WorldWideScience

Sample records for ternary alloy rapid

  1. TERNARY ALLOYS OF URANIUM, COLUMBIUM, AND ZIRCONIUM

    Science.gov (United States)

    Foote, F.G.

    1960-08-01

    Ternary alloys of uranium are described which are useful as neutron- reflecting materials in a fast neutron reactor. They are especially resistant to corrosion caused by oxidative processes of gascous or aqueous origin and comprise uranium as the predominant metal with zirconiunn and niobium wherein the total content of the minor alloying elements is between 2 and 8% by weight.

  2. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 2. Ternary alloy nanocatalysts for ... It is to be noted that synthesis of nanocrystallineternary alloys with precise composition is a big challenge which can be overcome by choosing an appropriate microemulsion system. High electrocatalytic activity towards ...

  3. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.

    2002-01-01

    Ternary metal nitrides ( of general formula MxM'N-y(z)) attract considerable interest because of their special mechanical, electrical, magnetic, and catalytic properties. Usually they are prepared by ammonolysis of ternary oxides (MxM'O-y(m)) at elevated temperatures. We show that ternary...... nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...

  4. A study of phase separation in ternary alloys

    Indian Academy of Sciences (India)

    Unknown

    Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India. Abstract. We have studied the evolution of microstructure when a disordered ternary alloy is quenched into a ternary miscibility gap. We have used computer simulations based on multicomponent Cahn–Hilliard (CH) equations for cA and cB, the ...

  5. Collective and tracer diffusion kinetics in the ternary random alloy

    International Nuclear Information System (INIS)

    Belova, I.V.; Murch, G.E.; Allnatt, A.R.

    2002-01-01

    In this study, collective and tracer diffusion kinetics is addressed for the ternary random alloy. A formal solution from the self-consistent theory of Moleko et al (Moleko L K, Allnatt A R and Allnatt E L 1989 Phil. Mag. A 59 141) is derived for collective diffusion and compared with the corresponding solution for the binary random alloy. Tracer diffusion in the ternary alloy is treated from the perspective of a special case of the quaternary random alloy. Results from Monte Carlo calculations for tracer and collective correlation factors (for the bcc ternary random alloy) are found to be in excellent agreement with this self-consistent theory but in only semi-quantitative agreement with the earlier theory of Manning (Manning J R 1971 Phys. Rev. B 4 1111). (author)

  6. The novel eutectic microstructures of Si-Mn-P ternary alloy

    International Nuclear Information System (INIS)

    Wu Yaping; Liu Xiangfa

    2010-01-01

    The microstructures of Si-Mn-P alloy manufactured by the technique of combining phosphorus transportation and alloy melting were investigated using electron probe micro-analyzer (EPMA). The phase compositions were determined by energy spectrum and the varieties of eutectic morphologies were discussed. It is found that there is no ternary compound but Si, MnP and MnSi 1.75-x could appear when the Si-Mn-P alloy's composition is proper. Microstructure is greatly refined by rapid solidification technique and the amount of eutectic phases change with faster cooling rates. Moreover, primary Si or MnP are surrounded firstly by the binary eutectic (Si + MnP) and then the ternary eutectic (Si + MnSi 1.75-x + MnP) which also exhibit binary structures due to divorced eutectic determined by the particularity of some Si-Mn-P alloys.

  7. Segregation in ternary alloys: an interplay of driving forces

    International Nuclear Information System (INIS)

    Luyten, J.; Helfensteyn, S.; Creemers, C.

    2003-01-01

    Monte Carlo (MC) simulations combined with the constant bond energy (CBE) model are set up to explore and understand the general segregation behaviour in ternary alloys as a function of composition and more in particular the segregation to Cu-Ni-Al (1 0 0) surfaces. Besides its simplicity, allowing swift simulations, which are necessary for a first general survey over all possible compositions, one of the advantages of the CBE model lies in the possibility to clearly identify the different driving forces for segregation. All simulations are performed in the Grand Canonical Ensemble, using a new algorithm to determine the chemical potential of the components. Notwithstanding the simplicity of the CBE model, one extra feature is evidenced: depending on the values of the interatomic interaction parameters, in some regions of the ternary diagram, a single solid solution becomes thermodynamically unstable, leading to demixing into two conjugate phases. The simulations are first done for three hypothetical systems that are however representative for real alloy systems. The three systems are characterised by different sets of interatomic interaction parameters. These extensive simulations over the entire composition range of the ternary alloy yield a 'topographical' segregation map, showing distinct regions where different species segregate. These distinct domains originate from a variable interplay between the driving forces for segregation and attractive/repulsive interactions in the bulk of the alloy. The results on these hypothetical systems are very helpful for a better understanding of the segregation behaviour in Cu-Ni-Al and other ternary alloys

  8. Plutonium microstructures. Part 2. Binary and ternary alloys

    International Nuclear Information System (INIS)

    Cramer, E.M.; Bergin, J.B.

    1983-12-01

    This report is the second of three parts that exhibit illustrations of inclusions in plutonium metal from inherent and tramp impurities, of intermetallic and nonmetallic constituents from alloy additions, and of the effects of thermal and mechanical treatments. This part includes illustrations of the microstructures in binary cast alloys and a few selected ternary alloys that result from measured additions of diluent elements, and of the microconstituents that are characteristic of phase fields in extended alloy systems. Microhardness data are given and the etchant used in the preparation of each sample is described

  9. Electrical resistivity of liquid binary and ternary alloys

    International Nuclear Information System (INIS)

    Ornat, M.; Paja, A.

    2011-01-01

    New method of calculation of the electrical resistivity of liquid and amorphous alloys is presented. The method is based on the Morgan-Howson-Saub (MHS) model but the pseudopotentials are replaced by the scattering matrix operators. The Fermi energy is properly determined by the accurate values of the phase shifts. The model depends on a very small number of universal parameters and gives stable results. The calculated values of the resistivity agree well with available experimental data for a substantial number of binary alloys. Moreover, the results for some ternary alloys were also obtained. (orig.)

  10. Superconductivity and specific heat measurements in V--Nb--Ta ternary alloys

    International Nuclear Information System (INIS)

    Wang, R.Y.P.

    1977-01-01

    The correlation between the superconducting transition temperature T/sub c/ with electronic specific heat coefficient γ and Debye temperature theta/sub D/ in some isoelectronic ternary V--Nb--Ta alloys is investigated. It has been known that the variation of theta/sub D/ with concentration in both V--Nb and V--Ta systems is clearly of the same curvature as that of T/sub c/ and γ. In Ta--Nb alloys, however, over most of the concentration range theta/sub D/ seems to have a slight negative curvature while T/sub c/ and γ curve upwards. (But beyond approx. 80 at. % Nb theta/sub D/ rises rapidly to the pure Nb value.) By choosing alloys along a line connecting Ta and V 25 --Nb 75 which is close to the Nb--Ta side of the Gibb's triangle the extent to which the Nb--Ta type of behavior persists in this ternary system can be estimated. A model proposed by Miedema that takes into account the variation of properties caused by possible charge transfer among constituent atoms in an alloy has been found to apply almost quantitatively for nearly all binary alloy systems whose experimental data are available, including those for which Hopfield's method fails. A previous test of the extension of Miedema's empirical model into ternary alloys shows qualitatively correct behavior for intra-row Zr/sub x/Nb/sub 1-2x/Mo/sub x/ alloys. The good agreement between the predicted values of γ and T/sub c/ and the experimental values in the inter-row ternary V--Nb--Ta system studied here gives another and better test of the application of Miedema's model

  11. Corrosion and wear protective composition modulated alloy coatings based on ternary Ni-P-X alloys

    DEFF Research Database (Denmark)

    Leisner, P.; Benzon, M. E.; Christoffersen, Lasse

    1996-01-01

    Scattered reporting in the litterature describes a number of ternary Ni-P-X alloyes (where X can be Co, Cr, Cu, Mo, Pd, Re or W) with promising corrosin and wear protective performance. Based on a systematic study of Ni-P-X alloys it is the intention to produce coatings with improved corrosion...

  12. Experimental Investigation of Ternary Alloys for Fusion Breeding Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Choi, B. William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Chiu, Ing L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    Future fusion power plants based on the deuterium-tritium (DT) fuel cycle will be required to breed the T fuel via neutron reactions with lithium, which will be incorporated in a breeding blanket that surrounds the fusion source. Recent work by LLNL proposed the used of liquid Li as the breeder in an inertial fusion energy (IFE) power plant. Subsequently, an LDRD was initiated to develop alternatives ternary alloy liquid metal breeders that have reduced chemical reactivity with water and air compared to pure Li. Part of the work plan was to experimentally investigate the phase diagrams of ternary alloys. Of particular interest was measurement of the melt temperature, which must be low enough to be compatible with the temperature limits of the steel used in the construction of the chamber and heat transfer system.

  13. Kinetics of radiation-induced segregation in ternary alloys

    International Nuclear Information System (INIS)

    Lam, N.Q.; Kumar, A.; Wiedersich, H.

    1982-01-01

    Model calculations of radiation-induced segregation in ternary alloys have been performed, using a simple theory. The theoretical model describes the coupling between the fluxes of radiation-induced defects and alloying elements in an alloy A-B-C by partitioning the defect fluxes into those occurring via A-, B-, and C-atoms, and the atom fluxes into those taking place via vacancies and interstitials. The defect and atom fluxes can be expressed in terms of concentrations and concentration gradients of all the species present. With reasonable simplifications, the radiation-induced segregation problem can be cast into a system of four coupled partial-differential equations, which can be solved numerically for appropriate initial and boundary conditions. Model calculations have been performed for ternary solid solutions intended to be representative of Fe-Cr-Ni and Ni-Al-Si alloys under various irradiation conditions. The dependence of segregation on both the alloy properties and the irradiation variables, e.g., temperature and displacement rate, was calculated. The sample calculations are in good qualitative agreement with the general trends of radiation-induced segregation observed experimentally

  14. Microstructural Investigations On Ni-Ta-Al Ternary Alloys

    International Nuclear Information System (INIS)

    Negache, M.; Taibi, K.; Lounis, Z.; Souami, N.

    2010-01-01

    The Ni-Al-Ta ternary alloys in the Ni-rich part present complex microstructures. They are composed of multiple phases that are formed according to the nominal composition of the alloy, primary Ni(γ), Ni 3 Al(γ'), Ni 6 AlTa(τ 3 ), Ni 3 Ta(δ) or in equilibrium: two solid phases (γ'-τ 3 ), (τ 3 -δ), (τ 3 -γ), (γ-δ) or three solid phases (γ'-τ 3 -δ). The nature and the volume fraction of these phases give these alloys very interesting properties at high temperature, and this makes them attractive for specific applications. We have developed a series of ternary alloys in electric arc furnace, determining their solidification sequences using Differential Thermal Analysis (DTA), characterized by SEM-EDS, X-ray diffraction and by a microhardness tests. The follow-up results made it possible to make a correlation between the nature of the formed phases and their solidifying way into the Ni 75 Al x Ta y (x+y = 25at.%) system, which are varied and complex. In addition to the solid solution Ni (γ), the formed intermetallics compounds (γ', τ 3 and δ) has been identified and correlated with a complex balance between phases.We noticed that the hardness increases with the tantalum which has a hardening effect and though the compound Ni 3 Ta(δ) is the hardest. The below results provide a better understanding of the complex microstructure of these alloys.

  15. Development of binary and ternary titanium alloys for dental implants.

    Science.gov (United States)

    Cordeiro, Jairo M; Beline, Thamara; Ribeiro, Ana Lúcia R; Rangel, Elidiane C; da Cruz, Nilson C; Landers, Richard; Faverani, Leonardo P; Vaz, Luís Geraldo; Fais, Laiza M G; Vicente, Fabio B; Grandini, Carlos R; Mathew, Mathew T; Sukotjo, Cortino; Barão, Valentim A R

    2017-11-01

    The aim of this study was to develop binary and ternary titanium (Ti) alloys containing zirconium (Zr) and niobium (Nb) and to characterize them in terms of microstructural, mechanical, chemical, electrochemical, and biological properties. The experimental alloys - (in wt%) Ti-5Zr, Ti-10Zr, Ti-35Nb-5Zr, and Ti-35Nb-10Zr - were fabricated from pure metals. Commercially pure titanium (cpTi) and Ti-6Al-4V were used as controls. Microstructural analysis was performed by means of X-ray diffraction and scanning electron microscopy. Vickers microhardness, elastic modulus, dispersive energy spectroscopy, X-ray excited photoelectron spectroscopy, atomic force microscopy, surface roughness, and surface free energy were evaluated. The electrochemical behavior analysis was conducted in a body fluid solution (pH 7.4). The albumin adsorption was measured by the bicinchoninic acid method. Data were evaluated through one-way ANOVA and the Tukey test (α=0.05). The alloying elements proved to modify the alloy microstructure and to enhance the mechanical properties, improving the hardness and decreasing the elastic modulus of the binary and ternary alloys, respectively. Ti-Zr alloys displayed greater electrochemical stability relative to that of controls, presenting higher polarization resistance and lower capacitance. The experimental alloys were not detrimental to albumin adsorption. The experimental alloys are suitable options for dental implant manufacturing, particularly the binary system, which showed a better combination of mechanical and electrochemical properties without the presence of toxic elements. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Synthesis of ternary nitrides by mechanochemical alloying

    DEFF Research Database (Denmark)

    Jacobsen, C.J.H.; Zhu, J.J.; Lindelov, H.

    2002-01-01

    nitrides by mechanochemical alloying of a binary transition metal nitride (MxN) with an elemental transition metal. In this way, we have been able to prepare Fe3Mo3N and Co3Mo3N by ball-milling of Mo2N with Fe and Co, respectively. The transformation sequence from the starting materials ( the binary...

  17. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    CuFeNi (A1), CuFe2Ni (A2) and CuFeNi2 (A3) were successfully synthesized using microemulsion. It is to be noted that synthesis of nanocrystallineternary alloys with precise composition is a big challenge which can be overcome by choosing an appropriate microemulsion system. High electrocatalytic activity towards HER ...

  18. Modeling of anodic dissolution of U Pu Zr ternary alloy in the molten LiCl KCl electrolyte

    Science.gov (United States)

    Iizuka, Masatoshi; Kinoshita, Kensuke; Koyama, Tadafumi

    2005-02-01

    The metallic fuel anode in the molten salt electrorefining step for the pyrometallurgical reprocessing was modeled based on the findings from the anodic dissolution tests using a U Pu Zr ternary alloy. This anode model simulates selective dissolution of uranium and plutonium at lower anode potential, growth of a diffusion controlling layer consisting of a mixture of the molten salt electrolyte and the remaining zirconium metal, and simultaneous dissolution of all the constituents at higher anode potential. The calculation with this model reproduced well the actual anodic behavior of the U Pu Zr ternary alloy such as two-step rapid rise in the anode potential.

  19. Effect of ternary alloying elements on microstructure and superelastictity of Ti-Nb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, D.C.; Mao, Y.F.; Li, Y.L.; Li, J.J.; Yuan, M. [Key Laboratory of Low Di-mensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Faculty of Material and Optical-Electronic Physics, Xiangtan University, Xiangtan, Hunan 411105 (China); Lin, J.G., E-mail: lin_j_g@xtu.edu.cn [Key Laboratory of Low Di-mensional Materials and Application Technology of Ministry of Education, Xiangtan University, Xiangtan, Hunan 411105 (China); Faculty of Material and Optical-Electronic Physics, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2013-01-01

    The effect of ternary alloying elements (X=Ta, Fe, Zr, Mo, Sn and Si) on the microstructure, the mechanical properties and the superelasticity of Ti--22Nb-X alloys were investigated. The 1% addition of a ternary alloying element (X=Ta, Fe, Zr, Mo, Sn and Si) has a slight influence on the microstructure of the Ti-22Nb alloy. All the alloys after solution-treatment at 1073 K for 1.8 ks contain {beta} and {alpha} Double-Prime phases. The elements of Sn, Si, Fe and Ta with a high number of valence electrons or a small atomic size have a strong solid-solution strengthening effect to the {beta} phases in the alloys and the alloys with high Md{sup Macron} and low Bo{sup Macron} exhibit low elastic moduli. All the alloying elements improve the superelasticity of Ti-22Nb-X alloys. The elements, Fe, Mo, Sn and Si, which are with a high number of valence electrons and a small atomic size, strongly increase {sigma}{sub SIM} of the Ti-22Nb alloy.

  20. Electronic structure and phase equilibria in ternary substitutional alloys

    International Nuclear Information System (INIS)

    Traiber, A.J.S.; Allen, S.M.; Waterstrat, R.M.

    1996-01-01

    A reliable, consistent scheme to study phase equilibria in ternary substitutional alloys based on the tight-binding approximation is presented. With electronic parameters from linear muffin-tin orbital calculations, the computed density of states and band structures compare well with those from more accurate abinitio calculations. Disordered alloys are studied within the tight-binding coherent-potential approximation extended to alloys; energetics of ordered systems are obtained through effective pair interactions computed with the general perturbation method; and partially ordered alloys are studied with a novel simplification of the molecular coherent-potential approximation combined with the general perturbation method. The formalism is applied to bcc-based Zr-Ru-Pd alloys which are promising candidates for medical implant devices. Using energetics obtained from the above scheme, we apply the cluster- variation method to study phase equilibria for particular pseudo- binary alloys and show that results are consistent with observed behavior of electronic specific heat coefficient with composition for Zr 0.5 (Ru, Pd) 0.5

  1. Radiation-induced segregation in binary and ternary alloys

    International Nuclear Information System (INIS)

    Okamoto, P.R.; Rehn, L.E.

    1979-01-01

    A review is given of our current knowledge of radiation-induced segregation of major and minor elements in simple binary and ternary alloys as derived from experimental techniques such as Auger electron spectroscopy, secondary-ion mass spectroscopy, ion-backscattering, infrared emissivity measurements and transmission electron microscopy. Measurements of the temperature, dose and dose-rate dependences as well as of the effects of such materials variables as solute solubility, solute misfit and initial solute concentration has proved particularly valuable in understanding the mechanisms of segregation. The interpretation of these data in terms of current theoretical models which link solute segregation behavior to defect-solute binding interactions and/or to the relative diffusion rates of solute and solvent atoms the interstitial and vacancy migration mechanisms has, in general, been fairly successful and has provided considerable insight into the highly interrelated phenomena of solute-defect trapping, solute segregation, phase stability and void swelling. Specific examples in selected fcc, bcc and hcp alloy systems are discussed with particular emphasis given to the effects of radiation-induced segregation on the phase stability of single-phase and two-phase binary alloys and simple Fe-Cr-Ni alloys. (Auth.)

  2. Model for the Prediction of the Hydriding Thermodynamics of Pd-Rh-Co Ternary Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Teter, D.F.; Thoma, D.J.

    1999-03-01

    A dilute solution model (with respect to the substitutional alloying elements) has been developed, which accurately predicts the hydride formation and decomposition thermodynamics and the storage capacities of dilute ternary Pd-Rh-Co alloys. The effect of varying the rhodium and cobalt compositions on the thermodynamics of hydride formation and decomposition and hydrogen capacity of several palladium-rhodium-cobalt ternary alloys has been investigated using pressure-composition (PC) isotherms. Alloying in the dilute regime (<10 at.%) causes the enthalpy for hydride formation to linearly decrease with increasing alloying content. Cobalt has a stronger effect on the reduction in enthalpy than rhodium for equivalent alloying amounts. Also, cobalt reduces the hydrogen storage capacity with increasing alloying content. The plateau thermodynamics are strongly linked to the lattice parameters of the alloys. A near-linear dependence of the enthalpy of hydride formation on the lattice parameter was observed for both the binary Pd-Rh and Pd-Co alloys, as well as for the ternary Pd-Rh-Co alloys. The Pd-5Rh-3Co (at. %) alloy was found to have similar plateau thermodynamics as a Pd-10Rh alloy, however, this ternary alloy had a diminished hydrogen storage capacity relative to Pd-10Rh.

  3. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    International Nuclear Information System (INIS)

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias; Stocks, Malcolm; Caro, Alfredo

    2015-01-01

    The aim of this study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. According to our study, the salient features for the ternary alloy are a negative SRO parameter between Ni–Cr and a positive between Cr–Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni–Cr and Ni–Fe pairs and positive for Cr–Cr and Fe–Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. The predicted SRO has an impact on point-defect energetics, electron–phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys

  4. Microstructural characterization and phase transformation of ternary alloys near at Al3Ti compound

    International Nuclear Information System (INIS)

    Angeles Ch, C.

    1999-01-01

    This research work is related with the structural characteristic and compositional values of the crystalline phases, which are found in ternary alloys of Ti-Al-Fe and TI-Al-Cu. These types of alloys were obtained using a rapid solidification technique (10 3 -10 4 K/s) and pure elements such as Al, Ti, Fe and Cu (99.99%). These cooling velocities allow the formation of stable phases and small grain sizes (approximately in range of a few micras). The obtained results indicate the presence of Al 3 Ti and others phases of L1 2 type. These phases are commonly found in a matrix rich in A1. The microalloyed elements (Cu and Fe) substitute the aluminum in both kinds of phases. Alloys with low content of Cu show transition states from the tetragonal structure DO 22 to the cubic phases L1 2 . The structural characteristics of the alloys are related with some microhardness measurement. The results show that the presence of the L1 2 phase tends to increase to hardness depending of the content of this phase

  5. Effect of ternary alloying elements on microstructure and mechanical property of Nb-Si based refractory intermetallic alloy

    International Nuclear Information System (INIS)

    Kim, W.Y.; Kim, H.S.; Kim, S.K.; Ra, T.Y.; Kim, M.S.

    2005-01-01

    Microstructure and mechanical property at room temperature and at 1773 K of Nb-Si based refractory intermetallic alloys were investigated in terms of compression and fracture toughness test. Mo and V were chosen as ternary alloying elements because of their high melting points, atomic sizes smaller than Nb. Both ternary alloying elements were found to have a significant role in modifying the microstructure from dispersed structure to eutectic-like structure in Nb solid solution/Nb 5 Si 3 intermetallic composites. The 0.2% offset yield strength at room temperature increased with increasing content of ternary elements in Nb solid solution and volume fraction of Nb 5 Si 3 . At 1773 K, Mo addition has a positive role in increasing the yield strength. On the other hand, V addition has a role in decreasing the yield strength. The fracture toughness of ternary alloys was superior to binary alloys. Details will be discussed in correlation with ternary alloying, volume fraction of constituent phase, and the microstructure. (orig.)

  6. Review of Reactivity Experiments for Lithium Ternary Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Bolind, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-28

    Lithium is often the preferred choice as breeder and coolant in fusion blankets as it offers high tritium breeding, excellent heat transfer and corrosion properties, and most importantly, it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and exacerbates plant safety concerns. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium related hazards are of primary concern. Reducing chemical reactivity is the primary motivation for the development of new lithium alloys, and it is therefore important to come up with proper ways to conduct experiments that can physically study this phenomenon. This paper will start to explore this area by outlining relevant past experiments conducted with lithium/air reactions and lithium/water reactions. Looking at what was done in the past will then give us a general idea of how we can setup our own experiments to test a variety of lithium alloys.

  7. Properties of ternary NiFeW alloy coating by jet electrodeposition

    Indian Academy of Sciences (India)

    Jet electrodeposition; NiFeW alloy coating; current efficiency; microstructure; microhardness. Abstract. In this paper, ternary NiFeW alloy coatings were prepared by jet electrodeposition, and the effects of lord salt concentration, jet speed, current density and temperature on the properties of the coatings, including the ...

  8. Sn-Sb-Se based binary and ternary alloys for phase change memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung-Min

    2008-10-28

    In this work, the effect of replacing Ge by Sn and Te by Se was studied for a systematic understanding and prediction of new potential candidates for phase change random access memories applications. The temperature dependence of the electrical/structural properties and crystallization kinetics of the Sn-Se based binary and Sn-Sb-Se based ternary alloys were determined and compared with those of the GeTe and Ge-Sb-Te system. The temperature dependence of electrical and structural properties were investigated by van der Pauw measurements, X-ray diffraction, X-ray reflectometry. By varying the heating rate, the Kissinger analysis has been used to determine the combined activation barrier for crystallization. To screen the kinetics of crystallization, a static laser tester was employed. In case of binary alloys of the type Sn{sub x}Se{sub 1-x}, the most interesting candidate is SnSe{sub 2} since it crystallizes into a single crystalline phase and has high electrical contrast and reasonably high activation energy for crystallization. In addition, the SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloy system also might be sufficient for data retention due to their higher transition temperature and activation energy for crystallization in comparison to GeTe-Sb{sub 2}Te{sub 3} system. Furthermore, SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloys have a higher crystalline resistivity. The desired rapid crystallization speed can be obtained for Sn{sub 1}Sb{sub 2}Se{sub 5} and Sn{sub 2}Sb{sub 2}Se{sub 7} alloys. (orig.)

  9. New method for the simultaneous condensation of complete ternary alloy systems under ultrahigh vacuum conditions

    International Nuclear Information System (INIS)

    Mehrtens, A.; Moske, M.; Samwer, K.

    1988-01-01

    An ultrahigh vacuum apparatus is described for the simultaneous condensation of complete ternary alloy systems. Three singly controlled electron beam evaporation sources provide a constant evaporation rate of the different elements. A specially designed rotating mask guarantees a concentration gradient on the substrate according to a ternary phase diagram. The conversion of the actual concentration profile into a standard ternary phase diagram is done by simple computer calculations. They involve corrections for the beam characteristics of the evaporation sources and for the rotating mask. As an example, measurements for the Zr--Cu--Co system are given. The concentration range for the amorphous phase is compared with thermodynamic predictions using Miedema's parameter

  10. Deviations from Vegard’s law in ternary III-V alloys

    KAUST Repository

    Murphy, S. T.

    2010-08-03

    Vegard’s law states that, at a constant temperature, the volume of an alloy can be determined from a linear interpolation of its constituent’s volumes. Deviations from this description occur such that volumes are both greater and smaller than the linear relationship would predict. Here we use special quasirandom structures and density functional theory to investigate such deviations for MxN1−xAs ternary alloys, where M and N are group III species (B, Al, Ga, and In). Our simulations predict a tendency, with the exception of AlxGa1−xAs, for the volume of the ternary alloys to be smaller than that determined from the linear interpolation of the volumes of the MAs and BAs binary alloys. Importantly, we establish a simple relationship linking the relative size of the group III atoms in the alloy and the predicted magnitude of the deviation from Vegard’s law.

  11. Effect on strength of ternary alloying additions in L12 intermetallics

    International Nuclear Information System (INIS)

    Wu Yuanpang.

    1991-01-01

    The thermodynamic properties of {111} antiphase boundaries (APBs) as well as the site preference of ternary additions in an A 3 B intermetallic with L1 2 structure are studied, using a thermodynamic model. A survey of the results from a variety of ternary alloying additions to Ni 3 Al has shown that there is a conflict in the actual role which solid solution strengthening plays in the athermal increment of yield strength. For instance, a good quantitative agreement with linear concentration law is observed only in alloys with stoichiometric compositions but not in the general case of non-stoichiometric alloys. In the light of the possibility that micro-segregation could explain the experimental discrepancy, the author extends the binary solid solution strengthening theory to the ternary system in an L1 2 structure for the four real systems of Ni-Al-Si, Ni-Al-Ti, Ni-Al-Hf, and Ni-Al-V. It is found that ternary site preference plays an important role in the ternary solid solution strengthening theory with L1 2 structure. Good quantitative agreement was found between the calculated and experimentally measured strength for both stoichiometric and nonstoichiometric alloys

  12. First-principles study of ternary bcc alloys using special quasi-random structures

    International Nuclear Information System (INIS)

    Jiang Chao

    2009-01-01

    Using a combination of exhaustive enumeration and Monte Carlo simulated annealing, we have developed special quasi-random structures (SQSs) for ternary body-centered cubic (bcc) alloys with compositions of A 1 B 1 C 1 , A 2 B 1 C 1 , A 6 B 1 C 1 and A 2 B 3 C 3 , respectively. The structures possess local pair and multisite correlation functions that closely mimic those of the random bcc alloy. We employed the SQSs to predict the mixing enthalpies, nearest neighbor bond length distributions and electronic density of states of bcc Mo-Nb-Ta and Mo-Nb-V solid solutions. Our convergence tests indicate that even small-sized SQSs can give reliable results. Based on the SQS energetics, the predicting powers of the existing empirical ternary extrapolation models were assessed. The present results suggest that it is important to take into account the ternary interaction parameter in order to accurately describe the thermodynamic behaviors of ternary alloys. The proposed SQSs are quite general and can be applied to other ternary bcc alloys.

  13. Growth and properties of Al-rich InxAl1-xN ternary alloy grown on GaN template by metalorganic chemical vapour deposition

    International Nuclear Information System (INIS)

    Oh, Tae Su; Suh, Eun-Kyung; Kim, Jong Ock; Jeong, Hyun; Lee, Yong Seok; Nagarajan, S; Lim, Kee Young; Hong, Chang-Hee

    2008-01-01

    An Al-rich In x Al 1-x N ternary alloy was grown on a GaN template by metal-organic chemical vapour deposition (MOCVD). The GaN template was fabricated on a c-plane sapphire with a low temperature GaN nucleation layer. The growth of the 300 nm thick In x Al 1-x N layer was carried out under various growth temperatures and pressures. The surface morphology and the InN molar fraction of the In x Al 1-x N layer were assessed by using atomic force microscopy (AFM) and high resolution x-ray diffraction, respectively. The AFM surface images of the In x Al 1-x N ternary alloy exhibited quantum dot-like grains caused by the 3D island growth mode. The grains, however, disappeared rapidly by increasing diffusion length and mobility of the Al adatoms with increasing growth temperature and the full width at half maximum value of ternary peaks in HR-XRD decreased with decreasing growth pressure. The MOCVD growth condition with the increased growth temperature and decreased growth pressure would be effective to grow the In x Al 1-x N ternary alloy with a smooth surface and improved quality. The optical band edge of In x Al 1-x N ternary alloys was estimated by optical absorbance and, based on the results of HR-XRD and optical absorbance measurements, we obtained the bowing parameter of the In x Al 1-x N ternary alloy at b = 5.3 eV, which was slightly larger than that of previous reports

  14. Characterization of aluminium alloys rapidly solidified

    International Nuclear Information System (INIS)

    Monteiro, W.A.

    1988-01-01

    This paper discussed the investigation of the microstructural and mechanical properties of the aluminium alloys (3003; 7050; Al-9% Mg) rapidly solidified by melt spinning process (cooling rate 10 4 - 10 6 K/s). The rapidly solidification process of the studied aluminium alloys brought a microcrystallinity, a minimum presence of coarse precipitation and, also, better mechanical properties of them comparing to the same alloys using ingot process. (author) [pt

  15. Corrosion Characteristics of Ti-29Nb-xHf Ternary Alloy for Biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Pak, Sun Young; Choi, Han Chul [Chosun Univ., Kwangju (Korea, Republic of)

    2015-12-15

    The Cp-Ti and Ti-6Al-4V alloys were widely used for dental materials due to their mechanical properties and good corrosion resistance. However, Cp-Ti was known as bio-inert materials, Ti-6Al-4V alloy has a problem such as high Young modulus, potential loss of the surrounding bone, and to the release of potentially toxic ions from the alloy. To overcome this problem, Ti alloys containing Nb and Hf elements have been used for biomaterials due to low toxicity and high corrosion resistance. Especially, alloying element of Nb was known as β phase stabilizer. The β phase alloy was widely used to replace currently used implant materials. The corrosion resistances of Ti-29Nb-xHf ternary alloys were dependent on Hf content in oral environment solution.

  16. Liesegang bands in internally oxidized AgCd-based ternary alloys

    International Nuclear Information System (INIS)

    Van Rooijen, V.A.; Van Royen, E.W.; Vrijen, J.; Radelaar, S.

    1975-01-01

    The origin of the occurrence of Liesegang band formation (periodic precipitation) during internal oxidation of AgCd alloys containing concentrations of Be, Mg, Al, or Y were investigated both experimentally and theoretically. A simple model of internal oxidation of ternary alloys is presented. The theory predicts band spacing as a function of temperature, Cd concentration, and concentration of the third element in good agreement with experimental results. (U.S.)

  17. Properties of ternary NiFeW alloy coating by jet electrodeposition

    Indian Academy of Sciences (India)

    2018-03-23

    Mar 23, 2018 ... Abstract. In this paper, ternary NiFeW alloy coatings were prepared by jet electrodeposition, and the effects of lord salt concentration, jet speed, current density and temperature on the properties of the coatings, including the composition, microhardness, surface morphology, structure and corrosion ...

  18. Ternary diffusion in Cu-rich fcc Cu–Al–Si alloys at 1073 K

    International Nuclear Information System (INIS)

    Liu, Dandan; Zhang, Lijun; Du, Yong; Xu, Honghui; Jin, Zhanpeng

    2013-01-01

    Highlights: •Interdiffusivities in Cu-rich fcc Cu–Al–Si alloys at 1073 K were determined. •The present results were compared with experimental data in boundary binary systems. •The present results were validated by thermodynamic constraints and Fick’s law. •The sign of ternary cross diffusivities was predicted in terms of thermodynamics. -- Abstract: Utilizing six groups of bulk diffusion couples and with electron probe microanalysis technique, the composition dependence of ternary interdiffusion coefficients in Cu-rich fcc Cu–Al–Si alloys at 1073 K were determined by the Matano-Kirkaldy method. Using a three-dimensional representation, the obtained main ternary diffusion coefficients were found to be consistent with the experimental data in boundary binaries available in the literature. The reliability of the obtained interdiffusivities was further validated by thermodynamic constraints as well as by Fick’s second law applied to numerical simulation. The sign of the ternary cross diffusivities in fcc Cu–Al–Si alloys, which shows a noticeable effect on microstructure, was also successfully predicted in terms of thermodynamics

  19. Molecular dynamics investigation of the thermal conductivity of ternary silicon–germanium–tin alloys

    Science.gov (United States)

    Lee, Yongjin; Hwang, Gyeong S.

    2017-12-01

    A further reduction of the thermal conductivity (κ) of silicon-germanium (SiGe) alloys is indispensable for their use as thermoelectric materials. Thus far, heteroatom-doped and nanostructured SiGe systems have been mainly synthesized and tested. This work presents a possibility of reducing the κ of SiGe by alloying with tin (Sn). Our molecular dynamics simulations predict that the κ of ternary SiGeSn alloys can be 40% lower than those of binary SiGe and GeSn alloys due mainly to increased mass disorder scattering of phonons. Our findings provide insight into the mechanism of κ suppression in multielement alloys and guidance on how to design them for thermoelectric applications.

  20. Metastable Phase Separation and Concomitant Solute Redistribution of Liquid Fe-Cu-Sn Ternary Alloy

    International Nuclear Information System (INIS)

    Xiao-Mei, Zhang; Wei-Li, Wang; Ying, Ruan; Bing-Bo, Wei

    2010-01-01

    Liquid Fe-Cu-Sn ternary alloys with lower Sn contents are usually assumed to display a peritectic-type solidification process under equilibrium condition. Here we show that liquid Fe 47.5 Cu 47.5 Sn 5 ternary alloy exhibits a metastable immiscibility gap in the undercooling range of 51–329 K (0.19T L ). Macroscopic phase separation occurs once undercooling exceeds 196 K and causes the formation of a floating Fe-rich zone and a descending Cu-rich zone. Solute redistribution induces the depletion of Sn concentration in the Fe-rich zone and its enrichment in the Cu-rich zone. The primary Fe phase grows dendritically and its growth velocity increases with undercooling until the appearance of notable macrosegregation, but will decrease if undercooling further increases beyond 236 K. The microsegregation degrees of both solutes in Fe and Cu phases vary only slightly with undercooling. (condensed matter: structure, mechanical and thermal properties)

  1. A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys

    Science.gov (United States)

    Wróbel, J. S.; Nguyen-Manh, D.; Kurzydłowski, K. J.; Dudarev, S. L.

    2017-04-01

    The occurrence of segregation in dilute alloys under irradiation is a highly unusual phenomenon that has recently attracted attention, stimulated by the interest in the fundamental properties of alloys as well as by their applications. The fact that solute atoms segregate in alloys that, according to equilibrium thermodynamics, should exhibit full solubility, has significant practical implications, as the formation of precipitates strongly affects physical and mechanical properties of alloys. A lattice Hamiltonian, generalizing the so-called ‘ABV’ Ising model and including collective many-body inter-atomic interactions, has been developed to treat rhenium solute atoms and vacancies in tungsten as components of a ternary alloy. The phase stability of W-Re-vacancy alloys is assessed using a combination of density functional theory (DFT) calculations and cluster expansion (CE) simulations. The accuracy of CE parametrization is evaluated against the DFT data, and the cross-validation error is found to be less than 4.2 meV/atom. The free energy of W-Re-vacancy ternary alloys is computed as a function of temperature using quasi-canonical Monte Carlo simulations, using effective two, three and four-body interactions. In the low rhenium concentration range (chemical Re-W and Re-vacancy interactions and short-range order parameters. DFT calculations show that rhenium-vacancy binding energies can be as high as 1.5 eV if the rhenium/vacancy ratio is in the range from 2.4 to 6.6. The predicted Re clustering agrees with experimental observations of precipitation in self-ion irradiated W-2 % Re alloys and neutron-irradiated alloys containing 1.4 at. % Re.

  2. Investigation of biodegradable ternary Mg-Zn-La magnesium alloys

    Science.gov (United States)

    Özarslan, Selma; Şevik, Hüseyin; Sorar, Idris

    2018-02-01

    In this paper, the effect of Lanthanum (1, 2 and 4 wt.%) addition to biodegradable Mg-4Zn alloy and its influence on the microstructure and mechanical properties of the alloy were investigated. The alloys were produced under protective atmosphere by a cold chamber high pressure-die casting process. Microstructure analysis of the samples were carried out by scanning electron microscopy (SEM), an energy-dispersive spectrometer (EDS) and X-ray diffraction (XRD). X-ray difractometry revealed that the main phases are α-Mg and MgZn in the whole alloys. Also, the Mg17La2 phase was observed with addition of La. Hardness and tensile properties were examined to investigate the mechanical properties. Results showed that the yield strength and nanohardness of main alloy were improved from 40 % (100 MPa to 140 MPa), 24 % (from 1.04 GPa to 1.29 GPa) with addition of 4 wt.% La, respectively. However, elongation was decreased with increasing of La content.

  3. E centers in ternary Si1−x−yGexSny random alloys

    KAUST Repository

    Chroneos, Alexander

    2009-09-14

    Density functional theory calculations are used to study the association of arsenic (As) atoms to lattice vacancies and the formation of As-vacancy pairs, known as E centers, in the random Si0.375Ge0.5Sn0.125 alloy. The local environments are described by 32-atom special quasirandom structures that represent random Si1−x−yGexSny alloys. It is predicted that the nearest-neighbor environment will exert a strong influence on the stability of E centers in ternary Si0.375Ge0.5Sn0.125.

  4. Special quasirandom structures for binary/ternary group IV random alloys

    KAUST Repository

    Chroneos, Alexander I.

    2010-06-01

    Simulation of defect interactions in binary/ternary group IV semiconductor alloys at the density functional theory level is difficult due to the random distribution of the constituent atoms. The special quasirandom structures approach is a computationally efficient way to describe the random nature. We systematically study the efficacy of the methodology and generate a number of special quasirandom cells for future use. In order to demonstrate the applicability of the technique, the electronic structures of E centers in Si1-xGex and Si1-x -yGexSny alloys are discussed for a range of nearest neighbor environments. © 2010 Elsevier B.V. All rights reserved.

  5. High Permeability Ternary Palladium Alloy Membranes with Improved Sulfur and Halide Tolerances

    Energy Technology Data Exchange (ETDEWEB)

    K. Coulter

    2010-12-31

    The project team consisting of Southwest Research Institute{reg_sign} (SwRI{reg_sign}), Georgia Institute of Technology (GT), the Colorado School of Mines (CSM), TDA Research, and IdaTech LLC was focused on developing a robust, poison-tolerant, hydrogen selective free standing membrane to produce clean hydrogen. The project completed on schedule and on budget with SwRI, GT, CSM, TDA and IdaTech all operating independently and concurrently. GT has developed a robust platform for performing extensive DFT calculations for H in bulk palladium (Pd), binary alloys, and ternary alloys of Pd. Binary alloys investigated included Pd96M4 where M = Li, Na, Mg, Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Y, Zr, Nb, Mo, Tc, Ru, Rh, Ag, Cd, In, Sn, Sb, Te, Hf, Ta, W, Re, Os, Ir, Pt, Au, Tl, Pb, Bi, Ce, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. They have also performed a series of calculations on Pd{sub 70}Cu{sub 26}Ag{sub 4}, Pd{sub 70}Cu{sub 26}Au{sub 4}, Pd{sub 70}Cu{sub 26}Ni{sub 4}, Pd{sub 70}Cu{sub 26}Pt{sub 4}, and Pd{sub 70}Cu{sub 26}Y{sub 4}. SwRI deposited and released over 160 foils of binary and ternary Pd alloys. There was considerable work on characterizing and improving the durability of the deposited foils using new alloy compositions, post annealing and ion bombardment. The 10 and 25 {micro}m thick films were sent to CSM, TDA and IdaTech for characterization and permeation testing. CSM conducted over 60 pure gas permeation tests with SwRI binary and ternary alloy membranes. To date the PdAu and PdAuPt membranes have exhibited the best performance at temperatures in the range of 423-773 C and their performance correlates well with the predictions from GT. TDA completed testing under the Department of Energy (DOE) WGS conditions on over 16 membranes. Of particular interest are the PdAuPt alloys that exhibited only a 20% drop in flux when sulfur was added to the gas mixture and the flux was completely recovered when the sulfur flow was stopped. IdaTech tested binary

  6. Rapidly solidified long-range-ordered alloys

    International Nuclear Information System (INIS)

    Lee, E.H.; Koch, C.C.; Liu, C.T.

    1981-01-01

    The influence of rapid solidification processing on the microstructure of long-range-ordered alloys in the (Fe, Co, Ni) 3 V system has been studied by transmission electron microscopy. The main microstructural feature of the as-quenched alloys was a fine cell structure (approx. 300 nm diameter) decorated with carbide particles. This structure was maintained aftr annealing treatments which develop the ordered crystal structure. Other features of the microstructures both before and after annealing are presented and discussed. 6 figures

  7. Development of ternary alloy cathode catalysts for phosphoric acid fuel cells: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Jalan, V.; Kosek, J.; Giner, J.; Taylor, E. J.; Anderson, E.; Bianchi, V.; Brooks, C.; Cahill, K.; Cropley, C.; Desai, M.; Frost, D.; Morriseau, B.; Paul, B.; Poirier, J.; Rousseau, M.; Swette, L.; Waterhouse, R.

    1988-11-01

    The overall objective of the program was the identification development and incorporation of high activity platinum ternary alloys on corrosion resistant supports, for use in advanced phosphoric acid fuel cells. Two high activity ternary alloys, Pr-Cr-Ce and Pt-Ni-Co, both supported on Vulcan XC-72, were identified during the course of the program. The Pr-Ni-Co system was selected for optimization, including preparation and evaluation on corrosion resistant supports such as 2700/degree/C heat-treated Vulcan XC-72 and 2700/degree/ heat-treated Black Pearls 2000. A series of tests identified optimum metal ratios, heat-treatment temperatures and heat-treatment atmospheres for the Pr-Ni-Co system. During characterization testing, it was discovered that approximately 50% of the nickel and cobalt present in the starting material could be removed, subsequent to alloy formation, without degrading performance. Extremely stable full cell performance was observed for the Pt-Ni-Co system during a 10,000 hour atmosphere pressure life test. Several theories are proposed to explain the enhancement in activity due to alloy formation. Recommendations are made for future research in this area. 62 refs., 23 figs., 27 tabs.

  8. Development of aluminum (Al5083)-clad ternary Ag-In-Cd alloy for JSNS decoupled moderator

    International Nuclear Information System (INIS)

    Teshigawara, M.; Harada, M.; Saito, S.; Oikawa, K.; Maekawa, F.; Futakawa, M.; Kikuchi, K.; Kato, T.; Ikeda, Y.; Naoe, T.; Koyama, T.; Ooi, T.; Zherebtsov, S.; Kawai, M.; Kurishita, H.; Konashi, K.

    2006-01-01

    To develop Ag (silver)-In (indium)-Cd (cadmium) alloy decoupler, a method is needed to bond the decoupler between Al alloy (Al5083) and the ternary Ag-In-Cd alloy. We found that a better HIP condition was temperature, pressure and holding time at 803 K, 100 MPa and 10 min. for small test pieces (φ22 mm in dia. x 6 mm in height). Hardened layer due to the formation of AlAg 2 was found in the bonding layer, however, the rupture strength of the bonding layer is more than 30 MPa, the calculated design stress. Bonding tests of a large size piece (200 x 200 x 30 mm 3 ), which simulated the real scale, were also performed according to the results of small size tests. The result also gave good bonding and enough required-mechanical-strength

  9. Investigations of binary and ternary phase change alloys for future memory applications

    International Nuclear Information System (INIS)

    Rausch, Pascal

    2012-01-01

    The understanding of phase change materials is of great importance because it enables us to predict properties and tailor alloys which might be even better suitable to tackle challenges of future memory applications. Within this thesis two topics have been approached: on the one hand the understanding of the alloy In 3 Sb 1 Te 2 and on the other hand the so called resistivity drift of amorphous Ge-Sn-Te phase change materials. The main topic covers an in depth discussion of the ternary alloy In 3 Sb 1 Te 2 . At first glance, this alloy does not fit into the established concepts of phase alloys: e.g. the existence of resonant bonding in the crystalline phase is not obvious and the number of p-electrons is very low compared to other phase change alloys. Furthermore amorphous phase change alloys with high indium content are usually not discussed in literature, an exception being the recent work by Spreafico et al. on InGeTe 2 . For the first time a complete description of In 3 Sb 1 Te 2 alloy is given in this work for the crystalline phase, amorphous phase and crystallization process. In addition comparisons are drawn to typical phase change materials like Ge 2 Sb 2 Te 5 /GeTe or prototype systems like AgInTe 2 and InTe. The second topic of this thesis deals with the issue of resistivity drift, i.e. the increase of resistivity of amorphous phase change alloys with aging. This drift effect greatly hampers the introduction of multilevel phase change memory devices into the market. Recently a systematic decrease of drift coefficient with stoichiometry has been observed in our group going from GeTe over Ge 3 Sn 1 Te 4 to Ge 2 Sn 2 Te 4 . These alloys are investigated with respect to constraint theory.

  10. Rapid assay of the comparative degradation of acetaminophen in binary and ternary combinations

    Directory of Open Access Journals (Sweden)

    Adnan Mujahid

    2014-09-01

    Full Text Available The study is intended to monitor the comparative degradation rates of acetaminophen in binary and ternary combinations by UV–vis spectroscopy. The drugs were exposed to UV-rays in blister packing. The exposition time was 24, 48 and 72 h for both shorter and longer wavelengths. The problem of overlapping UV bands of aspirin and caffeine with acetaminophen was solved by extracting them in diethylether, therefore, we developed a straightforward, rapid and accurate assay method for measuring acetaminophen concentration in binary and ternary mixtures and to monitor its degradation.

  11. Robust tribo-mechanical and hot corrosion resistance of ultra-refractory Ta-Hf-C ternary alloy films.

    Science.gov (United States)

    Yate, Luis; Coy, L Emerson; Aperador, Willian

    2017-06-08

    In this work we report the hot corrosion properties of binary and ternary films of the Ta-Hf-C system in V 2 O 5 -Na 2 SO 4 (50%wt.-50%wt.) molten salts at 700 °C deposited on AISI D3 steel substrates. Additionally, the mechanical and nanowear properties of the films were studied. The results show that the ternary alloys consist of solid solutions of the TaC and HfC binary carbides. The ternary alloy films have higher hardness and elastic recoveries, reaching 26.2 GPa and 87%, respectively, and lower nanowear when compared to the binary films. The corrosion rates of the ternary alloys have a superior behavior compared to the binary films, with corrosion rates as low as 0.058 μm/year. The combination and tunability of high hardness, elastic recovery, low nanowear and an excellent resistance to high temperature corrosion demonstrates the potential of the ternary Ta-Hf-C alloy films for applications in extreme conditions.

  12. Dispersion of nonresonant third-order nonlinearities in GeSiSn ternary alloys.

    Science.gov (United States)

    De Leonardis, Francesco; Troia, Benedetto; Soref, Richard A; Passaro, Vittorio M N

    2016-09-13

    Silicon (Si), tin (Sn), and germanium (Ge) alloys have attracted research attention as direct band gap semiconductors with applications in electronics and optoelectronics. In particular, GeSn field effect transistors can exhibit very high performance in terms of power reduction and operating speed because of the high electron drift mobility, while the SiGeSn system can be constructed using CMOS-compatible techniques to realize lasers, LED, and photodetectors. The wide Si, Ge and Sn transparencies allow the use of binary and ternary alloys extended to mid-IR wavelengths, where nonlinearities can also be employed. However, neither theoretical or experimental predictions of nonlinear features in SiGeSn alloys are reported in the literature. For the first time, a rigorous and detailed physical investigation is presented to estimate the two photon absorption (TPA) coefficient and the Kerr refractive index for the SiGeSn alloy up to 12 μm. The TPA spectrum, the effective TPA wavelength cut-off, and the Kerr nonlinear refractive index have been determined as a function of alloy compositions. The promising results achieved can pave the way to the demonstration of on-chip nonlinear-based applications, including mid-IR spectrometer-on-a-chip, all-optical wavelength down/up-conversion, frequency comb generation, quantum-correlated photon-pair source generation and supercontinuum source creation, as well as Raman lasing.

  13. Phase diagrams of the ternary alloy with a single-ion anisotropy in the mean-field approximation

    International Nuclear Information System (INIS)

    Dely, J.; Bobak, A.

    2006-01-01

    The phase diagram of the AB p C 1-p ternary alloy consisting of Ising spins S A =32, S B =2, and S C =52 is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. The effect of the single-ion anisotropy on the phase diagrams is discussed by changing values of the parameters in the model Hamiltonian and comparison is made with the recently reported finite-temperature phase diagrams for the ternary alloy having spin S B =1

  14. An improved ternary vector system for Agrobacterium-mediated rapid maize transformation.

    Science.gov (United States)

    Anand, Ajith; Bass, Steven H; Wu, Emily; Wang, Ning; McBride, Kevin E; Annaluru, Narayana; Miller, Michael; Hua, Mo; Jones, Todd J

    2018-04-23

    A simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation. The super binary plasmid pSB1 is a mainstay of maize transformation. However, the large size of the base vector makes it challenging to clone, the process of co-integration is cumbersome and inefficient, and some Agrobacterium strains are known to give rise to spontaneous mutants resistant to tetracycline. These limitations present substantial barriers to high throughput vector construction. Here we describe a smaller, simpler and versatile ternary vector system for maize transformation that utilizes improved accessory plasmids requiring no co-integration step. In addition, the newly described accessory plasmids have restored virulence genes found to be defective in pSB1, as well as added virulence genes. Testing of different configurations of the accessory plasmids in combination with T-DNA binary vector as ternary vectors nearly doubles both the raw transformation frequency and the number of transformation events of usable quality in difficult-to-transform maize inbreds. The newly described ternary vectors enabled the development of a rapid maize transformation method for elite inbreds. This vector system facilitated screening different origins of replication on the accessory plasmid and T-DNA vector, and four combinations were identified that have high (86-103%) raw transformation frequency in an elite maize inbred.

  15. Swelling of austenitic iron-nickelchromium ternary alloys during fast neutron irradiation

    International Nuclear Information System (INIS)

    Garner, F.A.; Brager, H.R.

    1984-01-01

    Swelling data are now available for 15 iron-nickel-chromium ternary alloys irradiated to exposures as high as 110 displacements per atom (dpa) in Experimental Breeder Reactor-II (EBR-II) between 400 and 650 0 C. These data confirm trends observed at lower exposure levels and extend the generality of earlier conclusions to cover a broader range of composition and temperature. It appears that all austenitic iron-nickel-chromium ternary alloys eventually approach an intrinsic swelling rate of about1%/dpa over a range of temperature even wider than studied in this experiment. The duration of the transient regime that precedes the attainment of this rate is quite sensitive to nickel and chromium content, however. At nickel and chromium levels typical of 300 series steels, swelling does not saturate at engineering-relevant levels. However, there appears to be a tendency toward saturation that increases with declining temperature, increasing nickel and decreasing chromium levels. Comparisons of these results are made with those of similar studies conducted with charged particles. Conclusions are then drawn concerning the validity of charged particle simulation studies to determine the compositional and temperature dependence of swelling

  16. The band gap of II-Vi ternary alloys in a tight-binding description

    Energy Technology Data Exchange (ETDEWEB)

    Olguin, Daniel; Blanquero, Rafael [Instituto Politecnico Nacional, Mexico, D.F (Mexico); De Coss, Romeo [Instituto Politecnico Nacional, Yucatan (Mexico)

    2001-02-01

    We present tight-binding calculations for the band gap of II-Vi pseudobinary ternary alloys. We use an sp{sup 3} s* tight-binding Hamiltonian which include spin-orbit coupling. The band gap composition dependence is calculated using a extended version of the virtual crystal approximation, which introduce an empirical correction factor that takes into account the non-linear dependence of the band gap with the composition. The results compare quite well with the experimental data, both for the ternary alloys with wide band gap and for the narrow band gap ones. [Spanish] Presentamos el calculo de la banda de energia prohibida de aleaciones ternarias de compuestos II-VI. El calculo, que incluye interaccion espin-orbita, se hace con el metodo de enlace fuerte, utilizando una base ortogonal de cinco orbitales atomicos por atomo (sp{sup 3} s*), en conjunto con la aproximacion del cristal virtual. En la aproximacion del cristal virtual, incluimos un factor de correccion que toma en cuenta la no linealidad de la banda de energia prohibida como funcion de la concentracion. Con esta correccion nuestros resultados reproducen aceptablemente los datos experimentales hallados en la literatura.

  17. The thermodynamic stability induced by solute co-segregation in nanocrystalline ternary alloys

    International Nuclear Information System (INIS)

    Liang, Tao; Chen, Zheng; Zhang, Jinyong; Zhang, Ping; Yang, Xiaoqin

    2017-01-01

    The grain growth and thermodynamic stability induced by solute co-segregation in ternary alloys are presented. Grain growth behavior of the single-phase supersaturated grains prepared in Ni-Fe-Pb alloy melt at different undercoolings was investigated by performing isothermal annealings at T = 400 C-800 C. Combining the multicomponent Gibbs adsorption equation and Guttmann's grain boundary segregation model, an empirical relation for isothermal grain growth was derived. By application of the model to grain growth in Ni-Fe-Pb, Fe-Cr-Zr and Fe-Ni-Zr alloys, it was predicted that driving grain boundary energy to zero is possible in alloys due to the co-segregation induced by the interactive effect between the solutes Fe/Pb, Zr/Ni and Zr/Cr. A non-linear relationship rather than a simple linear relation between 1/D* (D* the metastable equilibrium grain size) and ln(T) was predicted due to the interactive effect.

  18. The thermodynamic stability induced by solute co-segregation in nanocrystalline ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Tao; Chen, Zheng; Zhang, Jinyong; Zhang, Ping [China Univ. of Mining and Technology, Xuzhou (China). School of Mateial Science and Engineering; Yang, Xiaoqin [China Univ. of Mining and Technology, Xuzhou (China). School of Chemical Engineering and Technology

    2017-06-15

    The grain growth and thermodynamic stability induced by solute co-segregation in ternary alloys are presented. Grain growth behavior of the single-phase supersaturated grains prepared in Ni-Fe-Pb alloy melt at different undercoolings was investigated by performing isothermal annealings at T = 400 C-800 C. Combining the multicomponent Gibbs adsorption equation and Guttmann's grain boundary segregation model, an empirical relation for isothermal grain growth was derived. By application of the model to grain growth in Ni-Fe-Pb, Fe-Cr-Zr and Fe-Ni-Zr alloys, it was predicted that driving grain boundary energy to zero is possible in alloys due to the co-segregation induced by the interactive effect between the solutes Fe/Pb, Zr/Ni and Zr/Cr. A non-linear relationship rather than a simple linear relation between 1/D* (D* the metastable equilibrium grain size) and ln(T) was predicted due to the interactive effect.

  19. Investigations of binary and ternary phase change alloys for future memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Pascal

    2012-09-13

    The understanding of phase change materials is of great importance because it enables us to predict properties and tailor alloys which might be even better suitable to tackle challenges of future memory applications. Within this thesis two topics have been approached: on the one hand the understanding of the alloy In{sub 3}Sb{sub 1}Te{sub 2} and on the other hand the so called resistivity drift of amorphous Ge-Sn-Te phase change materials. The main topic covers an in depth discussion of the ternary alloy In{sub 3}Sb{sub 1}Te{sub 2}. At first glance, this alloy does not fit into the established concepts of phase alloys: e.g. the existence of resonant bonding in the crystalline phase is not obvious and the number of p-electrons is very low compared to other phase change alloys. Furthermore amorphous phase change alloys with high indium content are usually not discussed in literature, an exception being the recent work by Spreafico et al. on InGeTe{sub 2}. For the first time a complete description of In{sub 3}Sb{sub 1}Te{sub 2} alloy is given in this work for the crystalline phase, amorphous phase and crystallization process. In addition comparisons are drawn to typical phase change materials like Ge{sub 2}Sb{sub 2}Te{sub 5}/GeTe or prototype systems like AgInTe{sub 2} and InTe. The second topic of this thesis deals with the issue of resistivity drift, i.e. the increase of resistivity of amorphous phase change alloys with aging. This drift effect greatly hampers the introduction of multilevel phase change memory devices into the market. Recently a systematic decrease of drift coefficient with stoichiometry has been observed in our group going from GeTe over Ge{sub 3}Sn{sub 1}Te{sub 4} to Ge{sub 2}Sn{sub 2}Te{sub 4}. These alloys are investigated with respect to constraint theory.

  20. Composition Optimization of Lithium-Based Ternary Alloy Blankets for Fusion Reactors

    Science.gov (United States)

    Jolodosky, Alejandra

    The goal of this dissertation is to examine the neutronic properties of a novel type of fusion reactor blanket material in the form of lithium-based ternary alloys. Pure liquid lithium, first proposed as a blanket for fusion reactors, is utilized as both a tritium breeder and a coolant. It has many attractive features such as high heat transfer and low corrosion properties, but most importantly, it has a very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns including degradation of the concrete containment structure. The work of this thesis began as a collaboration with Lawrence Livermore National Laboratory in an effort to develop a lithium-based ternary alloy that can maintain the beneficial properties of lithium while reducing the reactivity concerns. The first studies down-selected alloys based on the analysis and performance of both neutronic and activation characteristics. First, 3-D Monte Carlo calculations were performed to evaluate two main neutronics performance parameters for the blanket: tritium breeding ratio (TBR), and energy multiplication factor (EMF). Alloys with adequate results based on TBR and EMF calculations were considered for activation analysis. Activation simulations were executed with 50 years of irradiation and 300 years of cooling. It was discovered that bismuth is a poor choice due to achieving the highest decay heat, contact dose rates, and accident doses. In addition, it does not meet the waste disposal ratings (WDR). The straightforward approach to obtain Monte Carlo TBR and EMF results required 231 simulations per alloy and became computationally expensive, time consuming, and inefficient. Consequently, alternate methods were pursued. A collision history-based methodology recently developed for the Monte Carlo code Serpent, calculates perturbation effects on practically

  1. L1{sub 0} phase formation in ternary FePdNi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Montes-Arango, A.M. [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Bordeaux, N.C. [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States); Liu, J.; Barmak, K. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Lewis, L.H., E-mail: lhlewis@neu.edu [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States)

    2015-11-05

    Metallurgical routes to highly metastable phases are required to access new materials with new functionalities. To this end, the stability of the tetragonal chemically ordered L1{sub 0} phase in the ternary Fe–Pd–Ni system is quantified to provide enabling information concerning synthesis of L1{sub 0}-type FeNi, a highly attractive yet highly elusive advanced permanent magnet candidate. Fe{sub 50}Pd{sub 50−x}Ni{sub x} (x = 0–7 at%) samples were arc-melted and annealed at 773 K (500 °C) for 100 h to induce formation of the chemically ordered L1{sub 0} phase. Coupled calorimetry, structural and magnetic investigations allow determination of an isothermal section of the ternary Fe–Pd–Ni phase diagram featuring a single phase L1{sub 0} region near the FePd boundary for x < 6 at%. It is demonstrated that increased Ni content in Fe{sub 50}Pd{sub 50−x}Ni{sub x} alloys systematically decreases the order-disorder transition temperature, resulting in a lower thermodynamic driving force for the ordering phase transformation. The Fe{sub 50}Pd{sub 50−x}Ni{sub x} L1{sub 0} → fcc disordering transformation is determined to occur via a two-step process, with compositionally-dependent enthalpies and transition temperatures. These results highlight the need to investigate ternary alloys with higher Ni content to determine the stability range of the L1{sub 0} phase near the FeNi boundary, thereby facilitating kinetic access to the important L1{sub 0} FeNi ferromagnetic phase. - Highlights: • Chemical ordering in FePdNi enhances intrinsic and extrinsic magnetic properties. • 773 K annealed FePdNi alloys studied show a stable L1{sub 0} phase for Ni ≤ 5.2 at%. • Chemical disordering in FePdNi occurs by a previously unreported two-step process. • Ni additions to FePd dramatically decrease the chemical order-disorder temperature. • The chemical-ordering transformation kinetics are greatly affected by Ni content.

  2. Mechanical properties of some binary, ternary and quaternary III-V compound semiconductor alloys

    International Nuclear Information System (INIS)

    Navamathavan, R.; Arivuoli, D.; Attolini, G.; Pelosi, C.; Choi, Chi Kyu

    2007-01-01

    Vicker's microindentation tests have been carried out on InP/InP, GaAs/InP, InGaAs/InP and InGaAsP/InP III-V compound semiconductor alloys. The detailed mechanical properties of these binary, ternary and quaternary epilayers were determined from the indentation experiments. Microindentation studies of (1 1 1) GaAs/InP both A and B faces show that the hardness value increases with load and attains a constant for further increase in load and the microhardness values were found to lie between 3.5 and 4.0 GPa. The microhardness values of InGaAs/InP epilayers with different thickness were found to lie between 3.93 and 4.312 GPa. The microhardness values of InGaAsP/InP with different elemental composition were found to lie between 5.08 and 5.73 GPa. The results show that the hardness of the quaternary alloy drastically increases, the reason may be that the increase in As concentration hardens the lattice when phosphorous concentration is less and hardness decreases when phosphorous is increased. It was interestingly observed that the hardness value increases as we proceed from binary to quaternary III-V compound semiconductor alloys

  3. Cooling thermal parameters and microstructure features of directionally solidified ternary Sn–Bi–(Cu,Ag) solder alloys

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Bismarck L., E-mail: bismarck_luiz@yahoo.com.br [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil); Garcia, Amauri [Department of Manufacturing and Materials Engineering, University of Campinas, UNICAMP, 13083-860 Campinas, SP (Brazil); Spinelli, José E. [Department of Materials Engineering, Federal University of São Carlos, UFSCar, 13565-905 São Carlos, SP (Brazil)

    2016-04-15

    Low temperature soldering technology encompasses Sn–Bi based alloys as reference materials for joints since such alloys may be molten at temperatures less than 180 °C. Despite the relatively high strength of these alloys, segregation problems and low ductility are recognized as potential disadvantages. Thus, for low-temperature applications, Bi–Sn eutectic or near-eutectic compositions with or without additions of alloying elements are considered interesting possibilities. In this context, additions of third elements such as Cu and Ag may be an alternative in order to reach sounder solder joints. The length scale of the phases and their proportions are known to be the most important factors affecting the final wear, mechanical and corrosions properties of ternary Sn–Bi–(Cu,Ag) alloys. In spite of this promising outlook, studies emphasizing interrelations of microstructure features and solidification thermal parameters regarding these multicomponent alloys are rare in the literature. In the present investigation Sn–Bi–(Cu,Ag) alloys were directionally solidified (DS) under transient heat flow conditions. A complete characterization is performed including experimental cooling thermal parameters, segregation (XRF), optical and scanning electron microscopies, X-ray diffraction (XRD) and length scale of the microstructural phases. Experimental growth laws relating dendritic spacings to solidification thermal parameters have been proposed with emphasis on the effects of Ag and Cu. The theoretical predictions of the Rappaz-Boettinger model are shown to be slightly above the experimental scatter of secondary dendritic arm spacings for both ternary Sn–Bi–Cu and Sn–Bi–Ag alloys examined. - Highlights: • Dendritic growth prevailed for the ternary Sn–Bi–Cu and Sn–Bi–Ag solder alloys. • Bi precipitates within Sn-rich dendrites were shown to be unevenly distributed. • Morphology and preferential region for the Ag{sub 3}Sn growth depend on Ag

  4. The ternary alloy with a structure of Prussian blue analogs in a transverse field

    International Nuclear Information System (INIS)

    Dely, J.; Bobak, A.

    2007-01-01

    The effects of applied transverse field on transition and compensation temperatures of the AB p C 1-p ternary alloy consisting of spins S A =3/2 , S B =2, and S C =5/2 are investigated by the use of a mean-field theory. The structure and the spin values of the model correspond to the Prussian blue analog of the type (Fe p II Mn 1-p II ) 1.5 [Cr III (CN) 6 ].nH 2 O. We find that two or even three compensation points may be induced by a transverse field for the system with appropriate values of the parameters in the model Hamiltonian. In particular, the influence of a transverse field on the compensation point in the ground state is examined

  5. Ternary Bi-Cu-Ni alloys – thermodynamics, characterization, mechanical and electrical properties

    Directory of Open Access Journals (Sweden)

    Branislav Radomir Marković

    2017-09-01

    Full Text Available The Bi–Cu–Ni ternary system belongs to the group of potential Cu-Ni-based advanced lead-free solder materials for high temperature application. The paper shows results of the thermodynamic calculations using general solution model along the line with the molar ratio of Cu: Ni = 1:1. The experimental part shows thermal, structural, electrical and mechanical properties based on differential scanning calorimetry (DSC, scanning electron microscopy with energy dispersive spectrometry (SEM-EDS, electroconductivity and hardness measurements of the alloys selected in the section from bismuth corner with molar ratio Cu: Ni = 1:1, Cu: Ni = 3:1, and Cu: Ni = 1:3.

  6. The single-ion anisotropy effects in the mixed-spin ternary-alloy

    Science.gov (United States)

    Albayrak, Erhan

    2018-04-01

    The effect of single-ion anisotropy on the thermal properties of the ternary-alloy in the form of ABpC1-p is investigated on the Bethe lattice (BL) in terms of exact recursion relations. The simulation on the BL consists of placing A atoms (spin-1/2) on the odd shells and randomly placing B (spin-3/2) or C (spin-5/2) atoms with concentrations p and 1 - p, respectively, on the even shells. The phase diagrams are calculated in possible planes spanned by the system parameters: temperature, single-ion anisotropy, concentration and ratio of the bilinear interaction parameters for z = 3 corresponding to the honeycomb lattice. It is found that the crystal field drives the system to the lowest possible state therefore reducing the temperatures of the critical lines in agreement with the literature.

  7. A comparative study of critical phenomena and magnetocaloric properties of ferromagnetic ternary alloys

    Science.gov (United States)

    Yüksel, Yusuf; Akinci, Ümit

    2018-01-01

    Magnetic and magnetocaloric properties, as well as the phase diagrams of a ferromagnetic ternary alloy system have been studied. A detailed comparison of two different methods, namely the effective field theory (EFT), and Monte Carlo (MC) simulations has been provided. Our numerical data show that the general qualitative picture presented by two methods are in a good agreement with each other. In terms of the magnetocaloric properties, our results yield that it is possible to design magnetic materials with a variety of working temperatures and magnetocaloric properties (such as large ΔSM and q values) by manipulating the magnetic phase transition via tuning the compositional factor (i.e. the mixing ratio of sublattice ions). The observed magnetocaloric effect has been found to be a direct one with ΔSM < 0 associated with a second order phase transition.

  8. Molecular dynamics study of the ternary Cu50Ti25Zr25 bulk glass forming alloy

    Directory of Open Access Journals (Sweden)

    Celtek M.

    2011-05-01

    Full Text Available The structure and thermodynamic properties of a ternary Cu50Ti25Zr25 metallic glass forming alloy in solid-liquid to glass phases were studied using molecular dynamics (MD method based on tight-binding (TB potentials. An atomic description of the melting, glass formation and crystallization process has been analyzed using different heating and cooling rates. The computed Glass Forming Ability (GFA parameters are in good agreement with experimental data. The structure analysis of the Cu50Ti25Zr25 based on molecular dynamics simulation will be also presented and compared with available MD results. We have also discussed the crystallization transition with two different interatomic potentials used in this work

  9. Equiaxed and columnar dendrite growth simulation in Al-7Si- Mg ternary alloys using cellular automaton method

    International Nuclear Information System (INIS)

    Chen, Rui; Xu, Qingyan; Liu, Baicheng

    2015-01-01

    In this paper, a modified cellular automaton (MCA) model allowing for the prediction of dendrite growth of Al-Si-Mg ternary alloys in two and three dimensions is presented. The growth kinetic of S/L interface is calculated based on the solute equilibrium approach. In order to describe the dendrite growth with arbitrarily crystallographic orientations, this model introduces a modified decentered octahedron algorithm for neighborhood tracking to eliminate the effect of mesh dependency on dendrite growth. The thermody namic and kinetic data needed for dendrite growth is obtained through coupling with Pandat software package in combination with thermodynamic/kinetic/equilibrium phase diagram calculation databases. The effect of interactions between various alloying elements on solute diffusion coefficient is considered in the model. This model has first been used to simulate Al-7Si (weight percent) binary dendrite growth followed by a validation using theoretical predictions. For ternary alloy, Al-7Si-0.5Mg dendrite simulation has been carried out and the effects of solute interactions on diffusion matrix as well as the differences of Si and Mg in solute distribution have been analyzed. For actual application, this model has been applied to simulate the equiaxed dendrite growth with various crystallographic orientations of Al-7Si-0.36Mg ternary alloy, and the predicted secondary dendrite arm spacing (SDAS) shows a reasonable agreement with the experimental ones. Furthermore, the columnar dendrite growth in directional solidification has also been simulated and the predicted primary dendrite arm spacing (PDAS) is in good agreement with experiments. The simulated results effectively demonstrate the abilities of the model in prediction of dendritic microstructure of Al-Si-Mg ternary alloy. (paper)

  10. Equiaxed and columnar dendrite growth simulation in Al-7Si- Mg ternary alloys using cellular automaton method

    Science.gov (United States)

    Chen, Rui; Xu, Qingyan; Liu, Baicheng

    2015-06-01

    In this paper, a modified cellular automaton (MCA) model allowing for the prediction of dendrite growth of Al-Si-Mg ternary alloys in two and three dimensions is presented. The growth kinetic of S/L interface is calculated based on the solute equilibrium approach. In order to describe the dendrite growth with arbitrarily crystallographic orientations, this model introduces a modified decentered octahedron algorithm for neighborhood tracking to eliminate the effect of mesh dependency on dendrite growth. The thermody namic and kinetic data needed for dendrite growth is obtained through coupling with Pandat software package in combination with thermodynamic/kinetic/equilibrium phase diagram calculation databases. The effect of interactions between various alloying elements on solute diffusion coefficient is considered in the model. This model has first been used to simulate Al-7Si (weight percent) binary dendrite growth followed by a validation using theoretical predictions. For ternary alloy, Al-7Si-0.5Mg dendrite simulation has been carried out and the effects of solute interactions on diffusion matrix as well as the differences of Si and Mg in solute distribution have been analyzed. For actual application, this model has been applied to simulate the equiaxed dendrite growth with various crystallographic orientations of Al-7Si-0.36Mg ternary alloy, and the predicted secondary dendrite arm spacing (SDAS) shows a reasonable agreement with the experimental ones. Furthermore, the columnar dendrite growth in directional solidification has also been simulated and the predicted primary dendrite arm spacing (PDAS) is in good agreement with experiments. The simulated results effectively demonstrate the abilities of the model in prediction of dendritic microstructure of Al-Si-Mg ternary alloy.

  11. Aluminum nitride, Scandium nitride, and Aluminum-Scandium-Nitride ternary alloys : Structural, optical, and electrical properties

    Science.gov (United States)

    Deng, Ruopeng

    Al and Sc are iso-electric, both of which have three valence electrons. Their nitrides AlN and ScN both have high melting points, high hardness, and good chemical inertness. And their distinct properties find applications in different areas: AlN in piezoelectric acoustic-wave devices, and ScN as candidate for high-temperature thermoelectricity. While there are unsettled problems to solve for AlN and ScN alone, which are to obtain tilted c-axis texture in AlN for shear mode acoustic-wave devices to maximize performance, and to determine electronic band structure of ScN that has been long debated due to free carrier effect, the alloying between AlN and ScN is also intriguing in that the ternary alloy Al-Sc-N connects their similarity and opens even wider possibility and greater potential. The significantly enhanced piezoelectric coefficient in the alloy compared to pure AlN is one of the best examples that is little understood, and alternate bandgap engineering in LED fabrication would probably be another contribution from the alloy. Structural, optical, and electrical properties of AlN, ScN, and Al-Sc-N ternary alloys are thus studied in order to answer these questions, and to explore more fundamental physics characteristics within these nitride materials. For the purpose of achieving tilted c-axis texture in AlN, off-axis deposition is conducted with a variable deposition angle α = 0-84° in 5 mTorr pure N2 at room temperature. XRD pole figure analysis show that layers deposited from a normal angle (α = 0°) exhibit fiber texture, with the c-axis tilted by 42+/-2° off the substrate normal. However, as α is increased to 45°, two preferred in-plane grain orientations emerge, with populations I and II having the c-axis tilted towards and away from the deposition flux, by 53+/-2° and 47+/-1° off the substrate normal, respectively. Increasing alpha further to 65 and 84°, results in the development of a single population II with a 43+/-1° tilt. The observed tilt

  12. Structural, mechanical and electrical properties of alloys in ternary Ag-Bi-Zn system

    Directory of Open Access Journals (Sweden)

    Minic, Duško M.

    2015-06-01

    Full Text Available Structural, mechanical and electrical properties of selected alloys in ternary Ag-Bi-Zn system are presented in this paper. Chosen alloys were investigated using X-Ray Diffraction (XRD, light optical microscopy, Scanning Electron Microscopy combined with Energy Dispersive Spectrometry (SEM-EDS, as well as by electrical conductivity and Brinell hardness measurements. Isolines of electrical conductivity and hardness for the entire Ag-Bi-Zn system were calculated using regression models.Este trabajo estudia las propiedades estructurales, mecánicas y eléctricas de aleaciones seleccionadas del sistema ternario Ag-Bi-Zn. Las aleaciones elegidas se han caracterizado por medio de difracción de rayos X, microscopía óptica, microscopía electrónica de barrido combinada con espectrometría de dispersión de energía, así como por medio de medidas de conductividad eléctrica y dureza Brinell. Por medio de modelos de regresión se han calculado las líneas de isoconductividad eléctrica y dureza para todo el sistema Ag-Bi-Zn.

  13. Multifunctional properties related to magnetostructural transitions in ternary and quaternary Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dubenko, Igor, E-mail: igor_doubenko@yahoo.com [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Quetz, Abdiel; Pandey, Sudip; Aryal, Anil; Eubank, Michael [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Rodionov, Igor; Prudnikov, Valerii; Granovsky, Alexander [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); Lahderanta, Erkki [Lappeenranta University of Technology, 53851 (Finland); Samanta, Tapas; Saleheen, Ahmad; Stadler, Shane [Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Ali, Naushad [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States)

    2015-06-01

    In this report, the results of a study on the effects of compositional variations induced by the small changes in concentrations of the parent components and/or by the substitution of Ni, Mn, or In by an extra element Z, on the phase transitions, and phenomena related to the magnetostructural transitions in off-stoichiometric Ni–Mn–In based Heusler alloys are summarized. The crystal structures, phase transitions temperatures, and magnetic and magnetocaloric properties were analyzed for representative samples of the following systems (all near 15 at% indium concentration): Ni–Mn–In, Ni–Mn–In–Si, Ni–Mn–In–B, Ni–Mn–In–Cu, Ni–Mn–In–Cu–B, Ni–Mn–In–Fe, Ni–Mn–In–Ag, and Ni–Mn–In–Al. - Highlights: • The experimental results on phase transitions temperatures, adiabatic temperature changes, magnetoresistance and heat flow for the ternary and quaternary Heusler alloys based on Ni{sub 50}Mn{sub 35}In{sub 15} demonstrate high sensitivity of magnetic properties to the small changes in concentrations of the parent components and/or by the substitution of Ni, Mn, or In by an additional element Z. • The phenomena related to the magnetostructural transitions strongly depend on the weighted average radius of constituent ions.

  14. Determination of thermodynamic properties of aluminum based binary and ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Altıntas, Yemliha [Abdullah Gül University, Faculty of Engineering, Department of Materials Science and Nanotechnology, 38039, Kayseri (Turkey); Aksöz, Sezen [Nevşehir Hacı Bektaş Veli University, Faculty of Arts and Science, Department of Physics, 50300, Nevşehir (Turkey); Keşlioğlu, Kâzım, E-mail: kesli@erciyes.edu.tr [Erciyes University, Faculty of Science, Department of Physics, 38039, Kayseri (Turkey); Maraşlı, Necmettin [Yıldız Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Metallurgical and Materials Engineering, 34210, Davutpaşa, İstanbul (Turkey)

    2015-11-15

    In the present work, the Gibbs–Thomson coefficient, solid–liquid and solid–solid interfacial energies and grain boundary energy of a solid Al solution in the Al–Cu–Si eutectic system were determined from the observed grain boundary groove shapes by measuring the thermal conductivity of the solid and liquid phases and temperature gradient. Some thermodynamic properties such as the enthalpy of fusion, entropy of fusion, the change of specific heat from liquid to solid and the electrical conductivity of solid phases at their melting temperature were also evaluated by using the measured values of relevant data for Al–Cu, Al–Si, Al–Mg, Al–Ni, Al–Ti, Al–Cu–Ag, Al–Cu–Si binary and ternary alloys. - Highlights: • The microstructure of the Al–Cu–Si eutectic alloy was observed through SEM. • The three eutectic phases (α-Al, Si, CuAl{sub 2}) have been determined by EDX analysis. • Solid–liquid and solid–solid interfacial energies of α-Al solution were determined. • ΔS{sub f},ΔH{sub M}, ΔC{sub P}, electrical conductivity of solid phases for solid Al solutions were determined. • G–T coefficient and grain boundary energy of solid Al solution were determined.

  15. Phase transformation and microstructure study of the as-cast Cu-rich Cu-Al-Mn ternary alloys

    Directory of Open Access Journals (Sweden)

    Holjevac-Grgurić T.

    2017-01-01

    Full Text Available Four Cu-rich alloys from the ternary Cu-Al-Mn system were prepared in the electric-arc furnace and casted in cylindrical moulds with dimensions: f=8 mm and length 12 mm. Microstructural investigations of the prepared samples were performed by using optical microscopy (OM and scanning electron microscopy, equipped by energy dispersive spectroscopy (SEM-EDS. Assignation of crystalline phases was confirmed by XRD analysis. Phase transition temperatures were determined using simultaneous thermal analyzer STA DSC/TG. Phase equilibria calculation of the ternary Cu-Al-Mn system was performed using optimized thermodynamic parameters from literature. Microstructure and phase transitions of the prepared as-cast alloys were investigated and experimental results were compared with the results of thermodynamic calculations.

  16. The constitution of alloys in the Al-rich corner of the Al-Si-Sm ternary system

    International Nuclear Information System (INIS)

    Markoli, B.; Spaic, S.; Zupanic, F.

    2001-01-01

    The constitution of alloys and the liquidus surface in the Al-rich corner of the Al-Si-Sm ternary system were determined by the examination of controlled heated and cooled specimens, as well as heat-treated specimens by means of optical and scanning electron microscopy, energy-dispersive X-ray spectroscopy, differential thermal analysis and X-ray diffraction. The Al-rich corner of the Al-Si-Sm ternary system comprises five regions of primary crystallisation (α Al , β Si , Al 3 Sm, Al 2 Si 2 Sm and AlSiSm) with following characteristic invariant reaction sequences: ternary eutectic reaction L → α Al + β Si + Al 2 Si 2 Sm, and two liquidus transition reactions, i. e., L + Al 3 Sm → α Al + AlSiSm, and L + AlSiSm → α Al + Al 2 Si 2 Sm. Along with the position of ternary eutectic and both interstitial points in the Al-rich corner of the Al-Si-Sm ternary system, the temperatures for each reaction were determined. (orig.)

  17. Microstructural characterization of a rapidly solidified Al-5 Sb alloy

    International Nuclear Information System (INIS)

    Zhang Zhonghua; Bian Xiufang; Wang Yan

    2003-01-01

    In the present work, the microstructure of a melt-spun Al-5 Sb alloy has been characterized using X-ray diffraction and transmission electron microscopy. The phases present in the melt-spun Al-5 Sb alloy were determined to be the equilibrium α-Al and AlSb, identical to those in the ingot-cast alloy. The microstructure of the melt-spun Al-5 Sb alloy is composed of primary AlSb phase embedded in the matrix comprising α-Al cells with intercellular nanoscale AlSb particles, different from that of the ingot-cast alloy composed of the primary AlSb phase within an α-Al/AlSb eutectic matrix. Rapid solidification has a marked effect on the morphology, size and distribution of the primary AlSb phase in the melt-spun Al-5 Sb alloy. Furthermore, some orientation relationships were determined in the melt-spun alloy

  18. Contribution to the Study of the Relation between Microstructure and Electrochemical Behavior of Iron-Based FeCoC Ternary Alloys

    Directory of Open Access Journals (Sweden)

    Farida Benhalla-Haddad

    2012-01-01

    Full Text Available This work deals with the relation between microstructure and electrochemical behavior of four iron-based FeCoC ternary alloys. First, the arc-melted studied alloys were characterized using differential thermal analyses and scanning electron microscopy. The established solidification sequences of these alloys show the presence of two primary crystallization phases (δ(Fe and graphite as well as two univariante lines : peritectic L+(Fe↔(Fe and eutectic L↔(Fe+Cgraphite. The ternary alloys were thereafter studied in nondeaerated solution of 10−3 M NaHCO3 + 10−3 M Na2SO4, at 25°C, by means of the potentiodynamic technique. The results indicate that the corrosion resistance of the FeCoC alloys depends on the carbon amount and the morphology of the phases present in the studied alloys.

  19. Fullerene alloy formation and the benefits for efficient printing of ternary blend organic solar cells

    DEFF Research Database (Denmark)

    Angmo, Dechan; Bjerring, Morten; Nielsen, Niels Chr.

    2015-01-01

    with a third polymer component, the system exhibits pseudo-binary phase behaviour instead of the expected ternary phase behaviour. Our results experimentally confirm the earlier hypothesis that the unexpected composition average dependent IV-behaviour for these supposed ternary mixtures are indeed due to them...

  20. One-step synthesis of PtPdAu ternary alloy nanoparticles on graphene with superior methanol electrooxidation activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yuzhen; Gu Yonge; Lin Shaoxiong; Wei Jinping; Wang Zaihua [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Wang Chunming, E-mail: wangcm@lzu.edu.cn [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China); Du Yongling; Ye Weichun [Department of Chemistry, Lanzhou University, Lanzhou 730000 (China)

    2011-10-01

    Highlights: > PtPdAu nanoparticles were synthesized on graphene sheets via chemical reduction method. > The prepared PtPdAu nanoparticles were ternary alloy with fcc structure. > The catalyst exhibited superior catalytic activity and stability for MOR in alkaline. - Abstract: Well-dispersed PtPdAu ternary alloy nanoparticles were synthesized on graphene sheets via a simple one-step chemical reduction method in ethylene glycol (EG) and water system, in which EG served as both reductive and dispersing agent. The electrocatalytic activity of PtPdAu/G was tested by methanol oxidation reaction (MOR). The catalyst was further characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), which indicated that the as-synthesized PtPdAu nanoparticles with alloy structures were successfully dispersed on the graphene sheets. Electrocatalytic properties of the catalyst for MOR in alkaline have been investigated by cyclic voltammetry (CV), chronoamperometry and Tafel curves. The electrocatalytic activity and stability of PtPdAu/G were superior to PtPd/G, PtAu/G and Pt/G. In addition, the anodic peak current on PtPdAu/G catalyst was proportional to the concentration of methanol in the range of 0.05-1.00 M. This study implies that the prepared catalyst have great potential applications in fuel cells.

  1. Compositional trends and magnetic excitations in binary and ternary Fe–Pd–X magnetic shape memory alloys

    International Nuclear Information System (INIS)

    Gruner, Markus Ernst; Hamann, Sven; Brunken, Hayo; Ludwig, Alfred; Entel, Peter

    2013-01-01

    Highlights: ► We discuss compositional trends in Fe–Pd–Cu and Fe–Pd–Mn magnetic shape memory alloys. ► We combine density functional theory and combinatorial thin film experiments. ► Magnetic excitations contribute decisively to the structural transformation behavior. -- Abstract: High throughput thin film experiments and first-principles calculations are combined in order to get insight into the relation between finite temperature transformation behavior and structural ground state properties of ternary Fe–Pd–X alloys. In particular, we consider the binding surface, i.e., the energy of the disordered alloy calculated along the Bain path between bcc and fcc which we model by a 108 atom supercell. We compare stoichiometric Fe 75 Pd 25 with ternary systems, where 4.6% of the Fe atoms were substituted by Cu and Mn, respectively. The computational trends are related to combinatorial experiments on thin film libraries for the systems Fe–Pd–Mn and Fe–Pd–Cu which reveal a systematic evolution of the martensitic start temperature with composition within the relevant concentration range for magnetic shape memory (MSM) applications. Our calculations include atomic relaxations, which were shown to be relevant for a correct description of the structural properties. Furthermore, we find that magnetic excitations can substantially alter the binding surface. The comparison of experimental and theoretical trends indicates that, both, compositional changes and magnetic excitations contribute significantly to the structural stability which may thus be tailored by specifically adding antiferromagnetic components

  2. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Univ. of California, Berkeley, CA (United States); Fratoni, M. [Univ. of California, Berkeley, CA (United States)

    2015-09-22

    , low electrical conductivity and therefore low MHD pressure drop, low chemical reactivity, and extremely low tritium inventory; the addition of sodium (FLiNaBe) has been considered because it retains the properties of FliBe but also lowers the melting point. Although many of these blanket concepts are promising, challenges still remain. The limited amount of beryllium available poses a problem for ceramic breeders such as the HCPB. FLiBe and FLiNaBe are highly viscous and have a low thermal conductivity. Lithium lead possesses a poor thermal conductivity which can cause problems in both DCLL and LiPb blankets. Additionally, the tritium permeation from these two blankets into plant components can be a problem and must be reduced. Consequently, Lawrence Livermore National Laboratory (LLNL) is attempting to develop a lithium-based alloy—most likely a ternary alloy—which maintains the beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns for use in the blanket of an inertial fusion energy (IFE) power plant. The LLNL concept employs inertial confinement fusion (ICF) through the use of lasers aimed at an indirect-driven target composed of deuterium-tritium fuel. The fusion driver/target design implements the same physics currently experimented at the National Ignition Facility (NIF). The plant uses lithium in both the primary coolant and blanket; therefore, lithium-related hazards are of primary concern. Although reducing chemical reactivity is the primary motivation for the development of new lithium alloys, the successful candidates will have to guarantee acceptable performance in all their functions. The scope of this study is to evaluate the neutronics performance of a large number of lithium-based alloys in the blanket of the IFE engine and assess their properties upon activation. This manuscript is organized as follows: Section 12 presents the models and methodologies used for the analysis; Section

  3. Energy gaps, effective masses and ionicity of AlxGa1-xSb ternary semiconductor alloys

    Science.gov (United States)

    Bouarissa, N.; Boucenna, M.; Saib, S.; Siddiqui, S. A.

    2017-12-01

    A pseudopotential calculation of the electronic structure of AlxGa1-xSb ternary alloys in the zinc-blende structure has been performed. The compositional dependence of energy gaps, electron and heavy hole effective masses and ionicity of the material system of interest have been examined and discussed. Special attention has been given to the effect of the alloy disorder on the direct (Γ-Γ) bandgap energy. It is found that all features of interest vary monotonically with increasing the Al concentration x. Besides, bandgap bowing parameters and extent of the direct-to-indirect bandgap transition have been determined. Our findings agree generally well with the data reported in the literature. Trends in ionicity are found to be consistent with the Phillips ionicity scale.

  4. Phase-field modeling of the microstructure evolution and heterogeneous nucleation in solidifying ternary Al–Cu–Ni alloys

    International Nuclear Information System (INIS)

    Kundin, Julia; Pogorelov, Evgeny; Emmerich, Heike

    2015-01-01

    We have investigated the microstructure evolution during the isothermal and non-isothermal solidification of ternary Al–Cu–Ni alloys by means of a general multi-phase-field model for an arbitrary number of phases. The stability requirements for the model functions on every dual interface guarantee the absence of “ghost” phases. The aim was to generate a realistic microstructure by coupling the thermodynamic parameters of the phases and the thermodynamically consistent phase-field evolution equations. It is shown that the specially constructed thermal noise terms disturb the stability on the dual interfaces and can produce heterogeneous nucleation of product phases at energetically favorable points. Similar behavior can be observed in triple junctions where the heterogeneous nucleation of a fourth phase is more favorable. Finally, the model predicts the growth of a combined eutectic-like and peritectic-like structure that is comparable to the observed experimental microstructure in various alloys

  5. Theoretical investigation of the structural stabilities, optoelectronic properties and thermodynamic characteristics of GaPxSb1-x ternary alloys

    Science.gov (United States)

    Oumelaz, F.; Nemiri, O.; Boumaza, A.; Ghemid, S.; Meradji, H.; Bin Omran, S.; El Haj Hassan, F.; Rai, D. P.; Khenata, R.

    2017-12-01

    In this theoretical study, we have investigated the structural, phase transition, electronic, thermodynamic and optical properties of GaPxSb1-x ternary alloys. Our calculations are performed with the WIEN2k code based on density functional theory using the full-potential linearized augmented plane wave method. For the electron exchange-correlation potential, a generalized gradient approximation within Wu-Cohen scheme is considered. The recently developed Tran-Blaha modified Becke-Johnson potential has also been used to improve the underestimated band gap. The structural properties, including the lattice constants, the bulk moduli and their pressure derivatives are in very good agreement with the available experimental data and theoretical results. Several structural phase transitions were studied here to establish the stable structure and to predict the phase transition under hydrostatic pressure. The computed transition pressure (Pt) of the material of our interest from the zinc blende (B3) to the rock salt (B1) phase has been determined and found to agree well with the experimental and theoretical data. The calculated band structure shows that GaSb binary compound and the ternary alloys are direct band gap semiconductors. Optical parameters such as the dielectric constants and the refractive indices are calculated and analyzed. The thermodynamic results are also interpreted and analyzed.

  6. Thermodynamic mixing effects of liquid ternary Au–Fe–Pd alloys by computer-aided Knudsen cell mass spectrometry

    International Nuclear Information System (INIS)

    Tomiska, Josef

    2012-01-01

    Highlights: ► Thermodynamic mixing behavior of liquid Au–Fe–Pd alloys over the whole range of composition. ► Experimental investigations by means of the computer-aided Knudsen cell mass spectrometry. ► Algebraic representation of the molar excess properties by TAP series concept. ► The corresponding TAP parameters are presented. ► The values of all molar excess functions, and thermodynamic activities at 1850 K are given. - Abstract: Thermodynamic investigations on liquid ternary Au–Fe–Pd alloys have been performed by means of the computer-aided Knudsen cell mass spectrometry. The “Digital Intensity-Ratio” (DIR) – method has been applied for the determination of the thermodynamic mixing behaviour. The ternary thermodynamically adapted power (TAP) series concept is used for the algebraic representation of the molar excess properties. The corresponding TAP parameters, and the values of the molar excess quantities Z E (Z = Gibbs energy G, heat of mixing H, and entropy S) as well as the thermodynamic activities of all three constituents at 1850 K are presented.

  7. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    Science.gov (United States)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  8. First-principles study on half-metallic ferromagnetic properties of Zn1- x V x Se ternary alloys

    Science.gov (United States)

    Khatta, Swati; Tripathi, S. K.; Prakash, Satya

    2017-09-01

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn1- x V x Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction.

  9. Ternary systems

    International Nuclear Information System (INIS)

    Kagan, D.N.; Hubberstey, P.; Barker, M.G.

    1985-01-01

    The paper reviews the experimental and theoretical studies carried out on multicomponent alkali metal systems. Solid-liquid phase equilibria studies are mainly concerned with the systems Na-K-Rb and Na-K-Cs, and data on the liquidus temperatures in these systems are presented. The thermodynamic properties of the ternary Na-K-Cs eutectic system have been determined experimentally, and the enthalpy, heat capacity and excess functions of the alloy are given. An analysis of calculational methods used in determining thermodynamic functions of ternary liquid metals systems is described. Finally, data are tabulated for the density, compressibility, saturated vapour pressure, viscosity and thermal conductivity of the ternary Na-K-Cs eutectic system. (UK)

  10. Valence electron structure analysis of the cubic silicide intermetallics in rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Wang, J.Q.; Qian, C.F.; Zhang, B.J.; Tseng, M.K.; Xiong, S.W.

    1996-01-01

    The application of rapid solidification for the development of elevated temperature aluminum alloys has resulted in the emergence of several alloys based on the Al-Fe alloy system. Of particular interest are Al-Fe-V-Si alloys which have excellent room temperature and high temperature mechanical properties. In a pioneering study, Skinner et al. showed the stabilization of the cubic phase in ternary Al-Fe-Si alloy by the addition of a quaternary element, vanadium. The evolution of the microstructure in these alloys both during rapid solidification and subsequent processing is of crucial importance. Kim has demonstrated that the composition of the silicide phase in rapidly solidified Al-Fe-V-Si alloy is very close to Al 12 (Fe,V) 3 Si with the body centered cubic (bcc) structure. The structure is closely related to that of quasicrystals.In view of the structural features and the relationship between the α 12 and α 13 phases, the researching emphasis should firstly be put on the α 12 phase. In this paper the authors analyzed the α -(AlFeSi)(α 12 -type) phase from the angle of atomic valence electron structure other than the traditional methods of obtaining the diffraction spots of the phase. Several pieces of information were obtained about the hybrid levels and bond natures of every kind of atom in the α -(AlFeSi) phase. Finally the authors explained the phenomenon which V atom can substitute for Fe atom in the α 12 phase and improve the thermal stability of the phase in Al-Fe-V-Si alloy

  11. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells

    NARCIS (Netherlands)

    Liu, Yang; Wu, Yuanhao; Bian, Dong; Gao, Shuang; Leeflang, M.A.; Guo, Hui; Zheng, Yufeng; Zhou, J.

    2017-01-01

    Novel Mg-(3.5, 6.5wt%)Li-(0.5, 2, 4wt%)Zn ternary alloys were developed as new kinds of biodegradable metallic materials with potential for stent application. Their mechanical properties, degradation behavior, cytocompatibility and hemocompatibility were studied. These potential biomaterials

  12. Influence of Surface Energy on Organic Alloy Formation in Ternary Blend Solar Cells Based on Two Donor Polymers.

    Science.gov (United States)

    Gobalasingham, Nemal S; Noh, Sangtaik; Howard, Jenna B; Thompson, Barry C

    2016-10-05

    The compositional dependence of the open-circuit voltage (V oc ) in ternary blend bulk heterojunction (BHJ) solar cells is correlated with the miscibility of polymers, which may be influenced by a number of attributes, including crystallinity, the random copolymer effect, or surface energy. Four ternary blend systems featuring poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) (P3HT 75 -co-EHT 25 ), poly(3-hexylthiophene-co-(hexyl-3-carboxylate)), herein referred to as poly(3-hexylthiophene-co-3-hexylesterthiophene) (P3HT 50 -co-3HET 50 ), poly(3-hexylthiophene-thiophene-diketopyrrolopyrrole) (P3HTT-DPP-10%), and an analog of P3HTT-DPP-10% with 40% of 3-hexylthiophene exchanged for 2-(2-methoxyethoxy)ethylthiophen-2-yl (3MEO-T) (featuring an electronically decoupled oligoether side-chain), referred to as P3HTTDPP-MEO40%, are explored in this work. All four polymers are semicrystalline and rich in rr-P3HT content and perform well in binary devices with PC 61 BM. Except for P3HTTDPP-MEO40%, all polymers exhibit similar surface energies (∼21-22 mN/m). P3HTTDPP-MEO40% exhibits an elevated surface energy of around 26 mN/m. As a result, despite the similar optoelectronic properties and binary solar cell performance of P3HTTDPP-MEO40% compared to P3HTT-DPP-10%, the former exhibits a pinned V oc in two different sets of ternary blend devices. This is a stark contrast to previous rr-P3HT-based systems and demonstrates that surface energy, and its influence on miscibility, plays a critical role in the formation of organic alloys and can supersede the influence of crystallinity, the random copolymer effect, similar backbone structures, and HOMO/LUMO considerations. Therefore, we confirm surface energy compatibility as a figure-of-merit for predicting the compositional dependence of the V oc in ternary blend solar cells and highlight the importance of polymer miscibility in organic alloy formation.

  13. Microstructural characterization of a rapidly solidified Al-10 Sb alloy

    International Nuclear Information System (INIS)

    Wang Yan; Zhang Zhonghua; Geng Haoran; Wang Weimin; Bian Xiufang

    2006-01-01

    In the present work, the microstructure of a melt-spun Al-10 Sb alloy has been characterized using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that rapid solidification has no influence on the phase constitution of the Al-10 Sb alloy. Moreover, the phase constitution does not change with increasing quenching rate (wheel speed). However, rapid solidification has a significant effect on the microstructure of the Al-10 Sb alloy. The microstructure of the melt-spun Al-10 Sb alloy dominantly comprises equiaxed primary AlSb dendrites and nanoscale α-Al/AlSb eutectic, different from that of the ingot-cast alloy consisting of coarse primary AlSb plates within the α-Al/AlSb eutectic matrix. Some epitaxial orientation relationships were found between AlSb particles and α-Al matrix in the melt-spun Al-10 Sb alloy as follows: α-Al [310] parallel AlSb [110] and α-Al (002) parallel AlSb (22-bar 0)

  14. Fe-Cr-V ternary alloy-based ferritic steels for high- and low-temperature applications

    International Nuclear Information System (INIS)

    Rieth, M.; Materna-Morris, E.; Dudarev, S.L.; Boutard, J.-L.; Keppler, H.; Mayor, J.

    2009-01-01

    The phase stability of alloys and steels developed for application in nuclear fission and fusion technology is one of the decisive factors determining the potential range of operating temperatures and radiation conditions that the core elements of a power plant can tolerate. In the case of ferritic and ferritic-martensitic steels, the choice of the chemical composition is dictated by the phase diagram for binary FeCr alloys where in the 0-9% range of Cr composition the alloy remains in the solid solution phase at and below the room temperature. For Cr concentrations exceeding 9% the steels operating at relatively low temperatures are therefore expected to exhibit the formation of α' Cr-rich precipitates. These precipitates form obstacles for the propagation of dislocations, impeding plastic deformation and embrittling the material. This sets the low temperature limit for the use of of high (14% to 20%) Cr steels, which for the 20% Cr steels is at approximately 600 deg. C. On the other hand, steels containing 12% or less Cr cannot be used at temperatures exceeding ∼600 deg. C due to the occurrence of the α-γ transition (912 deg. C in pure iron and 830 deg. C in 7% Cr alloy), which weakens the steel in the high temperature limit. In this study, we investigate the physical properties of a concentrated ternary alloy system that attracted relatively little attention so far. The phase diagram of ternary Fe-Cr-V alloy shows no phase boundaries within a certain broad range of Cr and V concentrations. This makes the alloy sufficiently resistant to corrosion and suggests that steels and dispersion strengthened materials based on this alloy composition may have better strength and stability at high temperatures. Experimental heats were produced on a laboratory scale by arc melting the material components to pellets, then by melting the pellets in an induction furnace and casting the melt into copper moulds. The compositions in weight percent (iron base) are 10Cr5V, 10Cr

  15. Hydrogen induced dis-proportionation studies on Zr-Co-M (M=Ni, Fe, Ti) ternary alloys

    International Nuclear Information System (INIS)

    Jat, Ram Avtar; Pati, Subhasis; Parida, S.C.; Agarwal, Renu; Mukerjee, S.K.; Sastry, P.U.; Jayakrishnan, V.B.

    2016-01-01

    The intermetallic compound ZrCo is considered as a suitable material for storage, supply and recovery of hydrogen isotopes in International Thermonuclear Experimental Reactor (ITER). However, upon repeated hydriding-dehydriding cycles, the hydrogen storage capacity of ZrCo decreases, which is attributed to the disproportionate reaction ZrCo + H 2 ↔ ZrH 2 + ZrCo 2 . The reduction of hydrogen storage capacity of ZrCo is not desirable for its use in tritium facilities. In our previous studies, attempts were made to improve the durability of ZrCo against dis-proportionation by including a third element. The present study is aimed to investigate the hydrogen induced dis-proportionation of Zr-Co-M (M=Ni, Fe and Ti) ternary alloys under hydrogen delivery conditions

  16. Density Functional Theory Modeling of Low-Loss Electron Energy-Loss Spectroscopy in Wurtzite III-Nitride Ternary Alloys.

    Science.gov (United States)

    Eljarrat, Alberto; Sastre, Xavier; Peiró, Francesca; Estradé, Sónia

    2016-06-01

    In the present work, the dielectric response of III-nitride semiconductors is studied using density functional theory (DFT) band structure calculations. The aim of this study is to improve our understanding of the features in the low-loss electron energy-loss spectra of ternary alloys, but the results are also relevant to optical and UV spectroscopy results. In addition, the dependence of the most remarkable features with composition is tested, i.e. applying Vegard's law to band gap and plasmon energy. For this purpose, three wurtzite ternary alloys, from the combination of binaries AlN, GaN, and InN, were simulated through a wide compositional range (i.e., Al x Ga1-x N, In x Al1-x N, and In x Ga1-x N, with x=[0,1]). For this DFT calculations, the standard tools found in Wien2k software were used. In order to improve the band structure description of these semiconductor compounds, the modified Becke-Johnson exchange-correlation potential was also used. Results from these calculations are presented, including band structure, density of states, and complex dielectric function for the whole compositional range. Larger, closer to experimental values, band gap energies are predicted using the novel potential, when compared with standard generalized gradient approximation. Moreover, a detailed analysis of the collective excitation features in the dielectric response reveals their compositional dependence, which sometimes departs from a linear behavior (bowing). Finally, an advantageous method for measuring the plasmon energy dependence from these calculations is explained.

  17. Effect of Ternary Addition of Iron on Shape Memory Characteristics of Cu-Al Alloys

    Science.gov (United States)

    Raju, T. N.; Sampath, V.

    2011-07-01

    The effect of alloying Cu-Al alloys with Fe on their transformation temperatures and shape memory properties was investigated by differential scanning calorimetry and bend test. It was found that the minor additions of iron resulted in change of transformation temperatures and led to excellent shape memory properties of the alloys. Since the transformation temperatures are high, they are an ideal choice for high-temperature applications.

  18. Microstructure and magnetic behavior of Cu–Co–Si ternary alloy synthesized by mechanical alloying and isothermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Chabri, Sumit, E-mail: sumitchabri2006@gmail.com [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India); Bera, S. [Department of Metallurgical & Materials Engineering, National Institute of Technology, Durgapur 713209 (India); Mondal, B.N. [Department of Central Scientific Services, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India); Basumallick, A.; Chattopadhyay, P.P. [Department of Metallurgy & Materials Engineering, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103 (India)

    2017-03-15

    Microstructure and magnetic behavior of nanocrystalline 50Cu–40Co–10Si (at%) alloy prepared by mechanical alloying and subsequent isothermal annealing in the temperature range of 450–650 °C have been studied. Phase evolution during mechanical alloying and isothermal annealing is characterized by X-ray diffraction (XRD), differential thermal analyzer (DTA), high resolution transmission electron microscopy (HRTEM) and magnetic measurement. Addition of Si has been found to facilitate the metastable alloying of Co in Cu resulting into the formation of single phase solid solution having average grain size of 9 nm after ball milling for 50 h duration. Annealing of the ball milled alloy improves the magnetic properties significantly and best combination of magnetic properties has been obtained after annealing at 550 °C for 1 h duration.

  19. Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Amanda [Pall Corporation, Port Washington, NY (United States); Zhao, Hongbin [Pall Corporation, Port Washington, NY (United States); Hopkins, Scott [Pall Corporation, Port Washington, NY (United States)

    2014-12-01

    This report summarizes the work completed under the U.S. Department of Energy Project Award No.: DE-FE0001181 titled “Designing and Validating Ternary Pd Alloys for Optimum Sulfur/Carbon Resistance in Hydrogen Separation and Carbon Capture Membrane Systems Using High-Throughput Combinatorial Methods.” The project started in October 1, 2009 and was finished September 30, 2014. Pall Corporation worked with Cornell University to sputter and test palladium-based ternary alloys onto silicon wafers to examine many alloys at once. With the specialized equipment at Georgia Institute of Technology that analyzed the wafers for adsorbed carbon and sulfur species six compositions were identified to have resistance to carbon and sulfur species. These compositions were deposited on Pall AccuSep® supports by Colorado School of Mines and then tested in simulated synthetic coal gas at the Pall Corporation. Two of the six alloys were chosen for further investigations based on their performance. Alloy reproducibility and long-term testing of PdAuAg and PdZrAu provided insight to the ability to manufacture these compositions for testing. PdAuAg is the most promising alloy found in this work based on the fabrication reproducibility and resistance to carbon and sulfur. Although PdZrAu had great initial resistance to carbon and sulfur species, the alloy composition has a very narrow range that hindered testing reproducibility.

  20. Electronic and phononic origins of martensitic behavior in nickel titanium-based binary and ternary shape memory alloys

    Science.gov (United States)

    Hatcher, Nicholas B.

    Due to the importance of NiTi as a shape memory material and the uncertainty regarding its atomisitic martensitic transformation path, a thorough investigation to understand the structural stability governing this displacive phase transformation is warranted. We investigate elastic and shear stabilities of NiTi binary and ternary (with additions of Pd and Pt) alloys using first-principles calculations with the highly-precise full-potential linearized augmented plane wave (FLAPW) method. Ambiguities of the B2, R, B19, B19', and proposed B33 structures are resolved, and the phase stability of each structure is established by examining calculated formation energies. All single crystal elastic constants, Young's, bulk, and shear moduli, Poisson's ratio, and the Zener anisotropy of the B2, R, B19, B19', and B33 phases are calculated and presented. To investigate the susceptibility to shearing, generalized stacking fault energetics and cleavage energies are calculated for the {001}, {011}, and {111} slip planes of the B2 phase. Burgers vectors and shear resistance are established. By investigating various deformation mechanisms related to these stacking faults, we find an instability to h100i{011} slip in the B2 phase. Using this and reviewing previously proposed atomistic transformation paths, the mechanisms governing the direct martensitic transformation of NiTi between the austenite and the martensite are identified. Barrierless transformation paths from the B2 phase to the B19' phase and from the B2 phase to the B33 phase are proposed, and the ternary transformation path is investigated. Differences between binary and ternary alloys, which are known to raise transformation temperatures, are illustrated. To provide a theoretical foundation for this diffusionless structural phase transformation, we illustrate the changes in electronic structures which explain its martensitic behavior. Electronic structure evolution is illustrated throughout the proposed atomistic

  1. Numerical Prediction of the Thermodynamic Properties of Ternary Al-Ni-Pd Alloys

    Science.gov (United States)

    Zagula-Yavorska, Maryana; Romanowska, Jolanta; Kotowski, Sławomir; Sieniawski, Jan

    2016-01-01

    Thermodynamic properties of ternary Al-Ni-Pd system, such as exGAlNPd, µAl(AlNiPd), µNi(AlNiPd) and µPd(AlNiPd) at 1,373 K, were predicted on the basis of thermodynamic properties of binary systems included in the investigated ternary system. The idea of predicting exGAlNiPd values was regarded as calculation of values of the exG function inside a certain area (a Gibbs triangle) unless all boundary conditions, that is values of exG on all legs of the triangle are known (exGAlNi, exGAlPd, exGNiPd). This approach is contrary to finding a function value outside a certain area, if the function value inside this area is known. exG and LAl,Ni,Pd ternary interaction parameters in the Muggianu extension of the Redlich-Kister formalism were calculated numerically using the Excel program and Solver. The accepted values of the third component xx differed from 0.01 to 0.1 mole fraction. Values of LAlNiPd parameters in the Redlich-Kister formula are different for different xx values, but values of thermodynamic functions: exGAlNiPd, µAl(AlNiPd), µNi(AlNiPd) and µPd(AlNiPd) do not differ significantly for different xx values. The choice of xx value does not influence the accuracy of calculations.

  2. Structural and magnetic study of mechanically deformed Fe rich FeAlSi ternary alloys

    International Nuclear Information System (INIS)

    Legarra, E.; Apiñaniz, E.; Plazaola, F.

    2012-01-01

    Highlights: ► Addition of Si to binary Fe–Al alloys makes the disordering more difficult. ► Si addition opposes the large volume increase found in FeAl alloys with deformation. ► Disordering induces a redistribution of non-ferrous atoms around Fe atoms in Fe 75 Al 25−x Si x and Fe 70 Al 30−x Si x . ► Addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe. ► Si inhibits the para-ferro transition found in Fe 60 Al 40 alloy with disordering. - Abstract: In this work we study systematically the influence of different Al/Si ratios on the magnetic and structural properties of mechanically disordered powder Fe 75 Al 25−x Si x , Fe 70 Al 30−x Si x and Fe 60 Al 40−x Si x alloys by means of Mössbauer spectroscopy, X-ray diffraction and magnetic measurements. In order to obtain different stages of disorder the alloys were deformed by different methods: crushing induction melted alloys and ball milling annealed (ordered) alloys using different number of balls and speed. X-ray and Mössbauer data show that mechanical deformation induces the disordered A2 structure in these alloys. The results indicate that addition of Si to binary Fe–Al alloys makes the disordering more difficult. In addition, X-ray diffraction patterns show that the normalized lattice parameter variation of the disordered alloys of each composition decreases monotonically with Si content, indicating clearly that Si addition opposes the large volume increase found in FeAl alloys with deformation. The study of the hyperfine fields indicates that there is a redistribution of non-ferrous atoms around Fe atoms with the disordering; indeed, there is an inversion of the behavior of the hyperfine field of the Fe atoms. On the other hand, the magnetic measurements indicate that addition of Si to binary Fe 75 Al 25 and Fe 70 Al 30 alloys opposes the magnetic behavior induced by Al in the magnetism of Fe.

  3. Rapid theory-guided prototyping of ductile Mg alloys: from binary to multi-component materials

    Czech Academy of Sciences Publication Activity Database

    Pei, Z.; Friák, Martin; Sandlöbes, S.; Nazarov, R.; Svendsen, B.; Raabe, D.; Neugebauer, J.

    2015-01-01

    Roč. 17, č. 9 (2015), Art. n. 093009 ISSN 1367-2630 Institutional support: RVO:68081723 Keywords : magnesium * alloys * ductile * ternary * rare-earth * ab initio Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.570, year: 2015

  4. The A1 to L10 transformation in FePt films with ternary alloying additions of Mg, V, Mn, and B

    International Nuclear Information System (INIS)

    Wang, B.; Barmak, K.; Klemmer, T. J.

    2011-01-01

    The impact of ternary additions of Mg, V, Mn, and B on the A1 [face centered cubic (fcc)] to L1 0 phase transformation has been studied. The films were cosputter deposited from elemental targets at room temperature and annealed after deposition. The films had Mg additions in the range ∼0-2.6 at.%, V additions in the range 0.7-12.2 at.%, Mn additions in the range 2.2-16.3 at.%, and B additions in the range 1.2-12.9 at.%. For all four ternary alloy systems, annealing resulted in the formation of no other phases than the L1 0 phase. Ternary additions of C than the binary FePt films with the same Pt content.

  5. Solid-state reactions during mechanical alloying of ternary Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Hadef, Fatma, E-mail: hadef77@yahoo.fr [Laboratoire de Recherche sur la Physico-Chimie des Surfaces et Interfaces, LRPCSI, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria); Département de Physique, Faculté des Sciences, Université 20 Août 1955, BP 26, Route d’El-Haddaiek, Skikda 21000 (Algeria)

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe–Al–X systems, in order to improve mainly Fe–Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe–Al–X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems. - Highlights: • A review of state of the art on binary Fe–Al alloys was presented. • Structural and microstructural properties of MA ternary Fe–Al–X alloys were summerized. • MA process is a powerful tool for producing metallic alloys at the nanometer scale.

  6. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells.

    Science.gov (United States)

    Liu, Yang; Wu, Yuanhao; Bian, Dong; Gao, Shuang; Leeflang, Sander; Guo, Hui; Zheng, Yufeng; Zhou, Jie

    2017-10-15

    Novel Mg-(3.5, 6.5wt%)Li-(0.5, 2, 4wt%)Zn ternary alloys were developed as new kinds of biodegradable metallic materials with potential for stent application. Their mechanical properties, degradation behavior, cytocompatibility and hemocompatibility were studied. These potential biomaterials showed higher ultimate tensile strength than previously reported binary Mg-Li alloys and ternary Mg-Li-X (X=Al, Y, Ce, Sc, Mn and Ag) alloys. Among the alloys studied, the Mg-3.5Li-2Zn and Mg-6.5Li-2Zn alloys exhibited comparable corrosion resistance in Hank's solution to pure magnesium and better corrosion resistance in a cell culture medium than pure magnesium. Corrosion products observed on the corroded surface were composed of Mg(OH) 2 , MgCO 3 and Ca-free Mg/P inorganics and Ca/P inorganics. In vitro cytotoxicity assay revealed different behaviors of Human Umbilical Vein Endothelial Cells (HUVECs) and Human Aorta Vascular Smooth Muscle Cells (VSMCs) to material extracts. HUVECs showed increasing nitric oxide (NO) release and tolerable toxicity, whereas VSMCs exhibited limited decreasing viability with time. Platelet adhesion, hemolysis and coagulation tests of these Mg-Li-Zn alloys showed different degrees of activation behavior, in which the hemolysis of the Mg-3.5Li-2Zn alloy was lower than 5%. These results indicated the potential of the Mg-Li-Zn alloys as good candidate materials for cardiovascular stent applications. Mg-Li alloys are promising as absorbable metallic biomaterials, which however have not received significant attention since the low strength, controversial corrosion performance and the doubts in Li toxicity. The Mg-Li-Zn alloy in the present study revealed much improved mechanical properties higher than most reported binary Mg-Li and ternary Mg-Li-X alloys, with superior corrosion resistance in cell culture media. Surprisingly, the addition of Li and Zn showed increased nitric oxide release. The present study indicates good potential of Mg-Li-Zn alloy as

  7. Effects of Ni content on nanocrystalline Fe–Co–Ni ternary alloys synthesized by a chemical reduction method

    Energy Technology Data Exchange (ETDEWEB)

    Chokprasombat, Komkrich, E-mail: komkrich28@gmail.com [Department of Physics, Faculty of Science, Thaksin University, Phatthalung 93210 Thailand (Thailand); Pinitsoontorn, Supree [Integrated Nanotechnology Research Center, Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002 Thailand (Thailand); Maensiri, Santi [School of Physics, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 Thailand (Thailand)

    2016-05-01

    Magnetic properties of Fe–Co–Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe{sub 50}Co{sub 50−x}Ni{sub x} nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe{sub 50}Ni{sub 50} nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe–Co–Ni alloys could be adjusted by varying the Ni content. - Highlights: • We prepared nanocrystalline Fe–Co–Ni alloys by a novel chemical reduction process. • Elemental compositions could be well controlled by the molar ratio of metal sources. • Particle size and magnetic properties clearly depended on the Ni contents. • Fe{sub 50}Co{sub 10}Ni{sub 40} exhibited high saturation magnetization of 126.3 emu/g.

  8. Development of interatomic potential of Ge(1- x - y )Si x Sn y ternary alloy semiconductors for classical lattice dynamics simulation

    Science.gov (United States)

    Tomita, Motohiro; Ogasawara, Masataka; Terada, Takuya; Watanabe, Takanobu

    2018-04-01

    We provide the parameters of Stillinger-Weber potentials for GeSiSn ternary mixed systems. These parameters can be used in molecular dynamics (MD) simulations to reproduce phonon properties and thermal conductivities. The phonon dispersion relation is derived from the dynamical structure factor, which is calculated by the space-time Fourier transform of atomic trajectories in an MD simulation. The phonon properties and thermal conductivities of GeSiSn ternary crystals calculated using these parameters mostly reproduced both the findings of previous experiments and earlier calculations made using MD simulations. The atomic composition dependence of these properties in GeSiSn ternary crystals obtained by previous studies (both experimental and theoretical) and the calculated data were almost exactly reproduced by our proposed parameters. Moreover, the results of the MD simulation agree with the previous calculations made using a time-independent phonon Boltzmann transport equation with complicated scattering mechanisms. These scattering mechanisms are very important in complicated nanostructures, as they allow the heat-transfer properties to be more accurately calculated by MD simulations. This work enables us to predict the phonon- and heat-related properties of bulk group IV alloys, especially ternary alloys.

  9. Microsegregation studies of rapidly solidified binary aluminum-copper alloys

    Science.gov (United States)

    Prasad, Arvind

    Most of the materials that we use in our day-to-day activities undergo solidification at some stage of manufacturing. Normal solidification of alloys can result in chemical inhomogeneity (microsegregation) and coarse structure that can make the material weak. Rapid solidification has been known to reduce microsegregation and produce materials with improved properties. To control the microstructure obtained from rapid solidification, and thus attain desired properties, requires an understanding of microstructure evolution and the resulting microsegregation. We have studied microsegregation in rapidly solidified Al-Cu alloys using a combination of experiments and modeling. Rapidly solidified Al-Cu alloys were produced using Impulse Atomization. Microsegregation studies were performed on the droplets for different alloy chemistry (Al-4.3%Cu, Al-5%Cu, Al-10%Cu and Al-17%Cu), droplet sizes and gas type. The droplets produced were characterized using X-Ray Tomography, Neutron Diffraction, Electron Microscopy and Stereology. Using these techniques, nucleation and microstructure formation were studied and eutectic amount measured within the droplets. Modeling involved developing a microsegregation model for a droplet solidifying during Impulse Atomization. Rappaz-Thevoz microsegregation model was used coupled with LKT dendrite kinetic model with modification for off-center nucleation. The results from the experiment and model show that the droplets undergo a nucleation undercooling of approximately 20K with a single, off-center, nucleation event. Individual droplets showed gradation in microstructure believed to be caused due to recalescence. The observed trend in microsegregation showed that the segregation decreases as the alloy composition is increased. Microsegregation also showed a slight decrease with increasing cooling rate, but the trend was not very clear. Based on the alloy composition, droplet size ranges studied and type of gas used (He or N2) the estimated

  10. Dispersion strengthening of precipitation hardened Al-Cu-Mg alloys prepared by rapid solidification and mechanical alloying

    Science.gov (United States)

    Gilman, P. S.; Sankaran, K. K.

    1988-01-01

    Several Al-4Cu-1Mg-1.5Fe-0.75Ce alloys have been processed from either rapidly solidified or mechanically alloyed powder using various vacuum degassing parameters and consolidation techniques. Strengthening by the fine subgrains, grains, and the dispersoids individually or in combination is more effective when the alloys contain shearable precipitates; consequently, the strength of the alloys is higher in the naturally aged rather than the artificially aged condition. The strengths of the mechanically alloyed variants are greater than those produced from prealloyed powder. Properties and microstructural features of these dispersion strengthened alloys are discussed in regards to their processing histories.

  11. Neutronics Evaluation of Lithium-Based Ternary Alloys in IFE Blankets

    Energy Technology Data Exchange (ETDEWEB)

    Jolodosky, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fratoni, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-20

    Pre-conceptual fusion blanket designs require research and development to reflect important proposed changes in the design of essential systems, and the new challenges they impose on related fuel cycle systems. One attractive feature of using liquid lithium as the breeder and coolant is that it has very high tritium solubility and results in very low levels of tritium permeation throughout the facility infrastructure. However, lithium metal vigorously reacts with air and water and presents plant safety concerns. If the chemical reactivity of lithium could be overcome, the result would have a profound impact on fusion energy and associated safety basis. The overriding goal of this project is to develop a lithium-based alloy that maintains beneficial properties of lithium (e.g. high tritium breeding and solubility) while reducing overall flammability concerns. To minimize the number of alloy combinations that must be explored, only those alloys that meet certain nuclear performance metrics will be considered for subsequent thermodynamic study. The specific scope of this study is to evaluate the neutronics performance of lithium-based alloys in the blanket of an inertial confinement fusion (ICF) engine. The results of this study will inform the development of lithium alloys that would guarantee acceptable neutronics performance while mitigating the chemical reactivity issues of pure lithium.

  12. Microstructures of neutron-irradiated Fe-12Cr-XMn (X=15-30) ternary alloys

    International Nuclear Information System (INIS)

    Miyahara, K.; Hosoi, Y.; Garner, F.A.

    1992-01-01

    The objective of this effort is to determine the factors which control the stability of irradiated alloys proposed for reduced activation applications. The Fe-Cr-Mn alloy system is being studied as an alternative to the Fe-Cr-Ni system because of the need to reduce long-term radioactivation in fusion-power devices. In this study, four Fe-12Cr-XMn (X =15, 20, 25, 30 wt%) alloys were irradiated in the Fast Flux Test Facility to 20 dpa at 643K and 40 dpa at 679, 793, and 873K to investigate the influence of manganese content on void swelling and phase stability. The results confirm and expand the results of earlier studies that indicate that the Fe-Cr-Mn system is relatively unstable compared to that of the Fe-Cr-Ni system, with alpha and sigma phases forming as a consequence of thermal aging or high temperature irradiation

  13. Magnetic transition induced by mechanical deformation in Fe{sub 60}Al{sub 40−x}Si{sub x} ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Legarra, E., E-mail: estibaliz.legarra@ehu.es [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Apiñaniz, E. [Dpto. Fisica Aplicada I, Universidad del Pais Vasco, Alameda de Urquijo s/n, 48013 Bilbao (Spain); Plazaola, F. [Dpto. Electricidad y Electronica, Universidad del Pais Vasco (UPV/EHU), CP. 644, 48080 Bilbao (Spain); Jimenez, J.A. [Centro Nacional de Investigaciones Metalurgicas (CENIM), Avda. Gregorio del amo 8, 28040 Madrid (Spain)

    2014-02-15

    Highlights: • Fe{sub 60}Al{sub 40−x}Si{sub x} alloys were disordered by means of planetary ball milling technique. • Paramagnetic to ferromagnetic transition is observed with disordering. • Si addition hinders the disordering process and the increase of the lattice parameter. • Si addition promotes the paramagnetic to ferromagnetic transition. -- Abstract: We have used Mössbauer spectroscopy and X-ray diffraction to study the influence of different Al/Si ratios on the structural and magnetic properties of the mechanically deformed Fe{sub 60}Al{sub 40−x}Si{sub x} alloys. The results indicate that ternary alloys also present the magnetic transition with disordering observed in binary Fe{sub 60}Al{sub 40} alloys. Besides, Si introduction has two opposite contributions. From a structural point of view, hinders the disordering process, but, from a magnetic point of view promotes the magnetic transition.

  14. Microstructural characterization and phase transformation of ternary alloys near at Al{sub 3}Ti compound; Caracterizacion microestructural y transformaciones de fase de aleaciones ternareas cercanas al compuesto Al{sub 3}Ti

    Energy Technology Data Exchange (ETDEWEB)

    Angeles Ch, C. [Instituto Nacional de Investigaciones Nucleares. Depto.de Sintesis y Caracterizacion de Materiales. Carretera Mexico-Toluca Km. 36.5 C.P. 52045, Ocoyoacac, Edo. de Mexico (Mexico)

    1999-07-01

    This research work is related with the structural characteristic and compositional values of the crystalline phases, which are found in ternary alloys of Ti-Al-Fe and TI-Al-Cu. These types of alloys were obtained using a rapid solidification technique (10{sup 3}-10{sup 4} K/s) and pure elements such as Al, Ti, Fe and Cu (99.99%). These cooling velocities allow the formation of stable phases and small grain sizes (approximately in range of a few micras). The obtained results indicate the presence of Al{sub 3}Ti and others phases of L1{sub 2} type. These phases are commonly found in a matrix rich in A1. The microalloyed elements (Cu and Fe) substitute the aluminum in both kinds of phases. Alloys with low content of Cu show transition states from the tetragonal structure DO{sub 22} to the cubic phases L1{sub 2}. The structural characteristics of the alloys are related with some microhardness measurement. The results show that the presence of the L1{sub 2} phase tends to increase to hardness depending of the content of this phase.

  15. Oxidation of high-chromium binary Ni--Cr alloys and ternary alloys containing Ce, Zr, and Ti

    International Nuclear Information System (INIS)

    Ecer, G.M.; Meier, G.H.

    1976-01-01

    The oxidation of binary Ni--Cr alloys containing 44 and 50 wt percent Cr and Ni--50 Cr alloys with small additions of Ce, Zr, or Ti has been studied over a range of oxygen partial pressures at temperatures between 800 and 1100 0 C. The effects of cold work, surface preparation, and distribution of the Cr-rich second phase have been studied. Small additions of Ce were found to markedly reduce the rate of oxidation and improve the scale adherence. An explanation of the Ce effects is offered in terms of the stabilization of a free oxide grain size by Ce ions and/or CeO 2 particles and blocking of grain boundary short circuit diffusion paths by Ce ions. The effects of dilute additions of Ti and Zr are compared with the Ce effects

  16. Determining the Presence of Ordering in Ternary Semiconductor Alloys Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    2013-01-01

    as a simple measurement of film quality. 2. Motivation and Army Interest One common example of ordering seen in many semiconductor alloys is copper ...ARL U.S. Army Research Laboratory CuPt copper platinum Ga gallium GaInP gallium indium phosphide GaSb gallium antimonide HgCdTe mercury...RECORDS MGMT ATTN RDRL CIO LL TECHL LIB ATTN RDRL SEE I W SARNEY ADELPHI MD 20783-1197 TOTAL: 7 (1 ELEC, 6 HCS)

  17. Properties of ternary NiFeW alloy coating by jet electrodeposition

    Indian Academy of Sciences (India)

    17

    [2] Zelenovic L R, Cirovic N, Spasojevic M, Mitrovic N, Maricic A and Pavlovic V 2012 Mater. Chem. Phys. 135 212. [3] Oliveira A L M, Costa J D, Sousa M B D, Alves J J N, Campos A R N, Santana R A C and Prasad. S 2015 J. Alloys Compd. 619 697. [4] Donten M, Cesiulis H and Stojek Z 2000 Electrochim. Acta 45 3389.

  18. Investigation of solidification behavior of the Sn-rich ternary Sn–Bi–Zn alloys

    Directory of Open Access Journals (Sweden)

    S Mladenović

    2017-03-01

    Full Text Available Solidification properties and microstructure of six as-cast Sn–Bi–Zn alloys with 80 at.% of Sn and variable contents of Bi and Zn were experimentally investigated using the scanning electron microscopy (SEM with energy-dispersive X-ray spectroscopy (EDS and differential scanning calorimetry (DSC. The experimentally obtained results were compared with predicted phase equilibria according to the calculation of phase diagram (CALPHAD method and by the Scheil solidification simulation.

  19. Dispersion of nonresonant third-order nonlinearities in GeSiSn ternary alloys

    OpenAIRE

    De Leonardis, Francesco; Troia, Benedetto; Soref, Richard A.; Passaro, Vittorio M. N.

    2016-01-01

    Silicon (Si), tin (Sn), and germanium (Ge) alloys have attracted research attention as direct band gap semiconductors with applications in electronics and optoelectronics. In particular, GeSn field effect transistors can exhibit very high performance in terms of power reduction and operating speed because of the high electron drift mobility, while the SiGeSn system can be constructed using CMOS-compatible techniques to realize lasers, LED, and photodetectors. The wide Si, Ge and Sn transparen...

  20. Structural, Electronic and Elastic Properties of Ternary Alloy CoxNi1-xSi2

    Science.gov (United States)

    Ouchene, S.; Kadri, M. T.; Baaouague, K.; Belkhir, H.

    2013-09-01

    First-principles calculations, by means of the full-potential linearized augmented plane wave (FP-LAPW) method using the generalized gradient approximation (GGA), were carried out for the structural, electronic and elastic properties of transition metals disilicides alloy CoxNi1-xSi2 in the fluorite structure. The composition effect on lattice constants and bulk modulus has been analyzed. The deviations of the lattice constants from Vegard's law and the bulk modulus from linear concentration dependence (LCD) were observed for CoxNi1-xSi2. We also calculated the densities of states for the distorted CoxNi1-xSi2 alloys as well as for the ordered phases CoSi2 and NiSi2. Theoretical values of Young's modulus, shear modulus, Poisson's ratio and Debye temperature are estimated from the computed elastic constants. The analysis of the ratio of shear modulus to bulk modulus shows that the alloy is more brittle than the binary compounds. The calculated results are compared with other reported values.

  1. Atomistic modeling of ternary additions to NiTi and quaternary additions to Ni-Ti-Pd, Ni-Ti-Pt and Ni-Ti-Hf shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Mosca, H.O., E-mail: hmosca@cnea.gov.ar [Gcia. Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499, B1650KNA San Martin (Argentina); GCMM, UTN, FRG Pacheco, Av. H. Yrigoyen 288, Gral. Pacheco (Argentina); Bozzolo, G. [Loyola University Maryland, 4501 N. Charles St., Baltimore, MD 21210 (United States); Grosso, M.F. del [Gcia. Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499, B1650KNA San Martin (Argentina); GCMM, UTN, FRG Pacheco, Av. H. Yrigoyen 288, Gral. Pacheco (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET (Argentina)

    2012-08-15

    The behavior of ternary and quaternary additions to NiTi shape memory alloys is investigated using a quantum approximate method for the energetics. Ternary additions X to NiTi and quaternary additions to Ni-Ti-Pd, Ni-Ti-Pt, and Ni-Ti-Hf alloys, for X=Au, Pt, Ir, Os, Re, W, Ta,Ag, Pd, Rh, Ru, Tc, Mo, Nb, Zr, Zn, Cu, Co, Fe, Mn, V, Sc, Si, Al and Mg are considered. Bulk properties such as lattice parameter, energy of formation, and bulk modulus of the B2 alloys are studied for variations due to the presence of one or two simultaneous additives.

  2. Modeling diffusion-governed solidification of ternary alloys - Part 2: Macroscopic transport phenomena and macrosegregation.

    Science.gov (United States)

    Wu, M; Li, J; Ludwig, A; Kharicha, A

    2014-09-01

    Part 1 of this two-part investigation presented a multiphase solidification model incorporating the finite diffusion kinetics and ternary phase diagram with the macroscopic transport phenomena (Wu et al., 2013). In Part 2, the importance of proper treatment of the finite diffusion kinetics in the calculation of macrosegregation is addressed. Calculations for a two-dimensional (2D) square casting (50 × 50 mm 2 ) of Fe-0.45 wt.%C-1.06 wt.%Mn considering thermo-solutal convection and crystal sedimentation are performed. The modeling result indicates that the infinite liquid mixing kinetics as assumed by classical models (e.g., the Gulliver-Scheil or lever rule), which cannot properly consider the solute enrichment of the interdendritic or inter-granular melt at the early stage of solidification, might lead to an erroneous estimation of the macrosegregation. To confirm this statement, further theoretical and experimental evaluations are desired. The pattern and intensity of the flow and crystal sedimentation are dependent on the crystal morphologies (columnar or equiaxed); hence, the potential error of the calculated macrosegregation caused by the assumed growth kinetics depends on the crystal morphology. Finally, an illustrative simulation of an engineering 2.45-ton steel ingot is performed, and the results are compared with experimental results. This example demonstrates the model applicability for engineering castings regarding both the calculation efficiency and functionality.

  3. Chemical leaching of rapidly solidified Al-Si binary alloys

    International Nuclear Information System (INIS)

    Yamauchi, I.; Takahara, K.; Tanaka, T.; Matsubara, K.

    2005-01-01

    Various particulate precursors of Al 100-x Si x (x = 5-12) alloys were prepared by a rapid solidification process. The rapidly solidified structures of the precursors were examined by XRD, DSC and SEM. Most of Si atoms were dissolved into the α-Al(fcc) phase by rapid solidification though the solubility of Si in the α-Al phase is negligibly small in conventional solidification. In the case of 5 at.% Si alloy, a single α-Al phase was only formed. The amount of the primary Si phase increased with increase of Si content for the alloys beyond 8 at.% Si. Rapid solidification was effective to form super-saturated α-Al precursors. These precursors were chemically leached by using a basic solution (NaOH) or a hydrochloric acid (HCl) solution. All Al atoms were removed by a HCl solution as well as a NaOH solution. Granules of the Si phase were newly formed during leaching. The specific surface area was about 50-70 m 2 /g independent of Si content. The leaching behavior in both solutions was slightly different. In the case of a NaOH solution, the shape of the precursor often degenerated after leaching. On the other hand, it was retained after leaching by a HCl solution. Fine Si particles precipitated in the α-Al phase by annealing of as-rapidly solidified precursors at 773 K for 7.2 x 10 3 s. In this case, it was difficult to obtain any products by NaOH leaching, but a few of Si particles were obtained by HCl leaching. Precipitated Si particles were dissolved by the NaOH solution. The X-ray diffraction patterns of leached specimens showed broad lines of the Si phase and its lattice constant was slightly larger than that of the pure Si phase. The microstructures of the leached specimens were examined by transmission electron microscopy. It showed that the leached specimens had a skeletal structure composed of slightly elongated particles of the Si phase and quite fine pores. The particle size was about 30-50 nm. It was of comparable order with that evaluated by Scherer

  4. Band gap characterization of ternary BBi1-xNx (0≤x≤1) alloys using modified Becke-Johnson (mBJ) potential

    Science.gov (United States)

    Yalcin, Battal G.

    2015-04-01

    The semi-local Becke-Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi1-xNx (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi1-xNx structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew-Burke-Ernzerhof (PBE). For electronic properties the modified Becke-Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi1-xNx almost perfectly matches with Vegard's law. The spin-orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations.

  5. Band gap characterization of ternary BBi1−xNx (0≤x≤1) alloys using modified Becke–Johnson (mBJ) potential

    International Nuclear Information System (INIS)

    Yalcin, Battal G.

    2015-01-01

    The semi-local Becke–Johnson (BJ) exchange-correlation potential and its modified form proposed by Tran and Blaha have attracted a lot of interest recently because of the surprisingly accurate band gaps they can deliver for many semiconductors and insulators (e.g., sp semiconductors, noble-gas solids, and transition-metal oxides). The structural and electronic properties of ternary alloys BBi 1−x N x (0≤x≤1) in zinc-blende phase have been reported in this study. The results of the studied binary compounds (BN and BBi) and ternary alloys BBi 1−x N x structures are presented by means of density functional theory. The exchange and correlation effects are taken into account by using the generalized gradient approximation (GGA) functional of Wu and Cohen (WC) which is an improved form of the most popular Perdew–Burke–Ernzerhof (PBE). For electronic properties the modified Becke–Johnson (mBJ) potential, which is more accurate than standard semi-local LDA and PBE calculations, has been chosen. Geometric optimization has been implemented before the volume optimization calculations for all the studied alloys structure. The obtained equilibrium lattice constants of the studied binary compounds are in coincidence with experimental works. And, the variation of the lattice parameter of ternary alloys BBi 1−x N x almost perfectly matches with Vegard's law. The spin–orbit interaction (SOI) has been also considered for structural and electronic calculations and the results are compared to those of non-SOI calculations

  6. Kinetic properties of ternary alloys Ni3Mn x Al1 - x

    Science.gov (United States)

    Volkova, N. V.; Kourov, N. I.; Marchenkov, V. V.

    2014-12-01

    Kinetic properties of Ni3Mn x Al1 - x alloys have been studied at temperatures of 4.2 to 800 K in magnetic fields up to 12 MA/m. Separate contributions to the electrical resistance have been determined: the residual resistance, phonon component, and magnetic component. The behavior of the kinetic properties typical of the ferromagnets is observed, including the positive temperature coefficient of resistance and features in the form of a bend in the curves of the temperature dependence of resistance at the Curie temperature. It is shown that the parameters of the investigated kinetic properties change substantially upon the isomorphic concentration transition L12 → L12 from the ordinary superstructure of Ni3Mn type to the Ni3Al intermetallic compound. It has been revealed that the concentration dependence of the resistance can be described in terms of the percolation theory in the model of effective medium.

  7. Irradiation response of rapidly solidified Path A type prime candidate alloys

    International Nuclear Information System (INIS)

    Imeson, E.; Tong, C.; Lee, M.; Vander Sande, J.B.; Harling, O.K.

    1981-01-01

    The objective of this study is to present a first assessment of the microstructural response to neutron irradiation shown by Path A alloys prepared by rapid solidification processing. To more fully demonstrate the potential of the method, alloys with increased titanium and carbon content have been used in addition to the Path A prime candidate alloy

  8. Structural and optoelectronic properties of BxAl1-xSb ternary alloys: first principles calculations

    Science.gov (United States)

    Benchehima, Miloud; Abid, Hamza; Chaouche, Abdallah Chabane; Resfa, Abbes

    2017-03-01

    In this paper, the full potential linearized augmented plane wave (FP-LAPW) formalism based on density functional theory (DFT) has been performed. To study the structural properties of BxAl1-xSb at different boron concentrations x (0 ≤ x ≤ 1), we have used the local density approximation (LDA) and the generalized gradient approximation of Wu and Cohen (GGA-WC). The phase stability of AlSb and BSb binary compounds in zinc-blend and rock salt phases has been investigated. The equilibrium lattice constant (a), bulk modulus (B) and pressure derivative of bulk modulus B' have been evaluated in both phases. We observe a small deviation from the linear concentration dependence (LCD) of the lattice constant parameter, while an important deviation of bulk modulus from "LCD" has been remarked. We have compared the results obtained to the available theoretical and experimental data for the binaries. The optoelectronic properties of BxAl1-xSb are studied in the most stable determined phase. In addition to the "GGA-WC", the GGA of Engel and Vosko, and the recent developed Tran-Blaha-modified Becke-Johnson (TB-mBJ) schemes were used to study the electronic properties of BxAl1-xSb ternary alloys. It is found that the band gap of BxAl1-xSb vary non-linearly with the boron concentrations, giving a negative deviation from Vegard's law. In addition, the optical properties such as the dielectric function, complex refractive index, absorption coefficient, optical conductivity and absorption coefficient are discussed in detail.

  9. InN/GaN short-period superlattices as ordered InGaN ternary alloys

    International Nuclear Information System (INIS)

    Kusakabe, Kazuhide; Imai, Daichi; Wang, Ke; Yoshikawa, Akihiko

    2016-01-01

    Coherent (InN) 1 /(GaN) n short-period superlattices (SPSs) were successfully grown through dynamic atomic layer epitaxy (D-ALEp) mode by RF-plasma molecular beam epitaxy (MBE), where GaN layer thicknesses n were thinned down to 4 monolayer (ML). After this achievement, we demonstrated quasi-ternary InGaN behavior in their photoluminescence (PL) spectra for the first time. It was found interestingly that GaN layer thickness of n = 4 ML was the criterion both for structural control and continuum-band formation. Although highly lattice-mismatched InN/GaN interfaces easily introduce relaxation in (InN) 1 /(GaN) 4 SPSs during growth depending on the dynamic surface stoichiometry condition, this problem was overcome by precise control/removal of fluid-like residual In/Ga metals on the growth front with in-situ monitoring method. The (InN) 1 /(GaN) n SPSs with n ≥ 7 ML showed a constant PL peak energy around 3.2 eV at 12 K, reflecting discrete electron/hole wavefunctions. On the other hand, the (InN) 1 /(GaN) 4 SPSs indicated the red-shifted PL peak at 2.93 eV at 12 K, which was attributed to the continuum-band state with increasing in the overlap of electrons/hole wavefunctions. This result is concluded that the (InN) 1 /(GaN) 4 SPSs can be considered as ordered InGaN alloys. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Macrosegregation in horizontal direct chill casting of ternary Al alloys: Investigation of solid motion

    International Nuclear Information System (INIS)

    Vušanović, I; Krane, M J M

    2012-01-01

    Macrosegregation in direct chill casting processes is controlled by fluid flow due to the thermosolutal natural and forced convection, shrinkage, and transport of unattached solid grains. Because grain refinement is usually used in aluminum direct chill casting, some effort must be made to model free-floating solid grains, and their attachment to a rigid mushy zone. Criteria for attachment vary, but many are based on using a critical solid packing fraction, which is treated as uniform and constant throughout the domain. In the case of horizontal casting (HDC), gravity acts perpendicularly to the casting direction, and the assumption of a uniform packing fraction cannot be applied because the solid particles attach to some surfaces by settling and others by being swept into the rigid solid from below. In this simulation of HDC casting of an Al-Cu-Mg alloy, the rigid and unattached solid is tracked separately, and a rule set is developed to determine the attachment of free-floating solid. Comparison between cases with and without unattached solid movement shows qualitatively different results, particularly in bottom part of slab. Non-uniform packing fractions cause very different segregation patterns in the lower half of the ingot compared to the cases with no solid movement, less segregation near centerline compared to uniform packing fraction cases, and positive segregation near the place where inlet jet impinges on the mushy zone.

  11. Study on Mg/Al Weld Seam Based on Zn–Mg–Al Ternary Alloy

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2014-02-01

    Full Text Available Based on the idea of alloying welding seams, a series of Zn–xAl filler metals was calculated and designed for joining Mg/Al dissimilar metals by gas tungsten arc (GTA welding. An infrared thermography system was used to measure the temperature of the welding pool during the welding process to investigate the solidification process. It was found that the mechanical properties of the welded joints were improved with the increasing of the Al content in the Zn–xAl filler metals, and when Zn–30Al was used as the filler metal, the ultimate tensile strength could reach a maximum of 120 MPa. The reason for the average tensile strength of the joint increasing was that the weak zone of the joint using Zn–30Al filler metal was generated primarily by α-Al instead of MgZn2. When Zn–40Al was used as the filler metal, a new transition zone, about 20 μm-wide, appeared in the edge of the fusion zone near the Mg base metal. Due to the transition zones consisting of MgZn2- and Al-based solid solution, the mechanical property of the joints was deteriorated.

  12. Topological phase transition in the ternary half-Heusler alloy ZrIrBi

    Science.gov (United States)

    Barman, C. K.; Alam, Aftab

    2018-02-01

    Half-Heusler alloys provide a new platform for deriving a host of topologically exotic compounds through the inherent flexibility of tuning their hybridization strength (via lattice parameters), spin-orbit strength, substitution/doping, etc. Using the first-principles calculation within the density functional theory, we explore the possibility of realizing a topological insulating phase in a new half-Heusler material ZrIrBi. We discovered three routes through which ZrIrBi can be transformed to exhibit a topological nontrivial phase. They are (i) a hydrostatic expansion by 1% causing a band inversion with zero gap, (ii) a uniaxial strain along (001) direction which opens a band gap while preserving the inverted band order, and (iii) substitution of 50% Bi by As and 50% Zr by Hf forming the compounds ZrIr (As0.5Bi0.5 ) and (Zr0.5Hf0.5 )IrBi again showing a topologically nontrivial band inversion. A definitive proof of the surface conduction in all three cases are done by simulating surface band structures. We report the formation energies and the phonon dispersion for the three cases to confirm the chemical and mechanical stability of the compounds.

  13. Morphological instabilities of rapidly solidified binary alloys under weak flow

    Science.gov (United States)

    Kowal, Katarzyna; Davis, Stephen

    2017-11-01

    Additive manufacturing, or three-dimensional printing, offers promising advantages over existing manufacturing techniques. However, it is still subject to a range of undesirable effects. One of these involves the onset of flow resulting from sharp thermal gradients within the laser melt pool, affecting the morphological stability of the solidified alloys. We examine the linear stability of the interface of a rapidly solidifying binary alloy under weak boundary-layer flow by performing an asymptotic analysis for a singular perturbation problem that arises as a result of departures from the equilibrium phase diagram. Under no flow, the problem involves cellular and pulsatile instabilities, stabilised by surface tension and attachment kinetics. We find that travelling waves appear as a result of flow and we map out the effect of flow on two absolute stability boundaries as well as on the cells and solute bands that have been observed in experiments under no flow. This work is supported by the National Institute of Standards and Technology [Grant Number 70NANB14H012].

  14. First-Principles Calculations of Structural, Electronic and Optical Properties of Ternary Semiconductor Alloys ZAs x Sb1- x ( Z = B, Al, Ga, In)

    Science.gov (United States)

    Bounab, S.; Bentabet, A.; Bouhadda, Y.; Belgoumri, Gh.; Fenineche, N.

    2017-08-01

    We have investigated the structural and electronic properties of the BAs x Sb 1- x , AlAs x Sb 1- x , GaAs x Sb 1- x and InAs x Sb 1- x semiconductor alloys using first-principles calculations under the virtual crystal approximation within both the density functional perturbation theory and the pseudopotential approach. In addition the optical properties have been calculated by using empirical methods. The ground state properties such as lattice constants, both bulk modulus and derivative of bulk modulus, energy gap, refractive index and optical dielectric constant have been calculated and discussed. The obtained results are in reasonable agreement with numerous experimental and theoretical data. The compositional dependence of the lattice constant, bulk modulus, energy gap and effective mass of electrons for ternary alloys show deviations from Vegard's law where our results are in agreement with the available data in the literature.

  15. Ab-initio study of structural, elastic, electronic and thermodynamic properties of BaxSr1−xS ternary alloys

    Directory of Open Access Journals (Sweden)

    Chelli S.

    2015-12-01

    Full Text Available The structural, elastic, electronic and thermodynamic properties of BaxSr1−xS ternary alloys have been investigated using the full-potential (linearized augmented plane wave method. The ground state properties, such as lattice constant, bulk modulus and elastic constants, are in good agreement with numerous experimental and theoretical data. The dependence of the lattice parameters, bulk modulus and band gap on the composition x was analyzed. Deviation of the lattice constant from Vegard’s law and the bulk modulus from linear concentration dependence (LCD was observed. The microscopic origins of the gap bowing were explained by using the approach of Zunger et al. The thermodynamic stability of BaxSr1−xS alloy was investigated by calculating the excess enthalpy of mixing, ΔHm and the calculated phase diagram showed a broad miscibility gap with a critical temperature.

  16. Heat capacities, magnetic properties, and resistivities of ternary RPdBi alloys where R = La, Nd, Gd, Dy, Er, and Lu

    International Nuclear Information System (INIS)

    Riedemann, T.M.

    1996-01-01

    Over the past four and a half decades research on the rare earths, their compounds, and their alloys has yielded significant insights into the nature of materials. The rare earths can be used to systematically study a series of alloys or compounds. Magnetic ordering, crystalline fields, spin fluctuations, the magnetocaloric effect, and magnetostriction are a small sample of phenomena studied that are exhibited by the rare earth family. A significant portion of research has been conducted on the abundant RM 2 and RM phases, where R is the rare earth and M is a transition metal. The natural progression of science has led to the study of related RMX ternary phases, where X is either another transition metal or semimetal. There are now over 1,000 known RMX phases. The focus of this study is on RPdBi where R = La, Nd, Gd, Dy, Er, and Lu. Their heat capacities, magnetic properties, and resistivities are studied

  17. Alloy composition dependence of formation of porous Ni prepared by rapid solidification and chemical dealloying

    Energy Technology Data Exchange (ETDEWEB)

    Qi Zhen [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Zhang Zhonghua [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)], E-mail: zh_zhang@sdu.edu.cn; Jia Haoling [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China); Qu Yingjie [Shandong Labor Occupational Technology College, Jingshi Road 388, Jinan 250022 (China); Liu Guodong; Bian Xiufang [Key Laboratory of Liquid Structure and Heredity of Materials, Shandong University, Jingshi Road 73, Jinan 250061 (China)

    2009-03-20

    In this paper, the effect of alloy composition on the formation of porous Ni catalysts prepared by chemical dealloying of rapidly solidified Al-Ni alloys has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis and N{sub 2} adsorption experiments. The experimental results show that rapid solidification and alloy composition have a significant effect on the phase constituent and microstructure of Al-Ni alloys. The melt spun Al-20 at.% Ni alloy consists of {alpha}-Al, NiAl{sub 3} and Ni{sub 2}Al{sub 3}, while the melt spun Al-25 and 31.5 at.% Ni alloys comprise NiAl{sub 3} and Ni{sub 2}Al{sub 3}. Moreover, the formation and microstructure of the porous Ni catalysts are dependent upon the composition of the melt spun Al-Ni alloys. The morphology and size of Ni particles in the Ni catalysts inherit from those of grains in the melt spun Al-Ni alloys. Rapid solidification can extend the alloy composition of Al-Ni alloys suitable for preparation of the Ni catalysts, and obviously accelerate the dealloying process of the Al-Ni alloys.

  18. A Platinum Monolayer Core-Shell Catalyst with a Ternary Alloy Nanoparticle Core and Enhanced Stability for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Haoxiong Nan

    2015-01-01

    Full Text Available We synthesize a platinum monolayer core-shell catalyst with a ternary alloy nanoparticle core of Pd, Ir, and Ni. A Pt monolayer is deposited on carbon-supported PdIrNi nanoparticles using an underpotential deposition method, in which a copper monolayer is applied to the ternary nanoparticles; this is followed by the galvanic displacement of Cu with Pt to generate a Pt monolayer on the surface of the core. The core-shell Pd1Ir1Ni2@Pt/C catalyst exhibits excellent oxygen reduction reaction activity, yielding a mass activity significantly higher than that of Pt monolayer catalysts containing PdIr or PdNi nanoparticles as cores and four times higher than that of a commercial Pt/C electrocatalyst. In 0.1 M HClO4, the half-wave potential reaches 0.91 V, about 30 mV higher than that of Pt/C. We verify the structure and composition of the carbon-supported PdIrNi nanoparticles using X-ray powder diffraction, X-ray photoelectron spectroscopy, thermogravimetry, transmission electron microscopy, and energy dispersive X-ray spectrometry, and we perform a stability test that confirms the excellent stability of our core-shell catalyst. We suggest that the porous structure resulting from the dissolution of Ni in the alloy nanoparticles may be the main reason for the catalyst’s enhanced performance.

  19. First-principle study of the electronic band structure and the effective mass of the ternary alloy GaxIn1-xP

    Science.gov (United States)

    Yang, H. Q.; Song, T. L.; Liang, X. X.; Zhao, G. J.

    2015-01-01

    In this work, the electronic band structure and the effective mass of the ternary alloy GaxIn1-xP are studied by the first principle calculations. The software QUANTUM ESPRESSO and the generalized gradient approximation (GGA) for the exchange correlations have been used in the calculations. We calculate the lattice parameter, band gap and effective mass of the ternary alloy GaxIn1-xP for the Ga composition x varying from 0.0 to 1.0 by the step of 0.125. The effect of the Ga composition on the lattice parameter and the electronic density of states are discussed. The results show that the lattice parameter varies with the composition almost linearly following the Vegard's law. A direct-to-indirect band-gap crossover is found to occur close to x = 0.7. The effective masses are also calculated at Γ(000) high symmetry point along the [100] direction. The results show that the band gap and the electron effective mass vary nonlinearly with composition x.

  20. Analysis of antiphase domain growth in ternary FeCo alloys after different cooling rates and annealing treatments using neutron diffraction and positron annihilation

    International Nuclear Information System (INIS)

    Gilles, Ralph; Hofmann, Michael; Johnson, Francis; Gao Yan; Mukherji, Debashis; Hugenschmidt, Christoph; Pikart, Philip

    2011-01-01

    Research highlights: → In-situ observation at high temperatures of atomic position change Fe and Co with neutron diffraction. → Determination of antiphase domain growth with neutron diffraction. → Determination of vacacny defects at antiphase domain boundaries with positron annihilation. → Combination of neutron diffraction and positron annihilation to correlate ordering/disordering process and the defect density of ternary FeCo alloys. - Abstract: FeCo alloys are industrially important engineering materials which play an outstanding role in applications requiring soft magnetic materials. The challenge is to include ternary elements to improve the mechanical properties. Here noble elements as Pt or Pd were used for these experiments. With neutron diffraction and positron annihilation technique Fe 67 Co 30 Pt 3 and Fe 67 Co 30 Pd 3 (at. pct.) samples were measured to study the influence of different cooling rates on ordering and disordering. The ordering and disordering process is responsible for the mechanical properties in dependence of temperature. The correlation of ordering and defect density is described.

  1. Effects of varying indium composition on the thermoelectric properties of In{sub x}Ga{sub 1-x}Sb ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Nirmal Kumar, V.; Hayakawa, Y. [Shizuoka University, Graduate School of Science and Technology, Hamamatsu (Japan); Shizuoka University, Research Institute of Electronics, Hamamatsu, Shizuoka (Japan); Arivanandan, M. [Anna University, Centre for Nanoscience and Technology, Chennai (India); Koyoma, T. [Shizuoka University, Research Institute of Electronics, Hamamatsu, Shizuoka (Japan); Udono, H. [Ibaraki University, Faculty of Engineering, Hitachi (Japan); Inatomi, Y. [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Sagamihara (Japan); SOKENDAI (The Graduate University for Advanced Studies), School of Physical Sciences, Sagamihara (Japan)

    2016-10-15

    In{sub x}Ga{sub 1-x}Sb (x = 0-1), a III-V ternary alloy, was grown by melt solidification process. The effects of varying indium composition on the thermoelectric properties of In{sub x}Ga{sub 1-x}Sb polycrystals were studied for the first time. The segregations of indium and gallium elements were observed in the grown crystals, and the defects present in crystals were revealed by etching process. Room-temperature Raman measurement revealed that the dominant optical modes of phonon vibrations in InSb and GaSb binaries were suppressed in In{sub x}Ga{sub 1-x}Sb ternaries. The in-phase vibrations of acoustic mode phonons were scattered more effectively in In{sub x}Ga{sub 1-x}Sb by the present defects, and the relative value of lattice thermal conductivity was reduced. Thus, the thermal conductivity of InSb and GaSb binaries was drastically reduced in In{sub x}Ga{sub 1-x}Sb by alloy scattering. InSb indicated the highest ZT 0.51 because of its higher power factor 70 μW/cm K{sup 2}. Next to InSb, In{sub 0.8}Ga{sub 0.2}Sb had higher ZT value of 0.29 at 600 K among the In{sub x}Ga{sub 1-x}Sb ternaries. The ZT of In{sub 0.8}Ga{sub 0.2}Sb was increased about 30 times than that of GaSb by the increase of power factor as well as the decrease of thermal conductivity. (orig.)

  2. Rapid microwave-assisted preparation of binary and ternary transition metal sulfide compounds

    Energy Technology Data Exchange (ETDEWEB)

    Butala, Megan M.; Perez, Minue A.; Arnon, Shiri; Göbel, Claudia; Preefer, Molleigh B.; Seshadri, Ram

    2017-12-01

    Transition metal chalcogenides are of interest for energy applications, including energy generation in photoelectrochemical cells and as electrodes for next-generation electrochemical energy storage. Synthetic routes for such chalcogenides typically involve extended heating at elevated temperatures for multiple weeks. We demonstrate here the feasibility of rapidly preparing select sulfide compounds in a matter of minutes, rather than weeks, using microwave-assisted heating in domestic microwaves. We report the preparations of phase pure FeS2, CoS2, and solid solutions thereof from the elements with only 40 min of heating. Conventional furnace and rapid microwave preparations of CuTi2S4 both result in a majority of the targeted phase, even with the significantly shorter heating time of 40 min for microwave methods relative to 12 days using a conventional furnace. The preparations we describe for these compounds can be extended to related structures and chemistries and thus enable rapid screening of the properties and performance of various compositions of interest for electronic, optical, and electrochemical applications.

  3. First-principles study on half-metallic ferromagnetic properties of Zn{sub 1-x}V{sub x}Se ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Khatta, Swati; Tripathi, S.K.; Prakash, Satya [Panjab University, Central of Advanced Study in Physics, Department of Physics, Chandigarh (India)

    2017-09-15

    The spin-polarised density functional theory along with self-consistent plane-wave pseudopotential is used to investigate the half-metallic ferromagnetic properties of ternary alloys Zn{sub 1-x}V{sub x}Se. The generalized gradient approximation is used for exchange-correlation potential. The equilibrium lattice constants, bulk modulus, and its derivatives are calculated. The calculated spin-polarised energy-band structures reveal that these alloys are half-metallic for x = 0.375 and 0.50 and nearly half-metallic for other values of x. The estimated direct and indirect bandgaps may be useful for the magneto-optical absorption experiments. It is found that there is strong Zn 4s, Se 4p, and V 3d orbital hybridization in the conduction bands of both the spins, while Se 4p and V 3d orbital hybridization predominates in the valence bands of both the spins. The s, p-d, and p-d orbital hybridization reduces the local magnetic moment of V atoms and small local magnetic moments are produced on Zn and Se atoms which get coupled with V atoms in ferromagnetic and antiferromagnetic phases, respectively. The conduction and valence-band-edge splittings and exchange constants predict the ferromagnetism in these alloys. The conduction band-impurity (s and p-d) exchange interaction is more significant for ferromagnetism in these alloys than the valence band-impurity (p-d) exchange interaction. (orig.)

  4. Rapid Solidification of AB{sub 5} Hydrogen Storage Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gulbrandsen-Dahl, Sverre

    2002-01-01

    This doctoral thesis is concerned with rapid solidification of AB{sub 5} materials suitable for electrochemical hydrogen storage. The primary objective of the work has been to characterise the microstructure and crystal structure of the produced AB{sub 5} materials as a function of the process parameters, e.g. the cooling rate during rapid solidification, the determination of which has been paid special attention to. The thesis is divided into 6 parts, of which Part I is a literature review, starting with a short presentation of energy storage alternatives. Then a general review of metal hydrides and their utilisation as energy carriers is presented. This part also includes more detailed descriptions of the crystal structure, the chemical composition and the hydrogen storage properties of AB{sub 5} materials. Furthermore, a description of the chill-block melt spinning process and the gas atomisation process is given. In Part II of the thesis a digital photo calorimetric technique has been developed and applied for obtaining in situ temperature measurements during chill-block melt spinning of a Mm(NiCoMnA1){sub 5} hydride forming alloy (Mm = Mischmetal of rare earths). Compared with conventional colour transmission temperature measurements, this technique offers a special advantage in terms of a high temperature resolutional and positional accuracy, which under the prevailing experimental conditions were found to be {+-}29 K and {+-} 0.1 mm, respectively. Moreover, it is shown that the cooling rate in solid state is approximately 2.5 times higher than that observed during solidification, indicating that the solid ribbon stayed in intimate contact with the wheel surface down to very low metal temperatures before the bond was broken. During this contact period the cooling regime shifted from near ideal in the melt puddle to near Newtonian towards the end, when the heat transfer from the solid ribbon to the wheel became the rate controlling step. In Part III of the

  5. Rapid Ordering in "Wet Brush" Block Copolymer/Homopolymer Ternary Blends.

    Science.gov (United States)

    Doerk, Gregory S; Yager, Kevin G

    2017-12-26

    The ubiquitous presence of thermodynamically unfavored but kinetically trapped topological defects in nanopatterns formed via self-assembly of block copolymer thin films may prevent their use for many envisioned applications. Here, we demonstrate that lamellae patterns formed by symmetric polystyrene-block-poly(methyl methacrylate) diblock copolymers self-assemble and order extremely rapidly when the diblock copolymers are blended with low molecular weight homopolymers of the constituent blocks. Being in the "wet brush" regime, the homopolymers uniformly distribute within their respective self-assembled microdomains, preventing increases in domain widths. An order-of-magnitude increase in topological grain size in blends over the neat (unblended) diblock copolymer is achieved within minutes of thermal annealing as a result of the significantly higher power law exponent for ordering kinetics in the blends. Moreover, the blends are demonstrated to be capable of rapid and robust domain alignment within micrometer-scale trenches, in contrast to the corresponding neat diblock copolymer. These results can be attributed to the lowering of energy barriers associated with domain boundaries by bringing the system closer to an order-disorder transition through low molecular weight homopolymer blending.

  6. TEM observations of a rapidly solidified Al-20 Sb alloy

    International Nuclear Information System (INIS)

    Wang Yan; Zhang Zhonghua; Zheng Shaohua; Bian Xiufang

    2004-01-01

    In the present work, the microstructural characterization of a melt-spun Al-20 Sb alloy has been carried out using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The phases present in the melt-spun Al-20 Sb alloy were determined to be α-Al and AlSb, identical to those in the ingot-cast alloy. The microstructure of the melt-spun Al-20 Sb alloy is dominantly composed of primary AlSb dendrites embedded in the α-Al matrix, different from that of the ingot-cast alloy composed of primary AlSb plates within an α-Al/AlSb eutectic matrix. In addition, some areas comprise primary AlSb particles within the α-Al matrix in the melt-spun alloy

  7. Indirect-to-direct band gap transition in relaxed and strained Ge{sub 1−x−y}Si{sub x}Sn{sub y} ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Attiaoui, Anis; Moutanabbir, Oussama [Department of Engineering Physics, École Polytechnique de Montréal, Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec H3C 3A7 (Canada)

    2014-08-14

    Sn-containing group IV semiconductors create the possibility to independently control strain and band gap thus providing a wealth of opportunities to develop an entirely new class of low dimensional systems, heterostructures, and silicon-compatible electronic and optoelectronic devices. With this perspective, this work presents a detailed investigation of the band structure of strained and relaxed Ge{sub 1−x−y}Si{sub x}Sn{sub y} ternary alloys using a semi-empirical second nearest neighbors tight binding method. This method is based on an accurate evaluation of the deformation potential constants of Ge, Si, and α-Sn using a stochastic Monte-Carlo approach as well as a gradient based optimization method. Moreover, a new and efficient differential evolution approach is also developed to accurately reproduce the experimental effective masses and band gaps. Based on this, we elucidated the influence of lattice disorder, strain, and composition on Ge{sub 1−x−y}Si{sub x}Sn{sub y} band gap energy and directness. For 0 ≤ x ≤ 0.4 and 0 ≤ y ≤ 0.2, we found that tensile strain lowers the critical content of Sn needed to achieve a direct band gap semiconductor with the corresponding band gap energies below 0.76 eV. This upper limit decreases to 0.43 eV for direct gap, fully relaxed ternary alloys. The obtained transition to direct band gap is given by y > 0.605 × x + 0.077 and y > 1.364 × x + 0.107 for epitaxially strained and fully relaxed alloys, respectively. The effects of strain, at a fixed composition, on band gap directness were also investigated and discussed.

  8. Investigation of strain effects on phase diagrams in the ternary nitride alloys (InAlN, AlGaN, InGaN)

    Energy Technology Data Exchange (ETDEWEB)

    Mohamad, Ranim; Chen, Jun; Ruterana, Pierre [CIMAP, UMR 6252, CNRS-ENSICAEN-CEA-UNICAEN, Caen (France); Bere, Antoine [Laboratoire de Physique et de Chimie de l' Environnement, Universite Ouaga I Pr Joseph KI-ZERBO, Ouagadougou (Burkina Faso)

    2017-09-15

    In this work, we used a modified Stillinger-Weber potential and a methodology of free energy calculation based on numerical computation of the configuration partition function of an alloy, to make a comprehensive study of the properties of group-III nitride ternary compounds (In{sub x}Ga{sub 1-x}N; In{sub x}Al{sub 1-x}N; Al{sub x}Ga{sub 1-x}N). The wurtzite structure was used; and the critical temperatures for the random ternary alloys are determined as 2717 K for In{sub x}Al{sub 1-x}N, 1718 K for In{sub x}Ga{sub 1-x}N, and 177 K for Al{sub x}Ga{sub 1-x}N, respectively. Therefore, Al{sub x}Ga{sub 1-x}N has no unstable mixing region at typical growth temperatures around 1100 C. In contrast, In{sub x}Al{sub 1-x}N and In{sub x}Ga{sub 1-x}N exhibit a wide unstable region, which means that being thick layers, their stability as homogeneous alloys is probably limited. In agreement with other reports, it is also pointed out that the critical temperature T{sub c} may be decreased when the layers are grown under strain. Although the compression and extension have the same effect below 1.5% strain, it is shown, for the first time, that when the compressive strain goes beyond, T{sub c} abruptly increases in contrast to the case of tensile strain where it continues to decrease. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Devitrification of rapidly quenched Al–Cu–Ti amorphous alloys

    Indian Academy of Sciences (India)

    Unknown

    spinning, the entire apparatus was ... The crystallization behaviour of these amorphous alloys has been studied using DSC 2910 (TA ... Thus the change in the structure of amorphous Al50Cu45Ti5 and Al45Cu45Ti10 alloys may be summarized as ...

  10. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  11. Copper-base alloys processed by rapid solidification and ion implantation

    International Nuclear Information System (INIS)

    Wood, J.V.; Elvidge, C.J.; Johnson, E.; Johansen, A.; Sarholt-Kristensen, L.; Henriksen, O.

    1985-01-01

    Alloys of Cu-Sn and Cu-B have been processed by both melt spinning and ion implantation. In some instances (e.g. Cu-Sn alloys) rapidly solidified ribbons have been subjected to further implantation. This paper describes the similarities and differences in structure of materials subjected to a dynamic and contained process. For example in Cu-B alloys (up to 2wt% Boron) extended solubility is found in implanted alloys which is not present to the same degree in rapidly solidified alloys of the same composition. Likewise the range and nature of the reversible martensitic transformation is different in both cases as examined by electron microscopy and differential scanning calorimetry. (orig.)

  12. Ternary superconductors

    International Nuclear Information System (INIS)

    Giorgi, A.L.

    1987-01-01

    Ternary superconductors constitute a class of superconducting compounds with exceptional properties such as high transition temperatures (≅ 15.2 K), extremely high critical fields (H c2 >60 Tesla), and the coexistence of superconductivity and long-range magnetic order. This has generated great interest in the scientific community and resulted in a large number of experimental and theoretical investigations in which many new ternary compounds have been discovered. A review of some of the properties of these ternary compounds is presented with particular emphasis on the ternary molybdenum chalcogenides and the ternary rare earth transition metal tetraborides. The effect of partial substitution of a second metal atom to form pseudoternary compounds is examined as well as some of the proposed correlations between the superconducting transition temperature and the structural and electronic properties of the ternary superconductors

  13. Increased corrosion resistance of the AZ80 magnesium alloy by rapid solidification.

    Science.gov (United States)

    Aghion, E; Jan, L; Meshi, L; Goldman, J

    2015-11-01

    Magnesium (Mg) and Mg-alloys are being considered as implantable biometals. Despite their excellent biocompatibility and good mechanical properties, their rapid corrosion is a major impediment precluding their widespread acceptance as implantable biomaterials. Here, we investigate the potential for rapid solidification to increase the corrosion resistance of Mg alloys. To this end, the effect of rapid solidification on the environmental and stress corrosion behavior of the AZ80 Mg alloy vs. its conventionally cast counterpart was evaluated in simulated physiological electrolytes. The microstructural characteristics were examined by optical microscopy, SEM, TEM, and X-ray diffraction analysis. The corrosion behavior was evaluated by immersion, salt spraying, and potentiodynamic polarization. Stress corrosion resistance was assessed by Slow Strain Rate Testing. The results indicate that the corrosion resistance of rapidly solidified ribbons is significantly improved relative to the conventional cast alloy due to the increased Al content dissolved in the α-Mg matrix and the correspondingly reduced presence of the β-phase (Mg17 Al12 ). Unfortunately, extrusion consolidated solidified ribbons exhibited a substantial reduction in the environmental performance and stress corrosion resistance. This was mainly attributed to the detrimental effect of the extrusion process, which enriched the iron impurities and increased the internal stresses by imposing a higher dislocation density. In terms of immersion tests, the average corrosion rate of the rapidly solidified ribbons was alloy and 26 mm/year for the rapidly solidified extruded ribbons. © 2014 Wiley Periodicals, Inc.

  14. Trace element control in binary Ni-25Cr and ternary Ni-30Co-30Cr master alloy castings

    Energy Technology Data Exchange (ETDEWEB)

    Detrois, Martin [National Energy Technology Lab. (NETL), Albany, OR (United States); Oak Ridge Inst. for Science and Education (ORISE), Oak Ridge, TN (United States); Jablonski, Paul D. [National Energy Technology Lab. (NETL), Albany, OR (United States);

    2017-10-23

    Electro-slag remelting (ESR) is used for control of unwanted elements in commercial alloys. This study focuses on master alloys of Ni-25Cr and Ni-30Co-30Cr, processed through a combination of vacuum induction melting (VIM) and electro-slag remelting (ESR). Minor additions were made to control tramp element levels and modify the melting characteristics. Nitrogen and sulfur levels below 10 ppm and oxygen levels below 100 ppm were obtained in the final products. The role of the alloy additions in lowering the tramp element content, the resulting residual inclusions and the melting characteristics were determined computationally and confirmed experimentally. Additions of titanium were beneficial to the control of oxygen levels during VIM and nitrogen levels during ESR. Aluminum additions helped to control oxygen levels during remelting, however, aluminum pickup occurred when excess titanium was present during ESR. The usefulness of these master alloys for use as experimental remelt stock will also be discussed.

  15. Study of the ternary alloy systems Al-Ni-Fe and Al-Cu-Ru with special regard to quasicrystalline phases

    International Nuclear Information System (INIS)

    Lemmerz, U.

    1996-07-01

    Two ternary alloy-systems, the Al-Ni-Fe system and the Al-Cu-Ru system were studied with special regard to quasicrystalline phases. Isothermal sections were established in both systems in the stoichiometric area of the quasicrystalline phase. In the Al-Ni-Fe system a new stable decagonal phase was found. Its stoichiometric range is very small around Al 71.6 Ni 23.0 Fe 5.4 . The temperature range in which it is stable lies between 847 and 930 C. The decagonal phase undergoes a eutectoid reaction to the three crystalline phases Al 3 Ni 2 , Al 3 Ni and Al 13 Fe 4 at 847 C. It melts peritectically at 930 C forming Al 13 Fe 4 , Al 3 Ni 2 and a liquid. The investigations in the Al-Cu-Ru system concentrated on the phase equilibria between the icosahedral phase and its neighbouring phases in a temperature range between 600 and 1000 C. The icosahedral phase was observed in the whole temperature range. The investigated stoichiometric area extends down to Al contents of 45%, which allows the fields of existence to be determined for the ternary phases α-AlCuRu, the icosahedral phase and Al 7 Cu 2 Ru. Binary phases were determined down to the upper (high Al content) border of AlRu. No hitherto unknown phase was observed in the investigated area. Rietveld analyses were carried out on α-AlCuRu and Al 7 Cu 2 Ru showing some discrepancies from the α-AlMnSi structure taken as a base for α-AlCuRu and confirming the Al 7 Cu 2 Fe structure for Al 7 Cu 2 Ru. (orig.)

  16. Ternary fission

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... We present the ternary fission of 252Cf and 236U within a three-cluster model as well as in a level density approach. The competition between collinear and equatorial geometry is studied by calculating the ternary fragmentation potential as a function of the angle between the lines joining the stationary ...

  17. Ternary fission

    Indian Academy of Sciences (India)

    respectively, which are expressed in MeV and taken from [12]. The ternary fragmentation potential between the three (spherical) fragments (referred to as PES), within the TCM [1–6], is defined as the sum of the total Coulomb potential, total nuclear potential, ℓ-dependent potential and the sum of the mass excesses of ternary.

  18. Ternary fission

    Indian Academy of Sciences (India)

    the energy minimization of all possible ternary breakups of a heavy radioactive nucleus. Further, within the TCM we have analysed the competition between different geometries as well as different positioning of the fragments. Also, an attempt was made to calculate the mass distribution of ternary fission process within the ...

  19. Influence of aging at 180C on the corrosion behaviour of a ternary Al-Li-Zr alloy

    DEFF Research Database (Denmark)

    Ambat, Rajan; Prasad, R.K.; Dwarakadasa, E.S.

    1994-01-01

    The influence of aging at 180 °C on the corrosion behaviour of an Al-1.5%Li-0.1%Zr alloy has been studied using weight loss, open circuit potential (OCP) measurements and potentiodynamic polarization measurements in 3.5% NaCl solution. Corrosion rates obtained from weight loss and Icorr values...

  20. Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys

    Science.gov (United States)

    Dalavi, Shankar B.; Theerthagiri, J.; Raja, M. Manivel; Panda, R. N.

    2013-10-01

    Fe-Ni-Co alloys of various compositions (FexNi80-xCo20,x=20-50) were synthesized by using a sodium borohydride reduction route. The phase purity and crystallite size was ascertained by using powder X-ray diffraction (XRD). The alloys crystallize in the face centered cubic (fcc) structure with lattice parameters, a=3.546-3.558 Å. The XRD line broadening indicates the fine particle nature of the materials. The estimated crystallite sizes were found to be 27.5, 27, 24, and 22.8 nm for x=20, 30, 40, and 50; alloys respectively. Scanning electron micrograph studies indicates particle sizes to be in the range of 83-60 nm for Fe-Ni-Co alloys. The values of saturation magnetization for FexNi80-xCo20 are found to be in the range of 54.3-41.2 emu/g and are significantly lower than the bulk values (175-180 emu/g). The coercivity decreases from 170 to 122 Oe with decrease in Fe content. The observed magnetic behavior has been explained on the basis of size, surface effects, spin canting and the presence of superparamagnetic fractions in the ultrafine materials.

  1. Establishment of technological basis for fabrication of U-Pu-Zr ternary alloy fuel pins for irradiation tests in Japan

    International Nuclear Information System (INIS)

    Kikuchi, Hironobu; Iwai, Takashi; Nakajima, Kunihisa; Arai, Yasuo; Nakamura, Kinya; Ogata, Takanari

    2011-01-01

    A high-purity Ar gas atmosphere glove box accommodating injection casting and sodium-bonding apparatuses was newly installed in the Plutonium Fuel Research Facility of Oarai Research and Development Center, Japan Atomic Energy Agency, in which several nitride and carbide fuel pins were fabricated for irradiation tests. The experiences led to the establishment of the technological basis of the fabrication of U-Pu-Zr alloy fuel pins for the first time in Japan. After the injection casting of the U-Pu-Zr alloy, the metallic fuel pins were fabricated by welding upper and lower end plugs with cladding tubes of ferritic-martensitic steel. Subsequent to the sodium bonding for filling the annular gap region between the U-Pu-Zr alloy and the cladding tube with the melted sodium, the fuel pins for irradiation tests are inspected. This paper shows the apparatuses and the technological basis for the fabrication of U-Pu-Zr alloy fuel pins for the irradiation test planned at the experimental fast test reactor Joyo. (author)

  2. Structural Investigation of Rapidly Quenched FeCoPtB Alloys

    International Nuclear Information System (INIS)

    Grabias, A.; Kopcewicz, M.; Latuch, J.; Oleszak, D.

    2011-01-01

    Two sets of Fe 52-x Co x Pt 28 B 20 (x = 0-26 at.%) and Fe 60-x Co x Pt 25 B 15 (x = 0-40 at.%) alloys were prepared in the form of ribbons by the rapid quenching technique. Structure of the samples was characterized by Moessbauer spectroscopy and X-ray diffraction. In the as-quenched alloys the amorphous phase coexisted with the fcc-(Fe,Co)Pt disordered solid solution. Differential scanning calorimetry measurements performed in the range 50-720 ± C revealed one or two exothermal peaks. The magnetically hard ordered L1 0 (Fe,Co)Pt and magnetically soft (Fe,Co) 2 B nanocrystalline phases were formed due to thermal treatment of the alloys. The influence of Co content on the structure of the as-quenched and heated alloys was studied. (authors)

  3. Rapid solidification of Ni50Nb28Zr22 glass former alloy through suction-casting

    International Nuclear Information System (INIS)

    Miyamoto, M.I.; Santos, F.S.; Bolfarini, C.; Botta Filho, W.J.; Kiminami, C.S.

    2010-01-01

    To select new alloys with high glass forming ability (GFA) to present amorphous structure in millimeter scale, several semi-empirical models have been developed. In the present work, a new alloy, Ni 50 Nb 28 Zr 22 d, was designed based on the combination of topological instability lambda (A) criterion and electronegativity difference (Δe). The alloy was rapidly solidified in a bulk wedge sample by cooper mold suction casting in order to investigate its amorphization. The sample was characterized by the combination of scanning electron microscopy (MEV), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). For the minimum thickness of 200 μm analyzed, it was found that the alloy did not show a totally amorphous structure. Factor such as low cooling rate, existence of oxides on the surface of the elements and presence of oxygen in the atmosphere of equipment did not allowed the achievement of higher amorphous thickness. (author)

  4. Structural investigations of mechanical properties of Al based rapidly solidified alloys

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    Highlights: → Rapid solidification processing (RSP) involves exceptionally high cooling rates. → We correlate the microstructure of the intermetallic Al 3 Fe, Al 2 Cu and Al 3 Ni phases with the cooling rate. → The solidification rate is high enough to retain most of alloying elements in the Al matrix. → The rapid solidification has effect on the phase constitution. -- Abstract: In this study, Al based Al-3 wt.%Fe, Al-3 wt.%Cu and Al-3 wt.%Ni alloys were prepared by conventional casting. They were further processed using the melt-spinning technique and characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), transmission electron microscope (TEM), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. RS samples were measured using a microhardness test device. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased. The enthalpies of fusion for the same alloys were determined by DSC.

  5. First-principle study of the structural, electronic, and optical properties of cubic InN{sub x}P{sub 1-x} ternary alloys under hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hattabi, I. [Ibn Khaldoun Univ. de Tiaret (Algeria). Lab. Synthese et Catalyse; Abdiche, A.; Riane, R. [Sidi-bel-Abbes Univ. (Algeria). Applied Materials Lab.; Moussa, R. [Sidi-bel-Abbes Univ. (Algeria). Physic Dept.; Hadji, K. [Ibn Khaldoun Univ. de Tiaret (Algeria). Science and Technology Dept.; Soyalp, F. [Yuezuencue Yil Univ., Van (Turkey). Dept. of Physics; Varshney, Dinesh [Devi Ahilya Univ., Indore (India). Materials Science Lab.; Syrotyuk, S.V. [National Univ. ' Lviv Polytechnic' , Lviv (Ukraine). Semiconductor Electronics Dept.; Khenata, R. [Mascara Univ. (Algeria). Lab. de Physique Quantique et de Modelisation Mathematique (LPQ3M)

    2016-07-01

    In this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InN{sub x}P{sub 1-x} in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange-correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InN{sub x}P{sub 1-x} compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P=0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P≥7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.

  6. First-Principle Study of the Structural, Electronic, and Optical Properties of Cubic InNxP1-x Ternary Alloys under Hydrostatic Pressure

    Science.gov (United States)

    Hattabi, I.; Abdiche, A.; Moussa, R.; Riane, R.; Hadji, K.; Soyalp, F.; Varshney, Dinesh; Syrotyuk, S. V.; Khenata, R.

    2016-09-01

    In this article, we present results of the first-principle study of the structural, electronic, and optical properties of the InN, InP binary compounds and their related ternary alloy InNxP1-x in the zinc-blend (ZB) phase within a nonrelativistic full potential linearised augmented plan wave (FP-LAPW) method using Wien2k code based on the density functional theory (DFT). Different approximations of exchange-correlation energy were used for the calculation of the lattice constant, bulk modulus, and first-order pressure derivative of the bulk modulus. Whereas the lattice constant decreases with increasing nitride composition x. Our results present a good agreement with theoretical and experimental data. The electronic band structures calculated using Tran-Blaha-modified Becke-Johnson (TB-mBJ) approach present a direct band gap semiconductor character for InNxP1-x compounds at different x values. The electronic properties were also calculated under hydrostatic pressure for (P=0.00, 5.00, 10.0, 15.0, 20.0, 25.0 GPa) where it is found that the InP compound change from direct to indirect band gap at the pressure P≥7.80 GPa. Furthermore, the pressure effect on the dielectric function and the refractive index was carried out. Results obtained in our calculations present a good agreement with available theoretical reports and experimental data.

  7. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling

    Science.gov (United States)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell

    2010-01-01

    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  8. Microstructure characterization of rapidly solidified Al-Fe-Cr-Ce alloy by positron annihilation spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Čízek, J.; Procházka, I.; Drahokoupil, Jan; Novák, P.

    2011-01-01

    Roč. 509, č. 7 (2011), s. 3211-3218 ISSN 0925-8388 Institutional research plan: CEZ:AV0Z10100520 Keywords : metals and alloy s * nanostructured materials * rapid solidification * positron spectroscopies * transmission electron microscopy * x-ray diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.289, year: 2011

  9. Undercooling and demixing in rapidly solidified Cu-Co alloys

    DEFF Research Database (Denmark)

    Battezzati, L.; Curiotto, S.; Johnson, Erik

    2007-01-01

    competition of transformation phenomena, the mechanisms have not been fully disclosed. This contribution reviews such findings with the help of a computer calculation of the phase diagram and extends the present knowledge by presenting new results obtained by rapidly solidifying various Cu–Co compositions...

  10. Formation of metastable phases and nanocomposite structures in rapidly solidified Al-Fe alloys

    International Nuclear Information System (INIS)

    Nayak, S.S.; Chang, H.J.; Kim, D.H.; Pabi, S.K.; Murty, B.S.

    2011-01-01

    Highlights: → Structures of nanocomposites in rapidly solidified Al-Fe alloys were investigated. → Nanoquasicrystalline, amorphous and intermetallics phases coexist with α-Al. → Nanoquasicrystalline phase was observed for the first time in the dilute Al alloys. → Thermodynamic driving force plays dominant role in precipitation of Fe-rich phases. → High hardness (3.57 GPa) was observed for nanocomposite of Al-10Fe alloy. - Abstract: In the present work the structure and morphology of the phases of nanocomposites formed in rapidly solidified Al-Fe alloys were investigated in details using analytical transmission electron microscopy and X-ray diffraction. Nanoquasicrystalline phases, amorphous phase and intermetallics like Al 5 Fe 2 , Al 13 F 4 coexisted with α-Al in nanocomposites of the melt spun alloys. It was seen that the Fe supersaturation in α-Al diminished with the increase in Fe content and wheel speed indicating the dominant role of the thermodynamic driving force in the precipitation of Fe-rich phases. Nanoquasicrystalline phases were observed for the first time in the dilute Al alloys like Al-2.5Fe and Al-5Fe as confirmed by high resolution TEM. High hardness (3.57 GPa) was measured in nanocomposite of Al-10Fe alloy, which was attributed to synergistic effect of solid solution strengthening due to high solute content (9.17 at.% Fe), dispersion strengthening by high volume fraction of nanoquasicrystalline phase; and Hall-Petch strengthening from finer cell size (20-30 nm) of α-Al matrix.

  11. A comparative evaluation between new ternary zirconium alloys as alternative metals for orthopedic and dental prosthetic devices.

    Science.gov (United States)

    Shyti, Genti; Rosalbino, Francesco; Macciò, Daniele; Scarabelli, Linda; Quarto, Rodolfo; Giannoni, Paolo

    2014-02-01

    We assessed in vitro the corrosion behavior and biocompatibility of four Zr-based alloys (Zr97.5 Nb1.5VM1.0  ; VM, valve metal: Ti, Mo, W, Ta; at%) to be used as implant materials, comparing the results with grade-2 titanium, a biocompatible metal standard. Corrosion resistance was investigated by open circuit potential and electrochemical impedance spectroscopy measurements as a function of exposure time to an artificial physiological environment (Ringer's solution). Human bone marrow stromal cells were used to evaluate biocompatibility of the alloys and their influence on growth kinetics and cell osteogenic differentiation through histochemical and gene expression analyses. Open circuit potential values indicated that Zr-based alloys and grade-2 Ti undergo spontaneous passivation in the simulated aggressive environment. High impedance values for all samples demonstrated improved corrosion resistance of the oxide film, with the best protection characteristics displayed by Zr97.5  Nb1.5Ta1.0. Cells seeded on all surfaces showed the same growth kinetics, although matrix mineralization and alkaline phosphatase activity were maximal on Zr97.5  Nb1.5Mo1.0 and Zr97.5   Nb1.5Ta1.0. Markers of ongoing proliferation, however, such as podocalyxin and CD49f, were still overexpressed on Zr97.5   Nb1.5   Mo1.0 even upon osteoinduction. No relevant effects were noted for the CD146-expressing population of bone progenitors. Nonetheless, the presence of a more differentiated cell population on Zr97.5Nb1.5Ta1.0 samples was inferable by comparing mineralization data and transcript levels of osteogenic markers (osteocalcin, osteopontin, bone sialoprotein, and RUNX2). The combination of passivation, corrosion resistance and satisfactory biotolerance to bone progenitors make the Zr-based alloys promising implant materials. Among those we tested, Zr97.5Nb1.5Ta1.0 seems to be the most appealing.

  12. Ternary fission

    International Nuclear Information System (INIS)

    Wagemans, C.

    1991-01-01

    Since its discovery in 1946, light (charged) particle accompanied fission (ternary fission) has been extensively studied, for spontaneous as well as for induced fission reactions. The reason for this interest was twofold: the ternary particles being emitted in space and time close to the scission point were expected to supply information on the scission point configuration and the ternary fission process was an important source of helium, tritium, and hydrogen production in nuclear reactors, for which data were requested by the nuclear industry. Significant experimental progress has been realized with the advent of high-resolution detectors, powerful multiparameter data acquisition systems, and intense neutron and photon beams. As far as theory is concerned, the trajectory calculations (in which scission point parameters are deduced from the experimental observations) have been very much improved. An attempt was made to explain ternary particle emission in terms of a Plateau-Rayleigh hydrodynamical instability of a relatively long cylindrical neck or cylindrical nucleus. New results have also been obtained on the so-called open-quotes trueclose quotes ternary fission (fission in three about-equal fragments). The spontaneous emission of charged particles has also clearly been demonstrated in recent years. This chapter discusses the main characteristics of ternary fission, theoretical models, light particle emission probabilities, the dependence of the emission probabilities on experimental variables, light particle energy distributions, light particle angular distributions, correlations between light particle accompanied fission observables, open-quotes trueclose quotes ternary fission, and spontaneous emission of heavy ions. 143 refs., 18 figs., 8 tabs

  13. A study on the microstructural characteristics of rapidly solidified Al-Fe alloys(I)

    International Nuclear Information System (INIS)

    Kim, D.H.; Lee, H.I.

    1991-01-01

    Solidification microstructures and phases in rapidly solidified Al-5, 10wt% Fe alloys have been investigated by TEM bright field and dark field imaging techniques and electron and x-ray diffraction techniques. Rapid solidification of Al-5, 10wt%Fe alloys produces various metastable and stable phases, such as Al m Fe, Al 6 Fe and Al 13 Fe 4 . In addition to these phases, clusters of randomly oriented few nm scale particles exist in the form of fine cellular network with α-Al or primary spherical particles. Solidification microstructures of the rapidly solidified Al-5, 10wt%Fe alloys consist of various combination of primary phases such as Al 13 Fe 4 , Al m Fe and cluster of nm scale particles, and cellular/dendritic structures such as fine cellular network structure of nm scale particle clusters and α-Al and cellular structure of Al m Fe and α-Al, depending upon alloy compositions and local cooling rates. (Author)

  14. Fabrication of Intermetallic Titanium Alloy Based on Ti2AlNb by Rapid Quenching of Melt

    Science.gov (United States)

    Senkevich, K. S.; Serov, M. M.; Umarova, O. Z.

    2017-11-01

    The possibility of fabrication of rapidly quenched fibers from alloy Ti - 22Al - 27Nb by extracting a hanging melt drop is studied. The special features of the production of electrodes for spraying the fibers by sintering mechanically alloyed powdered components of the alloy, i.e., titanium hydride, niobium, and aluminum dust, are studied. The rapidly quenched fibers with homogeneous phase composition and fine-grained structure produced from alloy Ti - 22Al - 27Nb are suitable for manufacturing compact semiproducts by hot pressing.

  15. First-principles study of the nucleation and stability of ordered precipitates in ternary Al-Sc-Li alloys

    International Nuclear Information System (INIS)

    Mao, Z.; Chen, W.; Seidman, D.N.; Wolverton, C.

    2011-01-01

    First-principles density functional calculations are used to study the nucleation and stability of L1 2 -ordered precipitates in Al-Sc-Li alloys. For dilute Al alloys, there are three possible ordered L1 2 precipitates: Al 3 Sc, Al 3 Li and an Al 3 Sc/Al 3 Li core/shell structure. To calculate the nucleation behavior, information about bulk thermodynamics (both static total energies and vibrational free energies), interfacial energetics and coherency strain is required. The study finds the following: (1) the coherency strain energies for forming coherent interfaces between Al/Al 3 Sc, Al/Al 3 Li and Al 3 Sc/Al 3 Li are relatively small, owing to the small atomic size mismatches in these systems; (2) the sublattice site preferences of Sc and Li are calculated, and it is demonstrated that Sc and Li share the same sublattice sites in both Al 3 Sc(L1 2 ) and Al 3 Li(L1 2 ), in agreement with recent experimental results; (3) the calculated solubilities of Sc and Li in α-Al alloys are in good agreement with experimental values and, for Sc, agree well with prior first-principles results; (4) the interfacial energies for Al/Al 3 Sc, Al/Al 3 Li and Al 3 Sc/Al 3 Li for (1 0 0), (1 1 0) and (1 1 1) interfaces are calculated: the values of the Al/Al 3 Sc interfacial energies are significantly larger than those of the Al/Al 3 Li and Al 3 Sc/Al 3 Li interfaces; (5) combining the bulk and interfacial energies yields the nucleation barriers and critical radii for Al 3 Sc and Al 3 Li precipitates; and (6) the energetic stability of the Al 3 Sc/Al 3 Li core/shell structure is compared with individual Al 3 Sc and Al 3 Li nuclei, and the range of precipitate sizes for which the core/shell structure is energetically favored is determined quantitatively.

  16. Structure and mechanical properties of Al-3Fe rapidly solidified alloy

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2011-01-01

    The Al based Al-3 wt%Fe alloy was prepared by conventionally casting (ingot) and further processed the melt-spinning technique and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) together with energy dispersive spectroscopy (EDS), differential scanning calorimetry (DSC) and the Vickers microhardness tester. The rapidly solidified (RS) binary alloys were composed of supersaturated α-Al solid solution and finely dispersed intermetallic phases. Experimental results showed that the mechanical properties of RS alloys were enhanced, which can be attributed to significant changes in the microstructure. The dependence of microhardness H V on the solidification rate (V) was analysed. These results showed that with the increasing values of V, the values of H V increased.

  17. Investigations into the corrosion resistance of copper aluminium alloys. Effect of phosphorus as corrosion resistant third alloying element in the ternary system CuAl20P1

    International Nuclear Information System (INIS)

    Allwardt, A.

    1997-01-01

    The effect of phosphorus on the corrosion resistance of Al-bronzes is studied in detail in this work. A literature review showed that there are a lot of things known about the microstructure and the mechanical properties of Al-bronzes. In spite of their corrosion resistance the corrosion properties and the structure of the protective oxide films of Al-bronzes were seldom a matter of interest. Systematic studies of the influence of different alloying elements on the oxide film and the corrosion properties are rare. Therefore, it is not possible to predict the corrosion resistance of Al-bronzes, made by alloying particular elements. The high corrosion resistance of the new alloy CuAl 20 P 1 was the reason to investigate the influence of phosphorus on the corrosion properties of Al-bronzes in more detail. A systematic study of the microstructure and the corrosion properties of Cu, CuP x , CuAl 20 and CuAl 20 P x offers an insight into the effect of aluminium and phosphorus on the formation of the oxide film on Al-bronzes. It was found that there exists a critical amount of 1 at.-% of phosphorus. Above and below this amount the corrosion resistance becomes worse. This behaviour could be explained by XPS-and electrochemical measurements. Although there are still some questions about the influence of phosphorus on the corrosion resistance of Al-bronzes, this work has produced some important results, which in the future may be helpful to develop new high corrosion resistant Al-bronzes more efficiently: - on clean surface Al-bronze, the oxidation of Al and Cu takes place simultaneously, - Al promotes the formation of Cu 2 O but impedes the formation of Cu(II)-oxide/-hydride in neutral solutions, - P impedes the formation of Cu 2 O and as a consequence promotes the formation of aluminium oxide. This results in a higher amount of Al in the oxide film on the surface of the alloy, which leads to a better corrosion resistance. (author) figs., tabs., 106 refs

  18. Rapid solidification of an Al-5Ni alloy processed by spray forming

    Directory of Open Access Journals (Sweden)

    Conrado Ramos Moreira Afonso

    2012-10-01

    Full Text Available Recently, intermetallic compounds have attracted much attention due to their potential technological applications as high-temperature materials. In particular the intermetallic compounds, associated with the Al-Ni binary system stand out as promising candidates for high-temperature materials for the use in harsh environments. It is expected that a bulk Al-Ni alloy may exceed the strength of many commercial materials. The great challenge in developing these alloys is to manipulate the solidification thermal parameters in order to obtain the desired microstructural features. One of the indicated routes to obtain very refined intermetallic phases dispersed in the microstructure is the spray forming process. The dendritic and eutectic growth dependences on cooling rate are already known for directionally solidified (DS hypoeutectic Al-Ni alloys. In the case of rapidly solidified (RS samples, extrapolations of such experimental laws are needed, which can be very helpful to estimate realistic values of high cooling rates imposed during the spray forming process. The present study aims to compare directionally solidified and spray-formed Al-5wt. (%Ni alloy samples with a view to providing a basis for understanding how to control solidification parameters and the as-cast microstructure. The Al-5.0wt. (%Ni alloy was shown to have a cellular morphology for the overspray powder size range examined (up to 500 µm. The mean cell spacing decreased from 5.0 to 1.1 µm with the decrease in the powder average diameter. It was found that the experimental cooling rates imposed during the atomization step of the overspray powder solidification varied from 10³ to 2.10(4 K/s. The DSC trace depicted a crystallization peak of an amorphous structure fraction in the smallest Al-5.0wt. (%Ni alloy powder size range (<32 µm estimating a 15 µm critical diameter of amorphous powder in the binary Al97.5Ni2.5 (at% alloy.

  19. Recovery Phenomenon During Annealing of an As-Rapidly Solidified Al Alloy

    Science.gov (United States)

    Yan, Zhigang; Mao, Shuaiying; Lin, Yaojun; Zhang, Yaqi; Wang, Limin

    2017-06-01

    It has been well documented that recovery occurring in metals/alloys produced via solid-state quenching involves only annihilation of supersaturated vacancies. Interestingly, in the present study, we observed completely different mechanisms underlying recovery during annealing of an Al-Zn-Mg-Cu (7075 Al) alloy processed via liquid-state quenching, i.e., rapid solidification (specifically melt spinning herein). The as-melt-spun alloy consists of refined grains containing tangled dislocations inside the grains. Following annealing at 393 K (120 °C) for 24 hours, refined grain structure was still retained and grain sizes essentially remained unchanged, but subgrains separated by dense dislocation walls were generated at grain interiors, with a much lower density of dislocations at subgrain interiors than that in the as-melt-spun 7075 Al alloy and dislocation arrays inside some subgrains. The microstructural evolution suggests the absence of recrystallization and the occurrence of recovery primarily via the annihilation and rearrangement of dislocations and the formation of subgrains. Based on the stored energy in dislocations in, and the annealing temperature of, the as-melt-spun 7075 Al alloy, the recovery phenomenon was analyzed and discussed in detail.

  20. Al-Si-Re Alloys Cast by the Rapid Solidification Process / Stopy Al-Si-Re Odlewane Metodą Rapid Solidification

    Directory of Open Access Journals (Sweden)

    Szymanek M.

    2015-12-01

    Full Text Available The aim of the studies described in this article was to present the effect of rare earth elements on aluminium alloys produced by an unconventional casting technique. The article gives characteristics of the thin strip of Al-Si-RE alloy produced by Rapid Solidification (RS. The effect of rare earth elements on structure refinement, i.e. on the size of near-eutectic crystallites in an aluminium-silicon alloy, was discussed. To determine the size of crystallites, the Scherrer X-ray diffraction method was used. The results presented capture relationships showing the effect of variable casting parameters and chemical composition on microstructure of the examined alloys. Rapid Solidification applied to Al-Si alloys with the addition of mischmetal (Ce, La, Ne, Pr refines their structure.

  1. Rapid precision casting for complex thin-walled aluminum alloy parts

    Directory of Open Access Journals (Sweden)

    Xuanpu DONG

    2004-11-01

    Full Text Available Based on Vacuum Differential Pressure Casting (VDPC precision forming technology and the Selective Laser Sintering (SLS Rapid Prototyping (RP technology, a rapid manufacturing method called Rapid Precision Casting (RPC process from computer three-dimensional solid models to metallic parts was investigated. The experimental results showed that the main advantage of RPC was not only its ability to cast higher internal quality and more accurate complex thin-walled aluminum alloy parts, but also the greatly-reduced lead time cycle from Selective Laser Sintering(SLS plastic prototyping to metallic parts. The key forming technology of RPC for complex thin-walled metallic parts has been developed for new casting production and Rapid Tooling (RT, and it is possible to rapidly manufacture high-quality and accurate metallic parts by means of RP in foundry industry.

  2. Mechanical properties of amorphous alloys ribbons prepared by rapid quenching of the melt after different thermal treatments before quenching

    NARCIS (Netherlands)

    Tabachnikova, ED; Bengus, VZ; Egorov, D V; Tsepelev, VS; Ocelik, Vaclav

    1997-01-01

    The mechanical properties of amorphous alloy are greatly influenced by the thermal treatment of its melt before rapid quenching. The strength and the fracture toughness of some amorphous alloys obtained after melt beating above the melt critical temperature T-CR are essentially higher than those

  3. Rapid fabrication of large-area, corrosion-resistant superhydrophobic Mg alloy surfaces.

    Science.gov (United States)

    Xu, Wenji; Song, Jinlong; Sun, Jing; Lu, Yao; Yu, Ziyuan

    2011-11-01

    A superhydrophobic magnesium (Mg) alloy surface was successfully fabricated via a facile electrochemical machining process, and subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphologies and chemical compositions were investigated using a scanning electron microscope (SEM) equipped with an energy-dispersive spectroscopy (EDS) and a Fourier-transform infrared spectrophotometer (FTIR). The results show hierarchal rough structures and an FAS film with a low surface energy on the Mg alloy surfaces, which confers good superhydrophobicity with a water contact angle of 165.2° and a water tilting angle of approximately 2°. The processing conditions, such as the processing time and removal rate per unit area at a constant removal mass per unit area, were investigated to determine their effects on the superhydrophobicity. Interestingly, when the removal mass per unit area is constant at approximately 11.10 mg/cm(2), the superhydrophobicity does not change with the removal rate per unit area. Therefore, a superhydrophobic Mg alloy surface can be rapidly fabricated based on this property. A large-area superhydrophobic Mg alloy surface was also fabricated for the first time using a small-area moving cathode. The corrosion resistance and durability of the superhydrophobic surfaces were also examined.

  4. Study of the interactions between irradiation and chemical order effects in ternary alloys Ni-Cr-Fe; Etude des interactions entre effets d`irradiation et effets d`ordre chimique dans les alliages ternaires Ni-Cr-Fe

    Energy Technology Data Exchange (ETDEWEB)

    Frely, E

    1997-12-31

    Because of its resistance to corrosion even under stress, the alloy 69 (nickel-based alloy with a chemically disordered F.c.c. structure) is a promising material for application in some of the inner parts of nuclear reactor. However, the eventual formation of an ordered NI{sub 2}Cr superstructure under irradiation or thermal ageing might diminish its performances. We have studied the binary model alloy Ni-Cr33at.% as well as the ternary alloys Ni-Cr3at.%-Fe5cat.% and Ni-Cr32at.%-Fe10at.%, the last one having a chemical composition similar to that of the industrial alloy. After irradiation experiments with 2.5 MeV electrons in the 300-500 deg C temperature range, all the model alloys show the Ni{sub 2}Cr superstructure. The samples irradiated at fluences between 2 and 8. 10 d.p.a. have been characterized by X-ray and neutron diffraction. The superlattice reflexions and the ordered domains have been observed by electron microscopy. The critical temperature of the order-disorder transformation, measured under 1 MeV electron irradiation, decreases linearly with iron content. The evolution of the chemical corder has been traced by means of in situ resistivity measurements. We have used the pair exchange based Dienes model of ordering kinetics for studying the long range order S (S between 0.5 and 0.8 after irradiation). The iron seems to remain in disorder in the sublattices. The similarity of the results under thermal ageing and under irradiation shows that the main effect of the electronic irradiation is to accelerate ordering. Under both treatments increasing the iron content or the dislocation density reduce the ordering kinetics. However, this effect is not sufficient to explain the lack of order in alloy 690 after a fluence of 1 d.p.a. (author). 95 refs.

  5. Microstructural development in a rapidly solidified Al-Fe-V-Si alloy

    International Nuclear Information System (INIS)

    Park, W.J.; Baek, E.R.; Lee, Sunghak; Kim, N.J.

    1991-01-01

    TEM is used to investigate microstructural development in a rapidly solidified Al-Fe-V-Si alloy. The as-cast microstructure of a rapidly solidified Al-Fe-V-Si alloy was found to vary depending on casting conditions and also through the thickness of ribbon. For completely Zone A ribbon, intercellular phase consists of a microquasi-crystalline phase, while for the Zone A and Zone B mixed ribbon, it consists of a silicide phase. In either case, formation of globular particles of a cluster microquasi-crystalline phase is observed near the air side of the ribbon. Annealing study shows significant differences in the final microstructure depending on the initial status of the ribbon. Completely Zone A ribbon, whose microstructure is composed of a microquasi-crystalline phase, results in a very coarse microstructure after annealing as compared to the Zone A and Zone B mixed ribbon. This result has important implications for the development of high-performance elevated-temperature Al alloys. 12 refs

  6. A combined strategy to enhance the properties of Zn by laser rapid solidification and laser alloying.

    Science.gov (United States)

    Yang, Youwen; Yuan, Fulai; Gao, Chengde; Feng, Pei; Xue, Lianfeng; He, Shiwei; Shuai, Cijun

    2018-03-15

    The orthopedic application of Zn is limited owing to the poor strength and low plasticity. In this study, a novel strategy by combining rapid solidification obtained by selective laser melting (SLM) and alloying with Mg was proposed to improve the mechanical properties of Zn. The microstructures, mechanical properties, as well as in vitro cytocompatibility of SLM processed Zn-xMg (x = 0-4 wt%) were studied systematically. Results shown that SLM processed Zn-xMg alloys consisted of fine equiaxed α-Zn grains with homogeneously precipitated Mg 2 Zn 11 along grain boundaries. More importantly, the grains size of α-Zn was decreased from 104.4 ± 30.4 µm to 4.9 ± 1.4 µm with Mg increasing. And Mg mainly dissolved in α-Zn developing into supersaturated solid solution due to rapid solidification effect. As a consequence, the ultimate tensile strength and elongation were enhanced by 361% and 423%, respectively, with Mg containing up to 3 wt%. Meanwhile, alloying with Mg enhanced the corrosion resistance of Zn, with the degradation rate decreasing from 0.18 ± 0.03 mm year -1 to 0.10 ± 0.04 mm year -1 . Furthermore, SLM processed Zn-xMg exhibited good biocompatibility. This research suggested that SLM processed Zn-3Mg alloy was a potential biomaterial for orthopedic applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. First principle calculations of structural, electronic, thermodynamic and optical properties of Pb(1-x)Ca(x)S,Pb(1-x)Ca(x)Se and Pb(1-x)Ca(x)Te ternary alloys.

    Science.gov (United States)

    Sifi, C; Meradji, H; Slimani, M; Labidi, S; Ghemid, S; Hanneche, E B; El Haj Hassan, F

    2009-05-13

    Using first principles total energy calculations within the full potential linearized augmented plane wave (FP-LAPW) method, we have investigated the structural, electronic, thermodynamic and optical properties of Pb(1-x)Ca(x)S, Pb(1-x)Ca(x)Se and Pb(1-x)Ca(x)Te ternary alloys. The effect of composition on lattice parameter, bulk modulus, band gap, refractive index and dielectric function was investigated. Deviations of the lattice constants from Vegard's law and the bulk modulus from linear concentration dependence were observed for the three alloys. Using the approach of Zunger and co-workers, the microscopic origins of band gap bowing have been detailed and explained. The disorder parameter (gap bowing) was found to be mainly caused by the chemical charge transfer effect. On the other hand, the thermodynamic stability of these alloys was investigated by calculating the excess enthalpy of mixing, ΔH(m), as well as the phase diagram. It was shown that all of these alloys are stable at low temperature. The calculated refractive indices and optical dielectric constants were found to vary nonlinearly with Ca composition.

  8. Calculation of ternary interdiffusion coefficients using a single diffusion couple

    Czech Academy of Sciences Publication Activity Database

    Čermák, Jiří; Rothová, Věra

    2016-01-01

    Roč. 54, č. 5 (2016), s. 305-314 ISSN 0023-432X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : diffusion * interdiffusion * ternary alloys * ternary diffusion coefficients Subject RIV: BJ - Thermodynamic s Impact factor: 0.366, year: 2016

  9. Improvement of engineering performance of magnesium alloys through rapid solidification technique

    International Nuclear Information System (INIS)

    Daloz, D.; Michot, G.

    1993-01-01

    Magnesium-Aluminium-Zinc powders are produced by centrifugal atomization. The microstructural refinement achieved by rapid solidification can be maintained throughout the extrusion process. The consolidated Mg-xAl-yZn alloys (x = 8, 15 or 20, y = 1 or 3 at %) exhibit enhanced mechanical properties and corrosion behaviour as well. Structural hardening is expected from the Mg-Zn system (GP zones) and from decomposition of the supersaturated Mg-Al solid solution (Mg 17 Al 12 precipitation). Furthermore a higher isotropy is expected from the reduction in grain size. The tensile strength of the alloy, larger than 400 MPa, is an increasing function of the aluminium content which must be kept below ∼ 15 at % in order to achieve a reasonable ductility. The benefits brought by rapid solidification to corrosion resistance are evident on weight loss tests in 3% salt water. A complete electrochemical study of corrosion rate and mechanism is on the way to confirm this first observation. This work gives additional informations to previous results obtained on ribbons with a lower content in aluminium. (orig.)

  10. A comparison of the merits of isotopic substitution in neutron small-angle scattering and anomalous X-ray scattering for the evaluation of partial structure functions in a ternary alloy

    International Nuclear Information System (INIS)

    Simon, J.P.; Grenoble-1 Univ., 38; Lyon, O.; Paris-11 Univ., 91 - Orsay; Fontaine, D. de

    1985-01-01

    Solute partitioning during decomposition of a ternary alloy may be evaluated through the inversion of a system of linear equations, obtained by performing at least three independent small-angle scattering experiments. The merits of neutron scattering (with isotopic contrast) and of anomalous X-ray scattering (near the absorption edges) are compared. It appears that neutron scattering, although having good contrast, is not suited to these studies since slight structural differences between the three samples may lead to erroneous results. On the other hand, the use of the same sample in anomalous scattering avoids this problem, but with the drawback of a more ill-conditioned system. Nevertheless, the possibility of performing more than three anomalous experiments may improve the results and a new analysis of data is proposed. (orig.)

  11. Improved stress corrosion cracking resistance of a novel biodegradable EW62 magnesium alloy by rapid solidification, in simulated electrolytes.

    Science.gov (United States)

    Hakimi, O; Aghion, E; Goldman, J

    2015-06-01

    The high corrosion rate of magnesium (Mg) and Mg-alloys precludes their widespread acceptance as implantable biomaterials. Here, we investigated the potential for rapid solidification (RS) to increase the stress corrosion cracking (SCC) resistance of a novel Mg alloy, Mg-6%Nd-2%Y-0.5%Zr (EW62), in comparison to its conventionally cast (CC) counterpart. RS ribbons were extrusion consolidated in order to generate bioimplant-relevant geometries for testing and practical use. Microstructural characteristics were examined by SEM. Corrosion rates were calculated based upon hydrogen evolution during immersion testing. The surface layer of the tested alloys was analyzed by X-ray photoelectron spectroscopy (XPS). Stress corrosion resistance was assessed by slow strain rate testing and fractography. The results indicate that the corrosion resistance of the RS alloy is significantly improved relative to the CC alloy due to a supersaturated Nd enrichment that increases the Nd2O3 content in the external oxide layer, as well as a more homogeneous structure and reduced grain size. These improvements contributed to the reduced formation of hydrogen gas and hydrogen embrittlement, which reduced the SCC sensitivity relative to the CC alloy. Therefore, EW62 in the form of a rapidly solidified extruded structure may serve as a biodegradable implant for biomedical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Microstructure, corrosion behavior and cytotoxicity of biodegradable Mg-Sn implant alloys prepared by sub-rapid solidification.

    Science.gov (United States)

    Zhao, Chaoyong; Pan, Fusheng; Zhao, Shuang; Pan, Hucheng; Song, Kai; Tang, Aitao

    2015-09-01

    In this study, biodegradable Mg-Sn alloys were fabricated by sub-rapid solidification, and their microstructure, corrosion behavior and cytotoxicity were investigated by using optical microscopy, scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy, X-ray diffraction, immersion test, potentiodynamic polarization test and cytotoxicity test. The results showed that the microstructure of Mg-1Sn alloy was almost equiaxed grain, while the Mg-Sn alloys with higher Sn content (Sn≥3 wt.%) displayed α-Mg dendrites, and the secondary dendrite arm spacing of the primary α-Mg decreased significantly with increasing Sn content. The Mg-Sn alloys consisted of primary α-Mg matrix, Sn-rich segregation and Mg2Sn phase, and the amount of Mg2Sn phases increased with increasing Sn content. Potentiodynamic polarization and immersion tests revealed that the corrosion rates of Mg-Sn alloys increased with increasing Sn content. Cytotoxicity test showed that Mg-1Sn and Mg-3Sn alloys were harmless to MG63 cells. These results of the present study indicated that Mg-1Sn and Mg-3Sn alloys were promising to be used as biodegradable implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Phase composition and properties of rapidly cooled aluminium-zirconium-chromium alloys

    International Nuclear Information System (INIS)

    Sokolovskaya, E.M.; Badalova, L.M.; Podd''yakova, E.I.; Kazakova, E.F.; Loboda, T.P.; Gribanov, A.V.

    1989-01-01

    Using the methods of physicochemical analysis the interaction of aluminium with zirconium and chromium is studied. Polythermal cross sections between Al 3 -Zr-Al 7 Cr and radial polythermal cross section from aluminium-rich corner with the ratio of components Zr:Cr=5:7 by mass are constructed. The effect of zirconium and chromium content on electrochemical characteristics of aluminium-base rapidly quenching alloys in systems Al-Cr, Al-Zr, Al-Cr-Zr. An increase in chromium concentration in oversaturated solid solution of Al-Cr system expands considerably the range of passive state. When Al 7 Cr phase appears the range of passive stae vanishes

  14. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Quadratic T C equations have been proposed and found successful. Also, the present findings are found to be in qualitative agreement with other such earlier reported data, which confirms the superconducting phase in the ternary superconductors. The pseudo-alloy-atom (PAA) model was applied for the first time instead of ...

  15. Formation of two-way shape memory effect in rapid-quenched TiNiCu alloys

    International Nuclear Information System (INIS)

    Shelyakov, A.V.; Bykovsky, Yu.A.; Matveeva, N.M.; Kovneristy, Yu.K.

    1995-01-01

    Recently we have developed a number of devices for an optical radiation control based on the shape memory effect. A blind of rapid-quenched TiNiCu alloy having a two-way shape memory in bending was used as a basic element. So far as the rapid quenched alloy used is amorphous in initial state, it needs thermal annealing to form shape memory. This paper describes procedure of thermo-mechanical treatment, that allows to form desired two-way shape memory immediately during thermal annealing of amorphous alloy without training. It was shown that degree of two-way shape recovery depends critically on initial strain, temperature and duration of the annealing. It was experimentally determined optimum parameters of thermo-mechanical treatment to achieve maximum two-way shape memory. (orig.)

  16. The Production of Material with Ultrafine Grain Structure in Al-Zn Alloy in the Process of Rapid Solidification

    Directory of Open Access Journals (Sweden)

    Szymaneka M.

    2014-06-01

    Full Text Available In the aluminium alloy family, Al-Zn materials with non-standard chemical composition containing Mg and Cu are a new group of alloys, mainly owing to their high strength properties. Proper choice of alloying elements, and of the method of molten metal treatment and casting enable further shaping of the properties. One of the modern methods to produce materials with submicron structure is a method of Rapid Solidification. The ribbon cast in a melt spinning device is an intermediate product for further plastic working. Using the technique of Rapid Solidification it is not possible to directly produce a solid structural material of the required shape and length. Therefore, the ribbon of an ultrafine grain or nanometric structure must be subjected to the operations of fragmentation, compaction, consolidation and hot extrusion.

  17. Hardness and microstructural characteristics of rapidly solidified Al-8-16 wt.%Si alloys

    International Nuclear Information System (INIS)

    Uzun, O.; Karaaslan, T.; Gogebakan, M.; Keskin, M.

    2004-01-01

    Al-Si alloys with nominal composition of Al-8 wt.%Si, Al-12 wt.%Si, and Al-16 wt.%Si were rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The microstructures of the rapidly solidified ribbons and ingot samples were investigated by the optical microscopy, electron microscopy and X-ray diffraction (XRD) techniques. The results showed that the structures of all melt-spun ribbons were completely composed of finely dispersed α-Al and eutectic Si phase, and primary silicon was not observed. The XRD analysis indicated that the solubility of Si in the α-Al matrix was greatly increased with rapid solidification. Additionally, mechanical properties of both conventionally cast (ingot) and melt-spun ribbons were examined by using Vickers indenter for one applied load (0.098 N). The hardness values of the melt-spun ribbons were about three times higher than those of ingot counterparts. The high hardness of the rapidly solidified state can be attributed to the supersaturated solid solutions. Besides, hardness values with different applied loads were measured for melt-spun ribbons. The results indicated that Vickers hardness values (H v ) of the ribbons depended on the applied load. Applying the concept of Hays-Kendall, the load independent hardness values were calculated as 694.0, 982.8 and 1186.8 MN/m 2 for Al-8 wt.%Si, Al-12 wt.%Si and Al-16 wt.%Si, respectively

  18. Rapid prototyping prosthetic hand acting by a low-cost shape-memory-alloy actuator.

    Science.gov (United States)

    Soriano-Heras, Enrique; Blaya-Haro, Fernando; Molino, Carlos; de Agustín Del Burgo, José María

    2018-01-08

    The purpose of this article is to develop a new concept of modular and operative prosthetic hand based on rapid prototyping and a novel shape-memory-alloy (SMA) actuator, thus minimizing the manufacturing costs. An underactuated mechanism was needed for the design of the prosthesis to use only one input source. Taking into account the state of the art, an underactuated mechanism prosthetic hand was chosen so as to implement the modifications required for including the external SMA actuator. A modular design of a new prosthesis was developed which incorporated a novel SMA actuator for the index finger movement. The primary objective of the prosthesis is achieved, obtaining a modular and functional low-cost prosthesis based on additive manufacturing executed by a novel SMA actuator. The external SMA actuator provides a modular system which allows implementing it in different systems. This paper combines rapid prototyping and a novel SMA actuator to develop a new concept of modular and operative low-cost prosthetic hand.

  19. Mould filling of Ag-Pd-Cu-Au and Ag-Zn-Sn-In alloy castings made using a rapidly prepared gypsum-bonded investment material.

    Science.gov (United States)

    Shimizu, Hiroshi; Inoue, Shoko; Miyauchi, Hideaki; Watanabe, Kouichi; Takahashi, Yutaka

    2008-12-01

    Mandibular premolar-shaped wax patterns of full crowns with a marginal angle of 300 were prepared. Two semiprecious alloys were cast using a rapidly prepared gypsum-bonded investment material or a conventional gypsum-bonded investment. A precise impression was taken and cut into four segments. Scanning electron microscopy was used to evaluate the mould filling of each segment. The mould filling of the silver-palladium-copper-gold alloy was worse than that of the silver-zinc-tin-indium alloy. The mould filling of both alloys cast with the rapidly prepared gypsum-bonded investment material was superior to that using the conventional investment.

  20. Informatics Aided Design for Alloys

    Science.gov (United States)

    2009-02-28

    alloying discoveries/ predictions of new ternary cobalt based alloys that can have improved properties from conventional nickel based superalloys ...Using this approach we have proposed new ternary alloy additions for binary cobalt based intermetallics. Through comparison with some recent...that are even better than nickel base superalloys . This strategy has also been extended to the development of new type of design maps that identify

  1. Microstructures and phase formation in rapidly solidified Sm-Fe alloys

    International Nuclear Information System (INIS)

    Shield, J.E.; Kappes, B.B.; Meacham, B.E.; Dennis, K.W.; Kramer, M.J.

    2003-01-01

    Sm-Fe-based alloys were produced by melt spinning with various melt spinning parameters and alloying additions. The structural and microstructural evolution varied and strongly depended on processing and alloy composition. The microstructural scale was found to vary from micron to nanometer scale depending on the solidification rate and alloying additions. Additions of Si, Ti, V, Zr and Nb with C were all found to refine the scale, and the degree of refinement was dependent on the atomic size of the alloying agent. The alloying was also found to affect the dynamical aspects of the melt spinning process, although in general the material is characterized by a poor melt stream and pool, which in part contributes to the microstructural variabilities. The alloying additions also suppressed the long-range ordering, leading to formation of the TbCu 7 -type structure. The ordering was recoverable upon heat treatment, although the presence of alloying agents suppressed the recovery process relative to the binary alloy. This was attributed to the presence of Ti (V, Nb, Zr) in solid solution, which limited the diffusion kinetics necessary for ordering. In the binary alloy, the ordering led to the development of antiphase domain structures, with the antiphase boundaries effectively pinning Bloch walls

  2. Effect of Trace Ce on Microstructure and Properties of Near-rapidly Solidified Al-Zn-Mg-Cu Alloys

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2018-03-01

    Full Text Available Through using DSC, XRD, SEM, EDS, static tensile test and other analysis methods of materials, the effect of trace Ce on microstructure and properties of near-rapidly solidified Al-Zn-Mg-Cu alloy was studied in order to find out rational homogenizing heat treatment process. The results show that Ce plays a role of refining grain and purifying molten alloy. The addition of Ce reduces dendritic spacing, refines the grain structures, eliminates dispersed shrinkage. The addition of Ce reduces the initial melting point of low melting eutectic phases by 3℃, under the same homogenization conditions. Trace Ce promotes the dissolution of low melting eutectic phases into the matrix, which improves the effect of homogenization. Homogenization temperatures of alloy A should be lower than 480℃and alloy B should be lower than 470℃; the addition of Ce decreases the homogenization temperature and improves the homogenization effect. The addition of Ce also greatly increases the tensile strength of the alloys.

  3. Researches focused on structure of aluminium alloys processed by rapid solidification, used in automotive industry

    International Nuclear Information System (INIS)

    Sfat, C.; Vasile, T.; Vasilescu, M.

    2001-01-01

    The paper present some new results focused on an aluminium high temperature alloy, obtained by 'melt spinning method'. alloy composition, processing conditions, resulted structures and the influence between them are presented. There are studied the two zone structures of the alloy and the relation between processing conditions and the characteristics of the zones, with implications on mechanical behavior in real conditions. The final conclusion show that is possible to control the structure in order to improve material behavior. (author)

  4. Ternary Silver Halide Nanocrystals.

    Science.gov (United States)

    Abeyweera, Sasitha C; Rasamani, Kowsalya D; Sun, Yugang

    2017-07-18

    Nanocrystalline silver halides (AgX) such as AgCl, AgBr, and AgI, a class of semiconductor materials with characteristics of both direct and indirect band gaps, represent the most crucial components in traditional photographic processing. The nanocrystal surfaces provide sensitivity specks that can turn into metallic silver, forming an invisible latent image, upon exposure to light. The photographic processing implies that the AgX nanoparticles possess unique properties. First, pristine AgX nanoparticles absorb light only at low efficiency to convert surface AgX into tiny clusters of silver atoms. Second, AgX nanoparticles represent an excellent class of materials to capture electrons efficiently. Third, small metallic silver clusters can catalyze the reduction of AgX nanoparticles to Ag nanoparticles in the presence of mild reducing reagents, known as self-catalytic reduction. These properties indicate that AgX nanoparticles can be partially converted to metallic silver with high precision, leading to the formation of hybrid AgX/Ag nanoparticles. The nanosized metallic Ag usually exhibit intense absorption bands in the visible spectral region due to their strong surface plasmon resonances, which make the AgX/Ag nanoparticles a class of promising visible-light-driven photocatalysts for environmental remediation and CO 2 reduction. Despite the less attention paid to their ability of capturing electrons, AgX nanoparticles might be a class of ideal electron shuttle materials to bridge light absorbers and catalysts on which electrons can drive chemical transformations. In this Account, we focus on ternary silver halide alloy (TSHA) nanoparticles, containing two types of halide ions, which increase the composition complexity of the silver halide nanoparticles. Interdiffusion of halide ions between two types of AgX at elevated temperatures has been developed for fabricating ternary silver halide alloy crystals, such as silver chlorobromide optical fibers for infrared

  5. Magnetization of ternary alloys based on Fe0.65Ni0.35 invar with 3d transition metal additions: An ab initio study

    Science.gov (United States)

    Onoue, Masatoshi; Trimarchi, Giancarlo; Freeman, Arthur J.; Popescu, Voicu; Matsen, Marc R.

    2015-01-01

    Smart susceptors are being developed for use as tooling surfaces in molding machines that use apply electro-magnetic induction heating to mold and form plastics or metal powders into structural parts, e.g., on aerospace and automotive manufacturing lines. The optimal magnetic materials for the induction heating process should have large magnetization, high magnetic permeability, but also small thermal expansion coefficient. The Fe0.65Ni0.35 invar alloy with its negligible thermal expansion coefficient is thus a natural choice for this application. Here, we use density functional theory as implemented through the Korringa-Kohn-Rostoker method within the coherent-potential approximation, to design new alloys with the large magnetization desired for smart susceptor applications. We consider the Fe0.65-xNi0.35-yMx+y alloys derived from Fe0.65Ni0.35 invar adding a third element M = Sc, Ti, V, Cr, Mn, or Co with concentration (x + y) reaching up to 5 at. %. We find that the total magnetization depends linearly on the concentration of M. Specifically, the early 3d transition metals from Sc to Cr decrease the magnetization with respect to that of the invar alloy whereas Mn and Co increase it.

  6. Phase composition, structure and magnetic behaviour of low neodymium rapid-quenched Nd-Fe-B alloys

    Czech Academy of Sciences Publication Activity Database

    Ćosović, V.; Žák, Tomáš; Talijan, N.; Grujić, A.; Stajić-Trošić, J.

    2008-01-01

    Roč. 456, 1-2 (2008), s. 251-256 ISSN 0925-8388 R&D Projects: GA MŠk 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : multiphase Nd(Pr)-Fe-B alloys * rapid solidification * magnetic measurements * Mossbauer spectroscopy * X-ray diffraction * Nanocrystalline composite Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.510, year: 2008

  7. The ternary system nickel-boron-silicon

    International Nuclear Information System (INIS)

    Lugscheider, E.; Reimann, H.; Knotek, O.

    1975-01-01

    The ternary system Nickel-Boron-Silicon was established at 850 0 C by means of X-ray diffraction, metallographic and micro-hardness examinations. The well known binary nickel borides and silicides resp. were confirmed. In the boron-silicon system two binary phases, SiBsub(4-x) with x approximately 0.7 and SiB 6 were found the latter in equilibrium with the β-rhombohedral boron. Confirming the two ternary silicon borides a greater homogeneity range was found for Ni 6 Si 2 B, the phase Nisub(4,6)Si 2 B published by Uraz and Rundqvist can better be described by the formula Nisub(4.29)Si 2 Bsub(1.43). In relation to further investigations we measured melting temperatures in ternary Ni-10 B-Si alloys by differential thermoanalysis. (author)

  8. Assessment of phase constitution on the Al-rich region of rapidly solidified Al-Co-Fe-Cr alloys

    International Nuclear Information System (INIS)

    Wolf, W.; Bolfarini, C.; Kiminami, C.S.; Botta, W.J.

    2016-01-01

    The formation of quasicrystalline approximants in rapidly solidified Al-Co-Fe-Cr alloys was investigated. Alloys of atomic composition Al 71 Co 13 Fe 8 Cr 8 , Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were produced using melt spinning and arc melting methods and their microstructural characterization was carried out by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Up to the present there is no consensus in the literature regarding the formation of quasicrystalline phase or quasicrystalline approximants in the Al 71 Co 13 Fe 8 Cr 8 alloy. This work presents, for the first time, a detailed structural characterization of selected alloys in the Al-Co-Fe-Cr system close to the atomic composition Al 71 Co 13 Fe 8 Cr 8 . The results indicated the samples to be composed, mostly, by two intermetallic phases, which are quaternary extensions of Al 5 Co 2 and Al 13 Co 4 and are quasicrystalline approximants. Although the Al 5 Co 2 phase has already been reported in the Al 71 Co 13 Fe 8 Cr 8 alloy, the presence of the monoclinic Al 13 Co 4 is now identified for the first time in the as cast state. In the binary Al-Co system a quasicrystalline phase is known to form in a rapidly solidified alloy with composition close to the monoclinic and orthorhombic Al 13 Co 4 phases. This binary quasicrystalline phase presents an average valence electron per atom (e/a) between 1.7 and 1.9; thus, in addition to the Al 71 Co 13 Fe 8 Cr 8 alloy, the compositions Al 77 Co 11 Fe 6 Cr 6 and Al 76 Co 19 Fe 4 Cr 1 were chosen to be within the region of formation of the quaternary extension of the Al 13 Co 4 phase and also within the (e/a) of 1.7 to 1.9. However, no quasicrystalline phase is present in any of the studied alloys. The Al-Co-Fe-Cr system, around the compositions studied, is composed of quaternary extensions of Al-Co intermetallic phases, which present solubility of Fe and Cr at Co atomic sites. - Highlights: •The Al rich region of the Al

  9. Synthesis, characterization and magnetic properties of nanocrystalline Fe{sub x}Ni{sub 80−x}Co{sub 20} ternary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, Shankar B.; Theerthagiri, J. [Department of Chemistry, Birla Institute of Technology and Science, Pilani, K.K.Birla, Goa Campus, Zuari Nagar, Goa-403726 (India); Raja, M.Manivel [Defence Metallurgical Research Laboratory, Hyderabad-500058 (India); Panda, R.N., E-mail: rnp@goa.bits-pilani.ac.in [Department of Chemistry, Birla Institute of Technology and Science, Pilani, K.K.Birla, Goa Campus, Zuari Nagar, Goa-403726 (India)

    2013-10-15

    Fe–Ni–Co alloys of various compositions (Fe{sub x}Ni{sub 80−x}Co{sub 20,}x=20–50) were synthesized by using a sodium borohydride reduction route. The phase purity and crystallite size was ascertained by using powder X-ray diffraction (XRD). The alloys crystallize in the face centered cubic (fcc) structure with lattice parameters, a=3.546–3.558 Å. The XRD line broadening indicates the fine particle nature of the materials. The estimated crystallite sizes were found to be 27.5, 27, 24, and 22.8 nm for x=20, 30, 40, and 50; alloys respectively. Scanning electron micrograph studies indicates particle sizes to be in the range of 83–60 nm for Fe–Ni–Co alloys. The values of saturation magnetization for Fe{sub x}Ni{sub 80−x}Co{sub 20} are found to be in the range of 54.3–41.2 emu/g and are significantly lower than the bulk values (175–180 emu/g). The coercivity decreases from 170 to 122 Oe with decrease in Fe content. The observed magnetic behavior has been explained on the basis of size, surface effects, spin canting and the presence of superparamagnetic fractions in the ultrafine materials. - Highlights: • Nanocrystalline Fe{sub x}Ni{sub 80−x}Co{sub 20}, x=20, 30, 40 and 50, were successfully synthesized. • Fe{sub x}Ni{sub 80−x}Co{sub 20}, x=20, 30, 40 and 50, crystallizes in fcc cubic structure. • The XRD and SEM study indicates nanocrystalline nature of the materials. • The magnetic properties have been explained on the basis of fine particle magnetism.

  10. Binary and ternary systems

    International Nuclear Information System (INIS)

    Petrov, D.A.

    1986-01-01

    Conditions for thermodynamical equilibrium in binary and ternary systems are considered. Main types of binary and ternary system phase diagrams are sequently constructed on the basis of general regularities on the character of transition from one equilibria to others. New statements on equilibrium line direction in the diagram triple points and their isothermal cross sections are developed. New represenations on equilibria in case of monovariant curve minimum and maximum on three-phase equilibrium formation in ternary system are introduced

  11. Liquid Phase Separation and the Aging Effect on Mechanical and Electrical Properties of Laser Rapidly Solidified Cu100−xCrx Alloys

    Directory of Open Access Journals (Sweden)

    Song-Hua Si

    2015-11-01

    Full Text Available Duplex structure Cu-Cr alloys are widely used as contact materials. They are generally designed by increasing the Cr content for the hardness improvement, which, however, leads to the unfavorable rapid increase of the electrical resistivity. The solidification behavior of Cu100−xCrx (x = 4.2, 25 and 50 in wt.% alloys prepared by laser rapid solidification is studied here, and their hardness and electrical conductivity after aging are measured. The results show that the Cu-4.2%Cr alloy has the most desirable combination of hardness and conductive properties after aging in comparison with Cu-25%Cr and Cu-50%Cr alloys. Very importantly, a 50% improvement in hardness is achieved with a simultaneous 70% reduction in electrical resistivity. The reason is mainly attributed to the liquid phase separation occurring in the Cu-4.2%Cr alloy, which introduces a large a

  12. Directional annealing studies on rapidly solidified Sm–Co–Nb–C alloys

    International Nuclear Information System (INIS)

    Jayaraman, T.V.; Shield, J.E.

    2012-01-01

    In this paper, a process that develops texture in nanocrystalline permanent magnet alloys is presented. An originally isotropic material is passed through a high up-temperature gradient, inducing directional grain growth. Texture development by directional annealing of melt-spun Sm 12 Co 88 , (Sm 12 Co 88 ) 99 Nb 1 , (Sm 12 Co 88 ) 99 C 1 , and (Sm 12 Co 88 ) 98 Nb 1 C 1 alloys was examined. Samples directionally annealed were compared with conventionally annealed samples. Strong (0 0 6) in-plane texture was observed by X-ray diffraction in Sm 12 Co 88 and (Sm 12 Co 88 ) 99 Nb 1 alloys and the anisotropy was corroborated by magnetic measurements (magnetic texture ∼20–53%). Directional annealing produced only slight texture in the (Sm 12 Co 88 ) 99 C 1 and (Sm 12 Co 88 ) 98 Nb 1 C 1 alloys. The development of texture is critically dependent on annealing temperature, the up-temperature gradient, translational velocity, and alloy composition. The activation energy for anisotropic grain growth was estimated to be ∼28 and ∼42 kJ mol −1 for Sm 12 Co 88 and (Sm 12 Co 88 ) 99 Nb 1 , respectively. These results indicate that directional annealing as a route to texture development in nanocrystalline permanent magnet alloys is a feasible process.

  13. Effect of annealing procedure on the bonding of ceramic to cobalt-chromium alloys fabricated by rapid prototyping.

    Science.gov (United States)

    Tulga, Ayca

    2017-08-22

    An annealing procedure is a heat treatment process to improve the mechanical properties of cobalt-chromium (Co-Cr) alloys. However, information is lacking about the effect of the annealing process on the bonding ability of ceramic to Co-Cr alloys fabricated by rapid prototyping. The purpose of this in vitro study was to evaluate the effects of the fabrication techniques and the annealing procedure on the shear bond strength of ceramic to Co-Cr alloys fabricated by different techniques. Ninety-six cylindrical specimens (10-mm diameter, 10-mm height) made of Co-Cr alloy were prepared by casting (C), milling (M), direct process powder-bed (LaserCUSING) with and without annealing (CL+, CL), and direct metal laser sintering (DMLS) with annealing (EL+) and without annealing (EL). After the application of ceramic to the metal specimens, the metal-ceramic bond strength was assessed using a shear force test at a crosshead speed of 0.5 mm/min. Shear bond strength values were statistically analyzed by 1-way ANOVA and Tukey multiple comparison tests (α=.05). Although statistically significant differences were found among the 3 groups (M, 29.87 ±2.06; EL, 38.92 ±2.04; and CL+, 40.93 ±2.21; P=.002), no significant differences were found among the others (P>.05). The debonding surfaces of all specimens exhibited mixed failure mode. These results showed that the direct process powder-bed method is promising in terms of metal-ceramic bonding ability. The manufacturing technique of Co-Cr alloys and the annealing process influence metal-ceramic bonding. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. Thermodynamic modeling of the Ti-Al-Cr ternary system

    International Nuclear Information System (INIS)

    Chen Leyi; Qiu Aitao; Liu Lanjie; Jiang Ming; Lu Xionggang; Li Chonghe

    2011-01-01

    Research highlights: → The full experimental results of the Ti-Al-Cr ternary system and its sub-binary systems are reviewed and analysed in detail. → Based on the latest thermodynamic assessments of the Ti-Al, Ti-Cr and Al-Cr systems and the ternary experimental data in literature, the thermodynamic parameters of the Ti-Al-Cr ternary system are fully assessed by the Calphad method. → The transformation of disorder to order (bcc a 2 to B2) and the new ternary compound L 12T i 25 Cr 8 Al 67 are considered in this work. - Abstract: The Ti-Al-Cr ternary system is one of the most important systems to studying the titanium alloys. Some experimental data of this ternary system are available and a few partial thermodynamic assessments are reported. However, no full thermodynamic descriptions were published. In this study, the previous work on the Ti-Al-Cr system and its related binary systems are reviewed. Based on the thermodynamic descriptions of the Ti-Al, Ti-Cr and Al-Cr systems and the ternary experimental data in literature, the Ti-Al-Cr ternary system is assessed by means of the Calphad method. Several isothermal sections from 1073 K to 1573 K and some invariant reactions are calculated, which are in good agreement with the most of the experimental results.

  15. Structural, elastic and electronic properties of transition metal carbides ZnC, NbC and their ternary alloys ZnxNb1-xC

    Science.gov (United States)

    Zidi, Y.; Méçabih, S.; Abbar, B.; Amari, S.

    2018-02-01

    We have investigated the structural, electronic and elastic properties of transition-metal carbides ZnxNb1-xC alloys in the range of 0 ≤ x ≤ 1 using the density functional theory (DFT). The full potential linearized augmented plane wave (FP-LAPW) method within a framework of the generalized gradient approximation (GGA) and GGA + U (where U is the Hubbard correlation terms) approach is used to perform the calculations presented here. The lattice parameters, the bulk modulus, its pressure derivative and the elastic constants were determined. We have obtained Young's modulus, shear modulus, Poisson's ratio, anisotropy factor by the aid of the calculated elastic constants. We discuss the total and partial densities of states and charge densities.

  16. Microstructure and corrosion properties of as sub-rapid solidification Mg-Zn-Y-Nd alloy in dynamic simulated body fluid for vascular stent application.

    Science.gov (United States)

    Wang, Jun; Wang, Liguo; Guan, Shaokang; Zhu, Shijie; Ren, Chenxing; Hou, Shusen

    2010-07-01

    Magnesium alloy stent has been employed in animal and clinical experiment in recent years. It has been verified to be biocompatible and degradable due to corrosion after being implanted into blood vessel. Mg-Y-Gd-Nd alloy is usually used to construct an absorbable magnesium alloy stent. However, the corrosion resistant of as cast Mg-Y-Gd-Nd alloy is poor relatively and the control of corrosion rate is difficult. Aiming at the requirement of endovascular stent in clinic, a new biomedical Mg-Zn-Y-Nd alloy with low Zn and Y content (Zn/Y atom ratio 6) was designed, which exists quasicrystals to improve its corrosion resistance. Additionally, sub-rapid solidification processing was applied for preparation of corrosion-resisting Mg-Zn-Y-Nd and Mg-Y-Gd-Nd alloys. Compared with the as cast sample, the corrosion behavior of alloys in dynamic simulated body fluid (SBF) (the speed of body fluid: 16 ml/800 ml min(-1)) was investigated. The results show that as sub-rapid solidification Mg-Zn-Y-Nd alloy has the better corrosion resistance in dynamic SBF due to grain refinement and fine dispersion distribution of the quasicrystals and intermetallic compounds in alpha-Mg matrix. In the as cast sample, both Mg-Zn-Y-Nd and Mg-Y-Gd-Nd alloys exhibit poor corrosion resistance. Mg-Zn-Y-Nd alloy by sub-rapid solidification processing provides excellent corrosion resistance in dynamic SBF, which open a new window for biomedical materials design, especially for vascular stent application.

  17. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yueling; Jia, Lina, E-mail: jialina@buaa.edu.cn; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    Highlights: • Sphere shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by PREP. • An oxide layer with a thickness of 9.39 nm was generated on the powder surface. • The main phases of the pre-alloyed powders were Nbss and Cr{sub 2}Nb. • SDAS increased and microhardness decreased with the increase of powder size. • Microstructure of powders evolved into large grains from dendrite structures after HT. - Abstract: For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr{sub 2}Nb. The Cr{sub 2}Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  18. Experimental investigation of phase equilibria in the Co-W-V ternary system

    International Nuclear Information System (INIS)

    Liu Xingjun; Zhu Yihong; Yu Yan; Wang Cuiping

    2011-01-01

    Highlights: → Three isothermal sections of the Co-W-V ternary system at 1100 deg. C, 1200 deg. C and 1300 deg. C were determined. → No ternary compound was found in the Co-W-V ternary system. → A stable liquid miscibility gap is newly discovered in the Co-W-V ternary system. → This work is of great essence to establish the thermodynamic database for the Co-based alloys. - Abstract: The phase equilibria in the Co-W-V ternary system were experimentally investigated by optical microscopy (OM), electron probe microanalysis (EPMA) and X-ray diffraction (XRD) on the equilibrated alloys. Three isothermal sections of the Co-W-V ternary system at 1100 deg. C, 1200 deg. C and 1300 deg. C were determined, and no ternary compound was found in this system. In addition, a novel phenomena induced by the liquid phase separation in the Co-W-V alloys was firstly discovered, suggesting that a stable liquid miscibility gap exists in the Co-W-V ternary system. The newly determined phase equilibria and firstly discovered phase separation phenomena in the Co-W-V system will provide important information for the development of Co-W based alloys.

  19. Al and Mg Alloys for Aerospace Applications Using Rapid Solidification and Powder Metallurgy Processing

    Science.gov (United States)

    1989-03-28

    position of the Mg2Si liquidus, then a slight change in the eutectic composition is expected, and has been estimated to be = 1%Si. If, on the other hand ...the 10 wt.% Gd alloys were excellent. The alloys retained on average 91% of their room temperature yield and ultimate strenght at 200"C. The ductility...the other hand , results from the introduction of the same shear displacement on every second (001) plane. The resulting tetragonal unit cells have a c/a

  20. Chest-wall reconstruction with a customized titanium-alloy prosthesis fabricated by 3D printing and rapid prototyping.

    Science.gov (United States)

    Wen, Xiaopeng; Gao, Shan; Feng, Jinteng; Li, Shuo; Gao, Rui; Zhang, Guangjian

    2018-01-08

    As 3D printing technology emerge, there is increasing demand for a more customizable implant in the repair of chest-wall bony defects. This article aims to present a custom design and fabrication method for repairing bony defects of the chest wall following tumour resection, which utilizes three-dimensional (3D) printing and rapid-prototyping technology. A 3D model of the bony defect was generated after acquiring helical CT data. A customized prosthesis was then designed using computer-aided design (CAD) and mirroring technology, and fabricated using titanium-alloy powder. The mechanical properties of the printed prosthesis were investigated using ANSYS software. The yield strength of the titanium-alloy prosthesis was 950 ± 14 MPa (mean ± SD), and its ultimate strength was 1005 ± 26 MPa. The 3D finite element analyses revealed that the equivalent stress distribution of each prosthesis was unifrom. The symmetry and reconstruction quality contour of the repaired chest wall was satisfactory. No rejection or infection occurred during the 6-month follow-up period. Chest-wall reconstruction with a customized titanium-alloy prosthesis is a reliable technique for repairing bony defects.

  1. Microstructure of rapidly solidified Nb-based pre-alloyed powders for additive manufacturing

    Science.gov (United States)

    Guo, Yueling; Jia, Lina; Kong, Bin; Zhang, Shengnan; Zhang, Fengxiang; Zhang, Hu

    2017-07-01

    For powder-based additive manufacturing, sphere-shaped Nb-37Ti-13Cr-2Al-1Si pre-alloyed powders were prepared by plasma rotating electrode processing (PREP). The microstructure, surface oxidation and microhardness of the pre-alloyed powders were systematically investigated. Results showed that the main phases were Nb solid solution (Nbss) and Cr2Nb. The Cr2Nb phases were further determined using transmission electron microscopy (TEM). Fine dendrite structures were observed in the as-fabricated pre-alloyed powders, which transformed to large grains after heat treatment (HT) at 1450 °C for 3 h. With the increase of powder size, the secondary dendrite arm spacing (SDAS) increased and the microhardness (HV) decreased. A clean powder surface free of oxide particles was obtained by PREP and an oxide layer with 9.39 nm in thickness was generated on the powder surface. Compared with Cr- and Nb-oxides, more Ti-oxides were formed on outmost powder surface with a higher content of Ti (up to 47.86 at.%). The differences upon the microstructure and microhardness of the pre-alloyed powders with different sizes were discussed.

  2. Effect of quenching rate on the microstructure of a rapidly solidified Al-5Sb alloy

    International Nuclear Information System (INIS)

    Wang Yan; Zhang Zhonghua; Zheng Shaohua; Fan Suhua; Cheng Xin; Wang Weimin; Bian Xiufang; Geng Haoran

    2004-01-01

    In the present work, the effect of quenching rate (wheel speed) on the microstructure of a melt-spun Al-5Sb alloy has been investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). The phases were identified to be α-Al and AlSb in the alloy melt-spun at 500 and 1500 rpm. The microstructure of the alloy melt-spun at 500 rpm is composed of primary AlSb particles embedded in a matrix comprising equiaxed α-Al cells with intercellular nanoscale AlSb particles and α-Al/AlSb eutectic. Furthermore, intracellular nanoscale AlSb particles were also found in some areas. With increasing quenching rate to 1500 rpm, the matrix microstructure comprises elongated α-Al cells with intercellular nanoscale AlSb particles. The intercellular AlSb particles exhibiting intense Bragg reflections with monocrystalline characteristics possess the same crystallographic orientation but the intracellular ones are randomly oriented exhibiting spotty rings in the Al-5Sb alloy melt-spun at 500 rpm

  3. Surface monitoring for pitting evolution into uniform corrosion on Cu-Ni-Zn ternary alloy in alkaline chloride solution: ex-situ LCM and in-situ SECM

    Science.gov (United States)

    Kong, Decheng; Dong, Chaofang; Zheng, Zhaoran; Mao, Feixiong; Xu, Aoni; Ni, Xiaoqing; Man, Cheng; Yao, Jizheng; Xiao, Kui; Li, Xiaogang

    2018-05-01

    The evolution of the corrosion process on Cu-Ni-Zn alloy in alkaline chloride solution was investigated by in-situ scanning electrochemical microscopy, X-ray photoelectron spectroscopy, and ex-situ laser confocal microscopy, and the effects of ambient temperature and polarization time were also discussed. The results demonstrated a higher pitting nucleation rate and lower pit growth rate at low temperature. The ratio of pit depth to mouth diameter decreased with increasing pit volume and temperature, indicating that pits preferentially propagate in the horizontal direction rather than the vertical direction owing to the presence of corrosion products and deposited copper. The surface current was uniform and stabilized at approximately 2.2 nA during the passive stage, whereas the current increased after the pits were formed with the maximum approaching 3 nA. Increasing the temperature led to an increase in porous corrosion products (CuO, Zn(OH)2, and Ni(OH)2) and significantly increased the rate of transition from pitting to uniform corrosion. Dezincification corrosion was detected by energy dispersive spectrometry, and a mechanism for pitting transition into uniform corrosion induced by dezincification at the grain boundaries is proposed.

  4. Carbon/Ternary Alloy/Carbon Optical Stack on Mylar as an Optical Data Storage Medium to Potentially Replace Magnetic Tape

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hao; Lunt, Barry M.; Gates, Richard J.; Asplund, Matthew C.; Shutthanandan, V.; Davis, Robert C.; Linford, Matthew R.

    2013-09-11

    A novel write-once-read-many (WORM) optical stack on Mylar tape is proposed as a replacement for magnetic tape for archival data storage. This optical tape contains a cosputtered bismuth–tellurium–selenium (BTS) alloy as the write layer sandwiched between thin, protective films of reactively sputtered carbon. The composition and thickness of the BTS layer were confirmed by Rutherford Backscattering (RBS) and atomic force microscopy (AFM), respectively. The C/BTS/C stack on Mylar was written to/marked by 532 nm laser pulses. Under the same conditions, control Mylar films without the optical stack were unaffected. Marks, which showed craters/movement of the write material, were characterized by optical microscopy and AFM. The threshold laser powers for making marks on C/BTS/C stacks with different thicknesses were explored. Higher quality marks were made with a 60× objective compared to a 40× objective in our marking apparatus. Finally, the laser writing process was simulated with COMSOL.

  5. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jie; Wang, Bo [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhao, Shunli [Research Institute, Baoshan Iron & Steel Co., Ltd, Shanghai 201900 (China); Wu, Guangxin [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhang, Jieyu, E-mail: zjy6162@staff.shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Yang, Zhiliang [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China)

    2016-05-25

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  6. Ternary chalcopyrite semiconductors

    CERN Document Server

    Shay, J L; Pamplin, B R

    2013-01-01

    Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications covers the developments of work in the I-III-VI2 and II-IV-V2 ternary chalcopyrite compounds. This book is composed of eight chapters that focus on the crystal growth, characterization, and applications of these compounds to optical communications systems. After briefly dealing with the status of ternary chalcopyrite compounds, this book goes on describing the crystal growth of II-IV-V2 and I-III-VI2 single crystals. Chapters 3 and 4 examine the energy band structure of these semiconductor compounds, illustrat

  7. Kinetic study of lithium-cadmium ternary amalgam decomposition

    International Nuclear Information System (INIS)

    Cordova, M.H.; Andrade, C.E.

    1992-01-01

    The effect of metals, which form stable lithium phase in binary alloys, on the formation of intermetallic species in ternary amalgams and their effect on thermal decomposition in contact with water is analyzed. Cd is selected as ternary metal, based on general experimental selection criteria. Cd (Hg) binary amalgams are prepared by direct contact Cd-Hg, whereas Li is formed by electrolysis of Li OH aq using a liquid Cd (Hg) cathodic well. The decomposition kinetic of Li C(Hg) in contact with 0.6 M Li OH is studied in function of ageing and temperature, and these results are compared with the binary amalgam Li (Hg) decomposition. The decomposition rate is constant during one hour for binary and ternary systems. Ageing does not affect the binary systems but increases the decomposition activation energy of ternary systems. A reaction mechanism that considers an intermetallic specie participating in the activated complex is proposed and a kinetic law is suggested. (author)

  8. Age hardening in rapidly solidified and hot isostatically pressed beryllium-aluminum-silver alloys

    International Nuclear Information System (INIS)

    Carter, D.H.; McGeorge, A.C.; Jacobson, L.A.; Stanek, P.W.

    1995-01-01

    Three different alloys of beryllium, aluminum and silver were processed to powder by centrifugal atomization in a helium atmosphere. Alloy compositions were, by weight, 50% Be, 47.5% Al, 2.5% Ag, 50% Be, 47% Al, 3% Ag, and 50% Be, 46% Al, 4% Ag. Due to the low solubility of both aluminum and silver in beryllium, the silver was concentrated in the aluminum phase, which appeared to separate from the beryllium in the liquid phase. A fine, continuous composite beryllium-aluminum microstructure was formed, which did not significantly change after hot isostatically pressing at 550 C for one hour at 30,000 psi argon pressure. Samples of HIP material were solution treated at 550 C for one hour, followed by a water quench. Aging temperatures were 150, 175, 200 and 225 C for times ranging from one half hour to 65 hours. Hardness measurements were made using a diamond pyramid indenter with a load of 1 kg. Results indicate that peak hardness was reached in 36--40 hours at 175 C and 12--16 hours at 200 C aging temperature, relatively independent of alloy composition

  9. Extended Al(Mn) solution in a rapidly solidified Al-Li-Mn-Zr alloy

    International Nuclear Information System (INIS)

    Ruhr, M.; Baram, J.C.; Lavernia, E.J.

    1990-01-01

    This paper reports the effect of coolingrate on the extension of Mn solid solubility in Al and on the relative amount of MnAl (MnAl 6 and MnAl 4 ) secondary phases during gas atomization and spray deposition critically examined. An alloy of composition Al-6.5Mn-2.3Li-0.65Zr (wt pct) currently being investigated for applications requiring high strength and low density at high temperatures was selected for this study. The material was exposed to various solidification histories by altering gas pressure and powder size during solidification

  10. The Effect of Substitution of Fe By Co on Rapidly Quenched (FeCoMoCuB Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Marek Paluga

    2005-01-01

    Full Text Available (Fe1-xCox79Mo8Cu1B15 amorphous alloys ware prepared in the form of ribbons by rapid quenching for x=0. 0.25 and 0.5. The effect of variation of Co/Fe ratio is analyzed with respect to the formation of amorphous state and to transformation of the structure into nancrystalline phases formed after subsequent thermal treatment. Selected properties and atomic structure in as-quenched state are studied by TEM, AFM, XRD any by measurement of magnetoresistance characteristics. The influence of heat treatment on transport and magnetic properties is shown on temperature dependencies of electrical resistivity and magnetization. It was founf that while the increase of Co content leads to the increase of Curie temperature of as-quenched structure, transition to nanocrystalline state is not affected in a significant manner. The as-quenched state for alloy without Co was found to contain thin crystal-containing layer which, however, was observed, contary to general behavior, at the side of the ribbon exposed to higher quenching rates.

  11. Effect of iron and cerium additions on rapidly solidified Al-TM-Ce alloys

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Schumacher, G.; Novák, P.; Pližingrová, Eva

    2013-01-01

    Roč. 47, č. 6 (2013), s. 757-761 ISSN 1580-2949 Institutional support: RVO:61388980 Keywords : rapid solidification * aluminium * quasicrystals Subject RIV: CA - Inorganic Chemistry Impact factor: 0.555, year: 2013

  12. Structural relaxation in an amorphous rapidly quenched cobalt-based alloy

    International Nuclear Information System (INIS)

    Fradin, V.; Grynszpan, R.I.; Alves, F.; Houzali, A.; Perron, J.C.

    1995-01-01

    An amorphous melt-spun Co-based alloy (Metglas 2705 MN) is investigated by Doppler Broadening and Positron Lifetime techniques in order to follow the microstructural changes yielded by isochronal annealings before crystallization. The results are correlated with those of Differential Scanning Calorimetry and Coercive Field measurements. The quenched empty spaces underlined by Lifetime measurements are less than one atomic volume in size and migrate without clustering in larger voids. Both Positron Annihilation and Coercive Field investigations suggest that the overall decrease of free volume related to structural relaxation in this amorphous material, proceeds mainly via compositional short-range ordering. These local chemical rearrangements which lead to a partial disorientation of the magnetic moments act as strong pinning points for Bloch Walls. (orig.)

  13. A rapid method for spectrophotometric determination of molybdenum in alloy steels

    International Nuclear Information System (INIS)

    Keshavan, B.; Nagaraja, P.

    1985-01-01

    Molybdenum(IV) forms an orange-red coloured mixed-ligand complex with perazine dimalonate and thiocyanate at room temperature (27 0 ) in hydrochloric acid. The complex is soluble in ethanol. It exhibits absorption maximum at 460 nm. Beer's law is valid over the molybdenum concentration range 0.1-14.0 μg/ml. Sandell's sensitivity of the reaction is 0.9 x 10 -3 μg Mo/cm 2 and the molar extinction coefficient is 1.06 x 10 4 l x mol -1 x cm -1 at 460 nm. The stoichiometry of the complex is (Perazine x H) [MoO(SCN) 4 ] as shown by Job's method, equilibrium shift method and elemental analyses of the isolated complex. The proposed method has been used for the determination of molybdenum in ores, alloy steels and in synthetic mixtures containing chromium, tungsten, iron, cobalt, nickel and copper.(Author)

  14. Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design

    International Nuclear Information System (INIS)

    Haase, Christian; Tang, Florian; Wilms, Markus B.; Weisheit, Andreas; Hallstedt, Bengt

    2017-01-01

    High-entropy alloys have gained high interest of both academia and industry in recent years due to their excellent properties and large variety of possible alloy systems. However, so far prediction of phase constitution and stability is based on empirical rules that can only be applied to selected alloy systems. In the current study, we introduce a methodology that enables high-throughput theoretical and experimental alloy screening and design. As a basis for thorough thermodynamic calculations, a new database was compiled for the Co–Cr–Fe–Mn–Ni system and used for Calphad and Scheil simulations. For bulk sample production, laser metal deposition (LMD) of an elemental powder blend was applied to build up the equiatomic CoCrFeMnNi Cantor alloy as a first demonstrator. This production approach allows high flexibility in varying the chemical composition and, thus, renders itself suitable for high-throughput alloy production. The microstructure, texture, and mechanical properties of the material processed were characterized using optical microscopy, EBSD, EDX, XRD, hardness and compression testing. The LMD-produced alloy revealed full density, strongly reduced segregation compared to conventionally cast material, pronounced texture, and excellent mechanical properties. Phase constitution and elemental distribution were correctly predicted by simulations. The applicability of the introduced methodology to high-entropy alloys and extension to compositionally complex alloys is discussed.

  15. Influence of cooling rate and cerium addition on rapidly solidified Al-TM alloys

    Czech Academy of Sciences Publication Activity Database

    Michalcová, A.; Vojtěch, D.; Schumacher, G.; Novák, P.; Klementová, Mariana; Šerák, J.; Mudrová, M.; Valdaufová, J.

    2010-01-01

    Roč. 48, č. 1 (2010), s. 1-7 ISSN 0023-432X Institutional research plan: CEZ:AV0Z40320502 Keywords : rapid solidification * Al-TM * microstructure * aluminium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.471, year: 2010

  16. XMCD and TEM studies of as-cast and rapidly quenched Fe50Nd50 alloys

    Science.gov (United States)

    Menushenkov, V. P.; Menushenkov, A. P.; Shchetinin, I. V.; Wilhelm, F.; Ivanov, A. A.; Rudnev, I. A.; Ivanov, V. G.; Rogalev, A.; Savchenko, A. G.; Zhukov, D. G.; Rafalskiy, A. V.; Ketov, S. V.

    2017-12-01

    We present the XMCD analysis of as-cast and melt spun Fe50Nd50 samples performed at L2,3 -Nd and K-Fe absorption edges at 5 and 50 K in comparison with macroscopic data of XRD, TEM and magnetic properties measurements. In addition, we have measured the magnetic field dependence of XMCD signal for both types of the samples in magnetic fields up/down to 17 T. The obtained results pointed to the strong difference between structure and magnetic properties of the as-cast and melt spun Fe50Nd50 alloys for both macroscopic and local measurements. The element selective XMCD loops for melt spun alloy show almost identical value of the coercive force Hci for L 2-Nd and K-Fe edges and practically do not depend on temperature. XMCD loop at K-Fe edge is a sum of contributions of the Fe-based phases. The main Fe-rich phase has high Hci ≈ 2,4 T as a highly anisotropic phase. The absence of the K-Fe XMCD loop saturation in the field up to 17 T points to presence of the second Nd-rich Nd-Fe phase which is ferromagnetic at temperature lower than 50 K. In accordance to the TEM results these both phases may coexist as the mixture of nanocrystals which was formed as a result of decomposition of the amorphous-like matrix phase. The XMCD loop at L2 -Nd edge with Hci ≈ 1,9 T is the sum of contributions from two Nd-based phases: hard Fe-rich phase (Hci ≈ 2,4 T) and Nd-Fe matrix phase of medium hardness with Hci ≈ 1,3 T. The macroscopic loop showed the higher Hci compared to XMCD loops. Such discrepancy may be caused by the fact that XMCD signal is collected from a 5-10 mcm thick surface layer, which contains many defects that reduce anisotropy and coercivity.

  17. Wurtzite-derived ternary I?III?O2 semiconductors

    OpenAIRE

    Omata, Takahisa; Nagatani, Hiraku; Suzuki, Issei; Kita, Masao

    2015-01-01

    Ternary zincblende-derived I?III?VI2 chalcogenide and II?IV?V2 pnictide semiconductors have been widely studied and some have been put to practical use. In contrast to the extensive research on these semiconductors, previous studies into ternary I?III?O2 oxide semiconductors with a wurtzite-derived ?-NaFeO2 structure are limited. Wurtzite-derived ?-LiGaO2 and ?-AgGaO2 form alloys with ZnO and the band gap of ZnO can be controlled to include the visible and ultraviolet regions. ?-CuGaO2, which...

  18. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    Directory of Open Access Journals (Sweden)

    Christian Schröder

    2015-01-01

    Full Text Available Retropatellar complications after total knee arthroplasty (TKA such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics.

  19. Rapid Prototyping for In Vitro Knee Rig Investigations of Prosthetized Knee Biomechanics: Comparison with Cobalt-Chromium Alloy Implant Material

    Science.gov (United States)

    Schröder, Christian; Steinbrück, Arnd; Müller, Tatjana; Woiczinski, Matthias; Chevalier, Yan; Müller, Peter E.; Jansson, Volkmar

    2015-01-01

    Retropatellar complications after total knee arthroplasty (TKA) such as anterior knee pain and subluxations might be related to altered patellofemoral biomechanics, in particular to trochlear design and femorotibial joint positioning. A method was developed to test femorotibial and patellofemoral joint modifications separately with 3D-rapid prototyped components for in vitro tests, but material differences may further influence results. This pilot study aims at validating the use of prostheses made of photopolymerized rapid prototype material (RPM) by measuring the sliding friction with a ring-on-disc setup as well as knee kinematics and retropatellar pressure on a knee rig. Cobalt-chromium alloy (standard prosthesis material, SPM) prostheses served as validation standard. Friction coefficients between these materials and polytetrafluoroethylene (PTFE) were additionally tested as this latter material is commonly used to protect pressure sensors in experiments. No statistical differences were found between friction coefficients of both materials to PTFE. UHMWPE shows higher friction coefficient at low axial loads for RPM, a difference that disappears at higher load. No measurable statistical differences were found in knee kinematics and retropatellar pressure distribution. This suggests that using polymer prototypes may be a valid alternative to original components for in vitro TKA studies and future investigations on knee biomechanics. PMID:25879019

  20. Formation of bands of ultrafine beryllium particles during rapid solidification of Al-Be alloys: Modeling and direct observations

    International Nuclear Information System (INIS)

    Elmer, J.W.; Tanner, L.E.; Smith, P.M.; Wall, M.A.; Aziz, M.J.

    1994-01-01

    Rapid solidification of dilute hyper-eutectic and monotectic alloys sometimes produces a dispersion of ultrafine randomly-oriented particles that lie in arrays parallel to the advancing solidification front. The authors characterize this effect in Al-Be where Be-rich particles with diameters on the order of 10 nm form in arrays spaced approximately 25 nm apart, and they present a model of macroscopically steady state but microscopically oscillatory motion of the solidification front to explain this unusual microstructure. The proposed mechanism involves; (i) the build-up of rejected solute in a diffusional boundary layer which slows down the growing crystal matrix, (2) the boundary layer composition entering a metastable liquid miscibility gap, (3) homogeneous nucleation of solute rich liquid droplets in the boundary layer, and crystallization of these droplets, and (4) growth of the matrix past the droplets and its reformation into a planar interface. The size of the Be-rich particles is limited by the beryllium supersaturation in the diffusional boundary layer. A numerical model was developed to investigate this solidification mechanism, and the results of the model are in good agreement with experimental observations of rapidly solidified Al-5 at.% Be

  1. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    Ni use in acidic media is restricted due to corrosion, it can be used in the alkaline medium as the process of corrosion is insignificant. It has been well established that water split- ting in the alkaline medium for the production of pure hydro- gen has an advantage due to being environmentally benign, having low cost and ...

  2. Ternary alloy nanocatalysts for hydrogen evolution reaction

    Indian Academy of Sciences (India)

    Figueiredo J L 2013 Int. J. Hydrogen Energy 38 3137. [4] Lubitz B and Tumas W 2007 Chem. Rev. 107 3900. [5] Barbaro C B P 2009 Catalysis for Sustainable Energy Pro- duction (Wiley-VCH: Weinheim). [6] Vielstich G W, Lamm A, Vielstich H W, Lamm A and. Gasteiger H 2003 Handbook of Fuel Cells: Fundamentals,.

  3. Magnetocaloric properties of rapidly solidified Dy{sub 3}Co alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Llamazares, J. L., E-mail: jose.sanchez@ipicyt.edu.mx; Flores-Zúñiga, H.; Sánchez-Valdés, C. F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055 Col. Lomas 4" a, San Luis Potosí, S.L.P. 78216 (Mexico); Álvarez-Alonso, Pablo [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); Lara Rodríguez, G. A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México, D. F. 04510 (Mexico); Fernández-Gubieda, M. L. [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); BC Materials, Camino de Ibaizabal, Edificio 500, Planta 1, Parque Científico y Tecnológico de Zamudio, 48160 Derio (Spain)

    2015-05-07

    The magnetic and magnetocaloric (MC) properties of melt-spun ribbons of the Dy{sub 3}Co intermetallic compound were investigated. Samples were fabricated in an Ar environment using a homemade melt spinner system at a linear speed of the rotating copper wheel of 40 ms{sup −1}. X-ray diffraction analysis shows that ribbons crystallize into a single-phase with the Fe{sub 3}C-type orthorhombic crystal structure. The M(T) curve measured at 5 mT reveals the occurrence of a transition at 32 K from a first to a second antiferromagnetic (AFM) state and an AFM-to-paramagnetic transition at T{sub N} = 43 K. Furthermore, a metamagnetic transition is observed below T{sub N}, but the magnetization change ΔM is well below the one reported for bulk alloys. Below 12 K, large inverse MC effect and hysteresis losses are observed. This behavior is related to the metamagnetic transition. For a magnetic field change of 5 T (2 T) applied along the ribbon length, the produced ribbons show a peak value of the magnetic entropy change ΔS{sub M}{sup peak} of −6.5 (− 2.1) Jkg{sup −1}K{sup −1} occurring close to T{sub N} with a full-width at half-maximum δT{sub FWHM} of 53 (37) K, and refrigerant capacity RC = 364 (83) Jkg{sup −1} (estimated from the product |ΔS{sub M}{sup peak}| × δT{sub FWHM})

  4. Short range order in FeCo-X alloys

    International Nuclear Information System (INIS)

    Fultz, B.

    1988-01-01

    Moessbauer spectrometry was used to study the kinetics of chemical ordering in FeCo and in FeCo alloyed with ternary solutes. With respect to the binary FeCo alloy, the kinetics of B2 ordering were slowed when 2% of 4d- or 5d-series ternary solute atoms were present, but 3p- and 3d-series ternary solutes had little effect on ordering kinetics. The relaxation of order around the ternary solute atoms could be discerned in Moessbauer spectra, and it seems that the development of B2 short range order is influenced by structural relaxations around the ternary solute atoms. Different thermal treatments were shown to cause different relaxations of and correlations, suggesting that Moessbauer spectrometry can be used to identify different kinetic paths of ordering in ternary alloys. (orig.)

  5. X-ray study of rapidly cooled ribbons of Al-Cr-Zr and Al-Ni-Y-Cr-Zr alloys

    International Nuclear Information System (INIS)

    Betsofen, S.Ya.; Osintsev, O.E.; Lutsenko, A.N.; Konkevich, V.Yu.

    2002-01-01

    One investigated into phase composition, lattice spacing and structure of rapidly cooled 25-200 μm gauge strips made of Al-4,1Cr-3,2Zr and Al-1,5Cr-1,5Zr-4Ni-3Y alloys, wt. %, produced by melt spinning to a water-cooled copper disk. In Al-4,1Cr-3,2Zr alloy one detected intermetallic phases: Al 3 Zr and two Al 86 Cr 14 composition icosahedral phases apart from aluminium solid solution with 4.040-4.043 A lattice spacing. In Al-1,5Cr-1,5Zr-4Ni-3Y alloy one identified two Al 86 Cr 14 icosahedral phases and two AlNiY and Al 3 Y yttrium-containing ones, lattice spacing of aluminium solid solution was equal to 4.052-4.053 A [ru

  6. Constitutional studies of the molybdenum-ruthenium-palladium ternary system

    International Nuclear Information System (INIS)

    Cornish, L.A.; Pratt, J.N.

    1997-01-01

    An experimental and computational study has been made of phase equilibria in the Mo-Ru-Pd ternary system. The constitution of annealed binary and ternary alloys was investigated using optical and electron microscopy, X-ray diffraction and SEM phase analysis techniques. Limited thermodynamic measurements were made using the ZrO 2 solid electrolyte e.m.f. method. The data obtained from the various techniques were used to construct a ternary isothermal section at 1473 K. The experimentally determined section is compared with a calculated section for the same temperature, computed using thermodynamic coefficients derived solely from binary system information. Lattice parameters are reported for the b.c.c., f.c.c. and c.p.h. solid solutions and for the σ phase. (orig.)

  7. Phase mapping of iron-based rapidly quenched alloys using precession electron diffraction

    International Nuclear Information System (INIS)

    Svec, P.; Janotova, I.; Hosko, J.; Matko, I.; Janickovic, D.; Svec, P. Sr.; Kepaptsoglou, D. M.

    2013-01-01

    The present contribution is focused on application of PED and phase/orientation mapping of nanocrystals of bcc-Fe formed during the first crystallization stage of amorphous Fe-Co-Si-B ribbon. Using precession electron diffraction and phase/orientation mapping the formation of primary crystalline phase, bcc-Fe, from amorphous Fe-Co-Si-B has been analyzed. Important information about mutual orientation of the phase in individual submicron grains as well as against the sample surface has been obtained. This information contributes to the understanding of micromechanisms controlling crystallization from amorphous rapidly quenched structure and of the structure of the original amorphous state. The presented technique due to its high spatial resolution, speed and information content provided complements well classical techniques, especially in nanocrystalline materials. (authors)

  8. Hydrogen-induced changes in the crystalline structure and mechanical properties of a Zn-Al eutectoid alloy rapidly solidified

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Jimenez, Alberto; Iturbe Garcia, Jose Luis [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: alberto.sandoval@inin.gob.mx; asandovalj@correo.unam.mx; Negrete Sanchez, Jesus [Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Torres Villasenor, Gabriel [Instituto de Investigaciones en Materiales, UNAM, Mexico D.F. (Mexico)

    2009-09-15

    Ribbon fractions of a zinc-aluminum eutectoid (Zn40.8Al%at.) alloy, obtained by rapid solidification using melt spinning technique, were submitted to a thermo-hydrogenation process by periods of 1, 6, 18, 24, 30, and 48 hours, to 200 degrees Celsius and 20 atmospheres. Thermo-hydrogenated samples were analyzed by transmission electron microscopy (TEM). Hydrogen-induced changes were produced, such as microstructure refining, development of crystalline defects, microhardness changes and modification of stable crystalline structures to {alpha}R meta-stable phase at room temperature. [Spanish] Fracciones de tiras de una aleacion eutectoide de zinc-aluminio (Zn40.8Al%at.), obtenidas mediante solidificacion rapida usando la tecnica de melt spinning, se sometieron a un proceso de termohidrogenacion por periodos de 1, 6, 18, 24, 30 y 48 horas, a 200 grados centigrados y 20 atmosferas. Las muestras termohidrogenadas se analizaron por microscopia electronica de transmision (MET). Se produjeron cambios inducidos por hidrogeno, tales como la refinacion de la microestructura, el desarrollo de defectos cristalinos, cambios de microdureza y modificacion de las estructuras cristalinas estables a fase metaestable {alpha}R a temperatura ambiente.

  9. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.

    Science.gov (United States)

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2013-01-14

    We have demonstrated a rapid and general strategy to synthesize novel three-dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as-prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as-synthesized three-dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well-defined sponge-like network, large-scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen-gas sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. New Theoretical Technique for Alloy Design

    Science.gov (United States)

    Ferrante, John

    2005-01-01

    During the last 2 years, there has been a breakthrough in alloy design at the NASA Lewis Research Center. A new semi-empirical theoretical technique for alloys, the BFS Theory (Bozzolo, Ferrante, and Smith), has been used to design alloys on a computer. BFS was used, along with Monte Carlo techniques, to predict the phases of ternary alloys of NiAl with Ti or Cr additions. High concentrations of each additive were used to demonstrate the resulting structures.

  11. Phase Equilibria of the Fe-Ni-Sn Ternary System at 270°C

    Science.gov (United States)

    Huang, Tzu-Ting; Lin, Shih-Wei; Chen, Chih-Ming; Chen, Pei Yu; Yen, Yee-Wen

    2016-12-01

    The Fe-42 wt.% Ni alloy, also known as a 42 invar alloy (Alloy 42), is used as a lead-frame material because its thermal expansion coefficient is much closer to Si substrate than Cu or Ni substrates. In order to enhance the wettability between the substrate and solder, the Sn layer was commonly electroplated onto the Alloy 42 surface. A clear understanding of the phase equilibria of the Fe-Ni-Sn ternary system is necessary to ensure solder-joint reliability between Sn and Fe-Ni alloys. To determine the isothermal section of the Fe-Ni-Sn ternary system at 270°C, 26 Fe-Ni-Sn alloys with different compositions were prepared. The experimental results confirmed the presence of the Fe3Ni and FeNi phases at 270°C. Meanwhile, it observed that the isothermal section of the Fe-Ni-Sn ternary system was composed of 11 single-phase regions, 19 two-phase regions and nine tie-triangles. Moreover, no ternary compounds were found in the Fe-Ni-Sn system at 270°C.

  12. Using Ternary Alloy Additions to Engineer Nitinol Shape Memory Alloys

    Data.gov (United States)

    National Aeronautics and Space Administration — Improving travel capabilities is essential in order to further investigative space exploration. For aerospace applications, weight savings is essential. Shape memory...

  13. Application of rapid solidification powder metallurgy processing to prepare Cu–Al–Ni high temperature shape memory alloy strips with high strength and high ductility

    Energy Technology Data Exchange (ETDEWEB)

    Vajpai, S.K., E-mail: vajpaisk@gmail.com [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Dube, R.K., E-mail: rkd@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India); Sangal, S., E-mail: sangals@iitk.ac.in [Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh (India)

    2013-05-15

    Cu–Al–Ni high temperature shape memory alloy (HTSMA) strips were successfully prepared from rapid solidified water atomized Cu–Al–Ni pre-alloyed powders via hot densification rolling of unsheathed sintered powder preforms. Finished heat-treated Cu–Al–Ni alloy strips had fine-grained structure, average grain size approximately 16 μm, and exhibited a combination of high strength and high ductility. It has been demonstrated that the redistribution of nano-sized alumina particles, present on the surface as well as inside the starting water atomized Cu–Al–Ni pre-alloyed powder particles, due to plastic deformation of starting powder particles during hot densification rolling resulted in the fine grained microstructure in the finished SMA strips. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β{sub 1}{sup ′} and γ{sub 1}{sup ′} martensite. The average fracture strength and fracture strain of the finished SMA strips were 810 MPa and 12%, respectively, and the fractured specimens exhibited primarily micro-void coalescence type ductile nature of fracture. Finished Cu–Al–Ni SMA strips exhibited high characteristic transformation temperatures and an almost 100% one-way shape recovery was obtained in the specimens up to 4% applied deformation pre-strain. The retained two-way shape memory recovery increased with increasing applied training pre-strain, achieving a maximum value of 16.25% at 5% applied training pre-strain.

  14. Development of dispersive liquid-liquid microextraction technique using ternary solvents mixture followed by heating for the rapid and sensitive analysis of phthalate esters and di(2-ethylhexyl) adipate.

    Science.gov (United States)

    Farajzadeh, Mir Ali; Khoshmaram, Leila

    2015-01-30

    In this study, for the first time, a dispersive liquid-liquid microextraction technique using a ternary solvent mixture is reported. In order to extract five phthalate esters and di(2-ethylhexyl) adipate with different polarities from aqueous samples, a simplex centroid experimental design method was used to select an optimal mixture of ternary solvents prior to gas chromatographyflame ionization detection. In this work, dimethyl formamide as a disperser solvent containing dichloromethane, chloroform, and carbon tetrachloride as a ternary extraction solvent mixture is injected into sample solution and a cloudy solution is formed. After centrifuging, 250μL of the obtained sedimented phase was transferred into another tube and 5μL DMF was added to it. Then, the tube was heated in a water bath at 75°C for 5min in order to evaporate the main portion of the extraction solvents. Finally, 2μL of the remained phase is injected into the separation system. Under the optimum extraction conditions, the method shows wide linear ranges and low limits of detection and quantification between 0.03-0.15 and 0.09-0.55μgL(-1), respectively. Enrichment factors and extraction recoveries are in the ranges of 980-4500 and 20-90%, respectively. The method is successfully applied in the determination of the target analytes in mineral water, soda, lemon juice, vinegar, dough, and yogurt packed in plastic packages. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Nanostructured Platinum Alloys for Use as Catalyst Materials

    Science.gov (United States)

    Hays, Charles C. (Inventor); Narayan, Sri R. (Inventor)

    2015-01-01

    A series of binary and ternary Pt-alloys, that promote the important reactions for catalysis at an alloy surface; oxygen reduction, hydrogen oxidation, and hydrogen and oxygen evolution. The first two of these reactions are essential when applying the alloy for use in a PEMFC.

  16. Evolution of the microstructure and hardness of a rapidly solidified/melt-spun AZ91 alloy upon aging at different temperatures

    International Nuclear Information System (INIS)

    Wang Baishu; Liu Yongbing; An Jian; Li Rongguang; Su Zhenguo; Su Guihua; Lu You; Cao Zhanyi

    2009-01-01

    The effect of aging at different temperatures on a rapidly solidified/melt-spun AZ91 alloy has been investigated in depth. The microstructures of as-spun and aged ribbons with a thickness of approximately 60 μm were characterized using X-ray diffraction, transmission electron microscopy and laser optical microscopy; microhardness measurements were also conducted. It was found that the commercial AZ91 alloy undergoes a cellular/dendritic transition during melt-spinning at a speed of 34 m/s. A strengthening effect due to aging was observed: a maximum hardness of 110 HV/0.05 and an age-hardenability of 50% were obtained when the ribbon was aged at 200 deg. C for 20 min. The β-Mg 17 Al 12 phase exhibits net and dispersion types of distribution during precipitation. The dispersion of precipitates in dendritic grains or cells is the main source of strengthening

  17. Investigation of structural and magnetic properties of rapidly-solidified iron-silicon alloys at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraman, T. V.; Meka, V. M.; Jiang, X.; Overman, N. R.; Doyle, J.; Shield, J. E.; Mathaudhu, S. N.

    2018-04-01

    In this work, we investigated the ambient temperature structural properties (~300 K) and the ambient and high temperature (up to 900 K) direct current (DC) magnetic properties of melt-spun Fe-x wt.% Si (x = 3, 5, & 8) alloys. The wheel surface speeds selected for the study were 30 m/s and 40 m/s. The thickness, width, lattice parameter, saturation magnetization (MS), and intrinsic coercivity (HCI) of the melt spun ribbons are presented and compared with data in the literature. The ribbons produced at the lower wheel surface speed (30 m/s) were continuous having relatively uniform edges compared to the ribbons produced at the higher wheel surface speed. The thickness and the width of the melt-spun ribbons ranged between ~15-60 μm and 500-800 μm, respectively. The x-ray diffraction spectra of the melt-spun ribbons indicated the presence of disordered α-phase, irrespective of the composition, and the wheel-surface speed. The lattice parameter decreased gradually as a function of increasing silicon content from ~0.2862 nm (Fe-3 wt.% Si) to ~0.2847 nm (Fe-8 wt.% Si). Wheel surface speed was not shown to have a significant effect on the magnetization, but primarily impacted the ribbon structure. A decreasing trend in the saturation magnetization was observed as a function of increased silicon content. The intrinsic coercivity of the melt-spun alloys ranged between ~50 to 200 A/m. Elevated temperature evaluation of the magnetization in the case of Fe-3 & 5 wt.% Si alloy ribbons was distinctly different from the Fe-8 wt.% Si alloy ribbons. The curves of the as-prepared Fe-3 wt.% Si and Fe-5 wt.% Si alloy ribbons were irreversible while that of Fe-8 wt.% Si was reversible. The MS for any of the combinations of wheel surface speed and composition decreased monotonically with the increase in temperature (from 300 – 900 K). The percentage decrease in MS from 300 K to 900 K for the Fe-3 wt.% Si and Fe-5 wt.% Si alloys was ~19-22 %, while the percentage decrease in the same

  18. Enthalpy of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys

    International Nuclear Information System (INIS)

    Witusiewicz, V.T.; Sommer, F.

    2000-01-01

    Since the Al-Cu-Ni-Zr system is a basis for the production of bulk amorphous materials by rapid solidification techniques from the liquid state, it is of great scientific interest to determine the partial and the integral thermodynamic functions of liquid and undercooled liquid alloys. Such data, as was pointed out previously, are important in order to understand their extremely good glass-forming ability in multicomponent metallic systems as well as for processing improvements. In order to measure the thermodynamic properties of the Al-Cu-Ni-Zr quaternary, it is necessary to have reliable thermochemical data for its constituent canaries and ternaries first. In a series of articles, the authors have reported in detail the thermodynamic properties of liquid Al-Cu, Al-Ni, Cu-Ni, Cu-Zr, Al-Zr, Al-Cu-Ni, and Al-Cu-Zr alloys. This article deals with the direct calorimetric measurements of the partial and the integral enthalpies of mixing of liquid Ni-Zr and Cu-Ni-Zr alloys and the heat capacity of liquid Ni 26 Zr 74 . In a subsequent article, the authors will present similar data for the liquid ternary Al-Ni-Zr and for the liquid quaternary Al-Cu-Ni-Zr alloys

  19. Iron binary and ternary coatings with molybdenum and tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Yar-Mukhamedova, Gulmira, E-mail: gulmira-alma-ata@mail.ru [Institute Experimental and Theoretical Physics Al-Farabi Kazakh National University, 050038, Al-Farabi av., 71, Almaty (Kazakhstan); Ved, Maryna; Sakhnenko, Nikolay; Karakurkchi, Anna; Yermolenko, Iryna [National Technical University “Kharkov Polytechnic Institute”, Kharkov (Ukraine)

    2016-10-15

    Highlights: • High quality coatings of double Fe-Mo and ternary Fe-Mo-W electrolytic alloys can be produced both in a dc and a pulsed mode. • Application of unipolar pulsed current allows receiving an increased content of the alloying components and their more uniform distribution over the surface. • It is established that Fe-Mo and Fe-Mo-W coatings have an amorphous structure and exhibit improved corrosion resistance and microhardness as compared with the steel substrate due to the inclusion molybdenum and tungsten. - Abstract: Electrodeposition of Fe-Mo-W and Fe-Mo layers from a citrate solution containing iron(III) on steel and iron substrates is compared. The utilization of iron(III) compounds significantly improved the electrolyte stability eliminating side anodic redox reactions. The influence of concentration ratios and electrodeposition mode on quality, chemical composition, and functional properties of the alloys is determined. It has been found that alloys deposited in pulse mode have more uniform surface morphology and chemical composition and contain less impurities. Improvement in physical and mechanical properties as well as corrosion resistance of Fe-Mo and Fe-Mo-W deposits when compared with main alloy forming metals is driven by alloying components chemical passivity as well as by alloys amorphous structure. Indicated deposits can be considered promising materials in surface hardening technologies and repair of worn out items.

  20. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    International Nuclear Information System (INIS)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun

    2017-01-01

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr 7 Ni 10 , ZrNi, ZrNi 5 , Zr 14 Cu 51 , and Zr 2 Cu 9 , show a remarkable ternary solubility. A new ternary compound named τ 3 (Zr 31.1-30.7 . Cu 28.5-40.3 Ni 40.4-29.0 ) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  1. Experimental investigation of the Ag–Bi–I ternary system and thermodynamic properties of the ternary phases

    International Nuclear Information System (INIS)

    Mashadieva, Leyla F.; Aliev, Ziya S.; Shevelkov, Andrei V.; Babanly, Mahammad B.

    2013-01-01

    Highlights: ► The self-consistent phase diagram of the Ag–Bi–I system is constructed. ► Ag 2 BiI 5 and AgBi 2 I 7 are the only ternary phases of the system. ► Standard thermodynamic functions of formation and the standard entropies of Ag 2 BiI 5 and AgBi 2 I 7 are calculated. - Abstract: The phase equilibriums in the Ag–Bi–I ternary system and thermodynamic properties of the ternary phases were experimentally determined by using DTA and XRD techniques and EMF measurements with the Ag 4 RbI 5 solid electrolyte. According to the obtained experimental results, the polythermal sections of the ternary phase diagram, its isothermal section at 300 K as well as the projection of the liquids surface have been revised. The fields of the primary crystallization and types and coordinates of nonvariant and monovariant equilibriums were determined. The partial molar functions of silver iodide and silver in the alloys as well as the standard thermodynamic functions of formation and the standard entropies of Ag 2 BiI 5 and AgBi 2 I 7 were calculated based on EMF measurements.

  2. An investigation of the ternary system Nb-Ti-Al

    International Nuclear Information System (INIS)

    Kaltenbach, K.; Gama, S.

    1984-01-01

    The binary systems Nb-Ti, Nb-Al and Al-Ti as well the ternary system Nb-Ti-Al were studied by the aid of arc-beam melted alloys. The as-cast alloys and samples heat treated at 1200 0 C were examined and the liquidus surface projection, an isothermal section at 1200 0 C and the reaction scheme of the system Nb-Ti-Al were constructed. The phase relations of the binary systems Nb-Ti and Nb-Al were confirmed, in the system Al-Ti still some examinations are necessary to resolve the existing uncertainties. The melting process of Nb-Ti alloys in the electron-beam furnace has been studied. (Author) [pt

  3. Rapid Synthesis of Highly Monodisperse Au x Ag 1− x Alloy Nanoparticles via a Half-Seeding Approach

    KAUST Repository

    Chng, Ting Ting

    2011-05-03

    Gold-silver alloy AuxAg1-x is an important class of functional materials promising new applications across a wide array of technological fields. In this paper, we report a fast and facile synthetic protocol for preparation of highly monodisperse AuxAg1-x alloy nanoparticles in the size range of 3-6 nm. The precursors employed in this work are M(I)-alkanethiolates (M = Au and Ag), which can be easily prepared by mixing common chemicals such as HAuCl4 or AgNO3 with alkanethiols at room temperature. In this half-seeding approach, one of the M(I)-alkanethiolates is first heated and reduced in oleylamine solvent, and freshly formed metal clusters will then act as premature seeds on which both the first and second metals (from M(I)-alkanethiolates, M = Au and Ag) can grow accordingly without additional nucleation and thus achieve high monodispersity for product alloy nanoparticles. Unlike in other prevailing methods, both Au and Ag elements present in these solid precursors are in the same monovalent state and have identical supramolecular structures, which may lead to a more homogeneous reduction and complete interdiffusion at elevated reaction temperatures. When the M(I)-alkanethiolates are reduced to metallic forms, the detached alkanethiolate ligands will serve as capping agent to control the growth. More importantly, composition, particle size, and optical properties of AuxAg1-x alloy nanoparticles can be conveniently tuned with this approach. The optical limiting properties of the prepared particles have also been investigated at 532 and 1064 nm using 7 ns laser pulses, which reveals that the as-prepared alloy nanoparticles exhibit outstanding broadband optical limiting properties with low thresholds. © 2011 American Chemical Society.

  4. Structural and magnetic properties of rapidly quenched and as-cast bulk NdFeBCu alloys

    International Nuclear Information System (INIS)

    Sanchez Ll, J.L.; Bustamante S, R.; Barthem, V.M.T.S.; Miranda, P.E.V. de

    2005-01-01

    A study of the structural and magnetic properties of as-cast and melt spun (x)Nd 2 Fe 14 B(100-x)Nd 70 Cu 30 alloys (x=10, 50 and 75%wt.) is presented. In as-cast alloys for x=10wt%. the formation of a high coercivity phase, referred to as N (T C =240 deg. C, i H C =4.9kOe) is found. N is a (Nd-Fe)-based phase with a Fe/Nd ratio lower than that of phase Nd 2 Fe 14 B (φ). It is suggested that this phase is related to the A 1 phase found in binary Nd-Fe alloys. In melt-spun alloys, at the same x value of 10wt%, another hard phase is found which is suggested to be the Nd 6 Fe 13 Cu δ-phase (T C =192 deg. C, i H C =4.8kOe). Transmission electron microscope (TEM) micrographs of the ribbons with x=10wt% shows the formation of nanograins with a non-uniform grain size distribution. In cast alloys with x=50 and 75wt% large slab-like grains of φ are formed, in the inter-granular region a Nd-Cu eutectic phase and Nd grains, are observed. High coercivities are obtained in ribbons with x=50wt% ( i H C =19.7kOe) and 75wt% ( i H C =13.0kOe). A slight reduction in the Curie temperature of the φ-phase with respect to the bulk value is found in these ribbons

  5. Microstructures, Martensitic Transformation, and Mechanical Behavior of Rapidly Solidified Ti-Ni-Hf and Ti-Ni-Si Shape Memory Alloys

    Science.gov (United States)

    Han, X. L.; Song, K. K.; Zhang, L. M.; Xing, H.; Sarac, B.; Spieckermann, F.; Maity, T.; Mühlbacher, M.; Wang, L.; Kaban, I.; Eckert, J.

    2018-02-01

    In this work, the microstructure and mechanical properties of rapidly solidified Ti50-x/2Ni50-x/2Hf x (x = 0, 2, 4, 6, 8, 10, and 12 at.%) and Ti50-y/2Ni50-y/2Si y (y = 1, 2, 3, 5, 7, and 10 at.%) shape memory alloys (SMAs) were investigated. The sequence of the phase formation and transformations in dependence on the chemical composition is established. Rapidly solidified Ti-Ni-Hf or Ti-Ni-Si SMAs are found to show relatively high yield strength and large ductility for specific Hf or Si concentrations, which is due to the gradual disappearance of the phase transformation from austenite to twinned martensite and the predominance of the phase transformation from twinned martensite to detwinned martensite during deformation as well as to the refinement of dendrites and the precipitation of brittle intermetallic compounds.

  6. Microstructural characterization of a rapidly solidified ultrahigh strength Al94.5Cr3Co1.5Ce1 alloy

    International Nuclear Information System (INIS)

    Ping, D.H.; Hono, K.; Inoue, A.

    2000-01-01

    The microstructure of a rapidly solidified Al 94.5 Cr 3 Co 1.5 Ce 1 alloy has been examined in detail by means of high resolution transmission electron microscopy (HRTEM) and atom probe field ion microscopy (APFIM). In the as-quenched microstructure, nanoscale particles of a solute-enriched amorphous phase and an Al-Cr compound are dispersed in randomly oriented fine grains of α-Al ( 200nm ). The interface between the Al grains and the amorphous particles is not smooth but irregular with atomic protrusions and concavities, suggesting that interfacial instability occurs during the solidification process. Nanoscale amorphous particles are formed as a result of solute trapping within the rapidly grown Al grains. After annealing at 400 C for 15 minutes grain growth occurs, and the interface of the Al grains is smoothed. The amorphous region trapped within the grains if crystallized to an Al-Cr compound, but no icosahedral phase has been confirmed. The APFIM results have revealed that Cr and Ce atoms have a similar partitioning behavior, i.e., they are rejected from the α-Al phase and partitioned into the trapped amorphous regions. On the other hand, Co atoms are not partitioned between the two phases in the as-quenched state but are partitioned into the α-Al grains in the annealed alloys being rejected from the Al compounds and finally form Al-Co compounds. Based on these microstructural characterization results, the origins of high strength of this alloy are discussed

  7. Thermomagnetic behaviour and microstructure of a rapidly quenched Nd4.5Fe77B18.5 alloy

    Czech Academy of Sciences Publication Activity Database

    Talijan, N.; Ćosović, V.; Grujić, A.; Stajić-Trošić, J.; Žák, Tomáš

    2008-01-01

    Roč. 113, č. 1 (2008), s. 525-528 ISSN 0587-4246. [Czech and Slovak Conference on Magnetism /13./ (CSMAG'07). Košice, 09.08.2007-12.08.2007] R&D Projects: GA MŠk(CZ) 1M0512 Institutional research plan: CEZ:AV0Z20410507 Keywords : Thermomagnetic behaviour * NdFeB alloy * Mossbauer effect * X-ray Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.321, year: 2008

  8. Effect of titanium on structure and martensitic transformation in rapidly solidified Cu-Al-Ni-Mn-Ti alloys

    International Nuclear Information System (INIS)

    Dutkiewicz, J.; Czeppe, T.; Morgiel, J.

    1999-01-01

    Alloys of composition Cu-(11.8-13.5)%Al-(3.2-4)%Ni-(2-3)%Mn and 0-1%Ti (wt.%) were cast using the melt spinning method in He atmosphere. Ribbons obtained in this process showed grains from 0.5 to 30 μm depending on the type of alloy and wheel speed. Bulk alloys and most of the ribbons contained mixed 18R and 2H type martensite at room temperature (RT). Some ribbons, crystallizing at the highest cooling rate, retained also β phase due to a drop of M s below RT. The M s temperatures in ribbons were strongly lowered with increasing wheel speed controlling the solidification rate. This drop of M s shows a linear relationship with d -1/2 , where d is grain size. The strongest decrease of M s and smallest grains were found in the ribbons containing titanium due to its grain refinement effect. The cubic Ti rich precipitates, present in both Cu-Al-Ni-Ti and Cu-Al-Ni-Mn-Ti bulk, were dispersed in ribbons cast with intermediate cooling rates of up to 26 m s -1 , but suppressed for higher cooling rates. The transformation hysteresis loop was much broader in ribbons due to presence of coherent Ti rich precipitates and differences in grain size which is particularly important in the ultra small grain size range. (orig.)

  9. The ternary system: Silicon-tantalum-uranium

    Energy Technology Data Exchange (ETDEWEB)

    Rogl, Peter, E-mail: peter.franz.rogl@univie.ac.a [Institute of Physical Chemistry, University of Vienna, A-1090 Wien, Waehringerstrasse 42 (Austria); Noel, Henri [Laboratoire de Chimie du Solide et Materiaux, UMR-CNRS 6226, Universite de Rennes I, Avenue du General Leclerc, F-35042 Rennes, Cedex (France)

    2010-09-01

    Phase equilibria in the ternary system Si-Ta-U have been established in an isothermal section at 1000 {sup o}C by optical microscopy, electron probe microanalysis and X-ray diffraction. Two novel ternary compounds were observed and were characterised by X-ray powder Rietveld refinement: stoichiometric {tau}{sub 1}-U{sub 2}Ta{sub 3}Si{sub 4} (U{sub 2}Mo{sub 3}Si{sub 4}-type, P2{sub 1}/c; a = 0.70011(1), b = 0.70046(1), c = 0.68584(1) nm, ss = 109.38(1); R{sub F} = 0.073, X-ray powder Rietveld refinement) and {tau}{sub 2}-U{sub 2-x}Ta{sub 3+x}Si{sub 4} at x {approx} 0.30 (Sc{sub 2}Re{sub 3}Si{sub 4}-type = partially ordered Zr{sub 5}Si{sub 4}-type, P4{sub 1}2{sub 1}2; a = b = 0.69717(3)(1), c = 1.28709(4) nm; R{sub F} = 0.056; X-ray single crystal data). Mutual solubility of U-silicides and Ta-silicides are found to be very small i.e. below about 1 at.%. Due to the equilibrium tie-line Ta{sub 2}Si-U(Ta), no compatibility exists between the U-rich silicides U{sub 3}Si or U{sub 3}Si{sub 2} and tantalum metal. Single crystals obtained from alloys slowly cooled from liquid (2000 {sup o}C), yielded a fully ordered compound U{sub 2}Ta{sub 2}Si{sub 3}C (unique structure type; Pmna, a = 0.68860(1); b = 2.17837(4); c = 0.69707(1) nm; R{sub F2} = 0.048).

  10. Ternary Weighted Function and Beurling Ternary Banach Algebra l1ω(S

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghanian

    2011-01-01

    Full Text Available Let S be a ternary semigroup. In this paper, we introduce our notation and prove some elementary properties of a ternary weight function ω on S. Also, we make ternary weighted algebra l1ω(S and show that l1ω(S is a ternary Banach algebra.

  11. Controllable Synthesis of Bandgap-Tunable CuSx Se(1-x) Nanoplate Alloys.

    Science.gov (United States)

    Xu, Jun; Yang, Xia; Yang, Qing-Dan; Huang, Xing; Tang, Yongbing; Zhang, Wenjun; Lee, Chun-Sing

    2015-07-01

    Composition engineering is an important approach for modulating the physical properties of alloyed semiconductors. In this work, ternary CuS(x)Se(1-x) nanoplates over the entire composition range of 0≤x≤1 have been controllably synthesized by means of a simple aqueous solution method at low temperature (90 °C). Reaction of Cu(2+) cations with polysulfide/-selenide ((S(n)Se(m))(2-)) anions rather than independent S(n)(2-) and Se(m)(2-) anions is responsible for the low-temperature and rapid synthesis of CuS(x)Se(1-x) alloys, and leads to higher S/Se ratios in the alloys than that in reactants owing to different dissociation energies of the Se-Se and the S-S bonds. The lattice parameters 'a' and 'c' of the hexagonal CuS(x)Se(1-x) alloys decrease linearly, whereas the direct bandgaps increase quadratically along with the S content. Direct bandgaps of the alloys can be tuned over a wide range from 1.64 to 2.19 eV. Raman peaks of the S-Se stretching mode are observed, thus further confirming formation of the alloyed CuS(x)Se(1-x) phase. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Amorphous phase formation in the Cu{sub 36}Zr{sub 59}A{sub l5} and Cu{sub 48}Zr{sub 43}A{sub l9} ternary alloys studied by molecular dynamics; Estudo da formacao de fase amorfa nas ligas ternarias Cu{sub 36}Zr{sub 59}A{sub l5} e Cu{sub 48}Zr{sub 43}A{sub l9} por dinamica molecular

    Energy Technology Data Exchange (ETDEWEB)

    Aliaga, L.C.R.; Schimidt, C.S.; Lima, L.V.; Domingues, G.M.B.; Bastos, I.N., E-mail: aliaga@iprj.uer.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova friburgo, RJ (Brazil). Departamento de Materiais

    2016-07-01

    Amorphous alloys presents better mechanical and physical properties than its crystalline counterparts. However, there is a scarce understanding on structure - properties relationship in this class of materials. This paper presents the results of the molecular dynamics application to obtain an atomistic description of melting, solidification and the glass forming ability in the ternary Cu{sub 36}Zr{sub 59}A{sub l5} and Cu{sub 48}Zr{sub 43}A{sub l9} alloys. In the study we used the EAM potential and different cooling rates, β = 0.1, 1 and 100 K/ps to form the amorphous phase in a system consisting of 32,000 atoms by using the free code LAMMPS. The solidus and liquidus temperatures, on a heating rate of the 5 K/ps, were obtained. Also, on the cooling down step, it was observed that the glass transition temperature (T{sub g}) decreases as cooling rate increases. The structural evolution was analyzed through the radial distribution functions and Voronoi polyhedra. Furthermore, it was determined the evolution of viscosity upper T{sub g}, as well as the fragility (m) parameter for each amorphous alloy. The thermal parameters of the simulation obtained are compared with those of the experiments. (author)

  13. Phase diagram of the ternary Zr-Ti-Sn system

    International Nuclear Information System (INIS)

    Arias, D.; Gonzalez Camus, M.

    1987-01-01

    It is well known that Ti stabilizes the high temperature cubic phase of Zr and that Sn stabilizes the low temperature hexagonal phase of Zr. The effect of Sn on the Zr-Ti diagram has been studied in the present paper. Using high purity metals, nine different alloys have been prepared, with 4-32 at % Ti, 0.7-2.2 at % Sn and Zr till 100%. Resistivity and optical and SEM metallography techniques have been employed. Effect of some impurities have been analyzed. The results are discussed and different isothermic sections of the ternary Zr-Ti-Sn diagram are presented. (Author) [es

  14. Design and Fabrication of a Novel Stimulus-Feedback Anticorrosion Coating Featured by Rapid Self-Healing Functionality for the Protection of Magnesium Alloy.

    Science.gov (United States)

    Ding, ChenDi; Xu, JianHua; Tong, Ling; Gong, GuangCai; Jiang, Wei; Fu, Jiajun

    2017-06-21

    Corrosion potential stimulus-responsive smart nanocontainers (CP-SNCs) are designed and synthesized based on the installation of the supramolecular assemblies (bipyridinium ⊂ water-soluble pillar[5]arenes) onto the exterior surface of magnetic nanovehicles (Fe 3 O 4 @mSiO 2 ), linked by disulfide linkers. The supramolecular assemblies with high binding affinity as gatekeepers effectively block the encapsulated organic corrosion inhibitor, 8-hydroxyquinoline (8-HQ), within the mesopores of Fe 3 O 4 @mSiO 2 . When the corrosion potential of the magnesium alloy (-1.5 V vs SHE) is exerted, 8-HQ is released instantly because of the cleavage of disulfide linkers and the removal of the supramolecular assemblies. CP-SNCs were incorporated into the hybrid organic-inorganic sol-gel coating to construct a corrosion potential stimulus-feedback anticorrosion coating (CP-SFAC) that was then deposited on the magnesium alloy, AZ31B. With the aid of a magnetic field, CP-SNCs were gathered in the proximity of the surface of AZ31B. CP-SFAC showed a satisfactory anticorrosion performance, more importantly, through the evaluation of microzone electrochemical techniques. CP-SFAC presented the rapid self-healing functionality when the localized corrosion occurred. Shortening the distance between CP-SNCs and the surface of AZ31B enhances the availability of the incorporated CP-SNCs and makes most of the CP-SNCs to timely respond to the corrosion potential stimulus and facilitates the formation of a compact molecular protective film before the corrosion products pile up. The characteristics of fast response time and quick self-healing rate meet the requirements of the magnesium alloy for self-healing in local regions.

  15. Bandgap and Structure Engineering via Cation Exchange: From Binary Ag2S to Ternary AgInS2, Quaternary AgZnInS alloy and AgZnInS/ZnS Core/Shell Fluorescent Nanocrystals for Bioimaging.

    Science.gov (United States)

    Song, Jiangluqi; Ma, Chao; Zhang, Wenzhe; Li, Xiaodong; Zhang, Wenting; Wu, Rongbo; Cheng, Xiangcan; Ali, Asad; Yang, Mingya; Zhu, Lixin; Xia, Ruixiang; Xu, Xiaoliang

    2016-09-21

    Attention on semiconductor nanocrystals have been largely focused because of their unique optical and electrical properties, which can be applied as light absorber and luminophore. However, the band gap and structure engineering of nanomaterials is not so easy because of their finite size. Here we demonstrate an approach for preparing ternary AgInS2 (AIS), quaternary AgZnInS (AZIS), AgInS2/ZnS and AgZnInS/ZnS nanocompounds based on cation exchange. First, pristine Ag2S quantum dots (QDs) with different sizes were synthesized in one-pot, followed by the partial cation exchange between In(3+) and Ag(+). Changing the initial ratio of In(3+) to Ag(+), reaction time and temperature can control the components of the obtained AIS QDs. Under the optimized conditions, AIS QDs were obtained for the first time with a cation disordered cubic phase and high photoluminescence (PL) quantum yield (QY) up to 32% in aqueous solution, demonstrating the great potential of cation exchange in the synthesis for nanocrystals with excellent optical properties. Sequentially, Zn(2+) ions were incorporated in situ through a second exchange of Zn(2+) to Ag(+)/In(3+), leading to distinct results under different reaction temperature. Addition of Zn(2+) precursor at room temperature produced AIS/ZnS core/shell NCs with successively enhancement of QY, while subsequent heating could obtain AZIS homogeneous alloy QDs with a successively blue-shift of PL emission. This allow us to tune the PL emission of the products from 483 to 675 nm and fabricate the chemically stable QDs core/ZnS shell structure. Based on the above results, a mechanism about the cation exchange for the ternary nanocrystals of different structures was proposed that the balance between cation exchange and diffusion is the key factor of controlling the band gap and structure of the final products. Furthermore, photostability and in vitro experiment demonstrated quite low cytotoxicity and remarkably promising applications in the

  16. Effect of Ce on Casting Structure of Near-rapidly Solidified Al-Zn-Mg-Cu Alloy

    Directory of Open Access Journals (Sweden)

    HUANG Gao-ren

    2017-11-01

    Full Text Available Through using XRD,DSC,SEM,EDS and other modern analysis methods, the effects of rare earth element Ce on microstructure and solidification temperature of Al-Zn-Mg-Cu under different cooling rates were studied, the principle of Ce on grain refining and melt cleaning of alloys was analyzed and discussed. The results show that MgZn2 phase and α-Al matrix are the main precipitations, Al,Cu,Mg and other elements dissolve in MgZn2 phase, a new phase Mg(Zn, Cu, Al2 is formed, solute elements in the grain boundary have higher concentration, eutectic reaction takes place between MgZn2 and α-Al, lamellar eutectic structure is generated. The addition of Ce decreases the dendritic arm spacing,reduces the layer spacing between eutectic phases and refines the eutectic structure and the grain significantly, and inhibits the appearance of the impurity phase Al7Cu2Fe in aluminum alloys. The addition of Ce also reduces the precipitation temperature of α-Al matrix and eutectic phase by 6.4℃ and 5.6℃ respectively.

  17. Optical Characterization of AlAsSb Digital Alloy and Random Alloy on GaSb

    Directory of Open Access Journals (Sweden)

    Bor-Chau Juang

    2017-10-01

    Full Text Available III-(As, Sb alloys are building blocks for various advanced optoelectronic devices, but the growth of their ternary or quaternary materials are commonly limited by spontaneous formation of clusters and phase separations during alloying. Recently, digital alloy growth by molecular beam epitaxy has been widely adopted in preference to conventional random alloy growth because of the extra degree of control offered by the ordered alloying. In this article, we provide a comparative study of the optical characteristics of AlAsSb alloys grown lattice-matched to GaSb using both techniques. The sample grown by digital alloy technique showed stronger photoluminescence intensity, narrower peak linewidth, and larger carrier activation energy than the random alloy technique, indicating an improved optical quality with lower density of non-radiative recombination centers. In addition, a relatively long carrier lifetime was observed from the digital alloy sample, consistent with the results obtained from the photoluminescence study.

  18. Experimental determination of the phase equilibria in the Co-Fe-Zr ternary system

    International Nuclear Information System (INIS)

    Wang, C.P.; Yu, Y.; Zhang, H.H.; Hu, H.F.; Liu, X.J.

    2011-01-01

    Research highlights: → We determined four isothermal sections of the Co-Fe-Zr system from 1000 o C to 1300 o C. → No ternary compound was found in the Co-Fe-Zr ternary system. → The solubility of Fe in the liquid phase at 1300 o C is extremely large. → The (Co, Fe) 2 Zr phase form the continuous solution from Co-Zr side to Fe-Zr side. → The solubility of Zr in the fcc (Co, Fe) phase is extremely small. - Abstract: The phase equilibria in the Co-Fe-Zr ternary system were investigated by means of optical microscopy (OM), electron probe microanalysis (EPMA), X-ray diffraction (XRD), and differential scanning calorimetry (DSC) on equilibrated ternary alloys. Four isothermal sections of the Co-Fe-Zr ternary system at 1300 o C, 1200 o C, 1100 o C and 1000 o C were experimentally established. The experimental results indicate that (1) no ternary compound was found in this system; (2) the solubility of Fe in the liquid phase of the Co-rich corner at 1300 o C is extremely large; (3) the liquid phase in the Zr-rich corner and the (Co,Fe) 2 Zr phase form the continuous solid solutions from the Co-Zr side to the Fe-Zr side; (4) the solubility of Zr in the fcc (Co, Fe) phase is extremely small.

  19. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    Science.gov (United States)

    Castin, N.; Malerba, L.; Bonny, G.; Pascuet, M. I.; Hou, M.

    2009-09-01

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  20. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    International Nuclear Information System (INIS)

    Castin, N.; Malerba, L.; Bonny, G.; Pascuet, M.I.; Hou, M.

    2009-01-01

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  1. Modelling radiation-induced phase changes in binary FeCu and ternary FeCuNi alloys using an artificial intelligence-based atomistic kinetic Monte Carlo approach

    Energy Technology Data Exchange (ETDEWEB)

    Castin, N. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium); Physique des Solides Irradies et des Nanostructures (PSIN), Universite Libre de Bruxelles (ULB), Boulevard du Triomphe CP234, 1050 Brussels (Belgium); Malerba, L. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium)], E-mail: lmalerba@sckcen.be; Bonny, G. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium); Laboratory of Theoretical Physics, Universiteit Gent, Proeftuinstraat 86, B-9000 Gent (Belgium); Pascuet, M.I. [Structural Materials Group, Nuclear Materials Science Institute, Kernenergie Centre d' Etude de l' Energie Nucleaire (SCK CEN), Studiecentrum voor, Boeretang 200, 2400 Mol (Belgium); CAC-CNEA, Departamento de Materiales, Avda. Gral. Paz 1499, 1650 San Martin, Pcia. Buenos Aires (Argentina); CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); Hou, M. [Physique des Solides Irradies et des Nanostructures (PSIN), Universite Libre de Bruxelles (ULB), Boulevard du Triomphe CP234, 1050 Brussels (Belgium)

    2009-09-15

    We apply a novel atomistic kinetic Monte Carlo model, which includes local chemistry and relaxation effects when assessing the migration energy barriers of point defects, to the study of the microchemical evolution driven by vacancy diffusion in FeCu and FeCuNi alloys. These alloys are of importance for nuclear applications because Cu precipitation, enhanced by the presence of Ni, is one of the main causes of hardening and embrittlement in reactor pressure vessel steels used in existing nuclear power plants. Local chemistry and relaxation effects are introduced using artificial intelligence techniques, namely a conveniently trained artificial neural network, to calculate the migration energy barriers of vacancies as functions of the local atomic configuration. We prove, through a number of results, that the use of the neural network is fully equivalent to calculating the migration energy barriers on-the-fly, using computationally expensive methods such as nudged elastic bands with an interatomic potential. The use of the neural network makes the computational cost affordable, so that simulations of the same type as those hitherto carried out using heuristic formulas for the assessment of the energy barriers can now be performed, at the same computational cost, using more rigorously calculated barriers. This method opens the way to properly treating more complex problems, such as the case of self-interstitial cluster formation, in an atomistic kinetic Monte Carlo framework.

  2. Mechanical characteristics of heterogeneous structures obtained by high-temperature brazing of corrosion-resistant steels with rapidly quenched non-boron nickel-based alloys

    Science.gov (United States)

    Kalin, B.; Penyaz, M.; Ivannikov, A.; Sevryukov, O.; Bachurina, D.; Fedotov, I.; Voennov, A.; Abramov, E.

    2018-01-01

    Recently, the use rapidly quenched boron-containing nickel filler metals for high temperature brazing corrosion resistance steels different classes is perspective. The use of these alloys leads to the formation of a complex heterogeneous structure in the diffusion zone that contains separations of intermediate phases such as silicides and borides. This structure negatively affects the strength characteristics of the joint, especially under dynamic loads and in corrosive environment. The use of non-boron filler metals based on the Ni-Si-Be system is proposed to eliminate this structure in the brazed seam. Widely used austenitic 12Cr18Ni10Ti and ferrite-martensitic 16Cr12MoSiWNiVNb reactor steels were selected for research and brazing was carried out. The mechanical characteristics of brazed joints were determined using uniaxial tensile and impact toughness tests, and fractography was investigated by electron microscopy.

  3. Lattice-matched heteroepitaxy of wide gap ternary compound semiconductors

    Science.gov (United States)

    Bachmann, Klaus J.

    A variety of applications are identified for heteroepitaxial structures of wide gap I-III-VI(sub 2) and II-IV-V(sub 2) semiconductors, and are assessed in comparison with ternary III-V alloys and other wide gap materials. Non-linear optical applications of the I-III-VI(sub 2) and II-IV-V(sub 2) compound heterostructures are discussed, which require the growth of thick epitaxial layers imposing stringent requirements on the conditions of heteroepitaxy. In particular, recent results concerning the MOCVD growth of ZnSi(x)Ge(1-x)P2 alloys lattice matching Si or GaP substrates are reviewed. Also, heterostructures of Cu(z)Ag(1-z)GaS2 alloys that lattice-match Si, Ge, GaP, or GaAs substrates are considered in the context of optoelectronic devices operating in the blue wavelength regime. Since under the conditions of MOCVD, metastable alloys of the II-IV-V(sub 2) compounds and group IV elements are realized, II-IV-V(sub 2) alloys may also serve as interlayers in the integration of silicon and germanium with exactly lattice-matched tetrahedrally coordinated compound semiconductors, e.g. ZnSi(x)Ge(1-x)P2.

  4. Data and analyses of phase relations in the Ce-Fe-Sb ternary system.

    Science.gov (United States)

    Zhu, Daiman; Xu, Chengliang; Li, Changrong; Guo, Cuiping; Zheng, Raowen; Du, Zhenmin; Li, Junqin

    2018-02-01

    These data and analyses support the research article "Experimental study on phase relations in the Ce-Fe-Sb ternary system" Zhu et al. (2017) [1]. The data and analyses presented here include the experimental results of XRD, SEM and EPMA for the determination of the whole liquidus projection and the isothermal section at 823 K in the Ce-Fe-Sb system. All the results enable the understanding of the constituent phases and the solidification processes of the as-cast alloys as well as the phase relations and the equilibrium regions at 823 K in the Ce-Fe-Sb ternary system over the entire composition.

  5. True ternary fission in 310126X

    International Nuclear Information System (INIS)

    Banupriya, B.; Vijayaraghavan, K.R.; Balasubramaniam, M.

    2015-01-01

    All possible combinations are minimized by the two dimensional minimization process and minimized with respect to neutron numbers and proton numbers of the fragments. Potential energy is low and Q - value is high at true ternary fission region. It shows that true ternary mode is the dominant mode in the ternary fission of superheavy nuclei. Also, the results show that the fragments with neutron magic numbers are the dominant one in the ternary fission of superheavy nuclei whereas the fragments with proton magic numbers are the dominant one in the ternary fission of heavy nuclei

  6. Rapid Microwave Digestion Procedures for the Elemental Analysis of Alloy and Slag Samples of Smelted Ocean Bed Polymetallic Nodules

    Directory of Open Access Journals (Sweden)

    Kumari Smita

    2013-01-01

    Full Text Available The use of microwave digester for digestion of alloy and slag samples of smelted ocean bed polymetallic nodules has permitted the complete digestion of samples, thereby replacing the tedious classical methods of digestion of samples. The digestion procedure includes two acid-closed digestions of samples in a microwave oven. Owing to the hazardous nature of perchloric acid, it was not used in developed digestion procedure. Digested sample solutions were analyzed for concentrations of various radicals and the effectiveness of the developed digestion methodology was tested using certified reference materials. It was found that the developed method is giving results comparable with that obtained from conventionally digested samples. In this digestion procedure, time required for digestion of samples was reduced to about 1 hour only from 8-9 hours of conventional digestion.

  7. Evaluation of Titanium Alloys Fabricated Using Rapid Prototyping Technologies—Electron Beam Melting and Laser Beam Melting

    Directory of Open Access Journals (Sweden)

    Toru Okabe

    2011-10-01

    Full Text Available This study characterized properties of Ti-6Al-4V ELI (extra low interstitial, ASTM grade 23 specimens fabricated by a laser beam melting (LBM and an electron beam melting (EBM system for dental applications. Titanium alloy specimens were made into required size and shape for each standard test using fabrication methods. The LBM specimens were made by an LBM machine utilizing 20 µm of Ti-6Al-4V ELI powder. Ti-6Al-4V ELI specimens were also fabricated by an EBM using 40 µm of Ti-6Al-4V ELI powder (average diameter, 40 µm: Arcam ABÒ in a vacuum. As a control, cast Ti-6Al-4V ELI specimens (Cast were made using a centrifugal casting machine in an MgO-based mold. Also, a wrought form of Ti-6Al-4V ELI (Wrought was used as a control. The mechanical properties, corrosion properties and grindability (wear properties were evaluated and data was analyzed using ANOVA and a non-parametric method (α = 0.05. The strength of the LBM and wrought specimens were similar, whereas the EBM specimens were slightly lower than those two specimens. The hardness of both the LBM and EBM specimens was similar and slightly higher than that of the cast and wrought alloys. For the higher grindability speed at 1,250 m/min, the volume loss of Ti64 LBM and EBM showed no significant differences among all the fabrication methods. LBM and EBM exhibited favorable results in fabricating dental appliances with excellent properties as found for specimens made by other fabricating methods.

  8. Phase equilibria of the Mo-Al-Ho ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yitai; Chen, Xiaoxian; Liu, Hao [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Zhan, Yongzhong [Guangxi Univ., Nanning (China). College of Materials Science and Engineering; Guangxi Univ., Nanning (China). Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials; Guangxi Univ., Nanning (China). Center of Ecological Collaborative Innovation for Aluminum Industry

    2017-08-15

    Investigation into the reactions and phase equilibria of transition metal elements (i.e. Mo, Zr, Cr, V and Ti), Al and rare earths is academically and industrially important for the development of both refractory alloys and lightweight high-temperature materials. In this work, the equilibria of the Mo-Al-Ho ternary system at 773 K have been determined by using X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. A new ternary phase Al{sub 4}Mo{sub 2}Ho has been found and the other ternary phase Al{sub 43}Mo{sub 4}Ho{sub 6} is observed. Ten binary phases in the Al-Mo and Al-Ho systems, including Al{sub 17}Mo{sub 4} rather than Al{sub 4}Mo, have been determined to exist at 773 K. The homogeneity ranges of AlMo{sub 3} and Al{sub 8}Mo{sub 3} phase are 7.5 at.% and 1 at.%, respectively. According to the phase-disappearing method, the maximum solubility of Al in Mo is about 16 at.%.

  9. Atomistic approach to predict the glass-forming ability in Zr–Cu–Al ternary metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.Y. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, X.J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zheng, G.P. [Department of Mechanical Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Niu, X.R. [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Liu, C.T., E-mail: chainliu@cityu.edu.hk [Center for Advanced Structural Materials, Department of Mechanical and Biomedical Engineering, College of Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong (China)

    2015-04-05

    Highlights: • An atomistic approach has been developed to predict the glass forming ability (GFA) in Zr–Cu–Al ternary alloy system. • Both of the thermodynamic and structure-dependent kinetic effects to glass formation have been taken into account. • The first-principles calculation and molecular dynamics simulation have been performed. • The approach predicts the best glass former in the model Zr–Cu–Al alloy system. • The predicted GFA is consistent with various experimental results. - Abstract: Prediction of composition-dependent glass-forming ability (GFA) remains to be a key scientific challenge in the metallic-glass community, especially in multi-component alloy systems. In the present study, we apply an atomistic approach to predict the trend of GFA effectively in the Zr–Cu–Al ternary alloy system from alloy compositions alone. This approach is derived from the first-principles calculations based on the density-functional theory and molecular dynamic (MD) simulations. By considering of both the thermodynamic and atomic-structure induced kinetic effects, the predicted GFA trend from this approach shows an excellent agreement with experimental data available in this alloy system, manifesting its capability of seeking metallic glasses with superior GFA in ternary alloy systems.

  10. Development of Combinatorial Methods for Alloy Design and Optimization

    International Nuclear Information System (INIS)

    Pharr, George M.; George, Easo P.; Santella, Michael L

    2005-01-01

    The primary goal of this research was to develop a comprehensive methodology for designing and optimizing metallic alloys by combinatorial principles. Because conventional techniques for alloy preparation are unavoidably restrictive in the range of alloy composition that can be examined, combinatorial methods promise to significantly reduce the time, energy, and expense needed for alloy design. Combinatorial methods can be developed not only to optimize existing alloys, but to explore and develop new ones as well. The scientific approach involved fabricating an alloy specimen with a continuous distribution of binary and ternary alloy compositions across its surface--an ''alloy library''--and then using spatially resolved probing techniques to characterize its structure, composition, and relevant properties. The three specific objectives of the project were: (1) to devise means by which simple test specimens with a library of alloy compositions spanning the range interest can be produced; (2) to assess how well the properties of the combinatorial specimen reproduce those of the conventionally processed alloys; and (3) to devise screening tools which can be used to rapidly assess the important properties of the alloys. As proof of principle, the methodology was applied to the Fe-Ni-Cr ternary alloy system that constitutes many commercially important materials such as stainless steels and the H-series and C-series heat and corrosion resistant casting alloys. Three different techniques were developed for making alloy libraries: (1) vapor deposition of discrete thin films on an appropriate substrate and then alloying them together by solid-state diffusion; (2) co-deposition of the alloying elements from three separate magnetron sputtering sources onto an inert substrate; and (3) localized melting of thin films with a focused electron-beam welding system. Each of the techniques was found to have its own advantages and disadvantages. A new and very powerful technique for

  11. Development of Combinatorial Methods for Alloy Design and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Pharr, George M.; George, Easo P.; Santella, Michael L

    2005-07-01

    The primary goal of this research was to develop a comprehensive methodology for designing and optimizing metallic alloys by combinatorial principles. Because conventional techniques for alloy preparation are unavoidably restrictive in the range of alloy composition that can be examined, combinatorial methods promise to significantly reduce the time, energy, and expense needed for alloy design. Combinatorial methods can be developed not only to optimize existing alloys, but to explore and develop new ones as well. The scientific approach involved fabricating an alloy specimen with a continuous distribution of binary and ternary alloy compositions across its surface--an ''alloy library''--and then using spatially resolved probing techniques to characterize its structure, composition, and relevant properties. The three specific objectives of the project were: (1) to devise means by which simple test specimens with a library of alloy compositions spanning the range interest can be produced; (2) to assess how well the properties of the combinatorial specimen reproduce those of the conventionally processed alloys; and (3) to devise screening tools which can be used to rapidly assess the important properties of the alloys. As proof of principle, the methodology was applied to the Fe-Ni-Cr ternary alloy system that constitutes many commercially important materials such as stainless steels and the H-series and C-series heat and corrosion resistant casting alloys. Three different techniques were developed for making alloy libraries: (1) vapor deposition of discrete thin films on an appropriate substrate and then alloying them together by solid-state diffusion; (2) co-deposition of the alloying elements from three separate magnetron sputtering sources onto an inert substrate; and (3) localized melting of thin films with a focused electron-beam welding system. Each of the techniques was found to have its own advantages and disadvantages. A new and very

  12. Neutron scattering on molten Ge-Sn-Te alloys

    Science.gov (United States)

    Halm, Th; Hinz, W.; Hoyer, W.

    1995-01-01

    Three molten ternary Ge-Sn-Te alloys lying on the quasibinary line Ge-SnTe, and the binary equiatomic alloys SnTe and GeTe have been investigated by neutron "time-of-flight" experiments. Published thermodynamic results are interpreted in terms of the coexistence of SnTe and Ge microgroupings in the melt. Using the experimental obtained data of the binary liquid alloy Sn50Te50 and of liquid Ge the structure factors of the ternary melts are calculated on the base of a microheterogeneous model.

  13. Ternary Fission Studies by Correlation Measurements with Ternary Particles

    Science.gov (United States)

    Mutterer, Manfred

    2011-10-01

    The rare ternary fission process has been studied mainly by inclusive measurements of the energy distributions and fractional yields of the light charged particles (LCPs) from fission, or by experiments on the angular and energy correlation between LCPs and fission fragments (FFs). The present contribution presents a brief overview of more elaborate correlation measurements that comprise the emission of neutrons and γ rays with LCPs and FFs, or the coincident registration of two LCPs. These measurements have permitted identification of new modes of particle-accompanied fission, such as the population of excited states in LCPs, the formation of neutron-unstable nuclei as short-lived intermediate LCPs, as well as the sequential decay of particle-unstable LCPs and quaternary fission. Furthermore, the neutron multiplicity numbers bar ν (A) and distributions of fragment masses A, measured for the ternary fission modes with various LCP isotopes, give a valuable hint of the role played by nuclear shell structure in the fission process near scission. Finally, two different hitherto unknown asymmetries in ternary α-particle emission with respect to the fission axis, called the TRI and ROT effect, were studied in fission reactions induced by polarised cold neutrons.

  14. Peculiar features of boron distribution in high temperature fracture area of rapidly quenched heat-resistant nickel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Shulga, A. V., E-mail: avshulga@mephi.ru [National Research Nuclear University MEPhI (Russian Federation)

    2016-12-15

    This article comprises the results of comprehensive study of the structure and distribution in the high temperature fracture area of rapidly quenched heat-resistant superalloy of grade EP741NP after tensile tests. The structure and boron distribution in the fracture area are studied in detail by means of direct track autoradiography in combination with metallography of macro- and microstructure. A rather extensive region of microcracks generation and intensive boron redistribution is detected in the high temperature fracture area of rapidly quenched nickel superalloy of grade EP741NP. A significant decrease in boron content in the fracture area and formation of elliptically arranged boride precipitates are revealed. The mechanism of intense boron migration and stability violation of the structural and phase state in the fracture area of rapidly quenched heat-resistant nickel superalloy of grade EP741NP is proposed on the basis of accounting for deformation occurring in the fracture area and analysis of the stressed state near a crack.

  15. Maxwell-Stefan diffusion coefficient estimation for ternary systems: an ideal ternary alcohol system.

    Science.gov (United States)

    Allie-Ebrahim, Tariq; Zhu, Qingyu; Bräuer, Pierre; Moggridge, Geoff D; D'Agostino, Carmine

    2017-06-21

    The Maxwell-Stefan model is a popular diffusion model originally developed to model diffusion of gases, which can be considered thermodynamically ideal mixtures, although its application has been extended to model diffusion in non-ideal liquid mixtures as well. A drawback of the model is that it requires the Maxwell-Stefan diffusion coefficients, which are not based on measurable quantities but they have to be estimated. As a result, numerous estimation methods, such as the Darken model, have been proposed to estimate these diffusion coefficients. However, the Darken model was derived, and is only well defined, for binary systems. This model has been extended to ternary systems according to two proposed forms, one by R. Krishna and J. M. van Baten, Ind. Eng. Chem. Res., 2005, 44, 6939-6947 and the other by X. Liu, T. J. H. Vlugt and A. Bardow, Ind. Eng. Chem. Res., 2011, 50, 10350-10358. In this paper, the two forms have been analysed against the ideal ternary system of methanol/butan-1-ol/propan-1-ol and using experimental values of self-diffusion coefficients. In particular, using pulsed gradient stimulated echo nuclear magnetic resonance (PGSTE-NMR) we have measured the self-diffusion coefficients in various methanol/butan-1-ol/propan-1-ol mixtures. The experimental values of self-diffusion coefficients were then used as the input data required for the Darken model. The predictions of the two proposed multicomponent forms of this model were then compared to experimental values of mutual diffusion coefficients for the ideal alcohol ternary system. This experimental-based approach showed that the Liu's model gives better predictions compared to that of Krishna and van Baten, although it was only accurate to within 26%. Nonetheless, the multicomponent Darken model in conjunction with self-diffusion measurements from PGSTE-NMR represents an attractive method for a rapid estimation of mutual diffusion in multicomponent systems, especially when compared to exhaustive

  16. An evaporation-based model of thermal neutron induced ternary fission of plutonium

    International Nuclear Information System (INIS)

    Lestone, J.P.

    2008-01-01

    Ternary fission probabilities for thermal neutron induced fission of plutonium are analyzed within the framework of an evaporation-based model where the complexity of time-varying potentials, associated with the neck collapse, are included in a simplistic fashion. If the nuclear temperature at scission and the fission-neck-collapse time are assumed to be ~ 1.2 MeV and ~ 10 -22 s, respectively, then calculated relative probabilities of ternary-fission light-charged-particle emission follow the trends seen in the experimental data. The ability of this model to reproduce ternary fission probabilities spanning seven orders of magnitude for a wide range of light-particle charges and masses implies that ternary fission is caused by the coupling of an evaporation-like process with the rapid re-arrangement of the nuclear fluid following scission. (author)

  17. Microstructural evolution and thermal stability of aluminum-cerium-nickel ternary eutectic

    Science.gov (United States)

    Fodran, Eric John

    The engineering community has identified several applications in which the use of a lightweight alloy for elevated temperature service, in substitution for current heavier and more costly alloys, would have a substantial benefit. This need for structural materials to perform at elevated temperatures has driven researchers to develop novel alloys as well as processing routes to manufacture them and obtain optimum microstructures. Previous studies on aluminum based binary eutectic systems have proven that the aluminum alloy system shows promising potential for satisfying this need. This has motivated the investigation of the solidification and thermal stability of the Al-12 wt% Ce-5 wt% Ni ternary eutectic performed in this investigation. The solidification behavior of the Al-Ce-Ni ternary eutectic was conducted via solidification of various compositions at and above the eutectic composition in a copper chill mold, thus allowing the observation of various solidification rates on a single ingot. Directional solidification of the ternary eutectic was also conducted to further study the unique microstructures forms. After casting the ingots were analyzed for the composition of phases in the microstructure via X-ray diffraction, and the distribution of the phases determined by scanning electron microscopy. The solidification of the ternary eutectic was found to occur much like that of a faceted/non-faceted binary couples growth. The thermal stability of the microstructure was also studied. Ternary eutectic microstructures were heat treated at various temperatures for time intervals up to 100 hours. The coupled growth microstructures were found to coarsen at temperature above 400°C, which was associated with a loss in hardness. Coarsening of the microstructures at elevated temperatures was also observed to occur by multiple mechanisms: an Ostwald ripening within the eutectic cell, and an accelerated coarsening at the cell boundaries due to increased diffusion at

  18. Some new ternary linear codes

    Directory of Open Access Journals (Sweden)

    Rumen Daskalov

    2017-07-01

    Full Text Available Let an $[n,k,d]_q$ code be a linear code of length $n$, dimension $k$ and minimum Hamming distance $d$ over $GF(q$. One of the most important problems in coding theory is to construct codes with optimal minimum distances. In this paper 22 new ternary linear codes are presented. Two of them are optimal. All new codes improve the respective lower bounds in [11].

  19. Density functional theory based screening of ternary alkali-transition metal borohydrides: A computational material design project

    DEFF Research Database (Denmark)

    Hummelshøj, Jens Strabo; Landis, David; Voss, Johannes

    2009-01-01

    We present a computational screening study of ternary metal borohydrides for reversible hydrogen storage based on density functional theory. We investigate the stability and decomposition of alloys containing 1 alkali metal atom, Li, Na, or K (M1); and 1 alkali, alkaline earth or 3d/4d transition...

  20. Homologous series of layered structures in binary and ternary Bi-Sb-Te-Se systems : Ab initio study

    NARCIS (Netherlands)

    Govaerts, K.; Sluiter, M.H.F.; Partoens, B.; Lamoen, D.

    2014-01-01

    In order to account explicitly for the existence of long-periodic layered structures and the strong structural relaxations in the most common binary and ternary alloys of the Bi-Sb-Te-Se system, we have developed a one-dimensional cluster expansion (CE) based on first-principles electronic structure

  1. Nearly Ternary Quadratic Higher Derivations on Non-Archimedean Ternary Banach Algebras: A Fixed Point Approach

    Directory of Open Access Journals (Sweden)

    M. Eshaghi Gordji

    2011-01-01

    Full Text Available We investigate the stability and superstability of ternary quadratic higher derivations in non-Archimedean ternary algebras by using a version of fixed point theorem via quadratic functional equation.

  2. Laser alloyed Al-Ni-Fe coatings

    CSIR Research Space (South Africa)

    Pityana, SL

    2008-10-01

    Full Text Available The aim of this work was to produce crack-free thin surface layers consisting of binary (Al-Ni, Al-Fe) and ternary (Al-Ni-Fe) intermetallic phases by means of a high power laser beam. The laser surface alloying was carried out by melting Fe and Ni...

  3. Hydrogen solubility in austenite of Fe-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Zhirnova, V.V.; Mogutnov, B.M.; Tomilin, I.A.

    1981-01-01

    Hydrogen solubility in Fe-Ni-Cr alloys at 600-1000 deg C is determined. Hydrogen solubility in ternary alloys can not be predicted on the basis of the data on its solubility in binary Fe-Ni, Fe-Cr alloys. Chromium and nickel effect on hydrogen solubility in iron is insignificant in comparison with the effect of these elements on carbon or nitrogen solubility [ru

  4. Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys

    Science.gov (United States)

    Neira Arce, Alderson

    To be a viable solution for contemporary engineering challenges, the use of titanium alloys in a wider range of applications requires the development of new techniques and processes that are able to decrease production cost and delivery times. As a result, the use of material consolidation in a near-net-shape fashion, using dynamic techniques like additive manufacturing by electron beam selective melting EBSM represents a promising method for part manufacturing. However, a new product material development can be cost prohibitive, requiring the use of computer modeling and simulation as a way to decrease turnaround time. To ensure a proper representation of the EBSM process, a thermophysical material characterization and comparison was first performed on two Ti6Al4V powder feedstock materials prepared by plasma (PREP) and gas atomized (GA) processes. This evaluation comprises an evaluation on particle size distribution, density and powder surface area, collectively with the temperature dependence on properties such as heat capacity, thermal diffusivity, thermal conductivity and surface emissivity. Multiple techniques were employed in this evaluation, including high temperature differential scanning calorimetry (HT-DSC), laser flash analysis (LFA), infrared remote temperature analysis (IR-Thermography), laser diffraction, liquid and gas pycnometry using mercury and krypton adsorption respectively. This study was followed by the review of complementary strategies to simulate the temperature evolution during the EBSM process, using a finite element analysis package called COMSOL Multiphysics. Two alternatives dedicated to representing a moving heat source (electron beam) and the powder bed were developed using a step-by-step approximation initiative. The first method consisted of the depiction of a powder bed discretized on an array of domains, each one representing a static melt pool, where the moving heat source was illustrated by a series of time dependant selective

  5. Calculated site substitution in ternary gamma'-Ni3Al: Temperature and composition effects

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt

    1997-01-01

    The temperature and composition dependence of the site substitution behavior of ternary additions to Ni3Al is examined on the basis of first-principles calculations of the total energies of ternary, partially ordered (gamma') alloys. The calculations are performed by means of the linear muffin......-tin orbitals method in conjunction with the local-density and multisublattice coherent-potential approximations and include all 3d, 4d, 5d, and noble metals. The calculations show the existence of simple trends in the alloying behavior of the gamma' phase which may be explained in a Friedel-like model based...... diagram for the elements Co, Pd, Cu, and Ag incorrectly has been interpreted as evidence for strong Ni site preference and that, in fact, these elements are expected to exhibit only weak Ni site preference....

  6. Ternary scandium and transition metals germanides

    International Nuclear Information System (INIS)

    Kotur, B.Ya.

    1992-01-01

    Brief review of data on phase diagram of ternary Sc-Me-Ge systems (Me-d - , f-transition element) is given. Isothermal sections at 870 and 1070 K of 17 ternary systems are plotted. Compositions and their structural characteristics are presented. Variability of crystal structure is typical for ternary scandium germanides: 70 compounds with the studied structure belong to 23 structural types. Ternary germanides isostructural to types of Sm 4 Ge 4 , ZrCrSi 2 , ZrNiAl, ScCeSi, TiNiSi U 4 Re 7 Si 6 145 compounds from 70 under investigation are mostly formed in studied systems

  7. Thermodynamic Database for Zirconium Alloys

    International Nuclear Information System (INIS)

    Jerlerud Perez, Rosa

    2003-05-01

    For many decades zirconium alloys have been commonly used in the nuclear power industry as fuel cladding material. Besides their good corrosion resistance and acceptable mechanical properties the main reason of using these alloys is the low neutron absorption. Zirconium alloys are exposed to a very severe environment during the nuclear fission process and there is a demand for better design of this material. To meet this requirement a thermodynamic database is developed to support material designers. In this thesis some aspects about the development of a thermodynamic database for zirconium alloys are presented. A thermodynamic database represents an important facility in applying thermodynamic equilibrium calculations for a given material providing: 1) relevant information about the thermodynamic properties of the alloys e.g. enthalpies, activities, heat capacity, and 2) significant information for the manufacturing process e.g. heat treatment temperature. The basic information in the database is first the unary data, i.e. pure elements; those are taken from the compilation of the Scientific Group Thermodata Europe (SGTE) and then the binary and ternary systems. All phases present in those binary and ternary systems are described by means of the Gibbs energy dependence on composition and temperature. Many of those binary systems have been taken from published or unpublished works and others have been assessed in the present work. All the calculations have been made using Thermo C alc software and the representation of the Gibbs energy obtained by applying Calphad technique

  8. The formation of the two-way shape memory effect in rapidly quenched TiNiCu alloy under laser radiation

    International Nuclear Information System (INIS)

    Shelyakov, A V; Sitnikov, N N; Borodako, K A; Menushenkov, A P; Fominski, V Yu; Sheyfer, D V

    2015-01-01

    The effect of pulsed laser radiation (λ = 248 nm, τ = 20 ns) on structural properties and shape memory behavior of the rapidly quenched Ti 50 Ni 25 Cu 25 alloy ribbon was studied. The radiation energy density was varied from 2 to 20 mJ mm −2 . The samples were characterized by means of scanning electron microscopy, x-ray diffraction, microhardness measurements and shape memory bending tests. It was ascertained that the action of the laser radiation leads to the formation of a structural composite material due to amorphization or martensite modification in the surface layer of the ribbon. Two methods are proposed which allow one to generate the pronounced two-way shape memory effect (TWSME) in a local area of the ribbon by using only a single pulse of the laser radiation. With increasing energy density of laser treatment, the magnitude of the reversible angular displacement with realization of the TWSME increases. The developed techniques can be used for the creation of various micromechanical devices. (paper)

  9. On Some Ternary LCD Codes

    OpenAIRE

    Darkunde, Nitin S.; Patil, Arunkumar R.

    2018-01-01

    The main aim of this paper is to study $LCD$ codes. Linear code with complementary dual($LCD$) are those codes which have their intersection with their dual code as $\\{0\\}$. In this paper we will give rather alternative proof of Massey's theorem\\cite{8}, which is one of the most important characterization of $LCD$ codes. Let $LCD[n,k]_3$ denote the maximum of possible values of $d$ among $[n,k,d]$ ternary $LCD$ codes. In \\cite{4}, authors have given upper bound on $LCD[n,k]_2$ and extended th...

  10. The ternary system Zr-Cr-O. Equilibrium diagrams in the zirconium rich zone at different temperatures

    International Nuclear Information System (INIS)

    Gonzalez, Ruben O.; Gribaudo, Luis M.

    2003-01-01

    Equilibria among hcp α, bcc β solid solutions and cubic C 15 type intermetallic ZrCr 2 are represented graphically over Gibbs triangles in the Zr-rich zone of the ternary Zr-Cr-O system. Experimental results are obtained from zirconium-based alloys containing different oxygen compositions (0,24 and 0,62 % at.). Phase boundaries of the ternary system are extrapolated to the Zr-O and Zr-Cr binaries. The obtained values are compared to recently published evaluated diagrams of these two systems. Chromium compositions of the studied alloys were 0,3 - 1 - 2 - 4 and 15 at. %. Thermal treatment temperatures in order to allow equilibria in alloys were 840, 860, 900 and 960 C degrees. (author)

  11. Pulse reversal plating of nickel alloys

    DEFF Research Database (Denmark)

    Tang, Peter Torben

    2007-01-01

    Pulse plating has previously been reported to improve the properties of nickel and nickel alloy deposits. Typically, focus has been on properties such as grain size, hardness and smoothness. When pulse plating is to be utilised for microtechnologies such as microelectromechanical systems (MEMS......), internal stress and material distribution are even more important. With baths based upon nickel chloride, and nickel and cobalt chlorides, pulse reversal plating of both pure nickel and nickel-cobalt alloys has been used to fabricate tools for microinjection moulding. Pulse reversal plating of ternary soft...... magnetic alloys, comprising 45-65%Co, 15-35%Fe and 15-35%Ni, is also reported....

  12. Experimental and thermodynamic study of the Er-H-Zr ternary system

    International Nuclear Information System (INIS)

    Mascaro, A.

    2012-01-01

    This work at CEA is being achieved in the framework of the development of an innovating concept including the neutronic solid burnable poison, such as erbium, inside the cladding of pressurized water reactors. These new claddings are constituted by a liner of a zirconium base alloy slightly enriched in erbium between two liners of industrial zirconium alloys. Into the reactor core, the water dissociates at the surface of the cladding. So it is interesting to evaluate the interactions between the hydrogen released and the Zr-Er alloy. To do so, the Er-H-Zr ternary system has to be determined such similarly to its associated binaries. This can be done by experimental determination and by thermodynamic modelling. Both techniques were used in this work. Er-Zr and H-Zr have already been studied experimentally and modelled, but the Er-H binary system is almost unknown. So, we studied it experimentally. Then, it has been modelled using the Calphad method. We obtain a new evaluation of the Er-H binary system with phases limits rather different than what has been proposed in the literature. In order to determine the phase limits and, the potential existence of a ternary compound in the Er-H-Zr ternary system, an experimental study has been carried out. An original technique has been used to obtain the chemical compositions: ERDA combined with RBS. In this study, we propose a new isothermal section at 350 C of the Er-H-Zr ternary system. About the modelling, the compatibility of the three modelled binaries has been checked in order to optimize the ternary system by the projection of the three binaries. The calculation obtained is in good agreement with the experimental isothermal section at 350 C determined in our work. Finally, uniaxial tensile test campaigns have been conducted to evaluate the impact of erbium and/or hydrogen on the mechanical properties of an industrial zirconium pure alloy. We evidenced a hardening effect of erbium and hydrogen but these effects are not

  13. Optical characterization of one-step synthesis of ternary nanoalloy by laser ablation of stainless steel target in Hexane

    Science.gov (United States)

    Soliman, Wafaa; El-Ansary, Sara; Badr, Yehia

    2017-12-01

    In this work, we ablated stainless steel target in Hexane by 355 nm by tuning laser power to synthesize ternary nanoalloys from its constituents. XRD patterns didn't match with any machine code of carbides, carbonyls and oxides of target elements. Also, they didn't match with any of binary alloys, suggesting the formation of carbides or carbonyls of ternary nanoalloys. In addition, the optical properties of nanoalloys confirms the resonance fluorescence and multistep excitation. By tuning laser power, the shape of nanoalloys is controlled.

  14. Development of Cu-Hf-Al ternary systems and tungsten wire/particle reinforced Cu48Hf43Al9 bulk metallic glass composites for strengthening

    International Nuclear Information System (INIS)

    Park, Joyoung; An, Jihye; Choi-Yim, Haein

    2010-01-01

    Stable bulk glass forming alloys can be developed over a wide range of compositions in Cu-Hf-Al ternary systems starting from the Cu 49 Hf 42 Al 9 bulk metallic glass. Ternary Cu-Hf-Al alloys can be cast directly from the melt into copper molds to form fully amorphous strips with thicknesses of 1 to 6 mm. The maximum critical diameter of the new Cu-Hf-Al ternary alloy was 6 mm. X-ray diffraction patterns were used to confirm the amorphous nature of the ternary Cu-Hf-Al alloys. To increase the toughness of these metallic glasses, we reinforced the Cu 48 Hf 43 Al 9 bulk metallic glass-forming liquid with a 50% volume fraction of tungsten particles and an 80% volume fraction of tungsten wires with diameters of 242.4 μm. Composites with a critical diameter of 7 mm and length 70 mm were synthesized. The structure of the composites was confirmed by using X-ray diffraction (XRD), and the scanning electron microscopy (SEM). The mechanical properties of the composites were studied in compression tests. The thermal stability and the crystallization processes of the Cu-Hf-Al alloys and composites were investigated by using differential scanning calorimetry (DSC). Values of the glass transition temperature (T g ), the crystallization temperature (T x ), and the supercooled liquid region (ΔT = T x - T g ) are given in this paper.

  15. A high-throughput search for new ternary superalloys

    Science.gov (United States)

    Nyshadham, Chandramouli; Hansen, Jacob; Oses, Corey; Curtarolo, Stefano; Hart, Gus

    In 2006 an unexpected new superalloy, Co3[Al,W], was discovered. This new alloy is cobalt-based, in contrast to conventional superalloys, which are nickel-based. Inspired by this new discovery, we performed first-principles calculations, searching through 2224 ternary metallic systems of the form A3[B0.5C0.5], where A = Ni/Co/Fe and [B, C] = all binary combinations of 40 different elements chosen from the periodic table. We found 175 new systems that are better than the Co3[Al, W] superalloy. 75 of these systems are brand new--they have never been reported in experimental literature. These 75 new potential superalloys are good candidates for further experiments. Our calculations are consistent with current experimental literature where data exists. Work supported under: ONR (MURI N00014-13-1-0635).

  16. Improvement of magnetocaloric properties of Gd-Ge-Si alloys by alloying with iron

    Directory of Open Access Journals (Sweden)

    Erenc-Sędziak T.

    2013-01-01

    Full Text Available The influence of annealing of Gd5Ge2Si2Fex alloys at 1200°C and of alloying with various amount of iron on structure as well as thermal and magnetocaloric properties is investigated. It was found that annealing for 1 to 10 hours improves the entropy change, but reduces the temperature of maximum magnetocaloric effect by up to 50 K. Prolonged annealing of the Gd5Ge2Si2 alloy results in the decrease of entropy change due to the reduction of Gd5Ge2Si2 phase content. Addition of iron to the ternary alloy enhances the magnetocaloric effect, if x = 0.4 – 0.6, especially if alloying is combined with annealing at 1200°C: the peak value of the isothermal entropy change from 0 to 2 T increases from 3.5 to 11 J/kgK. Simultaneously, the temperature of maximum magnetocaloric effect drops to 250 K. The changes in magnetocaloric properties are related to the change in phase transformation from the second order for arc molten ternary alloy to first order in the case of annealed and/or alloyed with iron. The results of this study indicate that the minor addition of iron and heat treatment to Gd-Ge-Si alloys may be useful in improving the materials’ magnetocaloric properties..

  17. Description of the ternary system Cu-Ge-Te

    International Nuclear Information System (INIS)

    Dogguy, M.; Carcaly, C.; Rivet, J.; Flahaut, J.

    1977-01-01

    The Cu-Ge-Te ternary system has been studied by DTA and by crystallographic and metallographic analysis. The existence of a ternary compound Cu 2 GeTe 3 is demonstrated; this compound has a ternary incongruent melting point at 500 0 C. This ternary compound has a superstructure of a zinc blende type. The study shows the existence of five ternary eutectics. Two liquid-liquid miscibility gaps exist: the first is situated entirely in the ternary system; the second gives a monotectic region within the ternary system. (Auth.)

  18. Performance Estimation for Lowpass Ternary Filters

    Directory of Open Access Journals (Sweden)

    O'Shea Peter

    2003-01-01

    Full Text Available Ternary filters have tap values limited to , , or . This restriction in tap values greatly simplifies the multipliers required by the filter, making ternary filters very well suited to hardware implementations. Because they incorporate coarse quantisation, their performance is typically limited by tap quantisation error. This paper derives formulae for estimating the achievable performance of lowpass ternary filters, thereby allowing the number of computationally intensive design iterations to be reduced. Motivated by practical communications systems requirements, the performance measure which is used is the worst-case stopband attenuation.

  19. All-optical symmetric ternary logic gate

    Science.gov (United States)

    Chattopadhyay, Tanay

    2010-09-01

    Symmetric ternary number (radix=3) has three logical states (1¯, 0, 1). It is very much useful in carry free arithmetical operation. Beside this, the logical operation using this type of number system is also effective in high speed computation and communication in multi-valued logic. In this literature all-optical circuits for three basic symmetrical ternary logical operations (inversion, MIN and MAX) are proposed and described. Numerical simulation verifies the theoretical model. In this present scheme the different ternary logical states are represented by different polarized state of light. Terahertz optical asymmetric demultiplexer (TOAD) based interferometric switch has been used categorically in this manuscript.

  20. Ternary fission and cluster radioactivities

    CERN Document Server

    Poenaru, D N; Greiner, W; Gherghescu, R A; Hamilton, J H; Ramayya, A V

    2002-01-01

    Ternary fission yield for different kinds of light particle accompanied fission processes is compared to the Q-values for the corresponding cold phenomena, showing a striking correlation. The experimental evidence for the existence of a quasimolecular state in sup 1 sup 0 Be accompanied fission of sup 2 sup 5 sup 2 Cf may be explained using a three-center phenomenological model which generates a third minimum in the deformation energy at a separation distance very close to the touching point. This model is a natural extension of the unified approach to three groups of binary decay modes (cold fission, cluster radioactivities and alpha decay), illustrated by sup 2 sup 3 sup 4 U decay modes, and the alpha valley on the potential energy surfaces of sup 1 sup 0 sup 6 Te. New measurements of cluster decay modes, confirming earlier predictions within analytical superasymmetric fission model, are included in a comprehensive half-life systematics. (authors)

  1. Coercivity enhancement in HDDR near-stoichiometric ternary Nd–Fe–B powders

    International Nuclear Information System (INIS)

    Wan, Fangming; Han, Jingzhi; Zhang, Yinfeng; Wang, Changsheng; Liu, Shunquan; Yang, Jinbo; Yang, Yingchang; Sun, Aizhi; Yang, Fuqiang; Song, Renbo

    2014-01-01

    Anisotropic HDDR near-stoichiometric ternary Nd–Fe–B powders have been prepared. The coercivity of the powders was improved from 208.6 to 980.1 kA/m by the subsequent diffusion treatment using the Pr–Cu alloy. For comparison, Nd 11.5 Fe 80.7 B 6.1 Pr 1.2 Cu 0.5 alloy, in which Pr and Cu elements were directly added into the original Nd–Fe–B alloy, was also treated by the same HDDR process and the coercivity was only 557.3 kA/m. Microstructural investigations showed that a large area of (Nd, Pr)-rich phases concentrated at triangle regions in the HDDR Nd 11.5 Fe 80.7 B 6.1 Pr 1.2 Cu 0.5 powders, while the (Nd, Pr)-rich phases distributed uniformly in the diffusion treated powders. The uniform grain boundary layer can pin the motion of domain wall more effectively, resulting in a higher coercivity in diffusion treated HDDR Nd–Fe–B powders. - Highlights: • Anisotropic HDDR near-stoichiometric ternary Nd–Fe–B powders have been prepared. • The coercivity of the powders was improved from 2.62 to 12.31 kOe by the diffusion of Pr–Cu alloy. • The uniform grain boundary layer leads to a higher coercivity in diffusion treated powders

  2. Ternary alloys based on ii-vi semiconductor compounds

    CERN Document Server

    Tomashyk, Vasyl; Shcherbak, Larysa

    2013-01-01

    Phase Equilibria in the Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystem Based on CdSeSystem Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  3. Ternary alloy material prediction using genetic algorithm and cluster expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chong [Iowa State Univ., Ames, IA (United States)

    2015-12-01

    This thesis summarizes our study on the crystal structures prediction of Fe-V-Si system using genetic algorithm and cluster expansion. Our goal is to explore and look for new stable compounds. We started from the current ten known experimental phases, and calculated formation energies of those compounds using density functional theory (DFT) package, namely, VASP. The convex hull was generated based on the DFT calculations of the experimental known phases. Then we did random search on some metal rich (Fe and V) compositions and found that the lowest energy structures were body centered cube (bcc) underlying lattice, under which we did our computational systematic searches using genetic algorithm and cluster expansion. Among hundreds of the searched compositions, thirteen were selected and DFT formation energies were obtained by VASP. The stability checking of those thirteen compounds was done in reference to the experimental convex hull. We found that the composition, 24-8-16, i.e., Fe3VSi2 is a new stable phase and it can be very inspiring to the future experiments.

  4. Ternary alloys based on II-VI semiconductor compounds

    CERN Document Server

    Tomashyk, Vasyl; Shcherbak, Larysa

    2013-01-01

    Phase Equilibria in the Systems Based on ZnSSystems Based on ZnSeSystems Based on ZnTeSystems Based on CdSSystem Based on CdSeSystem Based on CdTeSystems Based on HgSSystems Based on HgSeSystems Based on HgTeIndexReferences appear at the end of each chapter.

  5. Effect of Fe addition on the magnetic and giant magneto-impedance behaviour of CoCrSiB rapidly solidified alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Seema; Chattoraj, I; Panda, A K; Mitra, A; Pal, S K [National Metallurgical Laboratory, Jamshedpur 831 007 (India)

    2006-05-21

    Thermal electrical resistivity, magnetic hysteresis and magneto-impedance behaviour of melt spun and annealed Co{sub 71-X}Fe{sub X}Cr{sub 7}Si{sub 8}B{sub 14} (X = 0, 2, 3.2, 4, 6, 8 and 12 at.%) were investigated. The addition of Fe in the system changed crystallization as well as the magnetic properties of the materials. The alloy containing 6 at.% Fe showed an increase in resistivity during the first crystallization process. A TEM micrograph indicated the formation of nanostructure during the crystallization process. The GMI properties of the alloys are evaluated at a driving current amplitude of 5 mA and a frequency of 4 MHz. The two-peak behaviour in the GMI profile was observed for all the samples. It is found that the alloy with 4 at.% Fe has the maximum GMI ratio because of the nearly zero magnetostriction value of the sample. About 62% change in the GMI ratio was observed in the alloy with 4 at.% Fe when annealed at 673 K. The anisotropy field was also minimum for the annealed alloy. The results were explained by the formation of directional ordering and the reduction of the magnetostriction constant of the alloy due to nanocrystallization during the annealing process.

  6. Effect of Fe addition on the magnetic and giant magneto-impedance behaviour of CoCrSiB rapidly solidified alloys

    International Nuclear Information System (INIS)

    Kumari, Seema; Chattoraj, I; Panda, A K; Mitra, A; Pal, S K

    2006-01-01

    Thermal electrical resistivity, magnetic hysteresis and magneto-impedance behaviour of melt spun and annealed Co 71-X Fe X Cr 7 Si 8 B 14 (X = 0, 2, 3.2, 4, 6, 8 and 12 at.%) were investigated. The addition of Fe in the system changed crystallization as well as the magnetic properties of the materials. The alloy containing 6 at.% Fe showed an increase in resistivity during the first crystallization process. A TEM micrograph indicated the formation of nanostructure during the crystallization process. The GMI properties of the alloys are evaluated at a driving current amplitude of 5 mA and a frequency of 4 MHz. The two-peak behaviour in the GMI profile was observed for all the samples. It is found that the alloy with 4 at.% Fe has the maximum GMI ratio because of the nearly zero magnetostriction value of the sample. About 62% change in the GMI ratio was observed in the alloy with 4 at.% Fe when annealed at 673 K. The anisotropy field was also minimum for the annealed alloy. The results were explained by the formation of directional ordering and the reduction of the magnetostriction constant of the alloy due to nanocrystallization during the annealing process

  7. Magnesium and related low alloys

    International Nuclear Information System (INIS)

    Bernard, J.; Caillat, R.; Darras, R.

    1959-01-01

    In the first part the authors examine the comparative corrosion of commercial magnesium, of a magnesium-zirconium alloy (0,4 per cent ≤ Zr ≤ 0,7 per cent) of a ternary magnesium-zinc-zirconium alloy (0,8 per cent ≤ Zn ≤ 1,2 per cent) and of english 'Magnox type' alloys, in dry carbon dioxide-free air, in damp carbon dioxide-free air, and in dry and damp carbon dioxide, at temperatures from 300 to 600 deg. C. In the second part the structural stability of these materials is studied after annealings, of 10 to 1000 hours at 300 to 450 deg. C. Variations in grain after these heat treatments and mechanical stretching properties at room temperature are presented. Finally various creep rate and life time diagrams are given for these materials, for temperatures ranging from 300 to 450 deg. C. (author) [fr

  8. Corrosion resistance improvement of titanium base alloys

    Directory of Open Access Journals (Sweden)

    Mihai V. Popa

    2010-01-01

    Full Text Available The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.

  9. Synthesis, structural and magnetic characterization of soft magnetic nanocrystalline ternary FeNiCo particles

    Energy Technology Data Exchange (ETDEWEB)

    Toparli, Cigdem [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf (Germany); Ebin, Burçak [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey); Nuclear Chemistry and Industrial Material Recycling, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, S-412 96 Gothenburg (Sweden); Gürmen, Sebahattin, E-mail: gurmen@itu.edu.tr [Department of Metallurgical & Materials Eng., Istanbul Technical University, 34469 Istanbul (Turkey)

    2017-02-01

    The present study focuses on the synthesis, microstructural and magnetic properties of ternary FeNiCo nanoparticles. Nanocrystalline ternary FeNiCo particles were synthesized via hydrogen reduction assisted ultrasonic spray pyrolysis method in single step. The effect of precursor concentration on the morphology and the size of particles was investigated. The syntheses were performed at 800 °C. Structure, morphology and magnetic properties of the as-prepared products were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) studies. Scherer calculation revealed that crystallite size of the ternary particles ranged between 36 and 60 nm. SEM and TEM investigations showed that the particle size was strongly influenced by the precursor concentration and Fe, Ni, Co elemental composition of individual particles was homogeneous. Finally, the soft magnetic properties of the particles were observed to be a function of their size. - Highlights: • Ternary FeNiCo alloy nanocrystalline particles were synthesized in a single step. • Cubic crystalline structure and spherical morphology was observed by XRD, SEM and TEM investigations. • The analysis of magnetic properties indicates the soft magnetic features of particles.

  10. Volume dependence of T/sub c/ of Ternary A-15 Phases

    International Nuclear Information System (INIS)

    Shamrai, V.

    1984-01-01

    Results are presented of measurements of the superconducting transition temperature T/sub c/, lattice constant a, magnetic susceptibility /sub chi/, and critical field H/sub c/ 2 for many Nb 3 Al and V 3 Si-based ternary phases and Nb 3 SnH/sub x/. For V 3 Si-based ternary systems and Nb 3 SnH/sub x/ the density of states at the Fermi level N(epsilon/sub F/) sharply decreases with the concentration of the alloying element. The variation of N(epsilon/sub F/) in these ternary systems cannot be explained by the variation of a. In ternary phases Nb 3 (Al/sub 1-x/dY/sub x/), where Y can be Ge, Ga, Sb, or Se, a quite clear correlation is revealed between T/sub c/ and a. The dependence of T/sub c/ on V in these systems is due to the variation of the matrix element of the electron-phonon interaction 2 >

  11. Experimental investigation of phase equilibria in the Zr-Cu-Ni ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mujin; Wang, Cuiping; Yang, Shuiyuan; Shi, Zhan; Han, Jiajia; Liu, Xingjun [Xiamen Univ. (China). College of Materials and Fujian Provincial Key Lab. of Materials Genome

    2017-08-15

    The phase equilibria in the Zr-Cu-Ni ternary system are investigated combined with X-ray diffraction, electron probe micro-analysis and differential scanning calorimetry. Two isothermal sections of the Zr-Cu-Ni ternary system at 1 000 C and 1 100 C are experimentally established. Most of the binary intermetallic compounds, e.g. Zr{sub 7}Ni{sub 10}, ZrNi, ZrNi{sub 5}, Zr{sub 14}Cu{sub 51}, and Zr{sub 2}Cu{sub 9}, show a remarkable ternary solubility. A new ternary compound named τ{sub 3} (Zr{sub 31.1-30.7} . Cu{sub 28.5-40.3}Ni{sub 40.4-29.0}) is detected at 1 000 C and dissolved at 1 020 C because the nearby large liquid phase field further expands. The newly determined phase equilibria will provide important information for both thermodynamic assessment and alloy design of Zr-based metallic glass.

  12. Structure and properties of alloys of A15 type compounds with carbon

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Efimov, Yu.V.; Myasnikova, E.A.

    1983-01-01

    Microstructure and some properties of the alloys on the base of the phases of A15 type in the V-Si-C, Nb-Si-C, Nb-Sn-C, Nb-Al-C, Nb-Ga-C, V-Ga-C ternary systems are investigated. It is established that in the niobium-rich corners of the A-B-C ternary systems the new ternary conpounds do not form, as a rule, bUt the wide ranges of threephase equilibrium A-A 3 B-C exist. New ternary phases with A15 type structure stabilized with carbon are established only in the Nb-Si-C and V-Al-C systems. Alloying with carbon results in sharp refining of structural components of stable and metastable alloys, promotes transition of the alloys into amorphous state at super fast cooling of the melts as well as increases stability of metastable state of the alloys against tempering. After super fast quenching and tempering Tsub(c) of the ternary alloys close to the A15 phases exceed Tsub(c) of equilibrium samples

  13. Powder metallurgy preparation of Al-Cu-Fe quasicrystals using mechanical alloying and Spark Plasma Sintering

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Kubatík, Tomáš František; Vystrčil, J.; Hendrych, R.; Kříž, J.; Mlynár, J.; Vojtěch, D.

    2014-01-01

    Roč. 52, September (2014), s. 131-137 ISSN 0966-9795 Institutional support: RVO:61389021 Keywords : Nanostructure intermetallics * Ternary alloys systems * Mechanical alloying and milling * Sintering * Diffraction Subject RIV: JG - Metallurgy Impact factor: 2.131, year: 2014 http://www.sciencedirect.com/science/article/pii/S0966979514001198#

  14. Regularity in the formation of compounds in ternary R-Me-Sn systems, R - REM, Me - Fe, Co, Ni, Cu

    International Nuclear Information System (INIS)

    Skolozdra, R.V.; Komarovskaya, L.P.; Koretskaya, O.Eh.

    1992-01-01

    For the ternary alloy systems of (La, Y, Gd, Lu)-Fe-Sn, (Ce, Y, Gd)-Co-Sn, (Ce, Y, Gd, Lu)-Ni-Sn and (Pr, Gd, Lu)-Cu-Sn isothermal sections of phase diagrams were plotted within the range of 670 to 870 K. It was revealed that substitution of transition metal in the kFe-Co-Ni-Cu series led to changes both in a number of ternary stannides and their structural types. A tendency was observed in change of stannide numbers depending on quantity ratio of R and Me components. Crystallochemical analysis of compounds obtained showed that they could be treated as interstitial structures or lsuperstructures with respect to them. The results of magnetic properties measurements were used for explanation of structural features of ternary compounds considered

  15. Theoretical prediction and experimental confirmation of unusual ternary ordered semiconductor compounds in Sr-Pb-S system.

    Science.gov (United States)

    Hao, Shiqiang; Zhao, Li-Dong; Chen, Chang-Qiang; Dravid, Vinayak P; Kanatzidis, Mercouri G; Wolverton, Christopher M

    2014-01-29

    We examine the thermodynamics of phase separation and ordering in the ternary Ca(x)Pb(1-x)S and Sr(x)Pb(1-x)S systems by density-functional theory combined with a cluster expansion and Monte Carlo simulations. Similar to most other ternary III-V or IV-VI semiconductor alloys, we find that bulk phase separation is thermodynamically preferred for PbS-CaS. However, we predict the surprising existence of stable, ordered ternary compounds in the PbS-SrS system. These phases are previously unreported ordered rocksalt-based compounds: SrPb3S4, SrPbS2, and Sr3PbS4. The stability of these predicted ordered phases is confirmed by transmission electron microscopy observations and band gap measurements. We believe this work paves the way for a combined theory-experiment approach to decipher complex phase relations in multicomponent chalcogenide systems.

  16. Ternary networks reliability and Monte Carlo

    CERN Document Server

    Gertsbakh, Ilya; Vaisman, Radislav

    2014-01-01

    Ternary means “based on three”. This book deals with reliability investigations of  networks whose components subject to failures can be in three states –up, down and middle (mid), contrary to traditionally considered networks  having only binary (up/down) components. Extending binary case to ternary allows to consider more realistic and flexible models for communication, flow and supply networks.

  17. Experimental investigation of the ternary system Ni–Pd–Sn with special focus on the B8-type phase

    International Nuclear Information System (INIS)

    Jandl, Isabella; Ipser, Herbert; Richter, Klaus W.

    2015-01-01

    The ternary alloy system Ni–Pd–Sn was investigated experimentally from 700 °C upwards, with special focus on the general NiAs-type compounds. The phase diagram and crystallographic parameters were studied by means of powder X-ray diffraction (XRD), differential thermal analysis (DTA), light optical microscopy (LOM) and scanning electron microscopy (SEM) in combination with energy dispersive X-ray spectroscopy (EDX). An isothermal section at 700 °C was constructed wherein a continuous phase field between the binary NiAs-type compounds γ (PdSn) and Ni 3 Sn 2 (high temperature modification) was detected. A series of samples throughout this phase field was used to investigate lattice parameter variations, occupation of the atomic sites and the melting behaviour. A partial ordering of the transition metals was observed. Moreover, three vertical sections at 30 at.%, 40 at.% and 50 at.% Sn were determined. Altogether, seven ternary invariant phase reactions were discovered: two ternary eutectic reactions, one ternary eutectoid reaction, three ternary transition reactions and one maximum. A complete reaction scheme for the investigated temperature range is given. Furthermore, a partial liquidus surface projection, except for the low-temperature Sn-rich region, was developed. - Highlights: • Detailed study of the ternary alloy system Ni–Pd–Sn. • 1 Isotherm, 3 vertical sections, a partial liquidus projection and a reaction scheme. • A continuous phase field, between γ and Ni 3 Sn 2 , was discovered. • Lattice parameters and structural features in this phase field were analysed. • A partial order of Ni and Pd in this phase field was observed

  18. Ion implantation and rapid thermal processing of Ill-V nitrides

    Science.gov (United States)

    Zolper, J. C.; Hagerott Crawford, M.; Pearton, S. J.; Abernathy, C. R.; Vartuli, C. B.; Yuan, C.; Stall, R. A.

    1996-05-01

    Ion implantation doping and isolation coupled with rapid thermal annealing has played a critical role in the realization of high performance photonic and electronic devices in all mature semiconductor material systems. This is also expected to be the case for the binary III-V nitrides (InN, GaN, and A1N) and their alloys as the epitaxial material quality improves and more advanced device structures are fabricated. In this article, we review the recent developments in implant doping and isolation along with rapid thermal annealing of GaN and the In-containing ternary alloys InGaN and InAlN. In particular, the successful n- and p-type doping of GaN by ion implantation of Si and Mg+P, respectively, and subsequent high temperature rapid thermal anneals in excess of 1000°C is reviewed. In the area of implant isolation, N-implantation has been shown to compensate both n- and p-type GaN, N-, and O-implantation effectively compensates InAlN, and InGaN shows limited compensation with either N- or F-implantation. The effects of rapid thermal annealing on unimplanted material are also presented.

  19. Calorimetric measurements of the Ca-Li liquid alloys

    Directory of Open Access Journals (Sweden)

    Dębski A.

    2017-01-01

    Full Text Available The ternary Cu-Al-Sn phase diagram is the base for several important types of alloys, with relevant industrial interest and applications. The knowledge of the melting/solidification alloys characteristics are determinant for their preparation and properties control. However, there is a lack of experimental information on the ternary phase diagram, at high temperature. In this work, several alloys, with high copper content and additions of Al, up to 10%, and Sn, up to 14% (in wt%, were studied by thermal analysis and by isothermal phase equilibria determination. The alloys liquidus and solidus lines and the binary α + β phase field, at 800 °C, are presented for the studied range of compositions.

  20. Alloys in energy development

    Energy Technology Data Exchange (ETDEWEB)

    Frost, B.R.T.

    1984-02-01

    The development of new and advanced energy systems often requires the tailoring of new alloys or alloy combinations to meet the novel and often stringent requirements of those systems. Longer life at higher temperatures and stresses in aggressive environments is the most common goal. Alloy theory helps in achieving this goal by suggesting uses of multiphase systems and intermediate phases, where solid solutions were traditionally used. However, the use of materials under non-equilibrium conditions is now quite common - as with rapidly solidified metals - and the application of alloy theory must be modified accordingly. Under certain conditions, as in a reactor core, the rate of approach to equilibrium will be modified; sometimes a quasi-equilibrium is established. Thus an alloy may exhibit enhanced general diffusion at the same time as precipitate particles are being dispersed and solute atoms are being carried to vacancy sinks. We are approaching an understanding of these processes and can begin to model these complex systems.

  1. Analysis of phase formation in Ni-rich alloys of the Ni-Ta-W system by calorimetry, DTA, SEM, and TEM

    Energy Technology Data Exchange (ETDEWEB)

    Witusiewicz, V.T.; Hecht, U.; Warnken, N.; Fries, S.G. [Access e.V., Aachen (Germany); Hu Weiping [Inst. fuer Metallkunde und Metallphysik der RWTH Aachen (Germany)

    2006-04-15

    The partial enthalpies of dissolution of pure Ni, W and Ta in liquid ternary Ni-Ta-W alloys have been determined at (1773 {+-} 5) K using a high temperature isoperibolic calorimeter. Measurements were performed in Ni-rich alloys (from 80 to 100 at.% Ni) along sections with constant Ta:W atomic ratios 1:0, 2:1, 1:2, and 0:1. The partial enthalpies and thereby the integral enthalpy of mixing of these ternary alloys are calculated from the partial enthalpies of dissolution using SGTE Gibbs energies for pure elements as reference. The obtained thermochemical data confirm that in the investigated Ni-rich alloys the binary interactions between Ta and W as well as the ternary Ni-Ta-W interactions are negligibly small. Due to this the variation of the integral enthalpy of mixing of the ternary alloys is well described as linear combination of the constituent Ni-Ta and Ni-W binaries. Such behaviour of the ternary liquid alloys is related to a very low probability of new ternary stable phases to occur in solid state. This prediction is confirmed by differential thermal analysis, scanning electron microscopy, and transmission electron microscopy of the as-solidified and annealed samples obtained as last alloy compositions in the series of calorimetric dissolution. (orig.)

  2. The excess enthalpies of liquid Ge-Pb-Te alloys

    International Nuclear Information System (INIS)

    Blachnik, R.; Binder, J.; Schlieper, A.

    1997-01-01

    The excess enthalpies of liquid alloys in the ternary system Ge-Pb-Te were determined at 1210 K in a heat flow calorimeter for five sections Ge y Pb 1-y -Te with y = 0.2, 0.4, 0.5, 0.6 and 0.8 and at 1153 K for Ge 0.5 Pb 0.5 -Te. The enthalpy surface in the ternary system is determined by a valley of exothermic minima, stretching from an exothermic minimum at the composition GeTe to one at the composition PbTe in the respective binaries. The excess enthalpies in the limiting metallic binary were adapted with the Redlich-Kister formalism. For the description of the thermodynamic functions in the ternary system the equation of Bonnier was taken using ternary coefficients. The calculated curves are in good agreement with the experimental data. (orig.)

  3. Investigation of new type Cu-Hf-Al bulk glassy alloys

    International Nuclear Information System (INIS)

    Nagy, E; Ronto, V; Solyom, J; Roosz, A

    2009-01-01

    In the last years new type Cu-Hf-Al ternary alloys were developed with high glass forming ability and ductility. The addition of Al to Cu-Hf alloys results in improvements in glass formation, thermal stability and mechanical properties of these alloys. We have investigated new Cu-based bulk amorphous alloys in Cu-Hf-Al ternary system. The alloys with Cu 49 Hf 42 Al 9 , Cu 46 Hf 45 Al 9 , Cu 50 Hf 42.5 Al 7.5 and Cu 50 Hf 45 Al 5 compositions were prepared by arc melting. The samples were made by centrifugal casting and were investigated by X-ray diffraction method. Thermodynamic properties were examined by differential scanning calorimetry and the structure of the crystallising phases by scanning electron microscopy. The determination of liquidus temperatures of alloys were measured by differential thermal analysis.

  4. A study of phase transformations in complex matallic alloys Al73Mn23Pd4 and Al73Mn21Pd6

    Czech Academy of Sciences Publication Activity Database

    Priputen, P.; Černičková, I.; Kusý, M.; Illeková, E.; Švec, P.; Buršík, Jiří; Svoboda, Milan; Dolinšek, J.; Janovec, J.

    2011-01-01

    Roč. 465, - (2011), s. 302-305 ISSN 1013-9826 Institutional research plan: CEZ:AV0Z20410507 Keywords : ternary alloy system * phase transformation * DTA/SEM Subject RIV: BM - Solid Matter Physics ; Magnetism

  5. Undercooling and demixing of copper-based alloys

    DEFF Research Database (Denmark)

    Kolbe, M.; Brillo, J.; Egry, I.

    2006-01-01

    Since the beginning of materials science research under microgravity conditions immiscible alloys have been an interesting subject. New possibilities to investigate such systems are offered by containerless processing techniques. Of particular interest is the ternary system Cu-Fe-Co, and its...

  6. Interstitial void structure in Cu Sn liquid alloy as revealed from reverse Monte Carlo modelling

    Science.gov (United States)

    Hoyer, W.; Kleinhempel, R.; Lorinczi, A.; Pohlers, A.; Popescu, M.; Sava, F.

    2005-02-01

    A model for the structure of copper-tin liquid alloy has been developed using the standard reverse Monte Carlo method. The interstitial void structure (size distribution) was analysed. The effects of various kinds of voids (small size and large size) on the interference function and radial distribution function were investigated. Predictions related to the formation of some ternary alloys by filling the interstices of the basic alloy were advanced.

  7. Reduction in thermal conductivity of Bi–Te alloys through grain ...

    Indian Academy of Sciences (India)

    Ternary alloys of thermoelectric materials Bi–Sb–Te and Bi–Se–Te of molecular formula, Bi0.5Sb1.5Te3 ( type) and Bi0.36Se0.064Te0.576 ( type), were prepared by mechanical alloying method. The preparation of materials by mechanical alloying method has effectively reduced the thermal conductivity by generating a ...

  8. Alloy materials

    Energy Technology Data Exchange (ETDEWEB)

    Hans Thieme, Cornelis Leo (Westborough, MA); Thompson, Elliott D. (Coventry, RI); Fritzemeier, Leslie G. (Acton, MA); Cameron, Robert D. (Franklin, MA); Siegal, Edward J. (Malden, MA)

    2002-01-01

    An alloy that contains at least two metals and can be used as a substrate for a superconductor is disclosed. The alloy can contain an oxide former. The alloy can have a biaxial or cube texture. The substrate can be used in a multilayer superconductor, which can further include one or more buffer layers disposed between the substrate and the superconductor material. The alloys can be made a by process that involves first rolling the alloy then annealing the alloy. A relatively large volume percentage of the alloy can be formed of grains having a biaxial or cube texture.

  9. Calculation of the thermodynamic properties of liquid Ag–In–Sb alloys

    Directory of Open Access Journals (Sweden)

    DRAGANA ZIVKOVIC

    2006-03-01

    Full Text Available The results of calculations of the thermodynamic properties of liquid Ag–In–Sb alloys are presented in this paper. The Redlich–Kister–Muggianu model was used for the calculations. Based on known thermodynamic data for constitutive binary systems and available experimental data for the investigated ternary system, the ternary interaction parameter for the liquid phase in the temperature range 1000–1200 K was determined. Comparison between experimental and calculated results showed their good mutual agreement.

  10. Insight of magnesium alloys and composites for orthopedic implant applications – a review

    Directory of Open Access Journals (Sweden)

    R Radha

    2017-09-01

    Full Text Available Magnesium (Mg and its alloys have been widely researched for orthopedic applications recently. Mg alloys have stupendous advantages over the commercially available stainless steel, Co-Cr-Ni alloy and titanium implants. Till date, extensive mechanical, in-vitro and in-vivo studies have been done to improve the biomedical performance of Mg alloys through alloying, processing conditions, surface modification etc. This review comprehensively describes the strategies for improving the mechanical and degradation performance of Mg alloys through properly tailoring the composition of alloying elements, reinforcements and processing techniques. It also highlights the status and progress of research in to (i the selection of nutrient elements for alloying, reinforcement and its effects (ii type of Mg alloy system (binary, ternary and quaternary and composites (iii grain refinement for strengthening through severe plastic deformation techniques. Furthermore it also emphasizes on the importance of Mg composites with regard to hard tissue applications.

  11. Characterization of the Ni-45wt% Ti shape memory alloy rapidly solidified; Caracterizacao da liga Ni-45wt%Ti com efeito de memoria de forma solidificadas rapidamente

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, G.C.S.; Castro, W.B. de; Araujo, C.J. de, E-mail: walman@dem.ufcg.edu.b [Universidade Federal de Campina Grande (UAEM/UFCG), PB (Brazil). Unidade Academica de Engenharia Mecanica

    2010-07-01

    One important challenge of microsystems design is the implementation of miniaturized actuation principles efficient at the micro-scale. Shape memory alloys (SMAs) have early on been considered as a potential solution to this problem as these materials offer attractive properties like a high-power to weight ratio, large deformation and the capability to be processed at the micro-scale. shape memory characteristics of Ni-45wt%Ti alloy ribbons prepared by melt spinning were investigated by means of differential scanning calorimetry and X-ray. In these experiments particular attention has been paid to change the velocity of cooling wheel from 30 to 50 m/s. Then the cooling rates of ribbons were controlled. The effect of this cooling rate on martensitic transformation behaviors and structure are discussed. (author)

  12. Design of lead-free candidate alloys for high-temperature soldering based on the Au–Sn system

    DEFF Research Database (Denmark)

    Chidambaram, Vivek; Hattel, Jesper Henri; Hald, John

    2010-01-01

    of the Au–Sn binary system were explored in this work. Furthermore, the effects of thermal aging on the microstructure and microhardness of these promising Au–Sn based ternary alloys were investigated. For this purpose, the candidate alloys were aged at a lower temperature, 150°C for up to 1week...

  13. True ternary fission of 252Cf

    International Nuclear Information System (INIS)

    Vijayaraghavan, K.R.; Balasubramaniam, M.; Oertzen, W. von

    2014-01-01

    Splitting of heavy radioactive nucleus into three fragments is known as ternary fission. If the size of the fragments are almost equal it is referred to as true ternary fission. Recently, Yu. V. Pyatkov et al observed/reported the experimental observation of true ternary fission in 252 Cf. In this work, the possibilities of different true ternary fission modes of 252 Cf through potential energy surface (PES) calculations based on three cluster model (TCM) are discussed. In TCM a condition on the mass numbers of the fission fragments is implied as A 1 ≥ A 2 ≥ A 3 in order to avoid repetition of combinations. Due to this condition, the values of Z 3 vary from 0 to 36 and Z 2 vary from 16 to 51. Of the different pairs having similar (Z 2 , Z 3 ) with different potential energy, a pair possessing minimum potential energy is chosen. Thus identified favourable combinations are plotted. For the PES calculations the arrangement of the fragments is considered in the order of A 1 +A 2 +A 3 . i.e. the heavy and the lightest fragments are kept at the ends. It is seen that the deepest minimum in the PES occurs for Z 3 =2 labelled as (Z 2 ; 2) indicating He accompanied breakup as the most favourable one. Of which, the breakup with Z 2 around 46 to 48 is the least (shown by dashed (Z 1 = 50) and dotted (Z 1 = 52) lines indicating a constant Z 1 value). The other notable minima in the PES are labelled and they correspond to the (Z 2 , Z 3 ) pairs viz., (20, 20), (28, 20), (28, 28) and (32, 32). Of these four minima, the first three are associated with the magic numbers 20 and 28. For Z 3 =20, there are two minimums at (20,20) and (28,20) among them (28,20) is the lowest minimum through which the minimum-path passes, and it is the ternary decay observed by Yu. V. Pyatkov et al. The fourth minima is the most interesting due to the fact that it corresponds to true ternary fission mode with Z 2 =32, Z 3 =32 and Z 1 =34. The minimum potential energy path also goes through this true

  14. A Josephson ternary associative memory cell

    International Nuclear Information System (INIS)

    Morisue, M.; Suzuki, K.

    1989-01-01

    This paper describes a three-valued content addressable memory cell using a Josephson complementary ternary logic circuit named as JCTL. The memory cell proposed here can perform three operations of searching, writing and reading in ternary logic system. The principle of the memory circuit is illustrated in detail by using the threshold-characteristics of the JCTL. In order to investigate how a high performance operation can be achieved, computer simulations have been made. Simulation results show that the cycle time of memory operation is 120psec, power consumption is about 0.5 μW/cell and tolerances of writing and reading operation are +-15% and +-24%, respectively

  15. Grain refinement of zinc-aluminium alloys

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2006-01-01

    It is now well-established that the structure of the zinc-aluminum die casting alloys can be modified by the binary Al-Ti or the ternary Al-Ti-B master alloys. in this paper, grain refinement of zinc-aluminum alloys by rare earth materials is reviewed and discussed. The importance of grain refining of these alloys and parameters affecting it are presented and discussed. These include parameters related to the Zn-Al alloys cast, parameters related to the grain refining elements or alloys and parameters related to the process. The effect of addition of other alloying elements e.g. Zr either alone or in the presence of the main grain refiners Ti or Ti + B on the grain refining efficiency is also reviewed and discussed. Furthermore, based on the grain refinement and the parameters affecting it, a criterion for selection of the optimum grain refiner is suggested. Finally, the recent research work on the effect of grain refiners on the mechanical behaviour, impact strength, wear resistance, and fatigue life of these alloys are presented and discussed. (author)

  16. Heat storage in alloy transformations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Birchenall, C E; Gueceri, S I; Farkas, D; Labdon, M B; Nagaswami, N; Pregger, B

    1981-03-01

    A study conducted to determine the feasibility of using metal alloys as thermal energy storage media is described. The study had the following major elements: (1) the identification of congruently transforming alloys and thermochemical property measurements, (2) the development of a precise and convenient method for measuring volume change during phase transformation and thermal expansion coefficients, (3) the development of a numerical modeling routine for calculating heat flow in cylindrical heat exchangers containing phase-change materials, and (4) the identification of materials that could be used to contain the metal alloys. The elements selected as candidate media were limited to aluminum, copper, magnesium, silicon, zinc, calcium, and phosphorus on the basis of low cost and latent heat of transformation. Several new eutectic alloys and ternary intermetallic phases have been determined. A new method employing x-ray absorption techniques was developed to determine the coefficients of thermal expansion of both the solid and liquid phases and the volume change during phase transformation from data that are obtained during one continuous experimental test. The method and apparatus are discussed and the experimental results are presented. The development of the numerical modeling method is presented and results are discussed for both salt and metal alloy phase-change media. Candidate materials were evaluated to determine suitable materials for containment of the metal alloys. Graphite was used to contain the alloys during the volume change measurements. Silicon carbide has been identified as a promising containment material and surface-coated iron alloys were considered.

  17. Heat storage in alloy transformations

    Science.gov (United States)

    Birchenall, C. E.

    1980-01-01

    Heats of transformation of eutectic alloys were measured for many binary and ternary systems by differential scanning calorimetry and thermal analysis. Only the relatively cheap and plentiful elements Mg, Al, Si, P, Ca, Cu, Zn were considered. A method for measuring volume change during transformation was developed using x-ray absorption in a confined sample. Thermal expansion coefficients of both solid and liquid states of aluminum and of its eutectics with copper and with silicon also were determined. Preliminary evaluation of containment materials lead to the selection of silicon carbide as the initial material for study. Possible applications of alloy PCMs for heat storage in conventional and solar central power stations, small solar receivers and industrial furnace operations are under consideration.

  18. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  19. Nb-Based Nb-Al-Fe Alloys: Solidification Behavior and High-Temperature Phase Equilibria

    Science.gov (United States)

    Stein, Frank; Philips, Noah

    2018-03-01

    High-melting Nb-based alloys hold significant promise for the development of novel high-temperature materials for structural applications. In order to understand the effect of alloying elements Al and Fe, the Nb-rich part of the ternary Nb-Al-Fe system was investigated. A series of Nb-rich ternary alloys were synthesized from high-purity Nb, Al, and Fe metals by arc melting. Solidification paths were identified and the liquidus surface of the Nb corner of the ternary system was established by analysis of the as-melted microstructures and thermal analysis. Complementary analysis of heat-treated samples yielded isothermal sections at 1723 K and 1873 K (1450 °C and 1600 °C).

  20. Investigation of as-cast alloys in the Pt-Al-Cr system

    International Nuclear Information System (INIS)

    Suess, R.; Cornish, L.A.; Witcomb, M.J.

    2010-01-01

    Platinum-based alloys are being developed which have microstructures that are analogous to the γ/γ' microstructure of the nickel-based superalloys. These Pt-based alloys have the potential to be used for high-temperature applications. The ternary Pt-Al-Cr system was investigated as part of the continued development of a thermodynamic database for the Pt-Al-Cr-Ru system. Scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analyses were used to obtain phase equilibria data. The alloys were studied in the as-cast condition. A solidification projection was constructed and a liquidus surface derived. It was concluded that all phase regions were identified correctly since the results were self-consistent. Three ternary phases and 21 ternary invariant reactions were identified.

  1. Size effects in band gap bowing in nitride semiconducting alloys

    DEFF Research Database (Denmark)

    Gorczyca, I.; Suski, T.; Christensen, Niels Egede

    2011-01-01

    Chemical and size contributions to the band gap bowing of nitride semiconducting alloys (InxGa1-xN, InxAl1-xN, and AlxGa1-xN) are analyzed. It is shown that the band gap deformation potentials of the binary constituents determine the gap bowing in the ternary alloys. The particularly large gap bo...... bowing in In-containing nitride alloys can be explained by specific properties of InN, which do not follow trends observed in several other binaries....

  2. Indacenodithienothiophene-Based Ternary Organic Solar Cells

    International Nuclear Information System (INIS)

    Gasparini, Nicola; García-Rodríguez, Amaranda; Prosa, Mario; Bayseç, Şebnem; Palma-Cando, Alex; Katsouras, Athanasios; Avgeropoulos, Apostolos; Pagona, Georgia; Gregoriou, Vasilis G.; Chochos, Christos L.; Allard, Sybille; Scherf, Ulrich; Brabec, Christoph J.; Ameri, Tayebeh

    2017-01-01

    One of the key aspects to achieve high efficiency in ternary bulk-hetorojunction solar cells is the physical and chemical compatibility between the donor materials. Here, we report the synthesis of a novel conjugated polymer (P1) containing alternating pyridyl[2,1,3]thiadiazole between two different donor fragments, dithienosilole and indacenodithienothiophene (IDTT), used as a sensitizer in a host system of indacenodithieno[3,2-b]thiophene,2,3-bis(3-(octyloxy)phenyl)quinoxaline (PIDTTQ) and [6,6]-phenyl C 70 butyric acid methyl ester (PC 71 BM). We found that the use of the same IDTT unit in the host and guest materials does not lead to significant changes in the morphology of the ternary blend compared to the host binary. With the complementary use of optoelectronic characterizations, we found that the ternary cells suffer from a lower mobility-lifetime (μτ) product, adversely impacting the fill factor. However, the significant light harvesting in the near infrared region improvement, compensating the transport losses, results in an overall power conversion efficiency enhancement of ~7% for ternary blends as compared to the PIDTTQ:PC 71 BM devices.

  3. Angular distribution in ternary cold fission

    International Nuclear Information System (INIS)

    Delion, D.S.; J.W. Goethe Univ., Frankfurt; Sandulescu, A.; J.W. Goethe Univ., Frankfurt; Greiner, W.

    2003-01-01

    We describe the spontaneous ternary cold fission of 252 Cf, accompanied by 4 He, 10 Be and 14 C. The light cluster decays from the first resonant eigenstate in the Coulomb potential plus a harmonic oscillator potential. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. (author)

  4. The use of ternary mixtures in concrete.

    Science.gov (United States)

    2014-05-01

    This manual is a summary of the findings of a comprehensive study. Its purpose is to provide engineers with the information they need to make educated decisions on the use of ternary mixtures for constructing concrete structures. It discusses the eff...

  5. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    to binary metallic glasses. They are of interest since third element can modify the physical properties of binary metallic glasses and can also be used as a probe to study the host. ..... conducting nature in the present case. When we. Figure 6. Variation of transition temperature (TC) with valance (Z) of ternary metallic glasses.

  6. Self-triggered coordination with ternary controllers

    NARCIS (Netherlands)

    De Persis, Claudio; Frasca, Paolo

    2012-01-01

    This paper regards coordination of networked systems with ternary controllers. We develop a hybrid coordination system which implements a self-triggered communication policy, based on polling the neighbors upon need. We prove that the proposed scheme ensures finite-time convergence to a neighborhood

  7. The isothermal section at 500 deg. C of the Gd-Tb-Ga ternary system

    International Nuclear Information System (INIS)

    Li, J.Q.; Jian, Y.X.; Ao, W.Q.; Zhuang, Y.H.; He, W.

    2006-01-01

    Phase equilibria in the Gd-Tb-Ga ternary system at 500 deg. C were investigated by X-ray powder diffraction and differential scanning calorimetry. The binary compounds, Gd 5 Ga 3 , Gd 3 Ga 2 , GdGa, GdGa 2 , Tb 5 Ga 3 , TbGa, TbGa 2 and TbGa 3 have been confirmed at 500 deg. C. No ternary compound was found in this system. The isothermal section of this system at 500 deg. C was constructed. It is composed of 7 single-phase regions, 8 two-phase regions and 2 three-phase regions. Four ternary continuous solid solutions (Gd, Tb), (Gd, Tb) 5 Ga 3 , (Gd, Tb)Ga, (Gd, Tb)Ga 2 were formed in this isothermal section. The maximum solid solubilities of Ga in (Gd, Tb) at 500 deg. C is 5.0 at.%. The homogeneity range of (Gd, Tb)Ga 2 is from 20 to 33.3 at.% Ga in Gd-Ga side but limited in Tb-Ga side. The solid solubilities of Ga in the other phases cannot be detected. The Curie temperatures of the Gd 0.6 Tb 0.4-x Ga x alloys increase from 270 to 298 K as x increases from 0 to 0.03

  8. Design of a novel quantum reversible ternary up-counter

    Science.gov (United States)

    Houshmand, Pouran; Haghparast, Majid

    2015-08-01

    Reversible logic has been recently considered as an interesting and important issue in designing combinational and sequential circuits. The combination of reversible logic and multi-valued logic can improve power dissipation, time and space utilization rate of designed circuits. Only few works have been reported about sequential reversible circuits and almost there are no paper exhibited about quantum ternary reversible counter. In this paper, first we designed 2-qutrit and 3-qutrit quantum reversible ternary up-counters using quantum ternary reversible T-flip-flop and quantum reversible ternary gates. Then we proposed generalized quantum reversible ternary n-qutrit up-counter. We also introduced a new approach for designing any type of n-qutrit ternary and reversible counter. According to the results, we can conclude that applying second approach quantum reversible ternary up-counter is better than the others.

  9. Grain refinement of aluminum and its alloys

    International Nuclear Information System (INIS)

    Zaid, A.I.O.

    2001-01-01

    Grain refinement of aluminum and its alloys by the binary Al-Ti and Ternary Al-Ti-B master alloys is reviewed and discussed. The importance of grain refining to the cast industry and the parameters affecting it are presented and discussed. These include parameters related to the cast, parameters related to the grain refining alloy and parameters related to the process. The different mechanisms, suggested in the literature for the process of grain refining are presented and discussed, from which it is found that although the mechanism of refining by the binary Al-Ti is well established the mechanism of grain refining by the ternary Al-Ti-B is still a controversial matter and some research work is still needed in this area. The effect of the addition of other alloying elements in the presence of the grain refiner on the grain refining efficiency is also reviewed and discussed. It is found that some elements e.g. V, Mo, C improves the grain refining efficiency, whereas other elements e.g. Cr, Zr, Ta poisons the grain refinement. Based on the parameters affecting the grain refinement and its mechanism, a criterion for selection of the optimum grain refiner is forwarded and discussed. (author)

  10. Simulation of Concurrent Precipitation of Two Strengthening Phases in Magnesium Alloys

    Science.gov (United States)

    Sun, Weihua; Zhang, Chuan; Klarner, Andrew D.; Cao, Weisheng; Luo, Alan A.

    The precipitation kinetics and microtructure in Mg-Sn binary and Mg-Al-Sn ternary alloys are simulated using PanPrecipitation coupled with Mg thermodynamic database and a newly established mobility database of the Mg-Al-Sn ternary system. Both Mg2Sn and Mg17Al12 precipitates are considered in this work. The obtained kinetic parameters for these two precipitates can be used in the simulation of both individual and concurrent precipitations of Mg17Al12 and Mg2Sn in Mg-Al-Sn alloys. The simulated microstructure evolution, such as the particle size and number density, are in agreement with experimental data.

  11. Rapid solidification of Ni{sub 50}Nb{sub 28}Zr{sub 22} glass former alloy through suction-casting; Solidificacao rapida da liga formadora de fase amorfa Ni{sub 50}Nb{sub 28}Zr{sub 22} atraves de fundicao em coquilha por succao

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, M.I.; Santos, F.S.; Bolfarini, C.; Botta Filho, W.J.; Kiminami, C.S., E-mail: issao16@gmail.co [Universidade Federal de Sao Carlos (DEMa/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2010-07-01

    To select new alloys with high glass forming ability (GFA) to present amorphous structure in millimeter scale, several semi-empirical models have been developed. In the present work, a new alloy, Ni{sub 50}Nb{sub 28}Zr{sub 22}d, was designed based on the combination of topological instability lambda (A) criterion and electronegativity difference ({Delta}e). The alloy was rapidly solidified in a bulk wedge sample by cooper mold suction casting in order to investigate its amorphization. The sample was characterized by the combination of scanning electron microscopy (MEV), X-ray diffraction (XRD) and differential scanning calorimeter (DSC). For the minimum thickness of 200 {mu}m analyzed, it was found that the alloy did not show a totally amorphous structure. Factor such as low cooling rate, existence of oxides on the surface of the elements and presence of oxygen in the atmosphere of equipment did not allowed the achievement of higher amorphous thickness. (author)

  12. Electronic modification effects induced by Fe in Pt-Ru-Fe ternary catalyst on the electrooxidation of CO/H₂ and methanol.

    Science.gov (United States)

    Kim, Taeyoon; Kobayashi, Koichi; Take, Tetsuo; Nagai, Masayuki

    2012-01-01

    Electro-oxidation of CO/H₂ and methanol was performed over a carbon supported Pt-Ru-Fe ternary alloy catalyst prepared via the conventional NaBH₄ reduction method. Physicochemical and electrochemical measurements were used to elucidate the respective roles of Ru and Fe in the ternary catalyst, revealing synergistic effects in the Pt-Ru-Fe catalyst on the electro-oxidation of CO/H₂ and methanol. The methanol oxidation activity of Pt₃Ru₂Fe/C was ca. 2.5 times higher than that of PtRu/C at 0.45 V vs. RHE as a result of enhanced CO tolerance. The enhanced CO tolerance of the Pt-Ru-Fe ternary alloy catalysts was derived from the reaction between the high mobility, weakly adsorbed CO on the Pt site that was electronically modified by alloying with Fe and adsorbed water species on the Ru site. This combination of features produced an improvement in the electro-oxidation of CO/H₂ and methanol at lower potential. On the basis of the data, it was proposed that the addition of a water activator such as Ru is indispensible in the design of multicomponent alloy catalysts for methanol oxidation, and the additional effect derived from an electronic modifier is an important factor for improving the CO and methanol oxidation activity of the catalyst containing the water activator.

  13. Contribution to the study of the Fe-Nb-C ternary system

    Science.gov (United States)

    Haddad, F.; Amara, S. E.; Kesri, R.; Hamar-Thibault, S.

    2004-12-01

    In the present paper, solidification sequences are proposed in relation to the observed microstructures for Fe-Nb-C iron based ternary alloys. These alloys are arc melted and characterised by means of differential thermal analysis, scanning electronic microscopy and by quantitative electron probe microanalysis. Thus, an invariant eutectic ternary reaction L ≤ftrightarrow γ + NbC1-x + Fe3C is proposed at 1140°C. Dans cet article, les séquences de solidification sont proposes en relation avec les microstructures observées pour une famille d’alliages ternaires base fer Fe-Nb-C. Ces alliages ont été élaborés dans un four à arc et caractérisés par Analyse Thermique Différentielle, Microscopie Electronique à Balayage et Microsonde Electronique. Ainsi, une réaction invariante ternaire L ≤ftrightarrow γ + NbC1-x + Fe3C est proposée à 1140 °C.

  14. Thermal aging effects in refractory metal alloys

    Science.gov (United States)

    Stephens, Joseph R.

    1987-01-01

    The alloys of niobium and tantalum are attractive from a strength and compatibility viewpoint for high operating temperatures required in materials for fuel cladding, liquid metal transfer, and heat pipe applications in space power systems that will supply from 100 kWe to multi-megawatts for advanced space systems. To meet the system requirements, operating temperatures ranging from 1100 to 1600 K have been proposed. Expected lives of these space power systems are from 7 to 10 yr. A program is conducted at NASA Lewis to determine the effects of long-term, high-temperature exposure on the microstructural stability of several commercial tantalum and niobium alloys. Variables studied in the investigation include alloy composition, pre-age annealing temperature, aging time, temperature, and environment (lithium or vacuum), welding, and hydrogen doping. Alloys are investigated by means of cryogenic bend tests and tensile tests. Results show that the combination of tungsten and hafnium or zirconium found in commercial alloys such as T-111 and Cb-752 can lead to aging embrittlement and increased susceptibility to hydrogen embrittlement of ternary and more complex alloys. Modification of alloy composition helps to eliminate the embrittlement problem.

  15. Morphological characteristic of the conventional and melt-spun Al-10Ni-5.6Cu (in wt.%) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Karakoese, Ercan [Erciyes University, Institute of Science and Technology, Department of Physics, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Erciyes University, Faculty of Arts and Sciences, Department of Physics, 38039 Kayseri (Turkey)

    2009-12-15

    The Al-10Ni-5.6Cu alloy was prepared by conventional casting and further processed melt-spinning technique. The resulting conventional cast and melt-spun ribbons were characterized using X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry and microhardness techniques. The X-ray diffraction analysis indicated that ingot samples were {alpha}-Al, intermetallic Al{sub 3}Ni and Al{sub 2}Cu phases. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. Al-10Ni-5.6Cu ribbons reveal a very fine cellular structure with intermetallic Al{sub 3}Ni particles. Moreover, at high solidification rates the melt-spun ribbons have a polygonal structure dispersed in a supersaturated aluminum matrix. The differential scanning calorimetry measurements revealed that exothermic reaction was between 290 deg. C and 440 deg. C which are more pronounced in the ternary Al-10Ni-5.6Cu alloy.

  16. Morphological characteristic of the conventional and melt-spun Al-10Ni-5.6Cu (in wt.%) alloy

    International Nuclear Information System (INIS)

    Karakoese, Ercan; Keskin, Mustafa

    2009-01-01

    The Al-10Ni-5.6Cu alloy was prepared by conventional casting and further processed melt-spinning technique. The resulting conventional cast and melt-spun ribbons were characterized using X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry and microhardness techniques. The X-ray diffraction analysis indicated that ingot samples were α-Al, intermetallic Al 3 Ni and Al 2 Cu phases. The optical microscopy and scanning electron microscopy results show that the microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. Al-10Ni-5.6Cu ribbons reveal a very fine cellular structure with intermetallic Al 3 Ni particles. Moreover, at high solidification rates the melt-spun ribbons have a polygonal structure dispersed in a supersaturated aluminum matrix. The differential scanning calorimetry measurements revealed that exothermic reaction was between 290 deg. C and 440 deg. C which are more pronounced in the ternary Al-10Ni-5.6Cu alloy.

  17. Influence of polymer compatibility on the open-circuit voltage in ternary blend bulk heterojunction solar cells.

    Science.gov (United States)

    Khlyabich, Petr P; Rudenko, Andrey E; Street, Robert A; Thompson, Barry C

    2014-07-09

    The evolution of the open-circuit voltage (Voc) with composition in ternary blend bulk heterojunction (BHJ) solar cells is correlated with the miscibility of the polymers. Ternary blends based on poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT) and poly(3-hexylthiophene-thiophene-diketopyrrolopyrrole) (P3HTT-DPP-10%) with phenyl-C61-butyric acid methyl ester (PC61BM) acceptor were investigated. The Voc is pinned to the lower value of the P3HTT-DPP-10%:PC61BM binary blend even up to 95% PCDTBT in the polymer fraction. This is in stark contrast to the previously investigated system based on P3HTT-DPP-10%, poly(3-hexylthiophene-co-3-(2-ethylhexyl)thiophene) (P3HT75-co-EHT25), and PC61BM, where the Voc varied regularly across the full composition range, as explained by an organic alloy model, implying strong physical and electronic interaction between the polymers. Photocurrent spectral response (PSR) and external quantum efficiency (EQE) measurements indicate that the present system does not exhibit the hallmarks of alloy formation. Measured values of the surface energies of the polymers support miscibility of P3HTT-DPP-10% with P3HT75-co-EHT25 but not with PCDTBT. Surface energy is proposed as a figure of merit for predicting alloy formation and compositional dependence of the Voc in ternary blend solar cells and miscibility between polymers is proposed as a necessary attribute for polymer pairs that will display alloy behavior.

  18. Development Program for Natural Aging Aluminum Casting Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Geoffrey K. Sigworth

    2004-05-14

    A number of 7xx aluminum casting alloys are based on the ternary Al-Zn-Mg system. These alloys age naturally to high strength at room temperature. A high temperature solution and aging treatment is not required. Consequently, these alloys have the potential to deliver properties nearly equivalent to conventional A356-T6 (Al-Si-Mg) castings, with a significant cost saving. An energy savings is also possible. In spite of these advantages, the 7xx casting alloys are seldom used, primarily because of their reputation for poor castibility. This paper describes the results obtained in a DOE-funded research study of these alloys, which is part of the DOE-OIT ''Cast Metals Industries of the Future'' Program. Suggestions for possible commercial use are also given.

  19. Superconducting state parameters of ternary metallic glasses

    Indian Academy of Sciences (India)

    Administrator

    When used with a suitable form of dialectic screening functions, this potential has also been found to yield good results in computing the SSP of (Ni33Zr67)1–x ..... superconducting nature. Hence, (Ni33Zr67)1–xMx. (M = Ti, V, Co, Cu) ternary metallic glasses exhibit super- conducting nature in the present case. When we.

  20. Equilibrium study for ternary mixtures of biodiesel

    Science.gov (United States)

    Doungsri, S.; Sookkumnerd, T.; Wongkoblap, A.; Nuchitprasittichai, A.

    2017-11-01

    The liquid-liquid equilibrium (LLE) data for the ternary mixtures of methanol + fatty acid methyl ester (FAME) + palm oil and FAME + palm oil + glycerol at various temperatures from 35 to 55°C, the tie lines and binodial curves were also investigated and plotted in the equilibrium curve. The experimental results showed that the binodial curves of methanol + FAME + palm oil depended significantly with temperature while the binodial curves of FAME + palm oil + glycerol illustrated insignificant change with temperatures. The interaction parameters between liquid pair obtained for NRTL (Nonrandom Two-Liquid) and UNIQUAC (Universal Quasi-Chemical Theory) models from the experimental data were also investigated. It was found that the correlated parameters of UNIQUAC model for system of FAME + palm oil + glycerol, denoted as a13 and a31, were 580.42K and -123.69K, respectively, while those for system of methanol + FAME + palm oil, denoted as a42 and a24, were 71.48 K and 965.57K, respectively. The ternary LLE data reported here would be beneficial for engineers and scientists to use for prediction of yield and purity of biodiesel for the production. The UNIQUAC model agreed well with the experimental data of ternary mixtures of biodiesel.

  1. The development of platinum-based alloys and their thermodynamic database

    OpenAIRE

    Cornish L.A.; Hohls J.; Hill P.J.; Prins S.; Süss R.; Compton D.N.

    2002-01-01

    A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr ...

  2. Advanced methods for preparation and characterization of infrared detector materials. [mercury cadmium telluride alloys

    Science.gov (United States)

    Lehoczky, S. L.; Szofran, F. R.

    1981-01-01

    Differential thermal analysis data were obtained on mercury cadmium telluride alloys in order to establish the liquidus temperatures for the various alloy compositions. Preliminary theoretical analyses was performed to establish the ternary phase equilibrium parameters for the metal rich region of the phase diagram. Liquid-solid equilibrium parameters were determined for the pseudobinary alloy system. Phase equilibrium was calculated and Hg(l-x) Cd(x) Te alloys were directionally solidified from pseudobinary melts. Electrical resistivity and Hall coefficient measurements were obtained.

  3. Design of ternary clocked adiabatic static random access memory

    Science.gov (United States)

    Pengjun, Wang; Fengna, Mei

    2011-10-01

    Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions.

  4. Design of ternary clocked adiabatic static random access memory

    International Nuclear Information System (INIS)

    Wang Pengjun; Mei Fengna

    2011-01-01

    Based on multi-valued logic, adiabatic circuits and the structure of ternary static random access memory (SRAM), a design scheme of a novel ternary clocked adiabatic SRAM is presented. The scheme adopts bootstrapped NMOS transistors, and an address decoder, a storage cell and a sense amplifier are charged and discharged in the adiabatic way, so the charges stored in the large switch capacitance of word lines, bit lines and the address decoder can be effectively restored to achieve energy recovery during reading and writing of ternary signals. The PSPICE simulation results indicate that the ternary clocked adiabatic SRAM has a correct logic function and low power consumption. Compared with ternary conventional SRAM, the average power consumption of the ternary adiabatic SRAM saves up to 68% in the same conditions. (semiconductor integrated circuits)

  5. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos.

    Science.gov (United States)

    Chetty, S Shashank; Praneetha, S; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A Vadivel

    2016-05-18

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale "sustainable" MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).

  6. Sustainable, Rapid Synthesis of Bright-Luminescent CuInS2-ZnS Alloyed Nanocrystals: Multistage Nano-xenotoxicity Assessment and Intravital Fluorescence Bioimaging in Zebrafish-Embryos

    Science.gov (United States)

    Chetty, S. Shashank; Praneetha, S.; Basu, Sandeep; Sachidanandan, Chetana; Murugan, A. Vadivel

    2016-05-01

    Near-infrared (NIR) luminescent CuInS2-ZnS alloyed nanocrystals (CIZS-NCs) for highly fluorescence bioimaging have received considerable interest in recent years. Owing, they became a desirable alternative to heavy-metal based-NCs and organic dyes with unique optical properties and low-toxicity for bioimaging and optoelectronic applications. In the present study, bright and robust CIZS-NCs have been synthesized within 5 min, as-high-as 230 °C without requiring any inert-gas atmosphere via microwave-solvothermal (MW-ST) method. Subsequently, the in vitro and in vivo nano-xenotoxicity and cellular uptake of the MUA-functionalized CIZS-NCs were investigated in L929, Vero, MCF7 cell lines and zebrafish-embryos. We observed minimal toxicity and acute teratogenic consequences upto 62.5 μg/ml of the CIZS-NCs in zebrafish-embryos. We also observed spontaneous uptake of the MUA-functionalized CIZS-NCs by 3 dpf older zebrafish-embryos that are evident through bright red fluorescence-emission at a low concentration of 7.8 μg/mL. Hence, we propose that the rapid, low-cost, large-scale “sustainable” MW-ST synthesis of CIZS-NCs, is an ideal bio-nanoprobe with good temporal and spatial resolution for rapid labeling, long-term in vivo tracking and intravital-fluorescence-bioimaging (IVBI).

  7. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    International Nuclear Information System (INIS)

    Ammar, F; Makhlouf, A; Silvestrov, S

    2010-01-01

    In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

  8. Description of light charged particle emission in ternary fission

    International Nuclear Information System (INIS)

    Andreev, A. V.; Adamian, G. G.; Antonenko, N. V.; Kuklin, S. N.; Scheid, W.

    2010-01-01

    We consider the motion of three fragments starting from the scission point of ternary system. In the alpha-accompanied ternary fission the initial conditions are not the free parameters and determined by minimization of potential energy at scission point. In the trajectory calculations the angular distribution and mean value of the kinetic energy of the alpha-particles are well described in the spontaneous ternary fission of 252 Cf. In the Be- and C-accompanied ternary fission we found that the emission of the third particle occurs from one of the heavy fragments after their separation. (authors)

  9. Ternary q-Virasoro-Witt Hom-Nambu-Lie algebras

    Energy Technology Data Exchange (ETDEWEB)

    Ammar, F [Faculte des Sciences, Universite de Sfax, BP 1171, 3000 Sfax (Tunisia); Makhlouf, A [Laboratoire de Mathematiques, Informatique et Applications, Universite de Haute Alsace, 4, rue des Freres Lumiere F-68093 Mulhouse (France); Silvestrov, S, E-mail: Faouzi.Ammar@rnn.fss.t, E-mail: Abdenacer.Makhlouf@uha.f, E-mail: sergei.silvestrov@math.lth.s [Centre for Mathematical Sciences, Lund University, Box 118, SE-221 00 Lund (Sweden)

    2010-07-02

    In this paper we construct ternary q-Virasoro-Witt algebras which q-deform the ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos using su(1, 1) enveloping algebra techniques. The ternary Virasoro-Witt algebras constructed by Curtright, Fairlie and Zachos depend on a parameter and are not Nambu-Lie algebras for all but finitely many values of this parameter. For the parameter values for which the ternary Virasoro-Witt algebras are Nambu-Lie, the corresponding ternary q-Virasoro-Witt algebras constructed in this paper are also Hom-Nambu-Lie because they are obtained from the ternary Nambu-Lie algebras using the composition method. For other parameter values this composition method does not yield a Hom-Nambu-Lie algebra structure for q-Virasoro-Witt algebras. We show however, using a different construction, that the ternary Virasoro-Witt algebras of Curtright, Fairlie and Zachos, as well as the general ternary q-Virasoro-Witt algebras we construct, carry a structure of the ternary Hom-Nambu-Lie algebra for all values of the involved parameters.

  10. Virtual crystal description of III–V semiconductor alloys in the tight binding approach

    International Nuclear Information System (INIS)

    Nestoklon, M O; Benchamekh, R; Voisin, P

    2016-01-01

    We propose a simple and effective approach to construct the empirical tight-binding parameters of ternary alloys in the virtual crystal approximation. This combines a new, compact formulation of the strain parameters and a linear interpolation of the Hamiltonians of binary materials strained to the alloy equilibrium lattice parameter . We show that it is possible to obtain a perfect description of the bandgap bowing of ternary alloys in the InGaAsSb family of materials. Furthermore, this approach is in a good agreement with supercell calculations using the same set of parameters. This scheme opens a way for atomistic modeling of alloy-based quantum wells and quantum wires without extensive supercell calculations. (paper)

  11. Enthalpy of mixing of liquid Ag–Bi–Cu alloys at 1073 K

    International Nuclear Information System (INIS)

    Fima, Przemysław; Flandorfer, Hans

    2014-01-01

    Highlights: • Partial and integral mixing enthalpies of liquid Ag–Bi–Cu alloys were determined. • Integral mixing enthalpies are small and endothermic, similar to limiting binaries. • The ternary data were fitted on the basis of Redlich–Kister–Muggianu model. - Abstract: The Ag–Bi–Cu system is among those ternary systems which have not been fully studied yet, in particular the thermodynamic description of the liquid phase is missing. Partial and integral enthalpies of mixing of liquid ternary Ag–Bi–Cu alloys were determined over a broad composition range along six sections: x(Ag)/x(Bi) = 0.25, 1, 4; x(Ag)/x(Cu) = 1.5; x(Bi)/x(Cu) = 1.86, 4. Measurements were carried out at 1073 K using two Calvet type microcalorimeters and drop calorimetric technique. It was found that integral enthalpies of mixing are small and endothermic, similarly to limiting binary alloys. The ternary data were fitted on the basis of an extended Redlich–Kister–Muggianu model for substitutional solutions. There are no significant additional ternary interactions

  12. Thermal exposure effects on the in vitro degradation and mechanical properties of Mg-Sr and Mg-Ca-Sr biodegradable implant alloys and the role of the microstructure.

    Science.gov (United States)

    Bornapour, M; Celikin, M; Pekguleryuz, M

    2015-01-01

    Magnesium is an attractive biodegradable material for medical applications due to its non-toxicity, low density and good mechanical properties. The fast degradation rate of magnesium can be tailored using alloy design. The combined addition of Sr and Ca results in a good combination of mechanical and corrosion properties; the alloy compositions with the best performance are Mg-0.5Sr and Mg-0.3Sr-0.3Ca. In this study, we investigated an important effect, namely thermal treatment (at 400 °C), on alloy properties. The bio-corrosion of the alloys was analyzed via in vitro corrosion tests in simulated body fluid (SBF); the mechanical properties were studied through tensile, compression and three-point bending tests in two alloy conditions, as-cast and heat-treated. We showed that 8h of heat treatment increases the corrosion rate of Mg-0.5Sr very rapidly and decreases its mechanical strength. The same treatment does not significantly change the properties of Mg-0.3Sr-0.3Ca. An in-depth microstructural investigation via transmission electron microscopy, scanning electron microscopy, electron probe micro-analysis and X-ray diffraction elucidated the effects of the thermal exposure. Microstructural characterization revealed that Mg-0.3Sr-0.3Ca has a new intermetallic phase that is stable after 8h of thermal treatment. Longer thermal exposure (24h) leads to the dissolution of this phase and to its gradual transformation to the equilibrium phase Mg17Sr2, as well as to a loss of mechanical and corrosion properties. The ternary alloy shows better thermal stability than the binary alloy, but the manufacturing processes should aim to not exceed exposure to high temperatures (400 °C) for prolonged periods (over 24 h). Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    Science.gov (United States)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; dos Santos, Jorge F.

    2014-05-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting.

  14. Band alignment and optical absorption in Ga(Sb)N alloys.

    Science.gov (United States)

    Andriotis, Antonis N; Sheetz, R Michael; Richter, Ernst; Menon, Madhu

    2014-02-05

    We extend the theory of band alignment proposed by Harrison to ternary and quaternary heteropolar semiconductors. Combining this with first-principles density functional theory incorporating the LDA/GGA+U formalism (LDA: local density approximation; GGA: generalized gradient approximation) can result in useful electronic structure predictions for new alloys. The practicality of this is demonstrated by application to the Ga(Sbx)N1-x alloys, where the feasibility of water splitting reaction under visible light irradiation is discussed.

  15. Eutectic structures in friction spot welding joint of aluminum alloy to copper

    International Nuclear Information System (INIS)

    Shen, Junjun; Suhuddin, Uceu F. H.; Cardillo, Maria E. B.; Santos, Jorge F. dos

    2014-01-01

    A dissimilar joint of AA5083 Al alloy and copper was produced by friction spot welding. The Al-MgCuAl 2 eutectic in both coupled and divorced manners were found in the weld. At a relatively high temperature, mass transport of Cu due to plastic deformation, material flow, and atomic diffusion, combined with the alloy system of AA5083 are responsible for the ternary eutectic melting

  16. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys

    International Nuclear Information System (INIS)

    Dasgupta, Rupa; Jain, Ashish Kumar; Kumar, Pravir; Hussain, Shahadat; Pandey, Abhishek

    2015-01-01

    are significantly high than conventionally reported except with the addition of Mg in which case no distinct peaks have been recorded. The range of martensite retention is the maximum in ternary Cu–Al–Mn alloys; addition of quaternary elements decreases this range significantly. Presence of Ni delays austenite formation and completion [As and Af] significantly as compared to the ternary alloys; whereas with other additions the As and Af temperatures are brought forward. This means that whereas the alloys without quaternary additions would be better suited for its shape memory properties, ternary alloys would be better suited for higher transition temperatures. The role of different alloying additions has been highlighted in the findings. Variations in properties have been attained due to different additions and improvements attained in terms of higher transformation temperatures and martensite formation due to the alloying additions

  17. Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dasgupta, Rupa, E-mail: rupadasgupta@ampri.res.in; Jain, Ashish Kumar; Kumar, Pravir; Hussain, Shahadat; Pandey, Abhishek

    2015-01-25

    are significantly high than conventionally reported except with the addition of Mg in which case no distinct peaks have been recorded. The range of martensite retention is the maximum in ternary Cu–Al–Mn alloys; addition of quaternary elements decreases this range significantly. Presence of Ni delays austenite formation and completion [As and Af] significantly as compared to the ternary alloys; whereas with other additions the As and Af temperatures are brought forward. This means that whereas the alloys without quaternary additions would be better suited for its shape memory properties, ternary alloys would be better suited for higher transition temperatures. The role of different alloying additions has been highlighted in the findings. Variations in properties have been attained due to different additions and improvements attained in terms of higher transformation temperatures and martensite formation due to the alloying additions.

  18. High performance wood composites based on benzoxazine-epoxy alloys.

    Science.gov (United States)

    Jubsilp, Chanchira; Takeichi, Tsutomu; Hiziroglu, Salim; Rimdusit, Sarawut

    2008-12-01

    Wood-substituted composites from matrices based on ternary mixtures of benzoxazine, epoxy, and phenolic novolac resins (BEP resins) using woodflour (Hevea brasiliensis) as filler are developed. The results reveal that the addition of epoxy resin into benzoxazine resin can lower the liquefying temperature of the ternary systems whereas rheological characterization of the gel points indicates an evident delay of the vitrification time as epoxy content increased. The gelation of the ternary mixtures shows an Arrhenius-typed behavior and the gel time can be well predicted by an Arrhenius equation with activation energy of 35-40kJ/mol. For wood-substituted composites from highly filled BEP alloys i.e. at 70% by weight of woodflour, the reinforcing effect of the woodflour shows a substantial enhancement in the composite stiffness i.e. 8.3GPa of the filled BEP811 vs 5.9GPa of the unfilled BEP811. The relatively high flexural strength of the BEP wood composites up to 70MPa can also be obtained. The outstanding compatibility between the woodflour and the ternary matrices attributed to the modulus and thermal stability enhancement of the wood composites particularly with an increase of the polybenzoxazine fraction in the BEP alloys.

  19. Thermodynamic database of multi-component Mg alloys and its application to solidification and heat treatment

    Directory of Open Access Journals (Sweden)

    Guanglong Xu

    2016-12-01

    Full Text Available An overview about one thermodynamic database of multi-component Mg alloys is given in this work. This thermodynamic database includes thermodynamic descriptions for 145 binary systems and 48 ternary systems in 23-component (Mg–Ag–Al–Ca–Ce–Cu–Fe–Gd–K–La–Li–Mn–Na–Nd–Ni–Pr–Si–Sn–Sr–Th–Y–Zn–Zr system. First, the major computational and experimental tools to establish the thermodynamic database of Mg alloys are briefly described. Subsequently, among the investigated binary and ternary systems, representative binary and ternary systems are shown to demonstrate the major feature of the database. Finally, application of the thermodynamic database to solidification simulation and selection of heat treatment schedule is described.

  20. Composition pathway in Fe–Cu–Ni alloy during coarsening

    International Nuclear Information System (INIS)

    Mukherjee, Rajdip; Nestler, Britta; Choudhury, Abhik

    2013-01-01

    In this work the microstructure evolution for a two phase Fe–Cu–Ni ternary alloy is studied in order to understand the kinetic composition paths during coarsening of precipitates. We have employed a quantitative phase-field model utilizing the CALPHAD database to simulate the temporal evolution of a multi-particle system in a two-dimensional domain. The paths for the far-field matrix and for precipitate average compositions obtained from simulation are found to be rectilinear. The trends are compared with the corresponding sharp interface theory, in the context of an additional degree of freedom for determining the interface compositions due to the Gibbs–Thomson effect in a ternary alloy. (paper)

  1. Composition pathway in Fe-Cu-Ni alloy during coarsening

    Science.gov (United States)

    Mukherjee, Rajdip; Choudhury, Abhik; Nestler, Britta

    2013-10-01

    In this work the microstructure evolution for a two phase Fe-Cu-Ni ternary alloy is studied in order to understand the kinetic composition paths during coarsening of precipitates. We have employed a quantitative phase-field model utilizing the CALPHAD database to simulate the temporal evolution of a multi-particle system in a two-dimensional domain. The paths for the far-field matrix and for precipitate average compositions obtained from simulation are found to be rectilinear. The trends are compared with the corresponding sharp interface theory, in the context of an additional degree of freedom for determining the interface compositions due to the Gibbs-Thomson effect in a ternary alloy.

  2. Solubility of uranium in liquid gallium, indium and their alloys

    International Nuclear Information System (INIS)

    Volkovich, Vladimir A.; Maltsev, Dmitry S.; Yamschikov, Leonid F.; Osipenko, Alexander G.; Kormilitsyn, Mikhail V.

    2014-01-01

    Pyrochemical reprocessing of spent nuclear fuels (SNF) employing molten salts and liquid metals as working media is considered as a possible alternative to the existing liquid extraction (PUREX) processes. Liquid salts and metals allow reprocessing highly irradiated high burn-up fuels with short cooling times, including the fuels of fast neutron reactors. Pyrochemical technology opens a way to practical realization of short closed fuel cycle. Liquid low-melting metals are immiscible with molten salts and can be effectively used for separation (or selective extraction) of SNF components dissolved in fused salts. Binary or ternary alloys of eutectic compositions can be employed to lower the melting point of the metallic phase. However, the information on SNF components behaviour and properties in ternary liquid metal alloys is very scarce

  3. Use of steel and tantalum apparatus for molten Cd-Mg-Zn alloys

    Science.gov (United States)

    Bennett, G. A.; Burris, L., Jr.; Kyle, M. L.; Nelson, P. A.

    1966-01-01

    Steel and tantalum apparatus contains various ternary alloys of cadmium, zinc, and magnesium used in pyrochemical processes for the recovery of uranium-base reactor fuels. These materials exhibit good corrosion resistance at the high temperatures necessary for fuel separation in liquid metal-molten salt solvents.

  4. Low alloy additions of iron, silicon, and aluminum to uranium: a literature survey

    International Nuclear Information System (INIS)

    Ludwig, R.L.

    1980-01-01

    A survey of the literature has been made on the experimental results of small additions of iron, silicon, and aluminum to uranium. Information is also included on the constitution, mechanical properties, heat treatment, and deformation of various binary and ternary alloys. 42 references, 24 figures, 13 tables

  5. Neutron Damage and MAX Phase Ternary Compounds

    International Nuclear Information System (INIS)

    Barsoum, Michael; Hoffman, Elizabeth; Sindelar, Robert; Garcua-Diaz, Brenda; Kohse, Gordon

    2014-01-01

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  6. Dumbbells and onions in ternary nucleation.

    Science.gov (United States)

    Nellas, Ricky B; Chen, Bin; Siepmann, J Ilja

    2007-06-14

    Molecular simulations for a ternary nucleation system (water/n-nonane/1-butanol) demonstrate a more complex nucleation mechanism than previously thought, where critical nuclei with different compositions are present even for a given vapour-phase composition; the spatial distribution in these critical nuclei is heterogeneous and dumbbell and onion motifs are found; in the former, water and nonane nano-droplets are connected through a butanol handle, while in the latter a water core is surrounded by a nonane corona with an interfacial butanol shell.

  7. Neutron Damage and MAX Phase Ternary Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, Michael [Drexel Univ., Philadelphia, PA (United States); Hoffman, Elizabeth [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Sindelar, Robert [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Garcua-Duaz, Brenda [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kohse, Gordon [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-06-17

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  8. Viscometric and thermodynamic studies of interactions in ternary ...

    Indian Academy of Sciences (India)

    Viscometric and thermodynamic studies of interactions in ternary solutions containing sucrose and aqueous alkali metal halides at 293.15, 303.15 and 313.15 K. Reena Gupta Mukhtar Singh ... Keywords. Ternary solutions; interactions of ionic and nonionic solutes; partial molar volumes; sucrosealkali metal halide solutions.

  9. A high-speed interconnect network using ternary logic

    DEFF Research Database (Denmark)

    Madsen, Jens Kargaard; Long, S. I.

    1995-01-01

    This paper describes the design and implementation of a high-speed interconnect network (ICN) for a multiprocessor system using ternary logic. By using ternary logic and a fast point-to-point communication technique called STARI (Self-Timed At Receiver's Input), the communication between...

  10. Density-Driven segregation in Binary and Ternary Granular Systems

    NARCIS (Netherlands)

    Windows-Yule, Kit; Parker, David

    2015-01-01

    We present a first experimental study of density-induced segregation within a three-dimensional, vibrofluidised, ternary granular system. Using Positron Emission Particle Tracking (PEPT), we study the steady-state particle distributions achieved by binary and ternary granular beds under a variety of

  11. Nonswelling alloy

    International Nuclear Information System (INIS)

    Harkness, S.D.

    1975-01-01

    An aluminum alloy containing one weight percent copper has been found to be resistant to void formation and thus is useful in all nuclear applications which currently use aluminum or other aluminum alloys in reactor positions which are subjected to high neutron doses

  12. Alloy nanoparticle synthesis using ionizing radiation

    Science.gov (United States)

    Nenoff, Tina M [Sandia Park, NM; Powers, Dana A [Albuquerque, NM; Zhang, Zhenyuan [Durham, NC

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  13. Solidification processing of intermetallic Nb-Al alloys

    Science.gov (United States)

    Smith, Preston P.; Oliver, Ben F.; Noebe, Ronald D.

    1992-01-01

    Several Nb-Al alloys, including single-phase NbAl3 and the eutectic of Nb2Al and NbAl3, were prepared either by nonconsumable arc melting in Ar or by zone processing in He following initial induction melting and rod casting, and the effect of the solidification route on the microstructure and room-temperature mechanical properties of these alloys was investigated. Automated control procedures and melt conditions for directional solidification of NbAl3 and the Nb2Al/Nb3Al eutectic were developed; high purity and stoichiometry were obtained. The effects of ternary additions of Ti and Ni are described.

  14. Study of Cu-Al-Zn alloys hardness temperature dependence

    International Nuclear Information System (INIS)

    Kurmanova, D.T.; Skakov, M.K.; Melikhov, V.D.

    2001-01-01

    In the paper the results of studies for the Cu-Al-Zn ternary alloys hardness temperature dependence are presented. The method of 'hot hardness' has been used during study of the solid state phase transformations and under determination of the hot stability boundaries. Due to the samples brittleness a hardness temperature dependence definition is possible only from 350-400 deg. C. Sensitivity of the 'hot hardness' method is decreasing within high plasticity range, so the measurements have been carried out only up to 700-800 deg. C. It is shown, that the alloys hardness dependence character from temperature is close to exponential one within the certain structure modification existence domain

  15. Lead activity in Pb-Sb-Bi alloys

    Directory of Open Access Journals (Sweden)

    A. S. Kholkina

    2014-11-01

    Full Text Available The present work is devoted to the study of lead thermodynamic activity in the Pb-Sb-Bi alloys. The method for EMF measurements of the concentration cell: (–Pb|KCl-PbCl2¦¦KCl-PbCl2|Pb-(Sb-Bi(+ was used. The obtained concentration dependences of the galvanic cell EMF are described by linear equations. The lead activity in the ternary liquid-metal alloy demonstrates insignificant negative deviations from the behavior of ideal solutions.

  16. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  17. Nanoscratching of nylon 66-based ternary nanocomposites

    International Nuclear Information System (INIS)

    Dasari, Aravind; Yu Zhongzhen; Mai Yiuwing

    2007-01-01

    The nanoscratch behavior of nylon 66/SEBS-g-MA/clay ternary nanocomposites produced by different blending protocols with contrasting microstructures is studied by using atomic force and transmission electron microscopy. A standard diamond Berkovich indenter is used for scratching and a low load of 1 mN, along with a low sliding velocity of 1 μm s -1 , are employed for this purpose. It is shown that in order to resist penetration it is more important to have exfoliated clay in the continuous nylon matrix during nanoscratching than to have the clay in the dispersed soft rubber domains. The results obtained also explain the preferred usage of ternary nanocomposites compared to binary nanocomposites, particularly nylon 66/exfoliated clay nanocomposites. This research extends current basic knowledge and provides new insights on the nature of nanoscale processes that occur during nanoscratching of polymer nanocomposites. Critical questions are raised on the relationships between the penetration depth and material deformation and damage left behind the moving indenter

  18. Irregular Homogeneity Domains in Ternary Intermetallic Systems

    Directory of Open Access Journals (Sweden)

    Jean-Marc Joubert

    2015-12-01

    Full Text Available Ternary intermetallic A–B–C systems sometimes have unexpected behaviors. The present paper examines situations in which there is a tendency to simultaneously form the compounds ABx, ACx and BCx with the same crystal structure. This causes irregular shapes of the phase homogeneity domains and, from a structural point of view, a complete reversal of site occupancies for the B atom when crossing the homogeneity domain. This work reviews previous studies done in the systems Fe–Nb–Zr, Hf–Mo–Re, Hf–Re–W, Mo–Re–Zr, Re–W–Zr, Cr–Mn–Si, Cr–Mo–Re, and Mo–Ni–Re, and involving the topologically close-packed Laves, χ and σ phases. These systems have been studied using ternary isothermal section determination, DFT calculations, site occupancy measurement using joint X-ray, and neutron diffraction Rietveld refinement. Conclusions are drawn concerning this phenomenon. The paper also reports new experimental or calculated data on Co–Cr–Re and Fe–Nb–Zr systems.

  19. Effect of residual stress relaxation by means of local rapid induction heating on stress corrosion cracking behavior and electrochemical characterization of welded Ti-6Al-4V alloy under slow strain rate test

    Science.gov (United States)

    Liu, Yan; Tang, Shawei; Liu, Guangyi; Sun, Yue; Hu, Jin

    2017-05-01

    In this study, a welded Ti-6Al-4V alloy was treated by means of local rapid induction heating in order to relax the residual stress existed in the weldment. The welded samples were heat treated at the different temperatures. The stress corrosion cracking behavior and electrochemical characterization of the as-welded samples before and after the post weld heat treatment as a function of residual stress were investigated. Electrochemical impedance spectroscopy measurements of the samples under slow strain rate test were performed in a LiCl-methanol solution. The results demonstrated that the residual stress in the as-welded sample was dramatically reduced after the post weld heat treatment, and the residual stress decreased with the increase in the heat treatment temperature. The stress corrosion cracking susceptibility and electrochemical activity of the as-welded sample were significantly reduced after the heat treatment due to the relaxation of the residual stress, which gradually decreased with the decreasing value of the residual stress distributed in the heat treated samples.

  20. Distillation of cadmium from uranium plutonium cadmium alloy

    Science.gov (United States)

    Kato, Tetsuya; Iizuka, Masatoshi; Inoue, Tadashi; Iwai, Takashi; Arai, Yasuo

    2005-04-01

    Uranium-plutonium alloy was prepared by distillation of cadmium from U-Pu-Cd ternary alloy. The initial ternary alloy contained 2.9 wt% U and 8.7 wt% Pu other than Cd, which were recovered by molten salt electrolysis with liquid Cd cathode. The distillation experiments were conducted in 10 g scale of the initial alloy using a small-scale distillation furnace equipped with an evaporator and a condenser in a vacuum vessel. After distillation at 1073 K, the weight of the residue was in good agreement with that of the loaded actinides, where the content of Cd decreased to less than 0.05 wt%. The uranium-plutonium alloy product was recovered without adhering to the yttria crucible. The cross section of the product was observed using electron probe micro-analyzer and it was found to consist of a dense material. Almost all of the evaporated Cd was recovered in the condenser and so enclosed well in the apparatus.

  1. Investigation of sulphides in iron alloys of high purity

    International Nuclear Information System (INIS)

    Wyjadlowski, T.

    1973-01-01

    This research thesis reports the study of the morphology and composition of sulphides in iron alloys with respect to metal composition and to the nature of impurities. In order to understand the specific action of each addition on inclusion morphology, this work has started with high-purity alloys (binary alloys and then ternary alloys). The author studied whether solubility variations would entail either intergranular or intragranular or hybrid iron sulphide precipitation. He examined whether sulphide morphology is depending on thermal treatment, and whether equilibrium precipitates were different in terms of morphology and composition at high and room temperature. He studied the influence of addition elements on sulphide morphology and composition, an important issue as some elements may reduce brittleness. These elements are classified in terms of affinity with sulphur

  2. Structure of nanocomposites of Al–Fe alloys prepared by ...

    Indian Academy of Sciences (India)

    Wintec

    This difference in the product structure can be attributed to the difference in alloying mechanisms in MA and RSP. Keywords. Nanocomposites; Al–Fe; mechanical alloying; rapid solidification; quasicrystalline. 1. Introduction. Al–Fe alloys are attractive for applications at temperatures beyond those normally associated with ...

  3. Controlling the physics and chemistry of binary and ternary praseodymium and cerium oxide systems.

    Science.gov (United States)

    Niu, Gang; Zoellner, Marvin Hartwig; Schroeder, Thomas; Schaefer, Andreas; Jhang, Jin-Hao; Zielasek, Volkmar; Bäumer, Marcus; Wilkens, Henrik; Wollschläger, Joachim; Olbrich, Reinhard; Lammers, Christian; Reichling, Michael

    2015-10-14

    Rare earth praseodymium and cerium oxides have attracted intense research interest in the last few decades, due to their intriguing chemical and physical characteristics. An understanding of the correlation between structure and properties, in particular the surface chemistry, is urgently required for their application in microelectronics, catalysis, optics and other fields. Such an understanding is, however, hampered by the complexity of rare earth oxide materials and experimental methods for their characterisation. Here, we report recent progress in studying high-quality, single crystalline, praseodymium and cerium oxide films as well as ternary alloys grown on Si(111) substrates. Using these well-defined systems and based on a systematic multi-technique surface science approach, the corresponding physical and chemical properties, such as the surface structure, the surface morphology, the bulk-surface interaction and the oxygen storage/release capability, are explored in detail. We show that specifically the crystalline structure and the oxygen stoichiometry of the oxide thin films can be well controlled by the film preparation method. This work leads to a comprehensive understanding of the properties of rare earth oxides and highlights the applications of these versatile materials. Furthermore, methanol adsorption studies are performed on binary and ternary rare earth oxide thin films, demonstrating the feasibility of employing such systems for model catalytic studies. Specifically for ceria systems, we find considerable stability against normal environmental conditions so that they can be considered as a "materials bridge" between surface science models and real catalysts.

  4. Mixing effects in a ternary Hf-Zr-Ni metallic melt

    Science.gov (United States)

    Nowak, B.; Holland-Moritz, D.; Yang, F.; Evenson, Z.; Meyer, A.

    2018-03-01

    We study the effect of the substitution of Zr by Hf on the dynamical behavior in the Zr36Ni64 melt. A reduced measured self-diffusion coefficient and a higher measured melt viscosity for an increased amount of Hf were observed. The ternary Hf10Zr25Ni65 melt, which exhibits a pronounced deviation from Arrhenius behavior over a studied temperature range of 550 K, can be accurately described by the scaling law of mode-coupling theory (MCT) with almost equal parameters for the self-diffusion and the viscosity. Although we only substitute alloy components with a nearly equal atomic size and the measured overall packing fraction remains almost unchanged, the dynamics in Hf10Zr25Ni65 are slower compared to Zr36Ni64 . This corresponds also to a higher critical temperature Tc and might be induced by different chemical interactions in the melts. The increased Tc results in a significantly smaller difference between liquidus and critical temperature Δ TLC=TL-Tc for the ternary melt in comparison with Zr36Ni64 , which may favor the glass formation in the Hf10Zr25Ni65 melt.

  5. Ostwald ripening of decomposed phases in Cu-Ni-Cr alloys

    International Nuclear Information System (INIS)

    Hernandez-Santiago, Felipe; Lopez-Hirata, Victor; Dorantes-Rosales, Hector J.; Saucedo-Munoz, Maribel L.; Gonzalez-Velazquez, Jorge L.; Paniagua-Mercado, Ana Ma.

    2008-01-01

    A study of the coarsening process of the decomposed phases was carried out in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys using transmission electron microscopy. As aging progressed, the morphology of the coherent decomposed Ni-rich phase changed from cuboids to platelets aligned in the Cu-rich matrix directions. Prolonged aging caused the loss of coherency between the decomposed phases and the morphology of the Ni-rich phase changed to ellipsoidal. The variation of mean radius of the coherent decomposed phases with aging time followed the modified LSW theory for thermally activated growth in ternary alloy systems. The linear variation of the density number of precipitates and matrix supersaturation with aging time, also confirmed that the coarsening process followed the modified LSW theory in both alloys. The coarsening rate was faster in the symmetrical Cu-45 wt.% Ni-10 wt.% Cr alloy due to its higher volume fraction of precipitates. The activation energy for thermally activated growth was determined to be about 182 and 102 kJ mol -1 in the Cu-34 wt.% Ni-4 wt.% Cr and Cu-45 wt.% Ni-10 wt.% Cr alloys, respectively. The lower energy for the former alloy seems to be related to an increase in the atomic diffusion process as the chromium content increases. The size distributions of precipitates in the Cu-Ni-Cr alloys were broader and more symmetric than that predicted by the modified LSW theory for ternary alloys

  6. Second phase formation in melt-spun Mg-Ca-Zn alloys

    International Nuclear Information System (INIS)

    Jardim, P.M.; Solorzano, G.; Sande, J.B. Vander

    2004-01-01

    Three ternary alloys based on the Mg-Ca-Zn system were produced by melt spinning in the form of ribbons. The alloys were analyzed by X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) with scanning transmission electron Microscopy (STEM) and scanning electron microscopy (SEM). All the alloys showed a difference in microstructure between the wheel contact side and the free surface side. The second phase found in the three ternary alloys studied was identified as the compound Ca 2 Mg 6 Zn 3 (trigonal with space group P3-bar1c and lattice parameters a=0.97 nm and c=1.0 nm). The alloys thermal behavior was investigated by measuring the changes in microhardness after isochronal aging and only a modest age hardening behavior was observed principally in one of the alloys. The alloys phase stability was also studied by differential scanning calorimetry (DSC) and the results indicate that the melting onset for the three alloys is near 400 deg.C and it decreases with Zn content

  7. Second phase formation in melt-spun Mg-Ca-Zn alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jardim, P.M.; Solorzano, G.; Sande, J.B. Vander

    2004-09-15

    Three ternary alloys based on the Mg-Ca-Zn system were produced by melt spinning in the form of ribbons. The alloys were analyzed by X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) with scanning transmission electron Microscopy (STEM) and scanning electron microscopy (SEM). All the alloys showed a difference in microstructure between the wheel contact side and the free surface side. The second phase found in the three ternary alloys studied was identified as the compound Ca{sub 2}Mg{sub 6}Zn{sub 3} (trigonal with space group P3-bar1c and lattice parameters a=0.97 nm and c=1.0 nm). The alloys thermal behavior was investigated by measuring the changes in microhardness after isochronal aging and only a modest age hardening behavior was observed principally in one of the alloys. The alloys phase stability was also studied by differential scanning calorimetry (DSC) and the results indicate that the melting onset for the three alloys is near 400 deg.C and it decreases with Zn content.

  8. Platinum free ternary electrocatalysts prepared via organic colloidal method for oxygen reduction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rongfang; Liao, Shijun; Fu, Zhiyong [College of Chemistry, South China University of Technology, Guangzhou 510641 (China); Ji, Shan [South Africa Institute for Advanced Materials Chemistry, University of the Western Cape, Cape Town (South Africa)

    2008-04-15

    Novel ternary palladium based alloy catalysts, PdFeIr/C, for oxygen reduction reaction (ORR) have been successfully prepared via an organic colloid method with ethylene glycol as solvent and sodium citrate as complexing agent. The catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray analysis (EDX). Electrochemical activity of the catalysts for ORR was evaluated by steady state polarization measurements, which were carried out on an ultra thin layer rotating disk electrode (RDE). Compared to pure Pd/C and Pd{sub 3}Fe/C, results showed that the ORR activity of PdFeIr/C was highest, and its methanol tolerance was better than Pt/C catalyst. (author)

  9. Preparation and characterization of CBN ternary compounds with nano-structure

    International Nuclear Information System (INIS)

    Xiong, Y.H.; Yang, S.; Xiong, C.S.; Pi, H.L.; Zhang, J.; Ren, Z.M.; Mai, Y.T.; Xu, W.; Dai, G.H.; Song, S.J.; Xiong, J.; Zhang, L.; Xia, Z.C.; Yuan, S.L.

    2006-01-01

    CBN ternary compounds with nano-structure have been prepared directly by a mechanical alloying technique at room temperature. The characteristic and formation mechanism of CBN are discussed. The nano-sheets and nano-layered rods of CBN are observed according to the morphology of scanning electron microscopy. It is substantiated that the microstructure of CBN was closely related to the ball milling time and the ball milling condition according to the results of X-ray diffraction of CBN with different ball milling time. After ball milling for 60 and 90 h, some new diffraction peaks are observed, which implies that some unknown microstructure and phase separation are induced in the reactive ball milling of CBN. The results of XRD are in accordance with that of X-ray photoelectron spectroscopy of CBN before ball milling and after ball milling for 90 h

  10. Direct observation of interface and nanoscale compositional modulation in ternary III-As heterostructure nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Venkatesan, Sriram; Scheu, Christina [Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandstr 5-13(E), 81377 München (Germany); Madsen, Morten H.; Krogstrup, Peter; Johnson, Erik [Nano-Science Center and Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen (Denmark); Schmid, Herbert [INM-Leibniz Institute for New Materials, 66123 Saarbrücken (Germany)

    2013-08-05

    Straight, axial InAs nanowire with multiple segments of Ga{sub x}In{sub 1−x}As was grown. High resolution X-ray energy-dispersive spectroscopy (EDS) mapping reveals the distribution of group III atoms at the axial interfaces and at the sidewalls. Significant Ga enrichment, accompanied by a structural change is observed at the Ga{sub x}In{sub 1−x}As/InAs interfaces and a higher Ga concentration for the early grown Ga{sub x}In{sub 1−x}As segments. The elemental map and EDS line profile infer Ga enrichment at the facet junctions between the sidewalls. The relative chemical potentials of ternary alloys and the thermodynamic driving force for liquid to solid transition explains the growth mechanisms behind the enrichment.

  11. Laser surface alloying on aluminum and its alloys: A review

    Science.gov (United States)

    Chi, Yiming; Gu, Guochao; Yu, Huijun; Chen, Chuanzhong

    2018-01-01

    Aluminum and its alloys have been widely used in aerospace, automotive and transportation industries owing to their excellent properties such as high specific strength, good ductility and light weight. Surface modification is of crucial importance to the surface properties of aluminum and its alloys since high coefficient of friction, wear characteristics and low hardness have limited their long term performance. Laser surface alloying is one of the most effective methods of producing proper microstructure by means of non-equilibrium solidification which results from rapid heating and cooling. In this paper, the influence of different processing parameters, such as laser power and scanning velocity is discussed. The developments of various material systems including ceramics, metals or alloys, and metal matrix composites (MMCs) are reviewed. The microstructure, hardness, wear properties and other behaviors of laser treated layer are analyzed. Besides, the existing problems during laser surface treatment and the corresponding solutions are elucidated and the future developments are predicted.

  12. Quantitative Comparison of Ternary Eutectic Phase-Field Simulations with Analytical 3D Jackson-Hunt Approaches

    Science.gov (United States)

    Steinmetz, Philipp; Kellner, Michael; Hötzer, Johannes; Nestler, Britta

    2018-02-01

    For the analytical description of the relationship between undercoolings, lamellar spacings and growth velocities during the directional solidification of ternary eutectics in 2D and 3D, different extensions based on the theory of Jackson and Hunt are reported in the literature. Besides analytical approaches, the phase-field method has been established to study the spatially complex microstructure evolution during the solidification of eutectic alloys. The understanding of the fundamental mechanisms controlling the morphology development in multiphase, multicomponent systems is of high interest. For this purpose, a comparison is made between the analytical extensions and three-dimensional phase-field simulations of directional solidification in an ideal ternary eutectic system. Based on the observed accordance in two-dimensional validation cases, the experimentally reported, inherently three-dimensional chain-like pattern is investigated in extensive simulation studies. The results are quantitatively compared with the analytical results reported in the literature, and with a newly derived approach which uses equal undercoolings. A good accordance of the undercooling-spacing characteristics between simulations and the analytical Jackson-Hunt apporaches are found. The results show that the applied phase-field model, which is based on the Grand potential approach, is able to describe the analytically predicted relationship between the undercooling and the lamellar arrangements during the directional solidification of a ternary eutectic system in 3D.

  13. Processing and characterization of amorphous magnesium based alloy for application in biomedical implants

    Directory of Open Access Journals (Sweden)

    Telma Blanco Matias

    2014-07-01

    Full Text Available Magnesium-based bulk metallic glasses are attractive due to their single-phase, chemically homogeneous alloy system and the absence of second-phase, which could impair the mechanical properties and corrosion resistance. However, one of the unsolved problems for the manufacturability and the applications of bulk metallic glasses is that their glass-forming ability is very sensitive to the preparation techniques and impurity of components since oxygen in the environment would markedly deteriorate the glass-forming ability. Therefore, the aim of this study was to establish proper processing conditions to obtain a magnesium-based amorphous ternary alloy and its characterization. The final composition was prepared using two binary master alloys by melting in an induction furnace. Carbon steel crucible was used in argon atmosphere with and without addition of SF6 gas in order to minimize the oxygen contamination. The microstructure, amorphous nature, thermal properties and chemical analysis of samples were investigated by scanning electron microscopy (SEM, X-ray diffraction (XRD, differential scanning calorimetry (DSC and inductively coupled plasma emission spectrometry, respectively. The oxygen content of the as-cast samples was chemically analyzed by using carrier gas hot extraction (O/N Analyzer TC-436/LECO and was kept bellow 25 ppm (without SF6 and 10 ppm (with SF6. Bulk samples were produced by rapid cooling in a cooper mold until 1.5 mm thickness, with amorphous structures being observed up to 2.5 mm.

  14. Effects of alloying element and metallurgical structure on semiconducting characteristics of oxide film of zirconium alloy

    International Nuclear Information System (INIS)

    Inagaki, Masahisa; Kanno, Masayosi; Maki, Hideo.

    1991-01-01

    Semiconducting characteristics of oxide films formed on pure Zr, Zr-Sn binary alloy and Zr-Sn-X (X: Fe, Ni or Cr) ternary alloys were evaluated by photo-electrochemical method, in order to make clear the effects of alloying elements on oxidation mechanism of Zr alloy in BWR environment. Oxide films of the alloys showed the characteristics of n-type semiconductor. Maximum photocurrent (I max) was generated by an illumination of monochromatic light with the energy of 5 ∼ 6 eV, i.e. the band gap energy of the Zr alloy oxide was 5 ∼ 6 eV. This value is lower by 2 ∼ 3 eV than the theoretical band gap energy (8 eV) of stoichiometric ZrO 2 . These facts suggest that the generation of I max was resulted from an excitation of electrons trapped with anion vacancies (oxygen vacancies) of non-stoichiometric ZrO 2-x . Therefore, the value of I max is considered to be proportional to the density of anion vacancy. High corrosion resistant alloys showed lower value of I max. The changes of I max, due to change of chemical composition of alloys and due to the change of metallurgical structure, was able to be explained by the valence theory of oxide semiconductor, i.e. the decrease of 1 max was considered to be resulted from the decrease of anion vacancies due to the substitution of divalent cations (Ni 2+ ) and trivalent cations (Fe 3+ , Cr 3+ ) at Zr 4+ cation sites. From these results, it was concluded that oxidation rate of Zr alloy depended on the density of oxygen vacancies in oxide film. (author)

  15. A three-dimensional cellular automaton model for dendritic growth in multi-component alloys

    International Nuclear Information System (INIS)

    Zhang Xianfei; Zhao, Jiuzhou; Jiang, Hongxiang; Zhu, Mingfang

    2012-01-01

    A three-dimensional (3-D) cellular automaton model for dendritic growth in multi-component alloys is developed. The velocity of advance of the solid/liquid (S/L) interface is calculated using the solute conservation relationship at the S/L interface. The effect of interactions between the alloying elements on the diffusion coefficient of solutes in the solid and liquid phases are considered. The model is first validated by comparing with the theoretical predictions for binary and ternary alloys, and then applied to simulate the solidification process of Al–Cu–Mg alloys by a coupling of thermodynamic and kinetic calculations. The numerical results obtained show both the free dendrite growth process as well as the directional solidification process. The calculated secondary dendrite arm spacing in the directionally solidified Al–Cu–Mg alloy is in good agreement with the experimental results. The effect of interactions between the various alloying elements on dendritic growth is discussed.

  16. The development of platinum-based alloys and their thermodynamic database

    Directory of Open Access Journals (Sweden)

    Cornish L.A.

    2002-01-01

    Full Text Available A series of quaternary platinum-based alloys have been demonstrated to exhibit the same two-phase structure as Ni-based superalloys and showed good mechanical properties. The properties of ternary alloys were a good indication that the quaternary alloys, with their better microstructure, will be even better. The quaternary alloy composition has been optimised at Pt84:Al11:Ru2:Cr3 for the best microstructure and hardness. Work has begun on establishing a thermodynamic database for Pt-Al-Ru-Cr alloys, and further work will be done to enhance the mechanical and oxidation properties of the alloys by adding small amounts of other elements to the base composition of Pt84:Al11:Ru2:Cr3.

  17. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.

    Science.gov (United States)

    Song, Chunyan; Wang, Shuhuan; Gui, Yongliang; Cheng, Zihao; Ni, Guolong

    2016-12-06

    Intermetallic compounds are increasingly being expected to be utilized in tribological environments, but to date their implementation is hindered by insufficient ductility at low and medium temperatures. This paper presents a novel multiphase intermetallic alloy with the chemical composition of Mo-40Ni-13Si (at %). Microstructure characterization reveals that a certain amount of ductile Mo phases formed during the solidification process of a ternary Mo-Ni-Si molten alloy, which is beneficial to the improvement of ductility of intermetallic alloys. Tribological properties of the designed alloy-including wear resistance, friction coefficient, and metallic tribological compatibility-were evaluated under dry sliding wear test conditions at room temperature. Results suggest that the multiphase alloy possesses an excellent tribological property, which is attributed to unique microstructural features and thereby a good combination in hardness and ductility. The corresponding wear mechanism is explained by observing the worn surface, subsurface, and wear debris of the alloy, which was found to be soft abrasive wear.

  18. [Construction of Three-Dimensional Isobologram for Ternary Pollutant Mixtures].

    Science.gov (United States)

    2015-12-01

    Tongji University, Shanghai 200092, China) Isobolographic analysis was widely used in the interaction assessment of binary mixtures. However, how to construct a three-dimensional (3D) isobologram for the assessment of toxicity interaction within ternary mixtures is still not reported up to date. The main purpose of this paper is to develop a 3D isobologram where the relative concentrations of three components are acted as three coordinate axes in 3D space to examine the toxicity interaction within ternary mixtures. Taking six commonly used pesticides in China, including three herbicides (2, 4-D, desmetryne and simetryn) and three insecticides ( dimethoate, imidacloprid and propoxur) as the mixture components, the uniform design ray procedure (UD-Ray) was used to rationally design the concentration composition of various components in the ternary mixtures so that effectively and comprehensively reflected the variety of actual environmental concentrations. The luminescent inhibition toxicities of single pesticides and their ternary mixtures to Vibrio fischeri at various concentration levels were determined by the microplate toxicity analysis. Selecting concentration addition (CA) as the addition reference, 3D isobolograms were constructed to study the toxicity interactions of various ternary mixtures. The results showed that the 3D isobologram could clearly and directly exhibit the toxicity interactions of ternary mixtures, and extend the use of isobolographic analysis into the ternary mixtures.

  19. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application

    Science.gov (United States)

    Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.

    2016-11-01

    In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.

  20. Mechanical characterization and structural of Mg70Zn28Ca2 alloy for use as bioabsorbable implants

    International Nuclear Information System (INIS)

    Asato, G.H.; Matias, T.B.; Kiminami, C.S.; Botta, W.J.; Bolfarini, C.

    2014-01-01

    A ternary magnesium-based alloy was studied for your biocompatibility, high mechanical properties, elastic modulus close to the bone and corrosion rate less than pure magnesium. The experimental conditions enabled to process a Mg70Zn28Ca2 ternary amorphous alloy by the fusion of eutectic binary alloys (Mg-Zn and Mg-Ca), which were obtained from pure elements in a induction furnace in an argon atmosphere. The characterization of alloy involved quantitative chemical analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The results indicated that the actual composition was very close to the nominal, with the presence of amorphous up to 1.3 mm thick. The mechanical compression test was performed in the conventional cylindrical samples with a diameter of 3 mm on an Instron type machine, obtaining the compressive strength above 400 MPa. (author)

  1. Microstructure and Aging of Powder-Metallurgy Al Alloys

    Science.gov (United States)

    Blackburn, L. B.

    1987-01-01

    Report describes experimental study of thermal responses and aging behaviors of three new aluminum alloys. Alloys produced from rapidly solidified powders and contain 3.20 to 5.15 percent copper, 0.24 to 1.73 percent magnesium, 0.08 to 0.92 percent iron, and smaller amounts of manganese, nickel, titanium, silicon, and zinc. Peak hardness achieved at lower aging temperatures than with standard ingot-metallurgy alloys. Alloys of interest for automobile, aircraft, and aerospace applications.

  2. Variations of color with alloying elements in Pd-free Au-Pt-based high noble dental alloys

    International Nuclear Information System (INIS)

    Shiraishi, Takanobu; Takuma, Yasuko; Miura, Eri; Fujita, Takeshi; Hisatsune, Kunihiro

    2007-01-01

    The effects of alloying addition of a small amount of base metals (In, Sn, Fe, Zn) on color variations in Pd-free Au-Pt-based high noble dental alloys were investigated in terms of rectilinear and polar color coordinates. The ternary Au-Pt-X (X = In, Sn, Fe, Zn) and quaternary Au-Pt-In-Y (Y = Sn, Fe, Zn) alloys were prepared from high purity component metals. The amount of alloying base metals, X and Y, were restricted up to 2 at.%. The alloying addition of a small amount of Fe, In, Sn, to a binary Au-10 at.% Pt alloy (referred to as AP10) effectively increased chroma, C *. On the other hand, the addition of Zn to the parent alloy AP10 did not change color coordinates greatly. The increase in chroma in the present Au-Pt-based high noble alloys was attributed to the increase in the slope of spectral reflectance curve at its absorption edge near 515 nm. It was found that the addition of a small amount of Fe to the parent alloy AP10 markedly increased lightness, L *, and the addition of Sn gave a very light tint of red to the parent alloy. Although red-green chromaticity index a * contributed to chroma to some extent, contribution of yellow-blue chromaticity index b * was much greater in determining chroma in this Pd-free Au-Pt-based multi-component alloys. The present results are expected to be valuable in case color is to be taken into account in designing Pd-free Au-Pt-based high noble dental alloys

  3. Fabrication of biodegradable Zn-Al-Mg alloy: Mechanical properties, corrosion behavior, cytotoxicity and antibacterial activities.

    Science.gov (United States)

    Bakhsheshi-Rad, H R; Hamzah, E; Low, H T; Kasiri-Asgarani, M; Farahany, S; Akbari, E; Cho, M H

    2017-04-01

    In this work, binary Zn-0.5Al and ternary Zn-0.5Al-xMg alloys with various Mg contents were investigated as biodegradable materials for implant applications. Compared with Zn-0.5Al (single phase), Zn-0.5Al-xMg alloys consisted of the α-Zn and Mg 2 (Zn, Al) 11 with a fine lamellar structure. The results also revealed that ternary Zn-Al-Mg alloys presented higher micro-hardness value, tensile strength and corrosion resistance compared to the binary Zn-Al alloy. In addition, the tensile strength and corrosion resistance increased with increasing the Mg content in ternary alloys. The immersion tests also indicated that the corrosion rates in the following order Zn-0.5Al-0.5Mgcorrosion rate, good biocompatibility and antibacterial activities was believed to be a good candidate as a biodegradable implant material. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Ternary phosphates of rubidium-cesium-rare earth element

    International Nuclear Information System (INIS)

    Mel'nikov, P.P.; Carrillo-Eredero, H.D.; Efremov, V.A.; Komissarova, L.N.; Quiroga, E.

    1986-01-01

    This article examines the possibility of the existence of ternary phosphates of the rare earth elements (REE) containing two large alkali cations in order to establish the morphological and physicochemical characteristics in the entire group of ternary REE phosphates. The synthesis of the ternary rubidium-cesium-REE phosphates was carried out with molten charges that did not contain an excess of components. Analysis for the uncommon alkali cations was done by the atomic absorption technique; for holmium, by complexometric titration; and for phosphorus, by gravimetry as NH 4 CdPO 4 . The data obtained fully confirm the composition of Rb 2 CsLn(PO 4 ) 2

  5. A Three-dimensional Topological Model of Ternary Phase Diagram

    International Nuclear Information System (INIS)

    Mu, Yingxue; Bao, Hong

    2017-01-01

    In order to obtain a visualization of the complex internal structure of ternary phase diagram, the paper realized a three-dimensional topology model of ternary phase diagram with the designed data structure and improved algorithm, under the guidance of relevant theories of computer graphics. The purpose of the model is mainly to analyze the relationship between each phase region of a ternary phase diagram. The model not only obtain isothermal section graph at any temperature, but also extract a particular phase region in which users are interested. (paper)

  6. Can Time Reversal be tested in ternary fission?

    International Nuclear Information System (INIS)

    Goennenwein, F.; Jesinger, P.; Koetzle, A.; Mutterer, M.; Kalben, J. von; Trzaska, W.H.; Petrov, G.A.; Gagarski, A.M.; Danilyan, G.; Pavlov, V.S.; Nesvizhevsky, V.; Zimmer, O.

    2000-01-01

    Ternary fission of 233 U and 235 U induced by cold polarized neutrons has been investigated. Several correlations between neutron spin and the momenta of fission fragments and ternary particles were analyzed. These correlations are probing time reversal invariance, parity non-conservation and left-right asymmetries. Results for all three correlations from the reaction 233 U(n,f) are presented. Especially the outcome in the searches for time reversal correlations and left-right asymmetries is unexpected. A huge effect observed formally as a violation of time reversal is most probably simulated by specific properties of the emission mechanism for ternary particles

  7. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  8. Magnetism and crystal fields in ternary superconductors

    International Nuclear Information System (INIS)

    Shenoy, G.K.; Crabtree, G.W.; Niarchos, D.; Behroozi, F.; Dunlap, B.D.; Hinks, D.; Noakes, D.R.

    1982-01-01

    In this paper, the present state of knowledge of crystalline electric field (CEF) in two important classes of ternary superconductors has been described. It is clear that in understanding the superconducting and magnetic behavior of RERh 4 B 4 , the CEF plays a very important role. Considerable importance has been given to the specific heat Schottky anomalies in deducing the position and degeneracy of various CEF levels. Interpretation of these data is made difficult because of complicated subtraction of lattice, electronic and superconducting specific heats. Furthermore, the purity of the sample is important in such studies. It is known that a few percent of Rh-B/sub x/, RERh 3 B 2 and RERh 6 B 4 are commonly present in RERh 4 B 4 , while Mo-Ch/sub x/, RE-Ch/sub x/ and RE 2 O 2 Ch phases occur in Chevrel phase compounds. Only single-crystal samples will lead to dependable specific heat data

  9. Experimental Investigation of Microstructure and Phase Transitions in Ag-Cu-Zn Brazing Alloys

    Science.gov (United States)

    Dimitrijević, Stevan P.; Manasijević, Dragan; Kamberović, Željko; Dimitrijević, Silvana B.; Mitrić, Miodrag; Gorgievski, Milan; Mladenović, Srba

    2018-03-01

    Microstructure and phase transitions of selected brazing alloys from the Ag-Cu-Zn ternary system were investigated. Four ternary alloys with silver content in the compositional range from 25 to 60 wt.% were studied using x-ray diffraction (XRD) and scanning electron microscopy coupled with the energy-dispersive spectroscopy (SEM-EDS). Phase transitions of the investigated alloys were measured using differential scanning calorimetry (DSC). Experimentally obtained results were compared with the results of a thermodynamic calculation of the phase equilibria according to the CALPHAD method. The experiments confirmed the optimized thermodynamic parameters for the calculations from the thermodynamic assessment in literature. Phase compositions, liquidus and solidus temperatures were confirmed by the EDS and DTA methods. Additionally, the calculated solidification paths and predicted phase transformations were in agreement with the SEM images.

  10. Modification of Ni-Mn-Ga ferromagnetic shape memory alloy by addition of rare earth elements

    International Nuclear Information System (INIS)

    Tsuchiya, Koichi; Tsutsumi, Akinori; Ohtsuka, Hideyuki; Umemoto, Minoru

    2003-01-01

    Effect of addition of rare earth elements, such as, Nd, Sm and Tb, was investigated on various properties of Ni-Mn-Ga ferromagnetic shape memory alloys (SMAs). The solubility of the rare earth in the L2 1 phase was found to be very low, most likely less than 0.1 mol%. Insolvable rare earth segregated into subgrain boundaries or grain boundaries to form precipitates. Phase transformation behavior and the structure of martensite phase exhibit a similar dependence on valence electron concentration to those in ternary Ni-Mn-Ga alloys. It was revealed that the addition of rare earth significantly improves the compressive ductility of the alloy

  11. Vanadium alloy membranes for high hydrogen permeability and suppressed hydrogen embrittlement

    International Nuclear Information System (INIS)

    Kim, Kwang Hee; Park, Hyeon Cheol; Lee, Jaeho; Cho, Eunseog; Lee, Sang Mock

    2013-01-01

    The structural properties and hydrogen permeation characteristics of ternary vanadium–iron–aluminum (V–Fe–Al) alloy were investigated. To achieve not only high hydrogen permeability but also strong resistance to hydrogen embrittlement, the alloy composition was modulated to show high hydrogen diffusivity but reduced hydrogen solubility. We demonstrated that matching the lattice constant to the value of pure V by co-alloying lattice-contracting and lattice-expanding elements was quite effective in maintaining high hydrogen diffusivity of pure V

  12. Understanding the vapor-liquid-solid growth and composition of ternary III-V nanowires and nanowire heterostructures

    Science.gov (United States)

    Dubrovskii, V. G.

    2017-11-01

    Based on the recent achievements in vapor-liquid-solid (VLS) synthesis, characterization and modeling of ternary III-V nanowires and axial heterostructures within such nanowires, we try to understand the major trends in their compositional evolution from a general theoretical perspective. Clearly, the VLS growth of ternary materials is much more complex than in standard vapor-solid epitaxy techniques, and even maintaining the necessary control over the composition of steady-state ternary nanowires is far from straightforward. On the other hand, VLS nanowires offer otherwise unattainable material combinations without introducing structural defects and hence are very promising for next-generation optoelectronic devices, in particular those integrated with a silicon electronic platform. In this review, we consider two main problems. First, we show how and by means of which parameters the steady-state composition of Au-catalyzed or self-catalyzed ternary III-V nanowires can be tuned to a desired value and why it is generally different from the vapor composition. Second, we present some experimental data and modeling results for the interfacial abruptness across axial nanowire heterostructures, both in Au-catalyzed and self-catalyzed VLS growth methods. Refined modeling allows us to formulate some general growth recipes for suppressing the unwanted reservoir effect in the droplet and sharpening the nanowire heterojunctions. We consider and refine two approaches developed to date, namely the regular crystallization model for a liquid alloy with a critical size of only one III-V pair at high supersaturations or classical binary nucleation theory with a macroscopic critical nucleus at modest supersaturations.

  13. Study of the evolution of the microstructure and hardness of Cu-Al and Cu-Al-Ti alloys during their production by reactive milling and extrusion

    International Nuclear Information System (INIS)

    Figueroa, F; Sepulveda, A; Zuniga, A; Donoso, E; Palma, R

    2008-01-01

    The microstructure and hardness of two alloys produced by reactive milling of elementary powders for 10, 20 and 30 hours and later hot extrusion were studied: a Cu-5 vol.% Al 2 O 3 binary and another Cu-2.5 vol.%TiC-2.5 vol.% Al 2 O 3 ternary. The microstructure of the alloys was characterized with a transmission electron microscope (TEM), X-ray diffraction (XRD) and different methods of chemical analysis. Then their hardness was evaluated before and after annealing at 873 K. The extruded binary alloy showed a micrometric grain structure, with nanometric subgrains (100 nm), together with the formation of nanometric dispersoids of semi-coherent Al 2 0 3 with the Cu matrix. The ternary alloy showed a microstructure very similar to the binary alloy, except that it also showed the formation of nanometric TiC dispersoids. The nanoparticles acted effectively as anchoring points for the movement of dislocations and grain growth. The microstructure was observed to be stable after annealing treatments for all the alloys. The milled ternary alloy was 32% harder (290 HV) than the hardest binary alloy (milled for 30 hours) (au)

  14. First principles theoretical investigations of low Young's modulus beta Ti-Nb and Ti-Nb-Zr alloys compositions for biomedical applications.

    Science.gov (United States)

    Karre, Rajamallu; Niranjan, Manish K; Dey, Suhash R

    2015-05-01

    High alloyed β-phase stabilized titanium alloys are known to provide comparable Young's modulus as that to the human bones (~30 GPa) but is marred by its high density. In the present study the low titanium alloyed compositions of binary Ti-Nb and ternary Ti-Nb-Zr alloy systems, having stable β-phase with low Young's modulus are identified using first principles density functional framework. The theoretical results suggest that the addition of Nb in Ti and Zr in Ti-Nb increases the stability of the β-phase. The β-phase in binary Ti-Nb alloys is found to be fully stabilized from 22 at.% of Nb onwards. The calculated Young's moduli of binary β-Ti-Nb alloy system are found to be lower than that of pure titanium (116 GPa). For Ti-25(at.%)Nb composition the calculated Young's modulus comes out to be ~80 GPa. In ternary Ti-Nb-Zr alloy system, the Young's modulus of Ti-25(at.%)Nb-6.25(at.%)Zr composition is calculated to be ~50 GPa. Furthermore, the directional Young's moduli of these two selected binary (Ti-25(at.%)Nb) and ternary alloy (Ti-25(at.%)Nb-6.25(at.%)Zr) compositions are found to be nearly isotropic in all crystallographic directions. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Interatomic potential to predict the favored and optimized compositions for ternary Cu-Zr-Hf metallic glasses

    International Nuclear Information System (INIS)

    Luo, S. Y.; Cui, Y. Y.; Dai, Y.; Li, J. H.; Liu, B. X.

    2012-01-01

    Under the framework of smoothed and long range second-moment approximation of tight-binding, a realistic interatomic potential was first constructed for the Cu-Zr-Hf ternary metal system. Applying the constructed potential, Monte Carlo simulations were carried out to compare the relative stability of crystalline solid solution versus its disordered counterpart over the entire composition triangle of the system (as a function of alloy composition). Simulations not only reveal that the origin of metallic glass formation but also determine, in the composition triangle, a quadrilateral region, within which metallic glass formation is energetically favored. It is proposed to define the energy differences between the crystalline solid solutions and disordered states as the driving force for amorphization and the corresponding calculations pinpoint an optimized composition locating at an composition of Cu 55 Zr 10 Hf 35 , around which the driving force for metallic glass formation reaches its maximum, suggesting that the ternary Cu-Zr-Hf metallic glasses designed to have the compositions around Cu 55 Zr 10 Hf 35 could be more stable than other alloys in the system. Moreover, for the Cu 55 Zr 10 Hf 35 metallic glass, the Voronoi tessellation calculations reveal some interesting features of its atomic configurations and coordination polyhedra distribution.

  16. Bulk amorphous Mg-based alloys

    DEFF Research Database (Denmark)

    Pryds, Nini

    2004-01-01

    The present paper describes the preparation and properties of bulk amorphous quarternary Mg-based alloys and the influence of additional elements on the ability of the alloy to form bulk amorphous. The main goal is to find a Mg-based alloy system which shows both high strength to weight ratio...... and a low glass transition temperature. The alloys were prepared by using a relatively simple technique, i.e. rapid cooling of the melt in a copper wedge mould. The essential structural changes that are achieved by going from the amorphous to the crystalline state through the supercooled liquid state...... are discussed in this paper. On the basis of these measurements phase diagrams of the different systems were constructed. Finally, it is demonstrated that when pressing the bulk amorphous alloy onto a metallic dies at temperatures within the supercooled liquid region, the alloy faithfully replicates the surface...

  17. Theoretical Studies of Hydrogen Storage Alloys.

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Hannes

    2012-03-22

    Theoretical calculations were carried out to search for lightweight alloys that can be used to reversibly store hydrogen in mobile applications, such as automobiles. Our primary focus was on magnesium based alloys. While MgH{sub 2} is in many respects a promising hydrogen storage material, there are two serious problems which need to be solved in order to make it useful: (i) the binding energy of the hydrogen atoms in the hydride is too large, causing the release temperature to be too high, and (ii) the diffusion of hydrogen through the hydride is so slow that loading of hydrogen into the metal takes much too long. In the first year of the project, we found that the addition of ca. 15% of aluminum decreases the binding energy to the hydrogen to the target value of 0.25 eV which corresponds to release of 1 bar hydrogen gas at 100 degrees C. Also, the addition of ca. 15% of transition metal atoms, such as Ti or V, reduces the formation energy of interstitial H-atoms making the diffusion of H-atoms through the hydride more than ten orders of magnitude faster at room temperature. In the second year of the project, several calculations of alloys of magnesium with various other transition metals were carried out and systematic trends in stability, hydrogen binding energy and diffusivity established. Some calculations of ternary alloys and their hydrides were also carried out, for example of Mg{sub 6}AlTiH{sub 16}. It was found that the binding energy reduction due to the addition of aluminum and increased diffusivity due to the addition of a transition metal are both effective at the same time. This material would in principle work well for hydrogen storage but it is, unfortunately, unstable with respect to phase separation. A search was made for a ternary alloy of this type where both the alloy and the corresponding hydride are stable. Promising results were obtained by including Zn in the alloy.

  18. Densities and Excess Molar Volume for the Ternary Systems (1 ...

    African Journals Online (AJOL)

    methylimidazolium methyl sulphate ([BMIM]+[MeSO4]-) were determined. The ternary systems studied were ... The results are interpreted in terms of the alcohol chain length and the intermolecular interactions. KEYWORDS Density, excess molar ...

  19. Ternary Au/ZnO/rGO nanocomposites electrodes for high performance electrochemical storage devices

    Science.gov (United States)

    Chaudhary, Manchal; Doong, Ruey-an; Kumar, Nagesh; Tseng, Tseung Yuen

    2017-10-01

    The combination of metal and metal oxide nanoparticles with reduced graphene oxides (rGO) is an active electrode material for electrochemical storage devices. Herein, we have, for the first time, reported the fabrication of ternary Au/ZnO/rGO nanocomposites by using a rapid and environmentally friendly microwave-assisted hydrothermal method for high performance supercapacitor applications. The ZnO/rGO provides excellent electrical conductivity and good macro/mesopore structures, which can facilitate the rapid electrons and ions transport. The Au nanoparticles with particle sizes of 7-12 nm are homogeneously distributed onto the ZnO/rGO surface to enhance the electrochemical performance by retaining the capacitance at high current density. The Au/ZnO/rGO nanocomposites, prepared with the optimized rGO amount of 100 mg exhibit a high specific capacitance of 875 and 424 F g-1 at current densities of 1 and 20 A g-1, respectively, in 2 M KOH. In addition, the energy and power densities of ternary Au/ZnO/rGO can be up to 17.6-36.5 Wh kg-1 and 0.27-5.42 kW kg-1, respectively. Results obtained in this study clearly demonstrate the excellence of ternary Au/ZnO/rGO nanocomposites as the active electrode materials for electrochemical pseudocapacitor performance and can open an avenue to fabricate metal/metal oxide/rGO nanocomposites for electrochemical storage devices with both high energy and power densities.

  20. Microstructural characterization of the γ-TiAl alloy samples ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 25; Issue 7. Microstructural characterization of the -TiAl alloy samples fabricated by direct laser fabrication rapid prototype technique. D Srivastava. Alloys and Steels Volume 25 ... Keywords. Titanium aluminide; microstructure; direct laser fabrication; rapid prototyping.

  1. Features of programming in DSSP for the ternary machine

    Directory of Open Access Journals (Sweden)

    Alexey А. Burtsev

    2017-12-01

    Full Text Available In article characteristic properties of the Dialogue System for Structured Programming (DSSP in which it significantly differs from the traditional languages (Pascal, C which are usually used for development of a basic course of programming are emphasized. And also the new possibilities of program creation which can be effectively realized on the ternary computer and which are provided now by programming system DSSP for TVM — the ternary virtual machine are considered.

  2. Tricolore. A flexible color scale for ternary compositions

    DEFF Research Database (Denmark)

    2018-01-01

    tricolore is an R library providing a flexible color scale for the visualization of three-part/ternary compositions. Its main functionality is to color-code any ternary composition as a mixture of three primary colours and to draw a suitable color-key. tricolore flexibly adapts to different...... visualisation challenges via - discrete and continuous color support - support for unbalanced compositional data via centering - support for data with very narrow range via scaling - hue, chroma and lightness options...

  3. Electrical Resistance Alloys and Low-Expansion Alloys

    DEFF Research Database (Denmark)

    Kjer, Torben

    1996-01-01

    The article gives an overview of electrical resistance alloys and alloys with low thermal expansion. The electrical resistance alloys comprise resistance alloys, heating alloys and thermostat alloys. The low expansion alloys comprise alloys with very low expansion coefficients, alloys with very low...

  4. Precipitation processes in Al-4Cu-(Mg, Cd) (wt.%) alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sofyan, B.T.; Polmear, I.J. [Monash Univ., Vic. (Australia). School of Physics and Materials Engineering; Ringer, S.P. [Australian Key Centre for Microscopy and Microanalysis, Univ. of Sydney, NSW (Australia)

    2002-07-01

    The precipitation processes during elevated temperature ageing of Al-4Cu-(Mg, Cd) (wt.%) alloys have been studied using transmission electron microscopy and three dimensional atom probe (3DAP). Enhanced precipitation of {theta}' (Al{sub 2}Cu) was confirmed in Cd-containing alloys. Additions of Cd into the Al-Cu-Mg alloys also stimulated the precipitation of the {sigma} phase (Al{sub 5}Cu{sub 6}Mg{sub 2}). In the ternary Al-Cu-Cd alloy, elemental Cd particles were detected in a uniform dispersion throughout the matrix and were attached to {theta}', while in the Al-Cu-Mg-Cd alloy, co-clustering of Cd-Mg was observed at early stages of ageing. This result suggests that the enhanced precipitation and associated hardening in the quaternary Al-Cu-Mg-Cd alloy is initiated by the Cd-Mg co-clusters, through what is called as cluster-assisted nucleation. The nucleation mechanism in the ternary Al-Cu-Cd alloy is almost certainly the same, although the chemistry of the initiating cluster which assists nucleation is different, which is thought to be Cd clusters. (orig.)

  5. Thermodynamic Measurements on Alloys and Compounds in Ag-Au-Se and Ag-Pd systems by the Electromotive Force Method

    OpenAIRE

    Feng, Dawei

    2014-01-01

    Gold and silver chalcogenides are significant minerals and major carriers of precious metals, and silver palladium alloy is one of the most important silver alloys with various industrial applications. The Ag-Au-Se ternary system and the Ag-Pd binary system have been investigated by the electromotive force (EMF) method in this study. For the Ag-Au-Se ternary system, the numerical values of the standard thermodynamic functions of the compounds Ag2Se (naumannite), AuSe, and Ag3AuSe2 (fisches...

  6. Charge distribution in the ternary fragmentation of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Senthil Kannan, M.T.; Balasubramaniam, M. [Bharathiar University, Department of Physics, Coimbatore (India)

    2017-08-15

    We present here, for the first time, a study on ternary fragmentation charge distribution of {sup 252}Cf using the convolution integral method and the statistical theory. The charge distribution for all possible charge combinations of a ternary breakup are grouped as a bin containing different mass partitions. Different bins corresponding to various third fragments with mass numbers from A{sub 3} = 16 to 84 are identified with the available experimental masses. The corresponding potential energy surfaces are calculated using the three cluster model for the two arrangements A{sub 1} + A{sub 2} + A{sub 3} and A{sub 1} + A{sub 3} + A{sub 2}. The ternary fragmentation yield values are calculated for the ternary combination from each bin possessing minimum potential energy. The yields of the resulting ternary combinations as a function of the charge numbers of the three fragments are analyzed for both the arrangements. The calculations are carried out at different excitation energies of the parent nucleus. For each excitation energy the temperature of the three fragments are iteratively computed conserving the total energy. The distribution of fragment temperatures corresponding to different excitation energies for some fixed third fragments are discussed. The presence of the closed shell nucleus Sn in the favourable ternary fragmentation is highlighted. (orig.)

  7. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  8. Fusion and characterization of an alloy Cu-Zn-Al-Ni of nuclear interest

    International Nuclear Information System (INIS)

    Santana M, J.S.

    2003-01-01

    The present work is the result of the study of a non ferrous quatenary alloy of Cu-Zn-Al-Ni (Foundry 3), it was chosen of a series of alloys to obtain so much information of its microstructural properties like mechanical, evaluating them and comparing them with the previously obtained ternary alloys of Cu-AI-Ni (Foundry 1) and Cu-Zn-AI (Foundry 2) identified as alloys of memory effect and superalloys. These were carried out starting from the foundry of their pure elements of Cu, Zn, Al, Ni. When physically having the ingot of each alloy, different techniques were used for their characterization. The used techniques were through the metallographic analysis, by scanning electron microscopy (SEM), X-ray dispersive energy spectroscopy (EDS), X-ray diffraction (XRD), mechanical essays and Rockwell hardness. The non ferrous quaternary alloy Cu-Zn-AI-Ni by means of the metallographic analysis didn't show significant differences in their three sections (superficial, longitudinal and transverse) since result an homogeneous alloy at the same that the both ternaries. The grain size of the quaternary alloy is the finest while the ternary alloy of Cu-AI-Ni is the one that obtained the biggest grain size. Through MEB together with the analysis by EDS and the mapping of the elements that constitute each alloy, show that the three foundries were alloyed, moreover the presence of aggregates was also observed in the Foundries 2 and 3. These results by means of the analysis of XRD corroborate that these alloys have more of two elements. Relating the microstructural properties with those mechanical show us that as minor was the grain size, better they were his mechanical properties, in this case that of the quaternary alloy. With regard to the test of Rockwell hardness the Foundry 1 were the softest with the temper treatment, while that the Foundries 2 and 3 were the hardest with this same treatment, being still harder the Foundry 2 but with very little difference, for what great

  9. Synergistic alloying effect on microstructural evolution and mechanical properties of Cu precipitation-strengthened ferritic alloys

    International Nuclear Information System (INIS)

    Wen, Y.R.; Li, Y.P.; Hirata, A.; Zhang, Y.; Fujita, T.; Furuhara, T.; Liu, C.T.; Chiba, A.; Chen, M.W.

    2013-01-01

    We report the influence of alloying elements (Ni, Al and Mn) on the microstructural evolution of Cu-rich nanoprecipitates and the mechanical properties of Fe–Cu-based ferritic alloys. It was found that individual additions of Ni and Al do not give rise to an obvious strengthening effect, compared with the binary Fe–Cu parent alloy, although Ni segregates at the precipitate/matrix interface and Al partitions into Cu-rich precipitates. In contrast, the co-addition of Ni and Al results in the formation of core–shell nanoprecipitates with a Cu-rich core and a B2 Ni–Al shell, leading to a dramatic improvement in strength. The coarsening rate of the core–shell precipitates is about two orders of magnitude lower than that of monolithic Cu-rich precipitates in the binary and ternary Fe–Cu alloys. Reinforcement of the B2 Ni–Al shells by Mn partitioning further improves the strength of the precipitation-strengthened alloys by forming ultrastable and high number density core–shell nanoprecipitates

  10. Irradiation induced surface segregation in concentrated alloys: a contribution

    International Nuclear Information System (INIS)

    Grandjean, Y.

    1996-01-01

    A new computer modelization of irradiation induced surface segregation is presented together with some experimental determinations in binary and ternary alloys. The model we propose handles the alloy thermodynamics and kinetics at the same level of sophistication. Diffusion is described at the atomistic level and proceeds vis the jumps of point defects (vacancies, dumb-bell interstitials): the various jump frequencies depend on the local composition in a manner consistent with the thermodynamics of the alloy. For application to specific alloys, we have chosen the simplest statistical approximation: pair interactions in the Bragg Williams approximation. For a system which exhibits the thermodynamics and kinetics features of Ni-Cu alloys, the model generates the behaviour parameters (flux and temperature) and of alloy composition. Quantitative agreement with the published experimental results (two compositions, three temperatures) is obtained with a single set of parameters. Modelling austenitic steels used in nuclear industry requires taking into account the contribution of dumbbells to mass transport. The effects of this latter contribution are studied on a model of Ni-Fe. Interstitial trapping on dilute impurities is shown to delay or even suppress the irradiation induced segregation. Such an effect is indeed observed in the experiments we report on Fe 50 Ni 50 and Fe 49 Ni 50 Hf 1 alloys. (author)

  11. Phase selection and microstructure in directional solidification of glass forming Pd-Si-Cu alloys

    Science.gov (United States)

    Huo, Yang

    Phase selection and microstructure formation during the rapid solidification of alloy melts has been a topic of substantial interest over the last several decades, attributed mainly to the access to novel structures involving metastable crystalline and non-crystalline phases. In this work, Bridgeman type directional solidification was conducted in Pd-Si-Cu glass forming system to study such cooling rate dependent phase transition and microstructure formation. The equilibrium state for Pd-Si-Cu ternary system was investigated through three different works. First of all, phase stabilities for Pd-Si binary system was accessed with respects of first-principles and experiments, showing Pd5Si, Pd9Si2, Pd3Si and Pd 2Si phase are stable all way to zero Kevin while PdSi phase is a high temperature stable phase, and Pd2Si phase with Fe2P is a non-stoichiometry phase. A thermodynamic database was developed for Pd-Si system. Second, crystal structures for compounds with ternary compositions were studied by XRD, SEM and TEM, showing ordered and disordered B2/bcc phases are stable in Pd-rich part. At last, based on many phase equilibria and phase transitions data, a comprehensive thermodynamic discrption for Pd-Si-Cu ternary system was first time to be developed, from which different phase diagrams and driving force for kinetics can be calculated. Phase selection and microstructure formation in directional solidification of the best glass forming composition, Pd 77.5Si16.5Cu6, in this system with growth velocities from 0.005 to 7.5mm/s was systematically studied and the solidification pathways at different conditions were interpreted from thermodynamic simulation. The results show that for growth velocities are smaller than 0.1mm/s Pd 3Si phase is primary phase and Pd9Si2 phase is secondary phase, the difficulty for Pd9Si2 phase nucleation gives rise to the formation of two different eutectic structure. For growth velocities between 0.4 and 1mm/s, instead of Pd3Si phase, Pd9Si2

  12. Anisotropy in the ternary cold fission

    CERN Document Server

    Delion, D S; Greiner, W

    2003-01-01

    We describe the spontaneous ternary cold fission of sup 2 sup 5 sup 2 Cf, accompanied by sup 4 He, sup 1 sup 0 Be and sup 1 sup 4 C within a stationary scattering formalism. We show that the light cluster should be born in the neck region. It decays from the first resonant eigenstate in the Coulomb plus harmonic oscillator potential, centred in this region and eccentric with respect to the symmetry axis. This description gives a simple answer to the question why the averaged values in the energy spectra of emitted clusters are close to each other, in spite of different Coulomb barriers. We have shown that the angular distribution of the emitted light particle is strongly connected with its deformation and the equatorial distance. Experimental angular distributions can be explained by the spherical shapes of emitted clusters, except for a deformed sup 1 sup 0 Be. We also predicted some dependences of half-lives for such tri-nuclear systems upon potential parameters.

  13. Two-layer synchronized ternary quantum-dot cellular automata wire crossings

    Science.gov (United States)

    2012-01-01

    Quantum-dot cellular automata are an interesting nanoscale computing paradigm. The introduction of the ternary quantum-dot cell enabled ternary computing, and with the recent development of a ternary functionally complete set of elementary logic primitives and the ternary memorizing cell design of complex processing structures is becoming feasible. The specific nature of the ternary quantum-dot cell makes wire crossings one of the most problematic areas of ternary quantum-dot cellular automata circuit design. We hereby present a two-layer wire crossing that uses a specific clocking scheme, which ensures the crossed wires have the same effective delay. PMID:22507371

  14. Effect of composition on the structure and properties of Ti-Co-Cr alloys

    Directory of Open Access Journals (Sweden)

    T. Matković

    2010-01-01

    Full Text Available The present work is a study of six as-cast Ti-Co-Cr alloys in the Ti-rich region with the purpose of examining the possibility of obtaining a new β-type Ti-alloys. Two experimental alloys Ti80Co10Cr10 and Ti70Co10Cr20 are nearly single-phases and are identified as bcc β-Ti phase. They also display the lowest hardness values and the best corrosion properties. The present study indicates that the region of biomedically-acceptable ternary Ti-rich alloys is situated within lower concentrations of alloying elements, i.e. about 10 at.% Co and 20 at. % Cr.

  15. Electronic structure and properties of disordered alloys of d-elements

    International Nuclear Information System (INIS)

    Demidenko, V.S.; Kal'yanov, A.P.

    1983-01-01

    On the basis of coherent potential approximation the fundamental characteristics in which transition element alloys differ have been established. Connection of the characteristics with position of the elements alloyed in the Mendeleev table is considered. It is confirmed by calculations that electronic structure and, consequently, physical properties of the alloys of a certain value potential disturbing matrix, change qualitatively. Results of the calculation of electron energy state density, diagrams of partial and average magnetic momenta in binary and ternary alloys of the first transition period, are presented. Besides, calculation results of bond energy in d-metals and energy of segregation formation in their alloys are also given. Comparison with experiment confirms the efficiency of concepts given in the paper

  16. Contrasting performance of donor-acceptor copolymer pairs in ternary blend solar cells and two-acceptor copolymers in binary blend solar cells.

    Science.gov (United States)

    Khlyabich, Petr P; Rudenko, Andrey E; Burkhart, Beate; Thompson, Barry C

    2015-02-04

    Here two contrasting approaches to polymer-fullerene solar cells are compared. In the first approach, two distinct semi-random donor-acceptor copolymers are blended with phenyl-C61-butyric acid methyl ester (PC61BM) to form ternary blend solar cells. The two poly(3-hexylthiophene)-based polymers contain either the acceptor thienopyrroledione (TPD) or diketopyrrolopyrrole (DPP). In the second approach, semi-random donor-acceptor copolymers containing both TPD and DPP acceptors in the same polymer backbone, termed two-acceptor polymers, are blended with PC61BM to give binary blend solar cells. The two approaches result in bulk heterojunction solar cells that have the same molecular active-layer components but differ in the manner in which these molecular components are mixed, either by physical mixing (ternary blend) or chemical "mixing" in the two-acceptor (binary blend) case. Optical properties and photon-to-electron conversion efficiencies of the binary and ternary blends were found to have similar features and were described as a linear combination of the individual components. At the same time, significant differences were observed in the open-circuit voltage (Voc) behaviors of binary and ternary blend solar cells. While in case of two-acceptor polymers, the Voc was found to be in the range of 0.495-0.552 V, ternary blend solar cells showed behavior inherent to organic alloy formation, displaying an intermediate, composition-dependent and tunable Voc in the range from 0.582 to 0.684 V, significantly exceeding the values achieved in the two-acceptor containing binary blend solar cells. Despite the differences between the physical and chemical mixing approaches, both pathways provided solar cells with similar power conversion efficiencies, highlighting the advantages of both pathways toward highly efficient organic solar cells.

  17. Synthesis of shape memory alloys using electrodeposition

    Science.gov (United States)

    Hymer, Timothy Roy

    Shape memory alloys are used in a variety of applications. The area of micro-electro-mechanical systems (MEMS) is a developing field for thin film shape memory alloys for making actuators, valves and pumps. Until recently thin film shape memory alloys could only be made by rapid solidification or sputtering techniques which have the disadvantage of being "line of sight". At the University of Missouri-Rolla, electrolytic techniques have been developed that allow the production of shape memory alloys in thin film form. The advantages of this techniques are in-situ, non "line of sight" and the ability to make differing properties of the shape memory alloys from one bath. This research focused on the electrodeposition of In-Cd shape memory alloys. The primary objective was to characterize the electrodeposited shape memory effect for an electrodeposited shape memory alloy. The effect of various operating parameters such as peak current density, temperature, pulsing, substrate and agitation were investigated and discussed. The electrodeposited alloys were characterized by relative shape memory effect, phase transformation, morphology and phases present. Further tests were performed to optimize the shape memory by the use of a statistically designed experiment. An optimized shape memory effect for an In-Cd alloy is reported for the conditions of the experiments.

  18. Hydrogen solubility and permeability of Nb-W-Mo alloy membrane

    International Nuclear Information System (INIS)

    Awakura, Y.; Nambu, T.; Matsumoto, Y.; Yukawa, H.

    2011-01-01

    Research highlights: → The concept for alloy design of Nb-based hydrogen permeable membrane has been applied to Nb-W-Mo ternary alloy in order to improve further the resistance to hydrogen embrittlement and hydrogen permeability. → The alloying effects of Mo on the hydriding properties of Nb-W alloy have been elucidated. → The addition of Mo and/or W into niobium improves the resistance to hydrogen embrittlement by reducing the dissolved hydrogen concentration in the alloy. → Nb-W-Mo alloy possesses excellent hydrogen permeability together with strong resistance to hydrogen embrittlement. - Abstract: The alloying effects of molybdenum on the hydrogen solubility, the resistance to hydrogen embrittlement and the hydrogen permeability are investigated for Nb-W-Mo system. It is found that the hydrogen solubility decreases by the addition of molybdenum into Nb-W alloy. As a result, the resistance to hydrogen embrittlement improves by reducing the hydrogen concentration in the alloy. It is demonstrated that Nb-5 mol%W-5 mol%Mo alloy possesses excellent hydrogen permeability without showing any hydrogen embrittlement when used under appropriate hydrogen permeation conditions, i.e., temperature and hydrogen pressures.

  19. Constitution of the ternary system Cr–Ni–Ti

    International Nuclear Information System (INIS)

    Krendelsberger, Natalja; Weitzer, Franz; Du, Yong; Schuster, Julius C.

    2013-01-01

    Highlights: •Reaction scheme and liquidus surface for Cr-Ni-Ti are given. •In the ternary the C14-type Laves phase coexists with the liquid phase. •Two ternary eutectics are identified. -- Abstract: The nature of solid–liquid phase equilibria in the ternary system Cr–Ni–Ti was investigated using electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and differential thermal analysis. Literature data on solid state phase equilibria are confirmed. The Cr 2 Ti Laves phase modifications coexisting with Ni–Ti phases are clarified to be hexagonal C14-type and cubic C15-type. The C14-type Laves phase γCr 2 Ti is found to coexist with the liquid phase. It forms in the pseudobinary peritectic reaction p max1 from L + β(Cr,Ti) at 1389 °C. On further cooling γCr 2 Ti + NiTi solidify at 1202 °C in the pseudobinary eutectic e max2 . In the Cr-rich part of the system ternary eutectics occur at 1216 °C (E 1 : L = Ni 3 Ti + (Ni) + β(Cr,Ti)) and 1100 °C (E 2 : L = NiTi + Ni 3 Ti + β(Cr,Ti)), respectively. No ternary eutectic is found in the Ti-rich part. Rather the eutectic trough ends in the binary eutectic L = NiTi 2 + β(Ti)

  20. Ternary fission of spontaneously fissile uranium isomers excited by neutrons

    International Nuclear Information System (INIS)

    Makarenko, V.E.; Molchanov, Y.D.; Otroshchenko, G.A.; Yan'kov, G.B.

    1989-01-01

    Spontaneously fissile isomers (SFI) of uranium were excited in the reactions 236,238 U(n,n') at an average neutron energy 4.5 MeV. A pulsed electrostatic accelerator and time analysis of the fission events were used. Fission fragments were detected by the scintillation method, and long-range particles from fission were detected by an ionization method. The relative probability of fission of nuclei through a spontaneously fissile isomeric state was measured: (1.30±0.01)·10 -4 ( 236 U) and (1.48±0.02)·10 -4 ( 238 U). Half-lives of the isomers were determined: 121±2 nsec (the SFI 236 U) and 267±13 nsec (the SFI 238 U). In study of the ternary fission of spontaneously fissile isotopes of uranium it was established that the probability of the process amounts to one ternary fission per 163±44 binary fissions of the SFI 236 U and one ternary fission per 49±14 binary fissions of the SFI 238 U. The substantial increase of the probability of ternary fission of SFI of uranium in comparison with the case of ternary fission of nuclei which are not in an isomeric state may be related to a special nucleon configuration of the fissile isomers of uranium

  1. Nanoporous PtFe alloys as highly active and durable electrocatalysts for oxygen reduction reaction

    Science.gov (United States)

    Duan, Huimei; Hao, Qin; Xu, Caixia

    2014-12-01

    Nanoporous PtFe alloys with two different bimetallic ratios are fabricated by selectively dealloying PtFeAl ternary alloys, characterized by nanoscaled bicontinuous network skeleton with interconnected hollow channels extending in all three dimensions. The reactive components in PtFeAl ternary alloy were sequentially leached out in a highly controllable manner, generating nanoporous architecture with different bimetallic ratios and the typical ligament size as small as 5 nm. These nanoporous PtFe alloys exhibit much enhanced electrocatalytic activity for oxygen reduction reaction compared with the PtFe/C and Pt/C catalysts. The specific and mass activities for oxygen reduction follow the order of nanoporous Pt75Fe25 > nanoporous Pt55Fe45 > PtFe/C > Pt/C. In the absence of any catalyst support, the structure stability of nanoporous PtFe alloys is greatly enhanced with less loss of the electrochemical surface area and the oxygen reduction activity upon long-term potential scan tests compared with PtFe/C and Pt/C catalysts. The as-made nanoporous PtFe alloys thus hold great application potential as promising cathode electrocatalyst in proton exchange membrane fuel cells with the advantages of easy preparation along with superior oxygen reduction activity and durability.

  2. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...... driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen...

  3. The corrosion resistance of Zr-Nb and Zr-Nb-Sn alloys in high-temperature water and steam

    International Nuclear Information System (INIS)

    Dalgaard, S.B.

    1960-03-01

    An alloy of reactor-grade sponge zirconium-2.5 wt. % niobium was exposed to water and steam at high temperature. The corrosion was twice that of Zircaloy-2 while hydrogen pickup was found to be equal to that of Zircaloy-2. Ternary additions of tin to this alloy in the range 0.5-1.5 had no effect on the corrosion resistance in water at 315 o C up to 100 days. At higher temperatures, tin increased the corrosion, the effect varying with temperature. Heat treatment of the alloys was shown to affect corrosion resistance. (author)

  4. Rapid Quench in an Electrostatic Levitator

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Matson, Douglas M.

    2016-01-01

    The Electrostatic Levitation (ESL) Laboratory at the NASA Marshall Space Flight Center (MSFC) is a unique facility for investigators studying high-temperature materials. The ESL laboratory's main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy, as a quench medium. Thereby allowing rapid quenching of undercooled liquid metals. Up to eight quench vessels can be loaded into a wheel inside the chamber that is indexed with control software. The system has been tested successfully with samples of zirconium, iron-cobalt alloys, titanium-zirconium-nickel alloys, and a silicon-cobalt alloy. This new rapid quench system will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and some initial results are presented.

  5. Relationship of interaction of titanium aluminides with alloying elements as a basis for design of high-temperature alloys and composites

    International Nuclear Information System (INIS)

    Povarova, K.B.; Bannykh, O.A.; Antonova, A.V.

    2002-01-01

    One analyzed the available ternary phase diagrams of Ti-Al-AE where AE - alloying metal or metalloid. Nature of interaction of titanium aluminides, in particular, α 2 -Ti 3 Al, γ-TiAl and TiAl 3 with alloying elements (AE) in the uninvestigated systems was hypothesized with regard to the available binary and ternary phase diagrams and data on electron structure of AE. One determined that structure of Ti-Al-AE ternary phase diagrams, namely, position of domains of γ-TiAl and α 2 -Ti 3 Al base solid solutions, nature of substitution for AE positions in Ti or Al sublattices and position of (α 2 +γ)/γ domain boundary were governed by likeness or difference of electron structure of AE and of the substituted metal (Ti or Al) in titanium aluminide lattice and by value of dimension factor (difference of atomic radii of Al and Ti or Al). One analyzed promises offered by application of solid solution alloying and microalloying of aluminides by I-VIII group metals of the Periodic System [ru

  6. Completed local ternary pattern for rotation invariant texture classification.

    Science.gov (United States)

    Rassem, Taha H; Khoo, Bee Ee

    2014-01-01

    Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP) and the Completed Local Binary Count (CLBC), have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP) drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP) is proposed to be more robust to noise than LBP, however, the latter's weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP) operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP) scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors.

  7. Completed Local Ternary Pattern for Rotation Invariant Texture Classification

    Directory of Open Access Journals (Sweden)

    Taha H. Rassem

    2014-01-01

    Full Text Available Despite the fact that the two texture descriptors, the completed modeling of Local Binary Pattern (CLBP and the Completed Local Binary Count (CLBC, have achieved a remarkable accuracy for invariant rotation texture classification, they inherit some Local Binary Pattern (LBP drawbacks. The LBP is sensitive to noise, and different patterns of LBP may be classified into the same class that reduces its discriminating property. Although, the Local Ternary Pattern (LTP is proposed to be more robust to noise than LBP, however, the latter’s weakness may appear with the LTP as well as with LBP. In this paper, a novel completed modeling of the Local Ternary Pattern (LTP operator is proposed to overcome both LBP drawbacks, and an associated completed Local Ternary Pattern (CLTP scheme is developed for rotation invariant texture classification. The experimental results using four different texture databases show that the proposed CLTP achieved an impressive classification accuracy as compared to the CLBP and CLBC descriptors.

  8. Thermal decomposition of cesium-ethylene-ternary graphite intercalation compounds

    International Nuclear Information System (INIS)

    Matsumoto, R.; Oishi, Y.; Arii, T.

    2010-01-01

    In this paper, the thermal decomposition of air-stable Cs-ethylene-ternary graphite intercalation compounds (GICs) is discussed. The air stability of Cs-GICs is improved remarkably after the absorption of ethylene into their interlayer nanospace, because the ethylene molecules oligomerize and block the movement of Cs atoms. In addition, the evaporation of Cs atoms from the Cs-ethylene-ternary GICs is observed above 400 o C under a N 2 atmosphere of 100 Pa by ion attachment mass spectrometry. Although the results indicate that Cs-ethylene-ternary GICs remain stable up to approximately 400 o C, their thermal stability is not very high as compared to that of Cs-GICs.

  9. The partially alternating ternary sum in an associative dialgebra

    International Nuclear Information System (INIS)

    Bremner, Murray R; Sanchez-Ortega, Juana

    2010-01-01

    The alternating ternary sum in an associative algebra, abc - acb - bac + bca + cab - cba, gives rise to the partially alternating ternary sum in an associative dialgebra with products dashv and vdash by making the argument a the center of each term. We use computer algebra to determine the polynomial identities in degree ≤9 satisfied by this new trilinear operation. In degrees 3 and 5, these identities define a new variety of partially alternating ternary algebras. We show that there is a 49-dimensional space of multilinear identities in degree 7, and we find equivalent nonlinear identities. We use the representation theory of the symmetric group to show that there are no new identities in degree 9.

  10. Material and device properties of single-phase Cu(In,Ga)(Se,S)2 alloys prepared by selenization/sulfurization of metallic alloys

    International Nuclear Information System (INIS)

    Alberts, V.; Titus, J.; Birkmire, R.W.

    2004-01-01

    Single-phase Cu(In,Ga)(Se,S) 2 alloys have been prepared using a novel two-step selenization/sulfurization growth process to react copper-indium-gallium alloy films. The growth scheme differs critically from standard two-step growth processes and is based on the manipulation of the reaction kinetics in order to inhibit the formation of stable ternary phases. In the first step, the metallic precursors are reacted with H 2 Se/Ar to produce a composite alloy containing a mixture of binary selenides and at least one partially reacted ternary alloy. The film is then exposed to H 2 S/Ar at a defined temperature to produce uniform, single-phase pentenary Cu(In,Ga)(Se,S) 2 alloys. Solar cell results for Cu(In,Ga)(Se,S) 2 films with the S/(S+Se) ratio from 0.23 to 0.65 at a fixed Ga/(Ga+In) ratio are presented

  11. Equilibrium phase diagram of the Ag-Au-Pb ternary system

    International Nuclear Information System (INIS)

    Hassam, S.; Bahari, Z.

    2005-01-01

    The phase diagram of the ternary system Ag-Au-Pb has been established using differential thermal analysis and X-ray powder diffraction analysis. Four vertical sections were studied: X Pb = 0.40, X Au /X Pb = 1/3, X Ag /X Au = 4/1 and X Ag /X Au = 1/1. Two ternary transitory peritectics and one ternary eutectic were characterized. A schematic representation of the ternary equilibria is given

  12. Effects of Palladium Content, Quaternary Alloying, and Thermomechanical Processing on the Behavior of Ni-Ti-Pd Shape Memory Alloys for Actuator Applications

    Science.gov (United States)

    Bigelow, Glen

    2008-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently driving research in high-temperature shape memory alloys (HTSMA) having transformation temperatures above 100 C. One of the basic high temperature systems under investigation to fill this need is NiTiPd. Prior work on this alloy system has focused on phase transformations and respective temperatures, no-load shape memory behavior (strain recovery), and tensile behavior for selected alloys. In addition, a few tests have been done to determine the effect of boron additions and thermomechanical treatment on the aforementioned properties. The main properties that affect the performance of a solid state actuator, namely work output, transformation strain, and permanent deformation during thermal cycling under load have mainly been neglected. There is also no consistent data representing the mechanical behavior of this alloy system over a broad range of compositions. For this thesis, ternary NiTiPd alloys containing 15 to 46 at.% palladium were processed and the transformation temperatures, basic tensile properties, and work characteristics determined. However, testing reveals that at higher levels of alloying addition, the benefit of increased transformation temperature begins to be offset by lowered work output and permanent deformation or "walking" of the alloy during thermal cycling under load. In response to this dilemma, NiTiPd alloys have been further alloyed with gold, platinum, and hafnium additions to solid solution strengthen the martensite and parent austenite phases in order to improve the thermomechanical behavior of these materials. The tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared and discussed. In addition, the benefits of more advanced thermomechanical processing or training on the dimensional stability of

  13. Adiabatic pipelining: a key to ternary computing with quantum dots

    International Nuclear Information System (INIS)

    Pecar, P; Zimic, N; Mraz, M; Lebar Bajec, I; Ramsak, A

    2008-01-01

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  14. Adiabatic pipelining: a key to ternary computing with quantum dots

    Science.gov (United States)

    Pečar, P.; Ramšak, A.; Zimic, N.; Mraz, M.; Lebar Bajec, I.

    2008-12-01

    The quantum-dot cellular automaton (QCA), a processing platform based on interacting quantum dots, was introduced by Lent in the mid-1990s. What followed was an exhilarating period with the development of the line, the functionally complete set of logic functions, as well as more complex processing structures, however all in the realm of binary logic. Regardless of these achievements, it has to be acknowledged that the use of binary logic is in computing systems mainly the end result of the technological limitations, which the designers had to cope with in the early days of their design. The first advancement of QCAs to multi-valued (ternary) processing was performed by Lebar Bajec et al, with the argument that processing platforms of the future should not disregard the clear advantages of multi-valued logic. Some of the elementary ternary QCAs, necessary for the construction of more complex processing entities, however, lead to a remarkable increase in size when compared to their binary counterparts. This somewhat negates the advantages gained by entering the ternary computing domain. As it turned out, even the binary QCA had its initial hiccups, which have been solved by the introduction of adiabatic switching and the application of adiabatic pipeline approaches. We present here a study that introduces adiabatic switching into the ternary QCA and employs the adiabatic pipeline approach to successfully solve the issues of elementary ternary QCAs. What is more, the ternary QCAs presented here are sizewise comparable to binary QCAs. This in our view might serve towards their faster adoption.

  15. Monte Carlo Simulation of Alloy Design Techniques: Fracture and Welding Studied Using the BFS Method for Alloys

    Science.gov (United States)

    Bozzolo, Guillermo H.; Good, Brian; Noebe, Ronald D.; Honecy, Frank; Abel, Phillip

    1999-01-01

    Large-scale simulations of dynamic processes at the atomic level have developed into one of the main areas of work in computational materials science. Until recently, severe computational restrictions, as well as the lack of accurate methods for calculating the energetics, resulted in slower growth in the area than that required by current alloy design programs. The Computational Materials Group at the NASA Lewis Research Center is devoted to the development of powerful, accurate, economical tools to aid in alloy design. These include the BFS (Bozzolo, Ferrante, and Smith) method for alloys (ref. 1) and the development of dedicated software for large-scale simulations based on Monte Carlo- Metropolis numerical techniques, as well as state-of-the-art visualization methods. Our previous effort linking theoretical and computational modeling resulted in the successful prediction of the microstructure of a five-element intermetallic alloy, in excellent agreement with experimental results (refs. 2 and 3). This effort also produced a complete description of the role of alloying additions in intermetallic binary, ternary, and higher order alloys (ref. 4).

  16. Enhanced age-strengthening by two-step progressive solution treatment in an Mg–Zn–Al–Re alloy

    International Nuclear Information System (INIS)

    Zhang, Jing; Yuan, Fuqing; Du, Yong

    2013-01-01

    Highlights: • A two-step progressive solution treatment schedule was proposed. • The treatment enhanced dissolution of ternary eutectic phases in Mg–Zn–Al alloy. • Solution temperature could break the limit of the ternary eutectic temperature. • There was no microstructural over-heating defect during the progressive heating. • The τ precipitates have a remarkable dispersion strengthening effect. - Abstract: A two-step progressive solution treatment was designed and performed on an as-extruded Mg–7Zn–3Al–0.7Er alloy. The resultant microstructure and mechanical properties were examined by means of scanning electron microscopy, X-ray diffractometer, differential scanning calorimetry and hardness testing. The results showed that the two-step progressive solution treatment could enhance the dissolution of the ternary eutectic phases in the Mg–Zn–Al system without the formation of microstructure over-heating defects. After homogenization for 50 h at 325 °C, the volume fraction of the undissolved particles in the Mg–7Zn–3Al–0.7Er alloy ingot was ∼4.1%. Two-step progressive solution treatment performed on the as-extruded alloy could further dissolve the particles. Only 1.5% undissolved particles remained after the treatment. The supersaturated degree of both the dissolved solute atoms and vacancies in the α-Mg matrix was expected to be increased, resulting in an enhanced age-strengthening, compared with normal solution and aging treatments. Moreover, the processed alloy exhibited a homogenous and stable fine grain structure. Remarkable dispersion strengthening effect of ternary τ (Mg 32 (Al,Zn) 49 ) precipitates occurred in Mg–Zn–Al alloy was also identified

  17. Gamma-ray multiplicity distribution in ternary fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, M [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Kliman, J [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Krupa, L [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Morhac, M [Department of Nuclear Physics, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava (Slovakia); Hamilton, J H [Department of Physics, Vanderbilt University, Nashville, TN (United States); Kormicki, J [Department of Physics, Vanderbilt University, Nashville, TN (United States); Ramayya, A V [Department of Physics, Vanderbilt University, Nashville, TN (United States); Hwang, J K [Department of Physics, Vanderbilt University, Nashville, TN (United States); Luo, Y X [Department of Physics, Vanderbilt University, Nashville, TN (United States); Fong, D [Department of Physics, Vanderbilt University, Nashville, TN (United States); Gore, P [Department of Physics, Vanderbilt University, Nashville, TN (United States); Akopian, G M Ter; Oganessian, Yu Ts; Rodin, A M; Fomichev, A S; Popeko, G S; Daniel, A V [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna (Russian Federation); Rasmussen, J O; Macchiavelli, A O [Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Stoyer, M A [Lawrence Livermore National Laboratory, Livermore, CA (United States); Donangelo, R [Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro (Brazil); Cole, J D [Idaho National Engineering and Environmental Laboratory, Idaho Falls, ID (United States)

    2002-12-01

    From multiparameter data obtained at Lawrence Berkeley National Laboratory, the integral characteristics of the prompt {gamma}-ray emission were extracted for tripartition of {sup 252}Cf with He, Be and C being the third light charged particle. We used multifold {gamma}-ray coincidence spectra for the determination of {gamma}-ray multiplicities assuming a Gaussian distribution for {gamma}-ray multiplicity. The multiplicity distribution characteristics, i.e. mean multiplicity and its dispersion were obtained by minimizing with respect to the calculated values of probabilities of multifold {gamma}-ray coincidences using a combinatoric method. Comparison with the known experimental data from binary fission was made. Further, we investigated dependencies of the mean {gamma}-ray multiplicity on the kinetic energy of the light charged particle. The mean {gamma}-ray multiplicity for He ternary fission is found to increase rapidly with increasing kinetic energy of He in the region less than 11 MeV and then decrease slowly with increasing kinetic energy of He. The anomalous behaviour of {gamma}-ray emission is discussed. The mean {gamma}-ray multiplicity was determined for the first time for Be and C ternary fission. For Be, the {gamma}-ray multiplicity as a function of kinetic energy was obtained as well.

  18. Green options for anti-corrosion of high strength concrete incorporating ternary pozzolan materials

    Directory of Open Access Journals (Sweden)

    Chen Yuan-Yuan

    2017-01-01

    Full Text Available This paper applied the densified mixture design algorithm(DMDA method by incorporating ternary pozzolans (fly ash, slag and silica fume; mix I and mix II to design high strength concrete (HSC mixtures with w/cm ratios from 0.24 to 0.30. Concrete without pozzolans was used as a control group (mix III, w/c from 0.24 to 0.30, and silica fume (5% was added as a substitute for part of the cement and set as mix IV. Experiments performed compressive strength, four-point resistance meter to measure the conductivity, and rapid chloride ion penetrability tests (ASTM C1202 were assessed the anti-corrosion. The life cycle inventory of LEED suggested by the PCA indicated the green options for cementitious materials. Results showed that mix I and II indicated cement used, CO2 reduction, raw materials and energy consumption all decreased more 50% than mix III, and mix IV was 5% less. The compressive strength and anti-corrosion levels showed that mix I and II were better than mix III and IV, and with ternary pozzolans could enhance the long-term durability (92 days due to a resistivity greater 20 KΩ-cm and a charge passed lower than 2000 Coulombs. HSC with an appropriate design could reduce the carbon footprint and improve the durability.

  19. PM1 steganographic algorithm using ternary Hamming Code

    Directory of Open Access Journals (Sweden)

    Kamil Kaczyński

    2015-12-01

    Full Text Available PM1 algorithm is a modification of well-known LSB steganographic algorithm. It has increased resistance to selected steganalytic attacks and increased embedding efficiency. Due to its uniqueness, PM1 algorithm allows us to use of larger alphabet of symbols, making it possible to further increase steganographic capacity. In this paper, we present the modified PM1 algorithm which utilizies so-called syndrome coding and ternary Hamming code. The modified algorithm has increased embedding efficiency, which means fewer changes introduced to carrier and increased capacity.[b]Keywords[/b]: steganography, linear codes, PM1, LSB, ternary Hamming code

  20. The importance of secondary and ternary twinning in compressed Ti

    International Nuclear Information System (INIS)

    Tirry, W.; Nixon, M.; Cazacu, O.; Coghe, F.; Rabet, L.

    2011-01-01

    Twin formation during uniaxial compression of high-purity α-Ti at room temperature is investigated for both quasi-static and dynamic conditions using electron backscatter diffraction techniques. The initial texture is favorable for {101-bar 2} twinning, yet it is observed that secondary and ternary twins occur for both strain rates, showing a higher propensity in the dynamic case. While secondary twins may explain the difference in texture change and strain hardening between the two loading conditions, the ternary twins mainly contribute to grain fractioning.