WorldWideScience

Sample records for ternary complex formation

  1. Lethal synergism between organic and inorganic wood preservatives via formation of an unusual lipophilic ternary complex

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Zhi-Guo; Li, Yan; Fan, Rui-Mei; Chao, Xi-Juan [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Zhu, Ben-Zhan, E-mail: bzhu@rcees.ac.cn [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing 100085 (China); Linus Pauling Institute, Oregon State University, Corvallis, OR 97331 (United States)

    2013-02-01

    We have shown previously that exposing bacteria to wood preservatives pentachlorophenol (PCP) and copper-containing compounds together causes synergistic toxicity. However, it is not clear whether these findings also hold true in mammalian cells; and if so, what is the underlying molecular mechanism? Here we show that PCP and a model copper complex bis-(1,10-phenanthroline) cupric (Cu(OP){sub 2}), could also induce synergistic cytotoxicity in human liver cells. By the single crystal X-ray diffraction and atomic absorption spectroscopy assay, the synergism was found to be mainly due to the formation of a lipophilic ternary complex with unusual structural and composition characteristics and subsequent enhanced cellular copper uptake, which markedly promoted cellular reactive oxygen species (ROS) production, leading to apoptosis by decreasing mitochondrial membrane potential, increasing pro-apoptotic protein expression, releasing cytochrome c from mitochondria and activating caspase-3, and -9. Analogous results were observed with other polychlorinated phenols (PCPs) and Cu(OP){sub 2}. Synergistic cytotoxicity could be induced by PCP/Cu(OP){sub 2} via formation of an unusual lipophilic complex in HepG2 cells. The formation of ternary complexes with similar lipophilic character could be of relevance as a general mechanism of toxicity, which should be taken into consideration especially when evaluating the toxicity of environmental pollutants found at currently-considered non- or sub-toxic concentrations. -- Highlights: ► The combination of PCP/Cu(OP){sub 2} induces synergistic cytotoxicity in HepG2 cells. ► The synergism is mainly due to forming a lipophilic ternary complex between them. ► The formation of lipophilic ternary complex enhances cellular copper uptake. ► PCP/Cu(OP){sub 2} stimulates the cellular ROS production. ► The ROS promoted by PCP/Cu(OP){sub 2} induces mitochondria-dependent apoptosis.

  2. The role of Glu259 in Escherichia coli elongation factor Tu in ternary complex formation

    DEFF Research Database (Denmark)

    Nautrup Pedersen, Gitte; Rattenborg, Thomas; Knudsen, Charlotte Rohde

    1998-01-01

    Determination of the crystal structure of the ternary complex formed between elongation factor Tu:GTP and aminoacylated tRNA revealed three regions of interaction between elongation factor Tu and tRNA. The structure indicates that the conserved glutamic acid at position 271 in Thermus aquaticus EF...... spatially and chemically so that only a residue with almost the same size and chemical properties as glutamic acid fulfils the requirements with regard to size, salt bridge-formation potential and maintenance of the backbone conformation at the 259 position. Udgivelsesdato: 1998-Feb...

  3. A Stimulation Function of Synaptotagmin-1 in Ternary SNARE Complex Formation Dependent on Munc18 and Munc13

    Directory of Open Access Journals (Sweden)

    Yun Li

    2017-08-01

    Full Text Available The Ca2+ sensor synaptotagmin-1 (Syt1 plays an essential function in synaptic exocytosis. Recently, Syt1 has been implicated in synaptic vesicle priming, a maturation step prior to Ca2+-triggered membrane fusion that is believed to involve formation of the ternary SNARE complex and require priming proteins Munc18-1 and Munc13-1. However, the mechanisms of Syt1 in synaptic vesicle priming are still unclear. In this study, we found that Syt1 stimulates the transition from the Munc18-1/syntaxin-1 complex to the ternary SNARE complex catalyzed by Munc13-1. This stimulation can be further enhanced in a membrane-containing environment. Further, we showed that Syt1, together with Munc18-1 and Munc13-1, stimulates trans ternary SNARE complex formation on membranes in a manner resistant to disassembly factors NSF and α-SNAP. Disruption of a proposed Syt1/SNARE binding interface strongly abrogated the stimulation function of Syt1. Our results suggest that binding of Syt1 to an intermediate SNARE assembly with Munc18-1 and Munc13-1 is critical for the stimulation function of Syt1 in ternary SNARE complex formation, and this stimulation may underlie the priming function of Syt1 in synaptic exocytosis.

  4. Structure, stability, dynamics, high-field relaxivity and ternary-complex formation of a new tris(aquo) gadolinium complex.

    Science.gov (United States)

    Nonat, Aline; Fries, Pascal H; Pécaut, Jacques; Mazzanti, Marinella

    2007-01-01

    The tripodal hexadentate picolinate ligand dpaa3- (H3dpaa=N,N'-bis[(6-carboxypyridin-2-yl)methyl]glycine) has been synthesised. It can form 1:1 and 1:2 lanthanide/ligand complexes. The crystal structure of the bis(aquo) lutetium complex [Lu(dpaa)(H2O)2] has been determined by X-ray diffraction studies. The number of water molecules was determined by luminescence lifetime studies of the terbium and europium complexes. The tris(aquo) terbium complex shows a fairly high luminescence quantum yield (22 %). The [Gd(dpaa)(H2O)3] complex displays a high water solubility and an increased stability (pGd=12.3) with respect to the analogous bis(aquo) complex [Gd(tpaa)(H2O)2] (pGd=11.2). Potentiometric and relaxometric studies show the formation of a soluble GdIII hydroxo complex at high pH values. A unique aquohydroxo gadolinium complex has been isolated and its crystal structure determined. This complex crystallises as a 1D polymeric chain consisting of square-shaped tetrameric units. In heavy water, the [Gd(dpaa)-(D2O)3] complex shows a quite high HOD proton relaxivity at high field (11.93 s(-1) mM(-1) at 200 MHz and 298 K) because of the three inner-sphere water molecules. The formation of ternary complexes with physiological anions has been monitored by relaxometric studies, which indicate that even under conditions favourable to the formation of adducts with oxyanions, the mean relaxivity remains higher than those of most of the currently used commercial contrast agents except for the citrate. However, the measured relaxivity (r1=7.9 s(-1) mM(-1)) in a solution containing equimolar concentrations of [Gd(dpaa)(D2O)3] and citrate is still high. The interaction with albumin has been investigated by relaxometric and luminescence studies. Finally, a new versatile method to unravel the geometric and dynamic molecular factors that explain the high-field relaxivities has been developed. This approach uses a small, uncharged non-coordinating probe solute, the outer

  5. Elongation factor Ts directly facilitates the formation and disassembly of the Escherichia coli elongation factor Tu·GTP·aminoacyl-tRNA ternary complex.

    Science.gov (United States)

    Burnett, Benjamin J; Altman, Roger B; Ferrao, Ryan; Alejo, Jose L; Kaur, Navdep; Kanji, Joshua; Blanchard, Scott C

    2013-05-10

    Aminoacyl-tRNA (aa-tRNA) enters the ribosome in a ternary complex with the G-protein elongation factor Tu (EF-Tu) and GTP. EF-Tu·GTP·aa-tRNA ternary complex formation and decay rates are accelerated in the presence of the nucleotide exchange factor elongation factor Ts (EF-Ts). EF-Ts directly facilitates the formation and disassociation of ternary complex. This system demonstrates a novel function of EF-Ts. Aminoacyl-tRNA enters the translating ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here, we describe bulk steady state and pre-steady state fluorescence methods that enabled us to quantitatively explore the kinetic features of Escherichia coli ternary complex formation and decay. The data obtained suggest that both processes are controlled by a nucleotide-dependent, rate-determining conformational change in EF-Tu. Unexpectedly, we found that this conformational change is accelerated by elongation factor Ts (EF-Ts), the guanosine nucleotide exchange factor for EF-Tu. Notably, EF-Ts attenuates the affinity of EF-Tu for GTP and destabilizes ternary complex in the presence of non-hydrolyzable GTP analogs. These results suggest that EF-Ts serves an unanticipated role in the cell of actively regulating the abundance and stability of ternary complex in a manner that contributes to rapid and faithful protein synthesis.

  6. Elongation Factor Ts Directly Facilitates the Formation and Disassembly of the Escherichia coli Elongation Factor Tu·GTP·Aminoacyl-tRNA Ternary Complex*

    Science.gov (United States)

    Burnett, Benjamin J.; Altman, Roger B.; Ferrao, Ryan; Alejo, Jose L.; Kaur, Navdep; Kanji, Joshua; Blanchard, Scott C.

    2013-01-01

    Aminoacyl-tRNA enters the translating ribosome in a ternary complex with elongation factor Tu (EF-Tu) and GTP. Here, we describe bulk steady state and pre-steady state fluorescence methods that enabled us to quantitatively explore the kinetic features of Escherichia coli ternary complex formation and decay. The data obtained suggest that both processes are controlled by a nucleotide-dependent, rate-determining conformational change in EF-Tu. Unexpectedly, we found that this conformational change is accelerated by elongation factor Ts (EF-Ts), the guanosine nucleotide exchange factor for EF-Tu. Notably, EF-Ts attenuates the affinity of EF-Tu for GTP and destabilizes ternary complex in the presence of non-hydrolyzable GTP analogs. These results suggest that EF-Ts serves an unanticipated role in the cell of actively regulating the abundance and stability of ternary complex in a manner that contributes to rapid and faithful protein synthesis. PMID:23539628

  7. Molecular dynamics simulations show altered secondary structure of clawless in binary complex with DNA providing insights into aristaless-clawless-DNA ternary complex formation.

    Science.gov (United States)

    Kachhap, Sangita; Priyadarshini, Pragya; Singh, Balvinder

    2017-05-01

    Aristaless (Al) and clawless (Cll) homeodomains that are involved in leg development in Drosophila melanogaster are known to bind cooperatively to 5'-(T/C)TAATTAA(T/A)(T/A)G-3' DNA sequence, but the mechanism of their binding to DNA is unknown. Molecular dynamics (MD) studies have been carried out on binary, ternary, and reconstructed protein-DNA complexes involving Al, Cll, and DNA along with binding free energy analysis of these complexes. Analysis of MD trajectories of Cll-3A01, binary complex reveals that C-terminal end of helixIII of Cll, unwind in the absence of Al and remains so in reconstructed ternary complex, Cll-3A01-Al. In addition, this change in secondary structure of Cll does not allow it to form protein-protein interactions with Al in the ternary reconstructed complex. However, secondary structure of Cll and its interactions are maintained in other reconstructed ternary complex, Al-3A01-Cll where Cll binds to Al-3A01, binary complex to form ternary complex. These interactions as observed during MD simulations compare well with those observed in ternary crystal structure. Thus, this study highlights the role of helixIII of Cll and protein-protein interactions while proposing likely mechanism of recognition in ternary complex, Al-Cll-DNA.

  8. Inclusion complex formation of ternary system: Fluoroscein-p-sulfonato calix[4]arene-Cu(2+) by cooperative binding.

    Science.gov (United States)

    Gawhale, Sharadchandra; Jadhav, Ankita; Rathod, Nilesh; Malkhede, Dipalee; Chaudhari, Gajanan

    2015-09-05

    The aqueous solution of fluorescein-para sulfonato calix[4]arene-metal ion complex has been studied based on absorption, fluorescence, (1)H NMR and FTIR spectroscopic results. It was found that the fluorescence intensity quenched regularly upon addition of pSCX4 and metal ion. The quenching constants and binding constants were determined for pSCX4-FL and pSCX4-FL-Cu(2+) systems. 1:1 stoichiometry is obtained for pSCX4-Cu(2+) system by continuous variation method. The NMR and IR results indicates the interaction among FL, pSCX4 and Cu(2+). The combined results demonstrate the cooperative binding to design the complex for ternary system. The life time for binary and ternary system has been studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Formation of a ternary neptunyl(V) biscarbonato inner-sphere sorption complex inhibits calcite growth rate.

    Science.gov (United States)

    Heberling, Frank; Scheinost, Andreas C; Bosbach, Dirk

    2011-06-01

    Neptunyl, Np(V)O(2)(+), along with the other actinyl ions U(VI)O(2)(2+) and Pu(V,VI)O(2)((+,2+)), is considered to be highly mobile in the geosphere, while interaction with mineral surfaces (inner- or outer-sphere adsorption, ion-exchange, and coprecipitation/structural incorporation) may retard its migration. Detailed information about the exact interaction mechanisms including the structure and stoichiometry of the adsorption complexes is crucial to predict the retention behavior in diverse geochemical environments. Here, we investigated the structure of the neptunyl adsorption complex at the calcite-water interface at pH 8.3 in equilibrium with air by means of low-temperature (15K) EXAFS spectroscopy at the Np-L(III) edge. The coordination environment of neptunyl consists of two axial oxygen atoms at 1.87(±0.01)Å, and an equatorial oxygen shell of six atoms at 2.51(±0.01)Å. Two oxygen backscatterers at 3.50(±0.04)Å along with calcium backscatterers at 3.95(±0.03)Å suggest that neptunyl is linked to the calcite surface through two monodentate bonds towards carbonate groups of the calcite surface. Two additional carbon backscatterers at 2.94(±0.02)Å are attributed to two carbonate ions in bidentate coordination. This structural environment is conclusively interpreted as a ternary surface complex, where a neptunyl biscarbonato complex sorbs through two monodentate carbonate bonds to steps at the calcite (104) face, while the two bidentately coordinated carbonate groups point away from the surface. This structural information is further supported by Mixed Flow Reactor (MFR) experiments. They show a significant decrease of the calcite growth rate in the presence of neptunyl(V), in line with blockage of the most active crystal growth sites, step and kink sites, by adsorption of neptunyl. Formation of this sorption complex constitutes an important retention mechanism for neptunyl in calcite-rich environments. Copyright © 2011 Elsevier B.V. All rights

  10. VPS37 isoforms differentially modulate the ternary complex formation of ALIX, ALG-2, and ESCRT-I.

    Science.gov (United States)

    Okumura, Mayumi; Katsuyama, Angela M; Shibata, Hideki; Maki, Masatoshi

    2013-01-01

    The endosomal sorting complex required for transport (ESCRT) system comprises a series of protein complexes that play essential roles in multivesicular body (MVB) sorting of ubiquitylated membrane proteins, enveloped RNA virus budding, and cytokinesis in mammalian cells. The complex, named ESCRT-I, consists of four subunits (TSG101, VPS28, VPS37, and MVB12). There are four VPS37 isoforms. We have reported that ALIX (an ALG-2-interacting protein and accessory protein in the ESCRT system) is physically linked with TSG101 by ALG-2 in a Ca²⁺-dependent manner, but the role of ALG-2 as an adaptor protein for the ESCRT-I complex remains unknown. To characterize this adaptor function, initially we investigated the binding of ALG-2 to ESCRT-I complexes containing each one of the four different VPS37 isoforms by two approaches: first, Far-Western blot analysis with biotin-labeled ALG-2 probe, and second, a pulldown assay to determine the binding of the four recombinant ESCRT-I complexes to Strep-tagged ALG-2 after co-expression in HEK293T cells. VPS37B and VPS37C appeared to interact with ALG-2 in a stronger manner than TSG101 does. The results of in vitro binding assays using purified recombinant proteins indicated that ALG-2 functions as a Ca²⁺-dependent adaptor protein that bridges ALIX and ESCRT-I to form a ternary complex, ESCRT-I/ALIX/ALG-2.

  11. Direct and allosteric inhibition of the FGF2/HSPGs/FGFR1 ternary complex formation by an antiangiogenic, thrombospondin-1-mimic small molecule.

    Directory of Open Access Journals (Sweden)

    Katiuscia Pagano

    Full Text Available Fibroblast growth factors (FGFs are recognized targets for the development of therapies against angiogenesis-driven diseases, including cancer. The formation of a ternary complex with the transmembrane tyrosine kinase receptors (FGFRs, and heparan sulphate proteoglycans (HSPGs is required for FGF2 pro-angiogenic activity. Here by using a combination of techniques including Nuclear Magnetic Resonance, Molecular Dynamics, Surface Plasmon Resonance and cell-based binding assays we clarify the molecular mechanism of inhibition of an angiostatic small molecule, sm27, mimicking the endogenous inhibitor of angiogenesis, thrombospondin-1. NMR and MD data demonstrate that sm27 engages the heparin-binding site of FGF2 and induces long-range dynamics perturbations along FGF2/FGFR1 interface regions. The functional consequence of the inhibitor binding is an impaired FGF2 interaction with both its receptors, as demonstrated by SPR and cell-based binding assays. We propose that sm27 antiangiogenic activity is based on a twofold-direct and allosteric-mechanism, inhibiting FGF2 binding to both its receptors.

  12. Gene expression of ternary complexes through the compaction of nanofiber-polyplexes by mixing with lipofectamine.

    Science.gov (United States)

    Aono, Ryuta; Nomura, Kenta; Yuba, Eiji; Harada, Atsushi; Kono, Kenji

    2015-05-01

    For the development of an effective nonviral gene vector, ternary complexes were prepared through the compaction of nanofiber-polyplexes. These were formed using pDNA and a head-tail type polycation bearing a multi-arm poly(ethylene glycol) head and a poly(l-lysine) tail, and this strategy was based on the crowding effect of poly(ethylene glycol) in the polyplex. Mixing was carried out using a cationic lipid (lipofectamine), which is a commercially available transfection reagent. Through ternary complex formation, the elongated morphology of nanofiber-polyplexes was found to compact into a spherical shape with an average diameter of ca. 100 nm. Accompanying ternary complex formation, the compaction of the nanofiber-polyplexes can improve cellular uptake and helps the ternary complex to retain its smooth transcription/translation process, which is characteristic of nanofiber-polyplexes. As a result, ternary complexes prepared at an optimal mixing ratio exhibit a high transfection efficiency compared with lipofectamine lipoplexes.

  13. [Synthesis and luminescence properties of reactive ternary europium complexes].

    Science.gov (United States)

    Guo, Dong-cai; Shu, Wan-gen; Zhang, Wei; Liu, You-nian; Zhou, Yue

    2004-09-01

    In this paper, five new reactive ternary europium complexes were synthesized with the first ligand of 1,10-phenanthroline and the reactive second ligands of maleic anhydride, acrylonitrile, undecenoic acid, oleic acid and linoleic acid, and also characterized by means of elemental analysis, EDTA titrimetric method, FTIR spectra and UV spectra. The fluorescence spectra show that the five new ternary complexes have much higher luminescence intensity than their corresponding binary complexes, and the synergy ability sequence of the five reactive ligands is as follows: linoleic acid > oleic acid > acrylonitrile > maleic anhydride > undecenoic acid. At the same time, the reactive ternary europium complexes coordinated with the reactive ligands, which can be copolymerized with other monomers, will provide a new way for the synthesis of bonding-type rare earth polymer functional materials with excellent luminescence properties.

  14. Formation, stability and structural characterization of ternary MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) complexes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun-Yeop; Yun, Jong-Il [KAIST, Daejeon (Korea, Republic of). Dept. of Nuclear and Quantum Engineering; Vespa, Marika; Gaona, Xavier; Dardenne, Kathy; Rothe, Joerg; Rabung, Thomas; Altmaier, Marcus [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Nuclear Waste Disposal

    2017-06-01

    The formation of ternary Mg-UO{sub 2}-CO{sub 3} complexes under weakly alkaline pH conditions was investigated by time-resolved laser fluorescence spectroscopy (TRLFS) and extended X-ray absorption fine structure (EXAFS) and compared to Ca-UO{sub 2}-CO{sub 3} complexes. The presence of two different Mg-UO{sub 2}-C{sub 3} complexes was identified by means of two distinct fluorescence lifetimes of 17±2 ns and 51±2 ns derived from the multi-exponential decay of the fluorescence signal. Slope analysis in terms of fluorescence intensity coupled with fluorescence intensity factor as a function of log [Mg(II)] was conducted for the identification of the Mg-UO{sub 2}-CO{sub 3} complexes forming. For the first time, the formation of both MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species was confirmed and the corresponding equilibrium constants were determined as log β {sub 113}=25.8±0.3 and β {sub 213}=27.1±0.6, respectively. Complementarily, fundamental structural information for both Ca-UO{sub 2}-CO{sub 3} and Mg-UO{sub 2}-CO{sub 3} complexes was gained by extended EXAFS revealing very similar structures between these two species, except for the clearly shorter U-Mg distance (3.83 Aa) compared with U-Ca distance (4.15 Aa). These results confirmed the inner-sphere character of the Ca/Mg-UO{sub 2}-CO{sub 3} complexes. The formation constants determined for MgUO{sub 2}(CO{sub 3}){sub 3}{sup 2-} and Mg{sub 2}UO{sub 2}(CO{sub 3}){sub 3}(aq) species indicate that ternary Mg-UO{sub 2}-CO{sub 3} complexes contribute to the relevant uranium species in carbonate saturated solutions under neutral to weakly alkaline pH conditions in the presence of Mg(II) ions, which will induce notable influences on the U(VI) chemical species under seawater conditions.

  15. Cyclodextrin based ternary system of modafinil: Effect of trimethyl chitosan and polyvinylpyrrolidone as complexing agents.

    Science.gov (United States)

    Patel, Parth; Agrawal, Y K; Sarvaiya, Jayrajsinh

    2016-03-01

    Modafinil is an approved drug for the treatment of narcolepsy and have a strong market presence in many countries. The drug is widely consumed for off-label uses and currently listed as a restricted drug. Modafinil has very low water solubility. To enhance the aqueous solubility of modafinil by the formation of a ternary complex with Hydroxypropyl-β-cyclodextrin and two hydrophilic polymers was the main objective of the present study. Pyrrolidone (PVP K30) and a water soluble chitosan derivative, trimethyl chitosan (TMC) were studied by solution state and solid state characterization methods for their discriminatory efficiency in solubility enhancement of modafinil. Phase solubility study depicted the highest complexation efficiency (2.22) of cyclodextrin derivative in the presence of TMC compared to the same in the presence of PVP K30 (0.08) and in the absence of any polymer (0.92). FT-IR analysis of binary and ternary complex expressed comparable contribution of both polymers in formation of inclusion complex. The thermal behaviour of binary and ternary complex, involving individual polymers disclosed the influence of TMC on polymorphism of the drug. DSC study revealed efficiency of TMC to prevent conversion of metastable polymorphic form to stable polymorphic form. Ternary complex, involving TMC enhanced water solubility of the drug 1.5 times more compared to the binary complex of the drug whereas PVP K30 reduced the Solubility. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Impact of the Nature and Size of the Polymeric Backbone on the Ability of Heterobifunctional Ligands to Mediate Shiga Toxin and Serum Amyloid P Component Ternary Complex Formation

    Directory of Open Access Journals (Sweden)

    Glen D. Armstrong

    2011-08-01

    Full Text Available Inhibition of AB5-type bacterial toxins can be achieved by heterobifunctional ligands (BAITs that mediate assembly of supramolecular complexes involving the toxin’s pentameric cell membrane-binding subunit and an endogenous protein, serum amyloid P component, of the innate immune system. Effective in vivo protection from Shiga toxin Type 1 (Stx1 is achieved by polymer-bound, heterobifunctional inhibitors-adaptors (PolyBAITs, which exhibit prolonged half-life in circulation and by mediating formation of face-to-face SAP-AB5 complexes, block receptor recognition sites and redirect toxins to the spleen and liver for degradation. Direct correlation between solid-phase activity and protective dose of PolyBAITs both in the cytotoxicity assay and in vivo indicate that the mechanism of protection from intoxication is inhibition of toxin binding to the host cell membrane. The polymeric scaffold influences the activity not only by clustering active binding fragments but also by sterically interfering with the supramolecular complex assembly. Thus, inhibitors based on N-(2-hydroxypropyl methacrylamide (HPMA show significantly lower activity than polyacrylamide-based analogs. The detrimental steric effect can partially be alleviated by extending the length of the spacer, which separates pendant ligand from the backbone, as well as extending the spacer, which spans the distance between binding moieties within each heterobifunctional ligand. Herein we report that polymer size and payload of the active ligand had moderate effects on the inhibitor’s activity.

  17. Quantifying the energetics of cooperativity in a ternary protein complex

    DEFF Research Database (Denmark)

    Andersen, Peter S; Schuck, Peter; Sundberg, Eric J

    2002-01-01

    and mathematical modeling to describe the energetics of cooperativity in a trimolecular protein complex. As a model system for quantifying cooperativity, we studied the ternary complex formed by the simultaneous interaction of a superantigen with major histocompatibility complex and T cell receptor, for which...... a structural model is available. This system exhibits positive and negative cooperativity, as well as augmentation of the temperature dependence of binding kinetics upon the cooperative interaction of individual protein components in the complex. Our experimental and theoretical analysis may be applicable...... to other systems involving cooperativity....

  18. A theoretical study of ternary indole-cation-anion complexes.

    Science.gov (United States)

    Carrazana-García, Jorge A; Cabaleiro-Lago, Enrique M; Campo-Cacharrón, Alba; Rodríguez-Otero, Jesús

    2014-12-07

    The simultaneous interactions of an anion and a cation with a π system were investigated by MP2 and M06-2X theoretical calculations. Indole was chosen as a model π system for its relevance in biological environments. Two different orientations of the anion, interacting with the N-H and with the C-H groups of indole, were considered. The four cations (Na(+), NH4(+), C(NH2)3(+) and N(CH3)4(+)) and the four anions (Cl(-), NO3(-), HCOO(-) and BF4(-)) included in the study are of biological interest. The total interaction energy of the ternary complexes was calculated and separated into its two- and three-body components and all of them are further divided into their electrostatic, exchange, repulsion, polarization and dispersion contributions using the local molecular orbital-energy decomposition analysis (LMO-EDA) methodology. The binding energy of the indole-cation-anion complexes depends on both ions, with the cation having the strongest effect. The intense cation-anion attraction determines the geometric and energetic features in all ternary complexes. These structures, with both ions on the same side of the π system, show an anti-cooperative interaction. However, the interaction is not only determined by electrostatics, but also the polarization contribution is important. Specific interactions like the one established between the anion and the N-H group of indole or the proton transfer between an acidic cation and a basic anion play a significant role in the energetics and the structure of particular complexes. The presence of the polar solvent as modelled with the polarizable continuum model (PCM) does not seem to have a significant effect on the geometry of the ternary complexes, but drastically weakens the interaction energy. Also, the strength of the interaction is reduced at a faster rate when the anion is pushed away, compared to the results obtained in the gas phase. The combination of PCM with the addition of one water molecule indicates that the PCM

  19. Formation of ternary Mg–Cu–Dy bulk metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    Abstract. The glass-forming ability (GFA) of ternary Mg–Cu–Dy alloys was systematically investigated by using differential scanning calorimetry (DSC) and X-ray diffractometry (XRD) techniques. The results showed that a series of ternary Mg–Cu–Dy bulk metallic glasses (BGMs) with a diameter of 4–8 mm were suc-.

  20. Visible and near-infrared light emitting calix[4]arene-based ternary lanthanide complexes

    NARCIS (Netherlands)

    Hebbink, G.A.; Klink, S.I.; Oude Alink, Patrick G.B.; van Veggel, F.C.J.M.

    2001-01-01

    In this article ternary lanthanide complexes consisting of a calix[4]arene unit and dibenzoylmethane (dbm) as the antenna are described. In the europium complex [(Eu)2]NO3 two solvent molecules are still coordinated to the ion, making substitution of them by the dbm antenna possible. In the ternary

  1. Potentiometric studies on ternary complexes involving some divalent transition metal ions, gallic acid and biologically abundant aliphatic dicarboxylic acids in aqueous solutions

    Directory of Open Access Journals (Sweden)

    Abdelatty Mohamed Radalla

    2015-06-01

    Full Text Available Formation of binary and ternary complexes of the divalent transition metal ions, Cu2+, Ni2+, Co2+ and Zn2+ with gallic acid and the biologically important aliphatic dicarboxylic acids (adipic, succinic, malic, malonic, maleic, tartaric and oxalic acids were investigated by means of the potentiometric technique at 25 °C and I = 0.10 mol dm−3 NaNO3. The acid-base properties of the ligands were investigated and discussed. The acidity constants of gallic acid and aliphatic dicarboxylic acids were determined and used for determining the stability constants of the binary and ternary complexes formed in the aqueous medium under the above experimental conditions. The formation of the different 1:1 and 1:2 binary complexes and 1:1:1 ternary complexes are inferred from the corresponding potentiometric pH-metric titration curves. The ternary complex formation was found to occur in a stepwise manner. The stability constants of these binary and ternary systems were calculated. The values of Δ log K, percentage of relative stabilization (%R.S. and log X were evaluated and discussed. The concentration distribution of the various complex species formed in solution was evaluated and discussed. The mode of chelation of ternary complexes formed was ascertained by conductivity measurements.

  2. Ternary eutectic dendrites: Pattern formation and scaling properties

    Science.gov (United States)

    Rátkai, László; Szállás, Attila; Pusztai, Tamás; Mohri, Tetsuo; Gránásy, László

    2015-04-01

    Extending previous work [Pusztai et al., Phys. Rev. E 87, 032401 (2013)], we have studied the formation of eutectic dendrites in a model ternary system within the framework of the phase-field theory. We have mapped out the domain in which two-phase dendritic structures grow. With increasing pulling velocity, the following sequence of growth morphologies is observed: flat front lamellae → eutectic colonies → eutectic dendrites → dendrites with target pattern → partitionless dendrites → partitionless flat front. We confirm that the two-phase and one-phase dendrites have similar forms and display a similar scaling of the dendrite tip radius with the interface free energy. It is also found that the possible eutectic patterns include the target pattern, and single- and multiarm spirals, of which the thermal fluctuations choose. The most probable number of spiral arms increases with increasing tip radius and with decreasing kinetic anisotropy. Our numerical simulations confirm that in agreement with the assumptions of a recent analysis of two-phase dendrites [Akamatsu et al., Phys. Rev. Lett. 112, 105502 (2014)], the Jackson-Hunt scaling of the eutectic wavelength with pulling velocity is obeyed in the parameter domain explored, and that the natural eutectic wavelength is proportional to the tip radius of the two-phase dendrites. Finally, we find that it is very difficult/virtually impossible to form spiraling two-phase dendrites without anisotropy, an observation that seems to contradict the expectations of Akamatsu et al. Yet, it cannot be excluded that in isotropic systems, two-phase dendrites are rare events difficult to observe in simulations.

  3. Binary and ternary complexation of NpO{sub 2}{sup +} with carboxylate and aminocarboxylate ligands

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Punam [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Van Luik, Abraham E. [Department of Energy, Carlsbad Field Office, NM (United States)

    2014-11-01

    The complex formation of NpO{sub 2}{sup +} with carboxylates: oxalic acid (Ox), malonic acid (Mal) succinic acid (Suc); glutaric acid (Glu), methylmalonic acid (Memal), oxydiacetic acid (ODA), TDA (thiodiacetic acid) and citric acid (Cit) and aminocarboxylates: iminodiacetic acid (IDA), methyliminodiacetic acid (MIDA), nitrilotriacetic acid (NTA), 2-hydroxyethylethylenediamine triacetic acid (HEDTA), ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) was studied by solvent extraction in 6.60 m NaClO{sub 4} at 25 C. The formation of only the 1: 1 NpO{sub 2}{sup +} complex was observed with the ligands under investigation. The complexation of NpO{sub 2}{sup +} with Ox, IDA, ODA and TDA was also measured at variable temperatures ranging from 25-60 C in 6.60 m NaClO{sub 4}. Results show that the complexation of NpO{sub 2}{sup +} with these ligands increases with increasing temperature. The enthalpy and entropy of complexation of NpO{sub 2}{sup +} were calculated from the temperature dependence of the stability constants using the Van't Hoff equation. Additionally, the formation of an aqueous ternary complex of the form NpO{sub 2}(X)(L) (X = EDTA or HEDTA; L = Ox or ODA) was identified for NpO{sub 2}{sup +} at 25 C. Stabilities of these complexes are measured and discussed in term of their structures and basicities.

  4. Hierarchic structure formation in binary and ternary polymer blends

    NARCIS (Netherlands)

    Sprenger, M; Walheim, S; Budkowski, A; Steiner, U

    The phase morphology of multi-component polymer blends is governed by the interfacial interactions of its components. We discuss here the domain morphology in thin films of model binary and ternary polymer blends containing polystyrene, poly(methyl metacrylate), and poly(2-vinylpyridine) (PS, PMMA,

  5. Fluorescence and electron paramagnetic resonance studies of norfloxacin and N-donor mixed-ligand ternary copper(II) complexes: Stability and interaction with SDS micelles

    Science.gov (United States)

    Vignoli Muniz, Gabriel S.; Incio, Jimmy Llontop; Alves, Odivaldo C.; Krambrock, Klaus; Teixeira, Letícia R.; Louro, Sonia R. W.

    2018-01-01

    The stability of ternary copper(II) complexes of a heterocyclic ligand, L (L being 2,2‧-bipyridine (bipy) or 1,10-phenanthroline (phen)) and the fluorescent antibacterial agent norfloxacin (NFX) as the second ligand was studied at pH 7.4 and different ionic strengths. Fluorescence quenching upon titration of NFX with the binary complexes allowed to obtain stability constants for NFX binding, Kb, as a function of ionic strength. The Kb values vary by more than two orders of magnitude when buffer concentration varies from 0.5 to 100 mM. It was observed that previously synthesized ternary complexes dissociate in buffer according with the obtained stability constants. This shows that equimolar solutions of NFX and binary complexes are equivalent to solutions of synthesized ternary complexes. The interaction of the ternary copper complexes with anionic SDS (sodium dodecyl sulfate) micelles was studied by fluorescence and electron paramagnetic resonance (EPR). Titration of NFX-loaded SDS micelles with the complexes Cu:L allowed to determine the stability constants inside the micelles. Fluorescence quenching demonstrated that SDS micelles increase the stability constants by factors around 50. EPR spectra gave details of the copper(II) local environment, and demonstrated that the structure of the ternary complexes inside SDS micelles is different from that in buffer. Mononuclear ternary complexes formed inside the micelles, while in buffer most ternary complexes are binuclear. The results show that anionic membrane interfaces increase formation of copper fluoroquinolone complexes, which can influence bioavailability, membrane diffusion, and mechanism of action of the antibiotics.

  6. Crystallization, data collection and processing of the chymotrypsin–BTCI–trypsin ternary complex

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, Gisele Ferreira; Teles, Rozeni Chagas Lima; Cavalcante, Nayara Silva; Neves, David; Ventura, Manuel Mateus [Laboratório de Biofísica, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília-DF (Brazil); Barbosa, João Alexandre Ribeiro Gonçalves, E-mail: joao@lnls.br [Center for Structural Molecular Biology (CeBiME), Brazilian Synchrotron Light Laboratory (LNLS), CP 6192, 13083-970 Campinas-SP (Brazil); Freitas, Sonia Maria de, E-mail: joao@lnls.br [Laboratório de Biofísica, Instituto de Ciências Biológicas, Universidade de Brasília, 70910-900 Brasília-DF (Brazil)

    2007-12-01

    A ternary complex of the proteinase inhibitor (BTCI) with trypsin and chymotrypsin was crystallized and its crystal structure was solved by molecular replacement. A ternary complex of the black-eyed pea trypsin and chymotrypsin inhibitor (BTCI) with trypsin and chymotrypsin was crystallized by the sitting-drop vapour-diffusion method with 0.1 M HEPES pH 7.5, 10%(w/v) polyethylene glycol 6000 and 5%(v/v) 2-methyl-2,4-pentanediol as precipitant. BTCI is a small protein with 83 amino-acid residues isolated from Vigna unguiculata seeds and is able to inhibit trypsin and chymotrypsin simultaneously by forming a stable ternary complex. X-ray data were collected from a single crystal of the trypsin–BTCI–chymotrypsin ternary complex to 2.7 Å resolution under cryogenic conditions. The structure of the ternary complex was solved by molecular replacement using the crystal structures of the BTCI–trypsin binary complex (PDB code) and chymotrypsin (PDB code) as search models.

  7. [Synthesis and luminescence properties of ternary complexes of europium with aromatic carboxylic acid and acrylonitrile].

    Science.gov (United States)

    Guo, Dong-cai; Yi, Li-ming; Shu, Wan-gen; Zhang, Zhen-zhen; Zeng, Zhao-rong; Zhang, Xi-qian

    2006-11-01

    Five ternary complexes were synthesized from europium with aromatic carboxylic acid (p-methylbenzoic acid, methoxybenzoic acid, m-chlorobenzoic acid and benzoic acid, p-hydroxylbenzoic acid) and acrylonitrile, and characterized by means of elemental analysis, thermal analysis, FTIR spectra and UV spectra. The fluorescence spectra show that five ternary complexes have good luminescence properties, and the sequence of the ability of the aromatic carboxylic acids to transfer light energy to europium ion is as follows: p-methylbenzoic acid>benzoic acid>m-chlorobenzoic acid>p-hydroxylbenzoic acid>methoxybenzoic acid. Meanwhile, the ternary europium complexes containing a reactive ligand acrylonitrile will possibly have a potential application to the fabrication of bonding-type europium polymer luminescent materials.

  8. Existence of ternary complexes of procarboxypeptidase A in the pancreas of some ruminant species

    National Research Council Canada - National Science Library

    Kerfelec, B; Chapus, C; Puigserver, A

    1985-01-01

    ...), has so far been observed only in the ox pancreas. Evidence, obtained in the present study, shows that a ternary complex of procarboxypeptidase A, with a subunit III highly homologous with that of the bovine complex, is also present in two...

  9. Characterization of the ternary Usher syndrome SANS/ush2a/whirlin protein complex.

    Science.gov (United States)

    Sorusch, Nasrin; Bauß, Katharina; Plutniok, Janet; Samanta, Ananya; Knapp, Barbara; Nagel-Wolfrum, Kerstin; Wolfrum, Uwe

    2017-03-15

    The Usher syndrome (USH) is the most common form of inherited deaf-blindness, accompanied by vestibular dysfunction. Due to the heterogeneous manifestation of the clinical symptoms, three USH types (USH1-3) and additional atypical forms are distinguished. USH1 and USH2 proteins have been shown to function together in multiprotein networks in photoreceptor cells and hair cells. Mutations in USH proteins are considered to disrupt distinct USH protein networks and finally lead to the development of USH.To get novel insights into the molecular pathomechanisms underlying USH, we further characterize the periciliary USH protein network in photoreceptor cells. We show the direct interaction between the scaffold protein SANS (USH1G) and the transmembrane adhesion protein ush2a and that both assemble into a ternary USH1/USH2 complex together with the PDZ-domain protein whirlin (USH2D) via mutual interactions. Immunohistochemistry and proximity ligation assays demonstrate co-localization of complex partners and complex formation, respectively, in the periciliary region, the inner segment and at the synapses of rodent and human photoreceptor cells. Protein-protein interaction assays and co-expression of complex partners reveal that pathogenic mutations in USH1G severely affect formation of the SANS/ush2a/whirlin complex. Translational read-through drug treatment, targeting the c.728C > A (p.S243X) nonsense mutation, restored SANS scaffold function. We conclude that USH1 and USH2 proteins function together in higher order protein complexes. The maintenance of USH1/USH2 protein complexes depends on multiple USH1/USH2 protein interactions, which are disrupted by pathogenic mutations in USH1G protein SANS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Synthesis, Characterization, and Thermochemical Study on a Ternary Complex [Sm( m-MOBA)3phen]2

    Science.gov (United States)

    Xiao, S. X.; Gu, H. W.; Zhang, J. J.; Xiao, H.; Ding, J.; Lu, X.

    2012-02-01

    A new ternary solid complex of samarium chloride hexahydrate with m-methoxybenzoic acid and 1,10-phenanthroline, [Sm( m-MOBA)3phen]2 ( m-MOBA: m-methoxybenzoic; phen: 1,10-phenanthroline), was synthesized and characterized by elemental analysis, IR spectra, UV spectra, molar conductance, and thermogravimetric analysis. The dissolution enthalpies of SmCl3·6H2O (s), m-HMOBA(s), phen·H2O (s), and [Sm( m-MOBA)3phen]2(s) in the calorimetric solvent (VDMF:VCYC:VHCl = 2:1:2) were determined by an advanced solution-reaction isoperibol calorimeter at 298.15 K, respectively. The standard molar enthalpy of reaction was determined to be {Δ_r H_m^θ =(233.97 ± 1.15) kJ {\\cdot} mol^{-1}}. In accordance with Hess' law, the standard molar enthalpy of formation of the title complex [Sm( m-MOBA)3phen]2(s) was estimated to be -(5054.6 ± 9.5) kJ · mol-1.

  11. An engineered genetic selection for ternary protein complexes inspired by a natural three-component hitchhiker mechanism.

    Science.gov (United States)

    Lee, Hyeon-Cheol; Portnoff, Alyse D; Rocco, Mark A; DeLisa, Matthew P

    2014-12-22

    The bacterial twin-arginine translocation (Tat) pathway is well known to translocate correctly folded monomeric and dimeric proteins across the tightly sealed cytoplasmic membrane. We identified a naturally occurring heterotrimer, the Escherichia coli aldehyde oxidoreductase PaoABC, that is co-translocated by the Tat translocase according to a ternary "hitchhiker" mechanism. Specifically, the PaoB and PaoC subunits, each devoid of export signals, are escorted to the periplasm in a piggyback fashion by the Tat signal peptide-containing subunit PaoA. Moreover, export of PaoA was blocked when either PaoB or PaoC was absent, revealing a surprising interdependence for export that is not seen for classical secretory proteins. Inspired by this observation, we created a bacterial three-hybrid selection system that links the formation of ternary protein complexes with antibiotic resistance. As proof-of-concept, a bispecific antibody was employed as an adaptor that physically crosslinked one antigen fused to a Tat export signal with a second antigen fused to TEM-1 β-lactamase (Bla). The resulting non-covalent heterotrimer was exported in a Tat-dependent manner, delivering Bla to the periplasm where it hydrolyzed β-lactam antibiotics. Collectively, these results highlight the remarkable flexibility of the Tat system and its potential for studying and engineering ternary protein interactions in living bacteria.

  12. Triethanolamine Stabilization of Methotrexate-β-Cyclodextrin Interactions in Ternary Complexes

    Directory of Open Access Journals (Sweden)

    Jahamunna A. A. Barbosa

    2014-09-01

    Full Text Available The interaction of methotrexate (MTX with beta-cyclodextrin (β-CD in the presence of triethanolamine (TEA was investigated with the aim to elucidate the mechanism whereby self-assembly cyclodextrin systems work in association with this third component. Solubility diagram studies showed synergic increment of the MTX solubility to be about thirty-fold. Experiments using 2D ROESY and molecular modeling studies revealed the inclusion of aromatic ring III of the drug into β-CD cavity, in which TEA contributes by intensifying MTX interaction with β-CD and stabilizes MTX:β-CD:TEA ternary complex by electrostatic interaction. The maintenance of these interactions in solid phase was also studied in ternary MTX:β-CD:TEA and comparisons were made with freeze dried binary MTX:β-CD and physical mixtures. FTIR studies evidenced that MTX–β-CD interaction remained in solid ternary complexes, which was also supported by thermal (differential scanning calorimetry (DSC, thermogravimetric analysis (TG/first derivative of TG analysis (DTG and C,N,H elementary analysis and structural (X-ray diffraction analysis, (XRD studies, mainly regarding the increment of drug stability. The efficient in vitro drug dissolution studies successfully demonstrated the contribution of ternary complexes, which highlights the importance of this possible new raw material for further applications in drug delivery systems.

  13. Synthesis and structure of ruthenium(II) ternary complexes involving ...

    Indian Academy of Sciences (India)

    Administrator

    All the complexes are diamagnetic (low spin d6,. S = 0) and show intense bands corresponding to metal to ligand charge-transfer transitions and inter-ligand transitions in the UV-Vis spectra. All the complexes show one reversible oxidation due to ruthenium(II)–ruthenium(III) in the anodic region of the cyclic voltammogram.

  14. Ternary Complexes of some Divalent Metal Ions with Potentially ...

    African Journals Online (AJOL)

    ... and residual analysis. The predominant species detected were ML2XH2, MLXH2 and MLX2 for Ca(II), Mg(II) and Zn(II). The formation and distribution of different species with relative concentrations of metal and ligands with varying pH are represented in the form of distribution diagrams. The influence of the solvent on the ...

  15. The research and application of a new spectrophotometric method for ofloxacin ternary complex

    Directory of Open Access Journals (Sweden)

    SUN Jie

    2012-10-01

    Full Text Available Lanthanum(Ⅲ ion is coordinated with ofloxacinand and alizarin to form a rare earth ternary complex with potassium dihydrogen phosphate - sodium hydroxide buffer solution ( pH = 5.8 in the solvent of ethanol. The absorption peak of the rare earth ternary complex is centered at 295 nm. Its apparent molar absorptivity at 295.0 nm is 3.60×104 L·mol-1·cm-1. The linear range was 0.54~30.36 mg·L-1 with a detection limit of 0.012 mg·L-1.It′s a simple, rapid, and convenient method for the determination of the investigated drug in tablet.

  16. Regular Functions with Values in Ternary Number System on the Complex Clifford Analysis

    Directory of Open Access Journals (Sweden)

    Ji Eun Kim

    2013-01-01

    Full Text Available We define a new modified basis i^ which is an association of two bases, e1 and e2. We give an expression of the form z=x0+ i ^z0-, where x0 is a real number and z0- is a complex number on three-dimensional real skew field. And we research the properties of regular functions with values in ternary field and reduced quaternions by Clifford analysis.

  17. Metal-amino acid (or peptide)-nucleoside (or related bases) ternary complexes

    Energy Technology Data Exchange (ETDEWEB)

    Terron, A.; Fiol, J.J.; Herrero, L.A.; Garcia-Raso, A. [Departament de Quimica. Universitat de les Illes Balears. Palma de Mallorca. (Spain); Apella, M.C. [Cerela Centro de Referencia de Lactobacilos, Tucaman, Argentina (Antigua and Barbuda); Caubet, A.; Moreno, V. [Departament de Quimica Inorganica. Universitat de Barcelona. Barcelona (Spain)

    1997-05-01

    The knowledge of simultaneous metal ion interaction with proteins and nucleic acids is one of the most exciting subjects inside the Inorganic Biochemistry. In the last years, several groups have published articles on the synthesis and characterization of ternary complexes bringing relevant data on the structure and stability of metallo biomolecules. In this short review, the last contributions found in the literature are collected. Comments on the factors influencing the behaviour and stability of these systems are offered. (Author) 100 refs.

  18. Direct observation of a transient ternary complex during IκBα-mediated dissociation of NF-κB from DNA.

    Science.gov (United States)

    Alverdi, Vera; Hetrick, Byron; Joseph, Simpson; Komives, Elizabeth A

    2014-01-07

    We previously demonstrated that IκBα markedly increases the dissociation rate of DNA from NF-κB. The mechanism of this process remained a puzzle because no ternary complex was observed, and structures show that the DNA and IκBα binding sites on NF-κB are overlapping. The kinetics of interaction of IκBα with NF-κB and its complex with DNA were analyzed by using stopped-flow experiments in which fluorescence changes in pyrene-labeled DNA or the native tryptophan in IκBα were monitored. Rate constants governing the individual steps in the reaction were obtained from analysis of the measured rate vs. concentration profiles. The NF-κB association with DNA is extremely rapid with a rate constant of 1.5 × 10(8) M(-1)⋅s(-1). The NF-κB-DNA complex dissociates with a rate constant of 0.41 s(-1), yielding a KD of 2.8 nM. When IκBα is added to the NF-κB-DNA complex, we observe the formation of a transient ternary complex in the first few milliseconds of the fluorescence trace, which rapidly rearranges to release DNA. The rate constant of this IκBα-mediated dissociation is nearly equal to the rate constant of association of IκBα with the NF-κB-DNA complex, showing that IκBα is optimized to repress transcription. The rate constants for the individual steps of a more folded mutant IκBα were also measured. This mutant associates with NF-κB more rapidly than wild-type IκBα, but it associates with the NF-κB-DNA complex more slowly and also is less efficient at mediating dissociation of the NF-κB-DNA complex.

  19. Photocytotoxic ternary copper(II) complexes of histamine Schiff base ...

    Indian Academy of Sciences (India)

    show efficient DNA photocleavage and photocytotoxic activity in various cancer cells in visible or near-IR red light.25–30 In addition, dichloro-oxovanadium(IV) complexes are shown to form photo-induced ds-DNA crosslinks resulting apoptotic cell death.31. The present work stems from our interest to design new copper(II) ...

  20. Photocytotoxic ternary copper(II) complexes of histamine Schiff base ...

    Indian Academy of Sciences (India)

    ARC

    color codes: C black, N green, O blue, Cu red, and H white]. Figure S8. The spectral traces showing the decrease of emission intensity of ct-DNA bound ethidium bromide on increasing complex 2concentration in 5 mM Tris-HCl buffer medium.

  1. Photocytotoxic ternary copper (II) complexes of histamine Schiff ...

    Indian Academy of Sciences (India)

    pyramidal geometry. Complex 2 intercalatively binds to calf-thymus (ct) DNA with a binding constant (b) of ∼105 M−1. It exhibited moderate chemical nuclease activity but excellent DNA photocleavage activity in red light of 647 nm forming ...

  2. Modeling of Plasmodium falciparum Telomerase Reverse Transcriptase Ternary Complex: Repurposing of Nucleoside Analog Inhibitors.

    Science.gov (United States)

    Mohanty, Pallavi; Gupta, Akanksha; Bhatnagar, Sonika

    2015-12-01

    The Plasmodium falciparum telomerase reverse transcriptase (PfTERT) is a ribonucleoprotein that assists the maintenance of the telomeric ends of chromosomes by reverse transcription of its own RNA subunit. It represents an attractive therapeutic target for eradication of the plasmodial parasite at the asexual liver stage. Automated modeling using MUSTER and knowledge-based techniques were used to obtain a three-dimensional model of the active site of reverse transcriptase domain of PfTERT, which is responsible for catalyzing the addition of incoming dNTPs to the growing DNA strand in presence of divalent magnesium ions. Further, the ternary complex of the active site of PfTERT bound to a DNA-RNA duplex was also modeled using Haddock server and represents the functional form of the enzyme. Initially, established nucleoside analog inhibitors of PfTERT, AZTTP, and ddGTP were docked in the modeled binding site of the PfTERT ternary complex using AutoDock v4.2. Subsequently, docking studies were carried out with 14 approved nucleoside analog inhibitors. Docking studies predicted that floxuridine, gemcitabine, stavudine, and vidarabine have high affinity for the PfTERT ternary complex. Further analysis on the basis of known side effects led us to propose repositioning of vidarabine as a suitable drug candidate for inhibition of PfTERT.

  3. Spectroscopic evidence for ternary surface complexes in the lead(II)-malonic acid-hematite system

    Science.gov (United States)

    Lenhart, J.J.; Bargar, J.R.; Davis, J.A.

    2001-01-01

    Using extended X-ray absorption fine structure (EXAFS) and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) measurements, we examined the sorption of Pb(II) to hematite in the presence of malonic acid. Pb LIII-edge EXAFS measurements performed in the presence of malonate indicate the presence of both Fe and C neighbors, suggesting that a major fraction of surface-bound malonate is bonded to adsorbed Pb(II). In the absence of Pb(II), ATR-FTIR measurements of sorbed malonate suggest the formation of more than one malonate surface complex. The dissimilarity of the IR spectrum of malonate sorbed on hematite to those for aqueous malonate suggest at least one of the sorbed malonate species is directly coordinated to surface Fe atoms in an inner-sphere mode. In the presence of Pb, little change is seen in the IR spectrum for sorbed malonate, indicating that geometry of malonate as it coordinates to sorbed Pb(II) adions is similar to the geometry of malonate as it coordinates to Fe in the hematite surface. Fits of the raw EXAFS spectra collected from pH 4 to pH 8 result in average Pb-C distances of 2.98 to 3.14 A??, suggesting the presence of both four- and six-membered Pb-malonate rings. The IR results are consistent with this interpretation. Thus, our results suggest that malonate binds to sorbed Pb(II) adions, forming ternary metal-bridging surface complexes. ?? 2001 Academic Press.

  4. Ternary Complexes of some Divalent Metal Ions with Potentially ...

    African Journals Online (AJOL)

    NICO

    studied in varying concentrations (0.0–60.0 % v/v) of 1, 4-dioxane-water mixtures maintaining an ionic strength of 0.16 mol L–1 sodium chloride at 303.0 K. ... enzymes, the activity of which is due to metal-enzyme-substrate complexes. The active .... static interaction is related to the dielectric constant of the medium and log Д ...

  5. Photophysical study of blue-light excitable ternary Eu(III) complexes and their encapsulation into polystyrene nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Räsänen, Markus, E-mail: mpvras@utu.fi [Department of Chemistry, University of Turku, FIN-20014 Turku (Finland); Takalo, Harri [DHR Finland Oy, Innotrac Diagnostics, Biolinja 12, FIN-20750 Turku (Finland); Soukka, Tero [Department of Biochemistry/Biotechnology, University of Turku, FIN-20014 Turku (Finland); Haapakka, Keijo; Kankare, Jouko [Department of Chemistry, University of Turku, FIN-20014 Turku (Finland)

    2015-04-15

    In this work, 14 ternary Eu(III) complexes were studied by means of spectroscopy. The studied Eu(III) complexes consisted of Lewis bases (4′-(4-diethylaminophenyl)-2,2′:6′,2″-terpyridine (L{sup 8}) or 1,10-phenanthroline (L{sup 9})) and differently substituted β-diketones. The ternary complexes with L{sup 8} show the excitation peak at 405 nm and the quantum yield even 76%. The brightest ternary complex at the 405 nm excitation was Eu(L{sup 3}){sub 3}L{sup 8} while Eu(L{sup 7}){sub 3}L{sup 8} (HL{sup 3}=4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione, HL{sup 7}=1-(9-ethyl-9H-carbazol-3-yl)-4,4,5,5,5-pentafluoro-1,3-pentanedione) was found to be the brightest at the ligand-centred excitation maximum. The ternary complexes were studied mainly in toluene as the model environment for the polystyrene nanoparticle cavities. The complexes were successfully loaded into the polystyrene nanoparticles enabling their bioanalytical application in aqueous environment. The encapsulation of the complexes preserved, or even enhanced, their good photophysical features. - Highlights: • Ternary Eu{sup 3+} complexes with some β-diketone and substituted terpyridine were studied. • Ternary complexes with substituted terpyridine showed blue-light excitability. • Ternary complexes were successfully loaded into the polystyrene nanoparticles. • Encapsulation of the complexes preserved their good photophysical features.

  6. Novel siRNA delivery system using a ternary polymer complex with strong silencing effect and no cytotoxicity.

    Science.gov (United States)

    Kodama, Yukinobu; Shiokawa, Yumi; Nakamura, Tadahiro; Kurosaki, Tomoaki; Aki, Keisei; Nakagawa, Hiroo; Muro, Takahiro; Kitahara, Takashi; Higuchi, Norihide; Sasaki, Hitoshi

    2014-01-01

    We developed a novel small interfering RNA (siRNA) delivery system using a ternary complex with polyethyleneimine (PEI) and γ-polyglutamic acid (γ-PGA), which showed silencing effect and no cytotoxicity. The binary complexes of siRNA with PEI were approximately 73-102 nm in particle size and 45-52 mV in ζ-potential. The silencing effect of siRNA/PEI complexes increased with an increase of PEI, and siRNA/PEI complexes with a charge ratio greater than 16 showed significant luciferase knockdown in a mouse colon carcinoma cell line regularly expressing luciferase (Colon26/Luc cells). However, strong cytotoxicity and blood agglutination were observed in the siRNA/Lipofectamine complex and siRNA/PEI16 complex. Recharging cationic complexes with an anionic compound was reported to be a promising method for overcoming these toxicities. We therefore prepared ternary complexes of siRNA with PEI (charge ratio 16) by the addition of γ-PGA to reduce cytotoxicity and deliver siRNA. As expected, the cytotoxicity of the ternary complexes decreased with an increase of γ-PGA content, which decreased the ζ-potential of the complexes. A strong silencing effect comparable to siRNA/Lipofectamine complex was discovered in ternary complexes including γ-PGA with an anionic surface charge. The high incorporation of ternary complexes into Colon26/Luc cells was confirmed with fluorescence microcopy. Having achieved knockdown of an exogenously transfected gene, the ability of the complex to mediate knockdown of an endogenous housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (GAPDH), was assessed in B16-F10 cells. The ternary complex (siRNA/PEI16/γ-PGA12 complex) exhibited a significant GAPDH knockdown effect. Thus, we developed a useful siRNA delivery system.

  7. Effect of environment in hypersensitive transitions of Nd/sup 3 +/ ternary complexes

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.K.; Bhutra, M.P. (Jodhpur Univ. (India). Dept. of Physics)

    1983-11-01

    Absorption spectra of ternary complexes of Nd/sup 3 +/ in different environments, viz. methanol, formamide and dimethyl sulphoxide, have been recorded taking glycine, alanine, valine and methionine as primary ligands and propane-1, 2-diol as secondary, ligand. The transition /sup 4/Gsub(5/2)<-/sup 4/Isub(9/2) obeying the selection rule ..delta..J/<=2, known as hypersensitive transition has been studied for four Nd/sup 3 +/ complexes. The results indicate that the hypersensitivity may be explained by means of vibronic mechanism with inclusion of covalency. Effect of different environments on hypersensitive transition has been discussed.

  8. Gold nanoparticles interacting with β-cyclodextrin-phenylethylamine inclusion complex: a ternary system for photothermal drug release.

    Science.gov (United States)

    Sierpe, Rodrigo; Lang, Erika; Jara, Paul; Guerrero, Ariel R; Chornik, Boris; Kogan, Marcelo J; Yutronic, Nicolás

    2015-07-22

    We report the synthesis of a 1:1 β-cyclodextrin-phenylethylamine (βCD-PhEA) inclusion complex (IC) and the adhesion of gold nanoparticles (AuNPs) onto microcrystals of this complex, which forms a ternary system. The formation of the IC was confirmed by powder X-ray diffraction and NMR analyses ((1)H and ROESY). The stability constant of the IC (760 M(-1)) was determined using the phase solubility method. The adhesion of AuNPs was obtained using the magnetron sputtering technique, and the presence of AuNPs was confirmed using UV-vis spectroscopy (surface plasmon resonance effect), which showed an absorbance at 533 nm. The powder X-ray diffractograms of βCD-PhEA were similar to those of the crystals decorated with AuNPs. A comparison of the one- and two-dimensional NMR spectra of the IC with and without AuNPs suggests partial displacement of the guest to the outside of the βCD due to attraction toward AuNPs, a characteristic tropism effect. The size, morphology, and distribution of the AuNPs were analyzed using TEM and SEM. The average size of the AuNPs was 14 nm. Changes in the IR and Raman spectra were attributed to the formation of the complex and to the specific interactions of this group with the AuNPs. Laser irradiation assays show that the ternary system βCD-PhEA-AuNPs in solution enables the release of the guest.

  9. Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling.

    Science.gov (United States)

    Houtman, Jon C D; Brown, Patrick H; Bowden, Brent; Yamaguchi, Hiroshi; Appella, Ettore; Samelson, Lawrence E; Schuck, Peter

    2007-01-01

    Multisite interactions and the formation of ternary or higher-order protein complexes are ubiquitous features of protein interactions. Cooperativity between different ligands is a hallmark for information transfer, and is frequently critical for the biological function. We describe a new computational platform for the global analysis of isothermal titration calorimetry (ITC) data for the study of binary and ternary multisite interactions, implemented as part of the public domain multimethod analysis software SEDPHAT. The global analysis of titrations performed in different orientations was explored, and the potential for unraveling cooperativity parameters in multisite interactions was assessed in theory and experiment. To demonstrate the practical potential and limitations of global analyses of ITC titrations for the study of cooperative multiprotein interactions, we have examined the interactions of three proteins that are critical for signal transduction after T-cell activation, LAT, Grb2, and Sos1. We have shown previously that multivalent interactions between these three molecules promote the assembly of large multiprotein complexes important for T-cell receptor activation. By global analysis of the heats of binding observed in sets of ITC injections in different orientations, which allowed us to follow the formation of binary and ternary complexes, we observed negative and positive cooperativity that may be important to control the pathway of assembly and disassembly of adaptor protein particles.

  10. Ternary WD40 repeat-containing protein complexes: evolution, composition and roles in plant immunity

    Directory of Open Access Journals (Sweden)

    Jimi C. Miller

    2016-01-01

    Full Text Available Plants, like mammals, rely on their innate immune system to perceive and discriminate among the majority of their microbial pathogens. Unlike mammals, plants respond to this molecular dialogue by unleashing a complex chemical arsenal of defense metabolites to resist or evade pathogen infection. In basal or non-host resistance, plants utilize signal transduction pathways to detect non-self, damaged-self and altered-self-associated molecular patterns and translate these danger signals into largely inducible chemical defenses. The WD40 repeat (WDR-containing proteins Gβ and TTG1 are constituents of two independent ternary protein complexes functioning at opposite ends of a plant immune signaling pathway. Gβ and TTG1 are also encoded by single-copy genes that are ubiquitous in higher plants, implying the limited diversity and functional conservation of their respective complexes. In this review, we summarize what is currently known about the evolutionary history of these WDR-containing ternary complexes, their repertoire and combinatorial interactions, and their downstream effectors and pathways in plant defense.

  11. Crystal Structures of Murine Carnitine Acetyltransferase in Ternary Complexes with Its Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao,Y.; Jogl, G.; Tong, L.

    2006-01-01

    Carnitine acyltransferases catalyze the reversible exchange of acyl groups between coenzyme A (CoA) and carnitine. They have important roles in many cellular processes, especially the oxidation of long-chain fatty acids in the mitochondria for energy production, and are attractive targets for drug discovery against diabetes and obesity. To help define in molecular detail the catalytic mechanism of these enzymes, we report here the high resolution crystal structure of wild-type murine carnitine acetyltransferase (CrAT) in a ternary complex with its substrates acetyl-CoA and carnitine, and the structure of the S554A/M564G double mutant in a ternary complex with the substrates CoA and hexanoylcarnitine. Detailed analyses suggest that these structures may be good mimics for the Michaelis complexes for the forward and reverse reactions of the enzyme, representing the first time that such complexes of CrAT have been studied in molecular detail. The structural information provides significant new insights into the catalytic mechanism of CrAT and possibly carnitine acyltransferases in general.

  12. Spectral study of ternary complexes of rare earths with different amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Bhutra, M.P.; Gupta, A.K. (Jodhpur Univ. (India). Dept. of Physics)

    1983-11-01

    Absorption spectra of eight ternary complexes of neodymium and praseodymium with different amino acids (glycine, alanine, valine and methionine) as primary ligand and propane-1, 2-diol as secondary ligand have been recorded in dimethyl sulphoxide (DMSO) in the visible region. The observed values of energy and intensity of various transitions have been compared with those calculated by using Judd-Ofelt relation. The observed and calculated values are in good agreement. Based on the calculated values of different energy and intensity parameters, the covalency and its dependence on atomic number of metal ion, metal-ligand interaction, nephelauxetic effect, etc. have been discussed.

  13. 1H-NMR studies on the ternary complexes of rare-earth ions with thenoyltrifluoroacetone and polyethers in dichloromethane.

    Science.gov (United States)

    Gagabe, Gene Frederick; Satoh, Keiichi; Sawada, Kiyoshi

    2009-07-28

    The structures of the ternary complexes of lanthanoid and yttrium (Ln3+)-thenoyltrifluoroacetonates (tta-) with polyether (POE) in organic phase were investigated by 1H-NMR spectroscopy, where the POEs are crown ethers (18-crown-6 and benzo-18-crown-6) and monodispersed linear polyethers (DEOn: HO-(CH2CH2O-)nC12H25, where n=4, 6, 8). The changes in chemical shift of methylene protons of POE by addition of the adduct complex [Ln(tta)3(POE)] were measured at various Ln3+-to-POE concentration ratios. Chemical shift changes for each proton of POE by the formation of [Ln(tta)3(POE)] were determined. Results revealed that oxygen atoms at the hydroxyl terminal of linear POE have higher tendency to coordinate to the metal ion in [Ln(tta)3] complex. Three (for La3+) or two (for Lu3+ or Y3+) oxygen atoms of the POE coordinate to the metal ion without substitution of tta- ligands to satisfy the metal ion's coordination number of nine or eight, respectively. In the case of 18-membered crown ether complexes, La3+ is incorporated inside the cavity of the POE, displacing one of the three tta- from the inner coordination sphere while the other two remain coordinated to the metal ion. On the other hand, for the adduct of Y3+ complex with crown ether, all three tta- ligands are directly coordinating to the metal ion.

  14. Identification of a non-covalent ternary complex formed by PIAS1, SUMO1, and UBC9 proteins involved in transcriptional regulation.

    Science.gov (United States)

    Mascle, Xavier H; Lussier-Price, Mathieu; Cappadocia, Laurent; Estephan, Patricia; Raiola, Luca; Omichinski, James G; Aubry, Muriel

    2013-12-20

    Post-translational modifications with ubiquitin-like proteins require three sequentially acting enzymes (E1, E2, and E3) that must unambiguously recognize each other in a coordinated fashion to achieve their functions. Although a single E2 (UBC9) and few RING-type E3s (PIAS) operate in the SUMOylation system, the molecular determinants regulating the interactions between UBC9 and the RING-type E3 enzymes are still not well defined. In this study we use biochemical and functional experiments to characterize the interactions between PIAS1 and UBC9. Our results reveal that UBC9 and PIAS1 are engaged both in a canonical E2·E3 interaction as well as assembled into a previously unidentified non-covalent ternary complex with SUMO as evidenced by bioluminescence resonance energy transfer, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry studies. In this ternary complex, SUMO functions as a bridge by forming non-overlapping interfaces with UBC9 and PIAS1. Moreover, our data suggest that phosphorylation of serine residues adjacent to the PIAS1 SUMO-interacting motif favors formation of the non covalent PIAS1·SUMO·UBC9 ternary complex. Finally, our results also indicate that the non-covalent ternary complex is required for the known transcriptional repression activities mediated by UBC9 and SUMO1. Taken together, the data enhance our knowledge concerning the mode of interaction of enzymes of the SUMOylation machinery as well as their role in transcriptional regulation and establishes a framework for investigations of other ubiquitin-like protein systems.

  15. Identification of a Non-covalent Ternary Complex Formed by PIAS1, SUMO1, and UBC9 Proteins Involved in Transcriptional Regulation*

    Science.gov (United States)

    Mascle, Xavier H.; Lussier-Price, Mathieu; Cappadocia, Laurent; Estephan, Patricia; Raiola, Luca; Omichinski, James G.; Aubry, Muriel

    2013-01-01

    Post-translational modifications with ubiquitin-like proteins require three sequentially acting enzymes (E1, E2, and E3) that must unambiguously recognize each other in a coordinated fashion to achieve their functions. Although a single E2 (UBC9) and few RING-type E3s (PIAS) operate in the SUMOylation system, the molecular determinants regulating the interactions between UBC9 and the RING-type E3 enzymes are still not well defined. In this study we use biochemical and functional experiments to characterize the interactions between PIAS1 and UBC9. Our results reveal that UBC9 and PIAS1 are engaged both in a canonical E2·E3 interaction as well as assembled into a previously unidentified non-covalent ternary complex with SUMO as evidenced by bioluminescence resonance energy transfer, nuclear magnetic resonance spectroscopy, and isothermal titration calorimetry studies. In this ternary complex, SUMO functions as a bridge by forming non-overlapping interfaces with UBC9 and PIAS1. Moreover, our data suggest that phosphorylation of serine residues adjacent to the PIAS1 SUMO-interacting motif favors formation of the non covalent PIAS1·SUMO·UBC9 ternary complex. Finally, our results also indicate that the non-covalent ternary complex is required for the known transcriptional repression activities mediated by UBC9 and SUMO1. Taken together, the data enhance our knowledge concerning the mode of interaction of enzymes of the SUMOylation machinery as well as their role in transcriptional regulation and establishes a framework for investigations of other ubiquitin-like protein systems. PMID:24174529

  16. Recognition and sensing of low-epitope targets via ternary complexes with oligonucleotides and synthetic receptors

    Science.gov (United States)

    Yang, Kyung-Ae; Barbu, Mihaela; Halim, Marlin; Pallavi, Payal; Kim, Benjamin; Kolpashchikov, Dmitry M.; Pecic, Stevan; Taylor, Steven; Worgall, Tilla S.; Stojanovic, Milan N.

    2014-11-01

    Oligonucleotide-based receptors or aptamers can interact with small molecules, but the ability to achieve high-affinity and specificity of these interactions depends strongly on functional groups or epitopes displayed by the binding targets. Some classes of targets are particularly challenging: for example, monosaccharides have scarce functionalities and no aptamers have been reported to recognize, let alone distinguish from each other, glucose and other hexoses. Here we report aptamers that differentiate low-epitope targets such as glucose, fructose or galactose by forming ternary complexes with high-epitope organic receptors for monosaccharides. In a follow-up example, we expand this method to isolate high-affinity oligonucleotides against aromatic amino acids complexed in situ with a nonspecific organometallic receptor. The method is general and enables broad clinical use of aptamers for the detection of small molecules in mix-and-measure assays, as demonstrated by monitoring postprandial waves of phenylalanine in human subjects.

  17. Combining NMR and small angle X-ray and neutron scattering in the structural analysis of a ternary protein-RNA complex

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Janosch; Wang, Iren; Sonntag, Miriam [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany); Gabel, Frank [Extremophiles and Large Molecular Assemblies Group (ELMA), Institut de Biologie Structurale (IBS) CEA-CNRS-UJF (France); Sattler, Michael, E-mail: sattler@helmholtz-muenchen.de [Institute of Structural Biology, Helmholtz Zentrum Muenchen (Germany)

    2013-05-15

    Many processes in the regulation of gene expression and signaling involve the formation of protein complexes involving multi-domain proteins. Individual domains that mediate protein-protein and protein-nucleic acid interactions are typically connected by flexible linkers, which contribute to conformational dynamics and enable the formation of complexes with distinct binding partners. Solution techniques are therefore required for structural analysis and to characterize potential conformational dynamics. Nuclear magnetic resonance spectroscopy (NMR) provides such information but often only sparse data are obtained with increasing molecular weight of the complexes. It is therefore beneficial to combine NMR data with additional structural restraints from complementary solution techniques. Small angle X-ray/neutron scattering (SAXS/SANS) data can be efficiently combined with NMR-derived information, either for validation or by providing additional restraints for structural analysis. Here, we show that the combination of SAXS and SANS data can help to refine structural models obtained from data-driven docking using HADDOCK based on sparse NMR data. The approach is demonstrated with the ternary protein-protein-RNA complex involving two RNA recognition motif (RRM) domains of Sex-lethal, the N-terminal cold shock domain of Upstream-to-N-Ras, and msl-2 mRNA. Based on chemical shift perturbations we have mapped protein-protein and protein-RNA interfaces and complemented this NMR-derived information with SAXS data, as well as SANS measurements on subunit-selectively deuterated samples of the ternary complex. Our results show that, while the use of SAXS data is beneficial, the additional combination with contrast variation in SANS data resolves remaining ambiguities and improves the docking based on chemical shift perturbations of the ternary protein-RNA complex.

  18. Fullerene alloy formation and the benefits for efficient printing of ternary blend organic solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Bjerring, Morten; Nielsen, Niels Chr.

    2015-01-01

    with a third polymer component, the system exhibits pseudo-binary phase behaviour instead of the expected ternary phase behaviour. Our results experimentally confirm the earlier hypothesis that the unexpected composition average dependent IV-behaviour for these supposed ternary mixtures are indeed due to them...

  19. Spectral characterization, crystal structures and biological activities of iminodiacetate ternary complexes

    Science.gov (United States)

    Shahid, M.; Anjuli; Tasneem, Sana; Mantasha, I.; Ahamad, M. Naqi; Sama, Farasha; Fatma, Kehkeshan; Siddiqi, Zafar A.

    2017-10-01

    The ternary complexes with stoichiometry [M(imda)(bipy)]·6H2O (M = Cu) and [M(imda)(bipy)(H2O)]·4H2O (M = Ni, Co and Mn) where H2imda = iminodiacetic acid and bipy = 2,2‧-bipyridine, are prepared and characterized to exploit as novel antimicrobial agents and SOD mimics. The chemical structures were elucidated by IR, FAB-Mass, 1H, 13C NMR, EPR and spectral techniques. Single crystal X-ray and spectral studies of the complexes (1) and (2) have confirmed a square pyramidal geometry around Cu(II) ion while a saturated six coordinate (distorted octahedral) geometry around the Ni(II), Co(II) and Mn(II) ions due to the additional coordination from water. A supramolecular network is formed by extensive H-bonding in complex (1). The supramolecular assembly in complex (1) is additionally consolidated via the existence of unusual cyclic hexameric water clusters. The antimicrobial activities for the present complexes have been examined against Escherichia coli (K-12), Bacillus subtilis (MTC-121), Staphylococcus aureus (IOASA-22), Salmonella typhymurium (MTCC-98), Candida albicans, Aspergillus fumigatus and Penicillium marneffei. The superoxide dismutase (SOD) activity of the Cu(II) complex (1) is also assessed employing nitrobluetetrazolium (NBT) assay.

  20. Quercetagetin-Loaded Zein-Propylene Glycol Alginate Ternary Composite Particles Induced by Calcium Ions: Structure Characterization and Formation Mechanism.

    Science.gov (United States)

    Sun, Cuixia; Wei, Yang; Li, Ruirui; Dai, Lei; Gao, Yanxiang

    2017-05-17

    The complexation of zein and propylene glycol alginate (PGA) was confirmed to improve the entrapment efficiency and loading capacity of quercetagetin (Q) in our previous study. The present work focused on the influence and induction mechanism of calcium ions on structures of Q-loaded zein-PGA ternary composite particles. The incorporation of Ca 2+ resulted in the formation of aggregates with a large dimension between zein particles, led to obvious conformational, secondary, and tertiary structural changes of zein, and caused the disappearance of crystalline structure of zein. PGA exhibited a fine filamentous network structure and became much thicker and stronger in the presence of Ca 2+ . The presence of Q promoted the affinity and binding capacity of Ca 2+ to zein and PGA. An interwoven network structure with enhanced firmness and density was observed in Q-loaded zein-PGA composite particles, leading to improved thermal stability. Three potential mechanisms were proposed to explain the structural characteristics induced by Ca 2+ , including particle-particle collision for zein particles, chain-chain association for PGA molecules, and simultaneous cross-linking coupled with aggregating for Q-loaded zein-PGA composite particles.

  1. Structure of an asymmetric ternary protein complex provides insight for membrane interaction.

    Science.gov (United States)

    Dempsey, Brian R; Rezvanpour, Atoosa; Lee, Ting-Wai; Barber, Kathryn R; Junop, Murray S; Shaw, Gary S

    2012-10-10

    Plasma membrane repair involves the coordinated effort of proteins and the inner phospholipid surface to mend the rupture and return the cell back to homeostasis. Here, we present the three-dimensional structure of a multiprotein complex that includes S100A10, annexin A2, and AHNAK, which along with dysferlin, functions in muscle and cardiac tissue repair. The 3.5 Å resolution X-ray structure shows that a single region from the AHNAK C terminus is recruited by an S100A10-annexin A2 heterotetramer, forming an asymmetric ternary complex. The AHNAK peptide adopts a coil conformation that arches across the heterotetramer contacting both annexin A2 and S100A10 protomers with tight affinity (∼30 nM) and establishing a structural rationale whereby both S100A10 and annexin proteins are needed in AHNAK recruitment. The structure evokes a model whereby AHNAK is targeted to the membrane surface through sandwiching of the binding region between the S100A10/annexin A2 complex and the phospholipid membrane. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Ionic exchange in p-sulfonatocalix[4]arene-mediated formation of metal-ligand complexes.

    Science.gov (United States)

    Francisco, Vitor; Basílio, Nuno; García-Río, Luis

    2014-05-01

    The effect of alkali and transition metal cations in the formation of host-guest complexes with the water-soluble p-sulfonatocalix[4]arene (SC4) was studied using 2-chloropyridine and Na(+) and Cu(2+) as model guest and model cations, respectively. The results obtained from isothermal titration calorimetry and NMR experiments provide evidence for the formation of 1:1:1 ternary complexes for both cations with Cu(2+) showing positive cooperativity and Na(+) negative cooperativity. The formation of ternary complexes comprising transition metal cations has been scarcely explored but present high potential for devising catalytic systems/models or for enhancing the stability and selectivity of SC4 complexes. Because transition metal cations are usually present in solution together with other SC4 countercations (e.g., Na(+)), a general binding model that considers the dynamic formation of all possible complexes (including ionic exchange between ternary complexes) is presented. This model allows the optimization of the conditions required to selectively form target complexes.

  3. Spectrophotometric Study of Ternary Complex Forming Systems of Some Lanthanide Metal Ions with Eriochrome Cyanine R in Presence of Cetylpyridinium Bromide for Microdetermination

    Directory of Open Access Journals (Sweden)

    A. S. Dhepe

    2011-01-01

    Full Text Available Study of coordination compounds of lanthanide elements has received a great attention due to growing applications in science and technology. Number of chromogenic reagents form water soluble colored complexes with lanthanides. Eriochrome cyanine R (ECR a member of triphenylmethane type of dye has been reported to form green colored complexes with lanthanides and has been used for microdetermination of these metal ions. Addition of cationic surfactant, Cetylpyridinium bromide (CPB, a cationic surfactant sensitizes the color reactions of Gd(III, Tb(III, Dy(III, Ho(III and Lu(III with ECR. Formation of water soluble, highly colored ternary complexes with a considerable bathochromic shift of about 50 nm in presence of surfactant has been observed. Optimum reaction conditions and other analytical parameters were also evaluated. Stoichiometric ratio 1:3:3 of Ln: ECR: CPB are responsible for the observed rise in molar absorptivity and sensitivity. Beer’s law was obeyed between 0.50 to 13.00 ppm. Effective photometric range and molar absorptivity of these ternary complexes have been calculated. Effect of some common interfering ions on determination of these lanthanide metal ions was studied. A simple, rapid and highly sensitive spectrophotometeric method has been proposed for the determination of metal ions understudy.

  4. Faster Synthesis of Beta-Diketonate Ternary Europium Complexes: Elapsed Times & Reaction Yields.

    Science.gov (United States)

    Lima, Nathalia B D; Silva, Anderson I S; Gerson, P C; Gonçalves, Simone M C; Simas, Alfredo M

    2015-01-01

    β-diketonates are customary bidentate ligands in highly luminescent ternary europium complexes, such as Eu(β-diketonate)3(L)2, where L stands for a nonionic ligand. Usually, the syntheses of these complexes start by adding, to an europium salt such as EuCl3(H2O)6, three equivalents of β-diketonate ligands to form the complexes Eu(β-diketonate)3(H2O)2. The nonionic ligands are subsequently added to form the target complexes Eu(β-diketonate)3(L)2. However, the Eu(β-diketonate)3(H2O)2 intermediates are frequently both difficult and slow to purify by recrystallization, a step which usually takes a long time, varying from days to several weeks, depending on the chosen β-diketonate. In this article, we advance a novel synthetic technique which does not use Eu(β-diketonate)3(H2O)2 as an intermediate. Instead, we start by adding 4 equivalents of a monodentate nonionic ligand L straight to EuCl3(H2O)6 to form a new intermediate: EuCl3(L)4(H2O)n, with n being either 3 or 4. The advantage is that these intermediates can now be easily, quickly, and efficiently purified. The β-diketonates are then carefully added to this intermediate to form the target complexes Eu(β-diketonate)3(L)2. For the cases studied, the 20-day average elapsed time reduced to 10 days for the faster synthesis, together with an improvement in the overall yield from 42% to 69%.

  5. Critical size dependence of domain formation observed in coarse-grained simulations of bilayers composed of ternary lipid mixtures

    Science.gov (United States)

    Pantelopulos, George A.; Nagai, Tetsuro; Bandara, Asanga; Panahi, Afra; Straub, John E.

    2017-09-01

    Model cellular membranes are known to form micro- and macroscale lipid domains dependent on molecular composition. The formation of macroscopic lipid domains by lipid mixtures has been the subject of many simulation investigations. We present a critical study of system size impact on lipid domain phase separation into liquid-ordered and liquid-disordered macroscale domains in ternary lipid mixtures. In the popular di-C16:0 PC:di-C18:2 PC:cholesterol at 35:35:30 ratio mixture, we find systems with a minimum of 1480 lipids to be necessary for the formation of macroscopic phase separated domains and systems of 10 000 lipids to achieve structurally converged conformations similar to the thermodynamic limit. To understand these results and predict the behavior of any mixture forming two phases, we develop and investigate an analytical Flory-Huggins model which is recursively validated using simulation and experimental data. We find that micro- and macroscale domains can coexist in ternary mixtures. Additionally, we analyze the distributions of specific lipid-lipid interactions in each phase, characterizing domain structures proposed based on past experimental studies. These findings offer guidance in selecting appropriate system sizes for the study of phase separations and provide new insights into the nature of domain structure for a popular ternary lipid mixture.

  6. Preparation and photoluminescence enhancement in terbium(III ternary complexes with β-diketone and monodentate auxiliary ligands

    Directory of Open Access Journals (Sweden)

    Devender Singh

    2016-12-01

    Full Text Available A series of new solid ternary complexes of terbium(III ion based on β-diketone ligand acetylacetone (acac and monodentate auxiliary ligands (aqua/urea/triphenylphosphineoxide/pyridine-N-oxide had been prepared. The structural characterizations of synthesized ternary compounds were studied by means of elemental analysis, infrared (IR, and proton nuclear magnetic resonance (NMR spectral techniques. The optical characteristics were investigated with absorption as well as photoluminescence spectroscopy. Thermal behavior of compounds was examined by TGA/DTA analysis and all metal complexes were found to have good thermal stability. The luminescence decay time of complexes were also calculated by monitoring at emission wavelength corresponding to 5D4 → 7F5 transition. A comparative inspection of the luminescent behavior of prepared ternary compounds was performed in order to determine the function of auxiliary ligands in the enhancement of luminescence intensity produced by central terbium(III ion. The color coordinates values suggested that compounds showed bright green emission in visible region in electromagnetic spectrum. Complexes producing green light could play a significant role in the fabrication of efficient light conversion molecular devices for display purposes and lightning systems.

  7. Atomistic modeling to investigate the favored composition for metallic glass formation in the Ca-Mg-Ni ternary system.

    Science.gov (United States)

    Zhao, S; Li, J H; An, S M; Li, S N; Liu, B X

    2017-05-17

    A realistic interatomic potential was first constructed for the Ca-Mg-Ni system and then applied to Monte Carlo simulations to predict the favored composition for metallic glass formation in the ternary system. The simulations not only predict a hexagonal composition region, within which the Ca-Mg-Ni metallic glass formation is energetically favored, but also pinpoint an optimized sub-region within which the amorphization driving force, i.e. the energy difference between the solid solution and disordered phase, is larger than that outside. The simulations further reveal that the physical origin of glass formation is the solid solution collapsing when the solute atom exceeds the critical solid solubility. Further structural analysis indicates that the pentagonal bi-pyramids dominate in the optimized sub-region. The large atomic size difference between Ca, Mg and Ni extends the short-range landscape and facilitates the development of a hybridized packing model in the medium-range, and eventually enhancing the glass formation in the system. The predictions are well supported by the experimental observations reported so far, and could be of help for designing the ternary glass formation.

  8. Structural characterization of the ternary complex that mediates termination of NF-κB signaling by IκBα.

    Science.gov (United States)

    Mukherjee, Sulakshana P; Quintas, Pedro O; McNulty, Reginald; Komives, Elizabeth A; Dyson, H Jane

    2016-05-31

    The transcription factor NF-κB is used in many systems for the transduction of extracellular signals into the expression of signal-responsive genes. Published structural data explain the activation of NF-κB through degradation of its dedicated inhibitor IκBα, but the mechanism by which NF-κB-mediated signaling is turned off by its removal from the DNA in the presence of newly synthesized IκBα (termed stripping) is unknown. Previous kinetic studies showed that IκBα accelerates NF-κB dissociation from DNA, and a transient ternary complex between NF-κB, its cognate DNA sequence, and IκBα was observed. Here we structurally characterize the >100-kDa ternary complex by NMR and negative stain EM and show a modeled structure that is consistent with the measurements. These data provide a structural basis for previously unidentified insights into the molecular mechanism of stripping.

  9. Preparation and evaluation of pH-responsive charge-convertible ternary complex FA-PEI-CCA/PEI/DNA with low cytotoxicity and efficient gene delivery.

    Science.gov (United States)

    Guo, Aijie; Wang, Yun; Xu, Shaohui; Zhang, Xiao; Li, Min; Liu, Qing; Shen, Yuanyuan; Cui, Derong; Guo, Shengrong

    2017-04-01

    Because the surface of the cationic polymer gene complex is positively charged, it can result in problems such as poor blood stability and cytotoxicity. Therefore, reducing the positive charge of the cationic gene complex without affecting its transfection efficiency is crucial. To achieve this objective, a pH-responsive charge-convertible ternary complex was developed in this study. Modified plyethylenimine (PEI) with two different degrees of substitution of NH2 (plyethylenimine-1,2-cyclohexanedicarboxylic anhydride, PEI-CCA, and folic acid-plyethylenimine-1,2-cyclohexanedicarboxylic anhydride, FA-PEI-CCA) were first obtained by a chemical graft reaction. PEI-CCA and FA-PEI-CCA have significantly lower cytotoxicities and much better blood compatibilities than PEI does, and the former have an undifferentiated compression capability of DNA. The zeta potential values of the as-prepared ternary complexes (PEI-CCA/PEI/DNA and FA-PEI-CCA/PEI/DNA) were negative at pH 7.4 and positive at pH 6.5, with particle sizes of approximately 150nm. MTT assays demonstrated the significantly lower cytotoxicities of the ternary complexes compared to that of PEI/DNA. Moreover, the cytotoxicities of the ternary complexes were lower at pH 7.4 than pH 6.5. Transfection experiments in vitro revealed that the mean fluorescence intensities and transfection efficiencies of the ternary complexes were lower than for PEI/DNA at pH 7.4 but were almost the same at pH 6.5. The ternary complex with a FA group had significantly higher mean fluorescence intensity and transfection efficiency than did the ternary complex without it. In addition, the transfection experiment in 293T cells preliminarily validated the targeting function of the FA group of the ternary complex. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Effect of guest drug character encapsulated in the cavity and intermolecular spaces of γ-cyclodextrins on the dissolution property of ternary γ-cyclodextrin complex.

    Science.gov (United States)

    Liu, Nan; Higashi, Kenjirou; Ueda, Keisuke; Moribe, Kunikazu

    2017-10-15

    Various ternary Guest 2/(Guest 1/γ-cyclodextrin (CD)) complexes were prepared using a cogrinding and subsequent heating method, wherein Guest 1 was incorporated in the cavity of γ-CD and Guest 2 was incorporated into the intermolecular spaces between γ-CD columns. Dissolution fluxes of Guest 1 and Guest 2 from all ternary complexes were almost identical. The dissolution flux of flurbiprofen (Guest 1) from the ternary complexes depended on the solubility of Guest 2 drugs (naproxendissolution medium of pH 1.2. It is noteworthy that the dissolution flux of flurbiprofen from the ternary complexes with ketoprofen and ethenzamide as Guest 2 drugs was further enhanced compared with that from the flurbiprofen/γ-CD inclusion complex. The ternary complex of the acidic drug ketoprofen as Guest 1 and the neutral drug hydrocortisone as Guest 2 showed an increased dissolution flux, which was dependent on the increase in pH of the dissolution medium. The pH-dependent dissolution should reflect the solubility of ketoprofen/γ-CD inclusion complex in each dissolution medium. These results indicated that the dissolution flux of the ternary γ-CD complexes could be controlled by selecting the appropriate Guest 1 and Guest 2 species. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ternary copper(II) complexes with amino acid chains and heterocyclic bases: DNA binding, cytotoxic and cell apoptosis induction properties.

    Science.gov (United States)

    Ma, Tieliang; Xu, Jun; Wang, Yuan; Yu, Hao; Yang, Yong; Liu, Yang; Ding, Weiliang; Zhu, Wenjiao; Chen, Ruhua; Ge, Zhijun; Tan, Yongfei; Jia, Lei; Zhu, Taofeng

    2015-03-01

    Nowadays, chemotherapy is a common means of oncology. However, it is difficult to find excellent chemotherapy drugs. Here we reported three new ternary copper(II) complexes which have potential chemotherapy characteristics with reduced Schiff base ligand and heterocyclic bases (TBHP), [Cu(phen)(TBHP)]H2O (1), [Cu(dpz)(TBHP)]H2O (2) and [Cu(dppz)(TBHP)]H2O (3) (phen=1,10-phenanthroline, dpz=dipyrido [3,2:2',3'-f]quinoxaline, dppz=dipyrido [3,2-a:2',3'-c]phenazine, H2TBHP=2-(3,5-di-tert-butyl-2-hydroxybenzylamino)-2-benzyl-acetic acid). The DNA-binding properties of the complexes were investigated by spectrometric titrations, ethidium bromide displacement experiments and viscosity measurements. The results indicated that the three complexes, especially the complex 13, can strongly bind to calf-thymus DNA (CT-DNA). The intrinsic binding constants Kb of the ternary copper(II) complexes with CT-DNA were 1.37×10(5), 1.81×10(5) and 3.21×10(5) for 1, 2 and 3 respectively. Comparative cytotoxic activities of the copper(II) complexes were also determined by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results showed that the ternary copper(II) complexes had significant cytotoxic activity against the human lung cancer (A549), human esophageal cancer (Eca109) and human gastric cancer (SGC7901) cell lines. Cell apoptosis were detected by AnnexinV/PI flow cytometry and by Western blotting with the protein expression of p53, Bax and Bcl-2. All the three copper complexes can effectively induce apoptosis of the three human tumor cells. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Different Mechanisms of Catalytic Complex Formation in Two L-Tryptophan Processing Dioxygenases

    Directory of Open Access Journals (Sweden)

    Karin Nienhaus

    2018-01-01

    Full Text Available The human heme enzymes tryptophan 2,3-dioxygenase (hTDO and indoleamine 2,3 dioxygenase (hIDO catalyze the initial step in L-tryptophan (L-Trp catabolism, the insertion of dioxygen into L-Trp. Overexpression of these enzymes causes depletion of L-Trp and accumulation of metabolic products, and thereby contributes to tumor immune tolerance and immune dysregulation in a variety of disease pathologies. Understanding the assembly of the catalytically active, ternary enzyme-substrate-ligand complexes is not yet fully resolved, but an essential prerequisite for designing efficient and selective de novo inhibitors. Evidence is mounting that the ternary complex forms by sequential binding of ligand and substrate in a specific order. In hTDO, the apolar L-Trp binds first, decreasing active-site solvation and, as a result, reducing non-productive oxidation of the heme iron by the dioxygen ligand, which may leave the substrate bound to a ferric heme iron. In hIDO, by contrast, dioxygen must first coordinate to the heme iron because a bound substrate would occlude ligand access to the heme iron, so the ternary complex can no longer form. Consequently, faster association of L-Trp at high concentrations results in substrate inhibition. Here, we summarize our present knowledge of ternary complex formation in hTDO and hIDO and relate these findings to structural peculiarities of their active sites.

  13. Influence of humic acid on plutonium sorption to gibbsite. Determination of Pu-humic acid complexation constants and ternary sorption studies

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Trevor; Powell, Brian A. [Clemson Univ., Anderson, SC (United States). Environmental Engineering and Earth Sciences; Zavarin, Mavrik [Lawrence Livermore National Laboratory, Livermore, CA (United States). Glenn T. Seaborg Institute

    2014-10-01

    In this work stability constants describing Pu(IV), Th(IV), and Np(V) binding to Leonardite humic acid (HA) were determined using a discrete pK{sub a} model. A hybrid ultra-filtration/equilibrium dialysis, ligand exchange technique was used to generate the partitioning data. Ethylenediaminetetraacetic acid (EDTA) was used as a reference ligand to allow the aqueous chemistry of the Pu(IV)-HA system to be examined over a range of pH values, while minimizing the possibility of precipitation of Pu(IV). The conditional stability constant for Pu(IV) complexation with HA determined as part of this work is logβ{sub 112} = 6.76 ± 0.14 based on the equation: Pu{sup 4+} + HL3 + 2H{sub 2}O <-> Pu(OH){sub 2}L3{sup +} + 3H{sup +} where HA is represented by HL3 (a binding site on the HA with a pK{sub a} value of 7). This value is three orders of magnitude higher than the Th(IV)-HA constant and between six and eight orders of magnitude higher than the Np(V)-HA complex. The magnitude of the stability constants and the general trend of increasing complexation strength with increasing pH is consistent with previous observations. The Pu(IV)-HA stability constants were used to model sorption of Pu(IV) to gibbsite in the presence of HA. Assuming only aqueous Pu-HA complexes and AlOH-Pu surface complexes, the model was unable to predict the observed data which exhibited greater sorption at pH 4 relative to pH 6; a phenomenon which does not occur in the absence of HA. Therefore, this study demonstrates that ternary Pu-HA-gibbsite complexes may form under low pH conditions and exhibit greater sorption than that observed in the absence of HA. Although the presence of HA may increase the solubility/aqueous concentrations of Pu in the absence of a solid phase, formation of ternary complexes may indeed retard the subsurface migration of Pu. The corollary to this finding is that increased mobility may occur if the ternary surface complex forms on a mobile colloid rather than part of the

  14. Validation of quantitative analysis method for triamcinolone in ternary complexes by UV-Vis spectrophotometry

    Directory of Open Access Journals (Sweden)

    GEORGE DARLOS A. AQUINO

    2011-06-01

    Full Text Available Triamcinolone (TRI, a drug widely used in the treatment of ocular inflammatory diseases, is practically insoluble in water, which limits its use in eye drops. Cyclodextrins (CDs have been used to increase the solubility or dissolution rate of drugs. The purpose of the present study was to validate a UV-Vis spectrophotometric method for quantitative analysis of TRI in inclusion complexes with beta-cyclodextrin (B-CD associated with triethanolamine (TEA (ternary complex. The proposed analytical method was validated with respect to the parameters established by the Brazilian regulatory National Agency of Sanitary Monitoring (ANVISA. The analytical measurements of absorbance were made at 242nm, at room temperature, in a 1-cm path-length cuvette. The precision and accuracy studies were performed at five concentration levels (4, 8, 12, 18 and 20μg.mL-1. The B-CD associated with TEA did not provoke any alteration in the photochemical behavior of TRI. The results for the measured analytical parameters showed the success of the method. The standard curve was linear (r2 > 0.999 in the concentration range from 2 to 24 μg.mL-1. The method achieved good precision levels in the inter-day (relative standard deviation-RSD <3.4% and reproducibility (RSD <3.8% tests. The accuracy was about 80% and the pH changes introduced in the robustness study did not reveal any relevant interference at any of the studied concentrations. The experimental results demonstrate a simple, rapid and affordable UV-Vis spectrophotometric method that could be applied to the quantitation of TRI in this ternary complex. Keywords: Validation. Triamcinolone. Beta-cyclodextrin. UV- Vis spectrophotometry. Ternary complexes. RESUMO Validação de método de análise quantitativa para a triancinolona a partir de complexo ternário por espectrofotometria de UV-Vis A triancinolona (TRI é um fármaco amplamente utilizado no tratamento de doenças inflamatórias do globo ocular e

  15. Preparation and photoluminescence of some europium (III) ternary complexes with β-diketone and nitrogen heterocyclic ligands

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dunjia, E-mail: dunjiawang@163.com; Pi, Yan; Zheng, Chunyang; Fan, Ling; Hu, Yanjun; Wei, Xianhong

    2013-10-15

    Highlights: •Preparation of europium (III) ternary complexes with β-diketone and nitrogen heterocyclic ligands. •Photoluminescence behavior of europium (III) ternary complexes. •Analysis of the Judd–Ofelt intensity parameters (Ω{sub t}), the lifetime (τ) and the luminescent quantum yield (η). -- Abstract: Preparation and photoluminescence behavior of four new europium (III) ternary complexes with β-diketones (1-(6-methoxy-naphthalen-2-yl)-3-phenyl-propane-1,3-dione (MNPPD) and 1-(4-tert-butyl-phenyl)-3-(6-methoxy-naphthalen-2-yl)-propane-1,3-dione (BPMPD)) and 2,2-dipyridine (Bipy) or 1,10-phenanthroline (Phen) were reported, in the solid state. Complexes Eu(MPPD){sub 3}·Bipy, Eu(BMPD){sub 3}·Bipy, Eu(MPPD){sub 3}·Phen and Eu(BMPD){sub 3}·Phen were characterized by elemental analysis, FT-IR, {sup 1}H NMR, UV–vis absorption. The emission spectra show narrow emission bands that arise from the {sup 5}D{sub 0} → {sup 7}F{sub J} (J = 0–4) transitions of the europium ion. Based on the emission spectra and luminescence decay curves in solid state, the intensity parameters (Ω{sub t}), lifetime (τ) and emission quantum efficiency (η) were determined. The Ω{sub 2} values indicate that the Eu(III) ion in these complexes is in a highly polarizable chemical environment. Complexes Eu(MPPD){sub 3}·Bipy and Eu(MPPD){sub 3}·Phen showed a longer lifetime (τ) and a higher luminescence quantum efficiency (η), which indicated that the energy transfer to the europium ion from MNPPD ligand is more efficient than that from BPMPD ligand.

  16. Nanoparticle formation of poorly water-soluble drugs from ternary ground mixtures with PVP and SDS.

    Science.gov (United States)

    Itoh, Koichi; Pongpeerapat, Adchara; Tozuka, Yuichi; Oguchi, Toshio; Yamamoto, Keiji

    2003-02-01

    Poorly water-soluble drugs N-5159, griseofulvin (GFV), glibenclamide (GBM) and nifedipine (NFP) were ground in a dry process with polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS). Different crystallinity behavior of each drug during grinding was shown in the ternary Drug/PVP/SDS system. However, when each ternary Drug/PVP/SDS ground mixture was added to distilled water, crystalline nanoparticles which were 200 nm or less in size were formed and had excellent stability. Zeta potential measurement suggested that the nanoparticles had a structure where SDS was adsorbed onto the particles that were formed by the adsorption of PVP on the surface of drug crystals. Stable existence of crystalline nanoparticles was attributable to the inhibition of aggregation caused by the adsorption of PVP and SDS on the surface of drug crystals. Furthermore, the electrostatic repulsion due to the negative charge of SDS on a shell of nanoparticles could be assumed to contribute to the stable dispersion.

  17. Ternary complex of plasmid DNA with NLS-Mu-Mu protein and cationic niosome for biocompatible and efficient gene delivery: a comparative study with protamine and lipofectamine.

    Science.gov (United States)

    Nematollahi, Mohammad Hadi; Torkzadeh-Mahanai, Masoud; Pardakhty, Abbas; Ebrahimi Meimand, Hossein Ali; Asadikaram, Gholamreza

    2017-10-28

    Non-viral gene delivery methods are considered due to safety and simplicity in human gene therapy. Since the use of cationic peptide and niosome represent a promising approach for gene delivery purposes we used recombinant fusion protein and cationic niosome as a gene carrier. A multi-domain fusion protein including nuclear localization motif (NLS) and two DNA-binding (Mu) domains, namely NLS-Mu-Mu (NMM) has been designed, cloned and expressed in E. coli DE3 strain. Afterward, the interested protein was purified by affinity chromatography. Binary vectors based on protein/DNA and ternary vectors based on protein/DNA/niosome were prepared. Protamine was used as a control. DNA condensing properties of NMM and protamine were evaluated by various experiments. Furthermore, we examined cytotoxicity, hemolysis and transfection potential of the binary and ternary complexes in HEK293T and MCF-7 cell lines. Protamine and Lipofectamine™2000 were used as positive controls, correspondingly. The recombinant NMM was expressed and purified successfully and DNA was condensed efficiently at charge ratios that were not harmful to cells. Peptidoplexes showed transfection efficiency (TE) but ternary complexes had higher TE. Additionally, NMM ternary complex was more efficient compared to protamine ternary vectors. Our results showed that niosomal ternary vector of NMM is a promising non-viral gene carrier to achieve an effective and safe carrier system for gene therapy.

  18. Docking and molecular dynamics simulations of the ternary complex nisin2:lipid II

    Science.gov (United States)

    Mulholland, Sam; Turpin, Eleanor R.; Bonev, Boyan B.; Hirst, Jonathan D.

    2016-01-01

    Lanthionine antibiotics are an important class of naturally-occurring antimicrobial peptides. The best-known, nisin, is a commercial food preservative. However, structural and mechanistic details on nisin-lipid II membrane complexes are currently lacking. Recently, we have developed empirical force-field parameters to model lantibiotics. Docking and molecular dynamics (MD) simulations have been used to study the nisin2:lipid II complex in bacterial membranes, which has been put forward as the building block of nisin/lipid II binary membrane pores. An Ile1Trp mutation of the N-terminus of nisin has been modelled and docked onto lipid II models; the computed binding affinity increased compared to wild-type. Wild-type nisin was also docked onto three different lipid II structures and a stable 2:1 nisin:lipid II complex formed. This complex was inserted into a membrane. Six independent MD simulations revealed key interactions in the complex, specifically the N-terminal engagement of nisin with lipid II at the pyrophosphate and C-terminus of the pentapeptide chain. Nisin2 inserts into the membrane and we propose this as the first step in pore formation, mediated by the nisin N-terminus–lipid II pentapeptide hydrogen bond. The lipid II undecaprenyl chain adopted different conformations in the presence of nisin, which may also have implications for pore formation. PMID:26888784

  19. Binary and ternary complexes of some inner transition metal ions with amino acids and acetyl acetone

    Science.gov (United States)

    Abu-Eittah, R. H.; Abdou, M. M.; Salem, M. B.

    1998-05-01

    The stability constants of the 1:1 and 1:2 (whenever possible) complexes formed between La3+, Ce3+, Th4+ and the amino acid anions L-alaninate, L-phenylalaninate and L-histidinate were determined by potentiometric titration in aqueous solution (25± 1 ^circC, I = 0.1 M KCl) and compared together with the constants previously determined. The various formation degree of the resulting M(L) and M(L)2 were determined. In order to relate the formation degree of M(L) and M(L)2 with the basicity of the amino acid anion (L^-), the acidity constants of the protonated amino acids, H2L^+, were also measured. The main results of this work prove that Th4+ ion forms the strongest complex with the studied amino acids. It is the only ion which forms a 1:2 complex. The heterocyclic ring of histidine plays a significant role in complexing with the studied metal ions as is clearly seen from the distribution of the degree of formation of the different complexes. The stability constants of the 1:1:1, 1:2:1 and 1:1:2 complexes formed between La3+, Ce3+, Th4+ and the anions L-alaninate, L-phenylalaninate and L-histidinate together with the acetyl acetonate ion were also determined following the same experimental set up used in the study of the simple complexes. The mixed-ligand complexes turned out to be very much stronger than the simple ligand complexes. Formation of a mixed ligand complex can be considered as a type of senergism. Les constantes de stabilité des complexes 1:1 et 2:2 (lorsque cela est possible) formés entre La3+, Ce3+, Th4+ et les anions aminoacides L-alaninate, L-phénylalaninate et L-histidinate ont été déterminées par dosage potentiométrique en solution aqueuse (25± 1 ^circC, I = 0,1 M KCl), et comparées à celles de la littérature. Les différents degrés de formation de M(L) et M(L)2 ont été quantifiés. Pour mettre en évidence la relation entre le degré de formation de M(L) et M(L)2 et la basicité des anions aminoacides (L^-), les constantes d

  20. Synthesis, Crystal Structure, and Characterization of Ternary Copper(II Complex Derived from N-(salicylidene-L-valine

    Directory of Open Access Journals (Sweden)

    Sundaramurthy Santha Lakshmi

    2016-01-01

    Full Text Available Ternary Schiff base copper(II complex [CuL(tmpda] (where H2L is N-(salicylidene-L-valine; tmpda is N,N,N′,N′-tetramethyl-1,3-propanediamine has been characterized by UV-Vis., FTIR, and single crystal XRD. The crystal structure displays a distorted square pyramidal geometry in which Schiff base is bonded to the Cu(II ion via phenolate oxygen, imine nitrogen, and an oxygen atom of the carboxylate group through the basal plane and the chelating diamine, N,N,N′,N′-tetramethyl-1,3-propanediamine, displays an axial and equatorial mode of binding via NN-donor atoms.

  1. The structure of the ternary Eg5–ADP–ispinesib complex

    Energy Technology Data Exchange (ETDEWEB)

    Talapatra, S. K., E-mail: s.talapatra@beatson.gla.ac.uk; Schüttelkopf, A. W., E-mail: s.talapatra@beatson.gla.ac.uk; Kozielski, F. [The Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland (United Kingdom)

    2012-10-01

    The complex between the motor protein Eg5 and the phase II clinical candidate ispinesib provides insights into the mechanism of action of this important class of inhibitors. The human kinesin Eg5 is responsible for bipolar spindle formation during early mitosis. Inhibition of Eg5 triggers the formation of monoastral spindles, leading to mitotic arrest that eventually causes apoptosis. There is increasing evidence that Eg5 constitutes a potential drug target for the development of cancer chemotherapeutics. The most advanced Eg5-targeting agent is ispinesib, which exhibits potent antitumour activity and is currently in multiple phase II clinical trials. In this study, the crystal structure of the Eg5 motor domain in complex with ispinesib, supported by kinetic and thermodynamic binding data, is reported. Ispinesib occupies the same induced-fit pocket in Eg5 as other allosteric inhibitors, making extensive hydrophobic interactions with the protein. The data for the Eg5–ADP–ispinesib complex suffered from pseudo-merohedral twinning and revealed translational noncrystallographic symmetry, leading to challenges in data processing, space-group assignment and structure solution as well as in refinement. These complications may explain the lack of available structural information for this important agent and its analogues. The present structure represents the best interpretation of these data based on extensive data-reduction, structure-solution and refinement trials.

  2. Visualization of subunit interactions and ternary complexes of protein phosphatase 2A in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Shu-Ting Mo

    Full Text Available Protein phosphatase 2A (PP2A is a ubiquitous phospho-serine/threonine phosphatase that controls many diverse cellular functions. The predominant form of PP2A is a heterotrimeric holoenzyme consisting of a scaffolding A subunit, a variable regulatory B subunit, and a catalytic C subunit. The C subunit also associates with other interacting partners, such as α4, to form non-canonical PP2A complexes. We report visualization of PP2A complexes in mammalian cells. Bimolecular fluorescence complementation (BiFC analysis of PP2A subunit interactions demonstrates that the B subunit plays a key role in directing the subcellular localization of PP2A, and confirms that the A subunit functions as a scaffold in recruiting the B and C subunits to form a heterotrimeric holoenzyme. BiFC analysis also reveals that α4 promotes formation of the AC core dimer. Furthermore, we demonstrate visualization of specific ABC holoenzymes in cells by combining BiFC and fluorescence resonance energy transfer (BiFC-FRET. Our studies not only provide direct imaging data to support previous biochemical observations on PP2A complexes, but also offer a promising approach for studying the spatiotemporal distribution of individual PP2A complexes in cells.

  3. Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR

    Directory of Open Access Journals (Sweden)

    Esbelin Julia

    2012-06-01

    Full Text Available Abstract Background Bacillus cereus is a facultative anaerobe that causes diarrheal disease in humans. Diarrheal syndrome may result from the secretion of various virulence factors including hemolysin BL and nonhemolytic enterotoxin Nhe. Expression of genes encoding Hbl and Nhe is regulated by the two redox systems, ResDE and Fnr, and the virulence regulator PlcR. B. cereus Fnr is a member of the Crp/Fnr family of iron-sulfur (Fe-S proteins. Only its apo-form has so far been studied. A major goal in deciphering the Fnr-dependent regulation of enterotoxin genes is thus to obtain and characterize holoFnr. Results Fnr has been subjected to in vitro Fe-S cluster reconstitution under anoxic conditions. UV-visible and EPR spectroscopic analyses together with the chemical estimation of the iron content indicated that Fnr binds one [4Fe-4S]2+ cluster per monomer. Atmospheric O2 causes disassembly of the Fe-S cluster, which exhibited a half-life of 15 min in air. Holo- and apoFnr have similar affinities for the nhe and hbl promoter regions, while holoFnr has a higher affinity for fnr promoter region than apoFnr. Both the apo- and holo-form of Fnr interact with ResD and PlcR to form a ternary complex. Conclusions Overall, this work shows that incorporation of the [4Fe-4S]2+ cluster is not required for DNA binding of Fnr to promoter regions of hbl and nhe enterotoxin genes or for the formation of a ternary complex with ResD and PlcR. This points to some new unusual properties of Fnr that may have physiological relevance in the redox regulation of enterotoxin gene regulation.

  4. Synthesis of novel binary and ternary Zn2+ complexes with putrescine and phosphocreatine and the metal complexes study in aqueous solution

    Science.gov (United States)

    Szyfman, Natalie Waissmann; Tenório, Thaís; Ribeiro, Tatiana S.; Felcman, Judith; Mercê, Ana Lucia Ramalho

    2014-09-01

    Binary and ternary systems of Zn2+ complexes with phosphocreatine (PCr) and putrescine (Put) were investigated in aqueous solution using potentiometric titrations, Raman spectroscopy, Nuclear Magnetic Resonance (1H NMR) and molecular modeling. The stability constants of the complexes and molecular adducts, determined by potentiometry (T = 25.0 °C, I = 0.100 mol L-1, KNO3), are for some of the calculated complexes log KZnPCr = 10.63 ± 0.03, log KZnPut = 5.22 ± 0.08 and for log KZnPCrPut = 16.56 ± 0.02. PCr acts as a bidentate ligand and Put as a monodentate ligand until around pH 11. The Raman and 1H NMR spectra and minimum total molecular energies calculations confirm the coordination modes of all systems. The ternary species are suggested by the values of the stability constants found as, when compared to those of the binary complexes with each ligand, they are neither the sum of the two or a value less than each one separately complexed with Zn2+. An intermolecular interaction was suggested for the ZnPCrPut species. However, for ZnPCrPutH species it was not possible to establish the same kind of interaction due to the long distance between the carboxylate group of phosphocreatine and the NH3+ group of Put.

  5. 1H NMR studies of binary and ternary dapsone supramolecular complexes with different drug carriers: EPC liposome, SBE-β-CD and β-CD.

    Science.gov (United States)

    Martins, Lucas; Arrais, Monica; de Souza, Alexandre; Marsaioli, Anita

    2014-11-01

    Binary and ternary systems composed of dapsone, sulfobutylether-β-cyclodextrin (SBE-β-CD), β-CD and egg phosphatidylcholine (EPC) were evaluated using 1D ROESY, saturation transfer difference NMR and diffusion experiments (DOSY) revealing the binary complexes Dap/β-CD (K(a) 1396 l mol(-1)), Dap/SBE-β-CD (K(a) 246 l mol(-1)), Dap/EPC (K(a) 84 l mol(-1)) and the ternary complex Dap/β-CD/EPC (K(a) 18 l mol(-1)) in which dapsone is more soluble. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Formation, Characteristics and Electrocatalytic Properties of Nanoporous Metals Formed by Dealloying of Ternary-Noble Alloys

    Science.gov (United States)

    Vega Zuniga, Adrian A.

    Nanoporous metals formed by electrochemical dealloying of silver from Ag-Au-Pt alloys, with 77 at.% silver and platinum contents of 1, 2 and 3 at.%, have been studied. The presence of platinum, which is immobile relative to gold, refine the ligament size and stabilized the nanostructure against coarsening, even under experimental conditions that would be expected to promote coarsening (e.g., exposure to high temperature, longer dealloying times). By adding only 1 at.% Pt to the alloy precursor, the ligament/pore size was reduced by 50% with respect to that in nanoporous gold (NPG), which was formed on a Ag-Au alloy with the same silver content as ternary alloys. A further decrease in the ligament size was observed by increasing the platinum content of the precursor; however, most of the improvement occurred with 1 at.% Pt. The adsorbate-induced surface segregation of platinum was also investigated for these nanoporous metals. By exposing freshly-dealloyed nanostructures to moderate temperatures in the presence of air, platinum segregated to the ligament surface; in contrast, in an inert atmosphere (Ar-H 2), platinum mostly reverted to the bulk of the ligaments. This thermally activated process was thermodynamically driven by the interaction between platinum and oxygen; however, at the desorption temperature of oxygen, platinum de-segregated from the surface. Moreover, the co-segregation of platinum and oxygen hindered the thermal coarsening of the ligaments. Finally, the electrocatalytic abilities of these nanostructures were studied towards methanol and ethanol electro-oxidation, in alkaline and acidic media, showing significantly improved response in comparison to that observed in NPG. The synergistic effect between gold and platinum atoms and the smaller feature size of the nanostructures were directly associated with this behaviour. In alkaline electrolyte, the nanostructure formed on the alloy with 1 at.% Pt showed higher catalytic response than the other two

  7. Spray formation with complex fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lustig, S; Rosen, M, E-mail: mrosen@fi.uba.ar [Grupo de Medios Porosos, Facultad de Ingenieria, Universidad de Buenos Aires, LIA (Laboratoire International Associe).Argentina (Argentina)

    2011-05-01

    Droplet formation through Faraday excitation has been tested in the low driving frequency limit. Kerosene was used to model liquid fuel with the addition of PIB in different proportions. All fluids were characterized in detail. The mechanisms of ejection were investigated to identify the relative influence of viscosity and surface tension. It was also possible to characterize the type of instability leading to the emission drop process.

  8. Spectral and theoretical study on complexation of sulfamethoxazole with β- and HPβ-cyclodextrins in binary and ternary systems

    Science.gov (United States)

    Varghese, Beena; Suliman, FakhrEldin O.; Al-Hajri, Aalia; Al Bishri, Nahed Surur S.; Al-Rwashda, Nathir

    2018-02-01

    The inclusion complexes of sulfamethoxazole (SMX) with β-cyclodextrin (βCD) and (2-hydroxypropyl) β-cyclodextrin (HPβCD) were prepared. Fluorescence spectroscopy and electrospray mass spectrometry, ESI-MS, were used to investigate and characterize the inclusion complexation of SMX with cyclodextrins in solutions. Whereas in the solid state the complexes were characterized by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD) and Raman techniques. Enhanced twisted intramolecular charge transfer (TICT), emission as well as local excited (LE) bands were observed upon addition of HPβCD indicate that SMX enters deeper into the cyclodextrins cavity. The stoichiometries and association constants of these complexes have been determined by monitoring the fluorescence data. The effect of presence of ternary components like arginine and cysteine on the complexation efficiency of SMX with cyclodextrins was investigated. Molecular Dynamic simulations were also performed to shed an atomistic insight into the complexation mechanism. The results obtained showed that complexes of SMX with both cyclodextrins are stabilized in aqueous media by strong hydrogen bonding interactions.

  9. Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems

    Energy Technology Data Exchange (ETDEWEB)

    Romaka, V.V., E-mail: romakav@lp.edu.ua [Department of Applied Material Science and Materials Engineering, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine); Romaka, L.; Horyn, A. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Rogl, P. [Institute of Materials Chemistry and Research, University of Vienna, Währingerstrasse 42, A-1090 Wien (Austria); Stadnyk, Yu; Melnychenko, N. [Inorganic Chemistry Department, Ivan Franko Lviv National University, Kyryla and Mefodiya str. 6, 79005 Lviv (Ukraine); Orlovskyy, M.; Krayovskyy, V. [Department of Applied Material Science and Materials Engineering, Lviv Polytechnic National University, Ustyyanovycha Str. 5, 79013 Lviv (Ukraine)

    2016-07-15

    The phase equilibria in the Gd–Ni–Sb and Lu-Ni-Sb ternary systems were studied at 873 K by X-ray and metallographic analyses in the whole concentration range. The interaction of the elements in the Gd–Ni–Sb system results the formation of five ternary compounds at investigated temperature: Gd{sub 5}Ni{sub 2}Sb (Mo{sub 5}SiB{sub 2}-type), Gd{sub 5}NiSb{sub 2} (Yb{sub 5}Sb{sub 3}-type), GdNiSb (MgAgAs-type), Gd{sub 3}Ni{sub 6}Sb{sub 5} (Y{sub 3}Ni{sub 6}Sb{sub 5}-type), and GdNi{sub 0.72}Sb{sub 2} (HfCuSi{sub 2}-type). At investigated temperature the Lu-Ni-Sb system is characterized by formation of the LuNiSb (MgAgAs-type), Lu{sub 5}Ni{sub 2}Sb (Mo{sub 5}SiB{sub 2}-type), and Lu{sub 5}Ni{sub 0.56}Sb{sub 2.44} (Yb{sub 5}Sb{sub 3}-type) compounds. The disordering in the crystal structure of half-Heusler GdNiSb and LuNiSb was revealed by EPMA and studied by means of Rietveld refinement and DFT modeling. The performed electronic structure calculations are in good agreement with electrical transport property studies. - Graphical abstract: Crystal structure model and electron localization function of Lu{sub 5}Ni{sub 2}Sb. Display Omitted - Highlights: • Gd-Ni-Sb and Lu-Ni-Sb phase diagrams were constructed at 873 K. • GdNiSb and LuNiSb are characterized by disordered crystal structure. • Crystal structure optimization with DFT calculations confirmed crystal structure disorder in GdNiSb and LuNiSb.

  10. Ternary fission

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary ...

  11. Ternary fission

    Indian Academy of Sciences (India)

    Recently, we have studied the various aspects associated with the ternary fission process. A model, called the three-cluster model (TCM) [1–6] has been put forth. This accounts for the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the ...

  12. Visible-near-infrared luminescent lanthanide ternary complexes based on beta-diketonate using visible-light excitation.

    Science.gov (United States)

    Sun, Lining; Qiu, Yannan; Liu, Tao; Feng, Jing; Deng, Wei; Shi, Liyi

    2015-11-01

    We used the synthesized dinaphthylmethane (Hdnm) ligand whose absorption extends to the visible-light wavelength, to prepare a family of ternary lanthanide complexes, named as [Ln(dnm)3 phen] (Ln = Sm, Nd, Yb, Er, Tm, Pr). The properties of these complexes were investigated by Fourier transform infrared (FT-IR) spectroscopy, diffuse reflectance (DR) spectroscopy, thermogravimetric analyses, and excitation and emission spectroscopy. Generally, excitation with visible light is much more advantageous than UV excitation. Importantly, upon excitation with visible light (401-460 nm), the complexes show characteristic visible (Sm(3+)) as well as near-infrared (Sm(3+), Nd(3+), Yb(3+), Er(3+), Tm(3+), Pr(3+)) luminescence of the corresponding lanthanide ions, attributed to the energy transfer from the ligands to the lanthanide ions, an antenna effect. Now, using these near-infrared luminescent lanthanide complexes, the luminescent spectral region from 800 to 1650 nm, can be covered completely, which is of particular interest for biomedical imaging applications, laser systems, and optical amplification applications. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Mechanistic Analysis of Fluorescence Quenching of Reduced Nicotinamide Adenine Dinucleotide by Oxamate in Lactate Dehydrogenase Ternary Complexes.

    Science.gov (United States)

    Peng, Huo-Lei; Callender, Robert

    2017-10-01

    Fluorescence of Reduced Nicotinamide Adenine Dinucleotide (NADH) is extensively employed in studies of oxidoreductases. A substantial amount of static and kinetic work has focused on the binding of pyruvate or substrate mimic oxamate to the binary complex of lactate dehydrogenase (LDH)-NADH where substantial fluorescence quenching is typically observed. However, the quenching mechanism is not well understood limiting structural interpretation. Based on time-dependent density functional theory (TDDFT) computations with cam-B3LYP functional in conjunction with the analysis of previous experimental results, we propose that bound oxamate acts as an electron acceptor in the quenching of fluorescence of NADH in the ternary complex, where a charge transfer (CT) state characterized by excitation from the highest occupied molecular orbital (HOMO) of the nicotinamide moiety of NADH to the lowest unoccupied molecular orbital (LUMO) of oxamate exists close to the locally excited (LE) state involving only the nicotinamide moiety. Efficient quenching in the encounter complex like in pig heart LDH requires that oxamate forms a salt bridge with Arg-171 and hydrogen bonds with His-195, Thr-246 and Asn-140. Further structural rearrangement and loop closure, which also brings about another hydrogen bond between oxamate and Arg-109, will increase the rate of fluorescence quenching as well. © 2017 The American Society of Photobiology.

  14. Synthesis, Crystal Structure, Spectroscopic Properties and Potential Biological Activities of Salicylate‒Neocuproine Ternary Copper(II Complexes

    Directory of Open Access Journals (Sweden)

    Lenka Kucková

    2015-01-01

    Full Text Available Mixed ligand copper(II complexes containing derivatives of salicylic acid and heterocyclic ligands with nitrogen donor atoms have been the subject of various studies and reviews. In this paper, synthesis and characterization of the ternary copper(II complexes of neocuproine (2,9-dimethyl-1,10-phenanthroline, Neo and salicylate ligands (Sal are reported. In addition, the crystal structures of ([Cu(H2O(5-Cl-Sal(Neo] (1, [Cu(μ-Sal(Neo]2 (2, Cu2(μ-5-Cl-Sal(5-Cl-HSal2(Neo2]·EtOH (3 were determined. In order to compare structural and biological properties of the prepared complexes, spectroscopic and biological studies were performed. Results of X-ray diffraction show that prepared complexes form three types of crystal structures in a given system: monomeric, dimeric and dinuclear complex. The preliminary study on the DNA cleavage activity has shown that the complexes under study behave as the chemical nucleases in the presence of added hydrogen peroxide with slight differences in the activity (1 > 2 > 3. The complexes 1 and 2 exhibited nuclease activity itself indicating the interaction of complexes with the DNA. It has been proposed that the enhanced destructive effect of the complexes 1 and 2 on the DNA is a result of two possible mechanisms of action: (i the conversion of closed circular DNA (form I to the nicked DNA (form II caused by the copper complex itself and (ii damage of DNA by Reactive Oxygen Species (ROS—products of the interaction of copper with hydrogen peroxide by means of Fenton reaction (hydroxyl radicals. Thus the biological activity of the prepared Cu(II complexes containing derivatives of salicylic acid and phenanthroline molecules is substantiated by two independent mechanisms. While derivatives of salicylic acids in the coordination sphere of copper complexes are responsible for radical-scavenging activity (predominantly towards superoxide radical anion, the presence of chelating ligand 2,9-dimethyl-1,10-phenanthroline

  15. Cyclodextrins and ternary complexes: technology to improve solubility of poorly soluble drugs

    Directory of Open Access Journals (Sweden)

    Janisse Crestani de Miranda

    2011-12-01

    Full Text Available Cyclodextrins (CDs are cyclic oligosaccharides composed of D-glucopyranoside units linked by glycosidic bonds. Their main property is the ability to modify the physicochemical and biological characteristics of low-soluble drugs through the formation of drug:CD inclusion complexes. Inclusion complexation requires that host molecules fit completely or partially within the CD cavity. This adjustment is directly related to the physicochemical properties of the guest and host molecules, easy accommodation of guest molecules within the CD cavity, stoichiometry, therapeutic dose, and toxicity. However, dosage forms may achieve a high volume, depending on the amount of CD required. Thus, it is necessary to increase solubilization efficiency in order to use smaller amounts of CD. This can be achieved by adding small amounts of water-soluble polymers to the system. This review addresses aspects related to drug complexation with CDs using water-soluble polymers to optimize the amount of CD used in the formulation in order to increase drug solubility and reduce dosage form volume.Ciclodextrinas (CDs são oligossacarídeos cíclicos, compostos por unidades D-glicopiranosídicas ligadas entre si por meio de ligações glicosídicas e sua principal propriedade está na capacidade de alterar as características físico-químicas e biológicas de fármacos com baixa solubilidade por meio da formação de complexos de inclusão fármaco:CD. Para a formação dos complexos de inclusão a molécula hospedeira necessita ajustar-se total ou parcialmente no interior da cavidade da CD, onde este ajuste está diretamente ligado a propriedades físico-químicas da molécula hóspede e hospedeira, facilidade de alojamento da molécula hóspede no interior da cavidade da CD, estequiometria, dose terapêutica e toxicidade. No entanto, as formas farmacêuticas podem atingir um elevado volume, em função da quantidade de CD requerida, sendo necessário aumentar sua efici

  16. Thrombin induces Egr-1 expression in fibroblasts involving elevation of the intracellular Ca2+ concentration, phosphorylation of ERK and activation of ternary complex factor

    Directory of Open Access Journals (Sweden)

    Thiel Gerald

    2009-05-01

    Full Text Available Abstract Background The serine protease thrombin catalyzes fibrin clot formation by converting fibrinogen into fibrin. Additionally, thrombin stimulation leads to an activation of stimulus-responsive transcription factors in different cell types, indicating that the gene expression pattern is changed in thrombin-stimulated cells. The objective of this study was to analyze the signaling cascade leading to the expression of the zinc finger transcription factor Egr-1 in thrombin-stimulated lung fibroblasts. Results Stimulation of 39M1-81 fibroblasts with thrombin induced a robust and transient biosynthesis of Egr-1. Reporter gene analysis revealed that the newly synthesized Egr-1 was biologically active. The signaling cascade connecting thrombin stimulation with Egr-1 gene expression required elevated levels of cytosolic Ca2+, the activation of diacylgycerol-dependent protein kinase C isoenzymes, and the activation of extracellular signal-regulated protein kinase (ERK. Stimulation of the cells with thrombin triggered the phosphorylation of the transcription factor Elk-1. Expression of a dominant-negative mutant of Elk-1 completely prevented Egr-1 expression in stimulated 39M1-81 cells, indicating that Elk-1 or related ternary complex factors connect the intracellular signaling cascade elicited by activation of protease-activated receptors with transcription of the Egr-1 gene. Lentiviral-mediated expression of MAP kinase phosphatase-1, a dual-specific phosphatase that dephosphorylates and inactivates ERK in the nucleus, prevented Elk-1 phosphorylation and Egr-1 biosynthesis in thrombin stimulated 39M1-81 cells, confirming the importance of nuclear ERK and Elk-1 for the upregulation of Egr-1 expression in thrombin-stimulated lung fibroblasts. 39M1-81 cells additionally express M1 muscarinic acetylcholine receptors. A comparison between the signaling cascades induced by thrombin or carbachol showed no differences, except that signal transduction via M

  17. [Studies on luminescence properties of seven ternary complexes of terbium with 1,10-phenanthroline and benzoic acid and its derivatives].

    Science.gov (United States)

    Gao, Zhi-hua; Wang, Shu-ping; Liu, Cui-ge; Ma, Rui-xia; Wang, Rui-fen

    2006-04-01

    Seven ternary complexes of Tb(III) were synthesized with benzoic acid (BA), o-, m-, p-methylbenzoic acid (o-MBA, m-MBA, p-MBA), and o-, m-, p-methoxybenzoic acid (o-MOBA, m-MOBA, p-MOBA) as the first ligand, and 1,10-phenanthroline (phen) as the second ligand. The content of C, H and N were measured by using a Flash-EA model 1112 elemental analyzer. Excitation and luminescence spectra of the title solid complexes were recorded by using a Hitachi F-4500 fluorescence spectrophotometer at room temperature. The effects of different varieties and different positions of replacing benzoic acid as the first ligand on fluorescence properties of the ternary complexes of terbium were discussed. The results indicated that the intensity of 5D4-->7F6 (489 nm) and 5D4-->7F5 (545 nm) of substituting benzoic acid complexes was stronger than benzoic acid. Three ternary complexes of Tb(III) with o-, m-, p-methylbenzoic acid showed emission intensity in the consecution: Tb(o-MBA)3 phenMOBA)3phen x H2O>Tb(m-MOBA)3phen x H2O>Tb(p-MOBA)3 phen.

  18. In vitro and in vivo siRNA delivery to hepatocyte utilizing ternary complexation of lactosylated dendrimer/cyclodextrin conjugates, siRNA and low-molecular-weight sacran.

    Science.gov (United States)

    Hayashi, Yuya; Higashi, Taishi; Motoyama, Keiichi; Jono, Hirofumi; Ando, Yukio; Arima, Hidetoshi

    2018-02-01

    In this study, we newly developed the ternary complexes consisting of lactosylated dendrimer (generation 3)/α-cyclodextrin conjugate (Lac-α-CDE), siRNA and the anionic polysaccharide sacrans, and evaluated their utility as siRNA transfer carriers. Three kinds of the low-molecular-weight sacrans, i.e. sacran (100) (Mw 44,889Da), sacran (1000) (Mw 943,692Da) and sacran (10,000) (Mw 1,488,281Da) were used. Lac-α-CDE/siRNA/sacran ternary complexes were prepared by adding the low-molecular-weight sacrans to the Lac-α-CDE/siRNA binary complex solution. Cellular uptake of the ternary complex with sacran (100) was higher than that of the binary complex or the other ternary complexes with sacran (1000) and sacran (10,000) in HepG2 cells. Additionally, the ternary complex possessed high serum resistance and endosomal escaping ability in HepG2 cells. High liver levels of siRNA and Lac-α-CDE were observed after the intravenous administration of the ternary complex rather than that of the binary complex. Moreover, intravenous administration of the ternary complex (siRNA 5mg/kg) induced the significant RNAi effect in the liver of mice with negligible change of blood chemistry values. Therefore, a ternary complexation of the Lac-α-CDE/siRNA binary complex with sacran is useful as a hepatocyte-specific siRNA delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Formation mechanism of the low-frequency locally resonant band gap in the two-dimensional ternary phononic crystals

    Science.gov (United States)

    Wang, Gang; Liu, Yao-Zong; Wen, Ji-Hong; Yu, Dian-Long

    2006-02-01

    The low-frequency band gap and the corresponding vibration modes in two-dimensional ternary locally resonant phononic crystals are restudied successfully with the lumped-mass method. Compared with the work of C. Goffaux and J. Sánchez-Dehesa (Phys. Rev. B 67 14 4301(2003)), it is shown that there exists an error of about 50% in their calculated results of the band structure and one band is missing in their results. Moreover, the in-plane modes shown in their paper are improper, which results in the wrong conclusion on the mechanism of the ternary locally resonant phononic crystals. Based on the lumped-mass method and better description of the vibration modes according to the band gaps, the locally resonant mechanism in forming the subfrequency gaps is thoroughly analysed. The rule used to judge whether a resonant mode in the phononic crystals can result in a corresponding subfrequency gap is also verified in this ternary case.

  20. Fac–mer equilibria of coordinated iminodiacetate (ida 2–) in ternary ...

    Indian Academy of Sciences (India)

    pH potentiometric and spectrophotometric investigations on the complex formation equilibria of CuII with iminodiacetate (ida2-) and heterocyclic N-bases, viz. imidazole and benzimidazole (B), in aqueous solution in binary and ternary systems using different molar ratios of the reactants indicated the formation of complexes ...

  1. Structure and dynamics of binary and ternary lanthanide(III) and actinide(III) tris[4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione] (TTA) complexes. Part 2, the structure and dynamics of binary and ternary complexes in the Y(III)/Eu(III)-TTA-tributylphosphate (TBP) system in chloroform as studied by NMR spectroscopy.

    Science.gov (United States)

    Szabó, Zoltán; Vallet, Valerie; Grenthe, Ingmar

    2010-12-07

    The stoichiometric reaction mechanisms, rate constants and activation parameters for inter- and intramolecular ligand exchange reactions in the binary Y/Eu(TTA)(3)(OH(2))(2)-HTTA and the ternary Y/Eu(TTA)(3)(OH(2))(2)-TBP systems have been studied in chloroform using (1)H and (31)P NMR methods. Most complexes contain coordinated water that is in very fast exchange with water in the chloroform solvent. The exchange reactions involving TTA/HTTA and TBP are also fast, but can be studied at lower temperature. The rate constant and activation parameters for the intramolecular exchange between two structure isomers in Y(TTA)(3)(OH(2))(2) and Y(TTA)(3)(TBP)(OH(2)) were determined from the line-broadening of the methine protons in coordinated TTA. The rate equations for the intermolecular exchange between coordinated TTA and free HTTA in both complexes are consistent with a two-step mechanism where the first step is a fast complex formation of HTTA, followed by a rate determining step involving proton transfer from coordinated HTTA to TTA. The rate constants for both the inter- and intramolecular exchange reactions are significantly smaller in the TBP system. The same is true for the activation parameters in the Y(TTA)(3)(OH(2))(2)-HTTA and the ternary Y/Eu(TTA)(3)(TBP)(OH(2))-HTTA systems, which are ΔH(≠) = 71.8 ± 2.8 kJ mol(-1), ΔS(≠) = 62.4 ± 10.3 J mol(-1) K(-1) and ΔH(≠) = 38.8 ± 0.6 kJ mol(-1), ΔS(≠) = -93.0 ± 3.3 J mol(-1) K(-1), respectively. The large difference in the activation parameters does not seem to be related to a difference in mechanism as judged by the rate equation; this point will be discussed in a following communication. The rate and mechanism for the exchange between free and coordinated TBP follows a two-step mechanism, involving the formation of Y(TTA)(3)(TBP)(2).

  2. Low Levels of the 150-kD Insulin -Like Growth Factor Binding Protein 3 Ternary complex in Patients with Anorexia nervosa

    DEFF Research Database (Denmark)

    Støving, René K; Hangaard, Jørgen; Hagen, Claus

    2003-01-01

    BACKGROUND/AIM: In healthy adults, serum insulin-like growth factor I (IGF), IGF-binding protein 3 (IGFBP-3), and acid-labile subunit (ALS) form a 150-kD ternary complex under the control of growth hormone (GH). Circulating IGF-I half-life, bioavailability, and endocrine actions depend on the ter......BACKGROUND/AIM: In healthy adults, serum insulin-like growth factor I (IGF), IGF-binding protein 3 (IGFBP-3), and acid-labile subunit (ALS) form a 150-kD ternary complex under the control of growth hormone (GH). Circulating IGF-I half-life, bioavailability, and endocrine actions depend...... women with AN at the time of diagnosis and after partial weight recovery and in 6 healthy age-matched women serving as controls. RESULTS: Patients with AN had low levels of ALS and IGFBP-3 contained in the 150-kD ternary complex and in the non-150-kD fraction. Following partial weight recovery, the 150...

  3. Selective determination of total vanadium in water samples by cloud point extraction of its ternary complex.

    Science.gov (United States)

    Filik, Hayati; Yanaz, Zeynep; Apak, Reşat

    2008-07-14

    A highly sensitive micelle-mediated extraction methodology for the preconcentration of trace levels of vanadium as a prior step to its determination by flame atomic absorption spectrometry (FAAS) has been developed. Vanadium was complexed with 1-(2-pyridylazo)-2-naphthol (PAN) and hydrogen peroxide in acidic medium (0.2 mol L(-1) phosphoric acid) using Triton X-100 as surfactant and quantitatively extracted into a small volume of the surfactant-rich phase after centrifugation. The color reaction of vanadium ions with hydrogen peroxide and PAN in phosphoric acid medium is highly selective. The chemical variables affecting cloud point extraction (CPE) were evaluated and optimized. The R.S.D. for 5 replicate determinations at the 20 microg L(-1)V level was 3.6%. The calibration graph using the preconcentration system for vanadium was linear with a correlation coefficient of 0.99 at levels near the detection limits up to at least 0.6 microg L(-1). The method has good sensitivity and selectivity and was applied to the determination of trace amounts of vanadium in water samples with satisfactory result. The proposed method is a rare application of CPE-atomic spectrometry to vanadium assay, and is superior to most other similar methods, because its useful pH range is in the moderately acidic range achieved with phosphoric acid. At this pH, many potential interferents are not chelated with PAN, and iron(III) as the major interferent is bound in a stable phosphate complex.

  4. PDZ Domain-containing 1 (PDZK1) Protein Regulates Phospholipase C-β3 (PLC-β3)-specific Activation of Somatostatin by Forming a Ternary Complex with PLC-β3 and Somatostatin Receptors*

    Science.gov (United States)

    Kim, Jung Kuk; Kwon, Ohman; Kim, Jinho; Kim, Eung-Kyun; Park, Hye Kyung; Lee, Ji Eun; Kim, Kyung Lock; Choi, Jung Woong; Lim, Seyoung; Seok, Heon; Lee-Kwon, Whaseon; Choi, Jang Hyun; Kang, Byoung Heon; Kim, Sanguk; Ryu, Sung Ho; Suh, Pann-Ghill

    2012-01-01

    Phospholipase C-β (PLC-β) is a key molecule in G protein-coupled receptor (GPCR)-mediated signaling. Many studies have shown that the four PLC-β subtypes have different physiological functions despite their similar structures. Because the PLC-β subtypes possess different PDZ-binding motifs, they have the potential to interact with different PDZ proteins. In this study, we identified PDZ domain-containing 1 (PDZK1) as a PDZ protein that specifically interacts with PLC-β3. To elucidate the functional roles of PDZK1, we next screened for potential interacting proteins of PDZK1 and identified the somatostatin receptors (SSTRs) as another protein that interacts with PDZK1. Through these interactions, PDZK1 assembles as a ternary complex with PLC-β3 and SSTRs. Interestingly, the expression of PDZK1 and PLC-β3, but not PLC-β1, markedly potentiated SST-induced PLC activation. However, disruption of the ternary complex inhibited SST-induced PLC activation, which suggests that PDZK1-mediated complex formation is required for the specific activation of PLC-β3 by SST. Consistent with this observation, the knockdown of PDZK1 or PLC-β3, but not that of PLC-β1, significantly inhibited SST-induced intracellular Ca2+ mobilization, which further attenuated subsequent ERK1/2 phosphorylation. Taken together, our results strongly suggest that the formation of a complex between SSTRs, PDZK1, and PLC-β3 is essential for the specific activation of PLC-β3 and the subsequent physiologic responses by SST. PMID:22528496

  5. PDZ domain-containing 1 (PDZK1) protein regulates phospholipase C-β3 (PLC-β3)-specific activation of somatostatin by forming a ternary complex with PLC-β3 and somatostatin receptors.

    Science.gov (United States)

    Kim, Jung Kuk; Kwon, Ohman; Kim, Jinho; Kim, Eung-Kyun; Park, Hye Kyung; Lee, Ji Eun; Kim, Kyung Lock; Choi, Jung Woong; Lim, Seyoung; Seok, Heon; Lee-Kwon, Whaseon; Choi, Jang Hyun; Kang, Byoung Heon; Kim, Sanguk; Ryu, Sung Ho; Suh, Pann-Ghill

    2012-06-15

    Phospholipase C-β (PLC-β) is a key molecule in G protein-coupled receptor (GPCR)-mediated signaling. Many studies have shown that the four PLC-β subtypes have different physiological functions despite their similar structures. Because the PLC-β subtypes possess different PDZ-binding motifs, they have the potential to interact with different PDZ proteins. In this study, we identified PDZ domain-containing 1 (PDZK1) as a PDZ protein that specifically interacts with PLC-β3. To elucidate the functional roles of PDZK1, we next screened for potential interacting proteins of PDZK1 and identified the somatostatin receptors (SSTRs) as another protein that interacts with PDZK1. Through these interactions, PDZK1 assembles as a ternary complex with PLC-β3 and SSTRs. Interestingly, the expression of PDZK1 and PLC-β3, but not PLC-β1, markedly potentiated SST-induced PLC activation. However, disruption of the ternary complex inhibited SST-induced PLC activation, which suggests that PDZK1-mediated complex formation is required for the specific activation of PLC-β3 by SST. Consistent with this observation, the knockdown of PDZK1 or PLC-β3, but not that of PLC-β1, significantly inhibited SST-induced intracellular Ca(2+) mobilization, which further attenuated subsequent ERK1/2 phosphorylation. Taken together, our results strongly suggest that the formation of a complex between SSTRs, PDZK1, and PLC-β3 is essential for the specific activation of PLC-β3 and the subsequent physiologic responses by SST.

  6. Resveratrol upregulates Egr-1 expression and activity involving extracellular signal-regulated protein kinase and ternary complex factors

    Energy Technology Data Exchange (ETDEWEB)

    Rössler, Oliver G.; Glatzel, Daniel; Thiel, Gerald, E-mail: gerald.thiel@uks.eu

    2015-03-01

    Many intracellular functions have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants. Here, we show that resveratrol induces the expression of the transcription factor Egr-1 in human embryonic kidney cells. Using a chromosomally embedded Egr-1-responsive reporter gene, we show that the Egr-1 activity was significantly elevated in resveratrol-treated cells, indicating that the newly synthesized Egr-1 protein was biologically active. Stimulus-transcription coupling leading to the resveratrol-induced upregulation of Egr-1 expression and activity requires the protein kinases Raf and extracellular signal-regulated protein kinase ERK, while MAP kinase phosphatase-1 functions as a nuclear shut-off device that interrupts the signaling cascade connecting resveratrol stimulation with enhanced Egr-1 expression. On the transcriptional level, Elk-1, a key transcriptional regulator of serum response element-driven gene transcription, connects the intracellular signaling cascade elicited by resveratrol with transcription of the Egr-1 gene. These data were corroborated by the observation that stimulation of the cells with resveratrol increased the transcriptional activation potential of Elk-1. The SRE as well as the GC-rich DNA binding site of Egr-1 function as resveratrol-responsive elements. Thus, resveratrol regulates gene transcription via activation of the stimulus-regulated protein kinases Raf and ERK and the stimulus-responsive transcription factors TCF and Egr-1. - Highlights: • The plant polyphenol resveratrol upregulates Egr-1 expression and activity. • The stimulation of Egr-1 requires the protein kinases ERK and Raf. • Resveratrol treatment upregulates the transcriptional activation potential of Elk-1. • Resveratrol-induced stimulation of Egr-1 requires ternary complex factors. • Two distinct resveratrol-responsive elements were identified.

  7. Plastic roles of phenylalanine and tyrosine residues of TLS/FUS in complex formation with the G-quadruplexes of telomeric DNA and TERRA.

    Science.gov (United States)

    Kondo, Keiko; Mashima, Tsukasa; Oyoshi, Takanori; Yagi, Ryota; Kurokawa, Riki; Kobayashi, Naohiro; Nagata, Takashi; Katahira, Masato

    2018-02-12

    The length of a telomere is regulated via elongation and shortening processes. Telomeric DNA and telomeric repeat-containing RNA (TERRA), which both contain G-rich repeated sequences, form G-quadruplex structures. Previously, translocated in liposarcoma (TLS) protein, also known as fused in sarcoma (FUS) protein, was found to form a ternary complex with the G-quadruplex structures of telomeric DNA and TERRA. We then showed that the third RGG motif of TLS, the RGG3 domain, is responsible for the complex formation. However, the structural basis for their binding remains obscure. Here, NMR-based binding assaying revealed the interactions in the binary and ternary complexes of RGG3 with telomeric DNA or/and TERRA. In the ternary complex, tyrosine bound exclusively to TERRA, while phenylalanine bound exclusively to telomeric DNA. Thus, tyrosine and phenylalanine each play a central role in the recognition of TERRA and telomeric DNA, respectively. Surprisingly in the binary complexes, RGG3 used both tyrosine and phenylalanine residues to bind to either TERRA or telomeric DNA. We propose that the plastic roles of tyrosine and phenylalanine are important for RGG3 to efficiently form the ternary complex, and thereby regulate the telomere shortening.

  8. Analysis of altered complexity of gait dynamics with aging and Parkinson’s disease using ternary Lempel–Ziv complexity

    Directory of Open Access Journals (Sweden)

    Chandrakar Kamath

    2016-12-01

    Full Text Available Fluctuations in stride interval series show complex dynamical behavior in healthy young adults. Hypothesizing that these stride interval complexity changes would be altered by changes in neurological function associated with aging and certain disease states, we aimed to develop a tool to facilitate clinical judgments to assess the complex dynamical behavior in the stride series in discerning young, elderly, and Parkinson’s disease (PD classes. This novel approach, which employs a new variant of coarse-graining in conjunction with Lempel–Ziv complexity measure, yields useful, reliable, and predictive results. We also show the presence of nonlinear deterministic structures in the stride time series and appropriateness of the application of our nonlinear approach through surrogate data analysis. The findings show that the fluctuations are more complex/random in elderly and PD classes than those in young class. These findings may add to the growing body of literature supporting the clinical utility of this new approach to stride time series.

  9. Accuracy of density functional theory in predicting formation energies of ternary oxides from binary oxides and its implication on phase stability

    Science.gov (United States)

    Hautier, Geoffroy; Ong, Shyue Ping; Jain, Anubhav; Moore, Charles J.; Ceder, Gerbrand

    2012-04-01

    The evaluation of reaction energies between solids using density functional theory (DFT) is of practical importance in many technological fields and paramount in the study of the phase stability of known and predicted compounds. In this work, we present a comparison between reaction energies provided by experiments and computed by DFT in the generalized gradient approximation (GGA), using a Hubbard U parameter for some transition metal elements (GGA+U). We use a data set of 135 reactions involving the formation of ternary oxides from binary oxides in a broad range of chemistries and crystal structures. We find that the computational errors can be modeled by a normal distribution with a mean close to zero and a standard deviation of 24 meV/atom. The significantly smaller error compared to the more commonly reported errors in the formation energies from the elements is related to the larger cancellation of errors in energies when reactions involve chemically similar compounds. This result is of importance for phase diagram computations for which the relevant reaction energies are often not from the elements but from chemically close phases (e.g., ternary oxides versus binary oxides). In addition, we discuss the distribution of computational errors among chemistries and show that the use of a Hubbard U parameter is critical to the accuracy of reaction energies involving transition metals even when no major change in formal oxidation state is occurring.

  10. Tuberous sclerosis complex proteins control axon formation.

    Science.gov (United States)

    Choi, Yong-Jin; Di Nardo, Alessia; Kramvis, Ioannis; Meikle, Lynsey; Kwiatkowski, David J; Sahin, Mustafa; He, Xi

    2008-09-15

    Axon formation is fundamental for brain development and function. TSC1 and TSC2 are two genes, mutations in which cause tuberous sclerosis complex (TSC), a disease characterized by tumor predisposition and neurological abnormalities including epilepsy, mental retardation, and autism. Here we show that Tsc1 and Tsc2 have critical functions in mammalian axon formation and growth. Overexpression of Tsc1/Tsc2 suppresses axon formation, whereas a lack of Tsc1 or Tsc2 function induces ectopic axons in vitro and in the mouse brain. Tsc2 is phosphorylated and inhibited in the axon but not dendrites. Inactivation of Tsc1/Tsc2 promotes axonal growth, at least in part, via up-regulation of neuronal polarity SAD kinase, which is also elevated in cortical tubers of a TSC patient. Our results reveal key roles of TSC1/TSC2 in neuronal polarity, suggest a common pathway regulating polarization/growth in neurons and cell size in other tissues, and have implications for the understanding of the pathogenesis of TSC and associated neurological disorders and for axonal regeneration.

  11. An unexpected phosphate binding site in Glyceraldehyde 3-Phosphate Dehydrogenase: Crystal structures of apo, holo and ternary complex of Cryptosporidium parvum enzyme

    Directory of Open Access Journals (Sweden)

    Chattopadhyay Debasish

    2009-02-01

    Full Text Available Abstract Background The structure, function and reaction mechanism of glyceraldehyde 3-phosphate dehydrogenase (GAPDH have been extensively studied. Based on these studies, three anion binding sites have been identified, one 'Ps' site (for binding the C-3 phosphate of the substrate and two sites, 'Pi' and 'new Pi', for inorganic phosphate. According to the original flip-flop model, the substrate phosphate group switches from the 'Pi' to the 'Ps' site during the multistep reaction. In light of the discovery of the 'new Pi' site, a modified flip-flop mechanism, in which the C-3 phosphate of the substrate binds to the 'new Pi' site and flips to the 'Ps' site before the hydride transfer, was proposed. An alternative model based on a number of structures of B. stearothermophilus GAPDH ternary complexes (non-covalent and thioacyl intermediate proposes that in the ternary Michaelis complex the C-3 phosphate binds to the 'Ps' site and flips from the 'Ps' to the 'new Pi' site during or after the redox step. Results We determined the crystal structure of Cryptosporidium parvum GAPDH in the apo and holo (enzyme + NAD state and the structure of the ternary enzyme-cofactor-substrate complex using an active site mutant enzyme. The C. parvum GAPDH complex was prepared by pre-incubating the enzyme with substrate and cofactor, thereby allowing free movement of the protein structure and substrate molecules during their initial encounter. Sulfate and phosphate ions were excluded from purification and crystallization steps. The quality of the electron density map at 2Å resolution allowed unambiguous positioning of the substrate. In three subunits of the homotetramer the C-3 phosphate group of the non-covalently bound substrate is in the 'new Pi' site. A concomitant movement of the phosphate binding loop is observed in these three subunits. In the fourth subunit the C-3 phosphate occupies an unexpected site not seen before and the phosphate binding loop remains in

  12. Complex Formation of Human Proelastases with Procarboxypeptidases A1 and A2.

    Science.gov (United States)

    Szabó, András; Pilsak, Claudia; Bence, Melinda; Witt, Heiko; Sahin-Tóth, Miklós

    2016-08-19

    The pancreas secretes digestive proenzymes typically in their monomeric form. A notable exception is the ternary complex formed by proproteinase E, chymotrypsinogen C, and procarboxypeptidase A (proCPA) in cattle and other ruminants. In the human and pig pancreas binary complexes of proCPA with proelastases were found. To characterize complex formation among human pancreatic protease zymogens in a systematic manner, we performed binding experiments using recombinant proelastases CELA2A, CELA3A, and CELA3B; chymotrypsinogens CTRB1, CTRB2, CTRC, and CTRL1; and procarboxypeptidases CPA1, CPA2, and CPB1. We found that proCELA3B bound not only to proCPA1 (KD 43 nm) but even more tightly to proCPA2 (KD 18 nm), whereas proCELA2A bound weakly to proCPA1 only (KD 152 nm). Surprisingly, proCELA3A, which shares 92% identity with proCELA3B, did not form stable complexes due to the evolutionary replacement of Ala(241) with Gly. The polymorphic nature of position 241 in both CELA3A (∼4% Ala(241) alleles) and CELA3B (∼2% Gly(241) alleles) points to individual variations in complex formation. The functional effect of complex formation was delayed procarboxypeptidase activation due to increased affinity of the inhibitory activation peptide, whereas proelastase activation was unchanged. We conclude that complex formation among human pancreatic protease zymogens is limited to a subset of proelastases and procarboxypeptidases. Complex formation stabilizes the inhibitory activation peptide of procarboxypeptidases and thereby increases zymogen stability and controls activation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Complex Formation of Human Proelastases with Procarboxypeptidases A1 and A2*

    Science.gov (United States)

    Szabó, András; Pilsak, Claudia; Bence, Melinda; Witt, Heiko

    2016-01-01

    The pancreas secretes digestive proenzymes typically in their monomeric form. A notable exception is the ternary complex formed by proproteinase E, chymotrypsinogen C, and procarboxypeptidase A (proCPA) in cattle and other ruminants. In the human and pig pancreas binary complexes of proCPA with proelastases were found. To characterize complex formation among human pancreatic protease zymogens in a systematic manner, we performed binding experiments using recombinant proelastases CELA2A, CELA3A, and CELA3B; chymotrypsinogens CTRB1, CTRB2, CTRC, and CTRL1; and procarboxypeptidases CPA1, CPA2, and CPB1. We found that proCELA3B bound not only to proCPA1 (KD 43 nm) but even more tightly to proCPA2 (KD 18 nm), whereas proCELA2A bound weakly to proCPA1 only (KD 152 nm). Surprisingly, proCELA3A, which shares 92% identity with proCELA3B, did not form stable complexes due to the evolutionary replacement of Ala241 with Gly. The polymorphic nature of position 241 in both CELA3A (∼4% Ala241 alleles) and CELA3B (∼2% Gly241 alleles) points to individual variations in complex formation. The functional effect of complex formation was delayed procarboxypeptidase activation due to increased affinity of the inhibitory activation peptide, whereas proelastase activation was unchanged. We conclude that complex formation among human pancreatic protease zymogens is limited to a subset of proelastases and procarboxypeptidases. Complex formation stabilizes the inhibitory activation peptide of procarboxypeptidases and thereby increases zymogen stability and controls activation. PMID:27358403

  14. Ternary complexes composed of naphthalene diimides and binucleating metallocavitands: preparation, characterisation and structure of [(Ni2L)2(NDI)][BPh4]2.

    Science.gov (United States)

    Lee, Katrina A; Lozan, Vasile; Langford, Steven J; Kersting, Berthold

    2009-09-28

    The synthesis and physical properties of the ternary complex 3(2+), prepared by reaction of a naphthalene diimide dicarboxylate 2 with the binucleating dinickel(II) cavitand 1, are discussed. The complex 3(2+) is characterised by cyclic voltammetry which shows a wealth of metal-centred and diimide-based processes at -1.62, -1.04 and 0.15 V vs Fc/Fc+. Absorption and fluorescence spectroscopy of 3(2+) in CH2Cl2 compared to the components 4+ and 5, respectively, are used to characterise the complex further. In particular there is a substantial quenching (approximately 95%) of the diimide fluorescence upon complexation. X-Ray crystallography has been used to characterise complex 3(2+) in the solid state. Of particular interest is the supramolecular structure in which the naphthalene diimide is included between the two metallocavitand hemispheres.

  15. Carbon dioxide induced bubble formation in a CH4-CO2-H2O ternary system: a molecular dynamics simulation study.

    Science.gov (United States)

    Sujith, K S; Ramachandran, C N

    2016-02-07

    The extraction of methane from its hydrates using carbon dioxide involves the decomposition of the hydrate resulting in a CH4-CO2-H2O ternary solution. Using classical molecular dynamics simulations, we investigate the evolution of dissolved gas molecules in the ternary system at different concentrations of CO2. Various compositions considered in the present study resemble the solution formed during the decomposition of methane hydrates at the initial stages of the extraction process. We find that the presence of CO2 aids the formation of CH4 bubbles by causing its early nucleation. Elucidation of the composition of the bubble revealed that in ternary solutions with high concentration of CO2, mixed gas bubbles composed of CO2 and CH4 are formed. To understand the role of CO2 in the nucleation of CH4 bubbles, the structure of the bubble formed was analyzed, which revealed that there is an accumulation of CO2 at the interface of the bubble and the surrounding water. The aggregation of CO2 at the bubble-water interface occurs predominantly when the concentration of CO2 is high. Radial distribution function for the CH4-CO2 pair indicates that there is an increasingly favorable direct contact between dissolved CH4 and CO2 molecules in the bubble-water interface. It is also observed that the presence of CO2 at the interface results in the decrease in surface tension. Thus, CO2 leads to greater stability of the bubble-water interface thereby bringing down the critical size of the bubble nuclei. The results suggest that a rise in concentration of CO2 helps in the removal of dissolved CH4 thereby preventing the accumulation of methane in the liquid phase. Thus, the presence of CO2 is predicted to assist the decomposition of methane hydrates in the initial stages of the replacement process.

  16. X-ray structure of the ternary MTX·NADPH complex of the anthrax dihydrofolate reductase: A pharmacophore for dual-site inhibitor design

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Brad C.; Wan, Qun; Ahmad, Md Faiz; Langan, Paul; Dealwis, Chris G.; (Case Western); (LANL)

    2009-11-18

    For reasons of bioterrorism and drug resistance, it is imperative to identify and develop new molecular points of intervention against anthrax. Dihydrofolate reductase (DHFR) is a highly conserved enzyme and an established target in a number of species for a variety of chemotherapeutic programs. Recently, the crystal structure of B. anthracis DHFR (baDHFR) in complex with methotrexate (MTX) was determined and, based on the structure, proposals were made for drug design strategies directed against the substrate binding site. However, little is gleaned about the binding site for NADPH, the cofactor responsible for hydride transfer in the catalytic mechanism. In the present study, X-ray crystallography at 100 K was used to determine the structure of baDHFR in complex with MTX and NADPH. Although the NADPH binding mode is nearly identical to that seen in other DHFR ternary complex structures, the adenine moiety adopts an off-plane tilt of nearly 90 deg. and this orientation is stabilized by hydrogen bonds to functionally conserved Arg residues. A comparison of the binding site, focusing on this region, between baDHFR and the human enzyme is discussed, with an aim at designing species-selective therapeutics. Indeed, the ternary model, refined to 2.3{angstrom} resolution, provides an accurate template for testing the feasibility of identifying dual-site inhibitors, compounds that target both the substrate and cofactor binding site. With the ternary model in hand, using in silico methods, several compounds were identified which could potentially form key bonding contacts in the substrate and cofactor binding sites. Ultimately, two structurally distinct compounds were verified that inhibit baDHFR at low {mu}M concentrations. The apparent K{sub d} for one of these, (2-(3-(2-(hydroxyimino)-2-(pyridine-4-yl)-6,7-dimethylquinoxalin-2-yl)-1-(pyridine-4-yl)ethanone oxime), was measured by fluorescence spectroscopy to be 5.3 {mu}M.

  17. A neutron scattering study of the ternary complex EF-Tu.GTP-valyl-tRNAVal1A

    DEFF Research Database (Denmark)

    Österberg, R.; Elias, P.; Kjems, Jørgen

    1986-01-01

    The complex formation between elongation factor Tu (EF-Tu), GTP, and valyl-tRNAVal1A has been investigated in a hepes buffer of "pH" 7.4 and 0.2 M ionic strength using the small-angle neutron scattering method at concentrations of D2O where EF-Tu (42% D2O) and tRNA (71% D2O) are successively...

  18. Ternary system of dihydroartemisinin with hydroxypropyl-β-cyclodextrin and lecithin: simultaneous enhancement of drug solubility and stability in aqueous solutions.

    Science.gov (United States)

    Wang, Dan; Li, Haiyan; Gu, Jingkai; Guo, Tao; Yang, Shuo; Guo, Zhen; Zhang, Xueju; Zhu, Weifeng; Zhang, Jiwen

    2013-09-01

    The purpose of this study was to simultaneously improve the solubility and stability of dihydroartemisinin (DHA) in aqueous solutions by a ternary cyclodextrin system comprised of DHA, hydroxypropyl-β-cyclodextrin (HP-β-CD) and a third auxiliary substance. Solubility and phase solubility studies were carried out to evaluate the solubilizing efficiency of HP-β-CD in association with various auxiliary substances. Then, the solid binary (DHA-HP-β-CD or DHA-lecithin) and ternary systems were prepared and characterized by Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC) and power X-ray diffraction (PXRD). The effect of the ternary system on the solubility, dissolution and stability of DHA in aqueous solutions was also investigated. As a result, the soybean lecithin was found to be the most promising third component in terms of solubility enhancement. For the solid characterization, the disappearance of the drug crystallinity indicated the formation of new solid phases, implicating the formation of the ternary system. The dissolution rate of the solid ternary system was much faster than that of the drug alone and binary systems. Importantly, compared with binary systems, the ternary system showed a significant improvement in the stability of DHA in Hank's balanced salt solutions (pH 7.4). The solubility and stability of DHA in aqueous solutions were simultaneously enhanced by the ternary system, which might be attributed to the possible formation of a ternary complex. For the ternary interactions, results of molecular docking studies further indicated that the lecithin covered the top of the wide rim of HP-β-CD and surrounded around the peroxide bridging of DHA, providing the possibility for the ternary complex formation. In summary, the ternary system prepared in our study, with simultaneous enhancement of DHA solubility and stability in aqueous solutions, might have an important pharmaceutical potential in the development of a better

  19. A theoretical investigation into the cooperativity effect between the H∙∙∙O and H∙∙∙F⁻ interactions and electrostatic potential upon 1:2 (F⁻:N-(Hydroxymethyl)acetamide) ternary-system formation.

    Science.gov (United States)

    Tian, Qing-Ping; Wang, Yan-Hong; Shi, Wen-Jing; Song, Shu-Qin; Tang, Hai-Fei

    2013-12-01

    The cooperativity effects between the O/N-H∙∙∙F(-) anionic hydrogen-bonding and O/N-H∙∙∙O hydrogen-bonding interactions and electrostatic potentials in the 1:2 (F(-):N-(Hydroxymethyl)acetamide (signed as "ha")) ternary systems are investigated at the B3LYP/6-311++G** and MP2/6-311++G** levels. A comparison of the cooperativity effect in the "F(-)∙∙∙ha∙∙∙ha" and "FH∙∙∙ha(-)∙∙∙ha" systems is also carried out. The result shows that the increase of the H∙∙∙O interaction energy in the O-H∙∙∙O-H, N-H∙∙∙O-H or N-H∙∙∙O = C link is more notable than that in the O-H∙∙∙O = C contact upon ternary-system formation. The cooperativity effect is found in the complex formed by the O/N-H∙∙∙F(-) and O/N-H∙∙∙O interactions, while the anti-cooperativity effect is present in the system with only the O/N-H∙∙∙F(-) H-bond or the "FH∙∙∙ha(-)∙∙∙ha" complex by the N(-)∙∙∙H-F contact. Atoms in molecules (AIM) analysis and shift of electron density confirm the existence of cooperativity. The most negative surface electrostatic potential (V(S,min)) correlates well with the interaction energy E' int.(ha∙∙∙F-) and synergetic energy E(syn.), respectively. The relationship between the change of V(S,min) (i.e., ΔV(S,min)) and E(syn.) is also found.

  20. Synthesis, structural characterization and luminescent properties of a novel europium ternary complex Eu(2-A-4-CBA){sub 3}phen

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yongjie, E-mail: cyj200507@aliyun.com; Wu, Shengnan; Xing, Zhenfang; Cao, Shuang; Geng, Xiujuan; Yang, Ying; Xiao, Linjiu

    2015-11-15

    The preparation of a novel europium ternary complex with the formula of Eu(2-A-4-CBA){sub 3}phen (where, 2-A-4-CBA = 2-amino-4-chlorobenzoic acid, phen = 1,10-phenanthroline) under solvothermal condition is described. The composition and structure of the resulting complex were investigated by elemental analysis, Fourier transform infrared (FT-IR) spectroscopy. The complex is polycrystalline, and the morphology is clean and regular as revealed by scanning electron microscope (SEM). The luminescent and thermal properties of the complex were researched by fluorescence spectroscopy and thermogravimetric analysis, respectively. Of importance here is that, the room-temperature luminescence spectra of the complex show strong characteristic emission of the corresponding Eu{sup 3+}, which is attributed to the energy transfer from ligands to Eu{sup 3+} via an Antenna effect. It is also found that the complex exhibits pure red light and high color purity. In addition, the complex does not decompose until 300 °C, so it exhibits good thermal stability. - Highlights: • A novel Eu(III) complex was synthesized by solvothermal synthesis method. • The structure and properties of complex were studied. • The complex can emits pure red light and has a high color purity. • The complex does not decompose until 300 °C and it has a good thermal stability.

  1. Ternary complexes of folate-PEG-appended dendrimer (G4)/α-cyclodextrin conjugate, siRNA and low-molecular-weight polysaccharide sacran as a novel tumor-selective siRNA delivery system.

    Science.gov (United States)

    Ohyama, Ayumu; Higashi, Taishi; Motoyama, Keiichi; Arima, Hidetoshi

    2017-06-01

    We previously developed a tumor-selective siRNA carrier by preparing polyamidoamine dendrimer (generation 4, G4) conjugates with α-cyclodextrin and folate-polyethylene glycol (Fol-PαC (G4)). In the present study, we developed ternary complexes of Fol-PαC (G4)/siRNA with low-molecular-weight-sacrans to achieve more effective siRNA transfer activity. Among the different molecular-weight sacrans, i.e. sacran 100, 1000 and 10,000 (MW 44,889Da, 943,692Da and 1,488,281Da, respectively), sacran 100 significantly increased the cellular uptake and the RNAi effects of Fol-PαC (G4)/siRNA binary complex with negligible cytotoxicity in KB cells (folate receptor-α positive cells). In addition, the ζ-potential and particle size of Fol-PαC (G4)/siRNA complex were decreased by the ternary complexation with sacran 100. Importantly, the in vivo RNAi effect of the ternary complex after the intravenous administration to tumor-bearing BALB/c mice was significantly higher than that of the binary complex. In conclusion, Fol-PαC (G4)/siRNA/sacran 100 ternary complex has a potential as a novel tumor-selective siRNA delivery system. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Crystal structures of a ddATP-, ddTTP-, ddCTP, and ddGTP- trapped ternary complex of Klentaq1: Insights into nucleotide incorporation and selectivity

    OpenAIRE

    Li,Ying; Waksman, Gabriel

    2001-01-01

    The mechanism by which DNA polymerase I enzymes function has been the subject of extensive biochemical and structural studies. We previously determined the structure of a ternary complex of the large fragment of DNA polymerase I from Thermus aquaticus (Klentaq1) bound to a primer/template DNA and a dideoxycytidine 5′-triphosphate (ddCTP). In this report, we present the details of the 2.3-Å resolution crystal structures of three additional ternary complexes of Klentaq1 bound to a primer/templa...

  3. A new ternary copper(II) complex derived from 2-(2'-pyridyl)benzimidazole and glycylglycine: synthesis, characterization, DNA binding and cleavage, antioxidation and HSA interaction.

    Science.gov (United States)

    Fu, Xia-Bing; Lin, Zi-Hua; Liu, Hai-Feng; Le, Xue-Yi

    2014-03-25

    A new ternary copper(II)-dipeptide complex [Cu(glygly)(HPB)(Cl)]⋅2H2O (glygly=glycylglycine anion, HPB=2-(2'-pyridyl)benzimidazole) has been synthesized and characterized. The DNA interaction of the complex was studied by spectroscopic methods, viscosity, and electrophoresis measurements. The antioxidant activity was also investigated using the pyrogallol autoxidation assay. Besides, the interaction of the complex with human serum albumin (HSA) in vitro was examined by multispectroscopic techniques. The complex partially intercalated to CT-DNA with a high binding constant (Kb=7.28×10(5) M(-1)), and cleaved pBR322 DNA efficiently via an oxidative mechanism in the presence of Vc, with the HO· and O2(-) as the active species, and the SOD as a promoter. Furthermore, the complex shows a considerable SOD-like activity with the IC50 value of 3.8386 μM. The complex exhibits desired binding affinity to HSA, in which hydrogen bond or vander Waals force played a major role. The alterations of HSA secondary structure induced by the complex were confirmed by UV-visible, CD, synchronous fluorescence and 3D fluorescence spectroscopy. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. A new ternary copper(II) complex derived from 2-(2";-pyridyl)benzimidazole and glycylglycine: Synthesis, characterization, DNA binding and cleavage, antioxidation and HSA interaction

    Science.gov (United States)

    Fu, Xia-Bing; Lin, Zi-Hua; Liu, Hai-Feng; Le, Xue-Yi

    2014-03-01

    A new ternary copper(II)-dipeptide complex [Cu(glygly)(HPB)(Cl)]ṡ2H2O (glygly = glycylglycine anion, HPB = 2-(2";-pyridyl)benzimidazole) has been synthesized and characterized. The DNA interaction of the complex was studied by spectroscopic methods, viscosity, and electrophoresis measurements. The antioxidant activity was also investigated using the pyrogallol autoxidation assay. Besides, the interaction of the complex with human serum albumin (HSA) in vitro was examined by multispectroscopic techniques. The complex partially intercalated to CT-DNA with a high binding constant (Kb = 7.28 × 105 M-1), and cleaved pBR322 DNA efficiently via an oxidative mechanism in the presence of Vc, with the HO· and O2-rad as the active species, and the SOD as a promoter. Furthermore, the complex shows a considerable SOD-like activity with the IC50 value of 3.8386 μM. The complex exhibits desired binding affinity to HSA, in which hydrogen bond or vander Waals force played a major role. The alterations of HSA secondary structure induced by the complex were confirmed by UV-visible, CD, synchronous fluorescence and 3D fluorescence spectroscopy.

  5. Synthesis and Structure of a Ternary Copper(II) Complex with Mixed Ligands of Diethylenetriamine and Picrate: DNA/Protein-Binding Property and In Vitro Anticancer Activity Studies.

    Science.gov (United States)

    Shi, Ya-Ning; Zheng, Kang; Zhu, Ling; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2015-05-01

    Based on the importance of the design and synthesis of transition metal complexes with noncovalent DNA/protein-binding abilities in the field of metallo pharmaceuticals, a new mononuclear ternary copper(II) complex with mixed ligands of diethylenetriamine (dien) and picrate anion (pic), identified as [Cu(dien)(pic)](pic), was synthesized and characterized by elemental analysis, molar conductivity measurement, infrared spectrum, electronic spectral studies, and single-crystal X-ray diffractometry. The structure analysis reveals that the copper(II) complex crystallizes in the monoclinic space group P21 /c, and the copper(II) ion has a distorted square pyramidal coordination geometry. A two-dimensional supramolecular structure is formed through hydrogen bonds. The DNA/bovine serum albumin (BSA)-binding properties of the complex are explored, indicating that the complex can interact with herring sperm DNA via intercalation mode and bind to BSA responsible for quenching of tryptophan fluorescence by static quenching mechanism. The in vitro anticancer activity shows that the copper(II) complex is active against the selected tumor cell lines. © 2015 Wiley Periodicals, Inc.

  6. The ternary sorption system U(VI)-phosphate-silica explained by spectroscopy and thermodynamic modelling

    Energy Technology Data Exchange (ETDEWEB)

    Foerstendorf, Harald; Stockmann, Madlen; Heim, Karsten; Mueller, Katharina; Brendler, Vinzenz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Comarmond, M.J.; Payne, T.E. [Australian Nuclear Science and Technology Organisation, Lucas Heights (Australia); Steudtner, Robin [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology

    2017-06-01

    Spectroscopic data of sorption processes potentially provide direct impact on Surface Complexation Modelling (SCM) approaches. Based on spectroscopic data of the ternary sorption system U(VI)/phosphate/silica strongly suggesting the formation of a precipitate as the predominant surface process, SCM calculations accurately reproduced results from classical batch experiments.

  7. Synthesis and characterization of low-valence actinide phosphide tellurides and ternary selenium-halide iridium complexes; Synthese und Charakterisierung niedervalenter Actinoidphosphidtelluride und ternaerer Selen-Halogenid-Komplexe des Iridiums

    Energy Technology Data Exchange (ETDEWEB)

    Stolze, Karoline

    2016-04-07

    The thesis on the synthesis and characterization of low-valence actinide phosphide tellurides and ternary selenium-halide iridium complexes includes two parts: a description of the experimental synthesis of UPTe and U2PTe2O and ThPTe and the synthesis of selenium-chloride iridium complexes and selenium-bromide iridium complexes. The characterization included X-ray diffraction and phase studies.

  8. Crystal structures of a ddATP-, ddTTP-, ddCTP, and ddGTP- trapped ternary complex of Klentaq1: insights into nucleotide incorporation and selectivity.

    Science.gov (United States)

    Li, Y; Waksman, G

    2001-06-01

    The mechanism by which DNA polymerase I enzymes function has been the subject of extensive biochemical and structural studies. We previously determined the structure of a ternary complex of the large fragment of DNA polymerase I from Thermus aquaticus (Klentaq1) bound to a primer/template DNA and a dideoxycytidine 5'-triphosphate (ddCTP). In this report, we present the details of the 2.3-A resolution crystal structures of three additional ternary complexes of Klentaq1 bound to a primer/template DNA and a dideoxyguanosine 5'-triphosphate (ddGTP), a dideoxythymidine 5'-triphosphate (ddTTP), or a dideoxyadenosine 5'-triphosphate (ddATP). Comparison of the active site of the four ternary complexes reveals that the protein residues around the nascent base pair (that formed between the incoming dideoxynucleoside triphosphate [ddNTP] and the template base) form a snug binding pocket into which only a correct Watson-Crick base pair can fit. Except in the ternary complex bound to dideoxyguanosine 5'-triphosphate, there are no sequence specific contacts between the protein side chains and the nascent base pair, suggesting that steric constraints imposed by the protein onto the nascent base pair is the major contributor to nucleotide selectivity at the polymerase active site. The protein around the polymerase active site also shows plasticity, which may be responsible for the substrate diversity of the enzyme. Two conserved side chains, Q754 and R573, form hydrogen bonds with the N3 atom in the purine base and O2 atom in the pyrimidine base at the minor groove side of the base pair formed by the incorporated ddNMP and the corresponding template base in all the four ternary complexes. These hydrogen-bonding interactions may provide a means of detecting misincorporation at this position.

  9. Isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix: X-ray structure analysis of a ternary enzyme-substrate complex and thermal stability.

    Science.gov (United States)

    Karlström, Mikael; Stokke, Runar; Steen, Ida Helene; Birkeland, Nils-Kåre; Ladenstein, Rudolf

    2005-01-21

    Isocitrate dehydrogenase from Aeropyrum pernix (ApIDH) is a homodimeric enzyme that belongs to the beta-decarboxylating dehydrogenase family and is the most thermostable IDH identified. It catalyzes the NADP+ and metal-dependent oxidative decarboxylation of isocitrate to alpha-ketoglutarate. We have solved the crystal structures of a native ApIDH at 2.2 A, a pseudo-native ApIDH at 2.1 A, and of ApIDH in complex with NADP+, Ca2+ and d-isocitrate at 2.3 A. The pseudo-native ApIDH is in complex with etheno-NADP+ which was located at the surface instead of in the active site revealing a novel adenine-nucleotide binding site in ApIDH. The native and the pseudo-native ApIDHs were found in an open conformation, whereas one of the subunits of the ternary complex was closed upon substrate binding. The closed subunit showed a domain rotation of 19 degrees compared to the open subunit. The binding of isocitrate in the closed subunit was identical with that of the binary complex of porcine mitochondrial IDH, whereas the binding of NADP+ was similar to that of the ternary complex of IDH from Escherichiacoli. The reaction mechanism is likely to be conserved in the different IDHs. A proton relay chain involving at least five solvent molecules, the 5'-phosphate group of the nicotinamide-ribose and a coupled lysine-tyrosine pair in the active site, is postulated as essential in both the initial and the final steps of the catalytic reaction of IDH. ApIDH was found to be highly homologous to the mesophilic IDHs and was subjected to a comparative analysis in order to find differences that could explain the large difference in thermostability. Mutational studies revealed that a disulfide bond at the N terminus and a seven-membered inter-domain ionic network at the surface are major determinants for the higher thermostability of ApIDH compared to EcIDH. Furthermore, the total number of ion pairs was dramatically higher in ApIDH compared to the mesophilic IDHs if a cutoff of 4.2 A was

  10. Interaction Analyses of the Integrin β2 Cytoplasmic Tail with the F3 FERM Domain of Talin and 14-3-3ζ Reveal a Ternary Complex with Phosphorylated Tail.

    Science.gov (United States)

    Chatterjee, Deepak; Zhiping, Lewis Lu; Tan, Suet-Mien; Bhattacharjya, Surajit

    2016-10-09

    Integrins, which are heterodimeric (α and β subunits) signal-transducer proteins, are essential for cell adhesion and migration. β cytosolic tails (β-CTs) of integrins interact with a number of cytosolic proteins including talin, Dok1, and 14-3-3ζ. The formation of multiprotein complexes with β-CTs is involved in the activation and regulation of integrins. The leukocyte-specific β2 integrins are essential for leukocyte trafficking, phagocytosis, antigen presentation, and proliferation. In this study, we examined the binding interactions between integrin β2-CT and T758-phosphorylated β2-CT with positive regulators talin and 14-3-3ζ and negative regulator Dok1. Residues of the F3 domain of talin belonging to the C-terminal helix, β-strand 5, and the adjacent loop were found to be involved in the binding interactions with β2-CT. The binding affinity between talin F3 and β2-CT was reduced when β2 T758 was phosphorylated, but this modification promoted 14-3-3ζ binding. However, we were able to detect stable ternary complex formation of T758-phosphorylated β2-CT, talin F3, and 14-3-3ζ that involved the repositioning of talin F3 on β2-CT. We showed that Dok1 binding to β2-CT was reduced in the presence of 14-3-3ζ and when β2 T758 was phosphorylated. Based on these data, we propose a sequential model of β2 integrin activation involving these molecules. Our study provides for the first time insights toward β2 integrin activation that involves a multiprotein complex. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Binary and ternary new water soluble copper(II) complexes of L-tyrosine and substituted 1,10-phenanthrolines: Effect of substitution on DNA interactions and cytotoxicities

    Science.gov (United States)

    İnci, Duygu; Aydın, Rahmiye; Vatan, Özgür; Yılmaz, Dilek; Gençkal, Hasene Mutlu; Zorlu, Yunus; Cavaş, Tolga

    2015-06-01

    Binary and ternary water soluble copper(II) complexes - [Cu(nphen)2(H2O)](NO3)2·H2O (1), [Cu(phen)2(H2O)](NO3)2 (2), [Cu(nphen)(L-tyr)(H2O)]NO3·2H2O (3), [Cu(phen)(tyr)(H2O)] NO3·2H2O (4) - and diquarternary salts of nphen and phen (nphen = 5-nitro-1,10-phenanthroline, phen = 1,10-phenanthroline and tyr = L-tyrosine) have been synthesized and characterized by CHN analysis, 1H NMR, 13C NMR and IR spectroscopy, thermal analysis and single crystal X-ray diffraction techniques. The CT-DNA binding properties of these compounds have been investigated by thermal denaturation measurements, absorption and emission spectroscopy. The supercoiled pUC19 plasmid DNA cleavage activity of these compounds has been explored by agarose gel electrophoresis. The cytotoxicity of these compounds against MCF-7, Caco-2, A549 cancer cells and BEAS-2B healthy cells was also studied by using XTT method. The complexes 1-4 exhibit significant high cytotoxicity with low IC50 values in compared with cisplatin. The effect of the substituents of phen and coordinated amino acid in the above complexes are presented and discussed.

  12. Synthesis, structure, and nuclease properties of several binary and ternary complexes of copper(II) with norfloxacin and 1,10 phenantroline.

    Science.gov (United States)

    Ruíz, P; Ortiz, R; Perelló, L; Alzuet, G; González-Alvarez, M; Liu-González, M; Sanz-Ruíz, F

    2007-05-01

    Three new binary Cu(II) complexes of norfloxacin have been synthesized and characterized. We also report the synthesis, characterization and X-ray crystallographic structures of a new binary compound, [Cu(HNor)(2)]Cl(2).2H(2)O (2) and two new ternary complexes norfloxacin-copper(II)-phen, [Cu(Nor)(phen)(H(2)O)](NO(3)).3H(2)O (4), and [Cu(HNor)(phen)(NO(3))](NO(3)).3H(2)O (5). The structure of 2 consists of two crystallographically independent cationic monomeric units of [Cu(HNor)(2)](2+), chloride anions, and uncoordinated water molecules. The Cu(II) ion is placed at a center of symmetry and is coordinated to two norfloxacin ligands which are related through the inversion center. The structures of 4 and 5 consist of cationic units ([Cu(Nor)(phen)(H(2)O)](+) for 4 and [Cu(HNor)(phen)(NO(3))](+) for 5), nitrate counteranions, and lattice water molecules that provide crystalline stability through a network of hydrogen-bond interactions. The complexes exhibit a five coordinated motif in a square pyramidal environment around the metal center. The ability of compounds 4 and 5 to cleave DNA has also been studied. Mechanistic studies with different inhibiting reagents reveal that hydroxyl radicals, singlet oxygen, and superoxide radicals are all involved in the DNA scission process mediated by these compounds.

  13. The types of metanalysis and the formation of complex affixes

    Directory of Open Access Journals (Sweden)

    Ольга Алексеевна Пацюкова

    2011-06-01

    Full Text Available Two opposite types (regressive and progressive of metanalysis are described in this article. The connection of each type and the formation of complex affixes (prefixes and suffixes is considered.

  14. Detection of a ternary complex of NF-kappaB and IkappaBalpha with DNA provides insights into how IkappaBalpha removes NF-kappaB from transcription sites.

    Science.gov (United States)

    Sue, Shih-Che; Alverdi, Vera; Komives, Elizabeth A; Dyson, H Jane

    2011-01-25

    It has been axiomatic in the field of NF-κB signaling that the formation of a stable complex between NF-κB and the ankyrin repeat protein IκBα precludes the interaction of NF-κB with DNA. Contradicting this assumption, we present stopped-flow fluorescence and NMR experiments that give unequivocal evidence for the presence of a ternary DNA-NF-κB-IκBα complex in solution. Stepwise addition of a DNA fragment containing the κB binding sequence to the IκBα-NF-κB complex results in changes in the IκBα NMR spectrum that are consistent with dissociation of the region rich in proline, glutamate, serine, and threonine (PEST) and C-terminal ankyrin repeat sequences of IκBα from the complex. However, even at high concentrations of DNA, IκBα remains associated with NF-κB, indicated by the absence of resonances of the free N-terminal ankyrin repeats of IκBα. The IκBα-mediated release of NF-κB from its DNA-bound state may be envisioned as the reverse of this process. The initial step would consist of the coupled folding and binding of the intrinsically disordered nuclear localization sequence of the p65 subunit of NF-κB to the well-structured N-terminal ankyrin repeats of IκBα. Subsequently the poorly folded C-terminal ankyrin repeats of IκBα would fold upon binding to the p50 and p65 dimerization domains of NF-κB, permitting the negatively charged C-terminal PEST sequence of IκBα to displace the bound DNA through a process of local mass action.

  15. Detection of a ternary complex of NF-κB and IκBα with DNA provides insights into how IκBα removes NF-κB from transcription sites

    Science.gov (United States)

    Sue, Shih-Che; Alverdi, Vera; Komives, Elizabeth A.; Dyson, H. Jane

    2011-01-01

    It has been axiomatic in the field of NF-κB signaling that the formation of a stable complex between NF-κB and the ankyrin repeat protein IκBα precludes the interaction of NF-κB with DNA. Contradicting this assumption, we present stopped-flow fluorescence and NMR experiments that give unequivocal evidence for the presence of a ternary DNA–NF-κB–IκBα complex in solution. Stepwise addition of a DNA fragment containing the κB binding sequence to the IκBα–NF-κB complex results in changes in the IκBα NMR spectrum that are consistent with dissociation of the region rich in proline, glutamate, serine, and threonine (PEST) and C-terminal ankyrin repeat sequences of IκBα from the complex. However, even at high concentrations of DNA, IκBα remains associated with NF-κB, indicated by the absence of resonances of the free N-terminal ankyrin repeats of IκBα. The IκBα-mediated release of NF-κB from its DNA-bound state may be envisioned as the reverse of this process. The initial step would consist of the coupled folding and binding of the intrinsically disordered nuclear localization sequence of the p65 subunit of NF-κB to the well-structured N-terminal ankyrin repeats of IκBα. Subsequently the poorly folded C-terminal ankyrin repeats of IκBα would fold upon binding to the p50 and p65 dimerization domains of NF-κB, permitting the negatively charged C-terminal PEST sequence of IκBα to displace the bound DNA through a process of local mass action. PMID:21220295

  16. Chemical-Biological Properties of Zinc Sensors TSQ and Zinquin: Formation of Sensor-Zn-Protein Adducts versus Zn(Sensor)2 Complexes.

    Science.gov (United States)

    Nowakowski, Andrew B; Meeusen, Jeffrey W; Menden, Heather; Tomasiewicz, Henry; Petering, David H

    2015-12-21

    Fluorescent zinc sensors are the most commonly used tool to study the intracellular mobile zinc status within cellular systems. Previously, we have shown that the quinoline-based sensors Zinquin and 6-methoxy-8-p-toluenesulfonamido-quinoline (TSQ) predominantly form ternary adducts with members of the Zn-proteome. Here, the chemistries of these sensors are further characterized, including how Zn(sensor)2 complexes may react in an intracellular environment. We demonstrate that these sensors are typically used in higher concentrations than needed to obtain maximum signal. Exposing cells to either Zn(Zinquin)2 or Zn(TSQ)2 resulted in efficient cellular uptake and the formation of sensor-Zn-protein adducts as evidenced by both a fluorescence spectral shift toward that of ternary adducts and the localization of the fluorescence signal within the proteome after gel filtration of cellular lysates. Likewise, reacting Zn(sensor)2 with the Zn-proteome from LLC-PK1 cells resulted in the formation of sensor-Zn-protein ternary adducts that could be inhibited by first saturating the Zn- proteome with excess sensor. Further, a native SDS-PAGE analysis of the Zn-proteome reacted with either the sensor or the Zn(sensor)2 complex revealed that both reactions result in the formation of a similar set of sensor-Zn-protein fluorescent products. The results of this experiment also demonstrated that TSQ and Zinquin react with different members of the Zn-proteome. Reactions with the model apo-Zn-protein bovine serum albumin showed that both Zn(TSQ)2 and Zn(Zinquin)2 reacted to form ternary adducts with its apo-Zn-binding site. Moreover, incubating Zn(sensor)2 complexes with non-zinc binding proteins failed to elicit a spectral shift in the fluorescence spectrum, supporting the premise that blue-shifted emission spectra are due to sensor-Zn-protein ternary adducts. It was concluded that Zn(sensors)2 species do not play a significant role in the overall reaction between these sensors and

  17. Ternary complex of human RORγ ligand-binding domain, inverse agonist and SMRT peptide shows a unique mechanism of corepressor recruitment.

    Science.gov (United States)

    Noguchi, Masato; Nomura, Akihiro; Murase, Ken; Doi, Satoki; Yamaguchi, Keishi; Hirata, Kazuyuki; Shiozaki, Makoto; Hirashima, Shintaro; Kotoku, Masayuki; Yamaguchi, Takayuki; Katsuda, Yoshiaki; Steensma, Ruo; Li, Xioalin; Tao, Haiyan; Tse, Bruno; Fenn, Morgan; Babine, Robert; Bradley, Erin; Crowe, Paul; Thacher, Scott; Adachi, Tsuyoshi; Kamada, Masafumi

    2017-06-01

    Retinoid-related orphan receptor gamma (RORγ) directly controls the differentiation of Th17 cell and the production of interleukin-17, which plays an integral role in autoimmune diseases. To obtain insight into RORγ, we have determined the first crystal structure of a ternary complex containing RORγ ligand-binding domain (LBD) bound with a novel synthetic inhibitor and a repressor peptide, 22-mer peptide from silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). Comparison of a binary complex of nonliganded (apo) RORγ-LBD with a nuclear receptor co-activator (NCoA-1) peptide has shown that our inhibitor displays a unique mechanism different from those caused by natural inhibitor, ursolic acid (UA). The compound unprecedentedly induces indirect disruption of a hydrogen bond between His479 on helix 11 (H11) and Tyr502 on H12, which is crucial for active conformation. This crystallographic study will allow us to develop novel synthetic compounds for autoimmune disease therapy. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  18. Liesegang patterns: Complex formation of precipitate in an electric ...

    Indian Academy of Sciences (India)

    Formation of 1D Liesegang patterns was studied numerically in precipitation and reversible complex formation of precipitate scenarios in an electric field. The Ostwald's supersaturation model reported by Büki, Kárpáti-Smidróczki and Zrínyi (BKZ model) was extended further. In the presence of an electric field the position of ...

  19. Spectrophotometric determination of formation constants of copper(II) complexes with 2,2‧-bipyridyl, 1,10-phenanthroline and their halides in methanol

    Science.gov (United States)

    Segoviano-Garfias, José J. N.; Nájera-Lara, Mónica; Pérez-Arredondo, María de la Luz; López-Ramírez, Varinia; Rubio-Jimenez, C. A.; Ramírez-Vázquez, Juan Antonio; Moreno-Esparza, Rafael

    2017-11-01

    The redox mediator used in dye-sensitized solar cells present several disadvantages; several research groups have theorized the possible use of blue copper proteins as electron mediators, despite their high costs. Copper complexes that mimic blue copper proteins could represent an alternative as electronic transfer agent with lower costs. In this work, we conducted a spectrophotometric study of the speciation of copper(II) complexes with 2,2‧-bipyridyl, 1,10-phenanthroline and their ternary complexes with chloride and bromide, at 303 K. For the copper-2,2‧-bipyridyl complexes, the formation constants obtained are: log β110 = 7.57 ± 0.08, log β120 = 13.26 ± 0.11 and log β130 = 17.21 ± 0.14. For the ternary systems of copper-2,2‧-bipyridyl with chloride or bromide, are: log β111 = 12.06 ± 0.06 and log β111 = 11.23 ± 0.01, respectively. Also, the formation constants obtained for the copper-1,10-phenanthroline complexes are log β110 = 4.21 ± 0.01 and log β120 = 7.24 ± 0.02. For the ternary systems of copper(II) with 1,10-phenanthroline and chloride or bromide, are: log β111 = 6.14 ± 0.04 and log β111 = 7.46 ± 0.03, respectively. Finally, the individual calculated electronic spectra of these species were obtained and compared to other copper complexes mimicking to blue copper proteins.

  20. Investigation of formation constant of complex of a new synthesized ...

    African Journals Online (AJOL)

    The complex formation between a newly synthesized tripodal ligand and the cation Cu2+ in water and surfactant media was studied spectrophotometrically using rank annihilation factor analysis (RAFA). According to molar ratio data the stoichiometry of complexation between the ligand and the cation Cu2+ was 1:1.

  1. Ternary phase behaviour and vesicle formation of a sodium N-lauroylsarcosinate hydrate/1-decanol/water system

    Science.gov (United States)

    Akter, Nasima; Radiman, Shahidan; Mohamed, Faizal; Rahman, Irman Abdul; Reza, Mohammad Imam Hasan

    2011-08-01

    The phase behaviour of a system composed of amino acid-based surfactant (sodium N-lauroylsarcosinate hydrate), 1-decanol and deionised water was investigated for vesicle formation. Changing the molar ratio of the amphiphiles, two important aggregate structures were observed in the aqueous corner of the phase diagram. Two different sizes of microemulsions were found at two amphiphile-water boundaries. A stable single vesicle lobe was found for 1∶2 molar ratios in 92 wt% water with vesicles approximately 100 nm in size and with high zeta potential value. Structural variation arises due to the reduction of electrostatic repulsions among the ionic headgroups of the surfactants and the hydration forces due to adsorbed water onto monolayer's. The balance of these two forces determines the aggregate structures. Analysis was followed by the molecular geometrical structure. These findings may have implications for the development of drug delivery systems for cancer treatments, as well as cosmetic and food formulations.

  2. Fluorescent studies on the interaction of DNA and ternary lanthanide complexes with cinnamic acid-phenanthroline and antibacterial activities testing.

    Science.gov (United States)

    Sun, Hui-Juan; Wang, Ai-Ling; Chu, Hai-Bin; Zhao, Yong-Liang

    2015-03-01

    Twelve lanthanide complexes with cinnamate (cin(-) ) and 1,10-phenanthroline (phen) were synthesized and characterized. Their compositions were assumed to be RE(cin)3 phen (RE(3+)  = La(3+) , Pr(3+) , Nd(3+) , Sm(3+) , Eu(3+) , Gd(3+) , Tb(3+) , Dy(3+) , Ho(3+) , Tm(3+) , Yb(3+) , Lu(3+) ). The interaction mode between the complexes and DNA was investigated by fluorescence quenching experiment. The results indicated the complexes could bind to DNA and the main binding mode is intercalative binding. The fluorescence quenching constants of the complexes increased from La(cin)3 phen to Lu(cin)3 phen. Additionally, the antibacterial activity testing showed that the complexes exhibited excellent antibacterial ability against Escherichia coli, and the changes of antibacterial ability are in agreement with that of the fluorescence quenching constants. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Structural and thermodynamic characterization of cadherin·β-catenin·α-catenin complex formation.

    Science.gov (United States)

    Pokutta, Sabine; Choi, Hee-Jung; Ahlsen, Goran; Hansen, Scott D; Weis, William I

    2014-05-09

    The classical cadherin·β-catenin·α-catenin complex mediates homophilic cell-cell adhesion and mechanically couples the actin cytoskeletons of adjacent cells. Although α-catenin binds to β-catenin and to F-actin, β-catenin significantly weakens the affinity of α-catenin for F-actin. Moreover, α-catenin self-associates into homodimers that block β-catenin binding. We investigated quantitatively and structurally αE- and αN-catenin dimer formation, their interaction with β-catenin and the cadherin·β-catenin complex, and the effect of the α-catenin actin-binding domain on β-catenin association. The two α-catenin variants differ in their self-association properties: at physiological temperatures, αE-catenin homodimerizes 10× more weakly than does αN-catenin but is kinetically trapped in its oligomeric state. Both αE- and αN-catenin bind to β-catenin with a Kd of 20 nM, and this affinity is increased by an order of magnitude when cadherin is bound to β-catenin. We describe the crystal structure of a complex representing the full β-catenin·αN-catenin interface. A three-dimensional model of the cadherin·β-catenin·α-catenin complex based on these new structural data suggests mechanisms for the enhanced stability of the ternary complex. The C-terminal actin-binding domain of α-catenin has no influence on the interactions with β-catenin, arguing against models in which β-catenin weakens actin binding by stabilizing inhibitory intramolecular interactions between the actin-binding domain and the rest of α-catenin.

  4. Structural and Thermodynamic Characterization of Cadherin·β-Catenin·α-Catenin Complex Formation*

    Science.gov (United States)

    Pokutta, Sabine; Choi, Hee-Jung; Ahlsen, Goran; Hansen, Scott D.; Weis, William I.

    2014-01-01

    The classical cadherin·β-catenin·α-catenin complex mediates homophilic cell-cell adhesion and mechanically couples the actin cytoskeletons of adjacent cells. Although α-catenin binds to β-catenin and to F-actin, β-catenin significantly weakens the affinity of α-catenin for F-actin. Moreover, α-catenin self-associates into homodimers that block β-catenin binding. We investigated quantitatively and structurally αE- and αN-catenin dimer formation, their interaction with β-catenin and the cadherin·β-catenin complex, and the effect of the α-catenin actin-binding domain on β-catenin association. The two α-catenin variants differ in their self-association properties: at physiological temperatures, αE-catenin homodimerizes 10× more weakly than does αN-catenin but is kinetically trapped in its oligomeric state. Both αE- and αN-catenin bind to β-catenin with a Kd of 20 nm, and this affinity is increased by an order of magnitude when cadherin is bound to β-catenin. We describe the crystal structure of a complex representing the full β-catenin·αN-catenin interface. A three-dimensional model of the cadherin·β-catenin·α-catenin complex based on these new structural data suggests mechanisms for the enhanced stability of the ternary complex. The C-terminal actin-binding domain of α-catenin has no influence on the interactions with β-catenin, arguing against models in which β-catenin weakens actin binding by stabilizing inhibitory intramolecular interactions between the actin-binding domain and the rest of α-catenin. PMID:24692547

  5. Synthesis, characterization, electrochemical studies and DFT calculations of amino acids ternary complexes of copper (II) with isonitrosoacetophenone. Biological activities

    Science.gov (United States)

    Tidjani-Rahmouni, Nabila; Bensiradj, Nour el Houda; Djebbar, Safia; Benali-Baitich, Ouassini

    2014-10-01

    Three mixed complexes having formula [Cu(INAP)L(H2O)2] where INAP = deprotonated isonitrosoacetophenone and L = deprotonated amino acid such as histidine, phenylalanine and tryptophan have been synthesized. They have also been characterized using elemental analyses, molar conductance, UV-Vis, IR and ESR spectra. The value of molar conductance indicates them to be non-electrolytes. The spectral studies support the binding of the ligands with two N and two O donor sites to the copper (II) ion, giving an arrangement of N2O2 donor groups. Density Functional Theory (DFT) calculations were applied to evaluate the cis and trans coordination modes of the two water molecules. The trans form was shown to be energetically more stable than the cis one. The ESR data indicate that the covalent character of the metal-ligand bonding in the copper (II) complexes increases on going from histidine to phenylalanine to tryptophan. The electrochemical behavior of the copper (II) complexes was determined by cyclic voltammetry which shows that the chelate structure and electron donating effects of the ligands substituent are among the factors influencing the redox potentials of the complexes. The antimicrobial activities of the complexes were evaluated against several pathogenic microorganisms to assess their antimicrobial potentials. The copper complexes were found to be more active against Gram-positive than Gram-negative bacteria. Furthermore, the antioxidant efficiencies of the metal complexes were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. The antioxidant activity of the complexes indicates their moderate scavenging activity against the radical DPPH.

  6. Antivitamin B12 Inhibition of the Human B12 -Processing Enzyme CblC: Crystal Structure of an Inactive Ternary Complex with Glutathione as the Cosubstrate.

    Science.gov (United States)

    Ruetz, Markus; Shanmuganathan, Aranganathan; Gherasim, Carmen; Karasik, Agnes; Salchner, Robert; Kieninger, Christoph; Wurst, Klaus; Banerjee, Ruma; Koutmos, Markos; Kräutler, Bernhard

    2017-06-19

    B12 antivitamins are important and robust tools for investigating the biological roles of vitamin B12 . Here, the potential antivitamin B12 2,4-difluorophenylethynylcobalamin (F2PhEtyCbl) was prepared, and its 3D structure was studied in solution and in the crystal. Chemically inert F2PhEtyCbl resisted thermolysis of its Co-C bond at 100 °C, was stable in bright daylight, and also remained intact upon prolonged storage in aqueous solution at room temperature. It binds to the human B12 -processing enzyme CblC with high affinity (KD =130 nm) in the presence of the cosubstrate glutathione (GSH). F2PhEtyCbl withstood tailoring by CblC, and it also stabilized the ternary complex with GSH. The crystal structure of this inactivated assembly provides first insight into the binding interactions between an antivitamin B12 and CblC, as well as into the organization of GSH and a base-off cobalamin in the active site of this enzyme. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis, structure, theoretical studies and luminescent properties of a ternary erbium(III) complex with acetylacetone and bathophenanthroline ligands

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Ramos, Pablo [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain); Silva, Pedro S. Pereira, E-mail: psidonio@pollux.fis.uc.pt [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Chamorro-Posada, Pedro [Higher Technical School of Telecommunications Engineering, Universidad de Valladolid, Campus Miguel Delibes, Paseo Belén 15, 47011 Valladolid (Spain); Silva, Manuela Ramos [CEMDRX, Department of Physics, Universidade de Coimbra, Rua Larga, P-3004-516 Coimbra (Portugal); Milne, Bruce F. [Centre for Computational Physics, Department of Physics, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Donostia International Physics Centre, Paseo Manuel de Lardizabal 4, 20018 Donostia-San Sebastián (Spain); Nogueira, Fernando [Centre for Computational Physics, Department of Physics, Universidade de Coimbra, P-3004-516 Coimbra (Portugal); Martín-Gil, Jesús [Advanced Materials Laboratory, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia (Spain)

    2015-06-15

    A novel erbium(III) complex with acetylacetone (Hacac) and bathophenanthroline (4,7-diphenyl-1,10-phenanthroline, bath) ligands, formulated as [Er(acac){sub 3}(bath)], has been characterized by elemental analysis, X-ray diffraction, thermogravimetric analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, absorption and emission spectroscopies. In the theoretical part of this study, semi-empirical quantum chemistry methods using AM1, PM3, PM6 and PM7 models have been employed to predict the structure of the complex, calculate the geometric and crystallographic parameters, and make comparisons with spectroscopic data using INDO/S-CI calculations. Real-time time-dependent density-functional theory (TDDFT) has also been used to calculate the optical absorption spectrum of the complex in the gas phase. - Highlights: • Synthesis and structure of a new erbium(III) β-diketonate complex. • TDDFT used for the first time to calculate the optical absorption spectrum. • Complex show strong near-infrared luminescence at 1.53 µm due to antenna effect.

  8. Crystal structures of Mycobacterium tuberculosis S-adenosyl-L-homocysteine hydrolase in ternary complex with substrate and inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Manchi C.M.; Kuppan, Gokulan; Shetty, Nishant D.; Owen, Joshua L.; Ioerger, Thomas R.; Sacchettini, James C. (TAM)

    2009-12-01

    S-adenosylhomocysteine hydrolase (SAHH) is a ubiquitous enzyme that plays a central role in methylation-based processes by maintaining the intracellular balance between S-adenosylhomocysteine (SAH) and S-adenosylmethionine. We report the first prokaryotic crystal structure of SAHH, from Mycobacterium tuberculosis (Mtb), in complex with adenosine (ADO) and nicotinamide adenine dinucleotide. Structures of complexes with three inhibitors are also reported: 3{prime}-keto aristeromycin (ARI), 2-fluoroadenosine, and 3-deazaadenosine. The ARI complex is the first reported structure of SAHH complexed with this inhibitor, and confirms the oxidation of the 3{prime} hydroxyl to a planar keto group, consistent with its prediction as a mechanism-based inhibitor. We demonstrate the in vivo enzyme inhibition activity of the three inhibitors and also show that 2-fluoradenosine has bactericidal activity. While most of the residues lining the ADO-binding pocket are identical between Mtb and human SAHH, less is known about the binding mode of the homocysteine (HCY) appendage of the full substrate. We report the 2.0 {angstrom} resolution structure of the complex of SAHH cocrystallized with SAH. The most striking change in the structure is that binding of HCY forces a rotation of His363 around the backbone to flip out of contact with the 5{prime} hydroxyl of the ADO and opens access to a nearby channel that leads to the surface. This complex suggests that His363 acts as a switch that opens up to permit binding of substrate, then closes down after release of the cleaved HCY. Differences in the entrance to this access channel between human and Mtb SAHH are identified.

  9. Curcumin complexation with cyclodextrins by the autoclave process: Method development and characterization of complex formation.

    Science.gov (United States)

    Hagbani, Turki Al; Nazzal, Sami

    2017-03-30

    One approach to enhance curcumin (CUR) aqueous solubility is to use cyclodextrins (CDs) to form inclusion complexes where CUR is encapsulated as a guest molecule within the internal cavity of the water-soluble CD. Several methods have been reported for the complexation of CUR with CDs. Limited information, however, is available on the use of the autoclave process (AU) in complex formation. The aims of this work were therefore to (1) investigate and evaluate the AU cycle as a complex formation method to enhance CUR solubility; (2) compare the efficacy of the AU process with the freeze-drying (FD) and evaporation (EV) processes in complex formation; and (3) confirm CUR stability by characterizing CUR:CD complexes by NMR, Raman spectroscopy, DSC, and XRD. Significant differences were found in the saturation solubility of CUR from its complexes with CD when prepared by the three complexation methods. The AU yielded a complex with expected chemical and physical fingerprints for a CUR:CD inclusion complex that maintained the chemical integrity and stability of CUR and provided the highest solubility of CUR in water. Physical and chemical characterizations of the AU complexes confirmed the encapsulated of CUR inside the CD cavity and the transformation of the crystalline CUR:CD inclusion complex to an amorphous form. It was concluded that the autoclave process with its short processing time could be used as an alternate and efficient methods for drug:CD complexation. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Synthesis, crystal structure, EPR properties, and anti-convulsant activities of binuclear and mononuclear 1,10-phenanthroline and salicylate ternary copper(II) complexes.

    Science.gov (United States)

    Lemoine, Pascale; Viossat, Bernard; Morgant, Georges; Greenaway, Frederick T; Tomas, Alain; Dung, Nguyen Huy; Sorenson, John R J

    2002-04-10

    Two ternary Cu(II) complexes of 1,10-phenanthroline (phen) and singly (Hsal(-)) or dideprotonated (sal(2-)) salicylate ligands were synthesized, their X-ray crystal structure and electron paramagnetic resonance spectral characteristics determined, and evaluated for anti-convulsant activities in the maximal electroshock (MES) and Metrazol models of seizure and Rotorod toxicity. The X-ray crystal structure of [bis(1,10-phenanthroline)-mu-bis(salicylato-O,O')dicopper(II)] dihydrate, 1, ([Cu(II)(2)(phen)(2)(sal)(2)].2[H(2)O]), shows it to be binuclear. This dimer consists of two centrosymmetrically related pseudo-five coordinate Cu(II) atoms 3.242(2) A apart and bridged by two dideprotonated salicylate ligands. The X-ray crystal structure of [bis(1,10-phenanthroline)(salicylato)copper(II)][salicylate] monohydrate, 2, ([Cu(II)(phen)(2)(Hsal)](+)[Hsal](-)[H(2)O]), shows it to be mononuclear. This complex cation exhibits a highly irregular distorted square pyramidal geometry about the Cu(II) atom, (4+1+1*). Each salicylate is singly deprotonated and one of them is ligand bonded in an asymmetric chelating mode. EPR results for 2 indicate that in concentrated DMF solution phen remains bonded to copper but salicylate is likely monodentate in contrast to the situation for 1. However, in dilute DMF solution, both 1 and 2 form the same species, which accounts for the similarity in anti-convulsant activity of the two compounds. Both 1 and 2 were found to be effective in preventing MES-induced seizures and ineffective in preventing Metrazol-induced seizures. Rotorod toxicity, consistent with central nervous system depression, paralleled the observed anti-convulsant activity. It is suggested that the observed anti-convulsant activity is consistent with central nervous system depression as a physiological mechanism in overcoming MES-induced seizures due to MES-induced brain inflammatory disease.

  11. Synthesis, crystal structure and properties of two ternary rare earth complexes with aromatic acid and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Na; Wang Shuping; Ma Ruixia; Gao Zhihua [Department of Chemistry, Hebei Normal University, Shijiazhuang 050016 (China); Wang Ruifen [Department of Chemistry, Hebei Normal University, Shijiazhuang 050016 (China)], E-mail: wruifen@mail.hebtu.edu.cn; Zhang Jianjun [Experimental Center, Hebei Normal University, Shijiazhuang 050016 (China)

    2008-09-08

    Two dimeric rare-earth complexes [Eu(o-MOBA){sub 3}phen]{sub 2}.2H{sub 2}O (1), [Tb(o-MOBA){sub 3}phen]{sub 2}.2H{sub 2}O (2), (where o-MOBA = o-methoxybenzoate, phen 1,10-phenanthroline) were synthesized and structurally characterized. Both of them consist of neutral dimeric molecules, crystallize in triclinic system, space group P1-bar. Each RE(III) ion is nine-coordinated with one 1,10-phenanthroline molecule, one bidentate chelating carboxylate group, two bidentate bridging carboxylate groups and two tridentate bridging carboxylate groups. Complex 1 shows bright red luminescence, 2 shows green luminescence under UV light at room temperature, respectively. The thermal analysis indicates that they are all quite stable to heat.

  12. Geology of the Biwabik Iron Formation and Duluth Complex.

    Science.gov (United States)

    Jirsa, Mark A; Miller, James D; Morey, G B

    2008-10-01

    The Biwabik Iron Formation is a approximately 1.9 billion year-old sequence of iron-rich sedimentary rocks that was metamorphosed at its eastern-most extent by approximately 1.1 billion year-old intrusions of the Duluth Complex. The metamorphic recrystallization of iron-formation locally produced iron-rich amphiboles and other fibrous iron-silicate minerals. The presence of these minerals in iron-formation along the eastern part of what is known as the Mesabi Iron Range, and their potential liberation by iron mining has raised environmental health concerns. We describe here the geologic setting and mineralogic composition of the Biwabik Iron Formation in and adjacent to the contact metamorphic aureole of the Duluth Complex. The effects of metamorphism are most pronounced within a few kilometers of the contact, and decrease progressively away from it. The contact aureole has been divided into four metamorphic zones-each characterized by the composition and crystal structure of the metamorphic minerals it contains. The recrystallization of iron-formation to iron-rich amphibole minerals (grunerite and cummingtonite) and iron-pyroxene minerals (hedenbergite and ferrohypersthene) is best developed in zones that are most proximal to the Duluth Complex contact.

  13. Complex Formation Between Iron(III) and Isonicotinohydroxamic ...

    African Journals Online (AJOL)

    acer

    Nigerian Journal of Basic and Applied Science (2009), 17(2): 181-188. ISSN 0794-5698. Complex Formation Between Iron(III) and ... CONHOH– groups have been extensively studied as a consequence of their biological importance ..... Cruckshank R. (1965) Medical Microbiology. Eds Church and Livingston U.K. pp 75-85.

  14. Complex Formation Between Iron(III) and Isonicotinohydroxamic ...

    African Journals Online (AJOL)

    acer

    Complex Formation Between Iron(III) and Isonicotinohydroxamic Acid and Its Microbial. Studies. *. 1. A.O. Aliyu and. 2. J.N. Nwabueze. *Department of Chemistry, Nigerian Defence Academy, PMB 2109, Kaduna. Department of Chemistry, University of Abuja, PMB 117, FCT,Abuja, Nigeria. [*Correspondence Address: ...

  15. Association of umbilical cord plasma acid-labile subunit of the insulin-like growth factor ternary complex with anthropometry in term newborns.

    Science.gov (United States)

    Tseng, Yen-Ming; Hwang, Yea-Shwu; Lu, Chin-Li; Lin, Shio-Jean; Tsai, Wen-Hui

    2014-04-01

    Birth size can affect neonatal morbidity and mortality. The insulin-like growth factor (IGF) system is the most important endocrine factor influencing fetal growth. In the circulation, IGFs (mostly IGF-I) are bound to IGF-binding protein 3 (IGFBP-3) and an acid-labile subunit (ALS) to form a ternary complex. The ALS protects IGFs from decay and facilitates their endocrine activity. However, the function of ALS in fetal growth has not yet been fully determined. Venous umbilical plasma samples were obtained from 98 term neonates and analyzed using enzyme-linked immunosorbent assays. The ALS, IGF-I, and IGFBP-3 umbilical cord plasma levels were analyzed for their association with anthropometric measurements of the neonates. The ALS, IGF-I, and IGFBP-3 cord plasma levels were positively correlated with birth weight (r = 0.42, p cord plasma levels were also positively correlated with head circumference (r = 0.29, p cord plasma levels were independent predictive variables for birth weight (p cord plasma levels were the only independent predictive variables, however, for head circumference and placental weight (p cord plasma levels are one important factor, in addition to IGF-I, in the IGF system for predicting birth anthropometry, at least for near-term gestation. Our results suggest that the influence of ALS on the IGF system may develop prior to birth and affect fetal growth. Copyright © 2013. Published by Elsevier B.V.

  16. Terminal tungsten pnictide complex formation through pnictaethynolate decarbonylation.

    Science.gov (United States)

    Joost, Maximilian; Transue, Wesley J; Cummins, Christopher C

    2017-09-26

    Tungsten(iv) tetrakis(2,6-diisopropylphenoxide) (1) has been demonstrated to be a competent platform for decarbonylative formation of anionic terminal pnictide complexes upon treatment with pnictaethynolate anions: cyanate, 2-phosphaethynolate, and 2-arsaethynolate. These transformations constitute the first examples of terminal phosphide and arsenide complex formation at a transition metal center from OCP- and OCAs-, respectively. The phosphide and arsenide complexes are also the first to be isolated in a tetragonal, all-oxygen ligand environment. The scalar NMR coupling constants between tungsten-183 and nitrogen-15 or phosphorus-31 have been measured and contextualized using natural bond orbital (NBO) methods in terms of s orbital character in the σ bonding orbital and pnictide lone pair.

  17. submitter Thermodynamics of the formation of sulfuric acid dimers in the binary (H2SO4–H2O) and ternary (H2SO4–H2O–NH3) system

    CERN Document Server

    Kürten, A; Rondo, L; Bianchi, F; Duplissy, J; Jokinen, T; Junninen, H; Sarnela, N; Schobesberger, S; Simon, M; Sipilä, M; Almeida, J; Amorim, A; Dommen, J; Donahue, N M; Dunne, E M; Flagan, R C; Franchin, A; Kirkby, J; Kupc, A; Makhmutov, V; Petäjä, T; Praplan, A P; Riccobono, F; Steiner, G; Tomé, A; Tsagkogeorgas, G; Wagner, P E; Wimmer, D; Baltensperger, U; Kulmala, M; Worsnop, D R; Curtius, J

    2015-01-01

    Sulfuric acid is an important gas influencing atmospheric new particle formation (NPF). Both the binary $(H_2SO_4–H_2O)$ system and the ternary system involving ammonia $(H_2SO_4–H_2O–NH_3)$ may be important in the free troposphere. An essential step in the nucleation of aerosol particles from gas-phase precursors is the formation of a dimer, so an understanding of the thermodynamics of dimer formation over a wide range of atmospheric conditions is essential to describe NPF. We have used the CLOUD chamber to conduct nucleation experiments for these systems at temperatures from 208 to 248 K. Neutral monomer and dimer concentrations of sulfuric acid were measured using a chemical ionization mass spectrometer (CIMS). From these measurements, dimer evaporation rates in the binary system were derived for temperatures of 208 and 223 K. We compare these results to literature data from a previous study that was conducted at higher temperatures but is in good agreement with the present study. For the ternary sys...

  18. Anionic solid lipid nanoparticles supported on protamine/DNA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ye Jiesheng; Liu Chunxi; Chen Zhijin; Zhang Na [School of Pharmaceutical Science, Shandong University, 44 Wenhua Xi Road, Ji' nan (China); Wang Aihua [Department of Respiratory Medicine, Affiliated Qilu Hospital, Shandong University, 44 Wenhua Xi Road, Ji' nan (China)], E-mail: zhangnancy9@sdu.edu.cn

    2008-07-16

    The objective of this study was to design novel anionic ternary nanoparticles for gene delivery. These ternary nanoparticles were equipped with protamine/DNA binary complexes (150-200 nm) as the support, and the anionic formation was achieved by absorption of anionic solid lipid nanoparticles ({<=}20 nm) onto the surface of the binary complexes. The small solid lipid nanoparticles (SLNs) were prepared by a modified film dispersion-ultrasonication method, and adsorption of the anionic SLNs onto the binary complexes was typically carried out in water via electrostatic interaction. The formulated ternary nanoparticles were found to be relatively uniform in size (257.7 {+-} 10.6 nm) with a 'bumpy' surface, and the surface charge inversion from 19.28 {+-} 1.14 mV to -17.16 {+-} 1.92 mV could be considered as evidence of the formation of the ternary nanoparticles. The fluorescence intensity measurements from three batches of the ternary nanoparticles gave a mean adsorption efficiency of 96.75 {+-} 1.13%. Circular dichroism spectra analysis showed that the protamine/DNA complexes had been coated by small SLNs, and that the anionic ternary nanoparticles formed did not disturb the construction of the binary complexes. SYBR Green I analysis suggested that the ternary nanoparticles could protect the DNA from nuclease degradation, and cell viability assay results showed that they exhibit lower cytotoxicity to A549 cells compared with the binary complexes and lipofectamine. The transfection efficiency of the ternary nanoparticles was better than that of naked DNA and the binary complexes, and almost equal to that of lipofectamine/DNA complexes, as revealed by inversion fluorescence microscope observation. These results indicated that the anionic ternary nanoparticles could facilitate gene transfer in cultured cells, and might alleviate the drawbacks of the conventional cationic vector/DNA complexes for gene delivery in vivo.

  19. Zein/caseinate/pectin complex nanoparticles: Formation and characterization.

    Science.gov (United States)

    Chang, Chao; Wang, Taoran; Hu, Qiaobin; Luo, Yangchao

    2017-11-01

    In this study, pectin was used as coating material to form zein/caseinate/pectin complex nanoparticles through pH adjustment and heating treatment for potential oral delivery applications. The preparation conditions were studied by applying heating treatment at different pHs, either the isoelectric point of zein (pH 6.2) or caseinate (pH 4.6), or consecutively at both pHs. The particulate characteristics, including particle size, polydispersity index, and zeta potential were monitored for complex nanoparticles formed under different preparation conditions. The complex nanoparticles generally exhibited particle size smaller than 200nm with narrow distribution, spherical shape, and strong negative charge. Fourier transform infrared and fluorescence spectroscopy revealed that hydrophobic interactions and hydrogen bonds were involved in the formation of complex nanoparticles, in addition to electrostatic interactions. Fresh colloidal dispersion and freeze-dried powders varied in their morphology, depending on their preparation conditions. Our results suggested that heating pH and sequence significantly affected the morphology of complex nanoparticles, and pectin coating exerted stabilization effect under simulated gastrointestinal conditions. The present study provides insight into the formation of protein/polysaccharide complex nanoparticles under different preparation conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Two-layer synchronized ternary quantum-dot cellular automata wire crossings

    Science.gov (United States)

    2012-01-01

    Quantum-dot cellular automata are an interesting nanoscale computing paradigm. The introduction of the ternary quantum-dot cell enabled ternary computing, and with the recent development of a ternary functionally complete set of elementary logic primitives and the ternary memorizing cell design of complex processing structures is becoming feasible. The specific nature of the ternary quantum-dot cell makes wire crossings one of the most problematic areas of ternary quantum-dot cellular automata circuit design. We hereby present a two-layer wire crossing that uses a specific clocking scheme, which ensures the crossed wires have the same effective delay. PMID:22507371

  1. Ternary chalcopyrite semiconductors

    CERN Document Server

    Shay, J L; Pamplin, B R

    2013-01-01

    Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications covers the developments of work in the I-III-VI2 and II-IV-V2 ternary chalcopyrite compounds. This book is composed of eight chapters that focus on the crystal growth, characterization, and applications of these compounds to optical communications systems. After briefly dealing with the status of ternary chalcopyrite compounds, this book goes on describing the crystal growth of II-IV-V2 and I-III-VI2 single crystals. Chapters 3 and 4 examine the energy band structure of these semiconductor compounds, illustrat

  2. Gel phase formation in dilute triblock copolyelectrolyte complexes

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-23

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (<1% by mass) has been observed in scattering experiments and molecular dynamics simulations. Here we show that in contrast to uncharged, amphiphilic block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  3. SPECTROPHOTOMETRIC STUDIES OF SANGUINARINE-Β-CYCLODEXTRIN COMPLEX FORMATION

    Directory of Open Access Journals (Sweden)

    Veaceslav Boldescu

    2008-06-01

    Full Text Available The main aim of this study was to investigate the influence of pH and the presence of hydrophilic polymer polyvinylpyrrolidone on the formation of sanguinarine-β-cyclodextrin (SANG-β-CD inclusion complex. Spectrophotometric studies of the SANG-β-CD systems in the presence and without 0.1 % PVP at the pH 5.0 did not show any evidence of the complex formation. However, the same systems showed several obvious evidences at the pH 8.0: the hyperchromic and the hypochromic effects and the presence of the isosbestic point in the region of 200 – 210 nm. The association constants calculated by three linear methods: Benesi-Hildebrand, Scott and Scatchard, were two times higher for the systems with addition of 0.1% PVP than for the systems without it.

  4. Gel phase formation in dilute triblock copolyelectrolyte complexes

    Science.gov (United States)

    Srivastava, Samanvaya; Andreev, Marat; Levi, Adam E.; Goldfeld, David J.; Mao, Jun; Heller, William T.; Prabhu, Vivek M.; de Pablo, Juan J.; Tirrell, Matthew V.

    2017-02-01

    Assembly of oppositely charged triblock copolyelectrolytes into phase-separated gels at low polymer concentrations (block copolymers that form discrete micelles at low concentrations and enter a phase of strongly interacting micelles in a gradual manner with increasing concentration, the formation of a dilute phase of individual micelles is prevented in polyelectrolyte complexation-driven assembly of triblock copolyelectrolytes. Gel phases form and phase separate almost instantaneously on solvation of the copolymers. Furthermore, molecular models of self-assembly demonstrate the presence of oligo-chain aggregates in early stages of copolyelectrolyte assembly, at experimentally unobservable polymer concentrations. Our discoveries contribute to the fundamental understanding of the structure and pathways of complexation-driven assemblies, and raise intriguing prospects for gel formation at extraordinarily low concentrations, with applications in tissue engineering, agriculture, water purification and theranostics.

  5. Formation of oxygen complexes in controlled atmosphere at surface ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 5. Formation of oxygen complexes in controlled atmosphere at surface of doped glassy carbon. Aleksandra A Perić-Grujić Tatjana M Vasiljević Olivera M Nešković Miomir V Veljković Zoran V Laušević Mila D Laušević. Ceramics and Glasses Volume 29 Issue ...

  6. Liesegang patterns: Complex formation of precipitate in an electric ...

    Indian Academy of Sciences (India)

    formed precipitate Co(OH)2(s) dissolves due to complex formation in excess ammo- nia. Zrınyi et al [26], Sultan and Panjarian [17] and Hilal and Sultan [27] observed and studied experimentally similar patterns in NaOH/Cr(NO3)3, while Das et al. [28] performed it in KI/HgCl2 system. The aim of this paper is to continue ...

  7. Correlations between community structure and link formation in complex networks.

    Directory of Open Access Journals (Sweden)

    Zhen Liu

    Full Text Available BACKGROUND: Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein interactions in biological networks or friendships in social networks. However, understanding the mechanism of link formation in complex networks is a long standing challenge for network analysis and data mining. METHODOLOGY/PRINCIPAL FINDINGS: Links in complex networks have a tendency to cluster locally and form so-called communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the correlations between community structure and link formation, we present a general computational framework including a theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The experimental results verify that such a mechanism can be well captured by our approach. CONCLUSIONS/SIGNIFICANCE: Our findings provide a new insight into understanding how links are created in the communities. The computational framework opens a wide range of possibilities to develop new approaches and applications, such as community detection and missing link prediction.

  8. Correlations between community structure and link formation in complex networks.

    Science.gov (United States)

    Liu, Zhen; He, Jia-Lin; Kapoor, Komal; Srivastava, Jaideep

    2013-01-01

    Links in complex networks commonly represent specific ties between pairs of nodes, such as protein-protein interactions in biological networks or friendships in social networks. However, understanding the mechanism of link formation in complex networks is a long standing challenge for network analysis and data mining. Links in complex networks have a tendency to cluster locally and form so-called communities. This widely existed phenomenon reflects some underlying mechanism of link formation. To study the correlations between community structure and link formation, we present a general computational framework including a theory for network partitioning and link probability estimation. Our approach enables us to accurately identify missing links in partially observed networks in an efficient way. The links having high connection likelihoods in the communities reveal that links are formed preferentially to create cliques and accordingly promote the clustering level of the communities. The experimental results verify that such a mechanism can be well captured by our approach. Our findings provide a new insight into understanding how links are created in the communities. The computational framework opens a wide range of possibilities to develop new approaches and applications, such as community detection and missing link prediction.

  9. The Dynamics of Coalition Formation on Complex Networks.

    Science.gov (United States)

    Auer, S; Heitzig, J; Kornek, U; Schöll, E; Kurths, J

    2015-08-25

    Complex networks describe the structure of many socio-economic systems. However, in studies of decision-making processes the evolution of the underlying social relations are disregarded. In this report, we aim to understand the formation of self-organizing domains of cooperation ("coalitions") on an acquaintance network. We include both the network's influence on the formation of coalitions and vice versa how the network adapts to the current coalition structure, thus forming a social feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier research to more complex decision-making determined by costs and benefits, and from bilateral to multilateral cooperation. We show how phase transitions emerge from such coevolutionary dynamics, which can be interpreted as processes of great transformations. If the network adaptation rate is high, the social dynamics prevent the formation of a grand coalition and therefore full cooperation. We find some empirical support for our main results: Our model develops a bimodal coalition size distribution over time similar to those found in social structures. Our detection and distinguishing of phase transitions may be exemplary for other models of socio-economic systems with low agent numbers and therefore strong finite-size effects.

  10. Balanced ternary addition using a gated silicon nanowire

    NARCIS (Netherlands)

    Mol, J.A.; Van der Heijden, J.; Verduijn, J.; Klein, M.; Remacle, F.; Rogge, S.

    2011-01-01

    Ternary logic has the lowest cost of complexity, here, we demonstrate a CMOS hardware implementation of a ternary adder using a silicon metal-on-insulator single electron transistor. Gate dependent rectifying behavior of a single electron transistor (SET) results in a robust three-valued output as a

  11. Single polymer-based ternary electronic memory material and device.

    Science.gov (United States)

    Liu, Shu-Juan; Wang, Peng; Zhao, Qiang; Yang, Hui-Ying; Wong, Jenlt; Sun, Hui-Bin; Dong, Xiao-Chen; Lin, Wen-Peng; Huang, Wei

    2012-06-05

    A ternary polymer memory device based on a single polymer with on-chain Ir(III) complexes is fabricated by combining multiple memory mechanisms into one system. Excellent ternary memory performances-low reading, writing, and erasing voltages and good stability for all three states-are achieved. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Nanoparticle-protein complexes mimicking corona formation in ocular environment.

    Science.gov (United States)

    Jo, Dong Hyun; Kim, Jin Hyoung; Son, Jin Gyeong; Dan, Ki Soon; Song, Sang Hoon; Lee, Tae Geol; Kim, Jeong Hun

    2016-12-01

    Nanoparticles adsorb biomolecules to form corona upon entering the biological environment. In this study, tissue-specific corona formation is provided as a way of controlling protein interaction with nanoparticles in vivo. In the vitreous, the composition of the corona was determined by the electrostatic and hydrophobic properties of the associated proteins, regardless of the material (gold and silica) or size (20- and 100-nm diameter) of the nanoparticles. To control protein adsorption, we pre-incubate 20-nm gold nanoparticles with 5 selectively enriched proteins from the corona, formed in the vitreous, to produce nanoparticle-protein complexes. Compared to bare nanoparticles, nanoparticle-protein complexes demonstrate improved binding to vascular endothelial growth factor (VEGF) in the vitreous. Furthermore, nanoparticle-protein complexes retain in vitro anti-angiogenic properties of bare nanoparticles. In particular, priming the nanoparticles (gold and silica) with tissue-specific corona proteins allows nanoparticle-protein complexes to exert better in vivo therapeutic effects by higher binding to VEGF than bare nanoparticles. These results suggest that controlled corona formation that mimics in vivo processes may be useful in the therapeutic use of nanomaterials in local environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Interaction of Zn(II) with hematite nanoparticles and microparticles: Part 2. ATR-FTIR and EXAFS study of the aqueous Zn(II)/oxalate/hematite ternary system.

    Science.gov (United States)

    Ha, Juyoung; Trainor, Thomas P; Farges, François; Brown, Gordon E

    2009-05-19

    Sorption of Zn(II) to hematite nanoparticles (HN) (av diam=10.5 nm) and microparticles (HM) (av diam=550 nm) was studied in the presence of oxalate anions (Ox2-(aq)) in aqueous solutions as a function of total Zn(II)(aq) to total Ox2-(aq) concentration ratio (R=[Zn(II)(aq)]tot/[Ox2-(aq)]tot) at pH 5.5. Zn(II) uptake is similar in extent for both the Zn(II)/Ox/HN and Zn(II)/Ox/HM ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)](tot)system than for the Zn(II)/Ox/HM ternary and the Zn(II)/HN and Zn(II)/HM binary systems at [Zn(II)(aq)]tot>4 mM. In contrast, Zn(II) uptake for the Zn(II)/HM binary system is a factor of 2 greater than that for the Zn(II)/Ox/HM and Zn(II)/Ox/HN ternary systems and the Zn(II)/HN binary system at [Zn(II)(aq)]totternary system at both R values examined (0.16 and 0.68), attenuated total reflectance Fourier transform infrared (ATR-FTIR) results are consistent with the presence of inner-sphere oxalate complexes and outer-sphere ZnOx(aq) complexes, and/or type A ternary complexes. In addition, extended X-ray absorption fine structure (EXAFS) spectroscopic results suggest that type A ternary surface complexes (i.e., >O2-Zn-Ox) are present. In the Zn(II)/Ox/HN ternary system at R=0.15, ATR-FTIR results indicate the presence of inner-sphere oxalate and outer-sphere ZnOx(aq) complexes; the EXAFS results provide no evidence for inner-sphere Zn(II) complexes or type A ternary complexes. In contrast, ATR-FTIR results for the Zn/Ox/HN sample with R = 0.68 are consistent with a ZnOx(s)-like surface precipitate and possibly type B ternary surface complexes (i.e., >O2-Ox-Zn). EXAFS results are also consistent with the presence of ZnOx(s)-like precipitates. We ascribe the observed increase of Zn(II)(aq) uptake in the Zn(II)/Ox/HN ternary system at [Zn(II)(aq)]tot>or=4 mM relative to the Zn(II)/Ox/HM ternary system to formation of a ZnOx(s)-like precipitate at the hematite nanoparticle/water interface.

  14. Multicavity formations and complexity modulation in a hyperchaotic discrete system

    Science.gov (United States)

    He, Shaobo; Banerjee, Santo

    2018-01-01

    This paper introduces a novel and unified approach for controlling the directions and number of cavities of a two dimensional Sine ICMIC modulation map (2D-SIMM). Two controllers are added to the system for arranging the cavity fluctuations and translating the cavities respectively. Both the controllers can effectively redesign the dynamics of reproducing cavities in different directions with grid representations. The dynamics of the proposed controlled model are investigated with bifurcation, Lyapunov and FuzzyEn algorithms under various cavity formations in different directions. A relationship is established for the complexity of the phase space with the directional control and various arrangements of the sinusoidal cavities. The proposed model is overall hyperchaotic with the high complexity in the whole parameter plane. The proposed scheme is effective for a dynamical model to reproduce the self phase structure in various arrangements for the optimization and modulation of complexity.

  15. Formation of a repressive complex in the mammalian circadian clock is mediated by the secondary pocket of CRY1

    Science.gov (United States)

    Michael, Alicia K.; Fribourgh, Jennifer L.; Chelliah, Yogarany; Sandate, Colby R.; Hura, Greg L.; Schneidman-Duhovny, Dina; Takahashi, Joseph S.; Partch, Carrie L.

    2017-01-01

    The basic helix–loop–helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the ∼24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here we show that CRY1 binds directly to the PAS domain core of CLOCK:BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solution X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1. PMID:28143926

  16. Fusel alcohols regulate translation initiation by inhibiting eIF2B to reduce ternary complex in a mechanism that may involve altering the integrity and dynamics of the eIF2B body.

    Science.gov (United States)

    Taylor, Eleanor J; Campbell, Susan G; Griffiths, Christian D; Reid, Peter J; Slaven, John W; Harrison, Richard J; Sims, Paul F G; Pavitt, Graham D; Delneri, Daniela; Ashe, Mark P

    2010-07-01

    Recycling of eIF2-GDP to the GTP-bound form constitutes a core essential, regulated step in eukaryotic translation. This reaction is mediated by eIF2B, a heteropentameric factor with important links to human disease. eIF2 in the GTP-bound form binds to methionyl initiator tRNA to form a ternary complex, and the levels of this ternary complex can be a critical determinant of the rate of protein synthesis. Here we show that eIF2B serves as the target for translation inhibition by various fusel alcohols in yeast. Fusel alcohols are endpoint metabolites from amino acid catabolism, which signal nitrogen scarcity. We show that the inhibition of eIF2B leads to reduced ternary complex levels and that different eIF2B subunit mutants alter fusel alcohol sensitivity. A DNA tiling array strategy was developed that overcame difficulties in the identification of these mutants where the phenotypic distinctions were too subtle for classical complementation cloning. Fusel alcohols also lead to eIF2alpha dephosphorylation in a Sit4p-dependent manner. In yeast, eIF2B occupies a large cytoplasmic body where guanine nucleotide exchange on eIF2 can occur and be regulated. Fusel alcohols impact on both the movement and dynamics of this 2B body. Overall, these results confirm that the guanine nucleotide exchange factor, eIF2B, is targeted by fusel alcohols. Moreover, they highlight a potential connection between the movement or integrity of the 2B body and eIF2B regulation.

  17. Fusel Alcohols Regulate Translation Initiation by Inhibiting eIF2B to Reduce Ternary Complex in a Mechanism That May Involve Altering the Integrity and Dynamics of the eIF2B Body

    Science.gov (United States)

    Taylor, Eleanor J.; Campbell, Susan G.; Griffiths, Christian D.; Reid, Peter J.; Slaven, John W.; Harrison, Richard J.; Sims, Paul F.G.; Pavitt, Graham D.; Delneri, Daniela

    2010-01-01

    Recycling of eIF2-GDP to the GTP-bound form constitutes a core essential, regulated step in eukaryotic translation. This reaction is mediated by eIF2B, a heteropentameric factor with important links to human disease. eIF2 in the GTP-bound form binds to methionyl initiator tRNA to form a ternary complex, and the levels of this ternary complex can be a critical determinant of the rate of protein synthesis. Here we show that eIF2B serves as the target for translation inhibition by various fusel alcohols in yeast. Fusel alcohols are endpoint metabolites from amino acid catabolism, which signal nitrogen scarcity. We show that the inhibition of eIF2B leads to reduced ternary complex levels and that different eIF2B subunit mutants alter fusel alcohol sensitivity. A DNA tiling array strategy was developed that overcame difficulties in the identification of these mutants where the phenotypic distinctions were too subtle for classical complementation cloning. Fusel alcohols also lead to eIF2α dephosphorylation in a Sit4p-dependent manner. In yeast, eIF2B occupies a large cytoplasmic body where guanine nucleotide exchange on eIF2 can occur and be regulated. Fusel alcohols impact on both the movement and dynamics of this 2B body. Overall, these results confirm that the guanine nucleotide exchange factor, eIF2B, is targeted by fusel alcohols. Moreover, they highlight a potential connection between the movement or integrity of the 2B body and eIF2B regulation. PMID:20444979

  18. Enhancement of solubility and oral bioavailability of manidipine by formation of ternary solid dispersion with d-α-tocopherol polyethylene glycol 1000 succinate and copovidone.

    Science.gov (United States)

    Chamsai, Benchawan; Limmatvapirat, Sontaya; Sungthongjeen, Srisagul; Sriamornsak, Pornsak

    2017-12-01

    Low bioavailability of oral manidipine (MDP) is due to its low water solubility. The objective of this study was to increase the solubility and bioavailability of MDP by fabricating ternary solid dispersion (tSD) with d-α-tocopherol polyethyleneglycol-1000-succinate and copovidone. In this study, solid ternary phase diagram was applied in order to check the homogeneity of tSD prepared by melting and solidifying with dry ice. The physicochemical properties of different formulations were determined by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR) and hot stage microscopy. Their solubility, dissolution, stability and bioavailability were also investigated. The results demonstrated that tSD obtained from ternary phase diagram divided into homogeneous and non-homogeneous regions. In the homogenous region, the transparent characteristics of tSD was observed and considered as a glass solution, which have a higher MDP solubility than that in non-homogenous region. The hot stage microscopy, DSC and PXRD confirmed that solid dispersion was formed in which MDP was molecularly dispersed in the carriers, especially in the homogenous region of phase diagram. FTIR analysis demonstrated strong hydrogen bonding between amine groups of MDP and carbonyl groups of copovidone, which supported a higher solubility and dissolution of tSD. The pharmacokinetic study in Wistar rats showed that the tSD had the greatest effect on oral bioavailability. Immediate hypotensive effect of tSD was also observed in vivo. The improvement of stability, dissolution and oral bioavailability of MDP could be achieved by using tSD technique.

  19. Synthesis and crystal structure of copper (II) uracil ternary polymeric complex with 1,10-phenanthroline along with the Hirshfeld surface analysis of the metal binding sites for the uracil ligand

    Science.gov (United States)

    Patil, Yogesh Prakash; Nethaji, Munirathinam

    2015-02-01

    The study of models for "metal-enzyme-substrate" interaction has been a proactive area of research owing to its biological and pharmacological importance. In this regard the ternary copper uracil complex with 1,10-phenanthroline represents metal-enzyme-substrate system for DNA binding enzymes. The synthesis of the complex, followed by slow evaporation of the reaction mixture forms two concomitant solvatomorph crystals viz., {[Cu(phen)(μ-ura)(H2O)]n·H2O (1a)} and {[Cu(phen)(μ-ura)(H2O)]n·CH3OH (1b)}. Both complexes are structurally characterized, while elemental analysis, IR and EPR spectra were recorded for 1b (major product). In both complexes, uracil coordinates uniquely via N1 and N3 nitrogen atom acting as a bidentate bridging ligand forming a 1-D polymer. The two solvatomorphs were quantitatively analyzed for the differences with the aid of Hirshfeld surface analysis.

  20. Structural insights into the dual strategy of recognition by peptidoglycan recognition protein, PGRP-S: structure of the ternary complex of PGRP-S with lipopolysaccharide and stearic acid.

    Directory of Open Access Journals (Sweden)

    Pradeep Sharma

    Full Text Available Peptidoglycan recognition proteins (PGRPs are part of the innate immune system. The 19 kDa Short PGRP (PGRP-S is one of the four mammalian PGRPs. The concentration of PGRP-S in camel (CPGRP-S has been shown to increase considerably during mastitis. The structure of CPGRP-S consists of four protein molecules designated as A, B, C and D forming stable intermolecular contacts, A-B and C-D. The A-B and C-D interfaces are located on the opposite sides of the same monomer leading to the the formation of a linear chain with alternating A-B and C-D contacts. Two ligand binding sites, one at C-D contact and another at A-B contact have been observed. CPGRP-S binds to the components of bacterial cell wall molecules such as lipopolysaccharide (LPS, lipoteichoic acid (LTA, and peptidoglycan (PGN from both gram-positive and gram-negative bacteria. It also binds to fatty acids including mycolic acid of the Mycobacterium tuberculosis (Mtb. Previous structural studies of binary complexes of CPGRP-S with LPS and stearic acid (SA have shown that LPS binds to CPGRP-S at C-D contact (Site-1 while SA binds to it at the A-B contact (Site-2. The binding studies using surface plasmon resonance showed that LPS and SA bound to CPGRP-S in the presence of each other. The structure determination of the ternary complex showed that LPS and SA bound to CPGRP-S at Site-1 and Site-2 respectively. LPS formed 13 hydrogen bonds and 159 van der Waals contacts (distances ≤4.2 Å while SA formed 56 van der Waals contacts. The ELISA test showed that increased levels of productions of pro-inflammatory cytokines TNF-α and IFN-γ due to LPS and SA decreased considerably upon the addition of CPGRP-S.

  1. The ribosome-associated complex antagonizes prion formation in yeast.

    Science.gov (United States)

    Amor, Alvaro J; Castanzo, Dominic T; Delany, Sean P; Selechnik, Daniel M; van Ooy, Alex; Cameron, Dale M

    2015-01-01

    The number of known fungal proteins capable of switching between alternative stable conformations is steadily increasing, suggesting that a prion-like mechanism may be broadly utilized as a means to propagate altered cellular states. To gain insight into the mechanisms by which cells regulate prion formation and toxicity we examined the role of the yeast ribosome-associated complex (RAC) in modulating both the formation of the [PSI(+)] prion - an alternative conformer of Sup35 protein - and the toxicity of aggregation-prone polypeptides. The Hsp40 RAC chaperone Zuo1 anchors the RAC to ribosomes and stimulates the ATPase activity of the Hsp70 chaperone Ssb. We found that cells lacking Zuo1 are sensitive to over-expression of some aggregation-prone proteins, including the Sup35 prion domain, suggesting that co-translational protein misfolding increases in Δzuo1 strains. Consistent with this finding, Δzuo1 cells exhibit higher frequencies of spontaneous and induced prion formation. Cells expressing mutant forms of Zuo1 lacking either a C-terminal charged region required for ribosome association, or the J-domain responsible for Ssb ATPase stimulation, exhibit similarly high frequencies of prion formation. Our findings are consistent with a role for the RAC in chaperoning nascent Sup35 to regulate folding of the N-terminal prion domain as it emerges from the ribosome.

  2. Multi-Level Formation of Complex Software Systems

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-05-01

    Full Text Available We present a multi-level formation model for complex software systems. The previous works extract the software systems to software networks for further studies, but usually investigate the software networks at the class level. In contrast to these works, our treatment of software systems as multi-level networks is more realistic. In particular, the software networks are organized by three levels of granularity, which represents the modularity and hierarchy in the formation process of real-world software systems. More importantly, simulations based on this model have generated more realistic structural properties of software networks, such as power-law, clustering and modularization. On the basis of this model, how the structure of software systems effects software design principles is then explored, and it could be helpful for understanding software evolution and software engineering practices.

  3. Anionic solid lipid nanoparticles supported on protamine/DNA complexes

    Science.gov (United States)

    Ye, Jiesheng; Wang, Aihua; Liu, Chunxi; Chen, Zhijin; Zhang, Na

    2008-07-01

    The objective of this study was to design novel anionic ternary nanoparticles for gene delivery. These ternary nanoparticles were equipped with protamine/DNA binary complexes (150-200 nm) as the support, and the anionic formation was achieved by absorption of anionic solid lipid nanoparticles (lipofectamine. The transfection efficiency of the ternary nanoparticles was better than that of naked DNA and the binary complexes, and almost equal to that of lipofectamine/DNA complexes, as revealed by inversion fluorescence microscope observation. These results indicated that the anionic ternary nanoparticles could facilitate gene transfer in cultured cells, and might alleviate the drawbacks of the conventional cationic vector/DNA complexes for gene delivery in vivo.

  4. Characterization of Hydrogen Complex Formation in III-V Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Michael D

    2006-09-28

    Atomic hydrogen has been found to react with some impurity species in semiconductors. Hydrogenation is a methodology for the introduction of atomic hydrogen into the semiconductor for the express purpose of forming complexes within the material. Efforts to develop hydrogenation as an isolation technique for AlGaAs and Si based devices failed to demonstrate its commercial viability. This was due in large measure to the low activation energies of the formed complexes. Recent studies of dopant passivation in long wavelength (0.98 - 1.55m) materials suggested that for the appropriate choice of dopants much higher activation energies can be obtained. This effort studied the formation of these complexes in InP, This material is extensively used in optoelectronics, i.e., lasers, modulators and detectors. The experimental techniques were general to the extent that the results can be applied to other areas such as sensor technology, photovoltaics and to other material systems. The activation energies for the complexes have been determined and are reported in the scientific literature. The hydrogenation process has been shown by us to have a profound effect on the electronic structure of the materials and was thoroughly investigated. The information obtained will be useful in assessing the long term reliability of device structures fabricated using this phenomenon and in determining new device functionalities.

  5. Alterations in serum growth hormone (GH)/GH dependent ternary complex components (IGF-I, IGFBP-3, ALS, IGF-I/IGFBP-3 molar ratio) and the influence of these alterations on growth pattern in female rhythmic gymnasts.

    Science.gov (United States)

    Adiyaman, P; Ocal, G; Berberoğlu, M; Evliyaoğlu, O; Aycan, Z; Cetinkaya, E; Bulca, Y; Ersöz, G; Akar, N

    2004-06-01

    Normal growth in children is regulated to a great extent through the actions of the GH/IGF-I axis, a system consisting of GH and its mediators (ternary complex) that modulate growth in many tissues. The ternary complex (IGF-I/IGFBP-3/ALS) provides an acute regulatory mechanism in which IGF-I may be mobilized from the circulating reservoir of 150 kDa complexes to the tissues. Acute exercise is known to be a stimulus for GH secretion. The beneficial effects of scheduled exercise on body composition are also well established. However, the impact of strenuous exercise on the pubertal development of child athletes is still not well understood. The first goal of this study was to assess the acute effects of high intensity exercise training on GH-dependent ternary complex components in female rhythmic gymnasts compared to age-matched healthy female controls with normal physical activity. The second goal was to explore the influence of these exercise-induced changes on skeletal and pubertal growth in the same group prospectively over a period of 4 years. Seventeen female rhythmic gymnasts, aged 11.4 +/- 0.9 years, who had 10 h per week intense exercise for at least 4 months volunteered to participate in this study. Anthropometric measurement of height (Height SDS for chronological age [HtSDS(CA)], parentally adjusted height, predicted adult height), bone age and weight (BMI) were made using standard techniques in gymnasts and controls (aged 12.5 +/- 3.0 years, n = 12). Gymnasts were followed up to 4 years to observe growth velocity and pubertal progression. In order to determine the acute impact of exercise on levels of GH and GH-dependent ternary complex component (IGF-I, IGFBP-3, ALS, IGF-I/IGFBP-3 molar ratio), blood samples were obtained from gymnasts after a routine 2-h high-intensity training program and then after a 2-day rest period. These results were compared with age-matched controls with no scheduled sports activity. Despite the significant increment in serum

  6. Thermodynamics for complex formation between palladium(ii) and oxalate.

    Science.gov (United States)

    Pilný, Radomír; Lubal, Přemysl; Elding, Lars I

    2014-08-28

    Complex formation between [Pd(H2O)4](2+) and oxalate (ox = C2O4(2-)) has been studied spectrophoto-metrically in aqueous solution at variable temperature, ionic strength and pH. Thermodynamic parameters at 298.2 K and 1.00 mol dm(-3) HClO4 ionic medium for the complex formation [Pd(H2O)4](2+) + H2ox ⇄ [Pd(H2O)2(ox)] + 2H3O(+) with equilibrium constant K1,H (in mol dm(-3)) are log10K1,H = 3.38 ± 0.08, ΔH = -33 ± 3 kJ mol(-1), and ΔS = -48 ± 11 J K(-1) mol(-1), as determined from spectrophotometric equilibrium titrations at 15.0, 20.0, 25.0 and 31.0 °C. Thermodynamic overall stability constants β (in (mol dm(-3))(-n), n = 1,2) for [Pd(H2O)2(ox)] and [Pd(ox)2](2-) at zero ionic strength and 298.2 K, defined as the equilibrium constants for the reaction Pd(2+) + nox(2-) ⇄ [Pd(ox)n](2-2n) (water molecules omitted) are log10β = 9.04 ± 0.06 and log10β = 13.1 ± 0.3, respectively, calculated by use of Specific Ion Interaction Theory from spectrophotometric titrations with initial hydrogen ion concentrations of 1.00, 0.100 and 0.0100 mol dm(-3) and ionic strengths of 1.00, 2.00 or 3.00 mol dm(-3). The values derived together with literature data give estimated overall stability constants for Pd(ii) compounds such as [Pd(en)(ox)] and cis-[Pd(NH3)2Cl2], some of them analogs to Pt(ii) complexes used in cancer treatment. The palladium oxalato complexes are significantly more stable than palladium(ii) complexes with monodentate O-bonding ligands. A comparison between several different palladium complexes shows that different parameters contribute to the stability variations observed. These are discussed together with the so-called chelate effect.

  7. Adhesion complex formation after small keratectomy wounds in the cornea.

    Science.gov (United States)

    Stock, E L; Kurpakus, M A; Sambol, B; Jones, J C

    1992-02-01

    The adhesion complex of the corneal epithelium consists of the hemidesmosome and its associated structures, such as anchoring filaments, lamina densa of the basement membrane, and anchoring fibrils. It contributes to the adhesion of the corneal epithelium to Bowman's layer. To understand the adhesion complex better, an electron microscopic and immunofluorescence analysis was done of the reformation of the adhesion complex in small (1 mm) keratectomy wounds in the guinea pig cornea. In these wounds, the epithelium, hemidesmosomes, basal lamina, anchoring fibrils, and anterior stroma were removed. The wound bed was epithelialized completely by 24 hr after wounding. Immunofluorescence analyses involved the use of antibodies against plaque components of the hemidesmosome, an antibody against laminin, and an antibody against the collagen VII component of anchoring fibrils. At 18 hr after wounding, there was no morphologic evidence of hemidesmosomes at the epithelial-stromal interface. At 24 hr, hemidesmosomes were observed, with or without subjacent lamina densa. Furthermore, plaque components were detected by immunofluorescence in those cells in contact with the wound bed. In contrast, no type VII collagen was detected. On day 7, collagen VII, laminin, and bullous pemphigoid autoantibody markers colocalized along the wound bed as determined by immunofluorescence. However, at the ultrastructural level, even though the lamina densa of the basal lamina was observed primarily where hemidesmosomes were present, it remained incomplete. In this study, the precise temporal sequence in which components are incorporated into the assembling adhesion complex was described during wound healing. Furthermore, the possibility that the hemidesmosomal plaque nucleates the formation of the underlying basal lamina was discussed.

  8. Spontaneous formation of aqueous droplets in complex coacervate systems

    Science.gov (United States)

    Ali, Samim; Prabhu, Vivek

    Complex coacervation occurs when a solution of two oppositely charged polymers undergoes liquid-liquid phase separation under suitable conditions. The coacervate forms the highly viscoelastic polymer-rich phase that exhibits very low interfacial tension with the polymer-poor supernatant. This presentation will describe the spontaneous formation of micron-sized aqueous droplets in the polymer-rich coacervate domain as the temperature of the system is increased above a critical value. The spherical droplets, initiated at the liquid-liquid interface, propagates into the bulk coacervate domain. Moreover, the average size of the droplets increases monotonically with increase in temperature. This results in an optically turbid appearance of the coacervate. We evaluate the role of liquid-liquid interface and polymer structure inside the coacervate phase during such transition using rheological techniques and small-angle neutron scattering. These observations provide a foundation to understand coacervate properties at conditions useful to encapsulation, delivery media, and wet adhesives.

  9. Dynamical complexity in the perception-based network formation model

    Science.gov (United States)

    Jo, Hang-Hyun; Moon, Eunyoung

    2016-12-01

    Many link formation mechanisms for the evolution of social networks have been successful to reproduce various empirical findings in social networks. However, they have largely ignored the fact that individuals make decisions on whether to create links to other individuals based on cost and benefit of linking, and the fact that individuals may use perception of the network in their decision making. In this paper, we study the evolution of social networks in terms of perception-based strategic link formation. Here each individual has her own perception of the actual network, and uses it to decide whether to create a link to another individual. An individual with the least perception accuracy can benefit from updating her perception using that of the most accurate individual via a new link. This benefit is compared to the cost of linking in decision making. Once a new link is created, it affects the accuracies of other individuals' perceptions, leading to a further evolution of the actual network. As for initial actual networks, we consider both homogeneous and heterogeneous cases. The homogeneous initial actual network is modeled by Erdős-Rényi (ER) random networks, while we take a star network for the heterogeneous case. In any cases, individual perceptions of the actual network are modeled by ER random networks with controllable linking probability. Then the stable link density of the actual network is found to show discontinuous transitions or jumps according to the cost of linking. As the number of jumps is the consequence of the dynamical complexity, we discuss the effect of initial conditions on the number of jumps to find that the dynamical complexity strongly depends on how much individuals initially overestimate or underestimate the link density of the actual network. For the heterogeneous case, the role of the highly connected individual as an information spreader is also discussed.

  10. MECHANISM OF FINANCIAL SAFETY FORMATION OF ENTERPRISES OF AGROINDUSTRIAL COMPLEX

    Directory of Open Access Journals (Sweden)

    Aleksandr Khomenko

    2016-11-01

    answer their aims. As a result, depending on the worked out strategy of financial safety, it is possible to draw basic directions of guaranteeing his financial safety activity of enterprises of agro-industrial complex. Organizational-economic principles of forming of mechanism of financial safety of agricultural enterprises must be built on the basis of realization of its expressly certain strategy. It, in same queue, must go out from present of their production potential. This strategy is the basic internal reference-point of forming of financial safety of agricultural enterprise that sets the parameters of all her development. Practical implications. On financial safety of enterprises of agro-industrial complex testifies the conducted analysis of scientific researches, that without regard to the wide list of existing in economic literature researches on the mechanism of forming of enterprises’ financial safety, among scientific circles until now there is not a general idea. It requires forming of new knowledge’s in relation to forming of mechanism of enterprise financial safety, where not only the certain state of subject but also dynamic constituent of development must come forward as a priority lever, what is considered in this article. Value/originality. Creation of valuable mechanism of forming of financial safety of agro-industrial enterprises foresees formulation of criteria and principles of providing of financial safety of every enterprise, determinations of priority national interests in a financial sphere, realization of the permanent watching of factors, which cause a threat financial safety, and also acceptance of measures in relation to their warning and overcoming. The formed mechanism of financial safety of the agricultural formations is pre-condition of prevention of financial threats and negative financial phenomena in production activity of the agricultural formations, defence of their financial losses, and in future stabilizing of activity of the

  11. Issues Affecting the Synthetic Scalability of Ternary Metal Ferrite Nanoparticles

    Directory of Open Access Journals (Sweden)

    Lauren Morrow

    2015-01-01

    Full Text Available Ternary Mn-Zn ferrite (MnxZn1-xFe2O4 nanoparticles (NPs have been prepared by the thermal decomposition of an oleate complex, sodium dodecylbenzenesulfonate (SDBS mediated hydrazine decomposition of the chloride salts, and triethylene glycol (TREG mediated thermal decomposition of the metal acetylacetonates. Only the first method was found to facilitate the synthesis of uniform, isolable NPs with the correct Mn : Zn ratio (0.7 : 0.3 as characterized by small angle X-ray scattering (SAXS, transmission electron microscopy (TEM, and inductively coupled plasma-optical emission spectroscopy (ICP-OES. Scaling allowed for retention of the composition and size; however, attempts to prepare Zn-rich ferrites did not result in NP formation. Thermogravimetric analysis (TGA indicated that the incomplete decomposition of the metal-oleate complexes prior to NP nucleation for Zn-rich compositions is the cause.

  12. Complex formation dynamics in a single-molecule electronic device.

    Science.gov (United States)

    Wen, Huimin; Li, Wengang; Chen, Jiewei; He, Gen; Li, Longhua; Olson, Mark A; Sue, Andrew C-H; Stoddart, J Fraser; Guo, Xuefeng

    2016-11-01

    Single-molecule electronic devices offer unique opportunities to investigate the properties of individual molecules that are not accessible in conventional ensemble experiments. However, these investigations remain challenging because they require (i) highly precise device fabrication to incorporate single molecules and (ii) sufficient time resolution to be able to make fast molecular dynamic measurements. We demonstrate a graphene-molecule single-molecule junction that is capable of probing the thermodynamic and kinetic parameters of a host-guest complex. By covalently integrating a conjugated molecular wire with a pendent crown ether into graphene point contacts, we can transduce the physical [2]pseudorotaxane (de)formation processes between the electron-rich crown ether and a dicationic guest into real-time electrical signals. The conductance of the single-molecule junction reveals two-level fluctuations that are highly dependent on temperature and solvent environments, affording a nondestructive means of quantitatively determining the binding and rate constants, as well as the activation energies, for host-guest complexes. The thermodynamic processes reveal the host-guest binding to be enthalpy-driven and are consistent with conventional 1 H nuclear magnetic resonance titration experiments. This electronic device opens up a new route to developing single-molecule dynamics investigations with microsecond resolution for a broad range of chemical and biochemical applications.

  13. The Smart Residential Complex Effect on Personality Formation of Children

    Directory of Open Access Journals (Sweden)

    Seyed Kasra Mirpadyab

    2017-06-01

    Full Text Available The interaction between human beings and the environment has been a question of all times; however, the Industrial Revolution has begun to change its way. It can be seen that the human beings were a part of their environment in the past, but now with the advancement of knowledge and technology, the man can dominate in their environment. But today, the man’s needs should be well known about the interaction with the natural environment and with respect to the position of the residential complexes in the modern society, these buildings are designed to create the psychological comfort and the formation of the personality. The authors of this paper believe the mentioned event will be happening in the future generation of the buildings. These buildings will be equipped with smart automation system for all their activities. This research conducted by grounded theories about the explanation of the smart residential complexes equipped with the BMS, which can be effective for shaping the managerial character of the children in their future.

  14. A complex postnatal mental health intervention: Australian translational formative evaluation.

    Science.gov (United States)

    Rowe, Heather J; Wynter, Karen H; Burns, Joanna K; Fisher, Jane R W

    2017-08-01

    Reducing the burden of postnatal maternal mental health problems is an international public health priority. We developed What Were We Thinking (WWWT), a psychoeducation programme for primary postnatal health care that addresses known but neglected risks. We then demonstrated evidence of its effects in a before-and-after controlled study in preventing maternal postnatal mental health problems among women without a psychiatric history participating in the intervention compared to usual care (AOR 0.43; 95% CI 0.21, 0.89) when conducted by specialist nurses. Testing its effectiveness when implemented in routine primary care requires changes at practitioner, organizational and health system levels. This paper describes a programme of translational formative evaluation to inform the protocol for a cluster RCT. Following the UK Medical Research Council (MRC) Guidance for evaluating complex interventions, we conducted a translational formative evaluation using mixed methods. Collection and analysis of postnatal health service documents, semi-structured interviews, group discussions and an online survey were used to investigate service provision, consumers' needs and expectations, clinicians' attitudes and clinical practice, and the implications for health service delivery. Participants were expectant parents, health care providers, health service managers and government policy makers. Results documented current clinical practice, staff training needs, necessary service modifications to standardize advice to parents and include fathers, key priorities and drivers of government health policy, and informed a model of costs and expected health and social outcomes. Implementation of WWWT into routine postnatal care requires adjustments to clinical practice. Staff training, modifications to service opening hours and economic implications for the health system also need to be considered. The MRC Guidance for developing and evaluating complex interventions is a useful framework

  15. Methyl thiophanate as a DNA minor groove binder produces MT-Cu(II)-DNA ternary complex preferably with AT rich region for initiation of DNA damage.

    Science.gov (United States)

    Saquib, Quaiser; Al-Khedhairy, Abdulaziz A; Alarifi, Saud A; Dutta, Sansa; Dasgupta, Swagata; Musarrat, Javed

    2010-07-01

    Interaction of a genotoxic fungicide methyl thiophanate (MT) has been studied in vitro with calf thymus DNA. Fluorescence quenching data revealed the binding constant (K(a)=3.23 x 10(4)M(-1)) and binding capacity (n=1.1) of MT with ctDNA. Ligand displacement studies using specific probes suggested the MT binding at DNA minor groove. The docking analysis further substantiated MT interaction with at least three AT base pairs within the DNA groove. A discernable change in E(0)' value with decreased peak currents in cyclic voltammogram, and peak shifts in CD spectra reflected the formation of MT-ctDNA and MT-ctDNA-Cu(II) complexes. The results elucidate the significance of specific MT-DNA interactions as an initiating event in MT-induced DNA damage. (c) 2010 Elsevier B.V. All rights reserved.

  16. Formation of Cm humate complexes in aqueous solution at pH{sub c} 3 to 5.5. The role of fast interchange

    Energy Technology Data Exchange (ETDEWEB)

    Freyer, M.; Walther, C.; Buckau, G. [Forschungszentrum Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung; Stumpf, T. [Forschungszentrum Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung; Physikalisch-Chemisches Inst. Ruprecht-Karls Univ., Heidelberg (Germany); Fanghaenel, T. [Physikalisch-Chemisches Inst. Ruprecht-Karls Univ., Heidelberg (Germany); European Commission, Joint Research Center, Inst. for Transuranium Elements, Karlsruhe (Germany)

    2009-07-01

    Safety assessment of nuclear waste disposal includes determination of the possible impact of natural dissolved organic matter on the transport of actinide ions via groundwater into the biosphere. Thereby, much attention is paid to americium as it dominates the radiotoxicity of the nuclear waste after about 300 y and up to about 1000 y (spent fuel) or 100 000 y (vitrified reprocessing waste). A trustworthy description of the influence benefits from a sound chemical process understanding of the americium humate complexation and transport processes. A problem in this respect is that studies by TRLFS lead to inconclusive results with respect to the nature of the complexes involved. In the present study the outcome of TRLFS measurements in H{sub 2}O and D{sub 2}O, and at room temperature and in liquid nitrogen are compared. It is shown that the Cm{sup 3+} ion interchanges between aquo ion (Cm{sup 3+}{sub aq}) and humate complex (CmHA) on a time scale of milliseconds in a pH range between 3 and 5.5. Taking this interchange into account, the process can be described in the absence of ternary complexes by the 1:1 stoichiometry formation of one curium humate complex, or a sufficiently narrow distribution of complexes to be represented by one average complex. (orig.)

  17. Ternary complexes between adenosine 5' -triphosphoric acid, 2,2'-bipyridyl and the divalent metal ions manganese (II), cobalt (II), copper (II), and zinc (II). Preparation and physiochemical properties.

    Science.gov (United States)

    Cini, R; Orioli, P

    1981-04-01

    A series of ternary complexes between adenosine 5'-triphosphoric acid (ATP), 2,2'-bipyridyl, and the transition metal ions manganese (II), cobalt(II), copper (II), and zinc(II) in the ratio 1:1:1 have been prepared. The solid compounds are crystalline and can be formulated as [M(II)-H2ATP-2,2'-Bipyridyl]2 . 4H2O (MATPbipy). X-ray powder patterns show them to be all isomorphous. Potentiometric titrations in aqueous solutions are in agreement with the presence of two ionizable protons. Ultraviolet and visible spectra, epr, and magnetic susceptibility measurements suggest that the metal ions have a high-spin distorted octahedral coordination. From infrared spectra it can be deduced that ATP coordinates to the metal only through the oxygen atoms of the phosphate groups. These compounds, which are particularly stable towards hydrolysis, form possible models for ATP transport in biological fluids.

  18. Binary and ternary copper(II) complexes of a new Schiff base ligand derived from 4-acetyl-5,6-diphenyl-3(2H)-pyridazinone: Synthesis, spectral, thermal, antimicrobial and antitumor studies

    Science.gov (United States)

    Shebl, Magdy; Adly, Omima M. I.; Abdelrhman, Ebtesam M.; El-Shetary, B. A.

    2017-10-01

    A new Schiff base ligand was synthesized by the reaction of 4-acetyl-5,6-diphenyl-3(2H)-pyridazinone with ethylenediamine. A series of binary copper(II) Schiff base complexes have been synthesized by using various copper(II) salts; AcO-, NO3-, ClO4-, Cl- and Br-. Ternary complexes were synthesized by using auxiliary ligands (L‧) [N,O-donor; 8-hydroxyquinoline and glycine or N,N-donor; 1,10-phenanthroline, bipyridyl and 2-aminopyridine]. The structures of the Schiff base and its complexes were characterized by elemental and thermal analyses, IR, electronic, mass, 1H NMR and ESR spectra in addition to conductivity and magnetic susceptibility measurements. The obtained complexes include neutral binuclear complexes as well as neutral and cationic mononuclear complexes according to the anion used and the experimental conditions. The ESR spin Hamiltonian parameters of some complexes were calculated and discussed. The metal complexes exhibited octahedral and square planar geometrical arrangements depending on the nature of the anion. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages were evaluated using Coats-Redfern equations. The antimicrobial activity of the Schiff base and its complexes was screened against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Salmonella typhimurium and Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus fumigatus). The antitumor activity of the Schiff base and some of its Cu(II) complexes was investigated against HepG-2 cell line.

  19. Synthesis and crystal structure of a ternary copper(II) complex of 2,2‧-bipyridine and picrate: Molecular docking, reactivity towards DNA and in vitro anticancer activity

    Science.gov (United States)

    Zheng, Kang; Jiang, Man; Li, Yan-Tuan; Wu, Zhi-Yong; Yan, Cui-Wei

    2014-01-01

    A new mononuclear ternary copper(II) complex with mixed ligands of 2,2‧-bipyridine (bpy) and picrate (pic), namely [Cu(bpy)(pic)2], has been synthesized and characterized by elemental analysis, molar conductivity measurement, IR and electronic spectral studies, and single-crystal X-ray diffraction. The crystal structure analysis reveals the presence of two crystallographic independent molecules in an asymmetric unit. The copper(II) atoms are in elongated octahedral coordination geometries. A three-dimensional supermolecular network is formed through non-classical C-H⋯O hydrogen bonds. The DNA-binding properties of the copper(II) complex are investigated both theoretically and experimentally, revealing that the copper(II) complex can interact with HS-DNA in the mode of intercalation, and the molecular docking of the copper(II) complex with the self-complementary DNA duplex of sequence d(ACCGACGTCGGT)2 facilitates the binding events. The in vitro anticancer activities suggest that the copper(II) complex is active against the selected tumor cell lines.

  20. Integrin activation and focal complex formation in cardiac hypertrophy

    Science.gov (United States)

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  1. Tensiometric investigation of the interaction and phase separation in a polymer mixture–ionic surfactant ternary system

    Directory of Open Access Journals (Sweden)

    JAROSLAV M. KATONA

    2010-06-01

    Full Text Available The interaction and phase separation in a ternary mixture composed of hydroxypropyl methyl cellulose (HPMC, sodium carboxymethyl cellulose (NaCMC, and sodium dodecylsulfate (SDS were investigated by tensiometry. Surface tension measurements of binary mixtures (0.7 % HPMC and 0.00–2.00 % SDS and of ternary mixtures (0.7 % HPMC, 0.3 % NaCMC, and 0.00–2.00 % SDS were performed. The measurements indicated interaction between HPMC and SDS, which resulted in HPMC–SDS complex formation. The critical association concentration, CAC, and polymer saturation point, PSP, were determined. Phase separation of ternary HPMC/SDS/NaCMC mixtures occurs at SDS concentration > CAC, i.e., when the HPMC–SDS complex is formed. The volume of the coacervate increases with increasing SDS concentration, and at SDS concentrations > 1.00 %, the coacervate vanishes. The surface tensions (s of ternary HPMC/SDS/NaCMC mixtures in the pre-coacervation region and at the onset of the coacervation region are similar to the σ of the corresponding binary HPMC–SDS mixtures, while in the coacervation and post coacervation region, they are close to the s of the corresponding SDS solutions

  2. Subarrayed Antenna Array Synthesis Using Ternary Adjusting Method

    Directory of Open Access Journals (Sweden)

    Guolong He

    2014-01-01

    Full Text Available Ternary adjusting method is proposed and combined with particle swarm optimization (PSO algorithm for subarrayed antenna array synthesis. Ternary variables are introduced to represent element adjustments between adjacent subarrays. Compared to previous methods, rounding-off operations are not required any longer, and the equation constraint of the fixed total element number is also removed, which effectively reduces the complexity of implementation while obtaining improved topology exploration capability simultaneously.

  3. Copper(II) complex formation equilibria involving L-carnosine, the role in the catalysis of amino acid ester hydrolisis

    Energy Technology Data Exchange (ETDEWEB)

    Shoukry, E.M.; Shoukry, M.M.; Mahgoub, A.E.; Galal, H.M. [Cairo Univ., Cairo (Egypt). Faculty of Science

    2000-10-01

    The binary and ternary complexes of copper(II) involving carnosine (H{sub 3}L), amino acids and DNA constituents were examined. Copper(II) was found to form CuL and CuLH{sub 1} complexes with carnosine. The ternary complexes of Copper(II) with carnosine and DNA constituents are formed in a stepwise mechanism, whereby carnosine binds to copper(II), then followed by ligation of the DNA constituents. The concentration distribution of the various complex species has been evaluated. The hydrolysis of amino acid ester is catalysed by the Cu-carnosine complex. The rate enhancement compared with the fee ester hydrolysis is investigated in terms of the ester coordination mode. [Italian] Sono stati considerati i complessi binari e ternari del rame(II) con la carnosina (H{sub 3}L), amino acidi e constituenti del DNA. Si e' trovato che il rame(II) forma complessi CuL e CuLH{sub 1} con la carnosina. I complessi ternari di rame(II) con carnosina e constitutenti del DNA si formano con un meccanismo a stadi, prima la carnosina lega il rame e successivamente sono legati i constituenti del DNA. E' stata valutata la distribuzione della concentrazione delle varie specie complesse. Il complesso Cu-carnosina catalizza l'idrolisi degli esteri di aminoacidi. L'incremento di velocita', rispetto all'idrolisi dell'estere libero, e' stato studiato in termini di modo di coordinazione dell'estere.

  4. Synthesis, characterization and fungicidal activity of binary and ternary metal(II) complexes derived from 4,4‧-((4-nitro-1,2-phenylene) bis(azanylylidene))bis(3-(hydroxyimino)pentan-2-one)

    Science.gov (United States)

    El-Tabl, Abdou S.; Shakdofa, Mohamad M. E.; Whaba, Mohamad A.

    2015-02-01

    Ternary copper(II) and binary copper(II), nickel(II) and cobalt(II) complexes derived from 4,4‧-((4-nitro-1,2-phenylene)bis(azanylylidene))bis(3-(hydroxyimino)pentan-2-one) (H2L) were synthesized and characterized by elemental and thermal analyses, IR, UV-Vis. and 1H NMR spectroscopy, conductivity and magnetic moments measurements. The analytical and spectral data showed that, the ligand acts as dibasic tetradentate or dibasic hexadentate bonding to the metal ion via the two-imine nitrogen, two nitrogen and/or oximato oxygen atoms of deprotonated oxime groups forming five and/or six rings including the metal ions. The complexes adopt either tetragonal distorted octahedral or square planar geometry around metal ions. The ESR spectra of the solid copper(II) complexes are characteristic to d9 configuration and having an axial symmetry type of a d(x2-y2) ground state. The g values confirmed the geometry is elongated tetragonal octahedral geometry with considerably ionic or covalent environment. The antifungal biological activity of the prepared compounds was studied using well diffusion method. The obtained results showed that, the ligand is biologically inactive while its metal complexes were more potent fungicides than the ligand and standard antifungal drug (Amphotericin B).

  5. Synthesis, characterization and fungicidal activity of binary and ternary metal(II) complexes derived from 4,4'-((4-nitro-1,2-phenylene) bis(azanylylidene))bis(3-(hydroxyimino)pentan-2-one).

    Science.gov (United States)

    El-Tabl, Abdou S; Shakdofa, Mohamad M E; Whaba, Mohamad A

    2015-02-05

    Ternary copper(II) and binary copper(II), nickel(II) and cobalt(II) complexes derived from 4,4'-((4-nitro-1,2-phenylene)bis(azanylylidene))bis(3-(hydroxyimino)pentan-2-one) (H2L) were synthesized and characterized by elemental and thermal analyses, IR, UV-Vis. and (1)H NMR spectroscopy, conductivity and magnetic moments measurements. The analytical and spectral data showed that, the ligand acts as dibasic tetradentate or dibasic hexadentate bonding to the metal ion via the two-imine nitrogen, two nitrogen and/or oximato oxygen atoms of deprotonated oxime groups forming five and/or six rings including the metal ions. The complexes adopt either tetragonal distorted octahedral or square planar geometry around metal ions. The ESR spectra of the solid copper(II) complexes are characteristic to d(9) configuration and having an axial symmetry type of a d(x2-y2) ground state. The g values confirmed the geometry is elongated tetragonal octahedral geometry with considerably ionic or covalent environment. The antifungal biological activity of the prepared compounds was studied using well diffusion method. The obtained results showed that, the ligand is biologically inactive while its metal complexes were more potent fungicides than the ligand and standard antifungal drug (Amphotericin B). Copyright © 2014. Published by Elsevier B.V.

  6. Complex formation of Eu(III) with polyacrylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, T.; Tochiyama, O.; Tanaka, K.; Niibori, Y. [Tohoku Univ., Sendai (Japan). Dept. of Quantum Science and Energy Engineering

    2000-07-01

    For the quantitative description of the interaction of metal ions with humic substances, it is necessary to clarify the effects of both polyelectrolyte and heterogeneous nature of humic substances. To estimate the polyelectrolyte effect separately, polyacrylic acid (MW = 90 000) has been selected as a representative of well-defined, homogeneous polymeric weak acids, and its interaction with Eu(III) has been investigated by a solvent extraction method using {sup 152}Eu ({proportional_to} 10{sup -8} M) with TTA and TBP in xylene. By defining the apparent complex formation constant as {beta}{sub {alpha}} = [ML]/([M][R]), where [M] = [Eu{sup 3+}], [ML] is the concentration of Eu(III) associated with polyacrylic acid and [R] = C{sub R}{alpha} (C{sub R} is a total concentration of proton exchanging sites and {alpha} is a degree of dissociation determined by potentiometric titration), the apparent constants have been obtained at several pcH and ionic strength (0.1 M and 1.0 M NaClO{sub 4}). The constants increased with pcH and decreased with an increase of ionic strength, that is, the values of log {beta}{sub {alpha}} varied from 6.0 (at pcH = 4.7) to 7.6 (pcH = 5.5) at 0.1 M NaClO{sub 4} and from 4.8 (pcH = 4.4) to 6.5 (pcH = 5.4) at 1.0 M. The plots of log {beta}{sub {alpha}} versus log {alpha} revealed almost linear relationship both at 0.1 and 1.0 M NaClO{sub 4}. (orig.)

  7. Retrograde lawsonite formation in the Franciscan subduction complex

    Science.gov (United States)

    Myers, S.; Mulcahy, S. R.

    2016-12-01

    Lawsonite [CaAl2Si2O7(OH)2·H2O] is an index mineral of low-temperature subduction zones, contains a significant amount of water, and is an important host of rare-earth and trace elements in mafic protoliths. For these reasons, numerous studies have investigated the consequences of lawsonite breakdown during prograde subduction. In the Franciscan subduction complex, however, lawsonite in mafic blueschist largely formed along a retrograde path from pre-existing eclogite. In order to asses the conditions and significance of retrograde lawsonite formation we examined the petrology and geochemistry of lawsonite-bearing assemblages in Franciscan mafic rocks. All of the samples have the common assemblage: lawsonite, glaucophane, and sphene. Quartz is generally absent. Muscovite, chlorite, and relict epidote and rutile are variably present. Different index minerals calcite, aragonite, albite, and jadeitic pyroxene are present within lawsonite assemblages. Garnet occurs in equilibrium with lawsonite, as a relict mineral in lawsonite and the matrix, or is completely absent. Major element compositions vary from typical basalts and are strongly correlated with one another. Chondrite normalized REE compositions are variably LREE depleted or enriched, MREE are flat to enriched, and HREE are generally flat. Trace elements normalized to NMORB show variably enriched and depleted LILE. The petrology suggests lawsonite, glaucophane, and sphene formed from multiple retrograde reactions involving garnet, clinopyroxene, epidote, and rutile, together with significant hydration. Important index minerals imply lawsonite formed over a wide range of pressures within the subduction zone. The major, REE, and trace element compositions suggest lawsonite assemblages were derived from different protoliths or experienced variable amounts of metasomatism and interaction with crustally derived material and serpentinite.

  8. Coexistence facilitates interspecific biofilm formation in complex microbial communities

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Røder, Henriette Lyng; Russel, Jakob

    2016-01-01

    , the underlying role of fundamental ecological factors, specifically coexistence and phylogenetic history, in biofilm formation remains unclear. This study examines how social interactions affect biofilm formation in multi-species co-cultures from five diverse environments. We found prevalence of increased...... biofilm formation among co-cultured bacteria that have coexisted in their original environment. Conversely, when randomly co-culturing bacteria across these five consortia, we found less biofilm induction and a prevalence of biofilm reduction. Reduction in biofilm formation was even more predominant when...... correlated with an increase in planktonic cell numbers, thus implying a behavioral response rather than mere growth competition. Our findings suggest that an increase in biofilm formation is a common adaptive response to long-term coexistence....

  9. Starch-lipid inclusion complexes for aerogel formation

    Science.gov (United States)

    Recently we reported that aqueous slurries of starch can be excess steam jet-cooked and blended with aqueous solutions of fatty acid salts to produce inclusion complexes between amylose and the fatty acid salt. These complexes can be simply prepared on large scale using commercially available steam ...

  10. The effect of temperature and time on the formation of amylose- lysophosphatidylcholine inclusion complexes

    NARCIS (Netherlands)

    Ahmadiabhari, Salomeh; Woortman, Albert J. J.; Oudhuis, A. A. C. M. (Lizette); Hamer, Rob J.; Loos, Katja

    The formation of amylose inclusion complexes could help to decrease the susceptibility of starch granules against amylase digestion. We studied the formation of amylose-lysophosphatidylcholine (LPC) inclusion complexes at temperatures at and below the gelatinization temperature of starch, using DSC,

  11. Meiotic cohesin complexes are essential for the formation of the axial element in mice

    NARCIS (Netherlands)

    Llano, Elena; Herrán, Yurema; García-Tuñón, Ignacio; Gutiérrez-Caballero, Cristina; de Álava, Enrique; Barbero, José Luis; Schimenti, John; de Rooij, Dirk G.; Sánchez-Martín, Manuel; Pendás, Alberto M.

    2012-01-01

    Cohesin is a conserved multisubunit protein complex that participates in chromosome segregation, DNA damage repair, chromatin regulation, and synaptonemal complex (SC) formation. Yeast, but not mice, depleted of the cohesin subunit Rec8 are defective in the formation of the axial elements (AEs) of

  12. Variation in DNA binding constants with a change in geometry of ternary copper(II) complexes with N2O donor Schiff base and cyanate or dicyanamide

    Science.gov (United States)

    Jana, Subrata; Santra, Ramesh Chandra; Das, Saurabh; Chattopadhyay, Shouvik

    2014-09-01

    Two new copper(II) complexes, [Cu(L)(OCN)] (1) and [CuL(dca)]n (2), where HL = 2-(-(2-(diethylamino)ethylimino)methyl)naphthalen-1-ol, dca = N(CN)2-, have been synthesized and characterized by elemental analysis, IR, UV-VIS spectroscopy and single crystal X-ray diffraction studies. Complex 1 has square planar and complex 2 square pyramidal geometries in solid state around metal centre. Interactions of the complexes with calf thymus DNA (CT DNA) were studied by UV-VIS spectroscopy. Binding constant and site size of interaction were determined. Binding site size and intrinsic binding constant K revealed complex 1 interacted with calf thymus DNA better than complex 2.

  13. Approximately Ternary Homomorphisms on C*-Ternary Algebras

    Directory of Open Access Journals (Sweden)

    Eon Wha Shim

    2013-01-01

    functional equation: fx2-x1/3+fx1-3x3/3+f3x1+3x3-x2/3=fx1, by the direct method. Under the conditions in the main theorems, we can show that the related mappings must be zero. In this paper, we correct the conditions and prove the corrected theorems. Furthermore, we prove the Hyers-Ulam stability and the superstability of C*-ternary homomorphisms and C*-ternary derivations on C*-ternary algebras by using a fixed point approach.

  14. The Formation of the Self. Nietzsche and Complexity | Cilliers ...

    African Journals Online (AJOL)

    The purpose of this article is to examine the relationship between the formation of the self and the worldly horizon within which this self achieves its meaning. Our inquiry takes place from two perspectives: the first derived from the Nietzschean analysis of how one becomes what one is; the other from current developments in ...

  15. Quality Enhancement by Inclusion Complex Formation of Simvastatin Tablets

    Directory of Open Access Journals (Sweden)

    Emőke Rédai

    2013-08-01

    Full Text Available Introduction: Simvastatin is an inhibitor of hydroxy-methyl-glutaryl-coenzyme A reductase, used in the treatment of hypercholesterolemia. To enhance its bioavailability by inclusion complexation, as host molecule randommethyl-β-cyclodextrin had been used. After evaluating the complexes we chose the kneading product in 1:2 molar ratio for incorporation of 10 mg simvastatin tablets. Materials and methods: We prepared homogenous mixtures of the inclusion complex and some excipients. The tablets were prepared by direct compression. The tablets were evaluated in regard to: weight uniformity, thickness, diameter, hardness, friability, disintegration and dissolution profile. Results: Weights are in the range of 196-208 mg, diameter 6.83-6.86 mm, height 3.86-4.01 mm, hardness 78.3-113.1 N, friability 0.75- 1.19 %, disintegration above 15 minutes. The dissolved amounts of simvastatin from the tablets are higher compared to the dissolution of pure simvastatin, but lower than the dissolution of the complex itself. Excipients, like disintegrants and lubricants greatly influence the dissolution properties of the tablets. Conclusions: According to our results, tablets containing inclusion complex of simvastatin exhibit better solubility, according to the dissolved amount of simvastatin, than pure drug alone. Proper physical parameters of the tablets are obtained by application of 5 % Primellose

  16. Complexity of gold nanoparticle formation disclosed by dynamics study

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Jensen, Palle Skovhus; Sørensen, Karsten

    2013-01-01

    Although chemically synthesized gold nanoparticles (AuNPs) from gold salt (HAuCl4) are among the most studied nanomaterials, understanding the formation mechanisms is a challenge mainly due to limited dynamics information. A range of in situ methods with down to millisecond (ms) time resolution...... from redox potential, pH, conductivity, and turbidity of the solution enables distinct observation of reduction and nucleation/growth of AuNPs phases. The dynamics of the electrochemical potential shows that reduction of gold salt (HAuCl 4 and its hydrolyzed forms) occurs via intermediate [AuCl 2......]- to form Au atoms during the early stage of the synthesis process. pH- and conductivity-dynamics point further clearly to formation of coating layers on AuNPs and adsorbate exchange between MES and starch. © 2013 American Chemical Society....

  17. Syntheses and electroluminescent properties of two europium ternary complexes Eu(DBM){sub 3}(PBO) and Eu(DBM){sub 3}(PBT)

    Energy Technology Data Exchange (ETDEWEB)

    Guan Min [State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871 (China); Gao Lihua [Department of Chemistry, Beijing Normal University, Beijing 100875 (China); Wang Shanshan [State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871 (China); Huang Chunhui [State Key Laboratory of Rare Earth Materials Chemistry and Applications, Peking University, Beijing 100871 (China)], E-mail: chhuang@pku.edu.cn; Wang Kezhi [Department of Chemistry, Beijing Normal University, Beijing 100875 (China)

    2007-12-15

    Two europium complexes, Eu(DBM){sub 3}(PBO) and Eu(DBM){sub 3}(PBT) (DBM=dibenzoylmethanato, PBO=2-(2-pyridyl)benzoxazole, PBT=2-(2-pyridyl)benzothiazole), were prepared and used as emitting materials in organic electroluminescent (EL) devices. The devices with the structures ITO/TPD/Eu(DBM){sub 3}(PBO) (or Eu(DBM){sub 3}(PBT)/BCP/Alq{sub 3}/Mg:Ag/Ag emit red light originating from the europium complexes.

  18. The Effect of Complex Formation upon the Redox Potentials of Metallic Ions. Cyclic Voltammetry Experiments.

    Science.gov (United States)

    Ibanez, Jorge G.; And Others

    1988-01-01

    Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)

  19. Formation of complex anodic films on porous alumina matrices

    Indian Academy of Sciences (India)

    The kinetics of growth of complex anodic alumina films was investigated. These films were formed by filling porous oxide films (matrices) having deep pores. The porous films (matrices) were obtained voltastatically in (COOH)2 aqueous solution under various voltages. The filling was done by re-anodization in an electrolyte ...

  20. Intrinsic disorder in the partitioning protein KorB persists after co-operative complex formation with operator DNA and KorA

    Science.gov (United States)

    Callow, Philip; Rajasekar, Karthik V.; Timmins, Peter; Patel, Trushar R.; Siligardi, Giuliano; Hussain, Rohanah; White, Scott A.; Thomas, Christopher M.

    2017-01-01

    The ParB protein, KorB, from the RK2 plasmid is required for DNA partitioning and transcriptional repression. It acts co-operatively with other proteins, including the repressor KorA. Like many multifunctional proteins, KorB contains regions of intrinsically disordered structure, existing in a large ensemble of interconverting conformations. Using NMR spectroscopy, circular dichroism and small-angle neutron scattering, we studied KorB selectively within its binary complexes with KorA and DNA, and within the ternary KorA/KorB/DNA complex. The bound KorB protein remains disordered with a mobile C-terminal domain and no changes in the secondary structure, but increases in the radius of gyration on complex formation. Comparison of wild-type KorB with an N-terminal deletion mutant allows a model of the ensemble average distances between the domains when bound to DNA. We propose that the positive co-operativity between KorB, KorA and DNA results from conformational restriction of KorB on binding each partner, while maintaining disorder. PMID:28760886

  1. Intrinsic disorder in the partitioning protein KorB persists after co-operative complex formation with operator DNA and KorA.

    Science.gov (United States)

    Hyde, Eva I; Callow, Philip; Rajasekar, Karthik V; Timmins, Peter; Patel, Trushar R; Siligardi, Giuliano; Hussain, Rohanah; White, Scott A; Thomas, Christopher M; Scott, David J

    2017-08-30

    The ParB protein, KorB, from the RK2 plasmid is required for DNA partitioning and transcriptional repression. It acts co-operatively with other proteins, including the repressor KorA. Like many multifunctional proteins, KorB contains regions of intrinsically disordered structure, existing in a large ensemble of interconverting conformations. Using NMR spectroscopy, circular dichroism and small-angle neutron scattering, we studied KorB selectively within its binary complexes with KorA and DNA, and within the ternary KorA/KorB/DNA complex. The bound KorB protein remains disordered with a mobile C-terminal domain and no changes in the secondary structure, but increases in the radius of gyration on complex formation. Comparison of wild-type KorB with an N-terminal deletion mutant allows a model of the ensemble average distances between the domains when bound to DNA. We propose that the positive co-operativity between KorB, KorA and DNA results from conformational restriction of KorB on binding each partner, while maintaining disorder. © 2017 The Author(s).

  2. Ternary complexes of copper(II) and cobalt(II) involving nitrite/pyrazole and tetradentate N4-coordinate ligand: Synthesis, characterization, structures and antimicrobial activity

    Science.gov (United States)

    Solanki, Ankita; Sadhu, Mehul H.; Kumar, Sujit Baran

    2015-12-01

    Five new mononuclear mixed ligand complexes of the type [Cu(NCCH3)(dbdmp)](ClO4)2, [M(ONO)(dbdmp)]ClO4, [M(pz) (dbdmp)](ClO4)2 where M = Cu(II) and Co(II), pz = 3,5-dimethylpyrazole and dbdmp = N,N-diethyl-N‧,N‧-bis((3,5-dimethyl-1H-pyrazol-1-yl)methyl)ethane-1,2-diamine have been synthesized and characterized by physico-chemical and spectroscopy studies. The crystal structures of three copper(II) complexes [Cu(NCCH3)(dbdmp)](ClO4)2, [Cu(ONO)(dbdmp)]ClO4 and [Cu(pz)(dbdmp)](ClO4)2 have been determined by single crystal X-ray diffraction studies. Structural analyses reveal the geometry of [Cu(pz)(dbdmp)](ClO4)2 is distorted square pyramidal and other two copper(II) complexes have distorted trigonal bipyramidal geometry. Molecular composition of cobalt(II) complexes have been determined by mass spectral data. The EPR spectra of copper(II) complexes in frozen acetonitrile solution exhibit axial spectra, characteristic of dx2-y2 ground state. Electrochemical studies of copper(II) complexes using glassy carbon as working electrode in acetonitrile solution show Cu(II)/Cu(I) couple with quasi reversible electron transfer versus Ag/Ag+ reference electrode. Antimicrobial activity of all the synthesized complexes were investigated against two Gram positive and two Gram negative bacterial strains.

  3. Characterization of ternary bivalent metal complexes with bis(2-hydroxyethyl)iminotris(hydroxymethy)methane (Bis?Tris) and the comparison of five crystal structures of Bis?Tris complexes*1

    Science.gov (United States)

    Inomata, Yoshie; Gochou, Yoshihiro; Nogami, Masanobu; Howell, F. Scott; Takeuchi, Toshio

    2004-09-01

    Eleven bivalent metal complexes with bis(2-hydroxyethyl)iminotris(hydroxymethy)methane (Bis-Tris:hihm): [M(hihm)(H 2O)]SO 4· nH 2O (M: Co, Ni, Cu, Zn), [MCl(hihm)]Cl· nH 2O (M: Co, Ni, Cu), and [M(HCOO)(hihm)](HCOO) (M: Co, Ni, Cu, Zn) have been prepared and characterized by using their infrared absorption and powder diffuse reflection spectra, magnetic susceptibility, thermal analysis and powder X-ray diffraction analysis. The crystal structures of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2), [Cu(hihm)(H 2O)]SO 4 ( 3), [NiCl(hihm)]Cl·H 2O ( 6), [CuCl(hihm)]Cl ( 7) and [Co(HCOO)(hihm)](HCOO) ( 8) have been determined by single crystal X-ray diffraction analysis. The crystals of [Ni(hihm)(H 2O)]SO 4·H 2O ( 2) and [Cu(hihm)(H 2O)]SO 4 ( 3) are each orthorhombic with the space group P2 12 12 1 and Pna2 1. For both complexes, the metal atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a water molecule. [NiCl(hihm)]Cl·H 2O ( 6) is monoclinic with the space group P2 1/ n. For complex ( 6), the nickel atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and a chloride ion. [CuCl(hihm)]Cl ( 7) is orthorhombic with the space group P2 12 12 1. Although in this copper(II) complex the copper atom is ligated by six atoms, it is more reasonable to think that the copper atom is in a trigonal bipyramidal geometry coordinated with five atoms: three hydroxyl oxygen atoms, a nitrogen atom and a chloride ion if the bond distances and angles surrounding the copper atom are taken into consideration. [Co(HCOO)(hihm)](HCOO) ( 8) is monoclinic with the space group P2 1. In cobalt(II) complex ( 8), the cobalt atom is in a distorted octahedral geometry, ligated by four hydroxyl oxygen atoms, a nitrogen atom and an oxygen atom of a formate ion. The structure of complex ( 8) is the same as the structure of [NiCl(hihm)]Cl·H 2O ( 6) except for the formate ion coordinating instead of the chloride ion. [M

  4. Synthesis, structural and magnetic properties of ternary complexes of (Me4P+)·{[Fe(I)Pc(-2)](-)}·triptycene and (Me4P+)·{[Fe(I)Pc(-2)]-}·(N,N,N',N'-tetrabenzyl-p-phenylenediamine)0.5 with iron(I) phthalocyanine anions.

    Science.gov (United States)

    Konarev, Dmitri V; Ishikawa, Manabu; Khasanov, Salavat S; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2013-04-01

    Ternary complexes of (Me4P(+))·{[Fe(I)Pc(-2)](-)}·TPC (1) and (Me4P(+))·{[Fe(I)Pc(-2)](-)}·(TBPDA)0.5 (2) containing iron(I) phthalocyanine anions, tetramethylphosphonium cations (Me4P(+)), and neutral structure-forming triptycene (TPC) or N,N,N',N'-tetrabenzyl-p-phenylenediamine (TBPDA) molecules have been obtained as single crystals. In contrast to previously studied ionic compounds with monomeric [(Fe(I)Pc(-2)](-) anions, the anions form coordination {[Fe(I)Pc(-2)](-)}2 dimers both in 1 and 2, in which a nitrogen atom of one phthalocyanine anion weakly coordinates to the iron(I) atom of neighboring [Fe(I)Pc(-2)](-). The Fe···N distances in the dimers are 3.08(1) and 3.12(1) Å in 1 at 280 K and 2.986(5) (100 K) and 3.011(5) Å (180 K) in 2. The {[Fe(I)Pc(-2)](-)}2 dimers are packed in the layers in 1 arranged parallel to the ac plane and in isolated chains in 2 arranged along the a axis. Extended Hückel based calculation of intermolecular overlap integrals showed stronger and weaker π-π interactions within and between phthalocyanine dimers, respectively, both in 1 and 2. EPR signals of both complexes manifest two components. An major low-field asymmetric component is attributed to the Fe(I) atoms with the d(7) configuration. An origin minor narrow signal with g-factor close to the free-electron value (g = 2.0018-2.0035) is assigned to partial electron density transfer from the iron(I) center to the phthalocyanine macrocycle and the formation of the [Fe(II)Pc(-3)](-) species. Effective magnetic moments of the complexes of 1.69 (1) and 1.76 μB (2) correspond to the contribution of about one S = ½ spin per formula unit in accordance with low-spin state of [Fe(I)Pc(-2)](-). Negative Weiss temperatures of -7.6 K (1) and -13 K (2) in the 30-300 K range indicate antiferromagnetic interaction of spins in the phthalocyanine dimers. The multicomponent approach was previously proposed for the anionic fullerene complex formation. It also seems very promising to

  5. Structural Basis for TSC-1 TSC-2 Complex Formation

    Science.gov (United States)

    2008-03-01

    organs, including brain, skin, kidney, heart, and liver (1-2). This syndrome often manifests in early age with infantile seizures and patients may have...tuberin: working together for tumour suppression. Int. J. Cancer 118: 1-5 2. Astrinidis A, Henske EP. (2005). Tuberous sclerosis complex: linking growth...be regulated by changes in pH. Importantly, the BARD1 BRCT structure provides insights into the mechanisms by which the cancer - associated missense

  6. Structural Basis of Clostridium perfringens Toxin Complex Formation

    Energy Technology Data Exchange (ETDEWEB)

    Adams,J.; Gregg, K.; Bayer, E.; Boraston, A.; Smith, S.

    2008-01-01

    The virulent properties of the common human and livestock pathogen Clostridium perfringens are attributable to a formidable battery of toxins. Among these are a number of large and highly modular carbohydrate-active enzymes, including the {mu}-toxin and sialidases, whose catalytic properties are consistent with degradation of the mucosal layer of the human gut, glycosaminoglycans, and other cellular glycans found throughout the body. The conservation of noncatalytic ancillary modules among these enzymes suggests they make significant contributions to the overall functionality of the toxins. Here, we describe the structural basis of an ultra-tight interaction (Ka = 1.44 x 1011 M-1) between the X82 and dockerin modules, which are found throughout numerous C. perfringens carbohydrate-active enzymes. Extensive hydrogen-bonding and van der Waals contacts between the X82 and dockerin modules give rise to the observed high affinity. The {mu}-toxin dockerin module in this complex is positioned {approx}180 relative to the orientation of the dockerin modules on the cohesin module surface within cellulolytic complexes. These observations represent a unique property of these clostridial toxins whereby they can associate into large, noncovalent multitoxin complexes that allow potentiation of the activities of the individual toxins by combining complementary toxin specificities.

  7. Formation of natamycin:cyclodextrin inclusion complexes and their characterization.

    Science.gov (United States)

    Koontz, John L; Marcy, Joseph E

    2003-11-19

    Natamycin is a broad spectrum antimycotic with very low water solubility, which is used to extend the shelf life of shredded cheese products. beta-Cyclodextrin (beta-CD), hydroxypropyl beta-cyclodextrin (HP beta-CD), and gamma-cyclodextrin (gamma-CD) were found to form inclusion complexes with natamycin in aqueous solution. The increase in solubility of natamycin with added beta-CD was observed to be linear (type A(L) phase solubility diagram). The 1:1 stability constant of natamycin:beta-CD complex was estimated from its phase solubility diagram to be 1010 M(-1). The phase solubility diagrams of both gamma-CD and HP beta-CD exhibited negative deviation from linearity (type A(N) diagram) and, therefore, did not allow the estimation of binding constants. The water solubility of natamycin was increased 16-fold, 73-fold, and 152-fold with beta-CD, gamma-CD, and HP beta-CD, respectively. The natamycin:CD inclusion complexes resulted in in vitro antifungal activity nearly equivalent to that of natamycin in its free state.

  8. Base Flipping in Open Complex Formation at Bacterial Promoters

    Directory of Open Access Journals (Sweden)

    Mary E. Karpen

    2015-04-01

    Full Text Available In the process of transcription initiation, the bacterial RNA polymerase binds double-stranded (ds promoter DNA and subsequently effects strand separation of 12 to 14 base pairs (bp, including the start site of transcription, to form the so-called “open complex” (also referred to as RPo. This complex is competent to initiate RNA synthesis. Here we will review the role of σ70 and its homologs in the strand separation process, and evidence that strand separation is initiated at the −11A (the A of the non-template strand that is 11 bp upstream from the transcription start site of the promoter. By using the fluorescent adenine analog, 2-aminopurine, it was demonstrated that the −11A on the non-template strand flips out of the DNA helix and into a hydrophobic pocket where it stacks with tyrosine 430 of σ70. Open complexes are remarkably stable, even though in vivo, and under most experimental conditions in vitro, dsDNA is much more stable than its strand-separated form. Subsequent structural studies of other researchers have confirmed that in the open complex the −11A has flipped into a hydrophobic pocket of σ70. It was also revealed that RPo was stabilized by three additional bases of the non-template strand being flipped out of the helix and into hydrophobic pockets, further preventing re-annealing of the two complementary DNA strands.

  9. Identification of Uranyl Surface Complexes an Ferrihydrite: Advanced EXAFS Data Analysis and CD-MUSIC Modeling

    NARCIS (Netherlands)

    Rossberg, A.; Ulrich, K.U.; Weiss, S.; Tsushima, S.; Hiemstra, T.; Scheinost, A.C.

    2009-01-01

    Previous spectroscopic research suggested that uranium(VI) adsorption to iron oxides is dominated by ternary uranyl-carbonato surface complexes across an unexpectedly wide pH range. Formation of such complexes would have a significant impact on the sorption behavior and mobility of uranium in

  10. The formation and study of titanium, zirconium, and hafnium complexes

    Science.gov (United States)

    Wilson, Bobby; Sarin, Sam; Smith, Laverne; Wilson, Melanie

    1989-01-01

    Research involves the preparation and characterization of a series of Ti, Zr, Hf, TiO, and HfO complexes using the poly(pyrazole) borates as ligands. The study will provide increased understanding of the decomposition of these coordination compounds which may lead to the production of molecular oxygen on the Moon from lunar materials such as ilmenite and rutile. The model compounds are investigated under reducing conditions of molecular hydrogen by use of a high temperature/pressure stainless steel autoclave reactor and by thermogravimetric analysis.

  11. The complex interplay between semantics and grammar in impression formation.

    Science.gov (United States)

    Shreves, Wyley B; Hart, William; Adams, John M; Guadagno, Rosanna E; Eno, Cassie A

    2014-09-01

    We sought to bridge findings showing that (a) describing a person's behavior with the perfective verb aspect (did), compared to the imperfective aspect (was doing), increases processing of semantic knowledge unrelated to the target's action such as stereotypes and (b) an increased recognition of stereotypical thoughts often promotes a judgment correction for the stereotypes. We hypothesized an interplay between grammar (verb conjugation) and semantic information (gender) in impression-formation. Participants read a resume, attributed to a male or female, for a traditionally masculine job. When the resume was written in the imperfective, people rated a male (vs. female) more positively. When the resume was in the perfective, this pattern reversed. Only these latter effects of gender were influenced by cognitive load. Further, people more quickly indicated the applicant's gender in the perfective condition, suggesting an enhanced focus on gender during processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Formation of Au and tetrapyridyl porphyrin complexes in superfluid helium.

    Science.gov (United States)

    Feng, Cheng; Latimer, Elspeth; Spence, Daniel; Al Hindawi, Aula M A A; Bullen, Shem; Boatwright, Adrian; Ellis, Andrew M; Yang, Shengfu

    2015-07-14

    Binary clusters containing a large organic molecule and metal atoms have been formed by the co-addition of 5,10,15,20-tetra(4-pyridyl)porphyrin (H2TPyP) molecules and gold atoms to superfluid helium nanodroplets, and the resulting complexes were then investigated by electron impact mass spectrometry. In addition to the parent ion H2TPyP yields fragments mainly from pyrrole, pyridine and methylpyridine ions because of the stability of their ring structures. When Au is co-added to the droplets the mass spectra are dominated by H2TPyP fragment ions with one or more Au atoms attached. We also show that by switching the order in which Au and H2TPyP are added to the helium droplets, different types of H2TPyP-Au complexes are clearly evident from the mass spectra. This study suggests a new route for the control over the growth of metal-organic compounds inside superfluid helium nanodroplets.

  13. Syntheses, crystal structures, visible and near-IR luminescent properties of ternary lanthanide (Dy{sup 3+}, Tm{sup 3+}) complexes containing 4,4,4-trifluoro-1-phenyl-1,3-butanedione and 1,10-phenanthroline

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jing [State Key Laboratory of Rare Earth Resource Utilizations, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 renmin street, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Zhang Hongjie [State Key Laboratory of Rare Earth Resource Utilizations, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 renmin street, Changchun 130022 (China)], E-mail: hongjie@ciac.jl.cn; Song Shuyan; Li Zhefeng; Sun Lining [State Key Laboratory of Rare Earth Resource Utilizations, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 renmin street, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Xing Yan [State Key Laboratory of Rare Earth Resource Utilizations, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 renmin street, Changchun 130022 (China); Guo Xianmin [State Key Laboratory of Rare Earth Resource Utilizations, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 renmin street, Changchun 130022 (China); Graduate School of the Chinese Academy of Sciences, Beijing (China)

    2008-12-15

    The ligands 4,4,4-trifluoro-1-phenyl-1,3-butanedione (Hbfa) and 1,10-phenanthroline (phen) were used to prepare ternary lanthanide (Ln) complexes [Dy(bfa){sub 3}phen and Tm(bfa){sub 3}phen]. Crystal data: Dy(bfa){sub 3}phen C{sub 42}H{sub 26}F{sub 9}N{sub 2}O{sub 6}Dy, triclinic, P1-bar , a=9.9450(6) A, b=14.0944(9) A, c=14.6043(9) A, {alpha}=82.104(1){sup o}, {beta}=87.006(1){sup o}, {gamma}=76.490(1){sup o}, V=1971.1(2) A{sup 3}, Z=2; Tm(bfa){sub 3}phen C{sub 42}H{sub 26}F{sub 9}N{sub 2}O{sub 6}Tm, triclinic, P1-bar , a=9.898(5) A, b=13.918(5) A, c=14.753(5) A, {alpha}=83.517(5){sup o}, {beta}=86.899(5){sup o}, {gamma}=76.818(5){sup o}, V=1965.3(14) A{sup 3}, Z=2. The coordination number of the central Ln{sup 3+} (Ln=Dy, Tm) ion is eight, with six oxygen atoms from three Hbfa ligands and two nitrogen atoms from the phen ligand. The photophysical properties of the two complexes were studied by absorption spectra, diffuse reflectance spectra, and emission spectra. They show the characteristic luminescence of the corresponding Ln{sup 3+} ion in both visible and near-IR (NIR) region. Additionally, the energy transfer mechanisms between the ligands and central Ln{sup 3+} ions were discuss0008.

  14. Carbon–heteroatom bond formation catalysed by organometallic complexes

    Science.gov (United States)

    Hartwig, John F.

    2010-01-01

    At one time the synthetic chemist’s last resort, reactions catalysed by transition metals are now the preferred method for synthesizing many types of organic molecule. A recent success in this type of catalysis is the discovery of reactions that form bonds between carbon and heteroatoms (such as nitrogen, oxygen, sulphur, silicon and boron) via complexes of transition metals with amides, alkoxides, thiolates, silyl groups or boryl groups. The development of these catalytic processes has been supported by the discovery of new elementary reactions that occur at metal–heteroatom bonds and by the identification of factors that control these reactions. Together, these findings have led to new synthetic processes that are in daily use and have formed a foundation for the development of processes that are likely to be central to synthetic chemistry in the future. PMID:18800130

  15. A Hybrid Mechanism of Action for BCL6 in B Cells Defined by Formation of Functionally Distinct Complexes at Enhancers and Promoters

    Directory of Open Access Journals (Sweden)

    Katerina Hatzi

    2013-08-01

    Full Text Available The BCL6 transcriptional repressor is required for the development of germinal center (GC B cells and diffuse large B cell lymphomas (DLBCLs. Although BCL6 can recruit multiple corepressors, its transcriptional repression mechanism of action in normal and malignant B cells is unknown. We find that in B cells, BCL6 mostly functions through two independent mechanisms that are collectively essential to GC formation and DLBCL, both mediated through its N-terminal BTB domain. These are (1 the formation of a unique ternary BCOR-SMRT complex at promoters, with each corepressor binding to symmetrical sites on BCL6 homodimers linked to specific epigenetic chromatin features, and (2 the “toggling” of active enhancers to a poised but not erased conformation through SMRT-dependent H3K27 deacetylation, which is mediated by HDAC3 and opposed by p300 histone acetyltransferase. Dynamic toggling of enhancers provides a basis for B cells to undergo rapid transcriptional and phenotypic changes in response to signaling or environmental cues.

  16. A hybrid mechanism of action for BCL6 in B-cells defined by formation of functionally distinct complexes at enhancers and promoters

    Science.gov (United States)

    Hatzi, Katerina; Jiang, Yanwen; Huang, Chuanxin; Garrett-Bakelman, Francine; Gearhart, Micah D.; Giannopoulou, Eugenia G.; Zumbo, Paul; Kirouac, Kevin; Bhaskara, Srividya; Polo, Jose M.; Kormaksson, Matthias; MacKerell, Alexander D.; Xue, Fengtian; Mason, Christopher E.; Hiebert, Scott W.; Prive, Gilbert G.; Cerchietti, Leandro; Bardwell, Vivian J.; Elemento, Olivier; Melnick, Ari

    2013-01-01

    SUMMARY The BCL6 transcriptional repressor is required for development of germinal center (GC) B-cells and diffuse large B-cell lymphomas (DLBCL). Although BCL6 can recruit multiple corepressors, its transcriptional repression mechanism of action in normal and malignant B-cells is unknown. We find that in B-cells, BCL6 mostly functions through two independent mechanisms that are collectively essential to GC formation and DLBCL, both mediated through its N-terminal BTB domain. These are: i) formation of a unique ternary BCOR-SMRT complex at promoters with each corepressor binding to symmetrical sites on BCL6 homodimers, linked to specific epigenetic chromatin features, and ii) the “toggling” of active enhancers to a poised but not erased conformation through SMRT-dependent H3K27 de-acetylation, which is mediated by HDAC3 and opposed by p300 histone acetyltransferase. Dynamic toggling of enhancers provides a basis for B-cells to undergo rapid transcriptional and phenotypic changes in response to signaling or environmental cues. PMID:23911289

  17. Controlled assembly of artificial protein-protein complexes via DNA duplex formation.

    Science.gov (United States)

    Płoskoń, Eliza; Wagner, Sara C; Ellington, Andrew D; Jewett, Michael C; O'Reilly, Rachel; Booth, Paula J

    2015-03-18

    DNA-protein conjugates have found a wide range of applications. This study demonstrates the formation of defined, non-native protein-protein complexes via the site specific labeling of two proteins of interest with complementary strands of single-stranded DNA in vitro. This study demonstrates that the affinity of two DNA-protein conjugates for one another may be tuned by the use of variable lengths of DNA allowing reversible control of complex formation.

  18. OTDM-to-WDM Conversion of Complex Modulation Formats by Time-Domain Optical Fourier Transformation

    DEFF Research Database (Denmark)

    Palushani, Evarist; Richter, T.; Ludwig, R.

    2012-01-01

    We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information.......We demonstrate the utilization of the optical Fourier transform technique for serial-to-parallel conversion of 64×10-GBd OTDM data tributaries with complex modulation formats into 50-GHz DWDM grid without loss of phase and amplitude information....

  19. Microbanded manganese formations; protoliths in the Franciscan Complex, California

    Science.gov (United States)

    Huebner, J. Stephen; Flohr, Marta J.

    1990-01-01

    The Buckeye manganese deposit, 93 km southeast of San Francisco in the California Coast Ranges, preserves a geologic history that provides clues to the origin of numerous lenses of manganese carbonate, oxides, and silicates that occur with interbedded radiolarian chert and metashale of the Franciscan Complex. Compositionally and mineralogically laminated Mn-rich protoliths were deformed and dismembered, in a manner that mimics in smaller scale the deformation of the host complex, and then were incipiently metamorphosed at blueschistfacies conditions. Eight phases occur as almost monomineralic protoliths and mixtures: rhodochrosite, caryopilite, chlorite, gageite, taneyamalite, braunite, hausmannite, and laminated chert (quartz). Braunite, gageite, and some chlorite and caryopilite layers were deposited as gel-like materials; rhodochrosite, most caryopilite, and at least some hausmannite layers as lutites; and the chert as turbidites of radiolarian sand. Some gel-like materials are now preserved as transparent, sensibly isotropic relics of materials that fractured or shattered when deformed, creating curved surfaces. In contrast, the micrites flowed between the fragments of gel-like materials. The orebody and most of its constituent minerals have unusually Mn-rich compositions that are described by the system MnO-SiO2-O2-CO2-H2O. High values of Mn/Fe and U/Th, and low concentrations of Co, Cu, and Ni, distinguish the Buckeye deposit from many high-temperature hydrothermal deposits and hydrogenous or diagenetic manganese and ferromanganese nodules and pavements. This chemical signature suggests that ore deposition was related to fluids from the sediment column and seawater. Tungsten is associated exclusively with gageite, in concentrations as high as 80 parts per million. The source of the manganese is unknown; because basalts do not occur near the deposit, it was probably manganese leached from the sediment column by reducing solutions. Low concentrations of calcium

  20. Co-motif discovery identifies an Esrrb-Sox2-DNA ternary complex as a mediator of transcriptional differences between mouse embryonic and epiblast stem cells.

    Science.gov (United States)

    Hutchins, Andrew Paul; Choo, Siew Hua; Mistri, Tapan Kumar; Rahmani, Mehran; Woon, Chow Thai; Ng, Calista Keow Leng; Jauch, Ralf; Robson, Paul

    2013-02-01

    Transcription factors (TF) often bind in heterodimeric complexes with each TF recognizing a specific neighboring cis element in the regulatory region of the genome. Comprehension of this DNA motif grammar is opaque, yet recent developments have allowed the interrogation of genome-wide TF binding sites. We reasoned that within this data novel motif grammars could be identified that controlled distinct biological programs. For this purpose, we developed a novel motif-discovery tool termed fexcom that systematically interrogates ChIP-seq data to discover spatially constrained TF-TF composite motifs occurring over short DNA distances. We applied this to the extensive ChIP-seq data available from mouse embryonic stem cells (ESCs). In addition to the well-known and most prevalent sox-oct motif, we also discovered a novel constrained spacer motif for Esrrb and Sox2 with a gap of between 2 and 8 bps that Essrb and Sox2 cobind in a selective fashion. Through the use of knockdown experiments, we argue that the Esrrb-Sox2 complex is an arbiter of gene expression differences between ESCs and epiblast stem cells (EpiSC). A number of genes downregulated upon dual Esrrb/Sox2 knockdown (e.g., Klf4, Klf5, Jam2, Pecam1) are similarly downregulated in the ESC to EpiSC transition and contain the esrrb-sox motif. The prototypical Esrrb-Sox2 target gene, containing an esrrb-sox element conserved throughout eutherian and metatherian mammals, is Nr0b1. Through positive regulation of this transcriptional repressor, we argue the Esrrb-Sox2 complex promotes the ESC state through inhibition of the EpiSC transcriptional program and the same trio may also function to maintain trophoblast stem cells. Copyright © 2012 AlphaMed Press.

  1. Two novel ternary dicopper(II) μ-guanazole complexes with aromatic amines strongly activated by quantum dots for DNA cleavage.

    Science.gov (United States)

    Hernández-Gil, Javier; Ferrer, Sacramento; Castiñeiras, Alfonso; Liu-González, Malva; Lloret, Francesc; Ribes, Angela; Coga, Lucija; Bernecker, Anja; Mareque-Rivas, Juan C

    2014-01-06

    Two novel (μ-guanazole)-bridged binuclear copper(II) complexes with 1,10-phenanthroline (phen) or 2,2'-bipyridine (bipy), [Cu2(μ-N2,N4-Hdatrz)(phen)2(H2O)(NO3)4] (1) and [Cu2(μ-N1,N2-datrz)2(μ-OH2)(bipy)2](ClO4)2 (2) (Hdatrz = 3,5-diamino-1,2,4-triazole = guanazole), have been prepared and characterized by X-ray diffraction, spectroscopy, and susceptibility measurements. Compounds 1 and 2 differ in the aromatic amine, which acts as a coligand, and in the Cu···Cu'-bridging system. Compound 1, which contains two mono-bridged copper ions, represents the first example of a discrete Cu-(NCN-trz)-Cu' complex. Compound 2, with two triply bridged copper ions, is one of the few compounds featuring a Cu-[(NN-trz)2 + (O-aquo)]-Cu' unit. Both compounds display antiferromagnetic coupling but of different magnitude: J (μ2,4-triazole) = -52 cm(-1) for 1 and J (μ1,2-triazolate) = -115 cm(-1) for 2. The DNA binding and cleavage properties of the two compounds have been investigated. Fluorescence, viscosimetry, and thermal denaturation studies reveal that both complexes have high affinity for DNA (1 > 2) and that only 1 acts as an intercalator. In the presence of a reducing agent like 3-mercaptopropionic acid, 1 produces significant oxidative DNA cleavage, whereas 2 is inactive. However, in the presence of very small quantities of micelles filled with core-shell CdSe-ZnS quantum dots (15 nM), 1 and 2 are considerably more active and become highly efficient nucleases as a result of the different possible mechanisms for promoting cooperative catalysis (metal-metal, metal-hydrogen bonding, metal-intercalation, and metal-nanoparticle). Electrophoresis DNA-cleavage inhibition experiments, X-ray photoelectron spectroscopy studies, and fluorescence ethidium bromide displacement assays reveal that in these novel nucleases the QDs act as redox-active protein-like nanoparticle structures that bind to the DNA and deliver electrons to the copper(II) centers for the generation of Cu

  2. Ternary complex structures of human farnesyl pyrophosphate synthase bound with a novel inhibitor and secondary ligands provide insights into the molecular details of the enzyme’s active site closure

    Directory of Open Access Journals (Sweden)

    Park Jaeok

    2012-12-01

    Full Text Available Abstract Background Human farnesyl pyrophosphate synthase (FPPS controls intracellular levels of farnesyl pyrophosphate, which is essential for various biological processes. Bisphosphonate inhibitors of human FPPS are valuable therapeutics for the treatment of bone-resorption disorders and have also demonstrated efficacy in multiple tumor types. Inhibition of human FPPS by bisphosphonates in vivo is thought to involve closing of the enzyme’s C-terminal tail induced by the binding of the second substrate isopentenyl pyrophosphate (IPP. This conformational change, which occurs through a yet unclear mechanism, seals off the enzyme’s active site from the solvent environment and is essential for catalysis. The crystal structure of human FPPS in complex with a novel bisphosphonate YS0470 and in the absence of a second substrate showed partial ordering of the tail in the closed conformation. Results We have determined crystal structures of human FPPS in ternary complex with YS0470 and the secondary ligands inorganic phosphate (Pi, inorganic pyrophosphate (PPi, and IPP. Binding of PPi or IPP to the enzyme-inhibitor complex, but not that of Pi, resulted in full ordering of the C-terminal tail, which is most notably characterized by the anchoring of the R351 side chain to the main frame of the enzyme. Isothermal titration calorimetry experiments demonstrated that PPi binds more tightly to the enzyme-inhibitor complex than IPP, and differential scanning fluorometry experiments confirmed that Pi binding does not induce the tail ordering. Structure analysis identified a cascade of conformational changes required for the C-terminal tail rigidification involving Y349, F238, and Q242. The residues K57 and N59 upon PPi/IPP binding undergo subtler conformational changes, which may initiate this cascade. Conclusions In human FPPS, Y349 functions as a safety switch that prevents any futile C-terminal closure and is locked in the “off” position in the

  3. Structural characterization of Am(III) formate complexes. Combining EXAFS spectroscopy with DFT and thermodynamical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Rossberg, Andre [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Froehlich, D.R. [Heidelberg Univ. (Germany). Physikalisch-Chemisches Inst.

    2017-06-01

    We used iterative transformation factor analysis (ITFA) in order to isolate the EXAFS spectral contributions of the complexing ligand from a Am(III)/formate pH-series. Thermodynamic calculations were used as constraint for ITFA and for density functional theory (DFT) calculations to identify the coordination mode within the formed complexes.

  4. Dynamics of Nanoparticle-Protein Corona Complex Formation: Analytical Results from Population Balance Equations

    Science.gov (United States)

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371

  5. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations.

    Science.gov (United States)

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.

  6. Thermodynamics of formation reaction and hydrometallurgical application of metal-ammonia complexes in aqueous solutions

    Science.gov (United States)

    Mironov, V. E.; Pashkov, G. L.; Stupko, T. V.

    1992-09-01

    Critically selected activity coefficients of individual ions stepwise stability constants, and enthalpy and entropy changes during formation of metal-ammonia complexes in aqueous salt solutions are summarised and analysed. Special attention is paid to the specifics of ammonia complexation in solutions with high ammonia concentrations (>=1 mol dm-3), which are of interest in hydrometallurgy. Certain problems and prospects for use of metal-ammonia complexation in hydrometallurgy are discussed. The bibliography includes 154 references.

  7. Mixed ligand complex formation of Fe III with boric acid and typical N ...

    Indian Academy of Sciences (India)

    Fe(L) 2 3 + , Fe(L)2(H2BO4) and Fe2(L)4(BO4)+ complexes are also indicated with 2,2'-bipyridine and 1,10-phenanthroline. Complex formation equilibria and stability constants of the complexes at 25 ± 0 × 1° C in aqueous solution at a fixed ionic strength, = 0.1 mol -3 (NaNO3) have been determined by potentiometric ...

  8. lemmingA encodes the Apc11 subunit of the APC/C in Drosophila melanogaster that forms a ternary complex with the E2-C type ubiquitin conjugating enzyme, Vihar and Morula/Apc2

    Directory of Open Access Journals (Sweden)

    Nagy Olga

    2012-03-01

    being conserved among Drosophila species, the LmgB protein is not required for viability or fertility. Conclusions Our work provides insight into the subunit structure of the Drosophila APC/C with implications for its function. Based on the presented data, we suggest that the Lmg/Apc11 subunit recruits the E2-C type ubiquitin conjugating enzyme, Vihar, to the APC/C together with Mr/Apc2 by forming a ternary complex.

  9. Data transmission is faster with ternary coding

    CERN Document Server

    Bruins, T

    1974-01-01

    Discusses a ternary data transmission system for an effective rate of up to 6 megabits per second over a 1-mile line of ordinary twisted- pair cable. The methods are discussed of implementing a ternary data transmission system. (0 refs).

  10. Polycation-Based Ternary Gene Delivery System.

    Science.gov (United States)

    Liu, Shuai; Guo, Tianying

    2015-01-01

    Recent progress in gene therapy has opened the door for various human diseases. The greatest challenge that gene vectors still face is the ability to sufficiently deliver nucleic acid into target cells. To overcome various barriers, plenty of researches have been undertaken utilizing diverse strategies, among which a wide variety of polycation/pDNA vectors have been developed and explored frequently. For enhanced transfection efficiency, polycations are constantly utilized with covalent modifications, which however lead to reduced positive charge density and changed properties of polycation/pDNA complexes. Accordingly, non-covalent or ternary strategy is proposed. The cationic properties of polycations can be retained and the transfection efficiency can be enhanced by introducing additional polymers with functional groups via non-covalent assembly. This review will discuss the construction and advantages of ternary complexes gene delivery system, including low toxicity and enhanced gene expression both in vitro and in vivo. Recent progress and expectations with promising results that may have some reference for clinical application are also discussed.

  11. Electrochemical detection of oligopeptides through the precolumn formation of biuret complexes.

    Science.gov (United States)

    Tsai, H Y; Weber, S G

    1991-04-12

    The relatively slow kinetics of formation of the electroactive Cu(II)-peptide complexes from larger (greater than 6 amino acids) peptides requires relatively high temperature and long reaction times for a postcolumn reactor. The precolumn incubation of bradykinin, Tyr8-bradykinin and insulin A chain with biuret reagent for 20 min at 60 degrees C leads to the formation of biuret complexes which can be subjected to chromatography in acidic or basic eluents. These complexes are detected electrochemically with a sensitivity similar to the Cu(II)-(ala)3 complex (1 nC/pmol at 1.0 ml/min). The influence of the column-packing material on the electrochemical detector response of the Cu-peptide complexes has also been studied.

  12. Complex 3D Vortex Lattice Formation by Phase-Engineered Multiple Beam Interference

    Directory of Open Access Journals (Sweden)

    Jolly Xavier

    2012-01-01

    Full Text Available We present the computational results on the formation of diverse complex 3D vortex lattices by a designed superposition of multiple plane waves. Special combinations of multiples of three noncoplanar plane waves with a designed relative phase shift between one another are perturbed by a nonsingular beam to generate various complex 3D vortex lattice structures. The formation of complex gyrating lattice structures carrying designed vortices by means of relatively phase-engineered plane waves is also computationally investigated. The generated structures are configured with both periodic as well as transversely quasicrystallographic basis, while these whirling complex lattices possess a long-range order of designed symmetry in a given plane. Various computational analytical tools are used to verify the presence of engineered geometry of vortices in these complex 3D vortex lattices.

  13. Factoring with qutrits: Shor's algorithm on ternary and metaplectic quantum architectures

    Science.gov (United States)

    Bocharov, Alex; Roetteler, Martin; Svore, Krysta M.

    2017-07-01

    We determine the cost of performing Shor's algorithm for integer factorization on a ternary quantum computer, using two natural models of universal fault-tolerant computing: (i) a model based on magic state distillation that assumes the availability of the ternary Clifford gates, projective measurements, classical control as its natural instrumentation set; (ii) a model based on a metaplectic topological quantum computer (MTQC). A natural choice to implement Shor's algorithm on a ternary quantum computer is to translate the entire arithmetic into a ternary form. However, it is also possible to emulate the standard binary version of the algorithm by encoding each qubit in a three-level system. We compare the two approaches and analyze the complexity of implementing Shor's period-finding function in the two models. We also highlight the fact that the cost of achieving universality through magic states in MTQC architecture is asymptotically lower than in generic ternary case.

  14. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Luyao; Chen, Wei; Xu, Tao; Yu, Luping

    2015-06-04

    The integration of multiple materials with complementary absorptions into a singlejunction device is regarded as an efficient way to enhance the power conversion efficiency (PCE) of organic solar cells (OSCs). However, due to increased complexity with one more component, only limited high performance ternary systems have been demonstrated previously. Here, we report an efficient ternary blend OSC with a PCE of 9.2%. We show for the first time that the third component can reduce surface trap densities in the ternary blend. Detailed studies unravel that the improved performance results from synergistic effects of enlarged open circuit voltage, suppressed trap assisted recombination, enhanced light absorption, increased hole extraction, efficient energy transfer, and better morphology. The novel working mechanism and high device performance demonstrate new insights and design guidelines for high performance ternary blend solar cells and suggest that ternary structure is a promising platform to boost the efficiency of OSCs.

  15. Cleavage and formation of molecular dinitrogen in a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine.

    Science.gov (United States)

    Miyazaki, Takamasa; Tanaka, Hiromasa; Tanabe, Yoshiaki; Yuki, Masahiro; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-10-20

    The N≡N bond of molecular dinitrogen bridging two molybdenum atoms in the pentamethylcyclopentadienyl molybdenum complexes that bear ferrocenyldiphosphine as an auxiliary ligand is homolytically cleaved under visible light irradiation at room temperature to afford two molar molybdenum nitride complexes. Conversely, the bridging molecular dinitrogen is reformed by the oxidation of the molybdenum nitride complex at room temperature. This result provides a successful example of the cleavage and formation of molecular dinitrogen induced by a pair of two different external stimuli using a single system assisted by molybdenum complexes bearing ferrocenyldiphosphine under ambient conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways.

    Science.gov (United States)

    Shirasu, Ken; Schulze-Lefert, Paul

    2003-06-01

    Accumulating evidence indicates that plant disease-resistance (R) proteins assemble in hetero-multimeric protein complexes in the absence of pathogens. Such complexes might enable the indirect recognition of pathogen effector molecules during attempted pathogen invasion. RAR1 and SGT1 are required for the function of most known R proteins. They interact with each other and with diverse protein complexes, which might explain their multi-functionality. The promiscuous behavior of RAR1 and SGT1 might be crucial for the formation and activation of R protein-containing recognition complexes as well as for regulating downstream signaling processes.

  17. Complexometric determination: Part I - EDTA and complex formation with the Cu2+ ion

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2002-01-01

    Full Text Available Compounds forming very stable complexes - chelates, have a wide field of application in analytical chemistry. The most famous group of these compounds are complexons. Complexons represent organic polyaminocarbonic acids as for example ethylenediaminetetraacetic acid (EDTA and its salts. The EDTA molecule has six coordinative sites. It is a hexadentate ligands i.e. it has two binding nitrogen atoms and four oxygen atoms from carboxyl groups and it forms complexes with almost all metal ions. EDTA as a tetraprotonic acid, H4Y disociates through four steps, yielding the ions HsY-, H2Y2-, HY3- and Y4-. Which of the EDTA forms will be encountered in a solution, depends on the pH. Due to the poor solubility of EDTA in pure water, as well as in most organic solvents, the disodium salt of EDTA Na2H2Y-2H2O, under the commercial name complexon III, is utilized for analytical determinations. In water, EDTA forms soluble, stabile chelate complexes with all cations, at the molar ratio 1:1, regardless of the charge of the metal ion. In contrast to other equilibria, which are mainly defined by Le Chatellier's principle, equilibria related to metal-EDTA complex formation are also dependent on the influence of the secondary equilibria of EDTA complex formation. Complexing reactions, which are equilibrium reactions, are simultaneously influenced by the following factors: solution pH and the presence of complexing agents which may also form a stabile complex with metal ions. The secondary reaction influence may be viewed and monitored through conditional stability constants. In the first part of the paper, the reaction of the formation of the Cu2+-ion complex with EDTA is analyzed beginning from the main reaction through various influences of secondary reactions on the complex Cu2+-EDTA: pH effect, complexation effect and hydrolysis effect. The equations are given for conditional stability constants, which include equilibrium reactions under actual conditions.

  18. Effects of chemical and enzymatic modifications on starch-linoleic acid complex formation.

    Science.gov (United States)

    Arijaje, Emily Oluwaseun; Wang, Ya-Jane

    2017-02-15

    This study investigated the complexation yield and physicochemical properties of soluble and insoluble starch complexes with linoleic acid when a β-amylase treatment was applied to acetylated and debranched potato starch. The degree of acetylation was generally higher in the soluble complexes than in the insoluble ones. The insoluble complexes from the acetylated starch displayed the V-type pattern, whereas, the soluble complexes displayed a mixture of either the A-/V-type or the B-/V-type pattern. Acetylation decreased onset and peak melting temperatures for the insoluble complexes, whereas no melting endotherm was observed in the soluble complexes. Acetylation substantially increased the amount of complexed linoleic acid in the insoluble complexes, but had little positive effect on the formation of the soluble complexes. The β-amylase treatment significantly increased the complexed linoleic content in both soluble and insoluble complexes for the low acetylated starch, but not for the high acetylated starch. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Complex Formation of Selected Radionuclides with Ligands Commonly Found in Ground Water: Low Molecular Organic Acids

    DEFF Research Database (Denmark)

    Jensen, Bror Skytte; Jensen, H.

    1985-01-01

    A general approach to the analysis of potentiometric data on complex formation between cations and polybasic amphoteric acids is described. The method is used for the characterisation of complex formation between Cs+, Sr2+, Co2+, La 3+, and Eu3+ with a α-hydroxy acids, tartaric acid and citric ac......, and with the α-amino acids, aspartic acid and L-cysteine. The cations have been chosen as typical components of reactor waste, and the acids because they are often found as products of microbial activity in pits or wherever organic material decays...

  20. Complex Formation of Selected Radionuclides with Ligands Commonly Found in Ground Water: Low Molecular Organic Acids

    DEFF Research Database (Denmark)

    Jensen, Bror Skytte; Jensen, H.

    1985-01-01

    A general approach to the analysis of potentiometric data on complex formation between cations and polybasic amphoteric acids is described. The method is used for the characterisation of complex formation between Cs+, Sr2+, Co2+, La 3+, and Eu3+ with a α-hydroxy acids, tartaric acid and citric acid......, and with the α-amino acids, aspartic acid and L-cysteine. The cations have been chosen as typical components of reactor waste, and the acids because they are often found as products of microbial activity in pits or wherever organic material decays...

  1. Mass-dependent and -independent fractionation of isotopes in Ni and Pb chelate complex formation reactions

    Science.gov (United States)

    Nomura, Masao; Kudo, Takashi; Adachi, Atsuhiko; Aida, Masao; Fujii, Yasuhiko

    2013-11-01

    Mass independent fractionation (MIF) has been a very interesting topic in the field of inorganic isotope chemistry, in particular, geo- and cosmo- chemistry. In the present work, we studied the isotope fractionation of Ni(II) and Pb(II) ions in complex formation with chelating reagent EDTA. To obtain clear results on the mass dependence of the isotope fractionation, we have conducted long-distance ion exchange chromatography of Ni(II) and Pb(II), using chelate complex reagent EDTA. The results apparently show that the isotope fractionation in Ni complex formation system is governed by the mass dependent rule. On the other hand the isotope fractionation in the Pb complex system is governed by the mass independent rule or the nuclear volume effect.

  2. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations.

    Directory of Open Access Journals (Sweden)

    Faryad Darabi Sahneh

    Full Text Available BACKGROUND: Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. METHOD: This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. RESULTS: The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. CONCLUSION: The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.

  3. Theoretical study of the possibility of glycin with thiotriazoline complexes formation

    Directory of Open Access Journals (Sweden)

    L. I. Kucherenko

    2017-10-01

    Full Text Available Brain strokes are widely spread all over the world and are among the most dangerous for the population. Often it leads to death, complete or partial loss of ability to work. The correction of imbalance of Excitatory and inhibitory neurotransmitter systems by activation of natural inhibitory processes is a promising direction of primary neuroprotection in cerebral ischemia. Particular attention is drawn to the natural inhibitory neurotransmitter – glycine and its role in the mechanisms of acute cerebral ischemia. There are data on the ability of the thiotriazoline antioxidant to potentiate the therapeutic effect of neurometabolic cerebroprotectors. Therefore, the creation of new combined preparation based on glycine with thiotriazoline is important today. Objective: to study the structure, and estimate the energy of formation and geometric characteristics of the intermolecular hydrogen bonds for complexes which are formed with glycine, 3-methyl-1,2,4-triazolyl-5-thioacetate (MTTA and morpholine. Method of calculation. The initial approximation to the structure of the complexes was obtained with the help of molecular docking procedure using the AutoDock Vina program. The resulting three-component complexes were preliminarily optimized by the semiempirical PM7 method, taking into account the outward influences, which was simulated by the COSMO method. The calculations were carried out using the MOPAC2012 program. The complexes were optimized using the density functional method with the empirical dispersion correction B97-D3/SVP+COSMO (Water using geometric correction for the incompleteness of the gCP basic set. A more accurate calculation of the solvation energy was carried out by SMD method. Calculations by the density functional method were carried out using the ORCA 3.0.3 program. The energy of formation of complexes in solution was calculated as the difference between the free Gibbs energies of the solvated complex and its individual solvated

  4. Cation-induced formation of a macro-glucan synthase complex

    Energy Technology Data Exchange (ETDEWEB)

    Delmer, D.; Solomon, M.; Andrawis, A.; Amor, Y. (Hebrew Univ., Jerusalem (Israel))

    1990-05-01

    Incubation of Chaps or digitonin-solubilized membrane proteins from cotton fiber with Ca{sup 2+} in combination with Mg{sup 2+}, leads to formation of a complex which can be sedimented within 15 min at 15,000 g. The complex is enriched >10-fold in callose synthase activity and possesses a characteristic pattern of enriched polypeptides when analyzed by SDS-PAGE. Although cation dependent, formation of the complex is not dependent upon the presence of the callose synthase substrate, UDP-glc, indicating that complex formation is not due to entrapment of the enzyme by association with glucan product. The enriched polypeptides include: >200, 50, and 46 kD, all of which have been shown by direct photo-labeling to interact with {sup 92}P-UDP-glc in a Ca{sup 2+} or beta-glucoside dependent reaction are considered likely subunits of callose synthase; a 60-62 kD doublet which is recognized by our MAb 2-1 which can form an immune complex with callose synthase; 74 and 34 kD polypeptides which also interact with UDP-glc, but do not associate with callose synthase in the presence of EDTA. A similar phenomenon is also observed with solubilized membrane proteins from mung beans. Possible functions of each of the enriched polypeptides, the catalytic properties, and ultra-structure of this macro-glucan synthase complex are currently under investigation.

  5. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion

    DEFF Research Database (Denmark)

    Peters, C; Bayer, M J; Bühler, S

    2001-01-01

    -complex formation occurs downstream from trans-SNARE pairing, and depends on both the Rab-GTPase Ypt7 and calmodulin. The maintenance of existing complexes and completion of fusion are independent of trans-SNARE pairs. Reconstituted proteolipids form sealed channels, which can expand to form aqueous pores in a Ca2......+/calmodulin-dependent fashion. V0 trans-complexes may therefore form a continuous, proteolipid-lined channel at the fusion site. We propose that radial expansion of such a protein pore may be a mechanism for intracellular membrane fusion....

  6. Say again? How complexity and format of air traffic control instructions affect pilot recall

    Science.gov (United States)

    1999-01-01

    This study compared the recall of ATC information presented in cither grouped or sequential format : in a part-task simulation. It also tested the effect of complexity of ATC clearances on recall, that is, : how many pieces of information a single tr...

  7. Peculiarities of litter invertebrates’ multispecies complexes formation on the Khortitsa Island (Zaporizhzhya province)

    OpenAIRE

    Fedorchenko, D.; Brygadyrenko, V.

    2008-01-01

    Peculiarities of litter invertebrates’ complexes formation under conditions of the Khortitsa National Reserve (Zaporizhzhya province) are studied. The dispersion of taxonomic groups of different levels (families and species) in litter mesofauna is swayed by the inter- and intrasystem factors; the largest influence has the power of litter and its humidity. The rate of ecological factors’ influence at different taxonomic levels may diverge.

  8. Copper(II) complex as a precursor for formation of cyano-bridged ...

    Indian Academy of Sciences (India)

    chemsci

    Copper(II) complex as a precursor for formation of cyano-bridged pentanuclear Fe. III. -Cu. II bimetallic assembly: Synthesis, characterization, crystal structure and antibacterial ... Single-crystal X-ray analysis indicated that 2 crystallized in the monoclinic system with ..... maximum absorption band at 431nm was assigned to.

  9. Thermodynamic characteristics of the formation of complexes of nickel(II) with L-homoserine

    Science.gov (United States)

    Gridchin, S. N.

    2016-12-01

    The formation of complexes of nickel(II) with L-homoserine at 298.15 K and ionic strengths I = 0.5, 1.0, and 1.5 (KNO3) are investigated by potentiometry and calorimetry. Standard characteristics of studied equilibria (log K°, Δr G°, Δr H°, and Δr S°) are determined.

  10. Copper (II) complex as a precursor for formation of cyano-bridged ...

    Indian Academy of Sciences (India)

    Copper(II) complex as a precursor for formation of cyano-bridged pentanuclear FeIII-CuII bimetallic assembly: Synthesis, characterization, crystal structure and ... ATCC 27853 strains were studied and compared with standard drugs, which showed moderate antibacterial activity compared with Penicillin and Gentamicin.

  11. The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation

    DEFF Research Database (Denmark)

    Müller, Oliver; Bayer, Martin J; Peters, Christopher

    2002-01-01

    The fusion of cellular membranes comprises several steps; membrane attachment requires priming of SNAREs and tethering factors by Sec18p/NSF (N-ethylmaleimide sensitive factor) and LMA1. This leads to trans-SNARE pairing, i.e. formation of SNARE complexes between apposed membranes. The yeast...

  12. Mixed-ligand complex formation equilibria of Cu with biguanide in ...

    Indian Academy of Sciences (India)

    Unknown

    metric EDTA titration methods.23 Equilibrium study for the determination of proton-ligand and metal- ligand complex formation constants involved pH- metric titrations of series of solutions, each of initial volume 0⋅025 dm–3, containing known amounts. (0⋅001–0⋅002 mol dm–3) of the ligands, biguanide and/or glycine in ...

  13. Proton transfer and complex formation of angiotensin I ions with gaseous molecules at various temperature

    Energy Technology Data Exchange (ETDEWEB)

    Nonose, Shinji, E-mail: nonose@yokohama-cu.ac.jp; Yamashita, Kazuki; Sudo, Ayako; Kawashima, Minami

    2013-09-23

    Highlights: • Proton transfer from angiotensin I ions (z = 2, 3) to gaseous molecules was studied. • Temperature dependence of absolute reaction rate constants was measured. • Remarkable changes were obtained for distribution of product ions and reaction rate constants. • Proton transfer reaction was enhanced and reduced by complex formation. • Conformation changes are induced by complex formation and or by thermal collision with He. - Abstract: Proton transfer reactions of angiotensin I ions for +2 charge state, [M + 2H]{sup 2+}, to primary, secondary and aromatic amines were examined in the gas phase. Absolute reaction rate constants for proton transfer were determined from intensities of parent and product ions in the mass spectra. Temperature dependence of the reaction rate constants was measured. Remarkable change was observed for distribution of product ions and reaction rate constants. Proton transfer reaction was enhanced or reduced by complex formation of [M + 2H]{sup 2+} with gaseous molecules. The results relate to conformation changes of [M + 2H]{sup 2+} with change of temperature, which are induced by complex formation and or by thermal collision with He. Proton transfer reactions of angiotensin I ions for +3 charge state, [M + 3H]{sup 3+}, were also studied. The reaction rates did not depend on temperature so definitely.

  14. On the complex formation approach in modeling predator prey relations, mating, and sexual disease transmission

    Directory of Open Access Journals (Sweden)

    Horst R. Thieme

    2000-10-01

    Full Text Available Complex formation is used as a unified approach to derive representations and approximations of the functional response in predator prey relations, mating, and sexual disease transmission. Applications are given to the impact of a generalist predator on a prey population and the spread of a sexually transmitted disease in a multi-group heterosexual population.

  15. Complex formation of Np(V) with fulvic acid at tracer metal concentration

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K. [Kyoto Univ. (Japan). Dept. of Nuclear Engineering; Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Resource Ecology; Sasaki, T. [Kyoto Univ. (Japan). Dept. of Nuclear Engineering

    2013-03-01

    Apparent formation constants of pentavalent Np with fulvic acid (FA) were determined in 0.1 M NaClO{sub 4}, at 25 C using a solvent extraction technique with thenoyltrifluoroacetone (TTA) and phenanthroline (phen) in an isoamyl alcohol solution. The metal concentration was set constant to a tracer level of 10{sup -15} M Np(V), relevant for the far field safety assessment of a nuclear waste disposal site. The impact of several solution conditions, namely pH, ionic strength, the initial fulvic acid concentration and the presence of Ca{sup 2+}, on the complex formation were studied. Similar to the sodium system, the divalent calcium ion effectively prevents complexation of the neptunyl ion with fulvic acid. Furthermore, the derived apparent formation constants were comparatively discussed with literature values obtained at very similar solution conditions. (orig.)

  16. Terabit bandwidth-adaptive transmission using low-complexity format-transparent digital signal processing.

    Science.gov (United States)

    Zhuge, Qunbi; Morsy-Osman, Mohamed; Chagnon, Mathieu; Xu, Xian; Qiu, Meng; Plant, David V

    2014-02-10

    In this paper, we propose a low-complexity format-transparent digital signal processing (DSP) scheme for next generation flexible and energy-efficient transceiver. It employs QPSK symbols as the training and pilot symbols for the initialization and tracking stage of the receiver-side DSP, respectively, for various modulation formats. The performance is numerically and experimentally evaluated in a dual polarization (DP) 11 Gbaud 64QAM system. Employing the proposed DSP scheme, we conduct a system-level study of Tb/s bandwidth-adaptive superchannel transmissions with flexible modulation formats including QPSK, 8QAM and 16QAM. The spectrum bandwidth allocation is realized in the digital domain instead of turning on/off sub-channels, which improves the performance of higher order QAM. Various transmission distances ranging from 240 km to 6240 km are demonstrated with a colorless detection for hardware complexity reduction.

  17. High-Frequency Promoter Firing Links THO Complex Function to Heavy Chromatin Formation

    DEFF Research Database (Denmark)

    Mouaikel, John; Causse, Sébastien Z; Rougemaille, Mathieu

    2013-01-01

    The THO complex is involved in transcription, genome stability, and messenger ribonucleoprotein (mRNP) formation, but its precise molecular function remains enigmatic. Under heat shock conditions, THO mutants accumulate large protein-DNA complexes that alter the chromatin density of target genes...... (heavy chromatin), defining a specific biochemical facet of THO function and a powerful tool of analysis. Here, we show that heavy chromatin distribution is dictated by gene boundaries and that the gene promoter is necessary and sufficient to convey THO sensitivity in these conditions. Single......-molecule fluorescence insitu hybridization measurements show that heavy chromatin formation correlates with an unusually high firing pace of the promoter with more than 20 transcription events per minute. Heavy chromatin formation closely follows the modulation of promoter firing and strongly correlates with polymerase...

  18. Evaluation of griseofulvin binary and ternary solid dispersions with HPMCAS.

    Science.gov (United States)

    Al-Obaidi, Hisham; Buckton, Graham

    2009-01-01

    The stability and dissolution properties of griseofulvin binary and ternary solid dispersions were evaluated. Solid dispersions of griseofulvin and hydroxypropyl methylcellulose acetate succinate (HPMCAS) were prepared using the spray drying method. A third polymer, poly[N-(2-hydroxypropyl)methacrylate] (PHPMA), was incorporated to investigate its effect on the interaction of griseofulvin with HPMCAS. In this case, HPMCAS can form H bonds with griseofulvin directly; the addition of PHPMA to the solid dispersion may enhance the stability of the amorphous griseofulvin due to greater interaction with griseofulvin. The X-ray powder diffraction results showed that griseofulvin (binary and ternary solid dispersions) remained amorphous for more than 19 months stored at 85% RH compared with the spray-dried griseofulvin which crystallized totally within 24 h at ambient conditions. The Fourier transform infrared scan showed that griseofulvin carbonyl group formed hydrogen bonds with the hydroxyl group in the HPMCAS, which could explain the extended stability of the drug. Further broadening in the peak could be seen when PHPMA was added to the solid dispersion, which indicates stronger interaction. The glass transition temperatures increased in the ternary solid dispersions regardless of HPMCAS grade. The dissolution rate of the drug in the solid dispersion (both binary and ternary) has significantly increased when compared with the dissolution profile of the spray-dried griseofulvin. These results reveal significant stability of the amorphous form due to the hydrogen bond formation with the polymer. The addition of the third polymer improved the stability but had a minor impact on dissolution.

  19. Recrystallized Impact Glasses of the Onaping Formation and the Sudbury Igneous Complex, Sudbury Structure, Ontario, Canada

    Science.gov (United States)

    Dressler, B. O.; Weiser, T.; Brockmeyer, P.

    1996-01-01

    The origin of the Sudbury Structure and of the associated heterolithic breccias of the Onaping Formation and the Sudbury Igneous Complex have been controversial. While an impact origin of the structure has gained wide acceptance over the last 15 years, the origin of the recrystallized Onaping Formation glasses and of the igneous complex is still being debated. Recently the interpretation of the breccias of the Onaping Formation as suevitic fall-back impact breccias has been challenged. The igneous complex is interpreted either as a differentiated impact melt sheet or as a combination of an upper impact melt represented by the granophyre, and a lower, impact-triggered magmatic body consisting of the norite-sublayer formations. The Onaping Formation contains glasses as fluidal and nonfluidal fragments of various shapes and sizes. They are recrystallized, and our research indicates that they are petrographically heterogeneous and span a wide range of chemical compositions. These characteristics are not known from glasses of volcanic deposits. This suggests an origin by shock vitrification, an interpretation consistent with their association with numerous and varied country rock clasts that exhibit microscopic shock metamorphic features. The recrystallized glass fragments represent individual solid-state and liquid-state vitrified rocks or relatively small melt pods. The basal member lies beneath the Gray and Black members of the Onaping Formation and, where not metamorphic, has an igneous matrix. Igneous-textured melt bodies occur in the upper two members and above the Basal Member. A comparison of the chemical compositions of recrystallized glasses and of the matrices of the Basal Member and the melt bodies with the components and the bulk composition of the igneous complex is inconclusive as to the origin of the igneous complex. Basal Member matrix and Melt Bodies, on average, are chemically similar to the granophyre of the Sudbury Igneous Complex, suggesting that

  20. Complexes of dextran sulfate and anthocyanins from Vaccinium myrtillus: Formation and stability.

    Science.gov (United States)

    Klimaviciute, Rima; Navikaite, Vesta; Jakstas, Valdas; Ivanauskas, Liudas

    2015-09-20

    To improve the stability and antioxidant activity of anthocyanins (ATC), complexes of dextran sulfate (DESU) and ATC extracted from Vaccinium myrtillus were formed during electrostatic interaction between sulfo groups of DESU and cationic moieties of ATC. At the optimal weight ratio DESU/ATC=0.4 g/g, the amount of ATC introduced into a complex depended on the total concentration of the reagents. About 1.7 g of ATC per g of DESU could be incorporated into a complex. The formation of DESU/ATC complexes was confirmed by HPLC and FT-IR spectroscopy. According to HPLC analysis, the amount of individual ATC incorporated into a complex varied from 73.7% in the case of malvidin-3-O-glucoside to 90.8% in the case of delphinidin-3-arabinoside. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. An ordered reaction mechanism for bacterial toxin acylation by the specialized acyltransferase HlyC: formation of a ternary complex with acylACP and protoxin substrates

    National Research Council Canada - National Science Library

    Stanley, Peter; Hyland, Caroline; Koronakis, Vassilis; Hughes, Colin

    1999-01-01

    .... Using an in vitro maturation reaction containing purified protoxin peptides and acylACP, we show unambiguously that HlyC possesses an apparently unique acyltransferase activity fully described by Michaelis–Menten analysis...

  2. Stability of furosemide polymorphs and the effects of complex formation with β-cyclodextrin and maltodextrin.

    Science.gov (United States)

    Garnero, Claudia; Chattah, Ana Karina; Longhi, Marcela

    2016-11-05

    The effect of the formation of supramolecular binary complexes with β-cyclodextrin and maltodextrin on the chemical and physical stability of the polymorphs I and II of furosemide was evaluated in solid state. The solid samples were placed under accelerated storage conditions and exposed to daylight into a stability chamber for a 6-month. Chemical stability was monitored by high performance liquid chromatography, while the physical stability was studied by solid state nuclear magnetic resonance, powder X-ray diffraction and scanning electron microscopy. Changes in the physical appearance of the samples were evaluated. The studies showed a significant stabilizing effect of β-cyclodextrin on furosemide form II. Our results suggest that the complex formation is a useful tool for improving the stability of furosemide polymorphs. These new complexes are promising candidates that can be used in the pharmaceutical industry for the preparation of alternative matrices that improve physicochemical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mycobacterium tuberculosis H37Rv ESAT-6-CFP-10 complex formation confers thermodynamic and biochemical stability.

    Science.gov (United States)

    Meher, Akshaya K; Bal, Naresh Chandra; Chary, Kandala V R; Arora, Ashish

    2006-04-01

    The 6-kDa early secretory antigenic target (ESAT-6) and culture filtrate protein-10 (CFP-10), expressed from the region of deletion-1 (RD1) of Mycobacterium tuberculosis H37Rv, are known to play a key role in virulence. In this study, we explored the thermodynamic and biochemical changes associated with the formation of the 1 : 1 heterodimeric complex between ESAT-6 and CFP-10. Using isothermal titration calorimetry (ITC), we precisely determined the association constant and free energy change for formation of the complex to be 2 x 10(7) M(-1) and -9.95 kcal.mol(-1), respectively. Strikingly, the thermal unfolding of the ESAT-6-CFP-10 heterodimeric complex was completely reversible, with a T(m) of 53.4 degrees C and DeltaH of 69 kcal.mol(-1). Mixing of ESAT-6 and CFP-10 at any temperature below the T(m) of the complex led to induction of helical conformation, suggesting molecular recognition between specific segments of unfolded ESAT-6 and CFP-10. Enhanced biochemical stability of the complex was indicated by protection of ESAT-6 and an N-terminal fragment of CFP-10 from proteolysis with trypsin. However, the flexible C-terminal of CFP-10 in the complex, which has been shown to be responsible for binding to macrophages and monocytes, was cleaved by trypsin. In the presence of phospholipid membranes, ESAT-6, but not CFP-10 and the complex, showed an increase in alpha-helical content and enhanced thermal stability. Overall, complex formation resulted in structural changes, enhanced thermodynamic and biochemical stability, and loss of binding to phospholipid membranes. These features of complex formation probably determine the physiological role of ESAT-6, CFP-10 and/or the complex in vivo. The ITC and thermal unfolding approach described in this study can readily be applied to characterization of the 11 other pairs of ESAT-6 family proteins and for screening ESAT-6 and CFP-10 mutants.

  4. Some new ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov

    2017-07-01

    Full Text Available Let an $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$ and minimum Hamming distance $d$ over $GF(q$. One of the most important problems in coding theory is to construct codes with optimal minimum distances. In this paper 22 new ternary linear codes are presented. Two of them are optimal. All new codes improve the respective lower bounds in [11].

  5. The role of focal adhesion complexes in fibroblast mechanotransduction during scar formation.

    Science.gov (United States)

    Rustad, Kristine C; Wong, Victor W; Gurtner, Geoffrey C

    2013-10-01

    Historically, great efforts have been made to elucidate the biochemical pathways that direct the complex process of wound healing; however only recently has there been recognition of the importance that mechanical signals play in the process of tissue repair and scar formation. The body's physiologic response to injury involves a dynamic interplay between mechanical forces and biochemical cues which directs a cascade of signals leading ultimately to the formation of fibrotic scar. Fibroblasts are a highly mechanosensitive cell type and are also largely responsible for the generation of the fibrotic matrix during scar formation and are thus a critical player in the process of mechanotransduction during tissue repair. Mechanotransduction is initiated at the interface between the cell membrane and the extracellular matrix where mechanical signals are first translated into a biochemical response. Focal adhesions are dynamic multi-protein complexes through which the extracellular matrix links to the intracellular cytoskeleton. These focal adhesion complexes play an integral role in the propagation of this initial mechanical cue into an extensive network of biochemical signals leading to widespread downstream effects including the influx of inflammatory cells, stimulation of angiogenesis, keratinocyte migration, fibroblast proliferation and collagen synthesis. Increasing evidence has demonstrated the importance of the biomechanical milieu in healing wounds and suggests that an integrated approach to the discovery of targets to decrease scar formation may prove more clinically efficacious than previous purely biochemical strategies. Copyright © 2012 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  6. Nearly Ternary Quadratic Higher Derivations on Non-Archimedean Ternary Banach Algebras: A Fixed Point Approach

    Directory of Open Access Journals (Sweden)

    M. Eshaghi Gordji

    2011-01-01

    Full Text Available We investigate the stability and superstability of ternary quadratic higher derivations in non-Archimedean ternary algebras by using a version of fixed point theorem via quadratic functional equation.

  7. A Reaction Method for Estimating Gibbs Energy and Enthalpy of Formation of Complex Minerals

    Science.gov (United States)

    Li, Ruibing; Zhang, Tingan; Liu, Yan; Kuang, Shibo

    2017-04-01

    New and updated thermodynamic data for simple binary compounds are readily available from both experimental measurements and theoretical calculations. Based on these available data, an approach is proposed to predict Gibbs energies and enthalpies of formation for complex minerals of metallurgical, chemical, and other industrial importance. The approach assumes that complex minerals are formed from binary composite oxides, which in turn, are formed from individual pure oxides. The validity of this approach is examined by comparing the calculated values of Gibbs energies and enthalpies against the experimentally measured ones reported in literature. The results show that for typical complex minerals with available experimental data, the calculated results exhibit an average residual of 0.51 pct for Gibbs energies and 0.52 pct for enthalpies, compared to the experimental results. This new approach thus correlates well with experimental approaches and can be applied to most of the complex minerals.

  8. 3D structure and formation of hydrothermal vent complexes in the Møre Basin

    Science.gov (United States)

    Kjoberg, Sigurd; Schmiedel, Tobias; Planke, Sverre; Svensen, Henrik H.; Galland, Oliver; Jerram, Dougal A.

    2016-04-01

    The mid-Norwegian Møre margin is regarded as a type example of a volcanic rifted margin, with its formation usually related to the influence of the Icelandic plume activity. The area is characterized by the presence of voluminous basaltic complexes such as extrusive lava sequences, intrusive sills and dikes, and hydrothermal vent complexes within the Møre Basin. Emplacement of hydrothermal vent complexes is accommodated by deformation of the host rock. The edges of igneous intrusions mobilize fluids by heat transfer into the sedimentary host rock (aureoles). Fluid expansion may lead to formation of piercing structures due to upward fluid migration. Hydrothermal vent complexes induce bending of overlying strata, leading to the formation of dome structures at the paleo-surface. These dome structures are important as they indicate the accommodation created for the intrusions by deformation of the upper layers of the stratigraphy, and may form important structures in many volcanic margins. Both the morphological characteristics of the upper part and the underlying feeder-structure (conduit-zone) can be imaged and studied on 3D seismic data. Seismic data from the Tulipan prospect located in the western part of the Møre Basin have been used in this study. The investigation focusses on (1) the vent complex geometries, (2) the induced surface deformation patterns, (3) the relation to the intrusions (heat source), as well as (4) the emplacement depth of the hydrothermal vent complexes. We approach this by doing a detailed 3D seismic interpretation of the Tulipan seismic data cube. The complexes formed during the initial Eocene, and are believed to be a key factor behind the rapid warming event called the Paleocene-Eocene thermal maximum (PETM). The newly derived understanding of age, eruptive deposits, and formation of hydrothermal vent complexes in the Møre Basin enables us to contribute to the general understanding of the igneous plumbing system in volcanic basins and

  9. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    Science.gov (United States)

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-02-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  10. FORMATION OF METHODICAL COMPETENCE OF FUTURE PRIMARY SCHOOL TEACHERS USING THE MULTIMEDIA METHODOLOGICAL COMPLEX

    Directory of Open Access Journals (Sweden)

    Maria Haran

    2016-09-01

    Full Text Available The future primary school teachers training to teach mathematics is carried out by means of the academic discipline «Methods of Teaching of Educational Branch «Mathematics»». The aim and result of the training is methodical competence formation of future primary school teachers. In the article the content and structure of methodical competence of the primary school teacher is considered, according to which statutory, variable, specifically methodical, control estimate, designing and modeling and technological components are specified . Author determined the composition of the multimedia methodical complex of discipline «Methods of Teaching of the Educational Branch «Mathematics»», including designer of presentations of lectures, bank of multimedia material for practical/laboratory work, bank of multimedia for self-activity work of students and bank of tests. The influence of multimedia that make up the components of the complex of methodical competence formation is substantiated

  11. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    Energy Technology Data Exchange (ETDEWEB)

    Fatimah, Is, E-mail: isfatimah@uii.ac.id; Yudha, Septian P.; Mutiara, Nur Afisa Lintang [Chemistry Department, Islamic University of Indonesia Kampus Terpadu UII, Jl. Kaliurang Km 14, Sleman, Yogyakarta (Indonesia)

    2016-02-08

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  12. Formation of Inclusion Complexes of Cycldextrin with Ethanol under Anhydrous Conditions.

    Science.gov (United States)

    Yoshii, H; Kometani, T; Furuta, T; Watanabe, Y; Linko, Y Y; Linko, P

    1998-01-01

    Complex formation of poorly water soluble organic compounds with cyclodextrin (CD) is quite difficult in an aqueous cyclodextrin system. Formation of the inclusion complex of d-limonene, phenyl ethanol, acetophenone, or menthol was investigated in a slurry form of α-, β-, or γ-CD in organic solvents or alcohol under anhydrous conditions. Ethanol and methanol were found to be good solvents for this method. The use of ethanol as the solvent was investigated in greater detail. There existed an optimal amount of ethanol for the maximum inclusion of d-limonene as the guest compound. However, an excess of ethanol inhibited the inclusion. An adsorption model of alcohol on CD, analogous to the substrate inhibition model of enzyme kinetics, could correlate the inclusion ratio with the amount of alcohol added to CD.

  13. A disymmetric terpyridine based ligand for the formation of luminescent di-aquo lanthanide complexes.

    Science.gov (United States)

    Charbonnière, Loïc J; Mameri, Samir; Flot, David; Waltz, Fanny; Zandanel, Christelle; Ziessel, Raymond F

    2007-06-14

    The synthesis of ligand H3 based on a disymmetrically substituted terpyridine core functionalised by a carboxylic acid in the 6-position and a bis(carboxymethyl)aminomethyl function in the 6''-position is described. The coordination behaviour of this heptadentate (4N/3O) ligand with lanthanide cations (Ln=Eu, Gd and Tb) was studied in solution showing the formation of complexes with [Ln] stoichiometry. Complexes with general formula [Ln(H2O)2] were isolated from neutral water solutions containing equimolar amounts of cations and ligands, and the complexes were characterized in the solid state (elemental analysis, IR) and in solution (mass spectrometry). The photo-physical properties of the luminescent complexes of Eu and Tb were studied in water solution by means of absorption, steady state and time-resolved emission spectroscopies. Evolution of the luminescence lifetimes of the Eu and Tb complexes in H2O and D2O reveals the presence of two water molecules coordinated in the first coordination sphere of the cations. Despite this important hydration number, the overall luminescence quantum yields of the complexes remained elevated, especially in the case of Tb (Phi=22.0 and 6.5% respectively for Tb and Eu). Upon crystallisation the Gd complex formed dimeric species in which two gadolinium atoms are each heptacoordinated by one ligand, the coordination sphere being completed by a single water molecule and a bridging carboxylate function, pointing to different behaviours in the solid and liquid states.

  14. EPR study of complex formation between copper (II) ions and sympathomimetic amines in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Preoteasa, E.A. [Inst. of Atomic Physics, IFIN, Bucharest (Romania); Duliu, O.G.; Grecu, V.V. [Bucharest, Univ. (Romania). Dept. of Atomic and Nuclear Physics

    1997-07-01

    The complex formation between sympathomimetic amines (SA): adrenaline (AD), noradrenaline (NA), dopamine (DA), ephedrine (ED) and p-tyramine (pTA), and Cu(II) ion in aqueous solution has been studied by X-band EPR at room temperature. Excepting pTA, all investigated SA yielded two types of complexes in different pH domains. All complexes consistent with a ligand fields having a distorted octahedral symmetry, i.e., hexacoordination of Cu(II). The covalence coefficient calculated from the isotropic g and A values has shown strong ionic sigma-type ligand bonds. A structural model with the Cu(II) ion bound by four catecholic O(hydroxy) atoms for the low pH complexes of AD, NA and DA is proposed. For the high pH complexes of the former compounds as well as for both Ed complexes, the authors suppose Cu(II) bound by two N (amino) and two O (hydroxy) atoms. The spectra are consistent to water binding on the longitudinal octahedron axis in all compounds excepting the high pH complex of Ed, where OH2- ions are bound. Possible implications for the SA-cell receptors interactions are discussed.

  15. Peculiarities of litter invertebrates’ multispecies complexes formation on the Khortitsa island (Zaporizhzhya province

    Directory of Open Access Journals (Sweden)

    D. О. Fedorchenko

    2008-02-01

    Full Text Available Peculiarities of litter invertebrates’ complexes formation under conditions of the Khortitsa National Reserve (Zaporizhzhya province are studied. The dispersion of taxonomic groups of different levels (families and species in litter mesofauna is swayed by the inter- and intrasystem factors; the largest influence has the power of litter and its humidity. The rate of ecological factors’ influence at different taxonomic levels may diverge.

  16. Simultaneous measurement of amyloid fibril formation by dynamic light scattering and fluorescence reveals complex aggregation kinetics.

    Directory of Open Access Journals (Sweden)

    Aaron M Streets

    Full Text Available An apparatus that combines dynamic light scattering and Thioflavin T fluorescence detection is used to simultaneously probe fibril formation in polyglutamine peptides, the aggregating subunit associated with Huntington's disease, in vitro. Huntington's disease is a neurodegenerative disorder in a class of human pathologies that includes Alzheimer's and Parkinson's disease. These pathologies are all related by the propensity of their associated protein or polypeptide to form insoluble, β-sheet rich, amyloid fibrils. Despite the wide range of amino acid sequence in the aggregation prone polypeptides associated with these diseases, the resulting amyloids display strikingly similar physical structure, an observation which suggests a physical basis for amyloid fibril formation. Thioflavin T fluorescence reports β-sheet fibril content while dynamic light scattering measures particle size distributions. The combined techniques allow elucidation of complex aggregation kinetics and are used to reveal multiple stages of amyloid fibril formation.

  17. Globular cluster formation with multiple stellar populations from hierarchical star cluster complexes

    Science.gov (United States)

    Bekki, Kenji

    2017-05-01

    Most old globular clusters (GCs) in the Galaxy are observed to have internal chemical abundance spreads in light elements. We discuss a new GC formation scenario based on hierarchical star formation within fractal molecular clouds. In the new scenario, a cluster of bound and unbound star clusters ('star cluster complex', SCC) that have a power-law cluster mass function with a slope (β) of 2 is first formed from a massive gas clump developed in a dwarf galaxy. Such cluster complexes and β = 2 are observed and expected from hierarchical star formation. The most massive star cluster ('main cluster'), which is the progenitor of a GC, can accrete gas ejected from asymptotic giant branch (AGB) stars initially in the cluster and other low-mass clusters before the clusters are tidally stripped or destroyed to become field stars in the dwarf. The SCC is initially embedded in a giant gas hole created by numerous supernovae of the SCC so that cold gas outside the hole can be accreted on to the main cluster later. New stars formed from the accreted gas have chemical abundances that are different from those of the original SCC. Using hydrodynamical simulations of GC formation based on this scenario, we show that the main cluster with the initial mass as large as [2-5] × 105 M⊙ can accrete more than 105 M⊙ gas from AGB stars of the SCC. We suggest that merging of hierarchical SSCs can play key roles in stellar halo formation around GCs and self-enrichment processes in the early phase of GC formation.

  18. Glycinin-gum arabic complex formation: Turbidity measurement and charge neutralization analysis.

    Science.gov (United States)

    Dong, Die; Hua, Yufei

    2016-11-01

    The interaction between glycinin and anionic polysaccharides has gained considerable attention recently because of its scientific impact on the stability of acid soymilk systems. In this study, the formation of glycinin/gum arabic complexes driven by electrostatic interactions was investigated. Turbidity titrations at different glycinin/gum arabic ratios were conducted and critical pH values (pHφ1) where insoluble complexes began forming were determined firstly. The corresponding pHφ1 values at glycinin/gum arabic ratios of 1:4, 1:2, 1:1, 2:1, 4:1 and 8:1 were 2.85, 3.25, 3.70, 4.40, 4.85 and 5.35, respectively. Afterwards, electromobilities for glycinin and gum arabic at the pH values between 4.1 and 2.6 were measured, and charge densities (ZN) for glycinin and gum arabic were calculated based on the soft particle analysis theory. Further analysis indicated that the product of glycinin/gum arabic ratio (ρ) and ZN ratio of glycinin/gum arabic was approximate 1 at any pHφ1 values. It was revealed that charge neutralization was achieved when glycinin/gum arabic insoluble complexes began forming. NaCl displayed multiple effects on glycinin/gum arabic complex formation according to turbidity and compositional analysis. The present study could provide basic guidance in acid soymilk designing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Structure of solvated Fe(CO)5: complex formation during solvation in alcohols.

    Science.gov (United States)

    Lessing, Joshua; Li, Xiaodi; Lee, Taewoo; Rose-Petruck, Christoph G

    2008-03-20

    The equilibrium structure of iron pentacarbonyl, Fe(CO)5, solvated in various alcohols has been investigated by Fourier transform infrared (FTIR) measurements and density functional theory calculations. This system was studied because it is prototypical of a larger class of monometallic systems, which are electronically saturated but not sterically crowded. Upon solvation, the Fe(CO)5 is not just surrounded by a solvation shell. Instead, solute-solvent complexes are formed with the oxygen of the alcohol oriented toward an axial ligand of the Fe(CO)5 giving a formation energy on the order of -5 kJ/mol. This complexation is not a chemical reaction but rather a "preassembly" of the solute molecules with a single solvent molecule. For instance, at room temperature the interaction between Fe(CO)5 and ethanol results in 87% of all Fe(CO)5 molecules being complexated with a single ethanol molecule. This complexation was found in all the alcohol systems studied in this paper. The stability of these complexes was found to depend on the alcohol chain length and branching. The observed complexation mechanism is accompanied by an electron density shift from the complexed alcohol molecule toward Fe(CO)5 where it induces a dipole moment. The finding that Fe(CO)5 forms a complex with the hydroxyl group of a single solvent molecule might have significant implications for ligand substitution reactions. This implies that ligand substitution reactions do not have to proceed via a dissociative mechanism. Instead, the reaction might proceed through a concerted mechanism with the leaving CO simultaneously being replaced by the incoming alcohol that was complexed to Fe(CO)5 prior to the photoexcitation.

  20. Functional cooperation between FACT and MCM is coordinated with cell cycle and differential complex formation

    Directory of Open Access Journals (Sweden)

    Lin Chih-Li

    2010-02-01

    Full Text Available Abstract Background Functional cooperation between FACT and the MCM helicase complex constitutes an integral step during DNA replication initiation. However, mode of regulation that underlies the proper functional interaction of FACT and MCM is poorly understood. Methods & Results Here we present evidence indicating that such interaction is coordinated with cell cycle progression and differential complex formation. We first demonstrate the existence of two distinct FACT-MCM subassemblies, FACT-MCM2/4/6/7 and FACT-MCM2/3/4/5. Both complexes possess DNA unwinding activity and are subject to cell cycle-dependent enzymatic regulation. Interestingly, analysis of functional attributes further suggests that they act at distinct, and possibly sequential, steps during origin establishment and replication initiation. Moreover, we show that the phosphorylation profile of the FACT-associated MCM4 undergoes a cell cycle-dependent change, which is directly correlated with the catalytic activity of the FACT-MCM helicase complexes. Finally, at the quaternary structure level, physical interaction between FACT and MCM complexes is generally dependent on persistent cell cycle and further stabilized upon S phase entry. Cessation of mitotic cycle destabilizes the complex formation and likely leads to compromised coordination and activities. Conclusions Together, our results correlate FACT-MCM functionally and temporally with S phase and DNA replication. They further demonstrate that enzymatic activities intrinsically important for DNA replication are tightly controlled at various levels, thereby ensuring proper progression of, as well as exit from, the cell cycle and ultimately euploid gene balance.

  1. On Some Ternary LCD Codes

    OpenAIRE

    Darkunde, Nitin S.; Patil, Arunkumar R.

    2018-01-01

    The main aim of this paper is to study $LCD$ codes. Linear code with complementary dual($LCD$) are those codes which have their intersection with their dual code as $\\{0\\}$. In this paper we will give rather alternative proof of Massey's theorem\\cite{8}, which is one of the most important characterization of $LCD$ codes. Let $LCD[n,k]_3$ denote the maximum of possible values of $d$ among $[n,k,d]$ ternary $LCD$ codes. In \\cite{4}, authors have given upper bound on $LCD[n,k]_2$ and extended th...

  2. Investigation of itraconazole ternary amorphous solid dispersions based on povidone and Carbopol.

    Science.gov (United States)

    Meng, Fan; Meckel, Jordan; Zhang, Feng

    2017-08-30

    We investigate a ternary system that consists of itraconazole (ITZ) and two polymers: povidone K12 and Carbopol 907. The interactions between these two polymers and their effects on the properties of ternary ITZ amorphous solid dispersions (ASDs) are studied. These two polymers can form a water-insoluble complex in acidic aqueous media. The critical pH is determined to be 4.17. The weight percentage of Carbopol 907 in the interpolymer complex range from 59 to 70%, depending on the initial ratios between these two polymers in the starting solutions. This complexation is driven by a negative enthalpy change from the H-bonding between the two polymers and a positive entropy change from the freed water molecules. Due to the slow precipitation of the interpolymer complex in aqueous media, the attempt to prepare ternary ASD using solvent-controlled coprecipitation is not successful. Melt extrusion is identified to be the only viable method to prepare this ternary ASD. We find that interpolymer complex-based ASDs are physically less stable and demonstrate the poorest drug-release properties when compared to individual polymer-based binary ASDs. This study illustrates that the too strong interaction between polymers in ternary ASDs is detrimental to their performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    pseudopotential to ternary metallic glasses involves the assumption of pseudoions with average properties, which are assumed to replace three types of ions in the ternary systems, and a gas of free electrons is assumed to perme- ate through them. The electron–pseudoion is accounted by the pseudopotential, and the ...

  4. Ternary rhythm and the lapse constraint

    NARCIS (Netherlands)

    Elenbaas, N.; Kager, R.W.J.

    2004-01-01

    Ternary rhythmic systems differ from binary systems in stressing every third syllable in a word, rather than every second. Ternary rhythm is well-established for only a small group of languages, including Chugach Alutiiq, Cayuvava, and Estonian, and possibly Winnebago. Nevertheless the stress

  5. Preparation of meloxicam-β-cyclodextrin-polyethylene glycol 6000 ternary system: characterization, in vitro and in vivo bioavailability.

    Science.gov (United States)

    Radia, Ourezki; Rogalska, Ewa; Moulay-Hassane, Guermouche

    2012-01-01

    Ternary complexes of meloxicam (ML), a poorly water-soluble anti-inflammatory drug, with β-cyclodextrin (βCD) and polyethylene glycol (PEG) 6000 were prepared from an equimolar (ML-βCD) and 10% of PEG. Characterization of the ternary complex was carried out by differential scanning calorimetry and X-ray diffractometry. The solubility of ML increased as a function of increasing the concentration of βCD and PEG 6000. Ternary system increased significantly ML solubility in water. Ternary complexes improved drug release compared with ML and ML-βCD. The oral bioavailability of ML-βCD-PEG was investigated by administration to rat and compared with ML and ML-βCD. The results confirmed that the oral bioavailability of ML was significantly improved by complexation with βCD in the presence of PEG.

  6. Revised nomenclature and stratigraphic relationships of the Fredericksburg Complex and Quantico Formation of the Virginia Piedmont

    Science.gov (United States)

    Pavlides, Louis

    1980-01-01

    The Fredericksburg Complex, in part a migmatitic terrane in northeast Virginia, is subdivided on the basis of lithology, as well as aeromagnetic and aeroradiometric data, into two metamorphic suites. These suites are separated by the northeast-trending Spotsylvania lineament, a rectilinear geophysical feature that is probably the trace of an old fault zone. East of the lineament, the Po River Metamorphic Suite, of Proterozoic Z and (or) early Paleozoic age, consists dominantly of biotite gneiss, generally augen gneiss, and lesser amounts of hornblende gneiss and mica schist. West of the Spotsylvania lineament is the Ta River Metamorphic Suite, composed mostly of amphibolite and amphibole gneiss. However, to the southwest, along its strike belt, the Ta River contains abundant biotite gneiss and mica schist. Both the Ta River and Po River contain abundant foliated granitoid and pegmatoid bodies as concordant tabular masses and as crosscutting dikes; these rocks are considered part of the Ta River and Po River Metamorphic Suites. The amphibolitic Holly Corner Gneiss is interpreted to be a western allochthonous equivalent of the Ta River. Both the Ta River and Holly Corner are considered to be coeval, eastern, distal facies of the Lower Cambrian(?) Chopawamsic Formation. The Paleozoic Falls Run Granite Gneiss intrudes the Ta River Metamorphic Suite and the Holly Corner Gneiss; locally the Falls Run is interpreted to have been transported westward with the Holly Corner after intrusion. The Quantico Formation, in the core of the Quantico-Columbia synclinorium, rests with angular unconformity along its northwest and southeast limbs, respectively, on the Chopawamsic Formation and the Ta River Metamorphic Suite. The Quantico Formation is assigned the same Late Ordovician age and similar stratigraphic position as the Arvonia Slate of the Arvonia syncline. The youngest rocks of the area are the granitoid and pegmatoid bodies of the Falmouth Intrusive Suite. They consist of

  7. CARBON DIOXIDE INFLUENCE ON THE THERMAL FORMATION OF COMPLEX ORGANIC MOLECULES IN INTERSTELLAR ICE ANALOGS

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradoff, V.; Fray, N.; Bouilloud, M.; Cottin, H. [LISA Laboratoire Interuniversitaire des Systèmes Atmosphériques, UMR CNRS 7583, Université Paris Est Créteil (UPEC), Université Paris Diderot (UPD), Institut Pierre Simon Laplace, Labex ESEP, Paris (France); Duvernay, F.; Chiavassa, T., E-mail: vvinogradoff@mnhn.fr [PIIM, Laboratoire de Physique des Interactions Ioniques et Moléculaires, Université Aix-Marseille, UMR CNRS 7345, Marseille (France)

    2015-08-20

    Interstellar ices are submitted to energetic processes (thermal, UV, and cosmic-ray radiations) producing complex organic molecules. Laboratory experiments aim to reproduce the evolution of interstellar ices to better understand the chemical changes leading to the reaction, formation, and desorption of molecules. In this context, the thermal evolution of an interstellar ice analogue composed of water, carbon dioxide, ammonia, and formaldehyde is investigated. The ice evolution during the warming has been monitored by IR spectroscopy. The formation of hexamethylenetetramine (HMT) and polymethylenimine (PMI) are observed in the organic refractory residue left after ice sublimation. A better understanding of this result is realized with the study of another ice mixture containing methylenimine (a precursor of HMT) with carbon dioxide and ammonia. It appears that carbamic acid, a reaction product of carbon dioxide and ammonia, plays the role of catalyst, allowing the reactions toward HMT and PMI formation. This is the first time that such complex organic molecules (HMT, PMI) are produced from the warming (without VUV photolysis or irradiation with energetic particles) of abundant molecules observed in interstellar ices (H{sub 2}O, NH{sub 3}, CO{sub 2}, H{sub 2}CO). This result strengthens the importance of thermal reactions in the ices’ evolution. HMT and PMI, likely components of interstellar ices, should be searched for in the pristine objects of our solar system, such as comets and carbonaceous chondrites.

  8. Deciphering Front-Side Complex Formation in SN2 Reactions via Dynamics Mapping.

    Science.gov (United States)

    Szabó, István; Olasz, Balázs; Czakó, Gábor

    2017-07-06

    Due to their importance in organic chemistry, the atomistic understanding of bimolecular nucleophilic substitution (SN2) reactions shows exponentially growing interest. In this publication, the effect of front-side complex (FSC) formation is uncovered via quasi-classical trajectory computations combined with a novel analysis method called trajectory orthogonal projection (TOP). For both F(-) + CH3Y [Y = Cl,I] reactions, the lifetime distributions of the F(-)···YCH3 front-side complex revealed weakly trapped nucleophiles (F(-)). However, only the F(-) + CH3I reaction features strongly trapped nucleophiles in the front-side region of the prereaction well. Interestingly, both back-side and front-side attack show propensity to long-lived FSC formation. Spatial distributions of the nucleophile demonstrate more prominent FSC formation in case of the F(-) + CH3I reaction compared to F(-) + CH3Cl. The presence of front-side intermediates and the broad spatial distribution in the back-side region may explain the indirect nature of the F(-) + CH3I reaction.

  9. High-Efficient Circuits for Ternary Addition

    Directory of Open Access Journals (Sweden)

    Reza Faghih Mirzaee

    2014-01-01

    Full Text Available New ternary adders, which are fundamental components of ternary addition, are presented in this paper. They are on the basis of a logic style which mostly generates binary signals. Therefore, static power dissipation reaches its minimum extent. Extensive different analyses are carried out to examine how efficient the new designs are. For instance, the ternary ripple adder constructed by the proposed ternary half and full adders consumes 2.33 μW less power than the one implemented by the previous adder cells. It is almost twice faster as well. Due to their unique superior characteristics for ternary circuitry, carbon nanotube field-effect transistors are used to form the novel circuits, which are entirely suitable for practical applications.

  10. Cohesion energy calculations for ternary ionic novel crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez P, G.; Cabrera, E. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico D.F. (Mexico); Mijangos, R.R. [Centro de Investigacion en Fisica, Universidad de Sonora, A.P. 5-88, 83190 Hermosillo, Sonora (Mexico); Valdez, E. [Escuela Nacional de Estudios Profesionales Acatlan, Universidad Nacional Autonoma de Mexico, Santa Cruz Acatlan, Naucalpan (Mexico); Duarte, C. [Departamento de Geologia, Universidad de Sonora, 83000 Hermosillo, Sonora (Mexico)

    2001-07-01

    The present work calculates the value of the link energy of a crystalline ternary structure newly formed by alkali halides. The ternary structure prepared with different concentrations of KCl{sub x}KBrRbCl{sub 2} maintains a very good miscibility and stability. The calculation is based on the use of a generalization of the Vegard law (which generally is valid for binary compounds) for calculating the values of the lattice constant and the repulsive m exponent. The value of the lattice parameter given by X-ray diffractometry agrees with the close approximation of the calculated value of the method used. It also compares the value of energy cohesion obtained by the Born expression with more complex approximations. (Author)

  11. The plant cell cycle: Pre-Replication complex formation and controls.

    Science.gov (United States)

    Brasil, Juliana Nogueira; Costa, Carinne N Monteiro; Cabral, Luiz Mors; Ferreira, Paulo C G; Hemerly, Adriana S

    2017-01-01

    The multiplication of cells in all living organisms requires a tight regulation of DNA replication. Several mechanisms take place to ensure that the DNA is replicated faithfully and just once per cell cycle in order to originate through mitoses two new daughter cells that contain exactly the same information from the previous one. A key control mechanism that occurs before cells enter S phase is the formation of a pre-replication complex (pre-RC) that is assembled at replication origins by the sequential association of the origin recognition complex, followed by Cdt1, Cdc6 and finally MCMs, licensing DNA to start replication. The identification of pre-RC members in all animal and plant species shows that this complex is conserved in eukaryotes and, more importantly, the differences between kingdoms might reflect their divergence in strategies on cell cycle regulation, as it must be integrated and adapted to the niche, ecosystem, and the organism peculiarities. Here, we provide an overview of the knowledge generated so far on the formation and the developmental controls of the pre-RC mechanism in plants, analyzing some particular aspects in comparison to other eukaryotes.

  12. Donor-Acceptor Properties of a Single-Molecule Altered by On-Surface Complex Formation.

    Science.gov (United States)

    Meier, Tobias; Pawlak, Rémy; Kawai, Shigeki; Geng, Yan; Liu, Xunshan; Decurtins, Silvio; Hapala, Prokop; Baratoff, Alexis; Liu, Shi-Xia; Jelínek, Pavel; Meyer, Ernst; Glatzel, Thilo

    2017-08-22

    Electron donor-acceptor molecules are of outstanding interest in molecular electronics and organic solar cells for their intramolecular charge transfer controlled via electrical or optical excitation. The preservation of their electronic character in the ground state upon adsorption on a surface is cardinal for their implementation in such single-molecule devices. Here, we investigate by atomic force microscopy and scanning tunneling microscopy a prototypical system consisting of a π-conjugated tetrathiafulvalene-fused dipyridophenazine molecule adsorbed on thin NaCl films on Cu(111). Depending on the adsorption site, the molecule is found either in a nearly undisturbed free state or in a bound state. In the latter case, the molecule adopts a specific adsorption site, leading to the formation of a chelate complex with a single Na(+) alkali cation pulled out from the insulating film. Although expected to be electronically decoupled, the charge distribution of the complex is drastically modified, leading to the loss of the intrinsic donor-acceptor character. The chelate complex formation is reversible with respect to lateral manipulations, enabling tunable donor-acceptor molecular switches activated by on-surface coordination.

  13. Formation Mechanism of Oxide-Sulfide Complex Inclusions in High-Sulfur-Containing Steel Melts

    Science.gov (United States)

    Shin, Jae Hong; Park, Joo Hyun

    2018-02-01

    The [S] content in resulfurized steel is controlled in the range of 200 to 800 ppm to ensure good machinability and workability. It is well known that "MgAl2O4(spinel)+CaS" complex inclusions are formed in molten steel during the ladle refining process, and these cause nozzle clogging during continuous casting. Thus, in the present study, the "Refractory-Slag-Metal-Inclusions (ReSMI)" multiphase reaction model was employed in conjunction with experiments to investigate the influence of slag composition and [S] content in the steel on the formation of oxide-sulfide complex inclusions. The critical [S] and [Al] contents necessary for the precipitation of CaS in the CaO-Al2O3-MgO-SiO2 (CAMS) oxide inclusions were predicted from the composition of the liquid inclusions, as observed by scanning electron microscopy-electron dispersive spectrometry (SEM-EDS) and calculated using the ReSMI multiphase reaction model. The critical [S] content increases with increasing content of SiO2 in the slag at a given [Al] content. Formation mechanisms for spinel+CaS and spinel+MnS complex inclusions were also proposed.

  14. Complex conductivity response to microbial growth and biofilm formation on phenanthrene spiked medium

    Science.gov (United States)

    Albrecht, Remy; Gourry, Jean Christophe; Simonnot, Marie-Odile; Leyval, Corinne

    2011-11-01

    Several laboratory studies have recently demonstrated the utility of geophysical methods for the investigation of microbial-induced changes over contaminated sites. However, it remains difficult to distinguish the effects due to the new physical properties imparted by microbial processes, to bacterial growth, or to the development of bacterial biofilm. We chose to study the influence of biofilm formation on geophysical response using complex conductivity measurements (0.1-1000 Hz) in phenanthrene-contaminated media. Biotic assays were conducted with two phenanthrene (PHE) degrading bacterial strains: Burkholderia sp (NAH1), which produced biofilm and Stenophomonas maltophilia (MATE10), which did not, and an abiotic control. Results showed that bacterial densities for NAH1 and MATE10 strains continuously increased at the same rate during the experiment. However, the complex conductivity signature showed noticeable differences between the two bacteria, with a phase shift of 50 mrad at 4 Hz for NAH1, which produced biofilm. Biofilm volume was quantified by Scanning Confocal Laser Microscopy (SCLM). Significant correlations were established between phase shift decrease and biofilm volume for NAH1 assays. Results suggest that complex conductivity measurements, specifically phase shift, can be a useful indicator of biofilm formation inside the overall signal of microbial activity on contaminated sites.

  15. Decay of Activity Complexes, Formation of Unipolar Magnetic Regions, and Coronal Holes in Their Causal Relation

    Science.gov (United States)

    Golubeva, E. M.; Mordvinov, A. V.

    2016-12-01

    The peculiar development of solar activity in the current cycle resulted in an asynchronous reversal of the Sun's polar fields. The asymmetry is also observed in the formation of polar coronal holes. A stable coronal hole was first formed at the South Pole, despite the later polar-field reversal there. The aim of this study is to understand the processes making this situation possible. Synoptic magnetic maps from the Global Oscillation Network Group and corresponding coronal-hole maps from the Extreme ultraviolet Imaging Telescope onboard the Solar and Heliospheric Observatory and the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory are analyzed here to study the causal relationship between the decay of activity complexes, evolution of large-scale magnetic fields, and formation of coronal holes. Ensembles of coronal holes associated with decaying active regions and activity complexes are presented. These ensembles take part in global rearrangements of the Sun's open magnetic flux. In particular, the south polar coronal hole was formed from an ensemble of coronal holes that came into existence after the decay of multiple activity complexes observed during 2014.

  16. Complex Formations between Surfactants and Polyelectrolytes of the Same Charge on a Water Surface.

    Science.gov (United States)

    Mafi, Amirhossein; Hu, Dan; Chou, Keng C

    2017-08-15

    The mechanism of complex formation between surfactants and polyelectrolytes with the same charge on the water surface was investigated using molecular dynamics simulations and phase-sensitive sum-frequency generation vibrational spectroscopy. Although complex formation between highly charged surfactants and polyelectrolytes of the same charge is generally expected to be prohibited by the electrostatic repulsive force, our study shows that it is possible to form thermodynamically stable complexes when excess ions are present in the solution. We found that anionic partially hydrolyzed polyacrylamide (HPAM) could interact with anionic sodium dodecyl sulfate (SDS) on a water surface in the presence of salts. With excess Na+ ions in the solution, the charge screening effect allows HPAM to weakly interact with SDS via hydrogen bonds. In the presence of divalent Ca2+ ions, the surfactant and the polymer are strongly coupled by forming Ca2+ ion bridges and hydrogen bonds. Our calculation shows that the presence of Ca2+ ions creates a steep binding energy of ∼30 kJ/mol near the water surface. These results were qualitatively verified using phase-sensitive sum-frequency generation vibrational spectroscopy.

  17. Quantum-chemical analysis of formation reactions of Со2+ complexes

    Directory of Open Access Journals (Sweden)

    Viktor F. Vargalyuk

    2017-11-01

    Full Text Available Based on the analysis of quantum chemical calculations results (GAMESS, density functional theory, B3LYP method as to coordination compounds of Co2+ions with H2O, NH3, OH–, F–, Cl–, Br–, I–, CN–, Ac–, Ak– generally given by [Co(H2O6–nLn]2+nx, it has been demonstrated that within the selected series of ligands, there is no correlation between the amount of energy of monosubstituted cobalt aqua complexes formation(∆Е and pK1,just like between the effective nuclear charge of the central atom (z*Со and pK1. According to the behavior of ∆Е and z*Со,we identified two groups of ligands. The first group (OH–, F–, Ac–, Ak–, CN–, NH3 demonstrates logical ∆Е decrease caused by the growth of z*Со. On the contrary, the second group (Cl–, Br–, I– demonstrates ∆Е increase caused by the growth of z*Со. This phenomenon is explained by the change in electronegativity and polarizability of donor atoms in groups and periods of the periodic table. It is established that linear correlations given by lgK = A + B·z*Со can be actualized only for complexes having ligands with similar donor atoms. Referring to the literature on stepwise complex formation of hydroxide, amine and chloride cobalt complexes in combination with z*Со calculations results, we determined A and B constants of lgK, z*Со-correlations for the atoms of oxygen (30.2, –17.7; nitrogen (125.4, –69.9 and chlorine (–6.3, 5.8. The existence of the detected correlation series enables us to lean on lgK,z*М–dependence parameters for the fixed donor atom and to determine Kn values for various complexes with complex-based ligands using calculations and z*М data. This applies to complexes having central atoms of the same nature as well as simple monodentate ligands. The mentioned approach was used to calculate the stability constants for acrylate cobalt complexes (lgK1 = 1.2 и lgК2 = 4.3, which are not covered in literature.

  18. The Protein Kingdom Extended: Ordered and Intrinsically Disordered Proteins, Their Folding, Supramolecular Complex Formation, and Aggregation

    Science.gov (United States)

    Turoverov, Konstantin K.; Kuznetsova, Irina M.; Uversky, Vladimir N.

    2010-01-01

    The native state of a protein is usually associated with a compact globular conformation possessing a rigid and highly ordered structure. At the turn of the last century certain studies arose which concluded that many proteins cannot, in principle, form a rigid globular structure in an aqueous environment, but they are still able to fulfill their specific functions — i.e., they are native. The existence of the disordered regions allows these proteins to interact with their numerous binding partners. Such interactions are often accompanied by the formation of complexes that possess a more ordered structure than the original components. The functional diversity of these proteins, combined with the variability of signals related to the various intra-and intercellular processes handled by these proteins and their capability to produce multi-variant and multi-directional responses allow them to form a unique regulatory net in a cell. The abundance of disordered proteins inside the cell is precisely controlled at the synthesis and clearance levels as well as via interaction with specific binding partners and posttranslational modifications. Another recently recognized biologically active state of proteins is the functional amyloid. The formation of such functional amyloids is tightly controlled and therefore differs from the uncontrolled formation of pathogenic amyloids which are associated with the pathogenesis of several conformational diseases, the development of which is likely to be determined by the failures of the cellular regulatory systems rather than by the formation of the proteinaceous deposits and/or by the protofibril toxicity. PMID:20097220

  19. THE FORMATION OF STUDENTS’ SOCIAL COMPETENCES IN A TECHNICAL UNIVERSITY AS A MULTILEVEL EDUCATIONAL COMPLEX

    Directory of Open Access Journals (Sweden)

    Svetlana V. Sergeyeva

    2016-12-01

    Full Text Available Introduction: the article deals with the problem of expanding students’ competencies. A modern technical University must train professionals who apart from having a high special competence, also have the understanding of the common cultural issues. The solution of the problem is possible through a specially organized activity in the system of lifelong education. The formation of students’ social competences assumes a particular relevance, in the educational process, of a technical university as a multilevel educational complex in the context of the implementation of competence-based approach. Materials and Methods: the authors use the following methods of scientific research: system-structural analysis, synthesis, working with literature, summarizing the e xperience, and critical reflection. Results: the article presents a programme “The Formation of Students’ Social Competences in a Technical University as a Multilevel Educational Complex” developed by the authors. The content of the programme suggests the formation of social competence of health preservation, civic consciousness, communication and social interaction as well as the formation of competence in th e field of information technology. Discussion and Conclusions: the programme developed by the authors is one of the results of research carried out in the work of the Russian Academy of Education experimental unit, case study of Penza State Technological University. The main target of this programme is to promote engineering staff training for a regional labour market. This programme can be used in dif ferent institutions of continuing education.

  20. Cloud fluid compression and softening in spiral arms and the formation of giant molecular cloud complexes

    Science.gov (United States)

    Cowie, L. L.

    1981-04-01

    With regard to the galactodynamics of the cloudy interstellar medium, the paper considers the response of such a gas to a forcing potential in the tight-winding density wave theory. The cloud fluid is treated in the hydrodynamic limit with an equation of state which softens at high densities. It is shown that in the inner regions of the galaxy, cooling of the cloud fluid in the arms can result in gravitational instability and the formation of large bound complexes of clouds which are identified with the giant molecular clouds (GMCs). Masses, dimensions, distributions, and scale heights of the GMCs are predicted by the theory. It is suggested that the interstellar gas density in the disk is regulated by the gravitational instability mechanism in the arms which siphons material into star formation. Implications for the evolution of individual GMCs and for galactic morphology are discussed.

  1. Superoxide-mediated Fe(II) formation from organically complexed Fe(III) in coastal waters

    Science.gov (United States)

    Fujii, Manabu; Ito, Hiroaki; Rose, Andrew L.; Waite, T. David; Omura, Tatsuo

    2008-12-01

    Fe(III) complexed by organic ligands (Fe(III)L) is the primary form of dissolved Fe in marine and coastal environments. Superoxide, typically produced in biological and photochemical processes, is one of the reducing agents that contributes to transformation of Fe(III)L to bioavailable, free dissolved Fe(II) (Fe(II)'). In this work, the kinetics of superoxide-mediated Fe(II)' formation from Fe(III)L in a simulated coastal water system were investigated and a comprehensive kinetic model was developed using citrate and fulvic acid as exemplar Fe-binding ligands. To simulate a coastal environment in laboratory experiments, Fe(III)L samples with various ligand/Fe ratios were incubated for 5 min to 1 week in seawater medium. At each ratio and incubation time, the rate of superoxide-mediated Fe(II)' formation was determined in the presence of the strong Fe(II) binding ligand ferrozine by spectrophotometrically measuring the ferrous-ferrozine complex generated at a constant concentration of superoxide. The Fe(II)' formation rate generally decreased with incubation time, as Fe(III)L gradually dissociated to form less reactive Fe(III) oxyhydroxide. However, when the ligand/Fe ratio was sufficiently high, the dissociation of Fe(III)L (and subsequent Fe precipitation) was suppressed and Fe(II)' was formed at a higher rate. The rate of Fe(II)' produced during the experiment was explained by the kinetic model. The model confirmed that both the ligand/Fe ratio and incubation time have a significant effect on the pathway via which Fe(II)' is formed from Fe(III)-fulvic acid complexes.

  2. Electrochemistry of metal complexes applications from electroplating to oxide layer formation

    CERN Document Server

    Survila, Arvydas

    2015-01-01

    This book aims to sequentially cover all the major stages of electrochemical processes (mass transport, adsorption, charge transfer), with a special emphasis on their deep interrelation. Starting with general considerations on equilibria in solutions and at interfaces as well as on mass transport, the text acquaints readers with the theory and common experimental practice for studying electrochemical reactions of metals complexes. The core part of the book deals with all important aspects of electroplating, including a systematic discussion of co-deposition of metals and formation of alloys.

  3. [Benign fibro-osseous lesions of the craniofacial complex with aneurysmal bone cyst formation].

    Science.gov (United States)

    Geraldo, Ana Filipa; Mendes Dos Santos, Carolina; Tavares, Joana; Fernandes Sousa, Rita; Campos, Alexandre; Farias, João Paulo; Pimentel, José; Guedes Campos, Jorge

    2012-01-01

    Aneurysmal bone cyst are controversial osteolytic benign expansive lesions which occur more frequently in the metaphysis of long bones and spine. They are classified as primary or secondary lesions depending on the presence or absence of an associated bone pathology. The engraftment of aneurysmal bone cyst onto benign fibro-osseous lesions is established. However, in the craniofacial complex this combined lesion is rare.The authors present two histologically proven uncommon cases of benign fibro-osseous lesions (fibrous dysplasia and juvenile psammomatoid ossifying fibroma) with aneurysmal bone cyst formation, emphasizing the imaging characteristics of this hybrid entities.

  4. Methylene Blue Sensitized Photodechlorination of Isomeric Mono- and Dichloroanilines via Molecular Complex Formation Mechanism

    Directory of Open Access Journals (Sweden)

    U. C. Pande

    2011-01-01

    Full Text Available The photosensitized dechlorination of isomeric mono- and dichloroanilines has been studied using methylene blue as photosensitizer in alkaline medium. The dechlorination products have been identified and formation of molecular complex between aniline and methylene blue has been observed. The effects of the pH, concentration of the sensitizer, concentration of the substrate, the intensity of the light and the temperature on the rate of the reaction have been studied. The quantum efficiency of the photodechlorination has been evaluated. The mechanism of the photodechlorination has been suggested.

  5. The oyster genome reveals stress adaptation and complexity of shell formation

    DEFF Research Database (Denmark)

    Zhang, Guofan; Fang, Xiaodong; Guo, Ximing

    2012-01-01

    response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding...... for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster's adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells...

  6. A Solution Study of Complex Formation of Some Diamines with Lanthanones

    Directory of Open Access Journals (Sweden)

    J. J. Vora

    2009-01-01

    Full Text Available To study the metal ligand equilibrium in aqueous solution, the well known Irving-Rossotti titration method was used. The temperature selected is 30±0.10C at ionic strength 0.2 M (NaClO4 which was maintained constant through out the work. The binary metal complex (ML2 formation was studied. The metals selected are Sm3+, Gd3+, Dy3+ and Yb3+. The diamine ligands taken are ethylenediamine, 1,2 diamino propane, 1,3 diamino propane, N-N diethyl ethylenediamine and N-N -dimethyl ethylenediamine. Factors that affected the stability of the complexes are size and ionic potential of lanthanone ions, basicity of ligands, ring size and steric effect of ligands.

  7. Complex formation during dissolution of metal oxides in molten alkali carbonates

    DEFF Research Database (Denmark)

    Li, Qingfeng; Borup, Flemming; Petrushina, Irina

    1999-01-01

    Dissolution of metal oxides in molten carbonates relates directly to the stability of materials for electrodes and construction of molten carbonate fuel cells. In the present work the solubilities of PbO, NiO, Fe2O3,and Bi2O3 in molten Li/K carbonates have been measured at 650 degrees C under...... as the partial pressure of carbon dioxide varies. By combination of solubility and electromotive force measurements, a model is constructed assuming the dissolution involves complex formation. The possible species for lead are proposed to be [Pb(CO3)(2)](-2) and/or [Pb(CO3)(3)](-4). A similar complex chemistry...

  8. Fatty acid synthetase from Brevibacterium ammoniagenes: formation of monounsaturated fatty acids by a multienzyme complex.

    Science.gov (United States)

    Kawaguchi, A; Okuda, S

    1977-01-01

    A multienzyme fatty acid synthetase complex isolated from Brevibacterium ammoniagenes has been purified to a specific activity of 1440 nmol of malonyl-CoA incorporated per min/mg. The enzyme is homogeneous, as judged by gel electrophoresis on agarose gels, and has a molecular weight of 1.2 X 10(6). Both NADPH and NADH are required for activity. In contrast to other fatty acid synthetase complexes, the enzyme catalyzes the synthesis of both long-chain saturated and monounsaturated fatty acids from malonyl-CoA and acetyl-CoA. The formation of unsaturated fatty acids is oxygen-independent and sharply reduced by 3-decynoyl-N-acetylcysteamine, a known inhibitor of Escherchia coli beta-hydroxydecanoyl thioester dehydrase (EC 4.2.1.60). PMID:20622

  9. Characterisation of complex formation between members of the Mycobacterium tuberculosis complex CFP-10/ESAT-6 protein family: towards an understanding of the rules governing complex formation and thereby functional flexibility.

    Science.gov (United States)

    Lightbody, Kirsty L; Renshaw, Philip S; Collins, Michelle L; Wright, Rebecca L; Hunt, Debbie M; Gordon, Stephen V; Hewinson, R Glyn; Buxton, Roger S; Williamson, Richard A; Carr, Mark D

    2004-09-01

    We have previously shown that the secreted M. tuberculosis complex proteins CFP-10 and ESAT-6 form a tight, 1:1 complex, which may represent their functional form. In the work reported here a combination of yeast two-hybrid and biochemical analysis has been used to characterise complex formation between two other pairs of CFP-10/ESAT-6 family proteins (Rv0287/Rv0288 and Rv3019c/Rv3020c) and to determine whether complexes can be formed between non-genome paired members of the family. The results clearly demonstrate that Rv0287/Rv0288 and Rv3019c/3020c form tight complexes, as initially observed for CFP-10/ESAT-6. The closely related Rv0287/Rv0288 and Rv3019c/Rv3020c proteins are also able to form non-genome paired complexes (Rv0287/Rv3019c and Rv0288/Rv3020c), but are not capable of binding to the more distantly related CFP-10/ESAT-6 proteins.

  10. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    Energy Technology Data Exchange (ETDEWEB)

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai; Obara, Chizuka; Yasuda, Takeshi; Gotoh, Takaya; Tanaka, Izumi; Yakumaru, Haruko; Ishihara, Hiroshi; Tajima, Katsushi, E-mail: tajima@nirs.go.jp

    2014-04-18

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood. Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.

  11. Gas Phase Reactions of Ions Derived from Anionic Uranyl Formate and Uranyl Acetate Complexes

    Science.gov (United States)

    Perez, Evan; Hanley, Cassandra; Koehler, Stephen; Pestok, Jordan; Polonsky, Nevo; Van Stipdonk, Michael

    2016-12-01

    The speciation and reactivity of uranium are topics of sustained interest because of their importance to the development of nuclear fuel processing methods, and a more complete understanding of the factors that govern the mobility and fate of the element in the environment. Tandem mass spectrometry can be used to examine the intrinsic reactivity (i.e., free from influence of solvent and other condensed phase effects) of a wide range of metal ion complexes in a species-specific fashion. Here, electrospray ionization, collision-induced dissociation, and gas-phase ion-molecule reactions were used to create and characterize ions derived from precursors composed of uranyl cation (UVIO2 2+) coordinated by formate or acetate ligands. Anionic complexes containing UVIO2 2+ and formate ligands fragment by decarboxylation and elimination of CH2=O, ultimately to produce an oxo-hydride species [UVIO2(O)(H)]-. Cationic species ultimately dissociate to make [UVIO2(OH)]+. Anionic complexes containing acetate ligands exhibit an initial loss of acetyloxyl radical, CH3CO2•, with associated reduction of uranyl to UVO2 +. Subsequent CID steps cause elimination of CO2 and CH4, ultimately to produce [UVO2(O)]-. Loss of CH4 occurs by an intra-complex H+ transfer process that leaves UVO2 + coordinated by acetate and acetate enolate ligands. A subsequent dissociation step causes elimination of CH2=C=O to leave [UVO2(O)]-. Elimination of CH4 is also observed as a result of hydrolysis caused by ion-molecule reaction with H2O. The reactions of other anionic species with gas-phase H2O create hydroxyl products, presumably through the elimination of H2.

  12. Zeaxanthin Radical Cation Formation in Minor Light-Harvesting Complexes of Higher Plant Antenna

    Energy Technology Data Exchange (ETDEWEB)

    Avenson, Thomas H.; Ahn, Tae Kyu; Zigmantas, Donatas; Niyogi, Krishna K.; Li, Zhirong; Ballottari, Matteo; Bassi, Roberto; Fleming, Graham R.

    2008-01-31

    Previous work on intact thylakoid membranes showed that transient formation of a zeaxanthin radical cation was correlated with regulation of photosynthetic light-harvesting via energy-dependent quenching. A molecular mechanism for such quenching was proposed to involve charge transfer within a chlorophyll-zeaxanthin heterodimer. Using near infrared (880-1100 nm) transient absorption spectroscopy, we demonstrate that carotenoid (mainly zeaxanthin) radical cation generation occurs solely in isolated minor light-harvesting complexes that bind zeaxanthin, consistent with the engagement of charge transfer quenching therein. We estimated that less than 0.5percent of the isolated minor complexes undergo charge transfer quenching in vitro, whereas the fraction of minor complexes estimated to be engaged in charge transfer quenching in isolated thylakoids was more than 80 times higher. We conclude that minor complexes which bind zeaxanthin are sites of charge transfer quenching in vivo and that they can assume Non-quenching and Quenching conformations, the equilibrium LHC(N)<--> LHC(Q) of which is modulated by the transthylakoid pH gradient, the PsbS protein, and protein-protein interactions.

  13. Cas1-Cas2 complex formation mediates spacer acquisition during CRISPR-Cas adaptive immunity.

    Science.gov (United States)

    Nuñez, James K; Kranzusch, Philip J; Noeske, Jonas; Wright, Addison V; Davies, Christopher W; Doudna, Jennifer A

    2014-06-01

    The initial stage of CRISPR-Cas immunity involves the integration of foreign DNA spacer segments into the host genomic CRISPR locus. The nucleases Cas1 and Cas2 are the only proteins conserved among all CRISPR-Cas systems, yet the molecular functions of these proteins during immunity are unknown. Here we show that Cas1 and Cas2 from Escherichia coli form a stable complex that is essential for spacer acquisition and determine the 2.3-Å-resolution crystal structure of the Cas1-Cas2 complex. Mutations that perturb Cas1-Cas2 complex formation disrupt CRISPR DNA recognition and spacer acquisition in vivo. Active site mutants of Cas2, unlike those of Cas1, can still acquire new spacers, thus indicating a nonenzymatic role of Cas2 during immunity. These results reveal the universal roles of Cas1 and Cas2 and suggest a mechanism by which Cas1-Cas2 complexes specify sites of CRISPR spacer integration.

  14. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis.

    Directory of Open Access Journals (Sweden)

    Yong-Hyun Shin

    2010-11-01

    Full Text Available Meiosis is unique to germ cells and essential for reproduction. During the first meiotic division, homologous chromosomes pair, recombine, and form chiasmata. The homologues connect via axial elements and numerous transverse filaments to form the synaptonemal complex. The synaptonemal complex is a critical component for chromosome pairing, segregation, and recombination. We previously identified a novel germ cell-specific HORMA domain encoding gene, Hormad1, a member of the synaptonemal complex and a mammalian counterpart to the yeast meiotic HORMA domain protein Hop1. Hormad1 is essential for mammalian gametogenesis as knockout male and female mice are infertile. Hormad1 deficient (Hormad1(-/ (- testes exhibit meiotic arrest in the early pachytene stage, and synaptonemal complexes cannot be visualized by electron microscopy. Hormad1 deficiency does not affect localization of other synaptonemal complex proteins, SYCP2 and SYCP3, but disrupts homologous chromosome pairing. Double stranded break formation and early recombination events are disrupted in Hormad1(-/ (- testes and ovaries as shown by the drastic decrease in the γH2AX, DMC1, RAD51, and RPA foci. HORMAD1 co-localizes with γH2AX to the sex body during pachytene. BRCA1, ATR, and γH2AX co-localize to the sex body and participate in meiotic sex chromosome inactivation and transcriptional silencing. Hormad1 deficiency abolishes γH2AX, ATR, and BRCA1 localization to the sex chromosomes and causes transcriptional de-repression on the X chromosome. Unlike testes, Hormad1(-/ (- ovaries have seemingly normal ovarian folliculogenesis after puberty. However, embryos generated from Hormad1(-/ (- oocytes are hyper- and hypodiploid at the 2 cell and 8 cell stage, and they arrest at the blastocyst stage. HORMAD1 is therefore a critical component of the synaptonemal complex that affects synapsis, recombination, and meiotic sex chromosome inactivation and transcriptional silencing.

  15. Fac–mer equilibria of coordinated iminodiacetate (ida ) in ternary Cu ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Fac–mer equilibria; CuII-iminodiacetate-imidazole/benzimidazole ternary complexes; stability constants. 1. Introduction. Mixed ligand complexes of transition metal ions with amino acids, peptides or their derivatives or analogues, and heterocyclic N-bases can serve as model compounds of bioinorganic interests ...

  16. H2SO4-HNO3-H2O ternary system in the stratosphere

    Science.gov (United States)

    Kiang, C. S.; Hamill, P.

    1974-01-01

    Estimation of the equilibrium vapor pressure over the ternary system H2SO4-HNO3-H2O to study the possibility of stratospheric aerosol formation involving HNO3. It is shown that the vapor pressures for the ternary system H2SO4-HNO3-H2O with weight composition around 70-80% H2SO4, 10-20% HNO3, 10-20% H2O at -50 C are below the order of 10 to the minus 8th mm Hg. It is concluded that there exists more than sufficient nitric acid and water vapor in the stratosphere to participate in ternary system aerosol formation at -50 C. Therefore, HNO3 should be present in stratospheric aerosols, provided that H2SO4 is also present.

  17. Performance Estimation for Lowpass Ternary Filters

    Directory of Open Access Journals (Sweden)

    Brenton Steele

    2003-11-01

    Full Text Available Ternary filters have tap values limited to −1, 0, or +1. This restriction in tap values greatly simplifies the multipliers required by the filter, making ternary filters very well suited to hardware implementations. Because they incorporate coarse quantisation, their performance is typically limited by tap quantisation error. This paper derives formulae for estimating the achievable performance of lowpass ternary filters, thereby allowing the number of computationally intensive design iterations to be reduced. Motivated by practical communications systems requirements, the performance measure which is used is the worst-case stopband attenuation.

  18. Catalytic Hydrodehalogenation of Some Organic Halides by Hydrogen Transfer from Lithium Formate in the Presence of Ruthenium and Rhodium Complexes

    OpenAIRE

    Marčec, Radovan

    1990-01-01

    Organic halides react with lithium formate in the presence of ruthenium and rhodium phosphine complexes as homogeneous catalysts in refluxing dioxane producing the corresponding deha- logenated compounds in moderate yields.

  19. A multi-grain reduced-complexity model for step formation and stability in steep streams

    Science.gov (United States)

    Saletti, Matteo; Molnar, Peter; Turowski, Jens; Rickenmann, Dieter

    2017-04-01

    We present a multi-grain particle-based reduced-complexity model for the simulation of the formation and stability of step-pool morphology by specifically considering the granular interactions between sediment and river bed leading to entrainment and deposition of grains. The model CAST2 (Cellular Automaton Sediment Transport), based on the uniform-size model of Saletti et al. [2016], contains phenomenological parameterizations of sediment supply, bed load transport, particle entrainment and deposition, and granular interactions in a cellular-automaton space. CAST2 simulates the effect of different grain sizes by considering two types of particles: fine grains, which can be mobilized by any flow, and coarse grains, whose mobility is flow-dependent. The model has been applied to test the effect of granular forces on step formation and stability in step-pool channels, as hypothesized in the jammed-state framework by Church and Zimmermann [2007]. The jamming of particles in motion and their enhanced stability on the bed are modelled explicitely: in this way steps are effectively generated during high-flow periods and they are stable during low flows when sediment supply is small. Moreover, model results are used to show which are the fundamental processes required to produce and maintain steps in steep streams and these findings are consistent with field observations. Finally the effect of flood frequency on step density is investigated by means of long stochastic simulations with repeated flood events. Model results show that systems with high flood frequency are characterized by greater step density, due to the dominance of step-forming conditions. Our results show the potential of reduced-complexity models as learning tools to gain new insight into the complex feedbacks and poorly understood processes characterizing rapidly changing geomorphic systems like step-pool streams, pointing out the importance of granular effects on the formation and stability of the step

  20. Realizing Ternary Logic in FPGAs for SWL DSP Systems

    Directory of Open Access Journals (Sweden)

    Tayeb Din

    2013-07-01

    Full Text Available Recently SWL (Short Word Length DSP (Digital Signal Processing applications has been proposed to overcome multiplier complexity that is evident in most of the digital applications. These SWL applications have been processed through sigma-delta modulation as a key element. For such applications, adder design plays vital role and can impact upon the chip area and its performance. In this paper, a ternary approach for adder tree has been proposed instead of binary that can accommodate more data with less chip-area at the cost of extra pin. The proposed ternary adder tree has been designed and developed in Quartus-II using three different design strategies namely T-gate (Ternary gate, LUT (Look Up Table and algebraic equations. Through rigorous simulation it was found that T-gate technique results in superior performance, an average of 23.5 and 33% improvement compared to the same adder structure based on Boolean Algebraic Equation and LUT, respectively. The proposed adder design would benefit the efficient implementation of SWL applications.

  1. Studies on chalcone derivatives: Complex formation, thermal behavior, stability constant and antioxidant activity

    Science.gov (United States)

    El-Sayed, Yusif S.; Gaber, M.

    2015-02-01

    The chalcone 3-[4‧-dimethylaminophenyl]-1-(2-pyridyl) prop-2-en-1-one (DMAPP) and 3-(4‧-diethylaminophenyl)-1-(2-pyridinyl) prop-2-en-1-one abbreviated as DEAPP have been synthesized and characterized with IR, 1H NMR, 13C NMR spectroscopic techniques as described previously (El-Daly et al., 2008; Gaber et al., 2009; El-Sayed, 2013). By using UV visible spectroscopy method the mole fraction ratio for copper with DMAPP and DEAPP complexes were determined and it was found to be 1:1. The stability constants of this complex have been determined by Job's method. The stability constant (Kf) of copper with DMAPP and DEAPP complexes in universal buffer pH = 3.2 was determined to be 9.9 × 104 and 5.2 × 104 respectively. The effect of Cu(II) ion on the emission spectrum of the free chalcone is also assigned. Adherence to Beer's law and Ringbom optimum concentration ranges are determined. The thermal decomposition of the metal complexes is studied by TGA technique. The kinetic parameters like activation energy, pre-exponential factor and entropy of activation are estimated. The structure of complexes was energetically optimized through molecular mechanics applying MM+ force field coupled with molecular dynamics simulation. The bond lengths and bond angles have been calculated to confirm the geometry of the ligands and their Cu(II) complexes. The mode of interaction of the chalcone to copper nanoparticles was studied. The apparent association constants of the colloidal copper nanoparticles:chalcone complexes in solution were evaluated using the spectral method and compared with the formation constant of the Cu(II) chalcone complexes. Antioxidant activity of these chalcones was evaluated by using 1,1‧-diphenyl-2-picrylhydrazyl (DPPHrad) radicals scavenging method, which showed that the antioxidant activity of DMAPP has higher value than the DEAPP. Semi-empirical study results showed that DMAPP have higher dipole moment than DEAPP [1].

  2. Mesoscale inhomogeneities in an aqueous ternary system

    Science.gov (United States)

    Subramanian, Deepa; Hayward, Stephen; Altabet, Elia; Collings, Peter; Anisimov, Mikhail

    2012-02-01

    Aqueous solutions of certain low-molecular-weight organic compounds, such as alcohols, amines, or ethers, which are considered macroscopically homogeneous, show the presence of mysterious mesoscale inhomogeneities, order of a hundred nm in size. We have performed static and dynamic light scattering experiments in an aqueous ternary system consisting of tertiary butyl alcohol and propylene oxide. Tertiary butyl alcohol is completely soluble in water and in propylene oxide, and forms strong hydrogen bonds with water molecules. Based on results of the study, we hypothesize that the mesoscale inhomogeneities are akin to a micro phase separation, resulting from a competition between water molecules and propylene oxide molecules, wanting to be adjacent to amphiphilic tertiary butyl alcohol molecules. Coupling between two competing order parameters, super-lattice binary-alloy-like (``antiferromagnetic'' type) and demixing (``ferromagnetic'' type) may explain the formation of these inhomogeneities. Long-term stability investigation of this supramolecular structure has revealed that these inhomogeneities are exceptionally long-lived non-equilibrium structures that persist for weeks or even months.

  3. Signal Complexity of Human Intracranial EEG Tracks Successful Associative-Memory Formation across Individuals.

    Science.gov (United States)

    Sheehan, Timothy C; Sreekumar, Vishnu; Inati, Sara K; Zaghloul, Kareem A

    2018-02-14

    Memory performance is highly variable among individuals. Most studies examining human memory, however, have largely focused on the neural correlates of successful memory formation within individuals, rather than the differences among them. As such, what gives rise to this variability is poorly understood. Here, we examined intracranial EEG (iEEG) recordings captured from 43 participants (23 male) implanted with subdural electrodes for seizure monitoring as they performed a paired-associates verbal memory task. We identified three separate but related signatures of neural activity that tracked differences in successful memory formation across individuals. High-performing individuals consistently exhibited less broadband power, flatter power spectral density slopes, and greater complexity in their iEEG signals. Furthermore, within individuals across three separate time scales ranging from seconds to days, successful recall was positively associated with these same metrics. Our data therefore suggest that memory ability across individuals can be indexed by increased neural signal complexity. SIGNIFICANCE STATEMENT We show that participants whose intracranial EEG exhibits less low-frequency power, flatter power spectrums, and greater sample entropy overall are better able to memorize associations, and that the same metrics track fluctuations in memory performance across time within individuals. These metrics together signify greater neural signal complexity, which may index the brain's ability to flexibly engage with information and generate separable memory representations. Critically, the current set of results provides a unique window into the neural markers of individual differences in memory performance, which have hitherto been underexplored. Copyright © 2018 the authors 0270-6474/18/381744-12$15.00/0.

  4. A MULTI-WAVELENGTH STUDY OF STAR FORMATION ACTIVITY IN THE S235 COMPLEX

    Energy Technology Data Exchange (ETDEWEB)

    Dewangan, L. K.; Luna, A.; Mayya, Y. D. [Instituto Nacional de Astrofísica, Óptica y Electrónica, Luis Enrique Erro # 1, Tonantzintla, Puebla, C.P. 72840, México (Mexico); Ojha, D. K.; Ninan, J. P.; Mallick, K. K. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Anandarao, B. G., E-mail: lokeshd@prl.res.in [Physical Research Laboratory, Navrangpura, Ahmedabad—380 009 (India)

    2016-03-01

    We have carried out an extensive multi-wavelength study to investigate the star formation process in the S235 complex. The S235 complex has a spherelike shell appearance at wavelengths longer than 2 μm and harbors an O9.5V type star approximately at its center. A near-infrared extinction map of the complex traces eight subregions (having A{sub V} > 8 mag), and five of them appear to be distributed in an almost regularly spaced manner along the spherelike shell surrounding the ionized emission. This picture is also supported by the integrated {sup 12}CO and {sup 13}CO intensity maps and by Bolocam 1.1 mm continuum emission. The position–velocity analysis of CO reveals an almost semi-ringlike structure, suggesting an expanding H ii region. We find that the Bolocam clump masses increase as we move away from the location of the ionizing star. This correlation is seen only for those clumps that are distributed near the edges of the shell. Photometric analysis reveals 435 young stellar objects (YSOs), 59% of which are found in clusters. Six subregions (including five located near the edges of the shell) are very well correlated with the dust clumps, CO gas, and YSOs. The average values of Mach numbers derived using NH{sub 3} data for three (East 1, East 2, and Central E) out of these six subregions are 2.9, 2.3, and 2.9, indicating these subregions are supersonic. The molecular outflows are detected in these three subregions, further confirming the ongoing star formation activity. Together, all these results are interpreted as observational evidence of positive feedback of a massive star.

  5. Photovoltaic cells based on ternary P3HT:PCBM:polymethine dye active layer transparent in the visible range of light

    Energy Technology Data Exchange (ETDEWEB)

    Bliznyuk, Valery N., E-mail: vblizny@clemson.edu [Department of Materials Science and Engineering, Clemson University, Clemson, SC, 29634 (United States); Gasiorowski, Jacek [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Ishchenko, Alexander A.; Bulavko, Gennadiy V. [Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanskaya str., Kiev 02660 (Ukraine); Rahaman, Mahfujur [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Hingerl, Kurt [Center for Interface and Nanoanalytics, Johannes Kepler University, Linz 4040 (Austria); Zahn, Dietrich R.T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Sariciftci, Niyazi S. [Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University, Linz 4040 (Austria)

    2016-12-15

    Highlights: • Addition of a polymethine dye to P3HT:PCBM bulk-heterojunction (BHJ) films leads to a compositionally induced transparency in the system. • Variation of the complex refractive index in binary and ternary BHJ films has been studied with spectroscopic ellipsometry. • Power conversion efficiency of ternary BHJ solar cells is determined by the dye composition and photodoping. - Abstract: Optical and photovoltaic properties were studied for ternary photovoltaic cells containing a traditional donor-acceptor bulk-heterojunction (BHJ) active layer modified with polymethine dye molecules in a broad range of compositions and wavelengths. An effect of composition induced optical transparency, due to the strong modification of the density of states, was observed for symmetrical compositions with approximately equal amount of components. Based on our spectroscopic ellipsometry and atomic force microscopy (AFM) studies we can suggest that the variation of the refractive index, which is significantly reduced in the visible range for ternary systems, is involved in the physical mechanism of the phenomenon. Despite of an addition of the IR absorbing component (which allows broadening of the absorption band to up to 800 nm) no improvement in the power conversion efficiency (PCE) is observed in comparison to the binary BHJ system (P3HT:PCBM). Nevertheless, we believe that further advance of the efficiency will be possible if the energy levels will be chemically designed to avoid formation of charge traps at the BHJ interface during light excitation. Such fine adjustment of the system should become possible with a proper choice of polymer:dye composition due to a high versatility of the polymethine dyes demonstrated in previous studies.

  6. Formation and Atmosphere of Complex Organic Molecules of the HH 212 Protostellar Disk

    Science.gov (United States)

    Lee, Chin-Fei; Li, Zhi-Yun; Ho, Paul T. P.; Hirano, Naomi; Zhang, Qizhou; Shang, Hsien

    2017-07-01

    HH 212 is a nearby (400 pc) Class 0 protostellar system recently found to host a “hamburger”-shaped dusty disk with a radius of ˜60 au, deeply embedded in an infalling-rotating flattened envelope. We have spatially resolved this envelope-disk system with the Atacama Large Millimeter/submillimeter Array at up to ˜16 au (0.″04) resolution. The envelope is detected in HCO+ J = 4-3 down to the dusty disk. Complex organic molecules (COMs) and doubly deuterated formaldehyde (D2CO) are detected above and below the dusty disk within ˜40 au of the central protostar. The COMs are methanol (CH3OH), deuterated methanol (CH2DOH), methyl mercaptan (CH3SH), and formamide (NH2CHO, a prebiotic precursor). We have modeled the gas kinematics in HCO+ and COMs and found a centrifugal barrier (CB) at a radius of ˜44 au, within which a Keplerian rotating disk is formed. This indicates that HCO+ traces the infalling-rotating envelope down to the CB and COMs trace the atmosphere of a Keplerian rotating disk within the CB. The COMs are spatially resolved for the first time, both radially and vertically, in the atmosphere of a disk in the earliest, Class 0 phase of star formation. Our spatially resolved observations of COMs favor their formation in the disk rather than a rapidly infalling (warm) inner envelope. The abundances and spatial distributions of the COMs provide strong constraints on models of their formation and transport in low-mass star formation.

  7. Formation and Atmosphere of Complex Organic Molecules of the HH 212 Protostellar Disk

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chin-Fei; Ho, Paul T. P.; Hirano, Naomi; Shang, Hsien [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Zhang, Qizhou, E-mail: cflee@asiaa.sinica.edu.tw [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-07-01

    HH 212 is a nearby (400 pc) Class 0 protostellar system recently found to host a “hamburger”-shaped dusty disk with a radius of ∼60 au, deeply embedded in an infalling-rotating flattened envelope. We have spatially resolved this envelope-disk system with the Atacama Large Millimeter/submillimeter Array at up to ∼16 au (0.″04) resolution. The envelope is detected in HCO{sup +} J = 4–3 down to the dusty disk. Complex organic molecules (COMs) and doubly deuterated formaldehyde (D{sub 2}CO) are detected above and below the dusty disk within ∼40 au of the central protostar. The COMs are methanol (CH{sub 3}OH), deuterated methanol (CH{sub 2}DOH), methyl mercaptan (CH{sub 3}SH), and formamide (NH{sub 2}CHO, a prebiotic precursor). We have modeled the gas kinematics in HCO{sup +} and COMs and found a centrifugal barrier (CB) at a radius of ∼44 au, within which a Keplerian rotating disk is formed. This indicates that HCO{sup +} traces the infalling-rotating envelope down to the CB and COMs trace the atmosphere of a Keplerian rotating disk within the CB. The COMs are spatially resolved for the first time, both radially and vertically, in the atmosphere of a disk in the earliest, Class 0 phase of star formation. Our spatially resolved observations of COMs favor their formation in the disk rather than a rapidly infalling (warm) inner envelope. The abundances and spatial distributions of the COMs provide strong constraints on models of their formation and transport in low-mass star formation.

  8. Substrate-Na{sup +} complex formation: Coupling mechanism for {gamma}-aminobutyrate symporters

    Energy Technology Data Exchange (ETDEWEB)

    Pallo, Anna; Simon, Agnes [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Bencsura, Akos [Department of Theoretical Chemistry, Institute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest (Hungary); Heja, Laszlo [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary); Kardos, Julianna, E-mail: jkardos@chemres.hu [Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences (Hungary)

    2009-07-24

    Crystal structures of transmembrane transport proteins belonging to the important families of neurotransmitter-sodium symporters reveal how they transport neurotransmitters across membranes. Substrate-induced structural conformations of gated neurotransmitter-sodium symporters have been in the focus of research, however, a key question concerning the mechanism of Na{sup +} ion coupling remained unanswered. Homology models of human glial transporter subtypes of the major inhibitory neurotransmitter {gamma}-aminobutyric acid were built. In accordance with selectivity data for subtype 2 vs. 3, docking and molecular dynamics calculations suggest similar orthosteric substrate (inhibitor) conformations and binding crevices but distinguishable allosteric Zn{sup 2+} ion binding motifs. Considering the occluded conformational states of glial human {gamma}-aminobutyric acid transporter subtypes, we found major semi-extended and minor ring-like conformations of zwitterionic {gamma}-aminobutyric acid in complex with Na{sup +} ion. The existence of the minor ring-like conformation of {gamma}-aminobutyric acid in complex with Na{sup +} ion may be attributed to the strengthening of the intramolecular H-bond by the electrostatic effect of Na{sup +} ion. Coupling substrate uptake into cells with the thermodynamically favorable Na{sup +} ion movement through substrate-Na{sup +} ion complex formation may be a mechanistic principle featuring transmembrane neurotransmitter-sodium symporter proteins.

  9. Formation of coronene:water complexes: FTIR study in argon matrices and theoretical characterisation.

    Science.gov (United States)

    Simon, A; Noble, J A; Rouaut, G; Moudens, A; Aupetit, C; Iftner, C; Mascetti, J

    2017-03-22

    In this paper, we report a combined theoretical and experimental study of coronene:water interactions in low temperature argon matrices. The theoretical calculations were performed using the mixed density functional-based tight binding/force field approach. The results are discussed in the light of experimental matrix isolation FTIR spectroscopic data. We show that, in the solid phase, (C24H12)(H2O)n (n ≤ 6) σ-type complexes, i.e. with water molecules coordinated on the edge of coronene, are formed, whereas in the gas phase, π-interaction is preferred. These σ-complexes are characterised by small shifts in water absorption bands and a larger blue shift of the out-of-plane γ(CH) deformation of coronene, with the shift increasing with the number of complexed water molecules. Such σ interaction is expected to favour photochemical reaction between water and coronene at the edges of the coronene molecule, leading to the formation of oxidation products at low temperature, even in the presence of only a few water molecules and at radiation energies below the ionisation potential of coronene.

  10. Photocleavage of DNA by copper (II) complexes

    Indian Academy of Sciences (India)

    The chemistry of ternary and binary copper(II) complexes showing efficient visible lightinduced DNA cleavage activity is summarized in this article. The role of the metal in photo-induced DNA cleavage reactions is explored by designing complex molecules having a variety of ligands. Ternary copper(II) complexes with amino ...

  11. The formation of glycine and other complex organic molecules in exploding ice mantles.

    Science.gov (United States)

    Rawlings, J M C; Williams, D A; Viti, S; Cecchi-Pestellini, C; Duley, W W

    2014-01-01

    Complex Organic Molecules (COMs), such as propylene (CH3CHCH2) and the isomers of C2H4O2 are detected in cold molecular clouds (such as TMC-1) with high fractional abundances (Marcelino et al., Astrophys. J., 2007, 665, L127). The formation mechanism for these species is the subject of intense speculation, as is the possibility of the formation of simple amino acids such as glycine (NH2CH2COOH). At typical dark cloud densities, normal interstellar gas-phase chemistries are inefficient, whilst surface chemistry is at best ill defined and does not easily reproduce the abundance ratios observed in the gas phase. Whatever mechanism(s) is/are operating, it/they must be both efficient at converting a significant fraction of the available carbon budget into COMs, and capable of efficiently returning the COMs to the gas phase. In our previous studies we proposed a complementary, alternative mechanism, in which medium- and large-sized molecules are formed by three-body gas kinetic reactions in the warm high density gas phase. This environment exists, for a very short period of time, after the total sublimation of grain ice mantles in transient co-desorption events. In order to drive the process, rapid and efficient mantle sublimation is required and we have proposed that ice mantle 'explosions' can be driven by the catastrophic recombination of trapped hydrogen atoms, and other radicals, in the ice. Repeated cycles of freeze-out and explosion can thus lead to a cumulative molecular enrichment of the interstellar medium. Using existing studies we based our chemical network on simple radical addition, subject to enthalpy and valency restrictions. In this work we have extended the chemistry to include the formation pathways of glycine and other large molecular species that are detected in molecular clouds. We find that the mechanism is capable of explaining the observed molecular abundances and complexity in these sources. We find that the proposed mechanism is easily capable

  12. Formation of the light-harvesting complex I (B870) of anoxygenic phototrophic purple bacteria.

    Science.gov (United States)

    Drews, G

    1996-09-01

    The light-harvesting (LH) complex I (B870) of anoxygenic photosynthetic purple bacteria is the oligomeric form of its subunit B820 consisting of the low-molecular-weight polypeptides alpha, beta, bacteriochlorophyll (BChl), and carotenoids in the stoichiometric ratio [alpha1 beta1 (BChl2) Crt1-2]n. LHI surrounds the photochemical reaction center (RC). The major absorption band of the LHI complex is species-specific and is found at 870-890 nm; those of the subunit and the monomeric BChl a (dissolved in methanol) absorb at 820 and 770 nm, respectively. The isolated LHI complex can be reversibly dissociated to the B820 subunit or to the polypeptides and pigments by addition of detergents. Reconstitution of the B820 or the functional B870 complex is still possible after partial truncation of the N- or C-terminal regions of the alpha- or beta-polypeptide or of the beta-polypeptide only. The minimal structural requirements for reconstitution of a spectrally wild-type form after truncation of the polypeptides and/or modifications of the BChl molecule are described. The insertion of the LHIalpha- and LHIbeta-polypeptides into the membrane and the in vivo assembly of LHI, studied in a cell-free system and in whole cells of Rhodobacter capsulatus, depend on the primary structures of both polypeptides, BChl, the chaperones DnaK and GroEL, membrane-bound proteins, and energized membranes. Exchanges, deletions, or insertions of amino acyl residues, especially in the conserved region of the N-terminus of the LHIalpha-polypeptide, prevent or reduce the efficiency and stability of the LHI assembly. Therefore, reconstitution of LHI in a detergent micelle does not exactly reproduce the formation of the LHI complex in the photosynthetic membrane in vivo. The N-terminal domains play a crucial role in the formation of the oligomeric protein scaffold and of the pigment array. Facultatively phototrophic bacteria such as Rhodospirillum (Rsp.) rubrum or Rhodobacter (Rba.) capsulatus can

  13. Ternary networks reliability and Monte Carlo

    CERN Document Server

    Gertsbakh, Ilya; Vaisman, Radislav

    2014-01-01

    Ternary means “based on three”. This book deals with reliability investigations of  networks whose components subject to failures can be in three states –up, down and middle (mid), contrary to traditionally considered networks  having only binary (up/down) components. Extending binary case to ternary allows to consider more realistic and flexible models for communication, flow and supply networks.

  14. Temperature quenched DODAB dispersions: fluid and solid state coexistence and complex formation with oppositely charged surfactant.

    Science.gov (United States)

    Cocquyt, Jan; Olsson, Ulf; Olofsson, Gerd; Van der Meeren, Paul

    2004-05-11

    Dilute dispersions of the synthetic bilayer forming double-chained cationic lipid dioctadecyldimethylammonium bromide (DODAB) were investigated. In dispersions sonicated above the chain melting temperature Tm (approximately 45 degrees C) it was found by H NMR that about 50% of the surfactant chains remained fluid when the samples were cooled to room temperature, which is 20 degrees C below Tm. In contrast, there was no sign of a fluid fraction in unsonicated samples at room temperature. The addition of the anionic surfactant sodium dodecyl sulfate (SDS) to DODAB dispersions at room temperature resulted in the formation of an essentially stoichiometric DODA-DS complex with frozen chains, as seen by titration calorimetry and H NMR experiments. For sonicated samples, turbidity experiments demonstrated that, after a fast complexation reaction, the system remains colloidally stable unless the SDS-to-DODAB mixing ratio is too close to unity. H NMR experiments also showed that in the unreacted DODAB the fraction of fluid chains remained close to 50%, indicating either that SDS reacts equally fast with fluid and frozen DODAB or that there is a relaxation of the fluid fraction after the complexation. The melting enthalpy and the melting temperature of the alkyl chains rise gradually as the mixing ratio increases. We observed with cryo-TEM that the fraction of large unilamellar vesicles was significantly larger after addition of SDS. This indicates vesicle fusion. Based on both wide- and small-angle X-ray scattering patterns, the structure of the equimolar SDS-DODAB complex at 25 degress C was proposed to be lamellar.

  15. Probing the modulated formation of gold nanoparticles-beta-lactoglobulin corona complexes and their applications.

    Science.gov (United States)

    Yang, Jiang; Wang, Bo; You, Youngsang; Chang, Woo-Jin; Tang, Ke; Wang, Yi-Cheng; Zhang, Wenzhao; Ding, Feng; Gunasekaran, Sundaram

    2017-11-23

    Understanding the interactions between proteins and nanoparticles (NPs) along with the underlying structural and dynamic information is of utmost importance to exploit nanotechnology for biomedical applications. Upon adsorption onto a NP surface, proteins form a well-organized layer, termed the corona, that dictates the identity of the NP-protein complex and governs its biological pathways. Given its high biological relevance, in-depth molecular investigations and applications of NPs-protein corona complexes are still scarce, especially since different proteins form unique corona patterns, making identification of the biomolecular motifs at the interface critical. In this work, we provide molecular insights and structural characterizations of the bio-nano interface of a popular food-based protein, namely bovine beta-lactoglobulin (β-LG), with gold nanoparticles (AuNPs) and report on our investigations of the formation of corona complexes by combined molecular simulations and complementary experiments. Two major binding sites in β-LG were identified as being driven by citrate-mediated electrostatic interactions, while the associated binding kinetics and conformational changes in the secondary structures were also characterized. More importantly, the superior stability of the corona led us to further explore its biomedical applications, such as in the smartphone-based point-of-care biosensing of Escherichia coli (E. coli) and in the computed tomography (CT) of the gastrointestinal (GI) tract through oral administration to probe GI tolerance and functions. Considering their biocompatibility, edible nature, and efficient excretion through defecation, AuNPs-β-LG corona complexes have shown promising perspectives for future in vitro and in vivo clinical settings.

  16. Complex formation of U(VI) with Bacillus-isolates from a uranium mining waste pile

    Energy Technology Data Exchange (ETDEWEB)

    Panak, P.J.; Nitsche, H. [Forschungszentrum Rossendorf e.V. (FZR) (Germany). Inst. fuer Radiochemie; Lawrence Berkeley National Lab., Berkeley, CA (United States). Glenn T. Seaborg Center; Raff, J.; Selenska-Pobell, S.; Geipel, G.; Bernhard, G. [Forschungszentrum Rossendorf e.V. (FZR) (Germany). Inst. fuer Radiochemie

    2000-07-01

    Accumulation studies with vegetative cells and spores of three Bacillus isolates (JG-A 30, JG-A 12, JG-A 22, classified as Bacillus cereus, Bacillus sphaericus, Bacillus megaterium) from a uranium mining waste pile (Johanngeorgenstadt, Saxony) and their corresponding reference strains have shown that Bacilli accumulate high amounts of U(VI) in the concentration range examined (11-214 mg/L). Information on the binding strength and the reversibility were obtained from extraction studies with different extractants. With 0.01 M EDTA solution the uranium bound to the biomass was released almost quantitatively. The characterization of the bacterial-UO{sub 2}{sup 2+}-complexes by time-resolved laser fluorescence spectroscopy (TRLFS) showed the formation of inner-sphere complexes with phosphate groups of the biomass. The results lead to the conclusion that the cell wall components with phosphate residues e.g., polysaccharides, teichoic and teichuroic acids or phospholipide layers of the membranes are responsible for the uranium binding. The spectroscopic studies of the U(VI)-complexes with isolated bacterial cell walls and isolated surface-layer proteins of the strain Bacillus sphaericus NCTC 9602 after cell fractionation have shown that the complexation of U(VI) with intact cells (vegetative cells or spores) is different from the coordination with isolated cell wall components, especially with the S-layer proteins. For all Bacillus strains studied in this work, a significant contribution of the S-layer proteins to the binding of uranyl to living cells can be excluded. (orig.)

  17. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex.

    Science.gov (United States)

    Mekler, Vladimir; Minakhin, Leonid; Borukhov, Sergei; Mustaev, Arkady; Severinov, Konstantin

    2014-12-12

    Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  19. Temperature and dose dependence of defect complex formation with ion implanted Mn/Fe in ZnO

    CERN Document Server

    Mølholt, T E; Gunnlaugsson, H P; Bharuth-Ram, K; Fanciulli, M; Gíslason, H P; Johnston, K; Kobayashi, Y; Langouche, G; Masenda, H; Naidoo, D; Ólafsson, S; Sielemann, R; Weyer, G

    2009-01-01

    57Fe Mössbauer spectroscopy following ion implantation of radioactive 57Mn+ ( T1/2=85.4 s) has been applied to study the formation of Fe/Mn implantation-induced defects in ZnO at temperatures between 319 and 390 K. The formation of ferric iron–vacancy complexes is found to depend strongly on the implanted dose and to be faster and more efficient at higher temperatures. The results at these temperatures suggest the mobility of the Zn vacancy, together with vacancy trapping at the substitutional Mn/Fe impurities are responsible for the formation of Fe–VZn complexes

  20. VUV photochemistry of the H2OCO complex in noble-gas matrices: formation of the OHCO complex and the HOCO radical.

    Science.gov (United States)

    Ryazantsev, Sergey V; Duarte, Luís; Feldman, Vladimir I; Khriachtchev, Leonid

    2016-12-21

    Vacuum ultraviolet (VUV, 130-170 nm) photochemistry of the H2OCO complex is studied by matrix-isolation infrared spectroscopy. The H2OCO complexes in Ne, Ar, Kr, and Xe matrices are generated by ultraviolet (UV, 193 and 250 nm) photolysis of formic acid (HCOOH). VUV photolysis of the H2OCO complexes is found to lead to the formation of the OHCO radical-molecule complexes and trans-HOCO radicals. It is shown that the matrix material, local matrix morphology, and possibly the H2OCO complex geometry strongly affect the VUV photolysis pathways. The intrinsic reactivity of the matrix-isolated OHCO complex resulting in the formation of trans-HOCO is directly demonstrated for the first time. This reaction occurs in Ar, Kr, and Xe matrices upon annealing above 25 K and may proceed over the barrier. The case of a Ne matrix is very special because the formation of trans-HOCO from the OHCO complex is observed even at the lowest experimental temperature (4.5 K), which is in sharp contrast to the other matrices. It follows that quantum tunneling is probably involved in this process in the Ne matrix at such a low temperature. Infrared light also promotes this reaction in the Ne matrix at 4.5 K, which is not the case in the other matrices. The last findings show the effect of the environment on the tunneling and infrared-induced rates of this fundamental chemical reaction.

  1. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.

    2002-01-01

    Ternary metal nitrides ( of general formula MxM'N-y(z)) attract considerable interest because of their special mechanical, electrical, magnetic, and catalytic properties. Usually they are prepared by ammonolysis of ternary oxides (MxM'O-y(m)) at elevated temperatures. We show that ternary...... nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...... nitride and the transition metal) to the ternary nitride was followed by Mossbauer spectroscopy (for Fe3Mo3N) and by X-ray powder diffraction ( for both Fe3Mo3N and Co3Mo3N). Usually, the preparation of a given ternary nitride by ammonolysis of a ternary oxide is dependent on the availability of an oxide...

  2. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel

    Science.gov (United States)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian

    2016-08-01

    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  3. Phase diagrams of novel Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2}–Tl{sub 2}SnSe{sub 3} quasi-ternary system following DTA and X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barchiy, I.E.; Tatzkar, A.R. [Department of Chemistry, Uzhgorod National University, Pidgirna St., 46, Uzhgorod 88000 (Ukraine); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska St., 50, Lviv 79010 (Ukraine); Plucinski, K., E-mail: kpluc2006@wp.pl [Electronics Department, Military University Technology, Warsaw, Kaliskiego 2, Warsaw 00-908 (Poland)

    2016-06-25

    Phase relation in the Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2}–Tl{sub 2}SnSe{sub 3} quasiternary system were studied by the DTA and X-ray diffraction in combination with mathematical modeling. The phase diagrams of the Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2} and Tl{sub 2}SnSe{sub 3}–TlSbSe{sub 2} systems, the perspective views of the phase interaction in the ternary system, the liquidus surface projection, the isothermal section at 423 K were built for the first time. The Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2}–Tl{sub 2}SnSe{sub 3} system is of the invariant eutectic type and is characterized by the formation of limited solid solutions following initial ternary compounds. New complex compounds are not formed. - Highlights: • Two Tl{sub 4}SnSe{sub 4}–TlSbSe{sub 2},Tl{sub 2}SnSe{sub 3}–TlSbSe{sub 2} systems were explored. • Invariant processes in the ternary system were determined. • New complex compounds were not observed in ternary system.

  4. Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Teter, D.F.; Thoma, D.J.

    1999-03-01

    A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts. Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.

  5. Molecular dynamics simulations of ternary PtxPdyAuz fuel cell nanocatalyst growth

    DEFF Research Database (Denmark)

    Brault, P.; Coutanceau, C.; C. Jennings, Paul

    2016-01-01

    Molecular dynamics simulation of PEMFC cathodes based on ternary Pt70Pd15Au15 and Pt50Pd25Au25 nanocatalysts dispersed on carbon indicate systematic Au segregation from the particle bulk to the surface, leading to an Au layer coating the cluster surface and to the spontaneous formation of a Pt@Pd...

  6. Unraveling the complexities of circadian and sleep interactions with memory formation through invertebrate research

    Directory of Open Access Journals (Sweden)

    Maximilian eMichel

    2014-08-01

    Full Text Available Across phylogeny, the endogenous biological clock has been recognized as providing adaptive advantages to organisms through coordination of physiological and behavioral processes. Recent research has emphasized the role of circadian modulation of memory in generating peaks and troughs in cognitive performance. The circadian clock along with homeostatic processes also regulates sleep, which itself impacts the formation and consolidation of memory. Thus, the circadian clock, sleep and memory form a triad with ongoing dynamic interactions. With technological advances and the development of a global 24/7 society, understanding the mechanisms underlying these connections becomes pivotal for development of therapeutic treatments for memory disorders and to address issues in cognitive performance arising from non-traditional work schedules. Invertebrate models, such as Drosophila melanogaster and the mollusks Aplysia and Lymnaea, have proven invaluable tools for identification of highly conserved molecular processes in memory. Recent research from invertebrate systems has outlined the influence of sleep and the circadian clock upon synaptic plasticity. In this review, we discuss the effects of the circadian clock and sleep on memory formation in invertebrates drawing attention to the potential of in vivo and in vitro approaches that harness the power of simple invertebrate systems to correlate individual cellular processes with complex behaviors. In conclusion, this review highlights how studies in invertebrates with relatively simple nervous systems can provide mechanistic insights into corresponding behaviors in higher organisms and can be used to outline possible therapeutic options to guide further targeted inquiry.

  7. Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin [Vanderbilt University, Nashville; Alhassan, Saeed M. [The Petroleum Institute; Pantelides, Sokrates T [ORNL

    2014-01-01

    Sulfur cathodes have much larger capacities than transition-metal-oxide cathodes used in commercial lithium-ion batteries but suffer from unsatisfactory capacity retention and long-term cyclability. Capacity degradation originates from soluble lithium polysulfides gradually diffusing into the electrolyte. Understanding of the formation and dynamics of soluble polysulfides during the discharging process at the atomic level remains elusive, which limits further development of lithium-sulfur (Li-S) batteries. Here we report first-principles molecular dynamics simulations and density functional calculations, through which the discharging products of Li-S batteries are studied. We find that, in addition to simple Li2Sn (1 n 8) clusters generated from single cyclooctasulfur (S8) rings, large Li-S clusters form by collectively coupling several different rings to minimize the total energy. At high lithium concentration, a Li-S network forms at the sulfur surfaces. The results can explain the formation of the soluble Li-S complex, such as Li2S8, Li2S6, and Li2S4, and the insoluble Li2S2 and Li2S structures. In addition, we show that the presence of oxygen impurities in graphene, particularly oxygen atoms bonded to vacancies and edges, may stabilize the lithium polysulfides that may otherwise diffuse into the electrolyte.

  8. Catalysis on microstructured surfaces: Pattern formation during CO oxidation in complex Pt domains

    Science.gov (United States)

    Graham, M. D.; Bär, M.; Kevrekidis, I. G.; Asakura, K.; Lauterbach, J.; Rotermund, H.-H.; Ertl, G.

    1995-07-01

    The exploration of pattern formation by reaction-diffusion systems in complex bounded domains has begun only recently. While theoretical and numerical information points to a strong interaction between patterns and boundaries, experiments are rare and for heterogeneous catalytic reactions practically nonexistent. By constructing (using microlithography) catalytic surfaces of arbitrary shape and size, we are able to study this interaction for the catalytic oxidation of CO on Pt(110). Experiments along these lines shed light on issues such as anisotropic diffusion and the behavior of individual defects. In addition, certain geometries give rise to patterns that have not been observed on the untreated catalyst and bring to light surface mechanisms that have no analog in homogeneous reaction-diffusion systems. Simple domains of controlled size constitute paradigms that make the comparisons between theory and experiment more fruitful, as we demonstrate through modeling and simulation of such examples. This approach opens the way for systematically probing certain aspects of pattern formation unique to heterogeneous catalysis.

  9. Coprinus cinereus Mer3 is required for synaptonemal complex formation during meiosis.

    Science.gov (United States)

    Sugawara, Hiroko; Iwabata, Kazuki; Koshiyama, Akiyo; Yanai, Takuro; Daikuhara, Yoko; Namekawa, Satoshi H; Hamada, Fumika N; Sakaguchi, Kengo

    2009-02-01

    Mer3 is an evolutionarily conserved DNA helicase that has crucial roles in meiotic recombination and crossover formation. We have identified the MER3 homolog in Coprinus cinereus (Ccmer3) and show that it is expressed in zygotene and pachytene meiocytes. Immunostaining analysis indicated that CcMer3 was localized on chromosomes at zygotene and pachytene and CcMer3 foci were more frequent on paired than unpaired chromosomes. We generated a C. cinereus mer3 mutant (#1) and found that it showed abnormal meiosis progression and underwent apoptosis after prophase I. Basidiospore production in #1 was reduced to 0.8% of the wild-type level; the spores showed slower germination at 25 degrees C but were similar to the wild type at 37 degrees C. Electron microscopic analysis of chromosome spreads revealed that axial elements were formed in the mutant but that synapsis was defective, resulting in a reduction in spore production. Our results demonstrate that CcMer3 is required for synaptonemal complex formation after axial elements align and is thus essential for homologous synapsis.

  10. Formation of polyelectrolyte complexes with diethylaminoethyl dextran: charge ratio and molar mass effect.

    Science.gov (United States)

    Le Cerf, Didier; Pepin, Anne Sophie; Niang, Pape Momar; Cristea, Mariana; Karakasyan-Dia, Carole; Picton, Luc

    2014-11-26

    The formation of polyelectrolyte complexes (PECs) between carboxymethyl pullulan and DEAE Dextran, was investigated, in dilute solution, with emphasis on the effect of charge density (molar ratio or pH) and molar masses. Electrophoretic mobility measurements have evidenced that insoluble PECs (neutral electrophoretic mobility) occurs for charge ratio between 0.6 (excess of polycation) and 1 (stoichiometry usual value) according to the pH. This atypical result is explained by the inaccessibility of some permanent cationic charge when screened by pH dependant cationic ones (due to the Hoffman alkylation). Isothermal titration calorimetry (ITC) indicates an endothermic formation of PEC with a binding constant around 10(5) L mol(-1). Finally asymmetrical flow field flow fractionation coupled on line with static multi angle light scattering (AF4/MALS) evidences soluble PECs with very large average molar masses and size around 100 nm, in agreement with scrambled eggs multi-association between various polyelectrolyte chains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Interfacial complex formation in uranyl extraction by tributyl phosphate in dodecane diluent: a molecular dynamics study.

    Science.gov (United States)

    Ye, Xianggui; Cui, Shengting; de Almeida, Valmor; Khomami, Bamin

    2009-07-23

    Atomistic simulations have been carried out in a multicomponent two-phase system (aqueous and organic phases in direct contact) to investigate the interfacial molecular mechanisms leading to uranyl extraction from the aqueous to organic phase. The aqueous phase consists of the dissolved ions UO2(2+) and nitrate NO3-, with or without H3O+, in water to describe acidic or neutral condition; the organic phase consists of tributyl phosphate, the extractant, in dodecane as the diluent. We find that the interface facilitates the formation of various uranyl complexes, with a general formula UO2(2+)(NO3-)n *mTBP*kH2O, with n+m+k=5, suggesting a 5-fold coordination. The coordination for all three molecular entities has the common feature that they all bind to the uranyl at the uranium atom with an oxygen atom in the equatorial plane perpendicular to the molecular axis of the uranyl, forming a 5-fold symmetry plane. Nitric acid has a strong effect in enhancing the formation of extractable species, which is consistent with experimental findings.

  12. Study of inclusion complex formation between chlorpromazine hydrochloride, as an antiemetic drug, and {beta}-cyclodextrin, using conductometric technique

    Energy Technology Data Exchange (ETDEWEB)

    Rafati, Amir Abbas, E-mail: aa_rafati@basu.ac.ir [Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamadan (Iran, Islamic Republic of); Hamnabard, Nazanin; Ghasemian, Ensieh; Nojini, Zabiolah Bolboli [Faculty of Chemistry, Bu-Ali Sina University, P.O. Box 65174, Hamadan (Iran, Islamic Republic of)

    2009-04-30

    The behavior of micellization of chlorpromazine hydrochloride (CPH) as an antiemetic drug and its inclusion complex formation with {beta}-cyclodextrin ({beta}-CD) was studied using conductometric technique. The binding or association constant of the complexation equilibrium is evaluated from conductometric measurements by using a nonlinear regression method. The resulting K values for micellization as well as complexation are analyzed. The experiments were carried out at different temperatures. It has been found that CPH form only the 1:1 complex. The association constant values are used for evaluation of thermodynamic parameters of complexation, such as {Delta}G{sub complex}{sup o}, {Delta}H{sub complex}{sup o} and {Delta}S{sub complex}{sup o}.

  13. Donor-acceptor complex formation in evaporated small molecular organic photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Susarova, Diana K.; Troshin, Pavel A.; Lyubovskaya, Rimma N.; Razumov, Vladimir F. [Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, Chernogolovka, Moscow 142432 (Russian Federation); Hoeglinger, Doris; Koeppe, Robert; Serdar Sariciftci, N. [Linz Institute for Organic Solar Cells (LIOS), Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz (Austria); Babenko, Sergey D. [Institute for Energy Problems of Chemical Physics, Russian Academy of Sciences (Branch), Semenov Prospect 1/10, Chernogolovka, Moscow 142432 (Russian Federation)

    2010-05-15

    Novel perylene diimide Py-PDI and naphthalene diimide Py-NDI possessing chelating pyridyl groups have been synthesized. The materials are comparatively investigated as electron acceptors in small molecular photovoltaic cells comprising zinc phthalocyanine ZnPc as an electron donor component. It was shown that these compounds form self-assembled coordination complexes with ZnPc in solution and co-evaporated solid blends. Py-PDI and Py-NDI used as electron acceptor materials in photovoltaic cells with donor ZnPc significantly outperform the reference materials, i.e. perylene and naphthalene diimides that possess no chelating pyridyl groups. Superior photovoltaic performance of Py-PDI and Py-NDI is explained by a complex formation between these compounds and ZnPc. Such interactions of donor and acceptor materials strongly improve photoinduced charge carrier generation. This gives great advantages not just for the construction of organic solar cells but also for organic photodetectors. The devices fabricated in this study are also useful as fast and highly sensitive photodetectors with response times of less than 10 microseconds as well as a strong photoconductive behavior under forward bias. (author)

  14. Spectrophotometric Determination of Gemifloxacin Mesylate in Pharmaceutical Formulations Through Ion-Pair Complex Formation

    Directory of Open Access Journals (Sweden)

    Marothu Vamsi Krishna

    2008-01-01

    Full Text Available Four simple and sensitive ion-pairing spectrophotometric methods have been described for the assay of gemifloxacin mesylate (GFX either in pure form or in pharmaceutical formulations. The developed methods involve formation of colored chloroform extractable ion-pair complexes of the drug with safranin O (SFN O and methylene blue (MB in basic medium; Napthol blue 12BR (NB 12BR and azocaramine G (AG in acidic medium. The extracted complexes showed absorbance maxima at 525, 650, 620 and 540 nm for SFN O, MB, NB 12BR and AG, respectively.Beer's law is obeyed in the concentration ranges 3-15, 4-20, 2-10 and 2-10 μg/mL with molar absorptivity of 2.81 × 104, 2.20 x 104, 4.02 × 104 and 4.15 × 104 L mole−1 cm−1 and relative standard deviation of 0.077, 0.104, 0.080 and 0.103% for SFN O, MB, NB 12BR and AG, respectively. These methods have been successfully applied for the assay of drug in pharmaceutical formulations. No interference was observed from common pharmaceutical adjuvants. Results of analysis were validated statistically and through recovery studies.

  15. Mdm35p imports Ups proteins into the mitochondrial intermembrane space by functional complex formation.

    Science.gov (United States)

    Tamura, Yasushi; Iijima, Miho; Sesaki, Hiromi

    2010-09-01

    Ups1p, Ups2p, and Ups3p are three homologous proteins that control phospholipid metabolism in the mitochondrial intermembrane space (IMS). The Ups proteins are atypical IMS proteins in that they lack the two major IMS-targeting signals, bipartite presequences and cysteine motifs. Here, we show that Ups protein import is mediated by another IMS protein, Mdm35p. In vitro import assays show that import of Ups proteins requires Mdm35p. Loss of Mdm35p led to a decrease in steady state levels of Ups proteins in mitochondria. In addition, mdm35Delta cells displayed a similar phenotype to ups1Deltaups2Deltaups3Delta cells. Interestingly, unlike typical import machineries, Mdm35p associated stably with Ups proteins at a steady state after import. Demonstrating that Mdm35p is a functional component of Ups-Mdm35p complexes, restoration of Ups protein levels in mdm35Delta mitochondria failed to restore phospholipid metabolism. These findings provide a novel mechanism in which the formation of functional protein complexes drives mitochondrial protein import.

  16. Redox-state-dependent complex formation between pseudoazurin and nitrite reductase.

    Science.gov (United States)

    Impagliazzo, Antonietta; Blok, Anneloes J; Cliff, Matthew J; Ladbury, John E; Ubbink, Marcellus

    2007-01-10

    Bacterial copper-containing nitrite reductase catalyzes the reduction of nitrite to nitric oxide as part of the denitrification process. Pseudoazurin interacts with nitrite reductase in a transient fashion to supply the necessary electrons. The redox-state dependence of complex formation between pseudoazurin and nitrite reductase was studied by nuclear magnetic resonance spectroscopy and isothermal titration calorimetry. Binding of pseudoazurin in the reduced state is characterized by the presence of two binding modes, a slow and a fast exchange mode, with a K(d)(app) of 100 microM. In the oxidized state of pseudoazurin, binding occurs in a single fast exchange mode with a similar affinity. Metal-substituted proteins have been used to show that the mode of binding of pseudoazurin is independent of the metal charge of nitrite reductase. Contrary to what was found for other cupredoxins, protonation of the exposed His ligand to the copper of pseudoazurin, His81, does not appear to be involved directly in the dual binding mode of the reduced form. A model assuming the presence of a minor form of pseudoazurin is proposed to explain the behavior of the complex in the reduced state.

  17. Enhanced conformational sampling to visualize a free-energy landscape of protein complex formation.

    Science.gov (United States)

    Iida, Shinji; Nakamura, Haruki; Higo, Junichi

    2016-06-15

    We introduce various, recently developed, generalized ensemble methods, which are useful to sample various molecular configurations emerging in the process of protein-protein or protein-ligand binding. The methods introduced here are those that have been or will be applied to biomolecular binding, where the biomolecules are treated as flexible molecules expressed by an all-atom model in an explicit solvent. Sampling produces an ensemble of conformations (snapshots) that are thermodynamically probable at room temperature. Then, projection of those conformations to an abstract low-dimensional space generates a free-energy landscape. As an example, we show a landscape of homo-dimer formation of an endothelin-1-like molecule computed using a generalized ensemble method. The lowest free-energy cluster at room temperature coincided precisely with the experimentally determined complex structure. Two minor clusters were also found in the landscape, which were largely different from the native complex form. Although those clusters were isolated at room temperature, with rising temperature a pathway emerged linking the lowest and second-lowest free-energy clusters, and a further temperature increment connected all the clusters. This exemplifies that the generalized ensemble method is a powerful tool for computing the free-energy landscape, by which one can discuss the thermodynamic stability of clusters and the temperature dependence of the cluster networks. © 2016 The Author(s).

  18. Perferryl complex of nitric oxide synthase: role in secondary free radical formation.

    Science.gov (United States)

    Porasuphatana, Supatra; Tsai, Pei; Pou, Sovitj; Rosen, Gerald M

    2002-01-15

    Neuronal nitric oxide synthase (NOS I) has been shown to generate nitric oxide (NO*) and superoxide (O(2)*-)during enzymatic cycling, the ratio of each free radical is dependent upon the concentration of L-arginine. Using spin trapping and electron paramagnetic resonance (EPR) spectroscopy, we recently reported that NOS I can oxidize ethanol (EtOH) to alpha-hydroxyethyl radical (CH(3)*CHOH). We speculated that the perferryl complex of NOS, (NOS-[Fe(5+)[double bond]O](3+)) was responsible for the generation of CH(3)*CHOH. Using potassium monopersulfate (KHSO(5)) to oxidize the heme of NOS I to NOS-[Fe(5+)[double bond]O](3+), we were able to demonstrate that this perferryl complex can oxidize L-arginine to L-citrulline and NO*. Even in the absence of L-arginine, EtOH was oxidized to CH(3)*CHOH by NOS-[Fe(5+)[double bond]O](3+). Sodium cyanide (NaCN), a heme blocker, inhibited the formation of CH(3)*CHOH by NOS.

  19. Biofilm formation and genetic variability of BCR1 gene in the Candida parapsilosis complex.

    Science.gov (United States)

    Treviño-Rangel, Rogelio de J; Rodríguez-Sánchez, Irám P; Rosas-Taraco, Adrián G; Hernández-Bello, Romel; González, José G; González, Gloria M

    2015-01-01

    Candida parapsilosis sensu stricto, Candida orthopsilosis, and Candida metapsilosis are cryptic species that belong to the C. parapsilosis complex, which has been increasingly associated to fungemia in various geographic regions, principally due to the capability of these yeasts to form biofilms on indwelling medical devices. BCR1 is one of the most studied genes related to Candida spp. biofilms. To evaluate the biofilm forming capability of a subset of 65 clinical isolates of the C. parapsilosis complex using two conventional approaches, and to look for an association between the biofilm forming phenotype and genetic variants of a fragment of BCR1. The biofilm determination was carried out by crystal violet staining and tetrazolium reduction assay. On the other hand, a segment of BCR1 gene was sequenced by Sanger methodology. C. parapsilosis sensu stricto was statistically associated with a low biofilm production phenotype, while C. orthopsilosis was significantly associated with both phenotypes (high and low biofilm producers). According to the BCR1 sequence analysis, genetic variability was detected in C. orthopsilosis and C. metapsilosis without a particular biofilm formation phenotype association. Under the adopted experimental design, C. parapsilosis sensu stricto was associated with the low biofilm phenotype and C. orthopsilosis with both phenotypes (high and low biofilm producers). On the other hand, an association between a biofilm forming phenotype and a particular genetic variant of the analyzed BCR1 fragment was not found. Copyright © 2014 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  20. A reduced-complexity model for river delta formation - Part 1: Modeling deltas with channel dynamics

    Science.gov (United States)

    Liang, M.; Voller, V. R.; Paola, C.

    2015-01-01

    In this work we develop a reduced-complexity model (RCM) for river delta formation (referred to as DeltaRCM in the following). It is a rule-based cellular morphodynamic model, in contrast to reductionist models based on detailed computational fluid dynamics. The basic framework of this model (DeltaRCM) consists of stochastic parcel-based cellular routing schemes for water and sediment and a set of phenomenological rules for sediment deposition and erosion. The outputs of the model include a depth-averaged flow field, water surface elevation and bed topography that evolve in time. Results show that DeltaRCM is able (1) to resolve a wide range of channel dynamics - including elongation, bifurcation, avulsion and migration - and (2) to produce a variety of deltas such as alluvial fan deltas and deltas with multiple orders of bifurcations. We also demonstrate a simple stratigraphy recording component which tracks the distribution of coarse and fine materials and the age of the deposits. Essential processes that must be included in reduced-complexity delta models include a depth-averaged flow field that guides sediment transport a nontrivial water surface profile that accounts for backwater effects at least in the main channels, both bedload and suspended sediment transport, and topographic steering of sediment transport.

  1. The Formation of Polycomplexes of Poly(Methyl Vinyl Ether-Co-Maleic Anhydride and Bovine Serum Albumin in the Presence of Copper Ions

    Directory of Open Access Journals (Sweden)

    Karahan Mesut

    2014-09-01

    Full Text Available The binary and ternary complex formations of poly(methyl vinyl ether-co-maleic anhydride (PMVEMA with copper ions and with bovine serum albumin (BSA in the presence of copper ions in phosphate buffer solution at pH = 7 were examined by the techniques of UV-visible, fluorescence, dynamic light scattering, atomic force microscopy measurements. In the formation of binary complexes of PMVEMA-Cu(II, the addition of copper ions to the solution of PMVEMA in phosphate buffer solution at pH = 7 forms homogeneous solutions when the molar ratio of Cu(II/MVEMA is 0.5. Then the formations of ternary complexes of PMVEMA-Cu(II-BSA were examined. Study analysis revealed that the toxicities of polymer-metal and polymer-metal-protein mixture solutions depend on the nature and ratio of components in mixtures.

  2. Oceanic crust formation in the Egeria Fracture Zone Complex (Central Indian Ocean)

    Science.gov (United States)

    Le Minor, Marine; Gaina, Carmen; Sigloch, Karin; Minakov, Alexander

    2016-04-01

    This study aims to analyse in detail the oceanic crust fabric and volcanic features (seamounts) formed for the last 10 million years at the Central Indian Ridge between 19 and 21 latitude south. Multibeam bathymetry and magnetic data has been collected in 2013 as part of the French-German expedition RHUM-RUM (Reunion hotspot and upper mantle - Reunion's unterer mantel). Three long profiles perpendicular on the Central Indian Ridge (CIR), south of the Egeria fracture zone, document the formation of oceanic crust since 10 million years, along with changes in plate kinematics and variations in the magmatic input. We have inspected the abyssal hill geometry and orientation along conjugate oceanic flanks and within one fracture zone segment where we could identify J-shaped features that are indicators of changes in plate kinematics. The magnetic anomaly data shows a slight asymmetry in seafloor spreading rates on conjugate flanks: while a steady increase in spreading rate from 10 Ma to the present is shown by the western flank, the eastern part displays a slowing down from 5 Ma onwards. The deflection of the anti J-shaped abyssal hill lineations suggest that the left-stepping Egeria fracture zone complex (including the Egeria, Flinders and an un-named fracture zone to the southeast) was under transpression from 9 to 6 Ma and under transtension since 3 Ma. The transpressional event was triggered by a clockwise mid-ocean ridge reorientation and a decrease of its offset, whereas the transtensional regime was probably due to a counter-clockwise change in the spreading direction and an increase of the ridge offset. The new multibeam data along the three profiles reveal that crust on the eastern side is smoother (as shown by the abyssal hill number and structure) and hosts several seamounts (with age estimations of 7.67, 6.10 and 0.79 Ma), in contrast to the rougher conjugate western flank. Considering that the western flank was closer to the Reunion plume, and therefore

  3. Evidence for Complex Formation of the Bacillus cereus Haemolysin BL Components in Solution

    Directory of Open Access Journals (Sweden)

    Franziska Tausch

    2017-09-01

    Full Text Available Haemolysin BL is an important virulence factor regarding the diarrheal type of food poisoning caused by Bacillus cereus. However, the pathogenic importance of this three-component enterotoxin is difficult to access, as nearly all natural B. cereus culture supernatants additionally contain the highly cytotoxic Nhe, the second three-component toxin involved in the aetiology of B. cereus-induced food-borne diseases. To better address the toxic properties of the Hbl complex, a system for overexpression and purification of functional, cytotoxic, recombinant (rHbl components L2, L1 and B from E. coli was established and an nheABC deletion mutant was constructed from B. cereus reference strain F837/76. Furthermore, 35 hybridoma cell lines producing monoclonal antibodies (mAbs against Hbl L2, L1 and B were generated. While mAbs 1H9 and 1D8 neutralized Hbl toxicity and thus, represent important tools for future investigations of the mode-of-action of Hbl on the target cell surface, mAb 1D7, in contrast, even enhanced Hbl toxicity by supporting the binding of Hbl B to the cell surface. By using the specific mAbs in Dot blots, indirect and hybrid sandwich enzyme immuno assays (EIAs, complex formation between Hbl L1 and B, as well as L1 and L2 in solution could be shown for the first time. Surface plasmon resonance experiments with the rHbl components confirmed these results with KD values of 4.7 × 10−7 M and 1.5 × 10−7 M, respectively. These findings together with the newly created tools lay the foundation for the detailed elucidation of the molecular mode-of-action of the highly complex three-component Hbl toxin.

  4. Evidence for Complex Formation of the Bacillus cereus Haemolysin BL Components in Solution

    Science.gov (United States)

    Tausch, Franziska; Dietrich, Richard; Janowski, Robert; Märtlbauer, Erwin; Jessberger, Nadja

    2017-01-01

    Haemolysin BL is an important virulence factor regarding the diarrheal type of food poisoning caused by Bacillus cereus. However, the pathogenic importance of this three-component enterotoxin is difficult to access, as nearly all natural B. cereus culture supernatants additionally contain the highly cytotoxic Nhe, the second three-component toxin involved in the aetiology of B. cereus-induced food-borne diseases. To better address the toxic properties of the Hbl complex, a system for overexpression and purification of functional, cytotoxic, recombinant (r)Hbl components L2, L1 and B from E. coli was established and an nheABC deletion mutant was constructed from B. cereus reference strain F837/76. Furthermore, 35 hybridoma cell lines producing monoclonal antibodies (mAbs) against Hbl L2, L1 and B were generated. While mAbs 1H9 and 1D8 neutralized Hbl toxicity and thus, represent important tools for future investigations of the mode-of-action of Hbl on the target cell surface, mAb 1D7, in contrast, even enhanced Hbl toxicity by supporting the binding of Hbl B to the cell surface. By using the specific mAbs in Dot blots, indirect and hybrid sandwich enzyme immuno assays (EIAs), complex formation between Hbl L1 and B, as well as L1 and L2 in solution could be shown for the first time. Surface plasmon resonance experiments with the rHbl components confirmed these results with KD values of 4.7 × 10−7 M and 1.5 × 10−7 M, respectively. These findings together with the newly created tools lay the foundation for the detailed elucidation of the molecular mode-of-action of the highly complex three-component Hbl toxin. PMID:28926954

  5. Formation of ethylene glycol and other complex organic molecules in star-forming regions

    Science.gov (United States)

    Rivilla, V. M.; Beltrán, M. T.; Cesaroni, R.; Fontani, F.; Codella, C.; Zhang, Q.

    2017-02-01

    Context. The detection of complex organic molecules related with prebiotic chemistry in star-forming regions allows us to investigate how the basic building blocks of life are formed. Aims: Ethylene glycol (CH2OH)2 is the simplest sugar alcohol and the reduced alcohol of the simplest sugar glycoladehyde (CH2OHCHO). We study the molecular abundance and spatial distribution of (CH2OH)2, CH2OHCHO and other chemically related complex organic species (CH3OCHO, CH3OCH3, and C2H5OH) towards the chemically rich massive star-forming region G31.41+0.31. Methods: We analyzed multiple single-dish (Green Bank Telescope and IRAM 30 m) and interferometric (Submillimeter Array) spectra towards G31.41+0.31, covering a range of frequencies from 45 to 258 GHz. We fitted the observed spectra with a local thermodynamic equilibrium (LTE) synthetic spectra, and obtained excitation temperatures and column densities. We compared our findings in G31.41+0.31 with the results found in other environments, including low- and high-mass star-forming regions, quiescent clouds and comets. Results: We report for the first time the presence of the aGg' conformer of (CH2OH)2 towards G31.41+0.31, detecting more than 30 unblended lines. We also detected multiple transitions of other complex organic molecules such as CH2OHCHO, CH3OCHO, CH3OCH3, and C2H5OH. The high angular resolution images show that the (CH2OH)2 emission is very compact, peaking towards the maximum of the 1.3 mm continuum. These observations suggest that low abundance complex organic molecules, like (CH2OH)2 or CH2OHCHO, are good probes of the gas located closer to the forming stars. Our analysis confirms that (CH2OH)2 is more abundant than CH2OHCHO in G31.41+0.31, as previously observed in other interstellar regions. Comparing different star-forming regions we find evidence of an increase of the (CH2OH)2/CH2OHCHO abundance ratio with the luminosity of the source. The CH3OCH3/CH3OCHO and (CH2OH)2/C2H5OH ratios are nearly constant with

  6. Evolution of multi-mineral formation evaluation using LWD data in complex carbonates offshore Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, Paolo; Borovskaya, Irina [Schlumberger, Houston, TX (United States)

    2012-07-01

    Petrophysical Formation Evaluation using Logging While Drilling (LWD) measurements is a new requisite when drilling in carbonates reservoirs offshore Brazil. These reservoirs are difficult to characterize due to an unusual mixture of the minerals constituting the matrix and affecting rock texture. As wells are getting deeper and more expensive, an early identification of the drilled targets potential is necessary for valuable decisions. Brazil operators have been especially demanding towards service providers, pushing for development of suitable services able to positively identify and quantify not only the presence of hydrocarbons but also their flowing capability. In addition to the standard gamma ray / resistivity / porosity and density measurements, three new measurements have proven to be critical to evaluate complex carbonate formations: Nuclear Magnetic Resonance (NMR), Spectroscopy and Capture Cross-Section (sigma). Under appropriate logging conditions, NMR data provides lithology independent porosity, bound and free fluids fractions, reservoir texture and permeability. Capture Spectroscopy allows assessment of mineral composition in terms of calcite, dolomite, quartz and clay fractions, and in addition highlights presence of other heavier minerals. Finally, sigma allows performing a volumetric formation evaluation without requiring custom optimization of the classical exponents used in all forms of resistivity saturation equations. All these new measurements are inherently statistical and if provided by wireline after drilling the well they may result in significant usage of rig time. When acquired simultaneously while drilling they have three very clear advantages: 1) no extra rig time, 2) improved statistics due to long formation exposure (drilling these carbonates is a slow process and rate of penetration (ROP) rarely exceeds 10 m/hr), 3) less invasion effect and better hole condition. This paper describes the development of two LWD tools performing the

  7. Efficient Implementation of Ternary SDM Filters using State-of-the-Art FPGA

    Directory of Open Access Journals (Sweden)

    Tayabuddin Memon

    2011-04-01

    Full Text Available We present the analysis of a ternary FIR filter at varying OSR (Over Sampling Ratios. The sigma delta modulated ternary filter impulse responses obtained using Matlab at varying OSRs show that each doubling of OSR results in an increase of 10dB in the stopband attenuation. BT-FIR (Balanced Ternary FIR Filters at varying OSRs have been implemented in VHDL using an efficient adder tree organization to gather the partial products. Filters in both pipelined and non-pipelined modes were synthesized on a small number of representative commercial FPGA (Field Programmable Gate Arrays devices. Both the filter taps and binary inputs use 2\\'s complement format. The synthesis results show the tradeoffs between hardware area and performance at varying OSRs. In pipelined mode, a 6MHz video stream can easily be handled at an OSR of 64, while occupying less than 8% of a Stratix-III device.

  8. Combustion synthesis in the Ni-Al-Nb ternary system: A Time-Resolved X-ray Diffraction study

    Science.gov (United States)

    Sytschev, Alexander E.; Kovalev, Dmitry Yu.; Vrel, Dominique; Vadchenko, Sergey G.

    Combustion synthesis of intermetallics, using the thermal explosion mode, in the Ni-Al-Nb ternary system is presented, with a 40:40:20 atomic ratio. The kinetic pathway is determined using Time-Resolved X-ray Diffraction, with a time-step resolution of 1 s and demonstrated a first formation of the B2 NiAl structure followed by progressive dissolution of Nb to yield NiAlNb intermetallic Laves phase, representing 35 w% of the final product. SEM observations show a double dendritic (coarse and fine) microstructure, resulting from eutectic crystallization. Due to a high cooling rate, Nb dissolution is not complete at the surface, and yields slightly more complex microstructure, including the Ni2AlNb Geissler phase, the (Ni,Al)2Nb Laves phase, and (Ni, Al)7Nb6.

  9. Glucose attenuation of auxin-mediated bimodality in lateral root formation is partly coupled by the heterotrimeric G protein complex.

    Directory of Open Access Journals (Sweden)

    Katherine S Booker

    2010-09-01

    Full Text Available Auxin and glucose are both essential elements in normal root development. The heterotrimeric G protein complex in Arabidopsis thaliana, defined as containing alpha (AtGPA1, beta (AGB1, and gamma (AGG subunits and a GTPase accelerating protein called Regulator of G Signaling 1 protein (AtRGS1, are involved in glucose signaling and regulate auxin transport.A systems approach was used to show that formation of lateral roots, a process requiring coordinated cell division followed by targeted cell expansion, involves a signaling interaction between glucose and auxin. We dissected the relationship between auxin and glucose action using lateral root formation as the biological context. We found that auxin and glucose act synergistically to yield a complex output involving both stimulatory and antagonist glucose effects on auxin responsiveness. Auxin-induced, lateral-root formation becomes bimodal with regard to auxin dose in the presence of glucose. This bimodality is mediated, in part, by the G protein complex defined above.Auxin and glucose are essential signals controlling the rate of cell proliferation and expansion in roots. Auxin promotes the formation of lateral roots and is consequently essential for proper root architecture. Glucose affects the activation state of the heterotrimeric G protein complex which regulates auxin distribution in the root. The bimodality of auxin-induced, lateral-root formation becomes prominent in the presence of glucose and in roots lacking the G protein complex. Bimodality is apparent without added glucose in all loss-of-function mutants for these G protein components, suggesting that the heterotrimeric G protein complex attenuates the bimodality and that glucose inhibits this attenuation through the complex. The bimodality can be further resolved into the processes of lateral root primordia formation and lateral root emergence, from which a model integrating these signals is proposed.

  10. From PII signaling to metabolite sensing: a novel 2-oxoglutarate sensor that details PII-NAGK complex formation.

    Directory of Open Access Journals (Sweden)

    Jan Lüddecke

    Full Text Available The widespread PII signal transduction proteins are known for integrating signals of nitrogen and energy supply and regulating cellular behavior by interacting with a multitude of target proteins. The PII protein of the cyanobacterium Synechococcus elongatus forms complexes with the controlling enzyme of arginine synthesis, N-acetyl-L-glutamate kinase (NAGK in a 2-oxoglutarate- and ATP/ADP-dependent manner. Fusing NAGK and PII proteins to either CFP or YFP yielded a FRET sensor that specifically responded to 2-oxoglutarate. The impact of the fluorescent tags on PII and NAGK was evaluated by enzyme assays, surface plasmon resonance spectroscopy and isothermal calorimetric experiments. The developed FRET sensor provides real-time data on PII - NAGK interaction and its modulation by the effector molecules ATP, ADP and 2-oxoglutarate in vitro. Additionally to its utility to monitor 2-oxoglutarate levels, the FRET assay provided novel insights into PII - NAGK complex formation: (i It revealed the formation of an encounter-complex between PII and NAGK, which holds the proteins in proximity even in the presence of inhibitors of complex formation; (ii It revealed that the PII T-loop residue Ser49 is neither essential for complex formation with NAGK nor for activation of the enzyme but necessary to form a stable complex and efficiently relieve NAGK from arginine inhibition; (iii It showed that arginine stabilizes the NAGK hexamer and stimulates PII - NAGK interaction.

  11. Shock-induced kelyphite formation in the core of a complex impact crater

    Science.gov (United States)

    Deseta, Natalie; Boonsue, Suporn; Gibson, Roger L.; Spray, John G.

    2017-10-01

    We present a compositional and textural analysis of shock-induced microtextures in garnet porphyroblasts in migmatitic garnet-cordierite-biotite paragneisses from the centre of the Vredefort impact structure, South Africa. Detailed imaging and major element analysis of deformation features in, and adjacent to, the garnet porphyroblasts record a complex, heterogeneous distribution of shock effects at the microscale. As the most competent silicate mineral in the assemblage, with the highest Hugoniot Elastic Limit and a wide pressure-temperature stability field, the porphyroblastic garnet preserves a more diverse shock deformation response compared to minerals such as quartz and feldspar, which underwent more comprehensive shock metamorphism and subsequent annealing. The garnet porphyroblasts display pre-impact fractures that are overprinted by later intra-granular Hertzian and distinctive planar fractures associated with the impact event. Shock-induced strain localization occurred along internal slip planes and defects, including pre-existing fractures and inclusion boundaries in the garnet. Symplectitic (kelyphitic) coronas commonly enclose the garnet porphyroblasts, and inhabit intra-granular fractures. The kelyphite assemblage in fractures with open communication beyond garnet grain boundaries is characterized by orthopyroxene—cordierite—sapphirine. Conversely, the kelyphite assemblage in closed-off intra-granular fractures is highly variable, comprising spatially restricted combinations of a secondary garnet phase with a majoritic component, Al-rich orthopyroxene, sapphirine and cordierite. The impedance contrast between garnet porphyroblasts and their inclusions further facilitated the formation of shock-induced features (Al-rich orthopyroxene coronas). Together, the textural and mineralogical data suggest that these features provide a record of oscillatory shock perturbations initiated under confining pressure beneath the transient crater floor. This

  12. [Analysis of ESR spectra in Mn2+-plant adenylate kinase complex].

    Science.gov (United States)

    Kharatian, S A; Kaiushin, L P

    1981-01-01

    Interaction of plant adenylate kinase with Mn2+-adenine nucleotide binary complex was studied by ESR technique at room temperature. The ligand environment of Mn2+ in the ternary Mn2+-adenine nucleotide-enzyme complex was shown to change, as a result of enzyme binding as compared with that of binary complex. These changes seem to be due to substitution of protein molecules for water and adenine nucleotide ones, coordinated to Mn2+ ion on ternary complex formation. The same results were obtained in ESR studies on rabbit muscle myokinase. This fact may be considered as an evidence, that plant adenylate kinase is identical to animal one in its interaction with adenine nucleotides and manganese ions.

  13. Glass transition behavior of ternary disaccharide-ethylene glycol-water solutions

    Science.gov (United States)

    Yu, Tongxu; Zhao, Lishan; Wang, Qiang; Cao, Zexian

    2017-06-01

    Glass transition behavior of ternary disaccharide-ethylene glycol-water solutions, in reference to that of the binary combinations, has been investigated towards a better understanding of their cryoprotective ability. In water-deficient solutions, the disaccharides, including trehalose, sucrose and maltose, can associate with more than 100 ethylene glycol molecules to form amorphous complex, one order of magnitude larger than the corresponding hydration numbers. In water-rich solutions, a second glass transition emerges with increasing molar fraction of ethylene glycol, indicating the possible synergy of disaccharides and ethylene glycol in vitrification of the ternary aqueous solution.

  14. Swarming and complex pattern formation in Paenibacillus vortex studied by imaging and tracking cells

    Directory of Open Access Journals (Sweden)

    Jacob Eshel

    2008-02-01

    Full Text Available Abstract Background Swarming motility allows microorganisms to move rapidly over surfaces. The Gram-positive bacterium Paenibacillus vortex exhibits advanced cooperative motility on agar plates resulting in intricate colonial patterns with geometries that are highly sensitive to the environment. The cellular mechanisms that underpin the complex multicellular organization of such a simple organism are not well understood. Results Swarming by P. vortex was studied by real-time light microscopy, by in situ scanning electron microscopy and by tracking the spread of antibiotic-resistant cells within antibiotic-sensitive colonies. When swarming, P. vortex was found to be peritrichously flagellated. Swarming by the curved cells of P. vortex occurred on an extremely wide range of media and agar concentrations (0.3 to 2.2% w/v. At high agar concentrations (> 1% w/v rotating colonies formed that could be detached from the main mass of cells by withdrawal of cells into the latter. On lower percentage agars, cells moved in an extended network composed of interconnected "snakes" with short-term collision avoidance and sensitivity to extracts from swarming cells. P. vortex formed single Petri dish-wide "supercolonies" with a colony-wide exchange of motile cells. Swarming cells were coupled by rapidly forming, reversible and non-rigid connections to form a loose raft, apparently connected via flagella. Inhibitors of swarming (p-Nitrophenylglycerol and Congo Red were identified. Mitomycin C was used to trigger filamentation without inhibiting growth or swarming; this facilitated dissection of the detail of swarming. Mitomycin C treatment resulted in malcoordinated swarming and abortive side branch formation and a strong tendency by a subpopulation of the cells to form minimal rotating aggregates of only a few cells. Conclusion P. vortex creates complex macroscopic colonies within which there is considerable reflux and movement and interaction of cells. Cell

  15. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages.

    Science.gov (United States)

    Lancaster, J R; Hibbs, J B

    1990-02-01

    Activated macrophage cytotoxicity is characterized by loss of intracellular iron and inhibition of certain enzymes that have catalytically active nonheme-iron coordinated to sulfur. This phenomenon involves the oxidation of one of the terminal guanidino nitrogen atoms of L-arginine, which results in the production of citrulline and inorganic nitrogen oxides (NO2-, NO3-, and NO). We report here the results of an electron paramagnetic resonance spectroscopic study performed on cytotoxic activated macrophage (CAM) effector cells, which develop the same pattern of metabolic inhibition as their targets. Examination of activated macrophages from mice infected with Mycobacterium bovis (strain bacillus Calmette-Guérin) that were cultured in medium with lipopolysaccharide and L-arginine showed the presence of an axial signal at g = 2.039, which is similar to previously described iron-nitrosyl complexes formed from the destruction of iron-sulfur centers by nitric oxide (NO). Inhibition of the L-arginine-dependent pathway by addition of NG-monomethyl-L-arginine (methyl group on a terminal guanidino nitrogen) inhibits the production of nitrite, nitrate, citrulline, and the g = 2.039 signal. Comparison of the hyperfine structure of the signal from cells treated with L-arginine with terminal guanidino nitrogen atoms of natural abundance N14 atoms or labeled with N15 atoms showed that the nitrosyl group in this paramagnetic species arises from one of these two atoms. These results show that loss of iron-containing enzyme function in CAM is a result of the formation of iron-nitrosyl complexes induced by the synthesis of nitric oxide from the oxidation of a terminal guanidino nitrogen atom of L-arginine.

  16. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lancaster, J.R. Jr.; Hibbs, J.B. Jr. (Utah State Univ., Logan (USA))

    1990-02-01

    Activated macrophage cytotoxicity is characterized by loss of intracellular iron and inhibition of certain enzymes that have catalytically active nonheme-iron coordinated to sulfur. This phenomenon involves the oxidation of one of the terminal guanidino nitrogen atoms of L-arginine, which results in the production of citrulline and inorganic nitrogen oxides (NO2-, NO3-, and NO). We report here the results of an electron paramagnetic resonance spectroscopic study performed on cytotoxic activated macrophage (CAM) effector cells, which develop the same pattern of metabolic inhibition as their targets. Examination of activated macrophages from mice infected with Mycobacterium bovis (strain bacillus Calmette-Guerin) that were cultured in medium with lipopolysaccharide and L-arginine showed the presence of an axial signal at g = 2.039, which is similar to previously described iron-nitrosyl complexes formed from the destruction of iron-sulfur centers by nitric oxide (NO). Inhibition of the L-arginine-dependent pathway by addition of NG-monomethyl-L-arginine (methyl group on a terminal guanidino nitrogen) inhibits the production of nitrite, nitrate, citrulline, and the g = 2.039 signal. Comparison of the hyperfine structure of the signal from cells treated with L-arginine with terminal guanidino nitrogen atoms of natural abundance N14 atoms or labeled with N15 atoms showed that the nitrosyl group in this paramagnetic species arises from one of these two atoms. These results show that loss of iron-containing enzyme function in CAM is a result of the formation of iron-nitrosyl complexes induced by the synthesis of nitric oxide from the oxidation of a terminal guanidino nitrogen atom of L-arginine.

  17. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    Directory of Open Access Journals (Sweden)

    Hans-Georg Braun

    2013-02-01

    Full Text Available The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO, molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness < 10 nm result from an interplay between dewetting patterns and diffusion limited growth pattern of ordered lamella growing within the dewetting areas. Besides structure formation of hydrophilic PEO molecules, n-alkylterminated (hydrophobic PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups.

  18. Pore-controlled formation of 0D metal complexes in anionic 3D metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, MW; Bosch, M; Zhou, HC

    2015-01-01

    The host-guest chemistry between a series of anionic MOFs and their trapped counterions was investigated by single crystal XRD. The PCN-514 series contains crystallographically identifiable metal complexes trapped in the pores, where their formation is controlled by the size and shape of the MOF pores. A change in the structure and pore size of PCN-518 indicates that the existence of guest molecules may reciprocally affect the formation of host MOFs.

  19. Formats

    Directory of Open Access Journals (Sweden)

    Gehmann, Ulrich

    2012-03-01

    Full Text Available In the following, a new conceptual framework for investigating nowadays’ “technical” phenomena shall be introduced, that of formats. The thesis is that processes of formatting account for our recent conditions of life, and will do so in the very next future. It are processes whose foundations have been laid in modernity and which will further unfold for the time being. These processes are embedded in the format of the value chain, a circumstance making them resilient to change. In addition, they are resilient in themselves since forming interconnected systems of reciprocal causal circuits.Which leads to an overall situation that our entire “Lebenswelt” became formatted to an extent we don’t fully realize, even influencing our very percep-tion of it.

  20. Effect of ultrasonic waves on the water turbidity during the oxidation of phenol. Formation of (hydro)peroxo complexes.

    Science.gov (United States)

    Villota, Natalia; Lomas, Jose M; Camarero, Luis M

    2017-11-01

    Analysis of the kinetics of aqueous phenol oxidation by a sono-Fenton process reveals that the via involving ortho-substituted intermediates prevails: catechol (25.0%), hydroquinone (7.7%) and resorcinol (0.6%). During the oxidation, water rapidly acquires color that reaches its maximum intensity at the maximum concentration of p-benzoquinone. Turbidity formation occurs at a slower rate. Oxidant dosage determines the nature of the intermediates, being trihydroxylated benzenes (pyrogallol, hydroxyhydroquinone) and muconic acid the main precursors causing turbidity. It is found that the concentration of iron species and ultrasonic waves affects the intensity of the turbidity. The pathway of (hydro)peroxo-iron(II) complexes formation is proposed. Operating with 20.0-27.8mgFe(2+)/kW rates leads to formation of (hydro)peroxo-iron(II) complexes, which induce high turbidity levels. These species would dissociate into ZZ-muconic acid and ferrous ions. Applying relationships around 13.9mgFe(2+)/kW, the formation of (hydro)peroxo-iron(III) complexes would occur, which could react with carboxylic acids (2,5-dioxo-3-hexenedioic acid). That reaction induces turbidity slower. This is due to the organic substrate reacting with two molecules of the (hydro)peroxo complex. Therefore, it is necessary to accelerate the iron regeneration, intensifying the ultrasonic irradiation. Afterwards, this complex would dissociate into maleic acid and ferric ions. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Resolving detailed molecular structures in complex organic mixtures and modeling their secondary organic aerosol formation

    Science.gov (United States)

    Goodman-Rendall, Kevin A. S.; Zhuang, Yang R.; Amirav, Aviv; Chan, Arthur W. H.

    2016-03-01

    Characterization of unresolved complex mixtures (UCMs) remains an ongoing challenge towards developing detailed and accurate inputs for modeling secondary organic aerosol (SOA) formation. Traditional techniques based on gas chromatography/electron impact-mass spectrometry induce excessive fragmentation, making it difficult to speciate and quantify isomers precisely. The goal of this study is to identify individual organic isomers by gas chromatography/mass spectrometry with supersonic molecular beam (SMB-GC/MS, also known as GC/MS with Cold EI) and to incorporate speciated isomers into an SOA model that accounts for the specific structures elucidated. Two samples containing atmospherically relevant UCMs are analyzed. The relative isomer distributions exhibit remarkably consistent trends across a wide range of carbon numbers. Constitutional isomers of different alkanes are speciated and individually quantified as linear, branched - for the first time by position of branching - multiply branched, or unsaturated - by degree of ring substitution and number of rings. Relative amounts of exact molecular structures are used as input parameters in an SOA box model to study the effects of molecular structures on SOA yields and volatility evolution. Highly substituted cyclic, mono-substituted cyclic, and linear species have the highest SOA yields while branched alkanes formed the least SOA. The rate of functionalization of a representative UCM is found to be in agreement with current volatility basis set (VBS) parameterizations based on detailed knowledge of composition and known oxidation mechanisms, confirming the validity of VBS parameters currently used in air quality models.

  2. Formation and Identification of Unresolved Complex Mixtures in Lacustrine Biodegraded Oil from Nanxiang Basin, China

    Directory of Open Access Journals (Sweden)

    Pengfei Guo

    2014-01-01

    Full Text Available A comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS method has been developed for the formation and identification of unresolved complex mixtures (UCMs in lacustrine biodegraded oils that with the same source rock, similar maturity, and increasing degradation rank from Nanxiang Basin, China. Normal alkanes, light hydrocarbons, isoprenoids, steranes, and terpanes are degraded gradually from oil B330 to oil G574. The compounds in biodegraded oil (oil G574 have fewer types, the polarity difference of compounds in different types is minor, and the relative content of individual compounds is similar. All the features make the compounds in biodegraded oil coelute in GC analysis and form the raised “baseline hump” named UCMs. By injecting standard materials and analyzing mass spectrums of target compounds, it is shown that cyclic alkanes with one to five rings are the major components of UCMs. Furthermore, UCMs were divided into six classes. Classes I and II, composed of alkyl-cyclohexanes, alkyl-naphthanes, and their isomers, are originated from the enrichment of hydrocarbons resistant to degradation in normal oils. Classes III ~ VI, composed of sesquiterpenoids, tricyclic terpanes, low molecular steranes, diasteranes, norhopanes, and their isomers, are probably from some newly formed compounds during the microbial transformation of oil.

  3. Calculating the contribution of different binding modes to Quinacrine - DNA complex formation from polarized fluorescence data

    CERN Document Server

    Voloshin, Igor; Karachevtsev, Victor; Zozulya, Victor

    2013-01-01

    Binding of acridine derivative quinacrine (QA) to chicken erythrocyte DNA was studied by methods of absorption and polarized fluorescent spectroscopy. Measurements were carried out in aqueous buffered solutions (pH 6.9) of different dye concentrations (QA concentration range from $10^{-6}$ till $10^{-4}$ M) and ionic strengths ($Na^{+}$ concentration rang from $10^{-3}$ till 0.15 M) in a wide range of phosphate-to-dye molar ratios ($P/D$). It is established that the minimum of fluorescent titration curve plotted as relative fluorescence intensity $vs$ $P/D$ is conditioned by the competition between the two types of QA binding to DNA which posses by different emission parameters: (i) intercalative one dominating under high $P/D$ values, and (ii) outside electrostatic binding dominating under low $P/D$ values, which is accompanied by the formation of non-fluorescent dye associates on the DNA backbone. Absorption and fluorescent characteristics of complexes formed were determined. The method of calculation of di...

  4. Decamethylytterbocene complexes of bipyridines and diazabutadines: multiconfigurational ground states and open-shell singlet formation

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Eric D [Los Alamos National Laboratory; Booth, C H [LBNL; Walter, M D [LBNL; Kazhdan, D [LBNL; Hu, Y - J [LBNL; Lukens, Wayne [LBNL; Maron, Laurent [INSA TOULOUSE; Eisentein, Odile [UNIV MONTPELLIER 2; Anderson, Richard [LBNL

    2009-01-01

    Partial ytterbium f-orbital occupancy (i.e. intermediate valence) and open-shell singlet Draft 12/formation are established for a variety of bipyridine and diazabutadiene adducts to decamethylytterbocene, (C{sub 5}Me{sub 5}){sub 2}Yb or Cp*{sub 2}Yb. Data used to support this claim includes ytterbium valence measurements using Yb Lm-edge x-ray absorption near-edge structure (XANES) spectroscopy, magnetic susceptibility and Complete Active Space Self-Consistent Field (CASSCF) multi configurational calculations, as well as structural measurements compared to density-functional theory (DFT) calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground state wave function that has both an open-shell singlet f{sup 13} and a closed-shell singlet f{sup 14} component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the presence of intermediate valence and its lack of any significant temperature dependence. These results have implications for understanding chemical bonding not only in organolanthanide complexes, but also for organometallic chemistry in general, as well as understanding magnetic interactions in nanopartic1es and devices.

  5. Decamethylytterbocene Complexes of Bipyridines and Diazabutadienes: Multiconfigurational Ground States and Open-Shell Singlet Formation

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Corwin H.; Walter, Marc D.; Kazhdan, Daniel; Hu, Yung-Jin; Lukens, Wayne W.; Bauer, Eric D.; Maron, Laurent; Eisenstein, Odile; Andersen, Richard A.

    2009-04-22

    Partial ytterbium f-orbital occupancy (i.e., intermediate valence) and open-shell singlet formation are established for a variety of bipyridine and diazabutadiene adducts with decamethylytterbocene, (C5Me5)2Yb, abbreviated as Cp*2Yb. Data used to support this claim include ytterbium valence measurements using Yb LIII-edge X-ray absorption near-edge structure spectroscopy, magnetic susceptibility, and complete active space self-consistent field (CASSCF) multiconfigurational calculations, as well as structural measurements compared to density functional theory calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground-state wave function that has both an open-shell singlet f13(?*)1, where pi* is the lowest unoccupied molecular orbital of the bipyridine or dpiazabutadiene ligands, and a closed-shell singlet f14 component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the lack of temperature dependence of the measured intermediate valence. These results have implications for understanding chemical bonding not only in organolanthanide complexes but also for f-element chemistry in general, as well as understanding magnetic interactions in nanoparticles and devices.

  6. Plasmodium falciparum origin recognition complex subunit 5: functional characterization and role in DNA replication foci formation.

    Science.gov (United States)

    Gupta, Ashish; Mehra, Parul; Dhar, Suman Kumar

    2008-08-01

    The mechanism of DNA replication initiation and progression is poorly understood in the parasites, including human malaria parasite Plasmodium falciparum. Using bioinformatics tools and yeast complementation assay, we identified a putative homologue of Saccharomyces cerevisiaeorigin recognition complex subunit 5 in P. falciparum (PfORC5). PfORC5 forms distinct nuclear foci colocalized with the replication foci marker proliferating cell nuclear antigen (PfPCNA) and co-immunoprecipitates with PCNA during early-to-mid trophozoite stage replicating parasites. Interestingly, these proteins separate from each other at the non-replicating late schizont stage, citing the evidence of the presence of both PCNA and ORC components in replication foci during eukaryotic DNA replication. PfORC1, another ORC subunit, colocalizes with PfPCNA and PfORC5 at the beginning of DNA replication, but gets degraded at the late schizont stage, ensuring the regulation of DNA replication in the parasites. Further, we have identified putative PCNA-interacting protein box in PfORC1 that may explain in part the colocalization of PfORC and PfPCNA. Additionally, use of specific DNA replication inhibitor hydroxyurea affects ORC5/PCNA foci formation and parasitic growth. These results strongly favour replication factory model in the parasites and confer great potential to understand the co-ordination between ORC and PCNA during eukaryotic DNA replication in general.

  7. THE PRINCIPLES OF POWER-RISE BUILDINGS COMPLEXES FORMATION USING WIND ENERGY

    Directory of Open Access Journals (Sweden)

    NEVGAMONNIY G. U.

    2015-11-01

    Full Text Available Raising of problem. The methodology of designing energy-efficient tower building should be based on systematic analysis of the building as a unified energy system. The prominent architect Norman Foster (Sir Norman Foster writes: "Architects cannot solve all the world's environmental problems, but we can design buildings that require only a fraction of current energy consumption, in addition, through proper urban planning we can affect traffic flows. The location and functionality of buildings, its structural flexibility and technological resources, orientation, shape and structure, heating and ventilation characteristics used in the construction materials - all these parameters affect the amount of energy required for the construction, operation and maintenance of the building, and as for transportation, moving to it and from it" [1]. Purpose. The purpose of the study is scientific justification principles of architectural formation decisions of the power-rise energy efficient complexes and developing methods of architectural design of PRBC using wind energy. To develop the science-based principles forming the architectural buildings with the use of alternative energy and determine the specific features of the architectural design of buildings. Conclusion. The principles of architectural forming in the use of wind power and identify possible trends for the development of buildings with integrated wind installations. Polyfunctional wind power plants are in special properties of certain material and structural elements of the building structure, improve aerodynamic performance of the outer shell and therefore wind energy devices. Thus, the power efficiency of energy active building depends on its space solutions.

  8. Formation of wood secondary cell wall may involve two type cellulose synthase complexes in Populus.

    Science.gov (United States)

    Xi, Wang; Song, Dongliang; Sun, Jiayan; Shen, Junhui; Li, Laigeng

    2017-03-01

    Cellulose biosynthesis is mediated by cellulose synthases (CesAs), which constitute into rosette-like cellulose synthase complexe (CSC) on the plasma membrane. Two types of CSCs in Arabidopsis are believed to be involved in cellulose synthesis in the primary cell wall and secondary cell walls, respectively. In this work, we found that the two type CSCs participated cellulose biosynthesis in differentiating xylem cells undergoing secondary cell wall thickening in Populus. During the cell wall thickening process, expression of one type CSC genes increased while expression of the other type CSC genes decreased. Suppression of different type CSC genes both affected the wall-thickening and disrupted the multilaminar structure of the secondary cell walls. When CesA7A was suppressed, crystalline cellulose content was reduced, which, however, showed an increase when CesA3D was suppressed. The CesA suppression also affected cellulose digestibility of the wood cell walls. The results suggest that two type CSCs are involved in coordinating the cellulose biosynthesis in formation of the multilaminar structure in Populus wood secondary cell walls.

  9. Formation of stacked luminescent complex of 8-hydroxyquinoline molecules on hydroxyapatite coating by using cold isostatic pressing

    Energy Technology Data Exchange (ETDEWEB)

    Matsuya, Takehiko [Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940–2188 (Japan); Otsuka, Yuichi, E-mail: otsuka@vos.nagaokaut.ac.jp [Department of System Safety, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940–2188 (Japan); Tagaya, Motohiro [Department of Materials Science and Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940–2188 (Japan); Motozuka, Satoshi [Department of Mechanical Engineering, Gifu National College of Technology, 2236-2 Kamimakuwa, Motosu-shi, Gifu 501–0495 (Japan); Ohnuma, Kiyoshi [Department of Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940–2188 (Japan); Mutoh, Yoshiharu [Department of System Safety, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka-shi, Niigata 940–2188 (Japan)

    2016-01-01

    Cold isostatic pressing successfully formed a chelate complex of 8-hydroxyquinoline (8Hq) molecules on plasma-sprayed hydroxyapatite (HAp) coating by solid-state reaction. The complex emits a fluorescence peak at approximately 500 nm by UV irradiation. The red shift of the fluorescence was newly observed in the cases of highly compressed complex due to π – π stacking of aromatic ring in the molecular structure of 8Hq. The immersed complex coating in Simulated Body Fluid (SBF) demonstrated amorphous apatite precipitation and kept its fluorescence property. - Highlights: • Cold isostatic pressing can form a complex of 8-hydroxyquinoline (8Hq) with hydroxyapatite (HAp) • Cold isostatic pressing can form HAp/8Hq complex on rough surfaces • Peak shift of the fluorescence from CIPEd HAp/8Hq was observed. • Formation of HAp/8Hq did not disturb precipitation property of HAp itself. • The peak shift was due to the increase in density of 8Hq molecules.

  10. Study on Formation Mechanism and Ligand-directed Architectural Control of Nanoparticles Composed of Bi, Sb and Te: Toward One-pot Synthesis of Ternary (Bi,Sb)2Te3 Nanobuilding Blocks

    OpenAIRE

    Mai, Nguyen T.; Mott, Derrick; Thuy, Nguyen T. B.; Osaka, Issey; Maenosono, Shinya

    2011-01-01

    This paper reports a study on the formation mechanism of nanoparticles (NPs) composed of bismuth, antimony and tellurium for thermoelectric materials using a modified polyol synthetic route. Our one-pot synthesis technique has proven highly versatile in creating a wide range of different anisotropic NPs such as nanowires (NWs), nanodiscs (NDs), nanoribbons and nanospines (NDs studded on NWs) simply by modifying the capping species or elemental precursor feeding ratio used in the synthesis. Ho...

  11. Structure Formation of Ultrathin PEO Films at Solid Interfaces—Complex Pattern Formation by Dewetting and Crystallization

    Science.gov (United States)

    Braun, Hans-Georg; Meyer, Evelyn

    2013-01-01

    The direct contact of ultrathin polymer films with a solid substrate may result in thin film rupture caused by dewetting. With crystallisable polymers such as polyethyleneoxide (PEO), molecular self-assembly into partial ordered lamella structures is studied as an additional source of pattern formation. Morphological features in ultrathin PEO films (thickness PEO molecules, n-alkylterminated (hydrophobic) PEO oligomers are investigated with respect to self-organization in ultrathin films. Morphological features characteristic for pure PEO are not changed by the presence of the n-alkylgroups. PMID:23385233

  12. fhlA repression by OxyS RNA: kissing complex formation at two sites results in a stable antisense-target RNA complex.

    Science.gov (United States)

    Argaman, L; Altuvia, S

    2000-07-28

    OxyS is a small untranslated RNA that is induced in response to oxidative stress in Escherichia coli. This small RNA acts as a global regulator affecting the expression of multiple genes. OxyS represses the translation of fhlA, a transcriptional activator for formate metabolism. Previously, we have shown that fhlA repression by OxyS is mediated through base-pairing with a short sequence overlapping the ribosome binding site. Here we show that the OxyS-fhlA interaction involves a second site residing further downstream, within the coding region of fhlA. Mutations that disrupt pairing at this site affect the ability of OxyS to prevent 30 S ribosomes from binding to fhlA mRNA. Structure probing of fhlA mRNA demonstrates that both sites reside in the loops of two stem-loop structures. OxyS-fhlA pairing analysis shows that OxyS binds wild-type fhlA with an apparent dissociation constant of 25 nM, indicating that kissing complex formation between OxyS and fhlA results in a stable antisense-target complex. Mutations at either site, which disrupt pairing of OxyS to fhlA, decrease the stability of this complex. Our results indicate that kissing complex formation is sufficient to repress fhlA translation by OxyS. Copyright 2000 Academic Press.

  13. Thermodynamics of mixed-ligand complex formation of zinc nitrilotriacetate with amino acids and dipeptides in solution

    Energy Technology Data Exchange (ETDEWEB)

    Pyreu, Dmitrii, E-mail: pyreu@mail.ru [Department of Inorganic and Analytic Chemistry, Ivanovo State UniversityErmak 39, Ivanovo 153025 (Russian Federation); Gruzdev, Matvey; Kumeev, Roman [G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo (Russian Federation); Gridchin, Sergei [Ivanovo State University of Chemistry and Technology, Ivanovo (Russian Federation)

    2014-10-20

    Highlights: • Stable mixed ligand complexes of ZnNta with amino acids and dipeptides. • Histamine-like coordination mode of His in the complex ZnNtaHis. • Glycine-like coordination of Lys and Orn in the complexes ZnNtaL and ZnNtaHL • NH{sub 2}, CO-coordination mode of GlyGly in the complex ZnNtaGG. • NH{sub 2}, N{sup −} or NH2, N{sup −}, COO-coordination modes of GlyGly in the complex ZnNtaGGH{sub −1}. - Abstract: The isothermal calorimetry, pH-potentiometric titration and {sup 1}H and {sup 13}C NMR methods has been used to study the mixed-ligand complex formation in the systems Zn{sup 2+}–Nta{sup 3–}–L{sup −} (L = His, Orn, Lys, GlyGly, AlaAla) in aqueous solution at 298.15 K and the ionic strength of I = 0.5 (KNO{sub 3}). The thermodynamic parameters of formation of the mixed complexes have been determined. The relationship between the probable coordination modes of the complexone and amino acid or dipeptide molecules in the mixed-ligand complex and the thermodynamic parameters has been discussed.

  14. Ternary interaction parameters in calphad solution models

    Energy Technology Data Exchange (ETDEWEB)

    Eleno, Luiz T.F., E-mail: luizeleno@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Schön, Claudio G., E-mail: schoen@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Computational Materials Science Laboratory. Department of Metallurgical and Materials Engineering

    2014-07-01

    For random, diluted, multicomponent solutions, the excess chemical potentials can be expanded in power series of the composition, with coefficients that are pressure- and temperature-dependent. For a binary system, this approach is equivalent to using polynomial truncated expansions, such as the Redlich-Kister series for describing integral thermodynamic quantities. For ternary systems, an equivalent expansion of the excess chemical potentials clearly justifies the inclusion of ternary interaction parameters, which arise naturally in the form of correction terms in higher-order power expansions. To demonstrate this, we carry out truncated polynomial expansions of the excess chemical potential up to the sixth power of the composition variables. (author)

  15. Ternary carbon composite films for supercapacitor applications

    Science.gov (United States)

    Tran, Minh-Hai; Jeong, Hae Kyung

    2017-09-01

    A simple, binder-free, method of making supercapacitor electrodes is introduced, based on modification of activated carbon with graphite oxide and carbon nanotubes. The three carbon precursors of different morphologies support each other to provide outstanding electrochemical performance, such as high capacitance and high energy density. The ternary carbon composite shows six times higher specific capacitance compared to that of activated carbon itself with high retention. The excellent electrochemical properties of the ternary composite attribute to the high surface area of 1933 m2 g-1 and low equivalent series resistance of 2 Ω, demonstrating that it improve the electrochemical performance for supercapacitor applications.

  16. A study of phase separation in ternary alloys

    Indian Academy of Sciences (India)

    Keywords. Ternary systems; Cahn–Hilliard equations; spinodal decomposition. Abstract. We have studied the evolution of microstructure when a disordered ternary alloy is quenched into a ternary miscibility gap. We have used computer simulations based on multicomponent Cahn–Hilliard (CH) equations for A and B, ...

  17. Direct evidence of an elongation factor-Tu/Ts·GTP·Aminoacyl-tRNA quaternary complex.

    Science.gov (United States)

    Burnett, Benjamin J; Altman, Roger B; Ferguson, Angelica; Wasserman, Michael R; Zhou, Zhou; Blanchard, Scott C

    2014-08-22

    During protein synthesis, elongation factor-Tu (EF-Tu) bound to GTP chaperones the entry of aminoacyl-tRNA (aa-tRNA) into actively translating ribosomes. In so doing, EF-Tu increases the rate and fidelity of the translation mechanism. Recent evidence suggests that EF-Ts, the guanosine nucleotide exchange factor for EF-Tu, directly accelerates both the formation and dissociation of the EF-Tu-GTP-Phe-tRNA(Phe) ternary complex (Burnett, B. J., Altman, R. B., Ferrao, R., Alejo, J. L., Kaur, N., Kanji, J., and Blanchard, S. C. (2013) J. Biol. Chem. 288, 13917-13928). A central feature of this model is the existence of a quaternary complex of EF-Tu/Ts·GTP·aa-tRNA(aa). Here, through comparative investigations of phenylalanyl, methionyl, and arginyl ternary complexes, and the development of a strategy to monitor their formation and decay using fluorescence resonance energy transfer, we reveal the generality of this newly described EF-Ts function and the first direct evidence of the transient quaternary complex species. These findings suggest that EF-Ts may regulate ternary complex abundance in the cell through mechanisms that are distinct from its guanosine nucleotide exchange factor functions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Direct Evidence of an Elongation Factor-Tu/Ts·GTP·Aminoacyl-tRNA Quaternary Complex*

    Science.gov (United States)

    Burnett, Benjamin J.; Altman, Roger B.; Ferguson, Angelica; Wasserman, Michael R.; Zhou, Zhou; Blanchard, Scott C.

    2014-01-01

    During protein synthesis, elongation factor-Tu (EF-Tu) bound to GTP chaperones the entry of aminoacyl-tRNA (aa-tRNA) into actively translating ribosomes. In so doing, EF-Tu increases the rate and fidelity of the translation mechanism. Recent evidence suggests that EF-Ts, the guanosine nucleotide exchange factor for EF-Tu, directly accelerates both the formation and dissociation of the EF-Tu-GTP-Phe-tRNAPhe ternary complex (Burnett, B. J., Altman, R. B., Ferrao, R., Alejo, J. L., Kaur, N., Kanji, J., and Blanchard, S. C. (2013) J. Biol. Chem. 288, 13917–13928). A central feature of this model is the existence of a quaternary complex of EF-Tu/Ts·GTP·aa-tRNAaa. Here, through comparative investigations of phenylalanyl, methionyl, and arginyl ternary complexes, and the development of a strategy to monitor their formation and decay using fluorescence resonance energy transfer, we reveal the generality of this newly described EF-Ts function and the first direct evidence of the transient quaternary complex species. These findings suggest that EF-Ts may regulate ternary complex abundance in the cell through mechanisms that are distinct from its guanosine nucleotide exchange factor functions. PMID:24990941

  19. Ab initio study on the formation of triiodide CT complex from the reaction of iodine with 2,3-diaminopyridine.

    Science.gov (United States)

    Al-Hashimi, Nessreen A; Hussein, Yasser H A

    2010-01-01

    The charge transfer (CT) interaction between iodine and 2,3-diaminopyridine (DAPY) has been thoroughly investigated via theoretical calculations. A Hartree-Fock, 3-21G level of theory was used to optimize and calculate the Mullican charge distribution scheme as well as the vibrational frequencies of DAPY alone and both its CT complexes with one and two iodine molecules. A very good agreement was found between experiment and theory. New illustrations were concluded with a deep analysis and description for the vibrational frequencies of the formed CT complexes. The two-step CT complex formation mechanism published earlier was supported. Copyright 2009 Elsevier B.V. All rights reserved.

  20. Formative assessment in an online learning environment to support flexible on-the-job learning in complex professional domains

    NARCIS (Netherlands)

    Desirée Joosten-ten Brinke; Dominique Sluijsmans; Tamara van Gog; F. J. Prins

    2010-01-01

    This article describes a blueprint for an online learning environment that is based on prominent instructional design and assessment theories for supporting learning in complex domains. The core of this environment consists of formative assessment tasks (i.e., assessment for learning) that center on

  1. CR2-mediated activation of the complement alternative pathway results in formation of membrane attack complexes on human B lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, C H; Marquart, H V; Prodinger, W M

    2001-01-01

    convertase and consequent formation of membrane attack complexes (MAC). Deposition of C3 fragments and MAC was assessed on human peripheral B lymphocytes in the presence of 30% autologous serum containing 4.4 mM MgCl2/20 mM EGTA, which abrogates the classical pathway of complement without affecting...

  2. Neutral copper-phosphido-borane complexes: synthesis, characterization, and use as precatalysts in C(sp)-P bond formation.

    Science.gov (United States)

    Abdellah, Ibrahim; Bernoud, Elise; Lohier, Jean-François; Alayrac, Carole; Toupet, Loïc; Lepetit, Christine; Gaumont, Annie-Claude

    2012-04-28

    Copper-phosphido-borane complexes were synthesized and isolated for the first time. Their structures were experimentally and computationally investigated. They were shown to display catalytic activity in C(sp)-P bond formation. This journal is © The Royal Society of Chemistry 2012

  3. Complex formation of 2-(o-hydroxyphenyl)-benzoxazole and 2-(o-hydroxyphenyl)-benzothiazole with beryllium ions

    Energy Technology Data Exchange (ETDEWEB)

    Gladilovich, D.B.; Stolyarov, K.P. (Leningradskij Gosudarstvennyj Univ. (USSR))

    1984-12-01

    Using spectrophotometric and luminescence methods the interaction of beryllium ions With 2-(0-hydroxyphenyl)-benzoxazole and 2-(0-hydroxyphenyl)-benzothiazole has been studied. The formation of at least three BeL/sup +/, Be(OH)L and BeL/sub 2/ complexes (where L=singly charged anion of ligand) is established.

  4. Study of complex equilibria in niobium(V) and vanadium(V) systems with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol, tartrate and hydrogen peroxide using RP-HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Oszwaldowski, S.; Jarosz, M. [Politechnika Warszawska, Warsaw (Poland)

    1997-12-01

    Complex equilibria in multiligand niobium(V) systems with 2-(5-bromo-2-pyridilazo)-5-diethyl aminophenol (5-Br-PADAP), tartrate and hydrogen peroxide and vanadium(V) with 5-Br-PADP and tartrate were evaluated by reversed-phase high-performance liquid chromatography (RP-HPLC) using C{sub 18} column and VIS detection at 590 nm. In Nb(V)-H{sub 2}O{sub 2}-tartrate-(5-Br{sub P}ADAP) system formation of multiligand niobium complex, non-reactive towards 5-Br-PADAP, was postulated. For V(V) system distribution of metal ion between V(V)-(5-Br-PADAP) binary and V(V)-tartrate-(5-Br-PADAP) ternary complexes were evaluated. On this base it was proved, that coloured ternary vanadium complex is only an intermediate stage in the formation of stable V(V)-tartrate binary complex. (author). 14 refs, 7 figs.

  5. Explicit solution format for complex-valued natural frequency of beam with R-shunted piezoelectric laminate transducer

    DEFF Research Database (Denmark)

    Høgsberg, Jan Becker; Cöent, Adrien Le

    2014-01-01

    Analysis and design of resistive shunt circuits for piezoelectric damping of beam structures is often based on a representation in terms of the single target vibration mode of the beam, neglecting spill-over effects from the out-of-bandwidth or residual vibration modes. In this article, a solution...... format is derived for the complex-valued natural frequency of the beam with a shunted piezoelectric laminate transducer, where the influence from the residual modes is taken into account by a quasi-static representation. This explicit solution format contains system parameters that directly represent....... The accuracy of the explicit frequency solution format is verified by comparison with numerical results. It is found that the complex-valued natural frequency of the first vibration mode of a beam with a piezoelectric laminate transducer shunted to a resistance is estimated with sufficient accuracy...

  6. Nuclear magnetic resonance study of charge transfer complex formation between Silver Nitrate and Benzylcyanide in Solvent Ethylene Glycol

    CERN Document Server

    Modarress, H

    2003-01-01

    The formation constant for charge transfer complexes between electron acceptor (AgNo sub 3) and electron donor benzylcyanide (C sub 6 H sub 5 -CH sub 2 -C ident to N) in solvent ethyleneglycol [(CH sub 2 OH) sub 2] has been evaluated by using the nuclear magnetic resonance chemical shifts of aromatic group of benzylcyanide measured against external references, tetramethylsilane, hexamethyldisilane and cyclohexane at 20 sup d ig sup C. The external referencing procedure eliminated the interference of internal reference in the course of complexation. The necessary bulk magnetic susceptibility corrections on the measured chemical shifts have been made. The solution nationalised and their effects on the formation constant have been considered and a new equation has been suggested to obtain the main ionic activity coefficient of AgNO sub 3 from nuclear magnetic resonance results. The mean ionic activity coefficient has been taken into account in the formation constant calculations. The results indicated that the a...

  7. Formation of zinc-chlorophyll-derivative complexes in thermally processed green pears (Pyrus communis L.).

    Science.gov (United States)

    Ngo, T; Zhao, Y

    2007-09-01

    The formation of zinc-chlorophyll-derivative complexes was investigated in peels-on green D'Anjou pears when subjected to blanching in zinc ion solution (1300, 2600, and 0 ppm) at 94 degrees C for 6, 12, or 18 min and then canning at 94 degrees C for 20 min. The peels removed from the pears were freeze-dried and ground into powders in liquid nitrogen for pigment extraction using ethyl ether. The visual absorption of the extracts was measured using a spectrophotometer along with identification and quantification of chlorophyll derivatives using reverse-phase HPLC method. Furthermore, pears with or without the peels were blanched in 2600 ppm of zinc solution for 12 min following the canning process in 10 degree Brix syrup solution. Total antioxidant (TA) and total phenolic content (TPC) of the pear flesh and peels were evaluated using Folin-Ciocalteu's phenol and 1,1-diphenyl-2-picrylhydrazyl assays. Thermal processing destroyed chlorophylls on pear peels, in which pheophytins were found to be the major degraded compounds while an insignificant amount of pyropheophytins was also formed. In zinc blanched peels, Zn pheophytins a was the dominant green compound, and its amount increased about 100% and 144.4% in peels blanched in 1300 ppm zinc solution for 6 and 12 min, respectively. When blanching peels in 2600 ppm zinc solution for 6 and 12 min, the pigment increased about 118% and 242%, respectively. Significant reductions in TA and TPC were found on the peels of zinc treated pears, but the overall TA and TPC of whole fruits were not significantly affected by the treatments.

  8. Formation of atoll garnets in the UHP eclogites of the Tso Morari Complex, Ladakh, Himalaya

    Science.gov (United States)

    Jonnalagadda, Mallika K.; Karmalkar, Nitin R.; Duraiswami, Raymond A.; Harshe, Shivani; Gain, Sarah; Griffin, William L.

    2017-12-01

    The eclogites of the Tso Morari Complex, Ladakh, NW Himalayas preserve both garnets with spectacular atoll textures, as well as whole porphyroblastic garnets. Whole garnets are euhedral, idiomorphic and enclose inclusions of amphibole, phengite and zoisite within the cores, and omphacite and quartz/coesite towards the rims. Detailed electron microprobe analyses and back-scattered electron images show well-preserved prograde zoning in the whole garnets with an increase in Mg and decrease in Ca and Mn contents from the core to the rim. The atoll garnets commonly consist of euhedral ring over island/peninsular core containing inclusions of phengite, omphacite and rarely amphibole between the core and ring. Compositional profiles across the studied atoll grains show elemental variations with higher concentrations of Ca and Mn with low Mg at the peninsula/island cores; contrary to this low Ca, Mn and high Mg is observed at the outer rings. Temperature estimates yield higher values at the Mg-rich atoll garnet outer rings compared to the atoll cores. Atoll garnet formation was favoured by infiltration of fluid formed due to breakdown of hydrous phases, and/or the release of structurally bounded OH from nominally anhydrous minerals at the onset of exhumation. Infiltration of fluids along pre-existing fracture pathways and along mineral inclusion boundaries triggered breakdown of the original garnet cores and released elements which were subsequently incorporated into the newly-grown garnet rings. This breakdown of garnet cores and inward re-growth at the outer ring produced the atoll structure. Calibrated geo-thermobarometers and mineral equilibria reflect that the Tso Morari eclogites attain peak pressures prior to peak temperatures representing a clockwise path of evolution.

  9. THE FORMATION OF THE COMPETITIVENESS OF THE ENTERPRISES OF MACHINE-BUILDING COMPLEX OF UKRAINE

    Directory of Open Access Journals (Sweden)

    Oksana Zbyrannyk

    2016-11-01

    Full Text Available The purpose is to analyse the existing approaches to determine the value of the production of innovative products and innovation in enterprises of machine-building complex of Ukraine in order to improve their level of competitiveness. Methodology. Statistical analysis and generalization of scientific approaches to the formation of the competitiveness of machine-building enterprises. Results of the of the analyzed approaches allowed to identify the cause of the imperfection of innovation policy in engineering. According to the research, the number of machine-building enterprises engaged in innovation activity, constantly shrinks; the share of innovative products in the total is only 3.5-4%, and the volume of imports of high-tech products exceeding the size of own production; the level of knowledge-intensive industrial production is only 0.3%. All this slows down the process of creating competitive products and as a result, the failure to provide highly own products to other industries, take a niche world of mechanical engineering. Practical implications. Ensure accelerated economic growth of the country as the defining condition for implementation of the European integration aspirations of Ukraine in the short term requires the intensification of innovative activity of the machine-building enterprises. The current state of innovation activity of enterprises in Ukraine is characterized by a number of negative factors: the internal environment of the majority of machine-building enterprises does not correspond to the market conditions of managing: high energy productions, the growth of the degree of wear and tear of fixed assets and reduce investment to update them, the lack of introduction of advanced production and resource-saving technologies, reducing innovation activity due to lack of financial resources significantly affect the level of the competitive machine-building enterprises. Value/ originality systematic approaches to determining the

  10. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  11. Ternary-fragmentation-driving potential energies of 252Cf

    Science.gov (United States)

    Karthikraj, C.; Ren, Zhongzhou

    2017-12-01

    Within the framework of a simple macroscopic model, the ternary-fragmentation-driving potential energies of 252Cf are studied. In this work, all possible ternary-fragment combinations of 252Cf are generated by the use of atomic mass evaluation-2016 (AME2016) data and these combinations are minimized by using a two-dimensional minimization approach. This minimization process can be done in two ways: (i) with respect to proton numbers (Z1, Z2, Z3) and (ii) with respect to neutron numbers (N1, N2, N3) of the ternary fragments. In this paper, the driving potential energies for the ternary breakup of 252Cf are presented for both the spherical and deformed as well as the proton-minimized and neutron-minimized ternary fragments. From the proton-minimized spherical ternary fragments, we have obtained different possible ternary configurations with a minimum driving potential, in particular, the experimental expectation of Sn + Ni + Ca ternary fragmentation. However, the neutron-minimized ternary fragments exhibit a driving potential minimum in the true-ternary-fission (TTF) region as well. Further, the Q -value energy systematics of the neutron-minimized ternary fragments show larger values for the TTF fragments. From this, we have concluded that the TTF region fragments with the least driving potential and high Q values have a strong possibility in the ternary fragmentation of 252Cf. Further, the role of ground-state deformations (β2, β3, β4, and β6) in the ternary breakup of 252Cf is also studied. The deformed ternary fragmentation, which involves Z3=12 -19 fragments, possesses the driving potential minimum due to the larger oblate deformations. We also found that the ground-state deformations, particularly β2, strongly influence the driving potential energies and play a major role in determining the most probable fragment combinations in the ternary breakup of 252Cf.

  12. Subsistence of inclusion complex via assembly of a drug into cyclic oligosaccharide: Its formation, mechanism, behaviour and importance

    Science.gov (United States)

    Kundu, Mitali; Roy, Mahendra Nath

    2017-08-01

    The aim of this present work is to make soluble DEPM in aqueous medium through the formation inclusion complex into the hydrophobic hollow space of β-cyclodextrin (β-Cyd) which will provide a novel approach for designing drug delivery system in aqueous medium. The study of supramolecular complexation of DEPM with β-Cyd has been designed in both solution and solid state. In solution phase the evidences of the presence of non-covalent interactions in inclusion complex with 1:1 stoichiometry behaviour are obtained by investigating the UV-spectroscopy. The resultant solid of DEPM and β-Cyd is established by 1H NMR, FTIR, powder XRD and SEM techniques. So, β-Cyd has the ability to encapsulate DEPM into their core without formation any covalent bonds and also increases the bioavailability of the water insoluble DEPM drug.

  13. Collectin-11/MASP complex formation triggers activation of the lectin complement pathway--the fifth lectin pathway initiation complex

    DEFF Research Database (Denmark)

    Ma, Ying Jie; Skjoedt, Mikkel-Ole; Garred, Peter

    2013-01-01

    Collectins and ficolins are important in the clearance of endogenous and exogenous danger materials. A new human collectin-11 was recently identified in low concentration in serum in complex with mannose-binding lectin (MBL)/ficolin-associated serine proteases. Collectin-11 binds to carbohydrate...... residues present on various microorganisms. Thus, we hypothesized that collectin-11 could be a novel initiation molecule in the lectin pathway of complement. We can show that collectin-11 associates with all the known MBL-associated serine proteases (MASP-1, MASP-2 and MASP-3) as well as the lectin...... complement complex on C. albicans. Moreover, spiking collectin-11-depleted serum, which did not mediate complement activation, with recombinant collectin-11 restored the complement activation capability. These results define collectin-11 as the fifth recognition molecule in the lectin complement pathway...

  14. Self-triggered coordination with ternary controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo

    2012-01-01

    This paper regards coordination of networked systems with ternary controllers. We develop a hybrid coordination system which implements a self-triggered communication policy, based on polling the neighbors upon need. We prove that the proposed scheme ensures finite-time convergence to a neighborhood

  15. Ternary Dynamic Images In Robotic Smooth Pursuit

    Science.gov (United States)

    Morasso, Pietro; Tagliasco, Vincenzo

    1984-02-01

    Early stages of visuo-motor interaction are considered with regard to dynamic scene analysis. Target fixation and tracking is distinguished from target visual analysis. The notion of target specification is elaborated upon. The use of ternary dynamic images is shown as an example of target tracking.

  16. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    Ternary alloy nanocatalysts for hydrogen evolution reaction. SOUMEN SAHA1, SONALIKA VAIDYA2, KANDALAM V RAMANUJACHARY3,. SAMUEL E LOFLAND4 and ASHOK K GANGULI1,2,∗. 1Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi 110016, India. 2Institute of Nano Science and ...

  17. Fundamental and overtone vibrational spectroscopy, enthalpy of hydrogen bond formation and equilibrium constant determination of the methanol-dimethylamine complex.

    Science.gov (United States)

    Du, Lin; Mackeprang, Kasper; Kjaergaard, Henrik G

    2013-07-07

    We have measured gas phase vibrational spectra of the bimolecular complex formed between methanol (MeOH) and dimethylamine (DMA) up to about 9800 cm(-1). In addition to the strong fundamental OH-stretching transition we have also detected the weak second overtone NH-stretching transition. The spectra of the complex are obtained by spectral subtraction of the monomer spectra from spectra recorded for the mixture. For comparison, we also measured the fundamental OH-stretching transition in the bimolecular complex between MeOH and trimethylamine (TMA). The enthalpies of hydrogen bond formation (ΔH) for the MeOH-DMA and MeOH-TMA complexes have been determined by measurements of the fundamental OH-stretching transition in the temperature range from 298 to 358 K. The enthalpy of formation is found to be -35.8 ± 3.9 and -38.2 ± 3.3 kJ mol(-1) for MeOH-DMA and MeOH-TMA, respectively, in the 298 to 358 K region. The equilibrium constant (Kp) for the formation of the MeOH-DMA complex has been determined from the measured and calculated transition intensities of the OH-stretching fundamental transition and the NH-stretching second overtone transition. The transition intensities were calculated using an anharmonic oscillator local mode model with dipole moment and potential energy curves calculated using explicitly correlated coupled cluster methods. The equilibrium constant for formation of the MeOH-DMA complex was determined to be 0.2 ± 0.1 atm(-1), corresponding to a ΔG value of about 4.0 kJ mol(-1).

  18. Copper(II) Chloro Complex Formation Thermodynamics and Structure in Ionic Liquid, 1-Butyl-3-Methylimidazolium Trifluoromethanesulfonate.

    Science.gov (United States)

    Kanzaki, Ryo; Uchida, Shuma; Kodamatani, Hitoshi; Tomiyasu, Takashi

    2017-10-19

    Metal ions in ionic liquids are laid under an unprecedented reaction field. In order to assess the reaction thermodynamics of metal ions in such a situation, Cu(2+)-chloro complex formation was examined with spectroscopic and calorimetric titrations in an ionic liquid, 1-buthyl-3-methylimidazolium trifluoromethanesulfonate (C4mimTfO). In addition, the effect of the structure of the solvated complexes on the complexation mechanism was investigated with the aid of DFT calculations. Chloro complexation successively proceeded and finally provided a [CuCl4](2-) species, which is also the final product in conventional molecular solvents. Their stability constants were comparable to those in molecular solvents. Interestingly, in spite of the charged solvent in the ionic liquid, the entropy profile of the complexation resembled that in the conventional molecular liquids. This indicates that the entropy gain of the released solvent species from the complexes is the main driving force of the chloro complexation in the ionic liquid. In contrast, unlike the major molecular solvents, the total coordination number of Cu(2+) is saturated to 4 in the ionic liquid, and the Cl(-) complexation tends to be accompanied by a 1:1 exchange of the solvent TfO(-) from the complex. In addition, this ligand exchange was almost athermal. This possibly indicates that the coordination number is dominated by the electrostatic hindrance among the ligands including the solvent ions in the primary coordination sphere.

  19. Solid-liquid equilibria in the ternary system NaBr-KBr-H2O at 398 K

    Science.gov (United States)

    Cui, Rui-Zhi; Zhang, Ting-Ting; Wang, Wei; Sang, Shi-Hua

    2017-09-01

    The solubilities of the ternary system NaBr-KBr-H2O were investigated by isothermal method at 398 K. On the basis of the experimental data, the phase diagram was plotted. In the phase diagram of ternary system NaBr-KBr-H2O at 398 K, no complex salt or solid solution was found. It belongs to simple co-saturation type. There are only one invariant point, two univariant curves, and two crystallization fields corresponding to NaBr and KBr. Using the equilibrium solubilities data of the ternary system at 398 K, mixing ioninteraction parameter ΨNa,K,Br of Pitzer's equation was fitted by multiple linear regression method. Based on the Pitzer model and its extended Harvie-Weare (HW) model, the solubilities of phase equilibrium in the ternary system NaBr-KBr-H2O at 398 K were calculated. The phase diagram of the ternary system was plotted. The results show that calculated values have a good agreement with measured experimental data. It can demonstrate the accuracy of the experimental data, and it also shows that reasonable parameters of the Pitzer model can be used in ternary system NaBr-KBr-H2O at 398 K.

  20. Structural insights into dynamics of RecU-HJ complex formation elucidates key role of NTR and stalk region toward formation of reactive state.

    Science.gov (United States)

    Khavnekar, Sagar; Dantu, Sarath Chandra; Sedelnikova, Svetlana; Ayora, Sylvia; Rafferty, John; Kale, Avinash

    2017-01-25

    Holliday junction (HJ) resolving enzyme RecU is involved in DNA repair and recombination. We have determined the crystal structure of inactive mutant (D88N) of RecU from Bacillus subtilis in complex with a 12 base palindromic DNA fragment at a resolution of 3.2 Å. This structure shows the stalk region and the essential N-terminal region (NTR) previously unseen in our DNA unbound structure. The flexible nature of the NTR in solution was confirmed using SAXS. Thermofluor studies performed to assess the stability of RecU in complex with the arms of an HJ indicate that it confers stability. Further, we performed molecular dynamics (MD) simulations of wild type and an NTR deletion variant of RecU, with and without HJ. The NTR is observed to be highly flexible in simulations of the unbound RecU, in agreement with SAXS observations. These simulations revealed domain dynamics of RecU and their role in the formation of complex with HJ. The MD simulations also elucidate key roles of the NTR, stalk region, and breathing motion of RecU in the formation of the reactive state. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Structural insights into dynamics of RecU–HJ complex formation elucidates key role of NTR and stalk region toward formation of reactive state

    Science.gov (United States)

    Khavnekar, Sagar; Dantu, Sarath Chandra; Sedelnikova, Svetlana; Ayora, Sylvia; Rafferty, John; Kale, Avinash

    2017-01-01

    Holliday junction (HJ) resolving enzyme RecU is involved in DNA repair and recombination. We have determined the crystal structure of inactive mutant (D88N) of RecU from Bacillus subtilis in complex with a 12 base palindromic DNA fragment at a resolution of 3.2 Å. This structure shows the stalk region and the essential N-terminal region (NTR) previously unseen in our DNA unbound structure. The flexible nature of the NTR in solution was confirmed using SAXS. Thermofluor studies performed to assess the stability of RecU in complex with the arms of an HJ indicate that it confers stability. Further, we performed molecular dynamics (MD) simulations of wild type and an NTR deletion variant of RecU, with and without HJ. The NTR is observed to be highly flexible in simulations of the unbound RecU, in agreement with SAXS observations. These simulations revealed domain dynamics of RecU and their role in the formation of complex with HJ. The MD simulations also elucidate key roles of the NTR, stalk region, and breathing motion of RecU in the formation of the reactive state. PMID:27903910

  2. Molecular features governing the stability and specificity of functional complex formation by Mycobacterium tuberculosis CFP-10/ESAT-6 family proteins.

    Science.gov (United States)

    Lightbody, Kirsty L; Ilghari, Dariush; Waters, Lorna C; Carey, Gemma; Bailey, Mark A; Williamson, Richard A; Renshaw, Philip S; Carr, Mark D

    2008-06-20

    The Mycobacterium tuberculosis complex CFP-10/ESAT-6 family proteins play essential but poorly defined roles in tuberculosis pathogenesis. In this article we report the results of detailed spectroscopic studies of several members of the CFP-10/ESAT-6 family. This work shows that the CFP-10/ESAT-6 related proteins, Rv0287 and Rv0288, form a tight 1:1 complex, which is predominantly helical in structure and is predicted to closely resemble the complex formed by CFP-10 and ESAT-6. In addition, the Rv0287.Rv0288 complex was found to be significantly more stable to both chemical and temperature induced denaturation than CFP-10.ESAT-6. This approach demonstrated that neither Rv0287.Rv0288 nor the CFP-10.ESAT-6 complexes are destabilized at low pH (4.5), indicating that even in low pH environments, such as the mature phagosome, both Rv0287.Rv0288 and CFP-10.ESAT-6 undoubtedly function as complexes rather than individual proteins. Analysis of the structure of the CFP-10.ESAT-6 complex and optimized amino acid sequence alignments of M. tuberculosis CFP-10/ESAT-6 family proteins revealed that residues involved in the intramolecular contacts between helices are conserved across the CFP-10/ESAT-6 family, but not those involved in primarily intermolecular contacts. This analysis identified the molecular basis for the specificity and stability of complex formation between CFP-10/ESAT-6 family proteins, and indicates that the formation of functional complexes with key roles in pathogenesis will be limited to genome partners, or very closely related family members, such as Rv0287/Rv0288 and Rv3019c/Rv3020c.

  3. THE FORMATION OF DESIGN AND ORGANIZATIONAL AND TECHNOLOGICAL DECISIONS OF THE CONSTRUCTION OF HIGH-RISE MULTIPURPOSE COMPLEXES

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Purpose. The formation of the many ways the construction of high-rise multipurpose complexes. Methodology. The formation of system implementation variants of creation and functioning of high-rise multipurpose complexes using combinatorial morphological analysis and synthesis. Findings. Many life cycle options of high-rise multipurpose complexes. Originality. The developed method of formation of organizational and technological solutions adapted to the conditions of the construction of high-rise multipurpose complexes, which provides the opportunity for multi-variant conditions, taking into account regulatory requirements for fire safety, insolation of buildings and premises, protection against noise and vibration, energy efficiency, infrastructure and population density of a residential district with a full range of institutions and enterprises of local significance, within existing resource constraints, to ensure the commissioning of objects with specified technical and economic characteristics. Practical value. The proposed model and the methodology allow to determine a rational variant of high-rise building according to specified criteria and constraints.

  4. CR2-mediated activation of the complement alternative pathway results in formation of membrane attack complexes on human B lymphocytes

    DEFF Research Database (Denmark)

    Nielsen, C H; Marquart, H V; Prodinger, W M

    2001-01-01

    Normal human B lymphocytes activate the alternative pathway of complement via complement receptor type 2 (CR2, CD21), that binds hydrolysed C3 (iC3) and thereby promotes the formation of a membrane-bound C3 convertase. We have investigated whether this might lead to the generation of a C5...... convertase and consequent formation of membrane attack complexes (MAC). Deposition of C3 fragments and MAC was assessed on human peripheral B lymphocytes in the presence of 30% autologous serum containing 4.4 mM MgCl2/20 mM EGTA, which abrogates the classical pathway of complement without affecting...

  5. Enhanced Cartilaginous Tissue Formation with a Cell Aggregate-Fibrin-Polymer Scaffold Complex

    National Research Council Canada - National Science Library

    Soojin Lee; Kangwon Lee; Soo Hyun Kim; Youngmee Jung

    2017-01-01

    .... Here, we developed an engineered cartilage with a cell aggregate-hydrogel-polymer scaffold complex capable of inducing the effective regeneration of cartilage tissue similar to natural cartilage...

  6. Formation of W(3)A(1) electron-transferring flavoprotein (ETF) hydroquinone in the trimethylamine dehydrogenase x ETF protein complex.

    Science.gov (United States)

    Jang, M H; Scrutton, N S; Hille, R

    2000-04-28

    The electron-transferring flavoprotein (ETF) from Methylophilus methylotrophus (sp. W(3)A(1)) exhibits unusual oxidation-reduction properties and can only be reduced to the level of the semiquinone under most circumstances (including turnover with its physiological reductant, trimethylamine dehydrogenase (TMADH), or reaction with strong reducing reagents such as sodium dithionite). In the present study, we demonstrate that ETF can be reduced fully to its hydroquinone form both enzymatically and chemically when it is in complex with TMADH. Quantitative titration of the TMADH x ETF protein complex with sodium dithionite shows that a total of five electrons are taken up by the system, indicating that full reduction of ETF occurs within the complex. The results indicate that the oxidation-reduction properties of ETF are perturbed upon binding to TMADH, a conclusion further supported by the observation of a spectral change upon formation of the TMADH x ETF complex that is due to a change in the environment of the FAD of ETF. The results are discussed in the context of ETF undergoing a conformational change during formation of the TMADH x ETF electron transfer complex, which modulates the spectral and oxidation-reduction properties of ETF such that full reduction of the protein can take place.

  7. A model ternary heparin conjugate by direct covalent bond strategy applied to drug delivery system.

    Science.gov (United States)

    Wang, Ying; Xin, Dingcheng; Hu, Jiawen; Liu, Kaijian; Pan, Jiangao; Xiang, Jiannan

    2009-01-01

    A model ternary heparin conjugate by direct covalent bond strategy has been developed, in which modified heparin using active mix anhydride as intermediate conjugates with model drug molecule and model specific ligand, respectively. Designed ester bonds between model drug and heparin facilitate hydrolysis kinetics research. The strategy can be extended to design and synthesize a targeted drug delivery system. The key point is to use mixed anhydride groups as activating intermediates to mediate the synthesis of the ternary heparin conjugate. Formation of mixed anhydride is detected by the conductimetry experiment. The ternary heparin conjugate is characterized by (13)C NMR, FT-IR and GPC, respectively. The decreased trend on degree of substitution (DS) is consistent with that of introduced anticancer drug and specific ligand in drug delivery system. Moreover, their anticoagulant activity is evaluated by measuring activated partial thromboplastin time (APTT) and anti-factor Xa activity. The results show that model ternary heparin conjugate with reduced anticoagulant activity may avoid the risk of severe hemorrhagic complication during the administration and is potential to develop a safe and effective drug delivery system on anticancer research.

  8. Spontaneous Binding of Molecular Oxygen at the Qo-Site of the bc1 Complex Could Stimulate Superoxide Formation

    DEFF Research Database (Denmark)

    Husen, Peter; Solov'yov, Ilia A

    2016-01-01

    to drive ATP synthesis. This molecular machinery, however, is suspected to be a source of superoxide, which is toxic to the cell, even in minuscular quantities, and believed to be a factor in aging. Through molecular dynamics simulations, we investigate here the migration of molecular oxygen in the bc1...... complex in order to identify possible reaction sites that could lead to superoxide formation. It is found, in particular, that oxygen penetrates spontaneously the Qo binding site of the bc1 complex in the presence of an intermediate semiquinone radical, thus making the Qo-site a strong candidate for being...... a center of superoxide production....

  9. Predicting permeability from the characteristic relaxation time and intrinsic formation factor of complex conductivity spectra

    National Research Council Canada - National Science Library

    Revil, A; Binley, A; Mejus, L; Kessouri, P

    2015-01-01

    .... The intrinsic formation factor can either be determined at several salinities using an electrical conductivity model or at a single salinity using a relationship between the surface and quadrature conductivities...

  10. Unique behaviour of dinitrogen-bridged dimolybdenum complexes bearing pincer ligand towards catalytic formation of ammonia

    National Research Council Canada - National Science Library

    Tanaka, Hiromasa; Arashiba, Kazuya; Kuriyama, Shogo; Sasada, Akira; Nakajima, Kazunari; Yoshizawa, Kazunari; Nishibayashi, Yoshiaki

    2014-01-01

    It is vital to design effective nitrogen fixation systems that operate under mild conditions, and to this end we recently reported an example of the catalytic formation of ammonia using a dinitrogen...

  11. Model based multi-wavelength spectrophotometric method for calculation of formation constants of phenanthrenequinone thiosemicarbazone complexes with some metallic cations

    Directory of Open Access Journals (Sweden)

    Naser Samadi

    2013-04-01

    Full Text Available In traditional spectrophotometric determination of stability constants of complexation, it is necessary to find a wavelength at which only one of the components has absorbance without any spectroscopic interference of the other reaction components. In the present work, a simple multi-wavelength model-based method has been developed to determine stability constants for complexation reaction regardless of the spectra overlapping of components. Also, pure spectra and concentration profiles of all components are extracted using multi-wavelength model based method. In the present work spectrophotometric titration of several cationic metal ions with new synthetic ligand were studied in order to calculate the formation constant(s. In order to estimate the formation constants a chemometrics method, model based analysis was applied.

  12. HPV16E6-Dependent c-Fos Expression Contributes to AP-1 Complex Formation in SiHa Cells

    Directory of Open Access Journals (Sweden)

    Feixin Liang

    2011-01-01

    Full Text Available To date, the major role of HPV16E6 in cancer has been considered to be its ability to inhibit the p53 tumor-suppressor protein, thereby thwarting p53-mediated cytotoxic responses to cellular stress signals. Here, we show that HPV16E6-dependent c-fos oncogenic protein expression contributes to AP-1 complex formation under oxidative stress in SiHa cells (HPV16-positive squamous cell carcinoma of the cervix. In addition, we examined the role of HPV16E6 in TGF-α-induced c-fos expression and found that the c-fos protein expression induced by TGF-α is HPV16E6 dependent. Thus, our results provide the first evidence that HPV16E6 contributes to AP-1 complex formation after both ligand-dependent and independent EGFR activation, suggesting a new therapeutic approach to the treatment of HPV-associated tumors.

  13. Microbial Adhesion and Biofilm Formation on Microfiltration Membranes: A Detailed Characterization Using Model Organisms with Increasing Complexity

    Directory of Open Access Journals (Sweden)

    L. Vanysacker

    2013-01-01

    Full Text Available Since many years, membrane biofouling has been described as the Achilles heel of membrane fouling. In the present study, an ecological assay was performed using model systems with increasing complexity: a monospecies assay using Pseudomonas aeruginosa or Escherichia coli separately, a duospecies assay using both microorganisms, and a multispecies assay using activated sludge with or without spiked P. aeruginosa. The microbial adhesion and biofilm formation were evaluated in terms of bacterial cell densities, species richness, and bacterial community composition on polyvinyldifluoride, polyethylene, and polysulfone membranes. The data show that biofouling formation was strongly influenced by the kind of microorganism, the interactions between the organisms, and the changes in environmental conditions whereas the membrane effect was less important. The findings obtained in this study suggest that more knowledge in species composition and microbial interactions is needed in order to understand the complex biofouling process. This is the first report describing the microbial interactions with a membrane during the biofouling development.

  14. Translation-competent 48S complex formation on HCV IRES requires the RNA-binding protein NSAP1.

    Science.gov (United States)

    Park, Sung Mi; Paek, Ki Young; Hong, Ka Young; Jang, Christopher J; Cho, Sungchan; Park, Ji Hoon; Kim, Jong Heon; Jan, Eric; Jang, Sung Key

    2011-09-01

    Translation of many cellular and viral mRNAs is directed by internal ribosomal entry sites (IRESs). Several proteins that enhance IRES activity through interactions with IRES elements have been discovered. However, the molecular basis for the IRES-activating function of the IRES-binding proteins remains unknown. Here, we report that NS1-associated protein 1 (NSAP1), which augments several cellular and viral IRES activities, enhances hepatitis C viral (HCV) IRES function by facilitating the formation of translation-competent 48S ribosome-mRNA complex. NSAP1, which is associated with the solvent side of the 40S ribosomal subunit, enhances 80S complex formation through correct positioning of HCV mRNA on the 40S ribosomal subunit. NSAP1 seems to accomplish this positioning function by directly binding to both a specific site in the mRNA downstream of the initiation codon and a 40S ribosomal protein (or proteins).

  15. Effect of the formation of EDTA complexes on the diffusion of metal ions in water

    Science.gov (United States)

    Furukawa, Kenji; Takahashi, Yoshio; Sato, Haruo

    2007-09-01

    The diffusion coefficients of aquo metal ions (M z+ ) and their EDTA complexes (M-EDTA ( z-4)+ ) were compared to understand the effect of EDTA complexation on the diffusion of metal ions by the diffusion cell method for Co 2+, Ga 3+, Rb +, Sr 2+, Ag +, Cd 2+, Cs +, Th 4+, UO22+, and trivalent lanthanides. Most studies about ionic diffusion in water have dealt with free ion (hydrated ion). In many cases, however, polyvalent ions are dissolved as complexed species in natural waters. Hence, we need to study the diffusion behavior of complexes in order to understand the diffusion phenomenon in natural aquifer and to measure speciation by diffusive gradient in thin films (DGT), which requires the diffusion coefficients of the species examined. For many ions, the diffusion coefficients of M-EDTA ( z-4)+ are smaller than those of hydrated ions, but the diffusion coefficients of M-EDTA ( z-4)+ are larger than those of hydrated ions for ions with high ionic potentials (Ga 3+ and Th 4+). As a result, the diffusion coefficients of EDTA complexes are similar among various metal ions. In other words, the diffusion of each ion loses its characteristics by the complexation with EDTA. Although the difference is subtle, it was also found that the diffusion coefficients of EDTA complexes increase as the ionic potential increases, which can be explained by the size of the EDTA complex of each metal ion.

  16. Co-adsorption of NH3 and SO2 on quartz : Formation of a stabilized complex

    NARCIS (Netherlands)

    Grecea, M.L.; Gleeson, M.A.; van Schaik, W.; Kleyn, A.W.; Bijkerk, Frederik

    2011-01-01

    We have investigated the co-adsorption of NH3 and SO2 on the quartz(0 0 0 1) surface by TPD and RAIRS. A surface complex is formed as a result of various relative exposures of NH3 and SO2, irrespective of dosage order. However, the relative molecular composition of the complex is dependent on the

  17. Formation of inclusion complexes between high amylose starch and octadecyl ferulate via steam jet cooking

    Science.gov (United States)

    Amylose can form inclusion complexes with guest molecules and represents an interesting approach to deliver bioactive molecules. However, ferulic acid has been shown not to form single helical inclusion complexes with amylose. To overcome this problem a ferulic acid ester, octadecyl ferulate, posses...

  18. Volcanostratigraphic Sequences of Kebo-Butak Formation at Bayat Geological Field Complex, Central Java Province and Yogyakarta Special Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Sri Mulyaningsih

    2016-06-01

    Full Text Available DOI:10.17014/ijog.3.2.77-94Bayat Complex is usually used as a work field for students of geology and other geosciences. The study area is located in the southern part of the Bayat Complex. Administratively, it belongs to Central Java Province and Yogyakarta Special Province. The lithology of Bayat is very complex, composed of various kinds of igneous, sedimentary, metamorphic, and volcanic rocks. Most of previous researchers interpreted Bayat as a melange complex constructed within a subduction zone. Kebo-Butak is one of formations that forms the Bayat field complex. The formation is composed of basalt, layers of pumice, tuff, shale, and carbonaceous tuff. Most of them are known as volcanic rocks. These imply that volcanic activities are more probable to construct the geology of Bayat rather than the subducted melange complex. The geological mapping, supported by geomorphology, petrology, stratigraphy, and geological structures, had been conducted in a comprehensive manner using the deduction-induction method. The research encounters basalt, black pumice, tuff with basaltic glasses fragments, zeolite, argilic clay, as well as feldspathic- and pumice tuff. Petrographically, the basalt is composed of labradorite, olivine, clinopyroxene, and volcanic glass. Black pumice and tuff contain prismatic clinopyroxene, granular olivine, and volcanic glasses. Feldspathic tuff and pumice tuff are crystal vitric tuff due to more abundant feldspar, quartz, and amphibole than volcanic glass. Zeolite comprises chlorite and altered glasses as deep sea altered volcanic rocks. The geologic structure is very complex, the major structures are normal faults with pyrite in it. There were two deep submarine paleovolcanoes namely Tegalrejo and Baturagung. The first paleovolcano erupted effusively producing basaltic sequence, while the second one erupted explosively ejecting feldspathic-rich pyroclastic material. The two paleovolcanoes erupted simultaneously and

  19. Mechanism of Formation and Stabilization of Nanoparticles Produced by Heating Electrostatic Complexes of WPI-Dextran Conjugate and Chondroitin Sulfate.

    Science.gov (United States)

    Dai, Qingyuan; Zhu, Xiuling; Yu, Jingyang; Karangwa, Eric; Xia, Shuqin; Zhang, Xiaoming; Jia, Chengsheng

    2016-07-13

    Protein conformational changes were demonstrated in biopolymer nanoparticles, and molecular forces were studied to elucidate the formation and stabilization mechanism of biopolymer nanoparticles. The biopolymer nanoparticles were prepared by heating electrostatic complexes of whey protein isolate (WPI)-dextran conjugate (WD) and chondroitin sulfate (ChS) above the denaturation temperature and near the isoelectric point of WPI. The internal characteristics of biopolymer nanoparticles were analyzed by several spectroscopic techniques. Results showed that grafted dextran significantly (p electrostatic interaction with WD changed the fluorescence intensity of WD regardless of heat treatment. Far-UV circular dichroism (CD) and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopies confirmed that glycosylation and ionic polysaccharide did not significantly cause protein conformational changes in WD and ChS (WDC) during heat treatment. In addition, hydrophobic bonds were the major molecular force for the formation and stabilization of biopolymer nanoparticles. However, hydrogen bonds slightly influenced their formation and stabilization. Ionic bonds only promoted the formation of biopolymer nanoparticles, while disulfide bonds partly contributed to their stability. This work will be beneficial to understand protein conformational changes and molecular forces in biopolymer nanoparticles, and to prepare the stable biopolymer nanoparticles from heating electrostatic complexes of native or glycosylated protein and polysaccharide.

  20. DNA damage response clamp 9-1-1 promotes assembly of ZMM proteins for formation of crossovers and synaptonemal complex

    Science.gov (United States)

    Shinohara, Miki; Hayashihara, Kayoko; Grubb, Jennifer T.; Bishop, Douglas K.; Shinohara, Akira

    2015-01-01

    Formation of crossovers between homologous chromosomes during meiosis is positively regulated by the ZMM proteins (also known as SIC proteins). DNA damage checkpoint proteins also promote efficient formation of interhomolog crossovers. Here, we examined, in budding yeast, the meiotic role of the heterotrimeric DNA damage response clamp composed of Rad17, Ddc1 and Mec3 (known as ‘9-1-1’ in other organisms) and a component of the clamp loader, Rad24 (known as Rad17 in other organisms). Cytological analysis indicated that the 9-1-1 clamp and its loader are not required for the chromosomal loading of RecA homologs Rad51 or Dmc1, but are necessary for the efficient loading of ZMM proteins. Interestingly, the loading of ZMM proteins onto meiotic chromosomes was independent of the checkpoint kinase Mec1 (the homolog of ATR) as well as Rad51. Furthermore, the ZMM member Zip3 (also known as Cst9) bound to the 9-1-1 complex in a cell-free system. These data suggest that, in addition to promoting interhomolog bias mediated by Rad51–Dmc1, the 9-1-1 clamp promotes crossover formation through a specific role in the assembly of ZMM proteins. Thus, the 9-1-1 complex functions to promote two crucial meiotic recombination processes, the regulation of interhomolog recombination and crossover formation mediated by ZMM. PMID:25736290

  1. Shatter Complex Formation in the Twin Craters Lava Flow, Zuni-Bandera Field, New Mexico

    Science.gov (United States)

    von Meerscheidt, H. C.; Bleacher, J. E.; Brand, B. D.; deWet, A.; Samuels, R.; Hamilton, C.; Garry, W. B.; Bandfield, J. L.

    2013-12-01

    . Prominent ';a';a channels travel around the bluff, leaving a 'wake' of uncovered ground on the downstream side. We interpret this shatter area to have been a branching tube network within an active sheet. The limestone bluff acted as an obstacle that caused a backup of lava within the tubes, driving episodes of shattering. The mounds likely represent earlier solidified sections between active, possibly braided, tube branches, which remained as mounds within the shatter area after the adjacent crust subsided. When lava broke out from the pressurized sheet-like lobe, it formed the ';a';a channels. This section of the flow field is interpreted using inferences from shatter ring formation, but is perhaps better termed a shatter sheet or shatter complex. This study has implications for understanding lava flow dynamics at constriction points, as well as the evolution and morphology of shatter rings.

  2. First principles total energy study of NbCr{sub 2} + V Laves phase ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Ormeci, A. [Koc Univ., Istanbul (Turkey); Chen, S.P.; Wills, J.M.; Albers, R.C. [Los Alamos National Lab., NM (United States)

    1999-04-01

    The C15 NbCr{sub 2} + V Laves phase ternary system is studied by using a first-principles, self-consistent, full-potential total energy method. Equilibrium lattice parameters, cohesive energies, density of states and formation energies of substitutional defects are calculated. Results of all these calculations show that in the C15 NbCr{sub 2} + V compounds, V atoms substitute Cr atoms only.

  3. Nitrosothiol formation and protection against Fenton chemistry by nitric oxide-induced dinitrosyliron complex formation from anoxia-initiated cellular chelatable iron increase.

    Science.gov (United States)

    Li, Qian; Li, Chuanyu; Mahtani, Harry K; Du, Jian; Patel, Aashka R; Lancaster, Jack R

    2014-07-18

    Dinitrosyliron complexes (DNIC) have been found in a variety of pathological settings associated with (•)NO. However, the iron source of cellular DNIC is unknown. Previous studies on this question using prolonged (•)NO exposure could be misleading due to the movement of intracellular iron among different sources. We here report that brief (•)NO exposure results in only barely detectable DNIC, but levels increase dramatically after 1-2 h of anoxia. This increase is similar quantitatively and temporally with increases in the chelatable iron, and brief (•)NO treatment prevents detection of this anoxia-induced increased chelatable iron by deferoxamine. DNIC formation is so rapid that it is limited by the availability of (•)NO and chelatable iron. We utilize this ability to selectively manipulate cellular chelatable iron levels and provide evidence for two cellular functions of endogenous DNIC formation, protection against anoxia-induced reactive oxygen chemistry from the Fenton reaction and formation by transnitrosation of protein nitrosothiols (RSNO). The levels of RSNO under these high chelatable iron levels are comparable with DNIC levels and suggest that under these conditions, both DNIC and RSNO are the most abundant cellular adducts of (•)NO. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Reactions of guanine with methyl chloride and methyl bromide: O6-methylation versus charge transfer complex formation

    Science.gov (United States)

    Shukla, P. K.; Mishra, P. C.; Suhai, S.

    Density functional theory (DFT) at the B3LYP/6-31+G* and B3LYP/AUG-cc-pVDZ levels was employed to study O6-methylation of guanine due to its reactions with methyl chloride and methyl bromide and to obtain explanation as to why the methyl halides cause genotoxicity and possess mutagenic and carcinogenic properties. Geometries of the various isolated species involved in the reactions, reactant complexes (RCs), and product complexes (PCs) were optimized in gas phase. Transition states connecting the reactant complexes with the product complexes were also optimized in gas phase at the same levels of theory. The reactant complexes, product complexes, and transition states were solvated in aqueous media using the polarizable continuum model (PCM) of the self-consistent reaction field theory. Zero-point energy (ZPE) correction to total energy and the corresponding thermal energy correction to enthalpy were made in each case. The reactant complexes of the keto form of guanine with methyl chloride and methyl bromide in water are appreciably more stable than the corresponding complexes involving the enol form of guanine. The nature of binding in the product complexes was found to be of the charge transfer type (O6mG+ · X-, X dbond Cl, Br). Binding of HCl, HBr, and H2O molecules to the PCs obtained with the keto form of guanine did not alter the positions of the halide anions in the PCs, and the charge transfer character of the PCs was also not modified due to this binding. Further, the complexes obtained due to the binding of HCl, HBr, and H2O molecules to the PCs had greater stability than the isolated PCs. The reaction barriers involved in the formation of PCs were found to be quite high (?50 kcal/mol). Mechanisms of genotoxicity, mutagenesis and carcinogenesis caused by the methyl halides appear to involve charge transfer-type complex formation. Thus the mechanisms of these processes involving the methyl halides appear to be quite different from those that involve the

  5. Protein-mediated efficient synergistic "antenna effect" in a ternary system in D₂O medium.

    Science.gov (United States)

    Ghorai, Shyamal Kr; Samanta, Swarna Kamal; Mukherjee, Manini; Ghosh, Sanjib

    2012-08-16

    A ternary system consisting of a protein, catechin (either + or - epimer), and Tb(III) in suitable aqueous buffer medium at physiological pH (= 6.8) has been shown to exhibit highly efficient "antenna effect". Steady state and time-resolved emission studies of each component in the binary complexes (protein with Tb(III) and (+)- or (-)-catechin with Tb(III)) and the ternary systems along with the molecular docking studies reveal that the efficient sensitization could be ascribed to the effective shielding of microenvironment of Tb(III) from O-H oscillator and increased Tb-C (+/-) interaction in the ternary systems in aqueous medium. The ternary system exhibits protein-mediated efficient antenna effect in D(2)O medium due to synergistic ET from both the lowest ππ* triplet state of Trp residue in protein and that of catechin apart from protection of the Tb(III) environment from matrix vibration. The simple system consisting of (+)- or (-)-catechin and Tb(III) in D(2)O buffer at pH 6.8 has been prescribed to be a useful biosensor.

  6. Alternative solution model for the ternary carbonate system CaCO3 - MgCO3 - FeCO3 - I. A ternary Bragg-Williams ordering model

    Science.gov (United States)

    McSwiggen, P.L.

    1993-01-01

    The minerals of the ternary carbonate system CaCO3 - MgCO3 - FeCO3 represent a complex series of solid solutions and ordering states. An understanding of those complexities requires a solution model that can both duplicate the subsolidus phase relationships and generate correct values for the activities. Such a solution model must account for the changes in the total energy of the system resulting from a change in the ordering state of the individual constituents. Various ordering models have been applied to binary carbonate systems, but no attempts have previously been made to model the ordering in the ternary system. This study derives a new set of equations that allow for the equilibrium degree of order to be calculated for a system involving three cations mixing on two sites, as in the case of the ternary carbonates. The method is based on the Bragg-Williams approach. From the degree of order, the mole fractions of the three cations in each of the two sites can be determined. Once the site occupancies have been established, a Margules-type mixing model can be used to determine the free energy of mixing in the solid solution and therefore the activities of the various components. ?? 1993 Springer-Verlag.

  7. FORMATION OF INFORMATIVE AND INNOVATIVE BASIS OF THE SUSTAINABLE DEVELOPMENT OF INVESTMENT AND CONSTRUCTION COMPLEX

    Directory of Open Access Journals (Sweden)

    Uvarova Svetlana Sergeevna

    2016-04-01

    Full Text Available The authors determined the trends of sustainable development of the complex and the limitations obstructing them. The dynamics of investment and construction complex is considered as a self-organization process basing on information interchange, which allowed presenting a conceptual scheme and lifecycle of the changes in the system as a process of accumulation and dynamics of different innovations. The theoretical assumptions on the essence of the management process were proved thanks to empirical analysis of control system changes of investment and construction complex basing on the model of converging development spiral.

  8. Complexity, collective effects, and modeling of ecosystems: formation, function, and stability.

    Science.gov (United States)

    Jensen, Henrik Jeldtoft; Arcaute, Elsa

    2010-05-01

    We discuss the relevance of studying ecology within the framework of Complexity Science from a statistical mechanics approach. Ecology is concerned with understanding how systems level properties emerge out of the multitude of interactions among large numbers of components, leading to ecosystems that possess the prototypical characteristics of complex systems. We argue that statistical mechanics is at present the best methodology available to obtain a quantitative description of complex systems, and that ecology is in urgent need of "integrative" approaches that are quantitative and nonstationary. We describe examples where combining statistical mechanics and ecology has led to improved ecological modeling and, at the same time, broadened the scope of statistical mechanics.

  9. Ternary rare earth-lanthanide sulfides

    Science.gov (United States)

    Takeshita, Takuo; Gschneidner, Jr., Karl A.; Beaudry, Bernard J.

    1987-01-06

    A new ternary rare earth sulfur compound having the formula: La.sub.3-x M.sub.x S.sub.4 where M is a rare earth element selected from the group europium, samarium and ytterbium and x=0.15 to 0.8. The compound has good high-temperature thermoelectric properties and exhibits long-term structural stability up to 1000.degree. C.

  10. Panchromatic Sequentially Cast Ternary Polymer Solar Cells.

    Science.gov (United States)

    Ghasemi, Masoud; Ye, Long; Zhang, Qianqian; Yan, Liang; Kim, Joo-Hyun; Awartani, Omar; You, Wei; Gadisa, Abay; Ade, Harald

    2017-01-01

    A sequential-casting ternary method is developed to create stratified bulk heterojunction (BHJ) solar cells, in which the two BHJ layers are spin cast sequentially without the need of adopting a middle electrode and orthogonal solvents. This method is found to be particularly useful for polymers that form a mechanically alloyed morphology due to the high degree of miscibility in the blend. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    Cu–Fe–Ni ternary alloys (size ∼55–80 nm) with varying compositions viz. CuFeNi (A1), CuFe2Ni (A2) and CuFeNi2 (A3) were successfully synthesized using microemulsion. It is to be noted that synthesis of nanocrystallineternary alloys with precise composition is a big challenge which can be overcome by choosing an ...

  12. Experimental evidence for ternary colloid-facilitated transport of Th(IV) with hematite (α-Fe2O3) colloids and Suwannee River fulvic acid.

    Science.gov (United States)

    Emerson, Hilary P; Hickok, Katherine A; Powell, Brian A

    2016-12-01

    Previous field experiments have suggested colloid-facilitated transport via inorganic and organic colloids as the primary mechanism of enhanced actinide transport in the subsurface at former nuclear weapons facilities. In this work, research was guided by the hypothesis that humic substances can enhance tetravalent actinide (An(IV)) migration by coating and mobilizing natural colloids in environmental systems and increasing An(IV) sorption to colloids. This mechanism is expected to occur under relatively acidic conditions where organic matter can sorb and coat colloid surfaces and facilitate formation of ternary colloid-ligand-actinide complexes. The objective of this work was to examine Th transport through packed columns in the presence of hematite colloids and/or Suwannee River fulvic acid (SRFA). In the presence of SRFA, with or without hematite colloids, significant transport (>60% recovery within the effluent) of thorium occurred through quartz columns. It is notable that the SRFA contributed to increased transport of both Th and hematite colloids, while insignificant transport occurred in the absence of fulvic acid. Further, in the presence of a natural sandy sediment (as opposed to pure quartz), transport is negligible in the presence of SRFA due to interactions with natural, clay-sized sediment coatings. Moreover, this data shows that the transport of Th through quartz columns is enhanced in ternary Th-colloid-SRFA and binary Th-SRFA systems as compared to a system containing only Th. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    Science.gov (United States)

    Christophorou, L.G.; Hunter, S.R.

    1988-06-28

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  14. The binary-to-ternary rhythmic continuum in stress typology : layered feet and non-intervention constraints

    NARCIS (Netherlands)

    Martinez-Paricio, Violeta; Kager, R.W.J.|info:eu-repo/dai/nl/072294124

    2015-01-01

    This article presents a novel OT analysis of ternary rhythm, using the restrictive format of McCarthy (2003)'s categorical alignment constraints, which we will refer to as ‘non-intervention constraints’, using the terminology of Ellison (1994), and argues for the rehabilitation of internally layered

  15. Formation of Complexes of Flavonoids and Metals. Determination of the Stoichiometry and Stability Constants

    Directory of Open Access Journals (Sweden)

    A. B. Pomilio

    2000-03-01

    Full Text Available The complexes between some flavonoids and metals (Co(II, Cu(II, Mn(II, Mg(II, Sn(II have been studied by spectrophotometric methods in order to determine the stoichiometry and stability constants.

  16. Interaction of phosphorus dendrimers with HIV peptides—Fluorescence studies of nano-complexes formation

    Energy Technology Data Exchange (ETDEWEB)

    Ciepluch, Karol, E-mail: ciepluch@biol.uni.lodz.pl [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236 Lodz (Poland); Ionov, Maksim [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236 Lodz (Poland); Majoral, Jean-Pierre [Laboratoire de Chimie de Coordination du CNRS (LCC), 205 Route de Narbonne, F-31077 Toulouse cedex 4 (France); Muñoz-Fernández, Maria Angeles [Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid (Spain); Bryszewska, Maria [Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska Street 141/143, 90-236 Lodz (Poland)

    2014-04-15

    In this study, dendrimers emerge as an alternative approach for delivery of HIV peptides to dendritic cells. Gp160, NH-EIDNYTNTIYTLLEE-COOH; P24, NH-DTINEEAAEW-COOH and Nef, NHGMDDPEREVLEWRFDSRLAF-COOH peptides were complexed with two types of positively charged phosphorus-containing dendrimers (CPD). Fluorescence polarization, dynamic light scattering, transmission and electron microscopy (TEM) techniques were chosen to evaluate the dendriplexes stability. We were able to show that complexes were stable in time and temperature. This is crucial for using these peptide/dendrimer nano-complexes in a new vaccine against HIV-1 infection. -- Highlights: • The phosphorus dendrimers as nanocarriers of HIV-peptides are proposed. • The complexes of dendrimers and HIV-peptides were stable in time, temperature. • The results convince that phosphorus dendrimers could be consider as anti-HIV vaccine candidates.

  17. Formation constants of Cd(II) complexes with dithizone and related compounds.

    Science.gov (United States)

    Math, K; Freiser, H

    1974-11-01

    The stability constants of cadmium complexes of compounds related to dithizone are reported. Substitution in the ortho position lowers the stability constant. It is probable that this is a consequence of deviation from coplanarity of the phenyl and chelate rings.

  18. A Consideration of Cognitive Complexity and Primacy - Recency Effects in Impression Formation

    Science.gov (United States)

    Petronko, Michael R.; Perin, Charles T.

    1970-01-01

    Classifies subjects as cognitively simple" or cognitively complex" and notes that the latter are much nore successful at reconciling inconsistent information than are the former, whose impressions are formed by the information which makes the greatest impact. (RW)

  19. Mathematical simulation of complex formation of protein molecules allowing for their domain structure

    Science.gov (United States)

    Koshlan, T. V.; Kulikov, K. G.

    2017-04-01

    A physical model of the interactions between protein molecules has been presented and an analysis of their propensity to form complex biological complexes has been performed. The reactivities of proteins have been studied using electrostatics methods based on the example of the histone chaperone Nap1 and histones H2A and H2B. The capability of proteins to form stable biological complexes that allow for different segments of amino acid sequences has been analyzed. The ability of protein molecules to form compounds has been considered by calculating matrices of electrostatic potential energy of amino acid residues constituting the polypeptide chain. The method of block matrices has been used in the analysis of the ability of protein molecules to form complex biological compounds.

  20. Equilibrium study for ternary mixtures of biodiesel

    Science.gov (United States)

    Doungsri, S.; Sookkumnerd, T.; Wongkoblap, A.; Nuchitprasittichai, A.

    2017-11-01

    The liquid-liquid equilibrium (LLE) data for the ternary mixtures of methanol + fatty acid methyl ester (FAME) + palm oil and FAME + palm oil + glycerol at various temperatures from 35 to 55°C, the tie lines and binodial curves were also investigated and plotted in the equilibrium curve. The experimental results showed that the binodial curves of methanol + FAME + palm oil depended significantly with temperature while the binodial curves of FAME + palm oil + glycerol illustrated insignificant change with temperatures. The interaction parameters between liquid pair obtained for NRTL (Nonrandom Two-Liquid) and UNIQUAC (Universal Quasi-Chemical Theory) models from the experimental data were also investigated. It was found that the correlated parameters of UNIQUAC model for system of FAME + palm oil + glycerol, denoted as a13 and a31, were 580.42K and -123.69K, respectively, while those for system of methanol + FAME + palm oil, denoted as a42 and a24, were 71.48 K and 965.57K, respectively. The ternary LLE data reported here would be beneficial for engineers and scientists to use for prediction of yield and purity of biodiesel for the production. The UNIQUAC model agreed well with the experimental data of ternary mixtures of biodiesel.

  1. The Ternary Alpha Energy Distribution Revisited

    Science.gov (United States)

    Wagemans, Cyriel; Janssens, Peter; Heyse, Jan; Serot, Olivier; Geltenbort, Peter; Soldner, Torsten

    2004-02-01

    The shape of the energy distribution of the particles emitted in ternary fission has been studied since the discovery of the phenomenon for a large variety of fissioning systems. The general tendency of the observations is that most particles have a Gaussian-shaped energy distribution, except the α-particles, for which mostly an important non-Gaussian tailing on the low-energy side is reported. The origin of this tailing is generally ascribed to the decay of ternary 5He particles in an α-particle and a neutron. Since the experiments reported in the literature are rarely optimised for measuring the low-energy part of the α-spectrum, we realised good experimental conditions for studying the 235U(nth,f) ternary α energy distribution at the High Flux Reactor of the ILL in Grenoble. Thanks to a very intense and clean neutron beam, a small, very thin sample of highly enriched U could be used, with an activity of only 1.6 Bq. So the measurements could be done without absorber in between the sample and the ΔE-E detector. With the resulting low detection limit of 6 MeV, a clearly asymmetric energy distribution was obtained, in agreement with most data in the literature.

  2. More statistics on intermetallic compounds - ternary phases.

    Science.gov (United States)

    Dshemuchadse, Julia; Steurer, Walter

    2015-05-01

    How many different intermetallic compounds are known so far, and in how many different structure types do they crystallize? What are their chemical compositions, the most abundant ones and the rarest ones? These are some of the questions we are trying to find answers for in our statistical analysis of the structures of the 20,829 intermetallic phases included in the database Pearson's Crystal Data, with the goal of gaining insight into some of their ordering principles. In the present paper, we focus on the subset of 13,026 ternary intermetallics, which crystallize in 1391 different structure types; remarkably, 667 of them have just one representative. What makes these 667 structures so unique that they are not adopted by any other of the known intermetallic compounds? Notably, ternary compounds are known in only 5109 of the 85,320 theoretically possible ternary intermetallic systems so far. In order to get an overview of their chemical compositions we use structure maps with Mendeleev numbers as ordering parameters.

  3. FORMATION OF BINARY COMPLEXES OF Co(II), Ni(II) AND Cu(II ...

    African Journals Online (AJOL)

    Preferred Customer

    binary complex systems contain the chemical species ML, ML2, MLH, ML2H and ML2H2 for Co(II), Ni(II) and. Cu(II) in dioxan-water ... KEY WORDS: Binary species, Stability constants, Metal, Dopa, Dioxan, pH-metry ..... application in complex equilibria to decide whether inclusion of more species in the model is necessary ...

  4. Study on the mechanism of copper-ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal.

    Science.gov (United States)

    Peng, Cong; Chai, Liyuan; Tang, Chongjian; Min, Xiaobo; Song, Yuxia; Duan, Chengshan; Yu, Cheng

    2017-01-01

    Heavy metals and ammonia are difficult to remove from wastewater, as they easily combine into refractory complexes. The struvite formation method (SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia. The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper-ammonia complex ion. Ammonia was separated from solution as crystalline struvite, and the copper mainly co-precipitated as copper hydroxide together with struvite. Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide. Hydrogen bonding was concluded to be the key factor leading to the co-precipitation. In addition, incorporation of copper ions into the struvite crystal also occurred during the treatment process. Copyright © 2016. Published by Elsevier B.V.

  5. Complex formation of blueberry (Vaccinium angustifolium) anthocyanins during freeze-drying and its influence on their biological activity.

    Science.gov (United States)

    Correa-Betanzo, Julieta; Padmanabhan, Priya; Corredig, Milena; Subramanian, Jayasankar; Paliyath, Gopinadhan

    2015-03-25

    Biological activity of polyphenols is influenced by their uptake and is highly influenced by their interactions with the food matrix. This study evaluated the complex formation of blueberry polyphenols with fruit matrixes such as pectin and cellulose and their effect on the biological and antiproliferative properties of human colon cell lines HT-29 and CRL 1790. Free or complexed polyphenols were isolated by dialyzing aqueous or methanolic blueberry homogenates. Seven phenolic compounds and thirteen anthocyanins were identified in blueberry extracts. Blueberry extracts showed varying degrees of antioxidant and antiproliferative activities, as well as α-glucosidase activity. Fruit matrix containing cellulose and pectin, or purified polygalacturonic acid and cellulose, did not retain polyphenols and showed very low antioxidant or antiproliferative activities. These findings suggest that interactions between polyphenols and the food matrix may be more complex than a simple association and may play an important role in the bioefficacy of blueberry polyphenols.

  6. Monkeypox Virus Host Factor Screen Using Haploid Cells Identifies Essential Role of GARP Complex in Extracellular Virus Formation.

    Science.gov (United States)

    Realegeno, Susan; Puschnik, Andreas S; Kumar, Amrita; Goldsmith, Cynthia; Burgado, Jillybeth; Sambhara, Suryaprakash; Olson, Victoria A; Carroll, Darin; Damon, Inger; Hirata, Tetsuya; Kinoshita, Taroh; Carette, Jan E; Satheshkumar, Panayampalli Subbian

    2017-06-01

    Monkeypox virus (MPXV) is a human pathogen that is a member of the Orthopoxvirus genus, which includes Vaccinia virus and Variola virus (the causative agent of smallpox). Human monkeypox is considered an emerging zoonotic infectious disease. To identify host factors required for MPXV infection, we performed a genome-wide insertional mutagenesis screen in human haploid cells. The screen revealed several candidate genes, including those involved in Golgi trafficking, glycosaminoglycan biosynthesis, and glycosylphosphatidylinositol (GPI)-anchor biosynthesis. We validated the role of a set of vacuolar protein sorting (VPS) genes during infection, VPS51 to VPS54 (VPS51-54), which comprise the Golgi-associated retrograde protein (GARP) complex. The GARP complex is a tethering complex involved in retrograde transport of endosomes to the trans -Golgi apparatus. Our data demonstrate that VPS52 and VPS54 were dispensable for mature virion (MV) production but were required for extracellular virus (EV) formation. For comparison, a known antiviral compound, ST-246, was used in our experiments, demonstrating that EV titers in VPS52 and VPS54 knockout (KO) cells were comparable to levels exhibited by ST-246-treated wild-type cells. Confocal microscopy was used to examine actin tail formation, one of the viral egress mechanisms for cell-to-cell dissemination, and revealed an absence of actin tails in VPS52KO- or VPS54KO-infected cells. Further evaluation of these cells by electron microscopy demonstrated a decrease in levels of wrapped viruses (WVs) compared to those seen with the wild-type control. Collectively, our data demonstrate the role of GARP complex genes in double-membrane wrapping of MVs necessary for EV formation, implicating the host endosomal trafficking pathway in orthopoxvirus infection. IMPORTANCE Human monkeypox is an emerging zoonotic infectious disease caused by Monkeypox virus (MPXV). Of the two MPXV clades, the Congo Basin strain is associated with severe

  7. Complexities of Isfahani or Hindi style and Backgrounds of its Formation

    Directory of Open Access Journals (Sweden)

    GH Shiri

    2010-05-01

    All of these characteristics have been forgotten in dominant simple, traditional, honest and imitating culture of society. Of course, the influence of circular criticisms in coffee houses, the dialect of Persian speakers of India, and the creativity of a number of poets of Isfahan and its suroundings on the formation of this style should not be forgotten.

  8. Complex formation in mixtures of lysozyme-stabilized emulsions and human saliva

    NARCIS (Netherlands)

    Silletti, E.; Vingerhoeds, M.H.; Norde, W.; Aken, van G.A.

    2007-01-01

    In this paper, we studied the interaction between human unstimulated saliva and lysozyme-stabilized oil-in-water emulsions (10 wt/wt% oil phase, 10 mM NaCl, pH 6.7), to reveal the driving force for flocculation of these emulsions. Confocal scanning laser microscopy (CSLM) showed formation of

  9. A Case Study of Teacher Personal Practice Assessment Theories and Complexities of Implementing Formative Assessment

    Science.gov (United States)

    Box, Cathy; Skoog, Gerald; Dabbs, Jennifer M.

    2015-01-01

    The value and effectiveness of formative assessment in the classroom has gained an increasing amount of attention during the past decade, especially since the publication of seminal work by Black and Wiliam titled "Assessment and Classroom Learning." Since that time, there has been a renewed interest in describing and evaluating teacher…

  10. Using Microcomputers to Format Large and Complex Manuscripts: Myth or Reality?

    Science.gov (United States)

    Tatro, Donna E.

    1987-01-01

    Describes Cornell University computer services and its programs to assist graduate students in editing and formatting their theses and dissertations. Discusses the discontinuance of its CUTHESIS software on the mainframe computer because of the proliferation of microcomputing resources. Examines the cost of the change and the process through which…

  11. Optical characterization of one-step synthesis of ternary nanoalloy by laser ablation of stainless steel target in Hexane

    Science.gov (United States)

    Soliman, Wafaa; El-Ansary, Sara; Badr, Yehia

    2017-12-01

    In this work, we ablated stainless steel target in Hexane by 355 nm by tuning laser power to synthesize ternary nanoalloys from its constituents. XRD patterns didn't match with any machine code of carbides, carbonyls and oxides of target elements. Also, they didn't match with any of binary alloys, suggesting the formation of carbides or carbonyls of ternary nanoalloys. In addition, the optical properties of nanoalloys confirms the resonance fluorescence and multistep excitation. By tuning laser power, the shape of nanoalloys is controlled.

  12. Regulation of Botulinum Neurotoxin Synthesis and Toxin Complex Formation by Arginine and Glucose in Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Fredrick, Chase M; Lin, Guangyun; Johnson, Eric A

    2017-07-01

    Botulinum neurotoxin (BoNT), produced by neurotoxigenic clostridia, is the most potent biological toxin known and the causative agent of the paralytic disease botulism. The nutritional, environmental, and genetic regulation of BoNT synthesis, activation, stability, and toxin complex (TC) formation is not well studied. Previous studies indicated that growth and BoNT formation were affected by arginine and glucose in Clostridium botulinum types A and B. In the present study, C. botulinum ATCC 3502 was grown in toxin production medium (TPM) with different levels of arginine and glucose and of three products of arginine metabolism, citrulline, proline, and ornithine. Cultures were analyzed for growth (optical density at 600 nm [OD 600 ]), spore formation, and BoNT and TC formation by Western blotting and immunoprecipitation and for BoNT activity by mouse bioassay. A high level of arginine (20 g/liter) repressed BoNT production approximately 1,000-fold, enhanced growth, slowed lysis, and reduced endospore production by greater than 1,000-fold. Similar effects on toxin production were seen with equivalent levels of citrulline but not ornithine or proline. In TPM lacking glucose, levels of formation of BoNT/A1 and TC were significantly decreased, and extracellular BoNT and TC proteins were partially inactivated after the first day of culture. An understanding of the regulation of C. botulinum growth and BoNT and TC formation should be valuable in defining requirements for BoNT formation in foods and clinical samples, improving the quality of BoNT for pharmaceutical preparations, and elucidating the biological functions of BoNTs for the bacterium. IMPORTANCE Botulinum neurotoxin (BoNT) is a major food safety and bioterrorism concern and is also an important pharmaceutical, and yet the regulation of its synthesis, activation, and stability in culture media, foods, and clinical samples is not well understood. This paper provides insights into the effects of critical

  13. Molecular adsorption of small alkanes on a PdO(101) thin film: Evidence of sigma-complex formation.

    Science.gov (United States)

    Weaver, Jason F; Hakanoglu, Can; Hawkins, Jeffery M; Asthagiri, Aravind

    2010-01-14

    We investigated the molecular adsorption of methane, ethane, and propane on a PdO(101) thin film using temperature programmed desorption (TPD) and density functional theory (DFT) calculations. The TPD data reveal that each of the alkanes adsorbs into a low-coverage molecular state on PdO(101) in which the binding is stronger than that for alkanes physically adsorbed on Pd(111). Analysis of the TPD data using limiting values of the desorption prefactors predicts that the alkane binding energies on PdO(101) increase linearly with increasing chain length, but that the resulting line extrapolates to a nonzero value between about 22 and 26 kJ/mol at zero chain length. This constant offset implies that a roughly molecule-independent interaction contributes to the alkane binding energies for the molecules studied. DFT calculations predict that the small alkanes bind on PdO(101) by forming dative bonds with coordinatively unsaturated Pd atoms. The resulting adsorbed species are analogous to alkane sigma-complexes in that the bonding involves electron donation from C-H sigma bonds to the Pd center as well as backdonation from the metal, which weakens the C-H bonds. The binding energies predicted by DFT lie in a range from 16 to 24 kJ/mol, in good agreement with the constant offsets estimated from the TPD data. We conclude that both the dispersion interaction and the formation of sigma-complexes contribute to the binding of small alkanes on PdO(101), and estimate that sigma-complex formation accounts for between 30% and 50% of the total binding energy for the molecules studied. The predicted weakening of C-H bonds resulting from sigma-complex formation may help to explain the high activity of PdO surfaces toward alkane activation.

  14. Page 1 Structure and superconductivity in ternary systems of ...

    Indian Academy of Sciences (India)

    Structure and superconductivity in ternary systems of compounds 299. Erra B2 structure do not have T. above 1:2 K (Ku and Meisner 1981); (iii) for. Ao.67Pt3B the T. are 1-6, 28 and 56K for A = Ca,Sr and Ba (Shelton 1978) and. (iv) AOs B, A = Th, T = 3 K; A = Y, T = 6K (Ku 1980). 3. Ternary carbides. Of the known ternary ...

  15. Influence of Countercation Hydration Enthalpies on the Formation of Molecular Complexes: A Thorium-Nitrate Example.

    Science.gov (United States)

    Jin, Geng Bang; Lin, Jian; Estes, Shanna L; Skanthakumar, S; Soderholm, L

    2017-12-13

    The influence of countercations (A n+ ) in directing the composition of monomeric metal-ligand (ML) complexes that precipitate from solution are often overlooked despite the wide usage of A n+ in materials synthesis. Herein, we describe a correlation between the composition of ML complexes and A + hydration enthalpies found for two related series of thorium (Th)-nitrate molecular compounds obtained by evaporating acidic aqueous Th-nitrate solutions in the presence of A + counterions. Analyses of their chemical composition and solid-state structures demonstrate that A + not only affects the overall solid-state packing of the Th-nitrato complexes but also influences the composition of the Th-nitrato monomeric anions themselves. Trends in composition and structure are found to correlate with A + hydration enthalpies, such that the A + with smaller hydration enthalpies associate with less hydrated and more anionic Th-nitrato complexes. This perspective, broader than the general assumption of size and charge as the dominant influence of A n+ , opens a new avenue for the design and synthesis of targeted metal-ligand complexes.

  16. Chromium(IV)–Peroxo Complex Formation and Its Nitric Oxide Dioxygenase Reactivity

    Science.gov (United States)

    Yokoyama, Atsutoshi; Han, Jung Eun; Cho, Jaeheung; Kubo, Minoru; Ogura, Takashi; Siegler, Maxime A.; Karlin, Kenneth D.; Nam, Wonwoo

    2012-01-01

    The O2 and NO reactivity of a Cr(II) complex bearing a 12-membered tetraazamacrocyclic TMC ligand, [CrII(12-TMC)(Cl)]+ (1), and the NO reactivity of its peroxo derivative, [CrIV(12-TMC)(O2)(Cl)]+ (2), are described. By contrast to the previously reported Cr(III)-superoxo complex, [CrIII(14-TMC)(O2)(Cl)]+, a Cr(IV)-peroxo complex (2) is formed in the reaction of 1 and O2. Full spectroscopic and X-ray analysis reveals that 2 possesses a side-on η2-peroxo ligation. A quantitative reaction of 2 with NO affords a reduction in Cr oxidation state and production of a Cr(III)-nitrato complex, [CrIII(12-TMC)(NO3)(Cl)]+ (3). The latter is suggested to form via a Cr(III)-peroxynitrite intermediate. A Cr(II)-nitrosyl complex, [CrII(12-TMC)(NO)(Cl)]+ (4), derived from 1 andNO could also be synthesized; however, it does not react with O2. PMID:22950528

  17. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, F [Faculte des Sciences, Universite de Sfax, BP 1171, 3000 Sfax (Tunisia); Makhlouf, A [Laboratoire de Mathematiques, Informatique et Applications, Universite de Haute Alsace, 4, rue des Freres Lumiere F-68093 Mulhouse (France); Silvestrov, S, E-mail: Faouzi.Ammar@rnn.fss.t, E-mail: Abdenacer.Makhlouf@uha.f, E-mail: sergei.silvestrov@math.lth.s [Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund (Sweden)

    2010-07-02

    In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

  18. Combustion synthesis in the Ni–Al–Nb ternary system: A Time-Resolved X-ray Diffraction study

    Directory of Open Access Journals (Sweden)

    Alexander E. Sytschev

    Full Text Available Combustion synthesis of intermetallics, using the thermal explosion mode, in the Ni-Al-Nb ternary system is presented, with a 40:40:20 atomic ratio. The kinetic pathway is determined using Time-Resolved X-ray Diffraction, with a time-step resolution of 1 s and demonstrated a first formation of the B2 NiAl structure followed by progressive dissolution of Nb to yield NiAlNb intermetallic Laves phase, representing 35 w% of the final product. SEM observations show a double dendritic (coarse and fine microstructure, resulting from eutectic crystallization. Due to a high cooling rate, Nb dissolution is not complete at the surface, and yields slightly more complex microstructure, including the Ni2AlNb Geissler phase, the (Ni,Al2Nb Laves phase, and (Ni, Al7Nb6.

  19. Formation of Angerh Minue Cave in Asmari Karst Complex of Zagros Mountain, Iran

    Directory of Open Access Journals (Sweden)

    Ghassem Ghaderi

    2014-04-01

    Full Text Available The Angerh Minue Cave, located in one km from west Angerh village which is about 97 km far from Shiraz of Fars Province, the Cultural Capital of Iran. The main entrance of the cave is at an altitude of 2430 having a depth of 176 m and length 776 m. It developed along the bedding of limestone layers. Asmari Formation is the host rock of the Angerh Minue cave. Mountainous region of Zagros, where the Angerh Minue cave is located could be referred as seismic region due to the presence of various basement faults, some of which are still active. In the present study, the geological process behind the formation of Angerh Minue Cave has been tried to analyze.

  20. Order formation processes of complex systems including different parity order parameters

    Science.gov (United States)

    Hashizume, Yoichiro; Suzuki, Masuo; Okamura, Soichiro

    2014-06-01

    In the present study, we focus on the parity of the order parameters and clarify the order formation process in a system including two order parameters. Each order parameter shows different parity under a gauge transformation, namely even and odd order parameters. For example, in a spin-glass model, the even order parameter corresponds to the spin-glass order parameter while the odd one corresponds to the magnetization. We introduce phenomenologically a set of Langevin equations to express the ordering process under a white Gaussian noise. Using two kinds of Fokker-Planck equations, we analyze the order formation process and the entropy production. Furthermore, we show the noise dependence of the onset time.