WorldWideScience

Sample records for termite gut protists

  1. Discovery of ectosymbiotic Endomicrobium lineages associated with protists in the gut of stolotermitid termites.

    Science.gov (United States)

    Izawa, Kazuki; Kuwahara, Hirokazu; Sugaya, Kaito; Lo, Nathan; Ohkuma, Moriya; Hongoh, Yuichi

    2017-08-01

    The genus Endomicrobium is a dominant bacterial group in the gut of lower termites, and most phylotypes are intracellular symbionts of gut protists. Here we report the discovery of Endomicrobium ectosymbionts of termite gut protists. We found that bristle-like Endomicrobium cells attached to the surface of spirotrichosomid protist cells inhabiting the termite Stolotermes victoriensis. Transmission electron microscopy revealed that a putative Endomicrobium cell likely attached to the protist surface via a protrusion from the tip of the bacterium. A phylotype, sharing 98.9% 16S rRNA sequence identity with the Endomicrobium ectosymbionts of the spirotrichosomid protists, was also found on the cell surface of the protist Trichonympha magna in the gut of the termite Porotermes adamsoni. We propose the novel species 'Candidatus Endomicrobium superficiale' for these bacteria. T. magna simultaneously harboured another Endomicrobium ectosymbiont that shared 93.5-94.2% 16S rRNA sequence identities with 'Ca. Endomicrobium superficiale'. Furthermore, Spirotrichonympha-like protists in P. adamsoni guts were associated with an Endomicrobium phylotype that possibly attached to the host flagella. A phylogenetic analysis suggested that these ectosymbiotic lineages have evolved multiple times from free-living Endomicrobium lineages and are relatively distant from the endosymbionts. Our results provide novel insights into the ecology and evolution of the Endomicrobium. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Complex coevolutionary history of symbiotic Bacteroidales bacteria of various protists in the gut of termites

    Science.gov (United States)

    Noda, Satoko; Hongoh, Yuichi; Sato, Tomoyuki; Ohkuma, Moriya

    2009-01-01

    Background The microbial community in the gut of termites is responsible for the efficient decomposition of recalcitrant lignocellulose. Prominent features of this community are its complexity and the associations of prokaryotes with the cells of cellulolytic flagellated protists. Bacteria in the order Bacteroidales are involved in associations with a wide variety of gut protist species as either intracellular endosymbionts or surface-attached ectosymbionts. In particular, ectosymbionts exhibit distinct morphological patterns of the associations. Therefore, these Bacteroidales symbionts provide an opportunity to investigate not only the coevolutionary relationships with the host protists and their morphological evolution but also how symbiotic associations between prokaryotes and eukaryotes occur and evolve within a complex symbiotic community. Results Molecular phylogeny of 31 taxa of Bacteroidales symbionts from 17 protist genera in 10 families was examined based on 16S rRNA gene sequences. Their localization, morphology, and specificity were also examined by fluorescent in situ hybridizations. Although a monophyletic grouping of the ectosymbionts occurred in three related protist families, the symbionts of different protist genera were usually dispersed among several phylogenetic clusters unique to termite-gut bacteria. Similar morphologies of the associations occurred in multiple lineages of the symbionts. Nevertheless, the symbionts of congeneric protist species were closely related to one another, and in most cases, each host species harbored a unique Bacteroidales species. The endosymbionts were distantly related to the ectosymbionts examined so far. Conclusion The coevolutionary history of gut protists and their associated Bacteroidales symbionts is complex. We suggest multiple independent acquisitions of the Bacteroidales symbionts by different protist genera from a pool of diverse bacteria in the gut community. In this sense, the gut could serve as a

  3. Cospeciation in the triplex symbiosis of termite gut protists (Pseudotrichonympha spp.), their hosts, and their bacterial endosymbionts.

    Science.gov (United States)

    Noda, S; Kitade, O; Inoue, T; Kawai, M; Kanuka, M; Hiroshima, K; Hongoh, Y; Constantino, R; Uys, V; Zhong, J; Kudo, T; Ohkuma, M

    2007-03-01

    A number of cophylogenetic relationships between two organisms namely a host and a symbiont or parasite have been studied to date; however, organismal interactions in nature usually involve multiple members. Here, we investigated the cospeciation of a triplex symbiotic system comprising a hierarchy of three organisms -- termites of the family Rhinotermitidae, cellulolytic protists of the genus Pseudotrichonympha in the guts of these termites, and intracellular bacterial symbionts of the protists. The molecular phylogeny was inferred based on two mitochondrial genes for the termites and nuclear small-subunit rRNA genes for the protists and their endosymbionts, and these were compared. Although intestinal microorganisms are generally considered to have looser associations with the host than intracellular symbionts, the Pseudotrichonympha protists showed almost complete codivergence with the host termites, probably due to strict transmissions by proctodeal trophallaxis or coprophagy based on the social behaviour of the termites. Except for one case, the endosymbiotic bacteria of the protists formed a monophyletic lineage in the order Bacteroidales, and the branching pattern was almost identical to those of the protists and the termites. However, some non-codivergent evolutionary events were evident. The members of this triplex symbiotic system appear to have cospeciated during their evolution with minor exceptions; the evolutionary relationships were probably established by termite sociality and the complex microbial community in the gut.

  4. Dominant ectosymbiotic bacteria of cellulolytic protists in the termite gut also have the potential to digest lignocellulose.

    Science.gov (United States)

    Yuki, Masahiro; Kuwahara, Hirokazu; Shintani, Masaki; Izawa, Kazuki; Sato, Tomoyuki; Starns, David; Hongoh, Yuichi; Ohkuma, Moriya

    2015-12-01

    Wood-feeding lower termites harbour symbiotic gut protists that support the termite nutritionally by degrading recalcitrant lignocellulose. These protists themselves host specific endo- and ectosymbiotic bacteria, functions of which remain largely unknown. Here, we present draft genomes of a dominant, uncultured ectosymbiont belonging to the order Bacteroidales, 'Candidatus Symbiothrix dinenymphae', which colonizes the cell surface of the cellulolytic gut protists Dinenympha spp. We analysed four single-cell genomes of Ca. S. dinenymphae, the highest genome completeness was estimated to be 81.6-82.3% with a predicted genome size of 4.28-4.31 Mb. The genome retains genes encoding large parts of the amino acid, cofactor and nucleotide biosynthetic pathways. In addition, the genome contains genes encoding various glycoside hydrolases such as endoglucanases and hemicellulases. The genome indicates that Ca. S. dinenymphae ferments lignocellulose-derived monosaccharides to acetate, a major carbon and energy source of the host termite. We suggest that the ectosymbiont digests lignocellulose and provides nutrients to the host termites, and hypothesize that the hydrolytic activity might also function as a pretreatment for the host protist to effectively decompose the crystalline cellulose components. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  5. Host-Symbiont Cospeciation of Termite-Gut Cellulolytic Protists of the Genera Teranympha and Eucomonympha and their Treponema Endosymbionts.

    Science.gov (United States)

    Noda, Satoko; Shimizu, Daichi; Yuki, Masahiro; Kitade, Osamu; Ohkuma, Moriya

    2018-03-29

    Cellulolytic flagellated protists inhabit the hindgut of termites. They are unique and essential to termites and related wood-feeding cockroaches, enabling host feeding on cellulosic matter. Protists of two genera in the family Teranymphidae (phylum Parabasalia), Eucomonympha and Teranympha, are phylogenetically closely related and harbor intracellular endosymbiotic bacteria from the genus Treponema. In order to obtain a clearer understanding of the evolutionary history of this triplex symbiotic relationship, the molecular phylogenies of the three symbiotic partners, the Teranymphidae protists, their Treponema endosymbionts, and their host termites, were inferred and compared. Strong congruence was observed in the tree topologies of all interacting partners, implying their cospeciating relationships. In contrast, the coevolutionary relationship between the Eucomonympha protists and their endosymbionts was more complex, and evidence of incongruence against cospeciating relationships suggested frequent host switches of the endosymbionts, possibly because multiple Eucomonympha species are present in the same gut community. Similarities in the 16S rRNA and gyrB gene sequences of the endosymbionts were higher among Teranympha spp. (>99.25% and >97.2%, respectively), whereas those between Teranympha and Eucomonympha were lower (<97.1% and <91.9%, respectively). In addition, the endosymbionts of Teranympha spp. formed a phylogenetic clade distinct from those of Eucomonympha spp. Therefore, the endosymbiont species of Teranympha spp., designated here as "Candidatus Treponema teratonymphae", needs to be classified as a species distinct from the endosymbiont species of Eucomonympha spp.

  6. Differential Ecological Specificity of Protist and Bacterial Microbiomes across a Set of Termite Species

    KAUST Repository

    Waidele, Lena; Korb, Judith; Voolstra, Christian R.; Kü nzel, Sven; Dedeine, Franck; Staubach, Fabian

    2017-01-01

    The gut microbiome of lower termites comprises protists and bacteria that help these insects to digest cellulose and to thrive on wood. The composition of the termite gut microbiome correlates with phylogenetic distance of the animal host and host

  7. Differential Ecological Specificity of Protist and Bacterial Microbiomes across a Set of Termite Species

    Directory of Open Access Journals (Sweden)

    Lena Waidele

    2017-12-01

    Full Text Available The gut microbiome of lower termites comprises protists and bacteria that help these insects to digest cellulose and to thrive on wood. The composition of the termite gut microbiome correlates with phylogenetic distance of the animal host and host ecology (diet in termites collected from their natural environment. However, carryover of transient microbes from host collection sites are an experimental concern and might contribute to the ecological imprints on the termite gut microbiome. Here, we set out to test whether an ecological imprint on the termite gut microbiome remains, when focusing on the persistent microbiome. Therefore, we kept five termite species under strictly controlled dietary conditions and subsequently profiled their protist and bacterial gut microbial communities using 18S and 16S rRNA gene amplicon sequencing. The species differed in their ecology; while three of the investigated species were wood-dwellers that feed on the piece of wood they live in and never leave except for the mating flight, the other two species were foragers that regularly leave their nests to forage for food. Despite these prominent ecological differences, protist microbiome structure aligned with phylogenetic relatedness of termite host species. Conversely, bacterial communities seemed more flexible, suggesting that microbiome structure aligned more strongly with the foraging and wood-dwelling ecologies. Interestingly, protist and bacterial community alpha-diversity correlated, suggesting either putative interactions between protists and bacteria, or that both types of microbes in the termite gut follow shared structuring principles. Taken together, our results add to the notion that bacterial communities are more variable over evolutionary time than protist communities and might react more flexibly to changes in host ecology.

  8. Differential Ecological Specificity of Protist and Bacterial Microbiomes across a Set of Termite Species

    KAUST Repository

    Waidele, Lena

    2017-12-19

    The gut microbiome of lower termites comprises protists and bacteria that help these insects to digest cellulose and to thrive on wood. The composition of the termite gut microbiome correlates with phylogenetic distance of the animal host and host ecology (diet) in termites collected from their natural environment. However, carryover of transient microbes from host collection sites are an experimental concern and might contribute to the ecological imprints on the termite gut microbiome. Here, we set out to test whether an ecological imprint on the termite gut microbiome remains, when focusing on the persistent microbiome. Therefore, we kept five termite species under strictly controlled dietary conditions and subsequently profiled their protist and bacterial gut microbial communities using 18S and 16S rRNA gene amplicon sequencing. The species differed in their ecology; while three of the investigated species were wood-dwellers that feed on the piece of wood they live in and never leave except for the mating flight, the other two species were foragers that regularly leave their nests to forage for food. Despite these prominent ecological differences, protist microbiome structure aligned with phylogenetic relatedness of termite host species. Conversely, bacterial communities seemed more flexible, suggesting that microbiome structure aligned more strongly with the foraging and wood-dwelling ecologies. Interestingly, protist and bacterial community alpha-diversity correlated, suggesting either putative interactions between protists and bacteria, or that both types of microbes in the termite gut follow shared structuring principles. Taken together, our results add to the notion that bacterial communities are more variable over evolutionary time than protist communities and might react more flexibly to changes in host ecology.

  9. Identifying the core microbial community in the gut of fungus-growing termites

    DEFF Research Database (Denmark)

    Otani, Saria; Mikaelyan, Aram; Nobre, Tânia

    2014-01-01

    Gut microbes play a crucial role in decomposing lignocellulose to fuel termite societies, with protists in the lower termites and prokaryotes in the higher termites providing these services. However, a single basal subfamily of the higher termites, the Macrotermitinae, also domesticated a plant......, and Synergistetes. A set of 42 genus-level taxa was present in all termite species and accounted for 56-68% of the species-specific reads. Gut communities of termites from the same genus were more similar than distantly related species, suggesting that phylogenetic ancestry matters, possibly in connection...... with specific termite genus-level ecological niches. Finally, we show that gut communities of fungus-growing termites are similar to cockroaches, both at the bacterial phylum level and in a comparison of the core Macrotermitinae taxa abundances with representative cockroach, lower termite, and higher non...

  10. Molecular signatures of nicotinoid-pathogen synergy in the termite gut.

    Directory of Open Access Journals (Sweden)

    Ruchira Sen

    Full Text Available Previous studies in lower termites revealed unexpected synergies between nicotinoid insecticides and fungal entomopathogens. The present study investigated molecular mechanisms of nicotinoid-pathogen synergy in the lower termite Reticulitermes flavipes, using the nicotinoid, imidacloprid, in combination with fungal and bacterial entomopathogens. Particular focus was placed on metatranscriptome composition and microbial dynamics in the symbiont-rich termite gut, which houses diverse mixes of protists and bacteria. cDNA microarrays containing a mix of host and protist symbiont oligonucleotides were used to simultaneously assess termite and protist gene expression. Five treatments were compared that included single challenges with sublethal doses of fungi (Metharizium anisopliae, bacteria (Serratia marcescens or imidacloprid, and dual challenges with fungi + imidacloprid or bacteria + imidacloprid. Our findings point towards protist dysbiosis and compromised social behavior, rather than suppression of stereotypical immune defense mechanisms, as the dominant factors underlying nicotinoid-pathogen synergy in termites. Also, greater impacts observed for the fungal pathogen than for the bacterial pathogen suggest that the rich bacterial symbiont community in the R. flavipes gut (>5000 species-level phylotypes exists in an ecological balance that effectively excludes exogenous bacterial pathogens. These findings significantly advance our understanding of antimicrobial defenses in this important eusocial insect group, as well as provide novel insights into how nicotinoids can exert deleterious effects on social insect colonies.

  11. Cellulolytic Protist Numbers Rise and Fall Dramatically in Termite Queens and Kings during Colony Foundation

    Science.gov (United States)

    Shimada, Keisuke; Lo, Nathan; Kitade, Osamu; Wakui, Akane

    2013-01-01

    Among the best-known examples of mutualistic symbioses is that between lower termites and the cellulolytic flagellate protists in their hindguts. Although the symbiosis in worker termites has attracted much attention, there have been only a few studies of protists in other castes. We have performed the first examination of protist population dynamics in queens and kings during termite colony foundation. Protist numbers, as well as measurements of hindgut and reproductive tissue sizes, were undertaken at five time points over 400 days in incipient colonies of Reticulitermes speratus, as well as in other castes of mature colonies of this species. We found that protist numbers increased dramatically in both queens and kings during the first 50 days of colony foundation but began to decrease by day 100, eventually disappearing by day 400. Hindgut width followed a pattern similar to that of protist numbers, while ovary and testis widths increased significantly only at day 400. Kings were found to contain higher numbers of protists than queens in incipient colonies, which may be linked to higher levels of nutrient transfer from kings to queens than vice versa, as is known in some other termite species. Protists were found to be abundant in soldiers from mature colonies but absent in neotenics. This probably reflects feeding of soldiers by workers via proctodeal trophallaxis and of reproductives via stomodeal trophallaxis. The results reveal the dynamic nature of protist numbers during colony foundation and highlight the trade-offs that exist between reproduction and parental care during this critical phase of the termite life cycle. PMID:23376945

  12. Incomplete Co-cladogenesis Between Zootermopsis Termites and Their Associated Protists.

    Science.gov (United States)

    Taerum, Stephen J; De Martini, Francesca; Liebig, Jürgen; Gile, Gillian H

    2018-02-08

    Coevolution is a major driver of speciation in many host-associated symbionts. In the termite-protist digestive symbiosis, the protists are vertically inherited by anal feeding among nest mates. Lower termites (all termite families except Termitidae) and their symbionts have broadly co-diversified over ~170 million yr. However, this inference is based mainly on the restricted distribution of certain protist genera to certain termite families. With the exception of one study, which demonstrated congruent phylogenies for the protist Pseudotrichonympha and its Rhinotermitidae hosts, coevolution in this symbiosis has not been investigated with molecular methods. Here we have characterized the hindgut symbiotic protists (Phylum Parabasalia) across the genus Zootermopsis (Archotermopsidae) using single cell isolation, molecular phylogenetics, and high-throughput amplicon sequencing. We report that the deepest divergence in the Zootermopsis phylogeny (Zootermopsis laticeps [Banks; Isoptera: Termopsidae]) corresponds with a divergence in three of the hindgut protist species. However, the crown Zootermopsis taxa (Zootermopsis angusticollis [Hagen; Isoptera: Termopsidae], Z. nevadensis nevadensis [Hagen; Isoptera: Termopsidae], and Z. nevadensis nuttingi [Haverty & Thorne; Isoptera: Termopsidae]) share the same protist species, with no evidence of co-speciation under our methods. We interpret this pattern as incomplete co-cladogenesis, though the possibility of symbiont exchange cannot be entirely ruled out. This is the first molecular evidence that identical communities of termite-associated protist species can inhabit multiple distinct host species. © The Author(s) 2018. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Symbiotic flagellate protists as cryptic drivers of adaptation and invasiveness of the subterranean termite Reticulitermes grassei Clément.

    Science.gov (United States)

    Duarte, Sónia; Nobre, Tânia; Borges, Paulo A V; Nunes, Lina

    2018-06-01

    Changes in flagellate protist communities of subterranean termite Reticulitermes grassei across different locations were evaluated following four predictions: (i) Rural endemic (Portugal mainland) termite populations will exhibit high diversity of symbionts; (ii) invasive urban populations (Horta city, Faial island, Azores), on the contrary, will exhibit lower diversity of symbionts, showing high similarity of symbiont assemblages through environmental filtering; (iii) recent historical colonization of isolated regions-as the case of islands-will imply a loss of symbiont diversity; and (iv) island isolation will trigger a change in colony breeding structure toward a less aggressive behavior. Symbiont flagellate protist communities were morphologically identified, and species richness and relative abundances, as well as biodiversity indices, were used to compare symbiotic communities in colonies from urban and rural environments and between island invasive and mainland endemic populations. To evaluate prediction on the impact of isolation (iv), aggression tests were performed among termites comprising island invasive and mainland endemic populations. A core group of flagellates and secondary facultative symbionts was identified. Termites from rural environments showed, in the majority of observed colonies, more diverse and abundant protist communities, probably confirming prediction (i). Corroborating prediction (ii), the two least diverse communities belong to termites captured inside urban areas. The Azorean invasive termite colonies had more diverse protist communities than expected and prediction (iii) which was not verified within this study. Termites from mainland populations showed a high level of aggressiveness between neighboring colonies, in contrast to the invasive colonies from Horta city, which were not aggressive to neighbors according to prediction (iv). The symbiotic flagellate community of R. grassei showed the ability to change in a way that might

  14. Antimicrobial activity of actinobacteria isolated from the guts of subterranean termites

    Science.gov (United States)

    Rachel Arango; C. M. Carlson; C. R. Currie; B. R. McDonald; A. J. Book; Frederick Green; K. F. Raffa; N.K. Lebow

    2016-01-01

    Subterranean termites need to minimize potentially pathogenic and competitive fungi in their environment in order to maintain colony health. We examined the ability of Actinobacteria isolated from termite guts in suppressing microorganisms commonly encountered in a subterranean environment. Guts from two subterranean termite species, Reticulitermes flavipes...

  15. Diversity, Roles, and Biotechnological Applications of Symbiotic Microorganisms in the Gut of Termite.

    Science.gov (United States)

    Zhou, Jing; Duan, Jiwei; Gao, Mingkun; Wang, Ying; Wang, Xiaohua; Zhao, Kai

    2018-05-12

    Termites are global pests and can cause serious damage to buildings, crops, and plantation forests. The symbiotic intestinal flora plays an important role in the digestion of cellulose and nitrogen in the life of termites. Termites and their symbiotic microbes in the gut form a synergistic system. These organism work together to digest lignocellulose to make the termites grow on nitrogen deficient food. In this paper, the diversity of symbiotic microorganisms in the gut of termites, including protozoan, spirochetes, actinomycetes, fungus and bacteria, and their role in the digestion of lignocellulose and also the biotechnological applications of these symbiotic microorganisms are discussed. The high efficiency lignocellulose degradation systems of symbiotic microbes in termite gut not only provided a new way of biological energy development, but also has immense prospect in the application of cellulase enzymes. In addition, the study on the symbiotic microorganisms in the gut of termites will also provide a new method for the biological control of termites by the endophytic bacteria in the gut of termites.

  16. Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes

    Directory of Open Access Journals (Sweden)

    Zhou Xuguo

    2009-10-01

    Full Text Available Abstract Background Termite lignocellulose digestion is achieved through a collaboration of host plus prokaryotic and eukaryotic symbionts. In the present work, we took a combined host and symbiont metatranscriptomic approach for investigating the digestive contributions of host and symbiont in the lower termite Reticulitermes flavipes. Our approach consisted of parallel high-throughput sequencing from (i a host gut cDNA library and (ii a hindgut symbiont cDNA library. Subsequently, we undertook functional analyses of newly identified phenoloxidases with potential importance as pretreatment enzymes in industrial lignocellulose processing. Results Over 10,000 expressed sequence tags (ESTs were sequenced from the 2 libraries that aligned into 6,555 putative transcripts, including 171 putative lignocellulase genes. Sequence analyses provided insights in two areas. First, a non-overlapping complement of host and symbiont (prokaryotic plus protist glycohydrolase gene families known to participate in cellulose, hemicellulose, alpha carbohydrate, and chitin degradation were identified. Of these, cellulases are contributed by host plus symbiont genomes, whereas hemicellulases are contributed exclusively by symbiont genomes. Second, a diverse complement of previously unknown genes that encode proteins with homology to lignase, antioxidant, and detoxification enzymes were identified exclusively from the host library (laccase, catalase, peroxidase, superoxide dismutase, carboxylesterase, cytochrome P450. Subsequently, functional analyses of phenoloxidase activity provided results that were strongly consistent with patterns of laccase gene expression. In particular, phenoloxidase activity and laccase gene expression are mostly restricted to symbiont-free foregut plus salivary gland tissues, and phenoloxidase activity is inducible by lignin feeding. Conclusion To our knowledge, this is the first time that a dual host-symbiont transcriptome sequencing effort

  17. Activity of medicinal plants from Ghana against the parasitic gut protist Blastocystis

    DEFF Research Database (Denmark)

    Bremer Christensen, Charlotte; Soelberg, Jens; Stensvold, Christen R

    2015-01-01

    ; an ethanolic, a warm, and a cold water extract, at a final concentration of 1mg/mL for the initial screening, and in a range from 0.0156 to 1mg/mL for determination of inhibitory concentrations. The obligate anaerobic parasitic gut protist Blastocystis (subtype 4) was used as a 48h old subcultivated isolate...

  18. Towards an integrated understanding of the consequences of fungus domestication on the fungus-growing termite gut microbiota

    DEFF Research Database (Denmark)

    Thomas-Poulsen, Michael

    2015-01-01

    Approximately 30 million years ago (MYA), the subfamily of higher termites Macrotermitinae domesticated a fungus, Termitomyces, as the main plant decomposer and food source for the termite host. The origin of fungiculture shifted the composition of the termite gut microbiota, and some of the func......Approximately 30 million years ago (MYA), the subfamily of higher termites Macrotermitinae domesticated a fungus, Termitomyces, as the main plant decomposer and food source for the termite host. The origin of fungiculture shifted the composition of the termite gut microbiota, and some...... will be powerful, particularly if executed in comparative analyses across the well-established congruent termite-fungus phylogenies. This will allow for testing if gut communities have evolved in parallel with their hosts, with implications for our general understanding of the evolution of gut symbiont communities...

  19. Variation in the Gut Microbiota of Termites (Tsaitermes ampliceps) Against Different Diets.

    Science.gov (United States)

    Su, Lijuan; Yang, Lele; Huang, Shi; Li, Yan; Su, Xiaoquan; Wang, Fengqin; Bo, Cunpei; Wang, En Tao; Song, Andong

    2017-01-01

    Termites are well recognized for their thriving on recalcitrant lignocellulosic diets through nutritional symbioses with gut-dwelling microbiota; however, the effects of diet changes on termite gut microbiota are poorly understood, especially for the lower termites. In this study, we employed high-throughput 454 pyrosequencing of 16S V1-V3 amplicons to compare gut microbiotas of Tsaitermes ampliceps fed with lignin-rich and lignin-poor cellulose diets after a 2-week-feeding period. As a result, the majority of bacterial taxa were shared across the treatments with different diets, but their relative abundances were modified. In particular, the relative abundance was reduced for Spirochaetes and it was increased for Proteobacteria and Bacteroides by feeding the lignin-poor diet. The evenness of gut microbiota exhibited a significant difference in response to the diet type (filter paper diets corn stover diets < wood diets), while their richness was constant, which may be related to the lower recalcitrance of this biomass to degradation. These results have important implications for sampling and analysis strategies to probe the lignocellulose degradation features of termite gut microbiota and suggest that the dietary lignocellulose composition could cause shifting rapidly in the termite gut microbiota.

  20. Testing protozoacidal activity of ligand-lytic peptides against termite gut protozoa in vitro (protozoa culture) and in vivo (microinjection into termite hindgut).

    Science.gov (United States)

    Husseneder, Claudia; Sethi, Amit; Foil, Lane; Delatte, Jennifer

    2010-12-29

    We are developing a novel approach to subterranean termite control that would lead to reduced reliance on the use of chemical pesticides. Subterranean termites are dependent on protozoa in the hindguts of workers to efficiently digest wood. Lytic peptides have been shown to kill a variety of protozoan parasites (Mutwiri et al. 2000) and also protozoa in the gut of the Formosan subterranean termite, Coptotermes formosanus (Husseneder and Collier 2009). Lytic peptides are part of the nonspecific immune system of eukaryotes, and destroy the membranes of microorganisms (Leuschner and Hansel 2004). Most lytic peptides are not likely to harm higher eukaryotes, because they do not affect the electrically neutral cholesterol-containing cell membranes of higher eukaryotes (Javadpour et al. 1996). Lytic peptide action can be targeted to specific cell types by the addition of a ligand. For example, Hansel et al. (2007) reported that lytic peptides conjugated with cancer cell membrane receptor ligands could be used to destroy breast cancer cells, while lytic peptides alone or conjugated with non-specific peptides were not effective. Lytic peptides also have been conjugated to human hormones that bind to receptors on tumor cells for targeted destruction of prostate and testicular cancer cells (Leuschner and Hansel 2004). In this article we present techniques used to demonstrate the protozoacidal activity of a lytic peptide (Hecate) coupled to a heptapeptide ligand that binds to the surface membrane of protozoa from the gut of the Formosan subterranean termite. These techniques include extirpation of the gut from termite workers, anaerobic culture of gut protozoa (Pseudotrichonympha grassii, Holomastigotoides hartmanni,Spirotrichonympha leidyi), microscopic confirmation that the ligand marked with a fluorescent dye binds to the termite gut protozoa and other free-living protozoa but not to bacteria or gut tissue. We also demonstrate that the same ligand coupled to a lytic

  1. Pycnoscelus surinamensis cockroach gut microbiota respond consistently to a fungal diet without mirroring those of fungus-farming termites.

    Directory of Open Access Journals (Sweden)

    Callum Richards

    Full Text Available The gut microbiotas of cockroaches and termites play important roles in the symbiotic digestion of dietary components, such as lignocellulose. Diet has been proposed as a primary determinant of community structure within the gut, acting as a selection force to shape the diversity observed within this "bioreactor", and as a key factor for the divergence of the termite gut microbiota from the omnivorous cockroach ancestor. The gut microbiota in most termites supports primarily the breakdown of lignocellulose, but the fungus-farming sub-family of higher termites has become similar in gut microbiota to the ancestral omnivorous cockroaches. To assess the importance of a fungus diet as a driver of community structure, we compare community compositions in the guts of experimentally manipulated Pycnoscelus surinamensis cockroaches fed on fungus cultivated by fungus-farming termites. MiSeq amplicon analysis of gut microbiotas from 49 gut samples showed a step-wise gradient pattern in community similarity that correlated with an increase in the proportion of fungal material provided to the cockroaches. Comparison of the taxonomic composition of manipulated communities to that of gut communities of a fungus-feeding termite species showed that although some bacteria OTUs shared by P. surinamensis and the farming termites increased in the guts of cockroaches on a fungal diet, cockroach communities remained distinct from those of termites. These results demonstrate that a fungal diet can play a role in structuring gut community composition, but at the same time exemplifies how original community compositions constrain the magnitude of such change.

  2. Protozoacidal Trojan-Horse: use of a ligand-lytic peptide for selective destruction of symbiotic protozoa within termite guts.

    Science.gov (United States)

    Sethi, Amit; Delatte, Jennifer; Foil, Lane; Husseneder, Claudia

    2014-01-01

    For novel biotechnology-based termite control, we developed a cellulose bait containing freeze-dried genetically engineered yeast which expresses a protozoacidal lytic peptide attached to a protozoa-recognizing ligand. The yeast acts as a 'Trojan-Horse' that kills the cellulose-digesting protozoa in the termite gut, which leads to the death of termites, presumably due to inefficient cellulose digestion. The ligand targets the lytic peptide specifically to protozoa, thereby increasing its protozoacidal efficiency while protecting non-target organisms. After ingestion of the bait, the yeast propagates in the termite's gut and is spread throughout the termite colony via social interactions. This novel paratransgenesis-based strategy could be a good supplement for current termite control using fortified biological control agents in addition to chemical insecticides. Moreover, this ligand-lytic peptide system could be used for drug development to selectively target disease-causing protozoa in humans or other vertebrates.

  3. Evaluating the role of Actinobacteria in the gut of wood-feeding termites (Reticulitermes spp.)

    Science.gov (United States)

    Rachel A. Arango; Frederick Green III; Vina W. Yang; Joliene R. Lindholm; Nathaniel P. Chotlos; Kenneth F. Raffa

    2017-01-01

    Nitrogen has been shown to be a limiting nutrient across a range of xylophagous insects. These insects often rely on symbiotic microorganisms in the gut for nitrogen acquisition, via fixation of atmospheric nitrogen or break down of other available nitrogenous substances. In phylogenetically lower, wood-feeding termites, the role of nitrogen fixing bacteria has been...

  4. Saccharification of Agricultural Lignocellulose Feedstocks and Protein-Level Responses by a Termite Gut-Microbe Bioreactor

    International Nuclear Information System (INIS)

    Rajarapu, Swapna Priya; Scharf, Michael E.

    2017-01-01

    This study investigated saccharification and protein-level responses to the candidate biofuel feedstocks corn stover (CS) and soybean residue (SR) by the gut of a lower termite. The focus termite was Reticulitermes flavipes, which is a highly efficient digester of wood lignocellulose that houses a mixture of prokaryotic and eukaryotic microbes in its gut. Our specific objectives were to (i) measure saccharification potential of the CS and SR feedstocks by termite gut protein extracts, (ii) identify specific proteins in the termite gut responding to feeding on CS and SR diets, and (iii) evaluate gut lignocellulase and accessory enzyme activity responses to CS and SR feeding. Cellulose paper was the control diet. Although CS was saccharified at higher levels, termite gut protein extracts saccharified both CS and SR irrespective of feedstock loading. Consumption of the CS and SR feedstocks by termites resulted in surprisingly few differences in gut protein profiles, with the main exception being elevated myosin abundance with SR feeding. Activity of potential lignocellulases and accessory enzymes was generally similar between CS and SR fed guts as well; however, cellobiohydrolase/exoglucanase activity was higher with CS feeding and glutathione peroxidase activity with SR feeding. These findings have significance from two perspectives. First, SR feeding/digestion appears to cause physiological stress in the termite gut that likely would extend to other types of microbial environments including those within industrial bioreactors. Second, because termites can survive on exclusive CS and SR diets and their guts exhibit clear CS and SR saccharification activity, this validates the R. flavipes system as a potential source for CS and SR degrading enzymes; in particular, cellobiohydrolases/exoglucanases and glutathione peroxidases from this system may play roles in CS and SR breakdown.

  5. Saccharification of Agricultural Lignocellulose Feedstocks and Protein-Level Responses by a Termite Gut-Microbe Bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Rajarapu, Swapna Priya; Scharf, Michael E., E-mail: mscharf@purdue.edu [Department of Entomology, Purdue University, West Lafayette, IN (United States)

    2017-04-07

    This study investigated saccharification and protein-level responses to the candidate biofuel feedstocks corn stover (CS) and soybean residue (SR) by the gut of a lower termite. The focus termite was Reticulitermes flavipes, which is a highly efficient digester of wood lignocellulose that houses a mixture of prokaryotic and eukaryotic microbes in its gut. Our specific objectives were to (i) measure saccharification potential of the CS and SR feedstocks by termite gut protein extracts, (ii) identify specific proteins in the termite gut responding to feeding on CS and SR diets, and (iii) evaluate gut lignocellulase and accessory enzyme activity responses to CS and SR feeding. Cellulose paper was the control diet. Although CS was saccharified at higher levels, termite gut protein extracts saccharified both CS and SR irrespective of feedstock loading. Consumption of the CS and SR feedstocks by termites resulted in surprisingly few differences in gut protein profiles, with the main exception being elevated myosin abundance with SR feeding. Activity of potential lignocellulases and accessory enzymes was generally similar between CS and SR fed guts as well; however, cellobiohydrolase/exoglucanase activity was higher with CS feeding and glutathione peroxidase activity with SR feeding. These findings have significance from two perspectives. First, SR feeding/digestion appears to cause physiological stress in the termite gut that likely would extend to other types of microbial environments including those within industrial bioreactors. Second, because termites can survive on exclusive CS and SR diets and their guts exhibit clear CS and SR saccharification activity, this validates the R. flavipes system as a potential source for CS and SR degrading enzymes; in particular, cellobiohydrolases/exoglucanases and glutathione peroxidases from this system may play roles in CS and SR breakdown.

  6. DGGE detection and screening of lignocellulolytic bacteria from the termite gut of Coptotermes formosanus

    Directory of Open Access Journals (Sweden)

    Mathew, G.M.

    2011-01-01

    Full Text Available Aims: Termites thrive in terrestrial ecosystems and play an important role in the bio-recycling of lignocellulose. The objective of this study is to isolate and detect bacteria from the termite gut of Coptotermes formosanus and to screen their various enzyme activities by qualitative methods. In addition, this study was aimed to isolate lignin and furfural tolerant strains for various industrial bioprocesses.Methodology and Results: In this study, 50 worker termites of Coptotermes formosanus were collected from dead trees, from a forest in Taichung, Taiwan in June 2008 and the composition of the microbial flora from the termite guts was analyzed by DGGE analysis. The results proved that anaerobic and facultatively anaerobic bacteria consisting of Acinetobacter, Bacteroides thetaiotaomicron, Escherichia coli, and Caulobacter readily existed in the guts of termites. Although the majority of these gut symbionts have not yet been cultivated or identified, some related bacteria were isolated. Two isolates 1-8 and 2-2 of Genus Bacillus, exhibited endocellulase, protease, lipase, amylase, peroxidase and lignin peroxidase activity. Under aerobic conditions, the growth density of isolate 1-8 cultured in 1000 ppm lignin containing MSM medium was two-folds higher than cultured in MSM medium without lignin. Furthermore, the isolate 1-8 was tolerant to 20 mM furfural supplemented in the MSM medium. HPLC analysis confirmed Bacillus isolate 1-8 could degrade up to 15 mM furfural.Conclusion, significance and impact of study: Hind gut bacteria from C. formosanus were detected by culture independent DGGE method. Also, Bacillus isolates 1-8 and 2-2 obtained by culture dependent methods could withstand higher concentration of furfural and as well as lignin. These isolates may be co-cultured with ethanologenic bacteria and be used as an industrial biocatalyst for biofuel production.

  7. Microbial community diversity in the gut of the South American termite Cornitermes cumulans (Isoptera: Termitidae).

    Science.gov (United States)

    Grieco, Maria Angela B; Cavalcante, Janaina J V; Cardoso, Alexander M; Vieira, Ricardo P; Machado, Ednildo A; Clementino, Maysa M; Medeiros, Marcelo N; Albano, Rodolpho M; Garcia, Eloi S; de Souza, Wanderley; Constantino, Reginaldo; Martins, Orlando B

    2013-01-01

    Termites inhabit tropical and subtropical areas where they contribute to structure and composition of soils by efficiently degrading biomass with aid of resident gut microbiota. In this study, culture-independent molecular analysis was performed based on bacterial and archaeal 16S rRNA clone libraries to describe the gut microbial communities within Cornitermes cumulans, a South American litter-feeding termite. Our data reveal extensive bacterial diversity, mainly composed of organisms from the phyla Spirochaetes, Bacteroidetes, Firmicutes, Actinobacteria, and Fibrobacteres. In contrast, a low diversity of archaeal 16S rRNA sequences was found, comprising mainly members of the Crenarchaeota phylum. The diversity of archaeal methanogens was further analyzed by sequencing clones from a library for the mcrA gene, which encodes the enzyme methyl coenzyme reductase, responsible for catalyzing the last step in methane production, methane being an important greenhouse gas. The mcrA sequences were diverse and divided phylogenetically into three clades related to uncultured environmental archaea and methanogens found in different termite species. C. cumulans is a litter-feeding, mound-building termite considered a keystone species in natural ecosystems and also a pest in agriculture. Here, we describe the archaeal and bacterial communities within this termite, revealing for the first time its intriguing microbiota.

  8. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites

    Science.gov (United States)

    Desai, Mahesh S; Brune, Andreas

    2012-01-01

    Although it is well documented that the lack of nitrogen in the diet of wood-feeding termites is compensated by the nitrogen-fixing capacity of their gut microbiota, the bacteria responsible for this activity are largely unknown. Here, we analyzed the diversity and expression of nitrogenase genes (homologs of nifH) in four species of dry-wood termites (Kalotermitidae), which thrive on a particularly nitrogen-poor resource. Although each species harbored a highly diverse suite of termite-specific homologs in their microliter-sized hindgut, only a core set related to nifH genes of Treponema and Azoarcus spp., ‘Azobacteroides pseudotrichonymphae', the first member of the Bacteroidales identified as a diazotroph, and termite-gut-specific anfH genes of hitherto unknown origin were preferentially expressed. Transcription patterns corroborated that the populations of active diazotrophs differ fundamentally between termite genera. Capillary-picked suspensions of the flagellates Devescovina arta and Snyderella tabogae revealed that their bacterial ectosymbionts each possess two paralogs of nifH, which apparently have been acquired consecutively during evolution of Bacteroidales, but only one of them (anfH) is actively expressed. Transcription patterns correlated neither with the molybdenum content of the diet nor with intestinal hydrogen concentrations, measured with microsensors. We propose that the nitrogen-fixing community in different dry-wood termites is shaped by the symbionts of their specific flagellate populations. Our findings suggest that the diazotrophic nature of ‘Armantifilum devescovinae' has an important role in the nitrogen metabolism of dry-wood termites and is the driving force of co-evolution with its flagellate host. PMID:22189498

  9. Bacterial communities in termite fungus combs are comprised of consistent gut deposits and contributions from the environment

    DEFF Research Database (Denmark)

    Otani, Saria; Hansen, Lars Hestbjerg; Sørensen, Søren J

    2016-01-01

    , Actinobacteria, and Candidate division TM7 jointly accounting for 92 % of the reads. Analyses of gut microbiotas from 25 of the 33 colonies showed that dominant fungus comb taxa originate from the termite gut. While gut communities were consistent between 2011 and 2013, comb community compositions shifted over...

  10. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    Science.gov (United States)

    Husseneder, Claudia; Donaldson, Jennifer R; Foil, Lane D

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.

  11. Phylogeny of not-yet-cultured spirochetes from termite guts

    DEFF Research Database (Denmark)

    Paster, B.J.; Dewhirst, F.E.; Cooke, S.M.

    1996-01-01

    Comparisons of 16S rDNA sequences were used to determine the phylogeny of not-yet-cultured spirochetes from hindguts of the African higher termite, Nasutitermes lujae (Wasmann). The 16S rRNA genes were amplified directly from spirochete-rich hindguts by using universal primers, and the amplified...

  12. Diversity and resilience of the wood?feeding higher termite Mironasutitermes shangchengensis gut microbiota in response to temporal and diet variations

    OpenAIRE

    Wang, Ying; Su, Lijuan; Huang, Shi; Bo, Cunpei; Yang, Sen; Li, Yan; Wang, Fengqin; Xie, Hui; Xu, Jian; Song, Andong

    2016-01-01

    Abstract Termites are considered among the most efficient bioreactors, with high capacities for lignocellulose degradation and utilization. Recently, several studies have characterized the gut microbiota of diverse termites. However, the temporal dynamics of the gut microbiota within a given termite with dietary diversity are poorly understood. Here, we employed 16S rDNA barcoded pyrosequencing analysis to investigate temporal changes in bacterial diversity and richness of the gut microbiota ...

  13. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds.

    Science.gov (United States)

    Fall, Saliou; Hamelin, Jérôme; Ndiaye, Farma; Assigbetse, Komi; Aragno, Michel; Chotte, Jean Luc; Brauman, Alain

    2007-08-01

    In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect to the digestive and soil origins of the mound. We have compared the bacterial community structures of a termite mound, termite gut sections, and surrounding soil using PCR-denaturing gradient gel electrophoresis (DGGE) analysis and cloning and sequencing of PCR-amplified 16S rRNA gene fragments. DGGE analysis revealed a drastic difference between the genetic structures of the bacterial communities of the termite gut and the mound. Analysis of 266 clones, including 54 from excised bands, revealed a high level of diversity in each biota investigated. The soil-feeding termite mound was dominated by the Actinobacteria phylum, whereas the Firmicutes and Proteobacteria phyla dominate the gut sections of termites and the surrounding soil, respectively. Phylogenetic analyses revealed a distinct clustering of Actinobacteria phylotypes between the mound and the surrounding soil. The Actinobacteria clones of the termite mound were diverse, distributed among 10 distinct families, and like those in the termite gut environment lightly dominated by the Nocardioidaceae family. Our findings confirmed that the soil-feeding termite mound (C. niokoloensis) represents a specific bacterial habitat in the tropics.

  14. Pycnoscelus surinamensis cockroach gut microbiota respond consistently to a fungal diet without mirroring those of fungus-farming termites

    DEFF Research Database (Denmark)

    Richards, Callum; Otani, Saria; Mikaelyan, Aram

    2017-01-01

    The gut microbiotas of cockroaches and termites play important roles in the symbiotic digestion of dietary components, such as lignocellulose. Diet has been proposed as a primary determinant of community structure within the gut, acting as a selection force to shape the diversity observed within......-feeding termite species showed that although some bacteria OTUs shared by P. surinamensis and the farming termites increased in the guts of cockroaches on a fungal diet, cockroach communities remained distinct from those of termites. These results demonstrate that a fungal diet can play a role in structuring gut...

  15. Screening assays of termite gut microbes that potentially as probiotic for human to digest cellulose as new food source

    Science.gov (United States)

    Abdullah, R.; Ananda, K. R. T.; Wijanarka

    2018-05-01

    According to UN, earth population will increase approximately 7.3 billion people up to 11.2 billion from 2015 until 2100. On the other side, food needs are not balance with the availability of food on earth. People of the world need solution for a new food source. By cellulose digesting ability, people analyzed can consume cellulose as the new food source to get glucose. The aims of research is obtaining termite gut cellulase bacteria selected which is potential as probiotic to split cellulose. Method used was as follows; isolation of termite gut microbes, microbial cellulase purification by screening method and probiotic test includes microbial pathogenicity test and human stomach acid and salt osmotic concentration resistance test. The result shows, 3 pure isolates of termite gut microbes can break down cellulose in the medium 1% CMC and 0.1% congo red (indicator of cellulose degradation activity) and life at pH 2- 2.5 and osmotic salt condition. Two isolates show the activity of gamma hemolysis (non-pathogenic in terms of pathogenicity on human blood). In conclusion, there are isolated termite gut microbes can be used as probiotic candidate for human to digest cellulose of the new food source for global food scarcity era.

  16. Isolation and identification of cellulolytic bacteria from termites gut (Cryptotermes sp.)

    Science.gov (United States)

    Peristiwati; Natamihardja, Y. S.; Herlini, H.

    2018-05-01

    The energy and environmental crises developed due to a huge amount of cellulosic materials are disposed of as “waste.” Cellulose is the most abundant biopolymer on Earth. The hydrolysis of cellulose to glucose and soluble sugars has thus become a subject of intense research. Termites are one of the most important soil insects that efficiently decompose lignocelluloses with the aid of their associated microbial symbionts to a simpler form of sugars. The steps of this study consisted of cellulose isolation, cellulolytic bacteria isolation and identification. Cellulose degrading bacteria from termite (Cryptotermes sp.) gut flora were isolated, screened and their identification was studied which showed halo zones due to CMC agar. Among 12 isolates of bacteria, six isolates were cellulolytic. MLC-A isolate had shown a maximum in a cellulolytic index (1.32). Each isolate was identified based on standard physical and biochemical tests. Three isolates were identified in the genus of Clostridium, one isolate be placed in the group of Mycobacteriaceae, Lactobacillaceae or Coryneform and the last one in the genus Proteus.

  17. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut.

    Science.gov (United States)

    Pasti, M B; Pometto, A L; Nuti, M P; Crawford, D L

    1990-01-01

    The lignocellulose-degrading abilities of 11 novel actinomycete strains isolated from termite gut were determined and compared with that of the well-characterized actinomycete, Streptomyces viridosporus T7A. Lignocellulose bioconversion was followed by (i) monitoring the degradation of [14C]lignin- and [14C]cellulose-labeled phloem of Abies concolor to 14CO2 and 14C-labeled water-soluble products, (ii) determining lignocellulose, lignin, and carbohydrate losses resulting from growth on a lignocellulose substrate prepared from corn stalks (Zea mays), and (iii) quantifying production of a water-soluble lignin degradation intermediate (acid-precipitable polymeric lignin). The actinomycetes were all Streptomyces strains and could be placed into three groups, including a group of five strains that appear superior to S. viridosporus T7A in lignocellulose-degrading ability, three strains of approximately equal ability, and three strains of lesser ability. Strain A2 was clearly the superior and most effective lignocellulose decomposer of those tested. Of the assays used, total lignocellulose weight loss was most useful in determining overall bioconversion ability but not in identifying the best lignin-solubilizing strains. A screening procedure based on 14CO2 evolution from [14C-lignin]lignocellulose combined with measurement of acid-precipitable polymeric lignin yield was the most effective in identifying lignin-solubilizing strains. For the termite gut strains, the pH of the medium showed no increase after 3 weeks of growth on lignocellulose. This is markedly different from the pattern observed with S. viridosporus T7A, which raises the medium pH considerably. Production of extracellular peroxidases by the 11 strains and S. viridosporus T7A was followed for 5 days in liquid cultures.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2167628

  18. Lignin-solubilizing ability of actinomycetes isolated from termite (Termitidae) gut

    International Nuclear Information System (INIS)

    Pasti, M.B.; Crawford, D.L.; Pometto, A.L. III; Nuti, M.P.

    1990-01-01

    The lignocellulose-degrading abilities of 11 novel actinomycete strains isolated from termite gut were determined and compared with that of the well-characterized actinomycete, Streptomyces viridosporus T7A. Lignocellulose bioconversion was followed by (i) monitoring the degradation of [ 14 C]lignin- and [ 14 C]cellulose-labeled phloem of Abies concolor to 14 CO 2 and 14 C-labeled water-soluble products, (ii) determining lignocellulose, lignin, and carbohydrate losses resulting from growth on a lignocellulose substrate prepared from corn stalks (Zea mays), and (iii) quantifying production of a water-soluble lignin degradation intermediate (acid-precipitable polymeric lignin). Of the assays used, total lignocellulose weight loss was most useful in determining overall bioconversion ability but not in identifying the best lignin-solubilizing strains. A screening procedure based on 14 CO 2 evolution from [ 14 C-lignin]lignocellulose combined with measurement of acid-precipitable polymeric lignin yield was the most effective in identifying lignin-solubilizing strains. For the termite gut strains, the pH of the medium showed no increase after 3 weeks of growth on lignocellulose. This is markedly different from the pattern observed with S. viridosporus T7A, which raises the medium pH considerably. Production of extracellular peroxidases by the 11 strains and S. viridosporus T7A was followed for 5 days in liquid cultures. On the basis of an increase of specific peroxidase activity in the presence of lignocellulose in the medium, the actinomycetes could be placed into the same three groups

  19. Metagenomic insights into metabolic capacities of the gut microbiota in a fungus-cultivating termite (Odontotermes yunnanensis.

    Directory of Open Access Journals (Sweden)

    Ning Liu

    Full Text Available Macrotermitinae (fungus-cultivating termites are major decomposers in tropical and subtropical areas of Asia and Africa. They have specifically evolved mutualistic associations with both a Termitomyces fungi on the nest and a gut microbiota, providing a model system for probing host-microbe interactions. Yet the symbiotic roles of gut microbes residing in its major feeding caste remain largely undefined. Here, by pyrosequencing the whole gut metagenome of adult workers of a fungus-cultivating termite (Odontotermes yunnanensis, we showed that it did harbor a broad set of genes or gene modules encoding carbohydrate-active enzymes (CAZymes relevant to plant fiber degradation, particularly debranching enzymes and oligosaccharide-processing enzymes. Besides, it also contained a considerable number of genes encoding chitinases and glycoprotein oligosaccharide-processing enzymes for fungal cell wall degradation. To investigate the metabolic divergence of higher termites of different feeding guilds, a SEED subsystem-based gene-centric comparative analysis of the data with that of a previously sequenced wood-feeding Nasutitermes hindgut microbiome was also attempted, revealing that SEED classifications of nitrogen metabolism, and motility and chemotaxis were significantly overrepresented in the wood-feeder hindgut metagenome, while Bacteroidales conjugative transposons and subsystems related to central aromatic compounds metabolism were apparently overrepresented here. This work fills up our gaps in understanding the functional capacities of fungus-cultivating termite gut microbiota, especially their roles in the symbiotic digestion of lignocelluloses and utilization of fungal biomass, both of which greatly add to existing understandings of this peculiar symbiosis.

  20. Activity of medicinal plants from Ghana against the parasitic gut protist Blastocystis.

    Science.gov (United States)

    Bremer Christensen, Charlotte; Soelberg, Jens; Stensvold, Christen R; Jäger, Anna K

    2015-11-04

    The plants tested in this study were examples of plants historically used to treat or alleviate several types of stomach disorders manifested by e.g. stomachache, diarrhoea or dysentery. These plants have been consumed typically as a decoction, sometimes mixed with other flavourings. The aim of this study was to evaluate the anti-Blastocystis activity of 24 plant parts from 21 medicinal plants from Ghana. The medicinal plants were collected in the Greater Accra region of Ghana. Every plant part was tested in three different extracts; an ethanolic, a warm, and a cold water extract, at a final concentration of 1 mg/mL for the initial screening, and in a range from 0.0156 to 1mg/mL for determination of inhibitory concentrations. The obligate anaerobic parasitic gut protist Blastocystis (subtype 4) was used as a 48 h old subcultivated isolate in the final concentration of 10(6) cells/mL. Plant extracts inoculated with Blastocystis were incubated at 37 °C for 24 h and 48 h. Both MIC minimum inhibitory concentration (MIC90) assays and minimal lethal concentration (MLC) assays were performed after 24 h and 48 h. The half maximal inhibitory concentration (IC50) was derived after 24 h and 48 h. Antimicrobial activity was tested against two Gram-positive and two Gram-negative bacteria for all 24 plant parts at a final concentration of 1mg/mL. Screening of the 24 different plant parts showed significant anti-Blastocystis activity of six of the ethanolic extracts: Mallotus oppositifolius, IC50, 24 h 27.8 µg/mL; Vemonia colorata, IC50, 24 h 117.9 µg/mL; Zanthoxylum zanthoxyloides, cortex IC50, 24 h 255.6 µg/mL; Clausena anisata, IC50, 24 h 314.0 µg/mL; Z. zanthoxyloides, radix IC50, 24 h 335.7 µg/mL and Eythrina senegalensis, IC50, 24 h 527.6 µg/mL. The reference anti-protozoal agent metronidazole (MTZ) had an IC50, 24 h of 7.6 µg/mL. Only C. anisata showed antimicrobial activity at a concentration of 800 µg/mL. Six ethanolic plant extracts showed significant anti

  1. Supplementing Blends of Sugars, Amino Acids, and Secondary Metabolites to the Diet of Termites (Reticulitermes flavipes) Drive Distinct Gut Bacterial Communities.

    Science.gov (United States)

    Huang, Xing-Feng; Chaparro, Jacqueline M; Reardon, Kenneth F; Judd, Timothy M; Vivanco, Jorge M

    2016-10-01

    Although it is well known that diet is one of the major modulators of the gut microbiome, how the major components of diet shape the gut microbial community is not well understood. Here, we developed a simple system that allows the investigation of the impact of given compounds as supplements of the diet on the termite gut microbiome. The 16S rRNA pyrosequencing analysis revealed that feeding termites different blends of sugars and amino acids did not majorly impact gut community composition; however, ingestion of blends of secondary metabolites caused shifts in gut bacterial community composition. The supplementation of sugars and amino acids reduced the richness significantly, and sugars alone increased the evenness of the gut bacterial community significantly. Secondary metabolites created the most dramatic effects on the microbial community, potentially overriding the effect of other types of compounds. Furthermore, some microbial groups were stimulated specifically by particular groups of compounds. For instance, termites fed with secondary metabolites contained more Firmicutes and Spirochaetes compared to the other treatments. In conclusion, our results suggest that the termite (Reticulitermes flavipes) can be used as a simple and effective system to test the effects of particular chemical compounds in modulating the gut microbiome.

  2. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.)

    KAUST Repository

    Ngugi, David

    2011-11-28

    Soil-feeding termites play important roles in the dynamics of carbon and nitrogen in tropical soils. Through the mineralization of nitrogenous humus components, their intestinal tracts accumulate enormous amounts of ammonia, and nitrate and nitrite concentrations are several orders of magnitude above those in the ingested soil. Here, we studied the metabolism of nitrate in the different gut compartments of two Cubitermes and one Ophiotermes species using 15N isotope tracer analysis. Living termites emitted N 2 at rates ranging from 3.8 to 6.8nmolh -1 (g fresh wt.) -1. However, in homogenates of individual gut sections, denitrification was restricted to the posterior hindgut, whereas nitrate ammonification occurred in all gut compartments and was the prevailing process in the anterior gut. Potential rates of nitrate ammonification for the entire intestinal tract were tenfold higher than those of denitrification, implying that ammonification is the major sink for ingested nitrate in the intestinal tract of soil-feeding termites. Because nitrate is efficiently reduced already in the anterior gut, reductive processes in the posterior gut compartments must be fuelled by an endogenous source of oxidized nitrogen species. Quite unexpectedly, we observed an anaerobic oxidation of 15N-labelled ammonia to nitrite, especially in the P4 section, which is presumably driven by ferric iron; nitrification and anammox activities were not detected. Two of the termite species also emitted substantial amounts of N 2O, ranging from 0.4 to 3.9nmolh -1 (g fresh wt.) -1, providing direct evidence that soil-feeding termites are a hitherto unrecognized source of this greenhouse gas in tropical soils. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Differences between bacterial communities in the gut of a soil-feeding termite (Cubitermes niokoloensis) and its mounds

    OpenAIRE

    Fall, Saliou; Hamelin, J.; Ndiaye, Farma; Assigbetse, Komi; Aragno, M.; Chotte, Jean-Luc; Brauman, Alain

    2007-01-01

    In tropical ecosystems, termite mound soils constitute an important soil compartment covering around 10% of African soils. Previous studies have shown (S. Fall, S. Nazaret, J. L. Chotte, and A. Brauman, Microb. Ecol. 28:191-199, 2004) that the bacterial genetic structure of the mounds of soil-feeding termites (Cubitermes niokoloensis) is different from that of their surrounding soil. The aim of this study was to characterize the specificity of bacterial communities within mounds with respect ...

  4. Green house gas emissions from termite ecosystem

    African Journals Online (AJOL)

    USER

    sink for chlorine (Cl) molecules and a source of water vapor, which is a dominant greenhouse gas. Analysis has .... termite gut harbors different kinds of bacteria, fungi and protozoa. ..... responses to the presence of oxygen and their sensitivity.

  5. Trace elements in termites by PIXE analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yoshimura, T. E-mail: tsuyoshi@termite.kuwri.kyoto-u.ac.jp; Kagemori, N.; Kawai, S.; Sera, K.; Futatsugawa, S

    2002-04-01

    Trace elements in a Japanese subterranean xylophagous termite, Coptotermes formosanus Shiraki, were analyzed by the PIXE method. The total amount of the 14 predominant elements out of 27 detected in an intact termite was higher in a soldier termite (23 000 {mu}g/g) than in a worker termite (10 000 {mu}g/g). A block of wood (Pinus densiflora Sieb. et Zucc.) for termite feed had a much lower concentration (3600 {mu}g/g) compared with that in an intact termite. This probably relates the functional bio-condensation and/or bio-recycling of trace elements in C. formosanus. When a termite was separated into three anatomical parts, head, degutted body and gut, the worker gut contained the highest total amount of the 14 predominant measured elements (31 000 {mu}g/g). This might be correlated with the higher activity of food digestion and energy production in the worker gut. Moreover, the mandible of the soldier head, with an exoskeleton that is intensely hardened, showed a preferential distribution of Mn and Fe. These results suggest that the characteristic localization of elements will be closely related to the functional role of the individual anatomical part of C. formosanus.

  6. Transcriptome analysis of the digestive system of a wood-feeding termite (Coptotermes formosanus) revealed a unique mechanism for effective biomass degradation.

    Science.gov (United States)

    Geng, Alei; Cheng, Yanbing; Wang, Yongli; Zhu, Daochen; Le, Yilin; Wu, Jian; Xie, Rongrong; Yuan, Joshua S; Sun, Jianzhong

    2018-01-01

    Wood-feeding termite, Coptotermes formosanus Shiraki, represents a highly efficient system for biomass deconstruction and utilization. However, the detailed mechanisms of lignin modification and carbohydrate degradation in this system are still largely elusive. In order to reveal the inherent mechanisms for efficient biomass degradation, four different organs (salivary glands, foregut, midgut, and hindgut) within a complete digestive system of a lower termite, C. formosanus , were dissected and collected. Comparative transcriptomics was carried out to analyze these organs using high-throughput RNA sequencing. A total of 71,117 unigenes were successfully assembled, and the comparative transcriptome analyses revealed significant differential distributions of GH (glycosyl hydrolase) genes and auxiliary redox enzyme genes in different digestive organs. Among the GH genes in the salivary glands, the most abundant were GH9, GH22, and GH1 genes. The corresponding enzymes may have secreted into the foregut and midgut to initiate the hydrolysis of biomass and to achieve a lignin-carbohydrate co-deconstruction system. As the most diverse GH families, GH7 and GH5 were primarily identified from the symbiotic protists in the hindgut. These enzymes could play a synergistic role with the endogenous enzymes from the host termite for biomass degradation. Moreover, twelve out of fourteen genes coding auxiliary redox enzymes from the host termite origin were induced by the feeding of lignin-rich diets. This indicated that these genes may be involved in lignin component deconstruction with its redox network during biomass pretreatment. These findings demonstrate that the termite digestive system synergized the hydrolysis and redox reactions in a programmatic process, through different parts of its gut system, to achieve a maximized utilization of carbohydrates. The detailed unique mechanisms identified from the termite digestive system may provide new insights for advanced design of

  7. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.)

    KAUST Repository

    Ngugi, David; Brune, Andreas

    2011-01-01

    Soil-feeding termites play important roles in the dynamics of carbon and nitrogen in tropical soils. Through the mineralization of nitrogenous humus components, their intestinal tracts accumulate enormous amounts of ammonia, and nitrate and nitrite

  8. Getting to the guts of the matter: the status and potential of 'omics' research of parasitic protists of the human gastrointestinal system.

    Science.gov (United States)

    Jex, Aaron R; Koehler, Anson V; Ansell, Brendan R; Baker, Louise; Karunajeewa, Harin; Gasser, Robin B

    2013-11-01

    Parasitic protists are a major cause of diarrhoeal illnesses in humans globally. Collectively, enteric pathogens exceed all other forms of infectious disease, in terms of their estimated global prevalence and socioeconomic impact. They have a disproportionately high impact on children in impoverished communities, leading to acute (diarrhoea, vomiting, dehydration and death) and chronic disease (malabsorption, malnutrition, physical and cognitive stunting and predisposition to chronic, non-communicable disease) consequences. However, historically, investment in research and disease control measures has been disproportionately poor, leading to their current classification as neglected pathogens. A sound understanding of their biology is essential in underpinning detection, treatment and control efforts. One major tool in rapidly improving our knowledge of these parasites is the use of biological systems, including 'omic' technologies. In recent years, these tools have shown significant success when applied to enteric protists. This review summarises much of this knowledge and highlights the significant remaining knowledge gaps. A major focus of the present review was to provide a perspective on a way forward to address these gaps using advanced biotechnologies. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  9. Potential for nitrogen fixation in fungus-growing termite symbiosis

    DEFF Research Database (Denmark)

    Sapountzis, Panagiotis; de Verges, Jane; Rousk, Kathrin

    2016-01-01

    Termites host a gut microbiota of diverse and essential symbionts that enable specialization on dead plant material; an abundant, but nutritionally imbalanced food source. To supplement the severe shortage of dietary nitrogen (N), some termite species make use of diazotrophic bacteria to fix atmo...

  10. Gut

    DEFF Research Database (Denmark)

    Muscogiuri, Giovanna; Balercia, Giancarlo; Barrea, Luigi

    2017-01-01

    The gut regulates glucose and energy homeostasis; thus, the presence of ingested nutrients into the gut activates sensing mechanisms that affect both glucose homeostasis and regulate food intake. Increasing evidence suggest that gut may also play a key role in the pathogenesis of type 2 diabetes...... which may be related to both the intestinal microbiological profile and patterns of gut hormones secretion. Intestinal microbiota includes trillions of microorganisms but its composition and function may be adversely affected in type 2 diabetes. The intestinal microbiota may be responsible...... metabolism. Thus, the aim of this manuscript is to review the current evidence on the role of the gut in the pathogenesis of type 2 diabetes, taking into account both hormonal and microbiological aspects....

  11. Watching termites

    International Nuclear Information System (INIS)

    Carrard, G.

    1983-01-01

    Radioactive tracking techniques are being used to aid the investigation and control of termites. Studies include work related to the restoration of historic buildings when the damage inflicted on the timbers needs to be determined with minimum disturbance to the building. Another investigation has been the radioactive monitoring of pest-control techniques. Scandium-46, lanthanum-140 and gold-198 have been used in different investigations

  12. Thraustochytrid protists degrade hydrocarbons

    Digital Repository Service at National Institute of Oceanography (India)

    Raikar, M.T.; Raghukumar, S.; Vani, V.; David, J.J.; Chandramohan, D.

    isolation tubes with crude oil. Three isolates tested showed positive hydrophobicity of cell walls as judged by the Microbial Adhesion to Hydrocarbons (MATH) assay. Addition of Bombay High crude oil to nutrient broth slightly enhanced growth of the protists...

  13. Endosymbiotic associations within protists

    Science.gov (United States)

    Nowack, Eva C. M.; Melkonian, Michael

    2010-01-01

    The establishment of an endosymbiotic relationship typically seems to be driven through complementation of the host's limited metabolic capabilities by the biochemical versatility of the endosymbiont. The most significant examples of endosymbiosis are represented by the endosymbiotic acquisition of plastids and mitochondria, introducing photosynthesis and respiration to eukaryotes. However, there are numerous other endosymbioses that evolved more recently and repeatedly across the tree of life. Recent advances in genome sequencing technology have led to a better understanding of the physiological basis of many endosymbiotic associations. This review focuses on endosymbionts in protists (unicellular eukaryotes). Selected examples illustrate the incorporation of various new biochemical functions, such as photosynthesis, nitrogen fixation and recycling, and methanogenesis, into protist hosts by prokaryotic endosymbionts. Furthermore, photosynthetic eukaryotic endosymbionts display a great diversity of modes of integration into different protist hosts. In conclusion, endosymbiosis seems to represent a general evolutionary strategy of protists to acquire novel biochemical functions and is thus an important source of genetic innovation. PMID:20124339

  14. Asymmetric interaction specificity between two sympatric termites and their fungal symbionts.

    NARCIS (Netherlands)

    Fine Licht, De H.H.; Boomsma, J.J.

    2007-01-01

    1. Fungus-growing termites live in an obligate mutualistic symbiosis with Termitomyces fungi. The functions of the fungal symbiont have been hypothesised to differ between species and to range from highly specific roles of providing plant-degrading enzymes complementary to termite gut enzymes, to

  15. Adaptations in bacterial and fungal communities to termite fungiculture

    DEFF Research Database (Denmark)

    Otani, Saria

    in the bacterial and fungal communities. To do this, we used pyrosequencing, fluorescent in situ hybridisation, light and confocal microscopy, enzymatic assays, chemical extractions, in vitro assays, and feeding experiments in this thesis work to elucidate these predicted changes in fungus-growing termite...... in the proportion of fungal material provided to the cockroaches. However, gut microbiotas remained distinct from those of termites after Termitomyces-feeding, indicating that a fungal diet can play a role in structuring gut community composition, but at the same time exemplifies how original community compositions......, and possibly gut microenvironment constrain the magnitude of change. This thesis also characterises the fungus comb fungal communities (mycobiotas) in fungusgrowing termites, and shows that non-Termitomyces fungi were essentially absent in combs, and that Termitomyces fungal crops are maintained...

  16. Autophagy in protists

    Science.gov (United States)

    Duszenko, Michael; Ginger, Michael L; Brennand, Ana; Gualdrón-López, Melisa; Colombo, Maria-Isabel; Coombs, Graham H; Coppens, Isabelle; Jayabalasingham, Bamini; Langsley, Gordon; de Castro, Solange Lisboa; Menna-Barreto, Rubem; Mottram, Jeremy C; Navarro, Miguel; Rigden, Daniel J; Romano, Patricia S; Stoka, Veronika; Turk, Boris

    2011-01-01

    Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles and defense against parasitic invaders. During the past 10–20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target. PMID:20962583

  17. Peroxisomes in parasitic protists.

    Science.gov (United States)

    Gabaldón, Toni; Ginger, Michael L; Michels, Paul A M

    Representatives of all major lineages of eukaryotes contain peroxisomes with similar morphology and mode of biogenesis, indicating a monophyletic origin of the organelles within the common ancestor of all eukaryotes. Peroxisomes originated from the endoplasmic reticulum, but despite a common origin and shared morphological features, peroxisomes from different organisms show a remarkable diversity of enzyme content and the metabolic processes present can vary dependent on nutritional or developmental conditions. A common characteristic and probable evolutionary driver for the origin of the organelle is an involvement in lipid metabolism, notably H 2 O 2 -dependent fatty-acid oxidation. Subsequent evolution of the organelle in different lineages involved multiple acquisitions of metabolic processes-often involving retargeting enzymes from other cell compartments-and losses. Information about peroxisomes in protists is still scarce, but available evidence, including new bioinformatics data reported here, indicate striking diversity amongst free-living and parasitic protists from different phylogenetic supergroups. Peroxisomes in only some protists show major involvement in H 2 O 2 -dependent metabolism, as in peroxisomes of mammalian, plant and fungal cells. Compartmentalization of glycolytic and gluconeogenic enzymes inside peroxisomes is characteristic of kinetoplastids and diplonemids, where the organelles are hence called glycosomes, whereas several other excavate parasites (Giardia, Trichomonas) have lost peroxisomes. Amongst alveolates and amoebozoans patterns of peroxisome loss are more complicated. Often, a link is apparent between the niches occupied by the parasitic protists, nutrient availability, and the absence of the organelles or their presence with a specific enzymatic content. In trypanosomatids, essentiality of peroxisomes may be considered for use in anti-parasite drug discovery. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The complexities of hydrolytic enzymes from the termite digestive system.

    Science.gov (United States)

    Saadeddin, Anas

    2014-06-01

    The main challenge in second generation bioethanol production is the efficient breakdown of cellulose to sugar monomers (hydrolysis). Due to the recalcitrant character of cellulose, feedstock pretreatment and adapted hydrolysis steps are needed to obtain fermentable sugar monomers. The conventional industrial production process of second-generation bioethanol from biomass comprises several steps: thermochemical pretreatment, enzymatic hydrolysis and sugar fermentation. This process is undergoing continuous optimization in order to increase the bioethanol yield and reduce the economic cost. Therefore, the discovery of new enzymes with high lignocellulytic activity or new strategies is extremely important. In nature, wood-feeding termites have developed a sophisticated and efficient cellulose degrading system in terms of the rate and extent of cellulose hydrolysis and exploitation. This system, which represents a model for digestive symbiosis has attracted the attention of biofuel researchers. This review describes the termite digestive system, gut symbionts, termite enzyme resources, in vitro studies of isolated enzymes and lignin degradation in termites.

  19. Protein moonlighting in parasitic protists.

    Science.gov (United States)

    Ginger, Michael L

    2014-12-01

    Reductive evolution during the adaptation to obligate parasitism and expansions of gene families encoding virulence factors are characteristics evident to greater or lesser degrees in all parasitic protists studied to date. Large evolutionary distances separate many parasitic protists from the yeast and animal models upon which classic views of eukaryotic biochemistry are often based. Thus a combination of evolutionary divergence, niche adaptation and reductive evolution means the biochemistry of parasitic protists is often very different from their hosts and to other eukaryotes generally, making parasites intriguing subjects for those interested in the phenomenon of moonlighting proteins. In common with other organisms, the contribution of protein moonlighting to parasite biology is only just emerging, and it is not without controversy. Here, an overview of recently identified moonlighting proteins in parasitic protists is provided, together with discussion of some of the controversies.

  20. How Termite Mounds Breath?

    Science.gov (United States)

    Saxena, Saurabh; Yaghoobian, Neda

    2017-11-01

    Fungus-cultivating termites of the subfamily Macrotermitinae that are extensively found throughout sub-Saharan Africa and south East Asia are one species of termites that collectively build massive, uninhabited, complex structures. These structures, which are much larger than the size of an individual termite, effectively use natural wind and solar energies and the energy embodied in colony's metabolic activity to maintain the necessary condition for termite survival. These mounds enclose a subterranean nest, where the termite live and cultivate fungus, as well as a complex network of tunnels consisting of a large, vertically oriented central chimney, surface conduits, and lateral connectives that connect the chimney and the surface conduits. In this study, we use computational modeling to explore the combined interaction of geometry, heterogeneous thermal mass, and porosity with the external turbulent wind and solar radiation to investigate the physical principles and fundamental aero-thermodynamics underlying the controlled and stable climate of termite mounds. Exploitation of natural resources of wind and solar energies in these natural systems for the purpose of ventilation will lead to new lessons for improving human habitats conditions.

  1. A Novel Approach to Managing Invasive Termite Species Using Genetically Engineered Bacteria

    Science.gov (United States)

    2008-08-01

    Coptotcnnes fonnosanus; lytic peptide; defaunation; tennite gut bacteria ; yeast 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF...genetically modified bacteria in a termite colony ; no detrimental gene products were expressed for termite control. Preliminary data suggested that lytic...defaunated within 4 weeks. The yeast -based prototype paratransgenesis system provided proof of concept that a symbiotic microorganism can act as a “Trojan

  2. IDENTIFICATION, PRODUCTION AND CHARACTERIZATION OF NOVEL LIGNASE PROTEINS FROM TERMITES FOR DEPOLYMERIZATION OF LIGNOCELLULOSE

    Energy Technology Data Exchange (ETDEWEB)

    SLACK, JEFFREY, M.

    2012-12-06

    Wood is a potential source for biofuels such as ethanol if it can be digested into sugars and fermented by yeast. Biomass derived from wood is a challenging substrate for ethanol production since it is made of lignin and cellulose which cannot be broken down easily into fermentable sugars. Some insects, and termites in particular, are specialized at using enzymes in their guts to digest wood into sugars. If termite gut enzymes could be made abundantly by a recombinant protein expression vector system, they could be applied to an industrial process to make biofuels from wood. In this study, a large cDNA library of relevant termite genes was made using termites fed a normal diet, or a diet with added lignin. A subtracted library yielded genes that were overexpressed in the presence of lignin. Termite gut enzyme genes were identified and cloned into recombinant insect viruses called baculoviruses. Using our PERLXpress system for protein expression, these termite gene recombinant baculoviruses were prepared and used to infect insect larvae, which then expressed abundant recombinant termite enzymes. Many of these expressed enzymes were prepared to very high purity, and the activities were studied in conjunction with collaborators at Purdue University. Recombinant termite enzymes expressed in caterpillars were shown to be able to release sugars from wood. Mixing different combinations of these enzymes increased the amount of sugars released from a model woody biomass substrate. The most economical, fastest and energy conserving way to prepare termite enzymes expressed by recombinant baculoviruses in caterpillars was by making crude liquid homogenates. Making enzymes stable in homogenates therefore was a priority. During the course of these studies, improvements were made to the recombinant baculovirus expression platform so that caterpillar-derived homogenates containing expressed termite enzymes would be more stable. These improvements in the baculoviruses included

  3. Glyoxalase diversity in parasitic protists.

    Science.gov (United States)

    Deponte, Marcel

    2014-04-01

    Our current knowledge of the isomerase glyoxalase I and the thioesterase glyoxalase II is based on a variety of prokaryotic and eukaryotic (model) systems with an emphasis on human glyoxalases. During the last decade, important insights on glyoxalase catalysis and structure-function relationships have also been obtained from parasitic protists. These organisms, including kinetoplastid and apicomplexan parasites, are particularly interesting, both because of their relevance as pathogens and because of their phylogenetic diversity and host-parasite co-evolution which has led to specialized organellar and metabolic adaptations. Accordingly, the glyoxalase repertoire and properties vary significantly among parasitic protists of different major eukaryotic lineages (and even between closely related organisms). For example, several protists have an insular or non-canonical glyoxalase. Furthermore, the structures and the substrate specificities of glyoxalases display drastic variations. The aim of the present review is to highlight such differences as well as similarities between the glyoxalases of parasitic protists and to emphasize the power of comparative studies for gaining insights into fundamental principles and alternative glyoxalase functions.

  4. Metatranscriptomic census of active protists in soils.

    Science.gov (United States)

    Geisen, Stefan; Tveit, Alexander T; Clark, Ian M; Richter, Andreas; Svenning, Mette M; Bonkowski, Michael; Urich, Tim

    2015-10-01

    The high numbers and diversity of protists in soil systems have long been presumed, but their true diversity and community composition have remained largely concealed. Traditional cultivation-based methods miss a majority of taxa, whereas molecular barcoding approaches employing PCR introduce significant biases in reported community composition of soil protists. Here, we applied a metatranscriptomic approach to assess the protist community in 12 mineral and organic soil samples from different vegetation types and climatic zones using small subunit ribosomal RNA transcripts as marker. We detected a broad diversity of soil protists spanning across all known eukaryotic supergroups and revealed a strikingly different community composition than shown before. Protist communities differed strongly between sites, with Rhizaria and Amoebozoa dominating in forest and grassland soils, while Alveolata were most abundant in peat soils. The Amoebozoa were comprised of Tubulinea, followed with decreasing abundance by Discosea, Variosea and Mycetozoa. Transcripts of Oomycetes, Apicomplexa and Ichthyosporea suggest soil as reservoir of parasitic protist taxa. Further, Foraminifera and Choanoflagellida were ubiquitously detected, showing that these typically marine and freshwater protists are autochthonous members of the soil microbiota. To the best of our knowledge, this metatranscriptomic study provides the most comprehensive picture of active protist communities in soils to date, which is essential to target the ecological roles of protists in the complex soil system.

  5. Determination of the major compounds in the extract of the subterranean termite Macrotermes gilvus Hagen digestive tract by GC-MS method

    Directory of Open Access Journals (Sweden)

    N. Subekti

    2017-08-01

    Full Text Available Degradation of woody components by termites is associated with symbionts inside their digestive tract. In this study, the major compounds were determined in the extract of the termite guts by GC-MS method. Macrotermes gilvus Hagen (worker caste termites were collected and their dissected guts underwent methanol extraction. It was found that the gut of the termites has an alkaline environment (pH 8.83 ± 0.31 that supports the digestion of lignocellulose biomass and also helps to solubilize phenolic and recalcitrant compounds resul­ting from the depolymerization of woody components. The GC-MS analysis showed that termite guts contained hydrophobic organosilicon components including dodecamethylcyclohexasiloxane, tetradecamethylcyclohexa­siloxane, hexadecamethylcyclooctasiloxane, and octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexa­decamethyl. The guts also contained a phytosterol, which was identified as β-sitosterol. Further analysis of these water-insoluble compounds is needed to reveal their importance in termite digestion.

  6. Characterization and Identification of Cellulolytic Bacteria from gut of Worker Macrotermes gilvus

    Directory of Open Access Journals (Sweden)

    Andri Ferbiyanto

    2015-10-01

    Full Text Available As a social insect, termite colony consists of three castes, i.e. reproductive, soldier, and worker castes. In their role of cellulose digestion, the worker termites use two sources of cellulolytic enzyme that include cellulases produced by the termite and the gut symbions. Macrotermes gilvus classified in mound builder termite, mostly depend on cellulolytic bacteria for cellulose digestion. This study aims to characterize cellulolytic bacteria of termite gut symbionts of worker M. gilvus and to identify the cellulolytic bacteria based on sequences of 16S ribosomal RNA (rRNA gene. Cellulolytic bacteria of termite gut were isolated and cultured in CMC (Carboxymethyl cellulose media. The biochemical characters of bacterial isolates were assayed using Microbact 12A and 12B. Cellulolytic activity was determined based on formation of clear zone and cellulolytic index on CMC plate media. The bacterial isolate that has the highest cellulolytic index was analyzed for its 16S rRNA gene sequences. Four isolates of cellulolytic bacteria were successfully isolated from gut of M. gilvus with aerobic and anaerobic conditions. The highest formation of cellulolytic index (2.5 was revealed by RA2. BLAST-N (Basic Local Alignment Search Tool for Nucleotides result of 16S rRNA gene sequences of RU4 and RA2 isolates showed that the isolate has similarity with Bacillus megaterium and Paracoccus yeei, respectively. This result indicated that RA2 isolate was P. yeei, a cellulolytic bacterium of a termite gut of M. gilvus.

  7. Putting the bite on termites

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    An Australian program for studying and controlling termites traces the insects by feeding them a bait containing a short-lived isotope such as lanthanum-140 or scandium-46. It has been discovered that termites can live entirely above the ground. Another discovery is that colonies often occupy several shared mounds

  8. TERMITES ENDANGERED TRADITIONAL MEDICAL PLANTS

    Directory of Open Access Journals (Sweden)

    Syaukani Syaukani

    2014-04-01

    Full Text Available Surveys on traditional medical plants affected by termites have been conducted since June to August 2010 at Ketambe, northern Aceh. Traditional medical plants and their natural habitats were obtained through interviewing local people. Termites were collected by adopted a Standardized Sampling Protocol and final. taxonomic confirmation was done with the help of Termite Research Group (the Natural History Museum, London. About 20 species of medical plants were attacked by termites with various levels. Nine genera and 20 species were collected from various habitats throughout Ketambe, Simpur as well as Gunung Setan villages. Coffe (Coffea arabica, hazelnut (Aleurites moluccana , and areca (Area catechu were among the worse of traditional medical  plant that had been attached by the termites.

  9. Benthic protists: the under-charted majority.

    Science.gov (United States)

    Forster, Dominik; Dunthorn, Micah; Mahé, Fréderic; Dolan, John R; Audic, Stéphane; Bass, David; Bittner, Lucie; Boutte, Christophe; Christen, Richard; Claverie, Jean-Michel; Decelle, Johan; Edvardsen, Bente; Egge, Elianne; Eikrem, Wenche; Gobet, Angélique; Kooistra, Wiebe H C F; Logares, Ramiro; Massana, Ramon; Montresor, Marina; Not, Fabrice; Ogata, Hiroyuki; Pawlowski, Jan; Pernice, Massimo C; Romac, Sarah; Shalchian-Tabrizi, Kamran; Simon, Nathalie; Richards, Thomas A; Santini, Sébastien; Sarno, Diana; Siano, Raffaele; Vaulot, Daniel; Wincker, Patrick; Zingone, Adriana; de Vargas, Colomban; Stoeck, Thorsten

    2016-08-01

    Marine protist diversity inventories have largely focused on planktonic environments, while benthic protists have received relatively little attention. We therefore hypothesize that current diversity surveys have only skimmed the surface of protist diversity in marine sediments, which may harbor greater diversity than planktonic environments. We tested this by analyzing sequences of the hypervariable V4 18S rRNA from benthic and planktonic protist communities sampled in European coastal regions. Despite a similar number of OTUs in both realms, richness estimations indicated that we recovered at least 70% of the diversity in planktonic protist communities, but only 33% in benthic communities. There was also little overlap of OTUs between planktonic and benthic communities, as well as between separate benthic communities. We argue that these patterns reflect the heterogeneity and diversity of benthic habitats. A comparison of all OTUs against the Protist Ribosomal Reference database showed that a higher proportion of benthic than planktonic protist diversity is missing from public databases; similar results were obtained by comparing all OTUs against environmental references from NCBI's Short Read Archive. We suggest that the benthic realm may therefore be the world's largest reservoir of marine protist diversity, with most taxa at present undescribed. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Expanding the knowledge on lignocellulolytic and redox enzymes of worker and soldier castes from the lower termite Coptotermes gestroi

    Directory of Open Access Journals (Sweden)

    João Paulo Lourenço Franco Cairo

    2016-10-01

    Full Text Available Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to their ability to produce, along with its microbial symbionts, a repertoire of carbohydrate-active enzymes (CAZymes. Recently, a set of Pro-oxidant, Antioxidant, and Detoxification enzymes (PAD were also correlated with the metabolism of carbohydrates and lignin in termites. The lower termite Coptotermes gestroi is considered the main urban pest in Brazil, causing damage to wood constructions. Recently, analysis of the enzymatic repertoire of C. gestroi unveiled the presence of different CAZymes. Because the gene profile of CAZy/PAD enzymes endogenously synthesized by C. gestroi and also by their symbiotic protists remains unclear, the aim of this study was to explore the eukaryotic repertoire of these enzymes in worker and soldier castes of C. gestroi. Our findings showed that worker and soldier castes present similar repertoires of CAZy/PAD enzymes, and also confirmed that endo-glucanases (GH9 and beta-glucosidases (GH1 were the most important glycoside hydrolase families related to lignocellulose degradation in both castes. Classical cellulases such as exo-glucanases (GH7 and endo-glucanases (GH5 and GH45, as well as classical xylanases (GH10 and GH11, were found in both castes only taxonomically related to protists, highlighting the importance of symbiosis in C. gestroi. Moreover, our analysis revealed the presence of Auxiliary Activity enzyme families (AAs, which could be related to lignin modifications in termite digestomes. In conclusion, this report expanded the knowledge on genes and proteins related to CAZy/PAD enzymes from worker and soldier castes of lower termites, revealing new potential enzyme candidates for second-generation biofuel processes.

  11. Expanding the Knowledge on Lignocellulolytic and Redox Enzymes of Worker and Soldier Castes from the Lower Termite Coptotermes gestroi.

    Science.gov (United States)

    Franco Cairo, João P L; Carazzolle, Marcelo F; Leonardo, Flávia C; Mofatto, Luciana S; Brenelli, Lívia B; Gonçalves, Thiago A; Uchima, Cristiane A; Domingues, Romênia R; Alvarez, Thabata M; Tramontina, Robson; Vidal, Ramon O; Costa, Fernando F; Costa-Leonardo, Ana M; Paes Leme, Adriana F; Pereira, Gonçalo A G; Squina, Fabio M

    2016-01-01

    Termites are considered one of the most efficient decomposers of lignocelluloses on Earth due to their ability to produce, along with its microbial symbionts, a repertoire of carbohydrate-active enzymes (CAZymes). Recently, a set of Pro-oxidant, Antioxidant, and Detoxification enzymes (PAD) were also correlated with the metabolism of carbohydrates and lignin in termites. The lower termite Coptotermes gestroi is considered the main urban pest in Brazil, causing damage to wood constructions. Recently, analysis of the enzymatic repertoire of C. gestroi unveiled the presence of different CAZymes. Because the gene profile of CAZy/PAD enzymes endogenously synthesized by C. gestroi and also by their symbiotic protists remains unclear, the aim of this study was to explore the eukaryotic repertoire of these enzymes in worker and soldier castes of C. gestroi . Our findings showed that worker and soldier castes present similar repertoires of CAZy/PAD enzymes, and also confirmed that endo-glucanases (GH9) and beta-glucosidases (GH1) were the most important glycoside hydrolase families related to lignocellulose degradation in both castes. Classical cellulases such as exo-glucanases (GH7) and endo-glucanases (GH5 and GH45), as well as classical xylanases (GH10 and GH11), were found in both castes only taxonomically related to protists, highlighting the importance of symbiosis in C. gestroi . Moreover, our analysis revealed the presence of Auxiliary Activity enzyme families (AAs), which could be related to lignin modifications in termite digestomes. In conclusion, this report expanded the knowledge on genes and proteins related to CAZy/PAD enzymes from worker and soldier castes of lower termites, revealing new potential enzyme candidates for second-generation biofuel processes.

  12. Termites as targets and models for biotechnology.

    Science.gov (United States)

    Scharf, Michael E

    2015-01-07

    Termites have many unique evolutionary adaptations associated with their eusocial lifestyles. Recent omics research has created a wealth of new information in numerous areas of termite biology (e.g., caste polyphenism, lignocellulose digestion, and microbial symbiosis) with wide-ranging applications in diverse biotechnological niches. Termite biotechnology falls into two categories: (a) termite-targeted biotechnology for pest management purposes, and (b) termite-modeled biotechnology for use in various industrial applications. The first category includes several candidate termiticidal modes of action such as RNA interference, digestive inhibition, pathogen enhancement, antimicrobials, endocrine disruption, and primer pheromone mimicry. In the second category, termite digestomes are deep resources for host and symbiont lignocellulases and other enzymes with applications in a variety of biomass, industrial, and processing applications. Moving forward, one of the most important approaches for accelerating advances in both termite-targeted and termite-modeled biotechnology will be to consider host and symbiont together as a single functional unit.

  13. Profiling the Succession of Bacterial Communities throughout the Life Stages of a Higher Termite Nasutitermes arborum (Termitidae, Nasutitermitinae) Using 16S rRNA Gene Pyrosequencing

    Science.gov (United States)

    Diouf, Michel; Roy, Virginie; Mora, Philippe; Frechault, Sophie; Lefebvre, Thomas; Hervé, Vincent; Rouland-Lefèvre, Corinne; Miambi, Edouard

    2015-01-01

    Previous surveys of the gut microbiota of termites have been limited to the worker caste. Termite gut microbiota has been well documented over the last decades and consists mainly of lineages specific to the gut microbiome which are maintained across generations. Despite this intimate relationship, little is known of how symbionts are transmitted to each generation of the host, especially in higher termites where proctodeal feeding has never been reported. The bacterial succession across life stages of the wood-feeding higher termite Nasutitermes arborum was characterized by 16S rRNA gene deep sequencing. The microbial community in the eggs, mainly affiliated to Proteobacteria and Actinobacteria, was markedly different from the communities in the following developmental stages. In the first instar and last instar larvae and worker caste termites, Proteobacteria and Actinobacteria were less abundant than Firmicutes, Bacteroidetes, Spirochaetes, Fibrobacteres and the candidate phylum TG3 from the last instar larvae. Most of the representatives of these phyla (except Firmicutes) were identified as termite-gut specific lineages, although their relative abundances differed. The most salient difference between last instar larvae and worker caste termites was the very high proportion of Spirochaetes, most of which were affiliated to the Treponema Ic, Ia and If subclusters, in workers. The results suggest that termite symbionts are not transmitted from mother to offspring but become established by a gradual process allowing the offspring to have access to the bulk of the microbiota prior to the emergence of workers, and, therefore, presumably through social exchanges with nursing workers. PMID:26444989

  14. Protist classification and the kingdoms of organisms.

    Science.gov (United States)

    Whittaker, R H; Margulis, L

    1978-04-01

    Traditional classification imposed a division into plant-like and animal-like forms on the unicellular eukaryotes, or protists; in a current view the protists are a diverse assemblage of plant-, animal- and fungus-like groups. Classification of these into phyla is difficult because of their relatively simple structure and limited geological record, but study of ultrastructure and other characteristics is providing new insight on protist classification. Possible classifications are discussed, and a summary classification of the living world into kingdoms (Monera, Protista, Fungi, Animalia, Plantae) and phyla is suggested. This classification also suggests groupings of phyla into superphyla and form-superphyla, and a broadened kingdom Protista (including green algae, oomycotes and slime molds but excluding red and brown algae). The classification thus seeks to offer a compromise between the protist and protoctist kingdoms of Whittaker and Margulis and to combine a full listing of phyla with grouping of these for synoptic treatment.

  15. Stress and Protists: No life without stress.

    Science.gov (United States)

    Slaveykova, Vera; Sonntag, Bettina; Gutiérrez, Juan Carlos

    2016-08-01

    We report a summary of the symposium "Stress and Protists: No life without stress", which was held in September 2015 on the VII European Congress of Protistology in partnership with the International Society of Protistologists (Seville, Spain). We present an overview on general comments and concepts on cellular stress which can be also applied to any protist. Generally, various environmental stressors may induce similar cell responses in very different protists. Two main topics are reported in this manuscript: (i) metallic nanoparticles as environmental pollutants and stressors for aquatic protists, and (ii) ultraviolet radiation - induced stress and photoprotective strategies in ciliates. Model protists such as Chlamydomonas reinhardtii and Tetrahymena thermophila were used to assess stress caused by nanoparticles while stress caused by ultraviolet radiation was tested with free living planktonic ciliates as well as with the symbiont-bearing model ciliate Paramecium bursaria. For future studies, we suggest more intensive analyses on protist stress responses to specific environmental abiotic and/or biotic stressors at molecular and genetic levels up to ecological consequences and food web dynamics. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Nitrous Oxide (N2O) Emissions by Termites: Does the Feeding Guild Matter?

    Science.gov (United States)

    Brauman, Alain; Majeed, Muhammad Zeeshan; Buatois, Bruno; Robert, Alain; Pablo, Anne-Laure; Miambi, Edouard

    2015-01-01

    In the tropics, termites are major players in the mineralization of organic matter leading to the production of greenhouse gases including nitrous oxide (N2O). Termites have a wide trophic diversity and their N-metabolism depends on the feeding guild. This study assessed the extent to which N2O emission levels were determined by termite feeding guild and tested the hypothesis that termite species feeding on a diet rich in N emit higher levels of N2O than those feeding on a diet low in N. An in-vitro incubation approach was used to determine the levels of N2O production in 14 termite species belonging to different feeding guilds, collected from a wide range of biomes. Fungus-growing and soil-feeding termites emit N2O. The N2O production levels varied considerably, ranging from 13.14 to 117.62 ng N2O-N d(-1) (g dry wt.)(-1) for soil-feeding species, with Cubitermes spp. having the highest production levels, and from 39.61 to 65.61 ng N2O-N d(-1) (g dry wt.)(-1) for fungus-growing species. Wood-feeding termites were net N2O consumers rather than N2O producers with a consumption ranging from 16.09 to 45.22 ng N2O-N d(-1) (g dry wt.)(-1). Incubating live termites together with their mound increased the levels of N2O production by between 6 and 13 fold for soil-feeders, with the highest increase in Capritermes capricornis, and between 14 and 34 fold for fungus-growers, with the highest increase in Macrotermes muelleri. Ammonia-oxidizing (amoA-AOB and amoA-AOA) and denitrifying (nirK, nirS, nosZ) gene markers were detected in the guts of all termite species studied. No correlation was found between the abundance of these marker genes and the levels of N2O production from different feeding guilds. Overall, these results support the hypothesis that N2O production rates were higher in termites feeding on substrates with higher N content, such as soil and fungi, compared to those feeding on N-poor wood.

  17. Nitrous Oxide (N2O Emissions by Termites: Does the Feeding Guild Matter?

    Directory of Open Access Journals (Sweden)

    Alain Brauman

    Full Text Available In the tropics, termites are major players in the mineralization of organic matter leading to the production of greenhouse gases including nitrous oxide (N2O. Termites have a wide trophic diversity and their N-metabolism depends on the feeding guild. This study assessed the extent to which N2O emission levels were determined by termite feeding guild and tested the hypothesis that termite species feeding on a diet rich in N emit higher levels of N2O than those feeding on a diet low in N. An in-vitro incubation approach was used to determine the levels of N2O production in 14 termite species belonging to different feeding guilds, collected from a wide range of biomes. Fungus-growing and soil-feeding termites emit N2O. The N2O production levels varied considerably, ranging from 13.14 to 117.62 ng N2O-N d(-1 (g dry wt.(-1 for soil-feeding species, with Cubitermes spp. having the highest production levels, and from 39.61 to 65.61 ng N2O-N d(-1 (g dry wt.(-1 for fungus-growing species. Wood-feeding termites were net N2O consumers rather than N2O producers with a consumption ranging from 16.09 to 45.22 ng N2O-N d(-1 (g dry wt.(-1. Incubating live termites together with their mound increased the levels of N2O production by between 6 and 13 fold for soil-feeders, with the highest increase in Capritermes capricornis, and between 14 and 34 fold for fungus-growers, with the highest increase in Macrotermes muelleri. Ammonia-oxidizing (amoA-AOB and amoA-AOA and denitrifying (nirK, nirS, nosZ gene markers were detected in the guts of all termite species studied. No correlation was found between the abundance of these marker genes and the levels of N2O production from different feeding guilds. Overall, these results support the hypothesis that N2O production rates were higher in termites feeding on substrates with higher N content, such as soil and fungi, compared to those feeding on N-poor wood.

  18. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis.

    Directory of Open Access Journals (Sweden)

    Sameh Samir Ali

    Full Text Available The effective fermentation of xylose remains an intractable challenge in bioethanol industry. The relevant xylanase enzyme is also in a high demand from industry for several biotechnological applications that inevitably in recent times led to many efforts for screening some novel microorganisms for better xylanase production and fermentation performance. Recently, it seems that wood-feeding termites can truly be considered as highly efficient natural bioreactors. The highly specialized gut systems of such insects are not yet fully realized, particularly, in xylose fermentation and xylanase production to advance industrial bioethanol technology as well as industrial applications of xylanases. A total of 92 strains from 18 yeast species were successfully isolated and identified from the gut of wood-feeding termite, Reticulitermes chinensis. Of these yeasts and strains, seven were identified for new species: Candida gotoi, Candida pseudorhagii, Hamamotoa lignophila, Meyerozyma guilliermondii, Sugiyamaella sp.1, Sugiyamaella sp. 2, and Sugiyamaella sp.3. Based on the phylogenetic and phenotypic characterization, the type strain of C. pseudorhagii sp. nov., which was originally designated strain SSA-1542T, was the most frequently occurred yeast from termite gut samples, showed the highly xylanolytic activity as well as D-xylose fermentation. The highest xylanase activity was recorded as 1.73 and 0.98 U/mL with xylan or D-xylose substrate, respectively, from SSA-1542T. Among xylanase-producing yeasts, four novel species were identified as D-xylose-fermenting yeasts, where the yeast, C. pseudorhagii SSA-1542T, showed the highest ethanol yield (0.31 g/g, ethanol productivity (0.31 g/L·h, and its fermentation efficiency (60.7% in 48 h. Clearly, the symbiotic yeasts isolated from termite guts have demonstrated a competitive capability to produce xylanase and ferment xylose, suggesting that the wood-feeding termite gut is a promising reservoir for novel

  19. CONSEQUENCES OF PROTIST-STIMULATED BACTERIAL PRODUCTION FOR ESTIMATING PROTIST GROWTH EFFICIENCIES

    Science.gov (United States)

    The trophic link between bacteria and bacterivorous protists is a complex interaction that involves feedback of inorganic nutrients and growth substrates that are immediately available for prey growth. These interactions were examined in the laboratory and in incubations of conce...

  20. Metatranscriptomic census of active protists in soils

    NARCIS (Netherlands)

    Geisen, Stefan; Tveit, A.T.; Clark, I.M.; Richter, A.; Svenning, M.; Bonkowski, M.; Urich, T.

    2015-01-01

    The high numbers and diversity of protists in soil systems have long been presumed, but their true diversity and community composition have remained largely concealed. Traditional cultivation-based methods miss a majority of taxa, whereas molecular barcoding approaches employing PCR introduce

  1. Enzyme activities at different stages of plant biomass decomposition in three species of fungus-growing termites

    DEFF Research Database (Denmark)

    da Costa, Rafael R.; Hu, Haofu; Pilgaard, Bo

    2018-01-01

    contributing to the success of the termites as the main plant decomposers in the Old World. Here we evaluate which plant polymers are decomposed and which enzymes are active during the decomposition process in two major genera of fungus-growing termites. We find a diversity of active enzymes at different...... stages of decomposition and a consistent decrease in plant components during the decomposition process. Furthermore, our findings are consistent with the hypothesis that termites transport enzymes from the older mature parts of the fungus comb through young worker guts to freshly inoculated plant...... substrate. However, preliminary fungal RNAseq analyses suggest that this likely transport is supplemented with enzymes produced in situ Our findings support that the maintenance of an external fungus comb, inoculated with an optimal mix of plant material, fungal spores, and enzymes, is likely the key...

  2. Intermediate filament protein evolution and protists.

    Science.gov (United States)

    Preisner, Harald; Habicht, Jörn; Garg, Sriram G; Gould, Sven B

    2018-03-23

    Metazoans evolved from a single protist lineage. While all eukaryotes share a conserved actin and tubulin-based cytoskeleton, it is commonly perceived that intermediate filaments (IFs), including lamin, vimentin or keratin among many others, are restricted to metazoans. Actin and tubulin proteins are conserved enough to be detectable across all eukaryotic genomes using standard phylogenetic methods, but IF proteins, in contrast, are notoriously difficult to identify by such means. Since the 1950s, dozens of cytoskeletal proteins in protists have been identified that seemingly do not belong to any of the IF families described for metazoans, yet, from a structural and functional perspective fit criteria that define metazoan IF proteins. Here, we briefly review IF protein discovery in metazoans and the implications this had for the definition of this protein family. We argue that the many cytoskeletal and filament-forming proteins of protists should be incorporated into a more comprehensive picture of IF evolution by aligning it with the recent identification of lamins across the phylogenetic diversity of eukaryotic supergroups. This then brings forth the question of how the diversity of IF proteins has unfolded. The evolution of IF proteins likely represents an example of convergent evolution, which, in combination with the speed with which these cytoskeletal proteins are evolving, generated their current diversity. IF proteins did not first emerge in metazoa, but in protists. Only the emergence of cytosolic IF proteins that appear to stem from a nuclear lamin is unique to animals and coincided with the emergence of true animal multicellularity. © 2018 Wiley Periodicals, Inc.

  3. Termite-egg mimicry by a sclerotium-forming fungus.

    Science.gov (United States)

    Matsuura, Kenji

    2006-05-22

    Mimicry has evolved in a wide range of organisms and encompasses diverse tactics for defence, foraging, pollination and social parasitism. Here, I report an extraordinary case of egg mimicry by a fungus, whereby the fungus gains competitor-free habitat in termite nests. Brown fungal balls, called 'termite balls', are frequently found in egg piles of Reticulitermes termites. Phylogenetic analysis illustrated that termite-ball fungi isolated from different hosts (Reticulitermes speratus, Reticulitermes flavipes and Reticulitermes virginicus) were all very similar, with no significant molecular differences among host species or geographical locations. I found no significant effect of termite balls on egg survivorship. The termite-ball fungus rarely kills termite eggs in natural colonies. Even a termite species (Reticulitermes okinawanus) with no natural association with the fungus tended termite balls along with its eggs when it was experimentally provided with termite balls. Dummy-egg bioassays using glass beads showed that both morphological and chemical camouflage were necessary to induce tending by termites. Termites almost exclusively tended termite balls with diameters that exactly matched their egg size. Moreover, scanning electron microscopic observations revealed sophisticated mimicry of the smooth surface texture of eggs. These results provide clear evidence that this interaction is beneficial only for the fungus, i.e. termite balls parasitically mimic termite eggs.

  4. Integrating Ethno-Ecological and Scientific Knowledge of Termites for Sustainable Termite Management and Human Welfare in Africa

    Directory of Open Access Journals (Sweden)

    Gudeta W. Sileshi

    2009-06-01

    Full Text Available Despite their well-known role as pests, termites also provide essential ecosystem services. In this paper, we undertook a comprehensive review of studies on human-termite interactions and farmers' indigenous knowledge across Sub-Saharan Africa in an effort to build coherent principles for termite management. The review revealed that local communities have comprehensive indigenous knowledge of termite ecology and taxonomy, and apply various indigenous control practices. Many communities also have elaborate knowledge of the nutritional and medicinal value of termites and mushrooms associated with termite nests. Children and women also widely consume termite mound soil for nutritional or other benefits encouraged by indigenous belief systems. In addition, subsistence farmers use termites as indicators of soil fertility, and use termite mound soil in low-risk farming strategies for crop production. In the past, chemical control of termites has been initiated without empirical data on the termite species, their damage threshold, and the social, ecological, or economic risks and trade-offs of the control. This review has provided new insights into the intimate nature of human-termite interactions in Africa and the risks of chemical control of termites to human welfare and the environment. We recommend that management of termites in future should be built on farmers' indigenous knowledge and adequate understanding of the ecology of the local termite species.

  5. Termite hindguts and the ecology of microbial communities in the sequencing age.

    Science.gov (United States)

    Tai, Vera; Keeling, Patrick J

    2013-01-01

    Advances in high-throughput nucleic acid sequencing have improved our understanding of microbial communities in a number of ways. Deeper sequence coverage provides the means to assess diversity at the resolution necessary to recover ecological and biogeographic patterns, and at the same time single-cell genomics provides detailed information about the interactions between members of a microbial community. Given the vastness and complexity of microbial ecosystems, such analyses remain challenging for most environments, so greater insight can also be drawn from analysing less dynamic ecosystems. Here, we outline the advantages of one such environment, the wood-digesting hindgut communities of termites and cockroaches, and how it is a model to examine and compare both protist and bacterial communities. Beyond the analysis of diversity, our understanding of protist community ecology will depend on using statistically sound sampling regimes at biologically relevant scales, transitioning from discovery-based to experimental ecology, incorporating single-cell microbiology and other data sources, and continued development of analytical tools. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  6. GUTs without guts

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.nl [NIKHEF Theory Group, Science Park 105, 1098 XG Amsterdam (Netherlands); Instituto de Física Fundamental, IFF-CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2014-06-15

    The structure of a Standard Model family is derived in a class of brane models with a U(M)×U(N) factor, from two mildly anthropic requirements: a massless photon and a universe that does not turn into a plasma of massless charged particles. If we choose M=3 and N=2, the only option is shown to be the Standard Model with an undetermined number of families. We do not assume the U(1) embedding, charge quantization, family repetition, nor the fermion representations; all of these features are derived, assuming a doublet Higgs. With a slightly stronger assumption even the Higgs representation is determined. We also consider a more general class, requiring an asymptotically free strong SU(M) (with M⩾3) interaction from the first factor and an electromagnetic U(1) embedded in both factors. We allow Higgs symmetry breaking of the U(N)×U(1) flavor group by at most one Higgs boson in any representation, combined with any allowed chiral symmetry breaking by SU(M). For M=3 there is a large number of solutions with an unbroken U(1). In all of these, “quarks” have third-integral charges and color singlets have integer charges in comparison to leptons. Hence Standard Model charge quantization holds for any N. Only for N=2 these models allow an SU(5) GUT extension, but this extension offers no advantages whatsoever for understanding the Standard Model; it only causes complications, such as the doublet–triplet splitting problem. Although all these models have a massless photon, all except the Standard Model are ruled out by the second anthropic requirement. In this class of brane models the Standard Model is realized as a GUT with its intestines removed, to keep only the good parts: a GUT without guts.

  7. GUTs without guts

    International Nuclear Information System (INIS)

    Gato-Rivera, B.; Schellekens, A.N.

    2014-01-01

    The structure of a Standard Model family is derived in a class of brane models with a U(M)×U(N) factor, from two mildly anthropic requirements: a massless photon and a universe that does not turn into a plasma of massless charged particles. If we choose M=3 and N=2, the only option is shown to be the Standard Model with an undetermined number of families. We do not assume the U(1) embedding, charge quantization, family repetition, nor the fermion representations; all of these features are derived, assuming a doublet Higgs. With a slightly stronger assumption even the Higgs representation is determined. We also consider a more general class, requiring an asymptotically free strong SU(M) (with M⩾3) interaction from the first factor and an electromagnetic U(1) embedded in both factors. We allow Higgs symmetry breaking of the U(N)×U(1) flavor group by at most one Higgs boson in any representation, combined with any allowed chiral symmetry breaking by SU(M). For M=3 there is a large number of solutions with an unbroken U(1). In all of these, “quarks” have third-integral charges and color singlets have integer charges in comparison to leptons. Hence Standard Model charge quantization holds for any N. Only for N=2 these models allow an SU(5) GUT extension, but this extension offers no advantages whatsoever for understanding the Standard Model; it only causes complications, such as the doublet–triplet splitting problem. Although all these models have a massless photon, all except the Standard Model are ruled out by the second anthropic requirement. In this class of brane models the Standard Model is realized as a GUT with its intestines removed, to keep only the good parts: a GUT without guts

  8. Cellulolytic activity of gut extract of subterranean termite ...

    African Journals Online (AJOL)

    Lignocellulosic biomass is a chief and cheap raw material for bioethanol production. However, pretreatment is a critical and most expensive step in lignocellulosic ... alternative for lignocellulosic biomass conversion using enzyme hydrolysis.

  9. Chpater 11: Research Methods for Entomopathogenic Microsporidia and Other Protists

    Science.gov (United States)

    The focus in this chapter is on those groups of protists that are pathogenic to their insect hosts, although some basic data necessary for the identification of non-pathogenic taxa are provided. Protist-insect symbiotic relationships reflect the full range of possible interactions, from commensalis...

  10. The inadequacy of morphology for species and genus delineation in microbial eukaryotes: an example from the parabasalian termite symbiont coronympha.

    Directory of Open Access Journals (Sweden)

    James T Harper

    Full Text Available BACKGROUND: For the majority of microbial eukaryotes (protists, algae, there is no clearly superior species concept that is consistently applied. In the absence of a practical biological species concept, most species and genus level delineations have historically been based on morphology, which may lead to an underestimate of the diversity of microbial eukaryotes. Indeed, a growing body of molecular evidence, such as barcoding surveys, is beginning to support the conclusion that significant cryptic species diversity exists. This underestimate of diversity appears to be due to a combination of using morphology as the sole basis for assessing diversity and our inability to culture the vast majority of microbial life. Here we have used molecular markers to assess the species delineations in two related but morphologically distinct genera of uncultivated symbionts found in the hindgut of termites. METHODOLOGY/PRINCIPAL FINDINGS: Using single-cell isolation and environmental PCR, we have used a barcoding approach to characterize the diversity of Coronympha and Metacoronympha symbionts in four species of Incisitermes termites, which were also examined using scanning electron microscopy and light microcopy. Despite the fact that these genera are significantly different in morphological complexity and structural organisation, we find they are two life history stages of the same species. At the same time, we show that the symbionts from different termite hosts show an equal or greater level of sequence diversity than do the hosts, despite the fact that the symbionts are all classified as one species. CONCLUSIONS/SIGNIFICANCE: The morphological information used to describe the diversity of these microbial symbionts is misleading at both the genus and species levels, and led to an underestimate of species level diversity as well as an overestimate of genus level diversity. The genus 'Metacoronympha' is invalid and appears to be a life history stage of

  11. Mining for hemicellulases in the fungus-growing termite Pseudacanthotermes militaris using functional metagenomics.

    Science.gov (United States)

    Bastien, Géraldine; Arnal, Grégory; Bozonnet, Sophie; Laguerre, Sandrine; Ferreira, Fernando; Fauré, Régis; Henrissat, Bernard; Lefèvre, Fabrice; Robe, Patrick; Bouchez, Olivier; Noirot, Céline; Dumon, Claire; O'Donohue, Michael

    2013-05-14

    The metagenomic analysis of gut microbiomes has emerged as a powerful strategy for the identification of biomass-degrading enzymes, which will be no doubt useful for the development of advanced biorefining processes. In the present study, we have performed a functional metagenomic analysis on comb and gut microbiomes associated with the fungus-growing termite, Pseudacanthotermes militaris. Using whole termite abdomens and fungal-comb material respectively, two fosmid-based metagenomic libraries were created and screened for the presence of xylan-degrading enzymes. This revealed 101 positive clones, corresponding to an extremely high global hit rate of 0.49%. Many clones displayed either β-d-xylosidase (EC 3.2.1.37) or α-l-arabinofuranosidase (EC 3.2.1.55) activity, while others displayed the ability to degrade AZCL-xylan or AZCL-β-(1,3)-β-(1,4)-glucan. Using secondary screening it was possible to pinpoint clones of interest that were used to prepare fosmid DNA. Sequencing of fosmid DNA generated 1.46 Mbp of sequence data, and bioinformatics analysis revealed 63 sequences encoding putative carbohydrate-active enzymes, with many of these forming parts of sequence clusters, probably having carbohydrate degradation and metabolic functions. Taxonomic assignment of the different sequences revealed that Firmicutes and Bacteroidetes were predominant phyla in the gut sample, while microbial diversity in the comb sample resembled that of typical soil samples. Cloning and expression in E. coli of six enzyme candidates identified in the libraries provided access to individual enzyme activities, which all proved to be coherent with the primary and secondary functional screens. This study shows that the gut microbiome of P. militaris possesses the potential to degrade biomass components, such as arabinoxylans and arabinans. Moreover, the data presented suggests that prokaryotic microorganisms present in the comb could also play a part in the degradation of biomass within the

  12. Marine Protists Are Not Just Big Bacteria.

    Science.gov (United States)

    Keeling, Patrick J; Campo, Javier Del

    2017-06-05

    The study of marine microbial ecology has been completely transformed by molecular and genomic data: after centuries of relative neglect, genomics has revealed the surprising extent of microbial diversity and how microbial processes transform ocean and global ecosystems. But the revolution is not complete: major gaps in our understanding remain, and one obvious example is that microbial eukaryotes, or protists, are still largely neglected. Here we examine various ways in which protists might be better integrated into models of marine microbial ecology, what challenges this will present, and why understanding the limitations of our tools is a significant concern. In part this is a technical challenge - eukaryotic genomes are more difficult to characterize - but eukaryotic adaptations are also more dependent on morphology and behaviour than they are on the metabolic diversity that typifies bacteria, and these cannot be inferred from genomic data as readily as metabolism can be. We therefore cannot simply follow in the methodological footsteps of bacterial ecology and hope for similar success. Understanding microbial eukaryotes will require different approaches, including greater emphasis on taxonomically and trophically diverse model systems. Molecular sequencing will continue to play a role, and advances in environmental sequence tag studies and single-cell methods for genomic and transcriptomics offer particular promise. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Soil protists: a fertile frontier in soil biology research.

    Science.gov (United States)

    Geisen, Stefan; Mitchell, Edward A D; Adl, Sina; Bonkowski, Michael; Dunthorn, Micah; Ekelund, Flemming; Fernández, Leonardo D; Jousset, Alexandre; Krashevska, Valentyna; Singer, David; Spiegel, Frederick W; Walochnik, Julia; Lara, Enrique

    2018-05-01

    Protists include all eukaryotes except plants, fungi and animals. They are an essential, yet often forgotten, component of the soil microbiome. Method developments have now furthered our understanding of the real taxonomic and functional diversity of soil protists. They occupy key roles in microbial foodwebs as consumers of bacteria, fungi and other small eukaryotes. As parasites of plants, animals and even of larger protists, they regulate populations and shape communities. Pathogenic forms play a major role in public health issues as human parasites, or act as agricultural pests. Predatory soil protists release nutrients enhancing plant growth. Soil protists are of key importance for our understanding of eukaryotic evolution and microbial biogeography. Soil protists are also useful in applied research as bioindicators of soil quality, as models in ecotoxicology and as potential biofertilizers and biocontrol agents. In this review, we provide an overview of the enormous morphological, taxonomical and functional diversity of soil protists, and discuss current challenges and opportunities in soil protistology. Research in soil biology would clearly benefit from incorporating more protistology alongside the study of bacteria, fungi and animals.

  14. Diversity of Termitomyces associated with fungus-farming termites assessed by cultural and culture-independent methods.

    Science.gov (United States)

    Makonde, Huxley M; Boga, Hamadi I; Osiemo, Zipporah; Mwirichia, Romano; Stielow, J Benjamin; Göker, Markus; Klenk, Hans-Peter

    2013-01-01

    Fungus-cultivating termites make use of an obligate mutualism with fungi from the genus Termitomyces, which are acquired through either vertical transmission via reproductive alates or horizontally transmitted during the formation of new mounds. Termitomyces taxonomy, and thus estimating diversity and host specificity of these fungi, is challenging because fruiting bodies are rarely found. Molecular techniques can be applied but need not necessarily yield the same outcome than morphological identification. Culture-dependent and culture-independent methods were used to comprehensively assess host specificity and gut fungal diversity. Termites were identified using mitochondrial cytochrome oxidase II (COII) genes. Twenty-three Termitomyces cultures were isolated from fungal combs. Internal transcribed spacer (ITS) clone libraries were constructed from termite guts. Presence of Termitomyces was confirmed using specific and universal primers. Termitomyces species boundaries were estimated by cross-comparison of macromorphological and sequence features, and ITS clustering parameters accordingly optimized. The overall trends in coverage of Termitomyces diversity and host associations were estimated using Genbank data. Results indicate a monoculture of Termitomyces in the guts as well as the isolation sources (fungal combs). However, cases of more than one Termitomyces strains per mound were observed since mounds can contain different termite colonies. The newly found cultures, as well as the clustering analysis of GenBank data indicate that there are on average between one and two host genera per Termitomyces species. Saturation does not appear to have been reached, neither for the total number of known Termitomyces species nor for the number of Termitomyces species per host taxon, nor for the number of known hosts per Termitomyces species. Considering the rarity of Termitomyces fruiting bodies, it is suggested to base the future taxonomy of the group mainly on well

  15. Diversity of Termitomyces associated with fungus-farming termites assessed by cultural and culture-independent methods.

    Directory of Open Access Journals (Sweden)

    Huxley M Makonde

    Full Text Available BACKGROUND: Fungus-cultivating termites make use of an obligate mutualism with fungi from the genus Termitomyces, which are acquired through either vertical transmission via reproductive alates or horizontally transmitted during the formation of new mounds. Termitomyces taxonomy, and thus estimating diversity and host specificity of these fungi, is challenging because fruiting bodies are rarely found. Molecular techniques can be applied but need not necessarily yield the same outcome than morphological identification. METHODOLOGY: Culture-dependent and culture-independent methods were used to comprehensively assess host specificity and gut fungal diversity. Termites were identified using mitochondrial cytochrome oxidase II (COII genes. Twenty-three Termitomyces cultures were isolated from fungal combs. Internal transcribed spacer (ITS clone libraries were constructed from termite guts. Presence of Termitomyces was confirmed using specific and universal primers. Termitomyces species boundaries were estimated by cross-comparison of macromorphological and sequence features, and ITS clustering parameters accordingly optimized. The overall trends in coverage of Termitomyces diversity and host associations were estimated using Genbank data. RESULTS AND CONCLUSION: Results indicate a monoculture of Termitomyces in the guts as well as the isolation sources (fungal combs. However, cases of more than one Termitomyces strains per mound were observed since mounds can contain different termite colonies. The newly found cultures, as well as the clustering analysis of GenBank data indicate that there are on average between one and two host genera per Termitomyces species. Saturation does not appear to have been reached, neither for the total number of known Termitomyces species nor for the number of Termitomyces species per host taxon, nor for the number of known hosts per Termitomyces species. Considering the rarity of Termitomyces fruiting bodies, it is

  16. Rhizosphere Protists Change Metabolite Profiles in Zea mays

    Directory of Open Access Journals (Sweden)

    Anke Kuppardt

    2018-05-01

    Full Text Available Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth.

  17. Rhizosphere Protists Change Metabolite Profiles in Zea mays.

    Science.gov (United States)

    Kuppardt, Anke; Fester, Thomas; Härtig, Claus; Chatzinotas, Antonis

    2018-01-01

    Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth.

  18. Termite activity in relation to natural grassland soil attributes

    NARCIS (Netherlands)

    Kaschuk, G.; Pires Santos, J.C.; Almeida, J.A.; Sinhorati, D.S.; Berton-Junior, J.F.

    2006-01-01

    Soil-feeding termites transport soil for mound building, and this process can affect soil characteristics. To verify the influence of soil termite activity on soil characteristics, samples were collected from top, bottom and center of termite mounds, and of the adjacent area, to assess chemical and

  19. Escape response of planktonic protists to fluid mechanical signals

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik

    2001-01-01

    The escape response to fluid mechanical signals was examined in 6 protists, 4 ciliates and 2 dinoflagellates. When exposed to a siphon flow. 3 species of ciliates, Balanion comatum, Strobilidium sp., and Mesodinium pulex, responded with escape jumps. The threshold deformation rates required...... times lower than that of a non-jumping similar sized protist when the predator was Temora longicornis, which captures prey entrained in a feeding current. However, when the predator was the ambush- feeding copepod Acartia tonsa, the predation mortalities of jumping and non-jumping protists were...... of similar magnitude. Escape responses may thus be advantageous in some situations. However, jumping behaviour may also enhance susceptibility to some predators, explaining the different predator avoidance strategies (jumping or not) that have evolved in planktonic protists....

  20. Telonemia, a new protist phylum with affinity to chromist lineages

    DEFF Research Database (Denmark)

    Shalchian-Tabrizi, K.; Eikrem, W.; Klaveness, D.

    2006-01-01

    Recent molecular investigations of marine samples taken from different environments, including tropical, temperate and polar areas, as well as deep thermal vents, have revealed an unexpectedly high diversity of protists, some of them forming deep-branching clades within important lineages......, such as the alveolates and heterokonts. Using the same approach on coastal samples, we have identified a novel group of protist small subunit (SSU) rDNA sequences that do not correspond to any phylogenetic group previously identified. Comparison with other sequences obtained from cultures of heterotrophic protists...... eukaryotic phylum, here defined as Telonemia, possibly representing a key clade for the understanding of the early evolution of bikont protist groups, such as the proposed chromalveolate supergroup...

  1. Sexual reproduction and genetic exchange in parasitic protists.

    Science.gov (United States)

    Weedall, Gareth D; Hall, Neil

    2015-02-01

    A key part of the life cycle of an organism is reproduction. For a number of important protist parasites that cause human and animal disease, their sexuality has been a topic of debate for many years. Traditionally, protists were considered to be primitive relatives of the 'higher' eukaryotes, which may have diverged prior to the evolution of sex and to reproduce by binary fission. More recent views of eukaryotic evolution suggest that sex, and meiosis, evolved early, possibly in the common ancestor of all eukaryotes. However, detecting sex in these parasites is not straightforward. Recent advances, particularly in genome sequencing technology, have allowed new insights into parasite reproduction. Here, we review the evidence on reproduction in parasitic protists. We discuss protist reproduction in the light of parasitic life cycles and routes of transmission among hosts.

  2. Immobilisation of bifenthrin for termite control.

    Science.gov (United States)

    Guan, Yan-Qing; Chen, Jia Mei; Li, Zhi Bin; Feng, Qi Li; Liu, Jun-Ming

    2011-02-01

    Termites are worldwide pests causing considerable damage to agriculture, forestry and buildings. While various approaches have been tried to eliminate termite populations, the relevant toxicants are associated with certain risks to the environment and human health. In this study, to combine the merits of effective chemical control by bifenthrin and a drug photoimmobilisation technique, silk fibroin was used as a carrier to embed bifenthrin, which was then photoactively immobilised by ultraviolet treatment on the surface of wood (cellulose). The immobilised bifenthrin embedded in the photoactive silk fibroin was characterised by Fourier transform infrared spectroscopy (FTIR), ultraviolet absorption spectroscopy (UV), fluorescence measurement and CHN analysis. The surface structures and biological activity were examined by scanning electron microscopy (SEM), atomic force microscopy (AFM), electron spectroscopy for chemical analysis (ESCA) and bioassays respectively. The results indicate that the embedded and immobilised bifenthrin has been very well protected from free release and has a long-term stability allowing slow release with a high efficiency against termites at a low dose of 1.25 µg cm(-2). This study provides a novel and environmentally benign technique for termite control by photoimmobilising silk-fibroin-embedded bifenthrin on the surface of materials that are otherwise easily attacked by termites. Copyright © 2010 Society of Chemical Industry.

  3. Chromosomes of Protists: The crucible of evolution.

    Science.gov (United States)

    Soyer-Gobillard, Marie-Odile; Dolan, Michael F

    2015-12-01

    As early as 1925, the great protozoologist Edouard Chatton classified microorganisms into two categories, the prokaryotic and the eukaryotic microbes, based on light microscopical observation of their nuclear organization. Now, by means of transmission electron microscopy, we know that prokaryotic microbes are characterized by the absence of nuclear envelope surrounding the bacterial chromosome, which is more or less condensed and whose chromatin is deprived of histone proteins but presents specific basic proteins. Eukaryotic microbes, the protists, have nuclei surrounded by a nuclear envelope and have chromosomes more or less condensed, with chromatin-containing histone proteins organized into nucleosomes. The extraordinary diversity of mitotic systems presented by the 36 phyla of protists (according to Margulis et al., Handbook of Protoctista, 1990) is in contrast to the relative homogeneity of their chromosome structure and chromatin components. Dinoflagellates are the exception to this pattern. The phylum is composed of around 2000 species, and characterized by unique features including their nucleus (dinokaryon), dinomitosis, chromosome organization and chromatin composition. Although their DNA synthesis is typically eukaryotic, dinoflagellates are the only eukaryotes in which the chromatin, organized into quasi-permanently condensed chromosomes, is in some species devoid of histones and nucleosomes. In these cases, their chromatin contains specific DNA-binding basic proteins. The permanent compaction of their chromosomes throughout the cell cycle raises the question of the modalities of their division and their transcription. Successful in vitro reconstitution of nucleosomes using dinoflagellate DNA and heterologous corn histones raises questions about dinoflagellate evolution and phylogeny. [Int Microbiol 18(4):209-216 (2015)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  4. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity

    Energy Technology Data Exchange (ETDEWEB)

    Parfrey, Laura Wegener; Walters, William A.; Lauber, Christian L.; Clemente, Jose C.; Berg-Lyons, Donna; Teiling, Clotilde; Kodira, Chinnappa; Mohiuddin, Mohammed; Brunelle, Julie; Driscoll, Mark; Fierer, Noah; Gilbert, Jack A.; Knight, Rob

    2014-06-19

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles and a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  5. Termite enzymes and uses thereof for in vitro conversion of lignin-containing materials to fermentable products

    Science.gov (United States)

    Scharf, Michael E; Boucias, Drion G; Tartar, Aurelien; Coy, Monique R; Zhou, Xuguo; Salem, Tamer Ibrahim Zaki; Jadhao, Sanjay B; Wheeler, Marsha M

    2013-05-21

    The disclosure provides isolated nucleic acid molecules derived from the gut of the termite R flavipes, recombinant nucleic acid molecules comprising a vector and an isolated heterologous nucleic acid molecule operably inserted therein, whereby, when transformed into an appropriate host cell system, the heterologous nucleic acid sequence is expressed as a polypeptide having an activity similar to that when expressed in the gut of the termite R. flavipes. The recombinant nucleic acid molecules can comprise more than one heterologous nucleic acid molecule such that more than one polypeptide may be expressed by the host system. The expressed polypeptides may be substantially purified, or used in a substantially unpurified form, to be admixed with a lignocellulose source to be converted to a fermentable product such as a sugar or a mixture of sugars. One aspect of the present disclosure, therefore, encompasses methods of converting a lignified plant material to a fermentable product, the method comprising obtaining a series of isolated polypeptides of a termite, wherein the series of polypeptides cooperate to convert a plant lignocellulose to a fermentable product; and incubating the series of polypeptides with a source of lignified plant material, under conditions allowing the polypeptides to cooperatively produce a fermentable product from the lignified plant material.

  6. Killing the killer: predation between protists and predatory bacteria.

    Science.gov (United States)

    Johnke, Julia; Boenigk, Jens; Harms, Hauke; Chatzinotas, Antonis

    2017-05-01

    Predation by microbes is one of the main drivers of bacterial mortality in the environment. In most ecosystems multiple micropredators compete at least partially for the same bacterial resource. Predatory interactions between these micropredators might lead to shifts within microbial communities. Integrating these interactions is therefore crucial for the understanding of ecosystem functioning. In this study, we investigated the predation between two groups of micropredators, i.e. phagotrophic protists and Bdellovibrio and like organisms (BALOs). BALOs are obligate predators of Gram-negative bacteria. We hypothesised that protists can prey upon BALOs despite the small size and high swimming speed of the latter, which makes them potentially hard to capture. Predation experiments including three protists, i.e. one filter feeder and two interception feeder, showed that BALOs are a relevant prey for these protists. The growth rate on BALOs differed for the respective protists. The filter feeding ciliate was growing equally well on the BALOs and on Escherichia coli, whereas the two flagellate species grew less well on the BALOs compared to E. coli. However, BALOs might not be a favourable food source in resource-rich environments as they are not enabling all protists to grow as much as on bacteria of bigger volume. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Functional ecology of aquatic phagotrophic protists - Concepts, limitations, and perspectives.

    Science.gov (United States)

    Weisse, Thomas; Anderson, Ruth; Arndt, Hartmut; Calbet, Albert; Hansen, Per Juel; Montagnes, David J S

    2016-08-01

    Functional ecology is a subdiscipline that aims to enable a mechanistic understanding of patterns and processes from the organismic to the ecosystem level. This paper addresses some main aspects of the process-oriented current knowledge on phagotrophic, i.e. heterotrophic and mixotrophic, protists in aquatic food webs. This is not an exhaustive review; rather, we focus on conceptual issues, in particular on the numerical and functional response of these organisms. We discuss the evolution of concepts and define parameters to evaluate predator-prey dynamics ranging from Lotka-Volterra to the Independent Response Model. Since protists have extremely versatile feeding modes, we explore if there are systematic differences related to their taxonomic affiliation and life strategies. We differentiate between intrinsic factors (nutritional history, acclimatisation) and extrinsic factors (temperature, food, turbulence) affecting feeding, growth, and survival of protist populations. We briefly consider intraspecific variability of some key parameters and constraints inherent in laboratory microcosm experiments. We then upscale the significance of phagotrophic protists in food webs to the ocean level. Finally, we discuss limitations of the mechanistic understanding of protist functional ecology resulting from principal unpredictability of nonlinear dynamics. We conclude by defining open questions and identifying perspectives for future research on functional ecology of aquatic phagotrophic protists. Copyright © 2016 The Authors. Published by Elsevier GmbH.. All rights reserved.

  8. Acromyrmex Leaf-Cutting Ants Have Simple Gut Microbiota with Nitrogen-Fixing Potential.

    Science.gov (United States)

    Sapountzis, Panagiotis; Zhukova, Mariya; Hansen, Lars H; Sørensen, Søren J; Schiøtt, Morten; Boomsma, Jacobus J

    2015-08-15

    Ants and termites have independently evolved obligate fungus-farming mutualisms, but their gardening procedures are fundamentally different, as the termites predigest their plant substrate whereas the ants deposit it directly on the fungus garden. Fungus-growing termites retained diverse gut microbiota, but bacterial gut communities in fungus-growing leaf-cutting ants have not been investigated, so it is unknown whether and how they are specialized on an exclusively fungal diet. Here we characterized the gut bacterial community of Panamanian Acromyrmex species, which are dominated by only four bacterial taxa: Wolbachia, Rhizobiales, and two Entomoplasmatales taxa. We show that the Entomoplasmatales can be both intracellular and extracellular across different gut tissues, Wolbachia is mainly but not exclusively intracellular, and the Rhizobiales species is strictly extracellular and confined to the gut lumen, where it forms biofilms along the hindgut cuticle supported by an adhesive matrix of polysaccharides. Tetracycline diets eliminated the Entomoplasmatales symbionts but hardly affected Wolbachia and only moderately reduced the Rhizobiales, suggesting that the latter are protected by the biofilm matrix. We show that the Rhizobiales symbiont produces bacterial NifH proteins that have been associated with the fixation of nitrogen, suggesting that these compartmentalized hindgut symbionts alleviate nutritional constraints emanating from an exclusive fungus garden diet reared on a substrate of leaves. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite

    Energy Technology Data Exchange (ETDEWEB)

    Warnecke, Falk; Warnecke, Falk; Luginbuhl, Peter; Ivanova, Natalia; Ghassemian, Majid; Richardson, Toby H.; Stege, Justin T.; Cayouette, Michelle; McHardy, Alice C.; Djordjevic, Gordana; Aboushadi, Nahla; Sorek, Rotem; Tringe, Susannah G.; Podar, Mircea; Martin, Hector Garcia; Kunin, Victor; Dalevi, Daniel; Madejska, Julita; Kirton, Edward; Platt, Darren; Szeto, Ernest; Salamov, Asaf; Barry, Kerrie; Mikhailova, Natalia; Kyrpides, Nikos C.; Matson, Eric G.; Ottesen, Elizabeth A.; Zhang, Xinning; Hernandez, Myriam; Murillo, Catalina; Acosta, Luis G.; Rigoutsos, Isidore; Tamayo, Giselle; Green, Brian D.; Chang, Cathy; Rubin, Edward M.; Mathur, Eric J.; Robertson, Dan E.; Hugenholtz, Philip; Leadbetter, Jared R.

    2007-10-01

    From the standpoints of both basic research and biotechnology, there is considerable interest in reaching a clearer understanding of the diversity of biological mechanisms employed during lignocellulose degradation. Globally, termites are an extremely successful group of wood-degrading organisms and are therefore important both for their roles in carbon turnover in the environment and as potential sources of biochemical catalysts for efforts aimed at converting wood into biofuels. Only recently have data supported any direct role for the symbiotic bacteria in the gut of the termite in cellulose and xylan hydrolysis. Here we use a metagenomic analysis of the bacterial community resident in the hindgut paunch of a wood-feeding Nasutitermes species to show the presence of a large, diverse set of bacterial genes for cellulose and xylan hydrolysis. Many of these genes were expressed in vivo or had cellulase activity in vitro, and further analyses implicate spirochete and fibrobacter species in gut lignocellulose degradation. New insights into other important symbiotic functions including H{sub 2} metabolism, CO{sub 2}-reductive acetogenesis and N{sub 2} fixation are also provided by this first system-wide gene analysis of a microbial community specialized towards plant lignocellulose degradation. Our results underscore how complex even a 1-{micro}l environment can be.

  10. No evidence for an elephant-termite feedback loop in Sand Forest, South Africa

    NARCIS (Netherlands)

    Lagendijk, D. D G; Davies, A. B.; Eggleton, P.; Slotow, R.

    2016-01-01

    Termites and mammalian herbivores might derive mutual benefit from each other through positive feedback loops, but empirical evidence is lacking. One suggested positive feedback loop is between termites and elephant, both ecosystem engineers. Termites, as decomposer organisms, contribute to nutrient

  11. Exploring the Potential for Actinobacteria as Defensive Symbionts in Fungus-Growing Termites

    NARCIS (Netherlands)

    Visser, A.A.; Mesquita Nobre, T.; Currie, C.R.; Aanen, D.K.; Poulsen, M.

    2012-01-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play a

  12. The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists

    NARCIS (Netherlands)

    Geisen, Stefan

    2016-01-01

    Abstract Protists (=protozoa) are commonly treated as bacterivores that control the bacterial energy channel in soil food webs. This ecologist’s perspective is, however, challenged by taxonomic studies showing that a range of protists feed on fungi, other protists and even nematodes. Recently, it

  13. The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists

    NARCIS (Netherlands)

    Geisen, Stefan

    2016-01-01

    Protists (=protozoa) are commonly treated as bacterivores that control the bacterial energy channel in soil food webs. This ecologist’s perspective is, however, challenged by taxonomic studies showing that a range of protists feed on fungi, other protists and even nematodes. Recently, it was

  14. A genomic comparison of two termites with different social complexity

    Directory of Open Access Journals (Sweden)

    Judith eKorb

    2015-03-01

    Full Text Available The termites evolved eusociality and complex societies before the ants, but have been studied much less. The recent publication of the first two termite genomes provides a unique comparative opportunity, particularly because the sequenced termites represent opposite ends of the social complexity spectrum. Zootermopsis nevadensis has simple colonies with totipotent workers that can develop into all castes (dispersing reproductives, nest-inheriting replacement reproductives, and soldiers. In contrast, the fungus-growing termite Macrotermes natalensis belongs to the higher termites and has very large and complex societies with morphologically distinct castes that are life-time sterile. Here we compare key characteristics of genomic architecture, focusing on genes involved in communication, immune defenses, mating biology and symbiosis that were likely important in termite social evolution. We discuss these in relation to what is known about these genes in the ants and outline hypotheses for further testing.

  15. A genomic comparison of two termites with different social complexity.

    Science.gov (United States)

    Korb, Judith; Poulsen, Michael; Hu, Haofu; Li, Cai; Boomsma, Jacobus J; Zhang, Guojie; Liebig, Jürgen

    2015-01-01

    The termites evolved eusociality and complex societies before the ants, but have been studied much less. The recent publication of the first two termite genomes provides a unique comparative opportunity, particularly because the sequenced termites represent opposite ends of the social complexity spectrum. Zootermopsis nevadensis has simple colonies with totipotent workers that can develop into all castes (dispersing reproductives, nest-inheriting replacement reproductives, and soldiers). In contrast, the fungus-growing termite Macrotermes natalensis belongs to the higher termites and has very large and complex societies with morphologically distinct castes that are life-time sterile. Here we compare key characteristics of genomic architecture, focusing on genes involved in communication, immune defenses, mating biology and symbiosis that were likely important in termite social evolution. We discuss these in relation to what is known about these genes in the ants and outline hypothesis for further testing.

  16. Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions.

    Science.gov (United States)

    Zíková, Alena; Hampl, Vladimír; Paris, Zdeněk; Týč, Jiří; Lukeš, Julius

    In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. A genomic comparison of two termites with different social complexity

    DEFF Research Database (Denmark)

    Korb, Judith; Thomas-Poulsen, Michael; Hu, Haofu

    2015-01-01

    large and complex societies with morphologically distinct castes that are life-time sterile. Here we compare key characteristics of genomic architecture, focusing on genes involved in communication, immune defenses, mating biology and symbiosis that were likely important in termite social evolution. We......The termites evolved eusociality and complex societies before the ants, but have been studied much less. The recent publication of the first two termite genomes provides a unique comparative opportunity, particularly because the sequenced termites represent opposite ends of the social complexity...

  18. Mildew fungi found in termites (Reticulitermes lucifugus and their nests

    Directory of Open Access Journals (Sweden)

    A. Wójcik

    2015-04-01

    Full Text Available This paper presents the results of observation of mould growth in laboratory colonies of termites. It also attempts to determine the species of mould fungi present in the research laboratory and the main colonies and their entomopathogenic for the termites. The following four species were found in test termite colonies: Trichoderme viride, Mucor himeralis, Rhizopus nigricans, Aspergillus sp., Aspergillus flavus, Alternaria sp., Penicylium verucosum and Fusarium sp. were recognisable in test colonies with domestic and exotic wood. Morphological observations of the fungi were carried out using a microscope with a 40x magnification. The growth of mould fungi in test containers caused death of whole termite colonies.

  19. The role of mixotrophic protists in the biological carbon pump

    DEFF Research Database (Denmark)

    Mitra, Aditee; Flynn, K.J.; Burkholder, J.M.

    2014-01-01

    at the foundation of most models used to explore biogeochemical cycling, functioning of the biological pump, and the impact of climate change on these processes. We suggest an alternative new paradigm, which sees the bulk of the base of this food web supported by protist plankton communities that are mixotrophic...... – combining phototrophy and phagotrophy within a single cell. The photoautotrophic eukaryotic plankton and their heterotrophic microzooplankton grazers dominate only during the developmental phases of ecosystems (e.g. spring bloom in temperate systems). With their flexible nutrition, mixotrophic protists...

  20. Bacteria from diverse habitats colonize and compete in the mouse gut.

    Science.gov (United States)

    Seedorf, Henning; Griffin, Nicholas W; Ridaura, Vanessa K; Reyes, Alejandro; Cheng, Jiye; Rey, Federico E; Smith, Michelle I; Simon, Gabriel M; Scheffrahn, Rudolf H; Woebken, Dagmar; Spormann, Alfred M; Van Treuren, William; Ursell, Luke K; Pirrung, Megan; Robbins-Pianka, Adam; Cantarel, Brandi L; Lombard, Vincent; Henrissat, Bernard; Knight, Rob; Gordon, Jeffrey I

    2014-10-09

    To study how microbes establish themselves in a mammalian gut environment, we colonized germ-free mice with microbial communities from human, zebrafish, and termite guts, human skin and tongue, soil, and estuarine microbial mats. Bacteria from these foreign environments colonized and persisted in the mouse gut; their capacity to metabolize dietary and host carbohydrates and bile acids correlated with colonization success. Cohousing mice harboring these xenomicrobiota or a mouse cecal microbiota, along with germ-free "bystanders," revealed the success of particular bacterial taxa in invading guts with established communities and empty gut habitats. Unanticipated patterns of ecological succession were observed; for example, a soil-derived bacterium dominated even in the presence of bacteria from other gut communities (zebrafish and termite), and human-derived bacteria colonized germ-free bystander mice before mouse-derived organisms. This approach can be generalized to address a variety of mechanistic questions about succession, including succession in the context of microbiota-directed therapeutics. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Morphophysiological study of digestive system litter-feeding termite Cornitermes cumulans (Kollar, 1832).

    Science.gov (United States)

    de Sousa, Géssica; Dos Santos, Vânia Cristina; de Figueiredo Gontijo, Nelder; Constantino, Reginaldo; de Oliveira Paiva E Silva, Gabriela; Bahia, Ana Cristina; Gomes, Fabio Mendonça; de Alcantara Machado, Ednildo

    2017-06-01

    Termites are the major decomposers of lignocellulosic biomass on Earth and are commonly considered as biological reactor models for lignocellulose degradation. Despite their biotechnological potential, few studies have focused on the morphophysiological aspects of the termite digestive system. We therefore analyze the morphology, ultrastructure and gut luminal pH of the digestive system in workers of the litter-feeding termite Cornitermes cumulans (Blattodea: Termitidae). Their digestive system is composed of salivary glands and an alimentary canal with a pH ranging from neutral to alkaline. The salivary glands have an acinar structure and present cells with secretory characteristics. The alimentary canal is differentiated into the foregut, midgut, mixed segment and hindgut, which comprises the ileum (p1), enteric valve (p2), paunch (p3), colon (p4) and rectum (p5) segments. The foregut has a well-developed chewing system. The midgut possesses a tubular peritrophic membrane and two cell types: digestive cells with secretory and absorptive features and several regenerative cells in mitosis, both cell types being organized into regenerative crypts. The mixed segment exhibits cells rich in glycogen granules. Hindgut p1, p4 and p5 segments have flattened cells with a few apical invaginations related to mitochondria and a thick cuticular lining. Conversely, the hindgut p3 segment contains large cuboid cells with extensive apical invaginations associated with numerous mitochondria. These new insights into the morphophysiology of the digestive system of C. cumulans reveal that it mobilizes lignocellulose components as a nutritional source by means of a highly compartmentalized organization with specialized segments and complex microenvironments.

  2. Explosive Backpacks in Old Termite Workers

    Czech Academy of Sciences Publication Activity Database

    Šobotník, Jan; Bourguignon, T.; Hanus, Robert; Demianova, Zuzana; Pytelková, Jana; Mareš, Michael; Foltynová, P.; Preisler, J.; Cvačka, Josef; Krasulová, Jana; Roisin, Y.

    2012-01-01

    Roč. 337, č. 6093 (2012), s. 436-436 ISSN 0036-8075 R&D Projects: GA ČR GP525/09/P600 Grant - others:CEITEC(CZ) CZ.1.05/1.1.00/02.0068; GA ČR(CZ) GAP206/12/0538 Institutional support: RVO:61388963 Keywords : Neocapritermes taracua * chemical defense * termites * worker defense * suicidal defense Subject RIV: CC - Organic Chemistry Impact factor: 31.027, year: 2012

  3. Termite: Emulation Testbed for Encounter Networks

    Directory of Open Access Journals (Sweden)

    Rodrigo Bruno

    2015-08-01

    Full Text Available Cutting-edge mobile devices like smartphones and tablets are equipped with various infrastructureless wireless interfaces, such as WiFi Direct and Bluetooth. Such technologies allow for novel mobile applications that take advantage of casual encounters between co-located users. However, the need to mimic the behavior of real-world encounter networks makes testing and debugging of such applications hard tasks. We present Termite, an emulation testbed for encounter networks. Our system allows developers to run their applications on a virtual encounter network emulated by software. Developers can model arbitrary encounter networks and specify user interactions on the emulated virtual devices. To facilitate testing and debugging, developers can place breakpoints, inspect the runtime state of virtual nodes, and run experiments in a stepwise fashion. Termite defines its own Petri Net variant to model the dynamically changing topology and synthesize user interactions with virtual devices. The system is designed to efficiently multiplex an underlying emulation hosting infrastructure across multiple developers, and to support heterogeneous mobile platforms. Our current system implementation supports virtual Android devices communicating over WiFi Direct networks and runs on top of a local cloud infrastructure. We evaluated our system using emulator network traces, and found that Termite is expressive and performs well.

  4. Aerodynamics of Ventilation in Termite Mounds

    Science.gov (United States)

    Bailoor, Shantanu; Yaghoobian, Neda; Turner, Scott; Mittal, Rajat

    2017-11-01

    Fungus-cultivating termites collectively build massive, complex mounds which are much larger than the size of an individual termite and effectively use natural wind and solar energy, as well as the energy generated by the colony's own metabolic activity to maintain the necessary environmental condition for the colony's survival. We seek to understand the aerodynamics of ventilation and thermoregulation of termite mounds through computational modeling. A simplified model accounting for key mound features, such as soil porosity and internal conduit network, is subjected to external draft conditions. The role of surface flow conditions in the generation of internal flow patterns and the ability of the mound to transport gases and heat from the nursery are examined. The understanding gained from our study could be used to guide sustainable bio-inspired passive HVAC system design, which could help optimize energy utilization in commercial and residential buildings. This research is supported by a seed Grant from the Environment, Energy Sustainability and Health Institute of the Johns Hopkins University.

  5. Gene expression characterizes different nutritional strategies among three mixotrophic protists.

    Science.gov (United States)

    Liu, Zhenfeng; Campbell, Victoria; Heidelberg, Karla B; Caron, David A

    2016-07-01

    Mixotrophic protists, i.e. protists that can carry out both phototrophy and heterotrophy, are a group of organisms with a wide range of nutritional strategies. The ecological and biogeochemical importance of these species has recently been recognized. In this study, we investigated and compared the gene expression of three mixotrophic protists, Prymnesium parvum, Dinobyron sp. and Ochromonas sp. under light and dark conditions in the presence of prey using RNA-Seq. Gene expression of the obligately phototrophic P. parvum and Dinobryon sp. changed significantly between light and dark treatments, while that of primarily heterotrophic Ochromonas sp. was largely unchanged. Gene expression of P. parvum and Dinobryon sp. shared many similarities, especially in the expression patterns of genes related to reproduction. However, key genes involved in central carbon metabolism and phagotrophy had different expression patterns between these two species, suggesting differences in prey consumption and heterotrophic nutrition in the dark. Transcriptomic data also offered clues to other physiological traits of these organisms such as preference of nitrogen sources and photo-oxidative stress. These results provide potential target genes for further exploration of the mechanisms of mixotrophic physiology and demonstrate the potential usefulness of molecular approaches in characterizing the nutritional modes of mixotrophic protists. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. The Hidden Diversity of Flagellated Protists in Soil.

    Science.gov (United States)

    Venter, Paul Christiaan; Nitsche, Frank; Arndt, Hartmut

    2018-07-01

    Protists are among the most diverse and abundant eukaryotes in soil. However, gaps between described and sequenced protist morphospecies still present a pending problem when surveying environmental samples for known species using molecular methods. The number of sequences in the molecular PR 2 database (∼130,000) is limited compared to the species richness expected (>1 million protist species) - limiting the recovery rate. This is important, since high throughput sequencing (HTS) methods are used to find associative patterns between functional traits, taxa and environmental parameters. We performed HTS to survey soil flagellates in 150 grasslands of central Europe, and tested the recovery rate of ten previously isolated and cultivated cercomonad species, among locally found diversity. We recovered sequences for reference soil flagellate species, but also a great number of their phylogenetically evaluated genetic variants, among rare and dominant taxa with presumably own biogeography. This was recorded among dominant (cercozoans, Sandona), rare (apusozoans) and a large hidden diversity of predominantly aquatic protists in soil (choanoflagellates, bicosoecids) often forming novel clades associated with uncultured environmental sequences. Evaluating the reads, instead of the OTUs that individual reads are usually clustered into, we discovered that much of this hidden diversity may be lost due to clustering. Copyright © 2018 Elsevier GmbH. All rights reserved.

  7. Stability of termite mound populations in a variable environment ...

    African Journals Online (AJOL)

    Of all the climatic variables in the environment of termites in southern Kenya, only rainfall shows marked seasonality and unpredictability. But despite the great variability in rainfall patterns, the populations of termite mounds of various species in three well-separated study areas remained remarkably constant over a period ...

  8. The draft genome of a termite illuminates alternative social organization

    Science.gov (United States)

    Termites have substantial economic and ecological impact worldwide. They are also the oldest organisms living in complex societies, having evolved a caste system independent of that of eusocial Hymenoptera (ants, bees and wasps). Here we provide the first genome sequence for a termite, Zootermopsis ...

  9. Influence of Soil Properties on Soldierless Termite Distribution

    Czech Academy of Sciences Publication Activity Database

    Bourguignon, T.; Drouet, T.; Šobotník, J.; Hanus, Robert; Roisin, Y.

    2015-01-01

    Roč. 10, č. 8 (2015), e0135341/1-e0135341/11 E-ISSN 1932-6203 Institutional support: RVO:61388963 Keywords : tropical termites * soil -feeding termites * soil properties * soil preference Subject RIV: EH - Ecology, Behaviour Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135341

  10. Termites facilitate methane oxidation and shape the methanotrophic community

    NARCIS (Netherlands)

    Ho, A.; Erens, H.; Mujinya, B.B.; Boeckx, P.; Baert, G.; Schneider, B.; Frenzel, P.; Boon, N.; Van Ranst, E.

    2013-01-01

    Termite-derived methane contributes 3-4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of methane produced can be consumed by methanotrophs that inhabit the mound material. Yet, methanotroph

  11. Anti-termite efficacy of Capparis decidua and its combinatorial ...

    African Journals Online (AJOL)

    Michael Horsfall

    ABSTRACT: Capparis deciduas and its combinatorial mixtures were evaluated to observe the anti-termite efficacy against Indian white termite Odontotermes obesus. These have shown very high termiticidal activity and wood protection in the soil. It is proved by very low LD50 values i.e. 0.0218mg/g and 0.021mg/g obtained ...

  12. Termite Resistance of MDF Panels Treated with Various Boron Compounds

    Directory of Open Access Journals (Sweden)

    Sedat Ondaral

    2009-06-01

    Full Text Available In this study, the effects of various boron compounds on the termite resistance of MDF panels were evaluated. Either borax (BX, boric acid (BA, zinc borate (ZB, or sodium perborate tetrahydrate (SPT were added to urea-formaldehyde (UF resin at target contents of 1%, 1.5%, 2% and 2.5% based on dry fiber weight. The panels were then manufactured using 12% urea-formaldehyde resin and 1% NH4Cl. MDF samples from the panels were tested against the subterranean termites, Coptotermes formosanus Shiraki. Laboratory termite resistance tests showed that all samples containing boron compounds had greater resistance against termite attack compared to untreated MDF samples. At the second and third weeks of exposure, nearly 100% termite mortalities were recorded in all boron compound treated samples. The highest termite mortalities were determined in the samples with either BA or BX. Also, it was found that SPT showed notable performance on the termite mortality. As chemical loadings increased, termite mortalities increased, and at the same time the weight losses of the samples decreased.

  13. appraisal of the economic activities of termites: a review

    African Journals Online (AJOL)

    DR.AMIN

    result of their feeding habits cannot be over emphasized. It includes ... Termites are a highly successful group of true social animals, as .... 90.6% Alate termites are eaten by people in West. Africa. ..... Biological Letters, June 7, cited in. Science ...

  14. Charring does not affect wood infestation by subterranean termites

    Science.gov (United States)

    C.J. Peterson; P.D. Gerard; T.L. Wagner

    2007-01-01

    Fire is an important part of forest ecosystems, as is the insect fauna. Changes in wood brought aboutby fire may alter the ability of termites to use the wood, interrupting the decay cycle of woody debris.The ability of termites to find, infest, and feed upon wood after it had been charred was evaluated in

  15. Termite Population Dynamics in Arenic Kandiudults as Influenced by ...

    African Journals Online (AJOL)

    Result shows that carbofuran significantly (P=<0.0001) recorded least termite population per square meter after tuber harvest, whereas A. indica leaves and municipal waste increased termite population per square meter. Also, cassava tuber yield was significantly influenced with application of A. indica leaves and ...

  16. Indigenous methods of controlling termites in agroforestry systems in ...

    African Journals Online (AJOL)

    Mo

    Termites are one of the major agroforestry pests in the tropics causing substantial economic losses. Losses ranging from 50% to 100% have been reported. Control of termites has largely relied on insecticides. There are however serious limitations to these pesticides in terms of cost, pollution and destruction of non targets.

  17. Attraction of subterranean termites (Isoptera) to carbon dioxide.

    Science.gov (United States)

    Bernklau, Elisa Jo; Fromm, Erich A; Judd, Timothy M; Bjostad, Louis B

    2005-04-01

    Subterranean termites, Reticulitermes spp., were attracted to carbon dioxide (CO2) in laboratory and field tests. In behavioral bioassays, Reticulitermes flavipes (Kollar), Reticulitermes tibialis Banks, and Reticulitermes virginicus Banks were attracted to CO2 concentrations between 5 and 50 mmol/mol. In further bioassays, R. tibialis and R. virginicus were attracted to the headspace from polyisocyanurate construction foam that contained 10-12 mmol/mol CO2. In soil bioassays in the laboratory, more termites foraged in chambers containing CO2-generating formulations than in unbaited control chambers. In field tests, stations containing CO2-generating baits attracted R. tibialis away from wooden fence posts at rangeland sites in Colorado. For all of the CO2 formulations tested, termites foraged in significantly more bait stations at treatment fenceposts than in bait stations at the control fenceposts. By the end of the 8-wk study, the number of bait stations located by termites at treatment fenceposts ranged from 40 to 90%. At control fenceposts, termites foraged in only a single station and the one positive station was not located by termites until week 5 of the study. At treatment fenceposts, termites foraged equally in active stations (containing a CO2-generating bait) and passive stations (with no CO2-generating bait), indicating that bait stations may benefit passively from a proximal CO2 source in the soil. CO2 used as an attractant in current baiting systems could improve their effectiveness by allowing earlier exposure of termites to an insecticide.

  18. Cultural significance of termites in sub-Saharan Africa.

    Science.gov (United States)

    van Huis, Arnold

    2017-01-26

    The number of termite species in the world is more than 2500, and Africa with more than 1000 species has the richest intercontinental diversity. The family Termitidae contains builders of great mounds up to 5 m high. Colonies are composed of casts: a queen, a king, soldiers and workers. Some species of termite cultivate specialised fungi to digest cellulose. Termites constitute 10% of all animal biomass in the tropics. The purpose of the study was to make an overview of how termites are utilized, perceived and experienced in daily life across sub-Saharan Africa. Ethno-entomological information on termites (Isoptera) in sub-Saharan Africa was collected by: (1) interviews with more than 300 people from about 120 ethnic groups from 27 countries in the region; (2) library studies in Africa, London, Paris and Leiden. Vernacular names relate to mounds, insects as food, the swarming, and the behaviour of termites. Swarming reproductive, soldiers and queens are collected as food. There are many different ways to harvest them. Termites can also be used as feed for poultry or as bait to catch birds and fish. The mushrooms that grow each year from the fungus gardens on the termite mounds are eaten. The soldiers, the fungus gardens and the soil of termite mounds are used for multiple medicinal purposes. Mounds and soil of termites have numerous functions: for geochemical prospecting, making bricks, plastering houses, making pots, and for storage. Termite soil is often used as fertilizer. The act of eating soil (geophagy) among women, especially those that are pregnant, is practised all over Africa. The mounds can serve as burying places and are often associated with the spiritual world, especially containing the spirits of ancestors. Termites also play a role as oracle, in superstitious beliefs, in art and literature. The following characteristics make termites so appealing: the dominance in the landscape, the social organization, the destructive power, and the provision of

  19. Building mud castles: a perspective from brick-laying termites.

    Science.gov (United States)

    Zachariah, Nikita; Das, Aritra; Murthy, Tejas G; Borges, Renee M

    2017-07-05

    Animal constructions such as termite mounds have received scrutiny by architects, structural engineers, soil scientists and behavioural ecologists but their basic building blocks remain uncharacterized and the criteria used for material selection unexplored. By conducting controlled experiments on Odontotermes obesus termites, we characterize the building blocks of termite mounds and determine the key elements defining material choice and usage by these accomplished engineers. Using biocement and a self-organized process, termites fabricate, transport and assemble spherical unitary structures called boluses that have a bimodal size distribution, achieving an optimal packing solution for mound construction. Granular, hydrophilic, osmotically inactive, non-hygroscopic materials with surface roughness, rigidity and containing organic matter are the easiest to handle and are crucial determinants of mass transfer during mound construction. We suggest that these properties, along with optimal moisture availability, are important predictors of the global geographic distribution of termites.

  20. Protist-like inclusions in amber, as evidenced by Charentes amber.

    Science.gov (United States)

    Girard, Vincent; Néraudeau, Didier; Adl, Sina M; Breton, Gérard

    2011-05-01

    The mid-Cretaceous amber of France contains thousands of protist-like inclusions similar in shape to some ciliates, flagellates and amoebae. The sheer abundance of these inclusions and their size variation within a single amber piece are not concordant with true fossil protists. French amber is coniferous in origin, which generally does not preserve well protists without cell walls. Thus, it would be surprising if French Cretaceous amber had preserved millions of protists. Here, we present a survey of the protist-like inclusions from French amber and attempt to elucidate their origins. Diverse Cretaceous ambers (from Spain, Germany and Lebanon), also derived from conifer resins, contain thousands of protist-like inclusions. In contrast, Tertiary ambers and modern resins are poor in protist-like fossils. This suggests these inclusions originated from early Cretaceous plant resins, probably secreted with the resin by trees that did not survive after the Cretaceous (such as the Cheirolepidiaceae). A review of the recent literature on amber microfossils indicates several protist-like inclusions that are unlikely to have a biological origin have already been described as real fossil protists. This is problematic in that it will bias our understanding of protist evolution. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. String GUTs

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1995-01-01

    Standard SUSY-GUTs such as those based on SU(5) or SO(10) lead to predictions for the values of α s and sin 2 θ W in amazing agreement with experiment. In this article we investigate how these models may be obtained from string theory, thus bringing them into the only known consistent framework for quantum gravity. String models with matter in standard GUT representations require the realization of affine Lie algebras at higher levels. We start by describing some methods to build level k=2 symmetric orbifold string models with gauge groups SU(5) or SO(10). We present several examples and identify generic features of the type of models constructed. Chiral fields appropriate to break the symmetry down to the standard model generically appear in the massless spectrum. However, unlike in standard SUSY-GUTs, they often behave as string moduli, i.e., they do not have self-couplings. We also discuss briefly the doublet-triplet Higgs splitting. We find that, in some models, built-in sliding-singlet type of couplings exist. (orig.)

  2. Fate of pathogenic Bacillus cereus spores after ingestion by protist grazers

    DEFF Research Database (Denmark)

    Winding, Anne; Santos, Susana; Hendriksen, Niels Bohse

    The aim of this study is to understand the symbiosis between bacterivorous protists and pathogenic bacterial spores, in order to gain insight on survival and dispersal of pathogenic bacteria in the environment. It is generally accepted that resistance to grazing by protists has contributed...... to the evolution of Bacillus cereus group bacteria (e.g. B. cereus, B. anthracis, B. thuringiensis) as a pathogen. It has been hypothesized that the spore stage protects against digestion by predating protists. Indeed, B. thuringiensis spores have been shown to be readily ingested by ciliated protists but failed...... to be digested (Manasherob et al 1998 AEM 64:1750-). Here we report how diverse protist grazers grow on both vegetative cells and spores of B. cereus and how the bacteria survive ingestion and digestion, and even proliferate inside the digestive vacuoles of ciliated protists. The survival ability of B. cereus...

  3. Influence of Soil Properties on Soldierless Termite Distribution.

    Science.gov (United States)

    Bourguignon, Thomas; Drouet, Thomas; Šobotník, Jan; Hanus, Robert; Roisin, Yves

    2015-01-01

    In tropical rainforests, termites constitute an important part of the soil fauna biomass, and as for other soil arthropods, variations in soil composition create opportunities for niche partitioning. The aim of this study was twofold: first, we tested whether soil-feeding termite species differ in the foraging substrate; second, we investigated whether soil-feeding termites select their foraging sites to enhance nutrients intake. To do so, we collected termites and analysed the composition and structure of their feeding substrates. Although Anoplotermes-group members are all considered soil-feeders, our results show that some species specifically feed on abandoned termite nests and very rotten wood, and that this substrate selection is correlated with previous stable isotope analyses, suggesting that one component of niche differentiation among species is substrate selection. Our results show that the composition and structure of bare soils on which different termite species foraged do not differ, suggesting that there is no species specialization for a particular type of bare soil. Finally, the bare soil on which termites forage does not differ from random soil samples. Overall, our results suggest that few species of the Anoplotermes-group are specialized toward substrates rich in organic matter, but that the vast majority forage on soil independently of its structural and chemical composition, being ecologically equivalent for this factor.

  4. Perceptions of termites in urban areas of semiarid Brazil

    Directory of Open Access Journals (Sweden)

    Maria Avany Bezerra Gusmão

    2014-07-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2014v27n4p117 Perception of termites in urban areas of semiarid Brazil. Termites are present in the daily life of most people, although they usually evoke a sense of strong dislike, especially in populations of urban areas. This study sought to analyze the perception of these insects in human populations in urban areas in the towns of Fagundes (A1 and Pocinhos (A2, in Paraíba state, Brazil. Semi-structured questionnaires were answered by 100 residents in these two areas, following both synchronic and diachronic situations. In spite of the fact that most of the interviewees (64% in A1 and 72% in A2 were able to identify termites by morphology and had knowledge of use for treating eight types of human diseases, very few understood their ecological roles in nature. Attempts to eliminate termites from human environments were linked to the popular belief that these animals are sources of bad luck. Twenty-two percent of the interviewees in A1 and 8% in A2 believe that termites are capable of doing damage or harm, of having a foul smell, and/or of containing pus.In this sense, academic studies are important because they can inform people of the ecological roles of termites in natural and urban environments, while demystifying the termite as an agent of fear and destruction.

  5. Behaviour and Ecological Impacts of Termites: Fecundity Investigations in Mounds

    Directory of Open Access Journals (Sweden)

    Wako Sutuma Edessa

    2015-03-01

    Full Text Available A radical study was conducted on the behaviour and ecological impacts of termites in Haru District of Western Oromia, Ethiopia. It was aimed at investigating the natural behaviour, fecundity in mounds, ecological impacts and recommending possible solutions to termite problems. Four mounds in different sites were vertically dug down to display the profile of the queen, soldiers, workers, number of laid eggs, nymphs and colonies of termites. On an average, termite queens of the study site may lay about 25 eggs per minute, 36, 000 eggs per day and 13, 140, 000 eggs annually. The fourth queen was unearthed to study the structure, size, number of ovaries and fecundity. It was examined that the death of a queen does not affect the colony, because four small queens are formed and one of them becomes the queen of queens and replaced the dead queen promptly. Accordingly, termites are found to be one of the most destructive agents of our ecosystems and their management requests careful and biological control methods. As a result, the negative effect of termites outweighs the positive effect of termites so that minimising the population size is important for human beings.

  6. Thermoregulation and ventilation of termite mounds

    Science.gov (United States)

    Korb, Judith

    2003-05-01

    Some of the most sophisticated of all animal-built structures are the mounds of African termites of the subfamily Macrotermitinae, the fungus-growing termites. They have long been studied as fascinating textbook examples of thermoregulation or ventilation of animal buildings. However, little research has been designed to provide critical tests of these paradigms, derived from a very small number of original papers. Here I review results from recent studies on Macrotermes bellicosus that considered the interdependence of ambient temperature, thermoregulation, ventilation and mound architecture, and that question some of the fundamental paradigms of termite mounds. M. bellicosus achieves thermal homeostasis within the mound, but ambient temperature has an influence too. In colonies in comparably cool habitats, mound architecture is adapted to reduce the loss of metabolically produced heat to the environment. While this has no negative consequences in small colonies, it produces a trade-off with gas exchange in large colonies, resulting in suboptimally low nest temperatures and increased CO2 concentrations. Along with the alteration in mound architecture, the gas exchange/ventilation mechanism also changes. While mounds in the thermally appropriate savannah have a very efficient circular ventilation during the day, the ventilation in the cooler forest is a less efficient upward movement of air, with gas exchange restricted by reduced surface exchange area. These results, together with other recent findings, question entrenched ideas such as the thermosiphon-ventilation mechanism or the assumption that mounds function to dissipate internally produced heat. Models trying to explain the proximate mechanisms of mound building, or building elements, are discussed.

  7. Fungus-Growing Termites Originated in African Rain Forest

    DEFF Research Database (Denmark)

    Aanen, Duur Kornelis; Eggleton, Paul

    2005-01-01

    are consumed (cf. [ [1] and [2] ]). Fungus-growing termites are found throughout the Old World tropics, in rain forests and savannas, but are ecologically dominant in savannas [ 3 ]. Here, we reconstruct the ancestral habitat and geographical origin of fungus-growing termites. We used a statistical model...... of habitat switching [ 4 ] repeated over all phylogenetic trees sampled in a Bayesian analysis of molecular data [ 5 ]. Our reconstructions provide strong evidence that termite agriculture originated in African rain forest and that the main radiation leading to the extant genera occurred there. Because...

  8. Aerobic mitochondria of parasitic protists: diverse genomes and complex functions

    Czech Academy of Sciences Publication Activity Database

    Zíková, Alena; Hampl, V.; Paris, Zdeněk; Týč, Jiří; Lukeš, Julius

    2016-01-01

    Roč. 209, 1-2 (2016), s. 46-57 ISSN 0166-6851 R&D Projects: GA ČR GA15-21974S; GA MŠk LL1205 Institutional support: RVO:60077344 Keywords : protists * mitochondrion * genomes * repliation * RNA editing * ribosomes * electron transport chain * iron-sulfur cluster * heme Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.536, year: 2016

  9. Biogeochemical study of termite mounds: a case study from Tummalapalle area of Andhra Pradesh, India.

    Science.gov (United States)

    Arveti, Nagaraju; Reginald, S; Kumar, K Sunil; Harinath, V; Sreedhar, Y

    2012-04-01

    Termite mounds are abundant components of Tummalapalle area of uranium mineralization of Cuddapah District of Andhra Pradesh, India. The systematic research has been carried out on the application of termite mound sampling to mineral exploration in this region. The distribution of chemical elements Cu, Pb, Zn, Ni, Co, Cr, Li, Rb, Sr, Ba, and U were studied both in termite soils and adjacent surface soils. Uranium accumulations were noticed in seven termite mounds ranging from 10 to 36 ppm. A biogeochemical parameter called "Biological Absorption Coefficient" of the termite mounds indicated the termite affected soils contained huge amounts of chemical elements than the adjacent soils.

  10. Diurnal respiration of a termite mound

    Science.gov (United States)

    King, Hunter; Ocko, Samuel; Mahadevan, L.

    2014-11-01

    Many species of fungus-harvesting termites build largely empty, massive mound structures which protrude from the ground above their subterranean nests. It has been long proposed that the function of these mounds is to facilitate exchange of heat, humidity, and respiratory gases; this would give the colony a controlled climate in which to raise fungus and brood. However, the specific mechanism by which the mound achieves ventilation has remained a topic of debate, as direct measurement of internal air flows has remained difficult. By directly measuring these elusive, tiny flows with a custom sensor, we find that the mound architecture of the species Odontotermes obesus takes advantage of daily oscillations in ambient temperature to drive convection and gas transport. This contradicts previous theories, which point to internal metabolic heating and external wind as driving forces. Our result, a novel example of deriving useful work from a fluctuating scalar parameter, should contribute to better understanding insect swarm construction and possible development in passive human architecture, both of which have been spurred by previous research on termites. We acknowledge support from HFSP.

  11. Alternative nutritional strategies in protists: symposium introduction and a review of freshwater protists that combine photosynthesis and heterotrophy.

    Science.gov (United States)

    Sanders, Robert W

    2011-01-01

    The alternative nutritional strategies in protists that were addressed during the symposium by that name at the 2010 annual meeting of the International Society of Protistologists and here in contributed papers, include a range of mechanisms that combine photosynthesis with heterotrophy in a single organism. Often called mixotrophy, these multiple trophic level combinations occur across a broad range of organisms and environments. Consequently, there is great variability in the physiological abilities and relative importance of phototrophy vs. phagotrophy and/or osmotrophy in mixotrophic protists. Recently, research papers addressing ecological questions about mixotrophy in marine systems have been more numerous than those that deal with freshwater systems, a trend that is probably partly due to a realization that many harmful algal blooms in coastal marine systems involve mixotrophic protists. After an introduction to the symposium presentations, recent studies of mixotrophy in freshwater systems are reviewed to encourage continuing research on their importance to inland waters. © 2011 The Author(s). Journal of Eukaryotic Microbiology© 2011 International Society of Protistologists.

  12. Metagenomic mining of feruloyl esterases from termite enteric flora

    CSIR Research Space (South Africa)

    Rashamuse, K

    2014-01-01

    Full Text Available A metagenome expression library was created from Trinervitermes trinervoides termite hindgut symbionts and subsequently screened for feruloyl esterase (FAE) activities, resulting in seven recombinant fosmids conferring feruloyl esterase phenotypes...

  13. Comparison of phosphate uptake rates by the smallest plastidic and aplastidic protists in the North Atlantic subtropical gyre.

    Science.gov (United States)

    Hartmann, Manuela; Grob, Carolina; Scanlan, David J; Martin, Adrian P; Burkill, Peter H; Zubkov, Mikhail V

    2011-11-01

    The smallest phototrophic protists (protists meet their inorganic nutrient requirements, we compared the phosphate uptake rates of plastidic and aplastidic protists in the phosphate-depleted subtropical and tropical North Atlantic (4-29°N) using a combination of radiotracers and flow cytometric sorting on two Atlantic Meridional Transect cruises. Plastidic protists were divided into two groups according to their size (protists showed higher phosphate uptake rates per cell than the aplastidic protists. Although the phosphate uptake rates of protist cells were on average seven times (Pprotists were one fourth to one twentieth of an average bacterioplankton cell. The unsustainably low biomass-specific phosphate uptake by both plastidic and aplastidic protists suggests the existence of a common alternative means of phosphorus acquisition - predation on phosphorus-rich bacterioplankton cells. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Farmers' perception of termites in agriculture production and their indigenous utilization in Northwest Benin.

    Science.gov (United States)

    Yêyinou Loko, Laura Estelle; Orobiyi, Azize; Agre, Paterne; Dansi, Alexandre; Tamò, Manuele; Roisin, Yves

    2017-11-21

    Although termites are considered as agricultural pests, they play an important role in maintaining the ecosystem. Therefore, it matters to investigate the farmers' perception of the impacts of the termites on the agriculture and their indigenous utilization. A semi-structured questionnaire was used to interview 94 farmers through 10 villages of Atacora department, in the northwestern region of Benin, to obtain information for the development of successful strategies of termite management and conservation. Their perceptions on the importance and management of termites along with the indigenous nomenclature and utilization of termite mounds were assessed. Termite species identified by farmers were collected and preserved in 80% alcohol for identification. Eight crops were identified by farmers as susceptible to termites with maize, sorghum, and yam as being the most susceptible. According to farmers, the susceptibility to termites of these crops is due to their high-water content and sweet taste. A total of 27 vernacular names of termites were recorded corresponding to 10 species, Amitermes evuncifer, Macrotermes subhyalinus, and Trinervitermes oeconomus being the most damaging termite species. All the names given to termite species had a meaning. The drought was identified by farmers as the main factor favouring termite attacks. Demolition of termite mounds in the fields was the most commonly reported control method. Salt and other pesticides were commonly used by farmers to protect stored farm products. The lack of effective control methods is the main constraint for termite management. In northwestern Benin, farmers reported different purpose utilizations of termite mounds and termites. The study has shown that farmers perceived termites as pests of several agricultural crops and apply various indigenous control practices whose efficiency need to be verified. Utilization of termites and termite mound soil as food and medicinal resources underlines the need for a

  15. Nootkatone is a repellent for Formosan subterranean termite (Coptotermes formosanus).

    Science.gov (United States)

    Zhu, B C; Henderson, G; Chen, F; Maistrello, L; Laine, R A

    2001-03-01

    We examined the behavior of Formosan subterranean termites toward one of the components of vetiver grass oil, the roots of which manufacture insect repellents. We found nootkatone, a sesquiterpene ketone, isolated from vetiver oil is a strong repellent and toxicant to Formosan subterranean termites. The lowest effective concentration tested was 10 micrograms/g substrate. This is the first report of nootkatone being a repellent to insects.

  16. ALIMENTARY CANAL ANATOMY AND HISTOLOGY OF THE WORKER TERMITE NEOTERMES BOSEI

    Directory of Open Access Journals (Sweden)

    LEKSONO EKOPURANTO HARIPRABOWO

    2006-01-01

    Full Text Available As social insects, termites live in a colony that consist of reproductive (drone and queen, and non-reproductive (soldiers and workers castes. Workers obtain their food directly from wood, humus, and other substances that contain cellulose. The objective of this study was to examine the alimentary canal of the Neotermes bosei workers. Observations of gut transverse section were carried out through the length, perimeter, and area of each alimentary canal region. The results showed that total length of N. bosei alimentary canal was 13.71+1.28 mm. The canal was divided into fore-, mid-, and hindgut which were 24, 28, and 48%, respectively of the gut total length. Two types of alimentary canal epithelial cells were found, i.e. the squamous and transitional cells. Areas covered with thick muscular tissues were crop, proventriculus, and rectum. Proventriculus was characterized with six large dentitions. There was no gastric caeca in N. bosei midgut, which commonly occurred in chewing insect. Secretory cells .wer e observed at proventriculus and ventriculus regions. Cardiac valve was found at the anterior end of ventriculus. Area with the largest outer perimeter was the rectum pouch. Enteric valve had three internal folds.

  17. Are termite mounds biofilters for methane? - Challenges and new approaches to quantify methane oxidation in termite mounds

    Science.gov (United States)

    Nauer, Philipp A.; Hutley, Lindsay B.; Bristow, Mila; Arndt, Stefan K.

    2015-04-01

    Methane emissions from termites contribute around 3% to global methane in the atmosphere, although the total source estimate for termites is the most uncertain among all sources. In tropical regions, the relative source contribution of termites can be far higher due to the high biomass and relative importance of termites in plant decomposition. Past research focused on net emission measurements and their variability, but little is known about underlying processes governing these emissions. In particular, microbial oxidation of methane (MOX) within termite mounds has rarely been investigated. In well-studied ecosystems featuring an oxic matrix above an anoxic methane-producing habitat (e.g. landfills or sediments), the fraction of oxidized methane (fox) can reach up to 90% of gross production. However, conventional mass-balance approaches to apportion production and consumption processes can be challenging to apply in the complex-structured and almost inaccessible environment of a termite mound. In effect, all field-based data on termite-mound MOX is based on one study that measured isotopic shifts in produced and emitted methane. In this study a closed-system isotope fractionation model was applied and estimated fox ranged from 10% to almost 100%. However, it is shown here that by applying an open-system isotope-pool model, the measured isotopic shifts can also be explained by physical transport of methane alone. Different field-based methods to quantify MOX in termite mounds are proposed which do not rely on assumptions of physical gas transport. A simple approach is the use of specific inhibitors for MOX, e.g. difluoromethane (CH2F2), combined with chamber-based flux measurements before and after their application. Data is presented on the suitability of different inhibitors and first results of their application in the field. Alternatively, gas-tracer methods allow the quantification of methane oxidation and reaction kinetics without knowledge of physical gas

  18. Levels of specificity of Xylaria species associated with fungus-growing termites: a phylogenetic approach

    DEFF Research Database (Denmark)

    Visser, Andre; Ros, V I D; De Beer, Z. W.

    2009-01-01

    of the ascomycete genus Xylaria appear and rapidly cover the fungus garden. This raises the question whether certain Xylaria species are specialised in occupying termite nests or whether they are just occasional visitors. We tested Xylaria specificity at four levels: (1) fungus-growing termites, (2) termite genera...... of the ITS region revealed 16 operational taxonomic units of Xylaria, indicating high levels of Xylaria species richness. Not much of this variation was explained by termite genus, species, or colony; thus, at level 2-4 the specificity is low. Analysis of the large subunit rDNA region, showed that all...... termite-associated Xylaria belong to a single clade, together with only three of the 26 non-termite-associated strains. Termite-associated Xylaria thus show specificity for fungus-growing termites (level 1). We did not find evidence for geographic or temporal structuring in these Xylaria phylogenies...

  19. Farming termites determine the genetic population structure of Termitomyces fungal symbionts

    DEFF Research Database (Denmark)

    Nobre, Tânia; Fernandes, Cecília; Boomsma, Jacobus J

    2011-01-01

    Symbiotic interactions between macrotermitine termites and their fungal symbionts have a moderate degree of specificity. Consistent with horizontal symbiont transmission, host switching has been frequent over evolutionary time so that single termite species can often be associated with several fu...

  20. Effect of chemical cues on the foraging and tunneling behavior of Formosan subterranean termites (Isoptera: Rhinotermitidae)

    Science.gov (United States)

    Wood rot fungi can cause directional tunneling, aggregation behavior and increased wood consumption by subterranean termites. Because vanillin and guaiacol are byproducts of lignin degradation, these chemicals were tested as potential attractants to Formosan subterranean termites, Coptotermes formo...

  1. Methodological advances to study the diversity of soil protists and their functioning in soil food webs

    NARCIS (Netherlands)

    Geisen, Stefan; Bonkowski, Michael

    2018-01-01

    Abstract Soils host the most complex communities of organisms, which are still largely considered as an unknown ‘black box’. A key role in soil food webs is held by the highly abundant and diverse group of protists. Traditionally, soil protists are considered as the main consumers of bacteria in

  2. Diversity of Eukaryotic Translational Initiation Factor eIF4E in Protists.

    Science.gov (United States)

    Jagus, Rosemary; Bachvaroff, Tsvetan R; Joshi, Bhavesh; Place, Allen R

    2012-01-01

    The greatest diversity of eukaryotic species is within the microbial eukaryotes, the protists, with plants and fungi/metazoa representing just two of the estimated seventy five lineages of eukaryotes. Protists are a diverse group characterized by unusual genome features and a wide range of genome sizes from 8.2 Mb in the apicomplexan parasite Babesia bovis to 112,000-220,050 Mb in the dinoflagellate Prorocentrum micans. Protists possess numerous cellular, molecular and biochemical traits not observed in "text-book" model organisms. These features challenge some of the concepts and assumptions about the regulation of gene expression in eukaryotes. Like multicellular eukaryotes, many protists encode multiple eIF4Es, but few functional studies have been undertaken except in parasitic species. An earlier phylogenetic analysis of protist eIF4Es indicated that they cannot be grouped within the three classes that describe eIF4E family members from multicellular organisms. Many more protist sequences are now available from which three clades can be recognized that are distinct from the plant/fungi/metazoan classes. Understanding of the protist eIF4Es will be facilitated as more sequences become available particularly for the under-represented opisthokonts and amoebozoa. Similarly, a better understanding of eIF4Es within each clade will develop as more functional studies of protist eIF4Es are completed.

  3. Not in your usual Top 10: protists that infect plants and algae.

    Science.gov (United States)

    Schwelm, Arne; Badstöber, Julia; Bulman, Simon; Desoignies, Nicolas; Etemadi, Mohammad; Falloon, Richard E; Gachon, Claire M M; Legreve, Anne; Lukeš, Julius; Merz, Ueli; Nenarokova, Anna; Strittmatter, Martina; Sullivan, Brooke K; Neuhauser, Sigrid

    2018-04-01

    Fungi, nematodes and oomycetes belong to the most prominent eukaryotic plant pathogenic organisms. Unicellular organisms from other eukaryotic lineages, commonly addressed as protists, also infect plants. This review provides an introduction to plant pathogenic protists, including algae infecting oomycetes, and their current state of research. © 2017 THE AUTHORS. MOLECULAR PLANT PATHOLOGY PUBLISHED BY BRITISH SOCIETY FOR PLANT PATHOLOGY AND JOHN WILEY & SONS LTD.

  4. Soil protist communities form a dynamic hub in the soil microbiome

    NARCIS (Netherlands)

    Xiong, Wu; Jousset, Alexandre; Guo, Sai; Karlsson, Ida; Zhao, Qingyun; Wu, Huasong; Kowalchuk, George A.; Shen, Qirong; Li, Rong; Geisen, Stefan

    2018-01-01

    Soil microbes are essential for soil fertility. However, most studies focus on bacterial and/or fungal communities, while the top-down drivers of this microbiome composition, protists, remain poorly understood. Here, we investigated how soil amendments affect protist communities and inferred

  5. Methodological advances to study the diversity of soil protists and their functioning in soil food webs

    NARCIS (Netherlands)

    Geisen, Stefan; Bonkowski, Michael

    2017-01-01

    Soils host the most complex communities of organisms, which are still largely considered as an unknown 'black box'. A key role in soil food webs is held by the highly abundant and diverse group of protists. Traditionally, soil protists are considered as the main consumers of bacteria in soils.

  6. Proteolytic enzymes in seawater: contribution of prokaryotes and protists

    Science.gov (United States)

    Obayashi, Y.; Suzuki, S.

    2016-02-01

    Proteolytic enzyme is one of the major catalysts of microbial processing of organic matter in biogeochemical cycle. Here we summarize some of our studies about proteases in seawater, including 1) distribution of protease activities in coastal and oceanic seawater, 2) responses of microbial community and protease activities in seawater to organic matter amending, and 3) possible contribution of heterotrophic protists besides prokaryotes to proteases in seawater, to clarify cleared facts and remaining questions. Activities of aminopeptidases, trypsin-type and chymotrypsin-type proteases were detected from both coastal and oceanic seawater by using MCA-substrate assay. Significant activities were detected from not only particulate (cell-associated) fraction but also dissolved fraction of seawater, especially for trypsin-type and chymotrypsin-type proteases. Hydrolytic enzymes in seawater have been commonly thought to be mainly derived from heterotrophic prokaryotes; however, it was difficult to determine actual source organisms of dissolved enzymes in natural seawater. Our experiment with addition of dissolved protein to subtropical oligotrophic Pacific water showed drastically enhancement of the protease activities especially aminopeptidases in seawater, and the prokaryotic community structure simultaneously changed to be dominant of Bacteroidetes, indicating that heterotrophic bacteria were actually one of the sources of proteases in seawater. Another microcosm experiment with free-living marine heterotrophic ciliate Paranophrys marina together with an associated bacterium showed that extracellular trypsin-type activity was mainly attributed to the ciliate. The protist seemed to work in organic matter digestion in addition to be a grazer. From the results, we propose a system of organic matter digestion by prokaryotes and protists in aquatic environments, although their actual contribution in natural environments should be estimated in future studies.

  7. [Status of termite-mushroom artificial domestication cultivation--a review].

    Science.gov (United States)

    Zhang, Yujin; Guo, Huachun; Li, Rongchun

    2010-10-01

    Two models of domestication and cultivation of termite-mushroom were discussed: the cultivation of termitomyces model, which method of woodrotting fungi cultivation was emphasized and the original ecological model, which multiplication of symbiotic termites was focused. The problems and possible solutions during termite-mushroom cultivation were also discussed.

  8. Tunneling behavior of the formosan subterranean termite (isoptera: rhinotermitadae) in dry soil

    Science.gov (United States)

    This study examines the effect of dry soil on tunnel construction by the Formosan subterranean termite, Cptotermes formosanus. Termites did not construct tunnels in dry soil in any of the treatments. Termites only constructed tunnels in moist areas in treatments where the soil was partially moistene...

  9. Effects of heartwood extractives on symbiotic protozoan communities and mortality in two termite species

    Science.gov (United States)

    Babar Hassan; Mark E. Mankowski; Grant Kirker; Sohail Ahmed

    2017-01-01

    Lower termites (Isoptera: Rhinotermitidae) are considered severe pests of wood in service, crops and plantation forests. Termites mechanically remove and digest lignocellulosic material as a food source. The ability to digest lignocellulose not only depends on their digestive physiology, but also on the symbiotic relationship between termites and their intestinal...

  10. Comparison of termite assemblages along a landuse gradient on peat areas in Sarawak, Malaysia.

    NARCIS (Netherlands)

    Vaessen, T.; Verwer, C.; Demies, M.; Kaliang, H.; Meer, van der P.J.

    2011-01-01

    VAESSEN T, VERWER C, DEMIES M, KALIANG H & VAN DER MEER PJ. 2011. Comparison of termite assemblages along a landuse gradient on peat areas in Sarawak, Malaysia. In this study we assessed the species density and relative abundance of termites in peat land in Sarawak, Malaysia. Termites were

  11. Geochemical prospecting for rare earth elements using termite mound materials

    Science.gov (United States)

    Horiuchi, Yu; Ohno, Tetsuji; Hoshino, Mihoko; Shin, Ki-Cheol; Murakami, Hiroyasu; Tsunematsu, Maiko; Watanabe, Yasushi

    2014-12-01

    The Blockspruit fluorite prospect, located in North West State of the Republic of South Africa, occurs within an actinolite rock zone that was emplaced into the Kenkelbos-type granite of Proterozoic age. There are a large number of termite mounds in the prospect. For geochemical prospecting for rare earth elements (REEs), in total, 200 samples of termite mound material were collected from actinolite rock and granite zones in the prospect. Geochemical analyses of these termite mound materials were conducted by two methods: portable X-ray fluorescence (XRF) spectrometry and inductively coupled plasma-mass spectrometry (ICP-MS). Comparison of the two methods broadly indicates positive correlations of REEs (La, Ce, Pr, Nd, and Y), in particular Y and La having a strong correlation. As the result of modal abundance analyses, the actinolite rock at surface mainly consists of ferro-actinolite (89.89 wt%) and includes xenotime (0.26 wt%) and monazite (0.21 wt%) grains as REE minerals. Termite mound materials from actinolite rock also contain xenotime (0.27 wt%) and monazite (0.41 wt%) grains. In addition, termite mound materials from the actinolite rock zone have high hematite and Fe silicate contents compared to those from granite zone. These relationships suggest that REE minerals in termite mound materials originate form actinolite rock. Geochemical anomaly maps of Y, La, and Fe concentrations drawn based on the result of the portable XRF analyses show that high concentrations of these elements trend from SW to NE which broadly correspond to occurrences of actinolite body. These results indicate that termite mounds are an effective tool for REE geochemical prospection in the study area for both light REEs and Y, but a more detailed survey is required to establish the distribution of the actinolite rock body.

  12. Genome analysis of Elusimicrobium minutum, the first cultivated representative of the Elusimicrobia phylum (formerly Termite Group 1)

    Energy Technology Data Exchange (ETDEWEB)

    Herlemann, D. P. R.; Geissinger, O.; Ikeda-Ohtsubo, W.; Kunin, V.; Sun, H.; Lapidus, A.; Hugenholtz, P.; Brune, A.

    2009-02-01

    The candidate phylum Termite group 1 (TG1), is regularly 1 encountered in termite hindguts but is present also in many other habitats. Here we report the complete genome sequence (1.64 Mbp) of Elusimicrobium minutum strain Pei191{sup T}, the first cultured representative of the TG1 phylum. We reconstructed the metabolism of this strictly anaerobic bacterium isolated from a beetle larva gut and discuss the findings in light of physiological data. E. minutum has all genes required for uptake and fermentation of sugars via the Embden-Meyerhof pathway, including several hydrogenases, and an unusual peptide degradation pathway comprising transamination reactions and leading to the formation of alanine, which is excreted in substantial amounts. The presence of genes encoding lipopolysaccharide biosynthesis and the presence of a pathway for peptidoglycan formation are consistent with ultrastructural evidence of a Gram-negative cell envelope. Even though electron micrographs showed no cell appendages, the genome encodes many genes putatively involved in pilus assembly. We assigned some to a type II secretion system, but the function of 60 pilE-like genes remains unknown. Numerous genes with hypothetical functions, e.g., polyketide synthesis, non-ribosomal peptide synthesis, antibiotic transport, and oxygen stress protection, indicate the presence of hitherto undiscovered physiological traits. Comparative analysis of 22 concatenated single-copy marker genes corroborated the status of Elusimicrobia (formerly TG1) as a separate phylum in the bacterial domain, which was so far based only on 16S rRNA sequence analysis.

  13. Protists are an integral part of the Arabidopsis thaliana microbiome.

    Science.gov (United States)

    Sapp, Melanie; Ploch, Sebastian; Fiore-Donno, Anna M; Bonkowski, Michael; Rose, Laura E

    2018-01-01

    Although protists occupy a vast range of habitats and are known to interact with plants among other things via disease suppression, competition or growth stimulation, their contributions to the 'phytobiome' are not well described. To contribute to a more comprehensive picture of the plant holobiont, we examined cercozoan and oomycete taxa living in association with the model plant Arabidopsis thaliana grown in two different soils. Soil, roots, leaves and wooden toothpicks were analysed before and after surface sterilization. Cercozoa were identified using 18S rRNA gene metabarcoding, whereas the Internal Transcribed Spacer 1 was used to determine oomycetes. Subsequent analyses revealed strong spatial structuring of protist communities between compartments, although oomycetes appeared more specialized than Cercozoa. With regards to oomycetes, only members of the Peronosporales and taxa belonging to the genus Globisporangium were identified as shared members of the A. thaliana microbiome. This also applied to cercozoan taxa belonging to the Glissomonadida and Cercomonadida. We identified a strong influence by edaphic factors on the rhizosphere, but not for the phyllosphere. Distinct differences of Cercozoa found preferably in wood or fresh plant material imply specific niche adaptations. Our results highlight the importance of micro-eukaryotes for the plant holobiont. © 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. The 13th International Workshops on Opportunistic Protists (IWOP13).

    Science.gov (United States)

    Calderon, Enrique J; Cushion, Melanie T; Xiao, Lihua; Lorenzo-Morales, Jacob; Matos, Olga; Kaneshiro, Edna S; Weiss, Louis M

    2015-01-01

    The 13th International Workshops on Opportunistic Protists (IWOP-13) was held November 13-15, 2014 in Seville, Spain. The objectives of the IWOP meetings are to: (1) serve as a forum for exchange of new information among active researchers concerning the basic biology, molecular genetics, immunology, biochemistry, pathogenesis, drug development, therapy, and epidemiology of these immunodeficiency-associated pathogenic eukaryotic microorganisms that are seen in patients with AIDS and; (2) to foster the entry of new and young investigators into these underserved research areas. The IWOP meeting focuses on opportunistic protists; e.g. the free-living amoebae, Pneumocystis, Cryptosporidium, Toxoplasma, the Microsporidia, and kinetoplastid flagellates. This conference represents the major conference which brings together research groups working on these opportunistic pathogens. Progress has been achieved on understanding the biology of these pathogenic organisms, their involvement in disease causation in both immune deficient and immune competent hosts and is providing important insights into these emerging and reemerging pathogens. A continuing concern of the participants is the ongoing loss of scientific expertise and diversity in this research community. This decline is due to the small size of these research communities and an ongoing lack of understanding by the broader scientific community of the challenges and limitations faced by researchers working on these organisms, which makes these research communities very sensitive to declines in research funding. © 2015 The Author(s) Journal of Eukaryotic Microbiology © 2015 International Society of Protistologists.

  15. Evidence for an active rare biosphere within freshwater protists community.

    Science.gov (United States)

    Debroas, Didier; Hugoni, Mylène; Domaizon, Isabelle

    2015-03-01

    Studies on the active rare biosphere at the RNA level are mainly focused on Bacteria and Archaea and fail to include the protists, which are involved in the main biogeochemical cycles of the earth. In this study, the richness, composition and activity of the rare protistan biosphere were determined from a temporal survey of two lakes by pyrosequencing. In these ecosystems, the always rare OTUs represented 77.2% of the total OTUs and 76.6% of the phylogenetic diversity. From the various phylogenetic indices computed, the phylogenetic units (PUs) constituted exclusively by always rare OTUs were discriminated from the other PUs. Therefore, the rare biosphere included mainly taxa that are distant from the reference databases compared to the dominant ones. In addition, the rarest OTUs represented 59.8% of the active biosphere depicted by rRNA and the activity (rRNA:rDNA ratio) increased with the rarity. The high rRNA:rDNA ratio determined in the rare fraction highlights that some protists were active at low abundances and contribute to ecosystem functioning. Interestingly, the always rare and active OTUs were characterized by seasonal changes in relation with the main environmental parameters measured. In conclusion, the rare eukaryotes represent an active, dynamic and overlooked fraction in the lacustrine ecosystems. © 2015 John Wiley & Sons Ltd.

  16. Diversity of protists and bacteria determines predation performance and stability.

    Science.gov (United States)

    Saleem, Muhammad; Fetzer, Ingo; Harms, Hauke; Chatzinotas, Antonis

    2013-10-01

    Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity-functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.

  17. The 14th International Workshops on Opportunistic Protists (IWOP 14).

    Science.gov (United States)

    Cushion, Melanie T; Limper, Andrew H; Porollo, Aleksey; Saper, Vivian E; Sinai, Anthony P; Weiss, Louis M

    2018-05-03

    The 14th International Workshops on Opportunistic Protists (IWOP-14) was held August 10-12, 2017 in Cincinnati, OH, USA. The IWOP meetings focus on opportunistic protists (OIs); for example, free-living amoebae, Pneumocystis spp., Cryptosporidium spp., Toxoplasma, the Microsporidia, and kinetoplastid flagellates. The highlights of Pneumocystis spp. research included the reports of primary homothallism for mating; a potential requirement for sexual replication in its life cycle; a new antigen on the surface of small asci; roles for CLRs, Dectin-1, and Mincle in host responses; and identification of MSG families and mechanisms used for surface variation. Studies of Cryptosporidia spp. included comparative genomics, a new cryopreservation method; the role of mucin in attachment and invasion, and epidemiological surveys illustrating species diversity in animals. One of the five identified proteins in the polar tube of Microsporidia, PTP4, was shown to play a role in host infection. Zebrafish were used as a low cost vertebrate animal model for an evaluation of potential anti-toxoplasma drugs. Folk medicine compounds with anti-toxoplasma activity were presented, and reports on the chronic toxoplasma infection provided evidence for increased tractability for the study of this difficult life cycle stage. Escape from the parasitophorus vacuole and cell cycle regulation were the topics of the study in the acute phase. © 2018 International Society of Protistologists.

  18. Constraints on the adult-offspring size relationship in protists.

    Science.gov (United States)

    Caval-Holme, Franklin; Payne, Jonathan; Skotheim, Jan M

    2013-12-01

    The relationship between adult and offspring size is an important aspect of reproductive strategy. Although this filial relationship has been extensively examined in plants and animals, we currently lack comparable data for protists, whose strategies may differ due to the distinct ecological and physiological constraints on single-celled organisms. Here, we report measurements of adult and offspring sizes in 3888 species and subspecies of foraminifera, a class of large marine protists. Foraminifera exhibit a wide range of reproductive strategies; species of similar adult size may have offspring whose sizes vary 100-fold. Yet, a robust pattern emerges. The minimum (5th percentile), median, and maximum (95th percentile) offspring sizes exhibit a consistent pattern of increase with adult size independent of environmental change and taxonomic variation over the past 400 million years. The consistency of this pattern may arise from evolutionary optimization of the offspring size-fecundity trade-off and/or from cell-biological constraints that limit the range of reproductive strategies available to single-celled organisms. When compared with plants and animals, foraminifera extend the evidence that offspring size covaries with adult size across an additional five orders of magnitude in organism size. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  19. Diet Segregation between Cohabiting Builder and Inquiline Termite Species.

    Directory of Open Access Journals (Sweden)

    Daniela Faria Florencio

    Full Text Available How do termite inquilines manage to cohabit termitaria along with the termite builder species? With this in mind, we analysed one of the several strategies that inquilines could use to circumvent conflicts with their hosts, namely, the use of distinct diets. We inspected overlapping patterns for the diets of several cohabiting Neotropical termite species, as inferred from carbon and nitrogen isotopic signatures for termite individuals. Cohabitant communities from distinct termitaria presented overlapping diet spaces, indicating that they exploited similar diets at the regional scale. When such communities were split into their components, full diet segregation could be observed between builders and inquilines, at regional (environment-wide and local (termitarium scales. Additionally, diet segregation among inquilines themselves was also observed in the vast majority of inspected termitaria. Inquiline species distribution among termitaria was not random. Environmental-wide diet similarity, coupled with local diet segregation and deterministic inquiline distribution, could denounce interactions for feeding resources. However, inquilines and builders not sharing the same termitarium, and thus not subject to potential conflicts, still exhibited distinct diets. Moreover, the areas of the builder's diet space and that of its inquilines did not correlate negatively. Accordingly, the diet areas of builders which hosted inquilines were in average as large as the areas of builders hosting no inquilines. Such results indicate the possibility that dietary partitioning by these cohabiting termites was not majorly driven by current interactive constraints. Rather, it seems to be a result of traits previously fixed in the evolutionary past of cohabitants.

  20. Termites facilitate methane oxidation and shape the methanotrophic community.

    Science.gov (United States)

    Ho, Adrian; Erens, Hans; Mujinya, Basile Bazirake; Boeckx, Pascal; Baert, Geert; Schneider, Bellinda; Frenzel, Peter; Boon, Nico; Van Ranst, Eric

    2013-12-01

    Termite-derived methane contributes 3 to 4% to the total methane budget globally. Termites are not known to harbor methane-oxidizing microorganisms (methanotrophs). However, a considerable fraction of the methane produced can be consumed by methanotrophs that inhabit the mound material, yet the methanotroph ecology in these environments is virtually unknown. The potential for methane oxidation was determined using slurry incubations under conditions with high (12%) and in situ (∼0.004%) methane concentrations through a vertical profile of a termite (Macrotermes falciger) mound and a reference soil. Interestingly, the mound material showed higher methanotrophic activity. The methanotroph community structure was determined by means of a pmoA-based diagnostic microarray. Although the methanotrophs in the mound were derived from populations in the reference soil, it appears that termite activity selected for a distinct community. Applying an indicator species analysis revealed that putative atmospheric methane oxidizers (high-indicator-value probes specific for the JR3 cluster) were indicative of the active nest area, whereas methanotrophs belonging to both type I and type II were indicative of the reference soil. We conclude that termites modify their environment, resulting in higher methane oxidation and selecting and/or enriching for a distinct methanotroph population.

  1. Tail gut cyst.

    Science.gov (United States)

    Rao, G Mallikarjuna; Haricharan, P; Ramanujacharyulu, S; Reddy, K Lakshmi

    2002-01-01

    The tail gut is a blind extension of the hindgut into the tail fold just distal to the cloacal membrane. Remnants of this structure may form tail gut cyst. We report a 14-year-old girl with tail gut cyst that presented as acute abdomen. The patient recovered after cyst excision.

  2. SUSY GUT Model Building

    International Nuclear Information System (INIS)

    Raby, Stuart

    2008-01-01

    In this talk I discuss the evolution of SUSY GUT model building as I see it. Starting with 4 dimensional model building, I then consider orbifold GUTs in 5 dimensions and finally orbifold GUTs embedded into the E 8 xE 8 heterotic string.

  3. Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa.

    Science.gov (United States)

    Geisen, S; Laros, I; Vizcaíno, A; Bonkowski, M; de Groot, G A

    2015-09-01

    Protists, the most diverse eukaryotes, are largely considered to be free-living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High-throughput sequencing (HTS) approaches now commonly replace cultivation-based approaches in studying soil protists, but insights into common biases associated with this method are limited to aquatic taxa and samples. We created a mock community of common free-living soil protists (amoebae, flagellates, ciliates), extracted DNA and amplified it in the presence of metazoan DNA using 454 HTS. We aimed at evaluating whether HTS quantitatively reveals true relative abundances of soil protists and at investigating whether the expected protist community structure is altered by the co-amplification of metazoan-associated protist taxa. Indeed, HTS revealed fundamentally different protist communities from those expected. Ciliate sequences were highly over-represented, while those of most amoebae and flagellates were under-represented or totally absent. These results underpin the biases introduced by HTS that prevent reliable quantitative estimations of free-living protist communities. Furthermore, we detected a wide range of nonadded protist taxa probably introduced along with metazoan DNA, which altered the protist community structure. Among those, 20 taxa most closely resembled parasitic, often pathogenic taxa. Therewith, we provide the first HTS data in support of classical observational studies that showed that potential protist parasites are hosted by soil metazoa. Taken together, profound differences in amplification success between protist taxa and an inevitable co-extraction of protist taxa parasitizing soil metazoa obscure the true diversity of free-living soil protist communities. © 2015 John Wiley & Sons Ltd.

  4. Bacteria between protists and phages: from antipredation strategies to the evolution of pathogenicity.

    Science.gov (United States)

    Brüssow, Harald

    2007-08-01

    Bacteriophages and protists are major causes of bacterial mortality. Genomics suggests that phages evolved well before eukaryotic protists. Bacteria were thus initially only confronted with phage predators. When protists evolved, bacteria were caught between two types of predators. One successful antigrazing strategy of bacteria was the elaboration of toxins that would kill the grazer. The released cell content would feed bystander bacteria. I suggest here that, to fight grazing protists, bacteria teamed up with those phage predators that concluded at least a temporary truce with them in the form of lysogeny. Lysogeny was perhaps initially a resource management strategy of phages that could not maintain infection chains. Subsequently, lysogeny might have evolved into a bacterium-prophage coalition attacking protists, which became a food source for them. When protists evolved into multicellular animals, the lysogenic bacteria tracked their evolving food source. This hypothesis could explain why a frequent scheme of bacterial pathogenicity is the survival in phagocytes, why a significant fraction of bacterial pathogens have prophage-encoded virulence genes, and why some virulence factors of animal pathogens are active against unicellular eukaryotes. Bacterial pathogenicity might thus be one playing option of the stone-scissor-paper game played between phages-bacteria-protists, with humans getting into the crossfire.

  5. Grazing of leaf-associated Cercomonads (Protists: Rhizaria: Cercozoa) structures bacterial community composition and function.

    Science.gov (United States)

    Flues, Sebastian; Bass, David; Bonkowski, Michael

    2017-08-01

    Preferential food selection in protists is well documented, but we still lack basic understanding on how protist predation modifies the taxonomic and functional composition of bacterial communities. We conducted feeding trials using leaf-associated cercomonad Cercozoa by incubating them on a standardized, diverse bacterial community washed from plant leaves. We used a shotgun metagenomics approach to investigate the taxonomic and functional changes of the bacterial community after five days protist predation on bacteria. Predation-induced shifts in bacterial community composition could be linked to phenotypic protist traits. Protist reproduction rate, morphological plasticity and cell speed were most important in determining bacterial community composition. Analyses of co-occurrence patterns showed less complex correlations between bacterial taxa in the protist-grazed treatments with a higher proportion of positive correlations than in non-grazed controls, suggesting that predation reduced the influence of strong competitors. Protist predation influenced 14 metabolic core functions including membrane transport from which type VI secretion systems were in particular upregulated. In view of the functional importance of bacterial communities in the phyllosphere and rhizosphere of plants, a more detailed understanding of predator-prey interactions, changes in microbial composition and function, and subsequent repercussions on plant performance are clearly required. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  6. Construction and characterization of normalized cDNA libraries by 454 pyrosequencing and estimation of DNA methylation levels in three distantly related termite species.

    Directory of Open Access Journals (Sweden)

    Yoshinobu Hayashi

    Full Text Available In termites, division of labor among castes, categories of individuals that perform specialized tasks, increases colony-level productivity and is the key to their ecological success. Although molecular studies on caste polymorphism have been performed in termites, we are far from a comprehensive understanding of the molecular basis of this phenomenon. To facilitate future molecular studies, we aimed to construct expressed sequence tag (EST libraries covering wide ranges of gene repertoires in three representative termite species, Hodotermopsis sjostedti, Reticulitermes speratus and Nasutitermes takasagoensis. We generated normalized cDNA libraries from whole bodies, except for guts containing microbes, of almost all castes, sexes and developmental stages and sequenced them with the 454 GS FLX titanium system. We obtained >1.2 million quality-filtered reads yielding >400 million bases for each of the three species. Isotigs, which are analogous to individual transcripts, and singletons were produced by assembling the reads and annotated using public databases. Genes related to juvenile hormone, which plays crucial roles in caste differentiation of termites, were identified from the EST libraries by BLAST search. To explore the potential for DNA methylation, which plays an important role in caste differentiation of honeybees, tBLASTn searches for DNA methyltransferases (dnmt1, dnmt2 and dnmt3 and methyl-CpG binding domain (mbd were performed against the EST libraries. All four of these genes were found in the H. sjostedti library, while all except dnmt3 were found in R. speratus and N. takasagoensis. The ratio of the observed to the expected CpG content (CpG O/E, which is a proxy for DNA methylation level, was calculated for the coding sequences predicted from the isotigs and singletons. In all of the three species, the majority of coding sequences showed depletion of CpG O/E (less than 1, and the distributions of CpG O/E were bimodal, suggesting

  7. Construction and characterization of normalized cDNA libraries by 454 pyrosequencing and estimation of DNA methylation levels in three distantly related termite species.

    Science.gov (United States)

    Hayashi, Yoshinobu; Shigenobu, Shuji; Watanabe, Dai; Toga, Kouhei; Saiki, Ryota; Shimada, Keisuke; Bourguignon, Thomas; Lo, Nathan; Hojo, Masaru; Maekawa, Kiyoto; Miura, Toru

    2013-01-01

    In termites, division of labor among castes, categories of individuals that perform specialized tasks, increases colony-level productivity and is the key to their ecological success. Although molecular studies on caste polymorphism have been performed in termites, we are far from a comprehensive understanding of the molecular basis of this phenomenon. To facilitate future molecular studies, we aimed to construct expressed sequence tag (EST) libraries covering wide ranges of gene repertoires in three representative termite species, Hodotermopsis sjostedti, Reticulitermes speratus and Nasutitermes takasagoensis. We generated normalized cDNA libraries from whole bodies, except for guts containing microbes, of almost all castes, sexes and developmental stages and sequenced them with the 454 GS FLX titanium system. We obtained >1.2 million quality-filtered reads yielding >400 million bases for each of the three species. Isotigs, which are analogous to individual transcripts, and singletons were produced by assembling the reads and annotated using public databases. Genes related to juvenile hormone, which plays crucial roles in caste differentiation of termites, were identified from the EST libraries by BLAST search. To explore the potential for DNA methylation, which plays an important role in caste differentiation of honeybees, tBLASTn searches for DNA methyltransferases (dnmt1, dnmt2 and dnmt3) and methyl-CpG binding domain (mbd) were performed against the EST libraries. All four of these genes were found in the H. sjostedti library, while all except dnmt3 were found in R. speratus and N. takasagoensis. The ratio of the observed to the expected CpG content (CpG O/E), which is a proxy for DNA methylation level, was calculated for the coding sequences predicted from the isotigs and singletons. In all of the three species, the majority of coding sequences showed depletion of CpG O/E (less than 1), and the distributions of CpG O/E were bimodal, suggesting the presence of

  8. Diversity of diazotrophic gut inhabitants of pikas (Ochotonidae) revealed by PCR-DGGE analysis.

    Science.gov (United States)

    Kizilova, A K; Kravchenko, I K

    2014-01-01

    Diazotrophic gut symbionts are considered to act as nitrogen providers for their hosts, as was shown for various termite species. Although the diet of lagomorphs, like pikas or rabbits, is very poor in nitrogen and energy, their fecal matter contains 30-40% of protein. Since our hypothesis was that pikas maintained a diazotrophic consortium in their gastrointestinal tract, we conducted the first investigation of microbial diversity in pika guts. We obtained gut samples from animals of several Ochotona species, O. hyperborea (Northern pika), O. mantchurica (Manchurian pika), and O. dauurica (Daurian pika), in order to retrieve and compare the nitrogen-fixing communities of different pika species. The age and gender of the animals were taken into consideration. We amplified 320-bp long fragments of the nifH gene using the DNA extracted directly from the colon and cecum samples of pika's gut, resolved them by DGGE, and performed phylogenetic reconstruction of 51 sequences obtained from excised bands. No significant difference was detected between the nitrogen-fixing gut inhabitants of different pika species. NifH sequences fell into two clusters. The first cluster contained the sequences affiliated with NifH Cluster I (Zehr et al., 2003) with similarity to Sphingomonas sp., Bradyrhizobium sp., and various uncultured bacteria from soil and rhizosphere. Sequences from the second group were related to Treponema sp., Fibrobacter succinogenes, and uncultured clones from the guts of various termites and belonged to NifH Cluster III. We suggest that diazotrophic organisms from the second cluster are genuine endosymbionts of pikas and provide nitrogen for further synthesis processes thus allowing these animals not to be short of protein.

  9. A Preliminary Study on Elimination of Colonies of the Mound Building Termite Macrotermes gilvus (Hagen) Using a Chlorfluazuron Termite Bait in the Philippines

    OpenAIRE

    Partho Dhang

    2011-01-01

    The effectiveness of a chlorfluazuron termite bait in eliminating colonies of the termite species Macrotermes gilvus (Hagen) was evaluated under field conditions. Three active termite mounds were chosen for this study, two acted as test mounds and the other as the control. Four In-Ground Stations (IGS) were installed around each mound. Interception occurred almost immediately in all the stations, which were subsequently baited. The control mound was fed a bait matrix lacking the active ingred...

  10. SO(10) GUT baryogenesis

    International Nuclear Information System (INIS)

    Gu Peihong; Sarkar, Utpal

    2008-01-01

    Baryogenesis, through the decays of heavy bosons, was considered to be one of the major successes of the grand unified theories (GUTs). It was then realized that the sphaleron processes erased any baryon asymmetry from the GUT-baryogenesis at a later stage. In this Letter, we discuss the idea of resurrecting GUT-baryogenesis [M. Fukugita, T. Yanagida, Phys. Rev. Lett. 89 (2002) 131602] in a large class of SO(10) GUTs. Our analysis shows that fast lepton number violating but baryon number conserving processes can partially wash out the GUT-baryogenesis produced lepton and/or baryon asymmetry associated with or without the sphaleron and/or Yukawa interactions

  11. Gut metabolome meets microbiome

    DEFF Research Database (Denmark)

    Lamichhane, Santosh; Sen, Partho; Dickens, Alex M

    2018-01-01

    It is well established that gut microbes and their metabolic products regulate host metabolism. The interactions between the host and its gut microbiota are highly dynamic and complex. In this review we present and discuss the metabolomic strategies to study the gut microbial ecosystem. We...... highlight the metabolic profiling approaches to study faecal samples aimed at deciphering the metabolic product derived from gut microbiota. We also discuss how metabolomics data can be integrated with metagenomics data derived from gut microbiota and how such approaches may lead to better understanding...

  12. The Physiology of Microbial Symbionts in Fungus-Farming Termites

    DEFF Research Database (Denmark)

    Rodrigues da Costa, Rafael

    . The termites provide the fungus with optimal growth conditions (e.g., stable temperature and humidity), as well as with constant inoculation of growth substrate and protection against alien fungi. In reward, the fungus provides the termites with a protein-rich fungal biomass based diet. In addition...... with their symbionts are main decomposer of organic matter in Africa, and this is reflect of a metabolic complementarity to decompose plant biomass in the genome of the three organisms involved in this symbiosis. Many of the physiological aspects of this symbiosis remain obscure, and here I focus on physiology...... of microbial symbionts associated with fungus-growing termites. Firstly, by using a set of enzyme assays, plant biomass compositional analyses, and RNA sequencing we gained deeper understanding on what enzymes are produced and active at different times of the decomposition process. Our results show that enzyme...

  13. Functional characterization and target discovery of glycoside hydrolases from the digestome of the lower termite Coptotermes gestroi

    Directory of Open Access Journals (Sweden)

    Franco Cairo João Paulo L

    2011-11-01

    Full Text Available Abstract Background Lignocellulosic materials have been moved towards the forefront of the biofuel industry as a sustainable resource. However, saccharification and the production of bioproducts derived from plant cell wall biomass are complex and lengthy processes. The understanding of termite gut biology and feeding strategies may improve the current state of biomass conversion technology and bioproduct production. Results The study herein shows comprehensive functional characterization of crude body extracts from Coptotermes gestroi along with global proteomic analysis of the termite's digestome, targeting the identification of glycoside hydrolases and accessory proteins responsible for plant biomass conversion. The crude protein extract from C. gestroi was enzymatically efficient over a broad pH range on a series of natural polysaccharides, formed by glucose-, xylose-, mannan- and/or arabinose-containing polymers, linked by various types of glycosidic bonds, as well as ramification types. Our proteomic approach successfully identified a large number of relevant polypeptides in the C. gestroi digestome. A total of 55 different proteins were identified and classified into 29 CAZy families. Based on the total number of peptides identified, the majority of components found in the C. gestroi digestome were cellulose-degrading enzymes. Xylanolytic enzymes, mannan- hydrolytic enzymes, pectinases and starch-degrading and debranching enzymes were also identified. Our strategy enabled validation of liquid chromatography with tandem mass spectrometry recognized proteins, by enzymatic functional assays and by following the degradation products of specific 8-amino-1,3,6-pyrenetrisulfonic acid labeled oligosaccharides through capillary zone electrophoresis. Conclusions Here we describe the first global study on the enzymatic repertoire involved in plant polysaccharide degradation by the lower termite C. gestroi. The biochemical characterization of whole

  14. Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1T), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov. and emendations of the family Spirochaetaceae and the genus Sphaerochaeta

    Energy Technology Data Exchange (ETDEWEB)

    Abt, Birte; Han, Cliff; Scheuner, Carmen; Lu, Megan; Lapidus, Alla; Nolan, Matt; Lucas, Susan; Hammon, Nancy; Deshpande, Shweta; Cheng, Jan-Fang; Tapia, Roxane; Goodwin, Lynne; Pitluck, Sam; Liolios, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mavromatis, Konstantinos; Mikhailova, Natalia; Huntemann, Marcel; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Land, Miriam; Hauser, Loren; Brambilla, Evelyne-Marie; Rohde, Manfred; Spring, Stefan; Gronow, Sabine; Goker, Markus; Woyke, Tanja; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Detter, John C.

    2012-05-25

    Spirochaeta coccoides Dröge et al. 2006 is a member of the genus Spirochaeta Ehrenberg 1835, one of the oldest named genera within the Bacteria. S. coccoides is an obligately anaerobic, Gram-negative, non-motile, spherical bacterium that was isolated from the hindgut contents of the termite Neotermes castaneus. The species is of interest because it may play an important role in the digestion of breakdown products from cellulose and hemicellulose in the termite gut. Here we provide a taxonomic re-evaluation for strain SPN1T, and based on physiological and genomic characteristics, we propose its reclassification as a novel species in the genus Sphaerochaeta, a recently published sister group of the Spirochaeta. The 2,227,296 bp long genome of strain SPN1T with its 1,866 protein-coding and 58 RNA genes is a part of the GenomicEncyclopedia of Bacteria and Archaea project.

  15. Protist community in soil: Effects of different land-use types

    DEFF Research Database (Denmark)

    Santos, Susana; Schöler, Anne; Winding, Anne

    Soil protist microorganisms represent an important part of the soil microbial community being major players in providing ecosystem services. Changes in their community structure and dynamics may influence the rate and kind of soil formation and fertility. Corroborative studies indicate that protist...... microorganisms exhibit high levels of molecular and functional diversity in soils. However, studies questioning the protist diversity in soil and their variability across different soil land-use types, have received far less attention. The purpose of our study was to obtain relative abundances of flagellate......, cilliates and amoeboid soil protists, and to relate the expected changes in community composition to space and land-use. Within the EU FP7 project EcoFINDERS, soils were collected from six long-term observatories (LTO’s) scattered around Europe, covering different climatic zones and different vegetation...

  16. Stimulation of bacteria and protists in rhizosphere of glyphosate-treated barley

    DEFF Research Database (Denmark)

    Imparato, Valentina; Santos, Susana; Johansen, Anders

    2016-01-01

    and protist communities to foliar application of glyphosate, we measured bacterial and protist abundance, diversity and physiological status, as well as soil organic carbon. Foliar application of glyphosate doubled bacterial abundance of the culturable fraction present in the rhizosphere compared to the other...... treatments with no effect on total abundance. Also the abundance of culturable protists increased as an effect of glyphosate and the bacterial genetic diversity as revealed by 16S rDNA DGGE analysis was affected. Overall, the results indicate that when barley leaves are treated with glyphosate......, the availability of organic carbon in the rhizosphere of the dying roots is altered, which in turn may alter the bacterial and protist communities and their interactions. This can have implications for general soil carbon turnover processes and CO2 release in arable systems....

  17. Are adequate methods available to detect protist parasites on fresh produce?

    Science.gov (United States)

    Human parasitic protists such as Cryptosporidium, Giardia and microsporidia contaminate a variety of fresh produce worldwide. Existing detection methods lack sensitivity and specificity for most foodborne parasites. Furthermore, detection has been problematic because these parasites adhere tenacious...

  18. Detection of the thraustochytrid protist Ulkenia visurgensis in a hydroid, using immunofluorescence

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.

    to November 1986 By treating the samples with antiserum prepared against this organism and conjugated with FITC stain, the protist was regularly found to occur in association with a hydroid Several cells of the organism were observed in the coelenteron...

  19. The 12th International Workshops on Opportunistic Protists (IWOP-12).

    Science.gov (United States)

    Weiss, Louis M; Cushion, Melanie T; Didier, Elizabeth; Xiao, Lihua; Marciano-Cabral, Francine; Sinai, Anthony P; Matos, Olga; Calderon, Enrique J; Kaneshiro, Edna S

    2013-01-01

    The 12th International Workshops on Opportunistic Protists (IWOP-12) was held in August 2012 in Tarrytown, New York. The objectives of the IWOP meetings are to: (1) serve as a forum for exchange of new information among active researchers concerning the basic biology, molecular genetics, immunology, biochemistry, pathogenesis, drug development, therapy, and epidemiology of these immunodeficiency-associated pathogenic eukaryotic microorganisms that are seen in patients with AIDS and (2) foster the entry of new and young investigators into these underserved research areas. The IWOP meeting focuses on opportunistic protists, e.g. the free-living amoebae, Pneumocystis, Cryptosporidium, Toxoplasma, the Microsporidia, and kinetoplastid flagellates. This conference represents the major conference that brings together research groups working on these opportunistic pathogens. Slow but steady progress is being achieved on understanding the biology of these pathogenic organisms, their involvement in disease causation in both immune-deficient and immune-competent hosts, and is providing critical insights into these emerging and reemerging pathogens. This IWOP meeting demonstrated the importance of newly developed genomic level information for many of these pathogens and how analysis of such large data sets is providing key insights into the basic biology of these organisms. A great concern is the loss of scientific expertise and diversity in the research community due to the ongoing decline in research funding. This loss of researchers is due to the small size of many of these research communities and a lack of appreciation by the larger scientific community concerning the state of art and challenges faced by researchers working on these organisms. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  20. The human gut resistome.

    Science.gov (United States)

    van Schaik, Willem

    2015-06-05

    In recent decades, the emergence and spread of antibiotic resistance among bacterial pathogens has become a major threat to public health. Bacteria can acquire antibiotic resistance genes by the mobilization and transfer of resistance genes from a donor strain. The human gut contains a densely populated microbial ecosystem, termed the gut microbiota, which offers ample opportunities for the horizontal transfer of genetic material, including antibiotic resistance genes. Recent technological advances allow microbiota-wide studies into the diversity and dynamics of the antibiotic resistance genes that are harboured by the gut microbiota ('the gut resistome'). Genes conferring resistance to antibiotics are ubiquitously present among the gut microbiota of humans and most resistance genes are harboured by strictly anaerobic gut commensals. The horizontal transfer of genetic material, including antibiotic resistance genes, through conjugation and transduction is a frequent event in the gut microbiota, but mostly involves non-pathogenic gut commensals as these dominate the microbiota of healthy individuals. Resistance gene transfer from commensals to gut-dwelling opportunistic pathogens appears to be a relatively rare event but may contribute to the emergence of multi-drug resistant strains, as is illustrated by the vancomycin resistance determinants that are shared by anaerobic gut commensals and the nosocomial pathogen Enterococcus faecium.

  1. Methane oxidation by termite mounds estimated by the carbon isotopic composition of methane

    Science.gov (United States)

    Sugimoto, Atsuko; Inoue, Tetsushi; Kirtibutr, Nit; Abe, Takuya

    1998-12-01

    Emission rates and carbon isotope ratios of CH4, emitted by workers of termites, and of CH4, emitted from their mounds, were observed in a dry evergreen forest in Thailand to estimate the proportion of CH4 oxidized during emission through the mound. The δ13C of CH4 emitted from a termite mound (-70.9 to -82.4‰) was higher than that of CH4 emitted by workers in the mound (-85.4 to -97. l‰). Using a fractionation factor (a = 0.987) for oxidation of CH4 which was obtained in the incubation experiment, an emission factor defined as (CH4 emitted from a termite mound/CH4 produced by termites) was calculated. The emission factor obtained in each termite mound was nearly zero for Macrotermes (fungus-growing termites), of which the nest has a thick soil wall and subterrannean termites, and 0.17 to 0.47 for Termitinae (small-mound-making termites). Global CH4 emission by termites was estimated on the basis of the CH4 emission rates by workers and termite biomass with the emission factors. The calculated result was 1.5 to 7.4 Tg/y (0.3 to 1.3% of total source), which is considerably smaller than the estimate by the IPCC [1994].

  2. Odor aversion and pathogen-removal efficiency in grooming behavior of the termite Coptotermes formosanus.

    Directory of Open Access Journals (Sweden)

    Aya Yanagawa

    Full Text Available The results of biocontrol with entomopathogens in termites have been discouraging because of the strong social hygiene behavior for removing pathogens from termite colonies. However, the mechanism of pathogen detection is still unclear. For the successful application of biopesticides to termites in nature, it would be beneficial to identify substances that could disrupt the termite's ability to perceive pathogens. We hypothesized that termites can perceive pathogens and this ability plays an important role in effective hygiene behavior. In this study, pathogen-detection in the subterranean termite Coptotermes formosanus was investigated. We performed quantitative assays on conidia removal by grooming behavior using epifluoresence microscopy and Y-maze tests to examine the perception of fungal odor by termites. Three species each of high- and low-virulence entomopathogenic fungi were used in each test. The results demonstrated that termites removed conidia more effectively from a nestmate's cuticle if its odor elicited stronger aversion. Highly virulent pathogens showed higher attachment rates to termite surfaces and their odors were more strongly avoided than those of low-virulence isolates in the same species. Moreover, termites appeared to groom each other more persistently when they had more conidia on their bodies. In brief, insect perception of pathogen-related odor seems to play a role in the mechanism of their hygiene behavior.

  3. Impact of termite activity on soil environment: A perspective from their soluble chemical components

    International Nuclear Information System (INIS)

    Semhi, K.; Chaudhuri, S.; Clauer, N.; Boeglin, J. L.

    2008-01-01

    An investigation on varied types of termite mounds relative to the nearby soils that are not inhabited by the termites in different places of Cameroon show that the activity of the termites is increasing the contents of most major and some trace elements in the termite mounds, except for Si and sometimes Fe, Mn, Na and K. These released elements are relocated into newly formed mineral phases that are dissolved by either H 2 O dilute HCl leaching. The Ca and Mn released by the termite activity testify for crystallization of Ca-Mg carbonates and phosphates as well as of Fe oxy-hydroxides and/or Mn hydroxides. Termite activity also induces an increase in the lanthanide contents, the mound materials being especially enriched in light lanthanides relative to the corresponding soils without termite activity. The shapes of the patterns support precipitation of Mn-Fe oxy-hydroxides and Ca carbonates-phosphates. The increased amounts of Eu and Ce linked to termite activity seem to relate to the occurrence of reducing agents that are released by the termites, modifying Eu +3 into Eu +2 and Ce +4 into Ce +3 , favoring in turn selective incorporation of Eu +2 and Ce +3 in the new phases of the termite mounds. Another consequence of the termite activity is the precipitation of H 2 O and HCl extractable phases having low Sr/Ca ratios. Even if the K/Rb values of the termite mounds are typical for common soil-forming silicate minerals, their relocation by an inorganic process alone does not explain an abnormally high ratio in the H 2 O leachable mineral phases. It was also shown that the main source for K and Rb of the dissolved phases is not only the interlayer site of clay particles, but also nutrients immobilized in and by the termites

  4. Protist communities in a marine oxygen minimum zone off Costa Rica by 454 pyrosequencing

    Science.gov (United States)

    Jing, H.; Rocke, E.; Kong, L.; Xia, X.; Liu, H.; Landry, M. R.

    2015-08-01

    Marine planktonic protists, including microalgae and protistan grazers, are an important contributor to global primary production and carbon and mineral cycles, however, little is known about their population shifts along the oxic-anoxic gradient in the water column. We used 454 pyrosequencing of the 18S rRNA gene and gene transcripts to study the community composition of whole and active protists throughout a water column in the Costa Rica Dome, where a stable oxygen minimum zone (OMZ) exists at a depth of 400~700 m. A clear shift of protist composition from photosynthetic Dinoflagellates in the surface to potential parasitic Dinoflagellates and Ciliates in the deeper water was revealed along the vertical profile at both rRNA and rDNA levels. Those protist groups recovered only at the rDNA level represent either lysed aggregates sinking from the upper waters or potential hosts for parasitic groups. UPGMA clustering demonstrated that total and active protists in the anoxic core of OMZ (550 m) were distinct from those in other water depths. The reduced community diversity and presence of a parasitic/symbiotic trophic lifestyle in the OMZ, especially the anoxic core, suggests that OMZs can exert a selective pressure on protist communities. Such changes in community structure and a shift in trophic lifestyle could result in a modulation of the microbial loop and associated biogeochemical cycling.

  5. Benthic protists and fungi of Mediterranean deep hypsersaline anoxic basin redoxcline sediments.

    Science.gov (United States)

    Bernhard, Joan M; Kormas, Konstantinos; Pachiadaki, Maria G; Rocke, Emma; Beaudoin, David J; Morrison, Colin; Visscher, Pieter T; Cobban, Alec; Starczak, Victoria R; Edgcomb, Virginia P

    2014-01-01

    Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L' Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers.

  6. Phages can constrain protist predation-driven attenuation of Pseudomonas aeruginosa virulence in multienemy communities

    Science.gov (United States)

    Friman, Ville-Petri; Buckling, Angus

    2014-01-01

    The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs. PMID:24671085

  7. Diverse protist grazers select for virulence-related traits in Legionella

    Science.gov (United States)

    Amaro, Francisco; Wang, Wen; Gilbert, Jack A; Roger Anderson, O; Shuman, Howard A

    2015-01-01

    It is generally accepted that selection for resistance to grazing by protists has contributed to the evolution of Legionella pneumophila as a pathogen. Grazing resistance is becoming more generally recognized as having an important role in the ecology and evolution of bacterial pathogenesis. However, selection for grazing resistance presupposes the existence of protist grazers that provide the selective pressure. To determine whether there are protists that graze on pathogenic Legionella species, we investigated the existence of such organisms in a variety of environmental samples. We isolated and characterized diverse protists that graze on L. pneumophila and determined the effects of adding L. pneumophila on the protist community structures in microcosms made from these environmental samples. Several unrelated organisms were able to graze efficiently on L. pneumophila. The community structures of all samples were markedly altered by the addition of L. pneumophila. Surprisingly, some of the Legionella grazers were closely related to species that are known hosts for L. pneumophila, indicating the presence of unknown specificity determinants for this interaction. These results provide the first direct support for the hypothesis that protist grazers exert selective pressure on Legionella to acquire and retain adaptations that contribute to survival, and that these properties are relevant to the ability of the bacteria to cause disease in people. We also report a novel mechanism of killing of amoebae by one Legionella species that requires an intact Type IV secretion system but does not involve intracellular replication. We refer to this phenomenon as ‘food poisoning'. PMID:25575308

  8. Gut microbiota and obesity.

    Science.gov (United States)

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  9. Tyraminergic and Octopaminergic Modulation of Defensive Behavior in Termite Soldier.

    Directory of Open Access Journals (Sweden)

    Yuki Ishikawa

    Full Text Available In termites, i.e. a major group of eusocial insects, the soldier caste exhibits specific morphological characteristics and extremely high aggression against predators. Although the genomic background is identical to the other non-aggressive castes, they acquire the soldier-specific behavioral character during the course of caste differentiation. The high aggressiveness and defensive behavior is essential for colony survival, but the neurophysiological bases are completely unknown. In the present study, using the damp-wood termite Hodotermopsis sjostedti, we focused on two biogenic amines, octopamine (OA and tyramine (TA, as candidate neuromodulators for the defensive behavior in soldiers. High-performance liquid chromatographic analysis revealed that TA levels in the brain and suboesophageal ganglion (SOG and the OA level in brain were increased in soldiers than in pseudergates (worker caste. Immunohistochemical analysis revealed that TA/OA neurons that innervate specific areas, including the mandibular muscles, antennal nerve, central complex, suboesophageal ganglion, and thoracic and/or abdominal ganglia, were enlarged in a soldier-specific manner. Together with the results that pharmacological application of TA promoted the defensive behavior in pseudergates, these findings suggest that the increased TA/OA levels induce the higher aggressiveness and defensive behavior in termite soldiers. The projection targets of these soldier-specific enlarged TA/OA neurons may have important roles in the higher aggressiveness and defensive behavior of the termite soldiers, inducing the neuronal transition that accompanies external morphological changes.

  10. Green house gas emissions from termite ecosystem | Gomati ...

    African Journals Online (AJOL)

    Recent estimates of the total annual source strength of CH4 vary from 400 to 1200 Tg. Activities such as rice cultivation, cattle production, mining, use of fossil fuels and biomass burning is believed to be the cause of increasing methane levels in the atmosphere. To add to this list is the source from termites, which contributes ...

  11. Chemical alarm in the termite Termitogeton planus (Rhinotermitidae)

    Czech Academy of Sciences Publication Activity Database

    Dolejšová, Klára; Krasulová, Jana; Kutalová, K.; Hanus, Robert

    2014-01-01

    Roč. 40, 11/12 (2014), s. 1269-1276 ISSN 0098-0331 R&D Projects: GA ČR GAP506/10/1570 Institutional support: RVO:61388963 Keywords : termites * soldiers * frontal gland * alarm pheromone * Rhinotermitidae * Termitogeton Subject RIV: CC - Organic Chemistry Impact factor: 2.747, year: 2014

  12. appraisal of the economic activities of termites: a review

    African Journals Online (AJOL)

    DR.AMIN

    within the soil increases the rate of percolation of water into the soil, thereby ... into the soil, mineral nutrients of these trees. Man in ... soil barrier termiticides, treated zone termiticides, dust and fumigant, and, non ... a result of man's interference with natural food supply .... The destructive effects of termites to man, whenever.

  13. Effects of termites on infiltration in crusted soil.

    NARCIS (Netherlands)

    Mando, A.; Stroosnijder, L.; Brussaard, L.

    1996-01-01

    In northern Burkina Faso (West Africa), a study was undertaken to explore the possibilities of restoring the infiltration capacity of crusted soils through the stimulation of termite activity. Treatments consisted of the application of a mulch of a mixture of wood and straw without insecticides

  14. Solar-powered ventilation of African termite mounds.

    Science.gov (United States)

    Ocko, Samuel A; King, Hunter; Andreen, David; Bardunias, Paul; Turner, J Scott; Soar, Rupert; Mahadevan, L

    2017-09-15

    How termite mounds function to facilitate climate control is still only partially understood. Recent experimental evidence in the mounds of a single species, the south Asian termite Odontotermes obesus , suggests that the daily oscillations of radiant heating associated with diurnal insolation patterns drive convective flow within them. How general this mechanism is remains unknown. To probe this, we consider the mounds of the African termite Macrotermes michaelseni , which thrives in a very different environment. By directly measuring air velocities and temperatures within the mound, we see that the overall mechanisms and patterns involved are similar to that in the south Asian species. However, there are also some notable differences between the physiology of these mounds associated with the temporal variations in radiant heating patterns and CO 2 dynamics. Because of the difference between direct radiant heating driven by the position of the sun in African conditions, and the more shaded south Asian environments, we see changes in the convective flows in the two types of mounds. Furthermore, we also see that the south Asian mounds show a significant overturning of stratified gases, once a day, while the African mounds have a relatively uniform concentration of CO 2 Overall, our observations show that despite these differences, termite architectures can harness periodic solar heating to drive ventilation inside them in very different environments, functioning as an external lung, with clear implications for human engineering. © 2017. Published by The Company of Biologists Ltd.

  15. Cultural significance of termites in sub-Saharan Africa

    NARCIS (Netherlands)

    Huis, van Arnold

    2017-01-01

    Background: The number of termite species in the world is more than 2500, and Africa with more than 1000 species has the richest intercontinental diversity. The family Termitidae contains builders of great mounds up to 5 m high. Colonies are composed of casts: a queen, a king, soldiers and workers.

  16. Termites and flooding affect microbial communities in decomposing wood

    Science.gov (United States)

    Michael D. Ulyshen; Susan V. Diehl; Dragica Jeremic

    2016-01-01

    Wood properties and microbial community characteristics were compared between loblolly pine (Pinus taeda L.) logs protected or unprotected from termites (Blattodea: Rhinotermitidae: Reticulitermes spp.) and other arthropods for two years in seasonally flooded and unflooded forests in the southeastern United States. Significant compositional differences were observed...

  17. Utilization of the termite Hodotermes mossambicus (Hagen) by ...

    African Journals Online (AJOL)

    Five species of primarily nocturnal geckos (Ptenopus garrulus maculatus, Chondrodactylus angulifer angulifer, Pachydactylus bibronii, P. mariquensis latirosths and P. punctatus) collected near Keetmanshoop, South West Africa on the night of 3 October 1987 were found to contain large numbers of the harvester termite ...

  18. Termites of the Savanna ecosystem project study area, Nylsvley

    CSIR Research Space (South Africa)

    Ferrar, P

    1982-09-01

    Full Text Available This report describes the termite fauna of the Savanna Ecosystem Project study area at the Nylsvley Nature Reserve, with an illustrated key for identification of species. Twenty-one species of fifteen genera and two families are recorded, and notes...

  19. Processed products of termites and lake flies: improving ...

    African Journals Online (AJOL)

    The lake region is endowed with plenty of edible insects. Edible insects can provide partial solution to food insecurity. The aim of this project was to promote entomophagy for food security by adding value to termites and lake flies, enhancing taste and preference of edible insects, and improving shelf life of edible insect ...

  20. Determining termite diversity in arid Namibian rangelands – a ...

    African Journals Online (AJOL)

    Three methods of sampling termite diversity in arid rangelands were tested in Namibia during the wet (March) and dry (October) seasons of 1998. Six sites were chosen: one pair on each of three farms representing a gradient of land use intensity. At each site, two adjacent plots of 1 ha each were sampled: one plot by a ...

  1. Resistance of treated rubber wood ( Hevea brasiliensis ) to termite ...

    African Journals Online (AJOL)

    Spent rubber trees from a 25 year old plantation were cut, sawn and treated with Copper Chromium Arsenate (CCA) and Cashew Nut Shell Liquid (CNSL). Two sets of wood samples were treated with CCA and CNSL respectively while the third set was not treated to serve as control. The three sets were exposed to termite ...

  2. Asexual queen succession in the higher termite Embiratermes neotenicus

    Czech Academy of Sciences Publication Activity Database

    Fougeyrollas, R.; Dolejšová, Klára; Sillam-Dusses, D.; Roy, V.; Poteaux, C.; Hanus, Robert; Roisin, Y.

    2015-01-01

    Roč. 282, č. 1809 (2015), 20150260/1-20150260/7 ISSN 0962-8452 R&D Projects: GA ČR(CZ) GA14-12774S Institutional support: RVO:61388963 Keywords : thelytokous parthenogenesis * breeding system * termites * Isoptera * Termitidae * reproductive strategies Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.823, year: 2015

  3. Sorptive removal of arsenate using termite mound.

    Science.gov (United States)

    Fufa, Fekadu; Alemayehu, Esayas; Lennartz, Bernd

    2014-01-01

    Long-term consumption of arsenic results in severe and permanent health damages. The aim of the study was to investigate arsenate (As(V)) sorption capacity of termite mound (TM), containing mainly silicon, aluminum, iron and titanium oxides, under batch adsorption setup. The pattern of As(V) removal with varying contact time, solution pH, adsorbent dose, As(V) concentration and competing anions was investigated. Dissolution of the adsorbent was insignificant under the equilibrium conditions. Equilibrium was achieved within 40 min of agitation time. Kinetic data of As(V) adsorption followed well the pseudo-second order equation (R(2) > 0.99). High As(V) removal efficiency (∼ 99%) was observed over a pH range ∼ 3-∼ 10, which is of great importance in the practical application. The Freundlich and Dubinin-Radushkevich isotherms well described (R(2) > 0.99, χ(2) ∼ 0.05) the equilibrium As(V) adsorption, giving a coefficient of adsorption 1.48 mg(1-1/n)L(1/n)/g and a saturation capacity 13.50 mg/g respectively. The obtained value of mean sorption energy (EDR = 13.32 kJ/mol) suggested the chemisorption mechanism of As(V) adsorption on TM. The removal of As(V) was significantly decreased in the presence of phosphate ions. The As(V) loaded adsorbent was successfully regenerated using NaOH solution with insignificant loss of metals. Therefore, the results of the study demonstrated that TM could be considered as a promising adsorbent for the treatment of As(V) in drinking water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Termites, vertebrate herbivores, and the fruiting success of Acacia drepanolobium.

    Science.gov (United States)

    Brody, Alison K; Palmer, Todd M; Fox-Dobbs, Kena; Doak, Dan F

    2010-02-01

    In African savannas, vertebrate herbivores are often identified as key determinants of plant growth, survivorship, and reproduction. However, plant reproduction is likely to be the product of responses to a suite of abiotic and biotic factors, including nutrient availability and interactions with antagonists and mutualists. In a relatively simple system, we examined the role of termites (which act as ecosystem engineers--modifying physical habitat and creating islands of high soil fertility), vertebrate herbivores, and symbiotic ants, on the fruiting success of a dominant plant, Acacia drepanolobium, in East African savannas. Using observational data, large-scale experimental manipulations, and analysis of foliar N, we found that Acacia drepanolobium trees growing at the edge of termite mounds were more likely to reproduce than those growing farther away, in off-mound soils. Although vertebrate herbivores preferentially used termite mounds as demonstrated by dung deposits, long-term exclusion of mammalian grazers did not significantly reduce A. drepanolobium fruit production. Leaf N was significantly greater in trees growing next to mounds than in those growing farther away, and this pattern was unaffected by exclusion of vertebrates. Thus, soil enrichment by termites, rather than through dung and urine deposition by large herbivores, is of primary importance to fruit production near mounds. Across all mound-herbivore treatment combinations, trees that harbored Crematogaster sjostedti were more likely to fruit than those that harbored one of the other three ant species. Although C. sjostedti is less aggressive than the other ants, it tends to inhabit large, old trees near termite mounds which are more likely to fruit than smaller ones. Termites play a key role in generating patches of nutrient-rich habitat important to the reproductive success of A. drepanolobium in East African savannas. Enhanced nutrient acquisition from termite mounds appears to allow plants to

  5. Use of termite mounds in geochemical exploration in North Ethiopia [rapid communication

    Science.gov (United States)

    Kebede, Fassil

    2004-09-01

    The geochemistry of the termite mounds was studied in lower Giba River basin, Kolla Tambien district, northern Ethiopia to show that they are useful in searching for metals. Specimens from the termite mounds and parent materials were collected to quantify gold, silver, copper, zinc, cobalt, manganese, iron and nickel. The results of the geochemical analysis of the samples indicated that these metals exist both in the termite mound and the parent material in the surrounding area. Correlation analysis shows that termite mounds and the parent materials are positively correlated for gold ( r = 0.75∗), copper ( r = 0.77∗), silver ( r = 0.56∗) and manganese ( r = 0.72). This positive correlation leads to the conclusion that there is a direct relation between the concentration of metals in termite mound and the parent rocks. Termite mounds can therefore be used as tools in exploring for these metals.

  6. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites

    DEFF Research Database (Denmark)

    Visser, Anna A.; Nobre, Tânia; Currie, Cameron R.

    2012-01-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play...... a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets...... for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus...

  7. Methane emissions from termites - landscape level estimates and methods of measurement

    Science.gov (United States)

    Jamali, Hizbullah; Livesley, Stephen J.; Hutley, Lindsay B.; Arndt, Stefan K.

    2013-04-01

    Termites contribute between mound-building termite species diurnally and seasonally in tropical savannas in the Northern Territory, Australia. Our results showed that there were significant diel and seasonal variations of methane emissions from termite mounds and we observed large species-specific differences. On a diurnal basis, methane fluxes were least at the coolest time of the day and greatest at the warmest for all species for both wet and dry seasons. We observed a strong and significant positive correlation between methane flux and mound temperature for all species. Fluxes in the wet season were 5-26-fold greater than those in the dry season and this was related to population dynamics of the termites. We observed significant relationships between mound methane flux and mound carbon dioxide flux, enabling the prediction of methane flux from measured carbon dioxide flux. However, these relationships were clearly termite species specific. We also determined significant relationships between mound flux and gas concentration inside mound, for both gases, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Consequently, there was no generic relationship that would enable an easier prediction of methane flux from termite mounds. On a landscape scale we estimated that termites were a methane source of +0.24 kg methane-C ha-1 year-1 whilst savanna soils were a methane sink of 1.14 kg methane-C ha-1 year-1. Termites therefore only offset 21% of methane consumed by savanna soil resulting in net sink strength of -0.90 kg methane-C ha-1 year-1 for these savannas. Assuming a similar contribution of termites in the savannas and tropical rain forests worldwide, termites would globally produce around 27 Tg CO2-e year-1, which is 0.2% of the global methane source budget or an order of magnitude smaller than many of the previous estimates.

  8. Efficacy of vetiver oil and nootkatone as soil barriers against Formosan subterranean termite (Isoptera: Rhinotermitidae).

    Science.gov (United States)

    Maistrello, L; Henderson, G; Laine, R A

    2001-12-01

    Vetiver oil and its components nootkatone and cedrene were assessed as sand treatments for their efficacy to disrupt food recruitment by Coptotermes formosanus Shiraki. Termites were required to tunnel through sand treated with vetiver oil, nootkatone, cedrene, or untreated sand to reach a food source. Results showed that sand treated with vetiver oil or nootkatone disrupted termite tunneling behavior. As a consequence, after 21 d, wood consumption and termite survival were significantly lower compared with cedrene-treated or untreated sand treatments. Sand treated with vetiver oil or nootkatone at 100 microg/g substrate were effective barriers to termites.

  9. Termite Mounds Effects on Soil Properties in the Atlantic Forest Biome

    Directory of Open Access Journals (Sweden)

    Sandra Santana de Lima

    2018-03-01

    Full Text Available ABSTRACT Termites have peculiar activities in the soil, inducing significant changes in the soil properties. The objective of this study was to assess physical and chemical properties and soil organic matter to evaluate the effect of termite activity and termite mounds on the soil. Two toposequences were selected and divided in slope thirds (shoulder, backslope, and footslope. In each of these, four termite mounds were selected. Samples were taken from the soils and termite mounds (top, center, and base along with a variety of termites for identification. Analyses were carried out for physical, soil texture, and chemical properties, as well as for particle size and chemical fractioning of organic matter. The species Cornitermes cumulans was found in all mounds. Soil with termite mound presented higher clay content, acidity, and Al3+ content. Phosphorus contents differed considerably between mound material and soil. Sum of bases and cation exchange capacity of the soil were higher in mounds, and differed within the mounds, according to the sampling height. Total organic carbon and particulate carbon content were highest at the mound base. A marked disparity was observed between the contents of humic substances in the mounds and surrounding soil, with humin fraction differences in distinct topographic position. The high nutrient contents detected in the termite mounds confirm the importance of termites in concentrating nutrients.

  10. Identification, Geographical Distribution and Hosts of Subterranean Termites in the United Arab Emirates Arid Ecosystem

    Directory of Open Access Journals (Sweden)

    W. Kaakeh

    2005-01-01

    Full Text Available Six termite species, belonging to five genera and three families (Hodotermitidae, Rhinotermitidae and Termitidae were identified in the United Arab Emirates (UAE. Termite species recorded were the harvester termites Anacanthotermes ochraceus (Burmeister and Anacanthotermes ubachi (Navas, the sand termite Psammotermes hypostoma (Desneux and the small waxy termites Microcerotermes diversus (Silvestri, Heterotermes aethiopicus (Sjostedt, and Microtermes najdensis (Harris. Except for a previous record of H. aethiopicus, the other five species were recorded for the first time in the UAE. All species were subterranean in habitat and reach wood sources through earthen gallery systems. Termites were available in areas with varied conditions of climate, vegetation and soil types. Termites showed host preference for dead, living, or decaying plant materials and non-cellulose materials. The dominant termite species recorded was A. ochraceus, followed by P. hypostoma and M. diversus. The distributions of the six termite species varied in each of the seven Emirates. All species were present in the two largest Emirates of Abu Dhabi and Dubai.

  11. Gut microbiota sustains hematopoiesis

    DEFF Research Database (Denmark)

    Theilgaard-Mönch, Kim

    2017-01-01

    In this issue of Blood, Josefsdottir et al provide substantial evidence that commensal gut microbes regulate and sustain normal steady-state hematopoiesis.1......In this issue of Blood, Josefsdottir et al provide substantial evidence that commensal gut microbes regulate and sustain normal steady-state hematopoiesis.1...

  12. Gut microbiome and bone.

    Science.gov (United States)

    Ibáñez, Lidia; Rouleau, Matthieu; Wakkach, Abdelilah; Blin-Wakkach, Claudine

    2018-04-11

    The gut microbiome is now viewed as a tissue that interacts bidirectionally with the gastrointestinal, immune, endocrine and nervous systems, affecting the cellular responses in numerous organs. Evidence is accumulating of gut microbiome involvement in a growing number of pathophysiological processes, many of which are linked to inflammatory responses. More specifically, data acquired over the last decade point to effects of the gut microbiome on bone mass regulation and on the development of bone diseases (such as osteoporosis) and of inflammatory joint diseases characterized by bone loss. Mice lacking a gut microbiome have bone mass alteration that can be reversed by gut recolonization. Changes in the gut microbiome composition have been reported in mice with estrogen-deficiency osteoporosis and have also been found in a few studies in humans. Probiotic therapy decreases bone loss in estrogen-deficient animals. The effect of the gut microbiome on bone tissue involves complex mechanisms including modulation of CD4 + T cell activation, control of osteoclastogenic cytokine production and modifications in hormone levels. This complexity may contribute to explain the discrepancies observed betwwen some studies whose results vary depending on the age, gender, genetic background and treatment duration. Further elucidation of the mechanisms involved is needed. However, the available data hold promise that gut microbiome manipulation may prove of interest in the management of bone diseases. Copyright © 2018 Société française de rhumatologie. Published by Elsevier SAS. All rights reserved.

  13. Building GUTs from strings

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1996-01-01

    We study in detail the structure of Grand Unified Theories derived as the low-energy limit of orbifold four-dimensional strings. To this aim, new techniques for building level-two symmetric orbifold theories are presented. New classes of GUTs in the context of symmetric orbifolds are then constructed. The method of permutation modding is further explored and SO(10) GUTs with both 45- or 54-plets are obtained. SU(5) models are also found through this method. It is shown that, in the context of symmetric orbifold SO(10) GUTs, only a single GUT Higgs, either a 54 or a 45, can be present and it always resides in an order-two untwisted sector. Very restrictive results also hold in the case of SU(5). General properties and selection rules for string GUTs are described. Some of these selection rules forbid the presence of some particular GUT-Higgs couplings which are sometimes used in SUSY-GUT model building. Some semi-realistic string GUT examples are presented and their properties briefly discussed. (orig.)

  14. Genetic Determinism vs. Phenotypic Plasticity in Protist Morphology.

    Science.gov (United States)

    Mulot, Matthieu; Marcisz, Katarzyna; Grandgirard, Lara; Lara, Enrique; Kosakyan, Anush; Robroek, Bjorn J M; Lamentowicz, Mariusz; Payne, Richard J; Mitchell, Edward A D

    2017-11-01

    Untangling the relationships between morphology and phylogeny is key to building a reliable taxonomy, but is especially challenging for protists, where the existence of cryptic or pseudocryptic species makes finding relevant discriminant traits difficult. Here we use Hyalosphenia papilio (a testate amoeba) as a model species to investigate the contribution of phylogeny and phenotypic plasticity in its morphology. We study the response of H. papilio morphology (shape and pores number) to environmental variables in (i) a manipulative experiment with controlled conditions (water level), (ii) an observational study of a within-site natural ecological gradient (water level), and (iii) an observational study across 37 European peatlands (climate). We showed that H. papilio morphology is correlated to environmental conditions (climate and water depth) as well as geography, while no relationship between morphology and phylogeny was brought to light. The relative contribution of genetic inheritance and phenotypic plasticity in shaping morphology varies depending on the taxonomic group and the trait under consideration. Thus, our data call for a reassessment of taxonomy based on morphology alone. This clearly calls for a substantial increase in taxonomic research on these globally still under-studied organisms leading to a reassessment of estimates of global microbial eukaryotic diversity. © 2017 The Author(s) Journal of Eukaryotic Microbiology © 2017 International Society of Protistologists.

  15. Diversity of Heterotrophic Protists from Extremely Hypersaline Habitats.

    Science.gov (United States)

    Park, Jong Soo; Simpson, Alastair G B

    2015-09-01

    Heterotrophic protists (protozoa) are a diverse but understudied component of the biota of extremely hypersaline environments, with few data on molecular diversity within halophile 'species', and almost nothing known of their biogeographic distribution. We have garnered SSU rRNA gene sequences for several clades of halophilic protozoa from enrichments from waters of >12.5% salinity from Australia, North America, and Europe (6 geographic sites, 25 distinct samples). The small stramenopile Halocafeteria was found at all sites, but phylogenies did not show clear geographic clustering. The ciliate Trimyema was recorded from 6 non-European samples. Phylogenies confirmed a monophyletic halophilic Trimyema group that included possible south-eastern Australian, Western Australian and North American clusters. Several halophilic Heterolobosea were detected, demonstrating that Pleurostomum contains at least three relatively distinct clades, and increasing known continental ranges for Tulamoeba peronaphora and Euplaesiobystra hypersalinica. The unclassified flagellate Palustrimonas, found in one Australian sample, proves to be a novel deep-branching alveolate. These results are consistent with a global distribution of halophilic protozoa groups (∼ morphospecies), but the Trimyema case suggests that is worth testing whether larger forms exhibit biogeographic phylogenetic substructure. The molecular detection/characterization of halophilic protozoa is still far from complete at the clade level, let alone the 'species level'. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. Rarity in aquatic microbes: placing protists on the map.

    Science.gov (United States)

    Logares, Ramiro; Mangot, Jean-François; Massana, Ramon

    2015-12-01

    Most microbial richness at any given time tends to be represented by low-abundance (rare) taxa, which are collectively referred to as the "rare biosphere". Here we review works on the rare biosphere using high-throughput sequencing (HTS), with a particular focus on unicellular eukaryotes or protists. Evidence thus far indicates that the rare biosphere encompasses dormant as well as metabolically active microbes that could potentially play key roles in ecosystem functioning. Rare microbes appear to have biogeography, and sometimes the observed patterns can be similar to what is observed among abundant taxa, suggesting similar community-structuring mechanisms. There is limited evidence indicating that the rare biosphere contains taxa that are phylogenetically distantly related to abundant counterparts; therefore, the rare biosphere may act as a reservoir of deep-branching phylogenetic diversity. The potential role of the rare biosphere as a bank of redundant functions that can help to maintain continuous ecosystem function following oscillations in taxonomic abundances is hypothesized as its main ecological role. Future studies focusing on rare microbes are crucial for advancing our knowledge of microbial ecology and evolution and unveiling their links with ecosystem function. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  17. Global abundance of planktonic heterotrophic protists in the deep ocean

    Science.gov (United States)

    Pernice, Massimo C; Forn, Irene; Gomes, Ana; Lara, Elena; Alonso-Sáez, Laura; Arrieta, Jesus M; del Carmen Garcia, Francisca; Hernando-Morales, Victor; MacKenzie, Roy; Mestre, Mireia; Sintes, Eva; Teira, Eva; Valencia, Joaquin; Varela, Marta M; Vaqué, Dolors; Duarte, Carlos M; Gasol, Josep M; Massana, Ramon

    2015-01-01

    The dark ocean is one of the largest biomes on Earth, with critical roles in organic matter remineralization and global carbon sequestration. Despite its recognized importance, little is known about some key microbial players, such as the community of heterotrophic protists (HP), which are likely the main consumers of prokaryotic biomass. To investigate this microbial component at a global scale, we determined their abundance and biomass in deepwater column samples from the Malaspina 2010 circumnavigation using a combination of epifluorescence microscopy and flow cytometry. HP were ubiquitously found at all depths investigated down to 4000 m. HP abundances decreased with depth, from an average of 72±19 cells ml−1 in mesopelagic waters down to 11±1 cells ml−1 in bathypelagic waters, whereas their total biomass decreased from 280±46 to 50±14 pg C ml−1. The parameters that better explained the variance of HP abundance were depth and prokaryote abundance, and to lesser extent oxygen concentration. The generally good correlation with prokaryotic abundance suggested active grazing of HP on prokaryotes. On a finer scale, the prokaryote:HP abundance ratio varied at a regional scale, and sites with the highest ratios exhibited a larger contribution of fungi molecular signal. Our study is a step forward towards determining the relationship between HP and their environment, unveiling their importance as players in the dark ocean's microbial food web. PMID:25290506

  18. Plant vegetative and animal cytoplasmic actins share functional competence for spatial development with protists.

    Science.gov (United States)

    Kandasamy, Muthugapatti K; McKinney, Elizabeth C; Roy, Eileen; Meagher, Richard B

    2012-05-01

    Actin is an essential multifunctional protein encoded by two distinct ancient classes of genes in animals (cytoplasmic and muscle) and plants (vegetative and reproductive). The prevailing view is that each class of actin variants is functionally distinct. However, we propose that the vegetative plant and cytoplasmic animal variants have conserved functional competence for spatial development inherited from an ancestral protist actin sequence. To test this idea, we ectopically expressed animal and protist actins in Arabidopsis thaliana double vegetative actin mutants that are dramatically altered in cell and organ morphologies. We found that expression of cytoplasmic actins from humans and even a highly divergent invertebrate Ciona intestinalis qualitatively and quantitatively suppressed the root cell polarity and organ defects of act8 act7 mutants and moderately suppressed the root-hairless phenotype of act2 act8 mutants. By contrast, human muscle actins were unable to support prominently any aspect of plant development. Furthermore, actins from three protists representing Choanozoa, Archamoeba, and green algae efficiently suppressed all the phenotypes of both the plant mutants. Remarkably, these data imply that actin's competence to carry out a complex suite of processes essential for multicellular development was already fully developed in single-celled protists and evolved nonprogressively from protists to plants and animals.

  19. Unveiling in situ interactions between marine protists and bacteria through single cell sequencing

    Science.gov (United States)

    Martinez-Garcia, Manuel; Brazel, David; Poulton, Nicole J; Swan, Brandon K; Gomez, Monica Lluesma; Masland, Dashiell; Sieracki, Michael E; Stepanauskas, Ramunas

    2012-01-01

    Heterotrophic protists are a highly diverse and biogeochemically significant component of marine ecosystems, yet little is known about their species-specific prey preferences and symbiotic interactions in situ. Here we demonstrate how these previously unresolved questions can be addressed by sequencing the eukaryote and bacterial SSU rRNA genes from individual, uncultured protist cells collected from their natural marine environment and sorted by flow cytometry. We detected Pelagibacter ubique in association with a MAST-4 protist, an actinobacterium in association with a chrysophyte and three bacteroidetes in association with diverse protist groups. The presence of identical phylotypes among the putative prey and the free bacterioplankton in the same sample provides evidence for predator–prey interactions. Our results also suggest a discovery of novel symbionts, distantly related to Rickettsiales and the candidate divisions ZB3 and TG2, associated with Cercozoa and Chrysophyta cells. This study demonstrates the power of single cell sequencing to untangle ecological interactions between uncultured protists and prokaryotes. PMID:21938022

  20. Effect of soil type and moisture availability on the foraging behavior of the Formosan subterranean termite (Isoptera: Rhinotermitidae).

    Science.gov (United States)

    Cornelius, Mary L; Osbrink, Weste L A

    2010-06-01

    This study examined the influence of soil type and moisture availability on termite foraging behavior. Physical properties of the soil affected both tunneling behavior and shelter tube construction. Termites tunneled through sand faster than top soil and clay. In containers with top soil and clay, termites built shelter tubes on the sides of the containers. In containers with sand, termites built shelter tubes directly into the air and covered the sides of the container with a layer of sand. The interaction of soil type and moisture availability affected termite movement, feeding, and survival. In assays with moist soils, termites were more likely to aggregate in top soil over potting soil and peat moss. However, termites were more likely to move into containers with dry peat moss and potting soil than containers with dry sand and clay. Termites were also significantly more likely to move into containers with dry potting soil than dry top soil. In the assay with dry soils, termite mortality was high even though termites were able to travel freely between moist sand and dry soil, possibly due to desiccation caused by contact with dry soil. Evaporation from potting soil and peat moss resulted in significant mortality, whereas termites were able to retain enough moisture in top soil, sand, and clay to survive for 25 d. The interaction of soil type and moisture availability influences the distribution of foraging termites in microhabitats.

  1. The evolutionary history of termites as inferred from 66 mitochondrial genomes.

    Science.gov (United States)

    Bourguignon, Thomas; Lo, Nathan; Cameron, Stephen L; Šobotník, Jan; Hayashi, Yoshinobu; Shigenobu, Shuji; Watanabe, Dai; Roisin, Yves; Miura, Toru; Evans, Theodore A

    2015-02-01

    Termites have colonized many habitats and are among the most abundant animals in tropical ecosystems, which they modify considerably through their actions. The timing of their rise in abundance and of the dispersal events that gave rise to modern termite lineages is not well understood. To shed light on termite origins and diversification, we sequenced the mitochondrial genome of 48 termite species and combined them with 18 previously sequenced termite mitochondrial genomes for phylogenetic and molecular clock analyses using multiple fossil calibrations. The 66 genomes represent most major clades of termites. Unlike previous phylogenetic studies based on fewer molecular data, our phylogenetic tree is fully resolved for the lower termites. The phylogenetic positions of Macrotermitinae and Apicotermitinae are also resolved as the basal groups in the higher termites, but in the crown termitid groups, including Termitinae + Syntermitinae + Nasutitermitinae + Cubitermitinae, the position of some nodes remains uncertain. Our molecular clock tree indicates that the lineages leading to termites and Cryptocercus roaches diverged 170 Ma (153-196 Ma 95% confidence interval [CI]), that modern Termitidae arose 54 Ma (46-66 Ma 95% CI), and that the crown termitid group arose 40 Ma (35-49 Ma 95% CI). This indicates that the distribution of basal termite clades was influenced by the final stages of the breakup of Pangaea. Our inference of ancestral geographic ranges shows that the Termitidae, which includes more than 75% of extant termite species, most likely originated in Africa or Asia, and acquired their pantropical distribution after a series of dispersal and subsequent diversification events. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa

    NARCIS (Netherlands)

    Geisen, S.; Laros, I.; Vizcaino, A.; Bonkowski, M.; Groot, de G.A.

    2015-01-01

    Protists, the most diverse eukaryotes, are largely considered to be free-living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High-throughput sequencing (HTS) approaches now commonly replace cultivation-based approaches in studying soil protists, but insights into

  3. The prey’s scent – Volatile organic compound mediated interactions between soil bacteria and their protist predators

    NARCIS (Netherlands)

    Schulz, K.B.; Geisen, Stefan; Wubs, E.R.J.; Song, C.; Boer, de W.; Garbeva, Paolina

    2017-01-01

    Protists are major predators of bacteria in soils. However, it remains unknown how protists sense their prey in this highly complex environment. Here, we investigated whether volatile organic compounds (VOCs) of six phylogenetic distinct soil bacteria affect the performance of three different soil

  4. Influence of soil pedological properties on termite mound stability

    OpenAIRE

    Jouquet, Pascal; Guilleux, N.; Caner, L.; Chintakunta, S.; Ameline, M.; Shanbhag, R. R.

    2016-01-01

    This study investigated the influence of soil properties on the density and shape of epigeous fungus-growing termite nests in a dry deciduous forest in Karnataka, India. In this environment, Odontotermes obesus produces cathedral shaped mounds. Their density, shape (height and volume) and soil physicochemical properties were analyzed in ferralsol and vertisol environments. No significant difference was observed in O. obesus mound density (n = 2.7 mound ha(-1) on average in the vertisol and fe...

  5. Circadian cycles in growth and feeding rates of heterotrophic protist plankton

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik; Strom, S.L.

    2004-01-01

    Growth and feeding rates of four species of planktonic marine heterotrophic protists showed pronounced diel cycles. In most cases, rates were higher during the day and lower at night. However, for the ciliate Strobilidium sp., growth was highest at night. In another ciliate species, Balanion...... comatum, no day-night difference in growth and feeding rates was found. Maintenance of day-night rate differences during 24-h exposures to continuous darkness demonstrated that most of these protists had circadian cycles. The heterotrophic dinoflagellate Oxyrrhis marina exhibited a clear irradiance...... to culturing in a day: night light cycle in O. marina and found that resetting the circadian cycle in this dinoflagellate temporarily arrested growth and feeding. We suggest that protists use a time-integrated light threshold rather than an instantaneous irradiance to maintain the circadian cell cycle...

  6. Molecular analyses reveal high levels of eukaryotic richness associated with enigmatic deep-sea protists (Komokiacea)

    DEFF Research Database (Denmark)

    Lecroq, Beatrice; Gooday, Andrew John; Cedhagen, Tomas

    2009-01-01

    Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morpholog- ical feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between the tubu......Komokiaceans are testate agglutinated protists, extremely diverse and abundant in the deep sea. About 40 species are described and share the same main morpholog- ical feature: a test consisting of narrow branching tubules forming a complex system. In some species, the interstices between...... suggest strongly that komokiaceans, and probably many other large testate protists, provide a habitat structure for a large spectrum of eukaryotes, significantly contributing to maintaining the biodiversity of micro- and meiofaunal communities in the deep sea....

  7. Soil DNA extraction procedure influences protist 18S rRNA gene community profiling outcome

    DEFF Research Database (Denmark)

    Santos, Susana S.; Nunes, Ines Marques; Nielsen, Tue K.

    2017-01-01

    Advances in sequencing technologies allow deeper studies of the soil protist diversity and function. However, little attention has been given to the impact of the chosen soil DNA extraction procedure to the overall results. We examined the effect of three acknowledged DNA recovery methods, two...... manual methods (ISOm-11063, GnS-GII) and one commercial kit (MoBio), on soil protist community structures obtained from different sites with different land uses. Results from 18S rRNA gene amplicon sequencing suggest that DNA extraction method significantly affect the replicate homogeneity, the total...... number of operational taxonomic units (OTUs) recovered and the overall taxonomic structure and diversity of soil protist communities. However, DNA extraction effects did not overwhelm the natural variation among samples, as the community data still strongly grouped by geographical location...

  8. Guidelines for the naming of genes, gene products, and mutants in the opportunistic protists.

    Science.gov (United States)

    Limper, Andrew H; Weiss, Louis M

    2011-01-01

    The opportunistic protists encompass a wide diversity of organisms including Pneumocystis, Toxoplasma, cryptosporidia, microsporidia, and related genera. Recent advances in the molecular biology and cellular biochemistry of these organisms have led to the identification of an ever growing numbers of key genes and their cognate proteins. Until now, these molecules have not been designated using any consistent nomenclature system, leading to considerable confusion. The participants of the 11th International Workshop on Opportunistic Protists met on August 3, 2010 to reach consensus of a nomenclature system for genes, gene products, and mutants in the opportunistic protists. The following summary reports the consensus agreement to move toward a unified nomenclature system for these organisms. The system is adapted from that used for Saccharomyces cerevisiae. © 2011 The Author(s). Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  9. Protists and the Wild, Wild West of Gene Expression: New Frontiers, Lawlessness, and Misfits.

    Science.gov (United States)

    Smith, David Roy; Keeling, Patrick J

    2016-09-08

    The DNA double helix has been called one of life's most elegant structures, largely because of its universality, simplicity, and symmetry. The expression of information encoded within DNA, however, can be far from simple or symmetric and is sometimes surprisingly variable, convoluted, and wantonly inefficient. Although exceptions to the rules exist in certain model systems, the true extent to which life has stretched the limits of gene expression is made clear by nonmodel systems, particularly protists (microbial eukaryotes). The nuclear and organelle genomes of protists are subject to the most tangled forms of gene expression yet identified. The complicated and extravagant picture of the underlying genetics of eukaryotic microbial life changes how we think about the flow of genetic information and the evolutionary processes shaping it. Here, we discuss the origins, diversity, and growing interest in noncanonical protist gene expression and its relationship to genomic architecture.

  10. Uric acid, an important antioxidant contributing to survival in termites

    Science.gov (United States)

    Tasaki, Eisuke; Sakurai, Hiroki; Nitao, Masaru; Matsuura, Kenji; Iuchi, Yoshihito

    2017-01-01

    Reactive oxygen species (ROS) are generated spontaneously in all organisms and cause oxidative damage to biomolecules when present in excess. Accumulated oxidative damage accelerates aging; enhanced antioxidant capacity may be a positive factor for longevity. Recently, numerous studies of aging and longevity have been performed using short-lived animals, however, longevity mechanisms remain unknown. Here we show that a termite Reticulitermes speratus that is thought to be long-lived eusocial insect than other solitary insects uses large quantities of uric acid as an antioxidant against ROS. We demonstrated that the accumulation of uric acid considerably increases the free radical-scavenging activity and resistance against ultraviolet-induced oxidative stress in laboratory-maintained termites. In addition, we found that externally administered uric acid aided termite survival under highly oxidative conditions. The present data demonstrates that in addition to nutritional and metabolic roles, uric acid is an essential antioxidant for survival and contributes significantly to longevity. Uric acid also plays important roles in primates but causes gout when present in excess in humans. Further longevity studies of long-lived organisms may provide important breakthroughs with human health applications. PMID:28609463

  11. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    Science.gov (United States)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  12. Termite feeding preference to four wood species after gamma irradiation

    International Nuclear Information System (INIS)

    Katsumata, N.; Yoshimura, T.; Tsunoda, K.; Imamura, Y.

    2007-01-01

    The effect of gamma irradiation at 100 kGy and at lower levels on termite resistance was examined in the laboratory by no-choice and choice feeding termite tests (Coptotermes formosanus Shiraki) using four wood species: sapwood of Cryptomeria japonica D. Don, and heartwoods of Pseudotsuga menziesii (Mirbel) Franco, Larix kaempferi (Lambert) Carriere, and Chamaecyparis obtusa Endl. The wood consumption rates in C. japonica and P. menziesii specimens were likely to increase with increases in gamma-irradiation levels, whereas little effect of gamma irradiation was seen in L. kaempferi and C. obtusa. Similar results were obtained in the two-choice test. The current results indicated that in the two-choice test with C. formosanus, 100-kGy-irradiated C. japonica and P. menziesii, which are not rich in antitermite substances, were eaten more than other wood samples with or without gamma irradiation. However, only C. japonica showed significant difference in termite feeding activity. The mass loss in 100-kGy-irradiated C. japonica was significantly higher in the multichoice test

  13. Osmoadaptative Strategy and Its Molecular Signature in Obligately Halophilic Heterotrophic Protists.

    Science.gov (United States)

    Harding, Tommy; Brown, Matthew W; Simpson, Alastair G B; Roger, Andrew J

    2016-08-03

    Halophilic microbes living in hypersaline environments must counteract the detrimental effects of low water activity and salt interference. Some halophilic prokaryotes equilibrate their intracellular osmotic strength with the extracellular milieu by importing inorganic solutes, mainly potassium. These "salt-in" organisms characteristically have proteins that are highly enriched with acidic and hydrophilic residues. In contrast, "salt-out" halophiles accumulate large amounts of organic solutes like amino acids, sugars and polyols, and lack a strong signature of halophilicity in the amino acid composition of cytoplasmic proteins. Studies to date have examined halophilic prokaryotes, yeasts, or algae, thus virtually nothing is known about the molecular adaptations of the other eukaryotic microbes, that is, heterotrophic protists (protozoa), that also thrive in hypersaline habitats. We conducted transcriptomic investigations to unravel the molecular adaptations of two obligately halophilic protists, Halocafeteria seosinensis and Pharyngomonas kirbyi Their predicted cytoplasmic proteomes showed increased hydrophilicity compared with marine protists. Furthermore, analysis of reconstructed ancestral sequences suggested that, relative to mesophiles, proteins in halophilic protists have undergone fewer substitutions from hydrophilic to hydrophobic residues since divergence from their closest relatives. These results suggest that these halophilic protists have a higher intracellular salt content than marine protists. However, absence of the acidic signature of salt-in microbes suggests that Haloc. seosinensis and P. kirbyi utilize organic osmolytes to maintain osmotic equilibrium. We detected increased expression of enzymes involved in synthesis and transport of organic osmolytes, namely hydroxyectoine and myo-inositol, at maximal salt concentration for growth in Haloc. seosinensis, suggesting possible candidates for these inferred organic osmolytes. © The Author 2016

  14. Associations of Two Ecologically Significant Social Insect Taxa in the Litter of an Amazonian Rainforest: Is There a Relationship between Ant and Termite Species Richness?

    Directory of Open Access Journals (Sweden)

    Amy L. Mertl

    2012-01-01

    Full Text Available In spite of the ecological dominance of Neotropical ants and termites, little is understood about how their interactions influence their species richness and distribution. We surveyed ground-dwelling termite and ant species in a primary rainforest in Ecuador and analyzed ecological correlates of diversity. Termite richness was positively correlated with ant richness and abundance of twig-nesting ants. We found no evidence of competition for twigs between termites and ants. No ecological factors were correlated with termite diversity although elevation and twig and log abundance influenced ant diversity. When ant richness was compared to the richness of termites employing different predator defenses, a positive correlation was found with soldierless termites, but not genera employing chemical or mechanical defense. Our results suggest that multiple ecological factors influence ant and termite diversity, and that ant predation on termites may have a greater effect than competition between ant and termites for nest sites and food sources.

  15. Effects of rice husk ash and termite hill types on the physical and ...

    African Journals Online (AJOL)

    This waste can be recycled through inclusion as stabilizer in brick making, thereby eliminating the hazard posed to the environment. This paper examined the effects of rice husk ash (RHA) on the two termite clay soils in brick making. The two termite clay soils obtained from red and gray anthills were stabilized with rice husk ...

  16. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa

    DEFF Research Database (Denmark)

    Aanen, Duur K; Ros, Vera I D; de Fine Licht, Henrik H

    2007-01-01

    BACKGROUND: Termites of the subfamily Macrotermitinae live in a mutualistic symbiosis with basidiomycete fungi of the genus Termitomyces. Here, we explored interaction specificity in fungus-growing termites using samples from 101 colonies in South-Africa and Senegal, belonging to eight species di...

  17. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa

    NARCIS (Netherlands)

    Aanen, D.K.; Ros, V.I.D.; Fine Licht, de H.H.; Mitchell, J.; Beer, de Z.W.; Slippers, B.; Rouland-Lefevre, C.; Boomsma, J.J.

    2007-01-01

    Background Termites of the subfamily Macrotermitinae live in a mutualistic symbiosis with basidiomycete fungi of the genus Termitomyces. Here, we explored interaction specificity in fungus-growing termites using samples from 101 colonies in South-Africa and Senegal, belonging to eight species

  18. Parametric City Scale Energy Modeling Perspectives on using Termite in city scaled models

    DEFF Research Database (Denmark)

    Negendahl, Kristoffer; Nielsen, Toke Rammer

    Termite is a parametric tool using the Danish building performance simulation engine Be10 written for the Grasshopper3D/Rhino3D environment. The tool Be10 is originally intended for building energy frame calculations and is required by Danish law when constructing new buildings. Termite opens up...... requirements, placing solar energy production facilities etc....

  19. Control Of Book Termites Using Solid Attractants At The Central Library Of Universitas Sumatera Utara USU

    Directory of Open Access Journals (Sweden)

    Ameilia Zuliyanti Siregar

    2017-10-01

    Full Text Available It has been identified the extent of damage due to the activity of Captotermes sp Microtermis sp Formica sp Araneus sp and Stegonium sp on books in the USU Library. Furthermore prevention of dominant pest attack on the book containing cellulose as the main food of termites termites control action term control by Action Research method action research Kurt Lewin adoption is done intensively from July to September 2017. used are of neem leaf Azadirachta indica tobacco leaf Nicotiana tabacum rubber cassava leaf Manihot glaziovii and betel nut Areca catechu which can be used as Termite Baiting System TBS. This method includes three stages in the form of planning planning activity and reflection actuating and reflexion and evaluation evaluation. The results show the higher number of termites in F1799.3 0.328 with zero days after application. Based on the research recorded in sampling for 3 months with 4 treatments had a significant effect on the percentage of the number of termites that died and collected with the value of F is 86.27 p amp706 0000 and the percentage of death is F 59.13 p amp706 0000. Pearson correlation value recorded percentage of termite mortality r 0.349 and percentage of book affected r -0597 showed a very significant relationship. Pinet pellet is the best attractant in controlling termite pests followed by tobacco plants poisonous yams and neem. Optimal FFB techniques in its use can control termite colonies in an environmentally friendly manner.

  20. Resistance of borax–copper treated wood in aboveground exposure to attack by Formosan subterranean termites

    Science.gov (United States)

    Stan Lebow; Bessie Woodward; Douglas Crawford; William Abbott

    2005-01-01

    The spread of Formosan subterranean termites (FSTs) in the southern United States has increased public interest in finding a preservative treatment to protect framing lumber from termite attack. This study evaluated the use of a borax-based preservative to protect wood from FST attack. Southern Pine and Douglas-fir specimens were pressure-treated with three...

  1. Transcriptome analyses to investigate symbiotic relationships between marine protists

    Science.gov (United States)

    Balzano, Sergio; Corre, Erwan; Decelle, Johan; Sierra, Roberto; Wincker, Patrick; Da Silva, Corinne; Poulain, Julie; Pawlowski, Jan; Not, Fabrice

    2015-01-01

    Rhizaria are an important component of oceanic plankton communities worldwide. A number of species harbor eukaryotic microalgal symbionts, which are horizontally acquired in the environment at each generation. Although these photosymbioses are determinant for Rhizaria ability to thrive in oceanic ecosystems, the mechanisms for symbiotic interactions are unclear. Using high-throughput sequencing technology (i.e., 454), we generated large Expressed Sequence Tag (EST) datasets from four uncultured Rhizaria, an acantharian (Amphilonche elongata), two polycystines (Collozoum sp. and Spongosphaera streptacantha), and one phaeodarian (Aulacantha scolymantha). We assessed the main genetic features of the host/symbionts consortium (i.e., the holobiont) transcriptomes and found rRNA sequences affiliated to a wide range of bacteria and protists in all samples, suggesting that diverse microbial communities are associated with the holobionts. A particular focus was then carried out to search for genes potentially involved in symbiotic processes such as the presence of c-type lectins-coding genes, which are proteins that play a role in cell recognition among eukaryotes. Unigenes coding putative c-type lectin domains (CTLD) were found in the species bearing photosynthetic symbionts (A. elongata, Collozoum sp., and S. streptacantha) but not in the non-symbiotic one (A. scolymantha). More particularly, phylogenetic analyses group CTLDs from A. elongata and Collozoum sp. on a distinct branch from S. streptacantha CTLDs, which contained carbohydrate-binding motifs typically observed in other marine photosymbiosis. Our data suggest that similarly to other well-known marine photosymbiosis involving metazoans, the interactions of glycans with c-type lectins is likely involved in modulation of the host/symbiont specific recognition in Radiolaria. PMID:25852650

  2. Supersymmetric GUTs and cosmology

    International Nuclear Information System (INIS)

    Lazarides, G.; Shafi, Q.

    1982-06-01

    By examining the behaviour of supersymmetric GUTs in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near the superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUTs. In the second class of models, the superheavy GUT scale is related to the supersymmetry breaking scale a la Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out. Further constraint on model building appears if global R invariance is employed to resolve the strong CP problem. (author)

  3. A Preliminary Survey of Species Composition of Termites (Insecta: Isoptera) in Samunsam Wildlife Sanctuary, Sarawak.

    Science.gov (United States)

    Jamil, Norsyarizan; Ismail, Wan Nurainie Wan; Abidin, Siti Shamimi; Amaran, Mazdan Ali; Hazali, Ratnawati

    2017-07-01

    A survey on termite species composition was conducted in Samunsam Wildlife Sanctuary, Sarawak in February 2015. Overall 19 species of termite belonging to 13 genera and 8 subfamilies was found in the sanctuary. It was recorded the subfamily of Termitinae had the highest number of species (6 species, equal to 31.58% of total species), followed by Nasutermitinae (3 species, 15.79%), Macrotermitinae, Amitermitinae, Rhinotermitinae, Coptotermitinae, (2 species, 10.53% respectively), and Heterotermitinae, Termitogetoninae (1 species, 5.26% respectively). Since this rapid survey is the first termite assemblage representation in Samunsam Wildlife Sanctuary, the preliminary result may serve as the baseline data for termite composition in the area. Therefore, a whole coverage for the area within this sanctuary would definitely increase the number of termite species found in the sanctuary.

  4. Radiation and Gut

    International Nuclear Information System (INIS)

    Potten, C.S.; Hendry, J.H.

    1995-08-01

    Texts on gut with reference to radiation (or other cytotoxic and carcinogenic agents) consist of primary research papers, review articles, or books which are now very out-of-date. With this in mind, the present book was conceived. Here, with chapters by experts in the field, we cover the basic structure and cell replacement process in the gut, the physical situation relevant for gut radiation exposure and a description of some of the techniques used to study radiation effects, in particular the clonal regeneration assay that assesses stem cell functional capacity. Chapters comprehensively cover the effects of radiation in experimental animal model systems and clinical experiences. The effects of radiation on the supportive tissue of the gut is also reviewed. The special radiation situation involving ingested radionuclides is reviewed and the most important late response-carcinogenesis-within the gut is considered. This book follows a volume on 'Radiation and Skin' (1985) and another on 'Radiation and Bone Marrow' is in preparation. The present volume is intended to cover the anatomy and renewal characteristics of the gut, and its response in terms of carcinogenicity and tissue injury in mammalian species including in particular man. The book is expected to be useful to students and teachers in these topics, as well as clinical oncologists (radiotherapists) and medical oncologists, and industrial health personnel. 70 figs., 20 tabs., 869 refs

  5. The antibacterial protein lysozyme identified as the termite egg recognition pheromone.

    Directory of Open Access Journals (Sweden)

    Kenji Matsuura

    Full Text Available Social insects rely heavily on pheromone communication to maintain their sociality. Egg protection is one of the most fundamental social behaviours in social insects. The recent discovery of the termite-egg mimicking fungus 'termite-ball' and subsequent studies on termite egg protection behaviour have shown that termites can be manipulated by using the termite egg recognition pheromone (TERP, which strongly evokes the egg-carrying and -grooming behaviours of workers. Despite the great scientific and economic importance, TERP has not been identified because of practical difficulties. Herein we identified the antibacterial protein lysozyme as the TERP. We isolated the target protein using ion-exchange and hydrophobic interaction chromatography, and the MALDI-TOF MS analysis showed a molecular size of 14.5 kDa. We found that the TERP provided antibacterial activity against a gram-positive bacterium. Among the currently known antimicrobial proteins, the molecular size of 14.5 kDa limits the target to lysozyme. Termite lysozymes obtained from eggs and salivary glands, and even hen egg lysozyme, showed a strong termite egg recognition activity. Besides eggs themselves, workers also supply lysozyme to eggs through frequent egg-grooming, by which egg surfaces are coated with saliva containing lysozyme. Reverse transcript PCR analysis showed that mRNA of termite lysozyme was expressed in both salivary glands and eggs. Western blot analysis confirmed that lysozyme production begins in immature eggs in queen ovaries. This is the first identification of proteinaceous pheromone in social insects. Researchers have focused almost exclusively on hydrocarbons when searching for recognition pheromones in social insects. The present finding of a proteinaceous pheromone represents a major step forward in, and result in the broadening of, the search for recognition pheromones. This novel function of lysozyme as a termite pheromone illuminates the profound influence

  6. Do termites avoid carcasses? Behavioral responses depend on the nature of the carcasses.

    Directory of Open Access Journals (Sweden)

    Kok-Boon Neoh

    Full Text Available BACKGROUND: Undertaking behavior is a significant adaptation to social life in enclosed nests. Workers are known to remove dead colony members from the nest. Such behavior prevents the spread of pathogens that may be detrimental to a colony. To date, little is known about the ethological aspects of how termites deal with carcasses. METHODOLOGY AND PRINCIPAL FINDINGS: In this study, we tested the responses to carcasses of four species from different subterranean termite taxa: Coptotermes formosanus Shiraki and Reticulitermes speratus (Kolbe (lower termites and Microcerotermes crassus Snyder and Globitermes sulphureus Haviland (higher termites. We also used different types of carcasses (freshly killed, 1-, 3-, and 7-day-old, and oven-killed carcasses and mutilated nestmates to investigate whether the termites exhibited any behavioral responses that were specific to carcasses in certain conditions. Some behavioral responses were performed specifically on certain types of carcasses or mutilated termites. C. formosanus and R. speratus exhibited the following behaviors: (1 the frequency and time spent in antennating, grooming, and carcass removal of freshly killed, 1-day-old, and oven-killed carcasses were high, but these behaviors decreased as the carcasses aged; (2 the termites repeatedly crawled under the aging carcass piles; and (3 only newly dead termites were consumed as a food source. In contrast, M. crassus and G. sulphureus workers performed relatively few behavioral acts. Our results cast a new light on the previous notion that termites are necrophobic in nature. CONCLUSION: We conclude that the behavioral response towards carcasses depends largely on the nature of the carcasses and termite species, and the response is more complex than was previously thought. Such behavioral responses likely are associated with the threat posed to the colony by the carcasses and the feeding habits and nesting ecology of a given species.

  7. Permanent groundwater storage in basaltic dyke fractures and termite mound viability

    Science.gov (United States)

    Mège, Daniel; Rango, Tewodros

    2010-04-01

    Many basaltic dykes of the Ethiopian flood basalt province are observed in the northwestern Ethiopian lowlands. In this area, the termites preferentially build their epigeous mounds on the top of dolerite dykes. The relationship between termite mounds and dykes is investigated from the analysis of their distribution along one of these dykes, of thickness 2-5 m, that we could follow over 2000 m. Termite mounds are periodically spaced (mean distance 63 m, R2 = 0.995), and located exclusively where the topographic relief of the dyke is not more than 2 m above the surrounding area. From these observations and from the geological context, a hydrological circuit model is proposed in which (1) dykes are preferential conduits for groundwater drainage during the rainy season due to pervasive jointing, (2) during the dry season, the portion of the dyke forming a local topographic relief area dries up more quickly than the surroundings, the elevation difference between the dyke summit and the surroundings being a factor restricting termite mound development. For dyke topographic relief >2 m, drying is an obstacle for maintaining the appropriate humidity for the termite colony life. Periodic termite mound spacing is unlikely to be related to dyke or other geological properties. It is more likely related to termite population behaviour, perhaps to clay shortage, which restricts termite population growth by limiting the quantity of building material available for mound extension, and triggers exploration for a new colonization site that will be located along the dyke at a distance from the former colony that may be controlled by the extent of the zone covered by its trail pheromones. This work brings out the importance of dykes in channelling and storing groundwater in semiarid regions, and shows that dykes can store groundwater permanently in such settings even though the dry season is half the year long. It contributes also to shedding light on water supply conditions

  8. Vertical Distribution of Termites on Trees in Two Forest Landscapes in Taiwan.

    Science.gov (United States)

    Li, Hou-Feng; Yeh, Hsin-Ting; Chiu, Chun-I; Kuo, Chih-Yu; Tsai, Ming-Jer

    2016-03-25

    Termites are a key functional group in the forest ecosystem, but they damage trees. To investigate the termite infestation pattern on the whole tree, we cut 108 blackboard trees,Alstonia scholaris(L.) R. Br., and 50 Japanese cedars,Cryptomeria japonica (L. f.) D. Don, into sections. The bark surface and cross sections of the tree trunk were examined along the axes. A high percentage of blackboard trees (92.6%) was infested by fungus-growing termites,Odontotermes formosanus(Shiraki), but damage was limited to the bark surface at a 2-m height. The infestation rate of dampwood termites,Neotermes koshunensis(Shiraki), was only 4.6% (5/108), and all infestations were associated with trunk wounds.N. koshunensiswas found at significantly higher portion of a tree thanO. formosanus Among 50 Japanese cedars, 20 living trees were not infested by any termites, but 26 of the 30 dead trees were infested by subterranean termites,Reticulitermes flaviceps(Oshima), which excavated tunnels in the trunk. The infestation rate at basal sections was higher than that at distal sections. Only one Japanese cedar tree was infested by another dampwood termite,Glyptotermes satsumensis(Matsumura). The two dominant termite species,O. formosanusandR. flaviceps, had subterranean nests and infested trees from bottom up. The two primitive termitesN. koshunensis andG. satsumensishad low infestation rates and are most likely to infest trees by alates from top down. The niche segregation in trees of three termite families, Kalotermitidae, Rhinotermitidae, and Termitidae, was distinct. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Exploring the potential for actinobacteria as defensive symbionts in fungus-growing termites.

    Science.gov (United States)

    Visser, Anna A; Nobre, Tânia; Currie, Cameron R; Aanen, Duur K; Poulsen, Michael

    2012-05-01

    In fungus-growing termites, fungi of the subgenus Pseudoxylaria threaten colony health through substrate competition with the termite fungus (Termitomyces). The potential mechanisms with which termites suppress Pseudoxylaria have remained unknown. Here we explore if Actinobacteria potentially play a role as defensive symbionts against Pseudoxylaria in fungus-growing termites. We sampled for Actinobacteria from 30 fungus-growing termite colonies, spanning the three main termite genera and two geographically distant sites. Our isolations yielded 360 Actinobacteria, from which we selected subsets for morphological (288 isolates, grouped in 44 morphotypes) and for 16S rRNA (35 isolates, spanning the majority of morphotypes) characterisation. Actinobacteria were found throughout all sampled nests and colony parts and, phylogenetically, they are interspersed with Actinobacteria from origins other than fungus-growing termites, indicating lack of specificity. Antibiotic-activity screening of 288 isolates against the fungal cultivar and competitor revealed that most of the Actinobacteria-produced molecules with antifungal activity. A more detailed bioassay on 53 isolates, to test the specificity of antibiotics, showed that many Actinobacteria inhibit both Pseudoxylaria and Termitomyces, and that the cultivar fungus generally is more susceptible to inhibition than the competitor. This suggests that either defensive symbionts are not present in the system or that they, if present, represent a subset of the community isolated. If so, the antibiotics must be used in a targeted fashion, being applied to specific areas by the termites. We describe the first discovery of an assembly of antibiotic-producing Actinobacteria occurring in fungus-growing termite nests. However, due to the diversity found, and the lack of both phylogenetic and bioactivity specificity, further work is necessary for a better understanding of the putative role of antibiotic-producing bacteria in the fungus

  10. Termites community as environmental bioindicators in highlands: a case study in eastern slopes of Mount Slamet, Central Java

    Directory of Open Access Journals (Sweden)

    IDHAM SAKTI HARAHAP

    2011-10-01

    Full Text Available Pribadi T,Raffiudin R,HarahapIS (2011Termites community as environmental bioindicators in highlands: a case study in eastern slopes of Mount Slamet, Central Java. Biodiversitas 12: 235-240. Termites ecological behaviour is much affected by land use change and disturbance level. Their variation in diversity can be used as bioindicator of environmental quality. However, termite community response to land use changes and habitat disturbance in highland ecosystems remains poorly understood. This study was conducted to investigate the response of termite community to land use intensification and to explore their role as environmental bioindicator in Mount Slamet. A standard survey protocol was used to collect termites in five land use typesof various disturbance levels,i.e. protected forest, recreation forest, production forest,agroforestry, and urban area. It was found two termite families i.e. Rhinotermitidae and Termitidae with seven species, i.e Schedorhinotermes javanicus, Procapritermes sp, Pericapritermes semarangi, Macrotermes gilvus, Microtermes insperatus, Nasutitermes javanicus, and N. matanganensis. Termite species’ richness and evenness, Shannon-Wiener index, relative abundance, and biomass of termite were declined along with the land use types and disturbance level from protected forest to urban area. Habitat disturbance was the main declining factor of termite diversity. Termite composition changed along with the land use disturbance level. Soil feeding termites were sensitive to the disturbance – they were not found in urban area. Hence, their presence or absence can be used as environmental bioindicator to detect habitat disturbance.

  11. Response of Termite (Blattodea: Termitoidae) Assemblages to Lower Subtropical Forest Succession: A Case Study in Dinghushan Biosphere Reserve, China.

    Science.gov (United States)

    Li, Zhi-Qiang; Ke, Yun-Ling; Zeng, Wen-Hui; Zhang, Shi-Jun; Wu, Wen-Jing

    2016-02-01

    Termite (Blattodea: Termitoidae) assemblages have important ecological functions and vary in structure between habitats, but have not been studied in lower subtropical forests. To examine whether differences in the richness and relative abundance of termite species and functional groups occur in lower subtropical regions, termite assemblages were sampled in Dinghushan Biosphere Reserve, China, among pine forest, pine and broad-leaved mixed forest (mixed forest), and monsoon evergreen broad-leaved forest (monsoon forest). The dominant functional group was wood-feeding termites (family Termitidae), and the mixed forest hosted the greatest richness and relative abundance. Soil-feeding termites were absent from the lower subtropical system, while humus-feeding termites were sporadically distributed in mixed forest and monsoon forest. The species richness and functional group abundance of termites in our site may be linked to the forest succession. Altitude, soil temperature, air temperature, surface air relative humidity, and litter depth were significant influences on species and functional group diversity.

  12. Termites in the hominin diet: a meta-analysis of termite genera, species and castes as a dietary supplement for South African robust australopithecines.

    Science.gov (United States)

    Lesnik, Julie J

    2014-06-01

    Termite foraging by chimpanzees and present-day modern humans is a well-documented phenomenon, making it a plausible hypothesis that early hominins were also utilizing this resource. Hominin termite foraging has been credited by some to be the explanation for the unexpected carbon isotope signatures present in South African hominin teeth, which suggest the diet was different from that of extant non-human great apes, consisting of a significant amount of resources that are not from woody-plants. Grass-eating termites are one potential resource that could contribute to the carbon signature. However, not all termites eat grasses, and in fact, the termites that are most widely consumed by chimpanzees and by many present-day human populations at best have a mixed diet that includes small amounts of grasses. Here I review the ecology of termites and how it affects their desirability as a food resource for hominins, and conduct a meta-analysis of nutritional values for various genera, species and castes from the literature. Termites are very diverse, even within species, and this variability affects both their carbon signatures and nutritional value, hindering generalizations regarding the contribution of termites to the hominin diet. It is concluded here that a combination of soldiers and alates of the genus Macrotermes be used to model the insectivory component of the Plio-Pleistocene hominin diet due to their significant amounts of energy-yielding nutrients and potential role as a critical resource for supporting larger-brained hominins. Copyright © 2014. Published by Elsevier Ltd.

  13. Gut Microbiota-brain Axis

    Institute of Scientific and Technical Information of China (English)

    Hong-Xing Wang; Yu-Ping Wang

    2016-01-01

    Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.

  14. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge

    Science.gov (United States)

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-01-01

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates—ciliates frequently found in anoxic ecosystems—on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885–3,190 and 2,387–2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function. PMID:27431197

  15. The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists

    Science.gov (United States)

    SINA M. ADL; ALASTAIR G. B. SIMPSON; MARK A. FARMER; ROBERT A. ANDERSEN; O. ROGER ANDERSON; JOHN R. BARTA; SAMUEL S. BOWSER; GUY BRUGEROLLE; ROBERT A. FENSOME; SUZANNE FREDERICQ; TIMOTHY Y. JAMES; SERGEI KARPOV; PAUL KUGRENS; JOHN KRUG; CHRISTOPHER E. LANE; LOUISE A. LEWIS; JEAN LODGE; DENIS H. LYNN; DAVID G. MANN; RICHARD M. MCCOURT; LEONEL MENDOZA; ØJVIND MOESTRUP; SHARON E. MOZLEY-STANDRIDGE; THOMAS A. NERAD; CAROL A. SHEARER; ALEXEY V. SMIRNOV; FREDERICK W. SPIEGEL; MAX F.J.R. TAYLOR

    2005-01-01

    This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic...

  16. UV-induced cell damage is species-specific among aquatic phagotrophic protists

    NARCIS (Netherlands)

    Sommaruga, R; Buma, AGJ

    2000-01-01

    The sensitivity to ultraviolet radiation (UVR, 280-400 nm) of ten species of freshwater and marine phagotrophic protists was assessed in short-term (4 h) laboratory experiments. Changes in the motility and morphology of the cells, as well as direct quantification of DNA damage, were evaluated. The

  17. The soil food web revisited: Diverse and widespread mycophagous soil protists

    NARCIS (Netherlands)

    Geisen, Stefan; Koller, R.; Hünninghaus, M.; Dumack, K.; Urich, T.; Bonkowski, M.

    2016-01-01

    Soil protists are commonly suggested being solely bacterivorous, serving together with bacterivorous nematodes as the main controllers of the bacterial energy channel in soil food webs. In contrast, the fungal energy channel is assumed to be controlled by arthropods and mycophagous nematodes. This

  18. High Diversity Revealed in Leaf-Associated Protists (Rhizaria: Cercozoa) of Brassicaceae.

    Science.gov (United States)

    Ploch, Sebastian; Rose, Laura E; Bass, David; Bonkowski, Michael

    2016-09-01

    The largest biological surface on earth is formed by plant leaves. These leaf surfaces are colonized by a specialized suite of leaf-inhabiting microorganisms, recently termed "phyllosphere microbiome". Microbial prey, however, attract microbial predators. Protists in particular have been shown to structure bacterial communities on plant surfaces, but virtually nothing is known about the community composition of protists on leaves. Using newly designed specific primers targeting the 18S rDNA gene of Cercozoa, we investigated the species richness of this common protist group on leaves of four Brassicaceae species from two different locations in a cloning-based approach. The generated sequences revealed a broad diversity of leaf-associated Cercozoa, mostly bacterial feeders, but also including known plant pathogens and a taxon of potential endophytes that were recently described as algal predators in freshwater systems. This initial study shows that protists must be regarded as an integral part of the microbial diversity in the phyllosphere of plants. © 2016 The Authors. The Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  19. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge.

    Science.gov (United States)

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-09-29

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates-ciliates frequently found in anoxic ecosystems-on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885-3,190 and 2,387-2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function.

  20. Complex communities of small protists and unexpected occurrence of typical marine lineages in shallow freshwater systems.

    Science.gov (United States)

    Simon, Marianne; Jardillier, Ludwig; Deschamps, Philippe; Moreira, David; Restoux, Gwendal; Bertolino, Paola; López-García, Purificación

    2015-10-01

    Although inland water bodies are more heterogeneous and sensitive to environmental variation than oceans, the diversity of small protists in these ecosystems is much less well known. Some molecular surveys of lakes exist, but little information is available from smaller, shallower and often ephemeral freshwater systems, despite their global distribution and ecological importance. We carried out a comparative study based on massive pyrosequencing of amplified 18S rRNA gene fragments of protists in the 0.2-5 μm size range in one brook and four shallow ponds located in the Natural Regional Park of the Chevreuse Valley, France. Our study revealed a wide diversity of small protists, with 812 stringently defined operational taxonomic units (OTUs) belonging to the recognized eukaryotic supergroups (SAR--Stramenopiles, Alveolata, Rhizaria--Archaeplastida, Excavata, Amoebozoa, Opisthokonta) and to groups of unresolved phylogenetic position (Cryptophyta, Haptophyta, Centrohelida, Katablepharida, Telonemida, Apusozoa). Some OTUs represented deep-branching lineages (Cryptomycota, Aphelida, Colpodellida, Tremulida, clade-10 Cercozoa, HAP-1 Haptophyta). We identified several lineages previously thought to be marine including, in addition to MAST-2 and MAST-12, already detected in freshwater, MAST-3 and possibly MAST-6. Protist community structures were different in the five ecosystems. These differences did not correlate with geographical distances, but seemed to be influenced by environmental parameters. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  1. Geographic distance and ecosystem size determine the distribution of smallest protists in lacustrine ecosystems.

    Science.gov (United States)

    Lepère, Cécile; Domaizon, Isabelle; Taïb, Najwa; Mangot, Jean-François; Bronner, Gisèle; Boucher, Delphine; Debroas, Didier

    2013-07-01

    Understanding the spatial distribution of aquatic microbial diversity and the underlying mechanisms causing differences in community composition is a challenging and central goal for ecologists. Recent insights into protistan diversity and ecology are increasing the debate over their spatial distribution. In this study, we investigate the importance of spatial and environmental factors in shaping the small protists community structure in lakes. We analyzed small protists community composition (beta-diversity) and richness (alpha-diversity) at regional scale by different molecular methods targeting the gene coding for 18S rRNA gene (T-RFLP and 454 pyrosequencing). Our results show a distance-decay pattern for rare and dominant taxa and the spatial distribution of the latter followed the prediction of the island biogeography theory. Furthermore, geographic distances between lakes seem to be the main force shaping the protists community composition in the lakes studied here. Finally, the spatial distribution of protists was discussed at the global scale (11 worldwide distributed lakes) by comparing these results with those present in the public database. UniFrac analysis showed 18S rRNA gene OTUs compositions significantly different among most of lakes, and this difference does not seem to be related to the trophic status. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists

    Science.gov (United States)

    Sina M. Adl; Alastair G.B. Simpson; Mark A. Farmer; Robert A. Andersen; O. Roger Anderson; John R. Barta; Samuel S. Bowser; Guy Brugerolle; Robert A. Fensome; Suzanne Fredericq; Timothy Y. James; Sergei Karpov; Paul Kugrens; John Krug; Christopher E. Lane; Louise A. Lewis; Jean Lodge; Denis H. Lynn; David G. Mann; Richard M. McCourt; Leonel Mendoza; Ojvind Moestrup; Sharon E. Mozley-Standridge; Thomas A. Nerad; Carol A. Shearer; Alexey V. Smirnov; Frederick W. Speigel; Max F.J.R. Taylor

    2005-01-01

    This revision of the classification of unicellular eukaryotes updates that of Levine et al. (1980) for the protozoa and expands it to include other protists. Whereas the previous revision was primarily to incorporate the results of ultrastructural studies, this revision incorporates results from both ultrastructural research since 1980 and molecular phylogenetic...

  3. An 18S rRNA Workflow for Characterizing Protists in Sewage, with a Focus on Zoonotic Trichomonads.

    Science.gov (United States)

    Maritz, Julia M; Rogers, Krysta H; Rock, Tara M; Liu, Nicole; Joseph, Susan; Land, Kirkwood M; Carlton, Jane M

    2017-11-01

    Microbial eukaryotes (protists) are important components of terrestrial and aquatic environments, as well as animal and human microbiomes. Their relationships with metazoa range from mutualistic to parasitic and zoonotic (i.e., transmissible between humans and animals). Despite their ecological importance, our knowledge of protists in urban environments lags behind that of bacteria, largely due to a lack of experimentally validated high-throughput protocols that produce accurate estimates of protist diversity while minimizing non-protist DNA representation. We optimized protocols for detecting zoonotic protists in raw sewage samples, with a focus on trichomonad taxa. First, we investigated the utility of two commonly used variable regions of the 18S rRNA marker gene, V4 and V9, by amplifying and Sanger sequencing 23 different eukaryotic species, including 16 protist species such as Cryptosporidium parvum, Giardia intestinalis, Toxoplasma gondii, and species of trichomonad. Next, we optimized wet-lab methods for sample processing and Illumina sequencing of both regions from raw sewage collected from a private apartment building in New York City. Our results show that both regions are effective at identifying several zoonotic protists that may be present in sewage. A combination of small extractions (1 mL volumes) performed on the same day as sample collection, and the incorporation of a vertebrate blocking primer, is ideal to detect protist taxa of interest and combat the effects of metazoan DNA. We expect that the robust, standardized methods presented in our workflow will be applicable to investigations of protists in other environmental samples, and will help facilitate large-scale investigations of protistan diversity.

  4. Towards a methodology for removing and reconstructing soil protists with intact soil microbial communities

    Science.gov (United States)

    Hu, Junwei; Tsegaye Gebremikael, Mesfin; Salehi Hosseini, Pezhman; De Neve, Stefaan

    2017-04-01

    Soil ecological theories on the role of soil fauna groups in soil functions are often tested in highly artificial conditions, i.e. on completely sterilized soils or pure quartz sand re-inoculated with a small selection of these fauna groups. Due to the variable sensitivity of different soil biota groups to gamma irradiation, the precise doses that can be administered, and the relatively small disturbance of soil physical and chemical properties (relative to e.g. autoclaving, freezing-thawing and chemical agents), gamma irradiation has been employed to selectively eliminate soil organisms. In recent research we managed to realistically estimate on the contribution of the entire nematode communities to C and N mineralization in soil, by selective removal of nematodes at 5 kGy gamma irradiation doses followed by reinoculation. However, we did not assess the population dynamics of protozoa in response to this irradiation, i.e. we could not assess the potential contribution of protists to the mineralization process. Selective removal of protists from soils with minimal disturbance of the soil microflora has never been attempted and constitutes a highly challenging but potentially groundbreaking technique in soil ecology. Accordingly, the objective of this research is to modify the successful methodology of selective elimination of nematodes, to selectively eliminate soil fauna including nematodes and protists with minimal effects on the soil microbial community and reconstruct soil protists and microbial communities in completely sterilized soil. To this end, we here compared two different approaches: 1) remove nematodes and protists while keeping the microbial community intact (through optimizing gamma irradiation doses); 2) reconstruct protists and microbial communities in sterilized soil (through adding multicellular fauna free pulverized soil). The experiment consists of 7 treatments with soil collected from 0 to 15 cm layer of an organically managed agricultural

  5. Healthy human gut phageome.

    Science.gov (United States)

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T; van der Oost, John; de Vos, Willem M; Young, Mark J

    2016-09-13

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of humans, we analyzed a deep DNA sequence dataset of active bacteriophages and available metagenomic datasets of the gut bacteriophage community from healthy individuals. We found 23 shared bacteriophages in more than one-half of 64 healthy individuals from around the world. These shared bacteriophages were found in a significantly smaller percentage of individuals with gastrointestinal/irritable bowel disease. A network analysis identified 44 bacteriophage groups of which 9 (20%) were shared in more than one-half of all 64 individuals. These results provide strong evidence of a healthy gut phageome (HGP) in humans. The bacteriophage community in the human gut is a mixture of three classes: a set of core bacteriophages shared among more than one-half of all people, a common set of bacteriophages found in 20-50% of individuals, and a set of bacteriophages that are either rarely shared or unique to a person. We propose that the core and common bacteriophage communities are globally distributed and comprise the HGP, which plays an important role in maintaining gut microbiome structure/function and thereby contributes significantly to human health.

  6. GUTs and supersymmetric GUTs in the very early universe

    International Nuclear Information System (INIS)

    Ellis, J.

    1983-01-01

    This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. It starts with a review of the present theoretical and phenomenological status of GUTs and then goes on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. (author)

  7. Pseudomonas aeruginosa adaptation to lungs of cystic fibrosis patients leads to lowered resistance to phage and protist enemies

    DEFF Research Database (Denmark)

    Friman, Ville-Petri; Ghoul, Melanie; Molin, Søren

    2013-01-01

    ) patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7) and protist (Tetrahymena thermophila and Acanthamoebae polyphaga) enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1-25 months), were innately phage......-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2-23 years), were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella) probably due to weaker...

  8. Termites utilise clay to build structural supports and so increase foraging resources.

    Science.gov (United States)

    Oberst, Sebastian; Lai, Joseph C S; Evans, Theodore A

    2016-02-08

    Many termite species use clay to build foraging galleries and mound-nests. In some cases clay is placed within excavations of their wooden food, such as living trees or timber in buildings; however the purpose for this clay is unclear. We tested the hypotheses that termites can identify load bearing wood, and that they use clay to provide mechanical support of the load and thus allow them to eat the wood. In field and laboratory experiments, we show that the lower termite Coptotermes acinaciformis, the most basal species to build a mound-nest, can distinguish unloaded from loaded wood, and use clay differently when eating each type. The termites target unloaded wood preferentially, and use thin clay sheeting to camouflage themselves while eating the unloaded wood. The termites attack loaded wood secondarily, and build thick, load-bearing clay walls when they do. The termites add clay and build thicker walls as the load-bearing wood is consumed. The use of clay to support wood under load unlocks otherwise unavailable food resources. This behaviour may represent an evolutionary step from foraging behaviour to nest building in lower termites.

  9. Escaping and repairing behaviors of the termite Odontotermes formosanus (Blattodea: Termitidae in response to disturbance

    Directory of Open Access Journals (Sweden)

    Hongpeng Xiong

    2018-03-01

    Full Text Available The escaping behavior of termites has been documented under laboratory conditions; however, no study has been conducted in a field setting due to the difficulty of observing natural behaviors inside wood or structures (e.g., nests, tunnels, etc.. The black-winged termite, Odontotermes formosanus (Shiraki, is a subterranean macrotermitine species which builds extensive mud tubes on tree trunks. In the present study, 41 videos (totaling ∼2,700 min were taken on 22 colonies/subcolonies of O. formosanus after their mud tubes were partially damaged by hand. In general, termites consistently demonstrated three phases of escape, including initiation (wandering near the mud-tube breach, individual escaping (single termites moving downward, and massive, unidirectional escaping flows (groups of termites moving downward. Downward moving and repairing were the dominant behavioral activities of individuals and were significantly more frequent than upward moving, turning/backward moving, or wandering. Interestingly, termites in escaping flows moved significantly faster than escaping individuals. Repairing behavior was observed shortly after the disturbance, and new mud tubes were preferentially constructed from the bottom up. When predators (i.e., ants were present, however, termites stopped moving and quickly sealed the mud-tube openings by capping the broken ends. Our study provides an interesting example that documents an animal (besides humans simultaneously carrying out pathway repairs and emergency evacuation without congestion.

  10. Escaping and repairing behaviors of the termite Odontotermes formosanus (Blattodea: Termitidae) in response to disturbance.

    Science.gov (United States)

    Xiong, Hongpeng; Chen, Xuan; Wen, Yuzhen; Layne, Michael; Sun, Zhaohui; Ma, Tao; Wen, Xiujun; Wang, Cai

    2018-01-01

    The escaping behavior of termites has been documented under laboratory conditions; however, no study has been conducted in a field setting due to the difficulty of observing natural behaviors inside wood or structures (e.g., nests, tunnels, etc.). The black-winged termite, Odontotermes formosanus (Shiraki), is a subterranean macrotermitine species which builds extensive mud tubes on tree trunks. In the present study, 41 videos (totaling ∼2,700 min) were taken on 22 colonies/subcolonies of O. formosanus after their mud tubes were partially damaged by hand. In general, termites consistently demonstrated three phases of escape, including initiation (wandering near the mud-tube breach), individual escaping (single termites moving downward), and massive, unidirectional escaping flows (groups of termites moving downward). Downward moving and repairing were the dominant behavioral activities of individuals and were significantly more frequent than upward moving, turning/backward moving, or wandering. Interestingly, termites in escaping flows moved significantly faster than escaping individuals. Repairing behavior was observed shortly after the disturbance, and new mud tubes were preferentially constructed from the bottom up. When predators (i.e., ants) were present, however, termites stopped moving and quickly sealed the mud-tube openings by capping the broken ends. Our study provides an interesting example that documents an animal (besides humans) simultaneously carrying out pathway repairs and emergency evacuation without congestion.

  11. Conservation of Protists: The Krauthügel Pond in Austria.

    Science.gov (United States)

    Cotterill, Fenton P D; Augustin, Hannes; Medicus, Reinhard; Foissner, Wilhelm

    2013-06-01

    Although constituting more than 100,000 described species, protists are virtually ignored within the arena of biodiversity conservation. One reason is the widespread belief that the majority of protists have cosmopolitan distributions, in contrast to the highly hetereogenous biogeography of the "mega-Metazoa". However, modern research reveals that about one third of the known protists have restricted distributions, which endorses their conservation, at least in special cases. Here, we report what probably ranks as the first successful conservation intervention focused directly on known protist diversity. It is justified by unique species, type localities, and landscape maintenance as evidence for legislation. The protected habitat comprises an ephemeral pond, which is now a "Natural Monument" for ciliated protozoa. This wetland occupies a natural depression on the Krauthügel ("cabbage hill") south of the fortress of Salzburg City. When filled, the claviform pond has a size of ~30 × 15 m and a depth rarely surpassing 30 cm. Water is present only for some days or weeks, depending on heavy and/or prolonged rain. The pond occupied an agricultural field where root and leafy vegetables were cultivated for possibly more than 200 years. In the 1960s, this area became a grassland utilized as an autumn pasture, but was abandoned in the 1990s. Repeated sampling between 1982 and 2012 recovered a total of at least 150 ciliate taxa, of which 121 were identified to species level. Eight species were new to science, and an additional 10 poorly known species were reinvestigated and neotypified with populations from the Krauthügel pond. Both endemism and type localities justify the argument that the "integrative approach" in biodiversity and conservation issues should include protists and micro-metazoans. We argue that Krauthügel holds a unique reference node for biodiversity inventories to obtain the baseline knowledge-which is the prerequisite to monitor ecosystem integrity

  12. Protists as bioindicators in activated sludge: Identification, ecology and future needs.

    Science.gov (United States)

    Foissner, Wilhelm

    2016-08-01

    When the activated sludge process was developed, operators and scientists soon recognized protists as valuable indicators. However, only when Curds et al. (1968) showed with a few photographs the need of ciliates for a clear plant effluent, sewage protistology began to bloom but was limited by the need of species identification. Still, this is a major problem although several good guides are available. Thus, molecular kits should be developed for identification. Protists are indicators in two stages of wastewater treatment, viz., in the activated sludge and in the environmental water receiving the plant effluent. Continuous control of the protist and bacterial communities can prevent biological sludge foaming and bulking and may greatly save money for sludge oxygenation because several protist species are excellent indicators for the amount of oxygen present. The investigation of the effluent-receiving rivers gives a solid indication about the long term function of sewage works. The literature on protist bioindication in activated sludge is widely distributed. Thus, I compiled the data in a simple Table, showing which communities and species indicate good, mediocre, or poor plant performance. Further, many details on indication are provided, such as sludge loading and nitrifying conditions. Such specific features should be improved by appropriate statistics and more reliable identification of species. Then, protistologists have a fair chance to become important in wastewater works. Activated sludge is a unique habitat for particular species, often poorly or even undescribed. As an example, I present two new species. The first is a minute (∼30μm) Metacystis that makes an up to 300μm-sized mucous envelope mimicking a sludge floc. The second is a Phialina that is unique in having the contractile vacuole slightly posterior to mid-body. Finally, I provide a list of species which have the type locality in sewage plants. Copyright © 2016 Elsevier GmbH. All rights

  13. Termites Are Resistant to the Effects of Fire at Multiple Spatial Scales.

    Directory of Open Access Journals (Sweden)

    Sarah C Avitabile

    Full Text Available Termites play an important ecological role in many ecosystems, particularly in nutrient-poor arid and semi-arid environments. We examined the distribution and occurrence of termites in the fire-prone, semi-arid mallee region of south-eastern Australia. In addition to periodic large wildfires, land managers use fire as a tool to achieve both asset protection and ecological outcomes in this region. Twelve taxa of termites were detected by using systematic searches and grids of cellulose baits at 560 sites, clustered in 28 landscapes selected to represent different fire mosaic patterns. There was no evidence of a significant relationship between the occurrence of termite species and time-since-fire at the site scale. Rather, the occurrence of species was related to habitat features such as the density of mallee trees and large logs (>10 cm diameter. Species richness was greater in chenopod mallee vegetation on heavier soils in swales, rather than Triodia mallee vegetation of the sandy dune slopes. At the landscape scale, there was little evidence that the frequency of occurrence of termite species was related to fire, and no evidence that habitat heterogeneity generated by fire influenced termite species richness. The most influential factor at the landscape scale was the environmental gradient represented by average annual rainfall. Although termites may be associated with flammable habitat components (e.g. dead wood, they appear to be buffered from the effects of fire by behavioural traits, including nesting underground, and the continued availability of dead wood after fire. There is no evidence to support the hypothesis that a fine-scale, diverse mosaic of post-fire age-classes will enhance the diversity of termites. Rather, termites appear to be resistant to the effects of fire at multiple spatial scales.

  14. Diet, gut microbiota and cognition.

    Science.gov (United States)

    Proctor, Cicely; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-01

    The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.

  15. Philosophy with Guts

    Science.gov (United States)

    Sherman, Robert R.

    2014-01-01

    Western philosophy, from Plato on, has had the tendency to separate feeling and thought, affect and cognition. This article argues that a strong philosophy (metaphorically, with "guts") utilizes both in its work. In fact, a "complete act of thought" also will include action. Feeling motivates thought, which formulates ideas,…

  16. GUT FERMENTATION SYNDROME

    African Journals Online (AJOL)

    boaz

    individuals who became intoxicated after consuming carbohydrates, which became fermented in the gastrointestinal tract. These claims of intoxication without drinking alcohol, and the findings on endogenous alcohol fermentation are now called Gut. Fermentation Syndrome. This review will concentrate on understanding ...

  17. Healthy human gut phageome

    NARCIS (Netherlands)

    Manrique, Pilar; Bolduc, Benjamin; Walk, Seth T.; Oost, van der John; Vos, de Willem M.; Young, Mark J.

    2016-01-01

    The role of bacteriophages in influencing the structure and function of the healthy human gut microbiome is unknown. With few exceptions, previous studies have found a high level of heterogeneity in bacteriophages from healthy individuals. To better estimate and identify the shared phageome of

  18. Gut microbiota and malnutrition.

    Science.gov (United States)

    Million, Matthieu; Diallo, Aldiouma; Raoult, Didier

    2017-05-01

    Malnutrition is the leading cause of death worldwide in children under the age of five, and is the focus of the first World Health Organization (WHO) Millennium Development Goal. Breastfeeding, food and water security are major protective factors against malnutrition and critical factors in the maturation of healthy gut microbiota, characterized by a transient bifidobacterial bloom before a global rise in anaerobes. Early depletion in gut Bifidobacterium longum, a typical maternal probiotic, known to inhibit pathogens, represents the first step in gut microbiota alteration associated with severe acute malnutrition (SAM). Later, the absence of the Healthy Mature Anaerobic Gut Microbiota (HMAGM) leads to deficient energy harvest, vitamin biosynthesis and immune protection, and is associated with diarrhea, malabsorption and systemic invasion by microbial pathogens. A therapeutic diet and infection treatment may be unable to restore bifidobacteria and HMAGM. Besides refeeding and antibiotics, future trials including non-toxic missing microbes and nutrients necessary to restore bifidobacteria and HMAGM, including prebiotics and antioxidants, are warranted in children with severe or refractory disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The Human Gut Microbiota

    NARCIS (Netherlands)

    Harmsen, Hermie J. M.; de Goffau, Marcus. C.; Schwiertz, A

    2016-01-01

    The microbiota in our gut performs many different essential functions that help us to stay healthy. These functions include vitamin production, regulation of lipid metabolism and short chain fatty acid production as fuel for epithelial cells and regulation of gene expression. There is a very

  20. Genomics: A gut prediction

    NARCIS (Netherlands)

    Vos, de W.M.; Nieuwdorp, M.

    2013-01-01

    Microbial cells make up the majority of cells in the human body, and most of these reside in the intestinal tract. Researchers have long recognized that some intestinal microorganisms are associated with health, but the beneficial impact of most of the gut's microbes on human metabolism has been

  1. Evaluation of chemical, botanical and cultural managements of termites control.

    Science.gov (United States)

    Dufera, Jiregna Tasisa; Fufa, Tena Gobena

    2014-01-15

    The study was conducted at Bojdi Dirmaji District, Wollega Zone (Western Ethiopia) using Randomized Complete Block Design with three replications. Eight different treatments of chemical, botanical and cultural control methods independently and in combinations were evaluated to identify the most effective method which is environmentally sustainable and economically feasible in controlling the termite problems. The data were collected over 12 weeks and analysis of variance showed significant difference among the treatments for all parameters. Maesa lanceolata 100 g alone showed lower percent damage between 2-8 weeks (33.3%), later on after 9-12 weeks it become non significant and the destructed mound was recovered. Mound treated with Diazinon 60% EC at the rate of 25 and 20 mL alone and Diazinon 60% EC combination with queen removal at rate of 15 and 10 mL showed significant control overall the treatment. From the results of the study the lower rate of Diazinon 60% EC (10 mL per mound) and queen removal could be better option to manage the termite problem and could be more sustainable and integrated manner in the study area.

  2. The annual planktonic protist community structure in an ice-free high Arctic fjord (Adventfjorden, West Spitsbergen)

    Science.gov (United States)

    Kubiszyn, A. M.; Wiktor, J. M.; Wiktor, J. M.; Griffiths, C.; Kristiansen, S.; Gabrielsen, T. M.

    2017-05-01

    We investigated the size and trophic structure of the annual planktonic protist community structure in the ice-free Adventfjorden in relation to environmental factors. Our high-resolution (weekly to monthly) study was conducted in 2012, when warm Atlantic water was advected into the fjord in winter and summer. We observed a distinct seasonality in the protist communities. The winter protist community was characterised by extremely low levels of protist abundance and biomass (primarily Dinophyceae, Ciliophora and Bacillariophyceae) in a homogenous water column. In the second half of April, the total protist abundance and biomass rapidly increased, thus initiating the spring bloom in a still well-mixed water column. The spring bloom was initially dominated by the prymnesiophyte Phaeocystis pouchetii and Bacillariophyceae (primarily from the genera Thalassiosira, Fragilariopsis and Chaetoceros) and was later strictly dominated by Phaeocystis colonies. When the bloom terminated in mid-June, the community shifted towards flagellates (Dinophyceae, Ciliophora, Cryptophyceae and nanoflagellates 3-7 μm in size) in a stratified, nutrient-depleted water column. Decreases in the light intensity decreased the protist abundance and biomass, and the fall community (Dinophyceae, Cryptophyceae and Bacillariophyceae) was followed by the winter community.

  3. Termites as ecological indicators of mine-land rehabilitation in tropical Australia

    International Nuclear Information System (INIS)

    Hinz, D.A.

    2001-01-01

    This paper presents examples from field research of termites as indicators of rehabilitation success in the wet-dry tropics at Nabalco's bauxite mine, Gove, Australia and in Sierra Leone, West Africa. Field studies indicate that soil-plant-animal interactions are crucial in determining the recovery of disturbed land and that termites play an over-riding role in the process. Termites are seen as ecological indicators for successful soil and vegetation development in humid tropical environments. In land rehabilitation, termites help to create healthy, self-regulated vegetation systems that integrate with the surrounding landscapes and build structures and functions equal to those of the pre-disturbed system. They are reliable in signaling the health and stress factors of a system and provide a predictable response

  4. LBA-ECO ND-04 Termite Mound and Soil Characterization, Amazonas, Brazil: 1999-2001

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set reports the results of a comprehensive study of mound building termites at the Embrapa research station in the Distrito Agropecuario da...

  5. LBA-ECO ND-04 Termite Mound and Soil Characterization, Amazonas, Brazil: 1999-2001

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set reports the results of a comprehensive study of mound building termites at the Embrapa research station in the Distrito Agropecuario da SUFRAMA,...

  6. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Esa, Mohammad Faris Mohammad; Hassan, Ibrahim Haji [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia); Rahim, Faszly; Hanifah, Sharina Abu [School of Environmental Scieces and Natural Resources Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor (Malaysia)

    2015-09-25

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.

  7. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    International Nuclear Information System (INIS)

    Esa, Mohammad Faris Mohammad; Hassan, Ibrahim Haji; Rahim, Faszly; Hanifah, Sharina Abu

    2015-01-01

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration

  8. Characterization of magnetic material in the mound-building termite Macrotermes gilvus in Southeast Asia

    Science.gov (United States)

    Esa, Mohammad Faris Mohammad; Rahim, Faszly; Hassan, Ibrahim Haji; Hanifah, Sharina Abu

    2015-09-01

    Magnetic material such as magnetite are known as particles that respond to external magnetic field with their ferromagnetic properties as they are believed contribute to in responding to the geomagnetic field. These particles are used by terrestrial animals such as termites for navigation and orientation. Since our earth react as giant magnetic bar, the magnitude of this magnetic field present by intensity and direction (inclination and direction). The magnetic properties and presence of magnetite in termites Macrotermes gilvus, common mound-building termite were tested. M. gilvus termites was tested with a Vibrating Sample Magnetometer VSM to determine the magnetic properties of specimen. The crushed body sample was characterized with X-Ray Diffraction XRD to show the existent of magnetic material (magnetite) in the specimens. Results from VSM indicate that M. gilvus has diamagnetism properties. The characterization by XRD shows the existent of magnetic material in our specimen in low concentration.

  9. A phylogenetic community approach for studying termite communities in a West African savannah.

    Science.gov (United States)

    Hausberger, Barbara; Korb, Judith

    2015-10-01

    Termites play fundamental roles in tropical ecosystems, and mound-building species in particular are crucial in enhancing species diversity, from plants to mammals. However, it is still unclear which factors govern the occurrence and assembly of termite communities. A phylogenetic community approach and null models of species assembly were used to examine structuring processes associated with termite community assembly in a pristine savannah. Overall, we did not find evidence for a strong influence of interspecific competition or environmental filtering in structuring these communities. However, the presence of a single species, the mound-building termite Macrotermes bellicosus, left a strong signal on structuring and led to clustered communities of more closely related species. Hence, this species changes the assembly rules for a whole community. Our results show the fundamental importance of a single insect species for community processes, suggesting that more attention to insect species is warranted when developing conservation strategies. © 2015 The Author(s).

  10. Caste-Specific and Sex-Specific Expression of Chemoreceptor Genes in a Termite

    OpenAIRE

    Mitaka, Yuki; Kobayashi, Kazuya; Mikheyev, Alexander; Tin, Mandy M. Y.; Watanabe, Yutaka; Matsuura, Kenji

    2016-01-01

    The sophisticated colony organization of eusocial insects is primarily maintained through the utilization of pheromones. The regulation of these complex social interactions requires intricate chemoreception systems. The recent publication of the genome of Zootermopsis nevadensis opened a new avenue to study molecular basis of termite caste systems. Although there has been a growing interest in the termite chemoreception system that regulates their sophisticated caste system, the relationship ...

  11. Density-body mass relationships: Inconsistent intercontinental patterns among termite feeding-groups

    Science.gov (United States)

    Dahlsjö, Cecilia A. L.; Parr, Catherine L.; Malhi, Yadvinder; Meir, Patrick; Rahman, Homathevi; Eggleton, Paul

    2015-02-01

    Allometric relationships are useful for estimating and understanding resource distribution in assemblages with species of different masses. Damuth's law states that body mass scales with population density as M-0.75, where M is body mass and -0.75 is the slope. In this study we used Damuth's law (M-0.75) as a null hypothesis to examine the relationship between body mass and population density for termite feeding-groups in three different countries and regions (Cameroon, West Africa; Peru South America; and Malaysia SE Asia). We found that none of the feeding-groups had a relationship where M-0.75 while the data suggested that population density-body mass relationships for true soil-feeding termites in Cameroon (M2.7) and wood-feeding termites in Peru (M1.5) were significantly different from the expected values given by Damuth's law. The dominance of large-bodied true soil-feeding termites in Cameroon and the absence of fungus-growing termites from Peru suggest that these allometric patterns are due to heterogeneities in termite biogeographical evolution. Additionally, as these feeding-groups have higher population density than expected by their body masses it may be suggested that they also have a higher energy throughput than expected. The results presented here may be used to gain further understanding of resource distribution among termite feeding-groups across regions and an insight into the importance of evolutionary history and biogeography on allometric patterns. Further understanding of population density-body mass relationships in termite feeding-groups may also improve understanding of the role these feeding-groups play in ecosystem processes in different regions.

  12. Natalamycin A, an ansamycin from a termite-associated Streptomyces sp

    DEFF Research Database (Denmark)

    Kim, Ki Hyun; Ramadhar, Timothy R.; Beemelmanns, Christine

    2014-01-01

    We report a preliminary functional and complete structural characterization of a highly unusual geldanamycin analog, natalamycin A, that was isolated from Streptomyces strain M56 recovered from a South African nest of Macrotermes natalensis termites. Bioassay-guided fractionation based on antifun......We report a preliminary functional and complete structural characterization of a highly unusual geldanamycin analog, natalamycin A, that was isolated from Streptomyces strain M56 recovered from a South African nest of Macrotermes natalensis termites. Bioassay-guided fractionation based...

  13. Efficiency of fipronil in the control of the mound-building termite, Nasutitermes sp. (Isoptera: Termitidae) in sugarcane

    OpenAIRE

    Melo Fo, Reinaldo M.; Veiga, Antônio F.S.L.

    1998-01-01

    The efficiency of fipronil was evaluated in field conditions at different dosages and two formulations, against Nasutitermes sp. (isopteran: Termitidae) in sugarcane (Sccharum sp.). Termite mounds were indentified, measured and drilled until cellulosic chamber to allow insecticide application. Nine treatments were tested with ten replications in a completely randomized design and each termite mound considered as an experimental unit. after 50 days the termite mounds were opened and the mortal...

  14. Defining planktonic protist functional groups on mechanisms for energy and nutrient acquisition

    DEFF Research Database (Denmark)

    Mitra, Aditee; Flynn, Kevin J.; Tillmann, Urban

    2016-01-01

    Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic “phytoplankton” and phagotrophic...... “microzooplankton”. However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton...... for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope...

  15. Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling.

    Science.gov (United States)

    Liébana, Raquel; Arregui, Lucía; Belda, Ignacio; Gamella, Luis; Santos, Antonio; Marquina, Domingo; Serrano, Susana

    2015-01-01

    The yeast community was studied in a municipal full-scale membrane bioreactor wastewater treatment plant (MBR-WWTP). The unexpectedly high diversity of yeasts indicated that the activated sludge formed a suitable environment for them to proliferate, with cellular concentrations of 2.2 ± 0.8 × 10(3) CFU ml(-1). Sixteen species of seven genera were present in the biological reactor, with Ascomycetes being the most prevalent group (93%). Most isolates were able to grow in a synthetic wastewater medium, adhere to polyethylene surfaces, and develop biofilms of variable complexity. The relationship between yeast populations and the protists in the MBR-WWTP was also studied, revealing that some protist species preyed on and ingested yeasts. These results suggest that yeast populations may play a role in the food web of a WWTP and, to some extent, contribute to membrane biofouling in MBR systems.

  16. Cloning and expression of an iron-containing superoxide dismutase in the parasitic protist, Trichomonas vaginalis.

    Science.gov (United States)

    Viscogliosi, E; Delgado-Viscogliosi, P; Gerbod, D; Dauchez, M; Gratepanche, S; Alix, A J; Dive, D

    1998-04-01

    A superoxide dismutase (SOD) gene of the parasitic protist Trichomonas vaginalis was cloned, sequenced, expressed in Escherichia coli, and its gene product characterized. It is an iron-containing dimeric protein with a monomeric mass of 22,067 Da. Southern blots analyses suggested the presence of seven iron-containing (FeSOD) gene copies. Hydrophobic cluster analysis revealed some peculiarities in the 2D structure of the FeSOD from T. vaginalis and a strong structural conservation between prokaryotic and eukaryotic FeSODs. Phylogenetic reconstruction of the SOD sequences confirmed the dichotomy between FeSODs and manganese-containing SODs. FeSODs of protists appeared to group together with homologous proteobacterial enzymes suggesting a possible origin of eukaryotic FeSODs through an endosymbiotic event.

  17. Transport proteins of parasitic protists and their role in nutrient salvage.

    Science.gov (United States)

    Dean, Paul; Major, Peter; Nakjang, Sirintra; Hirt, Robert P; Embley, T Martin

    2014-01-01

    The loss of key biosynthetic pathways is a common feature of important parasitic protists, making them heavily dependent on scavenging nutrients from their hosts. This is often mediated by specialized transporter proteins that ensure the nutritional requirements of the parasite are met. Over the past decade, the completion of several parasite genome projects has facilitated the identification of parasite transporter proteins. This has been complemented by functional characterization of individual transporters along with investigations into their importance for parasite survival. In this review, we summarize the current knowledge on transporters from parasitic protists and highlight commonalities and differences in the transporter repertoires of different parasitic species, with particular focus on characterized transporters that act at the host-pathogen interface.

  18. Protists from a sewage‐contaminated aquifer on cape cod, Massachusetts

    Science.gov (United States)

    Novarino, Gianfranco; Warren, Alan; Kinner, Nancy E.; Harvey, Ronald W.

    1994-01-01

    Several species of flagellates (genera Bodo, Cercomonas, Cryptaulax, Cyathomonas, Goniomonas, Spumella) have been identified in cultures from a plume of organic contamination (treated sewage effluent) within an aquifer on Cape Cod, Massachusetts. Amoebae and numerous unidentifiable 2‐ to 3‐μm flagellates have also been observed. As a rule, flagellates were associated with solid surfaces, or were capable of temporary surface attachment, corroborating earlier observations from in situ and column transport experiments suggesting that protists in the Massachusetts aquifer have a high propensity for association with sediment grain surfaces. Based on the fact that cultures from the uncontaminated part of the aquifer yielded only a few species of protists, it is hypothesized that the greater abundance and variety of food sources in the contaminant plume is capable of supporting a greater number of protistan species.

  19. New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists.

    Science.gov (United States)

    Docampo, Roberto; Jimenez, Veronica; Lander, Noelia; Li, Zhu-Hong; Niyogi, Sayantanee

    2013-01-01

    While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking. © 2013, Elsevier Inc. All Rights Reserved.

  20. New Insights into the Roles of Acidocalcisomes and the Contractile Vacuole Complex in Osmoregulation in Protists

    Science.gov (United States)

    Docampo, Roberto; Jimenez, Veronica; Lander, Noelia; Li, Zhu-Hong; Niyogi, Sayantanee

    2013-01-01

    While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking. PMID:23890380

  1. Temperature fluctuations inside savanna termite mounds: Do size and plant shade matter?

    Science.gov (United States)

    Ndlovu, M; Pérez-Rodríguez, A

    2018-05-01

    Mound building termites are key ecosystem engineers of subtropical savanna regions. Mounds allow termites to maintain suitable conditions for termite reproduction and food cultivation ('fungus gardens'). We studied how the internal mound temperature of Macrotermes natalensis, a dominant mound-building termite of the subtropical savanna of southern Africa, responds to a number of environmental variables. We used general additive mixed models (GAMM) to determine how external temperature, mound size (volume) and the amount of vegetation shade affects mound internal temperature over a 24-h period. Internal mound temperature varied daily following changes of the external temperature, although the range of variation was much smaller. Active termite mounds maintained a higher internal temperature than inactive ones, and mound activity reinforced the positive effect of mound size and moderated the negative effect of vegetation shade on internal temperatures. In turn, external temperature fluctuations equally affected active and inactive mounds. Large mounds maintained near optimal internal temperatures compared to smaller sized mounds. We therefore conclude that termite mound size is a stronger determinant of internal mound temperature stability compared to plant shade cover. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Large herbivores maintain termite-caused differences in herbaceous species diversity patterns.

    Science.gov (United States)

    Okullo, Paul; Moe, Stein R

    2012-09-01

    Termites and large herbivores affect African savanna plant communities. Both functional groups are also important for nutrient redistribution across the landscape. We conducted an experiment to study how termites and large herbivores, alone and in combination, affect herbaceous species diversity patterns in an African savanna. Herbaceous vegetation on large vegetated Macrotermes mounds (with and without large herbivores) and on adjacent savanna areas (with and without large herbivores) was monitored over three years in Lake Mburo National Park, Uganda. We found substantial differences in species richness, alpha diversity, evenness, and stability between termite mound herbaceous vegetation and adjacent savanna vegetation. Within months of fencing, levels of species richness, evenness, and stability were no longer significantly different between savanna and mounds. However, fencing reduced the cumulative number of species, particularly for forbs, of which 48% of the species were lost. Fencing increased the beta diversity (dissimilarity among plots) on the resource-poor (in terms of both nutrients and soil moisture) savanna areas, while it did not significantly affect beta diversity on the resource-rich termite mounds. While termites cause substantial heterogeneity in savanna vegetation, large herbivores further amplify these differences by reducing beta diversity on the savanna areas. Large herbivores are, however, responsible for the maintenance of a large number of forbs at the landscape level. These findings suggest that the mechanisms underlying the effects of termites and large herbivores on savanna plant communities scale up to shape community structure and dynamics at a landscape level.

  3. Monitoring Termite-Mediated Ecosystem Processes Using Moderate and High Resolution Satellite Imagery

    Science.gov (United States)

    Lind, B. M.; Hanan, N. P.

    2016-12-01

    Termites are considered dominant decomposers and prominent ecosystem engineers in the global tropics and they build some of the largest and architecturally most complex non-human-made structures in the world. Termite mounds significantly alter soil texture, structure, and nutrients, and have major implications for local hydrological dynamics, vegetation characteristics, and biological diversity. An understanding of how these processes change across large scales has been limited by our ability to detect termite mounds at high spatial resolutions. Our research develops methods to detect large termite mounds in savannas across extensive geographic areas using moderate and high resolution satellite imagery. We also investigate the effect of termite mounds on vegetation productivity using Landsat-8 maximum composite NDVI data as a proxy for production. Large termite mounds in arid and semi-arid Senegal generate highly reflective `mound scars' with diameters ranging from 10 m at minimum to greater than 30 m. As Sentinel-2 has several bands with 10 m resolution and Landsat-8 has improved calibration, higher radiometric resolution, 15 m spatial resolution (pansharpened), and improved contrast between vegetated and bare surfaces compared to previous Landsat missions, we found that the largest and most influential mounds in the landscape can be detected. Because mounds as small as 4 m in diameter are easily detected in high resolution imagery we used these data to validate detection results and quantify omission errors for smaller mounds.

  4. The impact of edge effect on termite community (Blattodea: Isoptera) in fragments of Brazilian Atlantic Rainforest.

    Science.gov (United States)

    Almeida, C S; Cristaldo, P F; Florencio, D F; Ribeiro, E J M; Cruz, N G; Silva, E A; Costa, D A; Araújo, A P A

    2017-01-01

    Habitat fragmentation is considered to be one of the biggest threats to tropical ecosystem functioning. In this region, termites perform an important ecological role as decomposers and ecosystem engineers. In the present study, we tested whether termite community is negatively affected by edge effects on three fragments of Brazilian Atlantic Rainforest. Termite abundance and vegetation structure were sampled in 10 transects (15 × 2 m), while termite richness, activity, and soil litter biomass were measured in 16 quadrants (5 × 2 m) at forest edge and interior of each fragment. Habitat structure (i.e. number of tree, diameter at breast height and soil litter biomass) did not differ between forest edge and interior of fragments. Termite richness, abundance and activity were not affected by edge effect. However, differences were observed in the β diversity between forest edge and interior as well as in the fragments sampled. The β diversity partitioning indicates that species turnover is the determinant process of termite community composition under edge effect. Our results suggest that conservation strategies should be based on the selection of several distinct sites instead of few rich sites (e.g. nesting).

  5. Saving the injured: Rescue behavior in the termite-hunting ant Megaponera analis.

    Science.gov (United States)

    Frank, Erik Thomas; Schmitt, Thomas; Hovestadt, Thomas; Mitesser, Oliver; Stiegler, Jonas; Linsenmair, Karl Eduard

    2017-04-01

    Predators of highly defensive prey likely develop cost-reducing adaptations. The ant Megaponera analis is a specialized termite predator, solely raiding termites of the subfamily Macrotermitinae (in this study, mostly colonies of Pseudocanthotermes sp.) at their foraging sites. The evolutionary arms race between termites and ants led to various defensive mechanisms in termites (for example, a caste specialized in fighting predators). Because M. analis incurs high injury/mortality risks when preying on termites, some risk-mitigating adaptations seem likely to have evolved. We show that a unique rescue behavior in M. analis , consisting of injured nestmates being carried back to the nest, reduces combat mortality. After a fight, injured ants are carried back by their nestmates; these ants have usually lost an extremity or have termites clinging to them and are able to recover within the nest. Injured ants that are forced experimentally to return without help, die in 32% of the cases. Behavioral experiments show that two compounds, dimethyl disulfide and dimethyl trisulfide, present in the mandibular gland reservoirs, trigger the rescue behavior. A model accounting for this rescue behavior identifies the drivers favoring its evolution and estimates that rescuing enables maintenance of a 28.7% larger colony size. Our results are the first to explore experimentally the adaptive value of this form of rescue behavior focused on injured nestmates in social insects and help us to identify evolutionary drivers responsible for this type of behavior to evolve in animals.

  6. Evolution of the protists and protistan parasites from the perspective of molecular systematics.

    Science.gov (United States)

    Sogin, M L; Silberman, J D

    1998-01-01

    Unlike prokaryotes, the Protista are rich in morphological and ultrastructure information. Their amazing phenotypic diversity permits assignment of many protists to cohesive phyletic assemblages but sometimes blurs relationships between major lineages. With the advent of molecular techniques, it became possible to test evolutionary hypotheses that were originally formulated according to shared phenotypic traits. More than any other gene family, studies of rRNAs changed our understanding of protist evolution. Stramenopiles (oomycetes, chrysophytes, phaeophytes, synurophytes, diatoms, xanthophytes, bicosoecids, slime nets) and alveolates (dinoflagellates, apicomplexans, ciliates) are two novel, complex evolutionary assemblages which diverged nearly simultaneously with animals, fungi, plants, rhodophytes, haptophytes and a myriad of independent amoeboid lineages. Their separation may have occurred one billion years ago and collectively these lineages make up the "crown" of the eukaryotic tree. Deeper branches in the eukaryotic tree show 16S-like rRNA sequence variation that is much greater than that observed within the Archaea and the Bacteria. A progression of independent protist branches, some as ancient as the divergence between the two prokaryotic domains, preceded the sudden radiation of "crown" groups. Trichomonads, diplomonads and Microsporidia are basal to all other eukaryotes included in rRNA studies. Together with pelobionts, oxymonads, retortamonads and hypermastigids, these amitochondriate taxa comprise the Archaezoa. This skeletal phylogeny suggested that early branching eukaryotes lacked mitochondria, peroxisomes and typical stacked Golgi dictyosomes. However, recent studies of heat shock proteins indicate that the first eukaryotes may have had mitochondria. When evaluated in terms of evolution of ultrastructure, lifestyles and other phenotypic traits, the rRNA phylogenies provide the most consistent of molecular trees. They permit identification of the

  7. Constructs and methods for genome editing and genetic engineering of fungi and protists

    Science.gov (United States)

    Hittinger, Christopher Todd; Alexander, William Gerald

    2018-01-30

    Provided herein are constructs for genome editing or genetic engineering in fungi or protists, methods of using the constructs and media for use in selecting cells. The construct include a polynucleotide encoding a thymidine kinase operably connected to a promoter, suitably a constitutive promoter; a polynucleotide encoding an endonuclease operably connected to an inducible promoter; and a recognition site for the endonuclease. The constructs may also include selectable markers for use in selecting recombinations.

  8. Cryptic infection of a broad taxonomic and geographic diversity of tadpoles by Perkinsea protists.

    Science.gov (United States)

    Chambouvet, Aurélie; Gower, David J; Jirků, Miloslav; Yabsley, Michael J; Davis, Andrew K; Leonard, Guy; Maguire, Finlay; Doherty-Bone, Thomas M; Bittencourt-Silva, Gabriela Bueno; Wilkinson, Mark; Richards, Thomas A

    2015-08-25

    The decline of amphibian populations, particularly frogs, is often cited as an example in support of the claim that Earth is undergoing its sixth mass extinction event. Amphibians seem to be particularly sensitive to emerging diseases (e.g., fungal and viral pathogens), yet the diversity and geographic distribution of infectious agents are only starting to be investigated. Recent work has linked a previously undescribed protist with mass-mortality events in the United States, in which infected frog tadpoles have an abnormally enlarged yellowish liver filled with protist cells of a presumed parasite. Phylogenetic analyses revealed that this infectious agent was affiliated with the Perkinsea: a parasitic group within the alveolates exemplified by Perkinsus sp., a "marine" protist responsible for mass-mortality events in commercial shellfish populations. Using small subunit (SSU) ribosomal DNA (rDNA) sequencing, we developed a targeted PCR protocol for preferentially sampling a clade of the Perkinsea. We tested this protocol on freshwater environmental DNA, revealing a wide diversity of Perkinsea lineages in these environments. Then, we used the same protocol to test for Perkinsea-like lineages in livers of 182 tadpoles from multiple families of frogs. We identified a distinct Perkinsea clade, encompassing a low level of SSU rDNA variation different from the lineage previously associated with tadpole mass-mortality events. Members of this clade were present in 38 tadpoles sampled from 14 distinct genera/phylogroups, from five countries across three continents. These data provide, to our knowledge, the first evidence that Perkinsea-like protists infect tadpoles across a wide taxonomic range of frogs in tropical and temperate environments, including oceanic islands.

  9. Apparent grazing losses of Labyrinthulomycetes protists in oceanic and coastal waters: An experimental elucidation

    Digital Repository Service at National Institute of Oceanography (India)

    Damare, V.S.; Raghukumar, S.

    et al. 1999; Calbet and Landry 2004). For instance, certain suspension-feeding zooplankton prefer protists in their diet (Stoecker and Capuzzo 1990). The no net grazing on Labyrinthulomycetes during other times might have been the result...-Ngando T, Desvilettes C, Bourdier G (2011) Food quality of anemophilous plant pollen for zooplankton. Limnol Oceanogr 56: 939-946. Munn C (2011) Marine Microbiology Ecology and Applications. 2nd Ed. Garland Science, Taylor & Francis Group, USA. Murrell...

  10. Genome Editing by CRISPR/Cas9: A Game Change in the Genetic Manipulation of Protists.

    Science.gov (United States)

    Lander, Noelia; Chiurillo, Miguel A; Docampo, Roberto

    2016-09-01

    Genome editing by CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated gene 9) system has been transformative in biology. Originally discovered as an adaptive prokaryotic immune system, CRISPR/Cas9 has been repurposed for genome editing in a broad range of model organisms, from yeast to mammalian cells. Protist parasites are unicellular organisms producing important human diseases that affect millions of people around the world. For many of these diseases, such as malaria, Chagas disease, leishmaniasis and cryptosporidiosis, there are no effective treatments or vaccines available. The recent adaptation of the CRISPR/Cas9 technology to several protist models will be playing a key role in the functional study of their proteins, in the characterization of their metabolic pathways, and in the understanding of their biology, and will facilitate the search for new chemotherapeutic targets. In this work we review recent studies where the CRISPR/Cas9 system was adapted to protist parasites, particularly to Apicomplexans and trypanosomatids, emphasizing the different molecular strategies used for genome editing of each organism, as well as their advantages. We also discuss the potential usefulness of this technology in the green alga Chlamydomonas reinhardtii. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  11. Direct Effects of Microalgae and Protists on Herring (Clupea harengus Yolk Sac Larvae.

    Directory of Open Access Journals (Sweden)

    Björn Illing

    Full Text Available This study investigated effects of microalgae (Rhodomonas baltica and heterotrophic protists (Oxyrrhis marina on the daily growth, activity, condition and feeding success of Atlantic herring (Clupea harengus larvae from hatch, through the end of the endogenous (yolk sac period. Yolk sac larvae were reared in the presence and absence of microplankton and, each day, groups of larvae were provided access to copepods. Larvae reared with microalgae and protists exhibited precocious (2 days earlier and ≥ 60% increased feeding incidence on copepods compared to larvae reared in only seawater (SW. In the absence and presence of microalgae and protists, life span and growth trajectories of yolk sac larvae were similar and digestive enzyme activity (trypsin and nutritional condition (RNA-DNA ratio markedly declined in all larvae directly after yolk sac depletion. Thus, microplankton promoted early feeding but was not sufficient to alter life span and growth during the yolk sac phase. Given the importance of early feeding, field programs should place greater emphasis on the protozooplankton-ichthyoplankton link to better understand match-mismatch dynamics and bottom-up drivers of year class success in marine fish.

  12. Effects of Hypoxia on the Phylogenetic Composition and Species Distribution of Protists in a Subtropical Harbor.

    Science.gov (United States)

    Rocke, Emma; Jing, Hongmei; Xia, Xiaomin; Liu, Hongbin

    2016-07-01

    Tolo Harbor, a subtropical semi-enclosed coastal water body, is surrounded by an expanding urban community, which contributes to large concentrations of nutrient runoff, leading to algal blooms and localized hypoxic episodes. Present knowledge of protist distributions in subtropical waters during hypoxic conditions is very limited. In this study, therefore, we combined parallel 454 pyrosequencing technology and denaturing gradient gel electrophoresis (DGGE) fingerprint analyses to reveal the protist community shifts before, during, and after a 2-week hypoxic episode during the summer of 2011. Hierarchical clustering for DGGE demonstrated similar grouping of hypoxic samples separately from oxic samples. Dissolved oxygen (DO) concentration and dissolved inorganic nitrogen:phosphate (DIN:PO4) concentrations significantly affected OTU distribution in 454 sequenced samples, and a shift toward a ciliate and marine alveolate clade II (MALV II) species composition occurred as waters shifted from oxic to hypoxic. These results suggest that protist community shifts toward heterotrophic and parasitic tendencies as well as decreased diversity and richness in response to hypoxic outbreaks.

  13. Kin Discrimination in Protists: From Many Cells to Single Cells and Backwards.

    Science.gov (United States)

    Paz-Y-Miño-C, Guillermo; Espinosa, Avelina

    2016-05-01

    During four decades (1960-1990s), the conceptualization and experimental design of studies in kin recognition relied on work with multicellular eukaryotes, particularly Unikonta (including invertebrates and vertebrates) and some Bikonta (including plants). This pioneering research had an animal behavior approach. During the 2000s, work on taxa-, clone- and kin-discrimination and recognition in protists produced genetic and molecular evidence that unicellular organisms (e.g. Saccharomyces, Dictyostelium, Polysphondylium, Tetrahymena, Entamoeba and Plasmodium) could distinguish between same (self or clone) and different (diverse clones), as well as among conspecifics of close or distant genetic relatedness. Here, we discuss some of the research on the genetics of kin discrimination/recognition and highlight the scientific progress made by switching emphasis from investigating multicellular to unicellular systems (and backwards). We document how studies with protists are helping us to understand the microscopic, cellular origins and evolution of the mechanisms of kin discrimination/recognition and their significance for the advent of multicellularity. We emphasize that because protists are among the most ancient organisms on Earth, belong to multiple taxonomic groups and occupy all environments, they can be central to reexamining traditional hypotheses in the field of kin recognition, reformulating concepts, and generating new knowledge. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  14. Direct Effects of Microalgae and Protists on Herring (Clupea harengus) Yolk Sac Larvae.

    Science.gov (United States)

    Illing, Björn; Moyano, Marta; Niemax, Jan; Peck, Myron A

    2015-01-01

    This study investigated effects of microalgae (Rhodomonas baltica) and heterotrophic protists (Oxyrrhis marina) on the daily growth, activity, condition and feeding success of Atlantic herring (Clupea harengus) larvae from hatch, through the end of the endogenous (yolk sac) period. Yolk sac larvae were reared in the presence and absence of microplankton and, each day, groups of larvae were provided access to copepods. Larvae reared with microalgae and protists exhibited precocious (2 days earlier) and ≥ 60% increased feeding incidence on copepods compared to larvae reared in only seawater (SW). In the absence and presence of microalgae and protists, life span and growth trajectories of yolk sac larvae were similar and digestive enzyme activity (trypsin) and nutritional condition (RNA-DNA ratio) markedly declined in all larvae directly after yolk sac depletion. Thus, microplankton promoted early feeding but was not sufficient to alter life span and growth during the yolk sac phase. Given the importance of early feeding, field programs should place greater emphasis on the protozooplankton-ichthyoplankton link to better understand match-mismatch dynamics and bottom-up drivers of year class success in marine fish.

  15. Evidence of Taxa-, Clone-, and Kin-discrimination in Protists: Ecological and Evolutionary Implications.

    Science.gov (United States)

    Espinosa, Avelina; Paz-Y-Miño-C, Guillermo

    2014-11-01

    Unicellular eukaryotes, or protists, are among the most ancient organisms on Earth. Protists belong to multiple taxonomic groups; they are widely distributed geographically and in all environments. Their ability to discriminate among con- and heterospecifics has been documented during the past decade. Here we discuss exemplar cases of taxa-, clone-, and possible kin-discrimination in five major lineages: Mycetozoa ( Dictyostelium , Polysphondylium ), Dikarya ( Saccharomyces ), Ciliophora ( Tetrahymena ), Apicomplexa ( Plasmodium ) and Archamoebae ( Entamoeba ). We summarize the proposed genetic mechanisms involved in discrimination-mediated aggregation (self versus different), including the csA , FLO and trg (formerly lag ) genes, and the Proliferation Activation Factors (PAFs), which facilitate clustering in some protistan taxa. We caution about the experimental challenges intrinsic to studying recognition in protists, and highlight the opportunities for exploring the ecology and evolution of complex forms of cell-cell communication, including social behavior, in a polyphyletic, still superficially understood group of organisms. Because unicellular eukaryotes are the evolutionary precursors of multicellular life, we infer that their mechanisms of taxa-, clone-, and possible kin-discrimination gave origin to the complex diversification and sophistication of traits associated with species and kin recognition in plants, fungi, invertebrates and vertebrates.

  16. Probing the evolution, ecology and physiology of marine protists using transcriptomics.

    Science.gov (United States)

    Caron, David A; Alexander, Harriet; Allen, Andrew E; Archibald, John M; Armbrust, E Virginia; Bachy, Charles; Bell, Callum J; Bharti, Arvind; Dyhrman, Sonya T; Guida, Stephanie M; Heidelberg, Karla B; Kaye, Jonathan Z; Metzner, Julia; Smith, Sarah R; Worden, Alexandra Z

    2017-01-01

    Protists, which are single-celled eukaryotes, critically influence the ecology and chemistry of marine ecosystems, but genome-based studies of these organisms have lagged behind those of other microorganisms. However, recent transcriptomic studies of cultured species, complemented by meta-omics analyses of natural communities, have increased the amount of genetic information available for poorly represented branches on the tree of eukaryotic life. This information is providing insights into the adaptations and interactions between protists and other microorganisms and macroorganisms, but many of the genes sequenced show no similarity to sequences currently available in public databases. A better understanding of these newly discovered genes will lead to a deeper appreciation of the functional diversity and metabolic processes in the ocean. In this Review, we summarize recent developments in our understanding of the ecology, physiology and evolution of protists, derived from transcriptomic studies of cultured strains and natural communities, and discuss how these novel large-scale genetic datasets will be used in the future.

  17. Characterizing ncRNAs in human pathogenic protists using high-throughput sequencing technology

    Directory of Open Access Journals (Sweden)

    Lesley Joan Collins

    2011-12-01

    Full Text Available ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, snoRNAs and long ncRNAs on a genomic scale making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases.

  18. Kin Discrimination in Protists: From Many Cells to Single Cells and Backwards1

    Science.gov (United States)

    Paz-y-Miño-C, Guillermo; Espinosa, Avelina

    2016-01-01

    During four decades (1960s to 1990s), the conceptualization and experimental design of studies in kin recognition relied on work with multicellular eukaryotes, particularly Unikonta (including invertebrates and vertebrates) and some Bikonta (including plants). This pioneering research had an animal behavior approach. During the 2000s, work on taxa-, clone- and kin-discrimination and recognition in protists produced genetic and molecular evidence that unicellular organisms (e.g. Saccharomyces, Dictyostelium, Polysphondylium, Tetrahymena, Entamoeba and Plasmodium) could distinguish between same (self or clone) and different (diverse clones), as well as among conspecifics of close or distant genetic relatedness. Here we discuss some of the research on the genetics of kin discrimination/recognition and highlight the scientific progress made by switching emphasis from investigating multicellular to unicellular systems (and backwards). We document how studies with protists are helping us to understand the microscopic, cellular origins and evolution of the mechanisms of kin discrimination/recognition and their significance for the advent of multicellularity. We emphasize that because protists are among the most ancient organisms on Earth, belong to multiple taxonomic groups and occupy all environments, they can be central to reexamining traditional hypotheses in the field of kin recognition, reformulating concepts, and generating new knowledge. PMID:26873616

  19. [Giant protists (xenophyophores and komokiaceans) from the Clarion-Clipperton ferromanganese nodule field (Eastern Pacific)].

    Science.gov (United States)

    Kamenskaia, O E; Mel'nik, V F; Gooday, A J

    2012-01-01

    Our previous investigations showed that giant protists (xenophyophores and komokiaceans) are one of the key groups in the deep-sea mega- and macrobenthos, dominating in density and biomass in some areas of the World Ocean. Analyses of 38600 seafloor photographs and fauna from 30 box-corers taken in the Russian Exploratory area at the Clarion-Clipperton Fracture Zone ferromanganese nodule field revealed a diverse and abundant fauna of these organisms. Xenophyophores were found on 70% of seafloor photographs. Their abundance averaged 1600 specimens per hectare, whereas abundance of the next common group, Actiniaria, did not exceed 170 specimens per hectare. The maximum abundance of xenophyophores was 12 specimens per m2 (equal to 120000 specimens per hectare). In the box-corers, xenophyophores were found in 30% of samples. The most common group in these samples was Komokiacea. They occurred in 100% of samples. It was shown earlier that abundance and species diversity of macro- and meiobenthos increased when xenophyophores and komokiaceans were present. On the Russian exploratory area, the giant protists structure benthic communities. Study of these protists is especially important in the light of mining planned in the deep sea and for understanding of recovery of benthic communities after mining. We have found 6 species of xenophyophores, 4 of them were new and 25 species of komokiaceans, most part of part of them was not known earlier.

  20. Characterizing ncRNAs in Human Pathogenic Protists Using High-Throughput Sequencing Technology

    Science.gov (United States)

    Collins, Lesley Joan

    2011-01-01

    ncRNAs are key genes in many human diseases including cancer and viral infection, as well as providing critical functions in pathogenic organisms such as fungi, bacteria, viruses, and protists. Until now the identification and characterization of ncRNAs associated with disease has been slow or inaccurate requiring many years of testing to understand complicated RNA and protein gene relationships. High-throughput sequencing now offers the opportunity to characterize miRNAs, siRNAs, small nucleolar RNAs (snoRNAs), and long ncRNAs on a genomic scale, making it faster and easier to clarify how these ncRNAs contribute to the disease state. However, this technology is still relatively new, and ncRNA discovery is not an application of high priority for streamlined bioinformatics. Here we summarize background concepts and practical approaches for ncRNA analysis using high-throughput sequencing, and how it relates to understanding human disease. As a case study, we focus on the parasitic protists Giardia lamblia and Trichomonas vaginalis, where large evolutionary distance has meant difficulties in comparing ncRNAs with those from model eukaryotes. A combination of biological, computational, and sequencing approaches has enabled easier classification of ncRNA classes such as snoRNAs, but has also aided the identification of novel classes. It is hoped that a higher level of understanding of ncRNA expression and interaction may aid in the development of less harsh treatment for protist-based diseases. PMID:22303390

  1. Microbial community structure in the gut of the New Zealand insect Auckland tree weta (Hemideina thoracica).

    Science.gov (United States)

    Waite, David W; Dsouza, Melissa; Biswas, Kristi; Ward, Darren F; Deines, Peter; Taylor, Michael W

    2015-05-01

    The endemic New Zealand weta is an enigmatic insect. Although the insect is well known by its distinctive name, considerable size, and morphology, many basic aspects of weta biology remain unknown. Here, we employed cultivation-independent enumeration techniques and rRNA gene sequencing to investigate the gut microbiota of the Auckland tree weta (Hemideina thoracica). Fluorescence in situ hybridisation performed on different sections of the gut revealed a bacterial community of fluctuating density, while rRNA gene-targeted amplicon pyrosequencing revealed the presence of a microbial community containing high bacterial diversity, but an apparent absence of archaea. Bacteria were further studied using full-length 16S rRNA gene sequences, with statistical testing of bacterial community membership against publicly available termite- and cockroach-derived sequences, revealing that the weta gut microbiota is similar to that of cockroaches. These data represent the first analysis of the weta microbiota and provide initial insights into the potential function of these microorganisms.

  2. Conservation of Protists: The Krauthügel Pond in Austria

    Directory of Open Access Journals (Sweden)

    Wilhelm Foissner

    2013-05-01

    Full Text Available Although constituting more than 100,000 described species, protists are virtually ignored within the arena of biodiversity conservation. One reason is the widespread belief that the majority of protists have cosmopolitan distributions, in contrast to the highly hetereogenous biogeography of the “mega-Metazoa”. However, modern research reveals that about one third of the known protists have restricted distributions, which endorses their conservation, at least in special cases. Here, we report what probably ranks as the first successful conservation intervention focused directly on known protist diversity. It is justified by unique species, type localities, and landscape maintenance as evidence for legislation. The protected habitat comprises an ephemeral pond, which is now a “Natural Monument” for ciliated protozoa. This wetland occupies a natural depression on the Krauthügel (“cabbage hill” south of the fortress of Salzburg City. When filled, the claviform pond has a size of ~30 × 15 m and a depth rarely surpassing 30 cm. Water is present only for some days or weeks, depending on heavy and/or prolonged rain. The pond occupied an agricultural field where root and leafy vegetables were cultivated for possibly more than 200 years. In the 1960s, this area became a grassland utilized as an autumn pasture, but was abandoned in the 1990s. Repeated sampling between 1982 and 2012 recovered a total of at least 150 ciliate taxa, of which 121 were identified to species level. Eight species were new to science, and an additional 10 poorly known species were reinvestigated and neotypified with populations from the Krauthügel pond. Both endemism and type localities justify the argument that the “integrative approach” in biodiversity and conservation issues should include protists and micro-metazoans. We argue that Krauthügel holds a unique reference node for biodiversity inventories to obtain the baseline knowledge—which is the

  3. Gut Microbiota and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Kyu Yeon Hur

    2015-06-01

    Full Text Available Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders.

  4. Mitochondrial Phylogenomics Resolves the Global Spread of Higher Termites, Ecosystem Engineers of the Tropics.

    Science.gov (United States)

    Bourguignon, Thomas; Lo, Nathan; Šobotník, Jan; Ho, Simon Y W; Iqbal, Naeem; Coissac, Eric; Lee, Maria; Jendryka, Martin M; Sillam-Dussès, David; Krížková, Barbora; Roisin, Yves; Evans, Theodore A

    2017-03-01

    The higher termites (Termitidae) are keystone species and ecosystem engineers. They have exceptional biomass and play important roles in decomposition of dead plant matter, in soil manipulation, and as the primary food for many animals, especially in the tropics. Higher termites are most diverse in rainforests, with estimated origins in the late Eocene (∼54 Ma), postdating the breakup of Pangaea and Gondwana when most continents became separated. Since termites are poor fliers, their origin and spread across the globe requires alternative explanation. Here, we show that higher termites originated 42-54 Ma in Africa and subsequently underwent at least 24 dispersal events between the continents in two main periods. Using phylogenetic analyses of mitochondrial genomes from 415 species, including all higher termite taxonomic and feeding groups, we inferred 10 dispersal events to South America and Asia 35-23 Ma, coinciding with the sharp decrease in global temperature, sea level, and rainforest cover in the Oligocene. After global temperatures increased, 23-5 Ma, there was only one more dispersal to South America but 11 to Asia and Australia, and one dispersal back to Africa. Most of these dispersal events were transoceanic and might have occurred via floating logs. The spread of higher termites across oceans was helped by the novel ecological opportunities brought about by environmental and ecosystem change, and led termites to become one of the few insect groups with specialized mammal predators. This has parallels with modern invasive species that have been able to thrive in human-impacted ecosystems. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. A Laboratory Maintenance Regime for a Fungus-Growing Termite Macrotermes gilvus (Blattodea: Termitidae).

    Science.gov (United States)

    Lee, Ching-Chen; Lee, Chow-Yang

    2015-06-01

    The optimum maintenance conditions of the fungus-growing termite, Macrotermes gilvus (Hagen) (Blattodea: Termitidae), in the laboratory were studied. Termites were kept on a matrix of moist sand and with fungus comb as food. The survival of groups of termites was measured when maintained at different population densities by changing group size and container volume. Larger groups (≥0.6 g) were more vigorous and had significant higher survival rates than smaller groups (≤0.3 g). The population density for optimal survival of M. gilvus is 0.0025 g per container volume (ml) or 0.0169 g per matrix volume (cm(3)), i.e., 1.2 g of termites kept in a 480-ml container filled with 71 cm3 of sand. In termite groups of smaller size (i.e., 0.3 g) or groups maintained in smaller container (i.e., 100 ml) the fungus comb was overgrown with Xylaria spp., and subsequently all termites died within the study period. The insufficient number of workers for regulating the growth of unwanted fungi other than Termitomyces spp. in the fungus comb is the most likely reason. Unlike some other mound-building termite species, M. gilvus showed satisfactory survival when maintained in non-nutritious matrix (i.e., sand). There was no significant difference in the survival rate between different colonies of M. gilvus (n=5), with survival in the range of 78.5-84.4% after 4 wk. Advances in the maintenance of Macrotermes will enable researchers to study with more biological relevance many aspects of the biology, behavior, and management of this species. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Comparative gut physiology symposium: The microbe-gut-brain axis

    Science.gov (United States)

    The Comparative Gut Physiology Symposium titled “The Microbe-Gut-Brain Axis” was held at the Joint Annual Meeting of the American Society of Animal Science and the American Dairy Science Association on Thursday, July 21, 2016, in Salt Lake City Utah. The goal of the symposium was to present basic r...

  7. Consistent patterns of high alpha and low beta diversity in tropical parasitic and free-living protists.

    Science.gov (United States)

    Lentendu, Guillaume; Mahé, Frédéric; Bass, David; Rueckert, Sonja; Stoeck, Thorsten; Dunthorn, Micah

    2018-05-30

    Tropical animals and plants are known to have high alpha diversity within forests, but low beta diversity between forests. By contrast, it is unknown whether microbes inhabiting the same ecosystems exhibit similar biogeographic patterns. To evaluate the biogeographies of tropical protists, we used metabarcoding data of species sampled in the soils of three lowland Neotropical rainforests. Taxa-area and distance-decay relationships for three of the dominant protist taxa and their subtaxa were estimated at both the OTU and phylogenetic levels, with presence-absence and abundance-based measures. These estimates were compared to null models. High local alpha and low regional beta diversity patterns were consistently found for both the parasitic Apicomplexa and the largely free-living Cercozoa and Ciliophora. Similar to animals and plants, the protists showed spatial structures between forests at the OTU and phylogenetic levels, and only at the phylogenetic level within forests. These results suggest that the biogeographies of macro- and micro-organismal eukaryotes in lowland Neotropical rainforests are partially structured by the same general processes. However, and unlike the animals and plants, the protist OTUs did not exhibit spatial structures within forests, which hinders our ability to estimate the local and regional diversity of protists in tropical forests. © 2018 John Wiley & Sons Ltd.

  8. Responses of protists with different feeding habits to the changes of activated sludge conditions: a study based on biomass data.

    Science.gov (United States)

    Hu, Bo; Qi, Rong; An, Wei; Yang, Min

    2012-01-01

    Changes of protists, which were categorized into different functional groups primarily according to their feeding habits, in two full-scale municipal wastewater treatment systems experiencing sludge bulking were investigated over a period of 14 months. Protist biomass represented 3.7% to 5.2% of total biomass on average under normal sludge conditions, and the percentage increased significantly (p protists. On the other hand, the bactivorous protists represented more than 96% of total protist biomass, and the biomass of this group, particularly the attached ciliates, increased significantly (p < 0.05) when sludge bulking occurred. The significant increase of the attached ciliates may have possibly facilitated the growth of filamentous bacteria through selectively preying on non-filamentous bacteria and further exacerbated sludge bulking. The redundancy analysis and correlation analysis results showed that the biomass changes of the attached ciliates were primarily related to the sludge volume index and to some extent related to five-day biochemical oxygen demand loading and hydraulic retention time.

  9. Intermediary metabolism in protists: a sequence-based view of facultative anaerobic metabolism in evolutionarily diverse eukaryotes.

    Science.gov (United States)

    Ginger, Michael L; Fritz-Laylin, Lillian K; Fulton, Chandler; Cande, W Zacheus; Dawson, Scott C

    2010-12-01

    Protists account for the bulk of eukaryotic diversity. Through studies of gene and especially genome sequences the molecular basis for this diversity can be determined. Evident from genome sequencing are examples of versatile metabolism that go far beyond the canonical pathways described for eukaryotes in textbooks. In the last 2-3 years, genome sequencing and transcript profiling has unveiled several examples of heterotrophic and phototrophic protists that are unexpectedly well-equipped for ATP production using a facultative anaerobic metabolism, including some protists that can (Chlamydomonas reinhardtii) or are predicted (Naegleria gruberi, Acanthamoeba castellanii, Amoebidium parasiticum) to produce H(2) in their metabolism. It is possible that some enzymes of anaerobic metabolism were acquired and distributed among eukaryotes by lateral transfer, but it is also likely that the common ancestor of eukaryotes already had far more metabolic versatility than was widely thought a few years ago. The discussion of core energy metabolism in unicellular eukaryotes is the subject of this review. Since genomic sequencing has so far only touched the surface of protist diversity, it is anticipated that sequences of additional protists may reveal an even wider range of metabolic capabilities, while simultaneously enriching our understanding of the early evolution of eukaryotes. Copyright © 2010 Elsevier GmbH. All rights reserved.

  10. Plant Vegetative and Animal Cytoplasmic Actins Share Functional Competence for Spatial Development with Protists[W][OA

    Science.gov (United States)

    Kandasamy, Muthugapatti K.; McKinney, Elizabeth C.; Roy, Eileen; Meagher, Richard B.

    2012-01-01

    Actin is an essential multifunctional protein encoded by two distinct ancient classes of genes in animals (cytoplasmic and muscle) and plants (vegetative and reproductive). The prevailing view is that each class of actin variants is functionally distinct. However, we propose that the vegetative plant and cytoplasmic animal variants have conserved functional competence for spatial development inherited from an ancestral protist actin sequence. To test this idea, we ectopically expressed animal and protist actins in Arabidopsis thaliana double vegetative actin mutants that are dramatically altered in cell and organ morphologies. We found that expression of cytoplasmic actins from humans and even a highly divergent invertebrate Ciona intestinalis qualitatively and quantitatively suppressed the root cell polarity and organ defects of act8 act7 mutants and moderately suppressed the root-hairless phenotype of act2 act8 mutants. By contrast, human muscle actins were unable to support prominently any aspect of plant development. Furthermore, actins from three protists representing Choanozoa, Archamoeba, and green algae efficiently suppressed all the phenotypes of both the plant mutants. Remarkably, these data imply that actin’s competence to carry out a complex suite of processes essential for multicellular development was already fully developed in single-celled protists and evolved nonprogressively from protists to plants and animals. PMID:22589468

  11. A Preliminary Study on Elimination of Colonies of the Mound Building Termite Macrotermes gilvus (Hagen Using a Chlorfluazuron Termite Bait in the Philippines

    Directory of Open Access Journals (Sweden)

    Partho Dhang

    2011-11-01

    Full Text Available The effectiveness of a chlorfluazuron termite bait in eliminating colonies of the termite species Macrotermes gilvus (Hagen was evaluated under field conditions. Three active termite mounds were chosen for this study, two acted as test mounds and the other as the control. Four In-Ground Stations (IGS were installed around each mound. Interception occurred almost immediately in all the stations, which were subsequently baited. The control mound was fed a bait matrix lacking the active ingredient. Stations were re-baited every 2 weeks for 10–12 weeks until bait consumption ceased in the test mounds. The mounds were left undisturbed for four more weeks before being destructively sampled. The desiccated remains of workers, soldiers, late instars and queen were found upon sampling the treated mounds. A few live termites were located in one treated mound but were darkly pigmented indicating bait consumption. The control mound remained healthy and did not show any visible sign of negative impact. The bait successfully suppressed or eliminated both M. gilvus colonies within 16 weeks from commencement of feeding.

  12. Termite mounds as hot spots of nitrous oxide emissions in South-Sudanian savanna of Burkina Faso (West Africa)

    Science.gov (United States)

    Brümmer, Christian; Papen, Hans; Wassmann, Reiner; Brüggemann, Nicolas

    2009-05-01

    Despite a considerable knowledge of the significant role of termites in the global methane budget, very little is known about their contribution to the global nitrous oxide (N2O) budget. Release of N2O from termite (Cubitermes fungifaber) mounds was measured at a natural savanna site in the southwest of Burkina Faso from May to September 2006. Termite N2O emissions were around 20 μg N2O-N m-2 h-1 at the end of the dry season, and up to two orders of magnitude higher than N2O emissions from the surrounding termite-free soil after the onset of the rainy season. The average N2O emission rate from termite mounds during the observation period was 204 μg N2O-N m-2 h-1, and termite mounds contributed 3.0% to total N2O emissions from this savanna ecosystem. However, in other tropical terrestrial ecosystems with other termite species and/or higher termite density this share might be significantly higher.

  13. A Preliminary Study on Termite Mound Soil as Agricultural Soil for Crop Production in South West, Nigeria

    Directory of Open Access Journals (Sweden)

    O. E. Omofunmi

    2017-08-01

    Full Text Available It is a popular belief of the people in the Southern region of Nigeria that a land infested with termite usually brings prosperity to the land owner regardless of the type of its usage. Therefore, the present study assessed termite mounds soil properties which are important to crop production. Two soil samples were collected and their physical and chemical properties determined in accordance with American Public Health Association (APHA, 2005. Data were analyzed using descriptive statistics. The textural classes showed that the termite mound soil was sand clay loam while the surrounding soil was clay loam. This results revealed that: Termites’ activity induced significant chemical changes in the soil possible due to the materials used in building their nests. There was increase the concentrations of nitrogen, phosphorus, Potassium, calcium and magnesium higher in the termite’s mounds, while the micro-nutrients (zinc, iron and copper except sulphur and manganese lower in the soil infested by termites. There were significant differences (p ≥ 0.05 between termite mound soil and surrounding soil. It showed highly positive correlation between termite mound and surrounding soil (r= 0.92. The concentration of the soil properties around the termite mound are within the range of soil nutrients suitable for arable crop production. Termite mound soil is recommended to be used as an alternative to local farmers who cannot afford to buy expensive inorganic fertilizers.

  14. Effects of erosion from mounds of different termite genera on distinct functional grassland types in an African savannah

    NARCIS (Netherlands)

    Gosling, Cleo M.; Cromsigt, Joris P. G. M.; Mpanza, Nokukhanya; Olff, Han

    A key aspect of savannah vegetation heterogeneity is mosaics formed by two functional grassland types, bunch grasslands, and grazing lawns. We investigated the role of termites, important ecosystem engineers, in creating high-nutrient patches in the form of grazing lawns. Some of the ways termites

  15. Phylogenetic analyses of Podaxis specimens from Southern Africa reveal hidden diversity and new insights into associations with termites

    NARCIS (Netherlands)

    Conlon, Benjamin H.; Beer, de Z.W.; Fine Licht, De Henrik H.; Aanen, Duur K.; Poulsen, Michael

    2016-01-01

    Although frequently found on mounds of the grass-cutting termite genus . Trinervitermes, virtually nothing is known about the natural history of the fungal genus . Podaxis (Agaricaceae) nor why it associates with termite mounds. More than 40 species of this secotioid genus have been described

  16. Seasonal response of feeding, differentiation, and growth in the eastern subterranean termite Reticulitermes flavipes (Kollar) in Wisconsin

    Science.gov (United States)

    Rachel Ann Arango; Frederick Green; Glenn R. Esenther

    2007-01-01

    In termites, differentiation plasticity in undifferentiated Reticulitermes progresses with growth stages from larvae to workers, which may then differentiate into soldiers, winged nymphs, or neotenics. Although studies have been done on seasonality of the termite life cycle, data appears to vary from location to location. Reticulitermes populations in Wisconsin appear...

  17. Flipped GUT inflation

    OpenAIRE

    Ellis, John; Gonzalo, Tomás E.; Harz, Julia; Huang, Wei-Chih

    2015-01-01

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)×U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model paramet...

  18. Metagenomic Surveys of Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Rahul Shubhra Mandal

    2015-06-01

    Full Text Available Gut microbiota of higher vertebrates is host-specific. The number and diversity of the organisms residing within the gut ecosystem are defined by physiological and environmental factors, such as host genotype, habitat, and diet. Recently, culture-independent sequencing techniques have added a new dimension to the study of gut microbiota and the challenge to analyze the large volume of sequencing data is increasingly addressed by the development of novel computational tools and methods. Interestingly, gut microbiota maintains a constant relative abundance at operational taxonomic unit (OTU levels and altered bacterial abundance has been associated with complex diseases such as symptomatic atherosclerosis, type 2 diabetes, obesity, and colorectal cancer. Therefore, the study of gut microbial population has emerged as an important field of research in order to ultimately achieve better health. In addition, there is a spontaneous, non-linear, and dynamic interaction among different bacterial species residing in the gut. Thus, predicting the influence of perturbed microbe–microbe interaction network on health can aid in developing novel therapeutics. Here, we summarize the population abundance of gut microbiota and its variation in different clinical states, computational tools available to analyze the pyrosequencing data, and gut microbe–microbe interaction networks.

  19. Data from: Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa

    NARCIS (Netherlands)

    Geisen, Stefan; Laros, I.; Vizcaino, A.; Bonkowski, M.; Groot, de G.A.

    2015-01-01

    Protists, the most diverse eukaryotes, are largely considered to be free-living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High-throughput sequencing (HTS) approaches now commonly replace cultivation-based approaches in studying soil protists, but insights into

  20. GUT Scale Fermion Mass Ratios

    International Nuclear Information System (INIS)

    Spinrath, Martin

    2014-01-01

    We present a series of recent works related to group theoretical factors from GUT symmetry breaking which lead to predictions for the ratios of quark and lepton Yukawa couplings at the unification scale. New predictions for the GUT scale ratios y μ /y s , y τ /y b and y t /y b in particular are shown and compared to experimental data. For this comparison it is important to include possibly large supersymmetric threshold corrections. Due to this reason the structure of the fermion masses at the GUT scale depends on TeV scale physics and makes GUT scale physics testable at the LHC. We also discuss how this new predictions might lead to predictions for mixing angles by discussing the example of the recently measured last missing leptonic mixing angle θ 13 making this new class of GUT models also testable in neutrino experiments

  1. First Foods and Gut Microbes

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Bahl, Martin Iain; Michaelsen, Kim F.

    2017-01-01

    , are generally recognized to be of particular importance for the healthy development of children. While dietary changes are known to affect the adult gut microbiota, there is a gap in our knowledge on how the introduction of new dietary components into the diet of infants/young children affects the gut...... microbiota development. This perspective paper summarizes the currently very few studies addressing the effects of complementary diet on gut microbiota, and highlights the recent finding that transition to family foods greatly impacts the development of gut microbial diversity. Further, we discuss potential......(breast/formula). Consequently, the neonatal period and early infancy has attracted much attention. However, after this first period the gut microbial composition continues to develop until the age of 3 years, and these 1st years have been designated "a window of opportunity" for microbial modulation. The beginning and end...

  2. NATURAL RESISTANCE OF SEVEN WOODS TO XYLOPHOGOUS FUNGI AND TERMITES UNDER LABORATORY CONDITION

    Directory of Open Access Journals (Sweden)

    Juarez Benigno Paes

    2007-06-01

    Full Text Available This research aimed at evaluating the natural resistance of seven woods to xylophogous fungi and subterranean termites under laboratory assay. The studied woods were Leucaena leucocephala, Cordia trichotoma, Mimosa tenuiflora, Croton sonderianus, Mimosa caesalpiniifolia, Azadirachta indica and Tectona grandis. Test samples measuring 2.54 x 2.00 x 1.00 cm (fungi and 2.54 x 2.00 x 0.64 cm (termites, with larger dimensions in fiber direction were obtained in four positions in pith-to-bark direction. The samples were submitted by 98 days to action of Postia placenta and Polyporus fumosus fungi or 28 days to the termite Nasutitermes corniger action. To fungi, the Mimosa tenuiflora and Mimosa caesalpiniifolia woods were the more resistant and those of Azadirachta indica and Croton sonderianus the less resistant. The fungus Postia placenta attacked more severely the tested woods. To termites, the Mimosa tenuiflora, Cordia trichotoma, and Mimosa caesalpiniifolia were the most resistant and the Leucaena leucocephala the less resistant. The coming wood of external section of log were the more attacked. To fungi, there was an inverse relationship between the density and the loss of mass. Already for the termites, there was not relationship between the resistance and the density of the wood.

  3. Clay preference and particle transport behavior of Formosan subterranean termites (Isoptera: Rhinotermitidae): a laboratory study.

    Science.gov (United States)

    Wang, Cai; Henderson, Gregg

    2014-12-01

    Although preference and utilization of clay have been studied in many higher termites, little attention has been paid to lower termites, especially subterranean termites. The Formosan subterranean termite, Coptotermes formosanus Shiraki, can modify its habitat by using clay to fill tree cavities. Here, the biological significance of clay on C. formosanus was investigated. Choice tests showed that significantly more termites aggregated in chambers where clay blocks were provided, regardless of colony group, observation period, or nutritional condition (fed or starved). No-choice tests showed that clay had no observable effect on survivorship, live or dry biomass, water content, and tunneling activity after 33-35 d. However, clay appeared to significantly decrease filter paper consumption (dry weight loss). Active particle (sand, paper, and clay) transport behavior was observed in both choice and no-choice tests. When present, clay was preferentially spread on the substrate, attached to the smooth surfaces of the containers, and used to line sand tunnels. Mechanisms and potential application of clay attraction are discussed. © 2013 Institute of Zoology, Chinese Academy of Sciences.

  4. Genes underlying reproductive division of labor in termites, with comparisons to social Hymenoptera

    Directory of Open Access Journals (Sweden)

    Judith eKorb

    2016-04-01

    Full Text Available All social insects are characterized by a reproductive division of labor. Within a colony only a few individuals reproduce (queens and in termites, also a king while the large majority (workers and soldiers forgo reproduction, at least temporarily. The evolution of such reproductive altruism can ultimately be explained by inclusive fitness theory. Here, I will review the proximate genetic mechanisms underlying this altruism in termites. As social cockroaches they evolved eusociality independently from the social Hymenoptera, which makes them interesting test cases to look for common underlying mechanisms of eusociality and lineage specific idiosyncrasies. First, I will provide a summary of the genes and their function that have been identified to underlie reproductive division of labor - so called 'queen genes,' - in the drywood termite Cryptotermes secundus, an emerging model to study termite social evolution. Second, I outline how widespread these queen genes are across the termite phylogeny, using also evidence from recent genome analyses. I will provide hypotheses about the evolutionary origin of these queen genes, aiming to link proximate mechanisms with ultimate functions. Finally, I will draw comparisons to social Hymenoptera to indicate potential common underpinnings that warrant further testing.

  5. First forensic records of termite activity on non-fossilized human bones in Brazil

    Directory of Open Access Journals (Sweden)

    R. A. Queiroz

    Full Text Available Abstract The aim of this study was to describe the first records of termite activity on non-fossilized human bones in Brazil. The cases reported in this study resulted from forensic analysis of six human skeletons found in northeastern Brazil between 2012 and 2014. Traces of tunnels and nests commonly produced by termites were found on several human bone surfaces as well as the specimens and characteristic signs of osteophagic activity. In four cases, the species were identified: Amitermes amifer Silvestri, 1901, Nasutitermes corniger (Motschulsky, 1855 (on two skeletons, and Microcerotermes indistinctus Mathews, 1977. In two other cases, the activity of termites on bone surfaces was evidenced by remains of nests and tunnels produced by these insects. At least in the samples of human remains available for this report, the number of termites collected was greater on bones found during autumn, the rainy season in the Northeast of Brazil. The human bones examined showed termites like insects with lots of strength at bone degradation, capable of continuing the process of decomposition of human remains even in completely skeletonized bodies.

  6. Potential of kaolin-based particle film barriers for Formosan subterranean termite (Isoptera: Rhinotermitidae) control

    Science.gov (United States)

    Wiltz, B.A.; Woodson, W.D.; Puterka, G.J.

    2010-01-01

    Effects of three particle film products on Formosan subterranean termites, Coptotermes formosanus Shiraki, were evaluated in feeding, tunneling, and contact assays. The particle films, hydrophobic M96-018 and hydrophilic Surround and Surround WP are based on the inert clay mineral kaolin. In 2-week long no-choice feeding tests, significant mortality occurred only with M96-018-coated wood. When a choice was provided, M96-018 and Surround were consumed at higher rates than untreated wood. Surround WP did not differ from controls in either test. In the tunneling assay termites were given the option of crossing a kaolin-sand mixture to reach an alternate food source. After 3-weeks, rates of 1% and 5% M96-018 provided an effective barrier to Formosan termite tunneling, while termites were not stopped by rates as high as 20% Surround and Surround WP. Dust treatments of all three formulations caused significant increases in mortality within 24 h, with mortality rates ranging from 72.0 - 97.3% within 72 h of treatment. The particle films were most effective when moisture levels were low, suggesting that desiccation was the mechanism for mortality. All particle films showed potential for use in above ground applications while hydrophobic M06-018 has the most potential as a soil barrier to subterranean termites.

  7. Termite assemblages in five semideciduous Atlantic Forest fragments in the northern coastland limit of the biome

    Directory of Open Access Journals (Sweden)

    Heitor Bruno de Araújo Souza

    2012-03-01

    Full Text Available Termites are abundant organisms in tropical ecosystems and strongly influence the litter decomposition and soil formation. Despite their importance, few studies about their assemblage structures have been made in Brazilian Atlantic Forest fragments, especially in the area located north of the São Francisco River. This study aims to analyze the assemblage composition of five Atlantic Forest fragments located in the northern biome limit along the Brazilian coast. A standardized sampling protocol of termites was applied in each fragment. Thirty-three termite species belonging to twenty genera and three families were found in the forest fragments. The wood-feeder group was dominant both concerning to species richness and number of encounters in all areas. In sites northern to 7°S, there is an evident simplification of the termite assemblage composition regarding species richness and number of encounters by feeding group. This fact is apparently due to a higher sandy level in soils and to semideciduous character of the vegetation in the northern fragments. Thus, even on the north of São Francisco River, termite biodiversity is heterogeneously spread with highest density of species in the portion between 07°S and São Francisco River mouth (10°29'S.

  8. Ant and termite mound coinhabitants in the wetlands of Santo Antonio da Patrulha, Rio Grande do Sul, Brazil

    Directory of Open Access Journals (Sweden)

    E. Diehl

    Full Text Available This paper reports on ant and termite species inhabiting the mounds (murundus found in three wetland sites in Santo Antonio da Patrulha. Ants and termites were found in 100% of the mounds of two sites and in 20% of those in the third site. Colonies of Camponotus fastigatus were found inhabiting all the mounds, while colonies of Brachymyrmex sp., Linepithema sp., Pheidole sp., and/or Solenopsis sp. were collected in less than 30% of the mounds. In the mounds of the three sites, colonies of Anoplotermes sp. and/or Aparatermes sp. termites were found together with the ant colonies. Another cohabiting termite species, Cortaritermes sp., was found only in the mounds of one site. The results suggest that C. fastigatus is the species building the mounds, with the other species, whether ants or termites, being the inquilines.

  9. Ant and termite mound coinhabitants in the wetlands of Santo Antonio da Patrulha, Rio Grande do Sul, Brazil.

    Science.gov (United States)

    Diehl, E; Junqueira, L K; Berti-Filho, E

    2005-08-01

    This paper reports on ant and termite species inhabiting the mounds (murundus) found in three wetland sites in Santo Antonio da Patrulha. Ants and termites were found in 100% of the mounds of two sites and in 20% of those in the third site. Colonies of Camponotus fastigatus were found inhabiting all the mounds, while colonies of Brachymyrmex sp., Linepithema sp., Pheidole sp., and/or Solenopsis sp. were collected in less than 30% of the mounds. In the mounds of the three sites, colonies of Anoplotermes sp. and/or Aparatermes sp. termites were found together with the ant colonies. Another cohabiting termite species, Cortaritermes sp., was found only in the mounds of one site. The results suggest that C. fastigatus is the species building the mounds, with the other species, whether ants or termites, being the inquilines.

  10. As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi

    DEFF Research Database (Denmark)

    Aanen, Duur Kornelis

    2006-01-01

    is likely to be in monoculture and (ii) the termites ‘artificially' select for high nodule production, because their fungal food source also provides the inoculum for the next harvest. I also provide a brief comparison of the termite-fungus mutualism with the analogous agricultural mutualism between attine......At present there is no consensus theory explaining the evolutionary stability of mutualistic interactions. However, the question is whether there are general ‘rules', or whether each particular mutualism needs a unique explanation. Here, I address the ultimate evolutionary stability...... of the ‘agricultural' mutualism between fungus-growing termites and Termitomyces fungi, and provide a proximate mechanism for how stability is achieved. The key to the proposed mechanism is the within-nest propagation mode of fungal symbionts by termites. The termites suppress horizontal fungal transmission...

  11. Mammalian Gut Immunity

    Science.gov (United States)

    Chassaing, Benoit; Kumar, Manish; Baker, Mark T.; Singh, Vishal; Vijay-Kumar, Matam

    2016-01-01

    The mammalian intestinal tract is the largest immune organ in the body and comprises cells from non-hemopoietic (epithelia, Paneth cells, goblet cells) and hemopoietic (macrophages, dendritic cells, T-cells) origin, and is also a dwelling for trillions of microbes collectively known as the microbiota. The homeostasis of this large microbial biomass is prerequisite to maintain host health by maximizing beneficial symbiotic relationships and minimizing the risks of living in such close proximity. Both microbiota and host immune system communicate with each other to mutually maintain homeostasis in what could be called a “love–hate relationship.” Further, the host innate and adaptive immune arms of the immune system cooperate and compensate each other to maintain the equilibrium of a highly complex gut ecosystem in a stable and stringent fashion. Any imbalance due to innate or adaptive immune deficiency or aberrant immune response may lead to dysbiosis and low-grade to robust gut inflammation, finally resulting in metabolic diseases. PMID:25163502

  12. Killing the dead: chemotherapeutic strategies against free-living cyst-forming protists (Acanthamoeba sp. and Balamuthia mandrillaris).

    Science.gov (United States)

    Siddiqui, Ruqaiyyah; Aqeel, Yousuf; Khan, Naveed Ahmed

    2013-01-01

    The opportunist free-living protists such as Acanthamoeba spp. and Balamuthia mandrillaris have become a serious threat to human life. As most available drugs target functional aspects of pathogens, the ability of free-living protists to transform into metabolically inactive cyst forms presents a challenge in treatment. It is hoped, that the development of broad spectrum antiprotist agents acting against multiple cyst-forming protists to provide target-directed inhibition will offer a viable drug strategy in the treatment of these rare infections. Here, we present a comprehensive report on upcoming drug targets, with emphasis on cyst wall biosynthesis along with the related biochemistry of encystment pathways, as we strive to bring ourselves a step closer to being able to combat these deadly diseases. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  13. Viruses and Protists Induced-mortality of Prokaryotes around the Antarctic Peninsula during the Austral Summer

    KAUST Repository

    Vaque, Dolors; Boras, Julia A.; Torrent-Llagostera, Francesc; Agusti, Susana; Arrieta, J M; Lara, Elena; Castillo, Yaiza M.; Duarte, Carlos M.; Sala, Maria M.

    2017-01-01

    During the Austral summer 2009 we studied three areas surrounding the Antarctic Peninsula: the Bellingshausen Sea, the Bransfield Strait and the Weddell Sea. We aimed to investigate, whether viruses or protists were the main agents inducing prokaryotic mortality rates, and the sensitivity to temperature of prokaryotic heterotrophic production and mortality based on the activation energy (Ea) for each process. Seawater samples were taken at seven depths (0.1-100 m) to quantify viruses, prokaryotes and protists abundances, and heterotrophic prokaryotic production (PHP). Viral lytic production, lysogeny, and mortality rates of prokaryotes due to viruses and protists were estimated at surface (0.1-1 m) and at the Deep Fluorescence Maximum (DFM, 12-55 m) at eight representative stations of the three areas. The average viral lytic production ranged from 1.0 +/- 0.3 x 10(7) viruses ml(-1) d(-1) in the Bellingshausen Sea to1.3 +/- 0.7 x 10(7) viruses ml(-1) d(-1) in the Bransfield Strait, while lysogeny, when detectable, recorded the lowest value in the Bellingshausen Sea (0.05 +/- 0.05 x 10(7) viruses ml(-1) d(-1)) and the highest in the Weddell Sea (4.3 +/- 3.5 x 10(7) viruses ml(-1) d(-1)). Average mortality rates due to viruses ranged from 9.7 +/- 6.1 x 10(4) cells ml(-1) d(-1) in the Weddell Sea to 14.3 +/- 4.0 x 10(4) cells ml(-1) d(-1) in the Bellingshausen Sea, and were higher than averaged grazing rates in the Weddell Sea (5.9 +/- 1.1 x 10(4) cells ml(-1) d(-1)) and in the Bellingshausen Sea (6.8 +/- 0.9 x 10(4) cells ml-1 d(-1)). The highest impact on prokaryotes by viruses and main differences between viral and protists activities were observed in surface samples: 17.8 +/- 6.8 x 10(4) cells ml(-1) d(-1) and 6.5 +/- 3.9 x 10(4) cells ml(-1) d(-1) in the Weddell Sea; 22.1 +/- 9.6 x 10(4) cells ml(-1) d(-1) and 11.6 +/- 1.4 x 10(4) cells ml(-1) d(-1) in the Bransfield Strait; and 16.1 +/- 5.7 x 10(4) cells ml(-1) d(-1) and 7.9 +/- 2.6 x 10(4) cells ml(-1) d(-1) in

  14. Viruses and Protists Induced-mortality of Prokaryotes around the Antarctic Peninsula during the Austral Summer

    KAUST Repository

    Vaque, Dolors

    2017-03-27

    During the Austral summer 2009 we studied three areas surrounding the Antarctic Peninsula: the Bellingshausen Sea, the Bransfield Strait and the Weddell Sea. We aimed to investigate, whether viruses or protists were the main agents inducing prokaryotic mortality rates, and the sensitivity to temperature of prokaryotic heterotrophic production and mortality based on the activation energy (Ea) for each process. Seawater samples were taken at seven depths (0.1-100 m) to quantify viruses, prokaryotes and protists abundances, and heterotrophic prokaryotic production (PHP). Viral lytic production, lysogeny, and mortality rates of prokaryotes due to viruses and protists were estimated at surface (0.1-1 m) and at the Deep Fluorescence Maximum (DFM, 12-55 m) at eight representative stations of the three areas. The average viral lytic production ranged from 1.0 +/- 0.3 x 10(7) viruses ml(-1) d(-1) in the Bellingshausen Sea to1.3 +/- 0.7 x 10(7) viruses ml(-1) d(-1) in the Bransfield Strait, while lysogeny, when detectable, recorded the lowest value in the Bellingshausen Sea (0.05 +/- 0.05 x 10(7) viruses ml(-1) d(-1)) and the highest in the Weddell Sea (4.3 +/- 3.5 x 10(7) viruses ml(-1) d(-1)). Average mortality rates due to viruses ranged from 9.7 +/- 6.1 x 10(4) cells ml(-1) d(-1) in the Weddell Sea to 14.3 +/- 4.0 x 10(4) cells ml(-1) d(-1) in the Bellingshausen Sea, and were higher than averaged grazing rates in the Weddell Sea (5.9 +/- 1.1 x 10(4) cells ml(-1) d(-1)) and in the Bellingshausen Sea (6.8 +/- 0.9 x 10(4) cells ml-1 d(-1)). The highest impact on prokaryotes by viruses and main differences between viral and protists activities were observed in surface samples: 17.8 +/- 6.8 x 10(4) cells ml(-1) d(-1) and 6.5 +/- 3.9 x 10(4) cells ml(-1) d(-1) in the Weddell Sea; 22.1 +/- 9.6 x 10(4) cells ml(-1) d(-1) and 11.6 +/- 1.4 x 10(4) cells ml(-1) d(-1) in the Bransfield Strait; and 16.1 +/- 5.7 x 10(4) cells ml(-1) d(-1) and 7.9 +/- 2.6 x 10(4) cells ml(-1) d(-1) in

  15. Viruses and Protists Induced-mortality of Prokaryotes around the Antarctic Peninsula during the Austral Summer.

    Science.gov (United States)

    Vaqué, Dolors; Boras, Julia A; Torrent-Llagostera, Francesc; Agustí, Susana; Arrieta, Jesús M; Lara, Elena; Castillo, Yaiza M; Duarte, Carlos M; Sala, Maria M

    2017-01-01

    During the Austral summer 2009 we studied three areas surrounding the Antarctic Peninsula: the Bellingshausen Sea, the Bransfield Strait and the Weddell Sea. We aimed to investigate, whether viruses or protists were the main agents inducing prokaryotic mortality rates, and the sensitivity to temperature of prokaryotic heterotrophic production and mortality based on the activation energy (Ea) for each process. Seawater samples were taken at seven depths (0.1-100 m) to quantify viruses, prokaryotes and protists abundances, and heterotrophic prokaryotic production (PHP). Viral lytic production, lysogeny, and mortality rates of prokaryotes due to viruses and protists were estimated at surface (0.1-1 m) and at the Deep Fluorescence Maximum (DFM, 12-55 m) at eight representative stations of the three areas. The average viral lytic production ranged from 1.0 ± 0.3 × 10 7 viruses ml -1 d -1 in the Bellingshausen Sea to1.3 ± 0.7 × 10 7 viruses ml -1 d -1 in the Bransfield Strait, while lysogeny, when detectable, recorded the lowest value in the Bellingshausen Sea (0.05 ± 0.05 × 10 7 viruses ml -1 d -1 ) and the highest in the Weddell Sea (4.3 ± 3.5 × 10 7 viruses ml -1 d -1 ). Average mortality rates due to viruses ranged from 9.7 ± 6.1 × 10 4 cells ml -1 d -1 in the Weddell Sea to 14.3 ± 4.0 × 10 4 cells ml -1 d -1 in the Bellingshausen Sea, and were higher than averaged grazing rates in the Weddell Sea (5.9 ± 1.1 × 10 4 cells ml -1 d -1 ) and in the Bellingshausen Sea (6.8 ± 0.9 × 10 4 cells ml -1 d -1 ). The highest impact on prokaryotes by viruses and main differences between viral and protists activities were observed in surface samples: 17.8 ± 6.8 × 10 4 cells ml -1 d -1 and 6.5 ± 3.9 × 10 4 cells ml -1 d -1 in the Weddell Sea; 22.1 ± 9.6 × 10 4 cells ml -1 d -1 and 11.6 ± 1.4 × 10 4 cells ml -1 d -1 in the Bransfield Strait; and 16.1 ± 5.7 × 10 4 cells ml -1 d -1 and 7.9 ± 2.6 × 10 4 cells ml -1 d -1 in the Bellingshausen Sea, respectively

  16. Acetate formation in the energy metabolism of parasitic helminths and protists.

    Science.gov (United States)

    Tielens, Aloysius G M; van Grinsven, Koen W A; Henze, Katrin; van Hellemond, Jaap J; Martin, William

    2010-03-15

    Formation and excretion of acetate as a metabolic end product of energy metabolism occurs in many protist and helminth parasites, such as the parasitic helminths Fasciola hepatica, Haemonchus contortus and Ascaris suum, and the protist parasites, Giardia lamblia, Entamoeba histolytica, Trichomonas vaginalis as well as Trypanosoma and Leishmania spp. In all of these parasites acetate is a main end product of their energy metabolism, whereas acetate formation does not occur in their mammalian hosts. Acetate production might therefore harbour novel targets for the development of new anti-parasitic drugs. In parasites, acetate is produced from acetyl-CoA by two different reactions, both involving substrate level phosphorylation, that are catalysed by either a cytosolic acetyl-CoA synthetase (ACS) or an organellar acetate:succinate CoA-transferase (ASCT). The ACS reaction is directly coupled to ATP synthesis, whereas the ASCT reaction yields succinyl-CoA for ATP formation via succinyl-CoA synthetase (SCS). Based on recent work on the ASCTs of F. hepatica, T. vaginalis and Trypanosoma brucei we suggest the existence of three subfamilies of enzymes within the CoA-transferase family I. Enzymes of these three subfamilies catalyse the ASCT reaction in eukaryotes via the same mechanism, but the subfamilies share little sequence homology. The CoA-transferases of the three subfamilies are all present inside ATP-producing organelles of parasites, those of subfamily IA in the mitochondria of trypanosomatids, subfamily IB in the mitochondria of parasitic worms and subfamily IC in hydrogenosome-bearing parasites. Together with the recent characterisation among non-parasitic protists of yet a third route of acetate formation involving acetate kinase (ACK) and phosphotransacetylase (PTA) that was previously unknown among eukaryotes, these recent developments provide a good opportunity to have a closer look at eukaryotic acetate formation. (c) 2010 Australian Society for Parasitology

  17. Quantifying trace elements in individual aquatic protist cells with a synchrotron x-ray fluorescence microprobe

    International Nuclear Information System (INIS)

    Twining, B.S.; Baines, S.B.; Fisher, N.S.; Maser, J.; Vogt, S.; Jacobsen, C.; Tovar-Sanchez, A.; Sanudo-Wihelmy, S.A.

    2003-01-01

    The study of trace metal cycling by aquatic protists is limited by current analytical techniques. Standard 'bulk' element analysis techniques that rely on physical separations to concentrate cells for analysis cannot separate cells from co-occurring detrital material or other cells of differing taxonomy or trophic function. Here we demonstrate the ability of a synchrotron-based X-ray fluorescence (SXRF) microprobe to quantify the elements Si, Mn, Fe, Ni, and Zn in individual aquatic protist cells. This technique distinguishes between different types of cells in an assemblage and between cells and other particulate matter. Under typical operating conditions, the minimum detection limits are 7.0 x 10 -16 mol μm -2 for Si and between 5.0 x 10 -20 and 3.9 x 10 -19 mol μm -2 for Mn, Fe, Ni, and Zn; this sensitivity is sufficient to detect these elements in cells from even the most pristine waters as demonstrated in phytoplankton cells collected from remote areas of the Southern Ocean. Replicate analyses of single cells produced variations of <5% for Si, Mn, Fe, and Zn and <10% for Ni. Comparative analyses of cultured phytoplankton cells generally show no significant differences in cellular metal concentrations measured with SXRF and standard bulk techniques (spectrophotometry and graphite furnace atomic absorption spectrometry). SXRF also produces two-dimensional maps of element distributions in cells, thereby providing information not available with other analytical approaches. This technique enables the accurate and precise measurement of trace metals in individual aquatic protists collected from natural environments.

  18. Insight into protist diversity in Arctic sea ice and melt-pond aggregate obtained by pyrosequencing

    Directory of Open Access Journals (Sweden)

    Estelle Silvia Kilias

    2014-11-01

    Full Text Available Protists in the central Arctic Ocean are adapted to the harsh environmental conditions of its various habitats. During the Polarstern cruise ARK-XXVI/3 in 2011, at one sea-ice station, large aggregates accumulated at the bottom of the melt ponds. In this study, the protist assemblages of the bottom layer of the sea-ice and melt-pond aggregate were investigated using flow cytometry and 454-pyrosequencing. The objective is to provide a first molecular overview of protist biodiversity in these habitats and to consider the overlaps and/or differences in the community compositions. Results of flow cytometry pointed to a cell size distribution that was dominated by 3–10 µm nanoflagellates. The phylogenetic classification of all sequences was conducted at a high taxonomic level, while a selection of abundant (≥1% of total reads sequences was further classified at a lower level. At a high taxonomic level, both habitats showed very similar community structures, dominated by chrysophytes and chlorophytes. At a lower taxonomic level, dissimilarities in the diversity of both groups were encountered in the abundant biosphere. While sea-ice chlorophytes and chrysophytes were dominated by Chlamydomonas/Chloromonas spp. and Ochromonas spp., the melt-pond aggregate was dominated by Carteria sp., Ochromonas spp. and Dinobryon faculiferum. We suppose that the similarities in richness and community structure are a consequence of melt-pond freshwater seeping through porous sea ice in late summer. Differences in the abundant biosphere nevertheless indicate that environmental conditions in both habitats vary enough to select for different dominant species.

  19. Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists.

    Science.gov (United States)

    Burki, Fabien; Kudryavtsev, Alexander; Matz, Mikhail V; Aglyamova, Galina V; Bulman, Simon; Fiers, Mark; Keeling, Patrick J; Pawlowski, Jan

    2010-12-02

    Recent phylogenomic analyses have revolutionized our view of eukaryote evolution by revealing unexpected relationships between and within the eukaryotic supergroups. However, for several groups of uncultivable protists, only the ribosomal RNA genes and a handful of proteins are available, often leading to unresolved evolutionary relationships. A striking example concerns the supergroup Rhizaria, which comprises several groups of uncultivable free-living protists such as radiolarians, foraminiferans and gromiids, as well as the parasitic plasmodiophorids and haplosporids. Thus far, the relationships within this supergroup have been inferred almost exclusively from rRNA, actin, and polyubiquitin genes, and remain poorly resolved. To address this, we have generated large Expressed Sequence Tag (EST) datasets for 5 species of Rhizaria belonging to 3 important groups: Acantharea (Astrolonche sp., Phyllostaurus sp.), Phytomyxea (Spongospora subterranea, Plasmodiophora brassicae) and Gromiida (Gromia sphaerica). 167 genes were selected for phylogenetic analyses based on the representation of at least one rhizarian species for each gene. Concatenation of these genes produced a supermatrix composed of 36,735 amino acid positions, including 10 rhizarians, 9 stramenopiles, and 9 alveolates. Phylogenomic analyses of this large dataset revealed a strongly supported clade grouping Foraminifera and Acantharea. The position of this clade within Rhizaria was sensitive to the method employed and the taxon sampling: Maximum Likelihood (ML) and Bayesian analyses using empirical model of evolution favoured an early divergence, whereas the CAT model and ML analyses with fast-evolving sites or the foraminiferan species Reticulomyxa filosa removed suggested a derived position, closely related to Gromia and Phytomyxea. In contrast to what has been previously reported, our analyses also uncovered the presence of the rhizarian-specific polyubiquitin insertion in Acantharea. Finally, this

  20. Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists

    Directory of Open Access Journals (Sweden)

    Bulman Simon

    2010-12-01

    Full Text Available Abstract Background Recent phylogenomic analyses have revolutionized our view of eukaryote evolution by revealing unexpected relationships between and within the eukaryotic supergroups. However, for several groups of uncultivable protists, only the ribosomal RNA genes and a handful of proteins are available, often leading to unresolved evolutionary relationships. A striking example concerns the supergroup Rhizaria, which comprises several groups of uncultivable free-living protists such as radiolarians, foraminiferans and gromiids, as well as the parasitic plasmodiophorids and haplosporids. Thus far, the relationships within this supergroup have been inferred almost exclusively from rRNA, actin, and polyubiquitin genes, and remain poorly resolved. To address this, we have generated large Expressed Sequence Tag (EST datasets for 5 species of Rhizaria belonging to 3 important groups: Acantharea (Astrolonche sp., Phyllostaurus sp., Phytomyxea (Spongospora subterranea, Plasmodiophora brassicae and Gromiida (Gromia sphaerica. Results 167 genes were selected for phylogenetic analyses based on the representation of at least one rhizarian species for each gene. Concatenation of these genes produced a supermatrix composed of 36,735 amino acid positions, including 10 rhizarians, 9 stramenopiles, and 9 alveolates. Phylogenomic analyses of this large dataset revealed a strongly supported clade grouping Foraminifera and Acantharea. The position of this clade within Rhizaria was sensitive to the method employed and the taxon sampling: Maximum Likelihood (ML and Bayesian analyses using empirical model of evolution favoured an early divergence, whereas the CAT model and ML analyses with fast-evolving sites or the foraminiferan species Reticulomyxa filosa removed suggested a derived position, closely related to Gromia and Phytomyxea. In contrast to what has been previously reported, our analyses also uncovered the presence of the rhizarian-specific polyubiquitin

  1. The secondary structure of large-subunit rRNA divergent domains, a marker for protist evolution

    DEFF Research Database (Denmark)

    Lenaers, G; Nielsen, Henrik; Engberg, J

    1988-01-01

    The secondary structure of the large-subunit ribosomal RNA (24-26S rRNA) has been studied with emphasis on comparative analysis of the folding patterns of the divergent domains in the available protist sequences, that is Prorocentrum micans (dinoflagellate), Saccharomyces carlsbergensis (yeast......), Tetrahymena thermophila (ciliate), Physarum polycephalum and Dictyostelium discoideum (slime moulds), Crithidia fasciculata and Giardia lamblia (parasitic flagellates). The folding for the D3, D7a and D10 divergent domains has been refined and a consensus model for the protist 24-26S rRNA structure...

  2. Ecological feedbacks. Termite mounds can increase the robustness of dryland ecosystems to climatic change.

    Science.gov (United States)

    Bonachela, Juan A; Pringle, Robert M; Sheffer, Efrat; Coverdale, Tyler C; Guyton, Jennifer A; Caylor, Kelly K; Levin, Simon A; Tarnita, Corina E

    2015-02-06

    Self-organized spatial vegetation patterning is widespread and has been described using models of scale-dependent feedback between plants and water on homogeneous substrates. As rainfall decreases, these models yield a characteristic sequence of patterns with increasingly sparse vegetation, followed by sudden collapse to desert. Thus, the final, spot-like pattern may provide early warning for such catastrophic shifts. In many arid ecosystems, however, termite nests impart substrate heterogeneity by altering soil properties, thereby enhancing plant growth. We show that termite-induced heterogeneity interacts with scale-dependent feedbacks to produce vegetation patterns at different spatial grains. Although the coarse-grained patterning resembles that created by scale-dependent feedback alone, it does not indicate imminent desertification. Rather, mound-field landscapes are more robust to aridity, suggesting that termites may help stabilize ecosystems under global change. Copyright © 2015, American Association for the Advancement of Science.

  3. Soil Physical and Chemical Properties in Epigeal Termite Mounds in Pastures

    Directory of Open Access Journals (Sweden)

    Sandra Santana de Lima

    2018-03-01

    Full Text Available ABSTRACT We characterized soil physical and chemical properties and soil organic matter in epigeal termite mounds in pastures to evaluate the changes promoted by termites in comparison to an adjacent area. We selected seven active epigeal termite mounds in the municipality of Seropédica, state of Rio de Janeiro, Brazil. Soil samples were collected from top, center and base positions of each mound, at 0.50 and 1.50 m distance from the base of the mound. We identified individuals of the genus Embiratermes, Velocitermes, and Orthognathotermes. The humin fraction predominated over the humic and fulvic acid fractions both in mounds and adjacent soil. The amount of organic matter and the mineral fractions (mineral-associated organic carbon - MOC varied among builder species. The studied chemical attributes point to a higher concentration of nutrients in the mounds than in the adjacent soil.

  4. Combined effect of Azadirachta indica and the entomopathogenic nematode Steinernema glaseri against subterranean termite, Reticulitermes flavipes

    Directory of Open Access Journals (Sweden)

    Kadarkarai Murugan

    2011-08-01

    Full Text Available Laboratory study has been conducted on the bioactivities of entomopathogenic nematodes and neem seed kernel extract (NSKE against worker termites of Reticulitermes flavipes. Neem at various concentrations did not affect the survivability of nematodes, whereas neem had considerable impact on the survivability of worker termites and this may be due to the presence of active neem compounds (Azadirachtin, salanin etc.. Mortality was 40% on 4th day at lower concentration of 1.0% NSKE treatment; whereas mortality has been increased to 70% at higher concentration (4.0% on 4th day. There was 100% mortality after the combined treatment with 4.0% NSKE + 600 infective juvenile Steinernema glaseri, even at the first day of the experiment. In the present experiment, neem extract does not affected the survival of the nematodes. Hence, nematode and neem extract can be used for soil-insect control particularly for the subterranean termites.

  5. Gut microbiota and metabolic syndrome.

    Science.gov (United States)

    Festi, Davide; Schiumerini, Ramona; Eusebi, Leonardo Henry; Marasco, Giovanni; Taddia, Martina; Colecchia, Antonio

    2014-11-21

    Gut microbiota exerts a significant role in the pathogenesis of the metabolic syndrome, as confirmed by studies conducted both on humans and animal models. Gut microbial composition and functions are strongly influenced by diet. This complex intestinal "superorganism" seems to affect host metabolic balance modulating energy absorption, gut motility, appetite, glucose and lipid metabolism, as well as hepatic fatty storage. An impairment of the fine balance between gut microbes and host's immune system could culminate in the intestinal translocation of bacterial fragments and the development of "metabolic endotoxemia", leading to systemic inflammation and insulin resistance. Diet induced weight-loss and bariatric surgery promote significant changes of gut microbial composition, that seem to affect the success, or the inefficacy, of treatment strategies. Manipulation of gut microbiota through the administration of prebiotics or probiotics could reduce intestinal low grade inflammation and improve gut barrier integrity, thus, ameliorating metabolic balance and promoting weight loss. However, further evidence is needed to better understand their clinical impact and therapeutic use.

  6. Bacterial density and community structure associated with aggregate size fractions of soil-feeding termite mounds.

    Science.gov (United States)

    Fall, S; Nazaret, S; Chotte, J L; Brauman, A

    2004-08-01

    The building and foraging activities of termites are known to modify soil characteristics such as the heterogeneity. In tropical savannas the impact of the activity of soil-feeding termites ( Cubitermes niokoloensis) has been shown to affect the properties of the soil at the aggregate level by creating new soil microenvironments (aggregate size fractions) [13]. These changes were investigated in greater depth by looking at the microbial density (AODC) and the genetic structure (automated rRNA intergenic spacer analysis: ARISA) of the communities in the different aggregate size fractions (i.e., coarse sand, fine sand, coarse silt, fine silt, and dispersible clays) separated from compartments (internal and external wall) of three Cubitermes niokoloensis mounds. The bacterial density of the mounds was significantly higher (1.5 to 3 times) than that of the surrounding soil. Within the aggregate size fractions, the termite building activity resulted in a significant increase in bacterial density within the coarser fractions (>20 mum). Multivariate analysis of the ARISA profiles revealed that the bacterial genetic structures of unfractionated soil and soil aggregate size fractions of the three mounds was noticeably different from the savanna soil used as a reference. Moreover, the microbial community associated with the different microenvironments in the three termite mounds revealed three distinct clusters formed by the aggregate size fractions of each mound. Except for the 2-20 mum fraction, these results suggest that the mound microbial genetic structure is more dependent upon microbial pool affiliation (the termite mound) than on the soil location (aggregate size fraction). The causes of the specificity of the microbial community structure of termite mound aggregate size fractions are discussed.

  7. Pillotinas and hollandinas: distribution and behaviour of large spirochaetes symbiotic in termites.

    Science.gov (United States)

    To, L; Margulis, L; Cheung, A T

    1978-01-01

    Pillotina spirochaetes have been observed in the hindguts of wood-eating cockroaches (Cryptocercus punctulatus), and in 25 out of 28 species of termites examined. They were especially abundant in 21 species of dry wood termites of the family Kalotermitidae, from Europe, North America and Australia. These included many species of Kalotermes and one or a few of the following: Glyptotermes, Bifidotermes, Neotermes, Ceratokalotermes, Paraneotermes, Cryptotermes, Porotermes, Marginitermes, Pterotermes, Zootermopsis, Reticulitermes, Coptotermes, Heterotermes, and nasutitermitids. Identifications of pillotinas were made on the basis of large size (0.5--2 micromtere in diameter, 50 to greater than 100 micrometers in length) and wave pattern; these were verified by electron microscopy in K. schwarzi, Pterotermes occidentis and others. Pillotinas were also present in all species of subterranean termites (Family Rhinotermitidae) examined, and in the most primitive Australian termite, Mastotermes darwiniensis (Family Mastotermitidae). They were not observed in damp wood termites (Family Hodotermidiae). Pillotinas are invariably associated with a rich, complex xylophagous microbial community composed primarily of motile prokaryotes, and hypermastigote and polymastigote flagellates. Some have been previously described by those primarily concerned with termite hindgut protozoa. Observations were made on their modes of behaviour, division, and microbial associates. A new genus of spirochaetes, Hollandina, is also described. It is distinguished from Pillotina by a smaller size and several ultrastructural features, but is otherwise closely related taxonomically. Evidence is provided to support Hollande and Gharagozlou's (1967) concept that the pillotinas and hollandinas deserve the taxonomic status of 'family' and that they should be classified with the cristispire siprochaetes a-cording to the scheme developed by Hovind-Hougen (1976). Spirochaetes are treated as a Phylum of the

  8. Testing the assumptions of the pyrodiversity begets biodiversity hypothesis for termites in semi-arid Australia.

    Science.gov (United States)

    Davis, Hayley; Ritchie, Euan G; Avitabile, Sarah; Doherty, Tim; Nimmo, Dale G

    2018-04-01

    Fire shapes the composition and functioning of ecosystems globally. In many regions, fire is actively managed to create diverse patch mosaics of fire-ages under the assumption that a diversity of post-fire-age classes will provide a greater variety of habitats, thereby enabling species with differing habitat requirements to coexist, and enhancing species diversity (the pyrodiversity begets biodiversity hypothesis). However, studies provide mixed support for this hypothesis. Here, using termite communities in a semi-arid region of southeast Australia, we test four key assumptions of the pyrodiversity begets biodiversity hypothesis (i) that fire shapes vegetation structure over sufficient time frames to influence species' occurrence, (ii) that animal species are linked to resources that are themselves shaped by fire and that peak at different times since fire, (iii) that species' probability of occurrence or abundance peaks at varying times since fire and (iv) that providing a diversity of fire-ages increases species diversity at the landscape scale. Termite species and habitat elements were sampled in 100 sites across a range of fire-ages, nested within 20 landscapes chosen to represent a gradient of low to high pyrodiversity. We used regression modelling to explore relationships between termites, habitat and fire. Fire affected two habitat elements (coarse woody debris and the cover of woody vegetation) that were associated with the probability of occurrence of three termite species and overall species richness, thus supporting the first two assumptions of the pyrodiversity hypothesis. However, this did not result in those species or species richness being affected by fire history per se. Consequently, landscapes with a low diversity of fire histories had similar numbers of termite species as landscapes with high pyrodiversity. Our work suggests that encouraging a diversity of fire-ages for enhancing termite species richness in this study region is not necessary.

  9. Gut Protozoa: Friends or Foes of the Human Gut Microbiota?

    Science.gov (United States)

    Chabé, Magali; Lokmer, Ana; Ségurel, Laure

    2017-12-01

    The importance of the gut microbiota for human health has sparked a strong interest in the study of the factors that shape its composition and diversity. Despite the growing evidence suggesting that helminths and protozoa significantly interact with gut bacteria, gut microbiome studies remain mostly focused on prokaryotes and on populations living in industrialized countries that typically have a low parasite burden. We argue that protozoa, like helminths, represent an important factor to take into account when studying the gut microbiome, and that their presence - especially considering their long coevolutionary history with humans - may be beneficial. From this perspective, we examine the relationship between the protozoa and their hosts, as well as their relevance for public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Flipped GUT inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics, King’s College London, Strand, London WC2R 2LS (United Kingdom); Theory Division, CERN, Route de Meyrin 385, 1217 Meyrin (Switzerland); Gonzalo, Tomás E.; Harz, Julia; Huang, Wei-Chih [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-03-23

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)×U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model parameter spaces that are compatible with the experimental magnitudes of the scalar perturbations, A{sub s}, and the tilt in the scalar perturbation spectrum, n{sub s}, as well as with an indicative upper limit on the tensor-to-scalar perturbation ratio, r. We also discuss embeddings of these models into SO(10), which is broken at a higher scale so that its monopoles are inflated away.

  11. Flipped GUT inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, John [Theoretical Particle Physics and Cosmology Group, Department of Physics, King' s College London, Strand, London WC2R 2LS (United Kingdom); Gonzalo, Tomás E.; Harz, Julia; Huang, Wei-Chih, E-mail: john.ellis@cern.ch, E-mail: tomas.gonzalo.11@ucl.ac.uk, E-mail: j.harz@ucl.ac.uk, E-mail: wei-chih.huang@ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2015-03-01

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)×U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model parameter spaces that are compatible with the experimental magnitudes of the scalar perturbations, A{sub s}, and the tilt in the scalar perturbation spectrum, n{sub s}, as well as with an indicative upper limit on the tensor-to-scalar perturbation ratio, r. We also discuss embeddings of these models into SO(10), which is broken at a higher scale so that its monopoles are inflated away.

  12. Flipped GUT Inflation

    CERN Document Server

    Ellis, John; Harz, Julia; Huang, Wei-Chih

    2015-01-01

    We analyse the prospects for constructing hybrid models of inflation that provide a dynamical realisation of the apparent closeness between the supersymmetric GUT scale and the possible scale of cosmological inflation. In the first place, we consider models based on the flipped SU(5)$\\times$U(1) gauge group, which has no magnetic monopoles. In one model, the inflaton is identified with a sneutrino field, and in the other model it is a gauge singlet. In both cases we find regions of the model parameter spaces that are compatible with the experimental magnitudes of the scalar perturbations, $A_s$, and the tilt in the scalar perturbation spectrum, $n_s$, as well as with an indicative upper limit on the tensor-to-scalar perturbation ratio, $r$. We also discuss embeddings of these models into SO(10), which is broken at a higher scale so that its monopoles are inflated away.

  13. Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites

    OpenAIRE

    Hussain, A; Ahmed, S; Shahid, M

    2011-01-01

    The efficacy of the Metarhizium anisopliae strain ARSEF 6911 was determined in the laboratory and field against two sugarcane pests, Microtermes obesi Holmgren and Odontotermes obesus Rambur (Termitidae: Isoptera). The susceptibility of both termite species to different conidial suspensions (1 × 10(10), 1 × 10(8), 1 × 10(6) and 1 × 10(4) conidia/ml) was determined in laboratory. All conidial suspensions were able to induce mortality. Termite mortality caused by the fungal suspensions was dose...

  14. Microtermolides A and B from termite-associated Streptomyces sp. and structural revision of vinylamycin

    DEFF Research Database (Denmark)

    Carr, Gavin; Poulsen, Michael; Klassen, Jonathan L.

    2012-01-01

    Microtermolides A (1) and B (2) were isolated from a Streptomyces sp. strain associated with fungus-growing termites. The structures of 1 and 2 were determined by 1D- and 2D-NMR spectroscopy and high-resolution mass spectrometry. Structural elucidation of 1 led to the re-examination of the struct......Microtermolides A (1) and B (2) were isolated from a Streptomyces sp. strain associated with fungus-growing termites. The structures of 1 and 2 were determined by 1D- and 2D-NMR spectroscopy and high-resolution mass spectrometry. Structural elucidation of 1 led to the re...

  15. Termite mounds harness diurnal temperature oscillations for ventilation.

    Science.gov (United States)

    King, Hunter; Ocko, Samuel; Mahadevan, L

    2015-09-15

    Many species of millimetric fungus-harvesting termites collectively build uninhabited, massive mound structures enclosing a network of broad tunnels that protrude from the ground meters above their subterranean nests. It is widely accepted that the purpose of these mounds is to give the colony a controlled microclimate in which to raise fungus and brood by managing heat, humidity, and respiratory gas exchange. Although different hypotheses such as steady and fluctuating external wind and internal metabolic heating have been proposed for ventilating the mound, the absence of direct in situ measurement of internal air flows has precluded a definitive mechanism for this critical physiological function. By measuring diurnal variations in flow through the surface conduits of the mounds of the species Odontotermes obesus, we show that a simple combination of geometry, heterogeneous thermal mass, and porosity allows the mounds to use diurnal ambient temperature oscillations for ventilation. In particular, the thin outer flutelike conduits heat up rapidly during the day relative to the deeper chimneys, pushing air up the flutes and down the chimney in a closed convection cell, with the converse situation at night. These cyclic flows in the mound flush out CO2 from the nest and ventilate the colony, in an unusual example of deriving useful work from thermal oscillations.

  16. An American termite in Paris: temporal colony dynamics.

    Science.gov (United States)

    Baudouin, Guillaume; Dedeine, Franck; Bech, Nicolas; Bankhead-Dronnet, Stéphanie; Dupont, Simon; Bagnères, Anne-Geneviève

    2017-12-01

    Termites of the genus Reticulitermes are widespread invaders, particularly in urban habitats. Their cryptic and subterranean lifestyle makes them difficult to detect, and we know little about their colony dynamics over time. In this study we examined the persistence of Reticulitermes flavipes (Kollar) colonies in the city of Paris over a period of 15 years. The aim was (1) to define the boundaries of colonies sampled within the same four areas over two sampling periods, (2) to determine whether the colonies identified during the first sampling period persisted to the second sampling period, and (3) to compare the results obtained when colonies were delineated using a standard population genetic approach versus a Bayesian clustering method that combined both spatial and genetic information. Herein, colony delineations were inferred from genetic differences at nine microsatellite loci and one mitochondrial locus. Four of the 18 identified colonies did not show significant differences in their genotype distributions between the two sampling periods. While allelic richness was low, making it hard to reliably distinguish colony family type, most colonies appeared to retain the same breeding structure over time. These large and expansive colonies showed an important ability to fuse (39% were mixed-family colonies), contained hundreds of reproductives and displayed evidence of isolation-by-distance, suggesting budding dispersal. These traits, which favor colony persistence over time, present a challenge for pest control efforts, which apply treatment locally. The other colonies showed significant differences, but we cannot exclude the possibility that their genotype distributions simply changed over time.

  17. Beyond gut feelings: how the gut microbiota regulates blood pressure.

    Science.gov (United States)

    Marques, Francine Z; Mackay, Charles R; Kaye, David M

    2018-01-01

    Hypertension is the leading risk factor for heart disease and stroke, and is estimated to cause 9.4 million deaths globally every year. The pathogenesis of hypertension is complex, but lifestyle factors such as diet are important contributors to the disease. High dietary intake of fruit and vegetables is associated with reduced blood pressure and lower cardiovascular mortality. A critical relationship between dietary intake and the composition of the gut microbiota has been described in the literature, and a growing body of evidence supports the role of the gut microbiota in the regulation of blood pressure. In this Review, we describe the mechanisms by which the gut microbiota and its metabolites, including short-chain fatty acids, trimethylamine N-oxide, and lipopolysaccharides, act on downstream cellular targets to prevent or contribute to the pathogenesis of hypertension. These effects have a direct influence on tissues such as the kidney, the endothelium, and the heart. Finally, we consider the role of the gut microbiota in resistant hypertension, the possible intergenerational effect of the gut microbiota on blood pressure regulation, and the promising therapeutic potential of gut microbiota modification to improve health and prevent disease.

  18. GUTs and supersymmetric GUTs in the very early universe

    International Nuclear Information System (INIS)

    Ellis, J.

    1982-10-01

    This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. I start with a review of the present theoretical and phenomenological status of GUTs before going on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. The first section is an update on conventional GUTs, which is followed by a reminder of some of the motivations for going supersymmetric. There then follows a simple primer on susy and a discussion of the structure and phenomenology of simple sysy GUTs. Finally we come to the cosmological issues, including problems arising from the degeneracy of susy minima, baryosynthesis and supersymmetric inflation, the possibility that gravity is an essential complication in constructing susy GUTs and discussing their cosmology, and the related question of what mass range is allowed for the gravitino. Several parts of this write-up contain new material which has emerged either during the Workshop or subsequently. They are included here for completeness and the convenience of the prospective reader. Wherever possible, these anachronisms will be flagged so as to keep straight the historical record

  19. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution.

    Science.gov (United States)

    Drouin, Guy; Tsang, Corey

    2012-06-01

    Given their high copy number and high level of expression, one might expect that both the sequence and organization of eukaryotic ribosomal RNA genes would be conserved during evolution. Although the organization of 18S, 5.8S and 28S ribosomal RNA genes is indeed relatively well conserved, that of 5S rRNA genes is much more variable. Here, we review the different types of 5S rRNA gene arrangements which have been observed in protists. This includes linkages to the other ribosomal RNA genes as well as linkages to ubiquitin, splice-leader, snRNA and tRNA genes. Mapping these linkages to independently derived phylogenies shows that these diverse linkages have repeatedly been gained and lost during evolution. This argues against such linkages being the primitive condition not only in protists but also in other eukaryote species. Because the only characteristic the diverse genes with which 5S rRNA genes are found linked with is that they are tandemly repeated, these arrangements are unlikely to provide any selective advantage. Rather, the observed high variability in 5S rRNA genes arrangements is likely the result of the fact that 5S rRNA genes contain internal promoters, that these genes are often transposed by diverse recombination mechanisms and that these new gene arrangements are rapidly homogenized by unequal crossingovers and/or by gene conversions events in species with short generation times and frequent founder events.

  20. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists

    Science.gov (United States)

    Margulis, L.; Dolan, M. F.; Guerrero, R.

    2000-01-01

    We present a testable model for the origin of the nucleus, the membrane-bounded organelle that defines eukaryotes. A chimeric cell evolved via symbiogenesis by syntrophic merger between an archaebacterium and a eubacterium. The archaebacterium, a thermoacidophil resembling extant Thermoplasma, generated hydrogen sulfide to protect the eubacterium, a heterotrophic swimmer comparable to Spirochaeta or Hollandina that oxidized sulfide to sulfur. Selection pressure for speed swimming and oxygen avoidance led to an ancient analogue of the extant cosmopolitan bacterial consortium "Thiodendron latens." By eubacterial-archaebacterial genetic integration, the chimera, an amitochondriate heterotroph, evolved. This "earliest branching protist" that formed by permanent DNA recombination generated the nucleus as a component of the karyomastigont, an intracellular complex that assured genetic continuity of the former symbionts. The karyomastigont organellar system, common in extant amitochondriate protists as well as in presumed mitochondriate ancestors, minimally consists of a single nucleus, a single kinetosome and their protein connector. As predecessor of standard mitosis, the karyomastigont preceded free (unattached) nuclei. The nucleus evolved in karyomastigont ancestors by detachment at least five times (archamoebae, calonymphids, chlorophyte green algae, ciliates, foraminifera). This specific model of syntrophic chimeric fusion can be proved by sequence comparison of functional domains of motility proteins isolated from candidate taxa.

  1. Protists in the polar regions: comparing occurrence in the Arctic and Southern oceans using pyrosequencing

    Directory of Open Access Journals (Sweden)

    Christian Wolf

    2015-05-01

    Full Text Available In the ongoing discussion of the distribution of protists, whether they are globally distributed or endemic to one or both of the polar regions is the subject of heated debate. In this study, we compared next-generation sequencing data from the Arctic and the Southern oceans to reveal the extent of similarities and dissimilarities between the protist communities in the polar regions. We found a total overlap of operational taxonomic units (OTUs between the two regions of 11.2%. On closer inspection of different taxonomic groups, the overlap ranged between 5.5% (haptophytes and 14.5% (alveolates. Within the different groups, the proportion of OTUs occurring in both regions greatly differed between the polar regions. On the one hand, the overlap between these two regions is remarkable, given the geographical distance between them. On the other hand, one could expect a greater overlap of OTUs between these regions on account of the similar environmental conditions. The overlap suggests a connection between the polar regions for at least certain species or that the evolutionary divergence has been slow, relative to the timescales of isolation. The different proportions of common OTUs among the groups or regions may be a result of different life cycle strategies or environmental adaptations.

  2. Towards a molecular taxonomy for protists: benefits, risks, and applications in plankton ecology.

    Science.gov (United States)

    Caron, David A

    2013-01-01

    The increasing use of genetic information for the development of methods to study the diversity, distributions, and activities of protists in nature has spawned a new generation of powerful tools. For ecologists, one lure of these approaches lies in the potential for DNA sequences to provide the only immediately obvious means of normalizing the diverse criteria that presently exist for identifying and counting protists. A single, molecular taxonomy would allow studies of diversity across a broad range of species, as well as the detection and quantification of particular species of interest within complex, natural assemblages; goals that are not feasible using traditional methods. However, these advantages are not without their potential pitfalls and problems. Conflicts involving the species concept, disagreements over the true (physiological/ecological) meaning of genetic diversity, and a perceived threat by some that sequence information will displace knowledge regarding the morphologies, functions and physiologies of protistan taxa, have created debate and doubt regarding the efficacy and appropriateness of some genetic approaches. These concerns need continued discussion and eventual resolution as we move toward the irresistible attraction, and potentially enormous benefits, of the application of genetic approaches to protistan ecology. © 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.

  3. Bacterivory by a Summer Assemblage of Nanoplankton in the Ross Sea, Antarctica: Mixotrophic Versus Heterotrophic Protists

    Science.gov (United States)

    Sanders, R. W.; Gast, R. J.

    2016-02-01

    Many protists traditionally described as phototrophic have recently been shown to have retained the primitive trait of phagotrophy, and thus function as mixotrophs. Mixotrophic nanoflagellates were identified in every sample examined from a summer cruise in the Ross Sea, Antarctica, where they often were more abundant than heterotrophic nanoflagellates that have previously been considered the major bacterivores in marine waters. Mixotrophs, identified by uptake of fluorescent tracers, comprised similar proportions (9-75%) of the total bacterivorous flagellates in summer as were previously determined for an earlier spring cruise in the Ross Sea. Protist diversity also was linked to functional bacterivores using a culture-independent method in which BrdU-labeled DNA of bacterial prey was incorporated into the DNA of eukaryotic grazers. Immunoprecipitation of the BrdU-labeld DNA was followed by high-throughput sequencing to identify a diverse group of bacterivores, including numerous uncultured eukaryotes. However, its utility for identification of mixotrophs was limited by the availability of sequences from known mixotrophs.

  4. With a pinch of extra salt-Did predatory protists steal genes from their food?

    Science.gov (United States)

    Czech, Laura; Bremer, Erhard

    2018-02-01

    The cellular adjustment of Bacteria and Archaea to high-salinity habitats is well studied and has generally been classified into one of two strategies. These are to accumulate high levels either of ions (the "salt-in" strategy) or of physiologically compliant organic osmolytes, the compatible solutes (the "salt-out" strategy). Halophilic protists are ecophysiological important inhabitants of salt-stressed ecosystems because they are not only very abundant but also represent the majority of eukaryotic lineages in nature. However, their cellular osmostress responses have been largely neglected. Recent reports have now shed new light on this issue using the geographically widely distributed halophilic heterotrophic protists Halocafeteria seosinensis, Pharyngomonas kirbyi, and Schmidingerothrix salinarum as model systems. Different approaches led to the joint conclusion that these unicellular Eukarya use the salt-out strategy to cope successfully with the persistent high salinity in their habitat. They accumulate various compatible solutes, e.g., glycine betaine, myo-inositol, and ectoines. The finding of intron-containing biosynthetic genes for ectoine and hydroxyectoine, their salt stress-responsive transcription in H. seosinensis, and the production of ectoine and its import by S. salinarum come as a considerable surprise because ectoines have thus far been considered exclusive prokaryotic compatible solutes. Phylogenetic considerations of the ectoine/hydroxyectoine biosynthetic genes of H. seosinensis suggest that they have been acquired via lateral gene transfer by these bacterivorous Eukarya from ectoine/hydroxyectoine-producing food bacteria that populate the same habitat.

  5. Reductive evolution of chloroplasts in non-photosynthetic plants, algae and protists.

    Science.gov (United States)

    Hadariová, Lucia; Vesteg, Matej; Hampl, Vladimír; Krajčovič, Juraj

    2018-04-01

    Chloroplasts are generally known as eukaryotic organelles whose main function is photosynthesis. They perform other functions, however, such as synthesizing isoprenoids, fatty acids, heme, iron sulphur clusters and other essential compounds. In non-photosynthetic lineages that possess plastids, the chloroplast genomes have been reduced and most (or all) photosynthetic genes have been lost. Consequently, non-photosynthetic plastids have also been reduced structurally. Some of these non-photosynthetic or "cryptic" plastids were overlooked or unrecognized for decades. The number of complete plastid genome sequences and/or transcriptomes from non-photosynthetic taxa possessing plastids is rapidly increasing, thus allowing prediction of the functions of non-photosynthetic plastids in various eukaryotic lineages. In some non-photosynthetic eukaryotes with photosynthetic ancestors, no traces of plastid genomes or of plastids have been found, suggesting that they have lost the genomes or plastids completely. This review summarizes current knowledge of non-photosynthetic plastids, their genomes, structures and potential functions in free-living and parasitic plants, algae and protists. We introduce a model for the order of plastid gene losses which combines models proposed earlier for land plants with the patterns of gene retention and loss observed in protists. The rare cases of plastid genome loss and complete plastid loss are also discussed.

  6. In situ imaging reveals the biomass of giant protists in the global ocean.

    Science.gov (United States)

    Biard, Tristan; Stemmann, Lars; Picheral, Marc; Mayot, Nicolas; Vandromme, Pieter; Hauss, Helena; Gorsky, Gabriel; Guidi, Lionel; Kiko, Rainer; Not, Fabrice

    2016-04-28

    Planktonic organisms play crucial roles in oceanic food webs and global biogeochemical cycles. Most of our knowledge about the ecological impact of large zooplankton stems from research on abundant and robust crustaceans, and in particular copepods. A number of the other organisms that comprise planktonic communities are fragile, and therefore hard to sample and quantify, meaning that their abundances and effects on oceanic ecosystems are poorly understood. Here, using data from a worldwide in situ imaging survey of plankton larger than 600 μm, we show that a substantial part of the biomass of this size fraction consists of giant protists belonging to the Rhizaria, a super-group of mostly fragile unicellular marine organisms that includes the taxa Phaeodaria and Radiolaria (for example, orders Collodaria and Acantharia). Globally, we estimate that rhizarians in the top 200 m of world oceans represent a standing stock of 0.089 Pg carbon, equivalent to 5.2% of the total oceanic biota carbon reservoir. In the vast oligotrophic intertropical open oceans, rhizarian biomass is estimated to be equivalent to that of all other mesozooplankton (plankton in the size range 0.2-20 mm). The photosymbiotic association of many rhizarians with microalgae may be an important factor in explaining their distribution. The previously overlooked importance of these giant protists across the widest ecosystem on the planet changes our understanding of marine planktonic ecosystems.

  7. With a pinch of extra salt—Did predatory protists steal genes from their food?

    Science.gov (United States)

    Czech, Laura

    2018-01-01

    The cellular adjustment of Bacteria and Archaea to high-salinity habitats is well studied and has generally been classified into one of two strategies. These are to accumulate high levels either of ions (the “salt-in” strategy) or of physiologically compliant organic osmolytes, the compatible solutes (the “salt-out” strategy). Halophilic protists are ecophysiological important inhabitants of salt-stressed ecosystems because they are not only very abundant but also represent the majority of eukaryotic lineages in nature. However, their cellular osmostress responses have been largely neglected. Recent reports have now shed new light on this issue using the geographically widely distributed halophilic heterotrophic protists Halocafeteria seosinensis, Pharyngomonas kirbyi, and Schmidingerothrix salinarum as model systems. Different approaches led to the joint conclusion that these unicellular Eukarya use the salt-out strategy to cope successfully with the persistent high salinity in their habitat. They accumulate various compatible solutes, e.g., glycine betaine, myo-inositol, and ectoines. The finding of intron-containing biosynthetic genes for ectoine and hydroxyectoine, their salt stress–responsive transcription in H. seosinensis, and the production of ectoine and its import by S. salinarum come as a considerable surprise because ectoines have thus far been considered exclusive prokaryotic compatible solutes. Phylogenetic considerations of the ectoine/hydroxyectoine biosynthetic genes of H. seosinensis suggest that they have been acquired via lateral gene transfer by these bacterivorous Eukarya from ectoine/hydroxyectoine-producing food bacteria that populate the same habitat. PMID:29394244

  8. Relative repellency and lethality of the neonicotinoids thiamethoxam and acetamiprid and an acetamiprid/bifenthrin combination to Reticulitermes flavipes termites.

    Science.gov (United States)

    Smith, Joseph A; Pereira, Roberto M; Koehler, Philip G

    2008-12-01

    Field-collected Reticulitermes flavipes (Kollar) termites were placed in bioassay tubes containing soil treated with one of three termiticides: thiamethoxam, acetamiprid, or a combination of acetamiprid + bifenthrin. In the bioassay tubes, treated soil was placed in a layer centered within untreated sand between two 1.5-cm agar plugs. All termiticides were tested at concentrations of 0.1, 1, 10, and 100 ppm with narrow (1 mm), medium (5 mm), and broad (50 mm) thicknesses of treated soil. Soil penetration and termite mortality were measured after 7 d, and repellency was assessed. Thiamethoxam treatments allowed the greatest soil penetration, whereas acetamiprid + bifenthrin treatments were the most inhibitory to soil penetration. Thiamethoxam treatments also caused consistently greater termite mortality than acetamiprid treatments. These data indicated that acetamiprid prevented soil penetration by termites more than thiamethoxam, although both were less repellent compared with bifenthrin alone, which causes little termite mortality at the tested doses. When there was direct contact of treated soil with the agar plugs in broad treatments, the combination of acetamiprid + bifenthrin was more toxic to R. flavipes termites than either acetamiprid or thiamethoxam alone. The combination acetamiprid + bifenthrin termiticide may be effective in keeping termites away from the treated soil, because of the combined effects of acetamiprid and bifenthrin.

  9. First Foods and Gut Microbes

    DEFF Research Database (Denmark)

    Laursen, Martin Frederik; Bahl, Martin Iain; Michaelsen, Kim F.

    2017-01-01

    The establishment of the human gut microbiota in early life has been associated with later health and disease. During the 1st months after birth, the microbial composition in the gut is known to be affected by the mode of delivery, use of antibiotics, geographical location and type of feeding...... of this window is currently debated, but it likely coincides with the complementary feeding period, marking the gradual transition from milk- based infant feeding to family diet usually occurring between 6 and 24 months. Furthermore, the 'first 1000 days,' i.e., the period from conception until age 2 years...... microbiota development. This perspective paper summarizes the currently very few studies addressing the effects of complementary diet on gut microbiota, and highlights the recent finding that transition to family foods greatly impacts the development of gut microbial diversity. Further, we discuss potential...

  10. Indigenous utilization of termite mounds and their sustainability in a rice growing village of the central plain of Laos

    Directory of Open Access Journals (Sweden)

    Sivilay Sengdeaune

    2011-08-01

    Full Text Available Abstract Background The objective of this study was to investigate the indigenous utilization of termite mounds and termites in a rain-fed rice growing village in the central plain of Laos, where rice production is low and varies year-to-year, and to assess the possibility of sustainable termite mound utilization in the future. This research was carried out from 2007 to 2009. Methods The termites were collected from their mounds and surrounding areas and identified. Twenty villagers were interviewed on their use of termites and their mounds in the village. Sixty-three mounds were measured to determine their dimensions in early March, early July and middle to late November, 2009. Results Eleven species of Termitidae were recorded during the survey period. It was found that the villagers use termite mounds as fertilizer for growing rice, vegetable beds and charcoal kilns. The villagers collected termites for food and as feed for breeding fish. Over the survey period, 81% of the mounds surveyed increased in volume; however, the volume was estimated to decrease by 0.114 m3 mound-1 year-1 on average due to several mounds being completely cut out. Conclusion It was concluded that current mound utilization by villagers is not sustainable. To ensure sustainable termite utilization in the future, studies should be conducted to enhance factors that promote mound restoration by termites. Furthermore, it will be necessary to improve mound conservation methods used by the villagers after changes in the soil mass of mounds in paddy fields and forests has been measured accurately. The socio-economic factors that affect mound utilization should also be studied.

  11. Indigenous utilization of termite mounds and their sustainability in a rice growing village of the central plain of Laos.

    Science.gov (United States)

    Miyagawa, Shuichi; Koyama, Yusaku; Kokubo, Mika; Matsushita, Yuichi; Adachi, Yoshinao; Sivilay, Sengdeaune; Kawakubo, Nobumitsu; Oba, Shinya

    2011-08-18

    The objective of this study was to investigate the indigenous utilization of termite mounds and termites in a rain-fed rice growing village in the central plain of Laos, where rice production is low and varies year-to-year, and to assess the possibility of sustainable termite mound utilization in the future. This research was carried out from 2007 to 2009. The termites were collected from their mounds and surrounding areas and identified. Twenty villagers were interviewed on their use of termites and their mounds in the village. Sixty-three mounds were measured to determine their dimensions in early March, early July and middle to late November, 2009. Eleven species of Termitidae were recorded during the survey period. It was found that the villagers use termite mounds as fertilizer for growing rice, vegetable beds and charcoal kilns. The villagers collected termites for food and as feed for breeding fish. Over the survey period, 81% of the mounds surveyed increased in volume; however, the volume was estimated to decrease by 0.114 m3 mound(-1) year(-1) on average due to several mounds being completely cut out. It was concluded that current mound utilization by villagers is not sustainable. To ensure sustainable termite utilization in the future, studies should be conducted to enhance factors that promote mound restoration by termites. Furthermore, it will be necessary to improve mound conservation methods used by the villagers after changes in the soil mass of mounds in paddy fields and forests has been measured accurately. The socio-economic factors that affect mound utilization should also be studied.

  12. Gut dysfunction in Parkinson's disease

    Science.gov (United States)

    Mukherjee, Adreesh; Biswas, Atanu; Das, Shyamal Kumar

    2016-01-01

    Early involvement of gut is observed in Parkinson’s disease (PD) and symptoms such as constipation may precede motor symptoms. α-Synuclein pathology is extensively evident in the gut and appears to follow a rostrocaudal gradient. The gut may act as the starting point of PD pathology with spread toward the central nervous system. This spread of the synuclein pathology raises the possibility of prion-like propagation in PD pathogenesis. Recently, the role of gut microbiota in PD pathogenesis has received attention and some phenotypic correlation has also been shown. The extensive involvement of the gut in PD even in its early stages has led to the evaluation of enteric α-synuclein as a possible biomarker of early PD. The clinical manifestations of gastrointestinal dysfunction in PD include malnutrition, oral and dental disorders, sialorrhea, dysphagia, gastroparesis, constipation, and defecatory dysfunction. These conditions are quite distressing for the patients and require relevant investigations and adequate management. Treatment usually involves both pharmacological and non-pharmacological measures. One important aspect of gut dysfunction is its contribution to the clinical fluctuations in PD. Dysphagia and gastroparesis lead to inadequate absorption of oral anti-PD medications. These lead to response fluctuations, particularly delayed-on and no-on, and there is significant relationship between levodopa pharmacokinetics and gastric emptying in patients with PD. Therefore, in such cases, alternative routes of administration or drug delivery systems may be required. PMID:27433087

  13. The biodiversity and biogeography of komokiaceans and other enigmatic foraminiferan-like protists in the deep Southern Ocean

    DEFF Research Database (Denmark)

    Gooday, A.J.; Cedhagen, Tomas; Kamenskaya, O.E.

    2007-01-01

    We present a survey of komokiaceans and other relatively large, stercomata-bearing testate protists, presumed to be foraminifera, based on extensive ship-board sorting of samples collected at 13 sites (depth range 1820-4930 m) in the Weddell Sea and two sites in the SE Atlantic (Cape and Aguilas...

  14. I. Structural studies of termite defense secretions. II. Structural studies of natural products of marine nudibranchs. [Kempene, tridachione

    Energy Technology Data Exchange (ETDEWEB)

    Solheim, B.A.

    1977-12-01

    Three families of termites have the ability to produce a sticky secretion that envelopes and immobilizes the enemy. In the family Termitidae the secretion contains the diterpenoid hydrocarbons, kempene I and kempene II. The molecular structure of kempene II from the termite, Nasutitermes kempae, is described in detail. Another species of termite, Cubitermes umbratus, contained the diterpenoid hydrocarbon biflora-4,10-19,15-triene in the secretion and this compound is described. Studies were also conducted on the mucous secretion of the pedal gland of the marine nudibranch, Tidachiella diomedea. Tridachione, a substituted ..gamma..-pyrone, was isolated in the pure state and its molecular structure is described in detail. (HLW)

  15. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Directory of Open Access Journals (Sweden)

    H. Jamali

    2013-04-01

    Full Text Available We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the

  16. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2013-04-01

    We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a carbon dioxide equivalent (CO2-e) basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. The contribution of CH4 and CO2 emissions from termite mounds to the total CH4 and CO2 emissions from termite mounds and soil in CO2-e was less than 1%. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux; however, these relationships were clearly termite species specific. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in the past) would result in errors of more than 5-fold for mound CH4 flux and 3-fold for mound CO2 flux. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but

  17. Detection of mitochondrial COII DNA sequences in ant guts as a method for assessing termite predation by ants

    Czech Academy of Sciences Publication Activity Database

    Fayle, Tom Maurice; Scholtz, O.; Dumbrell, A. J.; Russell, S.; Segar, Simon Tristram; Eggleton, P.

    2015-01-01

    Roč. 10, č. 4 (2015), e0122533 E-ISSN 1932-6203 R&D Projects: GA ČR GA14-32302S Grant - others:European Social Fund(CZ) CZ1.07/2.3.00/20.0064; European Social Fund(CZ) CZ.1.07/2.3.00/30.0006 Institutional support: RVO:60077344 Keywords : mitochondrial COII DNA sequences Subject RIV: EH - Ecology, Behaviour Impact factor: 3.057, year: 2015 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0122533

  18. Annual changes of bacterial mortality due to viruses and protists in an oligotrophic coastal environment (NW Mediterranean).

    Science.gov (United States)

    Boras, Julia A; Sala, M Montserrat; Vázquez-Domínguez, Evaristo; Weinbauer, Markus G; Vaqué, Dolors

    2009-05-01

    The impact of viruses and protists on bacterioplankton mortality was examined monthly during 2 years (May 2005-April 2007) in an oligotrophic coastal environment (NW Mediterranean Sea). We expected that in such type of system, (i) bacterial losses would be caused mainly by protists, and (ii) lysogeny would be an important type of virus-host interaction. During the study period, viruses and grazers together were responsible for 50.6 +/- 40.1% day(-1) of bacterial standing stock losses (BSS) and 59.7 +/- 44.0% day(-1) of bacterial production losses (BP). Over the first year (May 2005-April 2006), protists were the principal cause of bacterial mortality, removing 29.9 +/- 20.4% day(-1) of BSS and 33.9 +/- 24.3% day(-1) of BP, whereas viral lysis removed 13.5 +/- 17.0% day(-1) of BSS and 12.3 +/- 12.3% day(-1) of BP. During the second year (May 2006-April 2007), viruses caused comparable bacterial losses (29.2 +/- 14.8% day(-1) of BSS and 40.9 +/- 20.7% day(-1) of BP) to protists (28.6 +/- 25.5% day(-1) of BSS and 32.4 +/- 20.0% day(-1) of BP). In 37% of cases higher losses of BP due to viruses than due to protists were found. Lysogenic infection was detected in 11 of 24 samplings. Contrary to our expectations, lytic infections dominated over the two years, and viruses resulted to be a significant source of bacterial mortality in this oligotrophic site.

  19. The impact of subterranean termite activity on water infiltration and topsoil properties in Burkina Faso

    NARCIS (Netherlands)

    Mettrop, I.S.; Cammeraat, L.H.; Verbeeten, E.

    2013-01-01

    Few quantitative experimental studies have been carried out on the influence of subterranean termite activity on the water infiltration capacity of crusted soils in the semi-arid Sahelian region. These studies found increased infiltration rates on soils that were affected by foraging galleries of

  20. Chemical systematics of Neotropical termite genera with symmetrically snapping soldiers (Termitidae: Termitinae)

    Czech Academy of Sciences Publication Activity Database

    Kyjaková, Pavlína; Roy, V.; Jirošová, Anna; Krasulová, Jana; Dolejšová, Klára; Křivánek, Jan; Hadravová, Romana; Rybáček, Jiří; Pohl, Radek; Roisin, Y.; Sillam-Dusses, D.; Hanus, Robert

    2017-01-01

    Roč. 180, č. 1 (2017), s. 66-81 ISSN 0024-4082 R&D Projects: GA ČR GP13-25354P Institutional support: RVO:61388963 Keywords : chemical defence * frontal gland * termites * chemical systematics * Termitinae Subject RIV: EG - Zoology OBOR OECD: Biodiversity conservation Impact factor: 2.711, year: 2016

  1. Sex Pheromone and Trail Pheromone of the Sand Termite Psammotermes hybostoma

    Czech Academy of Sciences Publication Activity Database

    Sillam-Dusses, David; Hanus, Robert; Abd El-Latif, A. O.; Jiroš, Pavel; Krasulová, Jana; Kalinová, Blanka; Valterová, Irena; Šobotník, Jan

    2011-01-01

    Roč. 37, č. 2 (2011), s. 179-188 ISSN 0098-0331 R&D Projects: GA ČR GAP506/10/1570 Institutional research plan: CEZ:AV0Z40550506 Keywords : sex pheromone * trail pheromone * Psammotermes hybostoma * termites * Rhinotermitidae Subject RIV: CC - Organic Chemistry Impact factor: 2.657, year: 2011

  2. Distribution of corazonin and pigment-dispersing factor in the cephalic ganglia of termites.

    Science.gov (United States)

    Závodská, Radka; Wen, Chih-Jen; Hrdý, Ivan; Sauman, Ivo; Lee, How-Jing; Sehnal, Frantisek

    2008-07-01

    Distribution of neurones detectable with antisera to the corazonin (Crz) and the pigment-dispersing factor (PDF) was mapped in the workers or pseudergates of 10 species representing six out of seven termite families. All species contained two triads of Crz-immunoreactive (Crz-ir) neurones in the protocerebrum. Their fibres were linked to the opposite hemisphere, formed a network in the fronto-lateral protocerebrum, and projected to the corpora cardiaca (CC); in most species the fibres also supplied the deuto- and tritocerebrum and the frontal ganglion. Some species possessed additional Crz-ir perikarya in the protocerebrum and the suboesophageal ganglion (SOG). The PDF-ir somata were primarily located in the optic lobe (OL) and SOG. OL harboured a group (3 groups in Coptotermes) of 2-6 PDF-ir cells with processes extending to the medulla, connecting to the contralateral OL, forming 1-2 networks in the protocerebrum, and in most species running also to CC. Such a PDF-ir system associated with the OL was missing in Reticulitermes. Except for Mastotermes, the termites contained 1-2 PDF-ir cell pairs in the SOG and two species had additional perikarya in the protocerebrum. The results are consistent with the view of a monophyletic termite origin and demonstrate how the Crz-ir and PDF-ir systems diversified in the course of termite phylogeny.

  3. Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites

    International Nuclear Information System (INIS)

    Hussain, A.; Ahmed, S.; Shahid, M.

    2011-01-01

    The efficacy of the Metarhizium anisopliae strain ARSEF 6911 was determined in the laboratory and field against two sugarcane pests, Microtermes obesi Holmgren and Odontotermes obesus Rambur (Termitidae: Isoptera). The susceptibility of both termite species to different conidial suspensions (1 x 10 10 , 1 x 10 8 , 1 x 10 6 and 1 x 10 4 conidia/ml) was determined in laboratory. All conidial suspensions were able to induce mortality. Termite mortality caused by the fungal suspensions was dose dependent. There were no significant differences in the LT 50 values between species. Field evaluation of M. anisopliae alone or in combination with diesel oil and thyamethoxam was carried out in two growing seasons (autumn 2005 and spring 2006) at two sites located in Punjab, Pakistan. Dipping the sugarcane setts in these suspensions was tried to determine their effects on germination and percentage of bud damage to sugarcane setts. All treatments significantly reduced termite infestation compared to the untreated control. The combined treatment of M. anisopliae and diesel oil significantly reduced insect damage by attaining higher germination > 55% and lower bud damage < 5.50% at both sites in both seasons. The results suggest that the application of M. anisopliae and diesel oil in combination might be a useful treatment option for the management of termites in sugarcane. (author)

  4. Long-Lived Termite Queens Exhibit High Cu/Zn-Superoxide Dismutase Activity

    Directory of Open Access Journals (Sweden)

    Eisuke Tasaki

    2018-01-01

    Full Text Available In most organisms, superoxide dismutases (SODs are among the most effective antioxidant enzymes that regulate the reactive oxygen species (ROS generated by oxidative energy metabolism. ROS are considered main proximate causes of aging. However, it remains unclear if SOD activities are associated with organismal longevity. The queens of eusocial insects, such as termites, ants, and honeybees, exhibit extraordinary longevity in comparison with the nonreproductive castes, such as workers. Therefore, the queens are promising candidates to study the underlying mechanisms of aging. Here, we found that queens have higher Cu/Zn-SOD activity than nonreproductive individuals of the termite Reticulitermes speratus. We identified three Cu/Zn-SOD sequences and one Mn-SOD sequence by RNA sequencing in R. speratus. Although the queens showed higher Cu/Zn-SOD activity than the nonreproductive individuals, there were no differences in their expression levels of the Cu/Zn-SOD genes RsSOD1 and RsSOD3A. Copper (Cu2+ and Cu+ is an essential cofactor for Cu/Zn-SOD enzyme activity, and the queens had higher concentrations of copper than the workers. These results suggest that the high Cu/Zn-SOD activity of termite queens is related to their high levels of the cofactor rather than gene expression. This study highlights that Cu/Zn-SOD activity contributes to extraordinary longevity in termites.

  5. SPATIAL VARIABILITY AND VITALITY OF EPIGEOUS TERMITE MOUNDS IN PASTURES OF MATO GROSSO DO SUL, BRAZIL

    Directory of Open Access Journals (Sweden)

    Sandra Santana Lima

    2015-02-01

    Full Text Available Epigeous termite mounds are frequently observed in pasture areas, but the processes regulating their population dynamics are poorly known. This study evaluated epigeous termite mounds in cultivated grasslands used as pastures, assessing their spatial distribution by means of geostatistics and evaluating their vitality. The study was conducted in the Cerrado biome in the municipality of Rio Brilhante, Mato Grosso do Sul, Brazil. In two pasture areas (Pasture 1 and Pasture 2, epigeous mounds (nests were georeferenced and analyzed for height, circumference and vitality (inhabited or not. The area occupied by the mounds was calculated and termite specimens were collected for taxonomic identification. The spatial distribution pattern of the mounds was analyzed with geostatistical procedures. In both pasture areas, all epigeous mounds were built by the same species, Cornitermes cumulans. The mean number of mounds per hectare was 68 in Pasture 1 and 127 in Pasture 2, representing 0.4 and 1 % of the entire area, respectively. A large majority of the mounds were active (vitality, 91 % in Pasture 1 and 84 % in Pasture 2. A “pure nugget effect” was observed in the semivariograms of height and nest circumference in both pastures reflecting randomized spatial distribution and confirming that the distribution of termite mounds in pastures had a non-standard distribution.

  6. Laboratory and field evaluation of Metarhizium anisopliae var. anisopliae for controlling subterranean termites

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A. [South China Agricultural University, Guangzhou (China). College of Natural Resources and Environment; Ahmed, S. [South China Agricultural University, Guangzhou (China). Dept. of Agricultural Entomology; Shahid, M., E-mail: solvia_aah@yahoo.co [University of Agriculture, Faisalabad (Pakistan). Dept. of Chemistry and Biochemistry

    2011-03-15

    The efficacy of the Metarhizium anisopliae strain ARSEF 6911 was determined in the laboratory and field against two sugarcane pests, Microtermes obesi Holmgren and Odontotermes obesus Rambur (Termitidae: Isoptera). The susceptibility of both termite species to different conidial suspensions (1 x 10{sup 10}, 1 x 10{sup 8}, 1 x 10{sup 6} and 1 x 10{sup 4} conidia/ml) was determined in laboratory. All conidial suspensions were able to induce mortality. Termite mortality caused by the fungal suspensions was dose dependent. There were no significant differences in the LT{sub 50} values between species. Field evaluation of M. anisopliae alone or in combination with diesel oil and thyamethoxam was carried out in two growing seasons (autumn 2005 and spring 2006) at two sites located in Punjab, Pakistan. Dipping the sugarcane setts in these suspensions was tried to determine their effects on germination and percentage of bud damage to sugarcane setts. All treatments significantly reduced termite infestation compared to the untreated control. The combined treatment of M. anisopliae and diesel oil significantly reduced insect damage by attaining higher germination > 55% and lower bud damage < 5.50% at both sites in both seasons. The results suggest that the application of M. anisopliae and diesel oil in combination might be a useful treatment option for the management of termites in sugarcane. (author)

  7. Facultative asexual reproduction and genetic diversity of populations in the humivorous termite Cavitermes tuberosus

    Czech Academy of Sciences Publication Activity Database

    Fournier, D.; Hellemans, S.; Hanus, Robert; Roisin, Y.

    2016-01-01

    Roč. 283, č. 1832 (2016), č. článku 20160196. ISSN 0962-8452 R&D Projects: GA ČR(CZ) GA14-12774S Institutional support: RVO:61388963 Keywords : thelytokous parthenogenesis * breeding systems * termites * reproductive strategies * Isoptera * Termitidae Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.940, year: 2016

  8. Sustainable Management of Subterranean Termite Populations (Isoptera: Rhinotermitidae) in Armstrong Park, New Orleans, With Durable Baits.

    Science.gov (United States)

    Su, Nan-Yao; Guidry, Eric; Cottone, Carrie

    2016-03-27

    Durable baits, Recruit HD, were installed in 45 Sentricon stations between September 2010 and July 2014 in the 32-acre Armstrong Park, New Orleans. After eliminating all detectable termite colonies in the Park, 6-12 mo elapsed before new activity was detected. Newly invading termite colonies were usually found near the Park border or were smaller colonies that originated from recently paired alates. After colony elimination, Recruit HD baits were left in the stations to intercept newly invading colonies of subterranean termites, leading to their elimination, and multiple cycles of such interception and elimination events were recorded. Because the presence of Recruit HD baits continues to eliminate incoming colonies with little effort in maintaining and resupplying baits in the target areas, the bait system offers an economically sustainable option for managing subterranean termite populations in a large area. The 32-acre Armstrong Park is a manageable size to carry out an area-wide (AW) project. If the number of such AW projects is gradually increased over time in selected metro areas of New Orleans, we predict that we may be able to turn the tide against the ever-increasing populations ofC. formosanusin the entire city. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Studies on thermal degradation and termite resistant properties of chemically modified wood

    Energy Technology Data Exchange (ETDEWEB)

    Deka, M.; Saikia, C.N. [Council for Scientific and Industrial Research (CSIR), Regional Research Laboratory, Jorhat (India); Baruah, K.K. [Assam Agricultural University, Jorhat (India)

    2002-09-01

    A series of experiments were carried out to examine the resistant capacity of a chemically treated hard wood, Anthocephalus cadamba (Roxb) Miq. to thermal and termite degradation. The treatment with thermosetting resins viz. urea formaldehyde (UF), melamine formaldehyde (MF) and phenol formaldehyde (PF) at 31-33 levels of weight percent gain (WPG) increased the strength property i.e. modulus of rupture (MOR) by 7.50-21.02% and stiffness i.e. modulus of elasticity (MOE) by 9.50-12.18% over the untreated one with no remarkable effect on specific gravity. The treated samples were found resistant to termite attack, while the untreated one was badly damaged by termites on 12 months' exposure to a termite colony. The thermal degradations of untreated and treated wood samples were studied using thermogravimetric (TGA) and differential thermogravimetric (DTG) techniques at heating rates 20 and 30 {sup o}Cmin{sup -1} in temperature range 30-650{sup o}C. The treated wood was found to be thermally more stable than the untreated one. (author)

  10. Rapid elimination of field colonies of subterranean termites (Isoptera: Rhinotermitidae) using bistrifluron solid bait pellets.

    Science.gov (United States)

    Evans, Theodore A

    2010-04-01

    The efficacy of bistrifluron, a chitin synthesis inhibitor, in cellulose bait pellets was evaluated on the mound-building subterranean termite, Coptotermes acinaciformis (Froggatt). Three concentrations of the bistrifluron were used: 0 (untreated control), 0.5, and 1.0% over an 8 wk period. Both doses of bistrifluron bait eliminated (viz. termites absent from nest or mound) termite colonies: 83% of colonies (10 of 12) were either eliminated or moribund (viz. colony had no reproductive capacity and decreased workforce) after 8 wk, compared with none of the control colonies. The remaining two treated colonies were deemed to be in decline. Early signs that bistrifluron was affecting the colonies included: 3 wk after baiting mound temperatures showed a loss of metabolic heat, 4 wk after baiting foraging activity in feeding stations was reduced or absent, and dissection of two mounds at 4 wk showed they were moribund. Colony elimination was achieved in around half or less the time, and with less bait toxicant, than other bait products tested under similar conditions in the field, because of either the active ingredient, the high surface area of the pellets, or a combination of both. This suggests the sometimes long times reported for control using baits may be reduced significantly. The use of a mound building species demonstrated clearly colony level effects before and after termites stopped foraging in bait stations.

  11. Monthly fluctuation of termite caste proportions (Isoptera) within fire ant mounds (hymenoptera: formicidae)

    Science.gov (United States)

    Thomas G. Shelton; J.T. Vogt; Marla J. Tanley; Arthur G. Appel

    2003-01-01

    Monthly abundance and caste proportions of subterranean termites (Reticulitennes spp.) inhabiting red imported fire ant (Solenopsis invicta Buren) mounds were recorded during 1999 and 2000 from a relatively undisturbed forest edge in Tuskegee, Alabama. Temperature data were also recorded at these mounds; mean air, soil, and mound temperatures followed a sine model over...

  12. Termitomyces sp. associated with the termite Macrotermes natalensis has a heterothallic mating system and multinucleate cells

    DEFF Research Database (Denmark)

    De Fine Licht, Henrik H; Andersen, Anders; Aanen, Duur Kornelis

    2005-01-01

    Fungi of the genus Termitomyces live in an obligate symbiosis with termites of the subfamily Macrotermitinae. Many species of Termitomyces frequently form fruit bodies, which develop from the fungus comb within the nest. In this study, we determined the mating system of a species of Termitomyces ...

  13. Effects of extractives and ash on natural resistance of four woods to xylophogous termites

    Directory of Open Access Journals (Sweden)

    Juarez Benigno Paes

    2013-09-01

    Full Text Available This study tested the natural resistance of wood of four tree species to Nasutitermes corniger Motsch. xylophogous termite attack and correlate the resistance with the amount of extract and ash in the chemical composition of the tested species. The species evaluated were Anadenanthera colubrina (Vell. Brenan. var. cebil (Gris. Alts., Tabebuia aurea (Mart. Bureau., Amburana cearensis (Allem. A.C.Sm. and Eucalyptus camaldulensis Dehnh. Test samples with dimensions of 2.00 x 10.16 x 0.64 cm (radial x longitudinal x tangential were obtained at two positions (external heartwood and sapwood of each species. The samples were exposed to action of termites for 45 days in food preference assay. The content of wood extractives was obtained through the sawdust that went through sieve of 40 mesh and were retained in the 60 mesh. The natural resistance was not associated with wood extractive contents. The wood more resistant to termite attack was the Anadenanthera colubrina var. cebil in the two positions (external heartwood and sapwood and Eucalyptus camaldulensis wood presented the greatest wear. The biological resistance of wood was correlated with ash content, i.e., the species with the highest levels was the most resistant to termite attack.

  14. Unrelated secondary reproductives in the neotropical termite Silvestritermes euamignathus (Isoptera: Termitidae)

    Science.gov (United States)

    Haifig, Ives; Vargo, Edward L.; Labadie, Paul; Costa-Leonardo, Ana Maria

    2016-02-01

    A termite colony is usually founded by a pair of alates, the primary reproductives, which produce all the nestmates. In some species, secondary reproductives appear to either replace the primaries or supplement colony reproduction. In termites, secondary reproductives are generally ergatoids derived from workers or nymphoids derived from nymphs. Silvestritermes euamignathus is a termite species that forms multiple nymphoid reproductives, and to date it was hypothesized that these secondary reproductives were the progeny of the primary founding reproductives. We developed markers for 12 microsatellite loci and used COI mitochondrial DNA (mtDNA) to genotype 59 nymphoid neotenics found in a colony of S. euamignathus to test this hypothesis. Our results showed that nymphoids of S. euamignathus are not all siblings. The microsatellite analysis suggests that the secondary reproductives derived from a minimum of four different pairs of reproductives belonging to at least two different matrilines. This is the first record of non-sibling secondary reproductives occupying the same nest in a higher termite. These unrelated reproductives might be the result of either pleometrotic colony foundation or colony fusion.

  15. Task allocation in the tunneling behavior of workers of the formosan subterranean termite, coptotermes formosanus shiraki

    Science.gov (United States)

    Technical Abstract: There is variation in the tunneling behavior of workers of the Formosan subterranean termite, Coptotermes formosanus Shiraki, where most of the excavation is conducted by a small number of individuals in a group, while the majority of individuals do little or no excavation. This ...

  16. Identification of the Trail-Following Pheromone of the Pest Termite Amitermes evuncifer (Isoptera: Termitidae)

    Czech Academy of Sciences Publication Activity Database

    Kotoklo, E. A.; Sillam-Dusses, David; Kétoh, G.; Sémon, E.; Robert, A.; Bordereau, Ch.; Glitho, I. A.

    2010-01-01

    Roč. 55, č. 2 (2010), s. 579-588 ISSN 0361-6525 Institutional research plan: CEZ:AV0Z40550506 Keywords : dodecatrienol * neocembrene * multicomponent pheromone * termites Subject RIV: CC - Organic Chemistry Impact factor: 0.534, year: 2010

  17. Decay and termite resistance, water absorption and swelling of thermally compressed wood panels

    Science.gov (United States)

    Oner Unsal; S. Nami Kartal; Zeki Candan; Rachel A. Arango; Carol A. Clausen; Frederick Green

    2009-01-01

    This study evaluated decay and termite resistance of thermally compressed pine wood panels under pressure at either 5 or 7 MPa and either 120 or 150 °C for 1 h. Wood specimens from the panels were exposed to laboratory decay resistance by using the wood degrading fungi, Gloeophyllum trabeum and Trametes versicolor. The thermal compression process caused increases in...

  18. Catnip essential oil as a barrier to subterranean termites (Isoptera: Rhinotermitidae) in the laboratory

    Science.gov (United States)

    C.J. Peterson; J. Ems-Wilson

    2003-01-01

    The essential oil of catnip, Nepeta cataria (Lamiacae) was evaluated for behavioral effects on two populations of subterranean termite, Reticulitermes flavipes (Kollar) and R. virginicus (Banks) (Isoptera: Rhinotermitidae). The catnip essential oil contained =36: 64 E,Z-nepetalactone and Z,E-nepetalactone,...

  19. Two new termite (Isoptera: Rhinotermitidae) feeding indexes for woods of varing palatability

    Science.gov (United States)

    Chris J. Peterson; P.D. Gerard

    2009-01-01

    In order for bait matrices, treated wood and resistant wood species to be properly evaluated in the laboratory for termite resistance or palatability, reliable tests that can distinguish between food choices must be developed; otherwise, inferior products may enter the marketplace. In the current study, a bioassay method is proposed that allows the calculation of two...

  20. EFFECTS OF EXTRACTIVES AND DENSITY ON NATURAL RESISTANCE OF WOODS TO TERMITE Nasutitermes corniger

    Directory of Open Access Journals (Sweden)

    Juarez Benigno Paes

    2015-12-01

    Full Text Available The evaluation of the natural resistance of wood to wood-destroying organisms is of fundamental importance in the choice of species to be used in buildings and furniture industry. Thus, the effects of extractives and wood density on biological resistance of Acacia mangium, Casuarina equisetifolia, Corymbia torelliana, Eucalyptus cloeziana, Tectona grandis and Caesalpinia echinata woods to the xylophagous termite Nasutitermes corniger was evaluated under laboratory conditions. Test samples, with dimensions of 2.00 x 2.54 x 0.64 cm (radial x tangential x longitudinal in four positions in pith-bark direction (internal heart, intermediate heart, outer heart and sapwood were taken. The woods were exposed to termite action for 28 days in no-choice feeding test. The samples not selected for the termite test were turned into sawdust and the extractive contents were obtained using the shavings that passed through the sieve of 40 and were retained in the sieve of 60 mesh. The wood natural resistance, within the pith-bark positions, for the studied species, is not correlated with the density and extractive content. However, among the woods, those with higher density and extractive content are more resistant. The woods with greater biological resistance to the termite Nasutitermes corniger (smaller mass loss, waste and survival time of insects are Corymbia torelliana and Caesalpinia echinata and of less resistance is Casuarina equisetifolia.

  1. Presumptive horizontal symbiont transmission in the fungus-growing termite Macrotermes natalensis

    NARCIS (Netherlands)

    Fine Licht, de H.H.; Boomsma, J.J.; Aanen, D.K.

    2006-01-01

    All colonies of the fungus-growing termite Macrotermes natalensis studied so far are associated with a single genetically variable lineage of Termitomyces symbionts. Such limited genetic variation of symbionts and the absence of sexual fruiting bodies (mushrooms) on M. natalensis mounds would be

  2. Preliminary evaluation of storax and its constituents: Fungal decay mold and termite resistance

    Science.gov (United States)

    S. Nami Kartal; Evren Terzi; Tsuyoshi Yoshimura; Rachel Arango; Carol A. Clausen; Frederick Green III

    2012-01-01

    Essential oils and their derivatives might be one of the promising preserving agents to prevent funga ldecay and termite/insect attack in wood since such compounds have a long history of safe usage as antimicrobial agents in various industries. Considerable research has focused on utilizing bioactive essential oils and wood extractives based on green technologies to...

  3. Susceptibility of Seven Termite Species (Isoptera) to the Entomopathogenic Fungus Metarhizium anisopliae

    OpenAIRE

    Chouvenc , Thomas; Su , Nan-Yao; Robert , Alain

    2009-01-01

    Seven termite species (Isoptera) from five families were tested for disease susceptibility against the entomopathogenic fungus Metarhizium anisopliae using a standard protocol: Mastotermes darwiniensis (Mastotermitidae), Hodotermopsis sjoestedti (Termopsidae), Hodotermes mossambicus (Hodotermitidae), Kalotermes flavicollis (Kalotermitidae), Reticulitermes flavipes and Prorhinotermes canalifrons (Rhinotermitidae), and Nasutitermes voeltzkowi (Termitidae). Our results showed a large diversity i...

  4. Secondary queens in the parthenogenetic termite Cavitermes tuberosus develop through a transitional helper stage

    Czech Academy of Sciences Publication Activity Database

    Hellemans, S.; Fournier, D.; Hanus, Robert; Roisin, Y.

    2017-01-01

    Roč. 19, č. 6 (2017), s. 253-262 ISSN 1520-541X Institutional support: RVO:61388963 Keywords : facultative parthenogenesis * replacement queens * termites * asexual queen succession * ontogeny * Cavitermes Subject RIV: EG - Zoology OBOR OECD: Developmental biology Impact factor: 2.243, year: 2016

  5. effects of rice husk ash and termite hill types on the physical

    African Journals Online (AJOL)

    PROF EKWUEME

    especially in the manufacturing of building materials. A particularly potential ... Cassgrande apparatus with a grooving tool was used for the limit test. ... Lean clay. 2.2.1 Compaction Test. The compaction tests on the termite clay samples were ...

  6. Termite and fungal resistance of in situ polymerized tributyltin acrylate and acetylated Indonesian and USA wood

    Science.gov (United States)

    Rebecca E. Ibach; Yusuf Sudo Hadi; Dodi Nandika; Sulaeman Yusuf; Yuliati Indrayani

    2000-01-01

    Wood [Indonesian pine (IP), Indonesian Jabon (IJ) and USA southern yellow pine (USP)] was either in situ polymerized with tributyltin acrylate (TBTA) or acetylated and then exposed to termite and fungal degradation both in laboratory tests and field exposure. The TBTA woods had an average weight percent gain (WPG) of 11% for IP, 12% for IJ, and 10% for USP. The...

  7. Chemistry and Anatomy of the Frontal Gland in Soldiers of the Sand Termite Psammotermes hybostoma

    Czech Academy of Sciences Publication Activity Database

    Krasulová, Jana; Hanus, Robert; Kutalová, Kateřina; Šobotník, Jan; Sillam-Dusses, David; Tichý, Michal; Valterová, Irena

    2012-01-01

    Roč. 38, č. 5 (2012), s. 557-565 ISSN 0098-0331 R&D Projects: GA ČR GAP506/10/1570 Institutional research plan: CEZ:AV0Z40550506 Keywords : termites * frontal gland of soldiers * chemical defense * Rhinotermitidae * Psammotermes hybostoma Subject RIV: CC - Organic Chemistry Impact factor: 2.462, year: 2012

  8. Termites amplify effects of wood traits on decomposition rates among multiple bamboo and dicot woody species

    NARCIS (Netherlands)

    Liu, Guofang; Cornwell, W.K.; Cao, Kunfang; Hu, Yukun; van Logtestijn, R.S.P; Yang, Shijian; Xie, Xiufang; Zhang, Yalin; Ye, Duo; Pan, Xu; Ye, Xuehua; Huang, Zhenying; Dong, Ming; Cornelissen, J.H.C.

    2015-01-01

    Wood decomposition is a key process in the terrestrial carbon cycle, controlling carbon storage with feedback to climate. In (sub) tropical forest, termites are major players in wood decomposition, but their role relative to that of microbial decomposers and wood traits of different tree species is

  9. Termite- and mulch-mediated rehabilitation of vegetation on crusted soil in West Africa

    NARCIS (Netherlands)

    Mando, A.; Brussaard, L.; Stroosnijder, L.

    1999-01-01

    The rehabilitation of vegetation on structurally crusted soils by triggering termite activity through mulch was studied on three soil types in northern Burkina Faso, West Africa. A split-plot design was used in a fenced environment for the experiment. Insecticide (Dieldrin) was used at a rate of 500

  10. Size-density scaling in protists and the links between consumer-resource interaction parameters.

    Science.gov (United States)

    DeLong, John P; Vasseur, David A

    2012-11-01

    Recent work indicates that the interaction between body-size-dependent demographic processes can generate macroecological patterns such as the scaling of population density with body size. In this study, we evaluate this possibility for grazing protists and also test whether demographic parameters in these models are correlated after controlling for body size. We compiled data on the body-size dependence of consumer-resource interactions and population density for heterotrophic protists grazing algae in laboratory studies. We then used nested dynamic models to predict both the height and slope of the scaling relationship between population density and body size for these protists. We also controlled for consumer size and assessed links between model parameters. Finally, we used the models and the parameter estimates to assess the individual- and population-level dependence of resource use on body-size and prey-size selection. The predicted size-density scaling for all models matched closely to the observed scaling, and the simplest model was sufficient to predict the pattern. Variation around the mean size-density scaling relationship may be generated by variation in prey productivity and area of capture, but residuals are relatively insensitive to variation in prey size selection. After controlling for body size, many consumer-resource interaction parameters were correlated, and a positive correlation between residual prey size selection and conversion efficiency neutralizes the apparent fitness advantage of taking large prey. Our results indicate that widespread community-level patterns can be explained with simple population models that apply consistently across a range of sizes. They also indicate that the parameter space governing the dynamics and the steady states in these systems is structured such that some parts of the parameter space are unlikely to represent real systems. Finally, predator-prey size ratios represent a kind of conundrum, because they are

  11. Excavation and aggregation as organizing factors in de novo construction by mound-building termites.

    Science.gov (United States)

    Green, Ben; Bardunias, Paul; Turner, J Scott; Nagpal, Radhika; Werfel, Justin

    2017-06-14

    Termites construct complex mounds that are orders of magnitude larger than any individual and fulfil a variety of functional roles. Yet the processes through which these mounds are built, and by which the insects organize their efforts, remain poorly understood. The traditional understanding focuses on stigmergy, a form of indirect communication in which actions that change the environment provide cues that influence future work. Termite construction has long been thought to be organized via a putative 'cement pheromone': a chemical added to deposited soil that stimulates further deposition in the same area, thus creating a positive feedback loop whereby coherent structures are built up. To investigate the detailed mechanisms and behaviours through which termites self-organize the early stages of mound construction, we tracked the motion and behaviour of major workers from two Macrotermes species in experimental arenas. Rather than a construction process focused on accumulation of depositions, as models based on cement pheromone would suggest, our results indicated that the primary organizing mechanisms were based on excavation. Digging activity was focused on a small number of excavation sites, which in turn provided templates for soil deposition. This behaviour was mediated by a mechanism of aggregation, with termites being more likely to join in the work at an excavation site as the number of termites presently working at that site increased. Statistical analyses showed that this aggregation mechanism was a response to active digging, distinct from and unrelated to putative chemical cues that stimulate deposition. Agent-based simulations quantitatively supported the interpretation that the early stage of de novo construction is primarily organized by excavation and aggregation activity rather than by stigmergic deposition. © 2017 The Author(s).

  12. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa

    Directory of Open Access Journals (Sweden)

    de Beer Z Wilhelm

    2007-07-01

    Full Text Available Abstract Background Termites of the subfamily Macrotermitinae live in a mutualistic symbiosis with basidiomycete fungi of the genus Termitomyces. Here, we explored interaction specificity in fungus-growing termites using samples from 101 colonies in South-Africa and Senegal, belonging to eight species divided over three genera. Knowledge of interaction specificity is important to test the hypothesis that inhabitants (symbionts are taxonomically less diverse than 'exhabitants' (hosts and to test the hypothesis that transmission mode is an important determinant for interaction specificity. Results Analysis of Molecular Variance among symbiont ITS sequences across termite hosts at three hierarchical levels showed that 47 % of the variation occurred between genera, 18 % between species, and the remaining 35 % between colonies within species. Different patterns of specificity were evident. High mutual specificity was found for the single Macrotermes species studied, as M. natalensis was associated with a single unique fungal haplotype. The three species of the genus Odontotermes showed low symbiont specificity: they were all associated with a genetically diverse set of fungal symbionts, but their fungal symbionts showed some host specificity, as none of the fungal haplotypes were shared between the studied Odontotermes species. Finally, bilaterally low specificity was found for the four tentatively recognized species of the genus Microtermes, which shared and apparently freely exchanged a common pool of divergent fungal symbionts. Conclusion Interaction specificity was high at the genus level and generally much lower at the species level. A comparison of the observed diversity among fungal symbionts with the diversity among termite hosts, indicated that the fungal symbiont does not follow the general pattern of an endosymbiont, as we found either similar diversity at both sides or higher diversity in the symbiont. Our results further challenge the

  13. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi

    DEFF Research Database (Denmark)

    Um, Soohyun; Fraimout, Antoine; Sapountzis, Panagiotis

    2013-01-01

    colonies produce a single major antibiotic, bacillaene A (1), which selectively inhibits known and putatively antagonistic fungi of Termitomyces. Comparative analyses of the genomes of symbiotic Bacillus strains revealed that they are phylogenetically closely related to Bacillus subtilis, their genomes...... have high homology with more than 90% of ORFs being 100% identical, and the sequence identities across the biosynthetic gene cluster for bacillaene are higher between termite-associated strains than to the cluster previously reported in B. subtilis. Our findings suggest that this lineage of antibiotic......The ancient fungus-growing termite (Mactrotermitinae) symbiosis involves the obligate association between a lineage of higher termites and basidiomycete Termitomyces cultivar fungi. Our investigation of the fungus-growing termite Macrotermes natalensis shows that Bacillus strains from M. natalensis...

  14. Development and characterization of microsatellite markers from the humivorous termite Cavitermes tuberosus (Isoptera: Termitinae) using pyrosequencing technology

    Czech Academy of Sciences Publication Activity Database

    Fournier, D.; Hanus, Robert; Roisin, Y.

    2015-01-01

    Roč. 7, č. 2 (2015), s. 521-524 ISSN 1877-7252 Institutional support: RVO:61388963 Keywords : Cavitermes tuberosus * termite * microsatellite * pyrosequencing * population genetics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.446, year: 2015

  15. Gut immunity in Lepidopteran insects.

    Science.gov (United States)

    Wu, Kai; Yang, Bing; Huang, Wuren; Dobens, Leonard; Song, Hongsheng; Ling, Erjun

    2016-11-01

    Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Diversité et succession des protistes dans l'océan Arctique

    OpenAIRE

    Terrado, Ramon

    2011-01-01

    L'Arctique est la région du globe où le réchauffement climatique est le plus prononcé. L'étude de la diversité des microorganismes, leur dynamique de communauté et les facteurs environnementaux qui agissent sur eux s'avèrent donc importants pour comprendre comment ces communautés vont réagir à des changements environnementaux. Cette thèse explore la diversité des protistes et leur dynamique dans l'océan Arctique sur une échelle temporelle ainsi que spatiale. La méthodologie utilisée dans cett...

  17. Stray cats are more frequently infected with zoonotic protists than pet cats.

    Science.gov (United States)

    Kvac, Martin; Hofmannova, Lada; Ortega, Ynes; Holubova, Nikola; Horcickova, Michaela; Kicia, Marta; Hlaskova, Lenka; Kvetonova, Dana; Sak, Bohumil; McEvoy, John

    2017-12-06

    Faecal samples were collected from cats kept as pets (n = 120) and stray cats (n = 135) in Central Europe (Czech Republic, Poland and Slovakia) and screened for the presence of Cryptosporidium spp., Giardia intestinalis (Kunstler, 1882), Encephalitozoon spp. and Enterocytozoon bieneusi Desportes, Le Charpentier, Galian, Bernard, Cochand-Priollet, Lavergne, Ravisse et Modigliani, 1985 by PCR analysis of the small-subunit of rRNA (Cryptosporidium spp. and G. intestinalis) and ITS (microsporidia) genes. Sequence analysis of targeted genes revealed the presence of C. felis Iseki, 1979, G. intestinalis assemblage F, E. cuniculi Levaditi, Nicolau et Schoen, 1923 genotype II, and E. bieneusi genotype D. There was no correlation between the occurrence of detected parasites and sex, presence of diarrhoea or drug treatment (drug containing pyrantel and praziquantel). Compared to pet cats (7%), stray cats (30%) were statistically more frequently infected with protist parasites and overall may present a greater risk to human health.

  18. Mechanisms of fatty acid synthesis in marine fungus-like protists.

    Science.gov (United States)

    Xie, Yunxuan; Wang, Guangyi

    2015-10-01

    Thraustochytrids are unicellular fungus-like protists and are well known for their ability to produce interesting nutraceutical compounds. Significant efforts have been made to improve their efficient production of important fatty acids (FAs), mostly by optimizing fermentation conditions and selecting highly productive thraustochytrid strains. Furthermore, noticeable improvements have been made in understanding the mechanism of FA biosynthesis, allowing for a better understanding of how thraustochytrids assemble these unique metabolites and how their biosynthesis is coupled with other related pathways. This review summarizes recent achievements on two major FA biosynthesis pathways, the standard pathway and the polyketide synthase pathway, and detail features of individual enzymes involved in FA biosynthesis, biotechnological advances in pathway engineering and enzyme characterization, and the discovery of other pathways that affect the efficiency of FA accumulation. Perspectives of biotechnological potential application of thraustochytrids are also discussed.

  19. Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists

    Science.gov (United States)

    Dawson, Scott C.; Paredez, Alexander R.

    2016-01-01

    Microbial eukaryotes encompass the majority of eukaryotic evolutionary and cytoskeletal diversity. The cytoskeletal complexity observed in multicellular organisms appears to be an expansion of components present in genomes of diverse microbial eukaryotes such as the basal lineage of flagellates, the Excavata. Excavate protists have complex and diverse cytoskeletal architectures and life cycles – essentially alternative cytoskeletal “landscapes” – yet still possess conserved microtubule- and actin-associated proteins. Comparative genomic analyses have revealed that a subset of excavates, however, lack many canonical actin-binding proteins central to actin cytoskeleton function in other eukaryotes. Overall, excavates possess numerous uncharacterized and “hypothetical” genes, and may represent an undiscovered reservoir of novel cytoskeletal genes and cytoskeletal mechanisms. The continued development of molecular genetic tools in these complex microbial eukaryotes will undoubtedly contribute to our overall understanding of cytoskeletal diversity and evolution. PMID:23312067

  20. Caste-, sex-, and age-dependent expression of immune-related genes in a Japanese subterranean termite, Reticulitermes speratus

    OpenAIRE

    Mitaka, Yuki; Kobayashi, Kazuya; Matsuura, Kenji

    2017-01-01

    Insects protect themselves from microbial infections through innate immune responses, including pathogen recognition, phagocytosis, the activation of proteolytic cascades, and the synthesis of antimicrobial peptides. Termites, eusocial insects inhabiting microbe-rich wood, live in closely-related family groups that are susceptible to shared pathogen infections. To resist pathogenic infection, termite families have evolved diverse immune adaptations at both individual and societal levels, and ...

  1. Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo

    OpenAIRE

    Luke, Sarah H.; Fayle, Tom M.; Eggleton, Paul; Turner, Edgar C.; Davies, Richard G.

    2014-01-01

    Forested tropical landscapes around the world are being extensively logged and converted to agriculture, with serious consequences for biodiversity and potentially ecosystem functioning. Here we investigate associations between habitat disturbance and functional diversity of ants and termites – two numerically dominant and functionally important taxa in tropical rain forests that perform key roles in predation, decomposition, nutrient cycling and seed dispersal. We compared ant and termite oc...

  2. A Preliminary Study on Termite Mound Soil as Agricultural Soil for Crop Production in South West, Nigeria

    OpenAIRE

    Omofunmi, O. E.; Kolo, J. G.; Alli, A. A.; Ojo, A. S.

    2017-01-01

    It is a popular belief of the people in the Southern region of Nigeria that a land infested with termite usually brings prosperity to the land owner regardless of the type of its usage.  Therefore, the present study assessed termite mounds soil properties which are important to crop production. Two soil samples were collected and their physical and chemical properties determined in accordance with American Public Health Association (APHA, 2005). Data were analyzed using descriptive stati...

  3. Occurrence of termites (Isoptera on living and standing dead trees in a tropical dry forest in Mexico

    Directory of Open Access Journals (Sweden)

    Nancy Calderón-Cortés

    2018-05-01

    Full Text Available Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60–98% of standing dead trees and 23–59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057–0.066 trees/m2 than in riparian forests (0.022 and 0.027 trees/m2, even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01–0.09 trees/m2 than in larger class sizes (0–0.02 trees/m2. Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  4. Occurrence of termites (Isoptera) on living and standing dead trees in a tropical dry forest in Mexico.

    Science.gov (United States)

    Calderón-Cortés, Nancy; Escalera-Vázquez, Luis H; Oyama, Ken

    2018-01-01

    Termites play a key role as ecosystem engineers in numerous ecological processes though their role in the dynamics of wood degradation in tropical dry forests, particularly at the level of the crown canopy, has been little studied. In this study, we analysed the occurrence of termites in the forest canopy by evaluating the density and proportion of living and standing dead trees associated with termites in deciduous and riparian habitats of the tropical dry forest in Chamela, Mexico. The results indicated that 60-98% of standing dead trees and 23-59% of living trees in Chamela were associated with termites. In particular, we found that the density of standing dead trees was higher in deciduous forests (0.057-0.066 trees/m 2 ) than in riparian forests (0.022 and 0.027 trees/m 2 ), even though the proportion of trees was not significantly different among habitats. Additionally, we found a higher density of trees associated with termites in trees of smaller size classes (0.01-0.09 trees/m 2 ) than in larger class sizes (0-0.02 trees/m 2 ). Interestingly, 72% of variation in the density of trees associated with termites is explained by the density of standing dead trees. Overall, these results indicate that standing dead tree availability might be the main factor regulating termite populations in Chamela forest and suggest that termites could play a key role in the decomposition of above-ground dead wood, mediating the incorporation of suspended and standing dead wood into the soil.

  5. Carbohydrates and the human gut microbiota.

    Science.gov (United States)

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  6. Can abundance of protists be inferred from sequence data: a case study of foraminifera.

    Directory of Open Access Journals (Sweden)

    Alexandra A-T Weber

    Full Text Available Protists are key players in microbial communities, yet our understanding of their role in ecosystem functioning is seriously impeded by difficulties in identification of protistan species and their quantification. Current microscopy-based methods used for determining the abundance of protists are tedious and often show a low taxonomic resolution. Recent development of next-generation sequencing technologies offered a very powerful tool for studying the richness of protistan communities. Still, the relationship between abundance of species and number of sequences remains subjected to various technical and biological biases. Here, we test the impact of some of these biological biases on sequence abundance of SSU rRNA gene in foraminifera. First, we quantified the rDNA copy number and rRNA expression level of three species of foraminifera by qPCR. Then, we prepared five mock communities with these species, two in equal proportions and three with one species ten times more abundant. The libraries of rDNA and cDNA of the mock communities were constructed, Sanger sequenced and the sequence abundance was calculated. The initial species proportions were compared to the raw sequence proportions as well as to the sequence abundance normalized by rDNA copy number and rRNA expression level per species. Our results showed that without normalization, all sequence data differed significantly from the initial proportions. After normalization, the congruence between the number of sequences and number of specimens was much better. We conclude that without normalization, species abundance determination based on sequence data was not possible because of the effect of biological biases. Nevertheless, by taking into account the variation of rDNA copy number and rRNA expression level we were able to infer species abundance, suggesting that our approach can be successful in controlled conditions.

  7. Pitfalls of establishing DNA barcoding systems in protists: the cryptophyceae as a test case.

    Science.gov (United States)

    Hoef-Emden, Kerstin

    2012-01-01

    A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5'-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene). In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC), have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed.

  8. Pitfalls of establishing DNA barcoding systems in protists: the cryptophyceae as a test case.

    Directory of Open Access Journals (Sweden)

    Kerstin Hoef-Emden

    Full Text Available A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5'-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene. In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC, have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed.

  9. Interactions between the mixotrophic dinoflagellate Takayama helix and common heterotrophic protists.

    Science.gov (United States)

    Ok, Jin Hee; Jeong, Hae Jin; Lim, An Suk; Lee, Kyung Ha

    2017-09-01

    The phototrophic dinoflagellate Takayama helix that is known to be harmful to abalone larvae has recently been revealed to be mixotrophic. Although mixotrophy elevates the growth rate of T. helix by 79%-185%, its absolute growth rate is still as low as 0.3d -1 . Thus, if the mortality rate of T. helix due to predation is high, this dinoflagellate may not easily prevail. To investigate potential effective protistan grazers on T. helix, feeding by diverse heterotrophic dinoflagellates such as engulfment-feeding Oxyrrhis marina, Gyrodinium dominans, Gyrodinium moestrupii, Polykrikos kofoidii, and Noctiluca scintillans, peduncle-feeding Aduncodinium glandula, Gyrodiniellum shiwhaense, Luciella masanensis, and Pfiesteria piscicida, pallium-feeding Oblea rotunda and Protoperidinium pellucidum, and the naked ciliates Pelagostrobilidium sp. (ca. 40μm in cell length) and Strombidinopsis sp. (ca. 150μm in cell length) on T. helix was explored. Among the tested heterotrophic protists, O. marina, G. dominans, G. moestrupii, A. glandula, L. masanensis, P. kofoidii, P. piscicida, and Strombidinopsis sp. were able to feed on T. helix. The growth rates of all these predators except Strombidinopsis sp. with T. helix prey were lower than those without the prey. The growth rate of Strombidinopsis sp. on T. helix was almost zero although the growth rate of Strombidinopsis sp. with T. helix prey was higher than those without the prey. Moreover, T. helix fed on O. marina and P. pellucidum and lysed the cells of P. kofoidii and G. shiwhaense. With increasing the concentrations of T. helix, the growth rates of O. marina and P. kofoidii decreased, but those of G. dominans and L. masanensis largely did not change. Therefore, reciprocal predation, lysis, no feeding, and the low ingestion rates of the common protists preying on T. helix may result in a low mortality rate due to predation, thereby compensating for this species' low growth rate. Copyright © 2017 Elsevier B.V. All rights

  10. Pyrosequencing analysis of the protist communities in a High Arctic meromictic lake: DNA preservation and change

    Directory of Open Access Journals (Sweden)

    Sophie eCharvet

    2012-12-01

    Full Text Available High Arctic meromictic lakes are extreme environments characterized by cold temperatures, low nutrient inputs from their polar desert catchments and prolonged periods of low irradiance and darkness. These lakes are permanently stratified with an oxygenated freshwater layer (mixolimnion overlying a saline, anoxic water column (monimolimnion. The physical and chemical properties of the deepest known lake of this type in the circumpolar Arctic, Lake A, on the far northern coast of Ellesmere Island, Canada, have been studied over the last 15 years, but little is known about the lake’s biological communities. We applied high-throughput sequencing of the V4 region of the 18S ribosomal RNA gene to investigate the protist communities down the water column at three sampling times: under the ice at the end of winter in 2008, during an unusual period of warming and ice-out the same year, and again under the ice in mid-summer 2009. Sequences of many protist taxa occurred throughout the water column at all sampling times, including in the deep anoxic layer where growth is highly unlikely. Furthermore, there were sequences for taxonomic groups including diatoms and marine taxa, which have never been observed in Lake A by microscopic analysis. However the sequences of other taxa such as ciliates, chrysophytes, Cercozoa and Telonema varied with depth, between years and during the transition to ice-free conditions. These results imply that there are seasonally active taxa in the surface waters of the lake that are sensitive to depth and change with time. DNA from these taxa is superimposed upon background DNA from multiple internal and external sources that is preserved in the deep, cold, largely anoxic water column.

  11. Pitfalls of Establishing DNA Barcoding Systems in Protists: The Cryptophyceae as a Test Case

    Science.gov (United States)

    Hoef-Emden, Kerstin

    2012-01-01

    A DNA barcode is a preferrably short and highly variable region of DNA supposed to facilitate a rapid identification of species. In many protistan lineages, a lack of species-specific morphological characters hampers an identification of species by light or electron microscopy, and difficulties to perform mating experiments in laboratory cultures also do not allow for an identification of biological species. Thus, testing candidate barcode markers as well as establishment of accurately working species identification systems are more challenging than in multicellular organisms. In cryptic species complexes the performance of a potential barcode marker can not be monitored using morphological characters as a feedback, but an inappropriate choice of DNA region may result in artifactual species trees for several reasons. Therefore a priori knowledge of the systematics of a group is required. In addition to identification of known species, methods for an automatic delimitation of species with DNA barcodes have been proposed. The Cryptophyceae provide a mixture of systematically well characterized as well as badly characterized groups and are used in this study to test the suitability of some of the methods for protists. As species identification method the performance of blast in searches against badly to well-sampled reference databases has been tested with COI-5P and 5′-partial LSU rDNA (domains A to D of the nuclear LSU rRNA gene). In addition the performance of two different methods for automatic species delimitation, fixed thresholds of genetic divergence and the general mixed Yule-coalescent model (GMYC), have been examined. The study demonstrates some pitfalls of barcoding methods that have to be taken care of. Also a best-practice approach towards establishing a DNA barcode system in protists is proposed. PMID:22970104

  12. Spatial and Temporal Dynamics of Mixotrophic Protists Within a Protected Glacial Lake

    Science.gov (United States)

    DeVaul, S. B.; Sanders, R. W.

    2016-02-01

    Bacterivorous protists are vital components of the aquatic food web as prey for zooplankton and top-down regulators of bacteria. Many bacterivores utilize mixotrophic nutrition that combines photosynthesis with ingestion of particulate matter. Mixotrophic protists are capable of substantial rates of bacterivory - often greater than co-occurring heterotrophic flagellates. It has been argued that mixotrophs may gain a competitive advantage in natural systems due to their ability to utilize photosynthesis during periods of reduced particulate food or phagotrophy during periods of decreased irradiance. A central goal of ecological study has been to understand and ultimately predict the composition of communities in response to varying environmental conditions. The objectives of this study were to determine seasonal abundances and bacterial ingestion rates of heterotrophic, phototrophic and mixotrophic nanoflagellates (hereafter referred to as HNAN, PNAN and MNAN) and identify abiotic drivers that influence spatial and temporal dynamics of these functional groups. Water samples were collected approximately monthly over a 1.5 year period from Lake Lacawac, a 13,000 year old lake with a protected watershed. Trends in MNAN abundance were related to seasonal patterns of thermal stratification and varied with depth. Maximum abundance occurred in the summer epilimnion. Although HNAN abundance tended to be greater than that of MNAN, the latter generally had a greater grazer impact on bacterial biomass within the epilimnion. During the study period, MNAN removed a maximum of 75% of the bacterial biomass daily in the metalimnion. Mixotroph abundance and grazing impact tended to decrease in deeper waters, and was nearly absent in the anaerobic hypolimnion in late summer and early autumn.

  13. Exercise, fitness, and the gut.

    Science.gov (United States)

    Cronin, Owen; Molloy, Michael G; Shanahan, Fergus

    2016-03-01

    Exercise and gut symptomatology have long been connected. The possibility that regular exercise fosters intestinal health and function has been somewhat overlooked in the scientific literature. In this review, we summarize current knowledge and discuss a selection of recent, relevant, and innovative studies, hypotheses and reviews that elucidate a complex topic. The multiorgan benefits of regular exercise are extensive. When taken in moderation, these benefits transcend improved cardio-respiratory fitness and likely reach the gut in a metabolic, immunological, neural, and microbial manner. This is applicable in both health and disease. However, further work is required to provide safe, effective recommendations on physical activity in specific gastrointestinal conditions. Challenging methodology investigating the relationship between exercise and gut health should not deter from exploring exercise in the promotion of gastrointestinal health.

  14. Global F-theory GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph; /Munich, Max Planck Inst.; Grimm, Thomas W.; /Bonn U.; Jurke, Benjamin; /Munich, Max Planck Inst.; Weigand, Timo; /SLAC

    2010-08-26

    We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4) x U(1){sub X}] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also provide a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P{sup 4}.

  15. Global F-theory GUTs

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Grimm, Thomas W.; Jurke, Benjamin; Weigand, Timo

    2010-01-01

    We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4)xU(1) X ] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also provide a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P 4 [4].

  16. Paléoécologie des protistes à partir d'archives biologiques provenant d'écosystèmes marins côtiers

    OpenAIRE

    Klouch , Khadidja Zeyneb

    2016-01-01

    The community composition of protist and their temporal dynamic are are traditionally studied by analyzing data sets of monitoring/observation networks, whose implementation is however relatively recent (≤40 years). In this study, we analyzed the biological traces (resting stages and ancient DNA) preserved in sediments covering a time scale of 150 years in order to study changes in the composition and the temporal dynamics of marine protists, focusing mainly on two estuarine ecosystems of the...

  17. Application of ground penetrating radar in detecting the hazards and risks of termites and ants in soil levees.

    Science.gov (United States)

    Yang, Xiuhao; Henderson, Gregg; Mao, Lixin; Evans, Ahmad

    2009-08-01

    A ground penetrating radar (GPR) technique was used to detect Formosan subterranean termite (Coptotermes formosanus) and red imported fire ant (Solenopsis invicta) hazards and risks (targets) in a soil levee at the London Avenue Canal in New Orleans, LA. To make this assessment, GPR signal scans were examined for features produced by termite or ant activities and potential sources of food and shelter such as nests, tree roots, and voids (tunnels). The total scanned length of the soil levee was 4,125 m. The average velocity and effective depth of the radar penetration was 0.080 m/ns and 0.61 m, respectively. Four hundred twenty-seven targets were identified. Tree roots (38), voids (31), fire ant nests (209), and metal objects (149) were detected, but no Formosan termite carton nests were identified. The lack of identified termite nests may be related to drowning events at the time to the flood. Based on the target density (TD), the two new floodwall and levee sections that were rebuilt or reinforced after they were destroyed by Hurricane Katrina in 2005 were determined to be at low potential risk from termites and ants. A merging target density (MTD) method indicated a high potential risk near one of the breached sections still remains. Foraging and nesting activity of Formosan subterranean termites and red imported fire ants may be a contributory factor to the levee failure at the London Avenue Canal.

  18. The interdigital brace and other grips for termite nest perforation by chimpanzees of the Goualougo Triangle, Republic of Congo.

    Science.gov (United States)

    Lesnik, Julie J; Sanz, Crickette M; Morgan, David B

    2015-06-01

    Studies of chimpanzee termite foraging enlighten our understanding of early hominin tool use not only by modeling the cognitive ability of our ancestors but also by emphasizing the possible role of social insects in the hominin diet. The chimpanzees of the Goualougo Triangle are known to have one of the largest and most complex tool repertoires reported for wild chimpanzees. One tool set habitually used by this population includes a perforating tool to penetrate the hard outer crust of elevated termite nests before fishing for termite prey with an herbaceous stem. Here, we report the variation present in the grips used on the perforating tool. Our analysis of video recordings of chimpanzee visitation to termite nests over a 3-year period shows that these chimpanzees use a variety of grips to navigate the challenges encountered in opening a termite nest. For situations in which the soil is most hardened, perforating requires force and a power grip is often used. When the soil in the passageway is loose, precision grips are suitable for the task. One of the preferred grips reported here is an interdigital brace, which has previously been described in studies of how some people hold a pencil. In this study, for the first time, the interdigital brace has been thoroughly described for chimpanzees. The various strategies and grips used during perforation emphasize the importance of termites as a nutritional resource that should be considered more strongly as a food used by early hominins. © 2015 Wiley Periodicals, Inc.

  19. The gut microbiota, obesity and insulin resistance

    Science.gov (United States)

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflam...

  20. 33 CFR 117.537 - Townsend Gut.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Townsend Gut. 117.537 Section 117... OPERATION REGULATIONS Specific Requirements Maine § 117.537 Townsend Gut. The draw of the Southport (SR27) Bridge, at mile 0.7, across Townsend Gut between Boothbay Harbor and Southport, Maine shall open on...

  1. The relationship between termite mound CH4/CO2 emissions and internal concentration ratios are species specific

    Science.gov (United States)

    Jamali, H.; Livesley, S. J.; Hutley, L. B.; Fest, B.; Arndt, S. K.

    2012-12-01

    1. We investigated the relative importance of CH4 and CO2 fluxes from soil and termite mounds at four different sites in the tropical savannas of Northern Australia near Darwin and assessed different methods to indirectly predict CH4 fluxes based on CO2 fluxes and internal gas concentrations. 2. The annual flux from termite mounds and surrounding soil was dominated by CO2 with large variations among sites. On a CO2-e basis, annual CH4 flux estimates from termite mounds were 5- to 46-fold smaller than the concurrent annual CO2 flux estimates. Differences between annual soil CO2 and soil CH4 (CO2-e) fluxes were even greater, soil CO2 fluxes being almost three orders of magnitude greater than soil CH4 (CO2-e) fluxes at site. 3. There were significant relationships between mound CH4 flux and mound CO2 flux, enabling the prediction of CH4 flux from measured CO2 flux, however, these relationships were clearly termite species specific. 4. We also observed significant relationships between mound flux and gas concentration inside mound, for both CH4 and CO2, and for all termite species, thereby enabling the prediction of flux from measured mound internal gas concentration. However, these relationships were also termite species specific. Using the relationship between mound internal gas concentration and flux from one species to predict mound fluxes from other termite species (as has been done in past) would result in errors of more than 5-fold for CH4 and 3-fold for CO2. 5. This study highlights that CO2 fluxes from termite mounds are generally more than one order of magnitude greater than CH4 fluxes. There are species-specific relationships between CH4 and CO2 fluxes from a~mound, and between the inside mound concentration of a gas and the mound flux emission of the same gas, but these relationships vary greatly among termite species. Consequently, there is no generic relationship that will allow for the prediction of CH4 fluxes from termite mounds of all species.

  2. Mitochondrial-type hsp70 genes of the amitochondriate protists, Giardia intestinalis, Entamoeba histolytica and two microsporidians☆

    Science.gov (United States)

    Arisue, Nobuko; Sánchez, Lidya B.; Weiss, Louis M.; Müller, Miklós; Hashimoto, Tetsuo

    2011-01-01

    Genes encoding putative mitochondrial-type heat shock protein 70 (mit-hsp70) were isolated and sequenced from amitochondriate protists, Giardia intestinalis, Entamoeba histolytica, and two microsporidians, Encephalitozoon hellem and Glugea plecoglossi. The deduced mit-hsp70 sequences were analyzed by sequence alignments and phylogenetic reconstructions. The mit-hsp70 sequence of these four amitochondriate protists were divergent from other mit-hsp70 sequences of mitochondriate eukaryotes. However, all of these sequences were clearly located within a eukaryotic mitochondrial clade in the tree including various type hsp70 sequences, supporting the emerging notion that none of these amitochondriate lineages are primitively amitochodrial, but lost their mitochondria secondarily in their evolutionary past. PMID:11880223

  3. Cholinergic signalling in gut immunity

    NARCIS (Netherlands)

    Dhawan, Shobhit; Cailotto, Cathy; Harthoorn, Lucien F.; de Jonge, Wouter J.

    2012-01-01

    The gut immune system shares many signalling molecules and receptors with the autonomic nervous system. A good example is the vagal neurotransmitter acetylcholine (ACh), for which many immune cell types express cholinergic receptors (AChR). In the last decade the vagal nerve has emerged as an

  4. Neuroimmune modulation of gut function

    Science.gov (United States)

    There is considerable interest in the mechanisms and pathways involved in the neuro-immune regulation of gut function. The number of cell types and possible interactions is staggering and there are a number of recent reviews detailing various aspects of these interactions, many of which focus on ...

  5. Xenobiotic Metabolism and Gut Microbiomes.

    Directory of Open Access Journals (Sweden)

    Anubhav Das

    Full Text Available Humans are exposed to numerous xenobiotics, a majority of which are in the form of pharmaceuticals. Apart from human enzymes, recent studies have indicated the role of the gut bacterial community (microbiome in metabolizing xenobiotics. However, little is known about the contribution of the plethora of gut microbiome in xenobiotic metabolism. The present study reports the results of analyses on xenobiotic metabolizing enzymes in various human gut microbiomes. A total of 397 available gut metagenomes from individuals of varying age groups from 8 nationalities were analyzed. Based on the diversities and abundances of the xenobiotic metabolizing enzymes, various bacterial taxa were classified into three groups, namely, least versatile, intermediately versatile and highly versatile xenobiotic metabolizers. Most interestingly, specific relationships were observed between the overall drug consumption profile and the abundance and diversity of the xenobiotic metabolizing repertoire in various geographies. The obtained differential abundance patterns of xenobiotic metabolizing enzymes and bacterial genera harboring them, suggest their links to pharmacokinetic variations among individuals. Additional analyses of a few well studied classes of drug modifying enzymes (DMEs also indicate geographic as well as age specific trends.

  6. The gut-liver axis

    NARCIS (Netherlands)

    Visschers, Ruben G. J.; Luyer, Misha D.; Schaap, Frank G.; Olde Damink, Steven W. M.; Soeters, Peter B.

    2013-01-01

    The liver adaptively responds to extra-intestinal and intestinal inflammation. In recent years, the role of the autonomic nervous system, intestinal failure and gut microbiota has been investigated in the development of hepatic, intestinal and extra-intestinal disease. The autonomic nervous system

  7. Neutrino assisted GUT baryogenesis revisited

    Science.gov (United States)

    Huang, Wei-Chih; Päs, Heinrich; Zeißner, Sinan

    2018-03-01

    Many grand unified theory (GUT) models conserve the difference between the baryon and lepton number, B -L . These models can create baryon and lepton asymmetries from heavy Higgs or gauge boson decays with B +L ≠0 but with B -L =0 . Since the sphaleron processes violate B +L , such GUT-generated asymmetries will finally be washed out completely, making GUT baryogenesis scenarios incapable of reproducing the observed baryon asymmetry of the Universe. In this work, we revisit the idea to revive GUT baryogenesis, proposed by Fukugita and Yanagida, where right-handed neutrinos erase the lepton asymmetry before the sphaleron processes can significantly wash out the original B +L asymmetry, and in this way one can prevent a total washout of the initial baryon asymmetry. By solving the Boltzmann equations numerically for baryon and lepton asymmetries in a simplified 1 +1 flavor scenario, we can confirm the results of the original work. We further generalize the analysis to a more realistic scenario of three active and two right-handed neutrinos to highlight flavor effects of the right-handed neutrinos. Large regions in the parameter space of the Yukawa coupling and the right-handed neutrino mass featuring successful baryogenesis are identified.

  8. Gut Homeostasis, Microbial Dysbiosis, and Opioids.

    Science.gov (United States)

    Wang, Fuyuan; Roy, Sabita

    2017-01-01

    Gut homeostasis plays an important role in maintaining animal and human health. The disruption of gut homeostasis has been shown to be associated with multiple diseases. The mutually beneficial relationship between the gut microbiota and the host has been demonstrated to maintain homeostasis of the mucosal immunity and preserve the integrity of the gut epithelial barrier. Currently, rapid progress in the understanding of the host-microbial interaction has redefined toxicological pathology of opioids and their pharmacokinetics. However, it is unclear how opioids modulate the gut microbiome and metabolome. Our study, showing opioid modulation of gut homeostasis in mice, suggests that medical interventions to ameliorate the consequences of drug use/abuse will provide potential therapeutic and diagnostic strategies for opioid-modulated intestinal infections. The study of morphine's modulation of the gut microbiome and metabolome will shed light on the toxicological pathology of opioids and its role in the susceptibility to infectious diseases.

  9. The gut microbiota in type 2 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Trine; Allin, Kristine Højgaard; Pedersen, Oluf

    2016-01-01

    The exploration of the gut microbiota has intensified within the past decade with the introduction of cultivation-independent methods. By investigation of the gut bacterial genes, our understanding of the compositional and functional capability of the gut microbiome has increased. It is now widely...... recognized that the gut microbiota has profound effect on host metabolism and recently changes in the gut microbiota have been associated with type 2 diabetes. Animal models and human studies have linked changes in the gut microbiota to the induction of low-grade inflammation, altered immune response......, and changes in lipid and glucose metabolism. Several factors have been identified that might affect the healthy microbiota, potentially inducing a dysbiotic microbiota associated with a disease state. This increased understanding of the gut microbiota might potentially contribute to targeted intervention...

  10. Interaction between gut immunity and polysaccharides.

    Science.gov (United States)

    Huang, Xiaojun; Nie, Shaoping; Xie, Mingyong

    2017-09-22

    The human gut is colonized with a vast and diverse microbial ecosystem, and these bacteria play fundamental roles in the well being of our bodies. Gut-associated lymphoid tissues, the largest mucosal immune system, should never be overlooked for their profound effect in maintaining the host immunity. Therefore, we discussed the relationship between gut immunity and host health, primarily from two aspects: the homeostasis of gut microbiota, and the function of gut-associated lymphoid tissues. Polysaccharides, widely concerned as bioactive macromolecules in recent centuries, have been proved to benefit the intestinal health. Dietary polysaccharides can improve the ratio of probiotics, regulate the intestinal microenvironment like decreasing the gut pH, and stimulate the macrophages or lymphocytes in gut tissues to fight against diseases like cancer. Based on various experimental and clinical evidence, the impacts of dietary polysaccharides on intestinal health are summarized, in order to reveal the possible immunomodulatory mechanisms of polysaccharides.

  11. Do habituation, host traits and seasonality have an impact on protist and helminth infections of wild western lowland gorillas?

    Science.gov (United States)

    Pafčo, Barbora; Benavides, Julio A; Pšenková-Profousová, Ilona; Modrý, David; Červená, Barbora; Shutt, Kathryn A; Hasegawa, Hideo; Fuh, Terence; Todd, Angelique F; Petrželková, Klára J

    2017-12-01

    Increased anthropogenic activity can result in parasite exchanges and/or general changes in parasite communities, imposing a health risk to great apes. We studied protist and helminth parasites of wild western lowland gorilla groups in different levels of habituation, alongside humans inhabiting Dzanga-Sangha Protected Areas in the Central African Republic. Faeces were collected yearly during November and December from 2007 to 2010 and monthly from November 2010 to October 2011. Protist and helminth infections were compared among gorilla groups habituated, under habituation and unhabituated, and the effect of host traits and seasonality was evaluated. Zoonotic potential of parasites found in humans was assessed. No significant differences in clinically important parasites among the groups in different stages of habituation were found, except for Entamoeba spp. However, humans were infected with four taxa which may overlap with taxa found in gorillas. Females were less infected with spirurids, and adults had higher intensities of infection of Mammomonogamus sp. We found seasonal differences in the prevalence of several parasite taxa, but most importantly, the intensity of infection of unidentified strongylids was higher in the dry season. This study highlights that habituation may not necessarily pose a greater risk of protist and helminth infections in gorilla groups.

  12. Pseudomonas aeruginosa adaptation to lungs of cystic fibrosis patients leads to lowered resistance to phage and protist enemies.

    Directory of Open Access Journals (Sweden)

    Ville-Petri Friman

    Full Text Available Pathogenic life styles can lead to highly specialized interactions with host species, potentially resulting in fitness trade-offs in other ecological contexts. Here we studied how adaptation of the environmentally transmitted bacterial pathogen, Pseudomonas aeruginosa, to cystic fibrosis (CF patients affects its survival in the presence of natural phage (14/1, ΦKZ, PNM and PT7 and protist (Tetrahymena thermophila and Acanthamoebae polyphaga enemies. We found that most of the bacteria isolated from relatively recently intermittently colonised patients (1-25 months, were innately phage-resistant and highly toxic for protists. In contrast, bacteria isolated from long time chronically infected patients (2-23 years, were less efficient in both resisting phages and killing protists. Moreover, chronic isolates showed reduced killing of wax moth larvae (Galleria mellonella probably due to weaker in vitro growth and protease expression. These results suggest that P. aeruginosa long-term adaptation to CF-lungs could trade off with its survival in aquatic environmental reservoirs in the presence of microbial enemies, while lowered virulence could reduce pathogen opportunities to infect insect vectors; factors that are both likely to result in poorer environmental transmission. From an applied perspective, phage therapy could be useful against chronic P. aeruginosa lung infections that are often characterized by multidrug resistance: chronic isolates were least resistant to phages and their poor growth will likely slow down the emergence of beneficial resistance mutations.

  13. Cold-shock based method to induce the discharge of extrusomes in ciliated protists and its efficiency.

    Science.gov (United States)

    Buonanno, Federico; Ortenzi, Claudio

    2016-05-01

    Extrusomes are ejectable organelles in protists, which are able to discharge their contents to the outside of the cell in response to external stimuli. It is known that a large number of extrusomes functions as organelles for offense or defense in predator-prey interactions among protists and/or microinvertebrates. To date, the main approach to study these interactions was to compare artificially-induced extrusome-deficient cells with normal cells as prey for predators. Commonly applied methods to obtain extrusome-deficient cells use external chemicals, which could alter the viability of cells and/or interfere with the subsequent analysis of the substances (secondary metabolites) contained in the extrusomes. The cold-shock based method here presented has proven to be effective to remove different kinds of extrusomes from several protist species without harming the treated cells and without adding external reagents. This method could be also useful to simplify the related analysis of the chemical nature of the secreted secondary metabolites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Culturing Heterotrophic Protists from the Baltic Sea: Mostly the "Usual Suspects" but a Few Novelties as Well.

    Science.gov (United States)

    Weber, Felix; Mylnikov, Alexander P; Jürgens, Klaus; Wylezich, Claudia

    2017-03-01

    The study of cultured strains has a long tradition in protistological research and has greatly contributed to establishing the morphology, taxonomy, and ecology of many protist species. However, cultivation-independent techniques, based on 18S rRNA gene sequences, have demonstrated that natural protistan assemblages mainly consist of hitherto uncultured protist lineages. This mismatch impedes the linkage of environmental diversity data with the biological features of cultured strains. Thus, novel taxa need to be obtained in culture to close this knowledge gap. In this study, traditional cultivation techniques were applied to samples from coastal surface waters and from deep oxygen-depleted waters of the Baltic Sea. Based on 18S rRNA gene sequencing, 126 monoclonal cultures of heterotrophic protists were identified. The majority of the isolated strains were affiliated with already cultured and described taxa, mainly chrysophytes and bodonids. This was likely due to "culturing bias" but also to the eutrophic nature of the Baltic Sea. Nonetheless, ~ 12% of the isolates in our culture collection showed highly divergent 18S rRNA gene sequences compared to those of known organisms and thus may represent novel taxa, either at the species level or at the genus level. Moreover, we also obtained evidence that some of the isolated taxa are ecologically relevant, under certain conditions, in the Baltic Sea. © 2016 The Author(s) Journal of Eukaryotic Microbiology © 2016 International Society of Protistologists.

  15. Hospitalitermes krishnai, a new nasute termite (Nasutitermitinae, Termitidae, Isoptera, from southern Sumatra, Indonesia

    Directory of Open Access Journals (Sweden)

    Syaukani Syaukani

    2011-11-01

    Full Text Available A new species of nasute termite, Hospitalitermes krishnai sp. n., is described from soldiers and workers discovered in Lampung Province, Sumatra. This species can be distinguished from other related Hospitalitermes species from Southeast Asia by the anterior part of head capsule that is much smaller than the posterior part, head capsule that is moderately constricted behind the antennal sockets, and relatively deep depression between the head and nasus and, finally, the short and robust nasus measuring less than half as long as head capsule. Moreover, in profile the nasus is slightly up-curved but slightly decurved at the apical tip. We name this new species after Professor Kumar Krishna in recognition of his life-long contributions to termite taxonomy, systematics and biology.

  16. RESISTANCE TO THE ATTACK OF DRY-WOOD TERMITES (Cryptotermes brevis OF SIX WOOD SPECIES

    Directory of Open Access Journals (Sweden)

    Fabrício Gomes Gonçalves

    2006-03-01

    Full Text Available The dry wood termites are one of the largest causes of damages in wood used in Brazil. This work analyzed the attackof the Cryptotermes brevis in six commercials wood species in the north of the Rio de Janeiro and south of the Espírito Santo. The testobserved the number of holes, the percentage of died individuals and the damage of the pieces. When compared to the Pinus sp(reference, the species with less susceptibility to the attack were Cedrela fissilis, Cariocar brasiliense and Goupia glabra, that alsopresented the largest percentages of mortality of termites. The Schizolobium parahyba, Toona ciliata and the Tachigalia myrmecophyllawere the species with the highest level of damage.

  17. Anti-termite activity of essential oil and its components from Myristica ...

    African Journals Online (AJOL)

    Michael Horsfall

    termite activity test followed the method of (Kang et al. 1990). Samples of 10, 25, and 50 mg of fruit essential oil as well as 1 and 5 mg of each individual compound dissolved in 600 µl of acetone were applied to 1 g filter paper samples (What man #3, 8.5 cm in diam). A piece of filter paper treated with solvent only was used ...

  18. Asexual queen succession mediates an accelerated colony life cycle in the termite Silvestritermes minutus

    Czech Academy of Sciences Publication Activity Database

    Fougeyrollas, R.; Křivánek, Jan; Roy, V.; Dolejšová, Klára; Frechault, S.; Roisin, Y.; Hanus, Robert; Sillam-Dusses, D.

    2017-01-01

    Roč. 26, č. 12 (2017), s. 3295-3308 ISSN 0962-1083 R&D Projects: GA ČR(CZ) GA14-12774S Institutional support: RVO:61388963 Keywords : asexual queen succession * breeding system * life history * parthenogenesis * Silvestritermes minutus * termites Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 6.086, year: 2016

  19. Mutual Use of Trail-Following Chemical Cues by a Termite Host and Its Inquiline

    Czech Academy of Sciences Publication Activity Database

    Cristaldo, Paulo Fellipe; DeSouza, O.; Krasulová, Jana; Jirošová, Anna; Kutalová, Kateřina; Lima, E. R.; Šobotník, Jan; Sillam-Dusses, D.

    2014-01-01

    Roč. 9, č. 1 (2014), e85315/1-e85315/9 E-ISSN 1932-6203 Institutional support: RVO:61388963 Keywords : inquilinism * trail-following behaviour * termite association * Termitidae * chemical ecology Subject RIV: CC - Organic Chemistry Impact factor: 3.234, year: 2014 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0085315

  20. Nonadecadienone, a New Termite Trail-Following Pheromone Identified in Glossotermes oculatus (Serritermitidae)

    Czech Academy of Sciences Publication Activity Database

    Hanus, Robert; Šobotník, Jan; Krasulová, Jana; Jiroš, Pavel; Žáček, Petr; Kalinová, Blanka; Dolejšová, Klára; Cvačka, Josef; Bourguignon, T.; Roisin, Y.; Lacey, M. J.; Sillam-Dusses, David

    2012-01-01

    Roč. 37, č. 1 (2012), s. 55-63 ISSN 0379-864X R&D Projects: GA ČR GAP506/10/1570 Institutional research plan: CEZ:AV0Z40550506 Keywords : Glossotermes * Serritermitidae * sternal gland * termites * trail-following pheromone * (10Z,13Z)-nonadeca-10,13-dien-2-one Subject RIV: CC - Organic Chemistry Impact factor: 3.222, year: 2012