, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Yavari, M. [Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)


    Highlights: > This paper reports the LLE data of ternary systems {l_brace}heptane (1) + aromatic compounds (2) + [EMpy][ESO{sub 4}] (3){r_brace}. > The distribution coefficient and the selectivity were obtained from the experimental data. > The consistency of LLE data was successfully correlated with Othmer-Tobias and Hand equation. - Abstract: (Liquid + liquid) equilibrium (LLE) data for the ternary systems (heptane + toluene + 1-ethyl-3-methylpyridinium ethylsulfate) and (heptane + benzene + 1-ethyl-3-methylpyridinium ethylsulfate) were measured at T = 298.15 K and atmospheric pressure. The selectivity and aromatic distribution coefficients, calculated from the equilibrium data, were used to determine if this ionic liquid can be used as a potential extracting solvent for the separation of aromatic compounds from heptane. The consistency of tie-line data was ascertained by applying the Othmer-Tobias and Hand equations.

  3. Structure of metal-rich (001) surfaces of III-V compound semiconductors

    DEFF Research Database (Denmark)

    Kumpf, C.; Smilgies, D.; Landemark, E.


    The atomic structure of the group-III-rich surface of III-V semiconductor compounds has been under intense debate for many years, yet none of the models agrees with the experimental data available. Here we present a model for the three-dimensional structure of the (001)-c(8x2) reconstruction on I......(8 x 2) reconstructions of III-V semiconductor surfaces contain the same essential building blocks.......The atomic structure of the group-III-rich surface of III-V semiconductor compounds has been under intense debate for many years, yet none of the models agrees with the experimental data available. Here we present a model for the three-dimensional structure of the (001)-c(8x2) reconstruction on In......Sb, InAs, and GaAs surfaces based on surface x-ray diffraction data that was analyzed by direct methods and subsequent least squares refinement. Contrary to common belief the main building blocks of the structure are not dimers on the surface but subsurface dimers in the second bilayer. This essential...

  4. Rapid microwave-assisted preparation of binary and ternary transition metal sulfide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Butala, Megan M.; Perez, Minue A.; Arnon, Shiri; Göbel, Claudia; Preefer, Molleigh B.; Seshadri, Ram


    Transition metal chalcogenides are of interest for energy applications, including energy generation in photoelectrochemical cells and as electrodes for next-generation electrochemical energy storage. Synthetic routes for such chalcogenides typically involve extended heating at elevated temperatures for multiple weeks. We demonstrate here the feasibility of rapidly preparing select sulfide compounds in a matter of minutes, rather than weeks, using microwave-assisted heating in domestic microwaves. We report the preparations of phase pure FeS2, CoS2, and solid solutions thereof from the elements with only 40 min of heating. Conventional furnace and rapid microwave preparations of CuTi2S4 both result in a majority of the targeted phase, even with the significantly shorter heating time of 40 min for microwave methods relative to 12 days using a conventional furnace. The preparations we describe for these compounds can be extended to related structures and chemistries and thus enable rapid screening of the properties and performance of various compositions of interest for electronic, optical, and electrochemical applications.

  5. Ternary liquid-liquid equilibria for the phenolic compounds extraction from artificial textile industrial waste (United States)

    Fardhyanti, Dewi Selvia; Prasetiawan, Haniif; Hermawan, Sari, Lelita Sakina


    Liquid waste in textile industry contains large amounts of dyes and chemicals which are capable of harming the environment and human health. It is due to liquid waste characteristics which have high BOD, COD, temperature, dissolved and suspended solid. One of chemical compound which might be harmful for environment when disposed in high concentration is phenol. Currently, Phenol compound in textile industrial waste has reached 10 ppm meanwhile maximum allowable phenol concentration is not more than 0.2 ppm. Otherwise, Phenol also has economic value as feedstock of plastic, pharmaceutical and cosmetic industry. Furthermore, suitable method to separate phenol from waste water is needed. In this research, liquid - liquid extraction method was used with extraction time for 70 minutes. Waste water sample was then separated into two layers which are extract and raffinate. Thereafter, extract and raffinate were then tested by using UV-Vis Spectrophotometer to obtained liquid - liquid equilibrium data. Aim of this research is to study the effect of temperature, stirring speed and type of solvent to obtain distribution coefficient (Kd), phenol yield and correlation of Three-Suffix Margules model for the liquid - liquid extraction data equilibrium. The highest extraction yield at 80.43 % was found by using 70% methanol as solvent at extraction temperature 50 °C with stirring speed 300 rpm, coefficient distribution was found 216.334. From this research it can be concluded that Three-Suffix Margules Model is suitable to predict liquid - liquid equilibrium data for phenol system.

  6. Elemental and compound semiconductor surface chemistry: Intelligent interfacial design facilitated through novel functionalization and deposition strategies (United States)

    Porter, Lon Alan, Jr.

    The fundamental understanding of silicon surface chemistry is an essential tool for silicon's continued dominance of the semiconductor industry in the years to come. By tapping into the vast library of organic functionalities, the synthesis of organic monolayers may be utilized to prepare interfaces, tailored to a myriad of applications ranging from silicon VLSI device optimization and MEMS to physiological implants and chemical sensors. Efforts in our lab to form stable organic monolayers on porous silicon through direct silicon-carbon linkages have resulted in several efficient functionalization methods. In the first chapter of this thesis a comprehensive review of these methods, and many others is presented. The following chapter and the appendix serve to demonstrate both potential applications and studies aimed at developing a fundamental understanding of the chemistry behind the organic functionalization of silicon surfaces. The remainder of this thesis attempts to demonstrate new methods of metal deposition onto both elemental and compound semiconductor surfaces. Currently, there is considerable interest in producing patterned metallic structures with reduced dimensions for use in technologies such as ULSI device fabrication, MEMS, and arrayed nanosensors, without sacrificing throughput or cost effectiveness. Research in our laboratory has focused on the preparation of precious metal thin films on semiconductor substrates via electroless deposition. Continuous metallic films form spontaneously under ambient conditions, in the absence of a fluoride source or an externally applied current. In order to apply this metallization method toward the development of useful technologies, patterning utilizing photolithography, microcontact printing, and scanning probe nanolithography has been demonstrated.

  7. Crystallization of II-VI semiconductor compounds forming long microcrystalline linear assemblies

    Directory of Open Access Journals (Sweden)

    Marcelino Becerril


    Full Text Available In this work we report the formation of long microcrystalline linear self-assemblies observed during the thin film growth of several II-VI compounds. Polycrystalline CdTe, CdS, CdCO3, and nanocrystalline CdTe:Al thin films were prepared on glass substrates by different deposition techniques. In order to observe these crystalline formations in the polycrystalline materials, the thin film growth was suspended before the grains reached to form a continuous layer. The chains of semiconductor crystals were observed among many isolated and randomly distributed grains. Since CdTe, CdTe:Al, CdS and CdCO3 are not ferroelectric and/or ferromagnetic materials, the relevant problem would be to explain what is the mechanism through which the grains are held together to form linear chains. It is well known that some nanocrystalline materials form rods and wires by means of electrostatic forces. This occurs in polar semiconductors, where it is assumed that the attraction forces between surface polar faces of the small crystals are the responsible for the chains formation. Since there are not too many mechanisms responsible for the attraction we assume that a dipolar interaction is the force that originates the formation of chain-like grain clusters. The study of this property can be useful for the understanding of nucleation processes in the growth of semiconductor thin films.

  8. Compound semiconductor alloys: From atomic-scale structure to bandgap bowing (United States)

    Schnohr, C. S.


    Compound semiconductor alloys such as InxGa1-xAs, GaAsxP1-x, or CuInxGa1-xSe2 are increasingly employed in numerous electronic, optoelectronic, and photonic devices due to the possibility of tuning their properties over a wide parameter range simply by adjusting the alloy composition. Interestingly, the material properties are also determined by the atomic-scale structure of the alloys on the subnanometer scale. These local atomic arrangements exhibit a striking deviation from the average crystallographic structure featuring different element-specific bond lengths, pronounced bond angle relaxation and severe atomic displacements. The latter, in particular, have a strong influence on the bandgap energy and give rise to a significant contribution to the experimentally observed bandgap bowing. This article therefore reviews experimental and theoretical studies of the atomic-scale structure of III-V and II-VI zincblende alloys and I-III-VI2 chalcopyrite alloys and explains the characteristic findings in terms of bond length and bond angle relaxation. Different approaches to describe and predict the bandgap bowing are presented and the correlation with local structural parameters is discussed in detail. The article further highlights both similarities and differences between the cubic zincblende alloys and the more complex chalcopyrite alloys and demonstrates that similar effects can also be expected for other tetrahedrally coordinated semiconductors of the adamantine structural family.

  9. Ternary fission

    Indian Academy of Sciences (India)


    Aug 5, 2015 ... We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary ...

  10. Ternary fission

    Indian Academy of Sciences (India)

    Recently, we have studied the various aspects associated with the ternary fission process. A model, called the three-cluster model (TCM) [1–6] has been put forth. This accounts for the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the ...

  11. Ultraviolet photosulfidation of III-V compound semiconductors for electronic passivation

    Energy Technology Data Exchange (ETDEWEB)

    Zavadil, K.R.; Ashby, C.I.H.; Howard, A.J.; Hammons, B.E.


    A new vacuum-compatible passivation technique for III-V compound semiconductors has been developed. Sulfur passivation of GaAs(100) is produced by ultraviolet photolytic deposition of a sulfide species from vapor phase elemental sulfur. Photoluminescence studies of the photosulfided GaAs reveal a degree of passivation greater than or equal to that produced by conventional (NH{sub 4}{sub 2}S) solution treatment. X-ray Photoelectron Spectroscopy has shown that the sulfur resides on the surface as a single reduced sulfur species, either as sulfide of disulfide, indicating complete fragmentation of the S{sub 8} ring by UV light in proximity to the surface. The degree of photosulfidation depends strongly on surface preparation as demonstrated by the described surface oxide removal studies.

  12. “Property Phase Diagrams” for Compound Semiconductors through Data Mining

    Directory of Open Access Journals (Sweden)

    Srikant Srinivasan


    Full Text Available This paper highlights the capability of materials informatics to recreate “property phase diagrams” from an elemental level using electronic and crystal structure properties. A judicious selection of existing data mining techniques, such as Principal Component Analysis, Partial Least Squares Regression, and Correlated Function Expansion, are linked synergistically to predict bandgap and lattice parameters for different stoichiometries of GaxIn1−xAsySb1−y, starting from fundamental elemental descriptors. In particular, five such elemental descriptors, extracted from within a database of highly correlated descriptors, are shown to collectively capture the widely studied “bowing” of energy bandgaps seen in compound semiconductors. This is the first such demonstration, to our knowledge, of establishing relationship between discrete elemental descriptors and bandgap bowing, whose underpinning lies in the fundamentals of solid solution thermodyanamics.

  13. “Property Phase Diagrams” for Compound Semiconductors through Data Mining (United States)

    Srinivasan, Srikant; Rajan, Krishna


    This paper highlights the capability of materials informatics to recreate “property phase diagrams” from an elemental level using electronic and crystal structure properties. A judicious selection of existing data mining techniques, such as Principal Component Analysis, Partial Least Squares Regression, and Correlated Function Expansion, are linked synergistically to predict bandgap and lattice parameters for different stoichiometries of GaxIn1−xAsySb1−y, starting from fundamental elemental descriptors. In particular, five such elemental descriptors, extracted from within a database of highly correlated descriptors, are shown to collectively capture the widely studied “bowing” of energy bandgaps seen in compound semiconductors. This is the first such demonstration, to our knowledge, of establishing relationship between discrete elemental descriptors and bandgap bowing, whose underpinning lies in the fundamentals of solid solution thermodyanamics. PMID:28809308

  14. Impurity and Defect Characterization in Epitaxial GaAs, InP and the Ternary and Quaternary Compound Semiconductors. (United States)


    FORCE OFFI ve SCITIFIC RzSEARCH (ASC NOTICE OF TO )DTIC This tochp, , ’ r, revti nd is approv.,( ’:-t., dd i.!: -2-19)-12. MATTHEW J. ChiOfP Teohzicl...too small (g* = 0.44) to be observed -at low fields. Results The specimen was grown by the method of vapor phase • ’ C’:4,,W ,%,¢ ",-,’"S : ,’!-."..v

  15. Ab initio investigation of the electronic structure and bonding properties of the layered ternary compound Ti sub 3 SiC sub 2 at high pressure

    CERN Document Server

    Wang, J Y


    The pressure dependences of the lattice parameters, electronic structure, and bonding properties of the layered ternary compound Ti sub 3 SiC sub 2 were investigated by performing ab initio plane-wave pseudopotential total energy calculations. The material exhibited elastic anisotropy. The lattice constants and axial ratio were studied for different pressures, and the same trend was obtained as is measured in experiment. It was found that although the structure was stable at high pressure, the electronic structure and atomic bonding were definitely affected. The electrical conductivity was predicted to reduce with pressure, which was interpreted by analysing the band dispersion curve and density of states at the Fermi level. The strengths of the atomic bonds in Ti sub 3 SiC sub 2 were considered by analysing the Mulliken population and by examining the bond length contraction for various pressures. A redistribution of charge density that accompanied high pressures was also revealed.

  16. Calculation of the magnetic properties of pseudo-ternary R2M14B intermetallic compounds (R = rare earth, M = Fe, Co

    Directory of Open Access Journals (Sweden)

    Gabriel Gómez Eslava


    Full Text Available The extrinsic properties of NdFeB-based magnets can be tuned through partial substitution of Nd by another rare-earth element and Fe by Co, as such substitution leads to a modification in the intrinsic properties of the main phase. Optimisation of a magnet's composition through trial and error is time consuming and not straightforward, since the interplay existing between magnetocrystalline anisotropy and coercivity is not completely understood. In this paper we present a model to calculate the intrinsic magnetic properties of pseudo-ternary Nd2Fe14B-based compounds. As concrete examples, which are relevant for the optimisation of NdFeB-based high-performance magnets used in (hybrid electric vehicles and wind turbines, we consider partial substitution of Nd by Dy or Tb, and Fe by Co.

  17. High quality lamella preparation of gallium nitride compound semiconductor using Triple Beam™ system (United States)

    Sato, T.; Nakano, K.; Matsumoto, H.; Torikawa, S.; Nakatani, I.; Kiyohara, M.; Isshiki, T.


    Gallium nitride (GaN) compound semiconductors have been known to be very sensitive to Ga focused ion beam (FIB) processing. Due to the nature of GaN based materials it is often difficult to produce damage-free lamellae, therefore applying the Triple Beam™ system which incorporates an enhanced method for amorphous removal is presented to make a high quality lamella. The damage or distortion layer thickness of GaN single crystal prepared with 30 kV Ga FIB and 1 kV Ga FIB were about 17 nm and 1.5 nm respectively. The crystallinity at the uppermost surface remained unaffected when the condition of 1 kV Ar ion milling with the Triple Beam™ system was used. The technique of combining traditional Ga FIB processing with an enhanced method for amorphous layer removal by low energy Ar ion milling allows us to analyse the InGaN/GaN interface using aberration corrected scanning transmission electron microscopy at atomic resolution levels.

  18. Compound semiconductor field-effect transistors with improved dc and high frequency performance

    Energy Technology Data Exchange (ETDEWEB)

    Zolper, J.C.; Sherwin, M.E.; Baca, A.G.


    A method for making compound semiconductor devices including the use of a p-type dopant is disclosed wherein the dopant is co-implanted with an n-type donor species at the time the n-channel is deposited. Also disclosed are devices manufactured using the method. In the preferred embodiment n-MESFETs and other similar field effect transistor devices are manufactured using C ions implanted with Si atoms in GaAs to form an n-channel. C exhibits a unique characteristic in the context of the invention in that it exhibits a low activation efficiency (typically, 50% or less) as a p-type dopant, and consequently, it acts to sharpen the Si n-channel by compensating Si donors in the region the Si-channel tail, but does not contribute substantially to the acceptor concentration in the region of the buried p-implant. As a result, the invention provides for improved field effect transistor devices with enhancement of both DC and high-frequency performance.

  19. Bulk Growth of Wide Band Gap II-VI Compound Semiconductors by Physical Vapor Transport (United States)

    Su, Ching-Hua


    The mechanism of physical vapor transport of II-VI semiconducting compounds was studied both theoretically, using a one-dimensional diffusion model, as well as experimentally. It was found that the vapor phase stoichiometry is critical in determining the vapor transport rate. The experimental heat treatment methods to control the vapor composition over the starting materials were investigated and the effectiveness of the heat treatments was confirmed by partial pressure measurements using an optical absorption technique. The effect of residual (foreign) gas on the transport rate was also studies theoretically by the diffusion model and confirmed experimentally by the measurements of total pressure and compositions of the residual gas. An in-situ dynamic technique for the transport rate measurements and a further extension of the technique that simultaneously measured the partial pressures and transport rates were performed and, for the first time, the experimentally determined mass fluxes were compared with those calculated, without any adjustable parameters, from the diffusion model. Using the information obtained from the experimental transport rate measurements as guideline high quality bulk crystal of wide band gap II-VI semiconductor were grown from the source materials which undergone the same heat treatment methods. The grown crystals were then extensively characterized with emphasis on the analysis of the crystalline structural defects.

  20. A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures


    Katsuaki Tanabe


    Solar cells are a promising renewable, carbon-free electric energy resource to address the fossil fuel shortage and global warming. Energy conversion efficiencies around 40% have been recently achieved in laboratories using III-V semiconductor compounds as photovoltaic materials. This article reviews the efforts and accomplishments made for higher efficiency III-V semiconductor compound solar cells, specifically with multijunction tandem, lower-dimensional, photonic up/down conversion, and pl...

  1. Crystal structure of the TbZnSn{sub 2} and TbZnSn ternary compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pavlyuk, V. [Ivan Franko National University of Lviv, Department of Inorganic Chemistry, Kyryla and Mefodia Street 6, 79005 Lviv (Ukraine); Czestochowa Jan Dlugosz University, Institute of Chemistry and Environmental Protection, al. Armii Krajowej 13/15, 42200 Czestochowa (Poland)], E-mail:; Oshchapovsky, I. [Ivan Franko National University of Lviv, Department of Inorganic Chemistry, Kyryla and Mefodia Street 6, 79005 Lviv (Ukraine); Marciniak, B. [Czestochowa Jan Dlugosz University, Institute of Chemistry and Environmental Protection, al. Armii Krajowej 13/15, 42200 Czestochowa (Poland)


    The crystal structures of the TbZnSn{sub 2} and TbZnSn compounds were determined by X-ray single crystal diffraction. The TbZnSn{sub 2} compound crystallizes with the HfCuSi{sub 2} structure type (space group P4/nmm) and TbZnSn crystallizes with the YPtAs structure type (space group P6{sub 3}/mmc)

  2. Ternary Mn3NMn1-x Ag x compound films of nearly constant electrical resistivity and their magnetic transport behaviour (United States)

    Lu, N. P.; Xu, T.; Cao, Z. X.; Ji, A. L.


    Antiperovskite \\text{M}{{\\text{n}}3}\\text{NM}{{\\text{n}}1-x}\\text{A}{{\\text{g}}x} thin films were successfully prepared by reactive magnetron sputtering. The increasing substitution of Ag atoms at the MnA-sites of cubic Mn3NMn lattice leads to the metal-to-semiconductor transition, through which a vanishingly small temperature coefficient of resistivity down to 20 ppm K-1 over a temperature range of 50 to 200 K was achieved. Meanwhile, with increasing content of Ag atoms the magnetic behaviour of the deposits also changes that the ferromagnetism gradually diminishes and the freezing temperature steadily downshifts. The simultaneously tunable magnetic property and the nature of electric conductivity may inspire some innovative applications of the manganese nitride-based antiperovskite thin films.

  3. Ternary system Tm-Cu-Ge: isothermal section of the phase diagram at 870 K and crystal structures of the compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fedyna, L.O.; Bodak, O.I.; Tokaychuk, Ya.O.; Fedyna, M.F.; Mokra, I.R


    The isothermal section of the Tm-Cu-Ge phase diagram at 870 K was constructed using X-ray phase analysis. The existence of three ternary compounds was confirmed: TmCu{sub 2}Ge{sub 2} (structure type CeAl{sub 2}Ga{sub 2}, space group I4/mmm, Pearson code tI10, a=3.99155(8) A, c=10.3285(2) A), Tm{sub 2}CuGe{sub 6} (structure type Ce{sub 2}CuGe{sub 6}, space group Amm2, Pearson code oS18, a=4.061(1) A, b=3.957(4) A, c=20.76(2) A) and Tm{sub 6}Cu{sub 8}Ge{sub 8} (structure type Gd{sub 6}Cu{sub 8}Ge{sub 8}, space group Immm, Pearson code oI22, a=13.7407(3) A, b=6.5995(1) A, c=4.1368(1) A). A new ternary copper germanide TmCu{sub 1.24}Ge{sub 0.76} (structure type CaIn{sub 2}, space group P6{sub 3}/mmc, Pearson code hP6, a=4.42254(8) A, c=7.0477(2) A) was found. The crystal structures of TmCu{sub 2}Ge{sub 2}, Tm{sub 6}Cu{sub 8}Ge{sub 8} and TmCu{sub 1.24}Ge{sub 0.76} were refined by full-profile Rietveld method using X-ray powder diffraction data. The binary compound Tm{sub 0.9}Ge{sub 2} (structure type ZrSi{sub 2}) dissolves up to 5 at.% of Cu. The lattice parameters refined for the sample Tm{sub 31}Cu{sub 5}Ge{sub 64} (a=4.042(1) A, b=15.793(4) A, c=3.906(2) A) slightly increased, compared with Tm{sub 0.9}Ge{sub 2}. The solubility of the third component in the other binary phases was found to be negligible.

  4. Characterization of Structural Defects in Wide Band-Gap Compound Materials for Semiconductor and Opto-Electronic Applications (United States)

    Goue, Ouloide Yannick

    Single crystals of binary and ternary compounds are touted to replace silicon for specialized applications in the semiconductor industry. However, the relative high density of structural defects in those crystals has hampered the performance of devices built on them. In order to enhance the performance of those devices, structurally perfect single crystals must be grown. The aim of this thesis is to investigate the interplay between crystal growth process and crystal quality as well as structural defect types and transport property. To this end, the thesis is divided into two parts. The first part provides a general review of the theory of crystal growth (chapter I), an introduction to the materials being investigated (chapter II and III) and the characterization techniques being used (chapter IV). • In chapter I, a brief description of the theory of crystal growth is provided with an eye towards the driving force behind crystal nucleation and growth along with the kinetic factors affecting crystal growth. The case of crystal growth of silicon carbide (SiC) by physical vapor transport (PVT) and chemical vapor deposition (CVD) is discussed. The Bridgman, travelling heater method (THM) and physical transport growth of cadmium zinc telluride (CZT) is also treated. In chapters II and III, we introduce the compound materials being investigated in this study. While a description of their crystal structure and properties is provided, the issues associated with their growth are discussed. In chapter IV, a description of the characterization techniques used in these studies is presented. These techniques are synchrotron X-ray topography (SXRT), transmission electron microscopy, transmission infrared microscopy (TIM), micro-Raman spectroscopy (muRS) and light microscopy. Extensive treatment of SXRT technique is also provided. In the second part, the experimental results obtained in the course of these studies are presented and discussed. These results are divided into

  5. Magnetic Properties of the Ternary Compounds CeT2Si2 and UT2Si2

    NARCIS (Netherlands)

    Palstra, T.T.M.; Menovsky, A.A.; Nieuwenhuys, G.J.; Mydosh, J.A.


    We have investigated the magnetic properties of the intermetallic compounds CeT2Si2 and UT2Si2, with T a transition metal. From our measurements we have determined a trend from Pauli-paramagnetism via antiferromagnetism to canted antiferromagnetism with increasing number of d-electrons.

  6. An exploration of deep level defects in compound semiconductors using optoelectronic modulation spectroscopy

    CERN Document Server

    Chiu, C H


    The work is concerned with the detection and characterisation of defect states within semiconductor materials. OptoElectronic Modulation Spectroscopy (OEMS) has been adapted to isolate the electrical and optical responses of traps in semiconductor device and materials. Sub band-gap photons are used to permit penetration into the semiconductor to excite charges in deep defect states. In order to isolate the effect of back-plane charge traps in MESFET structures gate depletion region modulation of the channel current has been eliminated by using a closed loop control system to stabilise the gate depletion capacitance continuously throughout the measurement of the OEMS spectrum. Any change of the channel current will then be due only to the charges within the back-plane interface depletion region between the active layer and buffer/substrate. Depth defined OEMS has also been demonstrated and used to detect defects situated between two preset gate depletion regions. The location of the defect states is therefore ...

  7. pH-specific hydrothermal assembly of binary and ternary Pb(II)-(O,N-carboxylic acid) metal organic framework compounds: correlation of aqueous solution speciation with variable dimensionality solid-state lattice architecture and spectroscopic signatures. (United States)

    Gabriel, C; Perikli, M; Raptopoulou, C P; Terzis, A; Psycharis, V; Mateescu, C; Jakusch, T; Kiss, T; Bertmer, M; Salifoglou, A


    Hydrothermal pH-specific reactivity in the binary/ternary systems of Pb(II) with the carboxylic acids N-hydroxyethyl-iminodiacetic acid (Heida), 1,3-diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid (Dpot), and 1,10-phenanthroline (Phen) afforded the new well-defined crystalline compounds [Pb(Heida)](n)·nH(2)O(1), [Pb(Phen)(Heida)]·4H(2)O(2), and [Pb(3)(NO(3))(Dpot)](n)(3). All compounds were characterized by elemental analysis, FT-IR, solution or/and solid-state NMR, and single-crystal X-ray diffraction. The structures in 1-2 reveal the presence of a Pb(II) center coordinated to one Heida ligand, with 1 exhibiting a two-dimensional (2D) lattice extending to a three-dimensional (3D) one through H-bonding interactions. The concurrent aqueous speciation study of the binary Pb(II)-Heida system projects species complementing the synthetic efforts, thereby lending credence to a global structural speciation strategy in investigating binary/ternary Pb(II)-Heida/Phen systems. The involvement of Phen in 2 projects the significance of nature and reactivity potential of N-aromatic chelators, disrupting the binary lattice in 1 and influencing the nature of the ultimately arising ternary 3D lattice. 3 is a ternary coordination polymer, where Pb(II)-Dpot coordination leads to a 2D metal-organic-framework material with unique architecture. The collective physicochemical properties of 1-3 formulate the salient features of variable dimensionality metal-organic-framework lattices in binary/ternary Pb(II)-(hydroxy-carboxylate) structures, based on which new Pb(II) materials with distinct architecture and spectroscopic signature can be rationally designed and pursued synthetically.

  8. Ultrathin Compound Semiconductor on Insulator Layers for High-Performance Nanoscale Transistors (United States)


    and n- type transistors on the same chip for complementary electronics based on the optimal III–V semiconductors. 1Electrical Engineering and...layouts for high-performance electronics on fabric, vinyl, leather , and paper. Adv. Mater. 21, 3703–3707 (2009). 17. Melosh, N. et al. Ultrahigh density

  9. Emergence of half metallicity in Cr-doped GaP dilute magnetic semiconductor compound within solubility limit

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Hardev S.; Singh, Mukhtiyar [Department of Physics, Kurukshetra University, Kurukshetra, 136119 Haryana (India); Reshak, Ali H. [School of Complex Systems, FFWP - South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Material Engineering, University Malaysia Perlis, P.O. Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia); Kashyap, Manish K., E-mail: [Department of Physics, Kurukshetra University, Kurukshetra, 136119 Haryana (India)


    Highlights: Black-Right-Pointing-Pointer This compound is true half metallic ferromagnet for all studied Cr concentrations. Black-Right-Pointing-Pointer The half metallicity is preserved up to lowest doping concentration, x = 0.03. Black-Right-Pointing-Pointer The HM gap increases with reduction in doping concentration from 0.25 to 0.03. Black-Right-Pointing-Pointer p-d hybridization induces ferromagnetism and half metallicity in the compound. Black-Right-Pointing-Pointer Double exchange mechanism is responsible for the stabilization of ferromagnetism. - Abstract: The electronic and magnetic properties of Ga{sub 1-x}Cr{sub x}P dilute magnetic semiconductor (DMS) compound for dopant concentration, x = 0.25, 0.125, 0.06 and 0.03 have been investigated using WIEN2k implementation of full potential linearized augmented plane wave (FPLAPW) method in order to seek out the possibility of new dilute magnetic semiconductor (DMS) compound within generalized gradient approximation (GGA) as exchange-correlation (XC) potential. The calculated results show that the Cr doping in GaP induces the ferromagnetism and originates a half metallic (HM) gap at Fermi level (E{sub F}) in minority spin channel (MIC) for all concentrations. The half metallicity is originated by the hybridization of Cr-d states with P-p states. Moreover, the half metallicity remains intact for all Cr-concentration. We also observed that the HM gap increases with the reduction in doping concentration from 0.25 to 0.03. The total magnetic moment of this compound is mainly due to Cr-d states present at E{sub F}. A small induced magnetic moment on other non magnetic atoms (Ga and P) for all doping concentrations is a consequence of p-d hybridization between Cr-d and P-p states.

  10. Large scale simulations of the mechanical properties of layered transition metal ternary compounds for fossil energy power system applications

    Energy Technology Data Exchange (ETDEWEB)

    Ching, Wai-Yim [Univ. of Missouri, Kansas City, MO (United States)


    Advanced materials with applications in extreme conditions such as high temperature, high pressure, and corrosive environments play a critical role in the development of new technologies to significantly improve the performance of different types of power plants. Materials that are currently employed in fossil energy conversion systems are typically the Ni-based alloys and stainless steels that have already reached their ultimate performance limits. Incremental improvements are unlikely to meet the more stringent requirements aimed at increased efficiency and reduce risks while addressing environmental concerns and keeping costs low. Computational studies can lead the way in the search for novel materials or for significant improvements in existing materials that can meet such requirements. Detailed computational studies with sufficient predictive power can provide an atomistic level understanding of the key characteristics that lead to desirable properties. This project focuses on the comprehensive study of a new class of materials called MAX phases, or Mn+1AXn (M = a transition metal, A = Al or other group III, IV, and V elements, X = C or N). The MAX phases are layered transition metal carbides or nitrides with a rare combination of metallic and ceramic properties. Due to their unique structural arrangements and special types of bonding, these thermodynamically stable alloys possess some of the most outstanding properties. We used a genomic approach in screening a large number of potential MAX phases and established a database for 665 viable MAX compounds on the structure, mechanical and electronic properties and investigated the correlations between them. This database if then used as a tool for materials informatics for further exploration of this class of intermetallic compounds.

  11. A study of the semiconductor compound СuAlO2 by the method of nuclear quadrupole resonance of Cu (United States)

    Matukhin, V. L.; Khabibulin, I. Kh.; Shul'gin, D. A.; Smidt, S. V.


    The method of nuclear quadrupole resonance of Cu (NQR Cu) is used to study the samples of a semiconductor compound CuAlO2. The crystal structure of CuAlO2 belongs to the family of delafossite - the mineral of a basic CuFeO2 structure. Transparent semiconductor oxides, such as CuAlO2, have attracted recent attention as promising thermoelectric materials.

  12. On the impact of isoelectric impurities on band bowing and disorder of compound semiconductors; Ueber den Einfluss von isoelektronischen Stoerstellen auf Bandbiegung und Unordnung in Verbindungshalbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Karcher, Christian


    Isolectronic impurities and their impact on the properties of compound semiconductors is discussed in two systems: Nitrogen in Ga(As,P) quantum wells on the one hand and Sulfur and Selenium in bulk ZnTe. The properties are reduced to two experimentally observable aspects: Band Bowing, i.e. the non-linearity of the band gap of the compound semiconductor and disorder, i.e. in particular the formation of a strongly localized density of states beneath the fundamental band gap. Apart of the pure experimental studies an insight into the theoretical model of disorder-induced temperature dependent luminescence properties of the compound semiconductors by means of Monte Carlo Simulations is given.

  13. Growth of anodic films on compound semiconductor electrodes: InP in aqueous (NH sub 4) sub 2 S

    CERN Document Server

    Buckley, D N


    Film formation on compound semiconductors under anodic conditions is discussed. The surface properties of InP electrodes were examined following anodization in a (NH sub 4) sub 2 S electrolyte. The observation of a current peak in the cyclic voltammetric curve was attributed to selective etching of the substrate and a film formation process. AFM images of samples anodized in the sulfide solution revealed surface pitting. Thicker films formed at higher potentials exhibited extensive cracking as observed by optical and electron microscopy, and this was explicitly demonstrated to occur ex situ rather than during the electrochemical treatment. The composition of the thick film was identified as In sub 2 S sub 3 by EDX and XPS. The measured film thickness varies linearly with the charge passed, and comparison between experimental thickness measurements and theoretical estimates for the thickness indicate a porosity of over 70 %. Cracking is attributed to shrinkage during drying of the highly porous film and does n...

  14. A facile room temperature route to ternary Cu{sub 7.2}S{sub 2}Se{sub 2} compounds and their photovoltaic properties based on elemental copper

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jiamei [Department of Chemistry, Zhengzhou University, Henan 450001 (China); Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Jia, Huimin, E-mail: [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Lei, Yan [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Liu, Songzi [Department of Chemistry, Zhengzhou University, Henan 450001 (China); Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Gao, Yuanhao [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Hou, Hongwei [Department of Chemistry, Zhengzhou University, Henan 450001 (China); Zheng, Zhi, E-mail: [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China)


    A one-pot synthesis of novel hierarchical flower-like Cu{sub 7.2}S{sub 2}Se{sub 2} nanocrystals was developed based on the direct metal surface elemental reaction (DMSER) method. This new room temperature synthesis is an economic and environmentally friendly soft chemical approach. The prepared Cu{sub 7.2}S{sub 2}Se{sub 2} nanocrystals uniformly cover the surface of the Cu substrates. The mechanism of formation was investigated by observing the materials produced from changing the reaction time, the molar ratio of Na{sub 2}S to elemental selenium, and the volume of solvent. The crystal structure, surface morphologies and light absorption properties were collected by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–visible spectroscopy. The results show that the as-prepared ternary nanocrystals are face-centered cubic and have an optical bandgap of 1.58 eV, which is ideal for potential solar cell applications. Transient photovoltage spectroscopy (TPV) was used to evaluate the photovoltaic performance of pure Cu{sub 7.2}S{sub 2}Se{sub 2} nanocrystalline powder as well as in-situ generated Cu{sub 7.2}S{sub 2}Se{sub 2}/ZnO heterojunctions. The current work offers a novel and simple approach for preparing ternary chalcogenide semiconductors for photoelectric and photocatalytic applications. - Highlights: • A one-pot synthesis of novel hierarchical flower-like Cu{sub 7.2}S{sub 2}Se{sub 2} was developed. • This work offers a facile way for prepare ternary chalcogenide at room temperature. • TPV was firstly used to evaluate the photovoltaic performance of Cu{sub 7.2}S{sub 2}Se{sub 2}.

  15. Gas-Solid Reaction Properties of Fluorine Compounds and Solid Adsorbents for Off-Gas Treatment from Semiconductor Facility

    Directory of Open Access Journals (Sweden)

    Shinji Yasui


    Full Text Available We have been developing a new dry-type off-gas treatment system for recycling fluorine from perfluoro compounds present in off-gases from the semiconductor industry. The feature of this system is to adsorb the fluorine compounds in the exhaust gases from the decomposition furnace by using two types of solid adsorbents: the calcium carbonate in the upper layer adsorbs HF and converts it to CaF2, and the sodium bicarbonate in the lower layer adsorbs HF and SiF4 and converts them to Na2SiF6. This paper describes the fluorine compound adsorption properties of both the solid adsorbents—calcium carbonate and the sodium compound—for the optimal design of the fixation furnace. An analysis of the gas-solid reaction rate was performed from the experimental results of the breakthrough curve by using a fixed-bed reaction model, and the reaction rate constants and adsorption capacity were obtained for achieving an optimal process design.

  16. III-V compound semiconductor growth on silicon via germanium buffer and surface passivation for CMOS technology (United States)

    Choi, Donghun

    Integration of III-V compound semiconductors on silicon substrates has recently received much attention for the development of optoelectronic and high speed electronic devices. However, it is well known that there are some key challenges for the realization of III-V device fabrication on Si substrates: (i) the large lattice mismatch (in case of GaAs: 4.1%), and (ii) the formation of antiphase domain (APD) due to the polar compound semiconductor growth on non-polar elemental structure. Besides these growth issues, the lack of a useful surface passivation technology for compound semiconductors has precluded development of metal-oxide-semiconductor (MOS) devices and causes high surface recombination parasitics in scaled devices. This work demonstrates the growth of high quality III-V materials on Si via an intermediate Ge buffer layer and some surface passivation methods to reduce interface defect density for the fabrication of MOS devices. The initial goal was to achieve both low threading dislocation density (TDD) and low surface roughness on Ge-on-Si heterostructure growth. This was achieved by repeating a deposition-annealing cycle consisting of low temperature deposition + high temperature-high rate deposition + high temperature hydrogen annealing, using reduced-pressure chemical-vapor deposition (CVD). We then grew III-V materials on the Ge/Si virtual substrates using molecular-beam epitaxy (MBE). The relationship between initial Ge surface configuration and antiphase boundary formation was investigated using surface reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) image analysis. In addition, some MBE growth techniques, such as migration enhanced epitaxy (MEE) and low temperature GaAs growth, were adopted to improve surface roughness and solve the Ge self-doping problem. Finally, an Al2O3 gate oxide layer was deposited using atomic-layer-deposition (ALD) system after HCl native oxide etching and ALD in-situ pre

  17. Ti2MnZ (Z=Al, Ga, In compounds: Nearly spin gapless semiconductors

    Directory of Open Access Journals (Sweden)

    H. Y. Jia


    Full Text Available Ti2MnZ (Z=Al, Ga, In compounds with CuHg2Ti-type structure are predicted to have the different width of band gap in two spin channels and exhibit a nearly spin gapless semiconductivity. There are different origins of the band gap in spin-up and spin-down channels. The width of the band gap can be adjusted by changing the lattice parameter or doping congeners. These compounds are completely-compensated ferrimagnets with a zero magnetic moment.

  18. Fast Etching of Molding Compound by an Ar/O2/CF4 Plasma and Process Improvements for Semiconductor Package Decapsulation

    NARCIS (Netherlands)

    Tang, J.; Gruber, D.; Schelen, J.B.J.; Funke, H.J.; Beenakker, C.I.M.


    Decapsulation of a SOT23 semiconductor package with 23 um copper wire bonds is conducted with an especially designed microwave induced plasma system. It is found that a 30%-60% CF4 addition in the O2/CF4 etchant gas results in high molding compound etching rate. Si3N4 overetching which is

  19. Nanoscale Studies of Energy Band Gaps and Band Offsets in Compound Semiconductor Heterostructures (United States)

    Chang, Alexander S.

    The identification of the precise band offsets at semiconductor interfaces is crucially important for the successful development of electronic and optoelectronic devices. However, issues at the interfaces, such as strain or defects, needs to be investigated for precise band tuning of semiconductor heterostructures. In this dissertation, the nanometer-scale structural and electronic properties of InGaAs(Sb)N/GaAs interfaces, InGaN/GaN QDs, and GaSb/GaAs QDs are investigated using a combination of XSTM and STS. The influence of Sb incorporation on the InGaAs(Sb)N/GaAs band alignment is investigated. At the InGaAsN/GaAs (InGaAsSbN/GaAs) interfaces, type II (type I) band offsets are observed, due to strain-induced splitting of the valence band and the incorporation of Sb. Band tuning of both conduction and valence band edges with the incorporation of Sb can be used to engineer the band structure with strong confinement of electrons and holes in the InGaAsSbN quantum well layer, which is promising for light emitting applications. The influence of the growth substrate on InGaN/GaN QD formation and properties is examined. The QD density, dimension, and band gaps are compared for different InGaN QDs on free-standing GaN or GaN/AlN/sapphire substrates. We present different sources using nucleation on different substrates, and discuss their influences on the electronic band structure. Our work suggests that a wide variety of InGaN QD dimension, density, and band structure can be achieved by using different starting substrate and number of layers of InGaN QD stacks. Furthermore, the influence of strain and dislocation on the GaSb/GaAs QD band alignment is investigated using both experimental and computational tools. A combination of cross-sectional transmission electron microscopy (XTEM), XSTM, and STS reveals the formation of misfit dislocations and both coherent and semi-coherent clustered QDs, independent of Sb- vs. As-termination of the GaAs surface. Furthermore, finite

  20. Study of Optoelectronics Properties of Anisotropic Semiconductor Compounds with Ordered Stochiometric Vacancy

    National Research Council Canada - National Science Library

    Roud, Iouri


    .... and photoluminescence measurements in a temperature range 77-300K mainly on the crystallographically oriented CdGeAs2 CdGa2S4 and HgGa2S4 single crystals - the most important representatives of these compounds...

  1. Ordered-vacancy-compound semiconductors: Pseudocubic CdIn2Se4 (United States)

    Bernard, James E.; Zunger, Alex


    Whereas substitutional adamantine compounds AnB4-nC4 (e.g., ABC2 chalcopyrites for n=2, or the AC and BC zinc-blende compounds for n=4 and 0) have four metal atoms around each nonmetal atom and vice versa, ordered-vacancy compounds OVC's) AB2C4 have but three metal atoms (one A and two B's) around each nonmetal site (C) while the fourth (unoccupied) site forms an ordered array of vacancies. An example for OVC's is ``pseudocubic'' CdIn2Se4 which can be structurally derived from the layered alternate monolayer superlattice of CdSe and InSe (along the [001] direction) by removing half of the Cd atoms from each Cd plane. Such OVC's form a natural bridge between crystal and impurity physics. Much like the metal vacancy in II-VI compounds (e.g., CdSe), the vacancy in CdIn2Se4 has associated with it (nonmetal) ``dangling bonds'' and ``lone-pair'' electrons, which, however, form a dispersed band in the crystal. Using all-electron mixed-basis electronic-structure techniques, we study the properties of such an ordered array of vacancies in CdIn2Se4 vis-a$ga--vis the experimental data. We find vacancy-induced atomic relaxations (Se moves towards the vacant site), resonant broadening of the lone-pair dangling-bond states into a ~=3-eV band, and that the total charge density around the vacant site has little density and shows scant evidence of dangling bonds. We discuss the nature of the bonding in this system, comparing it to other covalent selenides and to the observed photoemission and optical data. A number of possible order-disorder transitions, including the disordering of cations on the vacant sites, are identified.

  2. Passivation of Si solar cells by hetero-epitaxial compound semiconductor coatings (United States)

    Vernon, S. M.; Spitzer, M. B.; Keavney, C. J.; Haven, V. E.; Sekula, P. A.


    A development status evaluation is made for high efficiency Si solar cells, with emphasis on the suppression of the deleterious effects of surface recombination. ZnS(0.9)Se(0.1) and GaP are identified as candidates for the reduction of surface recombination. Attention is given to methods developed for the deposition of heteroepitaxial compounds designed to block minority carrier transport to the Si solar cell surface without interfering with the majority carrier flow.

  3. Macroporous Semiconductors

    Directory of Open Access Journals (Sweden)

    Helmut Föll


    Full Text Available Pores in single crystalline semiconductors come in many forms (e.g., pore sizes from 2 nm to > 10 µm; morphologies from perfect pore crystal to fractal and exhibit many unique properties directly or as nanocompounds if the pores are filled. The various kinds of pores obtained in semiconductors like Ge, Si, III-V, and II-VI compound semiconductors are systematically reviewed, emphasizing macropores. Essentials of pore formation mechanisms will be discussed, focusing on differences and some open questions but in particular on common properties. Possible applications of porous semiconductors, including for example high explosives, high efficiency electrodes for Li ion batteries, drug delivery systems, solar cells, thermoelectric elements and many novel electronic, optical or sensor devices, will be introduced and discussed.

  4. Artificial photosynthesis: semiconductor photocatalytic fixation of CO2 to afford higher organic compounds. (United States)

    Hoffmann, Michael R; Moss, John A; Baum, Marc M


    Carbon dioxide is an appealing renewable feedstock for industrial chemical processes. This does not mean, however, that all chemical processes using CO(2) are environmentally-friendly. Perspectives on the sustainability of CO(2) utilization and artificial photosynthesis are provided. The discussions focus on the photocatalytic production of C(x) (x≥ 2) compounds, where all the carbon in the products is derived from CO(2). This area of research, while promising, has received far less attention than analogous systems leading to C(1) products.

  5. A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe


    Full Text Available Solar cells are a promising renewable, carbon-free electric energy resource to address the fossil fuel shortage and global warming. Energy conversion efficiencies around 40% have been recently achieved in laboratories using III-V semiconductor compounds as photovoltaic materials. This article reviews the efforts and accomplishments made for higher efficiency III-V semiconductor compound solar cells, specifically with multijunction tandem, lower-dimensional, photonic up/down conversion, and plasmonic metallic structures. Technological strategies for further performance improvement from the most efficient (AlInGaP/(InGaAs/Ge triple-junction cells including the search for 1.0 eV bandgap semiconductors are discussed. Lower-dimensional systems such as quantum well and dot structures are being intensively studied to realize multiple exciton generation and multiple photon absorption to break the conventional efficiency limit. Implementation of plasmonic metallic nanostructures manipulating photonic energy flow directions to enhance sunlight absorption in thin photovoltaic semiconductor materials is also emerging.

  6. Page 1 Structure and superconductivity in ternary systems of ...

    Indian Academy of Sciences (India)

    Structure and superconductivity in ternary systems of compounds 299. Erra B2 structure do not have T. above 1:2 K (Ku and Meisner 1981); (iii) for. Ao.67Pt3B the T. are 1-6, 28 and 56K for A = Ca,Sr and Ba (Shelton 1978) and. (iv) AOs B, A = Th, T = 3 K; A = Y, T = 6K (Ku 1980). 3. Ternary carbides. Of the known ternary ...

  7. Synthesis and Characterization of Novel Ternary and Quaternary Alkali Metal Thiophosphates

    KAUST Repository

    Alahmary, Fatimah S.


    The ongoing development of nonlinear optical (NLO) crystals such as coherent mid-IR sources focuses on various classes of materials such as ternary and quaternary metal chalcophosphates. In case of thiophosphates, the connection between PS4-tetrahedral building blocks and metals gives rise to a broad structural variety where approximately one third of all known ternary (A/P/S) and quaternary (A/M/P/S) (A = alkali metal, M = metal) structures are acentric and potential nonlinear optical materials. The molten alkali metal polychalcophosphate fluxes are a well-established method for the synthesis of new ternary and quaternary thiophosphate and selenophosphate compounds. It has been a wide field of study and investigation through the last two decades. Here, the flux method is used for the synthesis of new quaternary phases containing Rb, Ag, P and S. Four new alkali metal thiophosphates, Rb4P2S10, RbAg5(PS4), Rb2AgPS4 and Rb3Ag9(PS4)4, have been synthesized successfully from high purity elements and binary starting materials. The new compounds were characterized by single crystal and powder X-ray diffraction, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), ultraviolet-visible (UV-VIS), Raman spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These compounds show interesting structural variety and physical properties. The crystal structures feature 3D anionic framework built up of PS4 tetrahedral units and charge balanced by Ag and alkali metal cations. All prepared compounds are semiconductors with band gap between 2.3 eV to 2.6 eV and most of them are thermally stable up to 600ºC.

  8. Electronic and lattice dynamical properties of II-IV-N{sub 2} semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Punya, Atchara; Paudel, Tula R.; Lambrecht, Walter R.L. [Department of Physics, Case Western Reserve University, Cleveland, OH 444106-7079 (United States)


    The II-IV-N2 semiconductors constitute a family of heterovalent ternary semiconductors with properties closely related to those of the III-Nitrides. We here focus on Zn-IV-N2 semiconductors with the group IV-element Si, Ge and Sn. We present results on their electronic band structures obtained with the quasiparticle self-consistent GW method and the full-potential linearized muffin-tin orbital method. The latter is also used to calculate the energies of formation of these compounds from the constituent elements. The lattice dynamical properties were presented earlier in a series of papers and the main properties are briefly reviewed here. We emphasize the trends in the family of materials compared to those of the III-N and discuss the experimental data for the phonons. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Novels patterns of hydration and new compounds in the ternary system of CaO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Shiqun, L.; Jiashan, H.; Biao, L.; Wei, C.; Ning Zhang; Qi Wang [Shandong Building Mater. Inst., Jinan (China). Dept. of Mater. Sci. and Eng.


    The patterns of hydrating and solidifying with the compositional variation of phosphorus-rich, phosphorus-calcium-rich and aluminum-calcium rich regions in ternary system CaO-Al{sub 2}O{sub 3}-P{sub 2}O{sub 5} has been studied in detail, and two new ternary compounds L and H have been synthesized here. The results indicate that the region of 48-56% P{sub 2}O{sub 5} doesn`t present cementitiousness, which contains mainly crystal phases of {beta}-C{sub 2}P(2CaO.P{sub 2}O{sub 5}), {alpha}-C{sub 3}P(3CaO.P{sub 2}O{sub 5}) and AlPO{sub 4}; the phosphorus-calcium-rich region of 21-35% P{sub 2}O{sub 5} exhibits substantial cementitiousness, which contains mainly crystal phase of {alpha}-C{sub 3}P and certain amount of CA(CaO.Al{sub 2}O{sub 3}) and new phases L/H; and the aluminum-calcium-rich region of 8-18% P{sub 2}O{sub 5} is full of promise for cementitiousness. It contains mainly new crystal phase L and certain amount of {alpha}-C{sub 3}P and CA. The hydration and solidification mechanisms have been preliminarily analyzed by means of XRD, XPS and DTA. It appears that crystal phase CA might hydrate directly to the stable phase of C{sub 3}A.6H{sub 2}O in the phosphorus-rich case of 21-35% P{sub 2}O{sub 5}; new phase H has the behavior of rapid setting; and L, being a dominant phase, can prevent cement pastes from significant strength loss in long curing cycles. (orig.) With 6 figs., 4 tabs., 6 refs.

  10. Correlation between DNA interactions and cytotoxic activity of four new ternary compounds of copper(II) with N-donor heterocyclic ligands. (United States)

    Silva, Priscila P; Guerra, Wendell; Dos Santos, Geandson Coelho; Fernandes, Nelson G; Silveira, Josiane N; da Costa Ferreira, Ana M; Bortolotto, Tiago; Terenzi, Hernán; Bortoluzzi, Adailton João; Neves, Ademir; Pereira-Maia, Elene C


    Four new ternary complexes of copper(II) were synthesized and characterized: [Cu(hyd)(bpy)(acn)(ClO4)](ClO4)] (1), [Cu(hyd)(phen)(acn)(ClO4)](ClO4)] (2), [Cu(Shyd)(bpy)(acn)(ClO4)](ClO4)] (3) and [Cu(Shyd)(phen)(acn)(ClO4)](ClO4)] (4), in which acn=acetonitrile; hyd=2-furoic acid hydrazide, bpy=2,2-bipyridine; phen=1,10-phenanthroline and Shyd=2-thiophenecarboxylic acid hydrazide. The cytotoxic activity of the complexes in a chronic myelogenous leukemia cell line was investigated. All complexes are able to enter cells and inhibit cellular growth in a concentration-dependent manner, with an activity higher than that of the corresponding free ligands. The substitution of Shyd for hyd increases the activity, while the substitution of bpy for phen renders the complex less active. Therefore, the most potent complex is 4 with an IC50 value of 1.5±0.2μM. The intracellular copper concentration needed to inhibit 50% of cell growth is approximately 7×10(-15)mol/cell. It is worth notifying that a correlation between cytotoxic activity, DNA binding affinity and DNA cleavage was found: 1<3<2<4. © 2013.

  11. Anti-mackay polyicosahedral clusters in La-Ni-Mg ternary compounds: synthesis and crystal structure of the La(43)Ni(17)Mg(5) new intermetallic phase. (United States)

    Solokha, Pavlo; De Negri, Serena; Pavlyuk, Volodymyr; Saccone, Adriana


    The crystal structure of the complex La(43)Ni(17)Mg(5) ternary phase was solved and refined from X-ray single crystal diffraction data. It is characterized by a very large unit cell and represents a new structure type: La(43)Ni(17)Mg(5) - orthorhombic, Cmcm, oS260, a = 10.1895(3), b = 17.6044(14), c = 42.170(3) A, Z = 4, wR1 = 0.0598, wR2 = 0.0897, 4157 F(2) values, 176 variables. The crystal structures of the La-rich La-Ni-Mg intermetallic phases La(4)NiMg, La(23)Ni(7)Mg(4), and La(43)Ni(17)Mg(5) have been comparatively analyzed. The constitutive fragments of these structures are binary polyicosahedral core-shell clusters of Mg(4)La(22) and Mg(5)La(24) compositions together with binary polytetrahedral clusters of nickel and lanthanum atoms. The structures of the Mg-La clusters are described in detail as a unique feature of the analyzed intermetallic phases; the dodecahedral Voronoi polyhedra are proposed as a useful tool to characterize polyicosahedral clusters. The arrangements of the building units in the studied phases show some regularities; particularly the i(4)3, i(5)3 and L-i(4) units, made up of polyicosahedral clusters and analogous to the Kreiner i(3) and L units, are proposed as structural blocks.

  12. Ternary rare earth-lanthanide sulfides (United States)

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.


    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to C.

  13. Semiconductor Research Experimental Techniques

    CERN Document Server

    Balkan, Naci


    The book describes the fundamentals, latest developments and use of key experimental techniques for semiconductor research. It explains the application potential of various analytical methods and discusses the opportunities to apply particular analytical techniques to study novel semiconductor compounds, such as dilute nitride alloys. The emphasis is on the technique rather than on the particular system studied.

  14. Method of passivating semiconductor surfaces (United States)

    Wanlass, M.W.


    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  15. Raman spectroscopy of Cu-Sn-S ternary compound thin films prepared by the low-cost spray-pyrolysis technique. (United States)

    Brus, Viktor V; Babichuk, Ivan S; Orletskyi, Ivan G; Maryanchuk, Pavlo D; Yukhymchuk, Volodymyr O; Dzhagan, Volodymyr M; Yanchuk, Igor B; Solovan, Mykhailo M; Babichuk, Iryna V


    Cu-Sn-S (CTS) thin films were deposited onto bare and molybdenum (Mo) coated glass substrates by means of the spray pyrolysis technique under different conditions. The CTS thin films obtained are shown, by means of Raman spectroscopy, to consist of two main phases: Cu2SnS3 and Cu3SnS4 as well as of the secondary phase of Cu2-xS. The electrical conductivity of the spray-deposited p-type CTS thin films under investigation is determined by two shallow acceptor levels: Ev+0.07  eV at T334  K. The material of the CTS thin films was established to be a direct-band semiconductor with the bandgap Eg=1.89  eV. The SEM and x-ray energy dispersive analysis show the surface and cross section of the CTS thin film deposited onto molybdenum-coated glass ceramics substrate with the actual atomic ratios of Cu:Sn:S being 2.9:1:2.64, which is in good agreement with the Raman spectra. Also, a small content of residual Cl atoms was found in the CTS thin films under investigation as the by-product of the pyrolytic reactions.

  16. Synthesis and single-crystal structure of the pseudo-ternary compounds LiA[N(CN){sub 2}]{sub 2} (A = K or Rb)

    Energy Technology Data Exchange (ETDEWEB)

    Reckeweg, Olaf; DiSalvo, Francis J. [Cornell Univ., Ithaca, NY (United States). Baker Lab.


    Crystals of LiA[N(CN){sub 2}]{sub 2} were obtained from the reaction of LiCl and ACl (A = K or Rb) with Ag[N(CN){sub 2}] in water and subsequent evaporation of the filtered solution at 80 C under normal atmospheric conditions. Crystals of the title compound form thin rectangular plates that are transparent, colorless, and very fragile. Single-crystal structure analyses have shown that both compounds are isotypic and adopt the tetragonal space group I4/mcm (no. 140, Z = 4) with the cell parameters a = 701.53(12) and c = 1413.7(5) pm for LiK[N(CN){sub 2}]{sub 2} and a = 730.34(10) and c = 1414.4(4) pm for LiRb[N(CN){sub 2}]{sub 2}. The crystal structure is described and compared to that of the pseudo-binary alkali metal dicyanamides.

  17. Investigation of the abnormal Zn diffusion phenomenon in III-V compound semiconductors induced by the surface self-diffusion of matrix atoms (United States)

    Tang, Liangliang; Xu, Chang; Liu, Zhuming


    Zn diffusion in III-V compound semiconductorsare commonly processed under group V-atoms rich conditions because the vapor pressure of group V-atoms is relatively high. In this paper, we found that group V-atoms in the diffusion sources would not change the shaped of Zn profiles, while the Zn diffusion would change dramatically undergroup III-atoms rich conditions. The Zn diffusions were investigated in typical III-V semiconductors: GaAs, GaSb and InAs. We found that under group V-atoms rich or pure Zn conditions, the double-hump Zn profiles would be formed in all materials except InAs. While under group III-atoms rich conditions, single-hump Zn profiles would be formed in all materials. Detailed diffusion models were established to explain the Zn diffusion process; the surface self-diffusion of matrix atoms is the origin of the abnormal Zn diffusion phenomenon.

  18. On new ternary equiatomic scandium transition metal aluminum compounds ScTAl with T = Cr, Ru, Ag, Re, Pt, and Au

    Energy Technology Data Exchange (ETDEWEB)

    Radzieowski, Mathis; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Haverkamp, Sandra [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; University of Sao Paulo, Sao Carlos, SP (Brazil). Inst. of Physics


    The new equiatomic scandium transition metal aluminides ScTAl for T = Cr, Ru, Ag, Re, Pt, and Au were obtained by arc-melting of the elements followed by subsequent annealing for crystal growth. The samples were studied by powder and single crystal X-ray diffraction. The structures of three compounds were refined from single crystal X-ray diffractometer data: ScCrAl, MgZn{sub 2} type, P6{sub 3}/mmc, a = 525.77(3), c = 858.68(5) pm, R{sub 1} = 0.0188, wR{sub 2} = 0.0485, 204 F{sup 2} values, 13 variables, ScPtAl, TiNiSi type, Pnma, a = 642.83(4), b = 428.96(2), c = 754.54(5) pm, R{sub 1} = 0.0326, wR{sub 2} = 0.0458, 448 F{sup 2} values, 20 variables and ScAuAl, HfRhSn type, P anti 62c, a = 722.88(4), c = 724.15(4) pm, R{sub 1} = 0.0316, wR{sub 2} = 0.0653, 512 F{sup 2} values, 18 variables. Phase pure samples of all compounds were furthermore investigated by magnetic susceptibility measurements, and Pauli-paramagnetism but no superconductivity was observed down to 2.1 K for all of them. The local structural features and disordering phenomena have been characterized by {sup 27}Al and {sup 45}Sc magic angle spinning (MAS) and static NMR spectroscopic investigations.

  19. Compound

    Indian Academy of Sciences (India)

    UV-vis spectra showing solvent effects on compounds (6). Figure S4. UV-vis spectra showing solvent effects on compounds (9). Figure S5. UV-vis spectra showing solvent ___, acidic--- and basic -□- effects on compound (8) in CH2Cl2 solution. Table S1. 1H and 13C NMR spectral data of salicylaldimine Schiff bases (5-8).

  20. A-site deficient perovskite-type compounds in the ternary CaTiO{sub 3}-LaCrO{sub 3}-La{sub 2/3}TiO{sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Vashook, V. [Institute of Physical Chemistry and Electrochemistry, Dresden University of Technology, D-01062 Dresden (Germany)]. E-mail:; Vasylechko, L. [Lviv Polytechnic National University, 12 Bandera St., Lviv 79013 (Ukraine); Trofimenko, N. [Fraunhofer Institute for Ceramic Technologies and Sintered Materials, D-01277 Dresden (Germany); Kuznecov, M. [Fraunhofer Institute for Ceramic Technologies and Sintered Materials, D-01277 Dresden (Germany); Otchik, P. [Fraunhofer Institute for Ceramic Technologies and Sintered Materials, D-01277 Dresden (Germany); Zosel, J. [Kurt-Schwabe-Institute for Measuring and Sensor Technology Meinsberg, D-04720 Ziegra-Knobelsdorf (Germany); Guth, U. [Institute of Physical Chemistry and Electrochemistry, Dresden University of Technology, D-01062 Dresden (Germany); Kurt-Schwabe-Institute for Measuring and Sensor Technology Meinsberg, D-04720 Ziegra-Knobelsdorf (Germany)


    Phase equilibriums in the CaTiO{sub 3}-LaCrO{sub 3}-La{sub 2/3}TiO{sub 3} quasi-ternary system have been studied by means of high-resolution powder diffraction technique using X-ray and synchrotron radiation. Over 50 La{sub (2+y-2x)/3}Ca {sub x}Cr {sub y}Ti{sub 1-y}O{sub 3} compounds were synthesized by solid-state reactions in air at 1350 deg. C using La{sub 2}O{sub 3}, CaCO{sub 3}, Cr{sub 2}O{sub 3} and TiO{sub 2}. Based on the results of X-ray phase and structural analysis, the isothermal section of the CaTiO{sub 3}-LaCrO{sub 3}-La{sub 2/3}TiO{sub 3} phase diagram at room temperature is constructed. The A-cation deficient La{sub (2+y-2x)/3}Ca{sub x}Cr {sub y}Ti{sub 1-y}O{sub 3} solid solution with different perovskite-type structures (space groups Pbnm, Imma, I4/mcm and Cmmm or P2/m) is formed in the CaTiO{sub 3}-LaCrO{sub 3}-La{sub 2/3}TiO{sub 3} quasi-ternary system in air conditions. The compounds show high stability at high temperatures at reducing as well as at oxidizing conditions. The substances with y = 0 and y = 0.2 show n-type conductivity at 900 deg. C at pO{sub 2} = 10{sup -15} to 10{sup 5} Pa and with y = 0.5 show conductivity minima these shift to the oxygen reach region with increasing A-site deficiency. The A-site deficient La{sub (2+y-2x)/3}Ca {sub x}Cr {sub y}Ti{sub 1-y}O{sub 3} samples have higher sintering ability in comparison with the cation stoichiometric La{sub 1-x}Ca {sub x}Cr{sub 1-y}Ti {sub y}O{sub 3} compositions and, in contrast to the latter, can be prepared as gas dense ceramics in air at temperatures lower as 1300 deg. C. Thermal expansion of the A-site deficient La{sub (2+y-2x)/3}Ca {sub x}Cr {sub y}Ti{sub 1-y}O{sub 3} ceramics is comparable with that of yttrium stabilised zirconia (YSZ). No interaction between La{sub (2+y-2x)/3}Ca {sub x}Cr {sub y}Ti{sub 1-y}O{sub 3} and YSZ ceramics up to 1300 deg. C was observed. Oxygen mobility in these ceramics can be characterised with chemical diffusion coefficients (1-9) x 10{sup -9} cm

  1. Programme and Abstracts. Workshop on Expert Evaluation and Control of Compound Semiconductor Materials and Technologies (1st) Held in Ecole Centrale De Lyon, France on 19 -22 May 1992. (EXAMTEC’ 92) (United States)


    crystallographic and chemical inhomogeneities are inherently formed during buik growth of III-V compound semiconductors. A classification of the different...Garawal, D. Lancefield , J.P. Piel, R. Blunt; EMRS Symposium D, Strasbourg (Nov. 90), to be published /5/ H.W. Dinges, H. Burkhard, R. L~sch, H

  2. Application of the polyassociative solutions model to determine phase equilibrium in multicomponent A2B6 semiconductor systems and ternery magnetic oxide systems (United States)

    Moskvin, P. P.; Olchowik, G.; Olchowik, J. M.


    This paper is the second part of the analysis using the polyassociative solutions model (PAS) to determine the phase equilibrium of A2B6 semiconductor compounds and magnetic oxide solid solutions, crystallizing into a spinel structure. The first part [1] presented the general characteristics of the PAS model and its application in the analysis of binary compounds. This second part of the paper defines the advantages and disadvantages of using the PAS model in the construction of p-T-x phase diagrams of A2B6 semiconductor compounds and ternary magnetic oxide solid solutions, crystallizing into a spinel structure. The results of the theoretical analysis were compared with the experimental data.

  3. Semiconductor physics

    Energy Technology Data Exchange (ETDEWEB)

    Tuchkevich, V.M.; Frenkel, V.Y.


    This text is a collection of papers devoted mainly to the results of the research work in the field of semiconductors. Topics include photovoltaic solar energy conversion, interacting excitons in germanium and silicon, chalcogenide vitreous semiconductors, optical cooling of the nuclear spin system in a semiconductor, photon drag of electrons in semiconductors, dielectric losses in crystals, light scattering from heavily doped semiconductors, and the capacity of an abrupt asymmetric p-n junction.

  4. Competitive adsorption of functionalized molecules on semiconductor nanocrystal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Szwaykowska, K. [POM, TU Chemnitz (Germany); Engineering and Applied Sciences, California Inst. of Tech., Pasadena, CA (United States); Raja, C. [OSMP, TU Chemnitz (Germany); ABMC, Kansas State Univ., Manhattan, KS (United States); Blaudeck, T. [POM, TU Chemnitz (Germany); OSMP, TU Chemnitz (Germany); Cichos, F. [POM, TU Chemnitz (Germany); Molecular Nanophotonics, Leipzig Univ. (Germany); Borczyskowski, C. von [OSMP, TU Chemnitz (Germany)


    Inorganic/organic aggregates from semiconductor nanocrystals and functionalized molecules such as porphyrins are considered building blocks in future nanoelectronics as they may provide control on the charge and energy transfer processes. We report on the formation process and the stability of aggregates comprising CdSe and CdSe/ZnS nanocrystals and TOPO ligands in toluene at ambient conditions. Applying steady-state spectroscopy to binary and ternary mixtures we compare the results in presence and absence of additional molecules. The experiments show that the formation kinetics is related to by the absolute concentration of the compounds in parallel to their molar ratio. The importance of the local TOPO concentration at the NC surface indicates a dynamic equilibrium governing the number of adsorption sites available. The findings are discussed in the light of Monte-Carlo simulations. (orig.)

  5. Band gap characterization of ternary BBi1-xNx (0≤x≤1) alloys using modified Becke-Johnson (mBJ) potential (United States)

    Yalcin, Battal G.


    The semi-local Becke-Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi1-xNx (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi1-xNx structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew-Burke-Ernzerhof (PBE). For electronic properties the modified Becke-Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi1-xNx almost perfectly matches with Vegard's law. The spin-orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations.

  6. Ternary System with Controlled Structure: A New Strategy toward Efficient Organic Photovoltaics. (United States)

    Cheng, Pei; Wang, Rui; Zhu, Jingshuai; Huang, Wenchao; Chang, Sheng-Yung; Meng, Lei; Sun, Pengyu; Cheng, Hao-Wen; Qin, Meng; Zhu, Chenhui; Zhan, Xiaowei; Yang, Yang


    Recently, a new type of active layer with a ternary system has been developed to further enhance the performance of binary system organic photovoltaics (OPV). In the ternary OPV, almost all active layers are formed by simple ternary blend in solution, which eventually leads to the disordered bulk heterojunction (BHJ) structure after a spin-coating process. There are two main restrictions in this disordered BHJ structure to obtain higher performance OPV. One is the isolated second donor or acceptor domains. The other is the invalid metal-semiconductor contact. Herein, the concept and design of donor/acceptor/acceptor ternary OPV with more controlled structure (C-ternary) is reported. The C-ternary OPV is fabricated by a sequential solution process, in which the second acceptor and donor/acceptor binary blend are sequentially spin-coated. After the device optimization, the power conversion efficiencies (PCEs) of all OPV with C-ternary are enhanced by 14-21% relative to those with the simple ternary blend; the best PCEs are 10.7 and 11.0% for fullerene-based and fullerene-free solar cells, respectively. Moreover, the averaged PCE value of 10.4% for fullerene-free solar cell measured in this study is in great agreement with the certified one of 10.32% obtained from Newport Corporation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Semiconductor statistics

    CERN Document Server

    Blakemore, J S


    In-depth exploration of the implications of carrier populations and Fermi energies examines distribution of electrons in energy bands and impurity levels of semiconductors. Also: kinetics of semiconductors containing excess carriers, particularly in terms of trapping, excitation, and recombination.

  8. Nanocrystalline semiconductor doped rare earth oxide for the photocatalytic degradation studies on Acid Blue 113: A di-azo compound under UV slurry photoreactor. (United States)

    Suganya Josephine, G A; Mary Nisha, U; Meenakshi, G; Sivasamy, A


    Preventive measures for the control of environmental pollution and its remediation has received much interest in recent years due to the world-wide increase in the contamination of water bodies. Contributions of these harmful effluents are caused by the leather processing, pharmaceutical, cosmetic, textile, agricultural and other chemical industries. Nowadays, advanced oxidation processes considered to be better option for the complete destruction of organic contaminants in water and wastewater. Acid Blue 113 is a most widely used di-azo compound in leather, textile, dying and food industry as a color rending compound. In the present study, we have reported the photo catalytic degradation of Acid Blue 113 using a nanocrystalline semiconductor doped rare earth oxide as a photo catalyst under UV light irradiation. The photocatalyst was prepared by a simple precipitation technique and were characterized by XRD, FT-IR, UV-DRS and FE-SEM analysis. The experimental results proved that the prepared photo catalyst was nanocrystalline and highly active in the UV region. The UV-DRS results showed the band gap energy was 3.15eV for the prepared photo catalyst. The photodegradation efficiency was analyzed by various experimental parameters such as pH, catalyst dosage, variation of substrate concentration and effect of electrolyte addition. The photo degradation process followed a pseudo first order kinetics and was continuously monitored by UV-visible spectrophotometer. The experimental results proved the efficacy of the nanocrystalline zinc oxide doped dysprosium oxide which are highly active under UV light irradiations. It is also suggested that the prepared material would find wider applications in environmental remediation technologies to remove the carcinogenic and toxic moieties present in the industrial effluents. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Strain/size analysis in ternary compounds AgIn{sub 5} VI{sub 8} (Vi = S, Se, Te) by X-ray diffraction; Analisis de tension/tamano en compuestos ternarios AgIn{sub 5} VI{sub 8} (VI = S, Se, Te) mediante difraccion de rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Fermin, J. R.; Salcedo, D. Y.; Durante R, C.; Castro, J. A. [Universidad del Zulia, Facultad Experimental de Ciencias, Departamento de Fisica, Maracaibo, Zulia (Venezuela, Bolivarian Republic of)


    In this work, we have study the microstructural properties of the ternary compounds AgIn{sub 5} VI{sub 8} (Vi = S, Se, Te) by X-ray diffraction technique (XRD). The linewidth of the XRD profile is measured as function of the diffraction angle. Structural parameters such as, average grain size, micro strains, and crystalline dislocation density, are obtained on the framework of a strain/size analysis based on the modified Scherrer equation for Gaussian profiles. The crystalline dislocation arrange according to a Gaussian distribution function, indicating that these dislocations are randomly distributed within the grains. (Author)

  10. Semiconductor physics

    CERN Document Server

    Böer, Karl W


    This handbook gives a complete survey of the important topics and results in semiconductor physics. It addresses every fundamental principle and most research topics and areas of application in the field of semiconductor physics. Comprehensive information is provided on crystalline bulk and low-dimensional as well as amporphous semiconductors, including optical, transport, and dynamic properties.

  11. Luminescence studies of semiconductor electrodes

    NARCIS (Netherlands)

    Kelly, J.J.; Kooij, Ernst S.; Meulenkamp, E.A.


    In this paper we review our recent results of in-situ luminescence studies of semiconductor electrodes. Three classes of materials are considered: single crystal compound semiconductors, porous silicon and semiconducting oxides doped with luminescent ions. We show how photoluminescence (PL) and

  12. Approximately Ternary Homomorphisms on C*-Ternary Algebras

    Directory of Open Access Journals (Sweden)

    Eon Wha Shim


    functional equation: fx2-x1/3+fx1-3x3/3+f3x1+3x3-x2/3=fx1, by the direct method. Under the conditions in the main theorems, we can show that the related mappings must be zero. In this paper, we correct the conditions and prove the corrected theorems. Furthermore, we prove the Hyers-Ulam stability and the superstability of C*-ternary homomorphisms and C*-ternary derivations on C*-ternary algebras by using a fixed point approach.

  13. Excess isentropic compressibility and speed of sound of the ternary ...

    Indian Academy of Sciences (India)

    relation (NR), Van Deal's ideal mixing relation (IMR) and Junjie's relation (JR). The results are used to ... The compounds used were 2-propanol (>99 mass%), diethyl ether (>99.5 mass%) and n-hexane (>99 .... The excess speed of sound, uE, is estimated in binary and ternary mixtures using the following expression:.

  14. A novel ternary quantum-dot cell for solving majority voter gate problem (United States)

    Tehrani, Mohammad A.; Bahrami, Safura; Navi, Keivan


    Since the complementary metal-oxide semiconductor (CMOS) technology has experienced many serious problems in fulfilling the need for more robust and efficient circuits, some emerging nanotechnologies have been introduced as the candidates for replacing CMOS. Quantum-dot cellular automata (QCA) is one of the promising nanotechnology candidates with majority function as its fundamental logic element. It has one implementation in binary QCA and several implantations in ternary QCA, but none of the ternary QCA implementations are as efficient as the binary one. In this paper, a new cell configuration for ternary QCA is proposed which works as well as previous cell configuration. Also, a new design for ternary QCA majority function is proposed which performs faster and occupies less area.

  15. Process Challenges in Compound Semiconductors. (United States)


    high-speed integrated circuits. Optical interconnects and high-temperature superconductors should be urgently evaluated for this purpose...temperature superconductors may be useful for this application, but, at present, little information is available on loss and dispersion in these...called vapor levitation epitaxy (VLE) has been developed recently [Cox et al., 1986], It is so named because, during the growth process, the substrate

  16. Compound Semiconductor Surfaces and Interfaces. (United States)


    correct. 10. In conjunction with 0. Krivanek and S. Liliental the thermal oxide/InP and SiO 2/InP was investigated with high resolution TEM. This...Press. 30. A Combined HREM , XPS and Electrical Properties Study of the InP-SiO2 Interface, 0. L. Krivanek , Z. Liliental, J. F. Wager, R. G. Gann, S. M...Goodnick and C. W. Wilmsen. 3. Vac. Sci. Technol. to be published. 31. HREM Investigation of the InP-SiO Interface, Z. Liliental, 0. L. Krivanek , 2 J

  17. Ternary alkali metal transition metal acetylides A2MC2 (A = Na, K; M = Pd, Pt). (United States)

    Hemmersbach, S; Zibrowius, B; Kockelmann, W; Ruschewitz, U


    Ternary transition metal acetylides A2MC2 (A = Na, K; M = Pd, Pt) can be synthesised by reaction of the respective alkali metal acetylide A2C2 with palladium or platinum in an inert atmosphere at about 350 degrees C. The crystal structures are characterised by (infinity)1[M(C2)(2/2)2-] chains, which are separated by the alkali metals (P3m1, Z = 1). The refinement of neutron powder diffraction data gave C-C = 1.263(3) A for Na2PdC2 (Na2PtC2: 1.289(4) A), which is distinctively longer than the expected value for a C-C triple bond (1.20 A). On the basis of band-structure calculations this can be attributed to a strong back-bonding from the metal into the anti-bonding orbitals of the C2 unit. This was further confirmed by Raman spectroscopic investigations, which showed that the wavenumbers of the C-C stretching vibrations in Na2PdC2 and Na2PtC2 are about 100 cm(-1) smaller than in acetylene. 13C MAS-NMR spectra demonstrated that the acetylenic C2 units in the title compounds are very different from those in acetylene. Electrical conductivity measurements and band-structure calculations showed that the black title compounds are semiconductors with a small indirect band gap (approximately 0.2 eV).

  18. Nuclear Electrical and Optical Studies of Hydrogen in Semiconductors.

    CERN Multimedia

    Dietrich, M; Toulemonde, M


    During the last years, the understanding of H and its interaction with dopant atoms in Si, Ge and III-V semiconductors has improved considerably concerning the stability of the formed complexes their structural arrangements, and the implications of this interaction on the electrical properties of the semiconductors " passivation " The perturbed angular correlation technique (PAC) has contributed to the understanding of this phenomena on an atomistic scale using radioactive isotopes provided by ISOLDE. \\\\ \\\\The aim of the proposed experiments is twofold: \\\\ \\\\\\begin{enumerate} \\item The H passivation mechanism of acceptors in GaN and ternary III-V compounds (AlGaAs, GaInP, AlGaN) shall be investigated, using the PAC probe atom $^{111m}$Cd as a 'representative' of group II-B metal acceptors. The problems addressed in these technological important systems are microscopic structure, formation and stability of the hydrogen correlated complexes as function of doping and stoichiometry (i.e. the size of the band gap)...

  19. Controlling the stoichiometry and doping of semiconductor materials (United States)

    Albin, David; Burst, James; Metzger, Wyatt; Duenow, Joel; Farrell, Stuart; Colegrove, Eric


    Methods for treating a semiconductor material are provided. According to an aspect of the invention, the method includes annealing the semiconductor material in the presence of a compound that includes a first element and a second element. The first element provides an overpressure to achieve a desired stoichiometry of the semiconductor material, and the second element provides a dopant to the semiconductor material.

  20. Semiconductor spintronics

    CERN Document Server

    Xia, Jianbai; Chang, Kai


    Semiconductor Spintronics, as an emerging research discipline and an important advanced field in physics, has developed quickly and obtained fruitful results in recent decades. This volume is the first monograph summarizing the physical foundation and the experimental results obtained in this field. With the culmination of the authors' extensive working experiences, this book presents the developing history of semiconductor spintronics, its basic concepts and theories, experimental results, and the prospected future development. This unique book intends to provide a systematic and modern foundation for semiconductor spintronics aimed at researchers, professors, post-doctorates, and graduate students, and to help them master the overall knowledge of spintronics.

  1. Compositional bowing of band energies and their deformation potentials in strained InGaAs ternary alloys: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Khomyakov, Petr A.; Luisier, Mathieu; Schenk, Andreas [Integrated Systems Laboratory, Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich (Switzerland)


    Using first-principles calculations, we show that the conduction and valence band energies and their deformation potentials exhibit a non-negligible compositional bowing in strained ternary semiconductor alloys such as InGaAs. The electronic structure of these compounds has been calculated within the framework of local density approximation and hybrid functional approach for large cubic supercells and special quasi-random structures, which represent two kinds of model structures for random alloys. We find that the predicted bowing effect for the band energy deformation potentials is rather insensitive to the choice of the functional and alloy structural model. The direction of bowing is determined by In cations that give a stronger contribution to the formation of the In{sub x}Ga{sub 1−x}As valence band states with x ≳ 0.5, compared to Ga cations.

  2. Data transmission is faster with ternary coding

    CERN Document Server

    Bruins, T


    Discusses a ternary data transmission system for an effective rate of up to 6 megabits per second over a 1-mile line of ordinary twisted- pair cable. The methods are discussed of implementing a ternary data transmission system. (0 refs).

  3. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Directory of Open Access Journals (Sweden)

    Jean-Marc Joubert


    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  4. Growing high-quality ternary CdMnTe epilayers by molecular beam epitaxy on Si substrates and its mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jyh-Shyang, E-mail: [Department of Physics, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China); Tong, Shih-Chang; Tsai, Yu-Hsuan; Tsai, Wei-jiun [Department of Physics, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China); Yang, Chu-Shou; Chang, Yi-Hsin [Graduate Institute of Electro-Optical Engineering, Tatung University, Taipei 10452, Taiwan (China); Cheng, Yung-Chen [Department of Materials Science, National University of Tainan, Tainan 70005, Taiwan (China); Wu, Chih-Hung [Institute of Nuclear Energy Research, Longtan 32546, Taiwan (China); Yuan, Chi-Tsu; Shen, Ji-Lin [Department of Physics, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China); Center for Nano-Technology, Chung Yuan Christian University, Taoyuan City 32023, Taiwan (China)


    Cd(Mn,Zn)Te-based ternary compound semiconductors with wide band-gaps are important in the detection of radiation and photovoltaic applications. This study characterizes Cd{sub 1-x}Mn{sub x}Te epilayers on Si substrates with various Mn compositions grown by molecular beam epitaxy. The surface smoothness, crystallinity and optical quality all are significantly improved with increasing Mn content. The Cd{sub 0.61}Mn{sub 0.39}Te epilayer with a thickness of only about 500 nm yields a full width at half maximum of the X-ray rocking curve of 165 arcsec. Photoluminescence spectra at 10 K show that the intensity of defect-related emissions is much lower than that of binary CdTe epilayers, reaching zero from the samples with high Mn content, while the integral intensity of the exciton-related emissions is increased by more than two orders of magnitude. Raman scattering spectra reveal that the intensity of the Te–Te related defect vibration modes falls significantly as the Mn content increase, even disappearing altogether in the samples with high Mn content. This work proposes that incorporating Mn atoms during epitaxial growth can promote the decomposition of Te{sub 2} sources, owing to the high sticking coefficient of Mn and the high cohesive energy of the Mn–Te bond, and then reduce the number of Te–Te related stacking fault defects, yielding high-quality CdMnTe epilayers. Our results herein demonstrate that the CdMnTe ternary epilayers are much more promising in terms of material quality than the CdZnTe ternary epilayers. - Highlights: • High-quality ternary CdMnTe were grown on Si substrates by molecular beam epitaxy. • The material qualities were significantly improved with increasing Mn content. • The Te–Te related defects were greatly reduced with increasing Mn content. • We report an enhanced growth of CdTe-based epilayers by the incorporation of Mn atoms.

  5. Synthesis and Characterization of the Ternary Thiobismuthates A9Bi13S24 (A = K, Rb)

    KAUST Repository

    Davaasuren, Bambar


    Ternary alkali metal thiobismuthates ABiS (A = K, Rb) were synthesized by direct combination reactions at 650 °C. The compounds crystallize in the monoclinic space group C2/m (no. 12) with cell parameters a = 30.919(1) Å, b = 4.1008(2) Å, c = 20.9072(9) Å, β = 105.826(3)° for KBiS (1) and a = 31.823(6) Å, b = 4.1177(8) Å, c = 21.086(4) Å, β = 105.62(3)° for RbBiS (2). The crystal structure of 1 contains a 3D [KBiS] polyanionic framework, whereas 2 consists of 2D [RbBiS] polyanionic slabs stacked along [201]. Both 1 and 2 are semiconductors with a band gap of 1.4 and 1.3 eV, respectively, which is supported by an electronic structure calculation. 1 melts congruently at 580 °C, while 2 melts incongruently at 575 °C. 1 and 2 are airstable and insoluble in water and organic solvents.

  6. Position-controlled III-V compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy. (United States)

    Fukui, Takashi; Yoshimura, Masatoshi; Nakai, Eiji; Tomioka, Katsuhiro


    We demonstrate position-controlled III-V semiconductor nanowires (NWs) by using selective-area metal-organic vapor phase epitaxy and their application to solar cells. Efficiency of 4.23% is achieved for InP core-shell NW solar cells. We form a 'flexible NW array' without a substrate, which has the advantage of saving natural resources over conventional thin film photovoltaic devices. Four junction NW solar cells with over 50% efficiency are proposed and discussed.

  7. Thin film reactions on alloy semiconductor substrates

    Energy Technology Data Exchange (ETDEWEB)

    Olson, D.A.


    The interactions between Pt and In{sub .53}Ga{sub .47}As have been studied. In{sub .53}Ga{sub .47}As substrates with 70nm Pt films were encapsulated in SiO{sub 2}, and annealed up to 600{degree}C in flowing forming gas. The composition and morphology of the reaction product phases were studied using x-ray diffraction, Auger depth profiling, and transmission electron microscopy. The reaction kinetics were examined with Rutherford Backscattering. Results show that Pt/In{sub .53}Ga{sub .47}As reacts to form many of the reaction products encountered in the Pt/GaAs and Pt/InP reactions: PtGa, Pt{sub 3}Ga, and PtAs{sub 2}. In addition, a ternary phase, Pt(In:Ga){sub 2}, develops, which is a solid solution between PtIn{sub 2} and PtGa{sub 2}. The amount of Ga in the ternary phase increases with annealing temperature, which causes a decrease in the lattice parameter of the phase. The reaction products show a tendency to form layered structures, especially for higher temperatures and longer annealing times. Unlike the binary case, the PtAs{sub 2}, phase is randomly oriented on the substrate, and is intermingle with a significant amount of Pt(In:Ga){sub 2}. Following Pt/In{sub .53}Ga{sub .47}As reactions, two orientation relationships between the Pt(In:Ga){sub 2} product phase and the substrate were observed, despite the large mismatch with the substrate ({approximately}8%). For many metal/compound semiconductor interactions, the reaction rate is diffusion limited, i.e. exhibits a parabolic dependence on time. An additional result of this study was the development of an In-rich layer beneath the reacted layer. The Auger depth profile showed a substantial increase in the sample at this layer. This is a significant result for the production of ohmic contacts, as the Schottky barrier height in this system lower for higher In concentrations. 216 refs.

  8. First-Principles Study of Electronic Structure, Mechanical, and Thermoelectric Properties of Ternary Palladates CdPd3O4 and TlPd3O4 (United States)

    Khan, Amin; Ali, Zahid; Khan, Imad; Ahmad, Iftikhar


    Ternary palladates CdPd3O4 and TlPd3O4 have been studied theoretically using the generalized gradient approximation (GGA), modified Becke-Johnson, and spin-orbit coupling (GGA-SOC) exchange-correlation functionals in the density functional theory (DFT) framework. From the calculated ground-state properties, it is found that SOC effects are dominant in these palladates. Mechanical properties reveal that both compounds are ductile in nature. The electronic band structures show that CdPd3O4 is metallic, whereas TlPd3O4 is an indirect-bandgap semiconductor with energy gap of 1.1 eV. The optical properties show that TlPd3O4 is a good dielectric material. The dense electronic states, narrow-gap semiconductor nature, and Seebeck coefficient of TlPd3O4 suggest that it could be used as a good thermoelectric material. The magnetic susceptibility calculated by post-DFT treatment confirmed the paramagnetic behavior of these compounds.

  9. The ternary system: Silicon-tantalum-uranium

    Energy Technology Data Exchange (ETDEWEB)

    Rogl, Peter, E-mail: [Institute of Physical Chemistry, University of Vienna, A-1090 Wien, Waehringerstrasse 42 (Austria); Noel, Henri [Laboratoire de Chimie du Solide et Materiaux, UMR-CNRS 6226, Universite de Rennes I, Avenue du General Leclerc, F-35042 Rennes, Cedex (France)


    Phase equilibria in the ternary system Si-Ta-U have been established in an isothermal section at 1000 {sup o}C by optical microscopy, electron probe microanalysis and X-ray diffraction. Two novel ternary compounds were observed and were characterised by X-ray powder Rietveld refinement: stoichiometric {tau}{sub 1}-U{sub 2}Ta{sub 3}Si{sub 4} (U{sub 2}Mo{sub 3}Si{sub 4}-type, P2{sub 1}/c; a = 0.70011(1), b = 0.70046(1), c = 0.68584(1) nm, ss = 109.38(1); R{sub F} = 0.073, X-ray powder Rietveld refinement) and {tau}{sub 2}-U{sub 2-x}Ta{sub 3+x}Si{sub 4} at x {approx} 0.30 (Sc{sub 2}Re{sub 3}Si{sub 4}-type = partially ordered Zr{sub 5}Si{sub 4}-type, P4{sub 1}2{sub 1}2; a = b = 0.69717(3)(1), c = 1.28709(4) nm; R{sub F} = 0.056; X-ray single crystal data). Mutual solubility of U-silicides and Ta-silicides are found to be very small i.e. below about 1 at.%. Due to the equilibrium tie-line Ta{sub 2}Si-U(Ta), no compatibility exists between the U-rich silicides U{sub 3}Si or U{sub 3}Si{sub 2} and tantalum metal. Single crystals obtained from alloys slowly cooled from liquid (2000 {sup o}C), yielded a fully ordered compound U{sub 2}Ta{sub 2}Si{sub 3}C (unique structure type; Pmna, a = 0.68860(1); b = 2.17837(4); c = 0.69707(1) nm; R{sub F2} = 0.048).

  10. Valence band electronic structure of Pd based ternary chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mishra, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Goyal, R.; Awana, V.P.S. [National Physical Laboratory(CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sekhar, B.R., E-mail: [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India)


    Highlights: • VB Photoemission study and DFT calculations on Pd based ternary superconductors are presented. • Nb{sub 2}Pd{sub 0.95}S{sub 5} shows a temperature dependent pseudogap. • VB spectral features of ternary superconductors are correlated to their structural geometry. - Abstract: We present a comparative study of the valence band electronic structure of Pd based ternary chalcogenide superconductors Nb{sub 2}Pd{sub 0.95}S{sub 5}, Ta{sub 2}Pd{sub 0.97}S{sub 6} and Ta{sub 2}Pd{sub 0.97}Te{sub 6} using experimental photoemission spectroscopy and density functional based theoretical calculations. We observe a qualitatively similarity between valence band (VB) spectra of Nb{sub 2}Pd{sub 0.95}S{sub 5} and Ta{sub 2}Pd{sub 0.97}S{sub 6}. Further, we find a pseudogap feature in Nb{sub 2}Pd{sub 0.95}S{sub 5} at low temperature, unlike other two compounds. We have correlated the structural geometry with the differences in VB spectra of these compounds. The different atomic packing in these compounds could vary the strength of inter-orbital hybridization among various atoms which leads to difference in their electronic structure as clearly observed in our DOS calculations.

  11. Semiconductor statistics

    CERN Document Server

    Blakemore, J S


    Semiconductor Statistics presents statistics aimed at complementing existing books on the relationships between carrier densities and transport effects. The book is divided into two parts. Part I provides introductory material on the electron theory of solids, and then discusses carrier statistics for semiconductors in thermal equilibrium. Of course a solid cannot be in true thermodynamic equilibrium if any electrical current is passed; but when currents are reasonably small the distribution function is but little perturbed, and the carrier distribution for such a """"quasi-equilibrium"""" co

  12. Semiconductor electrochemistry

    CERN Document Server

    Memming, Rüdiger


    Providing both an introduction and an up-to-date survey of the entire field, this text captivates the reader with its clear style and inspiring, yet solid presentation. The significantly expanded second edition of this milestone work is supplemented by a completely new chapter on the hot topic of nanoparticles and includes the latest insights into the deposition of dye layers on semiconductor electrodes. In his monograph, the acknowledged expert Professor Memming primarily addresses physical and electrochemists, but materials scientists, physicists, and engineers dealing with semiconductor technology and its applications will also benefit greatly from the contents.

  13. Oxide semiconductors

    CERN Document Server

    Svensson, Bengt G; Jagadish, Chennupati


    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scient

  14. Microstructural characterization and phase transformation of ternary alloys near at Al{sub 3}Ti compound; Caracterizacion microestructural y transformaciones de fase de aleaciones ternareas cercanas al compuesto Al{sub 3}Ti

    Energy Technology Data Exchange (ETDEWEB)

    Angeles Ch, C. [Instituto Nacional de Investigaciones Nucleares. Sintesis y Caracterizacion de Materiales. Carretera Mexico-Toluca Km. 36.5 C.P. 52045, Ocoyoacac, Edo. de Mexico (Mexico)


    This research work is related with the structural characteristic and compositional values of the crystalline phases, which are found in ternary alloys of Ti-Al-Fe and TI-Al-Cu. These types of alloys were obtained using a rapid solidification technique (10{sup 3}-10{sup 4} K/s) and pure elements such as Al, Ti, Fe and Cu (99.99%). These cooling velocities allow the formation of stable phases and small grain sizes (approximately in range of a few micras). The obtained results indicate the presence of Al{sub 3}Ti and others phases of L1{sub 2} type. These phases are commonly found in a matrix rich in A1. The microalloyed elements (Cu and Fe) substitute the aluminum in both kinds of phases. Alloys with low content of Cu show transition states from the tetragonal structure DO{sub 22} to the cubic phases L1{sub 2}. The structural characteristics of the alloys are related with some microhardness measurement. The results show that the presence of the L1{sub 2} phase tends to increase to hardness depending of the content of this phase.

  15. Crystallographic study of the intermediate compounds SbZn, Sb{sub 3}Zn{sub 4} and Sb{sub 2}Zn{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Adjadj, Fouzia [Laboratoire des etudes Physico-chimiques des Materiaux, Departement de Physique, Faculte des Sciences, Universite de Batna, 05000 Batna (Algeria); Belbacha, El-djemai [Laboratoire des etudes Physico-chimiques des Materiaux, Departement de Physique, Faculte des Sciences, Universite de Batna, 05000 Batna (Algeria)]. E-mail:; Bouharkat, Malek [Laboratoire des etudes Physico-chimiques des Materiaux, Departement de Physique, Faculte des Sciences, Universite de Batna, 05000 Batna (Algeria); Kerboub, Abdellah [Laboratoire des etudes Physico-chimiques des Materiaux, Departement de Physique, Faculte des Sciences, Universite de Batna, 05000 Batna (Algeria)


    The processes of development of semiconductor ceramics made up of bismuth, antimony and zinc often require during their preparation to know the nature of the involved phases. For that, it is always essential to refer to the diagrams of balance between phases of the binary systems or ternary. We presented in this work the study by X-rays diffraction relating to the intermediate compounds SbZn, Sb{sub 3}Zn{sub 4} and Sb{sub 2}Zn{sub 3}. The analysis by X-rays is often useful to give supplement the results of the other experimental methods.

  16. Thermodynamic optimization and phase equilibria in the ternary system Ni–Sn–Zn

    Energy Technology Data Exchange (ETDEWEB)

    Gandova, V., E-mail: [University of Food Technologies, Inorganic and Physical Chemistry Department, 26 Mariza avenue, 4000 Plovdiv (Bulgaria); Vassilev, G.P. [University of Plovdiv, Faculty of Chemistry, 24 Tsar Asen str., 4000 Plovdiv (Bulgaria)


    Highlights: • Thermodynamic description of the Ni–Sn–Zn system was obtained. • Six isothermal sections were calculated. • Third constituents solubility in binary phases’ extensions were taken into account. • Good correlation between calculated and experimental data was obtained. - Abstract: Recent experimental results obtained by differential scanning calorimetry, Scanning Electron Microscopy and other methods were used to develop a thermodynamic description of the ternary system Ni–Sn–Zn. Four ternary non-stoichiometric compounds (T1–T4), mentioned in the literature, were described using three-sublattice models. Previously known optimizations of the binary subsystems were remodeled to comply with the new experimental data. The solubility of the respective ternary components, i.e., Zn in Ni–Sn phases and Sn in Ni–Zn phases, were taken into account and optimized ternary parameters were derived. Six isothermal sections were calculated using Thermo-Calc software.

  17. Thermodynamic description of the Al-Cu-Yb ternary system supported by first-principles calculations

    Directory of Open Access Journals (Sweden)

    Huang G.


    Full Text Available Phase relationships of the ternary Al-Cu-Yb system have been assessed using a combination of CALPHAD method and first principles calculations. A self-consistent thermodynamic parameter was established based on the experimental and theoretical information. Most of the binary intermetallic phases, except Al3Yb, Al2Yb, Cu2Yb and Cu5Yb, were assumed to be zero solubility in the ternary system. Based on the experimental data, eight ternary intermetallic compounds were taken into consideration in this system. Among them, three were treated as line compounds with large homogeneity ranges for Al and Cu. The others were treated as stoichiometric compounds. The calculated phase diagrams were in agreement with available experimental and theoretical data.

  18. Phase equilibria in the La–Mg–Ge system at 500 °C and crystal structure of the new ternary compounds La{sub 11}Mg{sub 2}Ge{sub 7} and LaMg{sub 3−x}Ge{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    De Negri, S., E-mail: [Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale, via Dodecaneso 31, 16146 Genova (Italy); Solokha, P.; Skrobańska, M. [Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale, via Dodecaneso 31, 16146 Genova (Italy); Proserpio, D.M. [Università degli Studi di Milano, Dipartimento di Chimica, Via Golgi 19, 20133 Milano (Italy); Samara Center for Theoretical Materials Science (SCTMS), Samara State University, Samara 443011 (Russian Federation); Saccone, A. [Università degli Studi di Genova, Dipartimento di Chimica e Chimica Industriale, via Dodecaneso 31, 16146 Genova (Italy)


    The whole 500 °C isothermal section of the La–Mg–Ge ternary system was constructed. The existence and crystal structure of three ternary compounds were confirmed: La{sub 2+x}Mg{sub 1−x}Ge{sub 2} (τ{sub 2}, P4/mbm, tP10–Mo{sub 2}FeB{sub 2}, 0≤x≤0.25), La{sub 4}Mg{sub 5}Ge{sub 6} (τ{sub 3}, Cmc2{sub 1}, oS60–Gd{sub 4}Zn{sub 5}Ge{sub 6}) and La{sub 4}Mg{sub 7}Ge{sub 6} (τ{sub 4}, C2/m, mS34, own structure type). Five novel compounds were identified and structurally characterized: La{sub 11}Mg{sub 2}Ge{sub 7} (τ{sub 1}, P4{sub 2}/ncm, tP88-8, own structure type, a=1.21338(5), c=1.57802(6) nm), LaMg{sub 3−x}Ge{sub 2} (τ{sub 5}, P3{sup ¯}1c, hP34-0.44, own structure type, x=0.407(5), a=0.78408(4), c=1.45257(7) nm), La{sub 6}Mg{sub 23}Ge (τ{sub 6}, Fm3{sup ¯}m, cF120–Zr{sub 6}Zn{sub 23}Si, a=1.46694(6) nm), La{sub 4}MgGe{sub 10−x} (τ{sub 7}, x=0.37(1), C2/m, mS60-1.46, own structure type, a=0.88403(8), b=0.86756(8), c=1.7709(2) nm, β=97.16°(1) and La{sub 2}MgGe{sub 6} (τ{sub 8}, Cmce, oS72–Ce{sub 2}(Ga{sub 0.1}Ge{sub 0.9}){sub 7}, a=0.8989(2), b=0.8517(2), c=2.1064(3) nm). Disordering phenomena were revealed in several La–Mg–Ge phases in terms of partially occupied sites. The crystal structures of La{sub 11}Mg{sub 2}Ge{sub 7} and LaMg{sub 3−x}Ge{sub 2} are discussed in details. The latter is a √3a×√3a×2c superstructure of the LaLi{sub 3}Sb{sub 2} structure type; the symmetry reduction scheme is shown in the Bärnighausen formalism terms. - Graphical abstract: La–Mg–Ge isothermal section at 500 °C and group–subgroup relation between the LaLi{sub 3}Sb{sub 2} (parent type) and LaMg{sub 3−x}Ge{sub 2} (derivative) structures. - Highlights: • Novel La−Mg−Ge compounds structure determination from X-ray single crystal data. • Disordering phenomena as common features of the studied germanides. • Bärnighausen formalism as a useful tool for accurate structure determination. • Full isothermal section of the La

  19. Some new ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov


    Full Text Available Let an $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$ and minimum Hamming distance $d$ over $GF(q$. One of the most important problems in coding theory is to construct codes with optimal minimum distances. In this paper 22 new ternary linear codes are presented. Two of them are optimal. All new codes improve the respective lower bounds in [11].

  20. Effects of hydrostatic pressure on the thermoelectric properties of the ɛ-polytype of InSe, GaSe, and InGaSe2 semiconductor compounds: an ab initio study (United States)

    Elsayed, H.; Olguín, D.; Cantarero, A.


    This work presents an ab initio study of the effects of hydrostatic pressure on the Seebeck coefficients and thermoelectric power factors of the ɛ-polytype of InSe, GaSe, and InGaSe2 semiconductor compounds. Our study is performed using the semi-classical Boltzmann theory and the rigid band approach. The electronic band structures of these materials are calculated using the full-potential linearized augmented plane-wave method. The obtained thermoelectric properties are discussed in terms of the results of the electronic structure calculations. As we will show, our calculated Seebeck coefficient values indicate that these materials are good alternatives to other well-studied thermoelectric systems.

  1. Nearly Ternary Quadratic Higher Derivations on Non-Archimedean Ternary Banach Algebras: A Fixed Point Approach

    Directory of Open Access Journals (Sweden)

    M. Eshaghi Gordji


    Full Text Available We investigate the stability and superstability of ternary quadratic higher derivations in non-Archimedean ternary algebras by using a version of fixed point theorem via quadratic functional equation.

  2. Ultrafast spectroscopy of semiconductors and semiconductor nanostructures

    CERN Document Server

    Shah, Jagdeep


    Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures Ultrafast spectroscopy of semiconductors is currently one of the most exciting areas of research in condensed-matter physics Remarkable recent progress in the generation of tunable femtosecond pulses has allowed direct investigation of the most fundamental dynamical processes in semiconductors This monograph presents some of the most striking recent advances in the field of ultrafast spectroscopy of semiconductors and their nanostructures After a brief overview of the basic concepts and of the recent advances in the techniques of ultrashort pulse generation and ultrafast spectroscopy, it discusses the physics of relaxation, tunneling and transport dynamics in semiconductors and semiconductor nanostructures following excitation by femtosecond laser pulses

  3. Cohesion energy calculations for ternary ionic novel crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez P, G.; Cabrera, E. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico D.F. (Mexico); Mijangos, R.R. [Centro de Investigacion en Fisica, Universidad de Sonora, A.P. 5-88, 83190 Hermosillo, Sonora (Mexico); Valdez, E. [Escuela Nacional de Estudios Profesionales Acatlan, Universidad Nacional Autonoma de Mexico, Santa Cruz Acatlan, Naucalpan (Mexico); Duarte, C. [Departamento de Geologia, Universidad de Sonora, 83000 Hermosillo, Sonora (Mexico)


    The present work calculates the value of the link energy of a crystalline ternary structure newly formed by alkali halides. The ternary structure prepared with different concentrations of KCl{sub x}KBrRbCl{sub 2} maintains a very good miscibility and stability. The calculation is based on the use of a generalization of the Vegard law (which generally is valid for binary compounds) for calculating the values of the lattice constant and the repulsive m exponent. The value of the lattice parameter given by X-ray diffractometry agrees with the close approximation of the calculated value of the method used. It also compares the value of energy cohesion obtained by the Born expression with more complex approximations. (Author)

  4. Optimisasi Bubuk Slag Nikel Dengan Sistem Ternary C-A-S


    Ashad, Hanafi; Nasution, Amrinsyah; Imran, Iswandi; Soegiri, Saptahari


    . This papers study concerning optimization of nickel slag powder as substitution material to partial cement by C-A-S (CaO-Al2O3-SiO2) ternary system. Optimization conducted to determine procentage of nickel slag powder in the consuming calcium hydroxide compound as hydration product of tricalcium silicate (C3S) and dicalcium silicate (C2S) cement with water so that form secondary of calcium silicate hydrate (CSH) compound. By the phase diagram C-A-S ternary system, procentage of optimum nick...

  5. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications. (United States)

    Regulacio, Michelle D; Han, Ming-Yong


    are the multinary chalcogenide semiconductors (MCSs), which include the ternary I-III-VI2 semiconductors (e.g., AgGaS2, CuInS2, and CuInSe2) and the quaternary I2-II-IV-VI4 semiconductors (e.g., Cu2ZnGeS4, Cu2ZnSnS4, and Ag2ZnSnS4). These inorganic compounds consist of environmentally benign elemental components, exhibit excellent light-harvesting properties, and possess band gap energies that are well-suited for solar photon absorption. Moreover, the band structures of these materials can be conveniently modified through alloying to boost their ability to harvest visible photons. In this Account, we provide a summary of recent research on the use of ternary I-III-VI2 and quaternary I2-II-IV-VI4 semiconductor nanostructures for light-induced photocatalytic applications, with focus on hydrogen production and organic dye degradation. We include a review of the solution-based methods that have been employed to prepare multinary chalcogenide semiconductor nanostructures of varying compositions, sizes, shapes, and crystal structures, which are factors that are known to have significant influence on the photocatalytic activity of semiconductor photocatalysts. The enhancement of photocatalytic performance through creation of hybrid nanoscale architectures is also presented. Lastly, views on the current challenges and future directions are discussed in the concluding section.

  6. Structural characterization of the high-temperature modification of the Cu{sub 2}ZnGeTe{sub 4} quaternary semiconductor compound

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.; Marcano, G.; Power, C.; Rincon, C. [Centro de Estudios de Semiconductores, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of); Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of); Lopez-Rivera, S.A. [Grupo de Fisica Aplicada, Departamento de Fisica, Facultad de Ciencias, Universidad de Los Andes, Merida, 5101 (Venezuela, Bolivarian Republic of)


    A combined study of the X-ray powder diffraction, differential thermal analysis, optical absorption, and Raman spectroscopy of the high-temperature modification of Cu{sub 2}ZnGeTe{sub 4} quaternary semiconductor, obtained by fast quenching from 820 K to ice water temperature, has been done. It has been found that this phase crystallizes in a tetragonal kesterite-type structure. From the analysis of the absorption coefficient spectra, the band gap energy of this material at room temperature has been found to be 1.49 eV. An optical transition from defect acceptor states to the conduction band is also observed below the fundamental absorption edge. Three strongest Raman lines observed at 116, 119, and 139 cm{sup -1} have been assigned to the A-symmetry modes. Also, lines at 81, 89, 97, and 263 cm{sup -1} tentatively ascribed as B or E-symmetry modes have been detected from the spectrum. The presence in this high-temperature modification of ZnTe and Cu{sub 2}GeTe{sub 3} secondary phases has been detected by both XRD and Raman spectroscopy. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Enhanced Light Absorption in Fluorinated Ternary Small-Molecule Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Eastham, Nicholas D. [Department; Dudnik, Alexander S. [Department; Harutyunyan, Boris [Department; Aldrich, Thomas J. [Department; Leonardi, Matthew J. [Department; Manley, Eric F. [Department; Chemical; Butler, Melanie R. [Department; Harschneck, Tobias [Department; Ratner, Mark A. [Department; Chen, Lin X. [Department; Chemical; Bedzyk, Michael J. [Department; Department; Melkonyan, Ferdinand S. [Department; Facchetti, Antonio [Department; Chang, Robert P. H. [Department; Marks, Tobin J. [Department; Department


    Using small-molecule donor (SMD) semiconductors in organic photovoltaics (OPVs) has historically afforded lower power conversion efficiencies (PCEs) than their polymeric counterparts. The PCE difference is attributed to shorter conjugated backbones, resulting in reduced intermolecular interactions. Here, a new pair of SMDs is synthesized based on the diketopyrrolopyrrole-benzodithiophene-diketopyrrolopyrrole (BDT-DPP2) skeleton but having fluorinated and fluorinefree aromatic side-chain substituents. Ternary OPVs having varied ratios of the two SMDs with PC61BM as the acceptor exhibit tunable open-circuit voltages (Vocs) between 0.833 and 0.944 V due to a fluorination-induced shift in energy levels and the electronic “alloy” formed from the miscibility of the two SMDs. A 15% increase in PCE is observed at the optimal ternary SMD ratio, with the short-circuit current density (Jsc) significantly increased to 9.18 mA/cm2. The origin of Jsc enhancement is analyzed via charge generation, transport, and diffuse reflectance measurements, and is attributed to increased optical absorption arising from a maximum in film crystallinity at this SMD ratio, observed by grazing incidence wide-angle X-ray scattering.

  8. On Some Ternary LCD Codes


    Darkunde, Nitin S.; Patil, Arunkumar R.


    The main aim of this paper is to study $LCD$ codes. Linear code with complementary dual($LCD$) are those codes which have their intersection with their dual code as $\\{0\\}$. In this paper we will give rather alternative proof of Massey's theorem\\cite{8}, which is one of the most important characterization of $LCD$ codes. Let $LCD[n,k]_3$ denote the maximum of possible values of $d$ among $[n,k,d]$ ternary $LCD$ codes. In \\cite{4}, authors have given upper bound on $LCD[n,k]_2$ and extended th...

  9. First-principle study of the structural, electronic, and optical properties of cubic InN{sub x}P{sub 1-x} ternary alloys under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hattabi, I. [Ibn Khaldoun Univ. de Tiaret (Algeria). Lab. Synthese et Catalyse; Abdiche, A.; Riane, R. [Sidi-bel-Abbes Univ. (Algeria). Applied Materials Lab.; Moussa, R. [Sidi-bel-Abbes Univ. (Algeria). Physic Dept.; Hadji, K. [Ibn Khaldoun Univ. de Tiaret (Algeria). Science and Technology Dept.; Soyalp, F. [Yuezuencue Yil Univ., Van (Turkey). Dept. of Physics; Varshney, Dinesh [Devi Ahilya Univ., Indore (India). Materials Science Lab.; Syrotyuk, S.V. [National Univ. ' Lviv Polytechnic' , Lviv (Ukraine). Semiconductor Electronics Dept.; Khenata, R. [Mascara Univ. (Algeria). Lab. de Physique Quantique et de Modelisation Mathematique (LPQ3M)


    In this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InN{sub x}P{sub 1-x} in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange-correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InN{sub x}P{sub 1-x} compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P=0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P≥7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.

  10. Semiconductor lasers and herterojunction leds

    CERN Document Server

    Kressel, Henry


    Semiconductor Lasers and Heterojunction LEDs presents an introduction to the subject of semiconductor lasers and heterojunction LEDs. The book reviews relevant basic solid-state and electromagnetic principles; the relevant concepts in solid state physics; and the p-n junctions and heterojunctions. The text also describes stimulated emission and gain; the relevant concepts in electromagnetic field theory; and the modes in laser structures. The relation between electrical and optical properties of laser diodes; epitaxial technology; binary III-V compounds; and diode fabrication are also consider

  11. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)


    pseudopotential to ternary metallic glasses involves the assumption of pseudoions with average properties, which are assumed to replace three types of ions in the ternary systems, and a gas of free electrons is assumed to perme- ate through them. The electron–pseudoion is accounted by the pseudopotential, and the ...

  12. Ternary rhythm and the lapse constraint

    NARCIS (Netherlands)

    Elenbaas, N.; Kager, R.W.J.


    Ternary rhythmic systems differ from binary systems in stressing every third syllable in a word, rather than every second. Ternary rhythm is well-established for only a small group of languages, including Chugach Alutiiq, Cayuvava, and Estonian, and possibly Winnebago. Nevertheless the stress

  13. High-T C fully compensated ferrimagnetic semiconductors as spin-filter materials: the case of CrVXAl (X = Ti, Zr, Hf) Heusler compounds. (United States)

    Galanakis, I; Özdoğan, K; Şaşıoglu, E


    We extend our recent work on spin-filter materials (Galanakis et al 2013 Appl. Phys. Lett.103 142404) to the case of CrVXAl (X = Ti, Zr, Hf) compounds, for which, using ab initio electronic structure calculations, we show that p-d hybridization leads to the formation of a fully compensated ferrimagnetic semiconducting state with moderate exchange splitting. The magnetism is of covalent-type and the very strong antiferromagnetic Cr-V exchange interactions lead to extremely high Curie temperature, TC, values. Furthermore, all three compounds are thermodynamically and magnetically stable. The combination of very high TC values with a zero total net magnetization makes them promising materials for spintronics applications.

  14. Magnetic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bihler, Christoph


    In this thesis we investigated in detail the properties of Ga{sub 1-x}Mn{sub x}As, Ga{sub 1-x}Mn{sub x}P, and Ga{sub 1-x}Mn{sub x}N dilute magnetic semiconductor thin films with a focus on the magnetic anisotropy and the changes of their properties upon hydrogenation. We applied two complementary spectroscopic techniques to address the position of H in magnetic semiconductors: (i) Electron paramagnetic resonance, which provides direct information on the symmetry of the crystal field of the Mn{sup 2+} atoms and (ii) x-ray absorption fine structure analysis which allows to probe the local crystallographic neighborhood of the absorbing Mn atom via analysing the fine structure at the Mn K absorption edge. Finally, we discussed the obstacles that have to be overcome to achieve Curie temperatures above the current maximum in Ga{sub 1-x}Mn{sub x}As of 185 K. Here, we outlined in detail the generic problem of the formation of precipitates at the example of Ge:MN. (orig.)

  15. Power semiconductors

    CERN Document Server

    Kubát, M


    The book contains a summary of our knowledge of power semiconductor structures. It presents first a short historic introduction (Chap. I) as well as a brief selection of facts from solid state physics, in particular those related to power semiconductors (Chap. 2). The book deals with diode structures in Chap. 3. In addition to fundamental facts in pn-junction theory, the book covers mainly the important processes of power structures. It describes the emitter efficiency and function of microleaks (shunts). the p +p and n + n junctions, and in particular the recent theory of the pin, pvn and p1tn junctions, whose role appears to be decisive for the forward mode not only of diode structures but also of more complex ones. For power diode structures the reverse mode is the decisive factor in pn-junction breakdown theory. The presentation given here uses engineering features (the multiplication factor M and the experimentally detected laws for the volume and surface of crystals), which condenses the presentation an...

  16. High-Efficient Circuits for Ternary Addition

    Directory of Open Access Journals (Sweden)

    Reza Faghih Mirzaee


    Full Text Available New ternary adders, which are fundamental components of ternary addition, are presented in this paper. They are on the basis of a logic style which mostly generates binary signals. Therefore, static power dissipation reaches its minimum extent. Extensive different analyses are carried out to examine how efficient the new designs are. For instance, the ternary ripple adder constructed by the proposed ternary half and full adders consumes 2.33 μW less power than the one implemented by the previous adder cells. It is almost twice faster as well. Due to their unique superior characteristics for ternary circuitry, carbon nanotube field-effect transistors are used to form the novel circuits, which are entirely suitable for practical applications.

  17. Ab initio calculations on the structural, mechanical, electronic, dynamic, and optical properties of semiconductor half-Heusler compound ZrPdSn

    Energy Technology Data Exchange (ETDEWEB)

    Ciftci, Yasemin Oe. [Gazi Univ., Ankara (Turkey). Dept. of Physics; Coban, Cansu [Balikesir Univ. (Turkey). Dept. of Physics


    The structural, mechanical, electronic, dynamic, and optical properties of the ZrPdSn compound crystallising into the MgAgAs structure are investigated by the ab initio calculations based on the density functional theory. The lattice constant, bulk modulus, and first derivative of bulk modulus were obtained by fitting the calculated total energy-atomic volume results to the Murnaghan equation of state. These results were compared to the previous data. The band structure and corresponding density of states (DOS) were also calculated and discussed. The elastic properties were calculated by using the stress-strain method, which shows that the MgAgAs phase of this compound is mechanically stable. The presented phonon dispersion curves and one-phonon DOS confirms that this compound is dynamically stable. In addition, the heat capacity, entropy, and free energy of ZrPdSn were calculated by using the phonon frequencies. Finally, the optical properties, such as dielectric function, reflectivity function, extinction coefficient, refractive index, and energy loss spectrum, were obtained under different pressures.

  18. Semiconductor Laser Measurements Laboratory (United States)

    Federal Laboratory Consortium — The Semiconductor Laser Measurements Laboratory is equipped to investigate and characterize the lasing properties of semiconductor diode lasers. Lasing features such...

  19. Phase stabilities of pyrite-related MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te): A systematic DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Bachhuber, Frederik [University of Regensburg, Institute of Inorganic Chemistry, Universitätsstr. 31, 93040 Regensburg (Germany); School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Krach, Alexander; Furtner, Andrea [University of Regensburg, Institute of Inorganic Chemistry, Universitätsstr. 31, 93040 Regensburg (Germany); Söhnel, Tilo [School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland (New Zealand); Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Auckland (New Zealand); Peter, Philipp; Rothballer, Jan [University of Regensburg, Institute of Inorganic Chemistry, Universitätsstr. 31, 93040 Regensburg (Germany); Weihrich, Richard, E-mail: [University of Regensburg, Institute of Inorganic Chemistry, Universitätsstr. 31, 93040 Regensburg (Germany)


    Pyrite-type and related systems appear for a wide range of binary and ternary combinations of transition metals and main group elements that form Zintl type dumbbell anion units. Those representatives with 20 valence electrons exhibit an extraordinary structural flexibility and interesting properties as low-gap semiconductors or thermoelectric and electrode materials. This work is devoted to the systematic exploration of novel compounds within the class of MTCh compounds (M=Ni, Pd, Pt; T=Si, Ge, Sn, Pb; Ch=S, Se, Te) by means of density functional calculations. Their preferred structures are predicted from an extended scheme of colored pyrites and marcasites. To determine their stabilities, competing binary MT{sub 2} and MCh{sub 2} boundary phases are taken into account as well as ternary M{sub 3}T{sub 2}Ch{sub 2} and M{sub 2}T{sub 3}Ch{sub 3} systems. Recently established stability diagrams are presented to account for MTCh ordering phenomena with a focus on a not-yet-reported ordering variant of the NiAs{sub 2} type. Due to the good agreement with experimental data available for several PtTCh systems, the predictions for the residual systems are considered sufficiently accurate. - Graphical abstract: Compositional and structural stability of MTCh compounds is investigated from first principle calculations. A conceptional approach is presented to study and predict novel stable and metastable compounds and structures of low gap semiconductors with TCh dumbbell units that are isoelectronic and structurally related to pyrite (FeS{sub 2}). - Highlights: • Study of compositional stability of MTCh vs. M{sub 3}T{sub 2}Ch{sub 2} and M{sub 2}T{sub 3}Ch{sub 3} compounds. • Study of structural stability of known and novel MTCh compounds. • Prediction of novel stable and metastable structures and compounds isoelectronic to pyrite, FeS{sub 2}.

  20. Raman spectra of Cu{sub 2}B{sup II}C{sup IV}X{sub 4}{sup VI} magnetic quaternary semiconductor compounds with tetragonal stannite type structure

    Energy Technology Data Exchange (ETDEWEB)

    Rincón, C., E-mail:; Quintero, M.; Power, Ch.; Moreno, E.; Quintero, E.; Morocoima, M. [Centro de Estudios de Semiconductores, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida (Venezuela, Bolivarian Republic of); Henao, J. A.; Macías, M. A. [Grupo de Investigación en Química Estructural, Facultad de Ciencias, Escuela de Química, Universidad Industrial de Santander, Apartado Aéreo 678, Bucaramanga (Colombia)


    A comparative study of the Raman spectra of Cu{sub 2}B{sup II}C{sup IV}S{sub 4}{sup VI} and Cu{sub 2}B{sup II}C{sup IV}Se{sub 4}{sup VI}(where B = Mn or Fe) magnetic quaternary semiconductor compounds with stannite-type structure (I4{sup ¯}2m) has been done. Most of the fourteen Raman lines expected for these materials were observed in the spectra. The two strongest lines observed have been assigned to the IR inactive A{sub 1}{sup 1} and A{sub 1}{sup 2} stannite modes that originated from the motion of the S or Se anion around the Cu and C{sup IV} cations remaining at rest. The shift in the frequency of these two lines of about 150 cm{sup −1} to lower energies observed in Cu{sub 2}B{sup II}C{sup IV}Se{sub 4}{sup VI} compounds as compared to those in Cu{sub 2}B{sup II}C{sup IV}S{sub 4}{sup VI} ones, can then be explained as due to the anion mass effect. Based on the fact that values of these frequencies depend mainly on anion mass and bond-stretching forces between nearest-neighbor atoms, the vibrational frequencies v{sup ¯}(A{sub 1}{sup 2}) and v{sup ¯}(A{sub 1}{sup 2}) of both modes for several Cu{sub 2}B{sup II}C{sup IV}X{sub 4}{sup VI} stannite compounds (where X = S, Se, or Te) very close to the experimental data reported for these materials were calculated from a simple model that relates these stretching forces to the anion-cation bond-distances.

  1. Mesoscale inhomogeneities in an aqueous ternary system (United States)

    Subramanian, Deepa; Hayward, Stephen; Altabet, Elia; Collings, Peter; Anisimov, Mikhail


    Aqueous solutions of certain low-molecular-weight organic compounds, such as alcohols, amines, or ethers, which are considered macroscopically homogeneous, show the presence of mysterious mesoscale inhomogeneities, order of a hundred nm in size. We have performed static and dynamic light scattering experiments in an aqueous ternary system consisting of tertiary butyl alcohol and propylene oxide. Tertiary butyl alcohol is completely soluble in water and in propylene oxide, and forms strong hydrogen bonds with water molecules. Based on results of the study, we hypothesize that the mesoscale inhomogeneities are akin to a micro phase separation, resulting from a competition between water molecules and propylene oxide molecules, wanting to be adjacent to amphiphilic tertiary butyl alcohol molecules. Coupling between two competing order parameters, super-lattice binary-alloy-like (``antiferromagnetic'' type) and demixing (``ferromagnetic'' type) may explain the formation of these inhomogeneities. Long-term stability investigation of this supramolecular structure has revealed that these inhomogeneities are exceptionally long-lived non-equilibrium structures that persist for weeks or even months.

  2. First-principle studies of the ternary palladates CaPd3O4 and ...

    Indian Academy of Sciences (India)

    Abstract. Ternary palladates CaPd 3 O 4 and SrPd 3 O 4 have been studied theoretically using density functional theory approach. The calculated structural properties are consistent with the experimental findings. Mechanical properties show that these compounds are elastically stable, anisotropic and ductile in nature.

  3. Fac–mer equilibria of coordinated iminodiacetate (ida ) in ternary Cu ...

    Indian Academy of Sciences (India)


    Keywords. Fac–mer equilibria; CuII-iminodiacetate-imidazole/benzimidazole ternary complexes; stability constants. 1. Introduction. Mixed ligand complexes of transition metal ions with amino acids, peptides or their derivatives or analogues, and heterocyclic N-bases can serve as model compounds of bioinorganic interests ...

  4. Single Dirac Cone Topological Surface State and Unusual Thermoelectric Property of Compounds from a New Topological Insulator Family

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y


    Angle resolved photoemission spectroscopy (ARPES) study on TlBiTe2 and TlBiSe2 from a Thallium-based III-V-VI2 ternary chalcogenides family revealed a single surface Dirac cone at the center of the Brillouin zone for both compounds. For TlBiSe{sub 2}, the large bulk gap ({approx} 200meV) makes it a topological insulator with better mechanical properties than the previous binary 3D topological insualtor family. For TlBiTe{sub 2}, the observed negative bulk gap indicates it as a semi-metal, rather than a narrow gap semi-conductor as conventionally believed; this semi-metality naturally explains its mysteriously small thermoelectric figure of merit comparing to other compounds in the family. Finally, the unique band structures of TlBiTe{sub 2} also suggests it as a candidate for topological superconductors.

  5. Performance Estimation for Lowpass Ternary Filters

    Directory of Open Access Journals (Sweden)

    Brenton Steele


    Full Text Available Ternary filters have tap values limited to −1, 0, or +1. This restriction in tap values greatly simplifies the multipliers required by the filter, making ternary filters very well suited to hardware implementations. Because they incorporate coarse quantisation, their performance is typically limited by tap quantisation error. This paper derives formulae for estimating the achievable performance of lowpass ternary filters, thereby allowing the number of computationally intensive design iterations to be reduced. Motivated by practical communications systems requirements, the performance measure which is used is the worst-case stopband attenuation.

  6. Molecular semiconductors photoelectrical properties and solar cells

    CERN Document Server

    Rees, Ch


    During the past thirty years considerable efforts have been made to design the synthesis and the study of molecular semiconductors. Molecular semiconductors - and more generally molecular materials - involve interactions between individual subunits which can be separately synthesized. Organic and metallo-organic derivatives are the basis of most of the molecular materials. A survey of the literature on molecular semiconductors leaves one rather confused. It does seem to be very difficult to correlate the molecular structure of these semiconductors with their experimental electrical properties. For inorganic materials a simple definition delimits a fairly homogeneous family. If an inorganic material has a conductivity intermediate between that of an 12 1 1 3 1 1 insulator « 10- n- cm- ) and that of a metal (> 10 n- cm- ), then it is a semiconductor and will exhibit the characteristic properties of this family, such as junction formation, photoconductivity, and the photovoltaic effect. For molecular compounds,...

  7. Thermoelectric properties of thin film and superlattice structure of IV-VI and V-VI compound semiconductors; Thermoelektrische Eigenschaften duenner Schichten und Uebergitterstrukturen von IV-VI- und V-VI-Verbundhalbleitern

    Energy Technology Data Exchange (ETDEWEB)

    Blumers, Mathias


    The basic material property governing the efficiency of thermoelectric applications is the thermoelectric figure of merit Z=S{sup 2}.{sigma}/k, where S is the Seebeck-coefficient, {sigma} is the electrical conductivity and k the thermal conductivity. A promising concept of increasing Z by one and two dimensional quantum well superlattices (QW-SL) was introduced in the early 1990s in terms of theoretical predictions. The realization of such low dimensional systems is done by use of semiconductor compounds with different energy gaps. The ambition of the Nitherma project was to investigate the thermoelectric properties of superlattices and Multi-Quantum-Well-structures (MQW) made of Pb{sub 1-x}Sr{sub x}Te and Bi{sub 2}(Se{sub x}Te{sub 1-x}){sub 3}, respectively. Therefore SL- and MQW-structures of this materials were grown and Z was determined by measuring of S, {sigma} and {kappa} parallel to the layer planes. Aim of this thesis is the interpretation of the transport measurements (S,{sigma},{kappa}) of low dimensional structures and the improvement of preparation and measurement techniques. The influence of low dimensionality on the thermal conductivity in SL- and MQW-structures was investigated by measurements on structures with different layer thicknesses. In addition, measurements of the Seebeck-coefficient were performed, also to verify the results of the participating groups.

  8. Diffusion in semiconductors, other than silicon compilation

    CERN Document Server

    Fisher, David J


    Review from Book News Inc.: Summary reports of 337 experiments provide information on the diffusion of matter and heat in 31 materials used in semiconductors. Most of the compounds are based on cadmium, gallium, indium, lead, and zinc. Mercury telluride is included however, as is silicon carbide for some reason. Each article is thoroughly referenced to the authors and publication number, date, and page. The arrangement is alphabetical by semiconductor material. Indexes cover authors, hosts, and diffusants.

  9. Experimental investigation of phase equilibria in the Ni-Nb-V ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingjun; Yang, Shuiyuan; Wang, Cuiping [Xiamen Univ. (China). Dept. of Materials Science and Engineering; Xiamen Univ. (China). Fujian Provincial Key Lab. of Materials Genome; Zhang, Xianjie; Jiang, Hengxing; Shi, Zhan [Xiamen Univ. (China). Dept. of Materials Science and Engineering


    The phase equilibria of the Ni-Nb-V ternary system at 1000 C and 1200 C were established using electron probe microanalysis, X-ray diffraction and differential scanning calorimetry. The results of the investigation revealed that: (1) The Nb solubility in (Ni) and σ{sup '} phases was less than 10 at.%; (2) A ternary compound τ (NiNbV) was confirmed, in which V had a large solubility; (3) A new liquid region was evident at 1200 C, but was absent at 1000 C; (4) The lattice constants of Ni{sub 3}Nb and Ni{sub 6}Nb{sub 7} phase decreased with increase in V content in the Ni{sub 3}Nb and Ni{sub 6}Nb{sub 7}. The phase equilibria of the Ni-Nb-V ternary system will contribute to its thermodynamic assessment.

  10. Ternary networks reliability and Monte Carlo

    CERN Document Server

    Gertsbakh, Ilya; Vaisman, Radislav


    Ternary means “based on three”. This book deals with reliability investigations of  networks whose components subject to failures can be in three states –up, down and middle (mid), contrary to traditionally considered networks  having only binary (up/down) components. Extending binary case to ternary allows to consider more realistic and flexible models for communication, flow and supply networks.

  11. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.


    Ternary metal nitrides ( of general formula MxM'N-y(z)) attract considerable interest because of their special mechanical, electrical, magnetic, and catalytic properties. Usually they are prepared by ammonolysis of ternary oxides (MxM'O-y(m)) at elevated temperatures. We show that ternary...... nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...... nitride and the transition metal) to the ternary nitride was followed by Mossbauer spectroscopy (for Fe3Mo3N) and by X-ray powder diffraction ( for both Fe3Mo3N and Co3Mo3N). Usually, the preparation of a given ternary nitride by ammonolysis of a ternary oxide is dependent on the availability of an oxide...

  12. Semiconductor radiation detector (United States)

    Bell, Zane W.; Burger, Arnold


    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  13. Half-metallic ferromagnetic properties of Cr- and V-doped AlP semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Boutaleb, M., E-mail: [Modelling and Simulation in Materials Science Laboratory, Physics Department, Djillali Liabes University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Doumi, B. [Faculty of Sciences, Department of Physics, Dr. Tahar Moulay University of Saida, 20000 Saida (Algeria); Tadjer, A. [Modelling and Simulation in Materials Science Laboratory, Physics Department, Djillali Liabes University of Sidi Bel-Abbes, 22000 Sidi Bel-Abbes (Algeria); Sayede, A. [Unité de Catalyse et Chimie du Solide (UCCS), UMR CNRS 8181, Faculté des Sciences, Université d’Artois, Rue Jean Souvraz, SP 18, 62307 Lens (France)


    Using the full-potential linearized augmented plane-wave (FP-LAPW) calculations with generalized gradient approximation functional (GGA), we investigated the structural, electronic and magnetic properties of the family compounds AlP as ternary diluted semiconductors (DMS)s Al{sub 1−x}(TM=Cr,V){sub x}P with concentration of 0.25 and 0.125 in zinc blende phase (B3). The interaction of 3d orbital of transition metal with the 3p states of the four phosphorus atoms who occupy the summits of the tetrahedron resulting from SP3 hybridization, stabilize more the phenomena of magnetization by the effect of Zener's p–d exchange. The analyses of electronic and magnetic properties using the total and partial density of state and bands structure show that Al{sub 1−x}Cr{sub x}P and Al{sub 1−x}V{sub x}P are spin-polarized with a half-metallic band gap. We seem that these materials will be among the good candidates for spintronic applications. - Highlights: • Two doping concentrations of 0.25 and 0.125 with Al1-x(TM=Cr,V)xP are realizing. • Total and Partial -DOS calculations show the half-metallic ferromagnetic behavior. • Our compounds seem to be good materials for spintronic application.

  14. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul A.


    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  15. Fundamentals of semiconductor devices

    CERN Document Server

    Lindmayer, Joseph


    Semiconductor properties ; semiconductor junctions or diodes ; transistor fundamentals ; inhomogeneous impurity distributions, drift or graded-base transistors ; high-frequency properties of transistors ; band structure of semiconductors ; high current densities and mechanisms of carrier transport ; transistor transient response and recombination processes ; surfaces, field-effect transistors, and composite junctions ; additional semiconductor characteristics ; additional semiconductor devices and microcircuits ; more metal, insulator, and semiconductor combinations for devices ; four-pole parameters and configuration rotation ; four-poles of combined networks and devices ; equivalent circuits ; the error function and its properties ; Fermi-Dirac statistics ; useful physical constants.

  16. Special quasirandom structures for binary/ternary group IV random alloys

    KAUST Repository

    Chroneos, Alexander I.


    Simulation of defect interactions in binary/ternary group IV semiconductor alloys at the density functional theory level is difficult due to the random distribution of the constituent atoms. The special quasirandom structures approach is a computationally efficient way to describe the random nature. We systematically study the efficacy of the methodology and generate a number of special quasirandom cells for future use. In order to demonstrate the applicability of the technique, the electronic structures of E centers in Si1-xGex and Si1-x -yGexSny alloys are discussed for a range of nearest neighbor environments. © 2010 Elsevier B.V. All rights reserved.

  17. Epitaxial Lateral Overgrowth of Semiconductors (United States)

    Zytkiewicz, Zbigniew R.

    The state of the art and recent developments of lateral overgrowth of compound semiconductors are reviewed. First we focus on the mechanism of epitaxial lateral overgrowth (ELO) from the liquid phase, highlighting the phenomena that are crucial for growing high-quality layers with large aspect ratio. Epitaxy from the liquid phase has been chosen since the equilibrium growth techniques such as liquid-phase epitaxy (LPE) are the most suitable for lateral overgrowth. We then present numerous examples for which the defect filtration in the ELO procedure is very efficient and leads to significant progress in the development of high-performance semiconductor devices made of lattice-mismatched structures. Structural perfection of seams that appear when layers grown from neighboring seeds merge is also discussed. Next, we concentrate on strain commonly found in various ELO structures and arising due to the interaction of ELO layers with the mask. Its origin, and possible ways of its control, are presented. Then we show that the thermal strain in lattice-mismatched ELO structures can be relaxed by additional tilting of ELO wings while still preserving their high quality. Finally, recent progresses in the lateral overgrowth of semiconductors, including new mask materials and liquid-phase electroepitaxial growth on substrates coated by electrically conductive masks, are presented. New versions of the ELO technique from solution and from the vapor (growth from ridges and pendeo-epitaxy) are described and compared with standard ELO. A wide range of semiconductors, including III-V compounds grown from solution and vapor-grown GaN, are used to illustrate phenomena discussed. Very often, the similar behavior of various ELO structures reveals that the phenomena presented are not related to a specific group of compounds or their growth techniques, but have a much more general nature.

  18. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun [Xiamen Univ. (China). College of Materials and Fujian Provincial Key Lab. of Materials Genome


    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr{sub 7}Ni{sub 10}, ZrNi, ZrNi{sub 5}, Zr{sub 14}Cu{sub 51}, and Zr{sub 2}Cu{sub 9}, show a remarkable ternary solubility. A new ternary compound named τ{sub 3} (Zr{sub 31.1-30.7} . Cu{sub 28.5-40.3}Ni{sub 40.4-29.0}) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  19. Reserve current analysis in semiconductor insulator semiconductor ...

    African Journals Online (AJOL)

    Reserve current analysis in semiconductor insulator semiconductor (SIS) solar cells. H Yakubu, PK Mensah. Abstract. No Abstract. Journal of the Ghana Association Vol. 2 (3) 1999: pp. 1-4. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  20. Electron paramagnetic resonance study of ternary Cu II compounds ...

    Indian Academy of Sciences (India)

    , 74001-970, Goiânia (GO), Brazil; Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, and Instituto de Física del Litoral (CONICET-UNL), Güemes 3450, 3000 Santa Fe, Argentina ...

  1. Semiconductor Solid-Solution Nanostructures: Synthesis, Property Tailoring, and Applications. (United States)

    Liu, Baodan; Li, Jing; Yang, Wenjin; Zhang, Xinglai; Jiang, Xin; Bando, Yoshio


    The innovation of band-gap engineering in advanced materials caused by the alloying of different semiconductors into solid-solution nanostructures provides numerous opportunities and advantages in optoelectronic property tailoring. The semiconductor solid-solution nanostructures have multifarious emission wavelength, adjustability of absorption edge, tunable electrical resistivity, and cutting-edge photoredox capability, and these advantages can be rationalized by the assorted synthesis strategies such as, binary, ternary, and quaternary solid-solutions. In addition, the abundance of elements in groups IIB, IIIA, VA, VIA, and VIIA provides sufficient room to tailor-make the semiconductor solid-solution nanostructures with the desired properties. Recent progress of semiconductor solid-solution nanostructures including synthesis strategies, structure and composition design, band-gap engineering related to the optical and electrical properties, and their applications in different fields is comprehensively reviewed. The classification, formation principle, synthesis routes, and the advantage of semiconductor solid-solution nanostructures are systematically reviewed. Moreover, the challenges faced in this area and the future prospects are discussed. By combining the information together, it is strongly anticipated that this Review may shed new light on understanding semiconductor solid-solution nanostructures while expected to have continuous breakthroughs in band-gap engineering and advanced optoelectronic nanodevices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Handbook of spintronic semiconductors

    CERN Document Server

    Chen, Weimin


    Offers a review of the field of spintronic semiconductors. This book covers a range of topics, including growth and basic physical properties of diluted magnetic semiconductors based on II-VI, III-V and IV semiconductors, developments in theory and experimental techniques and potential device applications.

  3. Templated Chemically Deposited Semiconductor Optical Fiber Materials (United States)

    Sparks, Justin R.; Sazio, Pier J. A.; Gopalan, Venkatraman; Badding, John V.


    Chemical deposition is a powerful technology for fabrication of planar microelectronics. Optical fibers are the dominant platform for telecommunications, and devices such as fiber lasers are forming the basis for new industries. High-pressure chemical vapor deposition (HPCVD) allows for conformal layers and void-free wires of precisely doped crystalline unary and compound semiconductors inside the micro-to-nanoscale-diameter pores of microstructured optical fibers (MOFs). Drawing the fibers to serve as templates into which these semiconductor structures can be fabricated allows for geometric design flexibility that is difficult to achieve with planar fabrication. Seamless coupling of semiconductor optoelectronic and photonic devices with existing fiber infrastructure thus becomes possible, facilitating all-fiber technological approaches. The deposition techniques also allow for a wider range of semiconductor materials compositions to be exploited than is possible by means of preform drawing. Gigahertz bandwidth junction-based fiber devices can be fabricated from doped crystalline semiconductors, for example. Deposition of amorphous hydrogenated silicon, which cannot be drawn, allows for the exploitation of strong nonlinear optical function in fibers. Finally, crystalline compound semiconductor fiber cores hold promise for high-power infrared light-guiding fiber devices and subwavelength-resolution, large-area infrared imaging.

  4. Tanabe, K. A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures. Energies, 2009, 2, 504-530.

    Directory of Open Access Journals (Sweden)

    Katsuaki Tanabe


    Full Text Available I have stated in my recent review article that no direct observation of multiple exciton generation (MEG in the shape of photocurrent extracted from a semiconductor had been made yet. [...

  5. Spatial light modulation in compound semiconductor materials (United States)

    Cheng, Li-Jen (Inventor); Gheen, Gregory O. (Inventor); Partovi, Afshin (Inventor)


    Spatial light modulation (22) in a III-V single crystal (12), e.g., gallium arsenide, is achieved using the photorefractive effect. Polarization rotation created by beam coupling is utilized in one embodiment. In particular, information (16)on a control beam (14) incident on the crystal is transferred to an input beam (10), also incident on the crystal. An output beam (18) modulated in intensity is obtained by passing the polarization-modulated input beam through a polarizer (20).

  6. Ternary interaction parameters in calphad solution models

    Energy Technology Data Exchange (ETDEWEB)

    Eleno, Luiz T.F., E-mail: [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Schön, Claudio G., E-mail: [Universidade de Sao Paulo (USP), SP (Brazil). Computational Materials Science Laboratory. Department of Metallurgical and Materials Engineering


    For random, diluted, multicomponent solutions, the excess chemical potentials can be expanded in power series of the composition, with coefficients that are pressure- and temperature-dependent. For a binary system, this approach is equivalent to using polynomial truncated expansions, such as the Redlich-Kister series for describing integral thermodynamic quantities. For ternary systems, an equivalent expansion of the excess chemical potentials clearly justifies the inclusion of ternary interaction parameters, which arise naturally in the form of correction terms in higher-order power expansions. To demonstrate this, we carry out truncated polynomial expansions of the excess chemical potential up to the sixth power of the composition variables. (author)

  7. Ternary carbon composite films for supercapacitor applications (United States)

    Tran, Minh-Hai; Jeong, Hae Kyung


    A simple, binder-free, method of making supercapacitor electrodes is introduced, based on modification of activated carbon with graphite oxide and carbon nanotubes. The three carbon precursors of different morphologies support each other to provide outstanding electrochemical performance, such as high capacitance and high energy density. The ternary carbon composite shows six times higher specific capacitance compared to that of activated carbon itself with high retention. The excellent electrochemical properties of the ternary composite attribute to the high surface area of 1933 m2 g-1 and low equivalent series resistance of 2 Ω, demonstrating that it improve the electrochemical performance for supercapacitor applications.

  8. A study of phase separation in ternary alloys

    Indian Academy of Sciences (India)

    Keywords. Ternary systems; Cahn–Hilliard equations; spinodal decomposition. Abstract. We have studied the evolution of microstructure when a disordered ternary alloy is quenched into a ternary miscibility gap. We have used computer simulations based on multicomponent Cahn–Hilliard (CH) equations for A and B, ...

  9. Enhancement of Deep Acceptor Activation in Semiconductors by Superlattice Doping

    National Research Council Canada - National Science Library

    Schubert, E


    Gallium nitride (GaN) and related compounds are wide bandgap semiconductors suited for high power transistors and many other electronic and optoelectronic devices operating at high frequencies and elevated temperatures...

  10. Experimental investigation of phase equilibria in the Nb-Si-Ta ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian; Wang, Cuiping; Yao, Jun; Yang, Shuiyuan; Zhan Shi; Liu, Xingjun [Xiamen Univ. (China). Dept. of Materials Science and Engineering; Xiamen Univ. (China). Fujian Provincial Key Laboratory of Materials Genome; Kang, Yongwang [Beijing Institute of Aeronautical Materials (China). Science and Technology on Advanced High Temperature Structural Materials Lab.


    The phase equilibria in the Nb-Si-Ta ternary system at 1 373 K, 1 473 K and 1 573 K were investigated by means of back-scattered electron imaging, electron probe microanalysis and X-ray diffraction. The isothermal sections at 1 373 K, 1 473 K and 1 573 K consist of two three-phase regions and seven two-phase regions, without any ternary compounds. The compounds of NbSi{sub 2} and TaSi{sub 2}, αNb{sub 5}Si{sub 3} and αTa{sub 5}Si{sub 3} form continuous solid solutions, respectively. The solubilities of Nb in Ta{sub 3}Si and Ta{sub 2}Si phases are extremely large, whereas the solubility of Si in the β(Nb, Ta) phase is relatively small.

  11. Superconductivity in the metal rich Li-Pd-B ternary boride. (United States)

    Togano, K; Badica, P; Nakamori, Y; Orimo, S; Takeya, H; Hirata, K


    Superconductivity at about 8 K was observed in the metal-rich Li-Pd-B ternary system. Structural, microstructural, electrical, and magnetic investigations for various compositions proved that the Li2Pd3B compound, which has an antiperovskite cubic structure composed of distorted Pd6B octahedrons, is responsible for the superconductivity. This is the first observation of superconductivity in metal-rich ternary borides containing alkaline metal and Pd as a late transition metal. The compound prepared by arc melting has a high density and is relatively stable in the air. The upper critical fields H(c2)(0) estimated by linear extrapolation and the Werthamer-Helfand-Hohenberg theory are 6.2 and 4.8 T, respectively.

  12. Delay Insensitive Ternary CMOS Logic for Secure Hardware

    Directory of Open Access Journals (Sweden)

    Ravi S. P. Nair


    Full Text Available As digital circuit design continues to evolve due to progress of semiconductor processes well into the sub 100 nm range, clocked architectures face limitations in a number of cases where clockless asynchronous architectures generate less noise and produce less electro-magnetic interference (EMI. This paper develops the Delay-Insensitive Ternary Logic (DITL asynchronous design paradigm that combines design aspects of similar dual-rail asynchronous paradigms and Boolean logic to create a single wire per bit, three voltage signaling and logic scheme. DITL is compared with other delay insensitive paradigms, such as Pre-Charge Half-Buffers (PCHB and NULL Convention Logic (NCL on which it is based. An application of DITL is discussed in designing secure digital circuits resistant to side channel attacks based on measurement of timing, power, and EMI signatures. A Secure DITL Adder circuit is designed at the transistor level, and several variance parameters are measured to validate the efficiency of DITL in resisting side channel attacks. The DITL design methodology is then applied to design a secure 8051 ALU.

  13. Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides (United States)

    Singh, N. B.; Coriell, S. R.; Su, Ching-Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian


    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  14. Ternary-fragmentation-driving potential energies of 252Cf (United States)

    Karthikraj, C.; Ren, Zhongzhou


    Within the framework of a simple macroscopic model, the ternary-fragmentation-driving potential energies of 252Cf are studied. In this work, all possible ternary-fragment combinations of 252Cf are generated by the use of atomic mass evaluation-2016 (AME2016) data and these combinations are minimized by using a two-dimensional minimization approach. This minimization process can be done in two ways: (i) with respect to proton numbers (Z1, Z2, Z3) and (ii) with respect to neutron numbers (N1, N2, N3) of the ternary fragments. In this paper, the driving potential energies for the ternary breakup of 252Cf are presented for both the spherical and deformed as well as the proton-minimized and neutron-minimized ternary fragments. From the proton-minimized spherical ternary fragments, we have obtained different possible ternary configurations with a minimum driving potential, in particular, the experimental expectation of Sn + Ni + Ca ternary fragmentation. However, the neutron-minimized ternary fragments exhibit a driving potential minimum in the true-ternary-fission (TTF) region as well. Further, the Q -value energy systematics of the neutron-minimized ternary fragments show larger values for the TTF fragments. From this, we have concluded that the TTF region fragments with the least driving potential and high Q values have a strong possibility in the ternary fragmentation of 252Cf. Further, the role of ground-state deformations (β2, β3, β4, and β6) in the ternary breakup of 252Cf is also studied. The deformed ternary fragmentation, which involves Z3=12 -19 fragments, possesses the driving potential minimum due to the larger oblate deformations. We also found that the ground-state deformations, particularly β2, strongly influence the driving potential energies and play a major role in determining the most probable fragment combinations in the ternary breakup of 252Cf.

  15. The ternary system: silicon-uranium-vanadium

    Energy Technology Data Exchange (ETDEWEB)

    Noel, Henri [Laboratoire de Chimie du Solide et Materiaux, UMR-CNRS 6226, Universite de Rennes I, Avenue du General Leclerc, F-35042 Rennes, Cedex (France); Rogl, Peter Franz, E-mail: [Institute of Physical Chemistry, University of Vienna, A-1090 Wien, Waehringerstrasse 42 (Austria)


    Phase equilibria in the system Si-U-V were established at 1100 {sup o}C by optical microscopy, EMPA and X-ray diffraction. Two ternary compounds were observed, U{sub 2}V{sub 3}Si{sub 4} and (U{sub 1-x}V{sub x}){sub 5}Si{sub 3}, for which the crystal structures were elucidated by X-ray powder data refinement and found to be isotypic with the monoclinic U{sub 2}Mo{sub 3}Si{sub 4}-type (space group P2{sub 1}/c; a = 0.6821(3), b = 0.6820(4), c = 0.6735(3) nm, {beta} = 109.77(1){sup o}) and the tetragonal W{sub 5}Si{sub 3}-type (space group I4/mcm, a = 1.06825(2), c = 0.52764(2) nm), respectively. (U{sub 1-x}V{sub x}){sub 5}Si{sub 3} appears at 1100 {sup o}C without any significant homogeneity region at x {approx} 0.2 resulting in a formula U{sub 4}VSi{sub 3} which corresponds to a fully ordered atom arrangement. DTA experiments clearly show decomposition of this phase above 1206 {sup o}C revealing a two-phase region U{sub 3}Si{sub 2} + V{sub 3}Si. At 1100 {sup o}C U{sub 4}VSi{sub 3} is in equilibrium with V{sub 3}Si, V{sub 5}Si{sub 3}, U{sub 3}Si{sub 2} and U(V). At 800 {sup o}C U{sub 4}VSi{sub 3} forms one vertex of the tie-triangle to U{sub 3}Si and V{sub 3}Si. Due to the rather high thermodynamic stability of V{sub 3}Si and the corresponding tie-lines V{sub 3}Si + liquid at 1100 {sup o}C and V{sub 3}Si + U(V) below 925 {sup o}C, no compatibility exists between U{sub 3}Si or U{sub 3}Si{sub 2} and vanadium metal.

  16. Quasi-particle electronic band structure and alignment of the V-VI-VII semiconductors SbSI, SbSBr, and SbSeI for solar cells (United States)

    Butler, Keith T.; McKechnie, Scott; Azarhoosh, Pooya; van Schilfgaarde, Mark; Scanlon, David O.; Walsh, Aron


    The ternary V-VI-VII chalcohalides consist of one cation and two anions. Trivalent antimony—with a distinctive 5s2 electronic configuration—can be combined with a chalcogen (e.g., S or Se) and halide (e.g., Br or I) to produce photoactive ferroelectric semiconductors with similarities to the Pb halide perovskites. We report—from relativistic quasi-particle self-consistent GW theory—that these materials have a multi-valley electronic structure with several electron and hole basins close to the band extrema. We predict ionisation potentials of 5.3-5.8 eV from first-principles for the three materials, and assess electrical contacts that will be suitable for achieving photovoltaic action from these unconventional compounds.

  17. Quasi-particle electronic band structure and alignment of the V-VI-VII semiconductors SbSI, SbSBr, and SbSeI for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Keith T. [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); McKechnie, Scott; Azarhoosh, Pooya; Schilfgaarde, Mark van [Department of Physics, Kings College London, London WC2R 2LS (United Kingdom); Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Walsh, Aron, E-mail: [Centre for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Global E" 3 Institute and Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)


    The ternary V-VI-VII chalcohalides consist of one cation and two anions. Trivalent antimony—with a distinctive 5s{sup 2} electronic configuration—can be combined with a chalcogen (e.g., S or Se) and halide (e.g., Br or I) to produce photoactive ferroelectric semiconductors with similarities to the Pb halide perovskites. We report—from relativistic quasi-particle self-consistent GW theory—that these materials have a multi-valley electronic structure with several electron and hole basins close to the band extrema. We predict ionisation potentials of 5.3–5.8 eV from first-principles for the three materials, and assess electrical contacts that will be suitable for achieving photovoltaic action from these unconventional compounds.

  18. Odorant Receptor Modulation: Ternary Paradigm for Mode of Action of Insect Repellents (United States)


    CqOR10-CqOrco exhibit sensitivity to these compounds in the high nanomolar range, which is matched by pheromone receptors of other insects in the same...transitions: a plausible model. J. Mol. Biol. 12, 88e118. Nakagawa, T., Sakurai, T., Nishioka, T., Touhara, K., 2005. Insect sex- pheromone signals mediated...Author’s personal copy Odorant receptor modulation: Ternary paradigm for mode of action of insect repellents Jonathan D. Bohbot, Joseph C. Dickens

  19. First principles total energy study of NbCr{sub 2} + V Laves phase ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Ormeci, A. [Koc Univ., Istanbul (Turkey); Chen, S.P.; Wills, J.M.; Albers, R.C. [Los Alamos National Lab., NM (United States)


    The C15 NbCr{sub 2} + V Laves phase ternary system is studied by using a first-principles, self-consistent, full-potential total energy method. Equilibrium lattice parameters, cohesive energies, density of states and formation energies of substitutional defects are calculated. Results of all these calculations show that in the C15 NbCr{sub 2} + V compounds, V atoms substitute Cr atoms only.

  20. The Crystal Growth and Characterization of CeT2Si2 Ternary Intermetallics (T = Ni, Pd, Pt)

    NARCIS (Netherlands)

    Menovsky, A.A.; Snel, C.E.; Gortenmulder, T.J.; Palstra, T.T.M.


    Bulk single crystals of the ternary intermetallic compounds CeNi2Si2, CePd2Si2 and CePt2Si2 have been grown from the melt with a modified “tri-arc” Czochralski method. The as-grown crystals were characterized by X-ray, microprobe, and chemical analyses. The measured densities were compared with the

  1. Magnetoelectric and multiferroic properties of ternary copper chalcogenides (Cu2MMS4)-M-II-S-IV

    NARCIS (Netherlands)

    Nenert, G.; Palstra, T. T. M.


    We investigate theoretically the ternary copper chalcogenides with the general formula (Cu2MMS4)-M-II-S-IV. This family of compounds can crystallize in two different non-centrosymmetric structures, I (4) over bar 2m or Pnm2(1). We show that all the reported members of (Cu2MMS4)-M-II-S-IV having the

  2. Self-triggered coordination with ternary controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo


    This paper regards coordination of networked systems with ternary controllers. We develop a hybrid coordination system which implements a self-triggered communication policy, based on polling the neighbors upon need. We prove that the proposed scheme ensures finite-time convergence to a neighborhood

  3. Ternary Dynamic Images In Robotic Smooth Pursuit (United States)

    Morasso, Pietro; Tagliasco, Vincenzo


    Early stages of visuo-motor interaction are considered with regard to dynamic scene analysis. Target fixation and tracking is distinguished from target visual analysis. The notion of target specification is elaborated upon. The use of ternary dynamic images is shown as an example of target tracking.

  4. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    Ternary alloy nanocatalysts for hydrogen evolution reaction. SOUMEN SAHA1, SONALIKA VAIDYA2, KANDALAM V RAMANUJACHARY3,. SAMUEL E LOFLAND4 and ASHOK K GANGULI1,2,∗. 1Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India. 2Institute of Nano Science and ...

  5. Comparative instrumental evaluation of efficacy and safety between a binary and a ternary system in chemexfoliation. (United States)

    Cameli, Norma; Mariano, Maria; Ardigò, Marco; Corato, Cristina; De Paoli, Gianfranco; Berardesca, Enzo


    To instrumentally evaluate the efficacy and the safety of a new ternary system chemo exfoliating formulation (water-dimethyl isosorbide-acid) vs traditional binary systems (water and acid) where the acid is maintained in both the systems at the same concentration. Different peelings (binary system pyruvic acid and trichloroacetic acid-TCA, and ternary system pyruvic acid and TCA) were tested on the volar forearm of 20 volunteers of both sexes between 28 and 50 years old. The outcomes were evaluated at the baseline, 10 minutes, 24 hours, and 1 week after the peeling by means of noninvasive skin diagnosis techniques. In vivo reflectance confocal microscopy was used for stratum corneum evaluation, transepidermal waterloss, and Corneometry for skin barrier and hydration, Laser Doppler velocimetry in association with colorimetry for irritation and erythema analysis. The instrumental data obtained showed that the efficacy and safety of the new ternary system peel compounds were significantly higher compared with the binary system formulations tested. The new formulation peels improved chemexfoliation and reduced complications such as irritation, redness, and postinflammatory pigmentation compared to the traditional aqueous solutions. The study showed that ternary system chemexfoliation, using a controlled delivery technology, was able to provide the same clinical effects in term of stratum corneum reduction with a significantly reduced barrier alteration, water loss, and irritation/erythema compared to traditional binary system peels. © 2017 Wiley Periodicals, Inc.

  6. Phase equilibria in the ternary In-Ni-Sn system at 700 °C. (United States)

    Schmetterer, C; Zemanova, A; Flandorfer, H; Kroupa, A; Ipser, H


    The phase equilibria of the ternary system In-Ni-Sn were investigated experimentally at 700 °C using X-ray diffraction (XRD) and scanning electron microscopy (SEM) including electron micro probe analysis (EMPA) and energy dispersive X-ray spectroscopy (EDX). A corresponding isothermal section was established based on these results. This particular temperature was chosen because it allowed obtaining reliable results within reasonable time. The existence of the ternary phase InNi 6 Sn 5 was confirmed whereas the ternary compound In 2 NiSn, reported earlier in literature, was found to be part of a large solid solution field based on binary InNi. The ternary solubility of the binary phases was established, and continuous solid solutions were found between the isostructural phases Ni 3 Sn LT and InNi 3 as well as between Ni 3 Sn 2 HT and InNi 2 . In addition, this isothermal section could be well reproduced by CALPHAD modelling. The resulting calculated isotherm at 700 °C is presented, too, and compared with the experimental results.

  7. Experimental investigation and thermodynamic calculation of phase equilibria in the Mg–Pb–Zn ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Yang, Shuiyuan [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Liu, Xingjun [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University, Xiamen 361005 (China); Duh, Jenq-Gong [Department of Materials Science and Engineering, National Tsing Hua Universtiy, Hsinchu, Taiwan (China); Wang, Cuiping, E-mail: [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China)


    The phase equilibria of the Mg–Pb–Zn ternary system were investigated using electron probe microanalysis (EPMA), back scattered electron (BSE) imaging and X-ray diffraction (XRD) methods. Three isothermal sections of the Mg–Pb–Zn ternary system at 200 °C, 300 °C and 400 °C were experimentally established. The phase equilibria of Mg–Pb binary and Mg–Pb–Zn ternary system were thermodynamically assessed by using CALPHAD (Calculation of Phase Diagrams) method on the basis of the presently determined experimental data. A consistent set of thermodynamic parameters has been derived for describing the Gibbs free energies of each solution phase and intermetallic compound in the Mg–Pb and Mg–Pb–Zn systems. The calculated phase diagrams and thermodynamic properties in the Mg–Pb and Mg–Pb–Zn systems are in good agreement with experimental data. - Highlights: • Three isothermal sections of the Mg–Pb–Zn system were experimentally determined. • The phase equilibria of Mg–Pb binary system are thermodynamically reassessed. • The calculated phase diagrams in the Mg–Pb–Zn ternary system are in good agreement with experimental data.

  8. Semiconductor Physical Electronics

    CERN Document Server

    Li, Sheng


    Semiconductor Physical Electronics, Second Edition, provides comprehensive coverage of fundamental semiconductor physics that is essential to an understanding of the physical and operational principles of a wide variety of semiconductor electronic and optoelectronic devices. This text presents a unified and balanced treatment of the physics, characterization, and applications of semiconductor materials and devices for physicists and material scientists who need further exposure to semiconductor and photonic devices, and for device engineers who need additional background on the underlying physical principles. This updated and revised second edition reflects advances in semicondutor technologies over the past decade, including many new semiconductor devices that have emerged and entered into the marketplace. It is suitable for graduate students in electrical engineering, materials science, physics, and chemical engineering, and as a general reference for processing and device engineers working in the semicondi...

  9. Thermal conductivity of rare earth-uranium ternary oxides of the type RE 6UO 12 (United States)

    Krishnaiah, M. V.; Seenivasan, G.; Srirama Murti, P.; Mathews, C. K.


    The knowledge of thermophysical properties of the rare earth uranium ternary oxides of the type RE 6UO 12 (RE=La, Gd and Dy) is essential to understand the fuel performance during reactor operation and for modeling fuel behavior. Literature on the high temperature properties of this compound is not available and there is no report at all on the thermal conductivity of these compounds. Hence a study of thermal conductivity of this compound has been taken up. The compounds were synthesized by a solution combustion method using metal nitrates and urea. Thermal diffusivity of these compounds was measured by the laser flash method in the temperature range 673-1373 K. The specific heat data was computed using Neumann-Kopp's law. Thermal conductivity was calculated using the measured thermal diffusivity value, density and specific heat data for different temperatures. The temperature dependence of thermal conductivity and the implication of structural aspects of these compounds on the data are discussed here.

  10. Semiconductor devices physics and technology

    CERN Document Server

    Sze, Simon


    Semiconductor Devices: Physics and Technology, Third Edition is an introduction to the physical principles of modern semiconductor devices and their advanced fabrication technology. It begins with a brief historical review of major devices and key technologies and is then divided into three sections: semiconductor material properties, physics of semiconductor devices and processing technology to fabricate these semiconductor devices.

  11. Semiconductor Electrical Measurements Laboratory (United States)

    Federal Laboratory Consortium — The Semiconductor Electrical Measurements Laboratory is a research laboratory which complements the Optical Measurements Laboratory. The laboratory provides for Hall...

  12. Basic semiconductor physics

    CERN Document Server

    Hamaguchi, Chihiro


    This book presents a detailed description of the basic physics of semiconductors. All the important equations describing the properties of these materials are derived without the help of other textbooks. The reader is assumed to have only a basic command of mathematics and some elementary semiconductor physics. The text covers a wide range of important semiconductor phenomena, from the simple to the advanced. Examples include recent progress in semiconductor quantum structures such as two-dimensional electron-gas systems, ballistic transport, the quantum Hall effect, the Landauer formula, the Coulomb blockade and the single-electron transistor.

  13. Semiconductor radiation detectors. Device physics

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, G. [Max-Planck-Institut fuer Physik, Muenchen (Germany)]|[Max-Planck-Institut fuer Extraterrestrische Physik, Garching (Germany). Semiconductor Lab.


    The following topics were dealt with: semiconductor radiation detectors, basic semiconductor structures, semiconductors, energy measurement, radiation-level measurement, position measurement, electronics of the readout function, detectors with intrinsic amplification, detector technology, device stability, radiation hardness and device simulation.

  14. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics. (United States)

    Kiefer, David; Yu, Liyang; Fransson, Erik; Gómez, Andrés; Primetzhofer, Daniel; Amassian, Aram; Campoy-Quiles, Mariano; Müller, Christian


    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm-1 and Seebeck coefficient from 100 to 60 μV K-1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m-1 K-1 gives rise to a thermoelectric Figure of merit ZT ∼ 10-4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  15. A Solution-Doped Polymer Semiconductor:Insulator Blend for Thermoelectrics

    KAUST Repository

    Kiefer, David


    Poly(ethylene oxide) is demonstrated to be a suitable matrix polymer for the solution-doped conjugated polymer poly(3-hexylthiophene). The polarity of the insulator combined with carefully chosen processing conditions permits the fabrication of tens of micrometer-thick films that feature a fine distribution of the F4TCNQ dopant:semiconductor complex. Changes in electrical conductivity from 0.1 to 0.3 S cm−1 and Seebeck coefficient from 100 to 60 μV K−1 upon addition of the insulator correlate with an increase in doping efficiency from 20% to 40% for heavily doped ternary blends. An invariant bulk thermal conductivity of about 0.3 W m−1 K−1 gives rise to a thermoelectric Figure of merit ZT ∼ 10−4 that remains unaltered for an insulator content of more than 60 wt%. Free-standing, mechanically robust tapes illustrate the versatility of the developed dopant:semiconductor:insulator ternary blends.

  16. Semiconductors data handbook

    CERN Document Server

    Madelung, Otfried


    This volume Semiconductors: Data Handbook contains frequently used data from the corresponding larger Landolt-Börnstein handbooks in a low price book for the individual scientist working in the laboratory. The Handbook contain important information about a large number of semiconductors

  17. High energy semiconductor switch (United States)

    Risberg, R. L.


    The objective was a controller for electric motors. By operating standard Nema B induction motors at variable speed a great deal of energy is saved. This is especially true in pumping and air conditioning applications. To allow wider use of variable speed AC drives, and to provide improved performance, a better semiconductor switch was sought. This was termed the High Energy Semiconductor Switch.

  18. Semiconductor radiation detection systems

    CERN Document Server


    Covers research in semiconductor detector and integrated circuit design in the context of medical imaging using ionizing radiation. This book explores other applications of semiconductor radiation detection systems in security applications such as luggage scanning, dirty bomb detection and border control.

  19. Spin physics in semiconductors

    CERN Document Server

    Dyakonov, Mikhail I


    This book describes beautiful optical and transport phenomena related to the electron and nuclear spins in semiconductors with emphasis on a clear presentation of the physics involved. Recent results on quantum wells and quantum dots are reviewed. The book is intended for students and researchers in the fields of semiconductor physics and nanoelectronics.

  20. Controlling the emission wavelength in group III-V semiconductor laser diodes

    KAUST Repository

    Ooi, Boon S.


    Methods are provided for modifying the emission wavelength of a semiconductor quantum well laser diode, e.g. by blue shifting the emission wavelength. The methods can be applied to a variety of semiconductor quantum well laser diodes, e.g. group III-V semiconductor quantum wells. The group III-V semiconductor can include AlSb, AlAs, Aln, AlP, BN, GaSb, GaAs, GaN, GaP, InSb, InAs, InN, and InP, and group III-V ternary semiconductors alloys such as AlxGai.xAs. The methods can results in a blue shifting of about 20 meV to 350 meV, which can be used for example to make group III-V semiconductor quantum well laser diodes with an emission that is orange or yellow. Methods of making semiconductor quantum well laser diodes and semiconductor quantum well laser diodes made therefrom are also provided.

  1. Two Types of 2D Layered Iodoargentates Based on Trimeric [Ag3I7] Secondary Building Units and Hexameric [Ag6I12] Ternary Building Units: Syntheses, Crystal Structures, and Efficient Visible Light Responding Photocatalytic Properties. (United States)

    Lei, Xiao-Wu; Yue, Cheng-Yang; Zhao, Jian-Qiang; Han, Yong-Fang; Yang, Jiang-Tao; Meng, Rong-Rong; Gao, Chuan-Sheng; Ding, Hao; Wang, Chun-Yan; Chen, Wan-Dong; Hong, Mao-Chun


    With mixed transition-metal-complex, alkali-metal, or organic cations as structure-directing agents, a series of novel two-dimensional (2D) layered inorganic-organic hybrid iodoargentates, namely, Kx[TM(2,2-bipy)3]2Ag6I11 (TM = Mn (1), Fe (2), Co (3), Ni (4), Zn (5); x = 0.89-1) and [(Ni(2,2-bipy)3][H-2,2-bipy]Ag3I6 (6), have been solvothermally synthesized and structurally characterized. All the title compounds feature 2D microporous layers composed by [Ag3I7] secondary building units based on AgI4 tetrahedra. Differently, the [Ag3I7] trimers are directly interconnected via corner-sharing to form the 2D [Ag6I11](5-) layer in compounds 1-5, whereas two neighboring [Ag3I7] trimers are initially condensed into a hexameric [Ag6I12] ternary building unit as a new node, which further self-assembles, leading to the 2D [Ag6I10](4-) layer in compound 6. The UV-vis diffuse-reflectance measurements reveal that all the compounds possess proper semiconductor behaviors with tunable band gaps of 1.66-2.75 eV, which lead to highly efficient photocatalytic degradation activities over organic pollutants under visible light irradiation compared to that of N-dotted P25. Interestingly, all the samples feature distinct photodegradative speeds at the same reaction conditions, and compound 1 features the highest photocatalytic activity among the title phases. The luminescence properties, band structures, and thermal stabilities were also studied.

  2. Panchromatic Sequentially Cast Ternary Polymer Solar Cells. (United States)

    Ghasemi, Masoud; Ye, Long; Zhang, Qianqian; Yan, Liang; Kim, Joo-Hyun; Awartani, Omar; You, Wei; Gadisa, Abay; Ade, Harald


    A sequential-casting ternary method is developed to create stratified bulk heterojunction (BHJ) solar cells, in which the two BHJ layers are spin cast sequentially without the need of adopting a middle electrode and orthogonal solvents. This method is found to be particularly useful for polymers that form a mechanically alloyed morphology due to the high degree of miscibility in the blend. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    Cu–Fe–Ni ternary alloys (size ∼55–80 nm) with varying compositions viz. CuFeNi (A1), CuFe2Ni (A2) and CuFeNi2 (A3) were successfully synthesized using microemulsion. It is to be noted that synthesis of nanocrystallineternary alloys with precise composition is a big challenge which can be overcome by choosing an ...

  4. Experimental investigation of phase equilibria in the Co-Ni-Zr ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingjun; Yang, Shuiyuan; Yu, Wenjie; Wang, Cuiping [Xiamen Univ. (China). Fujian Key Laboratory of Materials Genome; Xiong, Huaping; Cheng, Yaoyong; Wu, Xin [Beijing Institute of Aeronautical Materials (China). Div. of Welding and Forging


    The phase equilibria of the Co-Ni-Zr ternary system at 1 000 C, 1 100 C and 1 200 C were experimentally investigated by means of back-scattered electron imaging, electron probe microanalysis and X-ray diffraction on the equilibrated ternary alloys. In this study, no ternary compound is found. The (αCo, Ni) phase region extends from the Ni-rich corner to the Co-rich corner with small solubility of Zr at three sections. At 1 000 C and 1 100 C, Ni{sub 5}Zr, Co{sub 2}Zr and Ni{sub 10}Zr{sub 7} phases have large solid solution ranges, but Ni{sub 10}Zr{sub 7} phase disappears at 1 200 C. The Ni{sub 7}Zr{sub 2}, NiZr, Co{sub 11}Zr{sub 2}, Co{sub 23}Zr{sub 6} and CoZr phases exhibit nearly linear compounds in the studied sections, and have large composition ranges. Additionally, some differences in phase relationship exist among the above three isothermal sections.

  5. Experimental Realization of Three-dimensional Topological Insulator in Ternary Chalcogenides (United States)

    Kuroda, K.; Ye, M.; Kimura, A.; Ueda, Y.; Eremeev, S. V.; Krasovskii, E. E.; Chulkov, E. V.; Miyamoto, K.; Okuda, T.; Shimada, K.; Namatame, H.; Taniguchi, M.


    Three-dimensional topological insulators (TIs) featured with spin-helical massless surface state have attracted a great attention. Up to now, the experimentally confirmed topological insulators are limited to some binary compounds, such as Bi 2 Te 3 , Bi 2 Se 3 and so on. Recently, several ternary chalcogenides have been proposed as a new family of TI. In contrast to the layered binary chalcogenides, in ternary chalcogenides with a more substantial three dimensional character, the surface state depends on the topmost layer because the broken bonds at the surface may give rise also to trivial surface state. Therefore, the experimental realization of non-trivial surface state in TI has been strongly required. In this work, we have performed an angle resolved photoemission spectroscopy by using synchrotron radiation to prove the surface state in the ternary compounds. Especially, for one of the candidate materials, TlBiSe 2 , two important aspects have been revealed: (i) The Dirac cone is more ideal than that of Bi 2 Se 3 . (ii) There are no bulk continuum states that energetically overlap with the Dirac point. This means that the scattering channel from the topological surface state to the bulk continuum is strongly suppressed in TlBiSe 2 .

  6. Cohesion energy calculations for ternary ionic novel crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Polo, G; Valdes, E. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Mijngos, R. R; Duarte, D. [Universidad de Sonora, Hermosillo, Sonora (Mexico)


    The present work calculates the value of the link energy of a crystalline ternary structure newly formed by alkali halides. The ternary structure prepared with different concentrations of KCI{sub x}KBr{sub y}RbCl{sub z} maintains a very good miscibility and stability. The calculation is based on the use of a generalization of the Vegard's law (which generally is valid for binary compounds) for calculating the values of the lattice constant and the repulsive m exponent. The values of the lattice parameter given X-ray diffractometry agrees with the close approximation of the calculated value of the method used. It also compares the value of energy cohesion obtained by the Born expression with more complex approximations. [Spanish] En el presente trabajo se calcula el valor de la energia de amarre de una estructura ternaria cristalina nueva formada por halogenuros alcalinos. La estructura ternaria preparada con diferentes concentraciones KCI{sub x}KBr{sub y}RbCl{sub z} mantiene una muy buena estabilidad y miscibilidad. El calculo se basa en el uso de una generalizacion de la ley de Vegard (que en general es valida para compuestos binarios) para calcular los valores de la constante de red y de exponente repulsivo m. El valor del parametro de red medido por difractometria de rayos X, concuerda en buena aproximacion con el valor calculado por el metodo usado. Tambien se compara el valor de la energia de cohesion obtenido por la expresion de Born con aproximaciones mas complejas.

  7. Boron-Based Hydrogen Storage: Ternary Borides and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Vajo, John J. [HRL Laboratories, LLC, Malibu, CA (United States)


    DOE continues to seek reversible solid-state hydrogen materials with hydrogen densities of ≥11 wt% and ≥80 g/L that can deliver hydrogen and be recharged at moderate temperatures (≤100 °C) and pressures (≤100 bar) enabling incorporation into hydrogen storage systems suitable for transportation applications. Boron-based hydrogen storage materials have the potential to meet the density requirements given boron’s low atomic weight, high chemical valance, and versatile chemistry. However, the rates of hydrogen exchange in boron-based compounds are thus far much too slow for practical applications. Although contributing to the high hydrogen densities, the high valance of boron also leads to slow rates of hydrogen exchange due to extensive boron-boron atom rearrangements during hydrogen cycling. This rearrangement often leads to multiple solid phases occurring over hydrogen release and recharge cycles. These phases must nucleate and react with each other across solid-solid phase boundaries leading to energy barriers that slow the rates of hydrogen exchange. This project sought to overcome the slow rates of hydrogen exchange in boron-based hydrogen storage materials by minimizing the number of solid phases and the boron atom rearrangement over a hydrogen release and recharge cycle. Two novel approaches were explored: 1) developing matched pairs of ternary borides and mixed-metal borohydrides that could exchange hydrogen with only one hydrogenated phase (the mixed-metal borohydride) and only one dehydrogenated phase (the ternary boride); and 2) developing boranes that could release hydrogen by being lithiated using lithium hydride with no boron-boron atom rearrangement.

  8. Equilibrium study for ternary mixtures of biodiesel (United States)

    Doungsri, S.; Sookkumnerd, T.; Wongkoblap, A.; Nuchitprasittichai, A.


    The liquid-liquid equilibrium (LLE) data for the ternary mixtures of methanol + fatty acid methyl ester (FAME) + palm oil and FAME + palm oil + glycerol at various temperatures from 35 to 55°C, the tie lines and binodial curves were also investigated and plotted in the equilibrium curve. The experimental results showed that the binodial curves of methanol + FAME + palm oil depended significantly with temperature while the binodial curves of FAME + palm oil + glycerol illustrated insignificant change with temperatures. The interaction parameters between liquid pair obtained for NRTL (Nonrandom Two-Liquid) and UNIQUAC (Universal Quasi-Chemical Theory) models from the experimental data were also investigated. It was found that the correlated parameters of UNIQUAC model for system of FAME + palm oil + glycerol, denoted as a13 and a31, were 580.42K and -123.69K, respectively, while those for system of methanol + FAME + palm oil, denoted as a42 and a24, were 71.48 K and 965.57K, respectively. The ternary LLE data reported here would be beneficial for engineers and scientists to use for prediction of yield and purity of biodiesel for the production. The UNIQUAC model agreed well with the experimental data of ternary mixtures of biodiesel.

  9. The Ternary Alpha Energy Distribution Revisited (United States)

    Wagemans, Cyriel; Janssens, Peter; Heyse, Jan; Serot, Olivier; Geltenbort, Peter; Soldner, Torsten


    The shape of the energy distribution of the particles emitted in ternary fission has been studied since the discovery of the phenomenon for a large variety of fissioning systems. The general tendency of the observations is that most particles have a Gaussian-shaped energy distribution, except the α-particles, for which mostly an important non-Gaussian tailing on the low-energy side is reported. The origin of this tailing is generally ascribed to the decay of ternary 5He particles in an α-particle and a neutron. Since the experiments reported in the literature are rarely optimised for measuring the low-energy part of the α-spectrum, we realised good experimental conditions for studying the 235U(nth,f) ternary α energy distribution at the High Flux Reactor of the ILL in Grenoble. Thanks to a very intense and clean neutron beam, a small, very thin sample of highly enriched U could be used, with an activity of only 1.6 Bq. So the measurements could be done without absorber in between the sample and the ΔE-E detector. With the resulting low detection limit of 6 MeV, a clearly asymmetric energy distribution was obtained, in agreement with most data in the literature.

  10. Ion beams in semiconductor physics and technology

    Energy Technology Data Exchange (ETDEWEB)

    Kalbitzer, S. (Max-Planck-Inst. fuer Kernphysik, Heidelberg (Germany))


    The remarkable progress during the last two decades in semiconductor device technology is partly due to the introduction of ion beams as a key instrument for the modification and analysis of semiconductors. The basic reason is seen in the inherent electrical property of ion beams to be accurately controllable in energy, dose and species. The basic penetration and incorporation mechanisms in elemental and compound semiconductors have been explored and growing agreement between experiment and theory has rendered ion implantation a predictable tool. Similarly, the high analytic potential of nuclear reactions with ion beams has been steadily exploited and outstanding results have been achieved. Some basic milestones in the development of the ion beam techniques will be reviewed and future trends discussed. (orig.).

  11. EDITORIAL: Oxide semiconductors (United States)

    Kawasaki, M.; Makino, T.


    Blue or ultraviolet semiconducting light-emitting diodes have the potential to revolutionize illumination systems in the near-future. Such industrial need has propelled the investigation of several wide-gap semiconducting materials in recent years. Commercial applications include blue lasers for DVD memory and laser printers, while military applications are also expected. Most of the material development has so far been focused on GaN (band gap 3.5 eV at 2 K), and ZnSe (2.9 eV) because these two representative direct transition semiconductors are known to be bright emitting sources. GaN and GaN-based alloys are emerging as the winners in this field because ZnSe is subject to defect formation under high current drive. On the other hand, another II-VI compound, ZnO, has also excited substantial interest in the optoelectronics-oriented research communities because it is the brightest emitter of all, owing to the fact that its excitons have a 60 meV binding energy. This is compared with 26 meV for GaN and 20 meV for ZnSe. The stable excitons could lead to laser action based on their recombination even at temperatures well above room temperature. ZnO has additional major properties that are more advantageous than other wide-gap materials: availability of large area substrates, higher energy radiation stability, environmentally-friendly ingredients, and amenability to wet chemical etching. However, ZnO is not new to the semiconductor field as exemplified by several studies made during the 1960s on structural, vibrational, optical and electrical properties (Mollwo E 1982 Landolt-Boernstein New Series vol 17 (Berlin: Springer) p 35). In terms of devices, the luminescence from light-emitting diode structures was demonstrated in which Cu2O was used as the p-type material (Drapak I T 1968 Semiconductors 2 624). The main obstacle to the development of ZnO has been the lack of reproducible p-type ZnO. The possibility of achieving epitaxial p-type layers with the aid of thermal

  12. Magnetic properties for the Mn{sub 2}GeTe{sub 4} compound

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, M. [Departamento de Fisica, Facultad de Ciencias, Centro de Estudios de Semiconductores, Universidad de los Andes, Merida 5101 (Venezuela, Bolivarian Republic of)], E-mail:; Quintero, E.; Caldera, D.; Moreno, E.; Morocoima, M.; Grima, P.; Ferrer, D.; Marchan, N.; Bocaranda, P. [Departamento de Fisica, Facultad de Ciencias, Centro de Estudios de Semiconductores, Universidad de los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Delgado, G.E. [Laboratorio de Cristalografia, Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida 5101 (Venezuela, Bolivarian Republic of); Henao, J.A.; Macias, M.A.; Pinto, J.L. [Grupo de Investigacion en Quimica Estructural (GIQUE), Centro de Investigacion en Biomoleculas (CIBIMOL), Facultad de Ciencias, Escuela de Quimica, Universidad Industrial de Santander, Apartado aereo 678, Bucaramanga (Colombia); Ponce, C.A. [Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Corrientes 3400 (Argentina)


    Measurements of magnetic susceptibility {chi}, in the temperature range from 2 to 300 K, and of magnetization M vs. applied magnetic field B, up to 5 T, at various temperatures were made on polycrystalline samples of the Mn{sub 2}GeTe{sub 4} compound. It was found that Mn{sub 2}GeTe{sub 4} has a Neel temperature T{sub N} of about 135 K, shows mainly antiferromagnetic behavior with a very weak superimposed ferromagnetic component that is attributed to spin canting. Also, the magnetic results suggest that a possible spin-glass transition takes place at T{sub f}{approx}45 K. The spin-glass order parameter q(T), determined from the susceptibility data, was found to be in agreement with the prediction of conventional spin-glass theory. The M vs. B results indicated that bound magnetic polarons (BMPs) occur in the compound, and that the effects from BMPs disappear at approximately 80 K. The M vs. B curves were well fitted by a Langevin type of equation, and the variation of the fitting parameters determined as a function of temperature. Using a simple spherical model, the radius of the BMP in the material was found to be about 27 A; this value is similar to the effective Bohr radius for an acceptor in the II-IV-V{sub 2} and I-III-VI{sub 2} ternary semiconductor compounds.

  13. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, F [Faculte des Sciences, Universite de Sfax, BP 1171, 3000 Sfax (Tunisia); Makhlouf, A [Laboratoire de Mathematiques, Informatique et Applications, Universite de Haute Alsace, 4, rue des Freres Lumiere F-68093 Mulhouse (France); Silvestrov, S, E-mail: Faouzi.Ammar@rnn.fss.t, E-mail: Abdenacer.Makhlouf@uha.f, E-mail: sergei.silvestrov@math.lth.s [Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund (Sweden)


    In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

  14. Alloy multilayers and ternary nanostructures by direct-write approach (United States)

    Porrati, F.; Sachser, R.; Gazzadi, G. C.; Frabboni, S.; Terfort, A.; Huth, M.


    The fabrication of nanopatterned multilayers, as used in optical and magnetic applications, is usually achieved by two independent steps, which consist in the preparation of multilayer films and in the successive patterning by means of lithography and etching processes. Here we show that multilayer nanostructures can be fabricated by using focused electron beam induced deposition (FEBID), which allows the direct writing of nanostructures of any desired shape with nanoscale resolution. In particular, {[{{{Co}}}2{{Fe}}/{{Si}}]}n multilayers are prepared by the alternating deposition from the metal carbonyl precursors, {{{HFeCo}}}3{({{CO}})}12 and {{Fe}}{({{CO}})}5, and neopentasilane, {{{Si}}}5{{{H}}}12. The ability to fabricate nanopatterned multilayers by FEBID is of interest for the realization of hyperbolic metamaterials and related nanodevices. In a second experiment, we treated the multilayers by low-energy electron irradiation in order to induce atomic species intermixing with the purpose to obtain ternary nanostructured compounds. Transmission electron microscopy and electrical transport measurements indicate that in thick multilayers, (n = 12), the intermixing is only partial, taking place mainly in the upper part of the structures. However, for thin multilayers, (n = 2), the intermixing is such that a transformation into the L21 phase of the Co2FeSi Heusler compound takes place over the whole sample volume.

  15. Physics of semiconductor lasers

    CERN Document Server

    Mroziewicz, B; Nakwaski, W


    Written for readers who have some background in solid state physics but do not necessarily possess any knowledge of semiconductor lasers, this book provides a comprehensive and concise account of fundamental semiconductor laser physics, technology and properties. The principles of operation of these lasers are therefore discussed in detail with the interrelations between their design and optical, electrical and thermal properties. The relative merits of a large number of laser structures and their parameters are described to acquaint the reader with the various aspects of the semiconductor l

  16. Defects in semiconductors

    CERN Document Server

    Romano, Lucia; Jagadish, Chennupati


    This volume, number 91 in the Semiconductor and Semimetals series, focuses on defects in semiconductors. Defects in semiconductors help to explain several phenomena, from diffusion to getter, and to draw theories on materials' behavior in response to electrical or mechanical fields. The volume includes chapters focusing specifically on electron and proton irradiation of silicon, point defects in zinc oxide and gallium nitride, ion implantation defects and shallow junctions in silicon and germanium, and much more. It will help support students and scientists in their experimental and theoret

  17. Semiconductors bonds and bands

    CERN Document Server

    Ferry, David K


    As we settle into this second decade of the twenty-first century, it is evident that the advances in micro-electronics have truly revolutionized our day-to-day lifestyle. The technology is built upon semiconductors, materials in which the band gap has been engineered for special values suitable to the particular application. This book, written specifically for a one semester course for graduate students, provides a thorough understanding of the key solid state physics of semiconductors. It describes how quantum mechanics gives semiconductors unique properties that enabled the micro-electronics revolution, and sustain the ever-growing importance of this revolution.

  18. Spin physics in semiconductors

    CERN Document Server


    This book offers an extensive introduction to the extremely rich and intriguing field of spin-related phenomena in semiconductors. In this second edition, all chapters have been updated to include the latest experimental and theoretical research. Furthermore, it covers the entire field: bulk semiconductors, two-dimensional semiconductor structures, quantum dots, optical and electric effects, spin-related effects, electron-nuclei spin interactions, Spin Hall effect, spin torques, etc. Thanks to its self-contained style, the book is ideally suited for graduate students and researchers new to the field.

  19. Synthesis and investigation of CrB{sub 4}, MnB{sub 4} and new ternary chromium and rhenium manganese borides; Synthese und Untersuchung von CrB{sub 4}, MnB{sub 4} sowie neuen ternaeren Chrom- und Rheniummanganboriden

    Energy Technology Data Exchange (ETDEWEB)

    Knappschneider, Arno


    In the present work single crystals of the tetraborides of chromium and manganese have been grown and allowed a structure refinement of the compounds. Furthermore the physical characteristics for example hardness, electronic properties and magnetism were been determined. Also the ternary tetraboride phase of chromium and manganese was synthesized and a new ternary rhenium manganese diboride could be obtained.

  20. Compact semiconductor lasers

    CERN Document Server

    Yu, Siyuan; Lourtioz, Jean-Michel


    This book brings together in a single volume a unique contribution by the top experts around the world in the field of compact semiconductor lasers to provide a comprehensive description and analysis of the current status as well as future directions in the field of micro- and nano-scale semiconductor lasers. It is organized according to the various forms of micro- or nano-laser cavity configurations with each chapter discussing key technical issues, including semiconductor carrier recombination processes and optical gain dynamics, photonic confinement behavior and output coupling mechanisms, carrier transport considerations relevant to the injection process, and emission mode control. Required reading for those working in and researching the area of semiconductors lasers and micro-electronics.

  1. Defects in semiconductor nanostructures (United States)

    Singh, Vijay A.; Harbola, Manoj K.; Pathak, Praveen


    Impurities play a pivotal role in semiconductors. One part in a million of phosphorous in silicon alters the conductivity of the latter by several orders of magnitude. Indeed, the information age is possible only because of the unique role of shallow impurities in semiconductors. Although work in semiconductor nanostructures (SN) has been in progress for the past two decades, the role of impurities in them has been only sketchily studied. We outline theoretical approaches to the electronic structure of shallow impurities in SN and discuss their limitations. We find that shallow levels undergo a SHADES (SHAllow-DEep-Shallow) transition as the SN size is decreased. This occurs because of the combined effect of quantum confinement and reduced dielectric constant in SN. Level splitting is pronounced and this can perhaps be probed by ESR and ENDOR techniques. Finally, we suggest that a perusal of literature on (semiconductor) cluster calculations carried out 30 years ago would be useful.

  2. Physics of semiconductor devices

    CERN Document Server

    Rudan, Massimo


    This book describes the basic physics of semiconductors, including the hierarchy of transport models, and connects the theory with the functioning of actual semiconductor devices.  Details are worked out carefully and derived from the basic physics, while keeping the internal coherence of the concepts and explaining various levels of approximation. Examples are based on silicon due to its industrial importance. Several chapters are included that provide the reader with the quantum-mechanical concepts necessary for understanding the transport properties of crystals. The behavior of crystals incorporating a position-dependent impurity distribution is described, and the different hierarchical transport models for semiconductor devices are derived (from the Boltzmann transport equation to the hydrodynamic and drift-diffusion models). The transport models are then applied to a detailed description of the main semiconductor-device architectures (bipolar, MOS). The final chapters are devoted to the description of s...

  3. Biggest semiconductor installed

    CERN Multimedia


    Scientists and technicians at the European Laboratory for Particle Physics, commonly known by its French acronym CERN (Centre Europen pour la Recherche Nuclaire), have completed the installation of the largest semiconductor silicon detector.

  4. Specific recognition of polyphenols by molecularly imprinted polymers based on a ternary deep eutectic solvent. (United States)

    Fu, Najing; Li, Liteng; Liu, Xiao; Fu, Nian; Zhang, Chenchen; Hu, Liandong; Li, Donghao; Tang, Baokun; Zhu, Tao


    Typically, a target compound is selected as a template for a molecularly imprinted polymer (MIP); however, some target compounds are not suitable as templates because of their poor solubility. Using the tailoring properties of a deep eutectic solvent (DES), the insoluble target compound caffeic acid was transformed into a ternary choline chloride-caffeic acid-ethylene glycol (ChCl-CA-EG) DES, which was then employed as a template to prepare MIPs. The ternary DES-based MIPs were characterized by Fourier transform infrared spectroscopy, elemental analysis, scanning electron microscopy, and atomic force microscopy. The effects of time, temperature, ionic strength, and pH on the recognition processes for four polyphenols (caffeic acid, protocatechuic acid, catechin, and epicatechin) by 13 ChCl-CA-EG ternary DES-based MIPs was investigated using high-performance liquid chromatography. The recognition specificity of the MIPs for CA was significantly better than that for the other polyphenols, and the MIPs exhibited obvious characteristics of chromatographic packing materials. In addition, the recognition processes mainly followed a second-order kinetics model and the Freundlich isotherm model, which together indicated that the MIPs mainly recognized the polyphenols by chemical interactions including ion exchange, electron exchange, and new bond formation. Furthermore, the specific recognition ability of the MIPs for polyphenols, which was better than those of C18, C8, or non-molecularly imprinted polymer adsorbents, was successfully applied to the recognition of polyphenols in a Radix asteris sample. The transformation of an insoluble target compound in a polymeric DES for MIP preparation and recognition is a novel and feasible strategy suitable for use in further MIP research developments. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Electrowetting on a semiconductor


    Arscott, Steve; Gaudet, Matthieu


    We report electrowetting on a semiconductor using of a mercury droplet resting on a silicon surface. The effect is demonstrated using commercial n-type and p-type single-crystal (100) silicon wafers of different doping levels. The electrowetting is reversible - the voltage-dependent wetting contact angle variation of the mercury droplet is observed to depend on both the underlying semiconductor doping density and type. The electrowetting behaviour is explained by the voltage-dependent modulat...

  6. Radiation effects in semiconductors

    CERN Document Server


    There is a need to understand and combat potential radiation damage problems in semiconductor devices and circuits. Written by international experts, this book explains the effects of radiation on semiconductor devices, radiation detectors, and electronic devices and components. These contributors explore emerging applications, detector technologies, circuit design techniques, new materials, and innovative system approaches. The text focuses on how the technology is being used rather than the mathematical foundations behind it. It covers CMOS radiation-tolerant circuit implementations, CMOS pr

  7. Structure-property relationship of compounds with pyrite and shandite structure with metal-semiconductor transition in InSnCo{sub 3}S{sub 2}; Struktur-Eigenschafts-Beziehungen von Verbindungen mit Pyrit- und Shanditstruktur mit Metall-Halbleiter-Uebergang in InSnCo{sub 3}S{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Rothballer, Jan


    The aim of this Ph.D thesis is to correlate theoretical calculations and experimental data to understand the building and stabilities of structures to influence the properties due to applications. Properties of compounds are defined by their electronic structures. The electronic structure can be influenced by substitution of elements or even doping. As a matter of fact, electronic design is a basic principle in materials research. It can help to change or switch the electric conductivity or the magnetism of a starting compound. I analyzed compounds with pyrite-type structure and Sn{sub 2}Co{sub 3}S{sub 2} and related compounds to these. Its electronic as well as its crystallographic structure is highly flexible and Sn{sub 2}Co{sub 3}S{sub 2} is a half metallic ferromagnet. By substituting In to Sn one gets a semiconductor due to indium-tin ordering. By doping sulfur against selenium, the magnetism is highly influenced. To verify and to understand these effects I did magnetic, XRD, neutron and conductivity measurements as well as DFT calculations in direct and reciprocal space.

  8. Semiconductor industry wafer fab exhaust management

    CERN Document Server

    Sherer, Michael J


    Given the myriad exhaust compounds and the corresponding problems that they can pose in an exhaust management system, the proper choice of such systems is a complex task. Presenting the fundamentals, technical details, and general solutions to real-world problems, Semiconductor Industry: Wafer Fab Exhaust Management offers practical guidance on selecting an appropriate system for a given application. Using examples that provide a clear understanding of the concepts discussed, Sherer covers facility layout, support facilities operations, and semiconductor process equipment, followed by exhaust types and challenges. He reviews exhaust point-of-use devices and exhaust line requirements needed between process equipment and the centralized exhaust system. The book includes information on wet scrubbers for a centralized acid exhaust system and a centralized ammonia exhaust system and on centralized equipment to control volatile organic compounds. It concludes with a chapter devoted to emergency releases and a separ...

  9. Studies on ternary silver sulfides; Fukugo gin ryukabutsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)



    Some sulfides containing silver show high ion mobility based on movability of silver, whose application is expected. Studies have been carried out centrally on synthesis of new compounds of ternary silver sulfides by elucidating the relationship among their compositions, structures and properties by means of crystal chemical studies mainly on their phase relationship. A few new compounds have been synthesized, such as the ones having the argyrodite family compound structure including transition metals. The synthesizing process takes a kind of turbulent liquid state structure at elevated temperatures because of movability of silver, but silver is fixed at low temperatures in different sites between skeleton structures made by other atoms. These studies on phase transfer, structures, and silver movability have been based on X-ray diffraction, infrared and Raman spectroscopic measurements, NMR, measurements of electric and thermal characteristics. For the studies related to compositions and structures of ternary metal sulfides which take compound crystalline structure, a structure analyzing method based on multi-dimensional hyperspatial groups was used. This paper reports the summary of the studies in seven chapters, and dwells on the remaining problems and future prospects. 158 refs., 114 figs., 65 tabs.

  10. Electronic properties of semiconductor surfaces and metal/semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, M.


    This thesis reports investigations of the electronic properties of a semiconductor surface (silicon carbide), a reactive metal/semiconductor interface (manganese/silicon) and a non-reactive metal/semiconductor interface (aluminum-magnesium alloy/silicon). The (2 x 1) reconstruction of the 6H-SiC(0001) surface has been obtained by cleaving the sample along the (0001) direction. This reconstruction has not been observed up to now for this compound, and has been compared with those of similar elemental semiconductors of the fourth group of the periodic table. This comparison has been carried out by making use of photoemission spectroscopy, analyzing the core level shifts of both Si 2p and C 1s core levels in terms of charge transfer between atoms of both elements and in different chemical environments. From this comparison, a difference between the reconstruction on the Si-terminated and the C-terminated surface was established, due to the ionic nature of the Si-C bond. The growth of manganese films on Si(111) in the 1-5 ML thickness range has been studied by means of LEED, STM and photoemission spectroscopy. By the complementary use of these surface science techniques, two different phases have been observed for two thickness regimes (<1 ML and >1 ML), which exhibit a different electronic character. The two reconstructions, the (1 x 1)-phase and the ({radical}3 x {radical}3)R30 -phase, are due to silicide formation, as observed in core level spectroscopy. The growth proceeds via island formation in the monolayer regime, while the thicker films show flat layers interrupted by deep holes. On the basis of STM investigations, this growth mode has been attributed to strain due to lattice mismatch between the substrate and the silicide. Co-deposition of Al and Mg onto a Si(111) substrate at low temperature (100K) resulted in the formation of thin alloy films. By varying the relative content of both elements, the thin films exhibited different electronic properties

  11. Novel siRNA delivery system using a ternary polymer complex with strong silencing effect and no cytotoxicity. (United States)

    Kodama, Yukinobu; Shiokawa, Yumi; Nakamura, Tadahiro; Kurosaki, Tomoaki; Aki, Keisei; Nakagawa, Hiroo; Muro, Takahiro; Kitahara, Takashi; Higuchi, Norihide; Sasaki, Hitoshi


    We developed a novel small interfering RNA (siRNA) delivery system using a ternary complex with polyethyleneimine (PEI) and γ-polyglutamic acid (γ-PGA), which showed silencing effect and no cytotoxicity. The binary complexes of siRNA with PEI were approximately 73-102 nm in particle size and 45-52 mV in ζ-potential. The silencing effect of siRNA/PEI complexes increased with an increase of PEI, and siRNA/PEI complexes with a charge ratio greater than 16 showed significant luciferase knockdown in a mouse colon carcinoma cell line regularly expressing luciferase (Colon26/Luc cells). However, strong cytotoxicity and blood agglutination were observed in the siRNA/Lipofectamine complex and siRNA/PEI16 complex. Recharging cationic complexes with an anionic compound was reported to be a promising method for overcoming these toxicities. We therefore prepared ternary complexes of siRNA with PEI (charge ratio 16) by the addition of γ-PGA to reduce cytotoxicity and deliver siRNA. As expected, the cytotoxicity of the ternary complexes decreased with an increase of γ-PGA content, which decreased the ζ-potential of the complexes. A strong silencing effect comparable to siRNA/Lipofectamine complex was discovered in ternary complexes including γ-PGA with an anionic surface charge. The high incorporation of ternary complexes into Colon26/Luc cells was confirmed with fluorescence microcopy. Having achieved knockdown of an exogenously transfected gene, the ability of the complex to mediate knockdown of an endogenous housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), was assessed in B16-F10 cells. The ternary complex (siRNA/PEI16/γ-PGA12 complex) exhibited a significant GAPDH knockdown effect. Thus, we developed a useful siRNA delivery system.

  12. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn


    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  13. Cu2O-based solar cells using oxide semiconductors (United States)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro


    We describe significant improvements of the photovoltaic properties that were achieved in Al-doped ZnO (AZO)/n-type oxide semiconductor/p-type Cu2O heterojunction solar cells fabricated using p-type Cu2O sheets prepared by thermally oxidizing Cu sheets. The multicomponent oxide thin film used as the n-type semiconductor layer was prepared with various chemical compositions on non-intentionally heated Cu2O sheets under various deposition conditions using a pulsed laser deposition method. In Cu2O-based heterojunction solar cells fabricated using various ternary compounds as the n-type oxide thin-film layer, the best photovoltaic performance was obtained with an n-ZnGa2O4 thin-film layer. In most of the Cu2O-based heterojunction solar cells using multicomponent oxides composed of combinations of various binary compounds, the obtained photovoltaic properties changed gradually as the chemical composition was varied. However, with the ZnO-MgO and Ga2O3-Al2O3 systems, higher conversion efficiencies (η) as well as a high open circuit voltage (Voc) were obtained by using a relatively small amount of MgO or Al2O3, e.g., (ZnO)0.91-(MgO)0.09 and (Ga2O3)0.975-(Al2O3)0.025, respectively. When Cu2O-based heterojunction solar cells were fabricated using Al2O3-Ga2O3-MgO-ZnO (AGMZO) multicomponent oxide thin films deposited with metal atomic ratios of 10, 60, 10 and 20 at.% for the Al, Ga, Mg and Zn, respectively, a high Voc of 0.98 V and an η of 4.82% were obtained. In addition, an enhanced η and an improved fill factor could be achieved in AZO/n-type multicomponent oxide/p-type Cu2O heterojunction solar cells fabricated using Na-doped Cu2O (Cu2O:Na) sheets that featured a resistivity controlled by optimizing the post-annealing temperature and duration. Consequently, an η of 6.25% and a Voc of 0.84 V were obtained in a MgF2/AZO/n-(Ga2O3-Al2O3)/p-Cu2O:Na heterojunction solar cell fabricated using a Cu2O:Na sheet with a resistivity of approximately 10 Ω·cm and a (Ga0.975Al0

  14. Isothermal section of the Er-Cu-Ga ternary system at 973 K

    Energy Technology Data Exchange (ETDEWEB)

    Belgacem, B. [Unite de Recherche de Chimie des Materiaux et de l' Environnement (UR11ES25), ISSBAT, Universite de Tunis ElManar, 9 Avenue Dr. Zoheir Safi, 1006 Tunis (Tunisia); Pasturel, M., E-mail: [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Materiaux, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes (France); Tougait, O. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Materiaux, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes (France); Nouri, S. [Unite de Recherche de Chimie des Materiaux et de l' Environnement (UR11ES25), ISSBAT, Universite de Tunis ElManar, 9 Avenue Dr. Zoheir Safi, 1006 Tunis (Tunisia); Bekkachi, H. El; Peron, I. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Materiaux, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes (France); Hassen, R. Ben [Unite de Recherche de Chimie des Materiaux et de l' Environnement (UR11ES25), ISSBAT, Universite de Tunis ElManar, 9 Avenue Dr. Zoheir Safi, 1006 Tunis (Tunisia); Noeel, H. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Materiaux, UMR CNRS 6226, Universite de Rennes 1, Campus de Beaulieu, 35042 Rennes (France)


    Highlights: Black-Right-Pointing-Pointer The isothermal section at 973 K of the Er-Cu-Ga ternary phase diagram has been established for the first time. Black-Right-Pointing-Pointer Eight extensions of binary compounds in the ternary domain have been identified, as well as six ternary intermediate solid solutions characterized by an important Cu/Ga mutual substitution. Black-Right-Pointing-Pointer Magnetic properties of Er{sub 3}(Cu,Ga){sub 11} are reported for the first time and confirms the paramagnetic Curie-Weiss behavior of all the six intermediate intermetallics. - Abstract: Phase relations in the Er-Cu-Ga ternary system have been established at 973 K by means of powder X-ray diffraction complemented by energy dispersive spectroscopy coupled to scanning electron microscopy. The isothermal section of the phase diagram comprises eight extensions of binaries into the ternary system, ErCu{sub 1-x}Ga{sub x} (x {<=} 0.5), ErCu{sub 2-x}Ga{sub x} (x {<=} 1.1), ErCu{sub 5-x}Ga{sub x} (x {<=} 0.5), Er{sub 5}Cu{sub x}Ga{sub 3-x} (x {<=} 0.60), Er{sub 3}Cu{sub x}Ga{sub 2-x} (x {<=} 0.24), ErCu{sub x}Ga{sub 1-x} (x {<=} 0.10), ErCu{sub x}Ga{sub 2-x} (x {<=} 0.30) and ErCu{sub x}Ga{sub 3-x} (x {<=} 0.35), as well as six ternary intermediate phases, ErCu{sub x}Ga{sub 2-x} (0.4 {<=} x {<=} 0.7), Er{sub 14}Cu{sub 51-x}Ga{sub x} (5.5 {<=} x {<=} 11.0), ErCu{sub 5-x}Ga{sub x} (0.8 {<=} x {<=} 2.3), Er{sub 2}Cu{sub 17-x}Ga{sub x} (4.9 {<=} x {<=} 8.0), ErCu{sub 12-x}Ga{sub x} (5.7 {<=} x {<=} 6.7) and Er{sub 3}Cu{sub x}Ga{sub 11-x} (1.5 {<=} x {<=} 4.4), all deriving from binary structure-types.

  15. Preparation and photoluminescence enhancement in terbium(III ternary complexes with β-diketone and monodentate auxiliary ligands

    Directory of Open Access Journals (Sweden)

    Devender Singh


    Full Text Available A series of new solid ternary complexes of terbium(III ion based on β-diketone ligand acetylacetone (acac and monodentate auxiliary ligands (aqua/urea/triphenylphosphineoxide/pyridine-N-oxide had been prepared. The structural characterizations of synthesized ternary compounds were studied by means of elemental analysis, infrared (IR, and proton nuclear magnetic resonance (NMR spectral techniques. The optical characteristics were investigated with absorption as well as photoluminescence spectroscopy. Thermal behavior of compounds was examined by TGA/DTA analysis and all metal complexes were found to have good thermal stability. The luminescence decay time of complexes were also calculated by monitoring at emission wavelength corresponding to 5D4 → 7F5 transition. A comparative inspection of the luminescent behavior of prepared ternary compounds was performed in order to determine the function of auxiliary ligands in the enhancement of luminescence intensity produced by central terbium(III ion. The color coordinates values suggested that compounds showed bright green emission in visible region in electromagnetic spectrum. Complexes producing green light could play a significant role in the fabrication of efficient light conversion molecular devices for display purposes and lightning systems.

  16. First-principle studies of the ternary palladates CaPd3O4 and ...

    Indian Academy of Sciences (India)

    rials are optically active in the infrared ranges of the electromagnetic spectrum. Narrow band gap semiconductors are efficient thermoelectric (TE) materials; therefore, TE properties are also studied and discussed. Furthermore,. DFT and post-DFT calculations confirm the paramagnetic nature of these compounds. Keywords.

  17. Balanced ternary addition using a gated silicon nanowire

    NARCIS (Netherlands)

    Mol, J.A.; Van der Heijden, J.; Verduijn, J.; Klein, M.; Remacle, F.; Rogge, S.


    Ternary logic has the lowest cost of complexity, here, we demonstrate a CMOS hardware implementation of a ternary adder using a silicon metal-on-insulator single electron transistor. Gate dependent rectifying behavior of a single electron transistor (SET) results in a robust three-valued output as a

  18. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David


    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  19. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.


    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  20. Densities and Excess Molar Volume for the Ternary Systems (1 ...

    African Journals Online (AJOL)

    methylimidazolium methyl sulphate ([BMIM]+[MeSO4]-) were determined. The ternary systems studied were ([BMIM]+[MeSO4]-+ nitromethane + methanol or ethanol or 1-propanol) at the temperatures (303.15 and 313.15) K. The ternary excess molar ...

  1. Single polymer-based ternary electronic memory material and device. (United States)

    Liu, Shu-Juan; Wang, Peng; Zhao, Qiang; Yang, Hui-Ying; Wong, Jenlt; Sun, Hui-Bin; Dong, Xiao-Chen; Lin, Wen-Peng; Huang, Wei


    A ternary polymer memory device based on a single polymer with on-chain Ir(III) complexes is fabricated by combining multiple memory mechanisms into one system. Excellent ternary memory performances-low reading, writing, and erasing voltages and good stability for all three states-are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Formation of ternary Mg–Cu–Dy bulk metallic glasses

    Indian Academy of Sciences (India)


    Abstract. The glass-forming ability (GFA) of ternary Mg–Cu–Dy alloys was systematically investigated by using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) techniques. The results showed that a series of ternary Mg–Cu–Dy bulk metallic glasses (BGMs) with a diameter of 4–8 mm were suc-.

  3. Divergent synthesis routes and superconductivity of ternary hydride MgSiH6 at high pressure (United States)

    Ma, Yanbin; Duan, Defang; Shao, Ziji; Yu, Hongyu; Liu, Hanyu; Tian, Fubo; Huang, Xiaoli; Li, Da; Liu, Bingbing; Cui, Tian


    We predict a new ternary hydride MgSiH6 under high pressures, which is a metal with an ionic feature and takes on a simple cubic structure with space group P m -3 above 250 GPa. Our first-principles calculations show that the cubic MgSiH6 is a potential high-temperature superconductor with a superconducting transition temperature Tc of ˜63 K at 250 GPa. Further analysis suggests that phonon softening along mainly Γ -X and Γ -M directions induced by Fermi surface nesting plays a crucial role in the high-temperature superconductivity. Herein we propose the "triangle straight-line method" which provides a clear guide to determine the specific A + B → D type formation routes for ternary hydrides of the Mg-Si-H system and it effectively reveals two divergent paths to obtain MgSiH6 under high pressures: MgH2+SiH4→MgSiH6 and MgSi + 3 H2→MgSiH6 . This method might be applicable to all ternary compounds, which will be very significant for further experimental synthesis.

  4. Prediction of high-Tc conventional superconductivity in the ternary lithium borohydride system (United States)

    Kokail, Christian; von der Linden, Wolfgang; Boeri, Lilia


    We investigate the superconducting ternary lithium borohydride phase diagram at pressures of 0 and 200 GPa using methods for evolutionary crystal structure prediction and linear-response calculations for the electron-phonon coupling. Our calculations show that the ground state phase at ambient pressure, LiBH4, stays in the P n m a space group and remains a wide band-gap insulator at all pressures investigated. Other phases along the 1 :1 :x Li:B:H line are also insulating. However, a full search of the ternary phase diagram at 200 GPa revealed a metallic Li2BH6 phase, which is thermodynamically stable down to 100 GPa. This superhydride phase, crystallizing in a F m 3 ¯m space group, is characterized by sixfold hydrogen-coordinated boron atoms occupying the fcc sites of the unit cell. Due to strong hydrogen-boron bonding this phase displays a critical temperature of ˜100 K between 100 and 200 GPa. Our investigations confirm that ternary compounds used in hydrogen-storage applications should exhibit high-Tc conventional superconductivity in diamond anvil cell experiments, and suggest a viable route to optimize the superconducting behavior of high-pressure hydrides, exploiting metallic covalent bonds.

  5. Experimental determination of the phase equilibria in the Co–Cr–Ta ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, C.C. [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Yang, S.Y.; Liu, X.J. [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Wang, C.P., E-mail: [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China)


    Highlights: • Three isothermal sections at 800, 1000, and 1100 °C were established. • A large solubility of Cr is identified in the Co{sub 6}Ta{sub 7} phase. • The high–temperature phase (Co,Cr){sub 2}Ta(HT) was found to be stabilized at low temperatures. - Abstract: The phase equilibria in the Co–Cr–Ta ternary system were experimentally investigated by using backscattered electron (BSE), wavelength dispersive X-ray analyzer (WDX) and X-ray diffraction (XRD). Three isothermal sections of the Co–Cr–Ta ternary system at 800 °C, 900 °C and 1100 °C were experimentally determined. The experimental results show that: (1) No ternary compound is found in this system; (2) A large solubility of Cr is identified in the Co{sub 6}Ta{sub 7} phase; (3) The (Co, Cr){sub 2}Ta(HT) phase is stabilized at temperatures below it stability limits in Co–Ta and Cr–Ta binary systems in the range of Cr concentrations from 4 to 61 at.% and from 24 to 41 at.% Ta.

  6. Experimental and thermodynamic investigation of Al-Cu-Nd ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Bai, W.M. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Jiang, Y. [Hunan Sushi Guangbo Testing Techniques Co. LTD, Changsha (China); Guo, Z.Y.; Zeng, L.J.; Tan, M.Y. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Meggs, C. [School of Metallurgy and Materials, The University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Zhang, L.G., E-mail: [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Liu, L.B., E-mail: [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China); Jin, Z.P. [School of Materials Science and Engineering, Central South University, Changsha, 410083 (China)


    The phase relationships in the Al–Cu-Nd ternary system at 673 K have been investigated by X-ray powder diffraction (XRD) and scanning electron microscope (SEM) with energy disperse X-ray spectroscopy (EDS) in backscattered electron imaging (BSE) modes. The existence of six ternary Stoichiometric compounds, namely τ{sub 1}-Al{sub 8}Cu{sub 4}Nd, τ{sub 2}-Al{sub 9}Cu{sub 8}Nd{sub 2}, τ{sub 3}-Al{sub 6}Cu{sub 7}Nd, τ{sub 4}-Al{sub 2.4}Cu{sub 8.6}Nd, τ{sub 5}-Al{sub 3}CuNd, τ{sub 6}-AlCuNd, have been confirmed. A complete thermodynamic description of the Al–Cu-Nd ternary system coupled with the CALPHAD method is obtained based on experimental results and first-principles calculations. The calculated phase equilibria were in agreement with the available experimental data. - Highlights: • Phase relationships in the Al-Cu-Nd system has been systematically investigated. • 9 three-phase regions and 4 two-phase regions are confirmed. • A complete thermodynamic description of the Al-Cu-Nd system is obtained. • Results of first-principle calculation consist with thermodynamic calculation.

  7. Role of nanosilica localization on morphology development of HDPE/PS/PMMA immiscible ternary blends

    Directory of Open Access Journals (Sweden)

    Z. Javidi


    Full Text Available In this work, we studied the parameters affecting the localization of hydrophobic nanosilica particles and its impact on morphology development of polyethylene/polystyrene/poly (methyl methacrylate (HDPE/PS/PMMA ternary blends, which originally have a thermodynamically preferred core–shell type morphology, by means of a combination of rheology and electron microscopy. An attempt was also made to compare the experimental results with thermodynamic predictions. The ternary blend samples with the same blend ratio but varying in nanosilica loadings were prepared by melt compounding using a laboratory internal mixer. It was demonstrated that the nanosilica localization which could be controlled by the sequence of feeding, would play a significant role in determining the morphology development of the nanofilled ternary blend samples. It was shown that in contrary to thermodynamic prediction of a core shell morphology for the nanofilled samples, the highly enhanced melt elasticity of nanosilica filled polystyrene phase did not allow the PS phase to form a complete encapsulating shell.

  8. Solid-liquid equilibria for a pyrrolidinium-based common-cation ternary ionic liquid system, and for a pyridinium-based ternary reciprocal ionic liquid system: an experimental study and a thermodynamic model. (United States)

    Mirarabrazi, Meysam; Stolarska, Olga; Smiglak, Marcin; Robelin, Christian


    The present paper describes an experimental study and a thermodynamic model for the phase diagrams of the common-cation ternary system [C 4 MPyrr]Cl-[C 4 MPyrr]Br-[C 4 MPyrr]BF 4 (where [C 4 MPyrr] refers to 1-butyl-1-methyl-pyrrolidinium) and of the ternary reciprocal system [C 2 Py], [C 4 Py]‖Cl, Br (where [C n Py] refers to 1-alkyl-pyridinium). Phase equilibria were measured by Differential Scanning Calorimetry (DSC) for two isoplethal sections in the common-cation pyrrolidinium-based ternary system. Phase diagram measurements were recently performed for the four common-ion binary subsystems and the two diagonal sections in the pyridinium-based ternary reciprocal system. In each case, the Modified Quasichemical Model was used to model the liquid solution, and the Compound Energy Formalism was used for the relevant solid solutions. For the ternary reciprocal system, the missing thermodynamic properties of the pure compounds were assessed using the Volume-based Thermodynamics (VBT) from Glasser and Jenkins, making it possible to estimate the exchange Gibbs free energy for the reaction [C 2 Py]Br (liquid) + [C 4 Py]Cl (liquid) = [C 2 Py]Cl (liquid) + [C 4 Py]Br (liquid). The experimental diagonal sections [C 4 Py]Br-[C 2 Py]Cl and [C 4 Py]Cl-[C 2 Py]Br were satisfactorily reproduced using solely the optimized model parameters for the four common-ion binary subsystems.

  9. Polycation-Based Ternary Gene Delivery System. (United States)

    Liu, Shuai; Guo, Tianying


    Recent progress in gene therapy has opened the door for various human diseases. The greatest challenge that gene vectors still face is the ability to sufficiently deliver nucleic acid into target cells. To overcome various barriers, plenty of researches have been undertaken utilizing diverse strategies, among which a wide variety of polycation/pDNA vectors have been developed and explored frequently. For enhanced transfection efficiency, polycations are constantly utilized with covalent modifications, which however lead to reduced positive charge density and changed properties of polycation/pDNA complexes. Accordingly, non-covalent or ternary strategy is proposed. The cationic properties of polycations can be retained and the transfection efficiency can be enhanced by introducing additional polymers with functional groups via non-covalent assembly. This review will discuss the construction and advantages of ternary complexes gene delivery system, including low toxicity and enhanced gene expression both in vitro and in vivo. Recent progress and expectations with promising results that may have some reference for clinical application are also discussed.

  10. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)


    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  11. Lethal synergism between organic and inorganic wood preservatives via formation of an unusual lipophilic ternary complex

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo; Li, Yan; Fan, Rui-Mei; Chao, Xi-Juan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Zhu, Ben-Zhan, E-mail: [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States)


    We have shown previously that exposing bacteria to wood preservatives pentachlorophenol (PCP) and copper-containing compounds together causes synergistic toxicity. However, it is not clear whether these findings also hold true in mammalian cells; and if so, what is the underlying molecular mechanism? Here we show that PCP and a model copper complex bis-(1,10-phenanthroline) cupric (Cu(OP){sub 2}), could also induce synergistic cytotoxicity in human liver cells. By the single crystal X-ray diffraction and atomic absorption spectroscopy assay, the synergism was found to be mainly due to the formation of a lipophilic ternary complex with unusual structural and composition characteristics and subsequent enhanced cellular copper uptake, which markedly promoted cellular reactive oxygen species (ROS) production, leading to apoptosis by decreasing mitochondrial membrane potential, increasing pro-apoptotic protein expression, releasing cytochrome c from mitochondria and activating caspase-3, and -9. Analogous results were observed with other polychlorinated phenols (PCPs) and Cu(OP){sub 2}. Synergistic cytotoxicity could be induced by PCP/Cu(OP){sub 2} via formation of an unusual lipophilic complex in HepG2 cells. The formation of ternary complexes with similar lipophilic character could be of relevance as a general mechanism of toxicity, which should be taken into consideration especially when evaluating the toxicity of environmental pollutants found at currently-considered non- or sub-toxic concentrations. -- Highlights: ► The combination of PCP/Cu(OP){sub 2} induces synergistic cytotoxicity in HepG2 cells. ► The synergism is mainly due to forming a lipophilic ternary complex between them. ► The formation of lipophilic ternary complex enhances cellular copper uptake. ► PCP/Cu(OP){sub 2} stimulates the cellular ROS production. ► The ROS promoted by PCP/Cu(OP){sub 2} induces mitochondria-dependent apoptosis.

  12. Semiconducting III-V compounds

    CERN Document Server

    Hilsum, C; Henisch, Heinz R


    Semiconducting III-V Compounds deals with the properties of III-V compounds as a family of semiconducting crystals and relates these compounds to the monatomic semiconductors silicon and germanium. Emphasis is placed on physical processes that are peculiar to III-V compounds, particularly those that combine boron, aluminum, gallium, and indium with phosphorus, arsenic, and antimony (for example, indium antimonide, indium arsenide, gallium antimonide, and gallium arsenide).Comprised of eight chapters, this book begins with an assessment of the crystal structure and binding of III-V compounds, f

  13. Iron binary and ternary coatings with molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Yar-Mukhamedova, Gulmira, E-mail: [Institute Experimental and Theoretical Physics Al-Farabi Kazakh National University, 050038, Al-Farabi av., 71, Almaty (Kazakhstan); Ved, Maryna; Sakhnenko, Nikolay; Karakurkchi, Anna; Yermolenko, Iryna [National Technical University “Kharkov Polytechnic Institute”, Kharkov (Ukraine)


    Highlights: • High quality coatings of double Fe-Mo and ternary Fe-Mo-W electrolytic alloys can be produced both in a dc and a pulsed mode. • Application of unipolar pulsed current allows receiving an increased content of the alloying components and their more uniform distribution over the surface. • It is established that Fe-Mo and Fe-Mo-W coatings have an amorphous structure and exhibit improved corrosion resistance and microhardness as compared with the steel substrate due to the inclusion molybdenum and tungsten. - Abstract: Electrodeposition of Fe-Mo-W and Fe-Mo layers from a citrate solution containing iron(III) on steel and iron substrates is compared. The utilization of iron(III) compounds significantly improved the electrolyte stability eliminating side anodic redox reactions. The influence of concentration ratios and electrodeposition mode on quality, chemical composition, and functional properties of the alloys is determined. It has been found that alloys deposited in pulse mode have more uniform surface morphology and chemical composition and contain less impurities. Improvement in physical and mechanical properties as well as corrosion resistance of Fe-Mo and Fe-Mo-W deposits when compared with main alloy forming metals is driven by alloying components chemical passivity as well as by alloys amorphous structure. Indicated deposits can be considered promising materials in surface hardening technologies and repair of worn out items.

  14. Isothermal section of the ternary phase diagram U–Fe–Ge at 900 °C and its new intermetallic phases

    Energy Technology Data Exchange (ETDEWEB)

    Henriques, M.S., E-mail: [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); CCTN, IST/CFMCUL, University of Lisbon, Nuclear and Technological Campus, P-2695-066 Bobadela (Portugal); Berthebaud, D.; Lignie, A.; El Sayah, Z.; Moussa, C.; Tougait, O. [Institut des Sciences Chimiques de Rennes, Chimie du Solide et Matériaux, Université Rennes 1, UMR CNRS 6226, 263 Avenue du Général Leclerc, 35042 Rennes (France); Havela, L. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague (Czech Republic); Gonçalves, A.P. [CCTN, IST/CFMCUL, University of Lisbon, Nuclear and Technological Campus, P-2695-066 Bobadela (Portugal)


    Highlights: • Isothermal section of the U–Fe–Ge at 900 °C was investigated. • Ten ternary compounds and four significant solubility ranges were found. • Three new compounds and a solid solution were discovered. - Abstract: The isothermal section at 900 °C of the U–Fe–Ge ternary system was assessed using experimental results from X-ray diffraction and observations by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy chemical analysis. The phase diagram at this temperature is characterized by the formation of fourteen stable phases: four homogeneity ranges and ten intermetallic compounds. Among these, there is an extension of the binary compound UFe{sub 2} into the ternary system (UFe{sub 2−x}Ge{sub x,}x < 0.15), three ternary line compounds, U{sub 2}Fe{sub 17−x}Ge{sub x} (2 < x < 3.7), UFe{sub 1−x}Ge{sub 2} (0.58 < x < 0.78), UFe{sub 6+x}Ge{sub 6−x} (x < 0.7), and ten ternary stoichiometric compounds, U{sub 2}Fe{sub 3}Ge, U{sub 6}Fe{sub 16}Ge{sub 7}, UFe{sub 4}Ge{sub 2}, U{sub 6}Fe{sub 22}Ge{sub 13}, UFeGe, U{sub 3}Fe{sub 4}Ge{sub 4}, UFe{sub 2}Ge{sub 2}, U{sub 34}Fe{sub 3.32}Ge{sub 33}, U{sub 3}Fe{sub 2}Ge{sub 7}, and U{sub 9}Fe{sub 7}Ge{sub 24}.

  15. Synthesis and characterization of the ternary telluroargentate K4[Ag18Te11

    KAUST Repository

    Davaasuren, Bambar


    The ternary potassium telluroargentate(I), K4[Ag18Te11], was prepared by solvothermal synthesis in ethylenediamine at 160 °C. It crystallizes in the cubic space group Fm3¯ m (no. 225) with the cell parameter a = 18.6589(6) Å. The crystal structure can be described as a [Ag18Te11]4- three-dimensional anionic framework with the voids accommodating potassium cations. Chemical bonding analysis reveals polar covalent Ag-Te bonds and considerable Ag-Ag interactions, which support the complex anionic character of the structure. The compound is thermally stable up to 450 °C in an inert atmosphere.

  16. Hydrogen in semiconductors II

    CERN Document Server

    Nickel, Norbert H; Weber, Eicke R; Nickel, Norbert H


    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise that this tradition ...

  17. Basic Semiconductor Physics

    CERN Document Server

    Hamaguchi, Chihiro


    This book presents a detailed description of the basic semiconductor physics. The reader is assumed to have a basic command of mathematics and some elementary knowledge of solid state physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. The reader can understand three different methods of energy band calculations, empirical pseudo-potential, k.p perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for full band Monte Carlo simulation are discussed. Experiments and theoretical analysis of cyclotron resonance are discussed in detail because the results are essential to the understanding of semiconductor physics. Optical and transport properties, magneto-transport, two dimensional electron gas transport (HEMT and MOSFET), and quantum transport are reviewed, explaining optical transition, electron phonon interactions, electron mob...

  18. Fundamentals of semiconductor lasers

    CERN Document Server

    Numai, Takahiro


    This book explains physics under the operating principles of semiconductor lasers in detail based on the experience of the author, dealing with the first manufacturing of phase-shifted DFB-LDs and recent research on transverse modes.   The book also bridges a wide gap between journal papers and textbooks, requiring only an undergraduate-level knowledge of electromagnetism and quantum mechanics, and helps readers to understand journal papers where definitions of some technical terms vary, depending on the paper. Two definitions of the photon density in the rate equations and two definitions of the phase-shift in the phase-shifted DFB-LD are explained, and differences in the calculated results are indicated, depending on the definitions.    Readers can understand the physics of semiconductor lasers and analytical tools for Fabry-Perot LDs, DFB-LDs, and VCSELs and will be stimulated to develop semiconductor lasers themselves.

  19. Semiconductor opto-electronics

    CERN Document Server

    Moss, TS; Ellis, B


    Semiconductor Opto-Electronics focuses on opto-electronics, covering the basic physical phenomena and device behavior that arise from the interaction between electromagnetic radiation and electrons in a solid. The first nine chapters of this book are devoted to theoretical topics, discussing the interaction of electromagnetic waves with solids, dispersion theory and absorption processes, magneto-optical effects, and non-linear phenomena. Theories of photo-effects and photo-detectors are treated in detail, including the theories of radiation generation and the behavior of semiconductor lasers a

  20. Introductory semiconductor device physics

    CERN Document Server

    Parker, Greg


    ATOMS AND BONDINGThe Periodic TableIonic BondingCovalent BondingMetallic bondingvan der Waals BondingStart a DatabaseENERGY BANDS AND EFFECTIVE MASSSemiconductors, Insulators and MetalsSemiconductorsInsulatorsMetalsThe Concept of Effective MassCARRIER CONCENTRATIONS IN SEMICONDUCTORSDonors and AcceptorsFermi-LevelCarrier Concentration EquationsDonors and Acceptors Both PresentCONDUCTION IN SEMICONDUCTORSCarrier DriftCarrier MobilitySaturated Drift VelocityMobility Variation with TemperatureA Derivation of Ohm's LawDrift Current EquationsSemiconductor Band Diagrams with an Electric Field Presen

  1. Optical processes in semiconductors

    CERN Document Server

    Pankove, Jacques I


    Based on a series of lectures at Berkeley, 1968-1969, this is the first book to deal comprehensively with all of the phenomena involving light in semiconductors. The author has combined, for the graduate student and researcher, a great variety of source material, journal research, and many years of experimental research, adding new insights published for the first time in this book.Coverage includes energy states in semiconductors and their perturbation by external parameters, absorption, relationships between optical constants, spectroscopy, radiative transitions, nonradiative recombination

  2. Growth of photovoltaic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yablonovitch, E. (Bell Communications Research, Red Bank, NJ (United States)); Stringfellow, G.B. (Univ. of Utah, Salt Lake City (United States)); Greene, J.E. (Univ. of Illinois, Urbana (United States))


    We assess the opportunities for improving the quality and lowering the cost of thin crystalline semiconductor films for photovoltaics. We find that novel growth and processing methods can lower the cost of crystalline semiconductor films to satisfy the economic conditions for a major expansion of the photovoltaic industry. The research requirements are in the areas of novel precursors for vapor phase growth, atomic layer epitaxy for unprecedented control, and the requirement for novel in situ and ex situ probes to ensure that the new growth methods are producing the utmost in photovoltaic material quality. 42 refs.

  3. Advances in semiconductor lasers

    CERN Document Server

    Coleman, James J; Jagadish, Chennupati


    Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. Originally widely known as the ""Willardson and Beer"" Series, it has succeeded in publishing numerous landmark volumes and chapters. The series publishes timely, highly relevant volumes intended for long-term impact and reflecting the truly interdisciplinary nature of the field. The volumes in Semiconductors and Semimetals have been and will continue to be of great interest to physicists, chemists, materials scientists, and device engineers in academia, scien

  4. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith (United States)

    Hilsenbeck, S.J.; McCarley, R.E.; Schrader, G.L.; Xie, X.B.


    New amorphous molybdenum/tungsten sulfides with the general formula M{sup n+}{sub 2x/n}(L{sub 6}S{sub 8})S{sub x}, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M{sub 6}S{sub 8}){sup 0} cluster units are present. Vacuum thermolysis of the amorphous Na{sub 2x}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH first produces poorly crystalline NaMo{sub 6}S{sub 8} by disproportionation at 800 C and well-crystallized NaMo{sub 6}S{sub 8} at {>=} 900 C. Ion-exchange of the sodium material in methanol with soluble M{sup 2+} and M{sup 3+} salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M{sup n+}{sub 2x/n}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M{sup n+}{sub 2x/n}Mo{sub 6}S{sub 8+x}(MeOH){sub y}[MMOS] (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as ``Chevrel phase-like`` in that both contain Mo{sub 6}S{sub 8} cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst is shown to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS{sub 2} catalysts. 9 figs.

  5. Computational design of a robust two-dimensional antiferromagnetic semiconductor (United States)

    Chabungbam, Satyananda; Sen, Prasenjit


    Using density functional theory calculations, we establish the hitherto unknown compound CrCTe3 to be a stable antiferromagnetic semiconductor in the R 3 ¯ crystal structure with an indirect fundamental gap. Successive layers in the bulk compound are weakly bound by van der Waals forces so that individual layers can be easily exfoliated. A monolayer of CrCTe3 is also an antiferromagnetic semiconductor. The monolayer is structurally stable over a large range of compressive and tensile strains, and the antiferromagnetic state is robust over this strain range. Band gap of the monolayer can be tuned by as much as 50% by applying strain in this range.

  6. Investigation of Electrical and Optical Properties of Bulk III-V Ternary Semiconductors (United States)


    recombination peaks was approximately 3 meV. [30] Mirin et al. studied high quality In0.3Ga0.7As quantum dots grown by molecular beam epitaxy 8, pp. 1492-1497, 2001. 7. R. Mirin , J. Ibbetson, K. Nishi, A. Gossard, and J. Bowers, “1.3 µm photoluminescence from InGaAs quantum dots on

  7. Metal semiconductor contacts and devices

    CERN Document Server

    Cohen, Simon S; Einspruch, Norman G


    VLSI Electronics Microstructure Science, Volume 13: Metal-Semiconductor Contacts and Devices presents the physics, technology, and applications of metal-semiconductor barriers in digital integrated circuits. The emphasis is placed on the interplay among the theory, processing, and characterization techniques in the development of practical metal-semiconductor contacts and devices.This volume contains chapters that are devoted to the discussion of the physics of metal-semiconductor interfaces and its basic phenomena; fabrication procedures; and interface characterization techniques, particularl

  8. Handbook of luminescent semiconductor materials

    CERN Document Server

    Bergman, Leah


    Photoluminescence spectroscopy is an important approach for examining the optical interactions in semiconductors and optical devices with the goal of gaining insight into material properties. With contributions from researchers at the forefront of this field, Handbook of Luminescent Semiconductor Materials explores the use of this technique to study semiconductor materials in a variety of applications, including solid-state lighting, solar energy conversion, optical devices, and biological imaging. After introducing basic semiconductor theory and photoluminescence principles, the book focuses

  9. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie


    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  10. Terahertz semiconductor nonlinear optics

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias


    In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz nonlinear......In this proceedings we describe our recent results on semiconductor nonlinear optics, investigated using single-cycle THz pulses. We demonstrate the nonlinear absorption and self-phase modulation of strong-field THz pulses in doped semiconductors, using n-GaAs as a model system. The THz...... is determined by (but not equal to) the electron momentum relaxation rate. Single cycle pulses of light, irrespective of the frequency range to which they belong, inherently have an ultrabroadband spectrum covering many octaves of frequencies. Unlike the single-cycle pulses in optical domain, the THz pulses can...... be easily sampled with sub-cycle resolution using conventional femtosecond lasers. This makes the THz pulses accessible model tools for direct observation of general nonlinear optical phenomena occurring in the single-cycle regime....

  11. Physics of semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Prew, B.A.


    The properties of semiconductors which make them important in the electronic devices industry, and how these properties are controlled by doping, are described. The physics and applications of p-n and other junction devices, and of bulk effect devices are discussed. Avalanche devices, optical devices, solar cells, Schottky barriers, MOS devices, heterojunctions, photoconductors, and transferred electron devices are considered.

  12. Defects in semiconductor nanostructures

    Indian Academy of Sciences (India)

    11] A detailed review article of defects in semiconductor nanostructures is currently under preparation. [12] V Ranjan and Vijay A Singh, J. Appl. Phys. 89, 6415 (2001). [13] V Ranjan, R K Pandey, Manoj K Harbola and Vijay A Singh, Phys. Rev.

  13. A map of high-mobility molecular semiconductors (United States)

    Fratini, S.; Ciuchi, S.; Mayou, D.; de Laissardière, G. Trambly; Troisi, A.


    The charge mobility of molecular semiconductors is limited by the large fluctuation of intermolecular transfer integrals, often referred to as off-diagonal dynamic disorder, which causes transient localization of the carriers' eigenstates. Using a recently developed theoretical framework, we show here that the electronic structure of the molecular crystals determines its sensitivity to intermolecular fluctuations. We build a map of the transient localization lengths of high-mobility molecular semiconductors to identify what patterns of nearest-neighbour transfer integrals in the two-dimensional (2D) high-mobility plane protect the semiconductor from the effect of dynamic disorder and yield larger mobility. Such a map helps rationalizing the transport properties of the whole family of molecular semiconductors and is also used to demonstrate why common textbook approaches fail in describing this important class of materials. These results can be used to rapidly screen many compounds and design new ones with optimal transport characteristics.

  14. Synthesis and characterization of some binary and ternary zirconium iodides

    Energy Technology Data Exchange (ETDEWEB)

    Guthrie, D.H.


    Studies of binary ZrI/sub 4/-Zr and ternary CsI-Zr-ZrI/sub 4/ systems have produced several new compounds. The new binary compounds include two polymorphs of ZrI/sub 2/ (..cap alpha.. and ..beta..) as well as a phase described earlier as ZrI/sub 1/ /sub 8/. ..cap alpha..-ZrI/sub 2/ forms as black lath-like crystals by vapor phase transport reactions between Zr and ZrI/sub 4/ from 700 to 825/sup 0/C. Its structure is monoclinic space group P2/sub 1//m with a = 6.821(2), b = 3.741(1), c = 14.937(3) A and ..beta.. = 95.66(3)/sup 0/, Z = 4 (R = 0.064). ..beta..-ZrI/sub 2/ is formed as black gem-like crystals between 800 to 975/sup 0/C, crystallizing in the trigonal space group R anti 3 with hexagonal axes a = 14.502(2) and c = 9.996(2) A, Z = 18 (R = 0.109). This phase contains a Zr/sub 6/I/sub 12/ cluster. Guinier x-ray powder diffraction data previously reported for ZrI/sub 1/ /sub 8/ has now been found to arise from ..cap alpha..-ZrI/sub 2/ intergrown with an orthorhombic ZrI/sub 2/ phase (perhaps isostructural with WTe/sub 2/ plus an unknown phase. The ternary compounds include Cs/sub 2/ZrI/sub 6/, Cs/sub 3/Zr/sub 2/T/sub 9/ and CsZr/sub 6/I/sub 14/. The first is isostructural with K/sub 2/PtCl/sub 6/. Cs/sub 3/Zr/sub 2/I/sub 9/ is formed from the reaction of CsI, ZrI/sub 4/ and Zr between 700 to 900/sup 0/C as black gem-like crystals which crystallize in the space group P6/sub 3//mmc with a = 8.269(1) and c = 19.908(3) A, z = 2. This phase was found to have a Cs/sub 3/Cr/sub 2/Cl/sub 9/-type structure, d/sub Zr-Zr/ = 3.134(4) A (R = 0.087). CsZr/sub 6/I/sub 14/ forms both rod and gem crystals by the same reaction with more metal between 900 to 950/sup 0/C. It crystallizes in the orthorhombic space group Ccmb with a = 14.275(4), b = 15.880(4) and c = 12.953 (4) A (R = 0.062). This phase also contains a Zr/sub 6/I/sub 12/ cluster.

  15. Carbometalates. Intermediate phases in the ternary systems RE-T-C (RE = Y, La, Gd-Er; T = Cr, Fe, Ru)

    Energy Technology Data Exchange (ETDEWEB)

    Davaasuren, Bambar


    The main motivation of this work was the preparation and characterization of novel compounds in the ternary systems RE-T-C with T = Cr, Fe and Ru with a special focus on compounds containing C{sub 2}{sup n-} and C{sub 3}{sup m-} or mixed C and C{sub 2}{sup n-} as structural units. This would allow to investigate the applicability of the concept of complex anions to this class of materials.

  16. Hardness and Second Phase Percentage of Ni-Ti-Hf Compounds After Heat Treatment at 700C (United States)

    Stanford, Malcolm K.


    The Vickers hardness and second phase precipitation of three ternary intermetallic Ni-Ti-Hf compounds containing either 1, 3 or 5 at.% Hf were compared to 60-Nitinol (55 at.% Ni - 45 at.% Ti). Heat treatment either at 700 C or with a subsequent aging step, hardened the 3 and 5 at.% Hf-containing ternaries to approximately 620 HV (56 HRC). Heat treatment increased the hardness of the 1 at.% Hf compound by more than 25 percent. Average hardness of the 3 and 5 at.% Hf ternaries, though higher than that of the binary Ni-Ti or the Ni-Ti-Hf compound containing 1 at.% Hf, appeared to be fairly insensitive to the different heat treatments. There was a drastic reduction of fatigue-enhancing second phase precipitates for the 5 at.% Hf ternaries compared to the other compounds. These results should guide materials selection for development of aerospace componentry.

  17. Positron annihilation lifetime study of interfaces in ternary polymer blends (United States)

    Meghala, D.; Ramya, P.; Pasang, T.; Raj, J. M.; Ranganathaiah, C.; Williams, J. F.


    A new method based on positron lifetime spectroscopy is developed to characterize individual interfaces in ternary polymer blends and hence determine the composition dependent miscibility level. The method owes its origin to the Kirkwood-Risemann-Zimm (KRZ) model for the evaluation of the hydrodynamic interaction parameters (αij) which was used successfully for a binary blend with a single interface. The model was revised for the present work for ternary polymer blends to account for three interfaces. The efficacy of this method is shown for two ternary blends namely poly(styrene-co-acrylonitrile)/poly (ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and polycaprolactone /poly(styrene-co-acrylonitrile)/poly(vinyl chloride) (PCL/SAN/PVC) at different compositions. An effective hydrodynamic interaction parameter, αeff, was introduced to predict the overall miscibility of ternary blends.

  18. Phase field crystal modeling of ternary solidification microstructures


    Berghoff, Marco; Nestler, Britta


    In the present work, we present a free energy derivation of the multi-component phase-field crystal model [1] and illustrate the capability to simulate dendritic and eutectic solidification in ternary alloys. Fast free energy minimization by a simulated annealing algorithm of an approximated crystal is compared with the free energy of a fully simulated phase field crystal structure. The calculation of ternary phase diagrams from these free energies is described. Based on the free energies rel...

  19. Subarrayed Antenna Array Synthesis Using Ternary Adjusting Method

    Directory of Open Access Journals (Sweden)

    Guolong He


    Full Text Available Ternary adjusting method is proposed and combined with particle swarm optimization (PSO algorithm for subarrayed antenna array synthesis. Ternary variables are introduced to represent element adjustments between adjacent subarrays. Compared to previous methods, rounding-off operations are not required any longer, and the equation constraint of the fixed total element number is also removed, which effectively reduces the complexity of implementation while obtaining improved topology exploration capability simultaneously.

  20. Physical properties of ternary silicide superconductors Li2XSi3 (X = Rh, Os): An ab initio study (United States)

    Alam, M. A.; Zilani, M. A. K.; Parvin, F.; Hadi, M. A.


    An ab initio method, based on the plane wave pseudopotential and the generalized gradient approximation (GGA), is performed to investigate the physical properties such as structural, elastic, electronic and bonding properties of newly synthesized Li2RhSi3 and predicted Li2OsSi3 ternary silicide superconductors for the first time. Both of these compounds are mechanically stable and are brittle in nature. They also have good machinability. Electronic band structures reveal that these compounds have metallic characteristics. They possess complex bonding nature (metallic, covalent and ionic). According to theoretical Vickers hardness, Li2RhSi3 is softer than Li2OsSi3.

  1. Charge distribution in the ternary fragmentation of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kannan, M.T.; Balasubramaniam, M. [Bharathiar University, Department of Physics, Coimbatore (India)


    We present here, for the first time, a study on ternary fragmentation charge distribution of {sup 252}Cf using the convolution integral method and the statistical theory. The charge distribution for all possible charge combinations of a ternary breakup are grouped as a bin containing different mass partitions. Different bins corresponding to various third fragments with mass numbers from A{sub 3} = 16 to 84 are identified with the available experimental masses. The corresponding potential energy surfaces are calculated using the three cluster model for the two arrangements A{sub 1} + A{sub 2} + A{sub 3} and A{sub 1} + A{sub 3} + A{sub 2}. The ternary fragmentation yield values are calculated for the ternary combination from each bin possessing minimum potential energy. The yields of the resulting ternary combinations as a function of the charge numbers of the three fragments are analyzed for both the arrangements. The calculations are carried out at different excitation energies of the parent nucleus. For each excitation energy the temperature of the three fragments are iteratively computed conserving the total energy. The distribution of fragment temperatures corresponding to different excitation energies for some fixed third fragments are discussed. The presence of the closed shell nucleus Sn in the favourable ternary fragmentation is highlighted. (orig.)

  2. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar


    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  3. Structural and Optical Properties of Single- and Few-Layer Magnetic Semiconductor CrPS4. (United States)

    Lee, Jinhwan; Ko, Taeg Yeoung; Kim, Jung Hwa; Bark, Hunyoung; Kang, Byunggil; Jung, Soon-Gil; Park, Tuson; Lee, Zonghoon; Ryu, Sunmin; Lee, Changgu


    Atomically thin binary two-dimensional (2D) semiconductors exhibit diverse physical properties depending on their composition, structure, and thickness. By adding another element in these materials, which will lead to formation of ternary 2D materials, the property and structure would greatly change and significantly expanded applications could be explored. In this work, we report structural and optical properties of atomically thin chromium thiophosphate (CrPS4), a ternary antiferromagnetic semiconductor. Its structural details were revealed by X-ray and electron diffraction. Transmission electron microscopy showed that preferentially cleaved edges are parallel to diagonal Cr atom rows, which readily identified their crystallographic orientations. Strong in-plane optical anisotropy induced birefringence that also enabled efficient determination of crystallographic orientation using polarized microscopy. The lattice vibrations were probed by Raman spectroscopy and exhibited significant dependence on thickness of crystals exfoliated down to a single layer. Optical absorption determined by reflectance contrast was dominated by d-d-type transitions localized at Cr3+ ions, which was also responsible for the major photoluminescence peak at 1.31 eV. The spectral features in the absorption and emission spectra exhibited noticeable thickness dependence and hinted at a high photochemical activity for single-layer CrPS4. The current structural and optical investigation will provide a firm basis for future study and application of this kind of atomically thin magnetic semiconductors.

  4. Enthalpy and phase behavior of coal derived liquid mixtures: Technical progress report for the period January-March 1987. [M-cresol/quinoline/tetralin ternary mixture

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.; Kidnay, A.J.


    On July 15, 1984, work was initiated on a program to study the enthalpy and phase behavior of coal derived liquid model compound mixtures. The objectives of this program are to study the enthalpy and phase behavior of a selected ternary model compound system, representative of interactions present in coal derived liquids. Measurements will be made in a Freon 11 reference fluid boil-off calorimeter, and an equilibrium flash vaporization apparatus. These experimental systems have already been developed. Previous studies have indicated that existing data and correlations developed for petroleum fluids are not applicable to coal derived liquids. This is due to the presence of significant concentrations of polar associating heteroatomics in the predominantly aromatic coal liquids. Thus, the ternary system will include an aromatic, a basic nitrogen compound, and a cresol. It is presently planned to study the m-cresol/quinoline/tetralin ternary mixture. Measurements will be made over a wide range of temperature (200 to 750/sup 0/F) and pressure (20 to 1500 psia), for the three pure compounds, the three binary mixtures and selected compositions of the ternary. Both enthalpy and phase behavior measurements will be made. This set of data will be useful as a standard for fitting and evaluating thermodynamic correlations and equations of state that are applicable to associating fluid mixtures, and thus to coal derived liquids. In particular we will attempt to fit both the enthalpy and phase behavior data with a single equation of state using local composition mixing rules and common interaction parameters. During the eleventh quarter, enthalpy measurements have been obtained for the ternary mixtures of m-cresol/quinoline/tetralin with molar ratios 2/3:1/6:1/6 and 1/6:2/3:1/6 m-cresol:quinoline:tetralin. The results are presented in Appendix A. The project has progressed very will during this quarter, and the enthalpy measurements have been completed. 2 refs., 2 figs., 2 tabs.

  5. Basic semiconductor physics

    CERN Document Server

    Hamaguchi, Chihiro


    This book presents a detailed description of basic semiconductor physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. Four different methods of energy band calculations in the full band region are explained: local empirical pseudopotential, non-local pseudopotential, KP perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for analysis of transport properties are discussed. Further, the book examines experiments and theoretical analyses of cyclotron resonance in detail. Optical and transport properties, magneto-transport, two-dimensional electron gas transport (HEMT and MOSFET) and quantum transport are reviewed, while optical transition, electron-phonon interaction and electron mobility are also addressed. Energy and electronic structure of a quantum dot (artificial atom) are explained with the help of Slater determinants. The...

  6. Single frequency semiconductor lasers

    CERN Document Server

    Fang, Zujie; Chen, Gaoting; Qu, Ronghui


    This book systematically introduces the single frequency semiconductor laser, which is widely used in many vital advanced technologies, such as the laser cooling of atoms and atomic clock, high-precision measurements and spectroscopy, coherent optical communications, and advanced optical sensors. It presents both the fundamentals and characteristics of semiconductor lasers, including basic F-P structure and monolithic integrated structures; interprets laser noises and their measurements; and explains mechanisms and technologies relating to the main aspects of single frequency lasers, including external cavity lasers, frequency stabilization technologies, frequency sweeping, optical phase locked loops, and so on. It paints a clear, physical picture of related technologies and reviews new developments in the field as well. It will be a useful reference to graduate students, researchers, and engineers in the field.

  7. Semiconductor physics an introduction

    CERN Document Server

    Seeger, Karlheinz


    Semiconductor Physics - An Introduction - is suitable for the senior undergraduate or new graduate student majoring in electrical engineering or physics. It will also be useful to solid-state scientists and device engineers involved in semiconductor design and technology. The text provides a lucid account of charge transport, energy transport and optical processes, and a detailed description of many devices. It includes sections on superlattices and quantum well structures, the effects of deep-level impurities on transport, the quantum Hall effect and the calculation of the influence of a magnetic field on the carrier distribution function. This 6th edition has been revised and corrected, and new sections have been added to different chapters.

  8. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system. (United States)

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine


    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive

  9. Infrared Semiconductor Metamaterials (United States)


    AFRL-AFOSR-VA-TR-2016-0310 Infrared Semiconductor Metamaterials Jon Schuller UNIVERSITY OF CALIFORNIA SANTA BARBARA 3227 CHEADLE HL SANTA BARBARA, CA...S) AND ADDRESS(ES) University of California , Santa Barbara Office of Research, 3227 Cheadle Hall Santa Barbara, CA 93106-2050 8. PERFORMING...Using Heterojunction Resonators. Advanced Optical Materials, available online (2016). New discoveries, inventions, or patent disclosures: Do you have

  10. Nonradiative recombination in semiconductors

    CERN Document Server

    Abakumov, VN; Yassievich, IN


    In recent years, great progress has been made in the understandingof recombination processes controlling the number of excessfree carriers in semiconductors under nonequilibrium conditions. As a result, it is now possible to give a comprehensivetheoretical description of these processes. The authors haveselected a number of experimental results which elucidate theunderlying physical problems and enable a test of theoreticalmodels. The following topics are dealt with: phenomenological theory ofrecombination, theoretical models of shallow and deep localizedstates, cascade model of carrier captu

  11. Hole crystallization in semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bonitz, M [Institut fuer Theoretische Physik und Astrophysik, Christian-Albrechts-Universitaet Kiel, 24098 Kiel (Germany); Filinov, V S [Institut fuer Theoretische Physik und Astrophysik, Christian-Albrechts-Universitaet Kiel, 24098 Kiel (Germany); Fortov, V E [Institute for High Energy Density, Russian Academy of Sciences, Izhorskay 13/19, Moscow 127412 (Russian Federation); Levashov, P R [Institute for High Energy Density, Russian Academy of Sciences, Izhorskay 13/19, Moscow 127412 (Russian Federation); Fehske, H [Institut fuer Physik, Universitaet Greifswald, l7487 Greifswald (Germany)


    When electrons in a solid are excited to a higher energy band they leave behind a vacancy (hole) in the original band which behaves like a positively charged particle. Here we predict that holes can spontaneously order into a regular lattice in semiconductors with sufficiently flat valence bands. The critical hole to electron effective mass ratio required for this phase transition is found to be of the order of 80.

  12. Hole crystallization in semiconductors


    Bonitz, M.; Filinov, V. S.; Fortov, V. E.; Levashov, P. R.; Fehske, H.


    When electrons in a solid are excited to a higher energy band they leave behind a vacancy (hole) in the original band which behaves like a positively charged particle. Here we predict that holes can spontaneously order into a regular lattice in semiconductors with sufficiently flat valence bands. The critical hole to electron effective mass ratio required for this phase transition is found to be of the order of 80.

  13. Survey of semiconductor physics

    CERN Document Server

    Böer, Karl W


    Any book that covers a large variety of subjects and is written by one author lacks by necessity the depth provided by an expert in his or her own field of specialization. This book is no exception. It has been written with the encouragement of my students and colleagues, who felt that an extensive card file I had accumulated over the years of teaching solid state and semiconductor physics would be helpful to more than just a few of us. This file, updated from time to time, contained lecture notes and other entries that were useful in my research and permitted me to give to my students a broader spectrum of information than is available in typical textbooks. When assembling this material into a book, I divided the top­ ics into material dealing with the homogeneous semiconductor, the subject of the previously published Volume 1, and the inhomoge­ neous semiconductor, the subject of this Volume 2. In order to keep the book to a manageable size, sections of tutorial character which can be used as text for a g...

  14. Electrochemical combustion of indigo at ternary oxide coated titanium anodes

    Directory of Open Access Journals (Sweden)

    María I. León


    Full Text Available The film of iridium and tin dioxides doped with antimony (IrO2-SnO2–Sb2O5 deposited on a Ti substrate (mesh obtained by Pechini method was used for the formation of ·OH radicals by water discharge. Detection of ·OH radicals was followed by the use of the N,N-dimethyl-p-nitrosoaniline (RNO as a spin trap. The electrode surface morphology and composition was characterized by SEM-EDS. The ternary oxide coating was used for the electrochemical combustion of indigo textile dye as a model organic compound in chloride medium. Bulk electrolyses were then carried out at different volumetric flow rates under galvanostatic conditions using a filter-press flow cell. The galvanostatic tests using RNO confirmed that Ti/IrO2-SnO2-Sb2O5 favor the hydroxyl radical formation at current densities between 5 and 7 mA cm-2, while at current density of 10 mA cm-2 the oxygen evolution reaction occurs. The indigo was totally decolorized and mineralized via reactive oxygen species, such as (·OH, H2O2, O3 and active chlorine formed in-situ at the Ti/IrO2-SnO2-Sb2O5 surface at volumetric flow rates between 0.1-0.4 L min-1 and at fixed current density of 7 mA cm-2. The mineralization of indigo carried out at 0.2 L min-1 achieved values of 100 %, with current efficiencies of 80 % and energy consumption of 1.78 KWh m-3.

  15. Mathematical representation of electrophoretic mobility in ternary solvent electrolyte systems

    Directory of Open Access Journals (Sweden)

    "Jouyban A


    Full Text Available Electrophoretic mobilities of salmeterol and phenylpropanolamine in capillary zone electrophoresis were determined using acetate buffer in mixed solvents containing different concentrations of water, methanol and acetonitrile. Maximum electrophoretic mobilities for salmeterol and phenylpropanolamine were observed with water-methanol-acetonitrile ratios of 5:50:45 v/v and 3:60:37 v/v, respectively, and minimum mobilities of both compounds occurred in methanol-acetonitrile ratio of 30:70 v/v. The generated experimental data have been used to evaluate a mathematical model to compute the electrophoretic mobility of the analytes in a ternary solvent electrolyte system. The proposed model is: ln μm =ƒ1 ln μ1+ƒ2 ln μ2+k ƒ3+M1ƒ1 ƒ2+M2 ƒ1ƒ3+M3 ƒ2ƒ3+M4 ƒ1ƒ²1+M5 ƒ²2ƒ3+M6ƒ²2ƒ3+M7ƒ1ƒ2ƒ3. Where μ is the electrophoretic mobility, subscripts m,1, 2 and 3 refer to mixed solvent and solvents 1-3, respectively, f is the volume fraction of the solvent in the mixed solvent system and M1-M7 and K are the model constants calculated by a least squares analysis. The generated experimental data fitted to the model and the back-calculated mobilities were employed to compute the average percentage deviation (APD as an accuracy criterion. The obtained APD for salmeterol and phenylpropanolamine are 3.10 and 2.21%, respectively and the low APD values indicate that the model is able to calculate the mobilities within an acceptable error range.

  16. Photocatalytic semiconductor clusters for fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Wilcoxon, J.P.; Bliss, D.E.; Martin, J.E. [and others


    High quality crystalline, monodisperse nanometer-size semiconductor clusters were successfully grown using an inverse micellar synthesis process and their optical and structural properties were studied. Among the materials studied were PbS, FeS{sub 2}, MoS{sub 2}, CdS and related compounds. The results demonstrated strong electronic quantum confinement effects and broad tailorability of the bandgaps with decreasing cluster size, features that are important for the potential use of these materials as photocatalysts for solar fuel production and solar detoxification. The highlights of the work are included in an Executive Summary.

  17. Laser thermoreflectance for semiconductor thin films metrology (United States)

    Gailly, P.; Hastanin, J.; Duterte, C.; Hernandez, Y.; Lecourt, J.-B.; Kupisiewicz, A.; Martin, P.-E.; Fleury-Frenette, K.


    We present a thermoreflectance-based metrology concept applied to compound semiconductor thin films off-line characterization in the solar cells scribing process. The presented thermoreflectance setup has been used to evaluate the thermal diffusivity of thin CdTe films and to measure eventual changes in the thermal properties of 5 μm CdTe films ablated by nano and picosecond laser pulses. The temperature response of the CdTe thin film to the nanosecond heating pulse has been numerically investigated using the finite-difference time-domain (FDTD) method. The computational and experimental results have been compared.

  18. The electronic structure of impurities in semiconductors

    CERN Multimedia

    Nylandsted larsen, A; Svane, A


    The electronic structure of isolated substitutional or interstitial impurities in group IV, IV-IV, and III-V compound semiconductors will be studied. Mössbauer spectroscopy will be used to investigate the incorporation of the implanted isotopes on the proper lattice sites. The data can be directly compared to theoretical calculations using the LMTO scheme. Deep level transient spectroscopy will be used to identify the band gap levels introduced by metallic impurities, mainly in Si~and~Si$ _{x}$Ge$_{1-x}$. \\\\ \\\\

  19. Two-layer synchronized ternary quantum-dot cellular automata wire crossings (United States)


    Quantum-dot cellular automata are an interesting nanoscale computing paradigm. The introduction of the ternary quantum-dot cell enabled ternary computing, and with the recent development of a ternary functionally complete set of elementary logic primitives and the ternary memorizing cell design of complex processing structures is becoming feasible. The specific nature of the ternary quantum-dot cell makes wire crossings one of the most problematic areas of ternary quantum-dot cellular automata circuit design. We hereby present a two-layer wire crossing that uses a specific clocking scheme, which ensures the crossed wires have the same effective delay. PMID:22507371

  20. Semiconductors: Still a Wide Open Frontier for Scientists/Engineers (United States)

    Seiler, David G.


    A 1995 Business Week article described several features of the explosive use of semiconductor chips today: ``Booming'' personal computer markets are driving high demand for microprocessors and memory chips; (2) New information superhighway markets will `ignite' sales of multimedia and communication chips; and (3) Demand for digital-signal-processing and data-compression chips, which speed up video and graphics, is `red hot.' A Washington Post article by Stan Hinden said that technology is creating an unstoppable demand for electronic elements. This ``digital pervasiveness'' means that a semiconductor chip is going into almost every high-tech product that people buy - cars, televisions, video recorders, telephones, radios, alarm clocks, coffee pots, etc. ``Semiconductors are everywhere.'' Silicon and compound semiconductors are absolutely essential and are pervasive enablers for DoD operations and systems. DoD's Critical Technologies Plan of 1991 says that ``Semiconductor materials and microelectronics are critically important and appropriately lead the list of critical defense technologies.'' These trends continue unabated. This talk describes some of the frontiers of semiconductors today and shows how scientists and engineers can effectively contribute to its advancement. Cooperative, multidisciplinary efforts are increasing. Specific examples will be given for scanning capacitance microscopy and thin-film metrology.

  1. A ternary age-mixing model to explain contaminant occurrence in a deep supply well. (United States)

    Jurgens, Bryant C; Bexfield, Laura M; Eberts, Sandra M


    The age distribution of water from a public-supply well in a deep alluvial aquifer was estimated and used to help explain arsenic variability in the water. The age distribution was computed using a ternary mixing model that combines three lumped parameter models of advection-dispersion transport of environmental tracers, which represent relatively recent recharge (post-1950s) containing volatile organic compounds (VOCs), old intermediate depth groundwater (about 6500 years) that was free of drinking-water contaminants, and very old, deep groundwater (more than 21,000 years) containing arsenic above the USEPA maximum contaminant level of 10 µg/L. The ternary mixing model was calibrated to tritium, chloroflorocarbon-113, and carbon-14 (14C) concentrations that were measured in water samples collected on multiple occasions. Variability in atmospheric 14C over the past 50,000 years was accounted for in the interpretation of (14) C as a tracer. Calibrated ternary models indicate the fraction of deep, very old groundwater entering the well varies substantially throughout the year and was highest following long periods of nonoperation or infrequent operation, which occured during the winter season when water demand was low. The fraction of young water entering the well was about 11% during the summer when pumping peaked to meet water demand and about 3% to 6% during the winter months. This paper demonstrates how collection of multiple tracers can be used in combination with simplified models of fluid flow to estimate the age distribution and thus fraction of contaminated groundwater reaching a supply well under different pumping conditions. Published 2014. This article is a U.S. Government work and is in the public domain in the USA. Groundwater published by Wiley Periodicals, Inc. on behalf of National Ground Water Association.

  2. Electrodes for Semiconductor Gas Sensors (United States)

    Lee, Sung Pil


    The electrodes of semiconductor gas sensors are important in characterizing sensors based on their sensitivity, selectivity, reversibility, response time, and long-term stability. The types and materials of electrodes used for semiconductor gas sensors are analyzed. In addition, the effect of interfacial zones and surface states of electrode–semiconductor interfaces on their characteristics is studied. This study describes that the gas interaction mechanism of the electrode–semiconductor interfaces should take into account the interfacial zone, surface states, image force, and tunneling effect. PMID:28346349

  3. Liquid-liquid equilibria for ternary polymer mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Suk Yung [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of); Bae, Young Chan, E-mail: [Division of Chemical Engineering and Molecular Thermodynamics Laboratory, Hanyang University, Seoul 133-791 (Korea, Republic of)


    Graphical abstract: We developed a molecular thermodynamic model for multicomponent systems and discribed the phase equilibrium for ternary polymer mixtures by using the model parameters obtained from the binary systems. Research highlights: {yields} Model parameters were obtained from the binary systems. {yields} The obtained parameters were directly used to predict the ternary data. {yields} The undetermined parameters were used to correlate the ternary data. {yields} The proposed model agreed well with the experimental data. - Abstract: A molecular thermodynamic model for multicomponent systems based on a closed-packed lattice model is presented based on two contributions; entropy and energy contribution. The calculated liquid-liquid equilibria of ternary chainlike mixtures agreed with Monte Carlo simulation results. The proposed model can satisfactorily predict Types 0, 1, 2 and 3 phase separations of the Treybal classification. The model parameters obtained from the binary systems were used to directly predict real ternary systems and the calculated results correlated well with experimental data using few adjustable parameters. Specific interactions in associated binary systems were considered using a secondary lattice.

  4. Layered semiconductor neutron detectors (United States)

    Mao, Samuel S; Perry, Dale L


    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  5. Hydrogen in semiconductors

    CERN Document Server

    Pankove, Jacques I


    Hydrogen plays an important role in silicon technology, having a profound effect on a wide range of properties. Thus, the study of hydrogen in semiconductors has received much attention from an interdisciplinary assortment of researchers. This sixteen-chapter volume provides a comprehensive review of the field, including a discussion of hydrogenation methods, the use of hydrogen to passivate defects, the use of hydrogen to neutralize deep levels, shallow acceptors and shallow donors in silicon, vibrational spectroscopy, and hydrogen-induced defects in silicon. In addition to this detailed cove

  6. Physics of Organic Semiconductors

    CERN Document Server

    Brütting, Wolfgang


    Filling the gap in the literature currently available, this book presents an overview of our knowledge of the physics behind organic semiconductor devices. Contributions from 18 international research groups cover various aspects of this field, ranging from the growth of organic layers and crystals, their electronic properties at interfaces, their photophysics and electrical transport properties to the application of these materials in such different devices as organic field-effect transistors, photovoltaic cells and organic light-emitting diodes. From the contents:. * Excitation Dynamics in O

  7. Band structure of semiconductors

    CERN Document Server

    Tsidilkovski, I M


    Band Structure of Semiconductors provides a review of the theoretical and experimental methods of investigating band structure and an analysis of the results of the developments in this field. The book presents the problems, methods, and applications in the study of band structure. Topics on the computational methods of band structure; band structures of important semiconducting materials; behavior of an electron in a perturbed periodic field; effective masses and g-factors for the most commonly encountered band structures; and the treatment of cyclotron resonance, Shubnikov-de Haas oscillatio

  8. Basic properties of semiconductors

    CERN Document Server

    Landsberg, PT


    Since Volume 1 was published in 1982, the centres of interest in the basic physics of semiconductors have shifted. Volume 1 was called Band Theory and Transport Properties in the first edition, but the subject has broadened to such an extent that Basic Properties is now a more suitable title. Seven chapters have been rewritten by the original authors. However, twelve chapters are essentially new, with the bulk of this work being devoted to important current topics which give this volume an almost encyclopaedic form. The first three chapters discuss various aspects of modern band theory and the

  9. Controllable growth of semiconductor heterostructures mediated by bifunctional Ag2S nanocrystals as catalyst or source-host. (United States)

    Zhu, Guoxing; Xu, Zheng


    We demonstrate that Ag(2)S nanocrystals are the bifunctional mediator for controllable growth of semiconductor heterostructures including more complicated multisegments heterostructures in solution-phase, which is a new type of nanomediator and quite different from the metal nanoparticle catalyst. The intrinsic high Ag(+) ion mobility makes Ag(2)S nanocrystals not only exhibit excellent catalytic function for growth of metal sulfide heterostructures but also act as a source-host for growth of ternary semiconductor heterostructures, for example, Ag(2)S-AgInS(2). The semiconductors grow epitaxially from or inward in Ag(2)S nanocrystals forming single-crystalline heterostructures. Moreover, the method developed here also can construct multisegments heterostructures, for example, Ag(2)S-CdS-ZnS, AgInS(2)-Ag(2)S-AgInS(2). The interfacial structure is still stable even if the lattice mismatch is quite large, which is a unique feature of this method.

  10. Photoluminescence polarization anisotropy for studying long-range structural ordering within semiconductor multi-atomic alloys and organic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Prutskij, T.; Percino, J. [Instituto de Ciencias, BUAP, Privada 17 Norte, No 3417, col. San Miguel Huyeotlipan, 72050, Puebla, Pue. (Mexico); Orlova, T. [Department of Chemical and Biochemical Engineering, University of Notre Dame, Notre Dame, IN (United States); Vavilova, L. [Ioffe Physical-Technical Institute, 26 Polytekhnicheskaya, St Petersburg 194021, Russian Federation (Russian Federation)


    Long-range structural ordering within multi-component semiconductor alloys and organic crystals leads to significant optical anisotropy and, in particular, to anisotropy of the photoluminescence (PL) emission. The PL emission of ternary and quaternary semiconductor alloys is polarized if there is some amount of the atomic ordering within the crystal structure. We analyze the polarization of the PL emission from the quaternary GaInAsP semiconductor alloy grown by Liquid Phase Epitaxy (LPE) and conclude that it could be caused by low degree atomic ordering within the crystal structure together with the thermal biaxial strain due to difference between the thermal expansion coefficients of the layer and the substrate. We also study the state of polarization of the PL from organic crystals in order to identify different features of the crystal PL spectrum.

  11. The ternary system K2SO4MgSO4CaSO4 (United States)

    Rowe, J.J.; Morey, G.W.; Silber, C.C.


    Melting and subsolidus relations in the system K2SO4MgSO4CaSO4 were studied using heating-cooling curves, differential thermal analysis, optics, X-ray diffraction at room and high temperatures and by quenching techniques. Previous investigators were unable to study the binary MgSO4CaSO4 system and the adjacent area in the ternary system because of the decomposition of MgSO4 and CaSO4 at high temperatures. This problem was partly overcome by a novel sealed-tube quenching method, by hydrothermal synthesis, and by long-time heating in the solidus. As a result of this study, we found: (1) a new compound, CaSO4??3MgSO4 (m.p. 1201??C) with a field extending into the ternary system; (2) a high temperature form of MgSO4 with a sluggishly reversible inversion. An X-ray diffraction pattern for this polymorphic form is given; (3) the inversion of ??-CaSO4 (anhydrite) to ??-CaSO4 at 1195??C, in agreement with grahmann; (1) (4) the melting point of MgSO4 is 1136??C and that of CaSO4 is 1462??C (using sealed tube methods to prevent decomposition of the sulphates); (5) calcium langbeinite (K2SO4??2CaSO4) is the only compound in the K2SO4CaSO4 binary system. This resolved discrepancies in the results of previous investigators; (6) a continuous solid solution series between congruently melting K2SOP4??2MgSO4 (langbeinite) and incongruently melting K2SO4??2CaSO4 (calcium langbeinite); (7) the liquidus in the ternary system consists of primary phase fields of K2SO4, MgSO4, CaSO4, langbeinite-calcium langbeinite solid solution, and CaSO4??3MgSO4. The CaSO4 field extends over a large portion of the system. Previously reported fields for the compounds (K2SO4??MgSO4??nCaSO4), K2SO4??3CaSO4 and K2SO4??CaSO4 were not found; (8) a minimum in the ternary system at: 740??C, 25% MgSO4, 6% CaSO4, 69% K2SO4; and ternary eutectics at 882??C, 49% MgSO4, 19% CaSO4, 32% K2SO4; and 880??, 67??5% MgSO4, 5% CaSO4, 27??5% K2SO4. ?? 1967.

  12. FY 1993 report on the results of the technology development for the commercialization of the photovoltaic power system. Development of the solar cell use compound semiconductor production system - development of flight use testing machine; 1993 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyo denchiyo kagobutsu handotai seizo sochi kaihatsu (hikoyo shikenki no kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)



    For a new breakthrough of the technology of the photovoltaic power generation, the paper aims at developing a combined heating furnace, a focal heating furnace and a single heating furnace which are necessary to produce crystals of the substrate of compound semiconductors for high quality solar cell under the microgravity environment obtained in the space, and also the systems related to the functions indispensable to the operation of the above-mentioned furnaces. This report is Vol. 2/3, and described the mission operation in Chapter 7, repair of PFM battery in Chapter 8, mechanical system ground support equipment and maintenance/inspection in Chapter 9, and electrical system ground support equipment and maintenance/repair in Chapter 10. In Chapter 7, described were the arrangement of operation of electrical furnace, operation manual of electrical furnace, procedures for operation, database, training, rehearsal plan, etc. In Chapter 8, of the battery repair plan, the paper carried out the repair design/repair work of battery, and described the state where a test to accept the test specifications is possible. In Chapter 9, indicated were the documents for application and reference of the maintenance/inspection of MGSE. In Chapter 10, the paper reported on the repairs for adaptation for the maintenance and lunching work of EGSE. (NEDO)

  13. FY 1996 Report on the results of development of photovoltaic power generation system commercialization technologies. Development of device for producing compound semiconductors for photovoltaic cells (Development of flying tester); 1996 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Taiyo denchiyo kagobutsu handotai seizo sochi kaihatsu - hikoyo shikenki no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)



    The compound semiconductor production process is tested under a microgravity by the space experiment/observation free flier (SFU), to reduce the photovoltaic power generation cost. Described herein are the FY 1996 results. The device is confirmed to work as planned by the full-scale test conducted in FY 1995, when it stood on the orbit and was recovered by the space shuttle STS-72 January, 1996. The recovered SFU-carried devices, including the electrical furnace and related subsystems, were found to normally function, and it was concluded that they could be evaluated and analyzed after the flight. The comprehensive evaluation and analysis of their electrical, mechanical, thermal functions have confirmed that they functioned and showed performance as planned, demonstrating validity of the designs and production procedures. The test samples were taken out of the recovered combined furnace, focus furnace and single-heat furnace for the space environment utilization tests. The other samples had much more uniform compositional distributions than those produced on the ground. (NEDO)

  14. Enhanced charge separation in ternary P3HT/PCBM/CuInS2 nanocrystals hybrid solar cells. (United States)

    Lefrançois, Aurélie; Luszczynska, Beata; Pepin-Donat, Brigitte; Lombard, Christian; Bouthinon, Benjamin; Verilhac, Jean-Marie; Gromova, Marina; Faure-Vincent, Jérôme; Pouget, Stéphanie; Chandezon, Frédéric; Sadki, Saïd; Reiss, Peter


    Geminate recombination of bound polaron pairs at the donor/acceptor interface is one of the major loss mechanisms in organic bulk heterojunction solar cells. One way to overcome Coulomb attraction between opposite charge carriers and to achieve their full dissociation is the introduction of high dielectric permittivity materials such as nanoparticles of narrow band gap semiconductors. We selected CuInS2 nanocrystals of 7.4 nm size, which present intermediate energy levels with respect to poly(3-hexylthiophene) (P3HT) and Phenyl-C61-butyric acid methyl ester (PCBM). Efficient charge transfer from P3HT to nanocrystals takes place as evidenced by light-induced electron spin resonance. Charge transfer between nanocrystals and PCBM only occurs after replacing bulky dodecanethiol (DDT) surface ligands with shorter 1,2-ethylhexanethiol (EHT) ligands. Solar cells containing in the active layer a ternary blend of P3HT:PCBM:CuInS2-EHT nanocrystals in 1:1:0.5 mass ratio show strongly improved short circuit current density and a higher fill factor with respect to the P3HT:PCBM reference device. Complementary measurements of the absorption properties, external quantum efficiency and charge carrier mobility indicate that enhanced charge separation in the ternary blend is at the origin of the observed behavior. The same trend is observed for blends using the glassy polymer poly(triarylamine) (PTAA).

  15. Molecular coatings of nitride semiconductors for optoelectronics, electronics, and solar energy harvesting

    KAUST Repository

    Ng, Tien Khee


    Gallium nitride based semiconductors are provided having one or more passivated surfaces. The surfaces can have a plurality of thiol compounds attached thereto for enhancement of optoelectronic properties and/or solar water splitting properties. The surfaces can also include wherein the surface has been treated with chemical solution for native oxide removal and / or wherein the surface has attached thereto a plurality of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof to create a treated surface for enhancement of optoelectronic properties and / or solar water splitting properties. Methods of making the gallium nitride based semiconductors are also provided. Methods can include cleaning a native surface of a gallium nitride semiconductor to produce a cleaned surface, etching the cleaned surface to remove oxide layers on the surface, and applying single or multiple coatings of nitrides, oxides, insulating compounds, thiol compounds, or a combination thereof attached to the surface.

  16. Experimental investigation and thermodynamic assessment of phase equilibria in the Nb–Si–Zr ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.; Guo, Y.H. [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Yang, S.Y.; Shi, Z.; Wang, C.P. [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China); Liu, X.J., E-mail: [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Research Center of Materials Design and Applications, Xiamen University, Xiamen 361005 (China)


    Highlights: • The sections of Nb–Si–Zr system at 1373, 1473 and 1573 K were determined. • Large solubilities of Nb in αZr{sub 5}Si{sub 4}, Zr{sub 3}Si{sub 2} and Zr{sub 2}Si phases were observed. • The thermodynamic assessment of Nb–Si–Zr ternary system was carried out. - Abstract: In this study, the phase equilibria of Nb–Si–Zr at 1373 K, 1473 K and 1573 K were experimentally determined by means of back-scattered electron (BSE), electron probe microanalysis (EPMA) and X-ray diffraction (XRD). The results show that there were five three-phase regions and sixteen two-phase regions in the studied isothermal sections, and no any ternary compounds were found. The solubility of Si in the Nb–Zr side is very small. Large solubilities of Nb in αZr{sub 5}Si{sub 4}, Zr{sub 3}Si{sub 2} and Zr{sub 2}Si phases were observed, otherwise the solubilities of Nb in ZrSi{sub 2}, αZrSi and Zr{sub 3}Si phases are relatively small. Based on the present experimental results, the thermodynamic assessment of Nb–Si–Zr system was carried out using the CALPHAD (Calculation of Phase Diagrams) method. The current calculated phase diagrams are in reasonable agreement with the present experimental data.

  17. The ternary post-transition metal carbodiimide SrZn(NCN){sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Corkett, Alex J.; Konze, Philipp M. [Institute of Inorganic Chemistry, RWTH Aachen University, Aachen (Germany); Dronskowski, Richard [Institute of Inorganic Chemistry, RWTH Aachen University, Aachen (Germany); Juelich-Aachen Research Alliance (JARA-HPC), RWTH-Aachen University, Aachen (Germany)


    SrZn(NCN){sub 2}, the first example of a ternary post-transition metal carbodiimide, was prepared by a solid-state metathesis reaction. The crystal structure was solved from PXRD data and found to adopt the orthorhombic (Cmcm) BaZnSO structure, a high symmetry modification of that expressed by the oxide analogue SrZnO{sub 2}. Locally, SrZn(NCN){sub 2} features ZnN{sub 4} tetrahedra and SrN{sub 6} trigonal prisms similar to those in quarternary LiSr{sub 2}M(NCN){sub 4} (M = Al{sup 3+} and Ga{sup 3+}) phases, however, the overall topologies are distinct with single chains in the former and double chains in the latter. Electronic structure calculations indicate an indirect bandgap of about 2.95 eV in SrZn(NCN){sub 2}, slightly lower than the experimentally observed bandgap of 3.4 eV in SrZnO{sub 2} and consistent with a greater degree of covalency. The structural similarities between SrZn(NCN){sub 2} and oxychalcogenide analogues highlight the pseudochalcogenide character of NCN{sup 2-} and suggest that the title compound may serve as a template for accessing novel ternary carbodiimides featuring tetrahedrally coordinated transition metals. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Doped semiconductor nanocrystal junctions

    Energy Technology Data Exchange (ETDEWEB)

    Borowik, Ł.; Mélin, T., E-mail: [Institut d’Electronique, de Microélectronique et de Nanotechnologie, CNRS-UMR8520, Avenue Poincaré, F-59652 Villeneuve d’Ascq (France); Nguyen-Tran, T.; Roca i Cabarrocas, P. [Laboratoire de Physique des Interfaces et des Couches Minces, CNRS-UMR7647, Ecole Polytechnique, F-91128 Palaiseau (France)


    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  19. Squeezed light in semiconductors

    CERN Document Server

    Ward, M B


    Experimental evidence is presented for the generation of photon-number squeezed states of light as a result of multi-photon absorption. Photon-number squeezing as a result of non-linear absorption has long been predicted and results have been obtained utilising two very different material systems: (i) an AIGaAs waveguide in which high optical intensities can be maintained over a relatively long interaction length of 2 mm; (ii) the organic polymer p-toluene sulphonate polydiacetylene that is essentially a one-dimensional semiconductor possessing a highly nonlinear optical susceptibility. The resulting nonlinear absorption is shown to leave the transmitted light in a state that is clearly nonclassical, exhibiting photon-number fluctuations below the shot-noise limit. Tuning the laser wavelength across the half-bandgap energy has enabled a comparison between two- and three-photon processes in the semiconductor waveguide. The correlations created between different spectral components of a pulsed beam of light as ...

  20. Completed Local Ternary Pattern for Rotation Invariant Texture Classification

    Directory of Open Access Journals (Sweden)

    Taha H. Rassem


    Full Text Available Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP and the Completed Local Binary Count (CLBC, have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP is proposed to be more robust to noise than LBP, however, the latter’s weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors.

  1. On the interpretation, verification and calibration of ternary probabilistic forecasts

    CERN Document Server

    Jupp, Tim E; Coelho, Caio A S; Stephenson, David B


    We develop a geometrical interpretation of ternary probabilistic forecasts in which forecasts and observations are regarded as points inside a triangle. Within the triangle, we define a continuous colour palette in which hue and colour saturation are defined with reference to the observed climatology. In contrast to current methods, forecast maps created with this colour scheme convey all of the information present in each ternary forecast. The geometrical interpretation is then extended to verification under quadratic scoring rules (of which the Brier Score and the Ranked Probability Score are well--known examples). Each scoring rule defines an associated triangle in which the square roots of the \\emph{score}, the \\emph{reliability}, the \\emph{uncertainty} and the \\emph{resolution} all have natural interpretations as root--mean--square distances. This leads to our proposal for a \\emph{Ternary Reliability Diagram} in which data relating to verification and calibration can be summarised. We illustrate these id...

  2. [Synthesis and luminescence properties of reactive ternary europium complexes]. (United States)

    Guo, Dong-cai; Shu, Wan-gen; Zhang, Wei; Liu, You-nian; Zhou, Yue


    In this paper, five new reactive ternary europium complexes were synthesized with the first ligand of 1,10-phenanthroline and the reactive second ligands of maleic anhydride, acrylonitrile, undecenoic acid, oleic acid and linoleic acid, and also characterized by means of elemental analysis, EDTA titrimetric method, FTIR spectra and UV spectra. The fluorescence spectra show that the five new ternary complexes have much higher luminescence intensity than their corresponding binary complexes, and the synergy ability sequence of the five reactive ligands is as follows: linoleic acid > oleic acid > acrylonitrile > maleic anhydride > undecenoic acid. At the same time, the reactive ternary europium complexes coordinated with the reactive ligands, which can be copolymerized with other monomers, will provide a new way for the synthesis of bonding-type rare earth polymer functional materials with excellent luminescence properties.

  3. Variable temperature semiconductor film deposition (United States)

    Li, X.; Sheldon, P.


    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  4. Process for producing chalcogenide semiconductors (United States)

    Noufi, R.; Chen, Y.W.


    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  5. Semiconductor materials and their properties

    NARCIS (Netherlands)

    Reinders, Angelina H.M.E.; Verlinden, Pierre; van Sark, Wilfried; Freundlich, Alexandre; Reinders, Angele; Verlinden, Pierre; van Sark, Wilfried; Freundlich, Alexandre


    Semiconductor materials are the basic materials which are used in photovoltaic (PV) devices. This chapter introduces solid-state physics and semiconductor properties that are relevant to photovoltaics without spending too much time on unnecessary information. Usually atoms in the group of

  6. Semiconductor photocatalysis principles and applications

    CERN Document Server

    Kisch, Horst


    Focusing on the basic principles of semiconductor photocatalysis, this book also gives a brief introduction to photochemistry, photoelectrochemistry, and homogeneous photocatalysis. In addition, the author - one of the leading authorities in the field - presents important environmental and practical aspects. A valuable, one-stop source for all chemists, material scientists, and physicists working in this area, as well as novice researchers entering semiconductor photocatalysis.

  7. Constructing a novel carbon nitride/polyaniline/ZnO ternary heterostructure with enhanced photocatalytic performance using exfoliated carbon nitride nanosheets as supports. (United States)

    Pandiselvi, Kannusamy; Fang, Huaifang; Huang, Xiubo; Wang, Jingyu; Xu, Xiaochan; Li, Tao


    Graphitic carbon nitride (CN) is an emerging photocatalyst with promising prospect, but presently it still falls short on photocatalytic efficiency and photoresponsive range. We herein constructed a novel ternary heterostructure by hybridization of conducting polymer and semiconductor with CN. The exfoliated two dimension CN nanosheets (CN-NSs) are superior to bulk CN as both catalysts and supporting materials. Most recently, there are few reports involving the construction of heterojunction photocatalysts using CN-NSs as supports. The improvement of charge separation efficiency, specific surface area and visible light harvesting is simultaneously achieved in such a novel ternary heterostructure due to the synergetic effect of polyaniline (PANI) and ZnO coupling. As a result, the CN-NS/PANI/ZnO photocatalyst possesses excellent visible photocatalytic performance for MB and 4-CP degradation with a rate constant of 0.026 and 0.0049min(-1), which is about 3.6 and 3.3 times of CN, respectively. The enhanced mechanism is proposed based on the confirmation of OH and h(+) as main oxidative species. Overall, this work can not only yield high-efficient visible photocatalysts but also provide deeper insight into the enhanced mechanisms of CN-NS-based ternary heterostructure. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Phase structure and tensile creep of recycled poly(ethylene terephthalate/short glass fibers/impact modifier ternary composites

    Directory of Open Access Journals (Sweden)


    Full Text Available Binary and ternary composites of recycled poly(ethylene terephtalate (rPET, short glass fibres (SGF and/or impact modifier (IM were prepared by melt compounding and injection moulding. SEM images of rPET/IM fracture surfaces indicated that IM particles of about 1–2 µm in diameter were uniformly distributed in the rPET matrix, but with a poor adhesion level. Microphotographs of PET/SGF composites evidenced brittle fracture proceeding through the matrix and strong adhesion between components. In ternary composites SGF were evenly distributed, while IM particles were no longer detectable. Tensile creep of rPET and prepared composites was investigated under short and long term testing conditions at various stress levels. Main part of the tensile creep corresponded to the elastic time-independent component, while the timedependent component was rather limited even at relatively high stresses. While SGF accounted for a significant decrease in the overall creep compliance, the incorporation of IM induced a small decrease in the compliance and a non-linear viscoelastic behavior. In ternary composites, the reinforcing effects of SGF was dominating. Under a constant stress, the logarithm of compliance grew linearly with the logarithm of time. The creep rate, which resulted to be generally very small for all tested materials, was slightly reduced by SGF and increased by IM.

  9. Organic semiconductors in a spin

    CERN Document Server

    Samuel, I


    A little palladium can go a long way in polymer-based light-emitting diodes. Inorganic semiconductors such as silicon and gallium arsenide are essential for countless applications in everyday life, ranging from PCs to CD players. However, while they offer unrivalled computational speed, inorganic semiconductors are also rigid and brittle, which means that they are less suited to applications such as displays and flexible electronics. A completely different class of materials - organic semiconductors - are being developed for these applications. Organic semiconductors have many attractive features: they are easy to make, they can emit visible light, and there is tremendous scope for tailoring their properties to specific applications by changing their chemical structure. Research groups and companies around the world have developed a wide range of organic-semiconductor devices, including transistors, light-emitting diodes (LEDs), solar cells and lasers. (U.K.)

  10. Thermodynamic Study of Sn-Bi-Nd, Tb Ternary Systems (United States)

    Xu, F.; Chen, Y. T.; Ye, R.; Chen, Y. Y.; Su, X. H.; Wang, S. L.; Fu, C. Y.


    The aim of this study was to investigate the effect of the addition of rare earth elements on Sn-Bi-based alloy, and to study the phase equilibrium of Sn-Bi-Nd, Tb ternary systems by means of establishing the thermodynamic database. Combined with the thermodynamic parameters of relevant binary systems, the thermodynamic database of the Sn-Bi-Nd, Tb ternary systems has been developed to present the significant information for the design of low-temperature lead-free solder alloys.

  11. Ternary jitter-based true random number generator (United States)

    Latypov, Rustam; Stolov, Evgeni


    In this paper a novel family of generators producing true uniform random numbers in ternary logic is presented. The generator consists of a number of identical ternary logic combinational units connected into a ring. All the units are provided to have a random delay time, and this time is supposed to be distributed in accordance with an exponential distribution. All delays are supposed to be independent events. The theory of the generator is based on Erlang equations. The generator can be used for test production in various systems. Features of multidimensional random vectors, produced by the generator, are discussed.

  12. Liquid-liquid equilibria for ternary polymer mixtures (United States)

    Oh, Suk Yung; Bae, Young Chan


    A molecular thermodynamic model for multicomponent systems based on a closed-packed lattice model is presented based on two contributions; entropy and energy contribution. The calculated liquid-liquid equilibria of ternary chainlike mixtures agreed with Monte Carlo simulation results. The proposed model can satisfactorily predict Types 0, 1, 2 and 3 phase separations of the Treybal classification. The model parameters obtained from the binary systems were used to directly predict real ternary systems and the calculated results correlated well with experimental data using few adjustable parameters. Specific interactions in associated binary systems were considered using a secondary lattice.

  13. PM1 steganographic algorithm using ternary Hamming Code

    Directory of Open Access Journals (Sweden)

    Kamil Kaczyński


    Full Text Available PM1 algorithm is a modification of well-known LSB steganographic algorithm. It has increased resistance to selected steganalytic attacks and increased embedding efficiency. Due to its uniqueness, PM1 algorithm allows us to use of larger alphabet of symbols, making it possible to further increase steganographic capacity. In this paper, we present the modified PM1 algorithm which utilizies so-called syndrome coding and ternary Hamming code. The modified algorithm has increased embedding efficiency, which means fewer changes introduced to carrier and increased capacity.[b]Keywords[/b]: steganography, linear codes, PM1, LSB, ternary Hamming code

  14. Ferroelectric Rashba Semiconductors as a novel class of multifunctional materials (United States)

    Picozzi, Silvia


    The discovery of novel properties, effects or microscopic mechanisms in modern materials science is often driven by the quest for combining, into a single compound, several functionalities: not only the juxtaposition of the latter functionalities, but especially their coupling, can open new horizons in basic condensed matter physics as well as in technology. Semiconductor spintronics makes no exception. In this context, we have discovered by means of density-functional simulations that, when a sizeable spin-orbit coupling is combined with ferroelectricity, such as in GeTe, one obtains novel multifunctional materials - called Ferro-Electric Rashba Semi-Conductors (FERSC) - where, thanks to a giant Rashba spin-splitting, the spin texture is controllable and switchable via an electric field. This peculiar spin-electric coupling can find a natural playground in small-gap insulators, such as chalcogenides, and can bring brand new assets into the field of electrically-controlled semiconductor spintronics.

  15. Synthesis and characterization of TiO{sub 2}/Ag/polymer ternary nanoparticles via surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Tae; Koh, Joo Hwan; Seo, Jin Ah [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Cho, Yong Soo [Department of Materials Science and Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Kim, Jong Hak, E-mail: [Department of Chemical and Biomolecular Engineering, Yonsei University, 262 Seongsanno, Seodaemun-gu, Seoul 120-749 (Korea, Republic of)


    We report on the novel ternary hybrid materials consisting of semiconductor (TiO{sub 2}), metal (Ag) and polymer (poly(oxyethylene methacrylate) (POEM)). First, a hydrophilic polymer, i.e. POEM, was grafted from TiO{sub 2} nanoparticles via the surface-initiated atom transfer radical polymerization (ATRP) technique. These TiO{sub 2}-POEM brush nanoparticles were used to template the formation of Ag nanoparticles by introduction of a AgCF{sub 3}SO{sub 3} precursor and a NaBH{sub 4} aqueous solution for reduction process. Successful grafting of polymeric chains from the surface of TiO{sub 2} nanoparticles and the in situ formation of Ag nanoparticles within the polymeric chains were confirmed using transmission electron microscopy (TEM), UV-vis spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). FT-IR spectroscopy also revealed the specific interaction of Ag nanoparticles with the C=O groups of POEM brushes. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the semiconductor, producing ternary hybrid inorganic-organic nanomaterials.

  16. Growth Mechanism of Nanowires: Ternary Chalcogenides (United States)

    Singh, N. B.; Coriell, S. R.; Hopkins, R. H.; Su, Ching Hua; Arnold, B.; Choa, Fow-Sen; Cullum, Brian


    In the past two decades there has been a large rise in the investment and expectations for nanotechnology use. Almost every area of research has projected improvements in sensors, or even a promise for the emergence of some novel device technologies. For these applications major focuses of research are in the areas of nanoparticles and graphene. Although there are some near term applications with nanowires in photodetectors and other low light detectors, there are few papers on the growth mechanism and fabrication of nanowire-based devices. Semiconductor nanowires exhibit very favorable and promising optical properties, including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here an overview of the mechanism of nanowire growth from the melt, and some preliminary results for the thallium arsenic selenide material system. Thallium arsenic selenide (TAS) is a multifunctional material combining excellent acousto-optical, nonlinear and radiation detection properties. We observed that small units of (TAS) nanocubes arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. In some cases very long wires (less than mm) are formed. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places.

  17. Photocatalysis Using Semiconductor Nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Thurston, T.R.; Wilcoxon,J.P.


    We report on experiments using nanosize MoS{sub 2} to photo-oxidize organic pollutants in water using visible light as the energy source. We have demonstrated that we can vary the redox potentials and absorbance characteristics of these small semiconductors by adjusting their size, and our studies of the photooxidation of organic molecules have revealed that the rate of oxidation increases with increasing bandgap (i.e. more positive valence band and more negative conduction band potentials). Because these photocatalysis reactions can be performed with the nanoclusters fully dispersed and stable in solution, liquid chromatography can be used to determine both the intermediate reaction products and the state of the nanoclusters during the reaction. We have demonstrated that the MoS{sub 2} nanoclusters remain unchanged during the photooxidation process by this technique. We also report on studies of MoS{sub 2} nanoclusters deposited on TiO{sub 2} powder.

  18. Semiconductor optoelectronic infrared spectroscopy

    CERN Document Server

    Hollingworth, A R


    level separation. This showed for the first time evidence of the phonon bottleneck in a working laser device. A new technique called time resolved optically detected cyclotron resonance, was used as a precursor to finding the carrier dynamics within a spatially confined quantum dot. By moving to the case of a spatial QD using an optically detected intraband resonance it was possible to measure the energy separation interband levels and conduction and valence sublevels within the dot simultaneously. Furthermore this technique has been shown that the inhomogeneous broadening of the photoluminescence spectrum is not purely affected by just size and composition. We suggest that other processes such as state occupancy, In roughing, and exciton binding energies may account for the extra energy. We use spectroscopy to study infrared optoelectronic inter and intraband semiconductor carrier dynamics. The overall aim of this thesis was to study both III-V and Pb chalcogenide material systems in order to show their futu...

  19. Semiconductor adiabatic qubits

    Energy Technology Data Exchange (ETDEWEB)

    Carroll, Malcolm S.; Witzel, Wayne; Jacobson, Noah Tobias; Ganti, Anand; Landahl, Andrew J.; Lilly, Michael; Nguyen, Khoi Thi; Bishop, Nathaniel; Carr, Stephen M.; Bussmann, Ezra; Nielsen, Erik; Levy, James Ewers; Blume-Kohout, Robin J.; Rahman, Rajib


    A quantum computing device that includes a plurality of semiconductor adiabatic qubits is described herein. The qubits are programmed with local biases and coupling terms between qubits that represent a problem of interest. The qubits are initialized by way of a tuneable parameter, a local tunnel coupling within each qubit, such that the qubits remain in a ground energy state, and that initial state is represented by the qubits being in a superposition of |0> and |1> states. The parameter is altered over time adiabatically or such that relaxation mechanisms maintain a large fraction of ground state occupation through decreasing the tunnel coupling barrier within each qubit with the appropriate schedule. The final state when tunnel coupling is effectively zero represents the solution state to the problem represented in the |0> and |1> basis, which can be accurately read at each qubit location.

  20. Technologies for III-V compound semiconductor based solar cells with high power densities and efficiencies. Final report; Technologien fuer Solarzellen aus III-V Verbindungshalbleitern mit hoher Leistungsdichte und hohem Wirkungsgrad. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bett, A.; Wettling, W.


    Concentrator solar cells with high efficiencies are expected to produce energy at lower costs as compared to nonconcentrating flat modules. For spare applications highly efficient solar cells based on III-V compounds are already in use, however for terrestrial applications in concentrator systems, cells as well as modules need further development. Of particular interest are cells with very high efficiencies (>30%) which are processed as tandem solar cells. In the present project GaAs concentrator solar cells with high efficiencies, tandem concentrator cells of various III-V materials and prototype concentrator modules have been developed. Liquid phase epitaxy (LPE) as well as organometallic vapour phase epitaxy (MOVPE) were used to grow the layer structures for the cells. A great manifold of structures of the combinations GaAs/GaSb, AlGaAs/Si and GaInP/GaAs were investigated and processed to tandem solar cells. Substantial progress was made during the project in the fields of material processing, cell technology and characterization of material processes and cells. This resulted in cells with very high efficiencies, e.g.: (a) GaAs-solar cell using MOVPE with: 24.2% (AM1.5g) (b) GaAs-concentrator solar cells produced by the LPE-EBR process: 25.8% at C=100 x AM1.5d (c) Mechanical stacked GaAs/GaSb tandem concentrator solar cell: 31.1% at C=100 x AM1.5d (d) Monolithic tandem cell: 28.0% (AM1.5g) (e) GaAs/GaSb-Fresnel lens concentrator module: 23% efficiency of the module, measured outdoor at 712 W/m{sup 2}. (orig.) [German] Hocheffiziente Konzentratorsolarzellen lassen eine kostenguenstigere solare Energieproduktion erwarten, als dies mit Flachmodulen moeglich ist. Im Bereich der III-V-Materialien sind derzeit Solarzellen fuer den Weltraum im Einsatz, fuer die terrestrische Konzentratoranwendung muessen aber sowohl die Zellen als auch die Modultechnik weiterentwickelt werden. Von besonderem Interesse sind dabei hocheffiziente Zellen (>30% Wirkungsgrad), die nur mit

  1. Ternary and quaternary oxides of Bi, Sr and Cu (United States)

    Casais, M. T.; Millan, P.; Rasines, I.; Campa, J. A.


    Before the discovery of superconductivity in an oxide of Bi, Sr, and Cu, the system Bi-Sr-Cu-O had not been studied, although several solid phases had been identified in the two-component regions of the ternary system Bi2O3-Si-O-CuO. The oxides Sr2CuO3, SrCu2O2, SrCuO2, and Bi2CuO4 were then well known and characterized, and the phase diagram of the binary system Bi2O3-SrO had been established in the temperature range 620 to 1000 C. Besides nine solutions of compositions Bi(2-2x) Sr(x) O(3-2x) and different symmetries, this diagram includes three definite compounds of stoichiometries Bi(2)BrO4. Bi2Sr2O5, and Bi2Sr3O6 (x - 0.50, 0.67 and 0.75 respectively), only the second of which with known unit-cell of orthorhombic symmetry, dimensions (A) a = 14.293(2), b = 7.651(2), c = 6.172(1), and z = 4. The first superconducting oxide in the system Bi-Sr-Cu-O was initially formulated as Bi2Sr2Cu2O(7+x), with an orthorhombic unit-cell of parameters (A) a = 5.32, b = 26.6, c = 48.8. In a preliminary study the same oxide was formulated with half the copper content, Bi(2)Sr(2)CuO(6+x), and index its reflections assuming an orthorhombic unit-cell of dimensions (A) a = 5.390(2), b = 26.973(8), c = 24.69(4). Subsequent studies by diffraction techniques have confirmed the composition 2:2:1. A new family of oxygen-deficient perovskites, was characterized, after identifying by x ray diffraction the phases present in the products of thermal treatments of about 150 mixtures of analytical grade Bi2O3, Sr(OH)2-8H2O and CuO at different molar ratios. X ray diffraction data are presented for some other oxides of Bi and Sr, as well as for various quaternary oxides, among them an oxide of Bi, Sr, and Cu.

  2. Ordered CoSn-type ternary phases in Co3Sn3-xGex

    DEFF Research Database (Denmark)

    Allred, Jared M.; Jia, Shuang; Bremholm, Martin


    CoSn is the prototype compound of the B35 structure, which has long been of interest due to its rarity and unusually low packing density. We report the synthesis and properties of the solid solution Co3Sn3-xGex for 0 ⩽ x ⩽ 2, in order to clarify the conditions necessary to stabilize such a phase....... By taking advantage of the chemical differences between the two crystallographically inequivalent Sn sites in the structure, we observe ordered ternary phases, nominally Co3SnGe2 and Co3Sn2Ge. The electron count and unit cell configuration remain unchanged from CoSn; these observations thus help to clarify...

  3. Interaction of the components in the Ce-Cu-Zn ternary system at 200deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Pavlyuk, V. [Ivan Franko National University of Lviv, Department of Inorganic Chemistry, Kyryl and Mefodiy str. 6, 79005 Lviv (Ukraine); Jan Dlugosz University of Czestochowa, Institute of Chemistry and Environmental Protection, al. Armii Krajowej 13/15, 42200 Czestochowa (Poland); Prochwicz, W. [Jan Dlugosz University of Czestochowa, Institute of Chemistry and Environmental Protection, al. Armii Krajowej 13/15, 42200 Czestochowa (Poland); Solokha, P. [Ivan Franko National University of Lviv, Department of Inorganic Chemistry, Kyryl and Mefodiy str. 6, 79005 Lviv (Ukraine)]. E-mail:; Zelinska, O. [Ivan Franko National University of Lviv, Department of Inorganic Chemistry, Kyryl and Mefodiy str. 6, 79005 Lviv (Ukraine); Marciniak, B. [Jan Dlugosz University of Czestochowa, Institute of Chemistry and Environmental Protection, al. Armii Krajowej 13/15, 42200 Czestochowa (Poland); Rozycka-Sokolowska, E. [Jan Dlugosz University of Czestochowa, Institute of Chemistry and Environmental Protection, al. Armii Krajowej 13/15, 42200 Czestochowa (Poland)


    The isothermal section of the Ce-Cu-Zn phase diagram was constructed at 200 deg. C over the whole concentration range as a result of X-ray powder diffraction, wavelength dispersive spectrometry and electron probe microanalysis. The existence of one new ternary compound Ce{sub 2}Cu{sub 5-5.7}Zn{sub 2-1.3} was observed at this temperature and its crystal structure was refined from X-ray single crystal data (structure type Ce{sub 2}Ni{sub 5}Zn{sub 2}, space group R3-bar m, Pearson code hR18, a=0.4998(1)-0.5078(1)nm, c=3.6924(5)-3.6987(4)nm). The homogeneity regions were determined for a number of solid solutions on the basis of binary phases.

  4. Thermionic emission and vaporization behavior of the ternary systems of lanthanum hexaboride containing molybdenum boride, molybdenum diboride, zirconium diboride, gadolinium hexaboride, and neodymium hexaboride (United States)

    Storms, E. K.


    The addition of various compounds to LaB6 did not improve the thermionic emission over that of pure LaB6. This experience and general conclusions, which result by considering the vaporization properties of these and other materials, greatly limit the options available to improve the properties of LaB6 by forming a ternary system. The principles which must be considered, in order to simplify future work, are described.

  5. Studies on Molecular Interaction in Ternary Liquid Mixtures

    Directory of Open Access Journals (Sweden)

    R. Uvarani


    Full Text Available Ultrasonic velocity, density and viscosity for the ternary liquid mixtures of cyclohexanone with 1-propanol and 1-butanol in carbon tetrachloride were measured at 303 K. The acoustical parameters and their excess values were calculated. The trends in the variation of these excess parameters were used to discuss the nature and strength of the interactions present between the component molecules.

  6. Hierarchic structure formation in binary and ternary polymer blends

    NARCIS (Netherlands)

    Sprenger, M; Walheim, S; Budkowski, A; Steiner, U

    The phase morphology of multi-component polymer blends is governed by the interfacial interactions of its components. We discuss here the domain morphology in thin films of model binary and ternary polymer blends containing polystyrene, poly(methyl metacrylate), and poly(2-vinylpyridine) (PS, PMMA,

  7. Mechanical, microstructure and electrical properties of ternary ZnO ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 3. Mechanical, microstructure and electrical properties of ternary ZnO–V2O5–Mn3O4 varistor with sintering temperature. S El-Rabai A H Khafagy M T Dawoud M T Attia. Volume 38 Issue 3 June 2015 pp 773-781 ...

  8. Intermolecular Interactions in Ternary Glycerol–Sample–H2O

    DEFF Research Database (Denmark)

    Westh, Peter; Rasmussen, Erik Lumby; Koga, Yoshikata


    We studied the intermolecular interactions in ternary glycerol (Gly)–sample (S)–H2O systems at 25 °C. By measuring the excess partial molar enthalpy of Gly, HGlyEHEGly, we evaluated the Gly–Gly enthalpic interaction, HGly-GlyEHEGly--Gly, in the presence of various samples (S). For S, tert...

  9. Excess isentropic compressibility and speed of sound of the ternary ...

    Indian Academy of Sciences (India)

    These excess properties of the binary mixtures were fitted to Redlich-Kister equation, while the Cibulka's equation was used to fit the values related to the values to the ternary system. These excess properties have been used to discuss the presence of significant interactions between the component molecules in the binary ...

  10. Robust self-triggered coordination with ternary controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo


    This paper regards the coordination of networked systems, studied in the framework of hybrid dynamical systems. We design a coordination scheme which combines the use of ternary controllers with a self-triggered communication policy. The communication policy requires the agents to measure, at each

  11. Univolatility curves in ternary mixtures: geometry and numerical computation

    DEFF Research Database (Denmark)

    Shcherbakova, Nataliya; Rodriguez-Donis, Ivonne; Abildskov, Jens


    We propose a new non-iterative numerical algorithm allowing computation of all univolatility curves in homogeneous ternary mixtures independently of the presence of the azeotropes. The key point is the concept of generalized univolatility curves in the 3D state space, which allows the main...... computational part to be reduced to a simple integration of a system of ordinary differential equations....

  12. Evaluation of griseofulvin binary and ternary solid dispersions with HPMCAS. (United States)

    Al-Obaidi, Hisham; Buckton, Graham


    The stability and dissolution properties of griseofulvin binary and ternary solid dispersions were evaluated. Solid dispersions of griseofulvin and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared using the spray drying method. A third polymer, poly[N-(2-hydroxypropyl)methacrylate] (PHPMA), was incorporated to investigate its effect on the interaction of griseofulvin with HPMCAS. In this case, HPMCAS can form H bonds with griseofulvin directly; the addition of PHPMA to the solid dispersion may enhance the stability of the amorphous griseofulvin due to greater interaction with griseofulvin. The X-ray powder diffraction results showed that griseofulvin (binary and ternary solid dispersions) remained amorphous for more than 19 months stored at 85% RH compared with the spray-dried griseofulvin which crystallized totally within 24 h at ambient conditions. The Fourier transform infrared scan showed that griseofulvin carbonyl group formed hydrogen bonds with the hydroxyl group in the HPMCAS, which could explain the extended stability of the drug. Further broadening in the peak could be seen when PHPMA was added to the solid dispersion, which indicates stronger interaction. The glass transition temperatures increased in the ternary solid dispersions regardless of HPMCAS grade. The dissolution rate of the drug in the solid dispersion (both binary and ternary) has significantly increased when compared with the dissolution profile of the spray-dried griseofulvin. These results reveal significant stability of the amorphous form due to the hydrogen bond formation with the polymer. The addition of the third polymer improved the stability but had a minor impact on dissolution.

  13. Viscometric and thermodynamic studies of interactions in ternary ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 3. Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K. Reena Gupta Mukhtar Singh. Volume 117 Issue 3 May 2005 pp 275-282 ...

  14. Modeling adsorption of binary and ternary mixtures on microporous media

    DEFF Research Database (Denmark)

    Monsalvo, Matias Alfonso; Shapiro, Alexander


    The goal of this work is to analyze the adsorption of binary and ternary mixtures on the basis of the multicomponent potential theory of adsorption (MPTA). In the MPTA, the adsorbate is considered as a segregated mixture in the external potential field emitted by the solid adsorbent. This makes i...

  15. A Simple Refraction Experiment for Probing Diffusion in Ternary Mixtures (United States)

    Coutinho, Cecil A.; Mankidy, Bijith D.; Gupta, Vinay K.


    Diffusion is a fundamental phenomenon that is vital in many chemical processes such as mass transport in living cells, corrosion, and separations. We describe a simple undergraduate-level experiment based on Weiner's Method to probe diffusion in a ternary aqueous mixture of small molecular-weight molecules. As an illustration, the experiment…


    African Journals Online (AJOL)

    Protective coatings are perhaps the most extensively used system for chemical and mechanical degradation in application. ... mechanical and electrochemical resistance bond needful during application. .... binary phase of SiC and ZrO2 results to a reduction in the hardness value compare to the ternary phase which is in ...

  17. Experimental examination of ternary fission in nuclear track emulsion (United States)

    Mamatkulov, K. Z.; Ambrožová, I.; Artemenkov, D. A.; Bradnova, V.; Firu, E.; Haiduc, M.; Kakona, M.; Kattabekov, R. R.; Marey, A.; Neagu, A.; Ploc, O.; Rusakova, V. V.; Stanoeva, R.; Turek, K.; Zaitsev, A. A.; Zarubin, P. I.; Zarubina, I. G.


    Activities performed in preparation for the search for ternary fission of heavy nuclei and the analysis of fragment angular correlations with nuclear track emulsion and an automated microscope are detailed. Surface irradiation of nuclear emulsion by a Cf source was initiated. Planar events containing nothing but fragment triples were found and studied.

  18. Semiconductor-superconductor optoelectronic devices (United States)

    Bouscher, Shlomi; Panna, Dmitry; Hayat, Alex


    Devices combining superconductors with semiconductors offer a wide range of applications, particularly in the growing field of quantum information processing. This is due to their ability to take advantage of both the extensive knowledge gathered in the field of semiconductors and the unique quantum properties of superconductors. This results in novel device concepts, such as structures generating and detecting entangled photon pairs as well as novel optical gain and laser realizations. In this review, we discuss the fundamental concepts and the underlying physical phenomena of superconductor-semiconductor optoelectronics as well as practical device implementations.

  19. Semiconductor Nanocrystals for Biological Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul


    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  20. Recent Developments in p-Type Oxide Semiconductor Materials and Devices

    KAUST Repository

    Wang, Zhenwei


    The development of transparent p-type oxide semiconductors with good performance may be a true enabler for a variety of applications where transparency, power efficiency, and greater circuit complexity are needed. Such applications include transparent electronics, displays, sensors, photovoltaics, memristors, and electrochromics. Hence, here, recent developments in materials and devices based on p-type oxide semiconductors are reviewed, including ternary Cu-bearing oxides, binary copper oxides, tin monoxide, spinel oxides, and nickel oxides. The crystal and electronic structures of these materials are discussed, along with approaches to enhance valence-band dispersion to reduce effective mass and increase mobility. Strategies to reduce interfacial defects, off-state current, and material instability are suggested. Furthermore, it is shown that promising progress has been made in the performance of various types of devices based on p-type oxides. Several innovative approaches exist to fabricate transparent complementary metal oxide semiconductor (CMOS) devices, including novel device fabrication schemes and utilization of surface chemistry effects, resulting in good inverter gains. However, despite recent developments, p-type oxides still lag in performance behind their n-type counterparts, which have entered volume production in the display market. Recent successes along with the hurdles that stand in the way of commercial success of p-type oxide semiconductors are presented.

  1. Toward designing semiconductor-semiconductor heterojunctions for photocatalytic applications (United States)

    Zhang, Liping; Jaroniec, Mietek


    Semiconductor photocatalysts show a great potential for environmental and energy-related applications, however one of the major disadvantages is their relatively low photocatalytic performance due to the recombination of electron-hole pairs. Therefore, intensive research is being conducted toward design of heterojunctions, which have been shown to be effective for improving the charge-transfer properties and efficiency of photocatalysts. According to the type of band alignment and direction of internal electric field, heterojunctions are categorized into five different types, each of which is associated with its own charge transfer characteristics. Since the design of heterojunctions requires the knowledge of band edge positions of component semiconductors, the commonly used techniques for the assessment of band edge positions are reviewed. Among them the electronegativity-based calculation method is applied for a large number of popular visible-light-active semiconductors, including some widely investigated bismuth-containing semiconductors. On basis of the calculated band edge positions and the type of component semiconductors reported, heterojunctions composed of the selected bismuth-containing semiconductors are proposed. Finally, the most popular synthetic techniques for the fabrication of heterojunctions are briefly discussed.

  2. First-principles investigations on structural, elastic, dynamical, and thermal properties of earth-abundant nitride semiconductor CaZn{sub 2}N{sub 2} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Ying-Qin; Liu, Lei; Cheng, Yan [Sichuan Univ. (China). College of Physical Science and Technology; Hu, Cui E. [Chongqing Normal Univ. (China). College of Physics and Electronic Engineering; Cai, Ling-Cang [CAEP, Mianyang (China). National Key Laboratory for Shock Wave and Detonation Physics Research


    We presented a detailed first-principal calculation to study the structural, elastic, dynamical, and thermal properties of a new synthetic ternary zinc nitride semiconductors CaZn{sub 2}N{sub 2} using the generalised gradient approximation (GGA) method. The obtained lattice parameters of CaZn{sub 2}N{sub 2} at 0 K and 0 GPa are in good agreement with the experimental data and other theoretical findings. The pressure dependences of the elastic constants C{sub ij} together with other derived mechanical properties of CaZn{sub 2}N{sub 2} compound have also been systematically investigated. The results reveal that CaZn{sub 2}N{sub 2} is mechanically stable up to 20 GPa. The calculated the phonon curves and phonon density of states under different pressures indicate that the CaZn{sub 2}N{sub 2} compound maintains its dynamical stability up to 20 GPa. An analysis in terms of the irreducible representations of group theory obtained the optical vibration modes of this system, and we obtained the frequencies of the optical vibrational modes at Γ points together with the atoms that contributed to these vibrations of CaZn{sub 2}N{sub 2}. Meanwhile, the pressure dependencies of the frequencies Raman-active and IR-active modes at 0-20 GPa have been studied. The quasi-harmonic approximation (QHA) was applied to calculate the thermal properties of CaZn{sub 2}N{sub 2} as functions of pressures and temperatures such as the heat capacity, thermal expansions, the entropy, and Grueneisen parameter γ.

  3. Semiconductor neutron detector (United States)

    Ianakiev, Kiril D [Los Alamos, NM; Littlewood, Peter B [Cambridge, GB; Blagoev, Krastan B [Arlington, VA; Swinhoe, Martyn T [Los Alamos, NM; Smith, James L [Los Alamos, NM; Sullivan, Clair J [Los Alamos, NM; Alexandrov, Boian S [Los Alamos, NM; Lashley, Jason Charles [Santa Fe, NM


    A neutron detector has a compound of lithium in a single crystal form as a neutron sensor element. The lithium compound, containing improved charge transport properties, is either lithium niobate or lithium tantalate. The sensor element is in direct contact with a monitor that detects an electric current. A signal proportional to the electric current is produced and is calibrated to indicate the neutrons sensed. The neutron detector is particularly useful for detecting neutrons in a radiation environment. Such radiation environment may, e.g. include gamma radiation and noise.

  4. Atomic layer deposition for semiconductors

    CERN Document Server

    Hwang, Cheol Seong


    This edited volume discusses atomic layer deposition (ALD) for all modern semiconductor devices, moving from the basic chemistry of ALD and modeling of ALD processes to sections on ALD for memories, logic devices, and machines.

  5. Semiconductor radiation detectors. Device physics

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, G. [Max-Planck-Institutes for Physics and Extraterrestrial Physics, Muenchen (Germany). Semiconductor Lab.


    Starting from basic principles, the author, whose own contributions to these developments have been significant, describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. This development was stimulated by requirements in elementary particle physics where it has led to important scientific discoveries. It has now spread to many other fields of science and technology. The book is written in a didactic way and includes an introduction to semiconductor physics. The working principles of semiconductor radiation detectors are explained in an intuitive way, followed by formal quantitative analysis. Broad coverage is also given to electronic signal readout and to the subject of radiation damage. The book is the first to comprehensively cover the semiconductor radiation detectors currently in use. It is useful as a teaching guide and as a reference work for research and applications. (orig.)

  6. Physics of semiconductor laser devices

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.H.B.


    Aspects of laser design and development are considered along with semiconductor materials for lasers, problems of device fabrication, crystal growth, the degradation of lasers, and the integration of semiconductor lasers with other optical components. A description is presented of light emission processes and laser action in semiconductors, taking into account electronic radiative transitions, the relation between emission and absorption processes, transition probabilities, the density of electron states in the highly doped semiconductor, carrier recombination and spontaneous emission, the gain/current relation, light-current characteristics, optical modes, and the evolution of mode spectrum and intensity with current. Attention is given to laser heterostructures and the properties of heterojunctions, optical waveguides, the performance of heterostructure lasers, stripe geometry lasers, and the dynamic response of lasers. Lasers with distributed feedback and Bragg reflectors are also discussed.

  7. Energy transfer with semiconductor nanocrystals

    NARCIS (Netherlands)

    Rogach, A.L.; Klar, T.A.; Lupton, J.M.; Meijerink, A.; Feldmann, J.


    Fo¨ rster (or fluorescence) resonant energy transfer (FRET) is a powerful spectroscopic technique to study interactions, conformational and distance changes, in hybrid nanosystems. Semiconductor nanocrystals, also known as colloidal quantum dots, are highly efficient fluorophores with a strong

  8. Ballistic superconductivity in semiconductor nanowires

    NARCIS (Netherlands)

    Zhang, H.; Gül, Ö.; Conesa-Boj, S.; Nowak, M.P.; Wimmer, M.; Zuo, K.; Mourik, V.; Vries, F.K. de; Veen, J. van; Moor, M.W.A. de; Bommer, J.D.S.; Woerkom, D.J. van; Car, D.; Plissard, S.R.; Bakkers, E.P.A.M.; Quintero Pérez, M.; Cassidy, M.C.; Koelling, S.; Goswami, S.; Watanabe, K.; Taniguchi, T.; Kouwenhoven, L.P.


    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of

  9. Quantum optics with semiconductor nanostructures

    CERN Document Server

    Jahnke, Frank


    A guide to the theory, application and potential of semiconductor nanostructures in the exploration of quantum optics. It offers an overview of resonance fluorescence emission.$bAn understanding of the interaction between light and matter on a quantum level is of fundamental interest and has many applications in optical technologies. The quantum nature of the interaction has recently attracted great attention for applications of semiconductor nanostructures in quantum information processing. Quantum optics with semiconductor nanostructures is a key guide to the theory, experimental realisation, and future potential of semiconductor nanostructures in the exploration of quantum optics. Part one provides a comprehensive overview of single quantum dot systems, beginning with a look at resonance fluorescence emission. Quantum optics with single quantum dots in photonic crystal and micro cavities are explored in detail, before part two goes on to review nanolasers with quantum dot emitters. Light-matter interaction...

  10. Semiconductor nanocrystals or quantum dots

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 8. Various Quantum Mechanical Concepts for Confinements in Semiconductor Nanocrystals. Jayakrishna Khatei Karuna Kar Nanda. Classroom Volume 18 Issue 8 August 2013 pp 771-776 ...

  11. Semiconductor packaging materials interaction and reliability

    CERN Document Server

    Chen, Andrea


    In semiconductor manufacturing, understanding how various materials behave and interact is critical to making a reliable and robust semiconductor package. Semiconductor Packaging: Materials Interaction and Reliability provides a fundamental understanding of the underlying physical properties of the materials used in a semiconductor package. The book focuses on an important step in semiconductor manufacturing--package assembly and testing. It covers the basics of material properties and explains how to determine which behaviors are important to package performance. The authors also discuss how

  12. Fractal properties of nanostructured semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhanabaev, Z.Zh. [Al-Farabi Khazakh National University, Tole bi Street, 96, Almaty 050012 (Kazakhstan); Grevtseva, T.Yu. [Al-Farabi Khazakh National University, Tole bi Street, 96, Almaty 050012 (Kazakhstan)]. E-mail:


    A theory for the temperature and time dependence of current carrier concentration in semiconductors with different non-equilibrium nanocluster structure has been developed. It was shown that the scale-invariant fractal self-similar and self-affine laws can exist near by the transition point to the equilibrium state. Results of the theory have been compared to the experimental data from electrical properties of semiconductor films with nanoclusters.

  13. Dissipative chaos in semiconductor superlattices

    Directory of Open Access Journals (Sweden)

    F. Moghadam


    Full Text Available In this paper the motion of electron in a miniband of a semiconductor superlattice (SSL under the influence of external electric and magnetic fields is investigated. The electric field is applied in a direction perpendicular to the layers of the semiconductor superlattice, and the magnetic field is applied in different direction Numerical calculations show conditions led to the possibility of chaotic behaviors.

  14. Nonlinear Optical Interactions in Semiconductors. (United States)


    Physique du Solide et Energie Solaire We had on-going interaction with Dr. Christian Verie on the growth of high quality narrow-gap semiconductor crystals...The band gap energy of the semiconductor decreases with increasing temperature. Consequently, the absorption of light in the energy region of the...gas and, more importantly, will modulate the electron energy at the difference frequency, wI - 02" Under ordinary circumstances such an energy (or

  15. Thermodynamics of fuels with a bio-synthetic component (IV): (Vapor + liquid) equilibrium data for the ternary mixture (ethyl 1,1-dimethylethyl ether + 1-hexene + toluene) at T = 313.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Villamanan, Rosa M. [Research Group TERMOCAL-Thermodynamics and Calibration University of Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain)], E-mail:; Segovia, Jose J. [Research Group TERMOCAL-Thermodynamics and Calibration University of Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain)], E-mail:; Carmen Martin, M. [Research Group TERMOCAL-Thermodynamics and Calibration University of Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain)], E-mail:; Vega-Maza, David [Research Group TERMOCAL-Thermodynamics and Calibration University of Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain)], E-mail:; Chamorro, Cesar R. [Research Group TERMOCAL-Thermodynamics and Calibration University of Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain)], E-mail:; Villamanan, Miguel A. [Research Group TERMOCAL-Thermodynamics and Calibration University of Valladolid, Paseo del Cauce s/n, 47011 Valladolid (Spain)], E-mail:


    The paper reports experimental p-x data for the ternary system (ethyl 1,1-dimethylethyl ether + 1-hexene + toluene) at T = 313.15 K. The ether, synthesized from ethanol of biological origin, increases the interest of this compound as an additive for gasolines. An isothermal total pressure cell was used for the measurements. Data reduction by Barker's method provides correlations for G{sup E}, using Wilson, NRTL, UNIQUAC models and the Wohl expansion for the ternary system and the calculation of the vapor phase composition. Good results are obtained for the correlation by all the models.

  16. Survey of cryogenic semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Talarico, L.J.; McKeever, J.W.


    Improved reliability and electronic performance can be achieved in a system operated at cryogenic temperatures because of the reduction in mechanical insult and in disruptive effects of thermal energy on electronic devices. Continuing discoveries of new superconductors with ever increasing values of T{sub c} above that of liquid nitrogen temperature (LNT) have provided incentive for developing semiconductor electronic systems that may also operate in the superconductor`s liquid nitrogen bath. Because of the interest in high-temperature superconductor (HTS) devices, liquid nitrogen is the cryogen of choice and LNT is the temperature on which this review is focused. The purpose of this survey is to locate and assemble published information comparing the room temperature (298 K), performance of commercially available conventional and hybrid semiconductor device with their performance at LNT (77K), to help establish their candidacy as cryogenic electronic devices specifically for use at LNT. The approach to gathering information for this survey included the following activities. Periodicals and proceedings were searched for information on the behavior of semiconductor devices at LNT. Telephone calls were made to representatives of semiconductor industries, to semiconductor subcontractors, to university faculty members prominent for their research in the area of cryogenic semiconductors, and to representatives of the National Aeronautics and Space Administration (NASA) and NASA subcontractors. The sources and contacts are listed with their responses in the introduction, and a list of references appears at the end of the survey.

  17. The ATLAS semiconductor tracker

    CERN Document Server

    Mikuz, Marko


    The ATLAS Semiconductor Tracker (SCT) is presented. About 16000 silicon micro-strip sensors with a total active surface of over 60 m **2 and with 6.3 million read-out channels are built into 4088 modules arranged into four barrel layers and nine disks covering each of the forward regions up to an eta of 2.5. Challenges are imposed by the hostile radiation environment with particle fluences up to 2 multiplied by 10**1**4 cm**-**2 1 MeV neutron NIEL equivalent and 100 kGy TID, the 25 ns LHC bunch crossing time and the need for a hermetic, lightweight tracker. The solution adopted is carefully designed strip detectors operated at -7 degree C, biased up to 500 V and read out by binary radhard fast BiCMOS electronics. A zero-CTE carbon fibre structure provides mechanical support. 30 kW of power are supplied on aluminiutn/Kapton tapes and cooled by C//3F//8 evaporative cooling. Data and commands are transferred by optical links. Prototypes of detector modules have been built, irradiated to the maximum expected flue...

  18. Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors (United States)

    Biyikli, Necmi; Haider, Ali


    In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.

  19. Novel Engineered Compound Semiconductor Heterostructures for Advanced Electronics Applications (United States)


    Dailesasse. P. GavnloViC,al N. Holonyak. Jr.. R. W. Kaliski,bl D. W. Nam.", and E. J. Vesel Electrical Engineering Research Laborator . Center jbr...a the graded barrier depresed index cladding3 (DC) laser, GaAs top contact layer. The laser material was procese in which the perpendicular

  20. High Speed Compound Semiconductor Devices in Layered Structures. (United States)


    a Superlattice," Appl. Phys. Lett., vol. 45, pp. 764-766 1984. P. Pearah, T. Henderson. 3. K1 an, W. T. Massel ink, N. Chand and fR. Norkop, ’ educed ... GaiAs /AlxGal_xAs NrDDFETs and its Comparison to GaAs/Al.Gal_.,As MOD- FEfs, EE Trans. on Electron Dev., pending. "Dressed Excitons in Multiple Quantm

  1. Preparation and characterization of Bi2S3 compound semiconductor

    Indian Academy of Sciences (India)

    orthorhombic phase with calculated lattice constant a = 11.14 Å, b = 11.30 Å and c = 3.96 Å. Scanning electron microscopy (SEM) pictures indicate the presence of layer lines on the surface of crystals thereby proving that these crystals are grown by layer by layer mechanism. We studied the transport properties viz.

  2. Ion Implantation in III-V Compound Semiconductors (United States)


    the implantation process and from the fact that any ion can be implanted into any solid. The three main parameters over which control is exercised are...Kinchin and Pease’s theory does not consider annealing due to the recombination of Frenkel pairs, oKP should be larger than the experimentally derived

  3. Novel compound semiconductor devices based on III-V nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Pearton, S.J.; Abernathy, C.R. [Florida Univ., Gainesville, FL (United States); Ren, F. [AT & T Bell Laboratories, Murray Hill, NJ (United States)] [and others


    New developments in dry and wet etching, ohmic contacts and epitaxial growth of Ill-V nitrides are reported. These make possible devices such as microdisk laser structures and GaAs/AlGaAs heterojunction bipolar transistors with improved InN ohmic contacts.

  4. Preparation and characterization of Bi 2 S 3 compound semiconductor

    Indian Academy of Sciences (India)

    ... are grown by layer by layer mechanism.We studied the transport properties viz. Hall effect, resistivity, thermoelectric power and thermal conductivity on Bi2S3 pellets. Raman spectroscopy and thermal gravimetric analysis (TGA) were carried out on Bi2S3 single crystal for studying their optical and thermal behaviours.

  5. Confined and chemically flexible grain boundaries in polycrystalline compound semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Abou-Ras, Daniel; Schmidt, Sebastian S.; Caballero, Raquel; Unold, Thomas [Helmholtz-Zentrum Berlin fuer Materialien und Energie GmbH, Berlin (Germany); Schock, Hans-Werner [Department of Engineering, George Holt Building, Liverpool (United Kingdom); Koch, Christoph T. [Max-Planck Institute for Intelligent Systems, Stuttgart (Germany); Schaffer, Bernhard [SuperSTEM, STFC Daresbury Laboratories, Keckwick Lane, Warrington (United Kingdom); SUPA School of Physics and Astronomy, University of Glasgow, Glasgow (United Kingdom); Schaffer, Miroslava [SuperSTEM, STFC Daresbury Laboratories, Keckwick Lane, Warrington (United Kingdom); Department of Engineering, George Holt Building, Liverpool (United Kingdom); Choi, Pyuck-Pa; Cojocaru-Miredin, Oana [Max-Planck-Institut fuer Eisenforschung GmbH, Department of Microstructure Physics and Alloy Design, Duesseldorf (Germany)


    Grain boundaries (GBs) in polycrystalline Cu(In,Ga)Se{sub 2} thin films exhibit only slightly enhanced recombination, as compared with the grain interiors, allowing for very high power-conversion efficiencies of more than 20% in the corresponding solar-cell devices. This work highlights the specific compositional and electrical properties of Cu(In,Ga)Se{sub 2} GBs by application of appropriate subnanometer characterisation techniques: inline electron holography, electron energy-loss spectroscopy, and atom-probe tomography. It is found that changes of composition at the GBs are confined to regions of only about 1 nm in width. Therefore, these compositional changes are not due to secondary phases but atomic or ionic redistribution within the atomic planes close to the GBs. For different GBs in the Cu(In,Ga)Se{sub 2} thin film investigated, different atomic or ionic redistributions are also found. This chemical flexibility makes polycrystalline Cu(In,Ga)Se{sub 2} thin films particularly suitable for photovoltaic applications. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Incorporation Kinetics in Mixed Anion Compound Semiconductor Alloys (United States)


    V flux, which allowed us to relate the group III BEP to flux. We then reduced the group V flux until we observed a reduction in the growth rate, at...the arrival rate of In, so that these terms have a negligible impact on the Fm dependence of the composition. The plots in Fig. 3 demonstrate the

  7. Blue emitting organic semiconductors under high pressure

    DEFF Research Database (Denmark)

    Knaapila, Matti; Guha, Suchismita


    highlighted by high pressure optical spectroscopy whilst analogous x-ray diffraction experiments remain less frequent. By focusing on a class of blue-emitting π-conjugated polymers, polyfluorenes, this article reviews optical spectroscopic studies under hydrostatic pressure, addressing the impact of molecular......This review describes essential optical and emerging structural experiments that use high GPa range hydrostatic pressure to probe physical phenomena in blue-emitting organic semiconductors including π-conjugated polyfluorene and related compounds. The work emphasizes molecular structure...... and intermolecular self-organization that typically determine transport and optical emission in π-conjugated oligomers and polymers. In this context, hydrostatic pressure through diamond anvil cells has proven to be an elegant tool to control structure and interactions without chemical intervention. This has been...

  8. Wide-Bandgap Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chinthavali, M.S.


    With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters

  9. Semiconductor lasers stability, instability and chaos

    CERN Document Server

    Ohtsubo, Junji


    This book describes the fascinating recent advances made concerning the chaos, stability and instability of semiconductor lasers, and discusses their applications and future prospects in detail. It emphasizes the dynamics in semiconductor lasers by optical and electronic feedback, optical injection, and injection current modulation. Applications of semiconductor laser chaos, control and noise, and semiconductor lasers are also demonstrated. Semiconductor lasers with new structures, such as vertical-cavity surface-emitting lasers and broad-area semiconductor lasers, are intriguing and promising devices. Current topics include fast physical number generation using chaotic semiconductor lasers for secure communication, development of chaos, quantum-dot semiconductor lasers and quantum-cascade semiconductor lasers, and vertical-cavity surface-emitting lasers. This fourth edition has been significantly expanded to reflect the latest developments. The fundamental theory of laser chaos and the chaotic dynamics in se...

  10. Combustion synthesis and thermal expansion measurements of the rare earth-uranium ternary oxides RE 6UO 12 (RE=La, Nd and Sm) (United States)

    Jena, Hrudananda; Asuvathraman, R.; Govindan Kutty, K. V.


    Rare earth-uranium ternary oxides were synthesized by a solution combustion route. The starting materials were the corresponding metal nitrates and urea. In these preparations, the metal nitrates act as oxidizer and urea as fuel. Highly exothermic decomposition of the metal nitrate-urea complexes on heating at about 500 K leads to a combustion process yielding RE 6UO 12 fine powders. Thermal expansion measurements of these compounds were carried out in the temperature range of 298-1173 K by high temperature X-ray powder diffractometry. The observed axial thermal expansion behaviour is explained on the basis of the crystal chemistry of the compounds.

  11. Thermodynamic calculations in ternary titanium–aluminium–manganese system

    Directory of Open Access Journals (Sweden)



    Full Text Available Thermodynamic calculations in the ternary Ti–Al–Mn system are shown in this paper. The thermodynamic calculations were performed using the FactSage thermochemical software and database, with the aim of determining thermodynamic properties, such as activities, coefficient of activities, partial and integral values of the enthalpies and Gibbs energies of mixing and excess energies at two different temperatures: 2000 and 2100 K. Bearing in mind that no experimental data for the Ti–Al–Mn ternary system have been obtained or reported. The obtained results represent a good base for further thermodynamic analysis and may be useful as a comparison with some future critical experimental results and thermodynamic optimization of this system.

  12. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)


    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  13. A New Multifunctional Sensor for Measuring Concentrations of Ternary Solution (United States)

    Wei, Guo; Shida, Katsunori

    This paper presents a multifunctional sensor with novel structure, which is capable of directly sensing temperature and two physical parameters of solutions, namely ultrasonic velocity and conductivity. By combined measurement of these three measurable parameters, the concentrations of various components in a ternary solution can be simultaneously determined. The structure and operation principle of the sensor are described, and a regression algorithm based on natural cubic spline interpolation and the least square method is adopted to estimate the concentrations. The performances of the proposed sensor are experimentally tested by the use of ternary aqueous solution of sodium chloride and sucrose, which is widely involved in food and beverage industries. This sensor could prove valuable as a process control sensor in industry fields.

  14. Ordering transitions of ternary alloys A(1-x)B(x)C (United States)

    Newman, Kathie E.; Shen, Jun

    Alloys of the form A(1-x)B(x)C may form ordered structures for special values of the composition x. This possibility was investigated by considering alloys that have in their disordered high temperature form the zincblende crystal structure. That is, compounds that have a tetrahedral bonding of the type sp3, e.g., alloys of III-V compounds, II-VI compounds (including the diluted magnetic semiconductors), and alloys that are mixtures of the natural chalcopyrites (e.g., II-IV-V sub 2 compounds such as ZnGeAs2) with natural zincblende-structure materials were considered. Possible ordered forms of the alloys A(1-x)B(x)C include, for x = 0.5, a superlattice structure of alternating layers ACBC oriented along the (001) axis, such as was seen in the III-V compound GaAlAs2. Alternatively, for x = 0.5, alloys A(1-x)B(x)C may order in a low temperature phase as an ABC2 chalcopyrite structure, e.g., ZnGeAs2. The question of the relative stabilities of the possible ordered and disordered phases of A(1-x)B(x)C compounds was addressed by using the Kikuchi approximation. The calculations include chemical energies as well as the strain effects. Calculated phase diagrams are shown that exhibit the ordered phases of this type of alloy.

  15. Optical Properties of Silver Aluminium Sulphide Ternary Thin Films ...

    African Journals Online (AJOL)

    Ternary thin films of Silver Aluminium Sulphide (AgAlS2) have been prepared by chemical bath deposition techniques. Aqueous solution of 41.5 mls containing AgNO3, Al2(SO4)3, thiourea and EDTA was used, where AgNO3, Al2(SO4)3, thiourea were the source of Ag+, Al+ and S- respectively and EDTA was used as a ...

  16. Evaluation of Griseofulvin Binary and Ternary Solid Dispersions with HPMCAS


    Al-Obaidi, Hisham; Buckton, Graham


    The stability and dissolution properties of griseofulvin binary and ternary solid dispersions were evaluated. Solid dispersions of griseofulvin and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared using the spray drying method. A third polymer, poly[N-(2-hydroxypropyl)methacrylate] (PHPMA), was incorporated to investigate its effect on the interaction of griseofulvin with HPMCAS. In this case, HPMCAS can form H bonds with griseofulvin directly; the addition of PHPMA to t...

  17. Some new quasi-twisted ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov


    Full Text Available Let [n, k, d]_q code be a linear code of length n, dimension k and minimum Hamming distance d over GF(q. One of the basic and most important problems in coding theory is to construct codes with best possible minimum distances. In this paper seven quasi-twisted ternary linear codes are constructed. These codes are new and improve the best known lower bounds on the minimum distance in [6].

  18. Theoretical prediction of topological insulator in ternary rare earth chalcogenides


    Yan, Binghai; Zhang, Hai-Jun; Liu, Chao-Xing; Qi, Xiao-Liang; Frauenheim, Thomas; Zhang, Shou-Cheng


    A new class of three-dimensional topological insulator, ternary rare earth chalcogenides, is theoretically investigated with ab initio calculations. Based on both bulk band structure analysis and the direct calculation of topological surface states, we demonstrate that LaBiTe3 is a topological insulator. La can be substituted by other rare earth elements, which provide candidates for novel topological states such as quantum anomalous Hall insulator, axionic insulator and topological Kondo ins...

  19. Discovery of a ternary pseudobrookite phase in the earth-abundant Ti-Zn-O system. (United States)

    Perry, Nicola H; Stevanovic, Vladan; Lim, Linda Y; Mason, Thomas O


    We combine theory with experiment in searching for "missing", stable materials within the Zn-Ti-O chemical system, leading to the discovery of a new pseudobrookite phase, ZnxTi3-xO5-δ. This ternary system was chosen for (1) technological relevance, (2) earth abundance, and (3) the fact that many compounds in this system are predicted from enthalpies of formation to be borderline stable, suggesting an important role of entropic contributions in their stabilization and making this chemical system a perfect test bed for exploring the limits of theoretical predictions. The initial set of exploratory experimental syntheses, via sintering in evacuated ampoules and quenching, resulted in a single phase ZnxTi3-xO5-δ composition with x ≈ 0.6 and an almost stoichiometric oxygen content, as evaluated by X-ray fluorescence, energy dispersive spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The theoretically calculated lowest energy crystal structure for the closest stoichiometric ZnTi5O10 composition matched that measured experimentally by synchrotron X-ray diffraction (allowing for differences attributable to cation disorder). The measured broad optical absorption, n-type electrical conductivity, and stability in acidic media are comparable to those of other ternary pseudobrookites and Ti-O Magnéli phases, suggesting comparable applicability as a robust electrode or catalyst support in electrochemical devices or water remediation. However, the new phase decomposes upon heating in air as it oxidizes. The success of the present approach to identify a "missing material" in an earth-abundant and applications-rich system suggests that future efforts to experimentally realize and theoretically confirm missing materials in this and similar systems are warranted, both scientifically and technologically.

  20. 600 °C isothermal section of the Al–Cr–Zn ternary phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    He, Zuxin [School of Materials Science and Engineering, Changzhou University, 213164 Jiangsu (China); Jiangsu Key Laboratory of Material Surface Science and Technology, Changzhou University, 213164 Jiangsu (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, 213164 Jiangsu (China); Su, Xuping, E-mail: [School of Materials Science and Engineering, Changzhou University, 213164 Jiangsu (China); Jiangsu Key Laboratory of Material Surface Science and Technology, Changzhou University, 213164 Jiangsu (China); Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, 213164 Jiangsu (China); Peng, Haoping; Liu, Ya; Wu, Changjun; Wang, Jianhua [School of Materials Science and Engineering, Changzhou University, 213164 Jiangsu (China); Jiangsu Key Laboratory of Material Surface Science and Technology, Changzhou University, 213164 Jiangsu (China)


    600 °C isothermal section of the Al–Cr–Zn system has been determined by Scanning Electron Microscopy-Energy Dispersive X-ray spectrometry (SEM-EDS), and X-ray Diffraction (XRD). Eleven three-phase regions have been identified experimentally at 600 °C. The τ{sub 3} and τ{sub 4} ternary compounds were identified in this isothermal section and the crystal structures of both phases are cubic. The lattice parameters of τ{sub 3} and τ{sub 4} are a = 2.1536 nm and a = 1.8323 nm, respectively. The formerly reported τ{sub 1} phase was not found. The formerly reported τ{sub 2} phase is an extension of Al{sub 7}Cr. The highest Zn content in γ{sub 2} and ν phases is 7.1 at at.% and 6.7 at.%, respectively. The Zn solubility in Al{sub 7}Cr phase can be up to 10.4 at.%, while that in Al{sub 4}Cr phase is less than 4 at.%. The clearly phase relation of the Al–Cr–Zn system can lead us to better understand the effect of Cr on the corrosion behavior of metals in the Zn–Al bath and the Hot-dip galvanizing process. - Highlights: • Isothermal section of the Al–Cr–Zn system at 600 °C was determined. • Eleven three-phase regions were identified experimentally at 600 °C. • Existence of the γ{sub 2} and ν phases was confirmed at 600 °C. • X-ray diffraction patterns of the ternary phases τ{sub 3} and τ{sub 4} were proposed for the first time.

  1. Phase equilibria of the Mo-Al-Ho ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yitai; Chen, Xiaoxian; Liu, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry


    Investigation into the reactions and phase equilibria of transition metal elements (i.e. Mo, Zr, Cr, V and Ti), Al and rare earths is academically and industrially important for the development of both refractory alloys and lightweight high-temperature materials. In this work, the equilibria of the Mo-Al-Ho ternary system at 773 K have been determined by using X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. A new ternary phase Al{sub 4}Mo{sub 2}Ho has been found and the other ternary phase Al{sub 43}Mo{sub 4}Ho{sub 6} is observed. Ten binary phases in the Al-Mo and Al-Ho systems, including Al{sub 17}Mo{sub 4} rather than Al{sub 4}Mo, have been determined to exist at 773 K. The homogeneity ranges of AlMo{sub 3} and Al{sub 8}Mo{sub 3} phase are 7.5 at.% and 1 at.%, respectively. According to the phase-disappearing method, the maximum solubility of Al in Mo is about 16 at.%.

  2. Ternary Ag/epoxy adhesive with excellent overall performance. (United States)

    Ji, Yan-Hong; Liu, Yu; Huang, Gui-Wen; Shen, Xiao-Jun; Xiao, Hong-Mei; Fu, Shao-Yun


    Excellent electrical conductivity (EC) generally conflicts with high lap shear strength (LSS) for electrically conductive adhesives (ECAs) since EC increases while LSS decreases with increasing conductive filler content. In this work, the ECAs with the excellent overall performance are developed based on the ternary hybrid of Ag microflakes (Ag-MFs), Ag nanospheres (Ag-NSs), and Ag nanowires (Ag-NWs). First, a low silver content adhesive system is determined. Then, the effects of the relative contents of Ag fillers on the EC and the LSS are studied. It is shown that a small amount of Ag-NSs or Ag-NWs can dramatically improve the EC for the Ag-MF/epoxy adhesives. The Ag-NSs and Ag-NWs with appropriate contents have a synergistic effect in improving the EC. Meanwhile, the LSS of the as-prepared adhesive with the appropriate Ag contents reaches an optimal value. Both the EC and the LSS of the as-prepared ternary hybrid ECA with a low content of 40 wt % Ag are higher than those of the commercial ECAs filled with the Ag-MF content over 60 wt %. Finally, the ternary hybrid ECA with the optimal formulation is shown to be promising for printing the radio frequency identification tag antennas as an immediate application example.

  3. Realizing Ternary Logic in FPGAs for SWL DSP Systems

    Directory of Open Access Journals (Sweden)

    Tayeb Din


    Full Text Available Recently SWL (Short Word Length DSP (Digital Signal Processing applications has been proposed to overcome multiplier complexity that is evident in most of the digital applications. These SWL applications have been processed through sigma-delta modulation as a key element. For such applications, adder design plays vital role and can impact upon the chip area and its performance. In this paper, a ternary approach for adder tree has been proposed instead of binary that can accommodate more data with less chip-area at the cost of extra pin. The proposed ternary adder tree has been designed and developed in Quartus-II using three different design strategies namely T-gate (Ternary gate, LUT (Look Up Table and algebraic equations. Through rigorous simulation it was found that T-gate technique results in superior performance, an average of 23.5 and 33% improvement compared to the same adder structure based on Boolean Algebraic Equation and LUT, respectively. The proposed adder design would benefit the efficient implementation of SWL applications.

  4. Crystal Structure of New Heusler Compounds


    Graf, Tanja; Casper, Frederick; Winterlik, Jürgen; Balke, Benjamin; Fecher, Gerhard H.; Felser, Claudia


    Abstract Heusler compounds are promising materials in many fields of contemporary research. The spectrum of their possible applications ranges from magnetic and magneto-mechanical materials over semiconductors and thermoelectrics to superconductors. An important feature of the Heusler compounds is the possibility of controlling the valence electron concentration by partial substitution of elements. On the other hand, the properties also depend on the degree of ordering of the the c...

  5. Size effect caused significant reduction of thermal conductivity of GaAs/AlAs distributed Bragg reflector used in semiconductor disk laser (United States)

    Zhang, Peng; Zhu, Renjiang; Jiang, Maohua; Song, Yanrong; Zhang, Dingke; Cui, Yuting


    Thermal properties of the distributed Bragg reflector (DBR) used in the semiconductor gain element are crucial for the performance of a semiconductor disk laser (SDL). For the purpose of more reasonable semiconductor wafer design, so as to improve the thermal management of SDLs, accurate thermal conductivity value of a DBR is under considerable requirement. By the use of equilibrium molecular dynamics method, thermal conductivities of GaAs/AlAs DBRs, which are widely employed in 1 μm waveband SDLs, are calculated, and simulated results are compared with the reported experimental data. Influences of the layer thickness on the thermal conductivities of the DBR structure and the effects of Al composition on the AlxGa1-xAs ternary alloy values are focused and analyzed.

  6. Photoreflectance Characterization of Semiconductors (United States)

    Bhimnathwala, Hemant Ghanshyamdas

    Photoreflectance technique has been used as a non-destructive probe of surface photo-voltage in doped and semi-insulating semiconductors. A system used to measure the photoreflectance spectra near the fundamental gap of GaAs and InP has been described. Measurements as a function of pump intensity on n and p type GaAs were used to infer the carrier dynamics leading to change in the surface electric field. Measurements indicate that the surface of GaAs consists of hole traps at the surface in addition to recombination states. This is confirmed by spectroscopic studies carried out by varying the pump modulation frequency at fixed temperatures and the measurements show that the hole trap has an activation energy of 0.29 eV and has an emission time of 0.175 +/- 0.002 msec. at room temperature. In semi-insulating GaAs, it is expected that there is no surface electric field at equilibrium due to pinning at the surface and large concentration of deep defect EL2. Electromodulation, in this case proceeds via preferential trapping of holes at the surface. This is supported by measurements carried out as a function of pump intensity and on wafers having different carbon concentrations. Analysis of carrier dynamics in semi-insulating GaAs is much simplified by use of Nd:YAG laser (instead of a HeNe laser) as a source of pump beam. A sub-band -gap excitation generates mainly excess electrons and the Poisson's equation can be integrated once to find the surface electric field. Numerical integration yields the surface photovoltage. It is shown that this technique is sensitive to the the surface state density and relatively insensitive to bulk properties. It has been applied to study the effect of various chemical reactants on the surface state density. In many PR spectra, features at energies less than the gap energy are observed. These are ascribed to shallow acceptors unrelated to carbon, which was the dominant acceptor in these materials. It is proposed that the electric field

  7. Physics of semiconductor laser devices

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, G.H.B.


    The physics of the semiconductor laser is studied. The basic phenomena that control the operation of the device are analyzed and described in considerable detail. The treatment has been keyed particularly to fundamental concepts and kept general in order to avoid being overtaken by events. The range of phenomena in a semiconductor laser involves a number of scientific disciplines. To cater for the reader who is not already a specialist in all of these the author has endeavoured, in the chapters on fundamental behaviour, to provide in a readable form the minimum background that is needed to understand the more specialist part of the text. As an introduction a general review is given of the whole range of semiconductor laser devices that now exist, the technology involved in their fabrication, the factors that determine their reliability, and their possible role in integrated systems.

  8. Thiophene-Based Organic Semiconductors. (United States)

    Turkoglu, Gulsen; Cinar, M Emin; Ozturk, Turan


    Thiophene-based π-conjugated organic small molecules and polymers are the research subject of significant current interest owing to their potential use as organic semiconductors in material chemistry. Despite simple and similar molecular structures, the hitherto reported properties of thiophene-based organic semiconductors are rather diverse. Design of high performance organic semiconducting materials requires a thorough understanding of inter- and intra-molecular interactions, solid-state packing, and the influence of both factors on the charge carrier transport. In this chapter, thiophene-based organic semiconductors, which are classified in terms of their chemical structures and their structure-property relationships, are addressed for the potential applications as organic photovoltaics (OPVs), organic field-effect transistors (OFETs) and organic light emitting diodes (OLEDs).

  9. High pressure semiconductor physics I

    CERN Document Server

    Willardson, R K; Paul, William; Suski, Tadeusz


    Since its inception in 1966, the series of numbered volumes known as Semiconductors and Semimetals has distinguished itself through the careful selection of well-known authors, editors, and contributors. The "Willardson and Beer" Series, as it is widely known, has succeeded in publishing numerous landmark volumes and chapters. Not only did many of these volumes make an impact at the time of their publication, but they continue to be well-cited years after their original release. Recently, Professor Eicke R. Weber of the University of California at Berkeley joined as a co-editor of the series. Professor Weber, a well-known expert in the field of semiconductor materials, will further contribute to continuing the series' tradition of publishing timely, highly relevant, and long-impacting volumes. Some of the recent volumes, such as Hydrogen in Semiconductors, Imperfections in III/V Materials, Epitaxial Microstructures, High-Speed Heterostructure Devices, Oxygen in Silicon, and others promise indeed that this tra...

  10. Absolute instability of polaron mode in semiconductor magnetoplasma (United States)

    Paliwal, Ayushi; Dubey, Swati; Ghosh, S.


    Using coupled mode theory under hydrodynamic regime, a compact dispersion relation is derived for polaron mode in semiconductor magnetoplasma. The propagation and amplification characteristics of the wave are explored in detail. The analysis deals with the behaviour of anomalous threshold and amplification derived from dispersion relation, as function of external parameters like doping concentration and applied magnetic field. The results of this investigation are hoped to be useful in understanding electron-longitudinal optical phonon interplay in polar n-type semiconductor plasmas under the influence of coupled collective cyclotron excitations. The best results in terms of smaller threshold and higher gain of polaron mode could be achieved by choosing moderate doping concentration in the medium at higher magnetic field. For numerical appreciation of the results, relevant data of III-V n-GaAs compound semiconductor at 77 K is used. Present study provides a qualitative picture of polaron mode in magnetized n-type polar semiconductor medium duly shined by a CO2 laser.

  11. Acceptors in II-IV Semiconductors - Incorporation and Complex Formation

    CERN Multimedia


    A strong effort is currently devoted to the investigation of defects and the electrical activation of dopant atoms in II-VI semiconductors. In particular, the knowledge about the behaviour of acceptors, prerequisite for the fabrication of p-type semiconductors, is rather limited. The perturbed $\\,{\\gamma\\gamma}$ -angular correlation technique (PAC) and the photoluminescence spectroscopy (PL) using the radioactive isotopes $^{77}\\!$Br and $^{111}\\!$Ag will be applied for investigating the behaviour of acceptor dopant atoms and their interactions with defects in II-VI semiconductors. The main topic will be the identification of the technical conditions for the incorporation of electrically active acceptors in the II-VI semiconductors ~ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe with particular emphasis on the compounds~ CdTe, ZnSe, and ZnTe. The investigations will be supplemented by first exploratory PL experiments with the group V acceptors $^{71}\\!$As and $^{121}\\!$Sb. With help of the probe $^{111}\\!$Ag, the pos...

  12. Information on individual interfaces in ternary polymer blends from positron annihilation lifetime studies (United States)

    Meghala, D.; Ramya, P.; Pasang, T.; Ravikumar, H. B.; Ranganathaiah, C.


    Positron Annihilation Lifetime Spectroscopy has been used to determine the free volume content in the ternary blends of SAN/EVA/PVC. The method of deriving hydrodynamic interaction parameter (α) in binary polymer blends was modified for ternary polymer blend system characterized by three distinct interfaces. Each interface characterized, is associated with an α and its assertion for the ternary blend are compared with available literature data.

  13. Semiconductor device physics and simulation

    CERN Document Server

    Yuan, J S


    This volume provides thorough coverage of modern semiconductor devices -including hetero- and homo-junction devices-using a two-dimensional simulator (MEDICI) to perform the analysis and generate simulation results Each device is examined in terms of dc, ac, and transient simulator results; relevant device physics; and implications for design and analysis Two hundred forty-four useful figures illustrate the physical mechanisms and characteristics of the devices simulated Comprehensive and carefully organized, Semiconductor Device Physics and Simulation is the ideal bridge from device physics to practical device design

  14. Optical coherent control in semiconductors

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Vadim, Lyssenko; Hvam, Jørn Märcher


    The developments with coherent control (CC) techniques in optical spectroscopy have recently demonstrated population control and coherence manipulations when the induced optical phase is explored with phase-locked laser pulses. These and other developments have been guiding the new research field...... of quantum control including the recent applications to semiconductors and nanostructures. We study the influence of inhomogeneous broadening in semiconductors on CC results. Photoluminescence (PL) and the coherent emission in four-wave mixing (FWM) is recorded after resonant excitation with phase-locked...

  15. Semiconductors and semimetals epitaxial microstructures

    CERN Document Server

    Willardson, Robert K; Beer, Albert C; Gossard, Arthur C


    Newly developed semiconductor microstructures can now guide light and electrons resulting in important consequences for state-of-the-art electronic and photonic devices. This volume introduces a new generation of epitaxial microstructures. Special emphasis has been given to atomic control during growth and the interrelationship between the atomic arrangements and the properties of the structures.Key Features* Atomic-level control of semiconductor microstructures* Molecular beam epitaxy, metal-organic chemical vapor deposition* Quantum wells and quantum wires* Lasers, photon(IR)detectors, heterostructure transistors

  16. Introduction to semiconductor manufacturing technology

    CERN Document Server


    IC chip manufacturing processes, such as photolithography, etch, CVD, PVD, CMP, ion implantation, RTP, inspection, and metrology, are complex methods that draw upon many disciplines. [i]Introduction to Semiconductor Manufacturing Technologies, Second Edition[/i] thoroughly describes the complicated processes with minimal mathematics, chemistry, and physics; it covers advanced concepts while keeping the contents accessible to readers without advanced degrees. Designed as a textbook for college students, this book provides a realistic picture of the semiconductor industry and an in-depth discuss

  17. Wide band gap semiconductor templates

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Paul N. (Los Alamos, NM); Stan, Liliana (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); DePaula, Raymond F. (Santa Fe, NM); Usov, Igor O. (Los Alamos, NM)


    The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition ("IBAD") techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide ("MgO") technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.

  18. Modeling of semiconductor optical amplifiers

    DEFF Research Database (Denmark)

    Mørk, Jesper; Bischoff, Svend; Berg, Tommy Winther

    We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed.......We discuss the modelling of semiconductor optical amplifiers with emphasis on their high-speed properties. Applications in linear amplification as well as ultrafast optical signal processing are reviewed. Finally, the possible role of quantum-dot based optical amplifiers is discussed....

  19. Organic semiconductors in sensor applications

    CERN Document Server

    Malliaras, George; Owens, Róisín


    Organic semiconductors offer unique characteristics such as tunability of electronic properties via chemical synthesis, compatibility with mechanically flexible substrates, low-cost manufacturing, and facile integration with chemical and biological functionalities. These characteristics have prompted the application of organic semiconductors and their devices in physical, chemical, and biological sensors. This book covers this rapidly emerging field by discussing both optical and electrical sensor concepts. Novel transducers based on organic light-emitting diodes and organic thin-film transistors, as well as systems-on-a-chip architectures are presented. Functionalization techniques to enhance specificity are outlined, and models for the sensor response are described.

  20. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H


    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  1. Influence of phonons on semiconductor quantum emission

    Energy Technology Data Exchange (ETDEWEB)

    Feldtmann, Thomas


    A microscopic theory of interacting charge carriers, lattice vibrations, and light modes in semiconductor systems is presented. The theory is applied to study quantum dots and phonon-assisted luminescence in bulk semiconductors and heterostructures. (orig.)

  2. Fundamentals of semiconductors physics and materials properties

    CERN Document Server

    Yu, Peter Y


    Provides detailed explanations of the electronic, vibrational, transport, and optical properties of semiconductors. This textbook emphasizes understanding the physical properties of Si and similar tetrahedrally coordinated semiconductors and features an extensive collection of tables of material parameters, figures, and problems.

  3. Applications of semiconductor detectors to nuclear medicine

    CERN Document Server

    Bradford-Barber, H


    Progress in the development of semiconductor detectors is being applied to improving the resolution and imaging performance of nuclear medicine cameras. Nuclear medicine is briefly described. Efforts to develop semiconductor cameras for both planar and tomographic imaging are reviewed.

  4. Liquid-liquid equilibria for binary and ternary polymer solutions with PC-SAFT

    DEFF Research Database (Denmark)

    Lindvig, Thomas; Michelsen, Michael Locht; Kontogeorgis, Georgios


    are used for investigating the correlative and predictive capabilities of the thermodynamic model PC-SAFT. The investigation shows that the model correlates well experimental LLE data for binary as well as ternary systems but further predicts the behavior of the ternary systems with reasonably good......Two algorithms for evaluating liquid-liquid equilibria (LLE) for binary and ternary polymer solutions are presented. The binary algorithm provides the temperature versus concentration cloud-point curve at fixed pressure, whereas the ternary algorithm provides component 1 versus component 2...

  5. Thin films in ternary Bi-Mn-O system obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Langenberg, E. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Catalunya (Spain)], E-mail:; Varela, M.; Garcia-Cuenca, M.V.; Ferrater, C. [Departament de Fisica Aplicada i Optica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Catalunya (Spain); Sanchez, F.; Fontcuberta, J. [Institut de Ciencia de Materials de Barcelona, CSIC, Campus de la UAB, 08193 Bellaterra, Catalunya (Spain)


    We have explored the influence of deposition temperature and the deposition rate on the growth of the ternary Bi-Mn-O system onto (0 0 1) SrTiO{sub 3} substrates by pulsed laser deposition. The studies were performed with a fixed oxygen pressure of 10 Pa (0.1 mbar) and substrate temperatures between 600 and 680 deg. C. The films were obtained from non-stoichiometric targets with 10 and 15% Bi excess in order to compensate for Bi volatility. The fact that the compound is metastable together with the high volatility of Bi induces different Bi and Mn oxides apart from BiMnO{sub 3}. Stabilisation of epitaxial BiMnO{sub 3} is therefore very elusive and only in a narrow temperature window around 630 deg. C the presence of spurious phases is reduced to traces. X-ray diffraction results reveal a correlation between the Bi-Mn-O compounds and the deposition temperature. Reciprocal space maps show that the BiMnO{sub 3} grows completely strained on SrTiO{sub 3} substrates. The unit cell has a reduced volume, which could be due to the presence of Bi vacancies. The surface of the films is rough, but they flatten when the films are obtained at lower deposition rates.

  6. Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: ternary hydrogen-bond induced high energy density materials. (United States)

    Yin, Ping; Parrish, Damon A; Shreeve, Jean'ne M


    Diverse functionalization was introduced into the pyrazole framework giving rise to a new family of ternary hydrogen-bond induced high energy density materials. By incorporating extended cationic interactions, nitramine-based ionic derivatives exhibit good energetic performance and enhanced molecular stability. Performance parameters including heats of formation and detonation properties were calculated by using Gaussian 03 and EXPLO5 v6.01 programs, respectively. It is noteworthy to find that 5-nitramino-3,4-dinitropyrazole, 4, has a remarkable measured density of 1.97 g cm(-3) at 298 K, which is consistent with its crystal density (2.032 g cm(-3), 150 K), and ranks highest among azole-based CHNO compounds. Energetic evaluation indicates that, in addition to the molecular compound 4, some ionic derivatives, 9, 11, 12, 17, 19, and 22, also have high densities (1.83-1.97 g cm(-3)), excellent detonation pressures and velocities (P, 35.6-41.6 GPa; vD, 8880-9430 m s(-1)), as well as acceptable impact and friction sensitivities (IS, 4-30 J; FS, 40-240 N). These attractive features highlight the application potential of nitramino hydrogen-bonded interactions in the design of advanced energetic materials.

  7. Crystal structure of the ternary silicide Gd2Re3Si5

    Directory of Open Access Journals (Sweden)

    Vitaliia Fedyna


    Full Text Available A single crystal of the title compound, the ternary silicide digadolinium trirhenium pentasilicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubooctahedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square antiprisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5 Å and isolated squares with an Re—Re distance of 2.9683 (6 Å.

  8. Tunable fluorescence emission of ternary nonstoichiometric Ag-In-S alloyed nanocrystals (United States)

    Feng, Jian; Yang, Xiurong


    Low toxic, nonstoichiometric colloidal Ag-In-S ternary quantum dots with different Ag content were synthesized by a one-pot hot-injection method based on the reaction of metal acetylacetonates with sulfur dissolved in octadecene. X-ray diffraction (XRD), transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to characterize the size, structure, and morphology of these samples. ICP-MS was employed to analyze the compositions of Ag-In-S nanocrystals. The optical properties were characterized by UV-Vis absorption, photoluminescence (PL) spectroscopy, and time-resolved photoluminescence. Varying the fraction of cationic and capping agents, the compositions of Ag-In-S nanocrystals were precisely controlled. XRD and HRTEM results indicate the compositional homogeneity of Ag-In-S. The emission spectra across the different compositions exhibiting a single bandgap feature further confirm the formation of Ag-In-S alloy NCs, rather than phase separated Ag2S and In2S3. Composition-dependent tunable PL emissions have been observed. The relative PL quantum yield is up to 16 %, which exhibited substantially enhanced comparing with the stoichiometric AgInS2 semiconductor core QDs reported in previous literature. The PL decay curve of Ag-In-S has a biexponential characteristic, which indicates that the recombination of an electron and a hole is dominated by the surface defect and the recombination process associated with internal traps is reduced significantly. The large Stokes shift between the absorption peaks and their emissions should inhibit the reabsorption and Förster energy transfer between Ag-In-S nanocrystals, which provides the alternative in the further applications where high-concentrations of nanocrystals are needed.

  9. Atomic layer deposition of perovskite oxides and their epitaxial integration with Si, Ge, and other semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Martin D.; Ngo, Thong Q.; Hu, Shen; Ekerdt, John G., E-mail: [Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Posadas, Agham; Demkov, Alexander A. [Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)


    Atomic layer deposition (ALD) is a proven technique for the conformal deposition of oxide thin films with nanoscale thickness control. Most successful industrial applications have been with binary oxides, such as Al{sub 2}O{sub 3} and HfO{sub 2}. However, there has been much effort to deposit ternary oxides, such as perovskites (ABO{sub 3}), with desirable properties for advanced thin film applications. Distinct challenges are presented by the deposition of multi-component oxides using ALD. This review is intended to highlight the research of the many groups that have deposited perovskite oxides by ALD methods. Several commonalities between the studies are discussed. Special emphasis is put on precursor selection, deposition temperatures, and specific property performance (high-k, ferroelectric, ferromagnetic, etc.). Finally, the monolithic integration of perovskite oxides with semiconductors by ALD is reviewed. High-quality epitaxial growth of oxide thin films has traditionally been limited to physical vapor deposition techniques (e.g., molecular beam epitaxy). However, recent studies have demonstrated that epitaxial oxide thin films may be deposited on semiconductor substrates using ALD. This presents an exciting opportunity to integrate functional perovskite oxides for advanced semiconductor applications in a process that is economical and scalable.

  10. Structural defects in cubic semiconductors characterized by aberration-corrected scanning transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo Rojas Dasilva, Yadira; Kozak, Roksolana; Erni, Rolf; Rossell, Marta D., E-mail:


    The development of new electro-optical devices and the realization of novel types of transistors require a profound understanding of the structural characteristics of new semiconductor heterostructures. This article provides a concise review about structural defects which occur in semiconductor heterostructures on the basis of micro-patterned Si substrates. In particular, one- and two-dimensional crystal defects are being discussed which are due to the plastic relaxation of epitaxial strain caused by the misfit of crystal lattices. Besides a few selected examples from literature, we treat in particular crystal defects occurring in GaAs/Si, Ge/Si and β-SiC/Si structures which are studied by high-resolution annular dark-field scanning transmission electron microscopy. The relevance of this article is twofold; firstly, it should provide a collection of data which are of help for the identification and characterization of defects in cubic semiconductors by means of atomic-resolution imaging, and secondly, the experimental data shall provide a basis for advancing the understanding of device characteristics with the aid of theoretical modelling by considering the defective nature of strained semiconductor heterostructures. - Highlights: • The heterogeneous integration of high-quality compound semiconductors remains a challenge. • Lattice defects cause severe degradation of the semiconductor device performances. • Aberration-corrected HAADF-STEM allows atomic-scale characterization of defects. • An overview of lattice defects found in cubic semiconductors is presented. • Theoretical modelling and calculations are needed to determine the defect properties.

  11. Terahertz Nonlinear Optics in Semiconductors

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry; Hvam, Jørn Märcher; Hoffmann, Matthias C.


    We demonstrate the nonlinear optical effects – selfphase modulation and saturable absorption of a single-cycle THz pulse in a semiconductor. Resulting from THz-induced modulation of Drude plasma, these nonlinear optical effects, in particular, lead to self-shortening and nonlinear spectral...

  12. Towards filament free semiconductor lasers

    DEFF Research Database (Denmark)

    McInerney, John; O'Brien, Peter; Skovgaard, Peter M. W.


    We outline physical models and simulations for suppression of self-focusing and filamentation in large aperture semiconductor lasers. The principal technical objective is to generate multi-watt CW or quasi-CW outputs with nearly diffraction limited beams, suitable for long distance free space...... propagation structures in lasers and amplifiers which suppress lateral reflections....

  13. Semiconductors for plasmonics and metamaterials

    DEFF Research Database (Denmark)

    Naik, G.V.; Boltasseva, Alexandra


    Plasmonics has conventionally been in the realm of metal-optics. However, conventional metals as plasmonic elements in the near-infrared (NIR) and visible spectral ranges suffer from problems such as large losses and incompatibility with semiconductor technology. Replacing metals with semiconduct...

  14. 2010 Defects in Semiconductors GRC

    Energy Technology Data Exchange (ETDEWEB)

    Shengbai Zhang


    Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, as well as an emphasis on the development of novel defect detection methods and first-principles defect theories. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference will deal with point and extended defects in a broad range of electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, oxides, sp{sup 2} carbon based-materials, and photovoltaic/solar cell materials, and in understanding important defect phenomena such as doping bottleneck in nanostructures and the diffusion of defects and impurities. The program consists of about twenty invited talks and a number of contributed poster sessions. The emphasis should be on work which has yet to be published. The large amount of discussion time provides an ideal forum for dealing with topics that are new and/or controversial.

  15. Atomistic Models of Amorphous Semiconductors

    NARCIS (Netherlands)

    Jarolimek, K.


    Crystalline silicon is probably the best studied material, widely used by the semiconductor industry. The subject of this thesis is an intriguing form of this element namely amorphous silicon. It can contain a varying amount of hydrogen and is denoted as a-Si:H. It completely lacks the neat long

  16. The Lattice Compatibility Theory: Arguments for Recorded I-III-O2 Ternary Oxide Ceramics Instability at Low Temperatures beside Ternary Telluride and Sulphide Ceramics

    Directory of Open Access Journals (Sweden)

    K. Boubaker


    Full Text Available Some recorded behaviours differences between chalcopyrite ternary oxide ceramics and telluride and sulphides are investigated in the framework of the recently proposed Lattice Compatibility Theory (LCT. Alterations have been evaluated in terms of Urbach tailing and atomic valence shell electrons orbital eigenvalues, which were calculated through several approximations. The aim of the study was mainly an attempt to explain the intriguing problem of difficulties of elaborating chalcopyrite ternary oxide ceramics (I-III-O2 at relatively low temperatures under conditions which allowed crystallization of ternary telluride and sulphides.

  17. Apparatus for forming thin-film heterojunction solar cells employing materials selected from the class of I-III-VI.sub.2 chalcopyrite compounds (United States)

    Mickelsen, Reid A.; Chen, Wen S.


    Apparatus for forming thin-film, large area solar cells having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n-type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in the first semiconductor layer to evolve into p-type material, thereby defining a thin layer heterojunction device characterized by the absence of voids, vacancies and nodules which tend to reduce the energy conversion efficiency of the system.

  18. Basic semiconductor physics. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Hamaguchi, Chihiro [Osaka Univ., Suita (Japan). Dept. Electronic Engineering


    This book presents a detailed description of the basic semiconductor physics. The reader is assumed to have a basic command of mathematics and some elementary knowledge of solid state physics. The text covers a wide range of important phenomena in semiconductors, from the simple to the advanced. The reader can understand three different methods of energy band calculations, empirical pseudo-potential, k.p perturbation and tight-binding methods. The effective mass approximation and electron motion in a periodic potential, Boltzmann transport equation and deformation potentials used for full band Monte Carlo simulation are discussed. Experiments and theoretical analysis of cyclotron resonance are discussed in detail because the results are essential to the understanding of semiconductor physics. Optical and transport properties, magneto-transport, two dimensional electron gas transport (HEMT and MOSFET), and quantum transport are reviewed, explaining optical transition, electron phonon interactions, electron mobility. Recent progress in quantum structures such as two-dimensional electron gas, superlattices, quantum Hall effect, electron confinement and the Landauer formula are included. The Quantum Hall effect is presented with different models. In the second edition, the addition energy and electronic structure of a quantum dot (artificial atom) are explained with the help of Slater determinants. Also the physics of semiconductor Lasers is described in detail including Einstein coefficients, stimulated emission, spontaneous emission, laser gain, double heterostructures, blue Lasers, optical confinement, laser modes, strained quantum wells lasers which will give insight into the physics of various kinds of semiconductor lasers, in addition to the various processes of luminescence. (orig.)

  19. Synthesis and characterization of ternary compound, Mn2SnTe4

    Indian Academy of Sciences (India)

    Gerzon E Delgado1 Asiloé J Mora1 Jines E Contreras1 Luis Betancourt2. Laboratorio de Cristalografía, Departamento de Química, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela; Laboratorio de Magnetismo en Sólidos, Departamento de Física, Facultad de Ciencias, ...

  20. Synthesis and characterization of ternary compound, Mn2SnTe4

    Indian Academy of Sciences (India)


    -ray powder diffraction analysis indicated that this material crystallizes in the olivine-type structure, space group Pnma, Z = 4, with unit cell parameters: a .... mortar and pestle and mounted on a flat holder covered with a thin layer of grease. The ...

  1. Materials and Reliability Handbook for Semiconductor Optical and Electron Devices

    CERN Document Server

    Pearton, Stephen


    Materials and Reliability Handbook for Semiconductor Optical and Electron Devices provides comprehensive coverage of reliability procedures and approaches for electron and photonic devices. These include lasers and high speed electronics used in cell phones, satellites, data transmission systems and displays. Lifetime predictions for compound semiconductor devices are notoriously inaccurate due to the absence of standard protocols. Manufacturers have relied on extrapolation back to room temperature of accelerated testing at elevated temperature. This technique fails for scaled, high current density devices. Device failure is driven by electric field or current mechanisms or low activation energy processes that are masked by other mechanisms at high temperature. The Handbook addresses reliability engineering for III-V devices, including materials and electrical characterization, reliability testing, and electronic characterization. These are used to develop new simulation technologies for device operation and ...

  2. Microscopical Studies of Structural and Electronic Properties of Semiconductors

    CERN Multimedia


    The electronic and structural properties of point defects in semiconductors, e.g. radiation defects, impurities or passivating defects can excellently be studied by the hyperfine technique of Perturbed Angular Correlation (PAC). The serious limitation of this method, the small number of chemically different radioactive PAC probe atoms can be widely overcome by means of ISOLDE. Providing shortliving isotopes, which represent common dopants as well as suitable PAC probe atoms, the ISOLDE facility enables a much broader application of PAC to problems in semiconductor physics.\\\\ Using the probe atom $^{111m}$ Cd , the whole class of III-V compounds becomes accessible for PAC investigations. First successful experiments in GaAs, InP and GaP have been performed, concerning impurity complex formation and plasma induced defects. In Si and Ge, the electronic properties~-~especially their influence on acceptor-donor interaction~-~could be exemplarily st...

  3. Strain sensitivity of band gaps of Sn-containing semiconductors

    DEFF Research Database (Denmark)

    Li, Hong; Castelli, Ivano Eligio; Thygesen, Kristian Sommer


    Tuning of band gaps of semiconductors is a way to optimize materials for applications within photovoltaics or as photocatalysts. One way to achieve this is through applying strain to the materials. We investigate the effect of strain on a range of Sn-containing semiconductors using density...... functional theory and many-body perturbation theory calculations. We find that the band gaps of bulk Sn oxides with SnO6 octahedra are highly sensitive to volumetric strain. By applying a small isotropic strain of 2% (-2%), a decrease (increase) of band gaps as large as 0.8 to 1.0 eV are obtained. We...... attribute the ultrahigh strain sensitivity to the pure Sn s-state character of the conduction-band edges. Other Sn-containing compounds may show both increasing and decreasing gaps under tensile strain and we show that the behavior can be understood by analyzing the role of the Sn s states in both...

  4. The ternary Ho–V–Ga system at 750 °C, and new rare earth vanadium and chromium gallides

    Energy Technology Data Exchange (ETDEWEB)

    Verbovytskyy, Yuriy, E-mail: [Physico–Mechanical Institute, NAS of Ukraine, Naukova str. 5, 79601 Lviv (Ukraine); C" 2TN, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695–066 Bobadela LRS (Portugal)


    The ternary Ho–V–Ga phase diagram has been investigated at 750 °C by means of powder X–ray diffraction analysis and energy–dispersive X–ray spectroscopy. The studied system is characterized by the absence of detectable solubility for the binary compounds and by the existence of two new ternary phases, HoV{sub 2}Ga{sub 4} (YbMo{sub 2}Al{sub 4} structure type) and Ho{sub 4}V{sub 1–x}Ga{sub 12} (0 ≤ x < 1, related to the AuCu{sub 3} structure type). Isostructural representatives REV{sub 2}Ga{sub 4} have been found for RE = Tb, Dy and Tm and confirmed for RE = Er. Additionally, the formation of the new RECr{sub 4}Ga{sub 8} phases (related to the ScFe{sub 6}Ga{sub 6} structure type) with RE = Gd–Tm has been revealed. Structural peculiarities and interactions of the atoms in the HoV{sub 2}Ga{sub 4} and HoCr{sub 4}Ga{sub 8} compounds have been briefly discussed. - Highlights: • Isothermal section of the Ho–V–Ga at 750 °C was investigated. • Five new REV{sub 2}Ga{sub 4} compounds with YbMo{sub 2}Al{sub 4} type were studied. • Six new RECr{sub 4}Ga{sub 8} phases with ScFe{sub 6}Ga{sub 6} type were discovered.

  5. Quantifying the energetics of cooperativity in a ternary protein complex

    DEFF Research Database (Denmark)

    Andersen, Peter S; Schuck, Peter; Sundberg, Eric J


    and mathematical modeling to describe the energetics of cooperativity in a trimolecular protein complex. As a model system for quantifying cooperativity, we studied the ternary complex formed by the simultaneous interaction of a superantigen with major histocompatibility complex and T cell receptor, for which...... a structural model is available. This system exhibits positive and negative cooperativity, as well as augmentation of the temperature dependence of binding kinetics upon the cooperative interaction of individual protein components in the complex. Our experimental and theoretical analysis may be applicable...... to other systems involving cooperativity....

  6. Implementation of DFT application on ternary optical computer (United States)

    Junjie, Peng; Youyi, Fu; Xiaofeng, Zhang; Shuai, Kong; Xinyu, Wei


    As its characteristics of huge number of data bits and low energy consumption, optical computing may be used in the applications such as DFT etc. which needs a lot of computation and can be implemented in parallel. According to this, DFT implementation methods in full parallel as well as in partial parallel are presented. Based on resources ternary optical computer (TOC), extensive experiments were carried out. Experimental results show that the proposed schemes are correct and feasible. They provide a foundation for further exploration of the applications on TOC that needs a large amount calculation and can be processed in parallel.

  7. A review on ternary vanadate one-dimensional nanomaterials. (United States)

    Pei, Li Z; Wang, Shuai; Liu, Han D; Pei, Yin Q


    Ternary vanadate one-dimensional nanomaterials exhibit great application potential in the fields of lithium ion batteries, photocatalysis and electrochemical sensors owing to their good electrochemical and photocatalytic properties. The article reviews the recent progress and patents on the vanadate one-dimensional nanomaterials. The synthesis of the vanadate nanorods, nanobelts and nanotubes by hydrothermal method, template method and room temperature wet chemical process is demonstrated. The application of the vanadate one-dimensional nanomaterials for lithium ion batteries, electrochemical sensors and photocatalysis is discussed. The possible development direction of the vanadate one-dimensional nanomaterials for the synthesis and application is also analyzed.

  8. Variation of properties of glasses along the 3Bi2O3 X 5B2O3-4PbO X B2O3 and PbO X 2B2O3-2PbO X Bi2O3 sections of the PbO-Bi2O3-B2O3 ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Zargarova, M.I.; Shuster, N.S.


    Already published data on the phase diagrams of Pb-B2O3, Bi2O3-B2O3, and PbO-Bi2O3 systems serve as the basis of this investigation, together with original experiments on the PbO-Bi2O3-B2O3 ternary system. The authors establish the quasi binary nature of the 3Bi2O3 X 5B2O3 - 4PbO X B2O3 section with the formation of the congruently melting ternary compound 3Bi2O3 X 8PbO X 7B2O3, and they demonstrate the role of the ternary compound 3Bi2O3 X 8PbO X 7B2O3 as a glass former in the PbO-Bi2O3 - B2O3 system.

  9. (Liquid + liquid) equilibria for ternary mixtures of (alkane + benzene + [EMpy] [ESO{sub 4}]) at several temperatures and atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Emilio J.; Calvar, Noelia; Gonzalez, Begona [Departamento de Ingenieria Quimica de la Universidad de Vigo, 36310 Vigo (Spain); Dominguez, Angeles [Departamento de Ingenieria Quimica de la Universidad de Vigo, 36310 Vigo (Spain)], E-mail:


    In this work, the separation of benzene from aliphatic hydrocarbons (hexane, or heptane) is investigated by extraction with 1-ethyl-3-methylpyridinium ethylsulphate ionic liquid, [EMpy][ESO{sub 4}]. (Liquid + liquid) equilibria (LLE) data are determined for the ternary systems: {l_brace}hexane (1) + benzene (2) + [EMpy][ESO{sub 4}] (3){r_brace} at T = (283.15, 293.15, 298.15, and 303.15) K and {l_brace}heptane (1) + benzene (2) + [EMpy][ESO{sub 4}] (3){r_brace} at T = (283.15 and 298.15) K and atmospheric pressure. The selectivity and distribution coefficient, derived from the tie line data, were used to determine whether the ionic liquid is a good solvent for the extraction of aromatic from aliphatic compounds. The consistency of the tie line data was ascertained by applying the Othmer-Tobias and Hand equations. The experimental results for the ternary systems were well correlated with the NRTL equation. A study of the temperature effect and the influence of the chain length of the alkanes were realized. The results obtained were compared with other ionic liquids. There are no literature data for the mixtures discussed in this paper.

  10. Semiconductor detectors in nuclear and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Rehak, P. [Brookhaven National Lab., Upton, NY (United States); Gatti, E. [Piazza Leonardo da Vinci 32, Milano (Italy)


    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups: Classical semiconductor diode detectors and semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported.

  11. Semiconductor detectors in nuclear and particle physics

    Energy Technology Data Exchange (ETDEWEB)

    Rehak, P. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Gatti, E. [Politecnico di Milano, Dipartimento di Elletronica e Informazione, Piazza Leondardo da Vinci 32, 20133 Milano (Italy)


    Semiconductor detectors for elementary particle physics and nuclear physics in the energy range above 1 GeV are briefly reviewed. In these two fields semiconductor detectors are used mainly for the precise position sensing. In a typical experiment, the position of a fast charged particle crossing a relatively thin semiconductor detector is measured. The position resolution achievable by semiconductor detectors is compared with the resolution achievable by gas filled position sensing detectors. Semiconductor detectors are divided into two groups; (i) classical semiconductor diode detectors and (ii) semiconductor memory detectors. Principles of the signal formation and the signal read-out for both groups of detectors are described. New developments of silicon detectors of both groups are reported. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  12. Fullerene alloy formation and the benefits for efficient printing of ternary blend organic solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Bjerring, Morten; Nielsen, Niels Chr.


    with a third polymer component, the system exhibits pseudo-binary phase behaviour instead of the expected ternary phase behaviour. Our results experimentally confirm the earlier hypothesis that the unexpected composition average dependent IV-behaviour for these supposed ternary mixtures are indeed due to them...

  13. Using a Ternary Diagram to Display a System's Evolving Energy Distribution (United States)

    Brazzle, Bob; Tapp, Anne


    A ternary diagram is a graphical representation used for systems with three components. They are familiar to mineralogists (who typically use them to categorize varieties of solid solution minerals such as feldspar) but are not yet widely used in the physics community. Last year the lead author began using ternary diagrams in his introductory…

  14. Visible and near-infrared light emitting calix[4]arene-based ternary lanthanide complexes

    NARCIS (Netherlands)

    Hebbink, G.A.; Klink, S.I.; Oude Alink, Patrick G.B.; van Veggel, F.C.J.M.


    In this article ternary lanthanide complexes consisting of a calix[4]arene unit and dibenzoylmethane (dbm) as the antenna are described. In the europium complex [(Eu)2]NO3 two solvent molecules are still coordinated to the ion, making substitution of them by the dbm antenna possible. In the ternary

  15. Calculated site substitution in ternary gamma'-Ni3Al: Temperature and composition effects

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt


    The temperature and composition dependence of the site substitution behavior of ternary additions to Ni3Al is examined on the basis of first-principles calculations of the total energies of ternary, partially ordered (gamma') alloys. The calculations are performed by means of the linear muffin...


    Directory of Open Access Journals (Sweden)



    Full Text Available In this paper we introduce the notions of interval-valued fuzzy bi-ideal, interval-valued anti fuzzy bi-ideal and interval-valued intuitionistic fuzzy bi-ideal in ternary semirings and some of the basic properties of these ideals are investigated. We also introduce normal interval-valued intuitionistic fuzzy ideals in ternary semirings.

  17. Ternary-fission dynamics and asymmetries in reactions with polarized neutrons

    CERN Document Server

    Bunakov, V E


    Experimental results of measuring various asymmetries of charged-particles emission in ternary fission induced by polarized neutrons, namely parity nonconserving asymmetries, left-right asymmetries and triple-odd correlations are presented. It is demonstrated what kind of new information about the mechanism of ternary fission can be obtained from their analysis

  18. Phase stability and defect physics of a ternary ZnSnN(2) semiconductor: first principles insights. (United States)

    Chen, Shiyou; Narang, Prineha; Atwater, Harry A; Wang, Lin-Wang


    First-principles calculations show that ZnSnN2 has a very small formation enthalpy, and the donor defects such as SnZn antisites and ON impurities have high concentration, making the material degenerately n-type, which explains the observed high electron concentration. ZnSnN2 can be regarded as a new material that combines a metal-like conductivity with an optical bandgap around 2 eV. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Coexistence of several sillenite-like phases in pseudo-binary and pseudo-ternary systems based on Bi2O3 (United States)

    Dapčević, Aleksandra; Poleti, Dejan; Karanović, Ljiljana; Rogan, Jelena; Dražič, Goran


    A series of polycrystalline samples containing sillenite-like (doped γ-Bi2O3) phases were prepared by high-temperature reactions from α-Bi2O3 powder and different oxides in six pseudo-binary Bi2O3-MxOy (M = Mn, Ti, V) and six pseudo-ternary Bi2O3-M1xOy-M2xOy (M1 = Pb, Zn, Ti and M2 = Zn, Ti, Si) systems. The products were characterized by XRD, SEM/EDX, HRTEM, SAED and DTA techniques. It is shown that for pseudo-binary systems, the phase composition of specimens depends on dopant content, while, for pseudo-ternary systems, depends on dopants radii, as well. In pseudo-binary systems, single-phase sillenites are obtained if the dopant content is in accordance with formula Bi12M4+O20, for M = Mn and Ti, and Bi(M0.85+)O, for M = V. However, two coexisting sillenite-like phases, doped compound and nominally undoped solid solution, are found if a half of that dopant quantity is applied. In pseudo-ternary systems, the phase-pure double-doped sillenite specimens are identified if ionic radii of dopants differ less than 40%. Otherwise, two coexisting sillenites were obtained. The possibility to prepare the undoped γ-Bi2O3 phase was also discussed.

  20. Factoring with qutrits: Shor's algorithm on ternary and metaplectic quantum architectures (United States)

    Bocharov, Alex; Roetteler, Martin; Svore, Krysta M.


    We determine the cost of performing Shor's algorithm for integer factorization on a ternary quantum computer, using two natural models of universal fault-tolerant computing: (i) a model based on magic state distillation that assumes the availability of the ternary Clifford gates, projective measurements, classical control as its natural instrumentation set; (ii) a model based on a metaplectic topological quantum computer (MTQC). A natural choice to implement Shor's algorithm on a ternary quantum computer is to translate the entire arithmetic into a ternary form. However, it is also possible to emulate the standard binary version of the algorithm by encoding each qubit in a three-level system. We compare the two approaches and analyze the complexity of implementing Shor's period-finding function in the two models. We also highlight the fact that the cost of achieving universality through magic states in MTQC architecture is asymptotically lower than in generic ternary case.