WorldWideScience

Sample records for ternary chalcogenide glasses

  1. Mid-infrared optical properties of chalcogenide glasses within tin-antimony-selenium ternary system.

    Science.gov (United States)

    Lin, Ruiqiang; Chen, Feifei; Zhang, Xiaoyu; Huang, Yicong; Song, Baoan; Dai, Shixun; Zhang, Xianghua; Ji, Wei

    2017-10-16

    In this work, we investigated the mid-infrared (MIR) optical properties of selenide (Se-based) chalcogenide glasses (ChGs) within an As- and Ge-free system, namely the environment-friendly and low-cost tin-antimony-selenium (Sn-Sb-Se, SSS) ternary system, which has not been systematically studied to the best of our knowledge. As compared to ChGs within those conventional Se-based systems, SSS ChGs were found to exhibit extended infrared transmittance range as well as larger linear refractive index (n 0 ). Femtosecond Z-scan measurements show the presence of evident three-photon absorption from Urbach absorption of the SSS ChGs at MIR wavelength, which resonantly enhanced the nonlinear refractive behavior and resulted in large nonlinear refractive index (n 2 ).

  2. Neutron diffraction study on the medium and short-range order of ternary chalcogenide glasses

    Czech Academy of Sciences Publication Activity Database

    Neov, S.; Gerasimova, I.; Skordeva, E.; Arsova, D.; Pamukchieva, V.; Mikula, Pavol; Lukáš, Petr; Sonntag, R.

    1999-01-01

    Roč. 34, - (1999), s. 3669-3676 ISSN 0022-2461 R&D Projects: GA ČR GV202/97/K038 Keywords : neutron diffraction * short-range order * chalcogenide glasses Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.786, year: 1999

  3. Chalcogenide glass hollow core microstructured optical fibers

    Directory of Open Access Journals (Sweden)

    Vladimir S. eShiryaev

    2015-03-01

    Full Text Available The recent developments on chalcogenide glass hollow core microstructured optical fibers (HC-MOFs are presented. The comparative analysis of simulated optical properties for chalcogenide HC-MOFs of negative-curvature with different size and number of capillaries is given. The technique for the manufacture of microstructured chalcogenide preforms, which includes the assembly of the substrate glass tube and 8-10 capillaries, is described. Further trends to improve the optical transmission in chalcogenide NCHCFs are considered.

  4. High-Purity Glasses Based on Arsenic Chalcogenides

    Science.gov (United States)

    2001-06-01

    Chemical interaction of chalcogenides and some impurities (CS 2, TeO2 ) with the quartz glass at high temperature leads to the thin layers formation...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1523 TITLE: High-Purity Glasses Based on Arsenic Chalcogenides...Materials Vol. 3, No. 2, June 2001, p. 341 - 349 HIGH-PURITY GLASSES BASED ON ARSENIC CHALCOGENIDES M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S

  5. Terahertz-induced Kerr effect in amorphous chalcogenide glasses

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Strikwerda, Andrew; Iwaszczuk, Krzysztof

    2013-01-01

    We have investigated the terahertz-induced third-order (Kerr) nonlinear optical properties of the amorphous chalcogenide glasses As2S3 and As2Se3. Chalcogenide glasses are known for their high optical Kerr nonlinearities which can be several hundred times greater than those of fused silica. We use...

  6. Valence band electronic structure of Pd based ternary chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lohani, H. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Mishra, P. [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Goyal, R.; Awana, V.P.S. [National Physical Laboratory(CSIR), Dr. K. S. Krishnan Road, New Delhi 110012 (India); Sekhar, B.R., E-mail: sekhar@iopb.res.in [Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2016-12-15

    Highlights: • VB Photoemission study and DFT calculations on Pd based ternary superconductors are presented. • Nb{sub 2}Pd{sub 0.95}S{sub 5} shows a temperature dependent pseudogap. • VB spectral features of ternary superconductors are correlated to their structural geometry. - Abstract: We present a comparative study of the valence band electronic structure of Pd based ternary chalcogenide superconductors Nb{sub 2}Pd{sub 0.95}S{sub 5}, Ta{sub 2}Pd{sub 0.97}S{sub 6} and Ta{sub 2}Pd{sub 0.97}Te{sub 6} using experimental photoemission spectroscopy and density functional based theoretical calculations. We observe a qualitatively similarity between valence band (VB) spectra of Nb{sub 2}Pd{sub 0.95}S{sub 5} and Ta{sub 2}Pd{sub 0.97}S{sub 6}. Further, we find a pseudogap feature in Nb{sub 2}Pd{sub 0.95}S{sub 5} at low temperature, unlike other two compounds. We have correlated the structural geometry with the differences in VB spectra of these compounds. The different atomic packing in these compounds could vary the strength of inter-orbital hybridization among various atoms which leads to difference in their electronic structure as clearly observed in our DOS calculations.

  7. The chemistry of copper chalcogenides in waste glasses

    International Nuclear Information System (INIS)

    Schreiber, H.D.; Lambert, H.W.

    1994-01-01

    The solubilities of copper chalcogenides (CuS, CuSe, CuTe) were measured in a glass melt which is representative of those proposed for nuclear waste immobilization and circuit board vitrification. CuTe is more soluble than CuS and CuSe in the glass melt under relatively oxidizing conditions. However, the solubilities of all the copper chalcogenides in the glass melt are virtually identical at reducing conditions, probably a result of the redox-controlled solubility of copper metal in all cases. The redox chemistry of a glass melt coexisting with an immiscible copper chalcogenide depends primarily on the prevailing oxygen fugacity, not on the identity of the chalcogenide. The target concentration of less than 0.3 to 0.5 wt% copper in the waste glass should eliminate the precipitation of copper chalcogenides during processing

  8. Chalcogenide Glass Optical Waveguides for Infrared Biosensing

    Directory of Open Access Journals (Sweden)

    Bruno Bureau

    2009-09-01

    Full Text Available Due to the remarkable properties of chalcogenide (Chg glasses, Chg optical waveguides should play a significant role in the development of optical biosensors. This paper describes the fabrication and properties of chalcogenide fibres and planar waveguides. Using optical fibre transparent in the mid-infrared spectral range we have developed a biosensor that can collect information on whole metabolism alterations, rapidly and in situ. Thanks to this sensor it is possible to collect infrared spectra by remote spectroscopy, by simple contact with the sample. In this way, we tried to determine spectral modifications due, on the one hand, to cerebral metabolism alterations caused by a transient focal ischemia in the rat brain and, in the other hand, starvation in the mouse liver. We also applied a microdialysis method, a well known technique for in vivo brain metabolism studies, as reference. In the field of integrated microsensors, reactive ion etching was used to pattern rib waveguides between 2 and 300 μm wide. This technique was used to fabricate Y optical junctions for optical interconnections on chalcogenide amorphous films, which can potentially increase the sensitivity and stability of an optical micro-sensor. The first tests were also carried out to functionalise the Chg planar waveguides with the aim of using them as (biosensors.

  9. Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

    DEFF Research Database (Denmark)

    Markos, Christos; Kubat, Irnis; Bang, Ole

    2014-01-01

    The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass...... nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480-900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass...

  10. Synthesis and properties of new CdSe-AgI-As2Se3 chalcogenide glasses

    International Nuclear Information System (INIS)

    Kassem, M.; Le Coq, D.; Fourmentin, M.; Hindle, F.; Bokova, M.; Cuisset, A.; Masselin, P.; Bychkov, E.

    2011-01-01

    Research highlights: → Determination of the glass-forming region in the pseudo-ternary CdSe-AgI-As 2 Se 3 system. → Characterization of macroscopic properties of the new CdSe-AgI-As 2 Se 3 glasses. → Far infrared transmission of chalcogenide glasses. → Characterization of the total conductivity of CdSe-AgI-As 2 Se 3 glasses. -- Abstract: The glass-forming region in the pseudo-ternary CdSe-AgI-As 2 Se 3 system was determined. Measurements including differential scanning calorimetry (DSC), density, and X-ray diffraction were performed. The effect resulting from the addition of CdSe or AgI has been highlighted by examining three series of different base glasses. The characteristic temperatures of the glass samples, including glass transition (T g ), crystallisation (T x ), and melting (T m ) temperatures are reported and used to calculate their ΔT = T x - T g and their Hruby, H r = (T x - T g )/(T m - T x ), criteria. Evolution of the total electrical conductivity σ and the room temperature conductivity σ 298 was also studied. The terahertz transparency domain in the 50-600 cm -1 region was pointed for different chalcogenide glasses (ChGs) and the potential of the THz spectroscopy was suggested to obtain structural information on ChGs.

  11. Chalcogenide glass-on-graphene photonics

    Science.gov (United States)

    Lin, Hongtao; Song, Yi; Huang, Yizhong; Kita, Derek; Deckoff-Jones, Skylar; Wang, Kaiqi; Li, Lan; Li, Junying; Zheng, Hanyu; Luo, Zhengqian; Wang, Haozhe; Novak, Spencer; Yadav, Anupama; Huang, Chung-Che; Shiue, Ren-Jye; Englund, Dirk; Gu, Tian; Hewak, Daniel; Richardson, Kathleen; Kong, Jing; Hu, Juejun

    2017-12-01

    Two-dimensional (2D) materials are of tremendous interest to integrated photonics, given their singular optical characteristics spanning light emission, modulation, saturable absorption and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. Here, we present a new route for 2D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material that can be directly deposited and patterned on a wide variety of 2D materials and can simultaneously function as the light-guiding medium, a gate dielectric and a passivation layer for 2D materials. Besides achieving improved fabrication yield and throughput compared with the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared waveguide-integrated photodetectors and modulators.

  12. Recent Progress In Infrared Chalcogenide Glass Fibers

    Science.gov (United States)

    Bornstein, A.; Croitoru, N.; Marom, E.

    1984-10-01

    Chalcogenide glasses containing elements like As, Ge, Sb and Se have been prepared. A new technique of preparing the raw material and subsequently drawing fibers has been devel-oped in order to avoid the forming of oxygen compounds. The fibers have been drawn by cru-cible and rod method from oxygen free raw material inside an Ar atmosphere glove box. The fibers drawn to date with air and glass cladding have a diameter of 50-500 pm and length of several meterd. Preliminary attenuation measurements indicate that the attentuation is better than 0.1 dB/cm and it is not affected even when the fiber is bent to 2 cm circular radius. The fibes were testes a CO laser beam and were not damaged at power densities below 10 kW/2cm2 CW &100 kw/cm using short pulses 75 n sec. The transmitted power density was 0.8 kW/cm2 which is an appropriate value to the needed for cutting and ablation of human tissues.

  13. Summary of Chalcogenide Glass Processing: Wet-Etching and Photolithography

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J.; Sundaram, S. K.; Johnson, Bradley R.; Saraf, Laxmikant V.

    2006-12-01

    This report describes a study designed to explore the different properties of two different chalcogenide materials, As2S3 and As24S38Se38, when subjected to photolithographic wet-etching techniques. Chalcogenide glasses are made by combining chalcogen elements S, Se, and Te with Group IV and/or V elements. The etchant was selected from the literature and was composed of sodium hydroxide, isopropyl alcohol, and deionized water and the types of chalcogenide glass for study were As2S3 and As24S38Se38. The main goals here were to obtain a single variable etch rate curve of etch depth per time versus NaOH overall solution concentration in M and to see the difference in etch rate between a given etchant when used on the different chalcogenide stoichiometries. Upon completion of these two goals, future studies will begin to explore creating complex, integrated photonic devices via these methods.

  14. Index change of chalcogenide materials from precision glass molding processes

    Science.gov (United States)

    Deegan, J.; Walsh, K.; Lindberg, G.; Benson, R.; Gibson, D.; Bayya, S.; Sanghera, J.; Stover, E.

    2015-05-01

    With the increase in demand for infrared optics for thermal applications and the use of glass molding of chalcogenide materials to support these higher volume optical designs, an investigation of changes to the optical properties of these materials is required. Typical precision glass molding requires specific thermal conditions for proper lens molding of any type of optical glass. With these conditions a change (reduction) of optical index occurs after molding of all oxide glass types and it is presumed that a similar behavior will happen with chalcogenide based materials. We will discuss the effects of a typical molding thermal cycle for use with commercially and newly developed chalcogenide materials and show results of index variation from nominally established material data.

  15. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    to binary metallic glasses. They are of interest since third element can modify the physical properties of binary metallic glasses and can also be used as a probe to study the host. ..... conducting nature in the present case. When we. Figure 6. Variation of transition temperature (TC) with valance (Z) of ternary metallic glasses.

  16. The structural heterogeneity and optical properties in chalcogenide glass films

    International Nuclear Information System (INIS)

    Shurgalin, Max; Fuflyigin, Vladimir N; Anderson, Emilia G

    2005-01-01

    The microscopic structure and optical properties of glassy films prepared by vapour phase deposition process from the germanium-arsenic-selenium family of chalcogenide glasses have been studied. A number of different molecular clusters or domains that can exist in the glass structure are found to play a significant role in determining the absorption characteristics and refractive index of the glass films. Modifications of the glass structure can be described by a variation of relative concentrations of the clusters and can be effected by modifications of film chemical composition and deposition conditions. Changes in absorption spectra are directly correlated with variation in relative concentrations of the structural fragments with different electronic bandgap properties. Experimental results suggest structural heterogeneity and support validity of the cluster structural model for the chalcogenide glasses

  17. Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

    Science.gov (United States)

    Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen

    2017-08-16

    A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.

  18. Electrical conduction mechanism in GeSeSb chalcogenide glasses

    Indian Academy of Sciences (India)

    by melt quenching has been determined at different temperatures in bulk through the I–V characteristic curves ... DC conductivity; chalcogenide glass; Sb–Se bonding; Poole–Frenkel mechanism .... measurements were taken at room temperature as well as ele- .... age across the sample was continuued, the induced thermal.

  19. On the instability effects in radiation-sensitive chalcogenide glasses

    International Nuclear Information System (INIS)

    Balitska, V.; Kovalskiy, A.; Shpotyuk, O.; Vakiv, M.

    2007-01-01

    The features of application of radiation-sensitive media based on chalcogenide glasses of As-Ge-S system for registration of high-energy γ-radiation are analysed. It is shown that compositional features of the observed time-instability effect should be taken into account in order to ensure a higher accuracy of the developed dosimeters

  20. On the instability effects in radiation-sensitive chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Balitska, V. [Lviv State University for Vital Activity Safety, 35 Kleparivska str., Lviv, UA-79007 (Ukraine); Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); Kovalskiy, A. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); International Materials Institute for New Functionality in Glass, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Shpotyuk, O. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); International Materials Institute for New Functionality in Glass, Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States)], E-mail: shpotyuk@novas.lviv.ua; Vakiv, M. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine)

    2007-04-15

    The features of application of radiation-sensitive media based on chalcogenide glasses of As-Ge-S system for registration of high-energy {gamma}-radiation are analysed. It is shown that compositional features of the observed time-instability effect should be taken into account in order to ensure a higher accuracy of the developed dosimeters.

  1. Conductivity in Ag-As-S(Se,Te) chalcogenide glasses

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Kolář, J.; Bartoš, M.; Vlček, Milan; Frumar, M.; Zima, Vítězslav; Wágner, T.

    2010-01-01

    Roč. 181, 37/38 (2010), s. 1625-1630 ISSN 0167-2738 Institutional research plan: CEZ:AV0Z40500505 Keywords : chalcogenide glasses * ionics conductivity * phase separation Subject RIV: CA - Inorganic Chemistry Impact factor: 2.496, year: 2010

  2. Ultrafast Laser Fabrication of Bragg Waveguides in GLS Chalcogenide Glass

    Directory of Open Access Journals (Sweden)

    McMillen Ben

    2013-11-01

    Full Text Available We present work on the fabrication of Bragg waveguides in gallium-lanthanum-sulfide chalcogenide glass using an ultrafast laser. Waveguides were written with a single pass while modulating the writing beam. The spatial and temporal profile of the writing beam was ontrolled during waveguide fabrication in order to control the shape and size of the waveguide cross-section.

  3. Multimode supercontinuum generation in chalcogenide glass fibres

    DEFF Research Database (Denmark)

    Kubat, Irnis; Bang, Ole

    2016-01-01

    Mid-infrared supercontinuum generation is considered in chalcogenide fibres when taking into account both polarisations and the necessary higher order modes. In particular we focus on high pulse energy supercontinuum generation with long pump pulses. The modeling indicates that when only a single...

  4. Short and medium range structures of 80GeSe2–20Ga2Se3 chalcogenide glasses

    Science.gov (United States)

    Petracovschi, Elena; Calvez, Laurent; Cormier, Laurent; Le Coq, David; Du, Jincheng

    2018-05-01

    The short and medium range structures of 80GeSe2–20Ga2Se3 (or Ge23.5Ga11.8Se64.7) chalcogenide glasses have been studied by combining ab initio molecular dynamics (AIMD) simulations and experimental neutron diffraction studies. The structure factor and total correlation function were calculated from glass structures generated from AIMD simulations and compared with neutron diffraction experiments showing reasonable agreement. The atomic structures of ternary chalcogenide glasses were analyzed in detail, and it was found that gallium atoms are four-fold coordinated by selenium (Se) and form [GaSe4] tetrahedra. Germanium atoms on average also have four-fold coordination, among which Se is 3.5 with the remaining being Ge–Ge homo-nuclear bonds. Ga and Ge tetrahedra link together mainly through corner-sharing and some edge-sharing of Se. No homo-nuclear bonds were observed among Ga atoms or between Ge and Ga. In addition, Se–Se homo-nuclear bonds and Se chains with various lengths were observed. A small fraction of Se atom triclusters that bond to three cations of Ge and Ga were also observed, confirming earlier proposals from 77Se solid state nuclear magnetic resonance studies. Furthermore, the electronic structures of ternary chalcogenide glasses were studied in terms of atomic charge and electronic density of states in order to gain insights into the chemical bonding and electronic properties, as well as to provide an explanation of the observed atomic structures in these ternary chalcogenide glasses.

  5. Chalcogenide glasses as optical and ion-conducting materials. Kogaku oyobi ion dendo zairyo toshite no chalcogenide glass

    Energy Technology Data Exchange (ETDEWEB)

    Toge, N.; Minami, T. (Univ. of Osaka Prefecture, Osaka (Japan))

    1991-12-01

    Nonoxide glasses whose main constituent are chalcogen elements like S, Se, or Te etc. show a lot of various properties, for instance, high infrared transmittancy and semi-conductivity which are already well known. Additionally, the optical properties change a lot along with the phase transition's happening between crystal and noncrystal under comparative low temperature. Further, it is also observed that the glasses containing proper cation appear high ion-conductivity. This paper supplies a brief reviews of chalcogenide glasses used as materials for infrared fiber, phase transition optical memory and superionic conductor, wherein the former two have already on the stage of utilization, particularly the realization of a rewritable optical memory is possible by using chalcogenide glasses film, and ion-conductor is in the phase to have shown the possibility of high conductivity while the development thereof is being expected. 22 refs., 8 figs.

  6. Reversibility windows in selenide-based chalcogenide glasses

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Hyla, M.; Boyko, V.; Golovchak, R.

    2008-01-01

    A simple route for the estimation of the reversibility windows in the sense of non-ageing ability is developed for chalcogenide glasses obeying '8-N' rule at the example of As-Se, Ge-Se and Ge-As-Se glass systems. The low limit of their reversibility windows is determined at the average coordination number Z=2.4 in full agreement with rigidity percolation theory, while the upper limit is shown to be related to the glass preparation conditions and samples prehistory

  7. Reversibility windows in selenide-based chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa, PL 42200 (Poland); Hyla, M. [Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa, PL 42200 (Poland); Boyko, V. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine); Lviv National Polytechnic University, 12, Bandera Street, Lviv, UA 79013 (Ukraine); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine)], E-mail: golovchak@novas.lviv.ua

    2008-10-01

    A simple route for the estimation of the reversibility windows in the sense of non-ageing ability is developed for chalcogenide glasses obeying '8-N' rule at the example of As-Se, Ge-Se and Ge-As-Se glass systems. The low limit of their reversibility windows is determined at the average coordination number Z=2.4 in full agreement with rigidity percolation theory, while the upper limit is shown to be related to the glass preparation conditions and samples prehistory.

  8. Characterising refractive index dispersion in chalcogenide glasses

    DEFF Research Database (Denmark)

    Fang, Y.; Sojka, L.; Jayasuriya, D.

    2016-01-01

    Much effort has been devoted to the study of glasses that contain the chalcogen elements (sulfur, selenium and tellurium) for photonics' applications out to MIR wavelengths. In this paper we describe some techniques for determining the refractive index dispersion characteristics of these glasses...

  9. Inverse opal photonic crystal of chalcogenide glass by solution processing.

    Science.gov (United States)

    Kohoutek, Tomas; Orava, Jiri; Sawada, Tsutomu; Fudouzi, Hiroshi

    2011-01-15

    Chalcogenide opal and inverse opal photonic crystals were successfully fabricated by low-cost and low-temperature solution-based process, which is well developed in polymer films processing. Highly ordered silica colloidal crystal films were successfully infilled with nano-colloidal solution of the high refractive index As(30)S(70) chalcogenide glass by using spin-coating method. The silica/As-S opal film was etched in HF acid to dissolve the silica opal template and fabricate the inverse opal As-S photonic crystal. Both, the infilled silica/As-S opal film (Δn ~ 0.84 near λ=770 nm) and the inverse opal As-S photonic structure (Δn ~ 1.26 near λ=660 nm) had significantly enhanced reflectivity values and wider photonic bandgaps in comparison with the silica opal film template (Δn ~ 0.434 near λ=600 nm). The key aspects of opal film preparation by spin-coating of nano-colloidal chalcogenide glass solution are discussed. The solution fabricated "inorganic polymer" opal and the inverse opal structures exceed photonic properties of silica or any organic polymer opal film. The fabricated photonic structures are proposed for designing novel flexible colloidal crystal laser devices, photonic waveguides and chemical sensors. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Ultrabroadband terahertz spectroscopy of chalcogenide glasses

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Bisgaard, Christer Zoffmann; Novitsky, Andrey

    2012-01-01

    and absorption coefficient is found for both glasses. We observe the breakdown of the universal power-law dependence of the absorption coefficient due to atomic vibrations observed at low THz frequencies in disordered materials, and see the transition to localized vibrational dynamics for the As2S3 compound...

  11. Diffusion of 64Cu in copper-containing chalcogenide glasses

    International Nuclear Information System (INIS)

    Vlasov, Yu.G.; Bychkov, E.A.; Bolotov, A.M.; Tsegel'nik, V.S.; Gavrilov, Yu.A.

    1996-01-01

    Diffusion experiments with 64 Cu radioactive tracer for a number of copper-containing chalcogenide glasses CuI-As 2 Se 3 , Cu-SbI 3 -As 2 Se 3 , CuI-PbI 2 -As 2 Se 3 , CuI-PbI 2 -SbI 3 -As 2 Se 3 and Cu 2 Se-As 2 Se 3 are carried out for the first time. The results of diffusion and electrodiffusion measurements are in correspondence with information on electroconductivity and diffusion in a limited space (cage diffusion) from the Moessbauer spectroscopy on 124 I. It is shown for the first time that the Cheivin factor index for copper-conducting glasses in by 2-3 times higher as compared to silver-conducting glasses with approximate diffusion coefficients indices. 27 refs., 3 figs., 1 tab

  12. Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides

    Science.gov (United States)

    Singh, N. B.; Coriell, S. R.; Su, Ching-Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  13. Synthesis and properties of new CdSe-AgI-As{sub 2}Se{sub 3} chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M. [Univ Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EAC CNRS 4493 F-59140 Dunkerque (France); Le Coq, D., E-mail: david.lecoq@univ-littoral.fr [Univ Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EAC CNRS 4493 F-59140 Dunkerque (France); Fourmentin, M.; Hindle, F.; Bokova, M.; Cuisset, A.; Masselin, P.; Bychkov, E. [Univ Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EAC CNRS 4493 F-59140 Dunkerque (France)

    2011-02-15

    Research highlights: {yields} Determination of the glass-forming region in the pseudo-ternary CdSe-AgI-As{sub 2}Se{sub 3} system. {yields} Characterization of macroscopic properties of the new CdSe-AgI-As{sub 2}Se{sub 3} glasses. {yields} Far infrared transmission of chalcogenide glasses. {yields} Characterization of the total conductivity of CdSe-AgI-As{sub 2}Se{sub 3} glasses. -- Abstract: The glass-forming region in the pseudo-ternary CdSe-AgI-As{sub 2}Se{sub 3} system was determined. Measurements including differential scanning calorimetry (DSC), density, and X-ray diffraction were performed. The effect resulting from the addition of CdSe or AgI has been highlighted by examining three series of different base glasses. The characteristic temperatures of the glass samples, including glass transition (T{sub g}), crystallisation (T{sub x}), and melting (T{sub m}) temperatures are reported and used to calculate their {Delta}T = T{sub x} - T{sub g} and their Hruby, H{sub r} = (T{sub x} - T{sub g})/(T{sub m} - T{sub x}), criteria. Evolution of the total electrical conductivity {sigma} and the room temperature conductivity {sigma}{sub 298} was also studied. The terahertz transparency domain in the 50-600 cm{sup -1} region was pointed for different chalcogenide glasses (ChGs) and the potential of the THz spectroscopy was suggested to obtain structural information on ChGs.

  14. Breakthrough switching speed with an all-optical chalcogenide glass chip: 640 Gbit/s demultiplexing

    DEFF Research Database (Denmark)

    Galili, Michael; Xu, Jing; Mulvad, Hans Christian Hansen

    2009-01-01

    We report the first demonstration of error-free 640 Gbit/s demultiplexing using the Kerr non-linearity of an only 5 cm long chalcogenide glass waveguide chip. Our approach exploits four-wave mixing by the instantaneous nonlinear response of chalcogenide. Excellent performance is achieved with onl...... 2 dB average power penalty and no indication of error-floor. Characterisation of the FWM efficiency for the chalcogenide waveguide is given and confirms the good performance of the device....

  15. Chalcogenide Glass Radiation Sensor; Materials Development, Design and Device Testing

    Energy Technology Data Exchange (ETDEWEB)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael; Barnaby, Hugo

    2013-04-30

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, which provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal's forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have

  16. Homogeneity and internal defects detect of infrared Se-based chalcogenide glass

    Science.gov (United States)

    Li, Zupana; Wu, Ligang; Lin, Changgui; Song, Bao'an; Wang, Xunsi; Shen, Xiang; Dai, Shixunb

    2011-10-01

    Ge-Sb-Se chalcogenide glasses is a kind of excellent infrared optical material, which has been enviromental friendly and widely used in infrared thermal imaging systems. However, due to the opaque feature of Se-based glasses in visible spectral region, it's difficult to measure their homogeneity and internal defect as the common oxide ones. In this study, a measurement was proposed to observe the homogeneity and internal defect of these glasses based on near-IR imaging technique and an effective measurement system was also constructed. The testing result indicated the method can gives the information of homogeneity and internal defect of infrared Se-based chalcogenide glass clearly and intuitionally.

  17. New chalcogenide glasses in the CdTe-AgI-As{sub 2}Te{sub 3} system

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M. [Univ. Picardie Jules Verne, F-80000 Amiens (France); Le Coq, D., E-mail: david.lecoq@univ-littoral.fr [Univ. Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EA 4493, F-59140 Dunkerque (France); Boidin, R.; Bychkov, E. [Univ. Lille Nord de France, F-59000 Lille (France); ULCO, LPCA, EA 4493, F-59140 Dunkerque (France)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Determination of the glass-forming region in the pseudo-ternary CdTe-AgI-As{sub 2}Te{sub 3} system. Black-Right-Pointing-Pointer Characterization of macroscopic properties of the new CdTe-AgI-As{sub 2}Te{sub 3} glasses. Black-Right-Pointing-Pointer Characterization of the total conductivity of CdTe-AgI-As{sub 2}Te{sub 3} glasses. Black-Right-Pointing-Pointer Comparison between the selenide and telluride equivalent systems. -- Abstract: Chalcogenide glasses in the pseudo-ternary CdTe-AgI-As{sub 2}Te{sub 3} system were synthesized and the glass-forming range was determined. The maximum content of CdTe in this glass system was found to be equal to 15 mol.%. The macroscopic characterizations of samples have consisted in Differential Scanning Calorimetry, density, and X-ray diffraction measurements. The cadmium telluride addition does not generate any significant change in the glass transition temperature but the resistance of binary AgI-As{sub 2}Te{sub 3} glasses towards crystallisation is estimated to be decreasing on the base of {Delta}T = T{sub x} - T{sub g} parameter. The total electrical conductivity {sigma} was measured by complex impedance spectroscopy. First, the CdTe additions in the (AgI){sub 0.5}(As{sub 2}Te{sub 3}){sub 0.5} host glass, (CdTe){sub x}(AgI){sub 0.5-x/2}(As{sub 2}Te{sub 3}){sub 0.5-x/2} lead to a conductivity decrease at x {<=} 0.05. Then, the behaviour is reversed at 0.05 {<=} x {<=} 0.15. The obtained results are discussed by comparison with the equivalent selenide system.

  18. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Czech Academy of Sciences Publication Activity Database

    Kostka, Petr; Zavadil, Jiří; Iovu, M.S.; Ivanova, Z. G.; Furniss, D.; Seddon, A.B.

    2015-01-01

    Roč. 648, NOV 5 (2015), s. 237-243 ISSN 0925-8388 R&D Projects: GA ČR GAP106/12/2384 Institutional support: RVO:67985891 ; RVO:67985882 Keywords : chalcogenide glasses * rare earth ions * low-temperature photoluminescence * optical transmission Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 3.014, year: 2015

  19. Paramagnetic centers in ternary coordinated oxygen in beryllium aluminosilicate glasses

    International Nuclear Information System (INIS)

    Blaginina, L.A.; Zatsepin, A.F.; Dmitriev, I.A.

    1988-01-01

    Glasses of the composition 3BeO-Al 2 O 3 -6SiO 2 containing a homogenizing additive of MgF 2 were synthesized. The ESR spectra of x-ray and gamma irradiated specimens were determined. A complex ESR spectrum arose in the original glass. The ESR spectrum of the gamma-irradiated polycrystalline Be 2 SiO 4 glass was almost identical to the crystallized glass. It was shown that the presence of beryllium atoms in the composition of silicate glasses created the conditions for the formation of structural fragments with ternary coordinated oxygen

  20. Diffusion of Ag ions under random potential barriers in silver-containing chalcogenide glasses

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Štěpán; Shimakawa, K.; Wágner, T.; Frumar, M.

    2012-01-01

    Roč. 45, č. 20 (2012), s. 1-5 ISSN 0022-3727 Institutional research plan: CEZ:AV0Z10100521 Keywords : Ag ion diffusion * chalcogenide glass * Nyquist plots Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.528, year: 2012 http://iopscience.iop.org/0022-3727/45/20/205304/

  1. Radiation-induced defects in chalcogenide glasses characterized by combined optical spectroscopy, XPS and PALS methods

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Kovalskiy, A.; Jain, H.; Golovchak, R.; Zurawska, A.

    2007-01-01

    Temperature-dependent optical absorption spectroscopy, high-resolution X-ray photoelectron spectroscopy and positron annihilation lifetimes spectroscopy are utilized to understand radiation-induced changes in Ge-Sb-S chalcogenide glasses. Theoretically predicted topological scheme of γ-induced coordination defect formation in stoichiometric Ge 23.5 Sb 11.8 S 64.7 glass composition is supported by these measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Thermal Stability and Optical Activity of Erbium Doped Chalcogenide Glasses for Photonics

    Science.gov (United States)

    Tonchev, D.; Koughia, K.; Kasap, S. O.; Maeda, K.; Sakai, T.; Ikuta, J.; Ivanova, Z. G.

    The glass transition and crystallization temperatures (T g , T c ), heat capacity, thermal stability and glass uniformity of GeSGa, GeSeGa, Ge(SeTe)Ga chalcogenide glasses doped with Er3+ by the addition of Er2S3 have been investigated by conventional differential scanning calorimetry (DSC) and Temperature-Modulated DSC (TMDSC). While some of the glasses have two crystallization peaks, these glasses were nonetheless optically actively and uniform. Essential optical properties have been evaluated, such as the photoluminescence (PL) intensity and lifetime as a function of the glass composition. We present typical results to emphasize some of the important characteristics of these systems and discuss trends within a glass system; and also highlight differences between glass systems.

  3. New functionality of chalcogenide glasses for radiation sensing of nuclear wastes

    International Nuclear Information System (INIS)

    Ailavajhala, M.S.; Gonzalez-Velo, Y.; Poweleit, C.D.; Barnaby, H.J.; Kozicki, M.N.; Butt, D.P.; Mitkova, M.

    2014-01-01

    Highlights: • Study of thin film chalcogenide glasses under gamma radiation and a proposed radiation sensor design. • Structural changes were observed at various radiation doses. • Formation of Ag 2 Se in Se depleted glasses with sufficient radiation dose. • In conventional semiconductor chip environment, the proposed sensor has a linear current vs. dose behavior up to 600 J/cm 2 . - Abstract: Data about gamma radiation induced effects in Ge 40 Se 60 chalcogenide thin films and radiation induced silver diffusion within these are presented. Blanket films and devices were created to study the structural changes, diffusion products, and device performance. Raman spectroscopy, X-ray diffraction, current vs. voltage (I–V) and impedance measurements expound the behavior of Ge 40 Se 60 glass and silver diffusion within this glass under radiation. Raman study shows that there is a decrease in the area ratio between edge shared and corner shared structural units revealing structural reorganization occurring in the glasses as a result of gamma radiation. X-ray diffraction studies revealed that with sufficiently radiation dose it is also possible to create Ag 2 Se in selenium-depleted systems. Oxidation of the Ge enriched chalcogenide backbone is confirmed through the electrical performance of the sensing elements based on these films. Combination of these structural and diffusion products influences the device performance. The I–V behavior is characterized by increase in current and then stabilization as a function of radiation dose. Additionally, device modeling is also presented using Silvaco software and analytical methods to shed light on the device behavior. This type of sensor design and material characterizations facilitate in improving the radiation sensing capabilities of silver containing chalcogenide glass thin films

  4. New functionality of chalcogenide glasses for radiation sensing of nuclear wastes

    Energy Technology Data Exchange (ETDEWEB)

    Ailavajhala, M.S., E-mail: m.ailavajhala@gmail.com [Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725 (United States); Gonzalez-Velo, Y. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287-5706 (United States); Poweleit, C.D. [Department of Physics, Arizona State University, Tempe, AZ 85287-5706 (United States); Barnaby, H.J.; Kozicki, M.N. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287-5706 (United States); Butt, D.P. [Department of Materials Science and Engineering, Boise State University, Boise, ID 83725 (United States); Mitkova, M., E-mail: maheshailavajhala@u.boisestate.edu [Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725 (United States)

    2014-03-01

    Highlights: • Study of thin film chalcogenide glasses under gamma radiation and a proposed radiation sensor design. • Structural changes were observed at various radiation doses. • Formation of Ag{sub 2}Se in Se depleted glasses with sufficient radiation dose. • In conventional semiconductor chip environment, the proposed sensor has a linear current vs. dose behavior up to 600 J/cm{sup 2}. - Abstract: Data about gamma radiation induced effects in Ge{sub 40}Se{sub 60} chalcogenide thin films and radiation induced silver diffusion within these are presented. Blanket films and devices were created to study the structural changes, diffusion products, and device performance. Raman spectroscopy, X-ray diffraction, current vs. voltage (I–V) and impedance measurements expound the behavior of Ge{sub 40}Se{sub 60} glass and silver diffusion within this glass under radiation. Raman study shows that there is a decrease in the area ratio between edge shared and corner shared structural units revealing structural reorganization occurring in the glasses as a result of gamma radiation. X-ray diffraction studies revealed that with sufficiently radiation dose it is also possible to create Ag{sub 2}Se in selenium-depleted systems. Oxidation of the Ge enriched chalcogenide backbone is confirmed through the electrical performance of the sensing elements based on these films. Combination of these structural and diffusion products influences the device performance. The I–V behavior is characterized by increase in current and then stabilization as a function of radiation dose. Additionally, device modeling is also presented using Silvaco software and analytical methods to shed light on the device behavior. This type of sensor design and material characterizations facilitate in improving the radiation sensing capabilities of silver containing chalcogenide glass thin films.

  5. New functionality of chalcogenide glasses for radiation sensing of nuclear wastes.

    Science.gov (United States)

    Ailavajhala, M S; Gonzalez-Velo, Y; Poweleit, C D; Barnaby, H J; Kozicki, M N; Butt, D P; Mitkova, M

    2014-03-30

    Data about gamma radiation induced effects in Ge40Se60 chalcogenide thin films and radiation induced silver diffusion within these are presented. Blanket films and devices were created to study the structural changes, diffusion products, and device performance. Raman spectroscopy, X-ray diffraction, current vs. voltage (I-V) and impedance measurements expound the behavior of Ge40Se60 glass and silver diffusion within this glass under radiation. Raman study shows that there is a decrease in the area ratio between edge shared and corner shared structural units revealing structural reorganization occurring in the glasses as a result of gamma radiation. X-ray diffraction studies revealed that with sufficiently radiation dose it is also possible to create Ag2Se in selenium-depleted systems. Oxidation of the Ge enriched chalcogenide backbone is confirmed through the electrical performance of the sensing elements based on these films. Combination of these structural and diffusion products influences the device performance. The I-V behavior is characterized by increase in current and then stabilization as a function of radiation dose. Additionally, device modeling is also presented using Silvaco software and analytical methods to shed light on the device behavior. This type of sensor design and material characterizations facilitate in improving the radiation sensing capabilities of silver containing chalcogenide glass thin films. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Luminescent properties of fluorophosphate glasses with lead chalcogenides molecular clusters

    International Nuclear Information System (INIS)

    Kolobkova, E.V.; Kukushkin, D.S.; Nikonorov, N.V.; Shakhverdov, T.A.; Sidorov, A.I.; Vasiliev, V.N.

    2015-01-01

    Fluorophosphate glasses containing lead, selenium, and sulfur exhibit an intense luminescence in the 400–620 nm spectral region when excited by the 240–420 nm radiation. This luminescence is due to the presence of (PbSe) n and/or (PbS) n molecular clusters in the glasses, which appear in the as-prepared glasses before quantum dots formation. The thermal treatment at temperatures less than the glass transition temperature results in the red-shift of the luminescence bands and in an increase in the luminescence intensity. Heating the thermally treated glass samples leads to the reversible thermal quenching of the luminescence. - Highlights: • Fluorophosphate glasses with Pb, Se, and S ions contain (PbSe) n or (PbS) n molecular clusters. • (PbSe) n and (PbS) n molecular clusters possess luminescence in the visible with UV excitation. • Heating the glass leads to the reversible thermal quenching of the luminescence

  7. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides)

    International Nuclear Information System (INIS)

    Espiau de Lamaestre, R.

    2005-04-01

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  8. Origin of the frequency shift of Raman scattering in chalcogenide glasses

    DEFF Research Database (Denmark)

    Han, X.C.; Tao, H.Z.; Gong, L.J.

    2014-01-01

    of the shift is associated with the topological connectivity of global network and/or the local environment of structural units, (e.g., tetrahedral GeSe4). Here we show the compositional evolution of the main Raman scattering frequency in Ge(SxSe1−x)2 glasses, and then clarify its structural origin. We keep...... units such as GeS4 tetrahedra. The ab-initio calculations of normal Raman mode combined with group theory analysis provide insight into the structural evolution of chalcogenide glasses with varying composition....

  9. Ageing effects in As10Se90 chalcogenide glasses induced by gamma-irradiation

    International Nuclear Information System (INIS)

    Golovchak, R.; Shpotyuk, O.; Shpotyuk, M.; Gorecki, Cz.; Kozdras, A.

    2005-01-01

    The peculiarities of gamma-induced (Co 60 source, 1.85 MGy absorbed dose) ageing phenomena in As 10 Se 90 chalcogenide glasses are investigated for the first time. The analogy between the observed radiation-induced ageing and the thermally induced one in vitreous selenium is emphasized. Like to thermal treatment, gamma-irradiation leads to an increase in the glass transition temperature and the relaxation rate towards a thermodynamic equilibrium of supercooled liquid, the value of this increase being greater in the case of radiation influence

  10. Radiation-induced defects in chalcogenide glasses characterized by combined optical spectroscopy, XPS and PALS methods

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestochowa 42201 (Poland); Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Lviv Institute of Materials of SRC ' ' Carat' ' , 202, Stryjska str., 79031 Lviv (Ukraine); Kovalskiy, A.; Jain, H. [Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Golovchak, R. [Lehigh University, 5 East Packer Avenue, Bethlehem, PA 18015-3195 (United States); Lviv Institute of Materials of SRC ' ' Carat' ' , 202, Stryjska str., 79031 Lviv (Ukraine); Zurawska, A. [Opole University of Technology, 75, Ozimska str., Opole 45370 (Poland)

    2007-03-15

    Temperature-dependent optical absorption spectroscopy, high-resolution X-ray photoelectron spectroscopy and positron annihilation lifetimes spectroscopy are utilized to understand radiation-induced changes in Ge-Sb-S chalcogenide glasses. Theoretically predicted topological scheme of {gamma}-induced coordination defect formation in stoichiometric Ge{sub 23.5}Sb{sub 11.8}S{sub 64.7} glass composition is supported by these measurements. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Glass transition behavior and crystallization kinetics of Cu0.3(SSe20)0.7 chalcogenide glass

    International Nuclear Information System (INIS)

    Soliman, A.A.

    2005-01-01

    The glass transition behavior and crystallization kinetics of Cu 0.3 (SSe 20 ) 0.7 chalcogenide glass were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD). Two crystalline phases (SSe 20 and Cu 2 Se) were identified after annealing the glass at 773 K for 24 h. The activation energy of the glass transition (E g ), the activation energy of crystallization (E c ), the Avrami exponent (n) and the dimensionality of growth (m) were determined. Results indicate that this glass crystallizes by a two-stage bulk crystallization process upon heating. The first transformation, in which SSe 20 precipitates from the amorphous matrix with a three-dimensional crystal growth. The second transformation, in which the residual amorphous phase transforms into Cu 2 Se compound with a two-dimensional crystal growth

  12. The influence of Ge on optical and thermo- mechanical properties of S-Se chalcogenide glasses

    Science.gov (United States)

    Samudrala, Kavitha; Babu Devarasetty, Suresh

    2018-05-01

    S-Se-Ge glasses were prepared by melt quenching method to investigate the effect of Germanium on thermo-mechanical and optical properties of chalcogenide glasses. The glassy nature of the samples has been verified by x-ray diffraction and DSC studies that the samples are glassy in nature. The optical band gap of the samples was estimated by the absorption spectrum fitting method. The optical band gap increased from 1.61 ev for x = 0 sample to 1.90 ev for x = 40 sample and is explained in terms of cohesive energies. The basic thermo-mechanical parameters such as micro-hardness, Volume (Vh) and formation energy (Eh) of micro voids in the glassy network, as well as the modulus of Elasticity (E) have been calculated for prepared glasses.in present glasses. The variation in these parameters with Ge content correlated with heat of atomization of alloys.

  13. Ternary chalcogenide micro-pseudocapacitors for on-chip energy storage

    KAUST Repository

    Kurra, Narendra

    2015-05-11

    We report the successful fabrication of a micro-pseudocapacitor based on ternary nickel cobalt sulfide for the first time, with performance substantially exceeding that of previously reported micro-pseudocapacitors based on binary sulfides. CoNi2S4 micro-pseudocapacitor exhibits a maximum energy density of 18.7 mWh/cm3 at a power density of 1163 mW/cm3, opens up an avenue for exploring new family of ternary oxides/sulfides based micro-pseudocapacitors.

  14. Ternary chalcogenide micro-pseudocapacitors for on-chip energy storage

    KAUST Repository

    Kurra, Narendra; Xia, Chuan; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    We report the successful fabrication of a micro-pseudocapacitor based on ternary nickel cobalt sulfide for the first time, with performance substantially exceeding that of previously reported micro-pseudocapacitors based on binary sulfides. CoNi2S4 micro-pseudocapacitor exhibits a maximum energy density of 18.7 mWh/cm3 at a power density of 1163 mW/cm3, opens up an avenue for exploring new family of ternary oxides/sulfides based micro-pseudocapacitors.

  15. Structural modification of covalent-bonded networks: on some methodological resolutions for binary chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, M; Shpotyuk, Ya; Shpotyuk, O, E-mail: shpotyukmy@yahoo.com [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 212, Stryjska str., Lviv, 79031 (Ukraine)

    2011-04-01

    New methodology to estimate efficiency of externally-induced structural modification in chalcogenide glasses is developed. This approach is grounded on the assumption that externally-induced structural modification is fully associated with destruction-polymerization transformations, which reveal themselves as local misbalances in covalent bond distribution, normal atomic coordination and intrinsic electrical fields. The input of each of these components into the total value of structural modification efficiency was probed for quasibinary (As{sub 2}S{sub 3}){sub 100-x}(Sb{sub 2}S{sub 3}){sub x} ChG.

  16. Structural modification of covalent-bonded networks: on some methodological resolutions for binary chalcogenide glasses

    International Nuclear Information System (INIS)

    Shpotyuk, M; Shpotyuk, Ya; Shpotyuk, O

    2011-01-01

    New methodology to estimate efficiency of externally-induced structural modification in chalcogenide glasses is developed. This approach is grounded on the assumption that externally-induced structural modification is fully associated with destruction-polymerization transformations, which reveal themselves as local misbalances in covalent bond distribution, normal atomic coordination and intrinsic electrical fields. The input of each of these components into the total value of structural modification efficiency was probed for quasibinary (As 2 S 3 ) 100-x (Sb 2 S 3 ) x ChG.

  17. Preparation and intercalation study of ternary transition elements chalcogenides AxMXn

    International Nuclear Information System (INIS)

    Kassem, M.

    1999-01-01

    The crystalline powders of transition elements chalcogenides have been prepared by solid-solid reaction method starting from elemental powders in evacuated and sealed quartz tubes heated at various temperatures depending on the compound to be prepared. The structures and composition of the obtained compounds have been studied by X-ray diffraction and X-ray fluorescence techniques. Intercalation compounds Co x MX 2 have been obtained by heating the powder with elemental cobalt at 500 Centigrade. The results of the structural studies show that the intercalation of cobalt is a regular phenomena and the cobalt atoms play the role of staples for the layers constructing the crystalline structure of starting materials. This stapling phenomena is accompanied by changes in distance between the layers and therefore changes in the length of bonds between the elements of compound. The changes in the length of bonds have been confirmed by the results of FTIR studies.(author)

  18. Chemical sensors in natural water: peculiarities of behaviour of chalcogenide glass electrodes for determination of copper, lead and cadmium ions

    International Nuclear Information System (INIS)

    Seleznev, B.L.; Legin, A.V.; Vlasov, Yu.G.

    1996-01-01

    Specific features of chemical sensors (chalcogenide glass and crystal ion-selective electrodes) behaviour have been studied to determine copper (2), lead, cadmium and fluorine in the course of in situ measurements, including long-term uninterrupted testing, for solving the problem of inspection over natural water contamination. 16 refs., 3 figs., 2 tabs

  19. Structure, ionic Conductivity and mobile Carrier Density in Fast Ionic Conducting Chalcogenide Glasses

    International Nuclear Information System (INIS)

    Wenlong Yao

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M 2 S + (0.1 Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga 2 S 3 + 0.9 GeS 2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M 2 S + (0.1Ga 2 S 3 + 0.9 GeS 2 ) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na 2 S + B 2 S 3 (x (le) 0.2) glasses by neutron and synchrotron x-ray diffraction. Similar results were obtained both in neutron and synchrotron x-ray diffraction experiments. The results provide direct

  20. Structure, ionic conductivity and mobile carrier density in fast ionic conducting chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Wenlong [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    This thesis consists of six sections. The first section gives the basic research background on the ionic conduction mechanism in glass, polarization in the glass, and the method of determining the mobile carrier density in glass. The proposed work is also included in this section. The second section is a paper that characterizes the structure of MI + M2S + (0.1 Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses using Raman and IR spectroscopy. Since the ionic radius plays an important role in determining the ionic conductivity in glasses, the glass forming range for the addition of different alkalis into the basic glass forming system 0.1 Ga2S3 + 0.9 GeS2 was studied. The study found that the change of the alkali radius for the same nominal composition causes significant structure change to the glasses. The third section is a paper that investigates the ionic conductivity of MI + M2S + (0.1Ga2S3 + 0.9 GeS2) (M = Li, Na, K and Cs) glasses system. Corresponding to the compositional changes in these fast ionic conducting glasses, the ionic conductivity shows changes due to the induced structural changes. The ionic radius effect on the ionic conductivity in these glasses was investigated. The fourth section is a paper that examines the mobile carrier density based upon the measurements of space charge polarization. For the first time, the charge carrier number density in fast ionic conducting chalcogenide glasses was determined. The experimental impedance data were fitted using equivalent circuits and the obtained parameters were used to determine the mobile carrier density. The influence of mobile carrier density and mobility on the ionic conductivity was separated. The fifth section is a paper that studies the structures of low-alkali-content Na2S + B2S3 (x ≤ 0.2) glasses by neutron and synchrotron x-ray diffraction

  1. Fragility of chalcogenide glass in relation to characteristic temperature T0/Tg

    Science.gov (United States)

    Shaker, A. M.; Shanker Rao, T.; Lilly Shanker Rao, T.; Venkataraman, K.

    2018-03-01

    The present study reports the mutual relationship between the fragility index m and the characteristic temperature T0/Tg. The fragility of the chalcogenide amorphous glass of Ge10Se50Te40 is calculated by utilizing glass transition temperature (Tg) measured by DSC (Differential Scanning Calorimetry) at different heating rates (β) in the range 5 to 20 K/min. Vogel-Fulcher-Tammann (VFT) equation is fitted to the data of Tg. In addition to the VFT method, three other methods are also used to evaluate m. The fragility index m of the Ge10Se50Te40 system showed the trend of decrease with increasing heating rate but remained stable around 22 for the heating rate 10 K/min. The value of m for the glass is near the lower limit (m ≈ 16) this indicates the alloy is a strong glass forming material in accordance of Angell’s interpretation of fragility. The calculated values of characteristic temperature T0/Tg is very close to 1 which also indicates that clearly the system is most fragile.

  2. Electron irradiation induced reduction of the permittivity in chalcogenide glass (As2S3) thin film

    KAUST Repository

    San Roman Alerigi, Damian; Anjum, Dalaver H.; Zhang, Yaping; Yang, Xiaoming; Ben Slimane, Ahmed; Ng, Tien Khee; Hedhili, Mohamed N.; Alsunaidi, Mohammad; Ooi, Boon S.

    2013-01-01

    In this paper, we investigate the effect of electron beam irradiation on the dielectric properties of As 2 S 3 chalcogenide glass. By means of low-loss electron energy loss spectroscopy, we derive the permittivity function, its dispersive relation, and calculate the refractive index and absorption coefficients under the constant permeability approximation. The measured and calculated results show a heretofore unseen phenomenon: a reduction in the permittivity of ? 40 %. Consequently a reduction of the refractive index of 20%, hence, suggests a conspicuous change in the optical properties of the material under irradiation with a 300 keV electron beam. The plausible physical phenomena leading to these observations are discussed in terms of the homopolar and heteropolar bond dynamics under high energy absorption. The reported phenomena, exhibited by As 2 S 3-thin film, can be crucial for the development of photonics integrated circuits using electron beam irradiation method. © 2013 American Institute of Physics.

  3. Effect of the Copper on Thermo - Mechanical and Optical Properties of S-Se-Cu Chalcogenide Glasses

    Science.gov (United States)

    Samudrala, Kavitha; Babu Devarasetty, Suresh

    2018-03-01

    The S15Se85-xCux (x = 0, 2, 4, 6, 8) chalcogenide glasses are synthesized using melt quenching technique and the effect of Copper on thermal, mechanical and optical properties of chalcogenide glasses are investigated. The glassy natures of the prepared samples were verified by X-ray diffraction and DSC studies. The optical band gap of the samples is estimated and it is observed that optical band gap is decreased with increasing of the copper content and is discussed in terms of cohesive energy and coordination number. The basic thermo-mechanical parameters such as micro-hardness, Volume (Vh) and formation energy (Eh) of micro voids in the glassy network and the modulus of Elasticity (E) are calculated in present glasses. The composition dependence of micro hardness is discussed in terms of heat of atomization energy.

  4. Mid-infrared volume diffraction gratings in IG2 chalcogenide glass: fabrication, characterization, and theoretical verification

    Science.gov (United States)

    Butcher, Helen L.; MacLachlan, David G.; Lee, David; Brownsword, Richard A.; Thomson, Robert R.; Weidmann, Damien

    2018-02-01

    Ultrafast laser inscription (ULI) has previously been employed to fabricate volume diffraction gratings in chalcogenide glasses, which operate in transmission mode in the mid-infrared spectral region. Prior gratings were manufactured for applications in astrophotonics, at wavelengths around 2.5 μm. Rugged volume gratings also have potential use in remote atmospheric sensing and molecular spectroscopy; for these applications, longer wavelength operation is required to coincide with atmospheric transparency windows (3-5 μm) and intense ro-vibrational molecular absorption bands. We report on ULI gratings inscribed in IG2 chalcogenide glass, enabling access to the full 3-5 μm window. High-resolution broadband spectral characterization of fabricated gratings was performed using a Fourier transform spectrometer. The zeroth order transmission was characterized to derive the diffraction efficiency into higher orders, up to the fourth orders in the case of gratings optimized for first order diffraction at 3 μm. The outcomes imply that ULI in IG2 is well suited for the fabrication of volume gratings in the mid infrared, providing the impact of the ULI fabrication parameters on the grating properties are well understood. To develop this understanding, grating modeling was conducted. Parameters studied include grating thickness, refractive index modification, and aspect ratio of the modulation achieved by ULI. Knowledge of the contribution and sensitivity of these parameters was used to inform the design of a 4.3 μm grating expected to achieve > 95% first order efficiency. We will also present the characterization of these latest mid-infrared diffraction gratings in IG2.

  5. Chalcogenide glass-ceramic with self-organized heterojunctions: application to photovoltaic solar cells

    Science.gov (United States)

    Zhang, Xianghua; Korolkov, Ilia; Fan, Bo; Cathelinaud, Michel; Ma, Hongli; Adam, Jean-Luc; Merdrignac, Odile; Calvez, Laurent; Lhermite, Hervé; Brizoual, Laurent Le; Pasquinelli, Marcel; Simon, Jean-Jacques

    2018-03-01

    In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2-Sb2Se3-CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3 and n-type Sb2Se3. The conductivity of Sb2Se3 has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3 and the glass-ceramic thin films give a short-circuit current density JSC of 10 mA/cm2 and an open-circuit voltage VOC of 255 mV, with a power conversion efficiency of about 0.9%.

  6. Chalcogenide glass-ceramic with self-organized heterojunctions: application to photovoltaic solar cells

    Directory of Open Access Journals (Sweden)

    Zhang Xianghua

    2018-01-01

    Full Text Available In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2–Sb2Se3–CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3 and n-type Sb2Se3. The conductivity of Sb2Se3 has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3 and the glass-ceramic thin films give a short-circuit current density JSC of 10 mA/cm2 and an open-circuit voltage VOC of 255 mV, with a power conversion efficiency of about 0.9%.

  7. Direct femtosecond laser writing of buried infrared waveguides in chalcogenide glasses

    Science.gov (United States)

    Le Coq, D.; Bychkov, E.; Masselin, P.

    2016-02-01

    Direct laser writing technique is now widely used in particular in glass, to produce both passive and active photonic devices. This technique offers a real scientific opportunity to generate three-dimensional optical components and since chalcogenide glasses possess transparency properties from the visible up to mid-infrared range, they are of great interest. Moreover, they also have high optical non-linearity and high photo-sensitivity that make easy the inscription of refractive index modification. The understanding of the fundamental and physical processes induced by the laser pulses is the key to well-control the laser writing and consequently to realize integrated photonic devices. In this paper, we will focus on two different ways allowing infrared buried waveguide to be obtained. The first part will be devoted to a very original writing process based on a helical translation of the sample through the laser beam. In the second part, we will report on another original method based on both a filamentation phenomenon and a point by point technique. Finally, we will demonstrate that these two writing techniques are suitable for the design of single mode waveguide for wavelength ranging from the visible up to the infrared but also to fabricate optical components.

  8. Thermally controlled mid-IR band-gap engineering in all-glass chalcogenide microstructured fibers: a numerical study

    DEFF Research Database (Denmark)

    Barh, Ajanta; Varshney, Ravi K.; Pal, Bishnu P.

    2017-01-01

    Presence of photonic band-gap (PBG) in an all-glass low refractive index (RI) contrast chalcogenide (Ch) microstructured optical fibers (MOFs) is investigated numerically. The effect of external temperature on the position of band-gap is explored to realize potential fiber-based wavelength filters....... Then the temperature sensitivity of band-gaps is investigated to design fiber-based mid-IR wavelength filters/sensors....

  9. Deposition of Ge{sub 23}Sb{sub 7}S{sub 70} chalcogenide glass films by electrospray

    Energy Technology Data Exchange (ETDEWEB)

    Novak, Spencer, E-mail: spencen@g.clemson.edu [Department of Materials Science and Engineering, COMSET, Clemson University, Clemson, SC (United States); College of Optics and Photonics, CREOL, University of Central FL (United States); Johnston, Danvers E.; Li, Cheng; Deng, Weiwei [Department of Mechanical and Aerospace Engineering, University of Central FL (United States); Richardson, Kathleen [Department of Materials Science and Engineering, COMSET, Clemson University, Clemson, SC (United States); College of Optics and Photonics, CREOL, University of Central FL (United States)

    2015-08-03

    Solution-based chalcogenide glass films, traditionally deposited by spin-coating, are attractive for their potential use in chip-based devices operating in the mid-infrared and for ease of nanostructure incorporation. To overcome limitations of spin-coating such as excessive material waste and difficulty for scale-up, this paper introduces electrospray as a film deposition technique for solution-based chalcogenide glasses. Electrospray is shown to produce Ge{sub 23}Sb{sub 7}S{sub 70} films with similar surface quality and optical properties as films deposited by spin-coating. The advantages of electrospray deposition for nanoparticle dispersion, scalable and continuous manufacturing with little material waste, and comparable film quality to spin-coating make electrospray a promising deposition method for practical applications of chalcogenide glass films. - Highlights: • Electrospray film deposition processing of Ge{sub 23}Sb{sub 7}S{sub 70} films was developed. • Traditional spin-coated films were also fabricated in parallel. • Optical properties and surface quality found to be similar between two approaches.

  10. Glass formation, magnetic properties and magnetocaloric effect of ternary Ho–Al–Co bulk metallic glass

    International Nuclear Information System (INIS)

    Zhang, Huiyan; Li, Ran; Ji, Yunfei; Liu, Fanmao; Luo, Qiang; Zhang, Tao

    2012-01-01

    A ternary Ho–Al–Co system with high glass-forming ability (GFA) was developed and fully glassy rods with diameters up to 1 cm can be produced for the best glass former of Ho 55 Al 27.5 Co 17.5 alloy. The thermal stability and low-temperature magnetic properties of the Ho 55 Al 27.5 Co 17.5 bulk metallic glass (BMG) were studied. The magnetic transition temperature of this alloy is ∼14 K as determined by the thermomagnetic measurement. Two indicators, i.e. isothermal magnetic entropy change (ΔS M ) and the relative cooling power (RCP), were adopted to evaluate the magnetocaloric effect (MCE) of the alloy under a low magnetic field up to 2 T, which can be generated by permanent magnets. The values of |ΔS M | and RCP are 7.98 J kg −1 K −1 and 191.5 J kg −1 , respectively. The Ho 55 Al 27.5 Co 17.5 BMG with good MCE and high GFA provides an attractive candidate for magnetic refrigeration applications, like hydrogen liquefaction and storage. - Highlights: ► A ternary Ho–Al–Co BMG system with high glass-forming ability was developed. ► Fully glassy rods of Ho 55 Al 27.5 Co 17.5 alloy were produced up to 1 cm in diameter. ► The thermal stability and magnetic properties of the BMG were evaluated. ► The BMG exhibits good magnetocaloric effect under a low magnetic field up to 2 T.

  11. Chalcogenide glasses for device application modified by high-energy irradiation

    International Nuclear Information System (INIS)

    Kavetskyy, T.; Shpotyuk, O.

    2006-01-01

    Full text: Chalcogenide glasses (ChG) or chemical compounds of chalcogen atoms (S, Se or Te, but not O) with some elements from IV-th and V-th groups of the Periodic Table (typically As, Ge, Sb, Bi, etc. ) obtained by melt quenching, are a perspective for application in modern optoelectronics, photonics, telecommunications, acoustic-optics, xerography, lithography, etc. This uniqueness is due to extremely high sensitivity of ChG to external influences, associated, presumably, with high steric flexibility proper to glassy-like network with low average atomic coordination (chalcogen atoms are typically two-fold coordinated in a glassy-like network), relatively large internal free volume and specific lp-character of electronic states localized at a valence-band top. However, at present, the further possibilities for conventional chemical/technological methods to prepare ChG are fully exhausted. One of the steps to resolve this problem is post-technological modification of ChG using possibilities of high-energy irradiation. This work is focused on new advanced radiation-modified ChG for device application in optoelectronics. The attractive practical use of these non-crystalline materials is tightly connected with radiation-induced defect formation processes. For the first time, we consider the possibilities of Raman scattering along with X-ray diffraction and positron annihilation lifetime spectroscopy to characterize microstructural mechanisms of radiation-induced effects in ChG. (authors)

  12. Infrared waveguide fabrications with an E-beam evaporated chalcogenide glass film

    KAUST Repository

    Yang, Xiaoming

    2014-12-12

    Chalcogenide glasses have a variety of unique optical properties due to the intrinsic structural flexibility and bonds metastability. They are desirable materials for many applications, such as infrared communication sensors, holographic grating, optical imaging, and ultrafast nonlinear optic devices. Here, we introduce a novel electron-beam evaporation process to deposit the good quality arsenic trisulfide (As2S3) films and then the As2S3 films were used to fabricate the As2S3 waveguides with three approaches. The first method is photoresist lift-off. Because of the restriction of thermal budget of photoresist, the As2S3 film must be deposited at the room temperature. The second one is the silicon dioxide lift-off process on sapphire substrates, in which the As2S3 film could be evaporated at a high temperature (>180 °C) for better film quality. The third one is the plasma etching process with a metal protective thin layer in the pattern development process.

  13. Neutron diffraction study of structural transformations in ternary systems of HgSe sub 1 sub - sub x S sub x mercury chalcogenides at high pressure

    CERN Document Server

    Voronin, V I; Berger, I F; Glazkov, V P; Kozlenko, D P; Savenko, B N; Tikhomirov, S V

    2001-01-01

    The structure of the ternary systems of the HgSe sub 1 sub - sub x S sub x mercury chalcogenides is studied at high pressures up to 35 kbar. It is established that by increase in the pressure in the HgSe sub 1 sub - sub x S sub x there takes place the transition from the sphalerite type cubic structure to the cinnabar type hexagonal structure, which is accompanied by the jump-like change in the elementary cell volume and interatomic distances. The parameters of the elementary cell and positional parameters of the Hg and Se/S for the hexagonal phase of high pressure are determined. The existence of the two-phase state in the area of the phase transformation is determined

  14. Atomistic approach to predict the glass-forming ability in Zr–Cu–Al ternary metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.Y. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, X.J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zheng, G.P. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Niu, X.R. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, C.T., E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-04-05

    Highlights: • An atomistic approach has been developed to predict the glass forming ability (GFA) in Zr–Cu–Al ternary alloy system. • Both of the thermodynamic and structure-dependent kinetic effects to glass formation have been taken into account. • The first-principles calculation and molecular dynamics simulation have been performed. • The approach predicts the best glass former in the model Zr–Cu–Al alloy system. • The predicted GFA is consistent with various experimental results. - Abstract: Prediction of composition-dependent glass-forming ability (GFA) remains to be a key scientific challenge in the metallic-glass community, especially in multi-component alloy systems. In the present study, we apply an atomistic approach to predict the trend of GFA effectively in the Zr–Cu–Al ternary alloy system from alloy compositions alone. This approach is derived from the first-principles calculations based on the density-functional theory and molecular dynamic (MD) simulations. By considering of both the thermodynamic and atomic-structure induced kinetic effects, the predicted GFA trend from this approach shows an excellent agreement with experimental data available in this alloy system, manifesting its capability of seeking metallic glasses with superior GFA in ternary alloy systems.

  15. High-precision measurements of the compressibility of chalcogenide glasses at a hydrostatic pressure up to 9 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Brazhkin, V. V., E-mail: brazhkin@hppi.troitsk.ru [Vereshchagin Institute of High-Pressure Physics (Russian Federation); Bychkov, E. [Universite du Littoral, LPCA, UMR 8101 CNRS (France); Tsiok, O. B. [Vereshchagin Institute of High-Pressure Physics (Russian Federation)

    2016-08-15

    The volumes of glassy germanium chalcogenides GeSe{sub 2}, GeS{sub 2}, Ge{sub 17}Se{sub 83}, and Ge{sub 8}Se{sub 92} are precisely measured at a hydrostatic pressure up to 8.5 GPa. The stoichiometric GeSe{sub 2} and GeS{sub 2} glasses exhibit elastic behavior in the pressure range up to 3 GPa, and their bulk modulus decreases at pressures higher than 2–2.5 GPa. At higher pressures, inelastic relaxation processes begin and their intensity is proportional to the logarithm of time. The relaxation rate for the GeSe{sub 2} glasses has a pronounced maximum at 3.5–4.5 GPa, which indicates the existence of several parallel structural transformation mechanisms. The nonstoichiometric glasses exhibit a diffuse transformation and inelastic behavior at pressures above 1–2 GPa. The maximum relaxation rate in these glasses is significantly lower than that in the stoichiometric GeSe{sub 2} glasses. All glasses are characterized by the “loss of memory” of history: after relaxation at a fixed pressure, the further increase in the pressure returns the volume to the compression curve obtained without a stop for relaxation. After pressure release, the residual densification in the stoichiometric glasses is about 7% and that in the Ge{sub 17}Se{sub 83} glasses is 1.5%. The volume of the Ge{sub 8}Se{sub 92} glass returns to its initial value within the limits of experimental error. As the pressure decreases, the effective bulk moduli of the Ge{sub 17}Se{sub 83} and Ge{sub 8}Se{sub 92} glasses coincide with the moduli after isobaric relaxation at the stage of increasing pressure, and the bulk modulus of the stoichiometric GeSe{sub 2} glass upon decreasing pressure noticeably exceeds the bulk modulus after isobaric relaxation at the stage of increasing pressure. Along with the reported data, our results can be used to draw conclusions regarding the diffuse transformations in glassy germanium chalcogenides during compression.

  16. Effect of temperature and pressure on non-linear conduction in GeTeSe chalcogenide glass

    International Nuclear Information System (INIS)

    El-Mansy, M.K.

    1998-01-01

    The I-V characteristic curves were studied in the temperature range 301-359 K and pressure range up to 7.15 x 10 9 Pa which illustrate a non-linear behaviour below (high-resistance region) and beyond (negative-resistance region) a breakdown point characterising Ge 27 Te 62 Se 11 chalcogenide glasses. The general behaviour is shifted towards lower voltage and higher current when the ambient temperature and/or the applied pressure were increased. The non-linear behaviour in the pre breakdown region is discussed according to the Poole-Frenkel field emission of electrons from deep traps located at a depth equal to 0.372eV. The analysis of the effect of field on the non-linear conduction in Ge 27 Te 62 Se 11 chalcogenide glass suggests a modification of the energy difference between filled and empty sites, where the effect of pressure suggests a reduction of the energy gap width. The analysis based on simple thermal effects in the region closer to the breakdown point implies the electrothermal process initiating the negative resistance region. The results of post breakdown region (negative-resistance region) imply the electron hopping between filled and empty localised states at Fermi level. The density of localised states is estimated which lies in the range 5.7 x 10 16 -1.84 x 10 18 cm -3 /eV

  17. Calorimetric signature of structural heterogeneity in a ternary silicate glass

    DEFF Research Database (Denmark)

    Zhang, Yanfei; Yang, G.; Yue, Yuanzheng

    2013-01-01

    We investigate the structural heterogeneity in a silicate glass by hyperquenching–annealing–calorimetry approach. The results show a striking phenomenon: two separated sub-Tg relaxation peaks appear on the calorimetric curve of the hyperquenched CaO–MgO–SiO2 glass, implying the existence of two...... distinct structural domains of higher and lower potential energies, respectively. The higher energy domains in nanoscale are so unstable that they become ordered during hyperquenching. This is verified by the high-resolution transmission electron microscopy image exhibiting nanoordered domains in the glass...... matrix. The higher energy domains relax similar to a strong glass phase, whereas the lower energy domains do similar to a fragile one....

  18. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    Science.gov (United States)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  19. Ternary superconductors

    International Nuclear Information System (INIS)

    Giorgi, A.L.

    1987-01-01

    Ternary superconductors constitute a class of superconducting compounds with exceptional properties such as high transition temperatures (≅ 15.2 K), extremely high critical fields (H c2 >60 Tesla), and the coexistence of superconductivity and long-range magnetic order. This has generated great interest in the scientific community and resulted in a large number of experimental and theoretical investigations in which many new ternary compounds have been discovered. A review of some of the properties of these ternary compounds is presented with particular emphasis on the ternary molybdenum chalcogenides and the ternary rare earth transition metal tetraborides. The effect of partial substitution of a second metal atom to form pseudoternary compounds is examined as well as some of the proposed correlations between the superconducting transition temperature and the structural and electronic properties of the ternary superconductors

  20. Structural features of spin-coated thin films of binary AsxS100−x chalcogenide glass system

    International Nuclear Information System (INIS)

    Cook, J.; Slang, S.; Golovchak, R.; Jain, H.; Vlcek, M.; Kovalskiy, A.

    2015-01-01

    Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As x S 100−x (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As 2 O 3 was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films

  1. Composition design and mechanical properties of ternary Cu–Zr–Ti bulk metallic glasses

    International Nuclear Information System (INIS)

    Pan, Ye; Zeng, Yuqiao; Jing, Lijun; Zhang, Lu; Pi, Jinhong

    2014-01-01

    Highlights: • Newly designed monolithic bulk metallic glasses are of good glass-forming ability. • Cu 50 Zr 44 Ti 6 exhibits excellent plastic deformation up to ∼7.4%. • Copious and intersected shear bans are observed in the fractography of Cu 50 Zr 44 Ti 6 . • Cu 50 Zr 44 Ti 6 has the best plasticity in the ternary Cu–Zr–Ti bulk metallic glasses. - Abstract: The new compositions of ternary Cu–Zr–Ti bulk metallic glasses are predicted by integrating calculation of vacancy formation energy, mixing enthalpy and configuration entropy of the alloys based on thermodynamics of glass formers. The monolithic amorphous rods of 3 mm diameter have been successfully fabricated, and characterized by X-ray diffractometry, differential scanning calorimetry, scanning electronic microscopy, transmission electronic microscopy and compression tests. The results show that the designed alloys possess good glass forming ability and excellent mechanical properties. The mechanical properties of the samples can be effectively improved by regulating their composition. The monolithic amorphous rod of Cu 50 Zr 44 Ti 6 exhibits a high fracture strength of 1855 MPa and excellent plastic deformation up to ∼7.4%. The formation and propagation of shear bands in samples are also investigated. The enhancement of plastic deformation is mainly contributed to multiplication and intersection of shear bands

  2. Glass forming tendencies of chalcogenides of the system (As2Se3)sub(1-x):(T12Se)sub(x)

    International Nuclear Information System (INIS)

    Majid, C.A.

    1982-07-01

    In this paper glass forming capabilities of chalcogenide glasses based on As 2 Se 3 with T1 2 Se concentrations are discussed. The studies were made using the differential thermal analysis (DTA) technique. These studies show that the glass forming tendency of As 2 Se 3 decreases as the concentrations of T1 2 Se molecules are increased. Also these studies show that with addition of T1 2 Se, the glass transition temperature Tsub(g) of As 2 Se 3 decreases, suggesting a tendency for weaker bonding and hence less stability of T1-rich compositions. (author)

  3. Thermal analysis of chalcogenide glasses of the system (As/sub/2Se/sub/3)/sub/(1-x):(Tl/sub/2Se)/sub/x

    International Nuclear Information System (INIS)

    Majid, C.A.

    1987-01-01

    In this paper differential thermal analysis (DTA) measurements of chalcogenide glasses of the system (As/sub/2Se/sub/3)/sub/(1-x): (Tl/sub/2Se)/sub/x, with x=0, 0.125, 0.25 and 0.50 are reported. The glass-forming tendencies of these materials have been calculated. The glass-forming tendency of As/sub/2Se/sub/3 has been found to be the highest among the member glasses of this family of chalcogenides. It was found that the glass-forming tendency of As/sub/2Se/sub/3 decreasing gradually at the Tl/sub/2/Se concentration increases. Tl/sub/2Se additions lower the glass transition temperature T/sub/q and the area under the endothermic peak for glass transition temperature, suggesting a tendency for relatively weaker bonding and hence less stability of Tl-rich glass compositions. These studies show that Tl/sub/2Se concentrations result in glasses with progressively higher crystallization tendencies. (author)

  4. Molecular dynamics study of the ternary Cu50Ti25Zr25 bulk glass forming alloy

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available The structure and thermodynamic properties of a ternary Cu50Ti25Zr25 metallic glass forming alloy in solid-liquid to glass phases were studied using molecular dynamics (MD method based on tight-binding (TB potentials. An atomic description of the melting, glass formation and crystallization process has been analyzed using different heating and cooling rates. The computed Glass Forming Ability (GFA parameters are in good agreement with experimental data. The structure analysis of the Cu50Ti25Zr25 based on molecular dynamics simulation will be also presented and compared with available MD results. We have also discussed the crystallization transition with two different interatomic potentials used in this work

  5. Glass forming ability: Miedema approach to (Zr, Ti, Hf)-(Cu, Ni) binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Chemical, Materials and Biomolecular Engineering, 191 Auditorium Road, University of Connecticut, Storrs 06269, CT (United States)], E-mail: jbasu@engr.uconn.edu; Murty, B.S. [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Ranganathan, S. [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India)

    2008-10-06

    Miedema's approach has been useful in determining the glass forming composition range for a particular alloy system. The concept of mixing enthalpy and mismatch entropy can be used in order to quantify Inoue's criteria of bulk metallic glass formation. In the present study, glass forming composition range has been determined for different binary and ternary (Zr, Ti, Hf)-(Cu, Ni) alloys based on the mixing enthalpy and mismatch entropy calculations. Though copper and nickel appear next to each other in the periodic table, the glass forming ability of the copper and nickel bearing alloys is different. Thermodynamic analysis reveals that the glass forming behaviour of Zr and Hf is similar, whereas it is different from that of Ti. The smaller atomic size of Ti and the difference in the heat of mixing of Ti, Zr, Hf with Cu and Ni leads to the observed changes in the glass forming behaviour. Enthalpy contour plots can be used to distinguish the glass forming compositions on the basis of the increasing negative enthalpy of the composition. This method reveals the high glass forming ability of binary Zr-Cu, Hf-Cu, Hf-Ni systems over a narrow composition range.

  6. Ge and As x-ray absorption fine structure spectroscopic study of homopolar bonding, chemical order, and topology in Ge-As-S chalcogenide glasses

    International Nuclear Information System (INIS)

    Sen, S.; Ponader, C.W.; Aitken, B.G.

    2001-01-01

    The coordination environments of Ge and As atoms in Ge x As y S 1-x-y glasses with x:y=1:2, 1:1, and 2.5:1 and with wide-ranging S contents have been studied with Ge and As K-edge x-ray absorption fine structure spectroscopy. The coordination numbers of Ge and As atoms are found to be 4 and 3, respectively, in all glasses. The first coordination shells of Ge and As atoms in the stoichiometric and S-excess glasses consist of S atoms only, implying the preservation of chemical order at least over the length scale of the first coordination shell. As-As homopolar bonds are found to appear at low and intermediate levels of S deficiency, whereas Ge-Ge bonds are formed only in strongly S-deficient glasses indicating clustering of metal atoms and violation of chemical order in S-deficient glasses. The composition-dependent variation in chemical order in chalcogenide glasses has been hypothesized to result in topological changes in the intermediate-range structural units. The role of such topological transitions in controlling the structure-property relationships in chalcogenide glasses is discussed

  7. Low-temperature photoluminescence in chalcogenide glasses doped with rare-earth ions

    Energy Technology Data Exchange (ETDEWEB)

    Kostka, Petr, E-mail: petr.kostka@irsm.cas.cz [Institute of Rock Structure and Mechanics AS CR, V Holešovičkách 41, 182 09 Praha 8 (Czech Republic); Zavadil, Jiří [Institute of Photonics and Electronics AS CR, Chaberská 57, 182 51 Praha 8, Kobylisy (Czech Republic); Iovu, Mihail S. [Institute of Applied Physics, Academy of Sciences of Moldova, Str. Academiei 5, MD-28 Chisinau, Republic of Moldova (Moldova, Republic of); Ivanova, Zoya G. [Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Furniss, David; Seddon, Angela B. [Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2015-11-05

    Sulfide and oxysulfide bulk glasses Ga-La-S-O, Ge-Ga-S and Ge-Ga-As-S doped, or co-doped, with various rare-earth (RE{sup 3+}) ions are investigated for their room temperature transmission and low-temperature photoluminescence. Photoluminescence spectra are collected by using external excitation into the Urbach tail of the fundamental absorption edge of the host-glass. The low-temperature photoluminescence spectra are dominated by the broad-band luminescence of the host glass, with superimposed relatively sharp emission bands due to radiative transitions within 4f shells of RE{sup 3+} ions. In addition, the dips in the host-glass luminescence due to 4f-4f up-transitions of RE{sup 3+} ions are observed in the Ge-Ga-S and Ge-Ga-As-S systems. These superimposed narrow effects provide a direct experimental evidence of energy transfer between the host glass and respective RE{sup 3+} dopants. - Highlights: • An evidence of energy transfer from host-glass to doped-in RE ions is presented. • Energy transfer is manifested by dips in host-glass broad-band luminescence. • This channel of energy transfer is documented on selected RE doped sulfide glasses. • Photoluminescence spectra are dominated by broad band host-glass luminescence. • Presence of RE ions is manifested by superimposed narrow 4f-4f transitions.

  8. Composition Range and Glass Forming Ability of Ternary Ca-Mg-Cu Bulk Metallic Glasses (Preprint)

    National Research Council Canada - National Science Library

    Senkov, O. N; Scott, J. M; Miracle, D. B

    2006-01-01

    .... The maximum thickness at which an alloy remains fully amorphous, glass transition temperature, crystallization temperature, temperature interval of the super-cooled region, solidus and liquidus...

  9. Thermodynamic and topological instability approaches for forecasting glass-forming ability in the ternary Al-Ni-Y system

    International Nuclear Information System (INIS)

    Oliveira, M.F. de; Aliaga, L.C.R.; Bolfarini, C.; Botta, W.J.; Kiminami, C.S.

    2008-01-01

    A thermodynamic approach to predict bulk glass-forming compositions in binary metallic systems was recently proposed. In this approach, the parameter γ* = ΔH amor /(ΔH inter - ΔH amor ) indicates the glass-forming ability (GFA) from the standpoint of the driving force to form different competing phases, and ΔH amor and ΔH inter are the enthalpies for glass and intermetallic formation, respectively. Good glass-forming compositions should have a large negative enthalpy for glass formation and a very small difference for intermetallic formation, thus making the glassy phase easily reachable even under low cooling rates. The γ* parameter showed a good correlation with GFA experimental data in the Ni-Nb binary system. In this work, a simple extension of the γ* parameter is applied in the ternary Al-Ni-Y system. The calculated γ* isocontours in the ternary diagram are compared with experimental results of glass formation in that system. Despite some misfitting, the best glass formers are found quite close to the highest γ* values, leading to the conclusion that this thermodynamic approach can be extended to ternary systems, serving as a useful tool for the development of new glass-forming compositions. Finally the thermodynamic approach is compared with the topological instability criteria used to predict the thermal behavior of glassy Al alloys

  10. Strongly nonlinear optical glass fibers from noncentrosymmetric phase-change chalcogenide materials.

    Science.gov (United States)

    Chung, In; Jang, Joon I; Malliakas, Christos D; Ketterson, John B; Kanatzidis, Mercouri G

    2010-01-13

    We report that the one-dimensional polar selenophosphate compounds APSe(6) (A = K, Rb), which show crystal-glass phase-change behavior, exhibit strong second harmonic generation (SHG) response in both crystal and glassy forms. The crystalline materials are type-I phase-matchable with SHG coefficients chi((2)) of 151.3 and 149.4 pm V(-1) for K(+) and Rb(+) salts, respectively, which is the highest among phase-matchable nonlinear optical (NLO) materials with band gaps over 1.0 eV. The glass of APSe(6) exhibits comparable SHG intensities to the top infrared NLO material AgGaSe(2) without any poling treatments. APSe(6) exhibit excellent mid-IR transparency. We demonstrate that starting from noncentrosymmetric phase-change materials such as APSe(6) (A = K, Rb), we can obtain optical glass fibers with strong, intrinsic, and temporally stable second-order nonlinear optical (NLO) response. The as-prepared glass fibers exhibit SHG and difference frequency generation (DFG) responses over a wide range of wavelengths. Raman spectroscopy and pair distribution function (PDF) analyses provide further understanding of the local structure in amorphous state of KPSe(6) bulk glass and glass fiber. We propose that this approach can be widely applied to prepare permanent NLO glass from materials that undergo a phase-change process.

  11. Phase change and optical band gap behavior of Se0.8S0.2 chalcogenide glass films

    International Nuclear Information System (INIS)

    Abdel Rafea, M.; Farid, Huda

    2009-01-01

    Se 0.8 S 0.2 chalcogenide glass films have been prepared by thermal vacuum evaporation technique with thickness 583 nm. Annealing process at T ≥ 333 K crystallizes the films and nanostructured films are formed. The crystallite size was increased to 24 nm as the annealing temperature increased to 373 K. Orthorhombic crystalline system was identified for the annealed films. SEM micrographs show that films consist of two parallel surfaces and the thickness was determined by cross section imaging. The optical transmittance is characterized by interference patterns as a result of these two parallel surfaces, besides their average value at longer wavelength decreases as a result of annealing process. The band gap, E g is red shifted due to crystallization by annealing. As the phase of the films changes from amorphous to crystalline in the annealing temperature range 333-363 K, a non sharp change of the band gap (E g ) is observed. This change was explained by Brus's model of the energy gap confinement behavior of the nanostructured films. The optical refractive index increases suddenly when the system starts to be crystallized by annealing

  12. Fabrication and characterization of Ge20Sb15Se65 chalcogenide glass rib waveguides for telecommunication wavelengths

    International Nuclear Information System (INIS)

    Li, Jun; Shen, Xiang; Sun, Junqiang; Vu, Khu; Choi, Duk-Yong; Wang, Rongping; Luther-Davies, Barry; Dai, Shixun; Xu, Tiefeng; Nie, Qiuhua

    2013-01-01

    We report on the fabrication and optical properties of Ge 20 Sb 15 Se 65 chalcogenide glass rib waveguides on a single photonic chip. Radio-frequency magnetron sputtering method is employed to deposit 1.36-μm-thick films and reactive ion etching with CHF 3 is used to pattern 0.76-μm-deep rib waveguides of 1–4 μm wide with low surface roughness and vertical sidewalls. Using lensed fibers, the insertion losses for rib waveguides of different widths are measured and propagation losses are estimated to be lower than 1 dB/cm. Finite difference method simulations and refractive index/curve fitting are used to observe a moderate normal dispersion of the waveguides at 1550 nm. - Highlights: • RF magnetron sputtering was used to deposit uniform Ge 20 Sb 15 Se 65 thin films. • CHF 3 reactive ion etching of rib waveguides vertical profile and smooth sidewall. • Insertion losses at 1550 nm measured and low propagation losses estimated. • Dispersion engineered by finite difference methods and refractive curve fitting

  13. ac conductivity and dielectric properties of amorphous Se80Te20-xGex chalcogenide glass film compositions

    International Nuclear Information System (INIS)

    Hegab, N.A.; Afifi, M.A.; Atyia, H.E.; Farid, A.S.

    2009-01-01

    Thin films of the prepared Se 80 Te 20-x Ge x (x = 5, 7 and 10 at.%) were prepared by thermal evaporation technique. X-ray diffraction patterns showed that the films were in amorphous state. The ac conductivity and dielectric properties of the investigated film compositions were studied in the frequency range 0.1-100 kHz and in temperature range (303-373 K). The experimental results indicated that the ac conductivity and the dielectric properties depended on the temperature and frequency. The ac conductivity is found to obey the ω s law, in accordance with the hopping model, s is found to be temperature dependent (s 1 and dielectric loss ε 2 were found to decrease with frequency and increase with temperature. The maximum barrier height W m , calculated from dielectric measurements according to Guintini equation, agrees with that proposed by the theory of hopping over potential barrier as suggested by Elliott in case of chalcogenide glasses. The density of localized states was estimated for the studied film compositions. The variation of the studied properties with Ge content was also investigated.

  14. Elastic phases in Gex Sb x Se 100-2x ternary glasses

    Science.gov (United States)

    Gunasekera, K.; Boolchand, P.; Micoulaut, M.

    2011-03-01

    The rigidity and stress phase transitions in titled ternary glasses are examined in Raman scattering, modulated DSC and molar volume measurements, and found to occur at x c (1) = 14.9% (rigidity) and x c (2) = 17.5% (stress). Raman scattering provides evidence of the structural motifs populated in these networks. Using Size Increasing Cluster Agglomeration, Rigidity theory and the decoded structural motifs, we have calculated the rigidity and stress transitions in the first step of agglomeration to occur at x c (1)t = 15.2 % and x c (2)t = 17.5 % respectively, in reasonable accord with experiments. Theory predicts and experiments confirm that these transitions will coalesce if edge-sharing Ge- tetrahedral motifs were absent in the structure, a circumstance that prevails in the Ge-deficient Ge 7 Sb x Se 93-x ternary, where a narrow IP is reported. These results underscore the central role played by topology in determining the elastic phases of network glasses. Supported by NSF grant DMR 08-53957.

  15. Energy Transfer between Post-Transition Elements & Rare Earths in Oxide & Chalcogenide Glasses.

    Science.gov (United States)

    1979-08-27

    Caird [13]. A calculation of reduced matrix elements of Pr3 in 20 Na O • 80 TeO2 glass [14] showed that they differ slightly from data of ref. [121... glasses Transition (lass 35 ZnO 65 TeO2 20 Na2 O 80 TeO 2 fX 106 fX 106 l.,eas 3a, a) Ia’l. faI f.me.s f al f+ I fal 3 H4 - 3 H6 1.56 1.65 1.12...Rare-Earth Doped Glasses 20. jIST HAEV CCnFn~m ,i cn,on ra e sideit If c."*Ar’ -- ~ 14-r by t?-h.c .: r Intensity parameters, radiative transition

  16. Engineering of refractive index in sulfide chalcogenide glass by direct laser writing

    KAUST Repository

    Zhang, Yaping; Gao, Yangqin; Ng, Tien Khee; Ooi, Boon S.; Chew, Basil; Hedhili, Mohamed N.; Zhao, Donghui; Jain, Himanshu

    2010-01-01

    Arsenic trisulfide (As2S3) glass is an interesting material for photonic integrated circuits (PICs) as infrared (IR) or nonlinear optical components. In this paper, direct laser writing was applied to engineer the refractive index of As2S3 thin film

  17. Mechanical relaxation in chalcogenide glasses of the Ge-As-S system

    International Nuclear Information System (INIS)

    Bilanych, V.S.; Melnychenko, T.D.; Rizak, V.M.; Makauz, I.I.

    2006-01-01

    The temperature and frequency-related dependences of the internal friction and the shear modulus in Ge x As 40-x S 60 glasses have been studied. The maxima of internal friction of both the relaxation and non relaxation types have been found in the low-temperature range. A relaxation maximum has been revealed in the vitrification region, and its parameters have been determined. Possible mechanisms of these processes have been discussed

  18. Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers

    DEFF Research Database (Denmark)

    Markos, Christos

    2016-01-01

    the air-capillaries of the fiber based on a solution-processed glass approach. The deposited high-index layers revealed antiresonant transmission windows from similar to 500 nm up to similar to 1300 nm. We experimentally demonstrate for the first time the possibility to thermally-tune the revealed....../degrees C at 1300 nm. The proposed fiber device could potentially constitute an efficient route towards realization of monolithic tunable fiber filters or sensing elements....

  19. On the structural-optical correlations in radiation-modified chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kavetskyy, T; Tsmots, V [Solid State Microelectronics Laboratory, Drohobych Ivan Franko State Pedagogical University, 24 I. Franko Str., Drohobych, 82100 (Ukraine); Kaban, I; Hoyer, W [Institute of Physics, Chemnitz University of Technology, 09107 Chemnitz (Germany); Shpotyuk, O, E-mail: kavetskyy@yahoo.com [Institute of Materials, Scientific Research Company ' Carat' , 202 Stryjska Str., Lviv, 79031 (Ukraine)

    2011-04-01

    In this work, we report our recent results on the gamma-irradiation-induced structural transformations in the Ge-Sb-S glasses as observed from the structural studies using high-energy synchrotron x-ray diffraction and extended x-ray absorption fine structure spectroscopy in comparison with the optical measurements using VIS/IR spectroscopy techniques. The structural-optical correlations in the radiation-induced effects are established. The structural changes upon irradiation are explained in the frames of the concept of coordination topological defects formation.

  20. On the structural-optical correlations in radiation-modified chalcogenide glasses

    International Nuclear Information System (INIS)

    Kavetskyy, T; Tsmots, V; Kaban, I; Hoyer, W; Shpotyuk, O

    2011-01-01

    In this work, we report our recent results on the gamma-irradiation-induced structural transformations in the Ge-Sb-S glasses as observed from the structural studies using high-energy synchrotron x-ray diffraction and extended x-ray absorption fine structure spectroscopy in comparison with the optical measurements using VIS/IR spectroscopy techniques. The structural-optical correlations in the radiation-induced effects are established. The structural changes upon irradiation are explained in the frames of the concept of coordination topological defects formation.

  1. The effects of Sn addition on properties and structure in Ge-Se chalcogenide glass

    Science.gov (United States)

    Fayek, S. A.

    2005-01-01

    Far infrared transmission spectra of homogeneous compositions in the glassy alloy system Ge 1- xSn xSe 2.5 0⩽ x⩽0.6 have been observed in the spectral range 200-500 cm -1 at room temperature. The infrared absorption spectra show strong bands around 231, 284 and 311 cm -1 which were assigned to GeSe, SeSn, Se-Se. Tin atoms appear to substitute for the germanium atoms in the outrigger sites of Ge(Se 1/2) 4 tetrahedra up to 0.4. For x>0.5, the glasses show a new vibrational band of an isolated F 2 mode of the Ge-centered tetrahedra outside the clusters. A pronounced peculiarity (maximum or minimum) appeared at around the same value of the average coordination number at Z=2.65 for all composition dependence topological phase transition from two-dimensional (2D) layer type to three- dimensional (3D) cross-linked network structures in the glass. It is clear that the theoretical ν-values for Se-Se bond is less than the experimental one and that for Se-Ge is greater than the experimental one. This difference may be due to the existence of more close lying modes which tends to broaden the absorption bands. Quantitative justification of the absorption bands shows that theoretical wave numbers agree with its experimental values for Ge-Se stretching vibration bond.

  2. Quantitative analysis of crystalline and remaining glass phases in CaO-B2O3-SiO2 ternary system glass ceramics

    International Nuclear Information System (INIS)

    He Ming; Wu Mengqiang; Zhang Shuren; Zhou Xiaohua; Zhang Ting; Chen Song

    2010-01-01

    Research highlights: → As for CBS ternary system glass ceramics, due to the complex phase compositions, many methods could be difficult to determine quantitatively the absolute amounts of crystalline and remaining oxides. In this study, an available method based on the Rietveld method was used to quantitatively analyze the relative weight fraction and densities of crystalline phases. These above data are used to obtain a table of both relative weight fraction of crystalline phases and densities of all phases including CBS LTCC. Using volume additivity rule, it is possible to analysis quantitatively the absolute weight fraction of crystalline phases and also the oxides molar content in the remaining glass. - Abstract: Based on Rietveld method of X-ray techniques and volume additivity rule, a new method was developed to quantitatively analyze the phase composition of CaO-B 2 O 3 -SiO 2 ternary system glass ceramics. Lattice parameters, densities and relative weight fractions of crystalline phases in CaO-B 2 O 3 -SiO 2 ternary system were obtained by X-ray diffraction (XRD) refinement. According to the relative weight fraction of crystalline phases and densities of various components, the volume additivity rule was revealed by calculating the absolute weight fraction of crystalline phases of CaO-B 2 O 3 -SiO 2 glass ceramics. In addition, molar contents of the oxides in the remaining glass can also be determined by this method. Comparing this method with internal standard method, it is found that the maximum deviations of the crystallinity and the absolute weight fraction of crystalline phases are less than 2.6% and 2.9%, respectively. As a result, quantitative evaluation of CaO-B 2 O 3 -SiO 2 ternary system glass ceramics can be achieved using this method.

  3. Engineering of refractive index in sulfide chalcogenide glass by direct laser writing

    KAUST Repository

    Zhang, Yaping

    2010-01-01

    Arsenic trisulfide (As2S3) glass is an interesting material for photonic integrated circuits (PICs) as infrared (IR) or nonlinear optical components. In this paper, direct laser writing was applied to engineer the refractive index of As2S3 thin film. Film samples were exposed to focused above bandgap light with wavelength at 405 nm using different fluence adjusted by laser power and exposure time. The index of refraction before and after laser irradiation was calculated by fitting the experimental data obtained from Spectroscopic Ellipsometer (SE) measurement to Tauc-Lorenz dispersion formula. A positive change in refractive index (Δn = 0.19 at 1.55 μm) as well as an enhancement in anisotropy was achieved in As2S3 film by using 10 mW, 0.3 μs laser irradiation. With further increasing the fluence, refractive index increased while anisotropic property weakened. Due to the rapid and large photo-induced modification of refractive index obtainable with high spatial resolution, this process is promising for integrated optic device fabrication.

  4. Influence of annealing conditions on the optical and structural properties of spin-coated As(2)S(3) chalcogenide glass thin films.

    Science.gov (United States)

    Song, Shanshan; Dua, Janesha; Arnold, Craig B

    2010-03-15

    Spin-coating of chalcogenide glass is a low-cost, scalable method to create optical grade thin films, which are ideal for visible and infrared applications. In this paper, we study the influence of annealing on optical parameters of As(2)S(3) films by examining UV-visible and infrared spectroscopy and correlating the results to changes in the physical properties associated with solvent removal. Evaporation of excess solvent results in a more highly coordinated, denser glass network with higher index and lower absorption. Depending on the annealing temperature and time, index values ranging from n = 2.1 to the bulk value (n = 2.4) can be obtained, enabling a pathway to materials optimization.

  5. Interatomic potential to predict the favored and optimized compositions for ternary Cu-Zr-Hf metallic glasses

    International Nuclear Information System (INIS)

    Luo, S. Y.; Cui, Y. Y.; Dai, Y.; Li, J. H.; Liu, B. X.

    2012-01-01

    Under the framework of smoothed and long range second-moment approximation of tight-binding, a realistic interatomic potential was first constructed for the Cu-Zr-Hf ternary metal system. Applying the constructed potential, Monte Carlo simulations were carried out to compare the relative stability of crystalline solid solution versus its disordered counterpart over the entire composition triangle of the system (as a function of alloy composition). Simulations not only reveal that the origin of metallic glass formation but also determine, in the composition triangle, a quadrilateral region, within which metallic glass formation is energetically favored. It is proposed to define the energy differences between the crystalline solid solutions and disordered states as the driving force for amorphization and the corresponding calculations pinpoint an optimized composition locating at an composition of Cu 55 Zr 10 Hf 35 , around which the driving force for metallic glass formation reaches its maximum, suggesting that the ternary Cu-Zr-Hf metallic glasses designed to have the compositions around Cu 55 Zr 10 Hf 35 could be more stable than other alloys in the system. Moreover, for the Cu 55 Zr 10 Hf 35 metallic glass, the Voronoi tessellation calculations reveal some interesting features of its atomic configurations and coordination polyhedra distribution.

  6. Atomistic modeling to investigate the favored composition for metallic glass formation in the Ca-Mg-Ni ternary system.

    Science.gov (United States)

    Zhao, S; Li, J H; An, S M; Li, S N; Liu, B X

    2017-05-17

    A realistic interatomic potential was first constructed for the Ca-Mg-Ni system and then applied to Monte Carlo simulations to predict the favored composition for metallic glass formation in the ternary system. The simulations not only predict a hexagonal composition region, within which the Ca-Mg-Ni metallic glass formation is energetically favored, but also pinpoint an optimized sub-region within which the amorphization driving force, i.e. the energy difference between the solid solution and disordered phase, is larger than that outside. The simulations further reveal that the physical origin of glass formation is the solid solution collapsing when the solute atom exceeds the critical solid solubility. Further structural analysis indicates that the pentagonal bi-pyramids dominate in the optimized sub-region. The large atomic size difference between Ca, Mg and Ni extends the short-range landscape and facilitates the development of a hybridized packing model in the medium-range, and eventually enhancing the glass formation in the system. The predictions are well supported by the experimental observations reported so far, and could be of help for designing the ternary glass formation.

  7. Photo-Darkening Kinetics and Structural Anisotropic Modifications in the Chalcogenide Glass Arsenic Trisulfide: a Study of Kinetic X-Ray Absorption Spectroscopy

    Science.gov (United States)

    Lee, Jay Min

    1990-08-01

    The purpose of the study is to investigate the mechanisms involved with photo-induced atomic structural modifications in the chalcogenide glass As_2 S_3. This glass exhibits the reversible effects of photo-darkening followed by thermal bleaching. We observed the time behavior of photo-induced properties under the influence of linearly polarized band -gap light. In a macroscopic optical investigation, we monitor optical changes in the photo-darkening process, and in a local structural probe we study kinetic (or time -resolved dispersive) x-ray absorption spectroscopy. Our observations center on kinetic phenomena and structural modifications induced by polarized excitation of lone-pair orbitals in the chalcogenide glass. Experimental results include the following observations: (i) The polarity of the optically induced anisotropy is critically dependent on the intensity and the polarization of the band-gap irradiation beam. (ii) The near edge peak height in x-ray absorption spectra shows subtle but sensitive change during the photo-darkening process. (iii) Photon intensity dependent dichroic kinetics reflect a connection between the optically probed macroscopic property and the x-ray probed local anisotropic structure. Analysis of the x-ray absorption results includes a computer simulation of the polarized absorption spectra. These results suggest that specific structural units tend to orient themselves with respect to the photon polarization. A substantial part of the analysis involves a major effort in dealing with the x-ray kinetic data manipulation and the experimental difficulties caused by a synchrotron instability problem. Based on our observations, we propose a possible mechanism for the observed photo-structural modifications. Through a model of computer relaxed photo-darkening kinetics, we support the notion that a twisting of a specific intermediate range order structure is responsible for local directional variations and global network distortions. In the

  8. Structural features of spin-coated thin films of binary As{sub x}S{sub 100−x} chalcogenide glass system

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J. [Austin Peay State University, Clarksville, TN 37075 (United States); Slang, S. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Golovchak, R. [Austin Peay State University, Clarksville, TN 37075 (United States); Jain, H. [International Materials Institute for New Functionality in Glass, Lehigh University, Bethlehem, PA 18015 (United States); Vlcek, M. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Kovalskiy, A., E-mail: kovalskyya@apsu.edu [Austin Peay State University, Clarksville, TN 37075 (United States)

    2015-08-31

    Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As{sub x}S{sub 100−x} (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As{sub 2}O{sub 3} was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films.

  9. Conduction mechanism and the dielectric relaxation process of a-Se75Te25-xGax (x=0, 5, 10 and 15 at wt%) chalcogenide glasses

    International Nuclear Information System (INIS)

    Yahia, I.S.; Hegab, N.A.; Shakra, A.M.; Al-Ribaty, A.M.

    2012-01-01

    Se 75 Te 25-x Ga x (x=0, 5, 10 and 15 at wt%) chalcogenide compositions were prepared by the well known melt quenching technique. Thin films with different thicknesses in the range (185-630 nm) of the obtained compositions were deposited by thermal evaporation technique. X-ray diffraction patterns indicate that the amorphous nature of the obtained films. The ac conductivity and the dielectric properties of the studied films have been investigated in the frequency range (10 2 -10 5 Hz) and in the temperature range (293-333 K). The ac conductivity was found to obey the power low ω s where s≤1 independent of film thickness. The temperature dependence of both ac conductivity and the exponent s can be well interpreted by the correlated barrier hopping (CBH) model. The experimental results of the dielectric constant ε 1 and dielectric loss ε 2 are frequency and temperature dependent. The maximum barrier height W m calculated from the results of the dielectric loss according to the Guintini equation, and agrees with that proposed by the theory of hopping of charge carriers over a potential barrier as suggested by Elliott for chalcogenide glasses. The density of localized state was estimated for the studied film compositions. The variation of the studied properties with Ga content was also investigated. The correlation between the ac conduction and the dielectric properties were verified.

  10. Amorphous chalcogenides advances and applications

    CERN Document Server

    Wang, Rong Ping

    2014-01-01

    This book provides a comprehensive overview of the chalcogenide glass science and various applications based on the glasses. It starts with a review on the glass-forming ability of various systems, followed by a discussion on the structural and physical properties of various chalcolgenide glasses and their application in integrated optics. The chapters have been contributed by prominent experts from all over the world, and therefore, the book presents the recent research advances in the area. This book will appeal to anyone who is involved in glass science and technology and glass application.

  11. Electrical switching phenomenon and memory effect in the semiconductor chalcogenide glass Ge0.10 As0.20 Te0.70

    International Nuclear Information System (INIS)

    Haro, M.; Marquez, E.; Villares, P.; Jimenez-Garay, R.

    1987-01-01

    Electrical switching phenomenon, as well as the memory effect in the semiconductor chalcogenide glass Ge 0.10 As 0.20 Te 0.70 has been studied. A device with a plano-punctual interelectrode configuration has been designed and built, so that the electrical stimuli may be applied correctly. This device permits adequate positioning of the upper electrode, as well as contact pressure regulation. The I-V characteristics in the OFF-state have been obtained, showing a marked non-linear character. Equally, a relation has been found between the threshold voltage and electrical resistance parameters, indicating that the electrical power giving rise to the phenomenon is constant. Finally, memory effects showing a sudden reduction in electrical resistance, as well as interelectrode filaments, have been observed. (author)

  12. Strong composition-dependence on glass-forming ability in Ni-(Ti,Zr)-Si pseudo-ternary alloys

    International Nuclear Information System (INIS)

    Yang, H.; Wang, J.Q.; Li, Y.

    2006-01-01

    The glass formation in Ni-(Ti,Zr)-Si pseudo-ternary alloys was studied. For suction casting, by carefully adjusting the alloy composition and studying the microstructure changes, the best glass-forming alloy with a 2 mm diameter is pinpointed in a narrow composition region of 57.5-58.5 at.% Ni, 36.5-38.5 at.% (Ti + Zr) and 5-5.5 at.% Si. The main competing crystalline phases, identified by XRD and SEM, were Ni 10 (Zr,Ti) 7 , Ni(Ti,Zr) and an unidentified Si-containing phase. Our results indicate a clear need for monitoring the microstructure change in the cross section of the ingots to locate the best glass-forming alloys

  13. A low temperature co-fired ceramic power inductor manufactured using a glass-free ternary composite material system

    Science.gov (United States)

    Li, Yuanxun; Xie, Yunsong; Xie, Ru; Chen, Daming; Han, Likun; Su, Hua

    2018-03-01

    A glass-free ternary composite material system (CMS) manufactured employing the low temperature ( 890 ° C ) co-fired ceramic (LTCC) technique is reported. This ternary CMS consists of silver, NiCuZn ferrite, and Zn2SiO4 ceramic. The reported device fabricated from this ternary CMS is a power inductor with a nominal inductance of 1.0 μH. Three major highlights were achieved from the device and the material study. First, unlike most other LTCC methods, no glass is required to be added in either of the dielectric materials in order to co-fire the NiCuZn ferrite, Zn2SiO4 ceramic, and silver. Second, a successfully co-fired silver, NiCuZn, and Zn2SiO4 device can be achieved by optimizing the thermal shrinkage properties of both NiCuZn and Zn2SiO4, so that they have a very similar temperature shrinkage profile. We have also found that strong non-magnetic elemental diffusion occurs during the densification process, which further enhances the success rate of manufacturing co-fired devices. Last but not least, elemental mapping suggests that strong magnetic elemental diffusion between NiCuZn and Zn2SiO4 has been suppressed during the co-firing process. The investigation of electrical performance illustrates that while the ordinary binary CMS based power inductor can deal with 400 mA DC, the ternary CMS based power inductor is able to handle higher DC currents, 700 mA and 620 mA DC, according to both simulation and experiment demonstrations, respectively.

  14. Calculation of glass forming ranges in Al-Ni-RE (Ce, La, Y) ternary alloys and their sub-binaries based on Miedema's model

    International Nuclear Information System (INIS)

    Sun, S.P.; Yi, D.Q.; Liu, H.Q.; Zang, B.; Jiang, Y.

    2010-01-01

    Research highlights: → A method based on semi-empirical Miedema's and Toop's model for predicting glass forming range of ternary alloy system has been systematically described. → The method is superior to conventional models by considering the effect of the thermodynamic asymmetric component when dealing with a ternary alloy system. → The glass forming ranges of Al-Ni-RE (Al-Ni-Ce, Al-Ni-Y and Al-Ni-La) systems and their sub-binaries have been successfully calculated. → The present calculations using the method are in well agreement with experiments. → This model is especially useful for predicting the glass forming range of ternary alloy system because the calculations do not require experimental data. - Abstract: A method based on the semi-empirical Miedema's and Toop's model for calculating the glass forming range of a ternary alloy system was systematically described. The method is superior to conventional models by considering the effect of the thermodynamic asymmetric component when dealing with a ternary alloy system. Using this method, the glass forming ranges of Al-Ni-RE (Ce, La, Y) systems and their sub-binaries were successfully predicted. The mixing enthalpy and mismatch entropy were calculated, and their effects on the glass forming abilities of Al-Ni-RE (Ce, La, Y) systems were also discussed. The glass forming abilities of Al-Ni-Ce, Al-Ni-La and Al-Ni-Y are found to be close. The calculated glass forming ranges agree with experiments well. Meanwhile, the enthalpy change from amorphous phase to solid solution in the glass forming ranges was calculated, and the results suggest that those alloys close to the Ni-RE sub-binary system have higher glass forming abilities.

  15. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149 ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  16. Glass forming in La2O3-TiO2-ZrO2 ternary system by containerless processing

    Science.gov (United States)

    Kaneko, Masashi; Kentei Yu, Yu; Kumar, Vijaya; Masuno, Atsunobu; Inoue, Hiroyuki; Odawara, Osamu; Yoda, Shinichi

    The containerless processing is an appropriate method to create new glasses, because it sup-presses nucleation at the boundary between liquid and crucible during solidification and it enables molten samples to be solidified without crystallization. Recently, we have succeeded in forming BaTi2 O5 glass in the bulk state by using an aerodynamic levitation furnace. BaTi2 O5 glass includes no traditional glass network former and it possesses high electric permittivity [1, 2]. From the point of view of optical application, BaTi2 O5 glass has high refractive indices over 2.1. BaTi2 O5 glass, however, vitrify only in a small sphere, and it crystallize when its diameter exceed 1.5 mm. In order to synthesize new titanate oxide glasses which possess higher refractive indices and larger diameter than BaTi2 O5 , La and Zr can be used as substitutive components. When Ba is replaced with La, refractive indices are expected to increase because of the heavier element. The addition of a third element is thought to be effective for enhance-ment of glass formation ability and Zr can be a candidate because Ti and Zr are homologous. In this research, we have succeeded in forming new bulk glass in La2 O3 -TiO2 -ZrO2 ternary system by means of the aerodynamic levitation furnace. We investigated the glass forming region, thermal properties and optical properties of La2 O3 -TiO2 -ZrO2 glass. Glass transition temperature, crystallization temperature, density, refractive indices and transmittance spectra were varied depending on the chemical composition. Reference [1] J. Yu et al, "Fabrication of BaTi2O5 Glass-Ceramics with Unusual Dielectric Properties during Crystallization", Chem-istry of Materials, 18 (2006) 2169-2173. [2] J. Yu et al., "Comprehensive Structural Study of Glassy and Metastable Crystalline BaTi2O5", Chemistry of Materials, 21 (2009) 259-263.

  17. Optical Properties of Ternary TeO2-B2O3-ZnO Glass System

    Energy Technology Data Exchange (ETDEWEB)

    Ayuni, J N; Halimah, M K; Talib, Z A; Sidek, H A A; Daud, W M; Zaidan, A W; Khamirul, A M, E-mail: nfarhanayuni@gmail.com, E-mail: halimah@science.upm.edu.my [Department of Physics, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    A series of ternary tellurite based glasses [(TeO2)70 (B203)30]100-x [ZnO]x glasses with different compositions of ZnO (x= 5 to 30 wt.% in steps of 5 wt.%) have been synthesized by melt quenching method. The role of ZnO to the glasses structure was studied by IR spectroscopy. FTIR spectra revealed broad, weak and strong absorption bands in the investigated range of wavenumber from 280-4000 cm-1 which associated with their corresponding bond modes of vibration and the glass structure. The indirect optical band gap and the direct optical band gap are in the range 2.08-3.12 and 1.54-2.36 eV, respectively. A decrease in the values of energy band gap Eg may come down to the reason that the non-bridging oxygen ion content increases with increasing ZnO content and shifting the band edge to lower energies. The optical band gap and Urbach energies were calculated from the absorption spectra measured between 190 and 900 nm at room temperature. The refractive index, n of the glasses change from 1.84-2.00 while the molar refractivities decrease from 13.06 to 12.00 with the increase of ZnO in mol%.

  18. Optical properties of ternary TeO2-B2O3-ZnO Glass system

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Halimah, M.K.; Talib, Z.A.; Sidek, H.A.A.; Daud, W.M.; Zaidan, A.W.; Khamirul, A.M.

    2009-01-01

    Full text: A series of ternary tellurite based glasses [ (TeO 2 ) 70 (B 2 0 3 ) 30 ] 100-x [ZnO] x glasses with different compositions of ZnO (x= 5 to 30 wt.% in steps of 5 wt.%) have been synthesized by melt quenching method. The role of ZnO to the glasses structure was studied by IR spectroscopy. FTIR spectra revealed broad, weak and strong absorption bands in the investigated range of wavenumber from 280 - 4000 cm -1 which associated with their corresponding bond modes of vibration and the glass structure. The indirect optical band gap and the direct optical band gap are in the range 2.08-3.12 and 1.54-2.36 eV, respectively. An increase in the values of energy band gap E g may come down to the reason that the non-bridging oxygen ion content decreases with increasing ZnO content and shifting the band edge to higher energies. The optical band gap and Urbach energies were calculated from the absorption spectra measured between 190 and 900 nm at room temperature. The refractive index, n of the glasses change from 1.84 - 2.00 while the molar refractivities decrease from 13.06 to 12.00 with the increase of ZnO in mol %. (author)

  19. Optical Properties of Ternary TeO2-B2O3-ZnO Glass System

    International Nuclear Information System (INIS)

    Ayuni, J N; Halimah, M K; Talib, Z A; Sidek, H A A; Daud, W M; Zaidan, A W; Khamirul, A M

    2011-01-01

    A series of ternary tellurite based glasses [(TeO2)70 (B203)30]100-x [ZnO]x glasses with different compositions of ZnO (x= 5 to 30 wt.% in steps of 5 wt.%) have been synthesized by melt quenching method. The role of ZnO to the glasses structure was studied by IR spectroscopy. FTIR spectra revealed broad, weak and strong absorption bands in the investigated range of wavenumber from 280-4000 cm-1 which associated with their corresponding bond modes of vibration and the glass structure. The indirect optical band gap and the direct optical band gap are in the range 2.08-3.12 and 1.54-2.36 eV, respectively. A decrease in the values of energy band gap Eg may come down to the reason that the non-bridging oxygen ion content increases with increasing ZnO content and shifting the band edge to lower energies. The optical band gap and Urbach energies were calculated from the absorption spectra measured between 190 and 900 nm at room temperature. The refractive index, n of the glasses change from 1.84-2.00 while the molar refractivities decrease from 13.06 to 12.00 with the increase of ZnO in mol%.

  20. Physico-chemical and optical properties of Er3+-doped and Er3+/Yb3+-co-doped Ge25Ga9.5Sb0.5S65 chalcogenide glass.

    Czech Academy of Sciences Publication Activity Database

    Himics, D.; Střižík, L.; Holubová, J.; Beneš, L.; Pálka, K.; Frumarová, Božena; Oswald, Jiří; Tverjanovich, A. S.; Wágner, T.

    2017-01-01

    Roč. 89, č. 4 (2017), s. 429-436 ISSN 0033-4545. [International Conference Solid State Chemistry 2016 /12./. Prague, 18.09.2016-23.09.2016] Institutional support: RVO:61389013 ; RVO:68378271 Keywords : chalcogenide glasses * erbium * Ga-Ge-Sb-S Subject RIV: CA - Inorganic Chemistry; CA - Inorganic Chemistry (FZU-D) OBOR OECD: Inorganic and nuclear chemistry; Inorganic and nuclear chemistry (FZU-D) Impact factor: 2.626, year: 2016

  1. Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography.

    Science.gov (United States)

    Cazac, V; Meshalkin, A; Achimova, E; Abashkin, V; Katkovnik, V; Shevkunov, I; Claus, D; Pedrini, G

    2018-01-20

    Surface relief gratings and refractive index gratings are formed by direct holographic recording in amorphous chalcogenide nanomultilayer structures As 2 S 3 -Se and thin films As 2 S 3 . The evolution of the grating parameters, such as the modulation of refractive index and relief depth in dependence of the holographic exposure, is investigated. Off-axis digital holographic microscopy is applied for the measurement of the photoinduced phase gratings. For the high-accuracy reconstruction of the wavefront (amplitude and phase) transmitted by the fabricated gratings, we used a computational technique based on the sparse modeling of phase and amplitude. Both topography and refractive index maps of recorded gratings are revealed. Their separated contribution in diffraction efficiency is estimated.

  2. Development of Cu-Hf-Al ternary systems and tungsten wire/particle reinforced Cu48Hf43Al9 bulk metallic glass composites for strengthening

    International Nuclear Information System (INIS)

    Park, Joyoung; An, Jihye; Choi-Yim, Haein

    2010-01-01

    Stable bulk glass forming alloys can be developed over a wide range of compositions in Cu-Hf-Al ternary systems starting from the Cu 49 Hf 42 Al 9 bulk metallic glass. Ternary Cu-Hf-Al alloys can be cast directly from the melt into copper molds to form fully amorphous strips with thicknesses of 1 to 6 mm. The maximum critical diameter of the new Cu-Hf-Al ternary alloy was 6 mm. X-ray diffraction patterns were used to confirm the amorphous nature of the ternary Cu-Hf-Al alloys. To increase the toughness of these metallic glasses, we reinforced the Cu 48 Hf 43 Al 9 bulk metallic glass-forming liquid with a 50% volume fraction of tungsten particles and an 80% volume fraction of tungsten wires with diameters of 242.4 μm. Composites with a critical diameter of 7 mm and length 70 mm were synthesized. The structure of the composites was confirmed by using X-ray diffraction (XRD), and the scanning electron microscopy (SEM). The mechanical properties of the composites were studied in compression tests. The thermal stability and the crystallization processes of the Cu-Hf-Al alloys and composites were investigated by using differential scanning calorimetry (DSC). Values of the glass transition temperature (T g ), the crystallization temperature (T x ), and the supercooled liquid region (ΔT = T x - T g ) are given in this paper.

  3. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives

    Science.gov (United States)

    Abdelghany, A. M.; Ouis, M. A.; Azooz, M. A.; ElBatal, H. A.; El-Bassyouni, G. T.

    2016-01-01

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680 cm-1 after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content.

  4. Role of SrO on the bioactivity behavior of some ternary borate glasses and their glass ceramic derivatives.

    Science.gov (United States)

    Abdelghany, A M; Ouis, M A; Azooz, M A; ElBatal, H A; El-Bassyouni, G T

    2016-01-05

    Borate glasses containing SrO substituting both CaO and NaO were prepared and characterized for their bioactivity or bone bonding ability. Glass ceramic derivatives were prepared by thermal heat treatment process. FTIR, XRD and SEM measurements for the prepared glass and glass-ceramics before and after immersion in sodium phosphate solution for one and two weeks were carried out. The appearance of two IR peaks within the range 550-680cm(-1) after immersion in phosphate solution indicates the formation of hydroxyapatite or equivalent Sr phosphate layer. X-ray diffraction data agree with the FTIR spectral analysis. The solubility test was carried out for both glasses and glass ceramics derivatives in the same phosphate solution. The introduction of SrO increases the solubility for both glasses and glass ceramics and this is assumed to be due to the formation of Sr phosphate which is more soluble than calcium phosphate (hydroxyapatite). SEM images reveal varying changes in the surfaces of glass ceramics after immersion according to the SrO content. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Self induced gratings in ternary SiO2:SnO2:Na2O bulk glasses by UV light seeding.

    Science.gov (United States)

    Lancry, M; Douay, M; Niay, P; Beclin, F; Menke, Y; Milanese, D; Ferraris, M; Poumellec, B

    2005-09-05

    The diffraction efficiency of gratings written in ternary SnO2:SiO2:Na2O bulk glasses rises dramatically with time after the occultation of the cw 244nm light used to write the thick hologram. This self-induced behavior lasts for several hours and ultimately leads to refractive index changes as high as 3 10-3.

  6. X-ray electron spectra of chalcogenide glasses and polycrystalline alloys of Ge-Te and As-Te systems

    International Nuclear Information System (INIS)

    Panus, V.R.

    1990-01-01

    Comparative investigation into structures of crystals and glasses in Ge-Te and As-Te two-component systems was conducted. Analysis of x-ray electron spectra of Ge-Te and As-Te systems indicates, that processes of dissociation-association resulting in formation of new structure units occur in telluride melts at synthesis temperatures. Structural chemical composition of binary glass-like alloys of Ge-Te and As-Te systems differs essentially from the one that corresponds to fusibility equilibrium curve. Oxygen doping into tellurium-base glasses results mainly in occurence of structures forecasted due to thermochemical calculation

  7. Uniform deposition of ternary chalcogenide nanoparticles onto mesoporous TiO{sub 2} film using liquid carbon dioxide-based coating

    Energy Technology Data Exchange (ETDEWEB)

    Nursanto, Eduardus Budi [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology,217, Gajeong-ro, Yuseong-gu, Daejeon 305–333 (Korea, Republic of); Park, Se Jin [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Jeon, Hyo Sang; Hwang, Yun Jeong [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology,217, Gajeong-ro, Yuseong-gu, Daejeon 305–333 (Korea, Republic of); Kim, Jaehoon, E-mail: jaehoonkim@skku.edu [School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon, GyeongGi-Do 440–746 (Korea, Republic of); SKKU Advanced Institute of Nano Technology (SAINT), 2066, Seobu-Ro, Jangan-Gu, Suwon, GyeongGi-Do 440–746 (Korea, Republic of); Min, Byoung Koun, E-mail: bkmin@kist.re.kr [Clean Energy Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136–791 (Korea, Republic of); Department of Clean Energy and Chemical Engineering, Korea University of Science and Technology,217, Gajeong-ro, Yuseong-gu, Daejeon 305–333 (Korea, Republic of); Green School, Korea University, 145,Anam-ro, Seongbuk-gu, Seoul 136–713 (Korea, Republic of)

    2014-08-28

    We report the simultaneous deposition of two different metal precursors dissolved in liquid carbon dioxide (l-CO{sub 2}), aiming to the synthesis of ternary chalcopyrite (e.g. CuInS{sub 2}) nanoparticles on a mesoporous TiO{sub 2} film. The l-CO{sub 2}-based deposition of Cu and In precursors and subsequent reaction with a dilute H{sub 2}S gas resulted in Cu{sub x}In{sub y}S{sub z} nanoparticles uniformly deposited across the entire thickness of a mesoporous TiO{sub 2} film. Further heat treatment (air annealing and sulfurization) led to the formation of more stoichiometric CuInS{sub 2} nanoparticles. The formation of CuInS{sub 2} on TiO{sub 2} was confirmed by scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, and Raman spectroscopy. The crystal growth of CuInS{sub 2} was also found to be controllable by adjusting the number of coating cycles of the l-CO{sub 2}-based deposition. - Highlights: • Simultaneous deposition of two different metal precursors dissolved in l-CO{sub 2}. • Uniform deposition of CuInS{sub 2} nanoparticles across mesoporous TiO{sub 2} film. • Highly crystalline CuInS{sub 2} formed on mesoporous TiO{sub 2} film. • Nearly stoichiometric ratio of Cu:In:S was obtained.

  8. Fabrication of ultrafast laser written low-loss waveguides in flexible As₂S₃ chalcogenide glass tape.

    Science.gov (United States)

    Lapointe, Jerome; Ledemi, Yannick; Loranger, Sébastien; Iezzi, Victor Lambin; Soares de Lima Filho, Elton; Parent, Francois; Morency, Steeve; Messaddeq, Younes; Kashyap, Raman

    2016-01-15

    As2S3 glass has a unique combination of optical properties, such as wide transparency in the infrared region and a high nonlinear coefficient. Recently, intense research has been conducted to improve photonic devices using thin materials. In this Letter, highly uniform rectangular single-index and 2 dB/m loss step-index optical tapes have been drawn by the crucible technique. Low-loss (writing process in thin glass is also presented to facilitate a repeatable waveguide inscription recipe.

  9. Stability and electronic structure of Zr-based ternary metallic glasses and relevant compounds

    International Nuclear Information System (INIS)

    Hasegawa, M.; Soda, K.; Sato, H.; Suzuki, T.; Taketomi, T.; Takeuchi, T.; Kato, H.; Mizutani, U.

    2007-01-01

    The electronic structure of the Zr-based metallic glasses has been investigated by theoretical and experimental approaches. One approach is band calculations of the Zr 2 Ni (Zr 66.7 Ni 33.3 ) compound to investigate the electronic structure of the Zr 66.7 Ni 33.3 metallic glass (ΔT x = 0 K) of which the local atomic structure is similar to that of the Zr 2 Ni compound. The other is photoemission spectroscopy of the Zr 50 Cu 35 Al 15 bulk metallic glass (BMG) (ΔT x = 69 K). Here ΔT x = T x - T g where T x and T g are crystallization and glass transition temperature, respectively. Both results and previous ones on the Zr 55 Cu 30 Ni 5 Al 10 BMG indicate that there is a pseudogap at the Fermi level in the electronic structure of these Zr-based metallic glasses, independent of the value of the ΔT x . This implies that the pseudogap at the Fermi level is one of the factors that stabilize the glass phase of Zr-based metallic glasses

  10. Glass-forming ability and stability of ternary Ni-early transition metal (Ti/Zr/Hf) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Joysurya [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India); Ranganathan, S. [Department of Metallurgy, Indian Institute of Science, Bangalore 560 012 (India)]. E-mail: rangu@met.iisc.ernet.in

    2006-08-15

    Four Ni-bearing Ti, Zr and Hf ternary alloys of nominal composition Zr{sub 41.5}Ti{sub 41.5}Ni{sub 17}, Zr{sub 25}Ti{sub 25}Ni{sub 50}, Zr{sub 41.5}Hf{sub 41.5}Ni{sub 17} and Ti{sub 41.5}Hf{sub 41.5}Ni{sub 17} were rapidly solidified in order to produce ribbons. The Zr-Ti-Ni and Ti-Hf-Ni alloys become amorphous, whereas the Zr-Hf-Ni alloy shows precipitation of a cubic phase. The devitrification of all three alloys was followed and the relative tendency to form nanoquasicrystals and cF96 phases analysed. The relative glass-forming ability of the alloys can be explained by taking into account their atomic size difference. Addition of Ni often leads to quasicrystallisation or quasicrystal-related phases. This can be explained by the atomic radius and heat of mixing of the constituent elements. The phases precipitated at the initial stages of crystallisation indicate the possible presence of Frank-Kasper polyhedral structure in the amorphous alloys. Structural analysis reveals that the Laves and the anti-Laves phases have the same polyhedral structural unit, which is similar to the structural characteristics of glass.

  11. Bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber composite: biomechanical properties and biocompatibility.

    Science.gov (United States)

    Qiao, Bo; Li, Jidong; Zhu, Qingmao; Guo, Shuquan; Qi, Xiaotong; Li, Weichao; Wu, Jun; Liu, Yang; Jiang, Dianming

    2014-01-01

    An ideal bone plate for internal fixation of bone fractures should have good biomechanical properties and biocompatibility. In this study, we prepared a new nondegradable bone plate composed of a ternary nano-hydroxyapatite/polyamide 66/glass fiber (n-HA/PA66/GF) composite. A breakage area on the n-HA/PA66/GF plate surface was characterized by scanning electron microscopy. Its mechanical properties were investigated using bone-plate constructs and biocompatibility was evaluated in vitro using bone marrow-derived mesenchymal stem cells. The results confirmed that adhesion between the n-HA/PA66 matrix and the glass fibers was strong, with only a few fibers pulled out at the site of breakage. Fractures fixed by the n-HA/PA66/GF plate showed lower stiffness and had satisfactory strength compared with rigid fixation using a titanium plate. Moreover, the results with regard to mesenchymal stem cell morphology, MTT assay, Alizarin Red S staining, enzyme-linked immunosorbent assay, and reverse transcription polymerase chain reaction for alkaline phosphatase and osteocalcin showed that the n-HA/PA66/GF composite was suitable for attachment and proliferation of mesenchymal stem cells, and did not have a negative influence on matrix mineralization or osteogenic differentiation of mesenchymal stem cells. These observations indicate that the n-HA/PA66/GF plate has good biomechanical properties and biocompatibility, and may be considered a new option for internal fixation in orthopedic surgery.

  12. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides); Synthese assistee par faisceau d'ions d'agregats dans les verres (argent et chalcogenures de plomb)

    Energy Technology Data Exchange (ETDEWEB)

    Espiau de Lamaestre, R

    2005-04-15

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  13. On the optical band gap in certain ternary phosphate and TeO2 based glasses

    Czech Academy of Sciences Publication Activity Database

    Tichá, H.; Tichý, Ladislav

    2011-01-01

    Roč. 5, č. 12 (2011), s. 1277-1281 ISSN 1842-6573 Institutional research plan: CEZ:AV0Z40500505 Keywords : optical band gap * heavy metal oxide glasses Subject RIV: CA - Inorganic Chemistry Impact factor: 0.304, year: 2011 http://oam-rc.inoe.ro/index.php?option=magazine&op=view&idu=1737&catid=69

  14. Ab initio determination of ion traps and the dynamics of silver in silver-doped chalcogenide glass

    International Nuclear Information System (INIS)

    Chaudhuri, I.; Inam, F.; Drabold, D. A.

    2009-01-01

    We present a microscopic picture of silver dynamics in GeSe 3 :Ag glass obtained from the ab initio simulation. The dynamics of Ag is explored at two temperatures: 300 and 700 K. In the relaxed network, Ag occupies trapping centers that exist between suitably separated host sites. At 700 K, Ag motion proceeds via a trapping-release dynamics between 'supertraps' or cages consisting of multiple trapping center sites in a small volume. Our work offers a first-principles identification of trapping centers invoked in current theories, with a description of their properties and associated Ag dynamics. We compute the charge state of the Ag in the network and show that it is neutral if weakly bonded and Ag + if in a trapping center

  15. Atomic- and void-species nanostructures in chalcogenide glasses modified by high-energy γ-irradiation

    International Nuclear Information System (INIS)

    Kavetskyy, T.; Shpotyuk, O.; Kaban, I.; Hoyer, W.

    2007-01-01

    Atomic- and void-species nanostructures are studied in As 2 S 3 glass in unmodified and γ-modified states using a combination of conventional X-ray diffraction with respect to the first sharp diffraction peak, synchrotron-based high-energy X-ray diffraction and extended X-ray absorption fine structure spectroscopy. The experimental data are analyzed taking into account radiation-induced changes in the parameters of the first sharp diffraction peak (position, full width at half maximum, intensity), packing factor, structural disordering, atomic and void topology, coordination number and mean square deviation in bond length. The origin of the structural modification effect induced by γ-irradiation is explained in terms of coordination topological defects model. (authors)

  16. Growth Mechanism of Nanowires: Ternary Chalcogenides

    Science.gov (United States)

    Singh, N. B.; Coriell, S. R.; Hopkins, R. H.; Su, Ching Hua; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    In the past two decades there has been a large rise in the investment and expectations for nanotechnology use. Almost every area of research has projected improvements in sensors, or even a promise for the emergence of some novel device technologies. For these applications major focuses of research are in the areas of nanoparticles and graphene. Although there are some near term applications with nanowires in photodetectors and other low light detectors, there are few papers on the growth mechanism and fabrication of nanowire-based devices. Semiconductor nanowires exhibit very favorable and promising optical properties, including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here an overview of the mechanism of nanowire growth from the melt, and some preliminary results for the thallium arsenic selenide material system. Thallium arsenic selenide (TAS) is a multifunctional material combining excellent acousto-optical, nonlinear and radiation detection properties. We observed that small units of (TAS) nanocubes arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. In some cases very long wires (less than mm) are formed. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places.

  17. Chalcogenides Metastability and Phase Change Phenomena

    CERN Document Server

    Kolobov, Alexander V

    2012-01-01

    A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.

  18. Thulium pumped mid-infrared 0.9–9μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers

    DEFF Research Database (Denmark)

    Kubat, Irnis; Petersen, Christian Rosenberg; Møller, Uffe Visbech

    2014-01-01

    of ZBLAN spanning the 0.9–4.1μm SC at the −30dB level. The ZBLAN fiber SC is then coupled into 10cm of As2Se3 chalcogenide Microstructured Optical Fiber (MOF) designed to have a zero-dispersion wavelength (λZDW) significantly below the 4.1μm InfraRed (IR) edge of the ZBLAN fiber SC, here 3.55μm...

  19. Ionic Exchange Study of Ternary Glass Membrane (AgI-PbS-As2S3)System in Solution Using Radioisotope Tracers

    International Nuclear Information System (INIS)

    Dawed, E. M.

    2004-01-01

    Glass-formation region was determined for the system AgI-PbS-As 2 S 3 in a large range of composition (from 12-64 mol. % AgI). The homogeneous glasses of AgI-PbS-As 2 S 3 system were chosen for the study. The electrical conductivity of the glasses was measured as a function of temperature and composition by the complex impedance diagram method. At 298 K, the conductivity reached a maximum value of 3.388 x 10 -3 Ω -1 cm -1 for glass containing the highest mole % of AgI. According to the ion conductivity parameters, two glass groups were observed and classified as: ionic conductors (12-50 mol. %, AgI) and super-ionic conductors (50-64 mol. % AgI). Conductivity measurements led to a decrease in the resistivity by eight orders of magnitude on increasing the concentration of AgI. Such a result made the ternary glass AgI-PbS-As 2 S 3 system a proper model to study the ionic processes of membrane surfaces. Ionic exchange processes between the glass membranes and the solutions were studied by the incorporation of radioactive indicators: silver-110 m ( 110m Ag) and cadmium- 115 m (115 mCd) radioisotopes in the form of silver and cadmium nitrate solutions respectively. In the present paper, data on the density, conductivity, and ionic exchange processes of the studied system are given. The conductivity and ionic exchange parameters are also graphically illustrated. (author)

  20. Dry etching of thin chalcogenide films

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, Kiril [Acad. J. Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 109, 1113 Sofia (Bulgaria); Vassilev, Gergo; Vassilev, Venceslav, E-mail: kpetkov@clf.bas.b [Department of Semiconductors, University of Chemical Technology and Metallurgy, 8 Kl. Ohridsky Blvd., 1756 Sofia (Bulgaria)

    2010-04-01

    Fluorocarbon plasmas (pure and mixtures with Ar) were used to investigate the changes in the etching rate depending on the chalcogenide glasses composition and light exposure. The experiments were performed on modified commercial HZM-4 vacuum equipment in a diode electrode configuration. The surface microstructure of thin chalcogenide layers and its change after etching in CCl{sub 2}F{sub 2} and CF{sub 4} plasmas were studied by SEM. The dependence of the composition of As-S-Ge, As-Se and multicomponent Ge-Se-Sb-Ag-I layers on the etching rate was discussed. The selective etching of some glasses observed after light exposure opens opportunities for deep structure processing applications.

  1. Superconducting properties of iron chalcogenide thin films

    Directory of Open Access Journals (Sweden)

    Paolo Mele

    2012-01-01

    Full Text Available Iron chalcogenides, binary FeSe, FeTe and ternary FeTexSe1−x, FeTexS1−x and FeTe:Ox, are the simplest compounds amongst the recently discovered iron-based superconductors. Thin films of iron chalcogenides present many attractive features that are covered in this review, such as: (i easy fabrication and epitaxial growth on common single-crystal substrates; (ii strong enhancement of superconducting transition temperature with respect to the bulk parent compounds (in FeTe0.5Se0.5, zero-resistance transition temperature Tc0bulk = 13.5 K, but Tc0film = 19 K on LaAlO3 substrate; (iii high critical current density (Jc ~ 0.5 ×106 A cm2 at 4.2 K and 0 T for FeTe0.5Se0.5 film deposited on CaF2, and similar values on flexible metallic substrates (Hastelloy tapes buffered by ion-beam assisted deposition with a weak dependence on magnetic field; (iv high upper critical field (~50 T for FeTe0.5Se0.5, Bc2(0, with a low anisotropy, γ ~ 2. These highlights explain why thin films of iron chalcogenides have been widely studied in recent years and are considered as promising materials for applications requiring high magnetic fields (20–50 T and low temperatures (2–10 K.

  2. Nonlinear acoustic properties of the ternary (La sub 2 O sub 3) sub x (Sm sub 2 O sub 3) sub y (P sub 2 O sub 5) sub (1-x-y) phosphate glasses

    International Nuclear Information System (INIS)

    Senin, H.B.; Sidek, H.A.A.; Saunders, G.A.

    1994-01-01

    From measurements of changes in transit time of 10 MHz of ultrasonic wave as a function of temperature and hydrostatic pressure, the linear and non-linear acoustic properties of the ternary (La sub 2 O sub 3) sub x (Sm sub 2 O sub 3) sub y (P sub 2 O sub 5) sub (1-x-y) glasses with compositions near to that corresponding to the metaphosphate have been determined. For each glass the second order elastic stiffness tensor components C sub ijs (SOEC) continue to increase down to 10K in a manner consistent with phonons interactions with two level systems. Measurements of the effects of hydrostatic pressure on the ultrasonic wave velocities have been used to determine the hydrostatic pressure derivatives (dC sub ij/dP) sub T,P=0 of the SOEC and (dB0 sup s)/dP) sub T,P=0 of the bulk modulus B0 sup s at room temperature (293K). For the ternary (La sub 2 O sub 3) sub x (Sm sub 2 O sub 3) sub y (P sub 2 O sub 5) sub (1-x-y) glasses, (dC sub 11/dP), (dC sub 44/dP), and (dBo/dP), are small but positives; these glasses stiffen under pressure. The elastic behaviour of these ternary glasses lies intermediate between those of (Sm sub 2 O sub 3)(P sub 2 O sub 5) sub (1-x) and (La sub 2 O sub 3) sub y (P sub 2 O sub 5) sub (1-x-y) glasses. Replacement of the Sm sup 3+ by La sup 3+ in the ternary phosphate glasses negates the acoustic mode softening. Possible sources of the different effects of La sub 3+ and Sm sub 3+ modifiers on the nonlinear acoustic properties of metaphosphate glasses are discussed

  3. Compositional Dependence Of Hardness Of Ge-Sb-Se Glass For Molded Lens Applications

    Directory of Open Access Journals (Sweden)

    Park J.K.

    2015-06-01

    Full Text Available Chalcogenide glass in the ternary Ge-Sb-Se system is inherently moldable, thus being considered as a strong candidate material for use in infrared-transmitting lens applications from the viewpoint of thermal and mechanical stability. In an effort to experimentally determine compositional region suitable for the molded lens applications, we evaluate its compositional dependence of hardness. Among the constituent atoms, Ge content turns out to exert a most conspicuous correlation with hardness. This phenomenological behavior is then explained in connection with the structural evolution that Ge brings about.

  4. Nonlinear optical localization in embedded chalcogenide waveguide arrays

    International Nuclear Information System (INIS)

    Li, Mingshan; Huang, Sheng; Wang, Qingqing; Chen, Kevin P.; Petek, Hrvoje

    2014-01-01

    We report the nonlinear optical localization in an embedded waveguide array fabricated in chalcogenide glass. The array, which consists of seven waveguides with circularly symmetric cross sections, is realized by ultrafast laser writing. Light propagation in the chalcogenide waveguide array is studied with near infrared laser pulses centered at 1040 nm. The peak intensity required for nonlinear localization for the 1-cm long waveguide array was 35.1 GW/cm 2 , using 10-nJ pulses with 300-fs pulse width, which is 70 times lower than that reported in fused silica waveguide arrays and with over 7 times shorter interaction distance. Results reported in this paper demonstrated that ultrafast laser writing is a viable tool to produce 3D all-optical switching waveguide circuits in chalcogenide glass

  5. Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes

    KAUST Repository

    Xia, Chuan; Jiang, Qiu; Zhao, Chao; Beaujuge, Pierre; Alshareef, Husam N.

    2016-01-01

    nanostructured ternary nickel cobalt selenides result in a much higher areal capacitance (2.33 F cm−2 at 4 mA cm−2), better rate performance and cycling stability than their binary selenide equivalents, and other ternary oxides and chalcogenides. Those hybrid

  6. Impact of sulfur content on structural and optical properties of Ge20Se80-xSx chalcogenide glasses thin films

    Science.gov (United States)

    Dongol, M.; Elhady, A. F.; Ebied, M. S.; Abuelwafa, A. A.

    2018-04-01

    Chalcogenide system Ge20Se80-xSx (x = 0, 15 and 30%) thin films were prepared by thermal evaporation technique. The amorphous state of the samples was confirmed according to XRD. The structural changes occurring upon replacement Se by S was investigated using Raman spectroscopy. The optical properties of the as-deposited Ge20Se80-xSx thin films have been studied by analysis the transmittance T(λ) measured at room temperature in the wavelength range 200-2500 nm using Swanepoel's method. Urbach energy (Ee) and optical band gap (Eg) were strongly affected by sulfur concentration in the sample. The refractive index evaluated through envelope method was extrapolated by Cauchy dispersion relationship over the whole spectral range. Moreover, the dispersion of refractive index was analyzed in terms of the single-oscillator Wemple-Di Domenico model. The third-order nonlinear susceptibility (χ(3)) and nonlinear refractive index (n2) were calculated and discussed for different Ge20Se80-xSx (x = 0, 15 and 30%).

  7. Dielectric properties of the ternary TeO2/Nb2O5/ZnO glasses

    International Nuclear Information System (INIS)

    Ahmad, Mohamad M.; Yousef, El Sayed; Moustafa, El Sayed

    2006-01-01

    Glasses of the system TeO 2 /Nb 2 O 5 /ZnO containing different concentration of ZnO (ranging from 5 to 20 mol%) were prepared. The dielectric properties over wide ranges of frequencies and temperatures were investigated as a function of ZnO content by impedance spectroscopy measurements. The impedance spectra of the present glasses were modeled by appropriate equivalent circuit. The dielectric constant has a value of 66 for the 85TeO 2 /10Nb 2 O 5 /5ZnO glass, which is three times larger than that of pure TeO 2 glass and other binary, e.g. TeO 2 /ZnCl 2 , tellurite glassy systems. The results have been analyzed in light of varying NbO 6 octahedra and NbO 4 tetrahedra of niobium oxide as zinc oxide varies from 5 to 20 mol%. The relaxation properties of the investigated glasses are presented in the electric modulus formalism, where the relaxation time and the respective activation energy are determined

  8. Glass-forming ability and crystallization behavior of some binary and ternary Ni-based glassy alloys

    International Nuclear Information System (INIS)

    Louzguine-Luzgin, Dmitri V.; Louzguina-Luzgina, Larissa V.; Xie Guoqiang; Li Song; Zhang Wei; Inoue, Akihisa

    2008-01-01

    The purpose of the current paper is to study the influence of Ti, V, Nb, Al, Sn and Pd additions on the glass-forming ability, formation of a supercooled liquid region and a devitrification process of some Ni-Zr glassy alloys as well as to compare the results with those obtained for similar Cu-based alloys studied earlier. The Ni-based glassy alloys were investigated by using X-ray diffraction, differential scanning and isothermal calorimetries. Although the studied Ni-based alloys showed high values of the reduced glass-transition temperature of about 0.6, their glass-forming ability is quite low. This fact may be explained by low stability of the supercooled liquid against crystallization and formation of the equilibrium intermetallic compounds with a high growth rate compared to those observed in similar Cu-based alloys studied earlier. Relatively low thermal conductivity of Ni-based alloys is also found to be another factor limiting their glass-forming ability

  9. Crystallization study of Te–Bi–Se glasses

    Indian Academy of Sciences (India)

    Unknown

    Thermal stability; chalcogenide glasses; glass forming ability; glass transition temperature. 1. Introduction ... as well as their wide technological applications including threshold and ... are other important aspects such as ON-state current,.

  10. Bioactivity of gel-glass powders in the CaO-SiO2 system: a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O).

    Science.gov (United States)

    Saravanapavan, Priya; Jones, Julian R; Pryce, Russell S; Hench, Larry L

    2003-07-01

    Bioactive glasses react chemically with body fluids in a manner that is compatible with the repair processes of the tissues. This results in the formation of an interfacial bond between the glasses and living tissue. Bioactive glasses also stimulate bone-cell proliferation. This behavior is dependent on the chemical composition as well as the surface texture of the glasses. It has been recently reported that gel-derived monolith specimens in the binary SiO2 - CaO are bioactive over a similar molar range of SiO2 content as the previously studied ternary CaO-P2O5-SiO2 system. In this report, the preparation and bioactivity of the binary gel-glass powder with 70 mol % SiO2 is discussed and its bioactivity is compared with the melt-derived 45S5 (quaternary) Bioglass and sol-gel-derived 58S (ternary) bioactive gel-glass compositions. Dissolution kinetic parameters K(1) and K(2) were also computed based on the silicon release for all glass powders. It was shown that the simple two-component SiO2-CaO gel-glass powder is bioactive with comparable dissolution rates as the clinically used melt-derived 45S5 Bioglass powder and extensively studied sol-gel-derived 58S gel-glass powder. Copyright 2003 Wiley Periodicals, Inc.

  11. Ternary fission

    Indian Academy of Sciences (India)

    the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the competition between different geometries as well as different positioning of the fragments. Also, an attempt was made to calculate the mass distribution of ternary fission process within the ...

  12. Applying a new criterion to predict glass forming alloys in the Zr–Ni–Cu ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Déo, L.P., E-mail: leonardopratavieira@gmail.com [Universidade de São Paulo, EESC, SMM - Av. Trabalhador São Carlense, 400 – São Carlos, SP 13566-590 (Brazil); Mendes, M.A.B., E-mail: marcio.andreato@gmail.com [Universidade Federal de São Carlos, DEMa - Rod. Washington Luiz, Km 235 – São Carlos, SP 13565-905 (Brazil); Costa, A.M.S., E-mail: alexmatos1980@gmail.com [Universidade de São Paulo, DEMAR, EEL – Polo Urbo-Industrial Gleba AI-6, s/n – Lorena, SP 12600-970 (Brazil); Campos Neto, N.D., E-mail: nelsonddcn@gmail.com [Universidade de São Paulo, EESC, SMM - Av. Trabalhador São Carlense, 400 – São Carlos, SP 13566-590 (Brazil); Oliveira, M.F. de, E-mail: falcao@sc.usp.br [Universidade de São Paulo, EESC, SMM - Av. Trabalhador São Carlense, 400 – São Carlos, SP 13566-590 (Brazil)

    2013-03-15

    Highlights: ► Calculation to predict and select the glass forming ability (GFA) of metallic alloys in Zr–Ni–Cu system. ► Good correlation between theoretical and experimental GFA samples. ► Combination of X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques mainly to characterize the samples. ► Oxygen impurity dramatically reduced the GFA. ► The selection criterion used opens the possibility to obtain new amorphous alloys, reducing the experimental procedures of trial and error. -- Abstract: A new criterion has been recently proposed to predict and select the glass forming ability (GFA) of metallic alloys. It was found that the critical cooling rate for glass formation (R{sub c}) correlates well with a proper combination of two factors, the minimum topological instability (λ{sub min}) and the thermodynamic parameter (Δh). The (λ{sub min}) criterion is based on the concept of topological instability of stable crystalline structures and (Δh) depends on the average work function difference (Δϕ) and the average electron density difference Δn{sub ws}{sup 1/3} among the constituent elements of the alloy. In the present work, the selection criterion was applied in the Zr–Ni–Cu system and its predictability was analyzed experimentally. Ribbon-shaped and splat-shaped samples were produced by melt-spinning and splat-cooling techniques respectively. The crystallization content and behavior were analyzed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC), respectively. The results showed a good correlation between the theoretical GFA values and the amorphous phase percentages found in different alloy compositions.

  13. New Trends in Amplifiers and Sources via Chalcogenide Photonic Crystal Fibers

    Directory of Open Access Journals (Sweden)

    L. Mescia

    2012-01-01

    Full Text Available Rare-earth-doped chalcogenide glass fiber lasers and amplifiers have great applicative potential in many fields since they are key elements in the near and medium-infrared (mid-IR wavelength range. In this paper, a review, even if not exhaustive, on amplification and lasing obtained by employing rare-earth-doped chalcogenide photonic crystal fibers is reported. Materials, devices, and feasible applications in the mid-IR are briefly mentioned.

  14. Novel High Temperature and Radiation Resistant Infrared Glasses and Optical Fibers for Sensing in Advanced Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballato, John [Clemson Univ., SC (United States)

    2018-01-22

    One binary and three series of ternary non-oxide pure sulfide glasses compositions were investigated with the goal of synthesizing new glasses that exhibit high glass transition (Tg) and crystallization (Tc) temperatures, infrared transparency, and reliable glass formability. The binary glass series consisted of Ges2 and La2S3 and the three glass series in the x(nBaS + mLa2S3) + (1-2x)GeS2 ternary system have BaS:La2S3 modifier ratios of 1:1, 1:2, and 2:1 with . With these glasses, new insights were realized as to how ionic glasses form and how glass modifiers affect both structure and glass formability. All synthesized compositions were characterized by Infrared (IR) and Raman spectroscopies and differential thermal analysis (DTA) to better understand the fundamental structure, optical, and thermal characteristics of the glasses. After a range of these glasses were synthesized, optimal compositions were formed into glass disks and subjected to gamma irradiation. Glass disks were characterized both before and after irradiation by microscope imaging, measuring the refractive index, density, and UV-VIS-IR transmission spectra. The final total dose the samples were subjected to was ~2.5 MGy. Ternary samples showed a less than 0.4% change in density and refractive index and minimal change in transmission window. The glasses also resisted cracking as seen in microscope images. Overall, many glass compositions were developed that possess operating temperatures above 500 °C, where conventional chalcogenide glasses such as As2S3 and have Tgs from ~200-300 °C, and these glasses have a greater than Tc – Tg values larger than 100 °C and this shows that these glasses have good thermal stability of Tg such that they can be fabricated into optical fibers and as such can be considered candidates for high temperature infrared fiber optics. Initial fiber fabrication efforts showed that selected glasses could be drawn but larger

  15. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  16. Ternary systems

    International Nuclear Information System (INIS)

    Kagan, D.N.; Hubberstey, P.; Barker, M.G.

    1985-01-01

    The paper reviews the experimental and theoretical studies carried out on multicomponent alkali metal systems. Solid-liquid phase equilibria studies are mainly concerned with the systems Na-K-Rb and Na-K-Cs, and data on the liquidus temperatures in these systems are presented. The thermodynamic properties of the ternary Na-K-Cs eutectic system have been determined experimentally, and the enthalpy, heat capacity and excess functions of the alloy are given. An analysis of calculational methods used in determining thermodynamic functions of ternary liquid metals systems is described. Finally, data are tabulated for the density, compressibility, saturated vapour pressure, viscosity and thermal conductivity of the ternary Na-K-Cs eutectic system. (UK)

  17. Enhancement of luminescence properties in Er3+ doped TeO2-Na2O-PbX (X=O and F) ternary glasses.

    Science.gov (United States)

    Kumar, Kaushal; Rai, S B; Rai, D K

    2007-04-01

    An enhancement of luminescence properties in Er3+ doped ternary glasses is observed on the addition of PbO/PbF2. The infrared to visible upconversion emission bands are observed at 410, 525, 550 and 658 nm, due to the 2H9/2-->4I15/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 transitions respectively, on excitation with 797 nm laser line. A detailed study reveals that the 2H9/2-->4I15/2 transition arises due to three step upconversion process while other transitions arise due to two step absorption. On excitation with 532 nm radiation, ultraviolet and violet upconversion bands centered at 380, 404, 410 and 475 nm wavelengths are observed along with one photon luminescence bands at 525, 550, 658 and 843 nm wavelengths. These bands are found due to the 4G11/2-->4I15/2, 2P3/2-->4I13/2, 2H9/2-->4I15/2, 2P3/2-->4I11/2, 2H11/2-->4I15/2, 4S3/2-->4I15/2, 4F9/2-->4I15/2 and 4S3/2-->4I13/2 transitions, respectively. Though incorporation of PbO and PbF2 both enhances fluorescence intensities however, PbF2 content has an important influence on upconversion luminescence emission. The incorporation of PbF2 enhances the red emission (658 nm) intensity by 1.5 times and the violet emission (410 nm) intensity by 2.0 times. A concentration dependence study of fluorescence reveals the rapid increase in the red (4F9/2-->4I15/2) emission intensity relative to the green (4S3/2-->4I15/2) emission with increase in the Er3+ ion concentration. This behaviour has been explained in terms of an energy transfer by relaxation between excited ions.

  18. Prospects of Colloidal Copper Chalcogenide Nanocrystals

    NARCIS (Netherlands)

    van der Stam, W.; Berends, A.C.; de Mello-Donega, Celso

    2016-01-01

    Over the past few years, colloidal copper chalcogenide nanocrystals (NCs) have emerged as promising alternatives to conventional Cd and Pb chalcogenide NCs. Owing to their wide size, shape, and composition tunability, Cu chalcogenide NCs hold great promise for several applications, such as

  19. Glasses

    DEFF Research Database (Denmark)

    Dyre, Jeppe

    2004-01-01

    The temperature dependence of the viscosity of most glassforming liquids is known to depart significantly from the classical Arrhenius behaviour of simple fluids. The discovery of an unexpected correlation between the extent of this departure and the Poisson ratio of the resulting glass could lead...... to new understanding of glass ageing and viscous liquid dynamics....

  20. Role of heat treatment on structural and optical properties of thermally evaporated Ga{sub 10}Se{sub 81}Pb{sub 9} chalcogenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A., E-mail: ahmedelsebaii@yahoo.com [Department of Physics, Faculty of Science, King Abdulaziz University, 80203 Jeddah 21589 (Saudi Arabia); Khan, Shamshad A. [Department of Physics, St. Andrews College, Gorakhpur 273001 (India); Al-Marzouki, F.M.; Faidah, A.S.; Al-Ghamdi, A.A. [Department of Physics, Faculty of Science, King Abdulaziz University, 80203 Jeddah 21589 (Saudi Arabia)

    2012-08-15

    Amorphous chalcogenides, based on Se, have become materials of commercial importance and were widely used for optical storage media. The present work deals with the structural and optical properties of Ga{sub 10}Se{sub 81}Pb{sub 9} ternary chalcogenide glass prepared by melt quenching technique. The glass transition, crystallization and melting temperatures of the synthesized glass were measured by non-isothermal DSC measurements at a constant heating rate of 30 K/min. Thin films of thickness 4000 A were prepared by thermal evaporation techniques on glass/Si (1 0 0) wafer substrate. These thin films were thermally annealed for two hours at three different annealing temperatures of 345, 360 and 375 K, which were in between the glass transition and crystallization temperatures of the Ga{sub 10}Se{sub 81}Pb{sub 9} glass. The structural, morphological and optical properties of as-prepared and annealed thin films were studied. Analysis of the optical absorption data showed that the rules of the non-direct transitions predominate. It was also found that the optical band gap decreases while the absorption coefficient, refractive index and extinction coefficient increase with increasing the annealing temperature. Due to the higher values of absorption coefficient and annealing dependence of the optical band gap and optical constants, the investigated material could be used for optical storage. - Highlights: Black-Right-Pointing-Pointer Annealing effect on structure and optical band gap has been investigated. Black-Right-Pointing-Pointer The amorphous nature has been verified by x-ray diffraction and DSC measurements. Black-Right-Pointing-Pointer Thermal annealing causes a decrease in optical band gap in Ga{sub 10}Se{sub 81}Pb{sub 9} thin films. Black-Right-Pointing-Pointer The decrease in optical band gap can be interpreted on the basis of amorphous-crystalline phase transformation. Black-Right-Pointing-Pointer Optical absorption data showed that the rules of the non

  1. Amorphous chalcogenide semiconductors for solid state dosimetric systems of high-energetic ionizing radiation

    International Nuclear Information System (INIS)

    Shpotyuk, O.

    1997-01-01

    The application possibilities of amorphous chalcogenide semiconductors use as radiation-sensitive elements of high-energetic (E > 1 MeV) dosimetric systems are analysed. It is shown that investigated materials are characterized by more wide region of registered absorbed doses and low temperature threshold of radiation information bleaching in comparison with well-known analogies based on coloring oxide glasses. (author)

  2. Prediction of free-volume-type correlations in glassy chalcogenides from positron annihilation lifetime measurements

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Ingram, A.; Shpotyuk, M.; Filipecki, J.

    2014-01-01

    Highlights: • Decisive role of specific chemical environment in free-volume correlations in glass. • Realistic free volumes in As–S/Se glass are defined by newly modified τ 2 -R formula. • Overestimated void sizes in chalcogenide glass as compared with molecular polymers. - Abstract: A newly modified correlation equation between defect-related positron lifetime determined within two-state trapping model and radius of corresponding free-volume-type defects was proposed to describe compositional variations in atomic-deficient structure of covalent-bonded chalcogenides like binary As–S/Se glasses. Specific chemical environment of free-volume voids around neighboring network-forming polyhedrons was shown to play a decisive role in this correlation, leading to systematically enhanced volumes in comparison with typical molecular substrates, such as polymers

  3. Prediction of free-volume-type correlations in glassy chalcogenides from positron annihilation lifetime measurements

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua [Institute of Materials of SRC “Carat”, 212 Stryjska Str., Lviv 79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestcochowa 42200 (Poland); Ingram, A. [Opole University of Technology, 75 Ozimska Str., Opole 45370 (Poland); Shpotyuk, M. [Institute of Materials of SRC “Carat”, 212 Stryjska Str., Lviv 79031 (Ukraine); Lviv Polytechnic National University, 12 Bandery Str., Lviv 79013 (Ukraine); Filipecki, J. [Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestcochowa 42200 (Poland)

    2014-11-01

    Highlights: • Decisive role of specific chemical environment in free-volume correlations in glass. • Realistic free volumes in As–S/Se glass are defined by newly modified τ{sub 2}-R formula. • Overestimated void sizes in chalcogenide glass as compared with molecular polymers. - Abstract: A newly modified correlation equation between defect-related positron lifetime determined within two-state trapping model and radius of corresponding free-volume-type defects was proposed to describe compositional variations in atomic-deficient structure of covalent-bonded chalcogenides like binary As–S/Se glasses. Specific chemical environment of free-volume voids around neighboring network-forming polyhedrons was shown to play a decisive role in this correlation, leading to systematically enhanced volumes in comparison with typical molecular substrates, such as polymers.

  4. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  5. Copper Antimony Chalcogenide Thin Film PV Device Development

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Adam W.; Baranowski, Lauryn L.; de Souza Lucas, Francisco Willian; Toberer, Eric S.; Wolden, Colin A.; Zakutayev, Andriy

    2015-06-14

    Emerging ternary chalcogenide thin film solar cell technologies, such as CuSbS2 and CuSbSe2, have recently attracted attention as simpler alternatives to quaternary Cu2ZnSnS4 (CZTS). Despite suitable photovoltaic properties, the initial energy conversion efficiency of CuSbS2 is rather low (0.3%). Here, we report on our progress towards improving the efficiency of CuSbS2 solar cells using a high throughput approach. The combinatorial methodology quickly results in baseline solar cell prototypes with 0.6% efficiency, and then modification of the back contact architecture leads to 1% PV devices. We then translate the optimal CuSbS2 synthesis parameters to CuSbSe2 devices, which show 3% efficiencies.

  6. Photoluminescence and ESR of glasses of the Ge-S system

    International Nuclear Information System (INIS)

    Cernoskova, E.; Cernosek, Z.; Holubova, J.

    1999-01-01

    In this work the chalcogenide glasses were studied by photoluminescence, electron spin resonance (ESR) as well as optically induce ESR (LESR) methods. Dependence of energy of luminescence and Stokes shift on glass composition was determined

  7. Magnetic chalcogenides in 3 and lower dimensions

    Science.gov (United States)

    Furdyna, J. K.; Dong, S.-N.; Lee, S.; Liu, X.; Dobrowolska, M.

    2018-06-01

    In this article we review magnetic phenomena that occur in the chalcogenide family involving transition metals. Magnetic properties displayed by bulk 3D chalcogenides compounds and alloys produced by equilibrium growth methods are discussed. 2D magnetic chalcogenide systems such as epitaxial films and more complex multilayers, whose formation is made possible by epitaxial methods and/or by van der Waals epitaxy, are presented in detail. We present a brief overview of magnetic effects emerging as the dimensionality of chalcogenide materialss is reduced to 1D (nanowires and related structures) and to zero-D (quantum dots formed by both top-down and bottom-up methods).

  8. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Kozyukhin, S. A.; Shpotyuk, M.; Ingram, A.; Szatanik, R.

    2015-01-01

    Using As 2 S 3 and AsS 2 glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models

  9. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Scientific Research Company “Carat” (Ukraine); Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation); Shpotyuk, M. [Scientific Research Company “Carat” (Ukraine); Ingram, A. [Opole Technical University (Poland); Szatanik, R. [Opole University (Poland)

    2015-03-15

    Using As{sub 2}S{sub 3} and AsS{sub 2} glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models.

  10. A library of atomically thin metal chalcogenides.

    Science.gov (United States)

    Zhou, Jiadong; Lin, Junhao; Huang, Xiangwei; Zhou, Yao; Chen, Yu; Xia, Juan; Wang, Hong; Xie, Yu; Yu, Huimei; Lei, Jincheng; Wu, Di; Liu, Fucai; Fu, Qundong; Zeng, Qingsheng; Hsu, Chuang-Han; Yang, Changli; Lu, Li; Yu, Ting; Shen, Zexiang; Lin, Hsin; Yakobson, Boris I; Liu, Qian; Suenaga, Kazu; Liu, Guangtong; Liu, Zheng

    2018-04-01

    Investigations of two-dimensional transition-metal chalcogenides (TMCs) have recently revealed interesting physical phenomena, including the quantum spin Hall effect 1,2 , valley polarization 3,4 and two-dimensional superconductivity 5 , suggesting potential applications for functional devices 6-10 . However, of the numerous compounds available, only a handful, such as Mo- and W-based TMCs, have been synthesized, typically via sulfurization 11-15 , selenization 16,17 and tellurization 18 of metals and metal compounds. Many TMCs are difficult to produce because of the high melting points of their metal and metal oxide precursors. Molten-salt-assisted methods have been used to produce ceramic powders at relatively low temperature 19 and this approach 20 was recently employed to facilitate the growth of monolayer WS 2 and WSe 2 . Here we demonstrate that molten-salt-assisted chemical vapour deposition can be broadly applied for the synthesis of a wide variety of two-dimensional (atomically thin) TMCs. We synthesized 47 compounds, including 32 binary compounds (based on the transition metals Ti, Zr, Hf, V, Nb, Ta, Mo, W, Re, Pt, Pd and Fe), 13 alloys (including 11 ternary, one quaternary and one quinary), and two heterostructured compounds. We elaborate how the salt decreases the melting point of the reactants and facilitates the formation of intermediate products, increasing the overall reaction rate. Most of the synthesized materials in our library are useful, as supported by evidence of superconductivity in our monolayer NbSe 2 and MoTe 2 samples 21,22 and of high mobilities in MoS 2 and ReS 2 . Although the quality of some of the materials still requires development, our work opens up opportunities for studying the properties and potential application of a wide variety of two-dimensional TMCs.

  11. Noble-Metal Chalcogenide Nanotubes

    Directory of Open Access Journals (Sweden)

    Nourdine Zibouche

    2014-10-01

    Full Text Available We explore the stability and the electronic properties of hypothetical noble-metal chalcogenide nanotubes PtS2, PtSe2, PdS2 and PdSe2 by means of density functional theory calculations. Our findings show that the strain energy decreases inverse quadratically with the tube diameter, as is typical for other nanotubes. Moreover, the strain energy is independent of the tube chirality and converges towards the same value for large diameters. The band-structure calculations show that all noble-metal chalcogenide nanotubes are indirect band gap semiconductors. The corresponding band gaps increase with the nanotube diameter rapidly approaching the respective pristine 2D monolayer limit.

  12. Thermal, structural and optical properties of new TeO2sbnd Sb2O3sbnd GeO2 ternary glasses

    Science.gov (United States)

    Pereira, C.; Barbosa, J.; Cassanjes, F. C.; Gonçalves, R. R.; Ribeiro, S. J. L.; Poirier, G.

    2016-12-01

    In this work the novel glass system TeO2sbnd Sb2O3sbnd GeO2 was investigated and promising glass compositions were selected for further specific studies. Glass samples in the (80-0.8x)TeO2-(20-0.2x)Sb2O3-xGeO2 molar composition were prepared by the melt-quenching method with a glass-forming domain from x = 10 to x = 90. Samples were investigated by XRD, DSC, FTIR, Raman spectroscopy and UV-visible absorption. The XRD and DSC results bring informations about the non-crystalline state and thermal properties of these materials. It has been observed that higher GeO2 contents lead to higher glass transition temperatures and thermal stabilities against crystallization. FTIR and Raman spectroscopies suggest a progressive incorporation of GeO2 in the covalent network of TeO2 with conversion of structural units TeO4 to TeO3. Absorption spectra revealed the high visible transparency of these samples and an increase of the optical band gap with GeO2 addition, in agreement with a decreasing polarizability of the glass network. Er3+ doped and Er3+/Yb3+ codoped samples were also studied with respect to their infrared emission properties and higher GeO2 contents lead to an increase in IR emission intensity at 1,5 μm as well as longer radiative lifetimes. Finally, upconversion emission in the visible were also recorded and were shown to be strongly dependent of the composition.

  13. SPP propagation in nonlinear glass-metal interface

    KAUST Repository

    Sagor, Rakibul Hasan; Alsunaidi, Mohammad A.; Ooi, Boon S.

    2011-01-01

    The non-linear propagation of Surface-Plasmon-Polaritons (SPP) in single interface of metal and chalcogenide glass (ChG) is considered. A time domain simulation algorithm is developed using the Finite Difference Time Domain (FDTD) method

  14. Nonlinear optical response of chalcogenide glassy semiconductors in the IR and THz ranges studied with the femtosecond resolution in time

    DEFF Research Database (Denmark)

    Romanova, E.; Guizard, S.; Wang, Tianwu

    2017-01-01

    Two time-resolved experimental methods have been used for characterization of the non-linear optical response of chalcogenide glasses of the system As-S-Se-Te in IR and THz ranges upon excitation by femtosecond laser pulses at 800 nm wavelength. Photoinduced conductivity and refractivity were stu...

  15. Amorphous chalcogenide semiconductors for solid state dosimetric systems of high-energetic ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Pedagogical University, Czestochowa (Poland)]|[Institute of Materials, Lvov (Ukraine)

    1997-12-31

    The application possibilities of amorphous chalcogenide semiconductors use as radiation-sensitive elements of high-energetic (E > 1 MeV) dosimetric systems are analysed. It is shown that investigated materials are characterized by more wide region of registered absorbed doses and low temperature threshold of radiation information bleaching in comparison with well-known analogies based on coloring oxide glasses. (author). 16 refs, 1 tab.

  16. Method to synthesize metal chalcogenide monolayer nanomaterials

    Science.gov (United States)

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  17. Metastable states in amorphous chalcogenide semiconductors

    CERN Document Server

    Mikla, Victor I

    2009-01-01

    This book addresses an interesting and technologically important class of materials, the amorphous chalcogenide semiconductors. Experimental results on the structural and electronic metastable states in Se-rich chalcogenides are presented. Special attention is paid to the states in the mobility gap and their sensitivity to various factors such as irradiation, annealing and composition. Photoinduced changes of structure and physical properties are also considered and structural transformation at photocrystallization is studied in detail. Finally, the authors discuss potential applications of th

  18. Metal chalcogenide nanostructures for renewable energy applications

    CERN Document Server

    Qurashi, Ahsanulhaq

    2014-01-01

    This first ever reference book that focuses on metal chalcogenide semiconductor nanostructures for renewable energy applications encapsulates the state-of-the-art in multidisciplinary research on the metal chalcogenide semiconductor nanostructures (nanocrystals, nanoparticles, nanorods, nanowires,  nanobelts, nanoflowers, nanoribbons and more).  The properties and synthesis of a class of nanomaterials is essential to renewable energy manufacturing and this book focuses on the synthesis of metal chalcogendie nanostructures, their growth mechanism, optical, electrical, and other important prop

  19. A Self-Templating Scheme for the Synthesis of Nanostructured Transition Metal Chalcogenide Electrodes for Capacitive Energy Storage

    KAUST Repository

    Xia, Chuan

    2015-06-11

    Due to their unique structural features including well-defined interior voids, low density, low coefficients of thermal expansion, large surface area and surface permeability, hollow micro/nanostructured transition metal sulfides with high conductivity have been investigated as new class of electrode materials for pseudocapacitor applications. Herein, we report a novel self-templating strategy to fabricate well-defined single and double-shell NiCo2S4 hollow spheres, as a promising electrode material for pseudocapacitors. The surfaces of the NiCo2S4 hollow spheres consist of self-assembled 2D mesoporous nanosheets. This unique morphology results in a high specific capacitance (1257 F g-1 at 2 A g-1), remarkable rate performance (76.4% retention of initial capacitance from 2 A g-1 to 60 A g-1) and exceptional reversibility with a cycling efficiency of 93.8% and 87% after 10,000 and 20,000 cycles, respectively, at a high current density of 10 A g-1. The cycling stability of our ternary chalcogenides is comparable to carbonaceous electrode materials, but with much higher specific capacitance (higher than any previously reported ternary chalcogenide), suggesting that these unique chalcogenide structures have potential application in next-generation commercial pseudocapacitors.

  20. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  1. Application of a Salt Coformer in a Co-Amorphous Drug System Dramatically Enhances the Glass Transition Temperature: A Case Study of the Ternary System Carbamazepine, Citric Acid, and l-Arginine.

    Science.gov (United States)

    Ueda, Hiroshi; Wu, Wenqi; Löbmann, Korbinian; Grohganz, Holger; Müllertz, Anette; Rades, Thomas

    2018-04-13

    The use of co-amorphous systems containing a combination of low molecular weight drugs and excipients is a relatively new technology in the pharmaceutical field to improve the solubility of poorly water-soluble drugs. However, some co-amorphous systems show a lower glass transition temperature ( T g ) than many of their polymeric solid dispersion counterparts. In this study, we aimed at designing a stable co-amorphous system with an elevated T g . Carbamazepine (CBM) and citric acid (CA) were employed as the model drug and the coformer, respectively. co-amorphous CBM-CA at a 1:1 molar ratio was formed by ball milling, but a transition from the glassy to the supercooled melt state was observed under ambient conditions, due to the relatively low T g of 38.8 °C of the co-amorphous system and moisture absorption. To improve the T g of the coformer, salt formation of a combination of l-arginine (ARG) with CA was studied. First, ball milling of CA-ARG at molar ratios of 1:1, 1:2, and 1:3 forming co-amorphous systems was performed and led to a dramatic enhancement of the T g , depending on the CA-ARG ratio. Salt formation between CA and ARG was observed by infrared spectroscopy. Next, ball milling of CBM-CA-ARG at molar ratios of 1:1:1, 1:1:2, and 1:1:3 resulted in co-amorphous blends, which had a single T g at 77.8, 105.3, and 127.8 °C, respectively. These ternary co-amorphous samples remained in a solid amorphous form for 2 months at 40 °C. From these results, it can be concluded that blending of the salt coformer with a drug is a promising strategy to design stable co-amorphous formulations.

  2. Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods

    International Nuclear Information System (INIS)

    Kavetskyy, T.; Vakiv, M.; Shpotyuk, O.

    2007-01-01

    A combination of Raman scattering and positron annihilation lifetime spectroscopy (PALS) techniques to study charged defects in chalcogenide vitreous semiconductors (ChVSs) was applied for the first time in this study. In the case of Ge 15.8 As 21 S 63.2 glass, it is found that the main radiation-induced switching of heteropolar Ge-S bonds into heteropolar As-S ones, previously detected by IR fast Fourier transform spectroscopy, can also be identified by Raman spectroscopy in the depolarized configuration. Results obtained by Raman scattering are in good agreement with PALS data for the investigated glass composition

  3. Charged defects in chalcogenide vitreous semiconductors studied with combined Raman scattering and PALS methods

    Energy Technology Data Exchange (ETDEWEB)

    Kavetskyy, T.; Vakiv, M. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine); Shpotyuk, O. [Lviv Institute of Materials of SRC ' Carat' , 202 Stryjska str., Lviv, UA-79031 (Ukraine)], E-mail: shpotyuk@novas.lviv.ua

    2007-04-15

    A combination of Raman scattering and positron annihilation lifetime spectroscopy (PALS) techniques to study charged defects in chalcogenide vitreous semiconductors (ChVSs) was applied for the first time in this study. In the case of Ge{sub 15.8}As{sub 21}S{sub 63.2} glass, it is found that the main radiation-induced switching of heteropolar Ge-S bonds into heteropolar As-S ones, previously detected by IR fast Fourier transform spectroscopy, can also be identified by Raman spectroscopy in the depolarized configuration. Results obtained by Raman scattering are in good agreement with PALS data for the investigated glass composition.

  4. Thermoelectric performance of tellurium-reduced quaternary p-type lead–chalcogenide composites

    International Nuclear Information System (INIS)

    Aminorroaya Yamini, Sima; Wang, Heng; Gibbs, Zachary M.; Pei, Yanzhong; Mitchell, David R.G.; Dou, Shi Xue; Snyder, G. Jeffrey

    2014-01-01

    Graphical abstract: - Abstract: A long-standing technological challenge to the widespread application of thermoelectric generators is obtaining high-performance thermoelectric materials from abundant elements. Intensive study on PbTe alloys has resulted in a high figure of merit for the single-phase ternary PbTe–PbSe system through band structure engineering, and the low thermal conductivity achieved due to nanostructuring leads to high thermoelectric performance for ternary PbTe–PbS compounds. Recently, the single-phase p-type quaternary PbTe–PbSe–PbS alloys have been shown to provide thermoelectric performance superior to the binary and ternary lead chalcogenides. This occurs via tuning of the band structure and from an extraordinary low thermal conductivity resulting from high-contrast atomic mass solute atoms. Here, we present the thermoelectric efficiency of nanostructured p-type quaternary PbTe–PbSe–PbS composites and compare the results with corresponding single-phase quaternary lead chalcogenide alloys. We demonstrate that the very low lattice thermal conductivity achieved is attributed to phonon scattering at high-contrast atomic mass solute atoms rather than from the contribution of secondary phases. This results in a thermoelectric efficiency of ∼1.4 over a wide temperature range (650–850 K) in a p-type quaternary (PbTe) 0.65 (PbSe) 0.1 (PbS) 0.25 composite that is lower than that of single-phase (PbTe) 0.85 (PbSe) 0.1 (PbS) 0.05 alloy without secondary phases

  5. Photoinduced Operation by Absorption of the Chalcogenide Nanocrystallite Containing Solar Cells

    Directory of Open Access Journals (Sweden)

    Elnaggar A.M.

    2016-12-01

    Full Text Available It is shown that for the solar cells containing chalcogenide nanocrystallites using external laser light, one can achieve some enhancement of the photovoltaic efficiency. Photoinduced treatment was carried out using two beams of splitted Er: glass laser operating at 1.54 μm. The light of the laser was incident at different angles and the angles between the beams also were varied. Also, the studies of nanocomposite effective structures have shown enhancement of effective nanocrystalline sizes during the laser treatment. Nanocrystallites of CuInS2 and CuZnSnS4 (CZTS were used as chalcogenide materials. The optimization of the laser beam intensities and nanoparticle sizes were explored.

  6. Iron chalcogenide superconductors at high magnetic fields

    Science.gov (United States)

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  7. Ternary chalcopyrite semiconductors

    CERN Document Server

    Shay, J L; Pamplin, B R

    2013-01-01

    Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications covers the developments of work in the I-III-VI2 and II-IV-V2 ternary chalcopyrite compounds. This book is composed of eight chapters that focus on the crystal growth, characterization, and applications of these compounds to optical communications systems. After briefly dealing with the status of ternary chalcopyrite compounds, this book goes on describing the crystal growth of II-IV-V2 and I-III-VI2 single crystals. Chapters 3 and 4 examine the energy band structure of these semiconductor compounds, illustrat

  8. Molecular structure of virgin and Tg cycled (Ag2Se)x (AsSe)1-x bulk glasses

    Science.gov (United States)

    Wachtman, Jacob; Chen, Ping; Boochand, P.

    2009-03-01

    AsSe, the base glass (x = 0) in the titled ternary, is an interesting example of a chalcogenide that is partially de-mixed into As4Se4 molecules segregated from a connected AsSe network, with the latter determining glass network properties. Raman scattering reveals sharp modes of the Realgar molecules that are superimposed on broad modes coming from of the backbone. Upon Tg cycling virgin samples (as quenched melts), the concentration of de-mixed As4Se4 molecules decreases, suggesting that thermally induced polymerization occurs; molecules break up to form part of the connective tissue. Modulated DSC experiments reveal a broad exotherm near 140 ^oC in virgin samples, which becomes nearly extinct in Tg cycled samples. The exotherm may represent Realgar molecules nano-crystallizing as the temperature approaches Tg. Compositional trends in thermal parameters such as Tg(x), δCp(x), and the δHnr(x) as a function of Ag2Se content `x' of the glasses will be reported.

  9. Recent developments in laser glasses

    International Nuclear Information System (INIS)

    Weber, M.J.

    1983-01-01

    The past decade has witnessed a proliferation of new glass-forming compositions including oxides, halides, oxyhalides, and chalcogenides. Many of these glasses are applicable to lasers and have greatly expanded the range of optical properties and spectroscopic parameters available to the laser designer. Our knowledge and understanding of many properties of interest for laser action - transparency, linear and nonlinear refractive indices, and damage threshold of the host glass and the absorption spectrum, radiative and nonradiative transition probabilities, fluorescence wavelength, stimulated emission cross section, and spectroscopic inhomogeneities of the lasing ion Nd 3 + - are reviewed

  10. Surfactant free metal chalcogenides microparticles consisting of ...

    Indian Academy of Sciences (India)

    SANYASINAIDU GOTTAPU

    2017-11-11

    Nov 11, 2017 ... Metal chalcogenides; copper sulphide; copper selenide; micro flowers. 1. Introduction .... adding calculated quantity (2.7 mmol) of each acid separately. .... salts (LiCl, LiNO3, and LiOAc), and then hydride ions from (BH. − ... Concentration of metal .... hait A and Lim J Y 2016 Cation exchange synthesis of.

  11. Conductivity study on GeS2-Ga2S3-AgI-Ag chalcohalide glasses

    Czech Academy of Sciences Publication Activity Database

    Ren, J.; Yan, Q.; Wágner, T.; Zima, Vítězslav; Frumar, M.; Frumarová, Božena; Chen, G.

    2013-01-01

    Roč. 114, č. 2 (2013), 023701_1-023701_5 ISSN 0021-8979 Institutional support: RVO:61389013 Keywords : chalcogenide glasses * conductivity Subject RIV: CA - Inorganic Chemistry Impact factor: 2.185, year: 2013

  12. Study of the pseudo-ternary Ag2SAs2S3HgI2 vitreous system

    Science.gov (United States)

    Boidin, R.; Le Coq, D.; Cuisset, A.; Hindle, F.; Brubach, J.-B.; Michel, K.; Bychkov, E.

    2013-03-01

    Chalcogenide alloys in the Ag2SAs2S3HgI2 pseudo-ternary system were synthesized and their vitreous nature was verified by X-ray diffraction. The glass transition and crystallization temperatures (Tg and Tc), the density (d), and the total electrical conductivity (σ) were measured for all samples of three series, A, B, and C corresponding to (Ag2S)50-x/2(As2S3)50-x/2(HgI2)x, (Ag2S)y(As2S3)80-y(HgI2)20 and (Ag2S)z(As2S3)50(HgI2)50-z, respectively. The maximum of Tg was approximately 160 °C for glasses with low HgI2 content whereas the maximum of density (5.75 g cm-3) was obtained for the sample in the B-series with the highest Ag2S concentration (z=60 mol%). This composition also possesses the highest conductivity at 298 K (σ298 K≈10-3 S cm-1). Unexpectedly the conductivity of the A-series samples was observed to decrease as a function of the Ag2S content. The far-infrared transmission in the 100-600 cm-1 window range (3.3-18.2 THz, 100-16.6 μm) was also given for a few glass compositions highlighting the strong influence of the HgI2 content.

  13. Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications

    International Nuclear Information System (INIS)

    Ziegelbauer, Joseph M.; Murthi, Vivek S.; O'Laoire, Cormac; Gulla, Andrea F.; Mukerjee, Sanjeev

    2008-01-01

    Transition metal-based chalcogenide electrocatalysts exhibit a promising level of performance for oxygen reduction reaction applications while offering significant economic benefits over the state of the art Pt/C systems. The most active materials are based on Ru x Se y clusters, but the toxicity of selenium will most likely limit their embrace by the marketplace. Sulfur-based analogues do not suffer from toxicity issues, but suffer from substantially less activity and stability than their selenium brethren. The structure/property relationships that result in these properties are not understood due to ambiguities regarding the specific morphologies of Ru x S y -based chalcogenides. To clarify these properties, an electrochemical kinetics study was interpreted in light of extensive X-ray diffraction, scanning electron microscopy, and in situ X-ray absorption spectroscopy evaluations. The performance characteristics of ternary M x Ru y S z /C (M = Mo, Rh, or Re) chalcogenide electrocatalysts synthesized by the now-standard low-temperature nonaqueous (NA) route are compared to commercially available (De Nora) Rh- and Ru-based systems. Interpretation of performance differences is made in regards to bulk and surface properties of these systems. In particular, the overall trends of the measured activation energies in respect to increasing overpotential and the gross energy values can be explained in regards to these differences

  14. Formation of surface nanolayers in chalcogenide crystals using coherent laser beams

    Science.gov (United States)

    Ozga, K.; Fedorchuk, A. O.; El-Naggar, A. M.; Albassam, A. A.; Kityk, V.

    2018-03-01

    We have shown a possibility to form laser modified surface nanolayers with thickness up to 60 nm in some ternary chalcogenide crystals (Ag3AsS3, Ag3SbS3, Tl3SbS3) The laser treatment was performed by two coherent laser beams split in a space. As the inducing lasers we have applied continuous wave (cw) Hesbnd Cd laser at wavelength 441 nm and doubled frequency cw Nd: YAG laser at 532 nm. The spectral energies of these lasers were higher with respect to the energy gaps of the studied crystals. The optical anisotropy was appeared and defected by monitoring of birefringence at probing wavelength of cw Hesbnd Ne laser at λ = 3390 nm. The changes of the laser stimulated near the surface layer morphology was monitored by TEM and AFM methods as well as by the reflected optical second harmonic generation at fundamental wavelength of microsecond CO2 laser generating at wavelength 10600 nm. This technique may open a new approach for the formation of the near the surface nanolayers in chalcogenides using external cw laser illumination.

  15. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A.

    1997-01-01

    Processes of formation and annihilation of coordination defects in As 2 Se 3 Bi y and (As 2 Se 3 )(Bi 2 Se 3 ) y amorphous chalcogenide semiconductors induced by influence of Co 60 gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As 2 Se 3 Bi y glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs

  16. Application of positron annihilation lifetime technique for {gamma}-irradiation stresses study in chalcogenide vitreous semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.; Golovchak, R.; Kovalskiy, A. [Scientific Research Company ' ' Carat' ' , Stryjska str. 20279031 Lviv (Ukraine); Filipecki, J.; Hyla, M. [Physics Institute, Pedagogical University, Al. Armii Krajowej 13/1542201 Czestochowa (Poland)

    2002-08-01

    The influence of {gamma}-irradiation on the positron annihilation lifetime spectra in chalcogenide vitreous semiconductors of As-Ge-S system has been analysed. The correlations between lifetime data, structural features and chemical compositions of glasses have been discussed. The observed lifetime components are connected with bulk positron annihilation and positron annihilation on various native and {gamma}-induced open volume defects. It is concluded that after {gamma}-irradiation of investigated materials the {gamma}-induced microvoids based on S{sub 1}{sup -}, As{sub 2}{sup -}, and Ge{sub 3}{sup -} coordination defects play the major role in positron annihilation processes. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  17. Radiation-induced defects formation in Bi-containing vitreous chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O.; Vakiv, M.; Balitska, V.; Kovalskiy, A. [Institute of Materials, Lvov (Ukraine)

    1997-12-01

    Processes of formation and annihilation of coordination defects in As{sub 2}Se{sub 3}Bi{sub y} and (As{sub 2}Se{sub 3})(Bi{sub 2}Se{sub 3}){sub y} amorphous chalcogenide semiconductors induced by influence of Co{sup 60} gamma-irradiation are investigated by photoelectric spectroscopy method. It is obtained that radiation-induced changes of photoelectrical properties on bioconcentration of As{sub 2}Se{sub 3}Bi{sub y} glasses are characterized by anomalous concentration dependence. The nature of this effect is associated with diamagnetic coordination defects formation. (author). 19 refs, 3 figs.

  18. Surface morphology of spin-coated As-S-Se chalcogenide thin films

    Czech Academy of Sciences Publication Activity Database

    Kohoutek, T.; Wágner, T.; Orava, J.; Krbal, M.; Fejfar, Antonín; Mates, Tomáš; Kasap, S. O.; Frumar, M.

    2007-01-01

    Roč. 353, - (2007), s. 1437-1440 ISSN 0022-3093 R&D Projects: GA AV ČR IAA1010316; GA AV ČR IAA1010413 Grant - others:GA ČR(CZ) GA203/05/0524; GAMŠk(CZ) LC523 Program:LC Institutional research plan: CEZ:AV0Z10100521 Keywords : chemical properties * spin coating * infrared glasses * chalcogenides * atomic force and scanning tunneling microscopy * scanning electron microscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.319, year: 2007

  19. Reactive ion etching of tellurite and chalcogenide waveguides using hydrogen, methane, and argon

    International Nuclear Information System (INIS)

    Vu, K. T.; Madden, S. J.

    2011-01-01

    The authors report in detail on the reactive plasma etching properties of tellurium and demonstrate a high quality etching process using hydrogen, methane, and argon. Very low loss planar ridge waveguides are demonstrated. Optical losses in tellurium dioxide waveguides below 0.1 dB/cm in most of the near infrared region of the electromagnetic spectrum and at 1550 nm have been achieved--the lowest ever reported by more than an order of magnitude and clearly suitable for planar integrated devices. The etch process is also shown to be suitable for chalcogenide glasses which may be of importance in applications such as phase change memory devices and nonlinear integrated optics.

  20. Advances in Mid-IR Fiber Lasers: Tellurite, Fluoride and Chalcogenide

    Directory of Open Access Journals (Sweden)

    Mario Christian Falconi

    2017-06-01

    Full Text Available A review on the recent progress in modeling and fabrication of medium infrared (Mid-IR fiber lasers is reported. The main objective is to illustrate some recent examples of continuous wave optical sources at wavelengths longer than those commonly employed in telecom applications and allowing high beam quality. A small number of Mid-IR lasers, among the large variety of schemes, glasses, dopants and pumping schemes reported in literature, is selected on the basis of their slope efficiency and threshold pump power. In particular, tellurite, fluoride and chalcogenide fiber lasers are considered. More details are given with reference to the novel pumping schemes.

  1. Chalcogenide Glass Lasers on Silicon Substrate Integrated Photonics

    Science.gov (United States)

    2016-07-08

    driven optoacoustic devices that permit stable GHz mode-locking of fiber ring lasers; bright deep and vacuum UV sources based on gas-filled hollow core ...topological insulators with ultracold atoms. Bio: Wolfgang Ketterle has been the John D. MacArthur professor of physics at MIT since 1998. He leads...remarkable enhancements (and in some cases reductions) in many kinds of light-matter interaction. Recent examples include the solid core PCFs widely

  2. Evanescent field infrared spectroscopy using chalcogenide glass fiber

    International Nuclear Information System (INIS)

    Katz Moti

    1992-06-01

    In the last few years a simple and cheap fiber-optics based spectroscopy method was developed for the investigation of liquids, pastes gases and thin layers. The fiber is immersed in the sample, and the investigated material becomes the fiber cladding. the interaction between the guided radiation in the fiber and the specimen is taking place by evanescent field which extends outside the fiber. This work concentrates in the quantitative characterization of the absorption of the evanescent field by the fiber cladding (the specimen). This subject was dealt with only briefly in the earlier works, and the aim of this work is to obtain a comprehensive understanding of this issue. (author)

  3. Theoretical prediction and experimental confirmation of unusual ternary ordered semiconductor compounds in Sr-Pb-S system.

    Science.gov (United States)

    Hao, Shiqiang; Zhao, Li-Dong; Chen, Chang-Qiang; Dravid, Vinayak P; Kanatzidis, Mercouri G; Wolverton, Christopher M

    2014-01-29

    We examine the thermodynamics of phase separation and ordering in the ternary Ca(x)Pb(1-x)S and Sr(x)Pb(1-x)S systems by density-functional theory combined with a cluster expansion and Monte Carlo simulations. Similar to most other ternary III-V or IV-VI semiconductor alloys, we find that bulk phase separation is thermodynamically preferred for PbS-CaS. However, we predict the surprising existence of stable, ordered ternary compounds in the PbS-SrS system. These phases are previously unreported ordered rocksalt-based compounds: SrPb3S4, SrPbS2, and Sr3PbS4. The stability of these predicted ordered phases is confirmed by transmission electron microscopy observations and band gap measurements. We believe this work paves the way for a combined theory-experiment approach to decipher complex phase relations in multicomponent chalcogenide systems.

  4. Physicochemical properties of new As2Se3–Ag4SSe–CdTe glasses

    International Nuclear Information System (INIS)

    Aljihmani, Lilia; Vassilev, Venceslav; Hristova-Vasileva, Temenuga; Fidancevska, Emilija

    2009-01-01

    Chalcogenide glasses from the As 2 Se 3 –Ag 4 SSe–CdTe system were synthesized. The basic physicochemical parameters such as density (d), microhardness (HV) and the temperatures glass transition Tg were measured. Compactness (C) and some thermomechanical characteristics such as volume (Vh) and formation energy (Eh) of micro-voids in the glassy network, as well as the module of elasticity (E) were calculated. A correlation between the composition and properties of the As 2 Se 3 –Ag 4 SSe–CdTe glasses was established and comprehensively discussed. Keywords: chalcogenide glasses, density, microhardness, compactness, elasticity modulus, thermomechanical characteristics

  5. Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films

    Science.gov (United States)

    Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    2000-01-01

    A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.

  6. Using physical properties of molten glass to estimate glass composition

    International Nuclear Information System (INIS)

    Choi, Kwan Sik; Yang, Kyoung Hwa; Park, Jong Kil

    1997-01-01

    A vitrification process is under development in KEPRI for the treatment of low-and medium-level radioactive waste. Although the project is for developing and building Vitrification Pilot Plant in Korea, one of KEPRI's concerns is the quality control of the vitrified glass. This paper discusses a methodology for the estimation of glass composition by on-line measurement of molten glass properties, which could be applied to the plant for real-time quality control of the glass product. By remotely measuring viscosity and density of the molten glass, the glass characteristics such as composition can be estimated and eventually controlled. For this purpose, using the database of glass composition vs. physical properties in isothermal three-component system of SiO 2 -Na 2 O-B 2 O 3 , a software TERNARY has been developed which determines the glass composition by using two known physical properties (e.g. density and viscosity)

  7. Investigation of transient photoresponse of WSSe ternary alloy crystals

    Science.gov (United States)

    Chauhan, Payal; Solanki, G. K.; Tannarana, Mohit; Pataniya, Pratik; Patel, K. D.; Pathak, V. M.

    2018-05-01

    Transition metal chalcogenides have been studied intensively in recent time due to their tunability of electronic properties by compositional change, alloying and by transforming bulk material into crystalline 2D structure. These changes lead to the development of verities of next generation opto-electronic device applications such as solar cells, FETs and flexible detectors etc. In present work, we report growth and characterization of crystalline ternary alloy WSSe by direct vapour transport technique. A photodetector is constructed using grown crystals to study its transient photoresponse under polychromatic radiation. The WSSe crystals are mechanically exfoliated to thickness of 3 µm and the lateral dimension of prepared sample is 2.25 mm2. The time-resolved photoresponse is studied under polychromatic illumination of power density ranging from 10 to 40 mW/cm2. The photo response is also studied under different bias voltages ranging from 0.1 V to 0.5 V. The typical photodetector parameters i.e. photocurrent, rise and fall time, responsivity and sensitivity are evaluated and discussed in light of the ternary alloy composition.

  8. Linking rigidity transitions with enthalpic changes at the glass transition and fragility: insight from a simple oscillator model.

    Science.gov (United States)

    Micoulaut, Matthieu

    2010-07-21

    A low temperature Monte Carlo dynamics of a Keating-like oscillator model is used to study the relationship between the nature of network glasses from the viewpoint of rigidity, the thermal reversibility during the glass transition and the strong-fragile behaviour of glass-forming liquids. The model shows that a Phillips optimal glass formation with minimal enthalpic changes is obtained under a cooling/annealing cycle when the system is optimally constrained by the harmonic interactions, i.e. when it is isostatically rigid. For these peculiar systems with a nearly reversible glass transition, the computed activation energy for relaxation time shows also a minimum, which demonstrates that isostatically rigid glasses are strong (Arrhenius-like) glass-forming liquids. Experiments on chalcogenide and oxide glass-forming liquids are discussed under this new perspective and confirm the theoretical prediction for chalcogenide network glasses whereas limitations of the approach appear for weakly interacting (non-covalent, ionic) systems.

  9. High surface area graphene-supported metal chalcogenide assembly

    Science.gov (United States)

    Worsley, Marcus A.; Kuntz, Joshua D.; Orme, Christine A.

    2017-04-25

    Disclosed here is a method for hydrocarbon conversion, comprising contacting at least one graphene-supported assembly with at least one hydrocarbon feedstock, wherein the graphene-supported assembly comprises (i) a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds and (ii) at least one metal chalcogenide compound disposed on the graphene sheets, wherein the chalcogen of the metal chalcogenide compound is selected from S, Se and Te, and wherein the metal chalcogenide compound accounts for at least 20 wt. % of the graphene-supported assembly.

  10. Structural, optical and electrical properties of cadmium-doped lead chalcogenide (PbSe) thin films

    International Nuclear Information System (INIS)

    Khan, Shamshad A.; Khan, Zishan H.; El-Sebaii, A.A.; Al-Marzouki, F.M.; Al-Ghamdi, A.A.

    2010-01-01

    (PbSe) 100-x Cd x thin films of thickness 3000 A with variable concentrations of Cd (x=5, 10, 15 and 20) were prepared by thermal evaporation on glass substrates at room temperature at a base pressure of 10 -6 Torr. The structural, optical and electrical properties of these films were studied. X-ray diffraction patterns were used to determine the crystal structure of the films. Films were of polycrystalline texture over the whole range of study. Optical constants of all films were determined by absorbance and reflection measurements in a wavelength range 400-1200 nm. Analysis of the optical absorption data showed that the rule of direct transitions predominates. The values of the absorption coefficient (α), extinction coefficient (k) and imaginary part of the dielectric constant were found to increase with increasing Cd content in lead chalcogenides while the refractive index (n) and real part of dielectric constant were increased with increasing Cd concentration up to 15% and then they decreased with 20% of Cd content in PbSe. These results were interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. The dc conductivities and activation energies of the films were measured in the temperature range 298-398 K. It was observed that the dc conductivity increases at all temperatures with the increase of Cd content in lead chalcogenide system. The experimental data suggests that the conduction is due to the thermally assisted tunneling of the carriers in the localized states near the band edges. The activation energy and optical band gap were found to decrease with increasing Cd concentration in lead chalcogenide.

  11. Peculiarities of Gamma-Induced Optical Effects in Ternary Systems of Amorphous Chalcogenide Semiconductors

    Science.gov (United States)

    2001-06-01

    compactness and bonds concentration into the mechanism of RIOE must be taken into account using the parameter o ) [7]: o =C6, (2) where C- concentration of main...section, in contrast to As2S3-Ge2S3, the characters of ATmax(Z) and 8(Z) dependencies mismatch. 25 , 6 20 - - - 15 - 4 o 6 10 ) 2 --- At 5 -4-A 0...as well as by the origin of constituent chemical elements. Acknowledgement I would like to thank Professor 0. Shpotyuk for his encouragement and the

  12. Antibacterial studies of novel Cu2WS4 ternary chalcogenide synthesized by hydrothermal process

    Science.gov (United States)

    Kannan, Selvaraj; Vinitha, Perumal; Mohanraj, Kannusamy; Sivakumar, Ganesan

    2018-02-01

    This is the first report for the synthesis of L-cysteine mediated Cu2WS4 nanoparticles for different temperatures by an inexpensive and less pollutive hydrothermal method. The as-synthesized particles were characterized by XRD, FTIR, FESEM, UV-vis diffuse reflectance and PL spectra technique respectively. The phase purity and structural confirmation were studied by X-ray powder diffraction technique. It is observed that the synthesis temperature affecting the crystalline size. The optical analysis of the Cu2WS4 nanoparticles showed direct band gap in the range of 2.1-2.3 eV. The intensity of the PL emission spectra decreases with increase of reaction temperature. The antibacterial performance of Cu2WS4 nanoparticles were investigated by agar well diffusion method and the results confirm that the antibacterial activity of Cu2WS4 against Gram-positive (B. subtilis, M. luteus) and Gram-negative (E. coli, P. aeruginosa and K. pneumoniae) bacteria.

  13. Preparation and physical properties of rare earth, alkaline earth, and transition metal ternary chalcogenides

    International Nuclear Information System (INIS)

    Georgobiani, A.N.

    1997-01-01

    A study was made on current-voltage characteristics, temperature dependences of electric conductivity and currents of thermoinduced depolarization of monocrystals, including EuGa 2 S 4 and (Ga 2 S 3 ) 1-x (Eu 2 O 3 ) x solid solutions. It is shown that these compounds, activated by europium, cerium, neodymium and other rare earths, manifest effective luminescence under the effect of ultraviolet and X-radiation, as well as under the effect of electron beams and electric field

  14. On the “compositional threshold“ in GeS2-Sb2S3, GeSe2-Sb2Se3 and GeS2-Bi2S3 glasses

    Czech Academy of Sciences Publication Activity Database

    Tichý, Ladislav; Tichá, H.

    2015-01-01

    Roč. 152, 15 February (2015), s. 1-3 ISSN 0254-0584 Institutional support: RVO:61389013 Keywords : chalcogenide glasses * hetero three atom linkages * eutectic compositon Subject RIV: CA - Inorganic Chemistry Impact factor: 2.101, year: 2015

  15. Uptake of hazardous radionuclides within layered chalcogenide for environmental protection

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Pranesh, E-mail: praneshsengupta@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Dudwadkar, N.L. [Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Vishwanadh, B. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Pulhani, V. [Health Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Rao, Rekha [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Tripathi, S.C. [Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2014-02-15

    Highlights: • Layered chalcogenide with CdI{sub 2} crystal structure prepared by hydrothermal route. • Exploration of the possibilities for radionuclides’ uptake using layered chalcogenide. • Proposing ‘topotactic ionic substitution’ as major uptake mechanism. -- Abstract: Ensuring environmental protection in and around nuclear facilities is a matter of deep concern. Toward this, layered chalcogenide with CdI{sub 2} crystal structure has been prepared. Structural characterizations of layered chalcogenide suggest ‘topotactic ionic substitution’ as the dominant mechanism behind uptake of different cations within its lattice structure. An equilibration time of 45 min and volume to mass ratio of 30:1 are found to absorb {sup 233}U, {sup 239}Pu, {sup 106}Ru, {sup 85+89}Sr, {sup 137}Cs and {sup 241}Am radionuclides to the maximum extents.

  16. Debye temperatures of uranium chalcogenides from their lattice ...

    Indian Academy of Sciences (India)

    Unknown

    From the phonon frequencies, their Debye temperatures are evaluated. Further, ... Keywords. Uranium chalcogenides; p-wave electronic superconductor; phonon frequency; Debye tempera- ture; spin ... to the ionic crystals of similar structure.

  17. Structural, optical and electrical characterization of Ag doped lead chalcogenide (PbSe) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, A.A., E-mail: aghamdi90@hotmail.com [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Al-Heniti, S. [Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Khan, Shamshad A. [Department of Physics, St. Andrew' s College, Gorakhpur, UP (India)

    2013-03-15

    Research and development efforts are currently underway to fabricate a variety of solid state devices. A good deal of information regarding the synthesis, structural, optical and electrical properties of Ag doped lead chalcogenides have been revealed. The bulk polycrystalline (PbSe){sub 100-x}Ag{sub x} ternary chalcogenides are prepared by diffusion technique. The XRD patterns recorded for the (PbSe){sub 100-x}Ag{sub x} thin films prepared by vacuum deposition technique, show that these films are polycrystalline in nature. The optical measurements reveal that the (PbSe){sub 100-x}Ag{sub x} thin films possess direct band gap and the band gap energy decreases with an increase of Ag concentration. The extinction coefficient (k) and refractive index (n) are found to be changing by increasing Ag concentration in PbSe. These results are interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. The dc conductivities of (PbSe){sub 100-x}Ag{sub x} thin films are measured in temperature range 303-403 K. It is observed that the dc conductivity increases at all the temperatures with an increase of Ag content in PbSe system. The experimental data suggests that the conduction is due to thermally assisted tunneling of the charge carriers in the localized states near the band edges. The activation energy and optical band gap are found to decrease with increasing Ag concentration in lead chalcogenide and there are good agreements between these two values. - Highlights: Black-Right-Pointing-Pointer (PbSe){sub 100-x}Ag{sub x} thin films has been investigated. Black-Right-Pointing-Pointer Polycrystalline nature has been verified by X-ray diffraction. Black-Right-Pointing-Pointer Optical absorption data showed the rules of direct transitions predominate. Black-Right-Pointing-Pointer Dc conductivity increases with an increase of Ag content in PbSe system. Black-Right-Pointing-Pointer Increase of Ag concentration causes a decrease in E{sub g

  18. Mid-infrared performance of single mode chalcogenide fibers

    Science.gov (United States)

    Cook, Justin; Sincore, Alex; Tan, Felix; El Halawany, Ahmed; Riggins, Anthony; Shah, Lawrence; Abouraddy, Ayman F.; Richardson, Martin C.; Schepler, Kenneth L.

    2018-02-01

    Due to the intrinsic absorption edge in silica near 2.4 μm, more exotic materials are required to transmit laser power in the IR such as fluoride or chalcogenide glasses (ChGs). In particular, ChG fibers offer broad IR transmission with low losses fibers at four different infrared wavelengths: 2053 nm, 2520 nm and 4550 nm. Polymer clad ChG fibers were drawn with 12.3 μm and 25 μm core diameters. Testing at 2053 nm was accomplished using a > 15 W, CW Tm:fiber laser. Power handling up to 10.2 W with single mode beam quality has been demonstrated, limited only by the available Tm:fiber output power. Anti-reflective coatings were successfully deposited on the ChG fiber facets, allowing up to 90.6% transmission with 12.2 MW/cm2 intensity on the facet. Single mode guidance at 4550 nm was also demonstrated using a quantum cascade laser (QCL). A custom optical system was constructed to efficiently couple the 0.8 NA QCL radiation into the 0.2 NA ChG fiber, allowing for a maximum of 78% overlap between the QCL radiation and fundamental mode of the fiber. With an AR-coated, 25 μm core diameter fiber, >50 mW transmission was demonstrated with > 87% transmission. Finally, we present results on fiber coupling from a free space Cr:ZnSe resonator at 2520 nm.

  19. Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion.

    Science.gov (United States)

    Xing, Sida; Grassani, Davide; Kharitonov, Svyatoslav; Billat, Adrien; Brès, Camille-Sophie

    2016-05-02

    We experimentally demonstrate wavelength conversion in the 2 µm region by four-wave mixing in an AsSe and a GeAsSe chalcogenide photonic crystal fibers. A maximum conversion efficiency of -25.4 dB is measured for 112 mW of coupled continuous wave pump in a 27 cm long fiber. We estimate the dispersion parameters and the nonlinear refractive indexes of the chalcogenide PCFs, establishing a good agreement with the values expected from simulations. The different fiber geometries and glass compositions are compared in terms of performance, showing that GeAsSe is a more suited candidate for nonlinear optics at 2 µm. Building from the fitted parameters we then propose a new tapered GeAsSe PCF geometry to tailor the waveguide dispersion and lower the zero dispersion wavelength (ZDW) closer to the 2 µm pump wavelength. Numerical simulations shows that the new design allows both an increased conversion efficiency and bandwidth, and the generation of idler waves further in the mid-IR regions, by tuning the pump wavelength in the vicinity of the fiber ZDW.

  20. Investigation of the dynamics of a nonlinear optical response in glassy chalcogenide semiconductors by the pump–probe method

    Science.gov (United States)

    Romanova, E. A.; Kuzyutkina, Yu S.; Shiryaev, V. S.; Guizard, S.

    2018-03-01

    An analysis of the results of measurements by using the pump–probe method with a femtosecond resolution in time and computer simulation of the charge carrier kinetics have revealed two types of a nonlinear optical response in samples of chalcogenide glasses belonging to the As – S – Se system, irradiated by 50-fs laser pulses with a wavelength of 0.79 μm. The difference in the nonlinear dynamics is due to the difference in the photoexcitation character, because laser radiation can be absorbed either through bound states in the band gap or without their participation, depending on the ratio of the pump photon energy to the bandgap energy.

  1. Nanoscale structure and atomic disorder in the iron-based chalcogenides

    Directory of Open Access Journals (Sweden)

    Naurang Lal Saini

    2013-01-01

    Full Text Available The multiband iron-based superconductors have layered structure with a phase diagram characterized by a complex interplay of charge, spin and lattice excitations, with nanoscale atomic structure playing a key role in their fundamental electronic properties. In this paper, we briefly review nanoscale structure and atomic disorder in iron-based chalcogenide superconductors. We focus on the Fe(Se,S1−xTex (11-type and K0.8Fe1.6Se2 (122-type systems, discussing their local structure obtained by extended x-ray absorption fine structure. Local structure studies on the Fe(Se,S1−xTex system reveal clear nanoscale phase separation characterized by coexisting components of different atomic configurations, similar to the case of random alloys. In fact, the Fe–Se/S and Fe–Te distances in the ternary Fe(Se,S1−xTex are found to be closer to the respective distances in the binary FeSe/FeS and FeTe systems, showing significant divergence of the local structure from the average one. The observed features are characteristic of ternary random alloys, indicating breaking of the local symmetry in these materials. On the other hand, K0.8Fe1.6Se2 is known for phase separation in an iron-vacancy ordered phase and an in-plane compressed lattice phase. The local structure of these 122-type chalcogenides shows that this system is characterized by a large local disorder. Indeed, the experiments suggest a nanoscale glassy phase in K0.8Fe1.6Se2, with the superconductivity being similar to the granular materials. While the 11-type structure has no spacer layer, the 122-type structure contains intercalated atoms unlike the 1111-type REFeAsO (RE = rare earth oxypnictides, having well-defined REO spacer layers. It is clear that the interlayer atomic correlations in these iron-based superconducting structures play an important role in structural stability as well as superconductivity and magnetism.

  2. New ternary superconducting germanides

    Science.gov (United States)

    Moschalkov, V. V.; Muttik, I. G.; Samarin, N. A.; Seropegin, Yu. D.; Rudometkina, M. V.

    1991-12-01

    We have studied the structure, electrical and magnetic properties of new ternary compounds with germanium and transition metals of IV and V groups (Ti 0.7V 0.3Ge 3, Hf 2V 3Ge, Zr 32-36V 32-36Ge 30-32, Hf 2Nb 3Ge 4, HfVGe, Zr 15-17V 39-40Ge 44-45, Hf 10.8-21.7V 36.0-42.8). The homogeneity fields for all new phases are determined. Resistivity (T) and magnetic susceptibility χ(T) are investigated at T=4.2…300 K. Two new superconductors have been found - Zr 32-36V 32-36Ge 30-32 and HfVGe with T c=4.7 K and 5.7 K, respectively.

  3. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    International Nuclear Information System (INIS)

    Kozyukhin, S.; Golovchak, R.; Kovalskiy, A.; Shpotyuk, O.; Jain, H.

    2011-01-01

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As x Se 100−x , As x S 100−x , Ge x Se 100−x and Ge x S 100−x chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  4. Valence band structure of binary chalcogenide vitreous semiconductors by high-resolution XPS

    Energy Technology Data Exchange (ETDEWEB)

    Kozyukhin, S., E-mail: sergkoz@igic.ras.ru [Russian Academy of Science, Institute of General and Inorganic Chemistry (Russian Federation); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Kovalskiy, A. [Lehigh University, Department of Materials Science and Engineering (United States); Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' (Ukraine); Jain, H. [Lehigh University, Department of Materials Science and Engineering (United States)

    2011-04-15

    High-resolution X-ray photoelectron spectroscopy (XPS) is used to study regularities in the formation of valence band electronic structure in binary As{sub x}Se{sub 100-x}, As{sub x}S{sub 100-x}, Ge{sub x}Se{sub 100-x} and Ge{sub x}S{sub 100-x} chalcogenide vitreous semiconductors. It is shown that the highest occupied energetic states in the valence band of these materials are formed by lone pair electrons of chalcogen atoms, which play dominant role in the formation of valence band electronic structure of chalcogen-rich glasses. A well-expressed contribution from chalcogen bonding p electrons and more deep s orbitals are also recorded in the experimental valence band XPS spectra. Compositional dependences of the observed bands are qualitatively analyzed from structural and compositional points of view.

  5. Power-efficient production of photon pairs in a tapered chalcogenide microwire

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Scott, Evan, E-mail: emeyersc@uwaterloo.ca; Dot, Audrey [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Ahmad, Raja; Li, Lizhu; Rochette, Martin [Department of Electrical and Computer Engineering, McGill University, 3480 University Street, Montréal, Québec H3A 2A7 (Canada); Jennewein, Thomas [Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1 (Canada); Quantum Information Science Program, Canadian Institute for Advanced Research, 180 Dundas Street West, Suite 1400, Toronto, Ontario M5G 1Z8 (Canada)

    2015-02-23

    Using tapered fibers of As{sub 2}Se{sub 3} chalcogenide glass, we produce photon pairs at telecommunication wavelengths with low pump powers. We found maximum coincidences-to-accidentals ratios of 2.13 ± 0.07 for degenerate pumping with 3.2 μW average power, and 1.33 ± 0.03 for non-degenerate pumping with 1.0 μW and 1.5 μW average power of the two pumps. Our results show that the ultrahigh nonlinearity in these microwires could allow single-photon pumping to produce photon pairs, enabling the production of large entangled states, heralding of single photons after lossy transmission, and photonic quantum information processing with nonlinear optics.

  6. Transuranium element chalcogenides. Crystallochemistry and Moessbauer spectrometry of neptunium 237 chalcogenides

    International Nuclear Information System (INIS)

    Thevenin, T.; Pages, M.; Damien, D.

    1981-09-01

    To study actinide compounds , neptunium 237 has been studied by Moessbauer resonance. The different oxidation degrees of neptunium (7, 6, 5, 4 and 3) have a very important effect on isomeric displacements. In the study of chalcogenides, the isomeric displacement value of NpS 3 confirms the valency 4+ of neptunium in this compound. Results obtained with Np 3 S 5 show two valency state +3 and +4 in this compound. There is a good agreement with the two crystalline sites determined by crystallography [fr

  7. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    International Nuclear Information System (INIS)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun

    2017-01-01

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr 7 Ni 10 , ZrNi, ZrNi 5 , Zr 14 Cu 51 , and Zr 2 Cu 9 , show a remarkable ternary solubility. A new ternary compound named τ 3 (Zr 31.1-30.7 . Cu 28.5-40.3 Ni 40.4-29.0 ) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  8. Interaction between titanium and sulfuric acid in the electrodeposition of chalcogenide semiconductors

    International Nuclear Information System (INIS)

    Ortega, J.

    1992-01-01

    Some chalcogenide electrodeposition problems in the cathodic potential range from -0.30 V to-0.65 V vs SCE may be related to the Titanium corrosion-passivation process in aqueous solutions of sulfuric acid. This feature was discovered accidentally when it was attempted to electrodeposit Cd-Hg-Te compounds from a ternary plating bath; an anodic current of about 10 m/cm 2 was produced in the Titanium cathode at -0.50 V vs SCE, while at -0.40 and -0.60 V vs SCE the current was cathodic. In order to explain this feature, a first study has been carried out to determine the influence of the temperature and sulfuric acid concentration on the passivation current density, passivation potential and Flade potential for passivation. From Arrhenius plots of the passivation currents an apparent activation energy of 63.8 kJ/mole for Titanium passivation in sulfuric acid at -0.50 V vs SCE was obtained. The electrochemical stability of passivated Titanium was explained by assuming that the oxide film formed exhibits n-type semiconducting character, since passivation data was in good agreement with interfacial energetics for n-TiO 2 in aqueous solutions of sulfuric acid.(Author)

  9. Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes

    KAUST Repository

    Xia, Chuan

    2016-04-14

    Asymmetric supercapacitors provide a promising approach to fabricate capacitive energy storage devices with high energy and power densities. In this work, asymmetric supercapacitors with excellent performance have been fabricated using ternary (Ni, Co)0.85Se on carbon fabric as bind-free positive electrode and porous free-standing graphene films as negative electrode. Owing to their metal-like conductivity (~1.67×106 S m−1), significant electrochemical activity, and superhydrophilic nature, our nanostructured ternary nickel cobalt selenides result in a much higher areal capacitance (2.33 F cm−2 at 4 mA cm−2), better rate performance and cycling stability than their binary selenide equivalents, and other ternary oxides and chalcogenides. Those hybrid supercapacitors can afford impressive areal capacitance and stack capacitance of 529.3 mF cm−2 and 6330 mF cm−3 at 1 mA cm−2, respectively. More impressively, our optimized asymmetric device operating at 1.8 V delivers a very high stack energy density of 2.85 mWh cm−3 at a stack power density of 10.76 mW cm−3, as well as 85% capacitance retention after 10,000 continuous charge-discharge cycles. Even at a high stack power density of 1173 mW cm−3, this device still deliveries a stack energy density of 1.19 mWh cm−3, superior to most of the reported supercapacitors.

  10. Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films.

    Science.gov (United States)

    Yuan, Min; Mitzi, David B

    2009-08-21

    A combination of unique solvent properties of hydrazine enables the direct dissolution of a range of metal chalcogenides at ambient temperature, rendering this an extraordinarily simple and soft synthetic approach to prepare new metal chalcogenide-based materials. The extended metal chalcogenide parent framework is broken up during this process, and the resulting metal chalcogenide building units are re-organized into network structures (from 0D to 3D) based upon their interactions with the hydrazine/hydrazinium moieties. This Perspective will review recent crystal and materials chemistry developments within this family of compounds and will briefly discuss the utility of this approach in metal chalcogenide thin-film deposition.

  11. Fluorescence of Er3+ doped La2S3.3Ga2S3 glasses

    International Nuclear Information System (INIS)

    Reisfeld, R.; Bornstein, A.

    1978-01-01

    In this paper the authors report the preparation and fluorescence of Er 3+ in chalcogenide glasses. In the oxide glasses it has been shown that the multiphonon transition rates of the RE are independent of the coupling between a given oxide glass and rare earth ion, but dependent exponentially on the number of phonons of highest energy bridging the emitting and next-lower level. It is of interest to establish whether changing the glass matrix will affect the amount of electron phonon coupling. In addition, because of their low phonon energy and high refractive index, the RE doped chalcogenide glasses will form a new type of fluorescent material. This may be of interest in new RE lasers. (Auth.)

  12. Wireless Chalcogenide Nanoionic-Based Radio-Frequency Switch

    Science.gov (United States)

    Nessel, James; Miranda, Felix

    2013-01-01

    A new nonvolatile nanoionic switch is powered and controlled through wireless radio-frequency (RF) transmission. A thin layer of chalcogenide glass doped with a metal ion, such as silver, comprises the operational portion of the switch. For the switch to function, an oxidizable electrode is made positive (anode) with respect to an opposing electrode (cathode) when sufficient bias, typically on the order of a few tenths of a volt or more, is applied. This action causes the metal ions to flow toward the cathode through a coordinated hopping mechanism. At the cathode, a reduction reaction occurs to form a metal deposit. This metal deposit creates a conductive path that bridges the gap between electrodes to turn the switch on. Once this conductive path is formed, no further power is required to maintain it. To reverse this process, the metal deposit is made positive with respect to the original oxidizable electrode, causing the dissolution of the metal bridge thereby turning the switch off. Once the metal deposit has been completely dissolved, the process self-terminates. This switching process features the following attributes. It requires very little to change states (i.e., on and off). Furthermore, no power is required to maintain the states; hence, the state of the switch is nonvolatile. Because of these attributes the integration of a rectenna to provide the necessary power and control is unique to this embodiment. A rectenna, or rectifying antenna, generates DC power from an incident RF signal. The low voltages and power required for the nanoionic switch control are easily generated from this system and provide the switch with a novel capability to be operated and powered from an external wireless device. In one realization, an RF signal of a specific frequency can be used to set the switch into an off state, while another frequency can be used to set the switch to an on state. The wireless, miniaturized, and nomoving- part features of this switch make it

  13. Ternary Weighted Function and Beurling Ternary Banach Algebra l1ω(S

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghanian

    2011-01-01

    Full Text Available Let S be a ternary semigroup. In this paper, we introduce our notation and prove some elementary properties of a ternary weight function ω on S. Also, we make ternary weighted algebra l1ω(S and show that l1ω(S is a ternary Banach algebra.

  14. Local atomic structure and electrical properties of Ge(20)Se(80-x)Te(x) (x=0, 5, 10, and 15) glasses doped with Ho

    Czech Academy of Sciences Publication Activity Database

    Kubliha, M.; Kostka, Petr; Trnovcová, V.; Zavadil, Jiří; Bednarčík, J.; Labas, V.; Pedlíková, Jitka; Dippel, A.C.; Liermann, H.P.; Psota, J.

    2014-01-01

    Roč. 586, FEB 15 (2014), s. 308-313 ISSN 0925-8388 R&D Projects: GA ČR GAP106/12/2384 Institutional support: RVO:67985891 ; RVO:67985882 Keywords : chalcogenide glasses * crystal phase * electrical and dielectric properties * structure Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.999, year: 2014

  15. Nonlinear Properties of Soft Glass Waveguides

    DEFF Research Database (Denmark)

    Steffensen, Henrik

    -infrared applications and the THz applications. In the mid-infrared, it is investigated whether soft glasses are a suitable candidate for supercontinuum generation (SCG). A few commercially available fluoride fibers are tested for their zero dispersion wavelength (ZDW), a key property when determining the possibility......This thesis builds around the investigation into using soft glass materials for midinfrared and THz applications. Soft glasses is a term that cov ers a wide range of chemical compositions where many are yet to be fully investigated. The work in this thesis is separated in two parts, the mid...... of SCG in a fiber. A group of soft glasses, namely the chalcogenides, are known to display two photon absorption (TPA) which could potentially limit the SCG when this is initiated within the frequency range where this nonlinear process occur. An analytic model is presented to estimate the soliton self...

  16. Crystallization processes in Ge2Sb2Se4Te glass

    Czech Academy of Sciences Publication Activity Database

    Svoboda, R.; Bezdička, Petr; Gutwirth, J.; Malek, J.

    2015-01-01

    Roč. 61, JAN (2015), s. 207-214 ISSN 0025-5408 Institutional support: RVO:61388980 Keywords : Chalcogenides * Glass es * Differential scanning calorimetry (DSC) * X-ray diffraction * Crystal structure Subject RIV: CA - Inorganic Chemistry Impact factor: 2.435, year: 2015

  17. Debye temperatures of uranium chalcogenides from their lattice ...

    Indian Academy of Sciences (India)

    Phonon dispersion relations in uranium chalcogenides have been investigated using a modified three-body force shell model. From the phonon frequencies, their Debye temperatures are evaluated. Further, on the basis of the spin fluctuation in the heavy fermion uranium compounds, UPt3 and UBe13, the possible ...

  18. 1D - photonic crystals prepared from the amorphous chalcogenide films

    Czech Academy of Sciences Publication Activity Database

    Kohoutek, T.; Orava, J.; Wágner, T.; Hrdlička, M.; Vlček, Milan; Frumar, M.

    2009-01-01

    Roč. 20, - (2009), S346-S350 ISSN 0957-4522. [International Conference of Optical and Optoelectronic Materials and Applications. London, 29.07.2007-03.08.2007] Institutional research plan: CEZ:AV0Z40500505 Keywords : chalcogenide thin films Subject RIV: CA - Inorganic Chemistry Impact factor: 1.020, year: 2009

  19. True ternary fission in 310126X

    International Nuclear Information System (INIS)

    Banupriya, B.; Vijayaraghavan, K.R.; Balasubramaniam, M.

    2015-01-01

    All possible combinations are minimized by the two dimensional minimization process and minimized with respect to neutron numbers and proton numbers of the fragments. Potential energy is low and Q - value is high at true ternary fission region. It shows that true ternary mode is the dominant mode in the ternary fission of superheavy nuclei. Also, the results show that the fragments with neutron magic numbers are the dominant one in the ternary fission of superheavy nuclei whereas the fragments with proton magic numbers are the dominant one in the ternary fission of heavy nuclei

  20. Magnetic excitations in iron chalcogenide superconductors.

    Science.gov (United States)

    Kotegawa, Hisashi; Fujita, Masaki

    2012-10-01

    Nuclear magnetic resonance and neutron scattering experiments in iron chalcogenide superconductors are reviewed to make a survey of the magnetic excitations in FeSe, FeSe 1- x Te x and alkali-metal-doped A x Fe 2- y Se 2 ( A = K, Rb, Cs, etc). In FeSe, the intimate relationship between the spin fluctuations and superconductivity can be seen universally for the variations in the off-stoichiometry, the Co-substitution and applied pressure. The isovalent compound FeTe has a magnetic ordering with different wave vector from that of other Fe-based magnetic materials. The transition temperature T c of FeSe increases with Te substitution in FeSe 1- x Te x with small x , and decreases in the vicinity of the end member FeTe. The spin fluctuations are drastically modified by the Te substitution. In the vicinity of the end member FeTe, the low-energy part of the spin fluctuation is dominated by the wave vector of the ordered phase of FeTe; however, the reduction of T c shows that it does not support superconductivity. The presence of same wave vector as that of other Fe-based superconductors in FeSe 1- x Te x and the observation of the resonance mode demonstrate that FeSe 1- x Te x belongs to the same group as most of other Fe-based superconductors in the entire range of x , where superconductivity is mediated by the spin fluctuations whose wave vector is the same as the nesting vector between the hole pockets and the electron pockets. On the other hand, the spin fluctuations differ for alkali-metal-doped A x Fe 2- y Se 2 and FeSe or other Fe-based superconductors in their wave vector and strength in the low-energy part, most likely because of the different Fermi surfaces. The resonance mode with different wave vector suggests that A x Fe 2- y Se 2 has an exceptional superconducting symmetry among Fe-based superconductors.

  1. Study of film semiconductor glass-metal interfaces by nuclear methods

    International Nuclear Information System (INIS)

    Wehr, Muryel.

    1979-01-01

    The use of nuclear method analysis, particularly α particles and Li + ions elastic backscattering permitted to study the glass chalcogenide-metal interdiffusion submitted to thermal and electric stresses. The 8 MeV alpha particles are of a great interest, they increase five times the depth of the gold analysis in glasses compared with the 3,5 MeV alpha particles [fr

  2. Some new ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov

    2017-07-01

    Full Text Available Let an $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$ and minimum Hamming distance $d$ over $GF(q$. One of the most important problems in coding theory is to construct codes with optimal minimum distances. In this paper 22 new ternary linear codes are presented. Two of them are optimal. All new codes improve the respective lower bounds in [11].

  3. Synthesis of cadmium chalcogenide nanotubes at room temperature

    KAUST Repository

    Pan, Jun

    2012-10-01

    Cadmium chalcogenide (CdE, E=S, Se, Te) polycrystalline nanotubes have been synthesized from precursor of CdS/cadmium thiolate complex at room temperature. The precursor was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The transformation from the rod-like precursor of CdS/cadmium thiolate complex to CdS, CdSe and CdTe nanotubes were performed under constant stirring at room temperature in aqueous solution containing S 2-, Se 2- and Te 2-, respectively. The nanotube diameter can be controlled from 150 to 400 nm related to the dimension of templates. The XRD patterns show the cadmium chalcogenide nanotubes all corresponding to face-centered cubic structure. © 2012 Elsevier B.V. All rights reserved.

  4. Synthesis of cadmium chalcogenide nanotubes at room temperature

    KAUST Repository

    Pan, Jun; Qian, Yitai

    2012-01-01

    Cadmium chalcogenide (CdE, E=S, Se, Te) polycrystalline nanotubes have been synthesized from precursor of CdS/cadmium thiolate complex at room temperature. The precursor was hydrothermally synthesized at 180 °C using thioglycolic acid (TGA) and cadmium acetate as starting materials. The transformation from the rod-like precursor of CdS/cadmium thiolate complex to CdS, CdSe and CdTe nanotubes were performed under constant stirring at room temperature in aqueous solution containing S 2-, Se 2- and Te 2-, respectively. The nanotube diameter can be controlled from 150 to 400 nm related to the dimension of templates. The XRD patterns show the cadmium chalcogenide nanotubes all corresponding to face-centered cubic structure. © 2012 Elsevier B.V. All rights reserved.

  5. Formation of Ti--Zr--Cu--Ni bulk metallic glasses

    International Nuclear Information System (INIS)

    Lin, X.H.; Johnson, W.L.

    1995-01-01

    Formation of bulk metallic glass in quaternary Ti--Zr--Cu--Ni alloys by relatively slow cooling from the melt is reported. Thick strips of metallic glass were obtained by the method of metal mold casting. The glass forming ability of the quaternary alloys exceeds that of binary or ternary alloys containing the same elements due to the complexity of the system. The best glass forming alloys such as Ti 34 Zr 11 Cu 47 Ni 8 can be cast to at least 4-mm-thick amorphous strips. The critical cooling rate for glass formation is of the order of 250 K/s or less, at least two orders of magnitude lower than that of the best ternary alloys. The glass transition, crystallization, and melting behavior of the alloys were studied by differential scanning calorimetry. The amorphous alloys exhibit a significant undercooled liquid region between the glass transition and first crystallization event. The glass forming ability of these alloys, as determined by the critical cooling rate, exceeds what is expected based on the reduced glass transition temperature. It is also found that the glass forming ability for alloys of similar reduced glass transition temperature can differ by two orders of magnitude as defined by critical cooling rates. The origins of the difference in glass forming ability of the alloys are discussed. It is found that when large composition redistribution accompanies crystallization, glass formation is enhanced. The excellent glass forming ability of alloys such as Ti 34 Zr 11 Cu 47 Ni 8 is a result of simultaneously minimizing the nucleation rate of the competing crystalline phases. The ternary/quaternary Laves phase (MgZn 2 type) shows the greatest ease of nucleation and plays a key role in determining the optimum compositions for glass formation. copyright 1995 American Institute of Physics

  6. The Moessbauer effect in binary tin chalcogenides of tin 119

    International Nuclear Information System (INIS)

    Ortalli, I.; Fano, V.

    1975-01-01

    The values of the isomer shift, quadrupole splitting, Moessbauer coefficient, Debye temperature for the tin chalcogenides SnS. SnSe, SnTe are tabulated for the temperatures 80 and 300 K. Temperature dependences of the Moessbauer coefficient and of the effective Debye temperature for SnS, SnSe and SnTe in a temperature range of 78 to 300 K are presented. (Z.S.)

  7. Forced Ion Migration for Chalcogenide Phase Change Memory Device

    Science.gov (United States)

    Campbell, Kristy A (Inventor)

    2013-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  8. Bone bonding ability of some borate bio-glasses and their corresponding glass-ceramic derivatives

    Directory of Open Access Journals (Sweden)

    Fatma H. Margha

    2012-12-01

    Full Text Available Ternary borate glasses from the system Na2O·CaO·B2O3 together with soda-lime-borate samples containing 5 wt.% of MgO, Al2O3, SiO2 or P2O5 were prepared. The obtained glasses were converted to their glass-ceramic derivatives by controlled heat treatment. X-ray diffraction was employed to investigate the separated crystalline phases in glass-ceramics after heat treatment of the glassy samples. The glasses and corresponding glass-ceramics after immersion in water or diluted phosphate solution for extended times were characterized by the grain method (adopted by several authors and recommended by ASTM and Fourier-transform infrared spectra to justify the formation of hydroxyapatite as an indication of the bone bonding ability. The influence of glass composition on bioactivity potential was discussed too.

  9. Ternary scandium and transition metals germanides

    International Nuclear Information System (INIS)

    Kotur, B.Ya.

    1992-01-01

    Brief review of data on phase diagram of ternary Sc-Me-Ge systems (Me-d - , f-transition element) is given. Isothermal sections at 870 and 1070 K of 17 ternary systems are plotted. Compositions and their structural characteristics are presented. Variability of crystal structure is typical for ternary scandium germanides: 70 compounds with the studied structure belong to 23 structural types. Ternary germanides isostructural to types of Sm 4 Ge 4 , ZrCrSi 2 , ZrNiAl, ScCeSi, TiNiSi U 4 Re 7 Si 6 145 compounds from 70 under investigation are mostly formed in studied systems

  10. Investigations on the structure of Pb-Ge-Se glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, G.; Upadhyay, M.; Sharma, Y.; Murugavel, S., E-mail: murug@physics.du.ac.in [Department of Physics and Astrophysics, University of Delhi, Delhi – 110007 (India); Abhaya, S.; Amarendra, G. [Materials Physics Division, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102 (India)

    2016-05-23

    Chalcogenide glasses have attracted much attention because of their potential application in various solid state devices. In the present work, we report here the detailed thermal, structural, microstructural studies on Pb{sub x}Ge{sub 42-x}Se{sub 58} with (0 ≤ x ≤ 20) glasses. The influence of Pb content on the glass transition temperature, specific heat, and non-reversing enthalpy is observed and discussed qualitatively The Raman spectroscopic studies on the all the glass compositions are carried out and deconvoluted into different structural units. The positron annihilation life-time spectroscopy (PALS) studies helped to understand the nature of defect states present in the glassy system and its variation with Pb content. The concentration of charged defect centers is found to increase, whereas the open volume defect concentration decreases with Pb content in these glasses.

  11. Investigations on the structure of Pb-Ge-Se glasses

    Science.gov (United States)

    Kalra, G.; Upadhyay, M.; Sharma, Y.; Abhaya, S.; Murugavel, S.; Amarendra, G.

    2016-05-01

    Chalcogenide glasses have attracted much attention because of their potential application in various solid state devices. In the present work, we report here the detailed thermal, structural, microstructural studies on PbxGe42-xSe58 with (0 ≤ x ≤ 20) glasses. The influence of Pb content on the glass transition temperature, specific heat, and non-reversing enthalphy is observed and discussed qualitatively The Raman spectroscopic studies on the all the glass compositions are carried out and deconvoluted into different structural units. The positron annihilation life-time spectroscopy (PALS) studies helped to understand the nature of defect states present in the glassy system and its variation with Pb content. The concentration of charged defect centers is found to increase, whereas the open volume defect concentration decreases with Pb content in these glasses.

  12. Investigations on the structure of Pb-Ge-Se glasses

    International Nuclear Information System (INIS)

    Kalra, G.; Upadhyay, M.; Sharma, Y.; Murugavel, S.; Abhaya, S.; Amarendra, G.

    2016-01-01

    Chalcogenide glasses have attracted much attention because of their potential application in various solid state devices. In the present work, we report here the detailed thermal, structural, microstructural studies on Pb x Ge 42-x Se 58 with (0 ≤ x ≤ 20) glasses. The influence of Pb content on the glass transition temperature, specific heat, and non-reversing enthalpy is observed and discussed qualitatively The Raman spectroscopic studies on the all the glass compositions are carried out and deconvoluted into different structural units. The positron annihilation life-time spectroscopy (PALS) studies helped to understand the nature of defect states present in the glassy system and its variation with Pb content. The concentration of charged defect centers is found to increase, whereas the open volume defect concentration decreases with Pb content in these glasses.

  13. Relief grating induced by photo-expansion in Ga-Ge-S and Ga-Ge-As-S glasses

    Czech Academy of Sciences Publication Activity Database

    Messaddeq, S. H.; Li, M. S.; Ležal, Dimitrij; Messaddeq, Y.

    2002-01-01

    Roč. 4, č. 2 (2002), s. 375-380 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z4032918 Keywords : light-induced effects * chalcogenide glasses * relief gratings Subject RIV: CA - Inorganic Chemistry Impact factor: 0.446, year: 2002

  14. Thermochemical and structural characterization of GeSe2-Sb2Se3-ZnSe glasses

    Czech Academy of Sciences Publication Activity Database

    Ivanova, Z.; Černošková, Eva; Vassilev, V. S.; Boycheva, S. V.

    2003-01-01

    Roč. 57, č. 5-6 (2003), s. 1025-1028 ISSN 0167-577X R&D Projects: GA ČR GA203/99/0046 Keywords : chalcogenide glasses * microstucture * physicochemical properties Subject RIV: CA - Inorganic Chemistry Impact factor: 0.774, year: 2003

  15. Propagation of evanescent waves in multimode chalcogenide fiber immersed in an aqueous acetone solution: theory and experiment

    Science.gov (United States)

    Korsakova, S. V.; Romanova, E. A.; Velmuzhov, A. P.; Kotereva, T. V.; Sukhanov, M. V.; Shiryaev, V. S.

    2017-04-01

    Chalcogenide fibers are considered as a base for creation of a fiber-optical platform for the mid-IR evanescent wave spectroscopy. In this work, transmittance of a multimode fiber made of Ge26As17Se25Te32 glass, immersed into an aqueous acetone solution was measured in the range of wavelengths 5 - 9 microns at various concentrations of the solution. A theoretical approach based on electromagnetic theory of optical fibers has been applied for analysis of evanescent modes propagation in the fiber. Attenuation coefficients calculated for each HE1m evanescent mode increase with the mode radial order m. This effect can be used for optimisation of the fiber-optic sensing elements for the mid-IR spectroscopy.

  16. Recent Advances in Layered Metal Chalcogenides as Superconductors and Thermoelectric Materials: Fe-Based and Bi-Based Chalcogenides.

    Science.gov (United States)

    Mizuguchi, Yoshikazu

    2016-04-01

    Recent advances in layered (Fe-based and Bi-based) chalcogenides as superconductors or functional materials are reviewed. The Fe-chalcogenide (FeCh) family are the simplest Fe-based high-Tc superconductors. The superconductivity in the FeCh family is sensitive to external or chemical pressure, and high Tc is attained when the local structure (anion height) is optimized. The Bi-chalcogenide (BiCh2) family are a new group of layered superconductors with a wide variety of stacking structures. Their physical properties are also sensitive to external or chemical pressure. Recently, we revealed that the emergence of superconductivity and the Tc in this family correlate with the in-plane chemical pressure. Since the flexibility of crystal structure and electronic states are an advantage of the BiCh2 family for designing functionalities, I briefly review recent developments in this family as not only superconductors but also other functional materials. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime

    Science.gov (United States)

    Ahmad, H.; Karim, M. R.; Rahman, B. M. A.

    2018-03-01

    A rigorous numerical investigation has been carried out through dispersion engineering of chalcogenide rib waveguide for near-infrared to mid-infrared ultraflat broadband supercontinuum generation in all-normal group-velocity dispersion regime. We propose a novel design of a 1-cm-long air-clad rib waveguide which is made from {Ge}_{11.5} {As}_{24} {Se}_{64.5} chalcogenide glass as the core with either silica or {Ge}_{11.5} {As}_{24} {S}_{64.5} chalcogenide glass as a lower cladding separately. A broadband ultraflat supercontinuum spanning from 1300 to 1900 nm could be generated when pumped at 1.55 μ {m} with a low input peak power of 100 W. Shifting the pump to 2 μ {m}, the supercontinuum spectra extended in the mid-infrared region up to 3400 nm with a moderate-input peak power of 500 W. To achieve further extension in mid-infrared, we excite our optimized rib waveguide in both the anomalous and all-normal dispersion pumping regions at 3.1 μ {m} with a largest input peak power of 3 kW. In the case of anomalous dispersion region pumping, numerical analysis shows that supercontinuum spectrum can be extended in the mid-infrared up to 10 μ {m}, although this contains high spectral amplitude fluctuations over the entire bandwidth which limits the supercontinuum sources in the field of high precision measurement applications. On the other hand, by optimizing a rib waveguide geometry for pumping in all-normal dispersion region, we are able to generate a smooth and flat-top coherent supercontinuum spectrum with a moderate bandwidth spanning the wavelength range 2-5.5 μ {m} with less than 5 dB spectral fluctuation over the entire output bandwidth. Our proposed design is highly suitable for making on-chip SC light sources for a variety of applications such as biomedical imaging, and environmental and industrial sensing in the mid-infrared region.

  18. Infrared Emitting and Photoconducting Colloidal Silver Chalcogenide Nanocrystal Quantum Dots from a Silylamide-Promoted Synthesis

    NARCIS (Netherlands)

    Yarema, Maksym; Pichler, Stefan; Sytnyk, Mykhailo; Seyrkammer, Robert; Lechner, Rainer T.; Fritz-Popovski, Gerhard; Jarzab, Dorota; Szendrei, Krisztina; Resel, Roland; Korovyanko, Oleksandra; Loi, Maria Antonietta; Paris, Oskar; Hesser, Guenter; Heiss, Wolfgang; Hesser, Günter

    Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region,

  19. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films

    Science.gov (United States)

    Hassanien, A. S.; Akl, Alaa A.

    2016-01-01

    Compositional dependence of optical and electrical properties of chalcogenide CdSxSe1-x (0.4 ≥ x ≥ 0.0 at. %) thin films was studied. Cadmium sulphoselenide films were deposited by thermal evaporation technique at vacuum (8.2 × 10-4 Pa) onto preheated glass substrates (523 K). The evaporation rate and film thickness were kept constant at 2.50 nm/s and 375 ± 5 nm, respectively. X-ray diffractograms showed that, the deposited films have the low crystalline nature. Energy dispersive analysis by X-ray (EDAX) was used to check the compositional elements of deposited films. The absorption coefficient was determined from transmission and reflection measurements at room temperature in the wavelength range 300-2500 nm. Optical density, skin depth, optical energy gap and Urbach's parameters of CdSSe thin films have also been estimated. The direct optical energy gap decreased from 2.248 eV to 1.749 eV when the ratio of Se-content was increased from 0.60 to 1.00 . Conduction band and valance band positions were evaluated. The temperature dependence of dc-electrical resistivity in the temperature range (293-450 K) has been reported. Three conduction regions due to different conduction mechanisms were detected. Electrical sheet resistance, activation energy and pre-exponential parameters were discussed. The estimated values of optical and electrical parameters were strongly dependent upon the Se-content in CdSSe matrix.

  20. Thermal transformation properties in some glasses of the system As2Se5-As2Te5

    International Nuclear Information System (INIS)

    Kotkata, M.F.; El-Den, M.B.

    1983-07-01

    The phenomena accompanying the temperature-induced structural changes in several glasses of the chalcogenide alloy system AsSesub(2.5-x)Tesub(x), with x=0 to x=2, have been studied by differential thermal analysis. Observations of the glass transition temperature, the temperature of crystallization and the temperature of melting through consecutive thermal cycles were made. A number of kinetic parameters for the devitrification processes has been determined and discussed. (author)

  1. High-Efficient Circuits for Ternary Addition

    Directory of Open Access Journals (Sweden)

    Reza Faghih Mirzaee

    2014-01-01

    Full Text Available New ternary adders, which are fundamental components of ternary addition, are presented in this paper. They are on the basis of a logic style which mostly generates binary signals. Therefore, static power dissipation reaches its minimum extent. Extensive different analyses are carried out to examine how efficient the new designs are. For instance, the ternary ripple adder constructed by the proposed ternary half and full adders consumes 2.33 μW less power than the one implemented by the previous adder cells. It is almost twice faster as well. Due to their unique superior characteristics for ternary circuitry, carbon nanotube field-effect transistors are used to form the novel circuits, which are entirely suitable for practical applications.

  2. Electrical and dielectrical properties of As-Se-Te glasses

    Czech Academy of Sciences Publication Activity Database

    Kubliha, M.; Kalužný, J.; Pedlíková, Jitka; Zavadil, Jiří; Labaš, V.

    2007-01-01

    Roč. 9, č. 10 (2007), s. 3082-3087 ISSN 1454-4164. [ ANC -3: International Conference on Amourphous and Nanostructured Chalcogenides /3./. Brasov, 02.07.20007-06.07.2007] R&D Projects: GA ČR GA104/02/0799; GA ČR GA104/05/0878 Grant - others:GA SR(SK) APVV-20-043505; GA SR(SK) APVT-20-011304; VEGA(SK) 1/1080/04 Institutional research plan: CEZ:AV0Z20670512; CEZ:AV0Z40320502 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje Keywords : chalcogenide glasses * electrical conductivity * transmission * dielectric properties Subject RIV: CA - Inorganic Chemistry Impact factor: 0.827, year: 2007

  3. The intercalation chemistry of layered iron chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vivanco, Hector K.; Rodriguez, Efrain E., E-mail: efrain@umd.edu

    2016-10-15

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the role of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials—mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.

  4. Glass sealing

    Energy Technology Data Exchange (ETDEWEB)

    Brow, R.K.; Kovacic, L.; Chambers, R.S. [Sandia National Labs., Albuquerque, NM (United States)

    1996-04-01

    Hernetic glass sealing technologies developed for weapons component applications can be utilized for the design and manufacture of fuel cells. Design and processing of of a seal are optimized through an integrated approach based on glass composition research, finite element analysis, and sealing process definition. Glass sealing procedures are selected to accommodate the limits imposed by glass composition and predicted calculations.

  5. Chalcogenide metal centers for oxygen reduction reaction: Activity and tolerance

    International Nuclear Information System (INIS)

    Feng Yongjun; Gago, Aldo; Timperman, Laure; Alonso-Vante, Nicolas

    2011-01-01

    This mini-review summarizes materials design methods, oxygen reduction kinetics, tolerance to small organic molecules and fuel cell performance of chalcogenide metal catalysts, particularly, ruthenium (Ru x Se y ) and non-precious transition metals (M x X y : M = Co, Fe and Ni; X = Se and S). These non-platinum catalysts are potential alternatives to Pt-based catalysts because of their comparable catalytic activity (Ru x Se y ), low cost, high abundance and, in particular, a high tolerance to small organic molecules. Developing trends of synthesis methods, mechanism of oxygen reduction reaction and applications in direct alcohol fuel cells as well as the substrate effect are highlighted.

  6. Investigations on the parent compounds of Fe-chalcogenide superconductors

    International Nuclear Information System (INIS)

    Koz, Cevriye

    2015-01-01

    This work is focused on the parent compounds of the Fe-chalcogenide superconductors. For this purpose poly- and single-crystalline forms of tetragonal β-Fe x Se, Fe 1+y Te, Fe 1+y Te 1-x Se x and Fe (1+y)-x M x Te (M = Ni, Co) have been prepared. Second focal points of this study are the low-temperature structural phase transitions and physical property changes in tetragonal Fe 1+y Te which are induced by composition, external pressure, and cationic substitution.

  7. Electrochromic Glasses.

    Science.gov (United States)

    1980-07-31

    this glass and that dipole-dipole correlations contribute to the "ferroelectric-like" character of this amorphous system. The TeO2 -W03 glasses can only...shows the dielectric constant and Fig. I(b) glass from pure TeO2 ot pure WO. In addition, glass the tan 8 of the WO glass as a function of temperature... glasses containing WO, in various glass forming nitworks of LifO-B1O0, Na:O-BzO,, and TeO2 were prepared from reagent grade oxides at 800 C - 9SO C in

  8. Molecular dynamics simulations of disordered materials from network glasses to phase-change memory alloys

    CERN Document Server

    Massobrio, Carlo; Bernasconi, Marco; Salmon, Philip S

    2015-01-01

    This book is a unique reference work in the area of atomic-scale simulation of glasses. For the first time, a highly selected panel of about 20 researchers provides, in a single book, their views, methodologies and applications on the use of molecular dynamics as a tool to describe glassy materials. The book covers a wide range of systems covering ""traditional"" network glasses, such as chalcogenides and oxides, as well as glasses for applications in the area of phase change materials. The novelty of this work is the interplay between molecular dynamics methods (both at the classical and firs

  9. Description of the ternary system Cu-Ge-Te

    International Nuclear Information System (INIS)

    Dogguy, M.; Carcaly, C.; Rivet, J.; Flahaut, J.

    1977-01-01

    The Cu-Ge-Te ternary system has been studied by DTA and by crystallographic and metallographic analysis. The existence of a ternary compound Cu 2 GeTe 3 is demonstrated; this compound has a ternary incongruent melting point at 500 0 C. This ternary compound has a superstructure of a zinc blende type. The study shows the existence of five ternary eutectics. Two liquid-liquid miscibility gaps exist: the first is situated entirely in the ternary system; the second gives a monotectic region within the ternary system. (Auth.)

  10. All-optical symmetric ternary logic gate

    Science.gov (United States)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  11. Performance Estimation for Lowpass Ternary Filters

    Directory of Open Access Journals (Sweden)

    Brenton Steele

    2003-11-01

    Full Text Available Ternary filters have tap values limited to −1, 0, or +1. This restriction in tap values greatly simplifies the multipliers required by the filter, making ternary filters very well suited to hardware implementations. Because they incorporate coarse quantisation, their performance is typically limited by tap quantisation error. This paper derives formulae for estimating the achievable performance of lowpass ternary filters, thereby allowing the number of computationally intensive design iterations to be reduced. Motivated by practical communications systems requirements, the performance measure which is used is the worst-case stopband attenuation.

  12. Ageing, fragility and the reversibility window in bulk alloy glasses

    International Nuclear Information System (INIS)

    Chakravarty, S; Georgiev, D G; Boolchand, P; Micoulaut, M

    2005-01-01

    Non-reversing relaxation enthalpies (ΔH nr ) at glass transitions T g (x) in the P x Ge x Se 1-2x ternary display wide, sharp and deep global minima (∼0) in the 0.09 g s become thermally reversing. In this reversibility window, glasses are found not to age, in contrast to ageing observed for fragile glass compositions outside the window. Thermal reversibility and lack of ageing seem to be paradigms of self-organization which molecular glasses share with protein structures which repetitively and reversibly change conformation near T g and the folding temperature respectively. (letter to the editor)

  13. Ternary semitransparent organic solar cells with a laminated top electrode.

    Science.gov (United States)

    Makha, Mohammed; Testa, Paolo; Anantharaman, Surendra Babu; Heier, Jakob; Jenatsch, Sandra; Leclaire, Nicolas; Tisserant, Jean-Nicolas; Véron, Anna C; Wang, Lei; Nüesch, Frank; Hany, Roland

    2017-01-01

    Tinted and colour-neutral semitransparent organic photovoltaic elements are of interest for building-integrated applications in windows, on glass roofs or on facades. We demonstrate a semitransparent organic photovoltaic cell with a dry-laminated top electrode that achieves a uniform average visible transmittance of 51% and a power conversion efficiency of 3%. The photo-active material is based on a majority blend composed of a visibly absorbing donor polymer and a fullerene acceptor, to which a selective near-infrared absorbing cyanine dye is added as a minority component. Our results show that organic ternary blends are attractive for the fabrication of semitransparent solar cells in general, because a guest component with a complementary absorption can compensate for the inevitably reduced current generation capability of a high-performing binary blend when applied as a thin, semitransparent film.

  14. Ablation of (GeS2)0.3(Sb2S3)0.7 glass with an ultra – violet nano-second laser

    Czech Academy of Sciences Publication Activity Database

    Knotek, P.; Návesník, J.; Černohorský, T.; Kincl, Miloslav; Vlček, Milan; Tichý, Ladislav

    2015-01-01

    Roč. 64, April (2015), s. 42-50 ISSN 0025-5408 Institutional support: RVO:61389013 Keywords : chalcogenides * glass * atomic force microscopy Subject RIV: CA - Inorganic Chemistry Impact factor: 2.435, year: 2015 http://www.sciencedirect.com/science/article/pii/S0025540814007843

  15. Ternary networks reliability and Monte Carlo

    CERN Document Server

    Gertsbakh, Ilya; Vaisman, Radislav

    2014-01-01

    Ternary means “based on three”. This book deals with reliability investigations of  networks whose components subject to failures can be in three states –up, down and middle (mid), contrary to traditionally considered networks  having only binary (up/down) components. Extending binary case to ternary allows to consider more realistic and flexible models for communication, flow and supply networks.

  16. Thermo-chemical properties and electrical resistivity of Zr-based arsenide chalcogenides

    Directory of Open Access Journals (Sweden)

    A. Schlechte, R. Niewa, M. Schmidt, G. Auffermann, Yu. Prots, W. Schnelle, D. Gnida, T. Cichorek, F. Steglich and R. Kniep

    2007-01-01

    Full Text Available Ternary phases in the systems Zr–As–Se and Zr–As–Te were studied using single crystals of ZrAs1.40(1Se0.50(1 and ZrAs1.60(2Te0.40(1 (PbFCl-type of structure, space group P4/nmm as well as ZrAs0.70(1Se1.30(1 and ZrAs0.75(1Te1.25(1 (NbPS-type of structure, space group Immm. The characterization covers chemical compositions, crystal structures, homogeneity ranges and electrical resistivities. At 1223 K, the Te-containing phases can be described with the general formula ZrAsxTe2−x, with 1.53(1≤x≤1.65(1 (As-rich and 0.58(1≤x≤0.75(1 (Te-rich. Both phases are located directly on the tie-line between ZrAs2 and ZrTe2, with no indication for any deviation. Similar is true for the Se-rich phase ZrAsxSe2−x with 0.70(1≤x≤0.75(1. However, the compositional range of the respective As-rich phase ZrAsx−ySe2−x (0.03(1≤y≤0.10(1; 1.42(1≤x≤1.70(1 is not located on the tie-line ZrAs2–ZrSe2, and exhibits a triangular region of existence with intrinsic deviation of the composition towards lower non-metal contents. Except for ZrAs0.75Se1.25, from the homogeneity range of the Se-rich phase, all compounds under investigation show metallic characteristics of electrical resistivity at temperatures >20 K. Related uranium and thorium arsenide selenides display a typical magnetic field-independent rise of the resistivity towards lower temperatures, which has been explained by a non-magnetic Kondo effect. However, a similar observation has been made for ZrAs1.40Se0.50, which, among the Zr-based arsenide chalcogenides, is the only system with a large concentration of intrinsic defects in the anionic substructure.

  17. Processing and characterization of new oxysulfide glasses in the Ge-Ga-As-S-O system

    International Nuclear Information System (INIS)

    Maurel, C.; Petit, L.; Dussauze, M.; Kamitsos, E.I.; Couzi, M.; Cardinal, T.; Miller, A.C.; Jain, H.; Richardson, K.

    2008-01-01

    New oxysulfide glasses have been prepared in the Ge-Ga-As system employing a two-step melting process which involves the processing of the chalcogenide glass (ChG) and its subsequent melting with amorphous GeO 2 powder. Optical characterization of the synthesized oxysulfide glasses has shown that the cut-off wavelength decreases with increasing oxygen content, and this has been correlated to results of Raman and infrared (IR) spectroscopies which show the formation of new oxysulfide structural units. X-ray photoelectron spectroscopy (XPS) analysis to probe the bonding environment of oxygen atoms in the oxysulfide glass network, has revealed the preferred formation of Ga-O and Ge-O bonds in comparison to As-O bonds. This work has demonstrated that melting a ChG glass with GeO 2 leads to the formation of new oxysulfide glassy materials. - Graphical abstract: In this paper, we explain how new oxysulfide glasses are prepared in the Ge-Ga-As system employing a two-step process: (1) the processing of the chalcogenide glass (ChG) and (2) the re-melting of the ChG with GeO 2 powder. Raman, infrared and XPS spectroscopies show the formation of new oxysulfide structural units

  18. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.

    Science.gov (United States)

    Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S

    2015-11-01

    We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers.

  19. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Energy Technology Data Exchange (ETDEWEB)

    Sushama, D., E-mail: sushasukumar@gmail.com [Research Awardee, LAMP, Dept. of Physics, Nit, Calicut, India and Dept. of Physics, M.S.M. College, Kayamkulam, Kerala (India)

    2014-10-15

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er{sub 2}O{sub 3} doped TeO{sub 2}‐WO{sub 3}‐La{sub 2}O{sub 3} Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  20. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    International Nuclear Information System (INIS)

    Sushama, D.

    2014-01-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er 2 O 3 doped TeO 2 ‐WO 3 ‐La 2 O 3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption

  1. Study of optical properties of Erbium doped Tellurite glass-polymer composite

    Science.gov (United States)

    Sushama, D.

    2014-10-01

    Chalcogenide glasses have wide applications in optical device technology. But it has some disadvantages like thermal instability. Among them Tellurite glasses exhibits high thermal Stability. Doping of rare earth elements into the Tellurite glasses improve its optical properties. To improve its mechanical properties composites of this Tellurite glasses with polymer are prepared. Bulk samples of Er2O3 doped TeO2-WO3-La2O3 Tellurite glasses are prepared from high purity oxide mixtures, melting in an alumina crucible in air atmosphere. Composites of this Tellurite glasses with polymer are prepared by powder mixing method and the thin films of these composites are prepared using polymer press. Variations in band gap of these composites are studied from the UV/Vis/NIR absorption.

  2. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun [Xiamen Univ. (China). College of Materials and Fujian Provincial Key Lab. of Materials Genome

    2017-08-15

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr{sub 7}Ni{sub 10}, ZrNi, ZrNi{sub 5}, Zr{sub 14}Cu{sub 51}, and Zr{sub 2}Cu{sub 9}, show a remarkable ternary solubility. A new ternary compound named τ{sub 3} (Zr{sub 31.1-30.7} . Cu{sub 28.5-40.3}Ni{sub 40.4-29.0}) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  3. Glass consistency and glass performance

    International Nuclear Information System (INIS)

    Plodinec, M.J.; Ramsey, W.G.

    1994-01-01

    Glass produced by the Defense Waste Processing Facility (DWPF) will have to consistently be more durable than a benchmark glass (evaluated using a short-term leach test), with high confidence. The DWPF has developed a Glass Product Control Program to comply with this specification. However, it is not clear what relevance product consistency has on long-term glass performance. In this report, the authors show that DWPF glass, produced in compliance with this specification, can be expected to effectively limit the release of soluble radionuclides to natural environments. However, the release of insoluble radionuclides to the environment will be limited by their solubility, and not glass durability

  4. Glass and Process Development for the Next Generation of Optical Fibers: A Review

    Directory of Open Access Journals (Sweden)

    John Ballato

    2017-03-01

    Full Text Available Applications involving optical fibers have grown considerably in recent years with intense levels of research having been focused on the development of not only new generations of optical fiber materials and designs, but also on new processes for their preparation. In this paper, we review the latest developments in advanced materials for optical fibers ranging from silica, to semi-conductors, to particle-containing glasses, to chalcogenides and also in process-related innovations.

  5. Dynamics of the optically-induced properties of a small-polaronic glass

    International Nuclear Information System (INIS)

    Emin, D.

    1979-01-01

    The relaxation and recombination of an electronic excitation created by the absorption of a super-band-gap photon is considered for a system in which excitons and charge carriers find it energetically favorable to self-trap. The notions of a barrier to self-trapping, a short-range repulsion between electrons and holes, and the electromodulation of the small-polaron absorption band play a central role in this discussion. The results are consistent with experiments on chalcogenide glasses

  6. Colloidal glasses

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  7. Modulation-instability biosensing using an As2S3 chalcogenide tapered fiber

    DEFF Research Database (Denmark)

    Markos, Christos; Bang, Ole

    2016-01-01

    We demonstrate an experimentally feasible biosensor design based on As2S3 chalcogenide tapered fiber. Pumping the fiber close to 1064 nm, a record sensitivity up to ~18 nm/nm was predicted.......We demonstrate an experimentally feasible biosensor design based on As2S3 chalcogenide tapered fiber. Pumping the fiber close to 1064 nm, a record sensitivity up to ~18 nm/nm was predicted....

  8. Visible-active photocatalytic behaviors observed in nanostructured lead chalcogenides PbX (X = S, Se, Te)

    International Nuclear Information System (INIS)

    Qiao, Li-Na; Wang, H.C.; Shen, Y.; Lin, Yuan-Hua; Nan, Ce-Wen

    2016-01-01

    Nanostructured lead chalcogenides (PbX, X = Te, Se, S) were prepared via a simple hydrothermal method. The powder samples were characterized by XRD, SEM, SAED and DRS. Phase composition and microstructure analysis indicate that these samples are pure lead chalcogenides phases and have similar morphologies. These lead chalcogenides display efficient absorption in the UV-visible light range. The photocatalytic properties of lead chalcogenides nanoparticles were evaluated by the photodegradation of Congo red under UV-visible light irradiation in air atmosphere. The Congo red solution can be efficiently degraded under visible light in the presence of lead chalcogenides nanoparticles. The photocatalytic activities of lead chalcogenides generally increase with increasing their band gaps and shows no appreciable loss after repeated cycles. Our results may be useful for developing new photocatalyst systems responsive to visible light among narrow band gap semiconductors

  9. Synthesis of 2D Metal Chalcogenide Thin Films through the Process Involving Solution-Phase Deposition.

    Science.gov (United States)

    Giri, Anupam; Park, Gyeongbae; Yang, Heeseung; Pal, Monalisa; Kwak, Junghyeok; Jeong, Unyong

    2018-04-24

    2D metal chalcogenide thin films have recently attracted considerable attention owing to their unique physicochemical properties and great potential in a variety of applications. Synthesis of large-area 2D metal chalcogenide thin films in controllable ways remains a key challenge in this research field. Recently, the solution-based synthesis of 2D metal chalcogenide thin films has emerged as an alternative approach to vacuum-based synthesis because it is relatively simple and easy to scale up for high-throughput production. In addition, solution-based thin films open new opportunities that cannot be achieved from vacuum-based thin films. Here, a comprehensive summary regarding the basic structures and properties of different types of 2D metal chalcogenides, the mechanistic details of the chemical reactions in the synthesis of the metal chalcogenide thin films, recent successes in the synthesis by different reaction approaches, and the applications and potential uses is provided. In the last perspective section, the technical challenges to be overcome and the future research directions in the solution-based synthesis of 2D metal chalcogenides are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chalcogenide phase-change thin films used as grayscale photolithography materials.

    Science.gov (United States)

    Wang, Rui; Wei, Jingsong; Fan, Yongtao

    2014-03-10

    Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.

  11. Microbial synthesis of chalcogenide semiconductor nanoparticles: a review.

    Science.gov (United States)

    Jacob, Jaya Mary; Lens, Piet N L; Balakrishnan, Raj Mohan

    2016-01-01

    Chalcogenide semiconductor quantum dots are emerging as promising nanomaterials due to their size tunable optoelectronic properties. The commercial synthesis and their subsequent integration for practical uses have, however, been contorted largely due to the toxicity and cost issues associated with the present chemical synthesis protocols. Accordingly, there is an immediate need to develop alternative environment-friendly synthesis procedures. Microbial factories hold immense potential to achieve this objective. Over the past few years, bacteria, fungi and yeasts have been experimented with as eco-friendly and cost-effective tools for the biosynthesis of semiconductor quantum dots. This review provides a detailed overview about the production of chalcogen-based semiconductor quantum particles using the inherent microbial machinery. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. Angle-resolved photoemission spectroscopy on iron-chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Maletz, Janek; Zabolotnyy, Volodymyr; Evtushinsky, Daniil; Thirupathaiah, Setti; Wolter-Giraud, Anja; Harnagea, Luminita; Kordyuk, Alexander; Borisenko, Sergey [IFW Dresden (Germany); Yaresko, Alexander [MPI-FKF, Stuttgart (Germany); Vasiliev, Alexander [Moscow State University (Russian Federation); Chareev, Dimitri [RAS, Chernogolovka (Russian Federation); Rienks, Emile [Helmholtz-Zentrum Berlin (Germany); Buechner, Bernd [IFW Dresden (Germany); TU Dresden (Germany); Shermadini, Zurab; Luetkens, Hubertus; Sedlak, Kamil; Khasanov, Rustem; Amato, Alex; Krzton-Maziopa, Anna; Conder, Kazimierz; Pomjakushina, Ekaterina [Paul Scherrer Institute (Switzerland); Klauss, Hans-Henning [TU Dresden (Germany)

    2014-07-01

    The electronic structure of the iron chalcogenide superconductors FeSe{sub 1-x} and Rb{sub 0.77}Fe{sub 1.61}Se{sub 2} was investigated by high-resolution angle-resolved photoemission spectroscopy (ARPES). The results were compared to DFT calculations and μSR measurements. Both compounds share ''cigar-shaped'' Fermi surface sheets in their electronic structure, that can be found in almost all iron-pnictide superconductors. These features originate from a strong interplay of two hole- and electron-like bands in the Brillouin zone center, leading to a pronounced singularity in the density of states just below the Fermi level. This facilitates the coupling to a bosonic mode responsible for superconductivity.

  13. Zinc Antimonides and Copper Chalcogenides as Thermoelectric Materials

    DEFF Research Database (Denmark)

    Blichfeld, Anders Bank

    2017-01-01

    , and linked with the physical properties. The materials crystallography approach, relating physical properties with a structural understating, has been applied in this thesis for two highly interesting materials systems, zinc antimonides and copper chalcogenides. Both of these systems are high profiled....... The preparation parameters used, have a large influence on the homogeneity of the products, and new electric phases were identified and studied for ZnSb. For the samples prepared by physical vapor deposition, the growth takes place under non-thermodynamic conditions, making it possible to access kinetically...... intensity X-ray radiation at large international facilities, making it possible to measure pair distribution function data directly on thin-film samples in a normal incident setup, termed tfPDF. The tfPDF method was demonstrated on the iron antimony system. tfPDF was developed even further to include...

  14. Radionuclides in diffusion probing of inorganic materials based on chalcogenides

    International Nuclear Information System (INIS)

    Firsova, L.P.

    1994-01-01

    Migration of tellurium-125m, selenium-75, sulfur-35 radionuclides in solid solutions Pb 1-y (Se 0.08 Te 0.92 ) y and (Pb 1-x Sn x ) y Te 1-y , where x=0.1 and 0.2, has been studied, the results are presented. Data on dependence of selenium and tellurium self-diffusion coefficients on temperature in the range of 600-750 deg C are given. The results of the study of self-diffusion coefficient isothermal dependences on lead and tellurium vapour pressure in equilibrium with solid phases have been considered. It is ascertained that a change in the temperature and p-n transitions initiate the change in self-diffusion mechanisms of chalcogenide atoms. 8 refs., 3 tabs

  15. Multi-layered Chalcogenides with potential for magnetism and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li, E-mail: lil2@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Parker, David S. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Cruz, Clarina R. dela [Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Sefat, Athena S., E-mail: sefata@ornl.gov [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-12-15

    Highlights: • A comprehensive study on multi-layered thallium copper chalcogenides TlCu{sub 2n}Ch{sub n+1}. • All the TlCu{sub 2n}Ch{sub n+1} exhibit metallic behaviors with no long-range magnetism. • Calculations suggest a lack of Fermi-level spectral weight for magnetic instability. • Our results suggest a likelihood of magnetism for multiple structural layers with Fe. - Abstract: Layered thallium copper chalcogenides can form single, double, or triple layers of Cu–Ch separated by Tl sheets. Here we report on the preparation and properties of Tl-based materials of TlCu{sub 2}Se{sub 2}, TlCu{sub 4}S{sub 3}, TlCu{sub 4}Se{sub 3} and TlCu{sub 6}S{sub 4}. Having no long-range magnetism for these materials is quite surprising considering the possibilities of inter- and intra-layer exchange interactions through Cu 3d, and we measure by magnetic susceptibility and confirm by neutron diffraction. First principles density-functional theory calculations for both the single-layer TlCu{sub 2}Se{sub 2} (isostructural to the ‘122’ iron-based superconductors) and the double-layer TlCu{sub 4}Se{sub 3} suggest a lack of Fermi-level spectral weight that is needed to drive a magnetic or superconducting instability. However, for multiple structural layers with Fe, there is much greater likelihood for magnetism and superconductivity.

  16. Structural phase transition and elastic properties of mercury chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Shriya, S. [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)

    2012-08-15

    Pressure induced structural transition and elastic properties of ZnS-type (B3) to NaCl-type (B1) structure in mercury chalcogenides (HgX; X = S, Se and Te) are presented. An effective interionic interaction potential (EIOP) with long-range Coulomb, as well charge transfer interactions, Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbor ions and van der Waals interactions are considered. Emphasis is on the evaluation of the pressure dependent Poisson's ratio {nu}, the ratio R{sub BT/G} of B (bulk modulus) over G (shear modulus), anisotropy parameter, Shear and Young's modulus, Lame constant, Kleinman parameter, elastic wave velocity and thermodynamical property as Debye temperature. The Poisson's ratio behavior infers that Mercury chalcogenides are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations. Highlights: Black-Right-Pointing-Pointer Vast volume discontinuity in phase diagram infers transition from ZnS to NaCl structure. Black-Right-Pointing-Pointer The shear elastic constant C{sub 44} is nonzero confirms the mechanical stability. Black-Right-Pointing-Pointer Pressure dependence of {theta}{sub D} infers the softening of lattice with increasing pressure. Black-Right-Pointing-Pointer Estimated bulk, shear and tetragonal moduli satisfied elastic stability criteria. Black-Right-Pointing-Pointer In both B3 and B1 phases, C{sub 11} and C{sub 12} increase linearly with pressure.

  17. Silicate glasses

    International Nuclear Information System (INIS)

    Lutze, W.

    1988-01-01

    Vitrification of liquid high-level radioactive wastes has received the greatest attention, world-wide, compared to any other HLW solidification process. The waste form is a borosilicate-based glass. The production of phosphate-based glass has been abandoned in the western world. Only in the Soviet Union are phosphate-based glasses still being developed. Vitrification techniques, equipment and processes and their remote operation have been developed and studied for almost thirty years and have reached a high degree of technical maturity. Industrial demonstration of the vitrification process has been in progress since 1978. This chapter is a survey of world-wide research and development efforts in nuclear waste glasses and its production technology. The principal glasses considered are silicate glasses which contain boron, i.e., borosilicate glasses

  18. Crystallization processes in Ni-Ti-B glassy alloys of near-ternary-eutectic composition

    International Nuclear Information System (INIS)

    Merk, N.; Morris, D.G.; Stadelmann, P.

    1987-01-01

    The crystallization kinetics and mechanisms of three Ni-Ti-B glasses have been examined with a view to elucidating the roles of chemical composition and quenched structure on behaviour. Alloys of composition near a ternary-eutectic point have been chosen because they represent a real and complex situation where several crystalline phases may form simultaneously. Crystallization processes are analysed in terms of nucleation and growth stages. Different nucleation mechanisms seem to be best explained in terms of the short range ordered structure of the quenched glass. Analysis of crystal glass interface energies indicates that it is not this energy term which controls the nucleation of crystals on annealing. Crystal growth may involve a eutectic mechanism or a single-phase mechanism controlled by interface or matrix-diffusion kinetics. Crystallization is fastest when eutectic nucleation and growth occurs. Formation of the eutectic colony requires the initial formation of the phase of complex structure followed by the phase of simpler structure

  19. SPP propagation in nonlinear glass-metal interface

    KAUST Repository

    Sagor, Rakibul Hasan

    2011-12-01

    The non-linear propagation of Surface-Plasmon-Polaritons (SPP) in single interface of metal and chalcogenide glass (ChG) is considered. A time domain simulation algorithm is developed using the Finite Difference Time Domain (FDTD) method. The general polarization algorithm incorporated in the auxiliary differential equation (ADE) is used to model frequency-dependent dispersion relation and third-order nonlinearity of ChG. The main objective is to observe the nonlinear behavior of SPP propagation and study the dynamics of the whole structure. © 2011 IEEE.

  20. Ultra-low Cost, Lightweight, Molded, Chalcogenide Glass-Silicon Oxycarbide Composite Mirror Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — After optical performance, the most important metric for advanced optical systems is the areal cost (cost per square meter of collecting aperture). Future NASA space...

  1. Infrared waveguide fabrications with an E-beam evaporated chalcogenide glass film

    KAUST Repository

    Yang, Xiaoming; Zhang, Yaping; Syed, Ahad A.

    2014-01-01

    with three approaches. The first method is photoresist lift-off. Because of the restriction of thermal budget of photoresist, the As2S3 film must be deposited at the room temperature. The second one is the silicon dioxide lift-off process on sapphire

  2. Raman Investigation of Structural Photoinduced Irreversible Changes of Ga(10)Ge(25)S(65) Chalcogenide Glasses

    Science.gov (United States)

    2001-06-01

    Brazil cDepto de Quimica - Universidade Federal de Juiz de Fora, Juiz de Fora, MG- Brazil dEscola de Engenharia de Sao Carlos- - Universidade de Sao Paulo...Inorganic Materials IIC ASCR and ICT, Pelleova 24, Prague 6, Czech Republic blnstituto de Quimica - UNESP- C.P. 355, CEP: 14801-970, Araraquara, SP

  3. Linear and nonlinear properties of chalcogenide glasses in the terahertz frequency

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Malureanu, Radu; Popescu, A.

    2014-01-01

    Terahertz (THz) waves have the potential to improve a wide range of devices in the space, defense and semiconductor industries as well as offering the possibility of investigating various molecules of interest in biology, medicine, art etc. For this reason, THz sources, detectors and passive linear...

  4. Crystallization features of ternary reversible reciprocal systems

    International Nuclear Information System (INIS)

    Tomashik, V.N.; Shcherbak, L.P.; Fejchuk, P.I.; Grytsiv, V.I.

    2006-01-01

    Some features of the primary crystallization of phases in ternary reversible reciprocal system are considered and discussed. The diagonal join CdTe-GeSe of the CdTe + GeSe = CdSe + GeTe ternary reciprocal system is studied to show that the features in primary and secondary heating and cooling curves in such systems under fully equilibrium conditions are not reproduced upon consecutive heating and cooling sessions, because of the existence of different amounts of the reagents and the reaction products in the mixture; the temperatures of each transformation lie in a range. Those who experimentally investigate other ternary and more complex reversible reciprocal systems should take this fact into account [ru

  5. The ternary system nickel-boron-silicon

    International Nuclear Information System (INIS)

    Lugscheider, E.; Reimann, H.; Knotek, O.

    1975-01-01

    The ternary system Nickel-Boron-Silicon was established at 850 0 C by means of X-ray diffraction, metallographic and micro-hardness examinations. The well known binary nickel borides and silicides resp. were confirmed. In the boron-silicon system two binary phases, SiBsub(4-x) with x approximately 0.7 and SiB 6 were found the latter in equilibrium with the β-rhombohedral boron. Confirming the two ternary silicon borides a greater homogeneity range was found for Ni 6 Si 2 B, the phase Nisub(4,6)Si 2 B published by Uraz and Rundqvist can better be described by the formula Nisub(4.29)Si 2 Bsub(1.43). In relation to further investigations we measured melting temperatures in ternary Ni-10 B-Si alloys by differential thermoanalysis. (author)

  6. Ternary fission induced by polarized neutrons

    Directory of Open Access Journals (Sweden)

    Gönnenwein Friedrich

    2013-12-01

    Full Text Available Ternary fission of (e,e U- and Pu- isotopes induced by cold polarized neutrons discloses some new facets of the process. In the so-called ROT effect shifts in the angular distributions of ternary particles relative to the fission fragments show up. In the so-called TRI effect an asymmetry in the emission of ternary particles relative to a plane formed by the fragment momentum and the spin of the neutron appear. The two effects are shown to be linked to the components of angular momentum perpendicular and parallel to the fission axis at the saddle point of fission. Based on theoretical models the spectroscopic properties of the collective transitional states at the saddle point are inferred from experiment.

  7. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  8. True ternary fission of 252Cf

    International Nuclear Information System (INIS)

    Vijayaraghavan, K.R.; Balasubramaniam, M.; Oertzen, W. von

    2014-01-01

    Splitting of heavy radioactive nucleus into three fragments is known as ternary fission. If the size of the fragments are almost equal it is referred to as true ternary fission. Recently, Yu. V. Pyatkov et al observed/reported the experimental observation of true ternary fission in 252 Cf. In this work, the possibilities of different true ternary fission modes of 252 Cf through potential energy surface (PES) calculations based on three cluster model (TCM) are discussed. In TCM a condition on the mass numbers of the fission fragments is implied as A 1 ≥ A 2 ≥ A 3 in order to avoid repetition of combinations. Due to this condition, the values of Z 3 vary from 0 to 36 and Z 2 vary from 16 to 51. Of the different pairs having similar (Z 2 , Z 3 ) with different potential energy, a pair possessing minimum potential energy is chosen. Thus identified favourable combinations are plotted. For the PES calculations the arrangement of the fragments is considered in the order of A 1 +A 2 +A 3 . i.e. the heavy and the lightest fragments are kept at the ends. It is seen that the deepest minimum in the PES occurs for Z 3 =2 labelled as (Z 2 ; 2) indicating He accompanied breakup as the most favourable one. Of which, the breakup with Z 2 around 46 to 48 is the least (shown by dashed (Z 1 = 50) and dotted (Z 1 = 52) lines indicating a constant Z 1 value). The other notable minima in the PES are labelled and they correspond to the (Z 2 , Z 3 ) pairs viz., (20, 20), (28, 20), (28, 28) and (32, 32). Of these four minima, the first three are associated with the magic numbers 20 and 28. For Z 3 =20, there are two minimums at (20,20) and (28,20) among them (28,20) is the lowest minimum through which the minimum-path passes, and it is the ternary decay observed by Yu. V. Pyatkov et al. The fourth minima is the most interesting due to the fact that it corresponds to true ternary fission mode with Z 2 =32, Z 3 =32 and Z 1 =34. The minimum potential energy path also goes through this true

  9. A Josephson ternary associative memory cell

    International Nuclear Information System (INIS)

    Morisue, M.; Suzuki, K.

    1989-01-01

    This paper describes a three-valued content addressable memory cell using a Josephson complementary ternary logic circuit named as JCTL. The memory cell proposed here can perform three operations of searching, writing and reading in ternary logic system. The principle of the memory circuit is illustrated in detail by using the threshold-characteristics of the JCTL. In order to investigate how a high performance operation can be achieved, computer simulations have been made. Simulation results show that the cycle time of memory operation is 120psec, power consumption is about 0.5 μW/cell and tolerances of writing and reading operation are +-15% and +-24%, respectively

  10. Positron annihilation lifetime spectroscopy in application to nanostructured glasses and ceramics

    OpenAIRE

    Klym, Halyna; Kostiv, Yuriy

    2017-01-01

    Modified nanostructured Ge-Ga-Se chalcogenide glasses and oxide MgO-Al2O3 ceramics were investigated using positron annihilation lifetime spectroscopy. It was shown that crystallization process in 80GeSe2-20Ga2Se3 glasses annealed at 380°C for 25 and 50 h indicates specific free-volume transformation. It is established that water vapor modifies defects located near grain boundaries in MgO-Al2O3 ceramics sintered at 1300 °C, the process being accompanied by void fragmen...

  11. Static structure of superionic conducting glass of Ag-Ge-Se system

    Energy Technology Data Exchange (ETDEWEB)

    Suenaga, R; Nakashima, S; Tahara, S; Takeda, S [Graduate School of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Kawakita, Y [Faculty of Sciences, Kyushu University, 4-2-1 Ropponmatsu, Fukuoka 810-8560 (Japan); Kohara, S [Japan Synchrotron Radiation Research Inst., 1-1-1 Kouto, Sayo-cho, Hyogo 679-5198 (Japan)], E-mail: takeda@rc.kyushu-u.ac.jp

    2008-02-15

    Superionic conducting glasses are the important materials as solid electrolytes. Amorphous Ag-Ge-Se system is well known to exhibit the superionic conducting behavior where silver ions easily migrate into the mixed structure of Ag{sub 2}Se and Ge-Se chalcogenide glass. It will be good material to study how the superionic conducting region distributes in the glassy network, and whether the conducting paths extends to the entire of the material, or the localized and limited area in an isolated region. In this paper, we will present the results of the static structure of Ag-Ge-Se system by high-energy X-ray diffraction measurements.

  12. Short range structural models of the glass transition temperatures and densities of 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former glasses.

    Science.gov (United States)

    Bischoff, Christian; Schuller, Katherine; Martin, Steve W

    2014-04-03

    The 0.5Na2S + 0.5[xGeS2 + (1 - x)PS5/2] mixed glass former (MGF) glass system exhibits a nonlinear and nonadditive negative change in the Na(+) ion conductivity as one glass former, PS5/2, is exchanged for the other, GeS2. This behavior, known as the mixed glass former effect (MGFE), is also manifest in a negative deviation from the linear interpolation of the glass transition temperatures (T(g)) of the binary end-member glasses, x = 0 and x = 1. Interestingly, the composition dependence of the densities of these ternary MGF glasses reveals a slightly positive MGFE deviation from a linear interpolation of the densities of the binary end-member glasses, x = 0 and x = 1. From our previous studies of the structures of these glasses using IR, Raman, and NMR spectroscopies, we find that a disproportionation reaction occurs between PS7/2(4-) and GeS3(2-) units into PS4(3-) and GeS5/2(1-) units. This disproportionation combined with the formation of Ge4S10(4-) anions from GeS5/2(1-) groups leads to the negative MGFE in T(g). A best-fit model of the T(g)s of these glasses was developed to quantify the amount of GeS5/2(1-) units that form Ge4S10(4-) molecular anions in the ternary glasses (∼ 5-10%). This refined structural model was used to develop a short-range structural model of the molar volumes, which shows that the slight densification of the ternary glasses is due to the improved packing efficiency of the germanium sulfide species.

  13. Molecular dynamics simulation of sodium aluminosilicate glass structures and glass surface-water reactions using the reactive force field (ReaxFF)

    Science.gov (United States)

    Dongol, R.; Wang, L.; Cormack, A. N.; Sundaram, S. K.

    2018-05-01

    Reactive potentials are increasingly used to study the properties of glasses and glass water reactions in a reactive molecular dynamics (MD) framework. In this study, we have simulated a ternary sodium aluminosilicate glass and investigated the initial stages of the glass surface-water reactions at 300 K using reactive force field (ReaxFF). On comparison of the simulated glass structures generated using ReaxFF and classical Buckingham potentials, our results show that the atomic density profiles calculated for the surface glass structures indicate a bond-angle distribution dependency. The atomic density profiles also show higher concentrations of non-bridging oxygens (NBOs) and sodium ions at the glass surface. Additionally, we present our results of formation of silanol species and the diffusion of water molecules at the glass surface using ReaxFF.

  14. General Top-Down Ion Exchange Process for the Growth of Epitaxial Chalcogenide Thin Films and Devices

    KAUST Repository

    Xia, Chuan; Li, Peng; Li, Jun; Jiang, Qiu; Zhang, Xixiang; Alshareef, Husam N.

    2016-01-01

    ) epitaxial chalcogenide metallic and semiconducting films and (2) free-standing chalcogenide films and (3) completed in situ formation of atomically sharp heterojunctions by selective ion exchange. Epitaxial NiCo2S4 thin films prepared by our process show 115

  15. Ternary-fragmentation-driving potential energies of 252Cf

    Science.gov (United States)

    Karthikraj, C.; Ren, Zhongzhou

    2017-12-01

    Within the framework of a simple macroscopic model, the ternary-fragmentation-driving potential energies of 252Cf are studied. In this work, all possible ternary-fragment combinations of 252Cf are generated by the use of atomic mass evaluation-2016 (AME2016) data and these combinations are minimized by using a two-dimensional minimization approach. This minimization process can be done in two ways: (i) with respect to proton numbers (Z1, Z2, Z3) and (ii) with respect to neutron numbers (N1, N2, N3) of the ternary fragments. In this paper, the driving potential energies for the ternary breakup of 252Cf are presented for both the spherical and deformed as well as the proton-minimized and neutron-minimized ternary fragments. From the proton-minimized spherical ternary fragments, we have obtained different possible ternary configurations with a minimum driving potential, in particular, the experimental expectation of Sn + Ni + Ca ternary fragmentation. However, the neutron-minimized ternary fragments exhibit a driving potential minimum in the true-ternary-fission (TTF) region as well. Further, the Q -value energy systematics of the neutron-minimized ternary fragments show larger values for the TTF fragments. From this, we have concluded that the TTF region fragments with the least driving potential and high Q values have a strong possibility in the ternary fragmentation of 252Cf. Further, the role of ground-state deformations (β2, β3, β4, and β6) in the ternary breakup of 252Cf is also studied. The deformed ternary fragmentation, which involves Z3=12 -19 fragments, possesses the driving potential minimum due to the larger oblate deformations. We also found that the ground-state deformations, particularly β2, strongly influence the driving potential energies and play a major role in determining the most probable fragment combinations in the ternary breakup of 252Cf.

  16. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.

    Science.gov (United States)

    Yarema, Maksym; Pichler, Stefan; Sytnyk, Mykhailo; Seyrkammer, Robert; Lechner, Rainer T; Fritz-Popovski, Gerhard; Jarzab, Dorota; Szendrei, Krisztina; Resel, Roland; Korovyanko, Oleksandra; Loi, Maria Antonietta; Paris, Oskar; Hesser, Günter; Heiss, Wolfgang

    2011-05-24

    Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region, making these materials promising as environmentally benign alternatives to established infrared active nanocrystals containing toxic metals such as Hg, Cd, and Pb. We present Ag(2)Se nanocrystals in detail, giving size-tunable luminescence with quantum yields above 1.7%. The luminescence, with a decay time on the order of 130 ns, was shown to improve due to the growth of a monolayer thick ZnSe shell. Photoconductivity with a quantum efficiency of 27% was achieved by blending the Ag(2)Se nanocrystals with a soluble fullerene derivative. The co-injection of lithium silylamide was found to be crucial to the synthesis of Ag chalcogenide nanocrystals, which drastically increased their nucleation rate even at relatively low growth temperatures. Because the same observation was made for the nucleation of Cd chalcogenide nanocrystals, we conclude that the addition of lithium silylamide might generally promote wet-chemical synthesis of metal chalcogenide nanocrystals, including in as-yet unexplored materials.

  17. Cosmos & Glass

    DEFF Research Database (Denmark)

    Beim, Anne

    1996-01-01

    The article unfolds the architectural visions of glass by Bruno Taut. It refers to inspirations by Paul Sheerbart and litterature and the Crystal Chain, also it analyses the tectonic univers that can be found in the glass pavillion for the Werkbund exposition in Cologne....

  18. Glass Glimpsed

    DEFF Research Database (Denmark)

    Lock, Charles

    2015-01-01

    Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology.......Glass in poetry as it reflects the viewer and as its power of reflection are both reduced and enhanced by technology....

  19. Spin glasses

    CERN Document Server

    Bovier, Anton

    2007-01-01

    Spin glass theory is going through a stunning period of progress while finding exciting new applications in areas beyond theoretical physics, in particular in combinatorics and computer science. This collection of state-of-the-art review papers written by leading experts in the field covers the topic from a wide variety of angles. The topics covered are mean field spin glasses, including a pedagogical account of Talagrand's proof of the Parisi solution, short range spin glasses, emphasizing the open problem of the relevance of the mean-field theory for lattice models, and the dynamics of spin glasses, in particular the problem of ageing in mean field models. The book will serve as a concise introduction to the state of the art of spin glass theory, usefull to both graduate students and young researchers, as well as to anyone curious to know what is going on in this exciting area of mathematical physics.

  20. Indacenodithienothiophene-Based Ternary Organic Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gasparini, Nicola, E-mail: nicola.gasparini@fau.de [Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen (Germany); García-Rodríguez, Amaranda [Macromolecular Chemistry Group (buwmakro), Institute for Polymer Technology, BergischeUniversität Wuppertal, Wuppertal (Germany); Prosa, Mario [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), Bologna (Italy); Bayseç, Şebnem; Palma-Cando, Alex [Macromolecular Chemistry Group (buwmakro), Institute for Polymer Technology, BergischeUniversität Wuppertal, Wuppertal (Germany); Katsouras, Athanasios; Avgeropoulos, Apostolos [Department of Materials Science Engineering, University of Ioannina, Ioannina (Greece); Pagona, Georgia; Gregoriou, Vasilis G. [Advent Technologies SA, Patras Science Park, Patra (Greece); National Hellenic Research Foundation (NHRF), Athens (Greece); Chochos, Christos L. [Department of Materials Science Engineering, University of Ioannina, Ioannina (Greece); Advent Technologies SA, Patras Science Park, Patra (Greece); Allard, Sybille; Scherf, Ulrich [Macromolecular Chemistry Group (buwmakro), Institute for Polymer Technology, BergischeUniversität Wuppertal, Wuppertal (Germany); Brabec, Christoph J. [Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen (Germany); Bavarian Center for Applied Energy Research (ZAE Bayern), Erlangen (Germany); Ameri, Tayebeh, E-mail: nicola.gasparini@fau.de [Institute of Materials for Electronics and Energy Technology (I-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen (Germany)

    2017-01-13

    One of the key aspects to achieve high efficiency in ternary bulk-hetorojunction solar cells is the physical and chemical compatibility between the donor materials. Here, we report the synthesis of a novel conjugated polymer (P1) containing alternating pyridyl[2,1,3]thiadiazole between two different donor fragments, dithienosilole and indacenodithienothiophene (IDTT), used as a sensitizer in a host system of indacenodithieno[3,2-b]thiophene,2,3-bis(3-(octyloxy)phenyl)quinoxaline (PIDTTQ) and [6,6]-phenyl C{sub 70} butyric acid methyl ester (PC{sub 71}BM). We found that the use of the same IDTT unit in the host and guest materials does not lead to significant changes in the morphology of the ternary blend compared to the host binary. With the complementary use of optoelectronic characterizations, we found that the ternary cells suffer from a lower mobility-lifetime (μτ) product, adversely impacting the fill factor. However, the significant light harvesting in the near infrared region improvement, compensating the transport losses, results in an overall power conversion efficiency enhancement of ~7% for ternary blends as compared to the PIDTTQ:PC{sub 71}BM devices.

  1. Self-triggered coordination with ternary controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo

    2012-01-01

    This paper regards coordination of networked systems with ternary controllers. We develop a hybrid coordination system which implements a self-triggered communication policy, based on polling the neighbors upon need. We prove that the proposed scheme ensures finite-time convergence to a neighborhood

  2. Ternary gradient metal-organic frameworks.

    Science.gov (United States)

    Liu, Chong; Rosi, Nathaniel L

    2017-09-08

    Gradient MOFs contain directional gradients of either structure or functionality. We have successfully prepared two ternary gradient MOFs based on bMOF-100 analogues, namely bMOF-100/102/106 and bMOF-110/100/102, via cascade ligand exchange reactions. The cubic unit cell parameter discrepancy within an individual ternary gradient MOF crystal is as large as ∼1 nm, demonstrating the impressive compatibility and flexibility of the component MOF materials. Because of the presence of a continuum of unit cells, the pore diameters within individual crystals also change in a gradient fashion from ∼2.5 nm to ∼3.0 nm for bMOF-100/102/106, and from ∼2.2 nm to ∼2.7 nm for bMOF-110/100/102, indicating significant porosity gradients. Like previously reported binary gradient MOFs, the composition of the ternary gradient MOFs can be easily controlled by adjusting the reaction conditions. Finally, X-ray diffraction and microspectrophotometry were used to analyse fractured gradient MOF crystals by comparing unit cell parameters and absorbance spectra at different locations, thus revealing the profile of heterogeneity (i.e. gradient distribution of properties) and further confirming the formation of ternary gradient MOFs.

  3. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    Science.gov (United States)

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  4. Does Science Also Prefer a Ternary Pattern?

    Science.gov (United States)

    Pogliani, L.; Klein, D. J.; Balaban, A. T.

    2006-01-01

    Through the importance of the number three in our culture and the strange preference for a ternary pattern of our nature one can perceive how and why number theory degraded to numerology. The strong preference of our minds for simple patterns can be read as the key to understanding not only the development of numerology, but also why scientists…

  5. Angular distribution in ternary cold fission

    International Nuclear Information System (INIS)

    Delion, D.S.; J.W. Goethe Univ., Frankfurt; Sandulescu, A.; J.W. Goethe Univ., Frankfurt; Greiner, W.

    2003-01-01

    We describe the spontaneous ternary cold fission of 252 Cf, accompanied by 4 He, 10 Be and 14 C. The light cluster decays from the first resonant eigenstate in the Coulomb potential plus a harmonic oscillator potential. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. (author)

  6. Investigation of electrical and optical properties of Ge-Ga-As-S glasses doped with rare-earth ions

    Czech Academy of Sciences Publication Activity Database

    Zavadil, Jiří; Kubliha, M.; Kostka, Petr; Iovu, M.; Labaš, V.; Ivanova, Z.G.

    -, č. 377 (2013), s. 85-89 ISSN 0022-3093 R&D Projects: GA ČR GAP106/12/2384; GA MŠk 7AMB12SK147 Institutional support: RVO:67985882 ; RVO:67985891 Keywords : Chalcogenide glass * Direct electrical conductivity * Photoluminescence Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; DB - Geology ; Mineralogy (USMH-B) Impact factor: 1.716, year: 2013

  7. A Novel Effect of CO2 Laser Induced Piezoelectricity in Ag2Ga2SiS6 Chalcogenide Crystals

    Directory of Open Access Journals (Sweden)

    Oleg V. Parasyuk

    2016-08-01

    Full Text Available We have discovered a substantial enhancement of the piezoelectric coefficients (from 10 to 78 pm/V in the chalcogenide Ag2Ga2SiS6 single crystals. The piezoelectric studies were done under the influence of a CO2 laser (wavelength 10.6 μm, time duration 200 ns, lasers with power densities varying up to 700 MW/cm2. Contrary to the earlier studies where the photoinduced piezoelectricity was done under the influence of the near IR lasers, the effect is higher by at least one order, which is a consequence of the phonon anharmonic contributions and photopolarizations. Such a discovery allows one to build infrared piezotronic devices, which may be used for the production of the IR laser tunable optoelectronic triggers and memories. This is additionally confirmed by the fact that analogous photoillumination by the near IR laser (Nd:YAG (1064 nm and Er:glass laser (1540 nm gives the obtained values of the effective piezoelectricity at of least one order less. The effect is completely reversible with a relaxation time up to several milliseconds. In order to clarify the role of free carriers, additional studies of photoelectrical spectra were done.

  8. Design of a novel quantum reversible ternary up-counter

    Science.gov (United States)

    Houshmand, Pouran; Haghparast, Majid

    2015-08-01

    Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.

  9. Effect of glass composition on the relaxation of the 4Isub(13/2) level of erbium ions in borate and silicate glasses

    International Nuclear Information System (INIS)

    Ryba-Romanowski, W.; Jezowska-Trzebiatowska, B.

    1979-01-01

    The effect of glass nerwork formers and glass modifiers on radiative transition probabilities and quantum efficiencies of the 4 Isub(13/2) level of Er +3 ions in ternary borate and silicate glasses was studied by both absorption and emission spectroscopy. It was found that the transition probabilities may be widely varied by changes glass network former and alkali ion substitution. The role of multiphonon emission and O-H vibration in the relaxation of the 4 Isub(13/2) level is discussed. (author)

  10. Similarity in the superconducting properties of chalcogenides, cuprate oxides and fullerides

    International Nuclear Information System (INIS)

    Tsendin, K.D.; Popov, B.P.; Denisov, D.V.

    2004-01-01

    The idea of Anderson pairs has been put forward for explanation of many extraordinary properties of chalcogenides glassy semiconductors. Recent decades made obvious that these pairs localized on the centers with negative effective correlation energy (negative-U centers) really exist in chalcogenides. If the concentration of negative-U centers is enough to create the pair band states, this can lead to superconductivity because Anderson pairs are Bose particles. In the present paper we show that several puzzling superconductivity properties of chalcogenides, high-temperature cuprate superconductors and fullerides are similar for these three groups of materials and can be naturally explained in the frame of negative-U centers model of superconductivity

  11. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Novak, Spencer; Richardson, Kathleen [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Department of Materials Science and Engineering, COMSET, Clemson University, Clemson, South Carolina 29634 (United States); Fathpour, Sasan, E-mail: fathpour@creol.ucf.edu [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida 32816 (United States)

    2015-03-16

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.

  12. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    International Nuclear Information System (INIS)

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh; Novak, Spencer; Richardson, Kathleen; Fathpour, Sasan

    2015-01-01

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes

  13. A facile room temperature route to ternary Cu{sub 7.2}S{sub 2}Se{sub 2} compounds and their photovoltaic properties based on elemental copper

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jiamei [Department of Chemistry, Zhengzhou University, Henan 450001 (China); Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Jia, Huimin, E-mail: zhengzhi99999@gmail.com [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Lei, Yan [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Liu, Songzi [Department of Chemistry, Zhengzhou University, Henan 450001 (China); Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Gao, Yuanhao [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Hou, Hongwei [Department of Chemistry, Zhengzhou University, Henan 450001 (China); Zheng, Zhi, E-mail: zzheng@xcu.edu.cn [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China)

    2017-06-01

    A one-pot synthesis of novel hierarchical flower-like Cu{sub 7.2}S{sub 2}Se{sub 2} nanocrystals was developed based on the direct metal surface elemental reaction (DMSER) method. This new room temperature synthesis is an economic and environmentally friendly soft chemical approach. The prepared Cu{sub 7.2}S{sub 2}Se{sub 2} nanocrystals uniformly cover the surface of the Cu substrates. The mechanism of formation was investigated by observing the materials produced from changing the reaction time, the molar ratio of Na{sub 2}S to elemental selenium, and the volume of solvent. The crystal structure, surface morphologies and light absorption properties were collected by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–visible spectroscopy. The results show that the as-prepared ternary nanocrystals are face-centered cubic and have an optical bandgap of 1.58 eV, which is ideal for potential solar cell applications. Transient photovoltage spectroscopy (TPV) was used to evaluate the photovoltaic performance of pure Cu{sub 7.2}S{sub 2}Se{sub 2} nanocrystalline powder as well as in-situ generated Cu{sub 7.2}S{sub 2}Se{sub 2}/ZnO heterojunctions. The current work offers a novel and simple approach for preparing ternary chalcogenide semiconductors for photoelectric and photocatalytic applications. - Highlights: • A one-pot synthesis of novel hierarchical flower-like Cu{sub 7.2}S{sub 2}Se{sub 2} was developed. • This work offers a facile way for prepare ternary chalcogenide at room temperature. • TPV was firstly used to evaluate the photovoltaic performance of Cu{sub 7.2}S{sub 2}Se{sub 2}.

  14. Theoretical prediction of the structural properties of uranium chalcogenides under high pressure

    Science.gov (United States)

    Kapoor, Shilpa; Yaduvanshi, Namrata; Singh, Sadhna

    2018-05-01

    Uranium chalcogenides crystallize in rock salt structure at normal condition and transform to Cesium Chloride structure at high pressure. We have investigated the transition pressure and volume drop of USe and UTe using three body potential model (TBIP). Present model includes long range Columbic, three body interaction forces and short range overlap forces operative up to next nearest neighbors. We have reported the phase transition pressure, relative volume collapses, the thermo physical properties such as molecular force constant (f), infrared absorption frequency (v0), Debye temperature (θD) and Gruneisen parameter (γ) of present chalcogenides and found that our results in general good agreement with experimental and other theoretical data.

  15. Efficient Mid-Infrared Supercontinuum Generation in Tapered Large Mode Area Chalcogenide Photonic Crystal Fibers

    DEFF Research Database (Denmark)

    Petersen, Christian Rosenberg; Engelsholm, Rasmus Dybbro; Markos, Christos

    2017-01-01

    Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source.......Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source....

  16. Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices.

    Science.gov (United States)

    Zhang, Qiming; Li, Ming; Hao, Qiang; Deng, Dinghuan; Zhou, Hui; Zeng, Heping; Zhan, Li; Wu, Xiang; Liu, Liying; Xu, Lei

    2010-11-15

    Chalcogenide (As(2)S(3)) nanofibers as narrow as 200 nm in diameter are drawn by the fiber pulling method, are successfully embedded in SU8 polymer, and form on-chip waveguides and high-Q microknot resonators (Q = 3.9 × 10(4)) with smooth cleaved end faces. Resonance tuning of resonators is realized by localized laser irradiation. Strong supercontinuum generation with a bandwidth of 500 nm is achieved in a 7-cm-long on-chip chalcogenide waveguide. Our result provides a method for the development of compact, high-optical-quality, and robust photonic devices.

  17. GLASS BOX

    National Research Council Canada - National Science Library

    Curtis, Laura

    2008-01-01

    The goals of this effort were to develop Glass Box capabilities to allow for the capturing of analyst activities and the associated data resources, track and log the results of automated processing...

  18. Crystallization in lead tungsten fluorophosphate glasses

    International Nuclear Information System (INIS)

    Nardi, R.P.R.D.; Braz, C.E.; Cassanjes, F.C.; Poirier, G.

    2014-01-01

    The glass forming ability was investigated in the ternary system NaPO 3 -WO 3 -PbF 2 with a constant NaPO 3 /WO 3 ratio of 3/2 and increasing amounts of PbF 2 . It has been found that glass samples can be obtained from PbF 2 contents from 0 mole% to 60 mole%. The most lead fluoride concentrated samples (50% and 60%) were chosen for a crystallization study in order to investigate the possibility of obtaining glass-ceramics containing crystalline lead fluoride. DSC measurements allowed to determine the characteristic temperatures such as Tg, Tx, Tp and Tf. These glass samples were heat-treated near the crystallization peaks observed by thermal analysis. X-ray diffraction results of these heat-treated glasses pointed out that the dominant phase which precipitates from the glass sample containing 50% of PbF 2 is the lead fluorophosphates phase Pb 5 F(PO 4 ) 3 whereas the sample containing 60% of PbF 2 exhibits a preferential crystallization of cubic lead fluoride β-PbF 2 . (author)

  19. Crystallization in lead tungsten fluorophosphate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Nardi, R.P.R.D.; Braz, C.E.; Cassanjes, F.C.; Poirier, G., E-mail: gael.poirier@unifal-mg.edu.br [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil). Instituto de Ciencia e Tecnologia

    2014-07-01

    The glass forming ability was investigated in the ternary system NaPO{sub 3}-WO{sub 3}-PbF{sub 2} with a constant NaPO{sub 3}/WO{sub 3} ratio of 3/2 and increasing amounts of PbF{sub 2}. It has been found that glass samples can be obtained from PbF{sub 2} contents from 0 mole% to 60 mole%. The most lead fluoride concentrated samples (50% and 60%) were chosen for a crystallization study in order to investigate the possibility of obtaining glass-ceramics containing crystalline lead fluoride. DSC measurements allowed to determine the characteristic temperatures such as Tg, Tx, Tp and Tf. These glass samples were heat-treated near the crystallization peaks observed by thermal analysis. X-ray diffraction results of these heat-treated glasses pointed out that the dominant phase which precipitates from the glass sample containing 50% of PbF{sub 2} is the lead fluorophosphates phase Pb{sub 5}F(PO{sub 4}){sub 3} whereas the sample containing 60% of PbF{sub 2} exhibits a preferential crystallization of cubic lead fluoride β-PbF{sub 2}. (author)

  20. Glass-forming ability and structure of glasses in the ZnO-WO.sub.3./sub.-P.sub.2./sub.O.sub.5./sub. system

    Czech Academy of Sciences Publication Activity Database

    Koudelka, L.; Šubčík, J.; Mošner, P.; Gregora, Ivan; Montagne, L.; Delevoye, L.

    2012-01-01

    Roč. 53, č. 3 (2012), s. 79-85 ISSN 1753-3562 R&D Projects: GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z10100520 Keywords : glasses * ternary systems * Raman spectra * NMR Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.764, year: 2012

  1. Crystallization study of Sn additive Se–Te chalcogenide alloys

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Rahim, M.A.; Gaber, A.; Abu-Sehly, A.A.; Abdelazim, N.M., E-mail: nana841@hotmail.co.uk

    2013-08-20

    Highlights: • The aim of the work deals with studying the crystallization kinetics by using different method. • Values of various kinetic parameters were calculated. • The results indicate that the rate of crystallization is related to the thermal stability and glass forming ability. - Abstract: Results of differential thermal analysis (DTA) under non-isothermal conditions of glasses Se{sub 90−x}Te{sub 10}Sn{sub x} (x = 0, 2.5, 5 and 7 at.%) are reported and discussed. The glass transition temperature (T{sub g}), the onset crystallization temperature (T{sub c}) and the peak temperature of crystallization (T{sub p}) were found to be dependent on the compositions and the heating rate. Values of various kinetic parameters such as activation energy of glass transition (E{sub g}), activation energy of crystallization (E{sub c}), rate constant (K{sub p}), Hurby number (H{sub r}) and the order parameter (n) were determined. For the present systems, the results indicate that the rate of crystallization is related to thermal stability and glass forming ability (GFA). According to the Avrami exponent (n), the results show a one dimensional growth for the composition Se{sub 90}Te{sub 10} and a three dimensional growth for the three other compositions. The crystalline phases resulting from DTA and (SEM) have been identified using X-ray diffraction.

  2. An overview of the Fe-chalcogenide superconductors

    International Nuclear Information System (INIS)

    Wu, M K; Wen, Y C; Chen, T K; Chang, C C; Wu, P M; Wang, M J; Lin, P H; Lee, W C

    2015-01-01

    This review intends to summarize recent advancements in FeSe and related systems. The FeSe and related superconductors are currently receiving considerable attention for the high critical temperature (T C ) observed and for many similar features to the high T C cuprate superconductors. These similarities suggest that understanding the FeSe-based compounds could potentially help our understanding of the cuprates. We begin the review by presenting common features observed in the FeSe- and FeAs-based systems. Then we discuss the importance of careful control of the material preparation allowing for a systematic structure characterization. With this control, numerous rich phases have been observed. Importantly, we suggest that the Fe-vacancy ordered phases found in the FeSe-based compounds, which are non-superconducting magnetic Mott insulators, are the parent compounds of the superconductors. Superconductivity can emerge from the parent phases by disordering the Fe vacancy order, often by a simple annealing treatment. Then we review physical properties of the Fe chalcogenides, specifically the optical properties and angle-resolved photoemission spectroscopy (ARPES) results. From the literature, strong evidence points to the existence of orbital modification accompanied by a gap-opening, prior to the structural phase transition, which is closely related to the occurrence of superconductivity. Furthermore, strong lattice to spin coupling are important for the occurrence of superconductivity in FeSe. Therefore, it is believed that the iron selenides and related compounds will provide essential information to understand the origin of superconductivity in the iron-based superconductors, and possibly the superconducting cuprates. (topical review)

  3. The ternary system nickel-nobium-carbon

    International Nuclear Information System (INIS)

    Stadelmaier, H.H.; Fiedler, M.L.

    1975-01-01

    The ternary system nickel-niobium-carbon was studied by metallographic and X-ray diffraction methods to produce a liquidus projection and an isothermal section at 1,100 0 C. The liquidus projection is dominated by a wide field of primary NbC that extends far into the nickel corner of the composition triangle. Only one ternary compound is observed in this system, an eta-carbide formed in a peritectoid reaction. It has a narrow homogeneity range at Ni 2 Nb 4 C, and its lattice constant in alloys quenched from 1,100 0 C varies between 11.659 and 11.667 A. No eta-carbide Ni 3 Nb 3 C or Ni 6 Nb 6 could be detected. (orig.) [de

  4. Magnetic properties of 3d-transition metal and rare earth fluoride glasses

    International Nuclear Information System (INIS)

    Renard, J.P.; Dupas, C.; Velu, E.; Jacobini, C.; Fonteneau, G.; Lucas, J.

    1981-01-01

    The ac susceptibility of fluoride glasses in the ternary systems PbF 2 -MnF 2 -FeF 3 , ThF 4 -BaF 2 -MnF 2 , ZnF 2 -BaF 2 -RF 3 (R = Dy-Ho) has been studied down to 0.3 K. The susceptibility of rare earth glasses exhibits a broad maximum strongly dependent on the measuring frequency ν while a spin glass transition with a sharp susceptibility cusp nearly independent on ν is observed in 3d-transition metal glasses. Magnetic after effects are observed below the spin freezing temperature. (orig.)

  5. Equilibrium study for ternary mixtures of biodiesel

    Science.gov (United States)

    Doungsri, S.; Sookkumnerd, T.; Wongkoblap, A.; Nuchitprasittichai, A.

    2017-11-01

    The liquid-liquid equilibrium (LLE) data for the ternary mixtures of methanol + fatty acid methyl ester (FAME) + palm oil and FAME + palm oil + glycerol at various temperatures from 35 to 55°C, the tie lines and binodial curves were also investigated and plotted in the equilibrium curve. The experimental results showed that the binodial curves of methanol + FAME + palm oil depended significantly with temperature while the binodial curves of FAME + palm oil + glycerol illustrated insignificant change with temperatures. The interaction parameters between liquid pair obtained for NRTL (Nonrandom Two-Liquid) and UNIQUAC (Universal Quasi-Chemical Theory) models from the experimental data were also investigated. It was found that the correlated parameters of UNIQUAC model for system of FAME + palm oil + glycerol, denoted as a13 and a31, were 580.42K and -123.69K, respectively, while those for system of methanol + FAME + palm oil, denoted as a42 and a24, were 71.48 K and 965.57K, respectively. The ternary LLE data reported here would be beneficial for engineers and scientists to use for prediction of yield and purity of biodiesel for the production. The UNIQUAC model agreed well with the experimental data of ternary mixtures of biodiesel.

  6. Preparation and physical properties of luminescent 80GeSe(2) center dot (20-x)Sb2Se3 center dot xSb(2)Te(y):Pr2Se3 glasses; x=0, 1, 3, 10; y=2, 3, 4

    Czech Academy of Sciences Publication Activity Database

    Frumarová, Božena; Frumar, M.; Oswald, Jiří; Kincl, Miloslav; Parchanski, V.

    2013-01-01

    Roč. 134, Feb 2013 (2013), s. 558-565 ISSN 0022-2313 R&D Projects: GA MŠk(CZ) LH11101; GA ČR GA203/09/0827 Institutional support: RVO:61389013 ; RVO:68378271 Keywords : chalcogenide glasses * MID IR luminescence Subject RIV: CA - Inorganic Chemistry Impact factor: 2.367, year: 2013

  7. Design of ternary clocked adiabatic static random access memory

    International Nuclear Information System (INIS)

    Wang Pengjun; Mei Fengna

    2011-01-01

    Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions. (semiconductor integrated circuits)

  8. Design of ternary clocked adiabatic static random access memory

    Science.gov (United States)

    Pengjun, Wang; Fengna, Mei

    2011-10-01

    Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions.

  9. Microstructural characterization of an opal glass in the Na/sub 2/O-CdO-SiO/sub 2/ system

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, E; Celaya, L E; Rincon, J M

    1987-05-01

    The microstructure of an opal glass formulated in the ternary system Na/sub 2/O-CdO-SiO/sub 2/ has been determined by scanning electron microscopy (SEM) and energy dispersive X-ray microanalysis (EDX). This type of glass shows tridymite devitrification with a high level of liquid-liquid immiscibility.

  10. Effect of pressure on the crystal field splitting in rare earth pnictides and chalcogenides

    International Nuclear Information System (INIS)

    Schirber, J.E.; Weaver, H.T.

    1978-01-01

    The experimental situation for the pressure dependence of the crystal field of praseodymium pnictides and chalcogenides is reviewed and compared with the predictions of the point charge model. The problem of separating exchange and crystal field contributions from the measured NMR frequency shift or susceptibility measurements is discussed as well as problems explaining these effects with conduction electron related models

  11. Mechanism for resistive switching in chalcogenide-based electrochemical metallization memory cells

    Directory of Open Access Journals (Sweden)

    Fei Zhuge

    2015-05-01

    Full Text Available It has been reported that in chalcogenide-based electrochemical metallization (ECM memory cells (e.g., As2S3:Ag, GeS:Cu, and Ag2S, the metal filament grows from the cathode (e.g., Pt and W towards the anode (e.g., Cu and Ag, whereas filament growth along the opposite direction has been observed in oxide-based ECM cells (e.g., ZnO, ZrO2, and SiO2. The growth direction difference has been ascribed to a high ion diffusion coefficient in chalcogenides in comparison with oxides. In this paper, upon analysis of OFF state I–V characteristics of ZnS-based ECM cells, we find that the metal filament grows from the anode towards the cathode and the filament rupture and rejuvenation occur at the cathodic interface, similar to the case of oxide-based ECM cells. It is inferred that in ECM cells based on the chalcogenides such as As2S3:Ag, GeS:Cu, and Ag2S, the filament growth from the cathode towards the anode is due to the existence of an abundance of ready-made mobile metal ions in the chalcogenides rather than to the high ion diffusion coefficient.

  12. THz waveguides, devices and hybrid polymer-chalcogenide photonic crystal fibers

    DEFF Research Database (Denmark)

    Bao, Hualong; Markos, Christos; Nielsen, Kristian

    2014-01-01

    In this contribution, we review our recent activities in the design, fabrication and characterization of polymer THz waveguides. Besides the THz waveguides, we finally will also briefly show some of our initial results on a novel hybrid polymer photonic crystal fiber with integrated chalcogenide...

  13. Generation and Applications of High Average Power Mid-IR Supercontinuum in Chalcogenide Fibers

    OpenAIRE

    Petersen, Christian Rosenberg

    2016-01-01

    Mid-infrared supercontinuum with up to 54.8 mW average power, and maximum bandwidth of 1.77-8.66 μm is demonstrated as a result of pumping tapered chalcogenide photonic crystal fibers with a MHz parametric source at 4 μm

  14. From Selenium- to Tellurium-Based Glass Optical Fibers for Infrared Spectroscopies

    Directory of Open Access Journals (Sweden)

    Jacques Lucas

    2013-05-01

    Full Text Available Chalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers. During the past decade of research, selenide glass fibers have been proved to be suitable for infrared sensing in an original spectroscopic method named Fiber Evanescent Wave Spectroscopy (FEWS. FEWS has provided very nice and promising results, for example for medical diagnosis. Then, some sophisticated fibers, also based on selenide glasses, were developed: rare-earth doped fibers and microstructured fibers. In parallel, the study of telluride glasses, which can have transmission up to 28 µm due to its atom heaviness, has been intensified thanks to the DARWIN mission led by the European Space Agency (ESA. The development of telluride glass fiber enables a successful observation of CO2 absorption band located around 15 µm. In this paper we review recent results obtained in the Glass and Ceramics Laboratory at Rennes on the development of selenide to telluride glass optical fibers, and their use for spectroscopy from the mid to the far infrared ranges.

  15. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    International Nuclear Information System (INIS)

    Ammar, F; Makhlouf, A; Silvestrov, S

    2010-01-01

    In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

  16. Description of light charged particle emission in ternary fission

    International Nuclear Information System (INIS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kuklin, S. N.; Scheid, W.

    2010-01-01

    We consider the motion of three fragments starting from the scission point of ternary system. In the alpha-accompanied ternary fission the initial conditions are not the free parameters and determined by minimization of potential energy at scission point. In the trajectory calculations the angular distribution and mean value of the kinetic energy of the alpha-particles are well described in the spontaneous ternary fission of 252 Cf. In the Be- and C-accompanied ternary fission we found that the emission of the third particle occurs from one of the heavy fragments after their separation. (authors)

  17. Role of ternary fission in synthesis of bypassed nuclei

    International Nuclear Information System (INIS)

    Kramarovskij, Ya.M.; Chechev, V.P.

    1983-01-01

    A possible influence of ternary fission with escape of neutron-enriched light charged particles on the synthesis of bypassed nuclides is considered. It is shown that this concept cannot give explanation of bypassed isotope concentrations, but it can make some contribution, if the probability of ternary fission for superheavy nuclei grows sharply with Z 2 /A parameter. The account of β-delayed fission contributes to the shift of ternary fission fragments into the region of neutron-deficient isotopes. Consistent consideration of the ternary fission role in the nucleosynthesis is possible only with an important accumulation of experimental and theoretical data on this process, particularly for the nuclei with Z > 100

  18. Fusibility diagram of ternary system with incongruently melting double compound

    International Nuclear Information System (INIS)

    Lutsyk, V.I.; Vorob'eva, V.P.; Sumkina, O.G.

    1989-01-01

    Temperature calculation and properties of ternary eutectics and concentration coordinates of ternary peritectics accoriding to the linear model of initial crystallization surfaces as an element of the expert system for simulating fusibility diagrams of ternary systems is considered. It is shown that the calculated and experimental data on coordinates of ternary nonvariant points in the systems NaCl-PbCl 2 -CdCl 2 , PbCl 2 -CaCl 2 -UCl 4 , CaF 2 -NaF-CsF and UCl 3 -CaCl 2 -ThCl 4 are in good agreement

  19. Glass compositions

    Energy Technology Data Exchange (ETDEWEB)

    France, P W

    1985-05-30

    A fluoride glass for use in the production of optical fibres has an enhanced D/H ratio, preferably such that OD:OH is at least 9:1. In the example, such a glass is prepared by treating with D/sub 2/O a melt comprising 51.53 mole per cent ZrF/sub 4/, 20.47 mole per cent BaF/sub 2/, 5.27 mole per cent LaF/sub 3/, 3.24 mole per cent AlF/sub 3/, and 19.49 mole per cent LiF.

  20. Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy

    DEFF Research Database (Denmark)

    Cheng, D.S.; Yang, G.; Zhao, Y.Q.

    2015-01-01

    developed a method based on electron energy loss spectroscopy (EELS) data acquisition and analyses, which enables determination of the boron speciation in a series of ternary alkali borosilicate glasses with constant molar ratios. A script for the fast acquisition of EELS has been designed, from which...

  1. Novel method for early investigation of bioactivity in different borate bio-glasses

    Science.gov (United States)

    Abdelghany, A. M.

    Some ternary borate glasses were prepared and corrosion behavior of such ternary borate glasses after immersion in aqueous dilute phosphate solution was studied using different immersion times. Fourier transform infrared (FTIR) absorption spectral measurements were done before and after immersion in the mentioned solution for extended times up to 2 days to justify the appearance of the characteristic FTIR bands due to calcium phosphate (hydroxyapatite (HA)) which is considered as the potential indication of bioactivity. Experimental IR data confirm the beginning of the appearance of FTIR bands at about 580 and 620 cm-1 after 3 days and the complete resolution with its characteristic split form after 1 week and more. Deconvolution analysis technique (DAT) of the FTIR spectrum was employed to investigate the bioactivity of such ternary borate system after a short period of immersion. The corrosion behavior of such glasses is explained in relation to a suggested hydrolysis followed by direct dissolution mechanism. The ease of dissolution of all the borate glasses constituents explains the formation of calcium phosphate and conversion to crystalline hydroxyapatite within the borate glass matrix. X-ray diffraction may be used to retrace the structural changes and degree of crystallinity of the prepared glasses.

  2. Nanoscale Device Properties of Tellurium-based Chalcogenide Compounds

    Science.gov (United States)

    Dahal, Bishnu R.

    The great progress achieved in miniaturization of microelectronic devices has now reached a distinct bottleneck, as devices are starting to approach the fundamental fabrication and performance limit. Even if a major breakthrough is made in the fabrication process, these scaled down electronic devices will not function properly since the quantum effects can no longer be neglected in the nanoscale regime. Advances in nanotechnology and new materials are driving novel technologies for future device applications. Current microelectronic devices have the smallest feature size, around 10 nm, and the industry is planning to switch away from silicon technology in the near future. The new technology will be fundamentally different. There are several leading technologies based on spintronics, tunneling transistors, and the newly discovered 2-dimensional material systems. All of these technologies are at the research level, and are far from ready for use in making devices in large volumes. This dissertation will focus on a very promising material system, Te-based chalcogenides, which have potential applications in spintronics, thermoelectricity and topological insulators that can lead to low-power-consumption electronics. Very recently it was predicted and experimentally observed that the spin-orbit interaction in certain materials can lead to a new electronic state called topological insulating phase. The topological insulator, like an ordinary insulator, has a bulk energy gap separating the highest occupied electronic band from the lowest empty band. However, the surface states in the case of a three-dimensional or edge states in a two-dimensional topological insulator allow electrons to conduct at the surface, due to the topological character of the bulk wavefunctions. These conducting states are protected by time-reversal symmetry, and cannot be eliminated by defects or chemical passivation. The edge/surface states satisfy Dirac dispersion relations, and hence the physics

  3. Neutron Damage and MAX Phase Ternary Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michael [Drexel Univ., Philadelphia, PA (United States); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcua-Duaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kohse, Gordon [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-06-17

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  4. Neutron Damage and MAX Phase Ternary Compounds

    International Nuclear Information System (INIS)

    Barsoum, Michael; Hoffman, Elizabeth; Sindelar, Robert; Garcua-Diaz, Brenda; Kohse, Gordon

    2014-01-01

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  5. Embedding complete ternary tree in hypercubes using AVL trees

    NARCIS (Netherlands)

    S.A. Choudum; I. Raman (Indhumathi)

    2008-01-01

    htmlabstractA complete ternary tree is a tree in which every non-leaf vertex has exactly three children. We prove that a complete ternary tree of height h, TTh, is embeddable in a hypercube of dimension . This result coincides with the result of [2]. However, in this paper, the embedding utilizes

  6. Thermodynamic modeling of the Ti-Al-Cr ternary system

    International Nuclear Information System (INIS)

    Chen Leyi; Qiu Aitao; Liu Lanjie; Jiang Ming; Lu Xionggang; Li Chonghe

    2011-01-01

    Research highlights: → The full experimental results of the Ti-Al-Cr ternary system and its sub-binary systems are reviewed and analysed in detail. → Based on the latest thermodynamic assessments of the Ti-Al, Ti-Cr and Al-Cr systems and the ternary experimental data in literature, the thermodynamic parameters of the Ti-Al-Cr ternary system are fully assessed by the Calphad method. → The transformation of disorder to order (bcc a 2 to B2) and the new ternary compound L 12T i 25 Cr 8 Al 67 are considered in this work. - Abstract: The Ti-Al-Cr ternary system is one of the most important systems to studying the titanium alloys. Some experimental data of this ternary system are available and a few partial thermodynamic assessments are reported. However, no full thermodynamic descriptions were published. In this study, the previous work on the Ti-Al-Cr system and its related binary systems are reviewed. Based on the thermodynamic descriptions of the Ti-Al, Ti-Cr and Al-Cr systems and the ternary experimental data in literature, the Ti-Al-Cr ternary system is assessed by means of the Calphad method. Several isothermal sections from 1073 K to 1573 K and some invariant reactions are calculated, which are in good agreement with the most of the experimental results.

  7. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  8. Calculation of ternary interdiffusion coefficients using a single diffusion couple

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Rothová, Věra

    2016-01-01

    Roč. 54, č. 5 (2016), s. 305-314 ISSN 0023-432X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : diffusion * interdiffusion * ternary alloys * ternary diffusion coefficients Subject RIV: BJ - Thermodynamics Impact factor: 0.366, year: 2016

  9. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  10. All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials.

    Science.gov (United States)

    Petronijevic, E; Sibilia, C

    2016-12-26

    Electromagnetically induced transparency (EIT) is a pump-induced narrowband transparency window within an absorption line of the probe beam spectrum in an atomic system. In this paper we propose a way to bring together the all-dielectric metamaterials to have EIT-like effects and to optically tune the response by hybridizing them with a layer of a phase change material. We propose a design of the metamaterial based on Si nanoresonators that can support an EIT-like resonant response. On the top of the resonators we consider a thin layer of a chalcogenide phase change material, which we will use to tune the optical response. Our choice is Ge2Sb2Te5 (GST), since it has two stable phases at room temperature, namely amorphous and crystalline, between which it can be switched quickly, nonvolatively and reversibly, sustaining a large number of switching cycles. They differ in optical properties, while still having moderately low losses in telecom range. Since such dielectric resonators do not have non-radiative losses of metals around 1550nm, they can lead to a high-Q factor of the EIT-like response in this range. Firstly, we optimize the starting structure so that it gives an EIT-like response at 1550 nm when the GST layer is in the amorphous state. Our starting design uses glass as a substrate, but we also consider implementation in SOI technology. If we then switch the thin layer of GST to its crystalline phase, which has higher losses, the EIT-like response is red shifted, providing around 10:1 contrast at 1550nm. This reversible tuning can be done with an ns visible pulsed laser. We discuss the results of the simulation of the dielectric metasurface for different configurations and the tuning possibility.

  11. Glass: Rotary Electric Glass Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  12. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    International Nuclear Information System (INIS)

    Pachmayr, Ursula Elisabeth

    2017-01-01

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe_1_-_xS_x was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li_0_._8Fe_0_._2)OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li_0_._8Fe_0_._2)OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe_4 tetrahedra were found via this synthesis method. The iron selenides A_2Fe_4Se_6 (A = K, Rb, Cs) consist of double chains of [Fe_2Se_3]"1"-, whereas a new compound Na_6(H_2O)_1_8Fe_4Se_8 exhibits [Fe_4Se_8]"6"- 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard to iron-chalcogenide based superconductors this synthesis strategy is encouraging. It seems probable

  13. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pachmayr, Ursula Elisabeth

    2017-04-06

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe{sub 1-x}S{sub x} was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li{sub 0.8}Fe{sub 0.2})OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li{sub 0.8}Fe{sub 0.2})OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe{sub 4} tetrahedra were found via this synthesis method. The iron selenides A{sub 2}Fe{sub 4}Se{sub 6} (A = K, Rb, Cs) consist of double chains of [Fe{sub 2}Se{sub 3}]{sup 1-}, whereas a new compound Na{sub 6}(H{sub 2}O){sub 18}Fe{sub 4}Se{sub 8} exhibits [Fe{sub 4}Se{sub 8}]{sup 6-} 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard

  14. A Moessbauer spectroscopic study of stannosilicate and ferrisilicate glasses

    International Nuclear Information System (INIS)

    Appleyard, P.G.

    2000-02-01

    Silicate glasses of variable composition, containing tin and iron have been studied using Moessbauer spectroscopy. The glass samples consisted of 3 basic groups; binary stannosilicate glasses, ternary stannosilicate glasses and ternary ferrisilicate glasses. The binary stannosilicate glasses were a simple x SnO + (1-x) SiO 2 composition, with x ranging from 16.5% to 67.7% mole. The ternary stannosilicate glasses followed a nominal compositional range of 0.5 SiO 2 + (0.5-x) SnO + x RO, where RO is modifier oxide. Several series of ternary stannosilicates were manufactured, with each series containing a different modifier type. The modifiers chosen were; group I metal oxides of Li, Na, K and Rb, group II metal oxides of Mg, Ca and Sr and group III metal oxide of Al. Two series of ternary ferrisilicate glasses were manufactured following nominal compositional ranges of (0.7-x) SiO 2 + x Fe 2 O 3 + 0.3 Na 2 O and 0.7 SiO 2 + xFe 2 O 3 + (0.3-x) Na 2 O. In the majority of the stannosilicate glasses, the Sn was shown to exist primarily in the Sn(II) valence state. The Moessbauer centre shift and quadrupole splitting of the Sn(II) were shown to possess a dependence on sample concentration, this being weak in the binary glasses, but large and distinct in the ternary glasses. The isomer shift and quadrupole splitting slowly decreased with increasing modifier concentration in the ternary glasses. The rate of this decrease was proportional to the Z/radius of the modifier ion. Variable temperature experiments on a large selection of the glasses revealed that the Sn(II) isomer shift and quadrupole splitting possessed positive and negative dependencies on temperature respectively. The increase in isomer shift is consistent with the effects of thermal expansion and an increase in pressure at the Sn site. The decrease in quadrupole splitting is also consistent with thermal expansion of the Sn-O bonds. The temperature dependence of the isomer shift was incorporated into the

  15. Pressure dependence of glass transition in As2Te3 glass.

    Science.gov (United States)

    Ramesh, K

    2014-07-24

    Amorphous solids prepared from their melt state exhibit glass transition phenomenon upon heating. Viscosity, specific heat, and thermal expansion coefficient of the amorphous solids show rapid changes at the glass transition temperature (Tg). Generally, application of high pressure increases the Tg and this increase (a positive dT(g)/dP) has been understood adequately with free volume and entropy models which are purely thermodynamic in origin. In this study, the electrical resistivity of semiconducting As(2)Te(3) glass at high pressures as a function of temperature has been measured in a Bridgman anvil apparatus. Electrical resistivity showed a pronounced change at Tg. The Tg estimated from the slope change in the resistivity-temperature plot shows a decreasing trend (negative dT(g)/dP). The dT(g)/dP was found to be -2.36 °C/kbar for a linear fit and -2.99 °C/kbar for a polynomial fit in the pressure range 1 bar to 9 kbar. Chalcogenide glasses like Se, As(2)Se(3), and As(30)Se(30)Te(40) show a positive dT(g)/dP which is very well understood in terms of the thermodynamic models. The negative dT(g)/dP (which is generally uncommon in liquids) observed for As(2)Te(3) glass is against the predictions of the thermodynamic models. The Adam-Gibbs model of viscosity suggests a direct relationship between the isothermal pressure derivative of viscosity and the relaxational expansion coefficient. When the sign of the thermal expansion coefficient is negative, dT(g)/dP = Δk/Δα will be less than zero, which can result in a negative dT(g)/dP. In general, chalcogenides rich in tellurium show a negative thermal expansion coefficient (NTE) in the supercooled and stable liquid states. Hence, the negative dT(g)/dP observed in this study can be understood on the basis of the Adams-Gibbs model. An electronic model proposed by deNeufville and Rockstad finds a linear relation between Tg and the optical band gap (Eg) for covalent semiconducting glasses when they are grouped

  16. Comprehensive thermal and structural characterization of antimony-phosphate glass

    Science.gov (United States)

    Moustafa, S. Y.; Sahar, M. R.; Ghoshal, S. K.

    For the first time, we prepare new ternary glass systems of composition (95-x)Sb2O3-xP2O5-5MgO, where x = 45, 40, 35 mol%; (85-x)Sb2O3-xP2O5-15MgO, where x = 55, 35, 25 mol%; (75-x)Sb2O3-xP2O5-25MgO, where x = 45, 35, 25 mol%; and 60Sb2O3-(40-x)P2O5-xMgO, where x = 10, 20 mol% via melt-quenching method. Synthesized glasses are characterized using XRD, FESEM, EDX, and TG/DTA measurements. The influence of varying modifier concentrations on their thermal properties is evaluated. The XRD patterns confirmed the amorphous nature of samples. SEM images demonstrated interesting phase formation with ribbons-like texture. Five crystalline phases are evidenced in the ternary diagram which are antimony phosphate and antimony orthophosphate as major phases as well as magnesium phosphate, magnesium cyclo-tetraphosphate and cervantite as minor phases. EDX spectra detected the right elemental traces. Detailed thermal analysis of these glasses revealed their high-molecular polymer character for Sb2O3 content greater than 50 mol%. Three different glass transition temperatures are achieved around 276, 380-381 and 422-470 °C depending on the composition. Furthermore, the solidus and liquidus temperature are found to decrease with increasing Sb2O3 and increases for MgO contents till 15 mol% and then decrease, where the lowest recorded solidus temperature is 426 °C. This observation may open up new research avenues for antimony based ternary glasses and an exploitation of the derived results for optoelectronics applications, photonic devices and non-linear optical devices.

  17. Long-term physical ageing in As-Se glasses with short chalcogen chains

    International Nuclear Information System (INIS)

    Golovchak, R; Shpotyuk, O; Kozdras, A; Vlcek, M; Bureau, B; Kovalskiy, A; Jain, H

    2008-01-01

    Long-term physical ageing of chalcogenide glasses, which occurs over tens of years, is much less understood than the short-term ageing. With Se-rich underconstrained As 30 Se 70 glass as a model composition (consisting of Se n chains with n≤3 on average), a microscopic model is developed for this phenomenon by combining information from differential scanning calorimetry, extended x-ray absorption fine structure, Raman, and 77 Se solid state nuclear magnetic resonance spectroscopies. The accompanying changes in the electronic structure of these glasses are investigated by x-ray photoelectron spectroscopy. The data suggest ageing from cooperative relaxation, presumably involving bond switching or reconfiguration of As-Se-Se-As fragments

  18. Long-term physical ageing in As-Se glasses with short chalcogen chains

    Energy Technology Data Exchange (ETDEWEB)

    Golovchak, R; Shpotyuk, O [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska street, Lviv, UA-79031 (Ukraine); Kozdras, A [Faculty of Physics of Opole University of Technology, 75, Ozimska street, Opole, 45370 (Poland); Vlcek, M [Department of General and Inorganic Chemistry, Faculty of Chemistry, University of Pardubice, 532 10 Pardubice (Czech Republic); Bureau, B [Verres et Ceramiques, UMR CNRS 6226 Sciences Chimiques de Rennes, University of Rennes, 1, Campus de Beaulieu, Rennes, 35042 (France); Kovalskiy, A; Jain, H [Department of Materials Science and Engineering, Lehigh University, 5, East Packer Avenue, Bethlehem, PA 18015-3195 (United States)

    2008-06-18

    Long-term physical ageing of chalcogenide glasses, which occurs over tens of years, is much less understood than the short-term ageing. With Se-rich underconstrained As{sub 30}Se{sub 70} glass as a model composition (consisting of Se{sub n} chains with n{<=}3 on average), a microscopic model is developed for this phenomenon by combining information from differential scanning calorimetry, extended x-ray absorption fine structure, Raman, and {sup 77}Se solid state nuclear magnetic resonance spectroscopies. The accompanying changes in the electronic structure of these glasses are investigated by x-ray photoelectron spectroscopy. The data suggest ageing from cooperative relaxation, presumably involving bond switching or reconfiguration of As-Se-Se-As fragments.

  19. Symmetric weak ternary quantum homomorphic encryption schemes

    Science.gov (United States)

    Wang, Yuqi; She, Kun; Luo, Qingbin; Yang, Fan; Zhao, Chao

    2016-03-01

    Based on a ternary quantum logic circuit, four symmetric weak ternary quantum homomorphic encryption (QHE) schemes were proposed. First, for a one-qutrit rotation gate, a QHE scheme was constructed. Second, in view of the synthesis of a general 3 × 3 unitary transformation, another one-qutrit QHE scheme was proposed. Third, according to the one-qutrit scheme, the two-qutrit QHE scheme about generalized controlled X (GCX(m,n)) gate was constructed and further generalized to the n-qutrit unitary matrix case. Finally, the security of these schemes was analyzed in two respects. It can be concluded that the attacker can correctly guess the encryption key with a maximum probability pk = 1/33n, thus it can better protect the privacy of users’ data. Moreover, these schemes can be well integrated into the future quantum remote server architecture, and thus the computational security of the users’ private quantum information can be well protected in a distributed computing environment.

  20. Nanoscratching of nylon 66-based ternary nanocomposites

    International Nuclear Information System (INIS)

    Dasari, Aravind; Yu Zhongzhen; Mai Yiuwing

    2007-01-01

    The nanoscratch behavior of nylon 66/SEBS-g-MA/clay ternary nanocomposites produced by different blending protocols with contrasting microstructures is studied by using atomic force and transmission electron microscopy. A standard diamond Berkovich indenter is used for scratching and a low load of 1 mN, along with a low sliding velocity of 1 μm s -1 , are employed for this purpose. It is shown that in order to resist penetration it is more important to have exfoliated clay in the continuous nylon matrix during nanoscratching than to have the clay in the dispersed soft rubber domains. The results obtained also explain the preferred usage of ternary nanocomposites compared to binary nanocomposites, particularly nylon 66/exfoliated clay nanocomposites. This research extends current basic knowledge and provides new insights on the nature of nanoscale processes that occur during nanoscratching of polymer nanocomposites. Critical questions are raised on the relationships between the penetration depth and material deformation and damage left behind the moving indenter

  1. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Directory of Open Access Journals (Sweden)

    Jean-Marc Joubert

    2015-12-01

    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  2. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  3. Thermal effects on light emission in Yb3+ -sensitized rare-earth doped optical glasses

    International Nuclear Information System (INIS)

    Gouveia, E.A.; Araujo, M.T. de; Gouveia-Neto, A.S.

    2001-01-01

    The temperature effect upon infrared-to-visible frequency upconversion fluorescence emission in off-resonance infrared excited Yb 3+ -sensitized rare-earth doped optical glasses is theoretically and experimentally investigated. We have examined samples of Er3+/Yb 3+ -codoped Ga 2 S 3 :La 2 O 3 chalcogenide glasses and germanosilicate optical fibers, and Ga2O3:La 2 O 3 chalcogenide and fluoroindate glasses codoped with Pr 3+ /Yb 3+ , excited off-resonance at 1.064μm. The experimental results revealed thermal induced enhancement in the visible upconversion emission intensity as the samples temperatures were increased within the range of 20 deg C to 260 deg C. The fluorescence emission enhancement is attributed to the temperature dependent multiphonon-assisted anti-Stokes excitation process of the ytterbium-sensitizer. A theoretical approach that takes into account a sensitizer temperature dependent effective absorption cross section, which depends upon the phonon occupation number in the host matrices, has proven to agree very well with the experimental data. As beneficial applications of the thermal enhancement, a temperature tunable amplifier and a fiber laser with improved power performance are presented. (author)

  4. Nitrate glass

    International Nuclear Information System (INIS)

    Kirilenko, I.A.; Vinogradov, E.E.

    1977-01-01

    Experimental evidence on behaviour of nitrate glasses is reviewed in terms of relationships between the presence of water in vitrescent nitrate systems and the properties of the systems. The glasses considered belong to systems of Mg(NO 3 ) 2 - Nd(NO 3 ) 3 ; Hg(NO 3 ) 2 -Nd(NO 3 ) 3 ; NaNO 3 -Mg(NO 3 ) 2 -Nd(NO 3 ) 3 ; M-Zn(NO 3 ) 3 , where M is a mixture of 20% mass NaNO 3 and 80% mass Mg(NO 3 ) 2 , and Zn is a rare earth ion. Nitrate glass is shown to be a product of dehydration. Vitrification may be regarded as a resusl of formation of molecular complexes in the chain due to hydrogen bonds of two types, i.e. water-water, or water-nicrate group. Chain formation, along with low melting points of the nitrates, hinder crystallization of nitrate melts. Provided there is enough water, this results in vitrification

  5. Structure of Se-rich As-Se glasses by high-resolution x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Golovchak, R.; Kovalskiy, A.; Miller, A. C.; Jain, H.; Shpotyuk, O.

    2007-01-01

    To establish the validity of various proposed structural models, we have investigated the structure of the binary As x Se 100-x chalcogenide glass family (x≤40) by high-resolution x-ray photoelectron spectroscopy. From the composition dependence of the valence band, the contributions to the density of states from the 4p lone pair electrons of Se and the 4p bonding states and 4s electrons of Se and As are identified in the top part of the band. The analysis of Se 3d and As 3d core-level spectra supports the so-called chain crossing model for the atomic structure of Se-rich As x Se 100-x bulk glasses. The results also indicate small deviations (∼3-8%) from this model, especially for glass compositions with short Se chains (25 40 Se 60 and of Se-Se-Se fragments in a glass with composition x=30 is established

  6. Crystallization kinetics, glass transition kinetics, and thermal stability of Se70-xGa30Inx (x=5, 10, 15, and 20) semiconducting glasses

    International Nuclear Information System (INIS)

    Imran, Mousa M.A.

    2011-01-01

    Crystallization and glass transition kinetics of Se 70-x Ga 30 In x (x=5, 10, 15, and 20) semiconducting chalcogenide glasses were studied under non-isothermal condition using a Differential Scanning Calorimeter (DSC). DSC thermograms of the samples were recorded at four different heating rates 5, 10, 15, and 20 K/min. The variation of the glass transition temperature (T g ) with the heating rate (β) was used to calculate the glass transition activation energy (E t ) using two different models. Meanwhile, the variation of the peak temperature of crystallization (T p ) with β was utilized to deduce the crystallization activation energy (E c ) using Kissinger, Augis-Bennet, and Takhor models. Results reveal that E t decreases with increasing In content, while both T g and E c exhibit the opposite behavior, and the crystal growth occurs in one dimension. The variation of these thermal parameters with the average coordination number was also discussed, and the results were interpreted in terms of the type of bonding that In makes with Se. Assessment of thermal stability and glass forming ability (GFA) was carried out on the basis of some quantitative criteria and the results indicate that thermal stability is enhanced while the crystallization rate is reduced with the addition of In to Se-Ga glass. -- Research highlights: → Addition of In to Se-Ga glass decreases the glass transition activation energy. → The crystallization rate in Se-Ga-In glass is reduced as In content increases. → The crystal growth in Se-Ga-In glass occurs in one dimension. → Thermal properties of Se-Ga-In glass indicate a shift in Phillips-Thorpe threshold.

  7. Pulsed laser deposited amorphous chalcogenide and alumino-silicate thin films and their multilayered structures for photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Němec, P. [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Charrier, J. [FOTON, UMR CNRS 6082, Enssat, 6 rue de Kerampont, BP 80518, 22305 Lannion (France); Cathelinaud, M. [Missions des Ressources et Compétences Technologiques, UPS CNRS 2274, 92195 Meudon (France); Allix, M. [CEMHTI-CNRS, Site Haute Température, Orléans (France); Adam, J.-L.; Zhang, S. [Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France); Nazabal, V., E-mail: virginie.nazabal@univ-rennes1.fr [Department of Graphic Arts and Photophysics, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice (Czech Republic); Equipe Verres et Céramiques, UMR-CNRS 6226, Sciences Chimiques de Rennes (SCR), Université de Rennes 1, 35042 Rennes Cedex (France)

    2013-07-31

    Amorphous chalcogenide and alumino-silicate thin films were fabricated by the pulsed laser deposition technique. Prepared films were characterized in terms of their morphology, chemical composition, and optical properties. Multilayered thin film stacks for reflectors and vertical microcavities were designed for telecommunication wavelength and the window of atmosphere transparency (band II) at 1.54 μm and 4.65 μm, respectively. Bearing in mind the benefit coming from the opportunity of an efficient wavelength tuning or, conversely, to stabilize the photoinduced effects in chalcogenide films as well as to improve their mechanical properties and/or their chemical durability, several pairs of materials from pure chalcogenide layers to chalcogenide/oxide layers were investigated. Different layer stacks were fabricated in order to check the compatibility between dissimilar materials which can have a strong influence on the interface roughness, adhesion, density, and homogeneity, for instance. Three different reflector designs were formulated and tested including all-chalcogenide layers (As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70}) and mixed chalcogenide-oxide layers (As{sub 40}Se{sub 60}/alumino-silicate and Ga{sub 10}Ge{sub 15}Te{sub 75}/alumino-silicate). Prepared multilayers showed good compatibility between different material pairs deposited by laser ablation despite the diversity of chemical compositions. As{sub 40}Se{sub 60}/alumino-silicate reflector showed the best parameters; its stop band (R > 97% at 8° off-normal incidence) has a bandwidth of ∼ 100 nm and it is centered at 1490 nm. The quality of the different mirrors developed was good enough to try to obtain a microcavity structure for the 1.5 μm telecommunication wavelength made of chalcogenide layers. The microcavity structure consists of Ga{sub 5}Ge{sub 20}Sb{sub 10}S{sub 65} (doped with 5000 ppm of Er{sup 3+}) spacer surrounded by two 10-layer As{sub 40}Se{sub 60}/Ge{sub 25}Sb{sub 5}S{sub 70

  8. Locally formation of Ag nanoparticles in chalcogenide phase change thin films induced by nanosecond laser pulses

    International Nuclear Information System (INIS)

    Huang, Huan; Zhang, Lei; Wang, Yang; Han, Xiaodong; Wu, Yiqun; Zhang, Ze; Gan, Fuxi

    2012-01-01

    A simple method to optically synthesize Ag nanoparticles in Ge 2 Sb 2 Te 5 phase change matrix is described. The fine structures of the locally formed phase change chalcogenide nanocomposite are characterized by high-resolution transmission electron microscopy. The formation mechanism of the nanocomposite is discussed with temperature evolution and distribution simulations. This easy-prepared metal nano-particle-embedded phase change microstructure will have great potential in nanophotonics applications, such as for plasmonic functional structures. This also provides a generalized approach to the preparation of well-dispersed nanoparticle-embedded composite thin films in principle. -- Highlights: ► We describe a method to prepare chalcogenide microstructures with Ag nanoparticles. ► We give the fine structural images of phase change nanocomposites. ► We discuss the laser-induced fusion mechanism by temperature simulation. ► This microstructure will have great potential in nanophotonics applications.

  9. New insight on glass-forming ability and designing Cu-based bulk metallic glasses: The solidification range perspective

    International Nuclear Information System (INIS)

    Wu, Jili; Pan, Ye; Li, Xingzhou; Wang, Xianfei

    2014-01-01

    Highlights: • The equation, T rg = T g /T l , was rotationally modified to T rg = κ(T m /T l ) + C/T l . • The newly generalized equation suggests a way for describing glass-forming ability. • Several new Cu-based bulk metallic glasses were discovered by solidification range. - Abstract: In this paper, a new equation was rationally generalized from the reduced glass transition temperature. This equation indicates that solidification range can be used for describing glass-forming ability, which can be calculated with the aid of computational thermodynamic approach. Based on this scenario, several new Cu-based bulk metallic glasses in the ternary Cu–Zr–Ti alloy system were discovered. The as-cast samples were characterized by X-ray diffraction and transmission electronic microscopy. The results indicate that as-cast samples have monolithic amorphous nature. Thermal analysis validates that the smaller solidification range is closely related to the higher glass-forming ability, which is contributed to the effect of solidification time on the formation of bulk metallic glasses. This work also suggests that solidus can influence glass formation

  10. Optical, physical and structural studies of boro-zinc tellurite glasses

    International Nuclear Information System (INIS)

    Gayathri Pavani, P.; Sadhana, K.; Chandra Mouli, V.

    2011-01-01

    To investigate the modification effect of the modifier ZnO on boro-tellurite glass, a series of glasses with compositions 50B 2 O 3 -(50-x)ZnO-xTeO 2 have been prepared by conventional melt quenching technique. Amorphous nature of the samples was confirmed through X-ray diffraction technique. Optical absorption and IR structural studies are carried out on the glass system. The optical absorption studies revealed that the cutoff wavelength increases while optical band gap (E opt ) and Urbach energy decreases with an increase of ZnO content. Refractive index evaluated from E opt was found to increase with an increase of ZnO content. The compositional dependence of different physical parameters such as density, molar volume, oxygen packing density, optical basicity, have been analyzed and discussed. The IR studies showed that the structure of glass consists of TeO 4 , TeO 3 /TeO 3+1 , BO 3 , BO 4 and ZnO 4 units. -- Research highlights: → Novel boro-zinc tellurite ternary glasses that can compete with boro-tellurite and zinc tellurite glasses are successfully prepared. → Boro-zinc tellurite ternary glasses are of higher refractive index compared with zinc tellurite glasses. → Optical, physical and structural properties of the novel ternary glass system are explained.→ At 30 mol% of ZnO, TeO 4 is replaced by ZnO 4 indicating the presence of ZnO 4 network.

  11. ZnO and copper indium chalcogenide heterojunctions prepared by inexpensive methods

    International Nuclear Information System (INIS)

    Berruet, M.; Di Iorio, Y.; Troviano, M.; Vázquez, M.

    2014-01-01

    Solution-based techniques were used to prepare ZnO/CuIn(Se, S) 2 heterojunctions that serve as solar cell prototypes. A duplex layer of ZnO (compact + porous) was electrodeposited. Chalcogenide thin films were deposited using successive ionic layer adsorption and reaction method (SILAR). By subsequent thermal treatments in two different atmospheres, CuInSe 2 (CISe) and CuInSe 2−x S x (CISeS) were obtained. The composition and morphology of the annealed films were characterized by GXRD, micro-Raman spectroscopy and SEM. Devices prepared with CISe and CISeS show a clear photo-response. The introduction of a buffer layer of TiO 2 into the ZnO/chalcogenide interface was necessary to detect photocurrent. The presence of CISeS improves the response of the cell, with higher values of short circuit current density, open circuit potential and fill factor. These promising results show that it is possible to prepare photovoltaic heterojunctions by depositing chalcogenides onto porous ZnO substrates using low-cost solution-based techniques. - Highlights: • Heterojunctions that serve as solar cell prototypes were prepared using solution-based techniques. • The devices comprised a double layer of ZnO and CuInSe 2 or CuInSe 0.4 S 1.6 . • A TiO 2 buffer layer in the ZnO/chalcogenide interface is necessary to detect photocurrent. • The incorporation of S improved the response of the photovoltaic heterojunction

  12. Interfacial scanning tunneling spectroscopy (STS) of chalcogenide/metal hybrid nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Mahmoud M.; Abdallah, Tamer [Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt); Easawi, Khalid; Negm, Sohair [Department of Physics and Mathematics, Faculty of Engineering (Shoubra), Benha University (Egypt); Talaat, Hassan, E-mail: hassantalaat@hotmail.com [Physics Department, Faculty of Science, Ain Shams University, Abbassia, Cairo (Egypt)

    2015-05-15

    Graphical abstract: - Highlights: • Comparing band gaps values obtained optically with STS. • Comparing direct imaging with calculated dimensions. • STS determination of the interfacial band bending of metal/chalcogenide. - Abstract: The electronic structure at the interface of chalcogenide/metal hybrid nanostructure (CdSe–Au tipped) had been studied by UHV scanning tunneling spectroscopy (STS) technique at room temperature. This nanostructure was synthesized by a phase transfer chemical method. The optical absorption of this hybrid nanostructure was recorded, and the application of the effective mass approximation (EMA) model gave dimensions that were confirmed by the direct measurements using the scanning tunneling microscopy (STM) as well as the high-resolution transmission electron microscope (HRTEM). The energy band gap obtained by STS agrees with the values obtained from the optical absorption. Moreover, the STS at the interface of CdSe–Au tipped hybrid nanostructure between CdSe of size about 4.1 ± 0.19 nm and Au tip of size about 3.5 ± 0.29 nm shows a band bending about 0.18 ± 0.03 eV in CdSe down in the direction of the interface. Such a result gives a direct observation of the electron accumulation at the interface of CdSe–Au tipped hybrid nanostructure, consistent with its energy band diagram. The presence of the electron accumulation at the interface of chalcogenides with metals has an important implication for hybrid nanoelectronic devices and the newly developed plasmon/chalcogenide photovoltaic solar energy conversion.

  13. ZnO and copper indium chalcogenide heterojunctions prepared by inexpensive methods

    Energy Technology Data Exchange (ETDEWEB)

    Berruet, M., E-mail: berruetm@gmail.com [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Di Iorio, Y. [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina); Troviano, M. [Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo), Buenos Aires 1400, Q8300IBX Neuquén (Argentina); Vázquez, M. [División Electroquímica y Corrosión, Facultad de Ingeniería, INTEMA, CONICET, Universidad Nacional de Mar del Plata, Juan B. Justo 4302, B7608FDQ Mar del Plata (Argentina)

    2014-12-15

    Solution-based techniques were used to prepare ZnO/CuIn(Se, S){sub 2} heterojunctions that serve as solar cell prototypes. A duplex layer of ZnO (compact + porous) was electrodeposited. Chalcogenide thin films were deposited using successive ionic layer adsorption and reaction method (SILAR). By subsequent thermal treatments in two different atmospheres, CuInSe{sub 2} (CISe) and CuInSe{sub 2−x}S{sub x} (CISeS) were obtained. The composition and morphology of the annealed films were characterized by GXRD, micro-Raman spectroscopy and SEM. Devices prepared with CISe and CISeS show a clear photo-response. The introduction of a buffer layer of TiO{sub 2} into the ZnO/chalcogenide interface was necessary to detect photocurrent. The presence of CISeS improves the response of the cell, with higher values of short circuit current density, open circuit potential and fill factor. These promising results show that it is possible to prepare photovoltaic heterojunctions by depositing chalcogenides onto porous ZnO substrates using low-cost solution-based techniques. - Highlights: • Heterojunctions that serve as solar cell prototypes were prepared using solution-based techniques. • The devices comprised a double layer of ZnO and CuInSe{sub 2} or CuInSe{sub 0.4}S{sub 1.6}. • A TiO{sub 2} buffer layer in the ZnO/chalcogenide interface is necessary to detect photocurrent. • The incorporation of S improved the response of the photovoltaic heterojunction.

  14. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    DEFF Research Database (Denmark)

    Tritsaris, Georgios; Nørskov, Jens Kehlet; Rossmeisl, Jan

    2011-01-01

    We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability...... of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated....

  15. Large magnetoresistance in non-magnetic silver chalcogenides and new class of magnetoresistive compounds

    Science.gov (United States)

    Saboungi, Marie-Louis; Price, David C. L.; Rosenbaum, Thomas F.; Xu, Rong; Husmann, Anke

    2001-01-01

    The heavily-doped silver chalcogenides, Ag.sub.2+.delta. Se and Ag.sub.2+.delta. Te, show magnetoresistance effects on a scale comparable to the "colossal" magnetoresistance (CMR) compounds. Hall coefficient, magnetoconductivity, and hydrostatic pressure experiments establish that elements of narrow-gap semiconductor physics apply, but both the size of the effects at room temperature and the linear field dependence down to fields of a few Oersteds are surprising new features.

  16. Diopside-Fluorapatite-Wollastonite Based Bioactive Glasses and Glass-ceramics =

    Science.gov (United States)

    Kansal, Ishu

    Bioactive glasses and glass-ceramics are a class of biomaterials which elicit special response on their surface when in contact with biological fluids, leading to strong bonding to living tissue. This particular trait along with good sintering ability and high mechanical strength make them ideal materials for scaffold fabrication. The work presented in this thesis is directed towards understanding the composition-structure-property relationships in potentially bioactive glasses designed in CaO-MgO-P2O5-SiO2-F system, in some cases with added Na2O. The main emphasis has been on unearthing the influence of glass composition on molecular structure, sintering ability and bioactivity of phosphosilicate glasses. The parent glass compositions have been designed in the primary crystallization field of the pseudo-ternary system of diopside (CaO•MgO•2SiO2) - fluorapatite (9CaO•3P2O5•CaF2) - wollastonite (CaO•SiO2), followed by studying the impact of compositional variations on the structure-property relationships and sintering ability of these glasses. All the glasses investigated in this work have been synthesized via melt-quenching route and have been characterized for their molecular structure, sintering ability, chemical degradation and bioactivity using wide array of experimental tools and techniques. It has been shown that in all investigated glass compositions the silicate network was mainly dominated by Q2 units while phosphate in all the glasses was found to be coordinated in orthophosphate environment. The glass compositions designed in alkali-free region of diopside - fluorapatite system demonstrated excellent sintering ability and good bioactivity in order to qualify them as potential materials for scaffold fabrication while alkali-rich bioactive glasses not only hinder the densification during sintering but also induce cytotoxicity in vitro, thus, are not ideal candidates for in vitro tissue engineering. One of our bioglass compositions with low sodium

  17. Case studies on the formation of chalcogenide self-assembled monolayers on surfaces and dissociative processes

    Directory of Open Access Journals (Sweden)

    Yongfeng Tong

    2016-02-01

    Full Text Available This report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon–chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed. The characteristics of the chalcogenized interface layer can be significantly different from the metal layer and can affect various properties such as electron conduction. For chalcogenophenes, the carbon–chalcogen atom-bond breaking can lead to opening of the ring and adsorption of an alkene chalcogenide. Such a disruption of the π-electron system affects charge transport along the chains. Awareness about these effects is of importance from the point of view of molecular electronics. We discuss some recent studies based on X-ray photoelectron spectroscopy that shed light on these aspects for a series of such organic molecules.

  18. 2D Metal Chalcogenides Incorporated into Carbon and their Assembly for Energy Storage Applications.

    Science.gov (United States)

    Deng, Zongnan; Jiang, Hao; Li, Chunzhong

    2018-05-01

    2D metal chalcogenides have become a popular focus in the energy storage field because of their unique properties caused by their single-atom thicknesses. However, their high surface energy and van der Waals attraction easily cause serious stacking and restacking, leading to the generation of more inaccessible active sites with rapid capacity fading. The hybridization of 2D metal chalcogenides with highly conductive materials, particularly, incorporating ultrasmall and few-layered metal chalcogenides into carbon frameworks, can not only maximize the exposure of active sites but also effectively avoid their stacking and aggregation during the electrochemical reaction process. Therefore, a satisfactory specific capacity will be achieved with a long cycle life. In this Concept, the representative progress on such intriguing nanohybrids and their applications in energy storage devices are mainly summarized. Finally, an outlook of the future development and challenges of such nanohybrids for achieving an excellent energy storage capability is also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Study of third order nonlinearity of chalcogenide thin films using third harmonic generation measurements

    Science.gov (United States)

    Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay

    2018-05-01

    Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.

  20. Theoretical study of phonon dispersion, elastic, mechanical and thermodynamic properties of barium chalcogenides

    Science.gov (United States)

    Musari, A. A.; Orukombo, S. A.

    2018-03-01

    Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.

  1. Limiting of photo induced changes in amorphous chalcogenide/alumino-silicate nanomultilayers

    International Nuclear Information System (INIS)

    Charnovych, S.; Nemec, P.; Nazabal, V.; Csik, A.; Allix, M.; Matzen, G.; Kokenyesi, S.

    2011-01-01

    Highlights: → Amorphous chalcogenides were investigated in this work. → Photo-induced effects were investigated in the created thin films. → Limiting of photo induced changes in amorphous chalcogenide/alumino-silicate nanomultilayers have been studied. - Abstract: Photo induced changes in amorphous As 20 Se 80 /alumino-silicate nanomultilayers (NML) produced by pulsed laser deposition (PLD) method have been studied in this work. The aim was to investigate the photo induced optical and surface relief changes due to the band gap illumination under the size- and hard cover limited conditions. It was observed that the hard cover layer on the surface of the uniform film or alumino-silicate sub-layers in the NML structure influences the photo darkening and restricts surface relief formations in As 20 Se 80 film or in the related NML compared with this effect in a pure chalcogenide layer. The influence of hard layers is supposed to be connected with limiting the free volume formation at the initial stage of the transformation process, which in turn limits the atomic movement and so the surface relief formation.

  2. Characterization of structural relaxation in inorganic glasses using length dilatometry

    Science.gov (United States)

    Koontz, Erick

    characterization technique is comprised of three main components: experimental measurements, fitting of configurational length change, and description of glass behavior by analysis of fitting parameters. N-BK7 optical glass from Schott was used as the proof of concept glass but the main scientific interest was in three chalcogenide glasses: As40Se 60, As20Se80, and Ge17.9As19.7 Se62.4. The dilatometric experiments were carried out using a thermomechanical analyzer (TMA) on glass sample that were synthesized by the author, in all cases except N-BK7. Isothermal structural relaxation measurements were done on (12 mm tall x 3 mm x 3 mm) beams placed vertically in the TMA. The samples were equilibrated at a starting temperature (T 0) until structural equilibrium was reached then a temperature down step was initiated to the final temperature (T 1) and held isothermally until relaxation concluded. The configurational aspect of length relaxation, and therefore volume relaxation was extracted and fit with a Prony series. The Prony series parameters indicated a number of relaxation events occurring within the glass on timescales typically an order of magnitude apart in time. The data analysis showed as many as 4 discrete relaxation times at lower temperatures. The number of discrete relaxation decreased as the temperature increased until just one single relaxation was left in the temperature range just at or above Tg. In the case of N-BK7 these trends were utilized to construct a simple model that could be applied to glass manufacturing in the areas of annealing or PGM. A future development of a rather simple finite element model (FEM) would easily be able to use this model to predict the exponential-like, temperature and time dependent relaxation behaviors of the glass. The predictive model was not extended to the chalcogenide glass studied here, but could easily be applied to them in the future. The relaxation time trends versus temperature showed a definite region of transition between a

  3. A review of phase separation in borosilicate glasses, with reference to nuclear fuel waste immobilization

    International Nuclear Information System (INIS)

    Taylor, P.

    1990-08-01

    This report reviews information on miscibility limits in borosilicate glass-forming systems. It includes both a literature survey and an account of experimental work performed within the Canadian Nuclear Fuel Waste Management Program. Emphasis is placed on the measurement and depiction of miscibility limits in multicomponent (mainly quaternary) systems, and the effects of individual components on the occurrence of phase separation. The behaviour of the multicomponent system is related to that of simpler (binary and ternary) glass systems. The possible occurrence of phase separation, as well as its avoidance, during processing of nuclear waste glasses is discussed

  4. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  5. Ternary particle yields in 249Cf(nth,f)

    Science.gov (United States)

    Tsekhanovich, I.; Büyükmumcu, Z.; Davi, M.; Denschlag, H. O.; Gönnenwein, F.; Boulyga, S. F.

    2003-03-01

    An experiment measuring ternary particle yields in 249Cf(nth,f) was carried out at the high flux reactor of the Institut Laue-Langevin using the Lohengrin recoil mass separator. Parameters of energy distributions were determined for 27 ternary particles up to 30Mg and their yields were calculated. The yields of 17 further ternary particles were estimated on the basis of the systematics developed. The heaviest particles observed in the experiment are 37Si and 37S; their possible origin is discussed.

  6. Ternary particle yields in 249Cf(nth,f)

    International Nuclear Information System (INIS)

    Tsekhanovich, I.; Bueyuekmumcu, Z.; Davi, M.; Denschlag, H.O.; Goennenwein, F.; Boulyga, S.F.

    2003-01-01

    An experiment measuring ternary particle yields in 249 Cf(n th ,f) was carried out at the high flux reactor of the Institut Laue-Langevin using the Lohengrin recoil mass separator. Parameters of energy distributions were determined for 27 ternary particles up to 30 Mg and their yields were calculated. The yields of 17 further ternary particles were estimated on the basis of the systematics developed. The heaviest particles observed in the experiment are 37 Si and 37 S; their possible origin is discussed

  7. A Three-dimensional Topological Model of Ternary Phase Diagram

    International Nuclear Information System (INIS)

    Mu, Yingxue; Bao, Hong

    2017-01-01

    In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)

  8. Changes of sulphide glasses caused by the presence of As

    Czech Academy of Sciences Publication Activity Database

    Kalužný, J.; Pedlíková, Jitka; Zavadil, Jiří; Labaš, V.

    2007-01-01

    Roč. 9, č. 10 (2007), s. 3076-3078 ISSN 1454-4164. [ ANC -3: International Conference on Amourphous and Nanostructured Chalcogenides /3./. Brasov, 02.07.20007-06.07.2007] R&D Projects: GA ČR GA104/02/0799; GA ČR GA104/05/0878 Grant - others:GA SR(SK) APVV-20-043505; GA SR(SK) APVT-20-011304; VEGA(SK) 1/1080/04 Institutional research plan: CEZ:AV0Z20670512; CEZ:AV0Z40320502 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje Keywords : glass * electrical conductivity * transmission * dielectric properties * arsenic compounds Subject RIV: CA - Inorganic Chemistry Impact factor: 0.827, year: 2007

  9. Chalcogenide Sensitized Carbon Based TiO2 Nanomaterial For Solar Driven Applications

    Science.gov (United States)

    Pathak, Pawan

    The demand for renewable energy is growing because fossils fuels are depleting at a rapid pace. Solar energy an abundant green energy resource. Utilizing this resource in a smart manner can resolve energy-crisis related issues. Sun light can be efficiently harvested using semiconductor based materials by utilizing photo-generated charges for numerous beneficial applications. The main goal of this thesis is to synthesize different nanostructures of TiO2, develop a novel method of coupling and synthesizing chalcogenide nanocrystals with TiO2 and to study the charge transportation effects of the various carbon allotropes in the chalcogenide nanocrystal sensitized TiO2 nanostructure. We have fabricated different nanostructures of TiO2 as solar energy harvesting materials. Effects of the different phases of TiO2 have also been studied. The anatase phase of TiO2 is more photoactive than the rutile phase of TiO2, and the higher dimension of the TiO2 can increase the surface area of the material which can produce higher photocurrent. Since TiO2 only absorbs in the UV range; to increase the absorbance TiO2 should be coupled to visible light absorbing materials. This dissertation presents a simple approach to synthesize and couple chalcogenide nanocrystals with TiO2 nanostructure to form a heterostructured composite. An atmospheric pressure based, single precursor, one-pot approach has been developed and tested to assemble chalcogenide nanocrystal on the TiO2 surface. Surface characterization using microscopy, X-ray diffraction, and elemental analysis indicates the formation of nanocrystals along the nanotube walls and inter-tubular spacing. Optical measurements indicate that the chalcogenide nanocrystals absorb in the visible region and demonstrate an increase in photocurrent in comparison to bare TiO2 nanostructure. The CdS synthesized TiO2 nanostructure produced the highest photocurrent as measured in the three electrode system. We have also assembled the PbS nanocrystal

  10. Defining the Glass Composition Limits for SRS Contaminated Soils

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Crews, W.O.

    1995-01-01

    Contaminated soil resulting from the excavation, repair, and decommissioning of facilities located at the Savannah River Site (SRS) is currently being disposed of by shallow land burial or is being stored when considered only hazardous. Vitrification of this waste is being investigated, since it will bind the hazardous and radioactive species in a stable and durable glass matrix, which will reduce the risk of ground water contamination. However, the composition limits for producing durable glass have to be determined before the technology can be applied. Glass compositions, consisting of SRS soil and glass forming additives, were tested on a crucible-scale in three ternary phase systems. Nine different glass compositions were produced, with waste loadings ranging from 43 to 58 weight percent. These were characterized using varoius chemical methods and tested for durability in both alkaline and acidic environments. All nine performed well in alkaline environments, but only three met the strictest criteria for the acidic environment tests. Although the glasses did not meet all of the limits for the acidic tests, the test was performed on very conservative size samples, so the results were also conservative. Therefore, enough evidence was found to provide proof that SRS soil can be vitrified in a durable glass matrix

  11. Speeds of sound and isothermal compressibility of ternary liquid ...

    Indian Academy of Sciences (India)

    Thermo-acoustics Research Lab, Department of Chemistry, University of Allahabad,. Allahabad 211 002, India ... compressibility data of these industrially important organic compounds of ternary and higher liquid ... distillation. Densities and ...

  12. Kinetic study of lithium-cadmium ternary amalgam decomposition

    International Nuclear Information System (INIS)

    Cordova, M.H.; Andrade, C.E.

    1992-01-01

    The effect of metals, which form stable lithium phase in binary alloys, on the formation of intermetallic species in ternary amalgams and their effect on thermal decomposition in contact with water is analyzed. Cd is selected as ternary metal, based on general experimental selection criteria. Cd (Hg) binary amalgams are prepared by direct contact Cd-Hg, whereas Li is formed by electrolysis of Li OH aq using a liquid Cd (Hg) cathodic well. The decomposition kinetic of Li C(Hg) in contact with 0.6 M Li OH is studied in function of ageing and temperature, and these results are compared with the binary amalgam Li (Hg) decomposition. The decomposition rate is constant during one hour for binary and ternary systems. Ageing does not affect the binary systems but increases the decomposition activation energy of ternary systems. A reaction mechanism that considers an intermetallic specie participating in the activated complex is proposed and a kinetic law is suggested. (author)

  13. Ternary complex formation at mineral/solution interfaces

    International Nuclear Information System (INIS)

    Leckie, J.O.

    1995-01-01

    Adsorption of trace concentrations of radionuclides and heavy metals from aqueous solution is dependent on pH, absorbent and adsorbate concentration, and speciation of the metal in solution. In particular, complexation of metal ions by organic and inorganic ligands can dramatically alter adsorption behavior compared to ligand-free systems. The presence of complexing ligands can cause the formation of ''metal like'' or ''ligand like'' ternary surface complexes depending on whether adsorption of the ternary complex increases or decreases with increasing pH, respectively. Examples of ternary surface complexes behaving ''metal like'' include uranyl-EDTA surface complexes on goethite, neptunyl-EDTA surface complexes on hematite and neptunyl-humic surface complexes on gibbsite. Examples of ''ligand like'' ternary surface complexes include uranyl-carbonato and neptunyl-carbonato surface complexes on iron oxides. The effects of complex solutions and multimineralic systems are discussed. (authors). 39 refs., 16 figs., 8 tabs

  14. Positron annihilation lifetime study of interfaces in ternary polymer blends

    International Nuclear Information System (INIS)

    Meghala, D; Ramya, P; Pasang, T; Raj, J M; Ranganathaiah, C; Williams, J F

    2013-01-01

    A new method based on positron lifetime spectroscopy is developed to characterize individual interfaces in ternary polymer blends and hence determine the composition dependent miscibility level. The method owes its origin to the Kirkwood-Risemann-Zimm (KRZ) model for the evaluation of the hydrodynamic interaction parameters (α ij ) which was used successfully for a binary blend with a single interface. The model was revised for the present work for ternary polymer blends to account for three interfaces. The efficacy of this method is shown for two ternary blends namely poly(styrene-co-acrylonitrile)/poly (ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and polycaprolactone /poly(styrene-co-acrylonitrile)/poly(vinyl chloride) (PCL/SAN/PVC) at different compositions. An effective hydrodynamic interaction parameter, α eff , was introduced to predict the overall miscibility of ternary blends.

  15. CRYSTALLIZATION IN MULTICOMPONENT GLASSES

    Energy Technology Data Exchange (ETDEWEB)

    KRUGER AA; HRMA PR

    2009-10-08

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  16. Crystallization In Multicomponent Glasses

    International Nuclear Information System (INIS)

    Kruger, A.A.; Hrma, P.R.

    2009-01-01

    In glass processing situations involving glass crystallization, various crystalline forms nucleate, grow, and dissolve, typically in a nonuniform temperature field of molten glass subjected to convection. Nuclear waste glasses are remarkable examples of multicomponent vitrified mixtures involving partial crystallization. In the glass melter, crystals form and dissolve during batch-to-glass conversion, melter processing, and product cooling. Crystals often agglomerate and sink, and they may settle at the melter bottom. Within the body of cooling glass, multiple phases crystallize in a non-uniform time-dependent temperature field. Self-organizing periodic distribution (the Liesegnang effect) is common. Various crystallization phenomena that occur in glass making are reviewed.

  17. Predictions of glass transition temperature for hydrogen bonding biomaterials.

    Science.gov (United States)

    van der Sman, R G M

    2013-12-19

    We show that the glass transition of a multitude of mixtures containing hydrogen bonding materials correlates strongly with the effective number of hydroxyl groups per molecule, which are available for intermolecular hydrogen bonding. This correlation is in compliance with the topological constraint theory, wherein the intermolecular hydrogen bonds constrain the mobility of the hydrogen bonded network. The finding that the glass transition relates to hydrogen bonding rather than free volume agrees with our recent finding that there is little difference in free volume among carbohydrates and polysaccharides. For binary and ternary mixtures of sugars, polyols, or biopolymers with water, our correlation states that the glass transition temperature is linear with the inverse of the number of effective hydroxyl groups per molecule. Only for dry biopolymer/sugar or sugar/polyol mixtures do we find deviations due to nonideal mixing, imposed by microheterogeneity.

  18. Tricolore. A flexible color scale for ternary compositions

    DEFF Research Database (Denmark)

    2018-01-01

    tricolore is an R library providing a flexible color scale for the visualization of three-part/ternary compositions. Its main functionality is to color-code any ternary composition as a mixture of three primary colours and to draw a suitable color-key. tricolore flexibly adapts to different...... visualisation challenges via - discrete and continuous color support - support for unbalanced compositional data via centering - support for data with very narrow range via scaling - hue, chroma and lightness options...

  19. Analytical determination of distillation boundaries for ternary azeotropic systems

    OpenAIRE

    Marcilla Gomis, Antonio; Reyes Labarta, Juan Antonio; Velasco, Raúl; Serrano Cayuelas, María Dolores; Olaya López, María del Mar

    2009-01-01

    A new straight forward algorithm to calculate distillation boundaries in ternary azeotropic systems has been developed. The proposed method allows, using cubic splines, the calculation of distillation trajectories and the calculation of that corresponding to the searched distillation boundaries. The algorithm is applied to 4 ternary liquid-vapour systems to test its validity. Vicepresidency of Research (University of Alicante) and Generalitat Valenciana (GV/2007/125)

  20. Tuning of electronic band gaps and optoelectronic properties of binary strontium chalcogenides by means of doping of magnesium atom(s)- a first principles based theoretical initiative with mBJ, B3LYP and WC-GGA functionals

    Science.gov (United States)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.

  1. Charge distribution in the ternary fragmentation of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kannan, M.T.; Balasubramaniam, M. [Bharathiar University, Department of Physics, Coimbatore (India)

    2017-08-15

    We present here, for the first time, a study on ternary fragmentation charge distribution of {sup 252}Cf using the convolution integral method and the statistical theory. The charge distribution for all possible charge combinations of a ternary breakup are grouped as a bin containing different mass partitions. Different bins corresponding to various third fragments with mass numbers from A{sub 3} = 16 to 84 are identified with the available experimental masses. The corresponding potential energy surfaces are calculated using the three cluster model for the two arrangements A{sub 1} + A{sub 2} + A{sub 3} and A{sub 1} + A{sub 3} + A{sub 2}. The ternary fragmentation yield values are calculated for the ternary combination from each bin possessing minimum potential energy. The yields of the resulting ternary combinations as a function of the charge numbers of the three fragments are analyzed for both the arrangements. The calculations are carried out at different excitation energies of the parent nucleus. For each excitation energy the temperature of the three fragments are iteratively computed conserving the total energy. The distribution of fragment temperatures corresponding to different excitation energies for some fixed third fragments are discussed. The presence of the closed shell nucleus Sn in the favourable ternary fragmentation is highlighted. (orig.)

  2. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  3. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  4. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system.

    Science.gov (United States)

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine

    2017-06-21

    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive

  5. Structural characterization and compositional dependence of the optical properties of Ge-Ga-La-S chalcohalide glass system

    Science.gov (United States)

    Li, Lini; Jiao, Qing; Lin, Changgui; Dai, Shixun; Nie, Qiuhua

    2018-04-01

    In this paper, chalcogenide glasses of 80GeS2sbnd (20sbnd x)Ga2S3sbnd xLa2S3 (x = 0, 1, 3, 5 mol%) were synthesized through the traditional melt-quenching technique. The effects of La2S3 addition on the thermal, optical, and structural properties of Gesbnd Gasbnd S glasses were investigated. Results showed that the synthesized glasses possessed considerably high glass transition temperature, improved glass forming ability, high refractive index, and excellent infrared transmittance. A redshift at the visible absorbing cut-off edge lower than 500 nm was observed with increasing of La2S3 content. Direct and indirect optical band gap values were calculated. SEM result suggested that this glass system owned better glass forming ability and uniformity. Raman spectral analysis indicated that the introduction of La2S3 induced the dissociation of Gesbnd Ge metal bonds and transformed the [S3Gesbnd GeS3] structure to GeS4 tetrahedrons. Consequently, the connectivity between tetrahedrons of the vitreous network was enhanced. This work suggests that La2S3 modified Ge-Gasbnd Lasbnd S glass is a promising material for infrared optical research.

  6. The effect of oxygen impurity on the electronic and optical properties of calcium, strontium and barium chalcogenide compounds

    International Nuclear Information System (INIS)

    Dadsetani, M.; Beiranvand, R.

    2010-01-01

    Electronic and optical properties of calcium, strontium and barium chalcogenide compounds in NaCl structure are studied using the band structure results obtained through the full potential linearized augmented palne wave method. Different linear relationships are observed between theoretical band gap and 1/a 2 (where a is lattice constant) for calcium, strontium and barium chalcogenide compounds with and without oxygen, respectively. An abnormal behavior of electronic and optical properties are found for compounds containing oxygen. These effects are ascribed to the special properties of Ca-O, Sr-O and Ba-O bonds, which are different from chemical bonds between Ca, Sr and Ba and other chalcogen atoms.

  7. Mean-coordination number dependence of the fragility in Ge-Se-In glass-forming liquids

    International Nuclear Information System (INIS)

    Saffarini, G.; Saiter, A.; Garda, M.R.; Saiter, J.M.

    2007-01-01

    Differential scanning calorimetry measurements have been performed on elemental Se as well as on Ge x Se 94- x In 6 (x=4, 8, and 11 at%) and on Ge y Se 88- y In 12 (y=5, 7, and 9 at%) chalcogenide glasses. From the cooling rate dependence of the fictive temperature, the apparent activation energies, Δh*, and the fragility indices, m, as defined in the strong-fragile glass-forming liquid concept, are determined. It is found that, in Ge-Se-In system, there is an evolution from strong (m=67) to fragile (m=116) glass-forming liquids. The dependence of 'm' on the mean-coordination number, Z, is also obtained. This dependence is rationalized by assuming that, in this glassy alloy system, there is a tendency for the formation of In 2 Se 3 clusters

  8. Binary and ternary photofission of thorium 232

    Energy Technology Data Exchange (ETDEWEB)

    Titterton, E W; Brinkley, T A

    1950-05-01

    Work by Titterton and Goward (1949) has shown that uranium undergoes photofission into three charged fragments. Experiments have been conducted to determine whether a similar process takes place in the photofission of thorium. Some difficulties were encountered in loading plates with /sup 232/Th atoms, but this was finally accomplished by means of a technique described in detail. Plates loaded by this method were irradiated with a continuous spectrum of ..gamma.. rays of maximum energy 24 MeV from the (Atomic Energy Research Establishment) Synchrotron. Three irradiations, of 100, 150, and 180 r, were made and the resulting plates showed a fission density of 2.5 x 10/sup 4//cc at the 150 r level. In an examination involving 2500 binary photofissions, 5 cases of ternary fission involving the emission of a long range light fragment, probably an ..cap alpha..-particle, were observed. These events are described. A number-range curve was determined for the photofission tracks and is compared with a similar curve for tracks formed by the slow neutron fission of /sup 235/U in a D/sub 1/ emulsion under conditions of similar emulsion sensitivity. It appears that the energy release in the photofission of /sup 232/Th is smaller than that in the slow neutron fission of /sup 235/U. The data indicate that 124 MeV is the mean kinetic energy released in the photofission of /sup 232/Th.

  9. Anisotropy in the ternary cold fission

    CERN Document Server

    Delion, D S; Greiner, W

    2003-01-01

    We describe the spontaneous ternary cold fission of sup 2 sup 5 sup 2 Cf, accompanied by sup 4 He, sup 1 sup 0 Be and sup 1 sup 4 C within a stationary scattering formalism. We show that the light cluster should be born in the neck region. It decays from the first resonant eigenstate in the Coulomb plus harmonic oscillator potential, centred in this region and eccentric with respect to the symmetry axis. This description gives a simple answer to the question why the averaged values in the energy spectra of emitted clusters are close to each other, in spite of different Coulomb barriers. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. Experimental angular distributions can be explained by the spherical shapes of emitted clusters, except for a deformed sup 1 sup 0 Be. We also predicted some dependences of half-lives for such tri-nuclear systems upon potential parameters.

  10. Iron based pnictide and chalcogenide superconductors studied by muon spin spectroscopy

    International Nuclear Information System (INIS)

    Shermadini, Zurab

    2014-01-01

    In the present thesis the superconducting properties of the Iron-based Ba 1-x Rb x Fe 2 As 2 arsenides, and A x Fe 2-y Se 2 (A=Cs,Rb,K) chalcogenides are investigated by means of Muon Spin Rotation Spectroscopy. The temperature and pressure dependence of the magnetic penetration depth is obtained form μSR experiments and analyzed to probe the superconducting gap-symmetries for each samples. The Ba 1-x Rb x Fe 2 As 2 system is described within the multi-gap s+s-wave scenario and results are discussed in the light of the suppression of inter-band processes upon hole doping. Due to the lowered upper critical field B c2 and reduced T c , a large section of B-T-p phase diagram is studied for the hole-overdoped x=1 case. By applying hydrostatic pressure, the RbFe 2 As 2 system exhibits a classical BCS superconducting characteristics. The A x Fe 2-y Se 2 chalcogenide represents a system containing magnetically ordered and superconducting phases simultaneously. In all investigated chalcogenide samples, about 90% of the total volume show the strong antiferromagnetic phase and 10% exhibit a paramagnetic behavior. Magnetization measurements reveal a 100% Meissner effect, while μSR clearly indicates that the paramagnetic phase is a perfect superconductor. Up to now, there is no clear evidence whether the antiferromagnetic phase is also superconducting. The microscopic coexistence and/or phase separation of superconductivity and magnetism is discussed. Moreover, a new hydrostatic double-wall pressure cell is developed and produced, satisfying the demands of μSR experiments. The designs and characteristics of the new pressure cell are reviewed in the present thesis.

  11. A feasibility study of unconventional planar ligand spacers in chalcogenide nanocrystals.

    Science.gov (United States)

    Lukose, Binit; Clancy, Paulette

    2016-05-18

    The solar cell efficiency of chalcogenide nanocrystals (quantum dots) has been limited in the past by the insulation between neighboring quantum dots caused by intervening, often long-chain, aliphatic ligands. We have conducted a computationally based feasibility study to investigate the use of ultra-thin, planar, charge-conducting ligands as an alternative to traditional long passive ligands. Not only might these radically unconventional ligands decrease the mean distance between adjacent quantum dots, but, since they are charge-conducting, they have the potential to actively enhance charge migration. Our ab initio studies compare the binding energies, electronic energy gaps, and absorption characteristics for both conventional and unconventional ligands, such as phthalocyanines, porphyrins and coronene. This comparison identified these unconventional ligands with the exception of titanyl phthalocyanine, that bind to themselves more strongly than to the surface of the quantum dot, which is likely to be less desirable for enhancing charge transport. The distribution of finite energy levels of the bound system is sensitive to the ligand's binding site and the levels correspond to delocalized states. We also observed a trap state localized on a single Pb atom when a sulfur-containing phenyldithiocarbamate (PTC) ligand is attached to a slightly off-stoichiometric dot in a manner that the sulfur of the ligand completes stoichiometry of the bound system. Hence, this is indicative of the source of trap state when thio-based ligands are bound to chalcogenide nanocrystals. We also predict that titanyl phthalocyanine in a mix with chalcogenide dots of diameter ∼1.5 Å can form a donor-acceptor system.

  12. Magnetic and electronic properties of Neptunium chalcogenides from GGA + U + SOC and DFT investigations

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Wilayat [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 306 14 Pilsen (Czech Republic); Goumri-Said, Souraya, E-mail: sosaid@alfaisal.edu [College of Science, Physics Department, Alfaisal University, Riyadh 11533 (Saudi Arabia)

    2017-06-15

    Highlights: • Electronic and magnetic properties of Neptunium chalcogenides were explored theoretically using DFT approach. • Spin orbit coupling and GGA + U approach described successfully the f–f coupling. • Np{sub 2}X{sub 5} ate metallic with high magnetic character due to the Neptunium. • Fermi surfaces of Np{sub 2}Te{sub 5} have shown a greater electrical conductivity compared to Np{sub 2}Se{sub 5} and Np{sub 2}S{sub 5}. - Abstract: First-principles calculations techniques were employed to explore the structural, electronic and magnetic properties of Neptunium chalcogenides (Np{sub 2}X{sub 5}, X = S, Se and Te). No experimental or theoretical studies of their physical properties have been previously reported in the literature. The presence of highly localized f states has requested the employment of the spin orbit coupling and GGA + U approach in order to describe correctly the f–f coupling. Np{sub 2}X{sub 5} was found metallic with high magnetic character due to the Neptunium presence. Fermi surfaces of Np{sub 2}Te{sub 5} have shown a greater electrical conductivity compared to Np{sub 2}Se{sub 5} and Np{sub 2}S{sub 5}. The magnetic moment was found to be between 13.24 and 13.92μ{sub B}, principally induced by Np f and d-orbitals as well as the spin-polarization of the chalcogenes (Te, Se, S) induced by Np. Neptunium chalcogenides have shown interesting magnetic properties and should be manipulated with precaution due to their radioactive properties.

  13. Spin glasses

    International Nuclear Information System (INIS)

    Mookerjee, Abhijit

    1976-01-01

    ''Spin glasses'', are entire class of magnetic alloys of moderate dilution, in which the magnetic atoms are far enough apart to be unlike the pure metal, but close enough so that the indirect exchange energy between them (mediated by the s-d interaction between local moments and conduction electrons) dominates all other energies. Characteristic critical phenomena displayed such as freezing of spin orientation at 'Tsub(c)' and spreading of magnetic ordering, are pointed out. Anomalous behaviour, associated with these critical phenomena, as reflected in : (i) Moessbauer spectroscopy giving hyperfine splitting at Tsub(c), (ii) maxima in susceptibility and remanent magnetism, (iii) thermopower maxima and change in slope, (iv) Characteristic cusp in susceptibility and its removal by very small magnetic fields, and (v) conductivity-resistivity measurements, are discussed. Theoretical developments aimed at explaining these phenomena, in particular, the ideas from percolation and localisation theories, and the approach based on the gellations of polymers, are discussed. Finally, a new approach based on renormalisation group in disordered systems is also briefly mentioned. (K.B.)

  14. The electronic structure of the antimony chalcogenide series: Prospects for optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Carey, John J.; Allen, Jeremy P. [School of Chemistry and CRANN, Trinity College Dublin, Dublin 2 (Ireland); Scanlon, David O. [University College London, Kathleen Lonsdale Materials Chemistry, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Watson, Graeme W., E-mail: watsong@tcd.ie [School of Chemistry and CRANN, Trinity College Dublin, Dublin 2 (Ireland)

    2014-05-01

    In this study, density functional theory is used to evaluate the electronic structure of the antimony chalcogenide series. Analysis of the electronic density of states and charge density shows that asymmetric density, or ‘lone pairs’, forms on the Sb{sup III} cations in the distorted oxide, sulphide and selenide materials. The asymmetric density progressively weakens down the series, due to the increase in energy of valence p states from O to Te, and is absent for Sb{sub 2}Te{sub 3}. The fundamental and optical band gaps were calculated and Sb{sub 2}O{sub 3}, Sb{sub 2}S{sub 3} and Sb{sub 2}Se{sub 3} have indirect band gaps, while Sb{sub 2}Te{sub 3} was calculated to have a direct band gap at Γ. The band gaps are also seen to reduce from Sb{sub 2}O{sub 3} to Sb{sub 2}Te{sub 3}. The optical band gap for Sb{sub 2}O{sub 3} makes it a candidate as a transparent conducting oxide, while Sb{sub 2}S{sub 3} and Sb{sub 2}Se{sub 3} have suitable band gaps for thin film solar cell absorbers. - Graphical abstract: A schematic illustrating the interaction between the Sb{sup III} cations and the chalcogenide anions and the change in their respective energy levels down the series. - Highlights: • The electronic structure of the antimony chalcogenide series is modelled using DFT. • Asymmetric density is present on distorted systems and absent on the symmetric telluride system. • Asymmetric density is formed from the mixing of Sb 5s and anion p states, where the anti-bonding combination is stabilised by the Sb 5p states. • The asymmetric density weakens down the series due to the increase in energy of chalcogenide p states. • The increase in energy of the anion p states reduces the fundamental and optical band gaps.

  15. CW all optical self switching in nonlinear chalcogenide nano plasmonic directional coupler

    Science.gov (United States)

    Motamed-Jahromi, Leila; Hatami, Mohsen

    2018-04-01

    In this paper we obtain the coupling coefficient of plasmonic directional coupler (PDC) made up of two parallel monolayer waveguides filled with high nonlinear chalcogenide material for TM mode in continues wave (CW) regime. In addition, we assume each waveguides acts as a perturbation to other waveguide. Four nonlinear-coupled equations are derived. Transfer distances are numerically calculated and used for deriving length of all optical switch. The length of designed switch is in the range of 10-1000 μm, and the switching power is in the range of 1-100 W/m. Obtained values are suitable for designing all optical elements in the integrated optical circuits.

  16. Theory of Two-Magnon Raman Scattering in Iron Pnictides and Chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C. C.

    2011-08-15

    Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.

  17. Functions of chalcogenide electrodes in solutions of complexing reagents and interfering ions

    International Nuclear Information System (INIS)

    Kiyanskij, V.V.

    1990-01-01

    The possibility to modify chalcogenide electrodes and their behaviour in solutions of complexing reagents for the development of new methods of potentiometric titration has been studied. It is shown that complexing reagents (EDTA, cupferron, 8-hydroxyquinoline, sodium dithiocarbaminate) and Cu(2), Hg(2) produce a strong effect on the functions of Ag, Cu, Cd, Pb - selective electrodes, which is used for titration of potential-determining and non-potential-determining ions ions (Sr 2+ , La 3+ etc.) and also for modification of sulfide-selecting electrode. A method of potentiometric titration of sulfates and chlorides with modified Cd- and Ag-selective electrodes is suggested

  18. Aqueous corrosion of borosilicate glasses. Nature and properties of alteration layers

    International Nuclear Information System (INIS)

    Trotignon, Laurent

    1990-01-01

    This research thesis addresses physical and chemical processes which occur during aqueous corrosion of silicates, and the study of the properties of their interfaces with solutions, and thus issues related to the fate of high activity nuclear wastes which are embedded in a vitreous matrix as the potential release of radionuclides towards the environment then depends on the glass parcel behaviour submitted to chemical attacks which could alter it, notably by aqueous corrosion. The objective is then to model the dissolution of nuclear glass over long periods of time, and to predict the behaviour of radionuclides. The author compared the corrosion and alteration layers of gradually more complex borosilicate glasses, from a ternary sodium borosilicate glass to a simulated nuclear glass (the French reference glass R7T7). Complexity is increased by adding oxides. After some theoretical recalls on the structure and corrosion of borosilicate glasses, the author presents the studied materials, the corrosion experiments, and analytical techniques used to study alteration layers. The mechanism of formation of altered layers is studied based on corrosion experiments performed at 90 C on the whole set of glasses. Alteration layers formed on corroded glasses are studied and compared by using various techniques: electronic microscopy, high energy ion beams, spectroscopy, infrared, photo-electron spectroscopy. Implications for underground storage of nuclear glasses are discussed

  19. Trialkylphosphine-stabilized copper(I) gallium(III) phenylchalcogenolate complexes: crystal structures and generation of ternary semiconductors by thermolysis.

    Science.gov (United States)

    Kluge, Oliver; Krautscheid, Harald

    2012-06-18

    A series of organometallic trialkylphosphine-stabilized copper gallium phenylchalcogenolate complexes [(R(3)P)(m)Cu(n)Me(2-x)Ga(EPh)(n+x+1)] (R = Me, Et, (i)Pr, (t)Bu; E = S, Se, Te; x = 0, 1) has been prepared and structurally characterized by X-ray diffraction. From their molecular structures three groups of compounds can be distinguished: ionic compounds, ring systems, and cage structures. All these complexes contain one gallium atom bound to one or two methyl groups, whereas the number of copper atoms, and therefore the nuclearity of the complexes, is variable and depends mainly on size and amount of phosphine ligand used in synthesis. The Ga-E bonds are relatively rigid, in contrast to flexible Cu-E bonds. The lengths of the latter are controlled by the coordination number and steric influences. The Ga-E bond lengths depend systematically on the number of methyl groups bound to the gallium atom, with somewhat shorter bonds in monomethyl compounds compared to dimethyl compounds. Quantum chemical computations reproduce this trend and show furthermore that the rotation of one phenyl group around the Ga-E bond is a low energy process with two distinct minima, corresponding to two different conformations found experimentally. Mixtures of different types of chalcogen atoms on molecular scale are possible, and then ligand exchange reactions in solution lead to mixed site occupation. In thermogravimetric studies the complexes were converted into the ternary semiconductors CuGaE(2). The thermolysis reaction is completed at temperatures between 250 and 400 °C, typically with lower temperatures for the heavier chalcogens. Because of significant release of Me(3)Ga during the thermolysis process, and especially in case of copper excess in the precursor complexes, binary copper chalcogenides are obtained as additional thermolysis products. Quaternary semiconductors can be obtained from mixed chalcogen precursors.

  20. From glass to crystal - Nucleation, growth and de-mixing, from research to applications

    International Nuclear Information System (INIS)

    Neuville, Daniel R.; Cormier, Laurent; Caurant, Daniel; Montagne, Lionel; Charpentier, Thibault; Chevalier, Jerome; Comte, Monique; Dargaud, Olivier; Ligny, Dominique de; Deniard, Philippe; Dussardier, Bernard; Dussauze, Marc; Fargin, Evelyne; Gremillard, Laurent; Gredin, Patrick; Jousseaume, Cecile; Lafait, Jacques; Lancry, Mathieu; Lefebvre, Leila; Levelut, Claire; Magallanes-Pedromo, Marlin; Massiot, Dominique; Mear, Francois O.; Meille, Sylvain; Meng, Nicolas; Mortier, Michel; Papin, Sophie; Papon, Gautier; Pastouret, Main; Petit, Yannick; Poumellec, Bertrand; Pradel, Annie; Reillon, Vincent; Rodriguez, Vincent; Rogez, Jacques; Roussel, Pascal; Royon, Arnaud; Schuller, Sophie; Tricot, Gregory; Vigouroux, Helene

    2013-01-01

    optics and glass-ceramics, the laser-oriented micro- and nano-crystallisation to induce non linear optical properties, the case of oxi-fluorinated glass-ceramics, the nucleation, crystallisation and phase separation in chalcogenide glasses, the use of glass-ceramics for waste confinement, and crystalline enamels

  1. Determination for Enterobacter cloacae based on a europium ternary complex labeled DNA probe

    Science.gov (United States)

    He, Hui; Niu, Cheng-Gang; Zeng, Guang-Ming; Ruan, Min; Qin, Pin-Zhu; Liu, Jing

    2011-11-01

    The fast detection and accurate diagnosis of the prevalent pathogenic bacteria is very important for the treatment of disease. Nowadays, fluorescence techniques are important tools for diagnosis. A two-probe tandem DNA hybridization assay was designed for the detection of Enterobacter cloacae based on time-resolved fluorescence. In this work, the authors synthesized a novel europium ternary complex Eu(TTA) 3(5-NH 2-phen) with intense luminescence, high fluorescence quantum yield and long lifetime before. We developed a method based on this europium complex for the specific detection of original extracted DNA from E. cloacae. In the hybridization assay format, the reporter probe was labeled with Eu(TTA) 3(5-NH 2-phen) on the 5'-terminus, and the capture probe capture probe was covalent immobilized on the surface of the glutaraldehyde treated glass slides. The original extracted DNA of samples was directly used without any DNA purification and amplification. The detection was conducted by monitoring the fluorescence intensity from the glass surface after DNA hybridization. The detection limit of the DNA was 5 × 10 -10 mol L -1. The results of the present work proved that this new approach was easy to operate with high sensitivity and specificity. It could be conducted as a powerful tool for the detection of pathogen microorganisms in the environment.

  2. Processing and characterization of new oxy-sulfo-telluride glasses in the Ge-Sb-Te-S-O system

    International Nuclear Information System (INIS)

    Smith, C.; Jackson, J.; Petit, L.; Rivero-Baleine, C.; Richardson, K.

    2010-01-01

    New oxy-sulfo-telluride glasses have been prepared in the Ge-Sb-Te-S-O system employing a two-step melting process which involves the processing of a chalcogenide glass (ChG) and subsequent melting with TeO 2 or Sb 2 O 3 . The progressive incorporation of O at the expense of S was found to increase the density and the glass transition temperature and to decrease the molar volume of the investigated oxy-sulfo-telluride glasses. We also observed a shift of the vis-NIR cut-off wavelength to longer wavelength probably due to changes in Sb coordination within the glass matrix and overall matrix polarizability. Using Raman spectroscopy, correlations have been shown between the formation of Ge- and Sb-based oxysulfide structural units and the S/O ratio. Lastly, two glasses with similar composition (Ge 20 Sb 6 S 64 Te 3 O 7 ) processed by melting the Ge 23 Sb 7 S 70 glass with TeO 2 or the Ge 23 Sb 2 S 72 Te 4 glass with Sb 2 O 3 were found to have slightly different physical, thermal, optical and structural properties. These changes are thought to result mainly from the higher moisture content and sensitivity of the TeO 2 starting materials as compared to that of the Sb 2 O 3 . - Graphical abstract: In this paper, we discuss our most recent findings on the processing and characterization of new ChG glasses prepared with small levels of Te, melted either with TeO 2 or Sb 2 O 3 powders. We explain how these new oxy-sulfo-telluride glasses are prepared and we correlate the physical, thermal and optical properties of the investigated glasses to the structure changes induced by the addition of oxygen in the Ge-Sb-S-Te glass network.

  3. Time-resolved terahertz spectroscopy of charge carrier dynamics in the chalcogenide glass As30Se30Te40 [Invited

    DEFF Research Database (Denmark)

    Wang, Tianwu; Romanova, Elena A.; Abdel-Moneim, Nabil

    2016-01-01

    absorption bands at 2-3 and 5-8 THz were observed. TRTS reveals an ultrafast relaxation process of the photoinduced carrier response, well described by a rate equation model with a finite concentration of mid-bandgap trap states for self-trapped excitons. The photoinduced conductivity can be well described...

  4. Constitution of the ternary system Cr–Ni–Ti

    International Nuclear Information System (INIS)

    Krendelsberger, Natalja; Weitzer, Franz; Du, Yong; Schuster, Julius C.

    2013-01-01

    Highlights: •Reaction scheme and liquidus surface for Cr-Ni-Ti are given. •In the ternary the C14-type Laves phase coexists with the liquid phase. •Two ternary eutectics are identified. -- Abstract: The nature of solid–liquid phase equilibria in the ternary system Cr–Ni–Ti was investigated using electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and differential thermal analysis. Literature data on solid state phase equilibria are confirmed. The Cr 2 Ti Laves phase modifications coexisting with Ni–Ti phases are clarified to be hexagonal C14-type and cubic C15-type. The C14-type Laves phase γCr 2 Ti is found to coexist with the liquid phase. It forms in the pseudobinary peritectic reaction p max1 from L + β(Cr,Ti) at 1389 °C. On further cooling γCr 2 Ti + NiTi solidify at 1202 °C in the pseudobinary eutectic e max2 . In the Cr-rich part of the system ternary eutectics occur at 1216 °C (E 1 : L = Ni 3 Ti + (Ni) + β(Cr,Ti)) and 1100 °C (E 2 : L = NiTi + Ni 3 Ti + β(Cr,Ti)), respectively. No ternary eutectic is found in the Ti-rich part. Rather the eutectic trough ends in the binary eutectic L = NiTi 2 + β(Ti)

  5. Ternary fission of spontaneously fissile uranium isomers excited by neutrons

    International Nuclear Information System (INIS)

    Makarenko, V.E.; Molchanov, Y.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1989-01-01

    Spontaneously fissile isomers (SFI) of uranium were excited in the reactions 236,238 U(n,n') at an average neutron energy 4.5 MeV. A pulsed electrostatic accelerator and time analysis of the fission events were used. Fission fragments were detected by the scintillation method, and long-range particles from fission were detected by an ionization method. The relative probability of fission of nuclei through a spontaneously fissile isomeric state was measured: (1.30±0.01)·10 -4 ( 236 U) and (1.48±0.02)·10 -4 ( 238 U). Half-lives of the isomers were determined: 121±2 nsec (the SFI 236 U) and 267±13 nsec (the SFI 238 U). In study of the ternary fission of spontaneously fissile isotopes of uranium it was established that the probability of the process amounts to one ternary fission per 163±44 binary fissions of the SFI 236 U and one ternary fission per 49±14 binary fissions of the SFI 238 U. The substantial increase of the probability of ternary fission of SFI of uranium in comparison with the case of ternary fission of nuclei which are not in an isomeric state may be related to a special nucleon configuration of the fissile isomers of uranium

  6. Liquid -to-glass transition in bulk glass-forming Cu55-xZr45Agx alloys using molecular dynamic simulations

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available We report results from molecular dynamics (MD studies concerning the microscopic structure of the ternary, bulk metallic glass-forming Cu55-x Zr45Agx (x=0,10,20 alloys using tight-binding potentials. Understanding of the nature of Glass Forming Ability (GFA of studied alloys, GFA parameters, glass transition temperature (T-g, melting temperature (T-m, reduced glass transition temperature (T-g/T-m, the supercooled liquid region and other parameters were simulated and compared with experiments. The computed pair distribution functions reproduce well experimental x-ray data of Inoue and co-workers. Structure analysis of the Cu-Zr-Ag alloy based on MD simulation will be also presented

  7. Ternary rare earth sulfide CaCe2S4: Synthesis and characterization of stability, structure, and photoelectrochemical properties in aqueous media

    Science.gov (United States)

    Sotelo, Paola; Orr, Melissa; Galante, Miguel Tayar; Hossain, Mohammad Kabir; Firouzan, Farinaz; Vali, Abbas; Li, Jun; Subramanian, Mas; Longo, Claudia; Rajeshwar, Krishnan; Macaluso, Robin T.

    2018-06-01

    A red-orange rare earth ternary chalcogenide, CaCe2S4, was prepared in powder form by solid-state synthesis. The structural details of this compound were determined by powder X-ray diffraction. The optical band gap of CaCe2S4 was determined by diffuse reflectance spectroscopy (DRS) to be 2.1 eV, consistent with the observed red-orange color. Quantitative colorimetry measurements also support the observed color and band gap of CaCe2S4. Both direct and indirect optical transitions were gleaned from Tauc analyses of the DRS data. Photoelectrochemistry experiments on CaCe2S4 films showed n-type semiconductor behavior. Analyses of these data via the Butler-Gärtner model afforded a flat-band potential of - 0.33 V (vs. Ag/AgCl/KCl 4 M) in pH 9 aqueous sulfite electrolyte. The potential and limitations of this material for solar water splitting and photocatalytic environmental remediation (e.g., dye photodegradation) are finally presented against the backdrop of its photoelectrochemical stability and surface hole transfer kinetics in aqueous electrolytes.

  8. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    Science.gov (United States)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  9. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting.

    Science.gov (United States)

    Li, Kexue; Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Shen, D Z

    2016-05-11

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.

  10. Silicon-based thin films as bottom electrodes in chalcogenide nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung-Yun [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)], E-mail: seungyun@etri.re.kr; Yoon, Sung-Min; Choi, Kyu-Jeong; Lee, Nam-Yeal; Park, Young-Sam; Ryu, Sang-Ouk; Yu, Byoung-Gon; Kim, Sang-Hoon; Lee, Sang-Heung [IT Convergence and Components Laboratory, Electronics and Telecommunications Research Institute (ETRI), Yuseong-gu, Daejeon 305-350 (Korea, Republic of)

    2007-10-31

    The effect of the electrical resistivity of a silicon-germanium (SiGe) thin film on the phase transition in a GeSbTe (GST) chalcogenide alloy and the manufacturing aspect of the fabrication process of a chalcogenide memory device employing the SiGe film as bottom electrodes were investigated. While p-type SiGe bottom electrodes were formed using in situ doping techniques, n-type ones could be made in a different manner where phosphorus atoms diffused from highly doped silicon underlayers to undoped SiGe films. The p-n heterojunction did not form between the p-type GST and n-type SiGe layers, and the semiconduction type of the SiGe alloys did not influence the memory device switching. It was confirmed that an optimum resistivity value existed for memory operation in spite of proportionality of Joule heating to electrical resistivity. The very high resistivity of the SiGe film had no effect on the reduction of reset current, which might result from the resistance decrease of the SiGe alloy at high temperatures.

  11. Hydrogen treatment as a detergent of electronic trap states in lead chalcogenide nanoparticles

    Science.gov (United States)

    Voros, Marton; Brawand, Nicholas; Galli, Giulia

    Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations, irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial for charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Our findings suggest that post-synthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films. Work supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (NB) and U.S. DOE under Contract No. DE-AC02-06CH11357 (MV).

  12. Temperature and frequency response of conductivity in Ag2S doped chalcogenide glassy semiconductor

    Science.gov (United States)

    Ojha, Swarupa; Das, Anindya Sundar; Roy, Madhab; Bhattacharya, Sanjib

    2018-06-01

    The electric conductivity of chalcogenide glassy semiconductor xAg2S-(1-x)(0.5S-0.5Te) has been presented here as a function of temperature and frequency. Formation of different nanocrystallites has been confirmed from X-ray diffraction study. It is also noteworthy that average size of nanocrystallites decreases with the increase of dislocation density. Dc conductivity data have been interpreted using Mott's model and Greaves's model in low and high temperature regions respectively. Ac conductivity above the room temperature has been analyzed using Meyer-Neldel (MN) conduction rule. It is interestingly noted that Correlated Barrier Hopping (CBH) model is the most appropriate conduction mechanism for x = 0.35, where pairs of charge carrier are considered to hop over the potential barrier between the sites via thermal activation. To interpret experimental data for x = 0.45, modified non-overlapping small polaron tunnelling (NSPT) model is supposed to be appropriate model due to tunnelling through grain boundary. The conductivity spectra at various temperatures have been analyzed using Almond-West Formalism (power law model). Scaling of conductivity spectra reveals that electrical relaxation process of charge carriers (polaron) is temperature independent but depends upon the composition of the present chalcogenide glassy system.

  13. Structural and electronic properties of high pressure phases of lead chalcogenides

    Science.gov (United States)

    Petersen, John; Scolfaro, Luisa; Myers, Thomas

    2012-10-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity. Variation in synthesis conditions gives rise to a need for analysis of structural and thermoelectric properties of these materials at different pressures. In addition to the NaCl structure at ambient conditions, lead chalcogenides have a dynamic orthorhombic (Pnma) intermediate phase and a higher pressure yet stable CsCl phase. By altering the lattice constant, we simulate the application of external pressure; this has notable effects on ground state total energy, band gap, and structural phase. Using the General Gradient Approximation (GGA) in Density Functional Theory (DFT), we calculate the phase transition pressures by finding the differences in enthalpy from total energy calculations. For each phase, elastic constants, bulk modulus, shear modulus, Young's modulus, and hardness are calculated, using two different approaches. In addition to structural properties, we analyze the band structure and density of states at varying pressures, paying special note to thermoelectric implications.

  14. Pressure dependence of crystal field splitting in Pr pnictides and chalcogenides

    International Nuclear Information System (INIS)

    Schirber, J.E.; Weaver, H.T.; Ginley, D.S.

    1978-01-01

    We have measured the pressure dependence of the Pr nuclear magnetic resonance shift in PrN, PrP, PrSb, PrAs, PrS and PrSe. The shifts in all the pnictides increase while in the chalcogenides the shifts decrease with pressure. The rare earth frequency shift is inversely proportional to the crystal field splitting in the context of the point charge model (PCM) so a decrease would be expected for all of these materials at a rate of 5/3 the volume compressibility. Our values for the pnictides tend to be considerably larger than the PCM value as well as the wrong sign. The chalcogenide values are much nearer in magnitude and are of the right sign for the PCM. Contrary to the report of Guertin et al. we see no anomaly in the pressure dependence of the susceptibility of PrS. The fact that PrN which is reported to be non-metallic also shows the wrong sign for the PCM presents difficulties for various conduction electron explanations for this unexpected behavior of the pnictides

  15. Thermal, electronic and ductile properties of lead-chalcogenides under pressure.

    Science.gov (United States)

    Gupta, Dinesh C; Bhat, Idris Hamid

    2013-09-01

    Fully relativistic pseudo-potential ab-initio calculations have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. PbS, PbSe, PbTe and PbPo undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa, respectively. The elastic properties have also been calculated. The calculations successfully predicted the location of the band gap at L-point of Brillouin zone and the band gap for each material at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalize under pressure. The electronic structures of these materials have been computed in parent as well as in high pressure B2 phase.

  16. Electrical properties and figures of merit for new chalcogenide-based thermoelectric materials

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, J L; Hogan, T P; Brazis, P W; Kannewurf, C R; Chung, D Y; Kanatzidis, M G

    1997-07-01

    New Bi-based chalcogenide compounds have been prepared using the polychalcogenide flux technique for crystal growth. These materials exhibit characteristics of good thermoelectric materials. Single crystals of the compound CsBi{sub 4}Te{sub 6} have shown conductivity as high as 2440 S/cm with a p-type thermoelectric power of {approx}+110 {micro}V/K at room temperature. A second compound, {beta}-K{sub 2}Bi{sub 8}Se{sub 13} shows lower conductivity {approx}240 S/cm, but a larger n-type thermopower {approx}{minus}200 {micro}V/K. Thermal transport measurements have been performed on hot-pressed pellets of these materials and the results show comparable or lower thermal conductivities than Bi{sub 2}Te{sub 3}. This improvement may reflect the reduced lattice symmetry of the new chalcogenide thermoelectrics. The thermoelectric figure of merit for CsBi{sub 4}Te{sub 6} reaches ZT {approx} 0.32 at 260 K and for {beta}-K{sub 2}Bi{sub 8}Se{sub 13} ZT {approx} 0.32 at room temperature, indicating that these compounds are viable candidates for thermoelectric refrigeration applications.

  17. Solution processing of chalcogenide materials using thiol-amine "alkahest" solvent systems.

    Science.gov (United States)

    McCarthy, Carrie L; Brutchey, Richard L

    2017-05-02

    Macroelectronics is a major focus in electronics research and is driven by large area applications such as flat panel displays and thin film solar cells. Innovations for these technologies, such as flexible substrates and mass production, will require efficient and affordable semiconductor processing. Low-temperature solution processing offers mild deposition methods, inexpensive processing equipment, and the possibility of high-throughput processing. In recent years, the discovery that binary "alkahest" mixtures of ethylenediamine and short chain thiols possess the ability to dissolve bulk inorganic materials to yield molecular inks has lead to the wide study of such systems and the straightforward recovery of phase pure crystalline chalcogenide thin films upon solution processing and mild annealing of the inks. In this review, we recount the work that has been done toward elucidating the scope of this method for the solution processing of inorganic materials for use in applications such as photovoltaic devices, electrocatalysts, photodetectors, thermoelectrics, and nanocrystal ligand exchange. We also take stock of the wide range of bulk materials that can be used as soluble precursors, and discuss the work that has been done to reveal the nature of the dissolved species. This method has provided a vast toolbox of over 65 bulk precursors, which can be utilized to develop new routes to functional chalcogenide materials. Future studies in this area should work toward a better understanding of the mechanisms involved in the dissolution and recovery of bulk materials, as well as broadening the scope of soluble precursors and recoverable functional materials for innovative applications.

  18. Efficiency simulations of thin film chalcogenide photovoltaic cells for different indoor lighting conditions

    International Nuclear Information System (INIS)

    Minnaert, B.; Veelaert, P.

    2011-01-01

    Photovoltaic (PV) energy is an efficient natural energy source for outdoor applications. However, for indoor applications, the efficiency of PV cells is much lower. Typically, the light intensity under artificial lighting conditions is less than 10 W/m 2 as compared to 100-1000 W/m 2 under outdoor conditions. Moreover, the spectrum is different from the outdoor solar spectrum. In this context, the question arises whether thin film chalcogenide photovoltaic cells are suitable for indoor use. This paper contributes to answering that question by comparing the power output of different thin film chalcogenide solar cells with the classical crystalline silicon cell as reference. The comparisons are done by efficiency simulation based on the quantum efficiencies of the solar cells and the light spectra of typical artificial light sources i.e. an LED lamp, a 'warm' and a 'cool' fluorescent tube and a common incandescent and halogen lamp, which are compared to the outdoor AM 1.5 spectrum as reference.

  19. Achievements in the field of thermophysics of pniktides and chalcogenides of transition elements

    International Nuclear Information System (INIS)

    Westrum, E.F.

    1979-01-01

    Thermophysical aspects of thermodynamics of chalcogenides of transition metals are analyzed briefly with the aim of development of concepts on connection of these compounds entropy with their structure, expressed by Grenvold and Westrum in 1962. In a more detail way discussed are the achievement in the field of low-temperature thermophysics of pniktides of transition metals permitting to consider the similarity and the differences in properties of the two compound classes mentioned above. The characteristics of chalcogenides and pniktides, obtained by the method of low-temperature calorimetry and by the method of high-temperature adiabatic calorimetry as well, are considered. A more detail estimate is made of the heat capacity component caused by expansion (that is of the most importance while considering the high-temperature data on heat capacity). The effect of energy levels of ions and atoms on heat capacity and a number of other problems are also considered. The approach to solution of these problems is illustrated on experimental data for a number of compounds, such as marcasite (FeS 2 ), low-temperature digenite (Csub(1.80)S), CoFe 2 , arsenides and antimonides of a number of metals (FeSb 2 , CrSb 2 , CrAs 2 , U 2 As 4 , U 3 Sb 4 , USb 2 , UAs 2 )

  20. Hydrazine-hydrothermal method to synthesize three-dimensional chalcogenide framework for photocatalytic hydrogen generation

    International Nuclear Information System (INIS)

    Liu Yi; Kanhere, Pushkar D.; Wong, Chui Ling; Tian Yuefeng; Feng Yuhua; Boey, Freddy; Wu, Tom; Chen Hongyu; White, Tim J.; Chen Zhong; Zhang Qichun

    2010-01-01

    A novel chalcogenide, [Mn 2 Sb 2 S 5 (N 2 H 4 ) 3 ] (1), has been synthesized by the hydrazine-hydrothermal method. X-ray crystallography study reveals that the new compound 1 crystallizes in space group P1-bar (no. 2) of the triclinic system. The structure features an open neutral three-dimensional framework, where two-dimensional mesh-like inorganic layers are bridged by intra- and inter-layer hydrazine ligands. Both two Mn1 and Mn2 sites adopt distorted octahedral coordination. While two Sb1 and Sb2 sites exhibit two different coordination geometries, the Sb1 site is coordinated with three S atoms to generate a SbS 3 trigonal-pyramidal geometry, and the Sb2 site adopts a SbS 4 trigonal bipyramidal coordination geometry. It has an optical band gap of about ∼2.09 eV, which was deduced from the diffuse reflectance spectrum, and displays photocatalytic behaviors under visible light irradiation. Magnetic susceptibility measurements show compound 1 obeys the Curie-Weiss law in the range of 50-300 K. -- Graphical abstract: A novel chalcogenide, [Mn 2 Sb 2 S 5 (N 2 H 4 ) 3 ] (1), synthesized by hydrazine-hydrothermal method, has a band gap of about ∼2.09 eV and displays photocatalytic behaviors under visible light irradiation. Display Omitted

  1. Towards efficient solar-to-hydrogen conversion: Fundamentals and recent progress in copper-based chalcogenide photocathodes

    Directory of Open Access Journals (Sweden)

    Chen Yubin

    2016-09-01

    Full Text Available Photoelectrochemical (PEC water splitting for hydrogen generation has been considered as a promising route to convert and store solar energy into chemical fuels. In terms of its large-scale application, seeking semiconductor photoelectrodes with high efficiency and good stability should be essential. Although an enormous number of materials have been explored for solar water splitting in the last several decades, challenges still remain for the practical application. P-type copper-based chalcogenides, such as Cu(In, GaSe2 and Cu2ZnSnS4, have shown impressive performance in photovoltaics due to narrow bandgaps, high absorption coefficients, and good carrier transport properties. The obtained high efficiencies in photovoltaics have promoted the utilization of these materials into the field of PEC water splitting. A comprehensive review on copper-based chalcogenides for solar-to-hydrogen conversion would help advance the research in this expanding area. This review will cover the physicochemical properties of copper-based chalco-genides, developments of various photocathodes, strategies to enhance the PEC activity and stability, introductions of tandem PEC cells, and finally, prospects on their potential for the practical solar-to-hydrogen conversion. We believe this review article can provide some insights of fundamentals and applications of copper-based chalco-genide thin films for PEC water splitting.

  2. Ternary systems Sr-{Ni,Cu}-Si: Phase equilibria and crystal structure of ternary phases

    International Nuclear Information System (INIS)

    Nasir, Navida; Melnychenko-Koblyuk, Nataliya; Grytsiv, Andriy; Rogl, Peter; Giester, Gerald; Wosik, Jaroslaw; Nauer, Gerhard E.

    2010-01-01

    Phase relations were established in the Sr-poor part of the ternary systems Sr-Ni-Si (900 deg. C) and Sr-Cu-Si (800 deg. C) by light optical microscopy, electron probe microanalysis and X-ray diffraction on as cast and annealed alloys. Two new ternary compounds SrNiSi 3 (BaNiSn 3 -type) and SrNi 9-x Si 4+x (own-type) were found in the Sr-Ni-Si system along with previously reported Sr(Ni x Si 1-x ) 2 (AlB 2 -type). The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type. At higher Si-content X-ray Rietveld refinements reveal the formation of a vacant site (□) corresponding to a formula SrNi 5.5 Si 6.5 □ 1.0 . Phase equilibria in the Sr-Cu-Si system are characterized by the compounds SrCu 2-x Si 2+x (ThCr 2 Si 2 -type), Sr(Cu x Si 1-x ) 2 (AlB 2 -type), SrCu 9-x Si 4+x (0≤x≤1.0; CeNi 8.5 Si 4.5 -type) and SrCu 13-x Si x (4≤x≤1.8; NaZn 13 -type). The latter two structure types appear within a continuous solid solution. Neither a type-I nor a type-IX clathrate compound was encountered in the Sr-{Cu,Ni}-Si systems. Structural details are furthermore given for about 14 new ternary compounds from related alloy systems with Ba. - Graphical abstract: The crystal structure of SrNi 9-x Si 4+x (own-type, x=2.7, a=0.78998(3), c=1.1337(2) nm; space group P4/nbm) was determined from X-ray single crystal counter to be a low symmetry derivative of the cubic, parent NaZn 13 -type and is related to CeNi 8.5 Si 4.5 -type.

  3. Structural-relaxation phenomena in As–S glasses as probed by combined PAL/DBAR technique

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O., E-mail: shpotyuk@novas.lviv.ua [Institute of Materials of Scientific Research Company “Carat”, 202 Stryjska Str., Lviv, 79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15 al. Armii Krajowej, Czestochowa, 42200 (Poland); Ingram, A. [Faculty of Physics of Opole Technical University, 75 Ozimska Str., Opole, 45370 (Poland); Szatanik, R. [Institute of Physics of Opole University, 48 Oleska Str., Opole, 45052 (Poland); Shpotyuk, M. [Institute of Materials of Scientific Research Company “Carat”, 202 Stryjska Str., Lviv, 79031 (Ukraine); Lviv Polytechnic National University, 12 Bandery Str., Lviv, 79013 (Ukraine); Golovchak, R. [Physics and Astronomy Department, Austin Peay State University, 601 College Str., Clarksville, TN, 37044 (United States)

    2015-04-01

    Experimental techniques exploring phenomena of positron–electron interaction, namely the positron annihilation lifetime spectroscopy and Doppler broadening of annihilation radiation, are shown to be very informative tools to study radiation- and thermally-induced phenomena in chalcogenide glasses of binary As–S system. Time-dependent processes of free-volume voids agglomeration (expansion), fragmentation (refining) and disappearing (contraction) are identified as main stages of physical aging in S-rich glasses, while a competitive channel of coordination topological defects formation associated with void charging becomes significant in a vicinity of near-stoichiometric glass compositions under γ-irradiation. The data of combined positron lifetime and Doppler broadening of annihilation radiation measurements are correlated with radiation-induced shift of fundamental optical absorption edge of the studied glasses. The meaningful model for γ-induced and relaxation-driven evolution in free-volume void structure of As–S glasses giving a unified insight on their structural-chemical nature is proposed. - Highlights: • Combined optical, PAL and DBAR probes to study structural relaxation in As–S glasses. • Void agglomeration, fragmentation and disappearing are main stages of physical aging. • Radiation-induced coordination defects are important in near-stoichiometric As–S. • Proposed model describes free-volume evolution in the void structure of As–S glasses.

  4. Structural-relaxation phenomena in As–S glasses as probed by combined PAL/DBAR technique

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Ingram, A.; Szatanik, R.; Shpotyuk, M.; Golovchak, R.

    2015-01-01

    Experimental techniques exploring phenomena of positron–electron interaction, namely the positron annihilation lifetime spectroscopy and Doppler broadening of annihilation radiation, are shown to be very informative tools to study radiation- and thermally-induced phenomena in chalcogenide glasses of binary As–S system. Time-dependent processes of free-volume voids agglomeration (expansion), fragmentation (refining) and disappearing (contraction) are identified as main stages of physical aging in S-rich glasses, while a competitive channel of coordination topological defects formation associated with void charging becomes significant in a vicinity of near-stoichiometric glass compositions under γ-irradiation. The data of combined positron lifetime and Doppler broadening of annihilation radiation measurements are correlated with radiation-induced shift of fundamental optical absorption edge of the studied glasses. The meaningful model for γ-induced and relaxation-driven evolution in free-volume void structure of As–S glasses giving a unified insight on their structural-chemical nature is proposed. - Highlights: • Combined optical, PAL and DBAR probes to study structural relaxation in As–S glasses. • Void agglomeration, fragmentation and disappearing are main stages of physical aging. • Radiation-induced coordination defects are important in near-stoichiometric As–S. • Proposed model describes free-volume evolution in the void structure of As–S glasses

  5. Preparation and investigation of GaxGe25As15Se60-x (x = 1 ÷ 5) glasses

    Science.gov (United States)

    Shiryaev, V. S.; Karaksina, E. V.; Velmuzhov, A. P.; Sukhanov, M. V.; Kotereva, T. V.; Plekhovich, A. D.; Churbanov, M. F.; Filatov, A. I.

    2017-05-01

    Chalcogenide glasses of GaxGe25As15Se60-x (x = 0; 1; 2; 3; 4; 5) compositions are prepared; their transmission range, optical band gap energy, thermal properties and stability against crystallization are studied. It is shown that these glasses have a high transparency in the mid-IR region (from 0.8 to 15 μm), a high glass transition temperature (≥320 °C) and a low tendency to crystallize. The optical band gap energy of GaxGe25As15Se60-x (x = 0; 1; 2; 3; 4; 5) glasses decreases from 1.68 to 1.43 eV as the gallium content increases and the selenium decreases. Their glass network, according to IR spectroscopy data, consists of Ge(Se1/2)4 tetrahedrons and AsSe3/2 pyramids. The Ga2Ge25As15Se58 and Ga3Ge25As15Se57 glasses have highest stability against crystallization. The content of hydrogen and oxygen impurities in the purest glass samples, fabricated using a combination of chemical distillation purification method and vapor transport reaction technique, does not exceed 0.06 ppm (wt) and 0.5 ppm (wt), respectively.

  6. Model for competitive binary and ternary ion-molecule reactions

    International Nuclear Information System (INIS)

    Herbst, E.

    1985-01-01

    A mechanism by which competitive binary and ternary ion-molecule reactions can occur is proposed. Calculations are undertaken for the specific system CH3(+) + NH3 + He which has been studied in the laboratory by Smith and Adams (1978), and the potential surface of which has been studied theoretically by Nobes and Radom (1983). It is shown that a potential-energy barrier in the exit channel prevents the rapid dissociation of collision complexes with large amounts of angular momentum and thereby allows collisional stabilization of the complexes. The calculated ternary-reaction rate coefficient is in good agreement with the experimental value, but a plot of the effective two-body rate coefficient of the ternary channel vs helium density does not quite show the observed saturation. 21 references

  7. Collective and tracer diffusion kinetics in the ternary random alloy

    International Nuclear Information System (INIS)

    Belova, I.V.; Murch, G.E.; Allnatt, A.R.

    2002-01-01

    In this study, collective and tracer diffusion kinetics is addressed for the ternary random alloy. A formal solution from the self-consistent theory of Moleko et al (Moleko L K, Allnatt A R and Allnatt E L 1989 Phil. Mag. A 59 141) is derived for collective diffusion and compared with the corresponding solution for the binary random alloy. Tracer diffusion in the ternary alloy is treated from the perspective of a special case of the quaternary random alloy. Results from Monte Carlo calculations for tracer and collective correlation factors (for the bcc ternary random alloy) are found to be in excellent agreement with this self-consistent theory but in only semi-quantitative agreement with the earlier theory of Manning (Manning J R 1971 Phys. Rev. B 4 1111). (author)

  8. Constitutional studies of the molybdenum-ruthenium-palladium ternary system

    International Nuclear Information System (INIS)

    Cornish, L.A.; Pratt, J.N.

    1997-01-01

    An experimental and computational study has been made of phase equilibria in the Mo-Ru-Pd ternary system. The constitution of annealed binary and ternary alloys was investigated using optical and electron microscopy, X-ray diffraction and SEM phase analysis techniques. Limited thermodynamic measurements were made using the ZrO 2 solid electrolyte e.m.f. method. The data obtained from the various techniques were used to construct a ternary isothermal section at 1473 K. The experimentally determined section is compared with a calculated section for the same temperature, computed using thermodynamic coefficients derived solely from binary system information. Lattice parameters are reported for the b.c.c., f.c.c. and c.p.h. solid solutions and for the σ phase. (orig.)

  9. Thermal decomposition of cesium-ethylene-ternary graphite intercalation compounds

    International Nuclear Information System (INIS)

    Matsumoto, R.; Oishi, Y.; Arii, T.

    2010-01-01

    In this paper, the thermal decomposition of air-stable Cs-ethylene-ternary graphite intercalation compounds (GICs) is discussed. The air stability of Cs-GICs is improved remarkably after the absorption of ethylene into their interlayer nanospace, because the ethylene molecules oligomerize and block the movement of Cs atoms. In addition, the evaporation of Cs atoms from the Cs-ethylene-ternary GICs is observed above 400 o C under a N 2 atmosphere of 100 Pa by ion attachment mass spectrometry. Although the results indicate that Cs-ethylene-ternary GICs remain stable up to approximately 400 o C, their thermal stability is not very high as compared to that of Cs-GICs.

  10. α-ternary decay of Cf isotopes, statistical model

    International Nuclear Information System (INIS)

    Joseph, Jayesh George; Santhosh, K.P.

    2017-01-01

    The process of splitting a heavier nucleus to three simultaneous fragments is termed as ternary fission and compared to usual binary fission, it is a rare process. Depending on the nature of third particle either it is called light charged particle (LCP) accompanying fission if it is light or true ternary fission if all three fragments have nearly same mass distributions. After experimental observations in early seventies, initially with a slow pace, now theoretical studies in ternary fission has turned to a hot topic in nuclear decay studies especially in past one decade. Mean while various models have been developed, existing being modified and seeking for new with a hope that it can beam a little more light to the profound nature of nuclear interaction. In this study a statistical method, level density formulation, has been employed

  11. Completed Local Ternary Pattern for Rotation Invariant Texture Classification

    Directory of Open Access Journals (Sweden)

    Taha H. Rassem

    2014-01-01

    Full Text Available Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP and the Completed Local Binary Count (CLBC, have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP is proposed to be more robust to noise than LBP, however, the latter’s weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors.

  12. The partially alternating ternary sum in an associative dialgebra

    International Nuclear Information System (INIS)

    Bremner, Murray R; Sanchez-Ortega, Juana

    2010-01-01

    The alternating ternary sum in an associative algebra, abc - acb - bac + bca + cab - cba, gives rise to the partially alternating ternary sum in an associative dialgebra with products dashv and vdash by making the argument a the center of each term. We use computer algebra to determine the polynomial identities in degree ≤9 satisfied by this new trilinear operation. In degrees 3 and 5, these identities define a new variety of partially alternating ternary algebras. We show that there is a 49-dimensional space of multilinear identities in degree 7, and we find equivalent nonlinear identities. We use the representation theory of the symmetric group to show that there are no new identities in degree 9.

  13. New ternary hydride formation in U-Ti-H system

    International Nuclear Information System (INIS)

    Yamamoto, Takuya; Kayano, Hideo; Yamawaki, Michio.

    1991-01-01

    Hydrogen absorption properties of two titanium-rich uranium alloys, UTi 2 and UTi 4 , were studied in order to prepare and identify the recently found ternary hydride. They slowly reacted with hydrogen of the initial pressure of 10 5 Pa at 873K to form the ternary hydride. The hydrogenated specimen mainly consisted of the pursued ternary hydride but contained also U(or UO 2 ), TiH x , and some transient phases. X-ray powder diffraction and Electron Probe Micro Analysis proved that it was the UTi 2 H x with the expected MgCu 2 structure, though all the X-ray peaks were broad probably because of inhomogeneity. This compound had extremely high resistance to powdering on its formation, which showed high potential utilities for a non-powdering tritium storage system or for other purposes. (author)

  14. lead glass brick

    CERN Multimedia

    When you look through the glass at a picture behind, the picture appears raised up because light is slowed down in the dense glass. It is this density (4.06 gcm-3) that makes lead glass attractive to physicists. The refractive index of the glass is 1.708 at 400nm (violet light), meaning that light travels in the glass at about 58% its normal speed. At CERN, the OPAL detector uses some 12000 blocks of glass like this to measure particle energies.

  15. Equilibrium phase diagram of the Ag-Au-Pb ternary system

    International Nuclear Information System (INIS)

    Hassam, S.; Bahari, Z.

    2005-01-01

    The phase diagram of the ternary system Ag-Au-Pb has been established using differential thermal analysis and X-ray powder diffraction analysis. Four vertical sections were studied: X Pb = 0.40, X Au /X Pb = 1/3, X Ag /X Au = 4/1 and X Ag /X Au = 1/1. Two ternary transitory peritectics and one ternary eutectic were characterized. A schematic representation of the ternary equilibria is given

  16. Adiabatic pipelining: a key to ternary computing with quantum dots

    Science.gov (United States)

    Pečar, P.; Ramšak, A.; Zimic, N.; Mraz, M.; Lebar Bajec, I.

    2008-12-01

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  17. Adiabatic pipelining: a key to ternary computing with quantum dots

    International Nuclear Information System (INIS)

    Pecar, P; Zimic, N; Mraz, M; Lebar Bajec, I; Ramsak, A

    2008-01-01

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  18. Adiabatic pipelining: a key to ternary computing with quantum dots.

    Science.gov (United States)

    Pečar, P; Ramšak, A; Zimic, N; Mraz, M; Lebar Bajec, I

    2008-12-10

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  19. Short-range order analysis and some physical properties of InxSe1-x glasses

    International Nuclear Information System (INIS)

    El-Kabany, N.

    2012-01-01

    Bulk In x Se 1-x (with x=5-25 at%) glasses were prepared using the melt-quench technique. Short range order(SRO) was examined by the X-ray diffraction using Cu(k α ) radiation in the wave vector interval 0.28≤k≤6.5 A 0-1 .The SRO parameters have been obtained from the radial distribution function. The inter-atomic distance obtained from the first and second peak are r 1 =0.263 and r 2 =0.460 nm, which is equivalent In-Se and Se-Se bond length. The fundamental structural unit for the studied glasses is In 2 Se 3 pyramid. Using the differential scanning calorimetry (DSC), the crystallization mechanism of In x Se 1-x chalcogenide glass has been studied. The glass transition activation energy (E g ) is 289±0.3 kj/mol.There is a correlation amongst the glass forming ability, bond strength and the number of lone pair electrons. The utility of the Gibbs-Di Marzio relation was achieved by estimating T g theoretically.

  20. Ternary Ag-In-S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications

    International Nuclear Information System (INIS)

    Chang, Wen-Sheng; Wu, Ching-Chen; Jeng, Ming-Shan; Cheng, Kong-Wei; Huang, Chao-Ming; Lee, Tai-Chou

    2010-01-01

    This paper describes the preparation and characterization of ternary Ag-In-S thin films deposited on indium tin oxide (ITO)-coated glass substrates using chemical bath deposition (CBD). The composition of the thin films was varied by changing the concentration ratio of [Ag]/[In] in the precursor solutions. The crystal structure, optical properties, and surface morphology of the thin films were analyzed by grazing incidence X-ray diffraction (GIXRD), UV-vis spectroscopy, and field-emission scanning electron microscopy (FE-SEM). GIXRD results indicate that the samples consisted of AgInS 2 and/or AgIn 5 S 8 crystal phases, depending on the composition of the precursor solutions. The film thicknesses, electrical resistivity, flat band potentials, and band gaps of the samples were between 1.12 and 1.37 μm, 3.73 x 10 -3 and 4.98 x 10 4 Ω cm, -0.67 and -0.90 V vs. NHE, and 1.83 and 1.92 eV, respectively. The highest photocurrent density was observed in the sample with [Ag]/[In] = 4. A photocurrent density of 9.7 mA cm -2 was obtained with an applied potential of 0.25 V vs. SCE in the three-electrode system. The photoresponse experiments were conducted in 0.25 M K 2 SO 3 and 0.35 M Na 2 S aqueous electrolyte solutions under irradiation by a 300 W Xe light (100 mW cm -2 ). The results show that ternary Ag-In-S thin film electrodes have potential in water splitting applications.

  1. Ternary Ag-In-S polycrystalline films deposited using chemical bath deposition for photoelectrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Wen-Sheng [Energy and Environmental Laboratories, Industrial Technology Research Institute, 195 Sec. 4, Chung-Hsing Road, Hsin-Chu 310, Taiwan (China); Wu, Ching-Chen [Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 621, Taiwan (China); Jeng, Ming-Shan [Energy and Environmental Laboratories, Industrial Technology Research Institute, 195 Sec. 4, Chung-Hsing Road, Hsin-Chu 310, Taiwan (China); Cheng, Kong-Wei [Department of Chemical and Materials Engineering, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Huang, Chao-Ming [Department of Environmental Engineering, Kun Shan University, 949 Da Wan Road, Yung-Kang City, Tainan Hsien 710, Taiwan (China); Lee, Tai-Chou, E-mail: chmtcl@ccu.edu.tw [Department of Chemical Engineering, National Chung Cheng University, 168 University Road, Min-Hsiung, Chia-Yi 621, Taiwan (China)

    2010-04-15

    This paper describes the preparation and characterization of ternary Ag-In-S thin films deposited on indium tin oxide (ITO)-coated glass substrates using chemical bath deposition (CBD). The composition of the thin films was varied by changing the concentration ratio of [Ag]/[In] in the precursor solutions. The crystal structure, optical properties, and surface morphology of the thin films were analyzed by grazing incidence X-ray diffraction (GIXRD), UV-vis spectroscopy, and field-emission scanning electron microscopy (FE-SEM). GIXRD results indicate that the samples consisted of AgInS{sub 2} and/or AgIn{sub 5}S{sub 8} crystal phases, depending on the composition of the precursor solutions. The film thicknesses, electrical resistivity, flat band potentials, and band gaps of the samples were between 1.12 and 1.37 {mu}m, 3.73 x 10{sup -3} and 4.98 x 10{sup 4} {Omega} cm, -0.67 and -0.90 V vs. NHE, and 1.83 and 1.92 eV, respectively. The highest photocurrent density was observed in the sample with [Ag]/[In] = 4. A photocurrent density of 9.7 mA cm{sup -2} was obtained with an applied potential of 0.25 V vs. SCE in the three-electrode system. The photoresponse experiments were conducted in 0.25 M K{sub 2}SO{sub 3} and 0.35 M Na{sub 2}S aqueous electrolyte solutions under irradiation by a 300 W Xe light (100 mW cm{sup -2}). The results show that ternary Ag-In-S thin film electrodes have potential in water splitting applications.

  2. Incommensurate and commensurate magnetic structures of the ternary germanide CeNiGe3

    International Nuclear Information System (INIS)

    Durivault, L; Bouree, F; Chevalier, B; Andre, G; Weill, F; Etourneau, J; Martinez-Samper, P; Rodrigo, J G; Suderow, H; Vieira, S

    2003-01-01

    The structural properties of CeNiGe 3 have been investigated via electron diffraction and neutron powder diffraction (NPD). This ternary germanide crystallizes in the orthorhombic SmNiGe 3 -type structure (Cmmm space group). Electrical resistivity, ac- and dc-magnetization measurements show that CeNiGe 3 orders antiferromagnetically below T N = 5.5(2) K and exclude the occurrence at low temperatures of a spin-glass state for CeNiGe 3 as previously reported. Specific heat measurements and NPD both reveal two magnetic transitions, observed at T N1 = 5.9(2) K and T N2 = 5.0(2) K. Between T N1 and T N2 , the Ce magnetic moments in CeNiGe 3 are ordered in a collinear antiferromagnetic structure associated with the k 1 = (100) wavevector and showing a relationship with the magnetic structure of the Ce 3 Ni 2 Ge 7 ternary germanide. Below T N2 , this k 1 = (100) commensurate magnetic structure coexists with an incommensurate helicoidal magnetic structure associated with k 2 = (00.409(1)1/2). This last magnetic structure is highly preponderant below T N2 (93(5)% in volume). At 1.5 K, the Ce atoms in CeNiGe 3 carry a reduced ordered magnetic moment (0.8(2) μ B ). This value, smaller than that obtained in Ce 3 Ni 2 Ge 7 , results from an important hybridization of the 4f(Ce) orbitals with those of the Ni and Ge ligands

  3. General Top-Down Ion Exchange Process for the Growth of Epitaxial Chalcogenide Thin Films and Devices

    KAUST Repository

    Xia, Chuan

    2016-12-30

    We demonstrate a versatile top-down ion exchange process, done at ambient temperature, to form epitaxial chalcogenide films and devices, with nanometer scale thickness control. To demonstrate the versatility of our process we have synthesized (1) epitaxial chalcogenide metallic and semiconducting films and (2) free-standing chalcogenide films and (3) completed in situ formation of atomically sharp heterojunctions by selective ion exchange. Epitaxial NiCo2S4 thin films prepared by our process show 115 times higher mobility than NiCo2S4 pellets (23 vs 0.2 cm(2) V-1 s(-1)) prepared by previous reports. By controlling the ion exchange process time, we made free-standing epitaxial films of NiCo2S4 and transferred them onto different substrates. We also demonstrate in situ formation of atomically sharp, lateral Schottky diodes based on NiCo2O4/NiCo2S4 heterojunction, using a single ion exchange step. Additionally, we show that our approach can be easily extended to other chalcogenide semiconductors. Specifically, we used our process to prepare Cu1.8S thin films with mobility that matches single crystal Cu1.8S (25 cm(2) V-1 s(-1)), which is ca. 28 times higher than the previously reported Cu1.8S thin film mobility (0.58 cm(2) V-1 s(-1)), thus demonstrating the universal nature of our process. This is the first report in which chalcogenide thin films retain the epitaxial nature of the precursor oxide films, an approach that will be useful in many applications.

  4. A novel ternary logic circuit using Josephson junction

    International Nuclear Information System (INIS)

    Morisue, M.; Oochi, K.; Nishizawa, M.

    1989-01-01

    This paper describes a novel Josephson complementary ternary logic circuit named as JCTL. This fundamental circuit is constructed by combination of two SQUIDs, one of which is switched in the positive direction and the other in the negative direction. The JCTL can perform the fundamental operations of AND, OR, NOT and Double NOT in ternary form. The principle of the operation and design criteria are described in detail. The results of the simulation show that the reliable operations of these circuits can be achieved with a high performance

  5. PM1 steganographic algorithm using ternary Hamming Code

    Directory of Open Access Journals (Sweden)

    Kamil Kaczyński

    2015-12-01

    Full Text Available PM1 algorithm is a modification of well-known LSB steganographic algorithm. It has increased resistance to selected steganalytic attacks and increased embedding efficiency. Due to its uniqueness, PM1 algorithm allows us to use of larger alphabet of symbols, making it possible to further increase steganographic capacity. In this paper, we present the modified PM1 algorithm which utilizies so-called syndrome coding and ternary Hamming code. The modified algorithm has increased embedding efficiency, which means fewer changes introduced to carrier and increased capacity.[b]Keywords[/b]: steganography, linear codes, PM1, LSB, ternary Hamming code

  6. Binary and ternary carbides and nitrides of the transition metals and their phase relations

    International Nuclear Information System (INIS)

    Holleck, H.

    1981-01-01

    The occurrance and the structure of the binary and ternary transition metal carbides and nitrides are described. Phase diagrams are assessed for most of the binary and ternary systems. Many ternary phase diagrams are published in this report for the first time. (orig.) [de

  7. Effects of Al addition on atomic structure of Cu-Zr metallic glass

    Science.gov (United States)

    Li, Feng; Zhang, Huajian; Liu, Xiongjun; Dong, Yuecheng; Yu, Chunyan; Lu, Zhaoping

    2018-02-01

    The atomic structures of Cu52Zr48 and Cu45Zr48Al7 metallic glasses (MGs) have been studied by molecular dynamic simulations. The results reveal that the molar volume of the Cu45Zr48Al7 MG is smaller than that of the Cu52Zr48 MG, although the size of the Al atom is larger than that of the Cu atom, implying an enhanced atomic packing density achieved by introducing Al into the ternary MG. Bond shortening in unlike atomic pairs Zr-Al and Cu-Al is observed in the Cu45Zr48Al7 MG, which is attributed to strong interactions between Al and (Zr, Cu) atoms. Meanwhile, the atomic packing efficiency is enhanced by the minor addition of Al. Compared with the Cu52Zr48 binary MG, the potential energy of the ternary MG decreases and the glass transition temperature increases. Structural analyses indicate that more Cu- and Al-centered full icosahedral clusters emerge in the Cu45Zr48Al7 MG as some Cu atoms are substituted by Al. Furthermore, the addition of Al leads to more icosahedral medium-range orders in the ternary MG. The increase of full icosahedral clusters and the enhancement of the packing density are responsible for the improved glass-forming ability of Cu45Zr48Al7.

  8. Glass and nuclear wastes

    International Nuclear Information System (INIS)

    Sombret, C.

    1982-10-01

    Glass shows interesting technical and economical properties for long term storage of solidified radioactive wastes by vitrification or embedding. Glass composition, vitrification processes, stability under irradiation, thermal stability and aqueous corrosion are studied [fr

  9. Microstructuring of glasses

    CERN Document Server

    Hülsenberg, Dagmar; Bismarck, Alexander

    2008-01-01

    As microstructured glass becomes increasingly important for microsystems technology, the main application fields include micro-fluidic systems, micro-analysis systems, sensors, micro-actuators and implants. And, because glass has quite distinct properties from silicon, PMMA and metals, applications exist where only glass devices meet the requirements. The main advantages of glass derive from its amorphous nature, the precondition for its - theoretically - direction-independent geometric structurability. Microstructuring of Glasses deals with the amorphous state, various glass compositions and their properties, the interactions between glasses and the electromagnetic waves used to modify it. Also treated in detail are methods for influencing the geometrical microstructure of glasses by mechanical, chemical, thermal, optical, and electrical treatment, and the methods and equipment required to produce actual microdevices.

  10. Measurement of optical glasses

    International Nuclear Information System (INIS)

    Nicolau-Rebigan, S.

    1978-11-01

    The possibilities of measurement of the optical glasses parameters needed in building optical devices especially in lasers devices are presented. In the first chapter the general features of the main optical glasses as well as the modalities of obtaining them are given. Chapter two defines the optical glass parameters, and the third chapter describes the measuring methods of the optical glass parameters. Finally, the conclusions which point out the utilization of this paper are presented. (author)

  11. Mechanically reinforced glass beams

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes

    2007-01-01

    laminated float glass beam is constructed and tested in four-point bending. The beam consist of 4 layers of glass laminated together with a slack steel band glued onto the bottom face of the beam. The glass parts of the tested beams are \\SI{1700}{mm} long and \\SI{100}{mm} high, and the total width of one...

  12. Positron trapping defects in free-volume investigation of Ge–Ga–S–CsCl glasses

    International Nuclear Information System (INIS)

    Klym, H.; Ingram, A.; Shpotyuk, O.; Hotra, O.; Popov, A.I.

    2016-01-01

    Evolution of free-volume positron trapping defects caused by crystallization process in (80GeS_2–20Ga_2S_3)_1_0_0_−_x(CsCl)_x, 0 ≤ x ≤ 15 chalcogenide-chalcohalide glasses was studied by positron annihilation lifetime technique. It is established that CsCl additives in Ge–Ga–S glassy matrix transform defect-related component spectra, indicating that the agglomeration of free-volume voids occurs in initial and crystallized (80GeS_2–20Ga_2S_3)_1_0_0_−_x(CsCl)_x, 0 ≤ x ≤ 10 glasses. Void fragmentation in (80GeS_2–20Ga_2S_3)_8_5(CsCl)_1_5 glass can be associated with loosing of their inner structure. Full crystallization in each of these glasses corresponds to the formation of defect-related voids. These trends are confirmed by positron-positronium decomposition algorithm. It is shown, that CsCl additives result in white shift in the visible regions in transmission spectra. The γ-irradiation of 80GeS_2–20Ga_2S_3 base glass leads to slight long-wavelength shift of the fundamental optical absorption edge and decreasing of transmission speaks in favor of possible formation of additional defects in glasses and their darkening. - Highlights: • CsCl additives in Ge–Ga–S glassy matrix lead to the agglomeration of voids. • Full crystallization of Ge–Ga–S–CsCl glasses corresponds to the formation of defect voids. • Gamma-irradiation of glass stimulates the creation of additional defects and darkening.

  13. Structural study of Zr-based metallic glasses

    International Nuclear Information System (INIS)

    Matsubara, E.; Ichitsubo, T.; Saida, J.; Kohara, S.; Ohsumi, H.

    2007-01-01

    Structures of Zr 70 Ni 20 Al 10 , Zr 70 Cu 20 Al 10 , Zr 70 Cu 30 and Zr 70 Ni 30 amorphous alloys were analyzed by high-energy X-ray diffraction. The relatively stable Zr 2 Cu amorphous alloy shows a local atom arrangement different from the Zr 2 Cu crystalline phase. By contrast, the less stable Zr 70 Ni 30 amorphous alloy has a structure similar to Zr 2 Ni. In the Zr 70 Cu 20 Al 10 metallic glass, Zr-Al nearest neighbor pairs are introduced in the amorphous structure. In the Zr 70 Ni 20 Al 10 metallic glass, the strong correlation between Zr-Ni pairs is drastically modified by the formation of Zr-Al pairs. The presence of Zr-Al pairs in the ternary alloys suppresses the crystallization and stabilizes the glassy state

  14. Glass-ceramics frits for high mechanical resistance glazes

    International Nuclear Information System (INIS)

    Gajek, M.; Lis, J.; Partyka, J.; Wojczyk, M.

    2004-01-01

    The obtaining and application of glass-ceramics frits for glazes were discussed by many authors. This glazes are characterized by raised mechanical parameters and chemical resistance. Factors, that determines crystallization process are initial composition, heat treatment and nucleation agents. The kind of crystalline phases, crystal habit and the content of residual glass phase play the decisive role in the strengthening of the glaze. In this paper are shown results of investigation over controlled crystallization in the ternary systems; Li 2 O-Al 2 O 3 -SiO 2 , CaO-Al 2 O 3 -SiO 2 , ZnO-Al 2 O 3 -SiO 2 , MgO-Al 2 O 3 -SiO 2 , with or without nucleation agents. (author)

  15. Properties and structure of Faraday rotating glasses for magneto optical current transducer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Ma, Q.; Wang, H.; Wang, Q.; Hao, Y.; Chen, Q.

    2017-07-01

    High heavy metal oxides (60–100mol.%) ternary PbO–Bi2O3–B2O3 (PBB) glasses were fabricated and characterized. Using a homemade single lightway DC magnetic setup, Verdet constants of PBB glasses were measured to be 0.0923–0.1664min/G cm at 633nm wavelengths. Glasses with substitution of PbO by Bi2O3 were studied in terms of their Faraday effects. PbO–Bi2O3–B2O3 = 50–40–10mol.% exhibited good thermal stability, high Verdet constant (0.1503min/G cm) and good figure of merit (0.071). Based on this glass, a magneto optical current sensor prototype was constructed and its sensitivity at different currents was evaluated to be 8.31nW/A. © 2. (Author)

  16. Sc-W-Si and Sc-W-Ge ternary systems

    International Nuclear Information System (INIS)

    Kotur, B.Ya.; Voznyak, O.M.; Bodak, O.I.

    1989-01-01

    Phase equilibria in Sc-W-Si and Sc-W-Ge ternary systems are investigated at 1070 K. Sc 2+x W 3-x Si 4 ternary compound (0≤x≤1) is determined, its crystal structure (Ce 2 Sc 3 Si 4 structural type), as well as, change of elementary cell parameters and microhardness within homogeneity range are determined. Regularities of component interaction within Sc-M-Si(Ge) (M-Cr, Mo, W) ternary system are determined. Ternary systems with Mo and W are more closer to each other according to the phase equilibria character, than to ternary systems with Cr

  17. Ternary mixtures of alkyltriphenylphosphonium bromides (C12 TPB ...

    Indian Academy of Sciences (India)

    Administrator

    Critical Micellar Concentrations (CMCs) by conductometry, but their ternary mixtures produce single ... efficiently quenched pyrene fluorescence; the performances of the homologues in this respect were assessed. Keywords ..... The shape of the amphiphile aggregates ..... Haque M E, Das A R and Moulik S P 1999 J. Colloid.

  18. Mechanochemically prepared ternary hybrid cathode material for lithium batteries

    International Nuclear Information System (INIS)

    Posudievsky, Oleg Yu; Kozarenko, Olga A.; Dyadyun, Vyacheslav S.; Jorgensen, Scott W.; Spearot, James A.; Koshechko, Vyacheslav G.; Pokhodenko, Vitaly D.

    2013-01-01

    Graphical abstract: The presence of macromolecules of an ion-conducting polymer in the composition of the ternary nanocomposite PPy–PEO/V 2 O 5 promotes interfacial transfer of lithium ions and also facilitates faster transport inside the particles of the nanocomposite. -- Highlights: • Two- and three component nanocomposites are prepared via a solvent-free mechanochemical synthesis. • The nanocomposites retain their capacity above 200 mA h g −1 for at least one hundred cycles. • The presence of PEO promotes interfacial transfer of lithium ions and facilitates faster transport inside the nanocomposite. -- Abstract: Ternary host–guest nanocomposite based on vanadium oxide and two polymers with different types of conductivity (ionic and electronic) – polypyrrole (PPy) and polyethylene oxide (PEO) – is prepared by solventless mechanochemical synthesis. The nanocomposite can be reversibly cycled with a specific capacity of ∼200 mA h g −1 for at least one hundred cycles of full charge–discharge as the active component of the positive electrode of lithium batteries. Electrochemical performance of ternary PPy 0.1 PEO 0.15 V 2 O 5 is compared with two-component analog PPy 0.1 V 2 O 5 . The presence of macromolecules of an ion-conducting polymer in the composition of the ternary nanocomposite PPy 0.1 PEO 0.15 V 2 O 5 promotes interfacial transfer of lithium ions and also facilitates faster transport inside the particles of the nanocomposite

  19. Robust Self-Triggered Coordination With Ternary Controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo; Nair, G.N.

    2013-01-01

    This paper regards the coordination of networked systems, studied in the framework of hybrid dynamical systems. We design a coordination scheme which combines the use of ternary controllers with a self-triggered communication policy. The communication policy requires the agents to measure, at each

  20. Excess isentropic compressibility and speed of sound of the ternary

    Indian Academy of Sciences (India)

    These excess properties of the binary mixtures were fitted to Redlich-Kister equation, while the Cibulka's equation was used to fit the values related to the values to the ternary system. These excess properties have been used to discuss the presence of significant interactions between the component molecules in the binary ...