WorldWideScience

Sample records for terminalis induces antidepressant-like

  1. Acute reversible inactivation of the bed nucleus of stria terminalis induces antidepressant-like effect in the rat forced swimming test

    Science.gov (United States)

    2010-01-01

    Background The bed nucleus of stria terminalis (BNST) is a limbic forebrain structure involved in hypothalamo-pituitary-adrenal axis regulation and stress adaptation. Inappropriate adaptation to stress is thought to compromise the organism's coping mechanisms, which have been implicated in the neurobiology of depression. However, the studies aimed at investigating BNST involvement in depression pathophysiology have yielded contradictory results. Therefore, the objective of the present study was to investigate the effects of temporary acute inactivation of synaptic transmission in the BNST by local microinjection of cobalt chloride (CoCl2) in rats subjected to the forced swimming test (FST). Methods Rats implanted with cannulae aimed at the BNST were submitted to 15 min of forced swimming (pretest). Twenty-four hours later immobility time was registered in a new 5 min forced swimming session (test). Independent groups of rats received bilateral microinjections of CoCl2 (1 mM/100 nL) before or immediately after pretest or before the test session. Additional groups received the same treatment and were submitted to the open field test to control for unspecific effects on locomotor behavior. Results CoCl2 injection into the BNST before either the pretest or test sessions reduced immobility in the FST, suggesting an antidepressant-like effect. No significant effect of CoCl2 was observed when it was injected into the BNST immediately after pretest. In addition, no effect of BNST inactivation was observed in the open field test. Conclusion These results suggest that acute reversible inactivation of synaptic transmission in the BNST facilitates adaptation to stress and induces antidepressant-like effects. PMID:20515458

  2. Acute reversible inactivation of the bed nucleus of stria terminalis induces antidepressant-like effect in the rat forced swimming test

    Directory of Open Access Journals (Sweden)

    Joca Sâmia RL

    2010-06-01

    Full Text Available Abstract Background The bed nucleus of stria terminalis (BNST is a limbic forebrain structure involved in hypothalamo-pituitary-adrenal axis regulation and stress adaptation. Inappropriate adaptation to stress is thought to compromise the organism's coping mechanisms, which have been implicated in the neurobiology of depression. However, the studies aimed at investigating BNST involvement in depression pathophysiology have yielded contradictory results. Therefore, the objective of the present study was to investigate the effects of temporary acute inactivation of synaptic transmission in the BNST by local microinjection of cobalt chloride (CoCl2 in rats subjected to the forced swimming test (FST. Methods Rats implanted with cannulae aimed at the BNST were submitted to 15 min of forced swimming (pretest. Twenty-four hours later immobility time was registered in a new 5 min forced swimming session (test. Independent groups of rats received bilateral microinjections of CoCl2 (1 mM/100 nL before or immediately after pretest or before the test session. Additional groups received the same treatment and were submitted to the open field test to control for unspecific effects on locomotor behavior. Results CoCl2 injection into the BNST before either the pretest or test sessions reduced immobility in the FST, suggesting an antidepressant-like effect. No significant effect of CoCl2 was observed when it was injected into the BNST immediately after pretest. In addition, no effect of BNST inactivation was observed in the open field test. Conclusion These results suggest that acute reversible inactivation of synaptic transmission in the BNST facilitates adaptation to stress and induces antidepressant-like effects.

  3. Monoamine involvement in the antidepressant-like effect induced by P2 blockade.

    Science.gov (United States)

    Diniz, Cassiano R A F; Rodrigues, Murilo; Casarotto, Plínio C; Pereira, Vítor S; Crestani, Carlos C; Joca, Sâmia R L

    2017-12-01

    Depression is a common mental disorder that affects millions of individuals worldwide. Available monoaminergic antidepressants are far from ideal since they show delayed onset of action and are ineffective in approximately 40% of patients, thus indicating the need of new and more effective drugs. ATP signaling through P2 receptors seems to play an important role in neuropathological mechanisms involved in depression, since their pharmacological or genetic inactivation induce antidepressant-like effects in the forced swimming test (FST). However, the mechanisms involved in these effects are not completely understood. The present work investigated monoamine involvement in the antidepressant-like effect induced by non-specific P2 receptor antagonist (PPADS) administration. First, the effects of combining sub-effective doses of PPADS with sub-effective doses of fluoxetine (FLX, selective serotonin reuptake inhibitor) or reboxetine (RBX, selective noradrenaline reuptake inhibitor) were investigated in mice submitted to FST. Significant antidepressant-like effect was observed when subeffective doses of PPADS was combined with subeffective doses of either FLX or RBX, with no significant locomotor changes. Next, the effects of depleting serotonin and noradrenaline levels, by means of PCPA (p-Chlorophenylalanine) or DSP-4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride) pretreatment, respectively, was investigated. Both, PCPA and DSP-4 pretreatment partially attenuated PPADS-induced effects in FST, without inducing relevant locomotor changes. Our results suggest that the antidepressant-like effect of PPADS involves modulation of serotonin and noradrenaline levels in the brain. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Ethanol induced antidepressant-like effect in the mouse forced swimming test: modulation by serotonergic system.

    Science.gov (United States)

    Jain, Nishant S; Kannamwar, Uday; Verma, Lokesh

    2017-02-01

    The present investigation explored the modulatory role of serotonergic transmission in the acute ethanol-induced effects on immobility time in the mouse forced swim test (FST). Acute i.p. administration of ethanol (20% w/v, 2 or 2.5 g/kg, i.p.) decreased the immobility time in FST of mice, indicating its antidepressant-like effect while lower doses of ethanol (1, 1.5 g/kg, i.p.) were devoid of any effect in the FST. The mice pre-treated with a sub-effective dose of 5-HT 2A agonist, DOI (10 μg/mouse, i.c.v.) or 5-HT 1A receptor antagonist, WAY 100635 (0.1 μg/mouse, i.c.v.) but not with the 5-HT 2A/2C antagonist, ketanserin (1.5 μg/mouse, i.c.v.) exhibited a synergistic reduction in the immobility time induced by sub-effective dose of ethanol (1.5 g/kg, i.p.). On the other hand, ethanol (2.5 g/kg, i.p.) failed to decrease the immobility time in mice, pre-treated with 5-HT 1A agonist, 8-OH-DPAT (0.1 μg/mouse, i.c.v.) or ketanserin (1.5 μg/mouse, i.c.v.). In addition, pre-treatment with a 5-HT neuronal synthesis inhibitor, p-CPA (300 mg/kg, i.p. × 3 days) attenuated the anti-immobility effect ethanol (2.5 g/kg, i.p.) in mouse FST. Thus, the results of the present study points towards the essentiality of the central 5-HT transmission at the synapse for the ethanol-induced antidepressant-like effect in the FST wherein the regulatory role of the 5-HT 1A receptor or contributory role of the 5-HT 2A/2C receptor-mediated mechanism is proposed in the anti-immobility effect of acute ethanol in mouse FST.

  5. Yueju Pill Rapidly Induces Antidepressant-Like Effects and Acutely Enhances BDNF Expression in Mouse Brain

    Directory of Open Access Journals (Sweden)

    Wenda Xue

    2013-01-01

    Full Text Available The traditional antidepressants have a major disadvantage in delayed onset of efficacy, and the emerging fast-acting antidepressant ketamine has adverse behavioral and neurotoxic effects. Yueju pill, an herb medicine formulated eight hundred years ago by Doctor Zhu Danxi, has been popularly prescribed in China for alleviation of depression-like symptoms. Although several clinical outcome studies reported the relative short onset of antidepressant effects of Yueju, this has not been scientifically investigated. We, therefore, examined the rapid antidepressant effect of Yueju in mice and tested the underlying molecular mechanisms. We found that acute administration of ethanol extract of Yueju rapidly attenuated depressive-like symptoms in learned helpless paradigm, and the antidepressant-like effects were sustained for at least 24 hours in tail suspension test in ICR mice. Additionally, Yueju, like ketamine, rapidly increased the expression of brain-derived neurotrophic factor (BDNF in the hippocampus, whereas the BDNF mRNA expression remained unaltered. Yueju rapidly reduced the phosphorylation of eukaryotic elongation factor 2 (eEF2, leading to desuppression of BDNF synthesis. Unlike ketamine, both the BDNF expression and eEF2 phosphorylation were revered at 24 hours after Yueju administration. This study is the first to demonstrate the rapid antidepressant effects of an herb medicine, offering an opportunity to improve therapy of depression.

  6. Hydroethanolic extract of Carthamus tinctorius induces antidepressant-like effects: modulation by dopaminergic and serotonergic systems in tail suspension test in mice.

    Science.gov (United States)

    Abbasi-Maleki, Saeid; Mousavi, Zahra

    2017-09-01

    Studies indicate that major deficiency in the levels of monoaminergic transmitters is a reason for severe depression. On the other hand, it is shown that Carthamus tinctorius L. (CT) may improve neuropsychological injuries by regulation of the monoamine transporter action. Hence, the present study was undertaken to evaluate the involvement of monoaminergic systems in antidepressant-like effect of CT extract in the tail suspension test (TST) in mice. The mice were intraperitoneally (IP) treated with CT extract (100-400 mg/kg) 1 hr before the TST. To investigate the involvement of monoaminergic systems in antidepressant-like effect, the mice were treated with receptor antagonists 15 min before CT extract treatment (400 mg/kg, IP) and 1 hr before the TST. Findings showed that CT extract (100-400 mg/kg, IP), dose-dependently induced antidepressant-like effect ( P open-field test. Pretreatment of mice with SCH23390, sulpiride, haloperidol, WAY100135, cyproheptadine, ketanserin and p-chlorophenylalanine (PCPA) inhibited the antidepressant-like effect of CT extract (400 mg/kg, IP), but not with prazosin and yohimbine. Co-administration of CT extract (100 mg/kg, IP) with sub-effective doses of fluoxetine (5 mg/kg, IP) or imipramine (5 mg/kg, IP) increased their antidepressant-like response. Our findings firstly showed that components (especially N-Hexadecanoic acid) of CT extract induce antidepressant-like effects by interaction with dopaminergic (D1 and D2) and serotonergic (5HT1A, 5-HT2A receptors) systems. These findings validate the folk use of CT extract for the management of depression.

  7. Neuropeptide AF induces anxiety-like and antidepressant-like behavior in mice.

    Science.gov (United States)

    Palotai, Miklós; Telegdy, Gyula; Tanaka, Masaru; Bagosi, Zsolt; Jászberényi, Miklós

    2014-11-01

    Little is known about the action of neuropeptide AF (NPAF) on anxiety and depression. Only our previous study provides evidence that NPAF induces anxiety-like behavior in rats. Therefore, the aim of the present study was to investigate the action of NPAF on depression-like behavior and the underlying neurotransmissions in mice. In order to determine whether there are species differences between rats and mice, we have investigated the action of NPAF on anxiety-like behavior in mice as well. A modified forced swimming test (mFST) and an elevated plus maze test (EPMT) were used to investigate the depression and anxiety-related behaviors, respectively. Mice were treated with NPAF 30min prior to the tests. In the mFST, the animals were pretreated with a non-selective muscarinic acetylcholine receptor antagonist, atropine, a non-selective 5-HT2 serotonergic receptor antagonist, cyproheptadine, a mixed 5-HT1/5-HT2 serotonergic receptor antagonist, methysergide, a D2/D3/D4 dopamine receptor antagonist, haloperidol, a α1/α2β-adrenergic receptor antagonist, prazosin or a non-selective β-adrenergic receptor antagonist, propranolol 30min before the NPAF administration. In the mFST, NPAF decreased the immobility time and increased the climbing and swimming times. This action was reversed completely by methysergide and partially by atropine, whereas cyproheptadine, haloperidol, prazosin and propranolol were ineffective. In the EPMT, NPAF decreased the time spent in the arms (open/open+closed). Our results demonstrate that NPAF induces anti-depressant-like behavior in mice, which is mediated, at least in part, through 5HT2-serotonergic and muscarinic cholinergic neurotransmissions. In addition, the NPAF-induced anxiety is species-independent, since it develops also in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects.

    Science.gov (United States)

    Burgdorf, Jeffrey; Zhang, Xiao-lei; Nicholson, Katherine L; Balster, Robert L; Leander, J David; Stanton, Patric K; Gross, Amanda L; Kroes, Roger A; Moskal, Joseph R

    2013-04-01

    Recent human clinical studies with the NMDA receptor (NMDAR) antagonist ketamine have revealed profound and long-lasting antidepressant effects with rapid onset in several clinical trials, but antidepressant effects were preceded by dissociative side effects. Here we show that GLYX-13, a novel NMDAR glycine-site functional partial agonist, produces an antidepressant-like effect in the Porsolt, novelty induced hypophagia, and learned helplessness tests in rats without exhibiting substance abuse-related, gating, and sedative side effects of ketamine in the drug discrimination, conditioned place preference, pre-pulse inhibition and open-field tests. Like ketamine, the GLYX-13-induced antidepressant-like effects required AMPA/kainate receptor activation, as evidenced by the ability of NBQX to abolish the antidepressant-like effect. Both GLYX-13 and ketamine persistently (24 h) enhanced the induction of long-term potentiation of synaptic transmission and the magnitude of NMDAR-NR2B conductance at rat Schaffer collateral-CA1 synapses in vitro. Cell surface biotinylation studies showed that both GLYX-13 and ketamine led to increases in both NR2B and GluR1 protein levels, as measured by Western analysis, whereas no changes were seen in mRNA expression (microarray and qRT-PCR). GLYX-13, unlike ketamine, produced its antidepressant-like effect when injected directly into the medial prefrontal cortex (MPFC). These results suggest that GLYX-13 produces an antidepressant-like effect without the side effects seen with ketamine at least in part by directly modulating NR2B-containing NMDARs in the MPFC. Furthermore, the enhancement of 'metaplasticity' by both GLYX-13 and ketamine may help explain the long-lasting antidepressant effects of these NMDAR modulators. GLYX-13 is currently in a Phase II clinical development program for treatment-resistant depression.

  9. Schisandra chinensis produces the antidepressant-like effects in repeated corticosterone-induced mice via the BDNF/TrkB/CREB signaling pathway.

    Science.gov (United States)

    Yan, Tingxu; Xu, Mengjie; Wan, Shutong; Wang, Mengshi; Wu, Bo; Xiao, Feng; Bi, Kaishun; Jia, Ying

    2016-09-30

    The present study aimed to examine the antidepressant-like effects and the possible mechanisms of Schisandra chinensis on depressive-like behavior induced by repeated corticosterone injections in mice. Here we evaluated the effect of an ethanol extract of the dried fruit of S. chinensis (EESC) on BDNF/TrkB/CREB signaling in the hippocampus and the prefrontal cortex. Three weeks of corticosterone injections in mice resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase the immobility time in the forced swim test, but without any influence on the locomotor activity. Further, there was a significant increase in serum corticosterone level and a significant downregulation of BDNF/TrkB/CREB signaling pathway in the hippocampus and prefrontal cortex in CORT-treated mice. Treatment of mice with EESC (600mg/kg) significantly ameliorated all the behavioral and biochemical changes induced by corticosterone. Moreover, pharmacological inhibition of BDNF signaling by K252a abolished entirely the antidepressant-like effect triggered by chronic EESC treatment. These results suggest that EESC produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated, at least in part, by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of BDNF/TrkB/CREB signaling pathway. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. A selective inhibitor of protein kinase A induces behavioural and neurological antidepressant-like effect in rats

    DEFF Research Database (Denmark)

    Liebenberg, Nico; Müller, Heidi Kaastrup; Elfving, Betina

    2011-01-01

    the direct inhibition of PKA. This result may be explained either by PKA-dependent mechanisms, for example the disinhibition of a variety of G-protein coupled receptor subtypes (e.g. adrenergic-, dopaminergic- and metabotropic glutamate receptors), or by cAMP-mediated, PKA-independent mechanisms...... demonstrated antidepressant-like activity following the direct activation of PKA [3]. In this project we critically evaluate this notion by investigating the mood-altering actions of a PKA inhibitor, Rp-8-Br-cAMPS, in the rat forced swim test (FST) while correlating these results with the cAMP concentration...

  11. Possible Involvement of µ Opioid Receptor in the Antidepressant-Like Effect of Shuyu Formula in Restraint Stress-Induced Depression-Like Rats

    Directory of Open Access Journals (Sweden)

    Fu-rong Wang

    2015-01-01

    Full Text Available Recently μ opioid receptor (MOR has been shown to be closely associated with depression. Here we investigated the action of Shuyu, a Chinese herbal prescription, on repeated restraint stress induced depression-like rats, with specific attention to the role of MOR and the related signal cascade. Our results showed that repeated restraint stress caused significant depressive-like behaviors, as evidenced by reduced body weight gain, prolonged duration of immobility in forced swimming test, and decreased number of square-crossings and rearings in open field test. The stress-induced depression-like behaviors were relieved by Shuyu, which was accompanied by decreased expression of MOR in hippocampus. Furthermore, Shuyu upregulated BDNF protein expression, restored the activity of CREB, and stimulated MEK and ERK phosphorylation in hippocampus of stressed rats. More importantly, MOR is involved in the effects of Shuyu on these depression-related signals, as they can be strengthened by MOR antagonist CTAP. Collectively, these data indicated that the antidepressant-like properties of Shuyu are associated with MOR and the corresponding CREB, BDNF, MEK, and ERK signal pathway. Our study supports clinical use of Shuyu as an effective treatment of depression and also suggests that MOR might be a target for treatment of depression and developing novel antidepressants.

  12. Inducing a long-term potentiation in the dentate gyrus is sufficient to produce rapid antidepressant-like effects.

    Science.gov (United States)

    Kanzari, A; Bourcier-Lucas, C; Freyssin, A; Abrous, D N; Haddjeri, N; Lucas, G

    2018-03-01

    Recent hypotheses propose that one prerequisite to obtain a rapid antidepressant (AD) effect would reside in processes of synaptic reinforcement occurring within the dentate gyrus (DG) of the hippocampus independently from neurogenesis. However, to date no relationship has been established between an increased DG synaptic plasticity, and rapid AD-like action. To the best of our knowledge, this study shows for the first time that inducing a long-term potentiation (LTP) within the DG by stimulating the perforant pathway (PP) is sufficient to induce such effects. Thus, Sprague-Dawley rats having undergone a successful LTP displayed a significant reduction of immobility when passed acutely 3 days thereafter in the forced swimming test (FST). Further, in a longitudinal paradigm using the pseudo-depressed Wistar-Kyoto rat strain, LTP elicited a decrease of FST immobility after only 2 days, whereas the AD desipramine was not effective before 16 days. In both models, the influence of LTP was transient, as it was no more observed after 8-9 days. No effects were observed on the locomotor activity or on anxiety-related behavior. Theta-burst stimulation of a brain region anatomically adjacent to the PP remained ineffective in the FST. Immunoreactivity of DG cells for phosphorylated histone H3 and doublecortin were not modified three days after LTP, indicating a lack of effect on both cell proliferation and neurogenesis. Finally, depleting brain serotonin contents reduced the success rate of LTP but did not affect its subsequent AD-like effects. These results confirm the 'plastic DG' theory of rapid AD efficacy. Beyond, they point out stimulations of the entorhinal cortex, from which the PP originates, as putative new approaches in AD research.

  13. Melatonin mediated antidepressant-like effect in the hippocampus of chronic stress-induced depression rats: Regulating vesicular monoamine transporter 2 and monoamine oxidase A levels.

    Science.gov (United States)

    Stefanovic, Bojana; Spasojevic, Natasa; Jovanovic, Predrag; Jasnic, Nebojsa; Djordjevic, Jelena; Dronjak, Sladjana

    2016-10-01

    The hippocampus is sensitive to stress which activates norepinephrine terminals deriving from the locus coeruleus. Melatonin exerts positive effects on the hippocampal neurogenic process and on depressive-like behaviour. Thus, in the present study, an examination was made of the effect of chronic melatonin treatment on norepinephrine content, synthesis, uptake, vesicular transport and degradation in the hippocampus of rats exposed to CUMS. This entailed quantifying the norephinephrine, mRNA and protein levels of DBH, NET, VMAT 2, MAO-A and COMT. The results show that CUMS evoked prolonged immobility. Melatonin treatment decreased immobility in comparison with the placebo group, reflecting an antidepressant-like effect. Compared with the placebo group, a dramatic decrease in norepinephrine content, decreased VMAT2 mRNA and protein and increased MAO-A protein levels in the hippocampus of the CUMS rats were observed. However, no significant differences in the levels of DBH, NET, COMT mRNA and protein and MAO-A mRNA levels between the placebo and the stressed groups were found. The results showed the restorative effects of melatonin on the stress-induced decline in the norepinephrine content of the hippocampus. It was observed that melatonin treatment in the CUMS rats prevented the stress-induced decrease in VMAT2 mRNA and protein levels, whereas it reduced the increase of the mRNA of COMT and protein levels of MAO-A. Chronic treatment with melatonin failed to alter the gene expression of DBH or NET in the hippocampus of the CUMS rats. Additionally, the results show that melatonin enhances VMAT2 expression and norepinephrine storage, whilst it reduces norepinephrine degrading enzymes. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  14. Antidepressant-like effect of essential oil of Perilla frutescens in a chronic, unpredictable, mild stress-induced depression model mice.

    Science.gov (United States)

    Ji, Wei-Wei; Li, Rui-Peng; Li, Meng; Wang, Shu-Yuan; Zhang, Xian; Niu, Xing-Xing; Li, Wei; Yan, Lu; Wang, Yang; Fu, Qiang; Ma, Shi-Ping

    2014-10-01

    Perilla frutescens (Perilla leaf), a garnishing vegetable in East Asian countries, as well as a plant-based medicine, has been used for centuries to treat various conditions, including depression. Several studies have demonstrated that the essential oil of P. frutescens (EOPF) attenuated the depressive-like behavior in mice. The present study was designed to test the anti-depressant effects of EOPF and the possible mechanisms in an chronic, unpredictable, mild stress (CUMS)-induced mouse model. With the exposure to stressor once daily for five consecutive weeks, EOPF (3, 6, and 9 mg·kg(-1)) and a positive control drug fluoxetine (20 mg·kg(-1)) were administered through gastric intubation to mice once daily for three consecutive weeks from the 3(rd) week. Open-field test, sucrose consumption test, tail suspension test (TST), and forced swimming test (FST) were used to evaluate the behavioral activity. The contents of 5-hydroxytryptamine (5-HT) and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in mouse hippocampus were determined by HPLC-ECD. Serum interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α levels were evaluated by enzyme-linked immunosorbent assay (ELISA). The results showed that CUMS significantly decreased the levels of 5-HT and 5-HIAA in the hippocampus, with an increase in plasma IL-6, IL-1β, and TNF-α levels. CUMS also reduced open-field activity, sucrose consumption, as well as increased immobility duration in FST and TST. EOPF administration could effectively reverse the alterations in the concentrations of 5-HT and 5-HIAA; reduce the IL-6, IL-1β, and TNF-α levels. Moreover, EOPF could effectively reverse alterations in immobility duration, sucrose consumption, and open-field activity. However, the effect was not dose-dependent. In conclusion, EOPF administration exhibited significant antidepressant-like effects in mice with CUMS-induced depression. The antidepressant activity of EOPF might be related to the relation between

  15. Antidepressant-like activity of red wine phenolic extracts in repeated corticosterone-induced depression mice via BDNF/TrkB/CREB signaling pathway

    Directory of Open Access Journals (Sweden)

    Jia Ying

    2016-01-01

    Full Text Available The aim of this study was to investigate the antidepressant-like effect of red wine phenolic extracts in mouse model exposed to exogenous corticosterone. The results showed that 3-week corticosterone injections caused depression-like behavior in mice, as indicated by the significant decrease in sucrose consumption and increase immobility time in the forced swim test. Red wine phenolic extracts treatment significantly reduced serum corticosterone levels. Moreover, it was found that red wine phenolic extract increased the brain-derived neurotrophic factor protein (BNDF and Tropomyosin-related kinase B (TrkB phosphorylation and cAMP-responsive element binding protein (CREB phosphorylation levels in the hippocampus and prefrontal cortex. However, K252a, an inhibitor of TrkB, completely abolished those antidepressant-like effects. These results suggested that the red wine phenolic extracts produce an antidepressant-like effect in corticosterone-treated mice, at least in part, which is possibly mediated by modulating hypothalamic-pituitary-adrenal (HPA axis, BDNF, TrkB and CREB phosphorylation levels in the brain region of mice.

  16. Antidepressant-Like Effect of Isorhynchophylline in Mice.

    Science.gov (United States)

    Xian, Yan-Fang; Fan, Ding; Ip, Siu-Po; Mao, Qing-Qiu; Lin, Zhi-Xiu

    2017-02-01

    Isorhynchophylline (IRN), an oxindole alkaloid, has been identified as the main active ingredient responsible for the biological activities of Uncaria rhynchophylla (Miq) Miq ex Havil. (Rubiaceae). Previous studies in our laboratory have revealed that IRN possesses potent neuroprotective effects in different models of Alzheimer's disease. However, the antidepressant-like effects of IRN are remained unclear. The present study aims to evaluate the antidepressant-like effects of IRN. The antidepressant-like effects of IRN was determined by using animal models of depression including forced swimming and tail suspension tests. The acting mechanism was explored by determining the effect of IRN on the levels of monoamine neurotransmitters and the activities of monoamine oxidases. Intragastric administration of IRN at 10, 20 and 40 mg/kg for 7 days caused a significant reduction of immobility time in both forced swimming and tail suspension tests, while IRN did not stimulate locomotor activity in the open-field test. In addition, IRN treatment antagonized reserpine-induced ptosis and significantly enhanced the levels of monoamine neurotransmitters including norepinephrine (NE) and 5-hydroxytryptamine (5-HT), and the activity of monoamine oxidase A (MAO-A) in the hippocampus and frontal cortex of mice. These results suggest that the antidepressant-like effects of IRN are mediated, at least in part, by the inhibition of monoamine oxidases.

  17. Alarin-induced antidepressant-like effects and their relationship with hypothalamus-pituitary-adrenal axis activity and brain derived neurotrophic factor levels in mice.

    Science.gov (United States)

    Wang, Ming; Chen, Qian; Li, Mei; Zhou, Wei; Ma, Tengfei; Wang, Yun; Gu, Shuling

    2014-06-01

    Alarin is a newly identified member of the galanin family of peptides. Galanin has been shown to exert regulatory effects on depression. Similar to galanin in distribution, alarin is also expressed in the medial amygdala and hypothalamus, i.e., regions interrelated with depression. However, it remains a puzzle whether alarin is involved in depression. Accordingly, we established the depression-like mouse model using behavioral tests to ascertain the possible involvement of alarin, with fluoxetine as a positive control. With the positive antidepressant-like effects of alarin, we further examined its relationship to HPA axis activity and brain-derived neurotrophic factor (BDNF) levels in different brain areas in a chronic unpredictable mild stress (CUMS) paradigm. In the acute studies, alarin produced a dose-related reduction in the immobility duration in tail suspension test (TST) in mice. In the open-field test, intracerebroventricular (i.c.v.) injection of alarin (1.0 nmol) did not impair locomotion or motor coordination in the treated mice. In the CUMS paradigm, alarin administration (1.0 nmol, i.c.v.) significantly improved murine behaviors (FST and locomotor activity), which was associated with a decrease in corticotropin-releasing hormone (CRH) mRNA levels in the hypothalamus, as well as a decline in serum levels of CRH, adrenocorticotropic hormone (ACTH) and corticosterone (CORT), all of which are key hormones of the HPA axis. Furthermore, alarin upregulated BDNF mRNA levels in the prefrontal cortex and hippocampus. These findings suggest that alarin may potentiate the development of new antidepressants, which would be further secured with the identification of its receptor(s). Copyright © 2014 Elsevier Inc. All rights reserved.

  18. NMDA antagonist, but not nNOS inhibitor, requires AMPA receptors in the ventromedial prefrontal cortex (vmPFC) to induce antidepressant-like effects

    DEFF Research Database (Denmark)

    Pereira, V. S.; Wegener, Gregers; Joca, S. R.

    2013-01-01

    of the glutamatergic and nitrergic systems of the vmPFC on the behavioral consequences induced by forced swimming (FS), an animal model of depression. Male Wistar rats (230-260g) with guide cannulas aimed at the prelimbic (PL) region of vmPFC were submitted to a 15min session of FS and, 24h later, they were submitted...

  19. Antidepressant-like effects of salidroside on olfactory bulbectomy-induced pro-inflammatory cytokine production and hyperactivity of HPA axis in rats.

    Science.gov (United States)

    Yang, Shui-Jin; Yu, Hai-Yang; Kang, Dan-Yu; Ma, Zhan-Qiang; Qu, Rong; Fu, Qiang; Ma, Shi-Ping

    2014-09-01

    Salidroside (SA) is the primary bioactive marker compound in the standardized extracts from Rhodiola rosea. Although it has potential antidepressant activity in a rat behavioral despair model, the mechanisms of antidepressant effect for SA remain unclear. The objective of this study was to evaluate the antidepressant effects of SA and to discuss the potential mechanisms in olfactory bulbectomized (OBX) rats. SA of 20, 40 mg/kg (p.o.) for 2 weeks notably alleviated OBX-induced hyperactivity in open field test, decreased immobility time in TST and FST. Chronic treatment with SA could remarkably reduce TNF-α and IL-1β levels in hippocampus. Western blot showed that SA could markedly increase glucocorticoid receptor (GR) and brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Besides, SA could also attenuate corticotropin-releasing hormone (CRH) expression in hypothalamus, as well as reducing significantly the levels of serum corticosterone. In conclusion, this study demonstrated that OBX rats treated with SA could significantly improve the depressive-like behaviors. The antidepressant mechanisms of SA might be associated with its anti-inflammatory effects and the regulation of HPA axis activity. Reversal of abnormalities of GR may be partly responsible for those effects. These findings suggested that SA might become a beneficial agent to prevent and treat the depression. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Antidepressant-like effect of peony glycosides in mice.

    Science.gov (United States)

    Mao, Qing-Qiu; Ip, Siu-Po; Tsai, Sam-Hip; Che, Chun-Tao

    2008-09-26

    The root part of Paeonia lactiflora Pall. (Ranunculaceae), known as peony, is often used in Chinese herbal formulae for the treatment of depression-like disorders. Previous studies in our laboratory have shown that an ethanol extract of peony produced antidepressive effects in mouse models of depression. It is well known that peony contains glycosides such as paeoniflorin and albiflorin, yet it remains unclear whether the total glycosides of peony (TGP) are effective. The present study aims to evaluate the antidepressant-like effects of TGP. The antidepressant-like effects of TGP was determined by using animal models of depression including forced swim and tail suspension tests. The acting mechanism was explored by determining the effect of TGP on the activities of monoamine oxidases. Intragastric administration of TGP at 80 and 160 mg/kg for seven days caused a significant reduction of immobility time in both forced swim and tail suspension tests, yet TGP did not stimulate locomotor activity in the open-field test. In addition, TGP treatment antagonized reserpine-induced ptosis and inhibited the activities of monoamine oxidases in mouse cerebrum. These results suggest that the antidepressive effects of TGP are mediated, at least in part, by the inhibition of monoamine oxidases.

  1. ZL006, a small molecule inhibitor of PSD-95/nNOS interaction, does not induce antidepressant-like effects in two genetically predisposed rat models of depression and control animals.

    Directory of Open Access Journals (Sweden)

    Sandra Tillmann

    Full Text Available N-methyl-D-aspartate receptor (NMDA-R antagonists and nitric oxide inhibitors have shown promising efficacy in depression but commonly induce adverse events. To circumvent these, a more indirect disruption of the nitric oxide synthase/postsynaptic density protein 95 kDa complex at the NMDA-R has been proposed. This disruption can be achieved using small molecule inhibitors such as ZL006, which has attracted attention as ischemic stroke therapy in rodents and has been proposed as a potential novel treatment for depression. Based on this, our aim was to translate these findings to animal models of depression to elucidate antidepressant-like properties in more detail. In the present study, we administered ZL006 to two established animal models of depression and control rodents. Following treatment, we measured locomotion in the Open Field and depressive-like behavior in the Forced Swim Test and Tail Suspension Test. Our experimental designs included the use of different species (rats, mice, strains (Flinders Sensitive Line rats, Flinders Resistant Line rats, Wistar Kyoto rats, Wistar Hanover rats, Sprague Dawley rats, B6NTac mice, routes of administration (intraperitoneal, intracerebroventricular, times of administration (single injection, repeated injections, treatment regimens (acute, sustained, and doses (5, 10, 15, 50 mg/kg. ZL006 did not affect behavior in any of the described settings. On a molecular level, ZL006 significantly reduced total nitrate/nitrite concentrations in the cerebellum, supporting that it is capable of reducing nitric oxide metabolites in the brain. Future studies using different experimental parameters are needed to further investigate the behavioral profile of ZL006.

  2. Opposite roles for neuropeptide S in the nucleus accumbens and bed nucleus of the stria terminalis in learned helplessness rats.

    Science.gov (United States)

    Shirayama, Yukihiko; Ishima, Tamaki; Oda, Yasunori; Okamura, Naoe; Iyo, Masaomi; Hashimoto, Kenji

    2015-09-15

    The role of neuropeptide S (NPS) in depression remains unclear. We examined the antidepressant-like effects of NPS infusions into the shell or core regions of the nucleus accumbens (NAc) and into the bed nucleus of the stria terminalis (BNST) of learned helplessness (LH) rats (an animal model of depression). Infusions of NPS (10 pmol/side) into the NAc shell, but not the NAc core and BNST, exerted antidepressant-like effects in the LH paradigm. Implying that behavioral deficits could be improved in the conditioned avoidance test. Coinfusion of SHA68 (an NPS receptor antagonist, 100 pmol/side) with NPS into the NAc shell blocked these effects. In contrast, NPS receptor antagonism by SHA68 in the BNST induced antidepressant-like effects. Infusions of NPS into the NAc shell or SHA68 into the BNST did not produce memory deficits or locomotor activation in the passive avoidance and open field tests. These results suggest that excitatory and inhibitory actions by the NPS system are integral to the depression in LH animals. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. N,N-dimethylglycine differentially modulates psychotomimetic and antidepressant-like effects of ketamine in mice.

    Science.gov (United States)

    Lin, Jen-Cheng; Chan, Ming-Huan; Lee, Mei-Yi; Chen, Yi-Chyan; Chen, Hwei-Hsien

    2016-11-03

    Ketamine, a dissociative anesthetic, produces rapid and sustained antidepressant effects at subanesthtic doses. However, it still inevitably induces psychotomimetic side effects. N,N-dimethylglycine (DMG) is a derivative of the amino acid glycine and is used as a dietary supplement. Recently, DMG has been found acting at glycine binding site of the N-methyl-d-aspartate receptor (NMDAR). As blockade of NMDARs is one of the main mechanisms responsible for the action of ketamine on central nervous system, DMG might modulate the behavioral responses to ketamine. The present study determined the effects of DMG on the ketamine-induced psychotomimetic, anesthetic and antidepressant-like effects in mice. DMG pretreatment reversed the ketamine-induced locomotor hyperactivity and impairment in the rotarod performance, novel location and novel object recognition tests, and prepulse inhibition. In addition, DMG alone exhibited antidepressant-like effects in the forced swim test and produced additive effects when combined with ketamine. However, DMG did not affect ketamine-induced anesthesia. These results reveal that DMG could antagonize ketamine's psychotomimetic effects, yet produce additive antidepressant-like effects with ketamine, suggesting that DMG might have antipsychotic potential and be suitable as an add-on therapy to ketamine for patients with treatment-resistant depression. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Cipadesin A, a bioactive ingredient of Xylocarpus granatum, produces antidepressant-like effects in adult mice.

    Science.gov (United States)

    Gao, Qiang; Gao, Yuan; Song, Han; Li, Jianli; Wu, Yibing; Shi, Xiaowei; Shi, Haishui; Ma, Yuxia

    2016-10-28

    Xylocarpus granatum Koenig, widely used in folk medicine in southeast countries, has been reported to exert neuropharmacological activities as well as mood regulation. The neuroprotective activities of limonoids, riches in X. granatum, are poorly understood. To investigate the potential antidepressant-like effects and the underlying mechanisms of cipadesin A, one limonoid component, extracted from X. granatum, in acute stress-induced depression mouse models. Antidepressant-like effects of cipadesin A were investigated through behavioral tests, and potential mechanism was assessed by neuroendocrine system. Antidepressant-like effects of cipadesin A (5, 15, 50mg/kg/day for 7days, intragastrically) were estimated through forced-swimming test (FST), tail suspension test (TST) and open field test (OFT). Effects of cipadesin A on hypothalamus-pituitary- adrenal (HPA) axis were evaluated by analysis of serum corticosterone (CORT) and adrenocorticotropic hormone (ACTH) using enzyme-linked immunosorbent assay (ELISA). Cipadesin A administration significantly reduced the floating time in the FST and immobility time in the TST (15-50mg/kg). Cipadesin A dose-dependently increased the time in the central zone in the OFT (5-50mg/kg), without altering the locomotor activity. Moreover, repeated cipadesin A treatment significantly inhibited the increase levels of serum CORT (5-50mg/kg), ACTH (15-50mg/kg) following the forced swimming, but not in the absence of stress. Cipadesin A has antidepressant-like activities in acute stressed mice model of depression, which likely occurs by inhibiting the HPA axis activity response to stress. These data support further exploration for developing cipadesin A as a potential agent to treat depression and anxiety disorders. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Allopregnanolone induces state-dependent fear via the bed nucleus of the stria terminalis.

    Science.gov (United States)

    Acca, Gillian M; Mathew, Abel S; Jin, Jingji; Maren, Stephen; Nagaya, Naomi

    2017-03-01

    Gonadal steroids and their metabolites have been shown to be important modulators of emotional behavior. Allopregnanolone (ALLO), for example, is a metabolite of progesterone that has been linked to anxiety-related disorders such as posttraumatic stress disorder. In rodents, it has been shown to reduce anxiety in a number of behavioral paradigms including Pavlovian fear conditioning. We have recently found that expression of conditioned contextual (but not auditory) freezing in rats can be suppressed by infusion of ALLO into the bed nucleus of the stria terminalis (BNST). To further explore the nature of this effect, we infused ALLO into the BNST of male rats prior to both conditioning and testing. We found that suppression of contextual fear occurred when the hormone was present during either conditioning or testing but not during both procedures, suggesting that ALLO acts in a state-dependent manner within the BNST. A shift in interoceptive context during testing for animals conditioned under ALLO provided further support for this mechanism of hormonal action on contextual fear. Interestingly, infusions of ALLO into the basolateral amygdala produced a state-independent suppression of both conditioned contextual and auditory freezing. Altogether, these results suggest that ALLO can influence the acquisition and expression of fear memories by both state-dependent and state-independent mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. The role of protein kinase-G in the antidepressant-like response of sildenafil in combination with muscarinic acetylcholine receptor antagonism

    DEFF Research Database (Denmark)

    Liebenberg, Nico; Wegener, Gregers; Brink, Christiaan

    not affect swimming or climbing. Lastly, locomotor activity was unaltered by all treatment conditions. Conclusions These results confirm cholinergic-cGMP-PK-G interactions in the antidepressant-like effects of sildenafil, putatively acting via noradrenergic mechanisms, whereas direct PK-G activation induces...... the antidepressant-like activity of sildenafil + atropine is mediated via the activation of PK-G, a downstream effector for cGMP, and whether this may target known pathways in antidepressant action. Purpose We investigated whether the antidepressant-like response of sildenafil ± atropine could be reversed by Rp-8-Br.......c.v.) ± atropine (1 mg/kg, i.p.), Rp-8-Br-PET-cGMP or atropine. Antidepressant-like activity was scored in terms of a reduction of immobility (in seconds) relative to vehicle-treated controls. Swimming and climbing behaviours were scored as an indication of serotonergic and noradrenergic mechanisms, respectively...

  7. Involvement of NO/cGMP pathway in the antidepressant-like effect of gabapentin in mouse forced swimming test.

    Science.gov (United States)

    Ostadhadi, Sattar; Kordjazy, Nastaran; Haj-Mirzaian, Arya; Ameli, Sanaz; Akhlaghipour, Golnoosh; Dehpour, AhmadReza

    2016-04-01

    Based on clinical studies regarding the beneficial effect of gabapentin in depression, we aimed to evaluate the antidepressant-like properties of gabapentin in mice and also the participation of nitric oxide (NO)/cyclic guanosine monophosphate pathway in this effect. The following drugs were used in this study: gabapentin; N(G)-nitro-L-arginine methyl ester (L-NAME), a non-specific NO synthase (NOS) inhibitor; 7-nitroindazole, a specific neuronal NOS inhibitor; aminoguanidine, a specific inducible NOS inhibitor; L-arginine, a NO precursor; and sildenafil, a phosphodiestrase inhibitor. Finally, we studied the behavioral effects through the forced swimming test (FST) and the changes of the hippocampus NO level through nitrite assay. The immobility time was significantly reduced after gabapentin administration. Co-administration of non-effective doses of gabapentin and L-NAME or 7-nitroindazole (7-NI) resulted in antidepressant-like effect in FST, while aminoguanidine did not affect the immobility time of gabapentin-treated mice. Furthermore, the antidepressant-like property of gabapentin was prevented by L-arginine or sildenafil. Also, the hippocampal nitrite level was significantly lower in gabapentin-treated mice relative to saline-injected mice, and co-administration of 7-NI with sub-effective gabapentin caused a significant decrease in hippocampal nitrite levels. Our results indicate that the antidepressant-like effect of gabapentin in the mice FST model is mediated at least in part through nitric oxide/cyclic guanosine monophosphate (cGMP) pathway.

  8. Peripheral administration of lactate produces antidepressant-like effects

    KAUST Repository

    Carrard, A; Elsayed, M; Margineanu, Michael B.; Boury-Jamot, B; Fragniè re, L; Meylan, E M; Petit, J-M; Fiumelli, Hubert; Magistretti, Pierre J.; Martin, J-L

    2016-01-01

    In addition to its role as metabolic substrate that can sustain neuronal function and viability, emerging evidence supports a role for l-lactate as an intercellular signaling molecule involved in synaptic plasticity. Clinical and basic research studies have shown that major depression and chronic stress are associated with alterations in structural and functional plasticity. These findings led us to investigate the role of l-lactate as a potential novel antidepressant. Here we show that peripheral administration of l-lactate produces antidepressant-like effects in different animal models of depression that respond to acute and chronic antidepressant treatment. The antidepressant-like effects of l-lactate are associated with increases in hippocampal lactate levels and with changes in the expression of target genes involved in serotonin receptor trafficking, astrocyte functions, neurogenesis, nitric oxide synthesis and cAMP signaling. Further elucidation of the mechanisms underlying the antidepressant effects of l-lactate may help to identify novel therapeutic targets for the treatment of depression.

  9. Peripheral administration of lactate produces antidepressant-like effects

    KAUST Repository

    Carrard, A

    2016-10-18

    In addition to its role as metabolic substrate that can sustain neuronal function and viability, emerging evidence supports a role for l-lactate as an intercellular signaling molecule involved in synaptic plasticity. Clinical and basic research studies have shown that major depression and chronic stress are associated with alterations in structural and functional plasticity. These findings led us to investigate the role of l-lactate as a potential novel antidepressant. Here we show that peripheral administration of l-lactate produces antidepressant-like effects in different animal models of depression that respond to acute and chronic antidepressant treatment. The antidepressant-like effects of l-lactate are associated with increases in hippocampal lactate levels and with changes in the expression of target genes involved in serotonin receptor trafficking, astrocyte functions, neurogenesis, nitric oxide synthesis and cAMP signaling. Further elucidation of the mechanisms underlying the antidepressant effects of l-lactate may help to identify novel therapeutic targets for the treatment of depression.

  10. Neuroplasticity-related mechanisms underlying the antidepressant-like effects of traditional herbal medicines.

    Science.gov (United States)

    Hirshler, Yafit; Doron, Ravid

    2017-10-01

    Traditional herbal medicine can offer efficacious and safe alternative pharmacotherapies for depression. The ability of an herbal medicine to produce neuroadaptive processes, that enhance neuroplasticity and cellular resilience in response to chronic stress, may point to its antidepressant potential. We suggest that among many investigated herbal medicines, those that can enhance neuroplasticity may have stronger therapeutic potential. The current article presents a summary of traditional herbal medicines, which are thought to exert antidepressant-like effects in chronic stress models via neuroplasticity enhancement. Brain-derived neurotrophic factor (BDNF) is a biomarker for neuroplasticity-related mechanisms compromised in depression and recovered by conventional antidepressants, including synaptic plasticity, cell survival, neurogenesis and spine formation. We therefore presumed that if an herbal medicine up-regulates BDNF in the hippocampus and/or prefrontal cortex (PFC), its antidepressant-like effect is mediated, at least partially, via neuroplasticity-related mechanisms. Literature search was performed using the general terms depression, stress, neuroplasticity and herbal medicines. Screening of retrieved preclinical studies revealed 30 traditional herbal medicines: 8 single herbs, 15 bioactive constituents, and 7 herbal formulas. The antidepressant-like effects of these medicines were associated with reversal of chronic stress-induced impairment in neuroplasticity, most notably by BDNF up-regulation, activation of BDNF downstream signaling pathways and increase in neurogenesis in the hippocampus and/or PFC/frontal cortex. In light of the ability of these medicines to enhance neuroplasticity, we suggest that they may be suitable candidates for clinical investigation in depressed individuals. Once their efficacy, tolerability and safety will be substantiated, they may serve as natural alternatives to conventional antidepressants. Copyright © 2017 Elsevier B

  11. Signaling pathways underlying the antidepressant-like effect of inosine in mice.

    Science.gov (United States)

    Gonçalves, Filipe Marques; Neis, Vivian Binder; Rieger, Débora Kurrle; Lopes, Mark William; Heinrich, Isabella A; Costa, Ana Paula; Rodrigues, Ana Lúcia S; Kaster, Manuella P; Leal, Rodrigo Bainy

    2017-06-01

    Inosine is a purine nucleoside formed by the breakdown of adenosine that elicits an antidepressant-like effect in mice through activation of adenosine A 1 and A 2A receptors. However, the signaling pathways underlying this effect are largely unknown. To address this issue, the present study investigated the influence of extracellular-regulated protein kinase (ERK)1/2, Ca 2+ /calmoduline-dependent protein kinase (CaMKII), protein kinase A (PKA), phosphoinositide 3-kinase (PI3K)/Akt, and glycogen synthase kinase 3beta (GSK-3β) modulation in the antiimmobility effect of inosine in the tail suspension test (TST) in mice. In addition, we attempted to verify if inosine treatment was capable of altering the immunocontent and phosphorylation of the transcription factor cyclic adenosine monophosphatate (cAMP) response-binding element protein (CREB) in mouse prefrontal cortex and hippocampus. Intracerebroventricular administration of U0126 (5 μg/mouse, MEK1/2 inhibitor), KN-62 (1 μg/mouse, CaMKII inhibitor), H-89 (1 μg/mouse, PKA inhibitor), and wortmannin (0.1 μg/mouse, PI3K inhibitor) prevented the antiimmobility effect of inosine (10 mg/kg, intraperitoneal (i.p.)) in the TST. Also, administration of a sub-effective dose of inosine (0.1 mg/kg, i.p.) in combination with a sub-effective dose of AR-A014418 (0.001 μg/mouse, GSK-3β inhibitor) induced a synergic antidepressant-like effect. None of the treatments altered locomotor activity of mice. Moreover, 24 h after a single administration of inosine (10 mg/kg, i.p.), CREB phosphorylation was increased in the hippocampus. Our findings provided new evidence that the antidepressant-like effect of inosine in the TST involves the activation of PKA, PI3K/Akt, ERK1/2, and CaMKII and the inhibition of GSK-3β. These results contribute to the comprehension of the mechanisms underlying the purinergic system modulation and indicate the intracellular signaling pathways involved in the antidepressant-like effect of inosine

  12. Antidepressant-like effects of erythropoietin: a focus on behavioural and hippocampal processes.

    Science.gov (United States)

    Osborn, Meagan; Rustom, Nazneen; Clarke, Melanie; Litteljohn, Darcy; Rudyk, Chris; Anisman, Hymie; Hayley, Shawn

    2013-01-01

    Depression is a chronic and debilitating condition with a significant degree of relapse and treatment resistance that could stem, at least in part, from disturbances of neuroplasticity. This has led to an increased focus on treatment strategies that target brain derived neurotrophic factor (BDNF), synaptic plasticity and adult neurogenesis. In the current study we aimed to assess whether erythropoietin (EPO) would have antidepressant-like effects given its already established pro-trophic actions. In particular, we assessed whether EPO would diminish the deleterious effects of a social stressor in mice. Indeed, EPO induced anxiolytic and antidepressant-like responses in a forced swim test, open field, elevated-plus maze, and a novelty test, and appeared to blunt some of the negative behavioural effects of a social stressor. Furthermore, EPO promoted adult hippocampal neurogenesis, an important feature of effective antidepressants. Finally, a separate study using the mTOR inhibitor rapamycin revealed that antagonizing this pathway prevented the impact of EPO upon forced swim performance. These data are consistent with previous findings showing that the mTOR pathway and its neurogenic and synaptogenic effects might mediate the behavioral consequences of antidepressant agents. Our findings further highlight EPO as a possible adjunct treatment for affective disorders, as well as other stressor associated disorders of impaired neuroplasticity.

  13. Antidepressant-like effect of celecoxib piroxicam in rat models of depression.

    Science.gov (United States)

    Santiago, Ronise M; Barbiero, Janaína; Martynhak, Bruno J; Boschen, Suelen L; da Silva, Luisa M; Werner, Maria F P; Da Cunha, Claudio; Andreatini, Roberto; Lima, Marcelo M S; Vital, Maria A B F

    2014-06-01

    Beyond the current hypothesis of depression, several new biological substrates have been proposed for this disorder. The present study investigated whether the anti-inflammatory drugs celecoxib and piroxicam have antidepressant activity in animal models of depression. After acute administration, we observed antidepressant-like effects of celecoxib (10 mg/kg) and piroxicam (10 mg/kg) in the modified forced swim test in rats. Piroxicam increased serotonin and norepinephrine levels in the hippocampus. Prolonged (21-day) treatment with celecoxib (10 mg/kg) and piroxicam (10 mg/kg) rescued sucrose preference in a chronic mild stress model of depression. Additionally, the chronic mild stress-induced reduction of hippocampal glutathione was prevented by treatment with celecoxib and piroxicam. Superoxide dismutase in the hippocampus was increased after chronic mild stress compared with the non-stressed saline group. The non-stressed celecoxib and piroxicam groups and stressed piroxicam group exhibited an increase in hippocampal superoxide dismutase activity compared with the stressed saline group. Lipid hydroperoxide was increased in the stressed group treated with vehicle and non-stressed group treated with imipramine but not in the stressed groups treated with celecoxib and piroxicam. These results suggest that the antidepressant-like effects of anti-inflammatory drugs might be attributable to enhanced antioxidant defenses and attenuated oxidative stress in the hippocampus.

  14. Antidepressant-Like Activity of 10-Hydroxy-Trans-2-Decenoic Acid, a Unique Unsaturated Fatty Acid of Royal Jelly, in Stress-Inducible Depression-Like Mouse Model

    Directory of Open Access Journals (Sweden)

    Satoru Ito

    2012-01-01

    Full Text Available Symptoms of depression and anxiety appeared in mice after they had been subjected to a combination of forced swimming for 15 min followed by being kept in cages that were sequentially subjected to leaning, drenching, and rotation within 1-2 days for a total of 3 weeks. The animals were then evaluated by the tail-suspension test, elevated plus-maze test, and open-field test at 1 day after the end of stress exposure. Using these experimental systems, we found that 10-hydroxy-trans-2-decenoic acid (HDEA, an unsaturated fatty acid unique to royal jelly (RJ, protected against the depression and anxiety when intraperitoneally administered once a day for 3 weeks simultaneously with the stress loading. Intraperitoneally administered RJ, a rich source of HDEA, was also protective against the depression, but RJ given by the oral route was less effective. Our present results demonstrate that HDEA and RJ, a natural source of it, were effective in ameliorating the stress-inducible symptoms of depression and anxiety.

  15. Harmane induces anxiolysis and antidepressant-like effects in rats.

    Science.gov (United States)

    Aricioglu, Feyza; Altunbas, Hale

    2003-12-01

    A forced swim test (FST) and an elevated plus maze (EPM) were used to determine antidepressant and anxiolytic effects of harmane in rats in comparison with a known antidepressant, imipramine (30 mg/kg i.p.). Harmane (2.5, 5.0, or 10 mg/kg, i.p.), saline, or imipramine were given 30 minutes before the tests. Administration of harmane decreased the time of immobility in the FST dose-dependently and increased the time spent in open arms in the EPM, as compared with the saline group. As an endogenous substance, harmane therefore has anti-anxiety and antidepressant effects.

  16. Acute engagement of Gq-mediated signaling in the bed nucleus of the stria terminalis induces anxiety-like behavior.

    Science.gov (United States)

    Mazzone, C M; Pati, D; Michaelides, M; DiBerto, J; Fox, J H; Tipton, G; Anderson, C; Duffy, K; McKlveen, J M; Hardaway, J A; Magness, S T; Falls, W A; Hammack, S E; McElligott, Z A; Hurd, Y L; Kash, T L

    2018-01-01

    The bed nucleus of the stria terminalis (BNST) is a brain region important for regulating anxiety-related behavior in both humans and rodents. Here we used a chemogenetic strategy to investigate how engagement of G protein-coupled receptor (GPCR) signaling cascades in genetically defined GABAergic BNST neurons modulates anxiety-related behavior and downstream circuit function. We saw that stimulation of vesicular γ-aminobutyric acid (GABA) transporter (VGAT)-expressing BNST neurons using hM3Dq, but neither hM4Di nor rM3Ds designer receptors exclusively activated by a designer drug (DREADD), promotes anxiety-like behavior. Further, we identified that activation of hM3Dq receptors in BNST VGAT neurons can induce a long-term depression-like state of glutamatergic synaptic transmission, indicating DREADD-induced changes in synaptic plasticity. Further, we used DREADD-assisted metabolic mapping to profile brain-wide network activity following activation of G q -mediated signaling in BNST VGAT neurons and saw increased activity within ventral midbrain structures, including the ventral tegmental area and hindbrain structures such as the locus coeruleus and parabrachial nucleus. These results highlight that G q -mediated signaling in BNST VGAT neurons can drive downstream network activity that correlates with anxiety-like behavior and points to the importance of identifying endogenous GPCRs within genetically defined cell populations. We next used a microfluidics approach to profile the receptorome of single BNST VGAT neurons. This approach yielded multiple G q -coupled receptors that are associated with anxiety-like behavior and several potential novel candidates for regulation of anxiety-like behavior. From this, we identified that stimulation of the G q -coupled receptor 5-HT 2C R in the BNST is sufficient to elevate anxiety-like behavior in an acoustic startle task. Together, these results provide a novel profile of receptors within genetically defined BNST VGAT

  17. Antidepressant-Like Effects of Lindera obtusiloba Extracts on the Immobility Behavior of Rats in the Forced Swim Test

    Directory of Open Access Journals (Sweden)

    Dong Wook Lim

    2016-02-01

    Full Text Available Lindera obtusiloba extracts are commonly used as an alternative medicine due to its numerous health benefits in Korea. However, the antidepressant-like effects of L. obtusiloba extracts have not been fully elucidated. In this study, we aimed to determine whether L. obtusiloba extracts exhibited antidepressant-like activity in rats subjected to forced swim test (FST-induced depression. Acute treatment of rats with L. obtusiloba extracts (200 mg/kg, p.o. significantly reduced immobility time and increased swimming time without any significant change in climbing. Rats treated with L. obtusiloba extracts also exhibited a decrease in the limbic hypothalamic-pituitary-adrenal (HPA axis response to the FST, as indicated by attenuation of the corticosterone response and decreased c-Fos immunoreactivity in the hippocampus CA3 region. In addition, L. obtusiloba extracts, at concentrations that were not affected by cell viability, significantly decreased luciferase activity in response to cortisol in a concentration-dependent manner by the glucocorticoid binding assay in HeLa cells. Our findings suggested that the antidepressant-like effects of L. obtusiloba extracts were likely mediated via the glucocorticoid receptor (GR. Further studies are needed to evaluate the potential of L. obtusiloba extracts as an alternative therapeutic approach for the treatment of depression.

  18. Novel Antidepressant-Like Activity of Caffeic Acid Phenethyl Ester Is Mediated by Enhanced Glucocorticoid Receptor Function in the Hippocampus

    Directory of Open Access Journals (Sweden)

    Mi-Sook Lee

    2014-01-01

    Full Text Available Caffeic acid phenethyl ester (CAPE is an active component of propolis that has a variety of potential pharmacological effects. Although we previously demonstrated that propolis has antidepressant-like activity, the effect of CAPE on this activity remains unknown. The present study assessed whether treatment with CAPE (5, 10, and 20 µmol/kg for 21 days has an antidepressant-like effect in mice subjected to chronic unpredictable stress via tail suspension (TST and forced swim (FST tests. CAPE administration induced behaviors consistent with an antidepressant effect, evidenced by decreased immobility in the TST and FST independent of any effect on serum corticosterone secretion. Western blots, conducted subsequent to behavioral assessment, revealed that CAPE significantly decreased glucocorticoid receptor phosphorylation at S234 (pGR(S234, resulting in an increased pGR(S220/S234 ratio. We also observed negative correlations between pGR(S220/(S234 and p38 mitogen-activated protein kinase (p38MAPK phosphorylation, which was decreased by CAPE treatment. These findings suggest that CAPE treatment exerts an antidepressant-like effect via downregulation of p38MAPK phosphorylation, thereby contributing to enhanced GR function.

  19. Desipramine and citalopram attenuate pretest swim-induced increases in prodynorphin immunoreactivity in the dorsal bed nucleus of the stria terminalis and the lateral division of the central nucleus of the amygdala in the forced swimming test.

    Science.gov (United States)

    Chung, Sung; Kim, Hee Jeong; Kim, Hyun Ju; Choi, Sun Hye; Cho, Jin Hee; Cho, Yun Ha; Kim, Dong-Hoon; Shin, Kyung Ho

    2014-10-01

    Dynorphin in the nucleus accumbens shell plays an important role in antidepressant-like effect in the forced swimming test (FST), but it is unclear whether desipramine and citalopram treatments alter prodynorphin levels in other brain areas. To explore this possibility, we injected mice with desipramine and citalopram 0.5, 19, and 23 h after a 15-min pretest swim and observed changes in prodynorphin expression before the test swim, which was conducted 24 h after the pretest swim. The pretest swim increased prodynorphin immunoreactivity in the dorsal bed nucleus of the stria terminalis (dBNST) and lateral division of the central nucleus of the amygdala (CeL). This increase in prodynorphin immunoreactivity in the dBNST and CeL was blocked by desipramine and citalopram treatments. Similar changes in prodynorphin mRNA levels were observed in the dBNST and CeL, but these changes did not reach significance. To understand the underlying mechanism, we assessed changes in phosphorylated CREB at Ser(133) (pCREB) immunoreactivity in the dBNST and central nucleus of the amygdala (CeA). Treatment with citalopram but not desipramine after the pretest swim significantly increased pCREB immunoreactivity only in the dBNST. These results suggest that regulation of prodynorphin in the dBNST and CeL before the test swim may be involved in the antidepressant-like effect of desipramine and citalopram in the FST and suggest that changes in pCREB immunoreactivity in these areas may not play an important role in the regulation of prodynorphin in the dBNST and CeA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Opioid system contribution to the antidepressant-like action of m-trifluoromethyl-diphenyl diselenide in mice: A compound devoid of tolerance and withdrawal syndrome.

    Science.gov (United States)

    Rosa, Suzan G; Pesarico, Ana P; Tagliapietra, Carolina F; da Luz, Sônia Ca; Nogueira, Cristina W

    2017-09-01

    Animal and clinical researches indicate that the opioid system exerts a crucial role in the etiology of mood disorders and is a target for intervention in depression treatment. This study investigated the contribution of the opioid system to the antidepressant-like action of acute or repeated m-trifluoromethyl-diphenyl diselenide administration to Swiss mice. m-Trifluoromethyl-diphenyl diselenide (50 mg/kg, intragastric) produced an antidepressant-like action in the forced swimming test from 30 min to 24 h after treatment. This effect was blocked by the µ and δ-opioid receptor antagonists, naloxonazine (10 mg/kg, intraperitoneally) and naltrindole (3 mg/kg, intraperitoneally), and it was potentiated by a κ-opioid receptor antagonist, norbinaltrophimine (1 mg/kg, subcutaneously ). Combined treatment with subeffective doses of m-trifluoromethyl-diphenyl diselenide (10 mg/kg, intragastric) and morphine (1 mg/kg, subcutaneously) resulted in a synergistic antidepressant-like effect. The opioid system contribution to the m-trifluoromethyl-diphenyl diselenide antidepressant-like action was also demonstrated in the modified tail suspension test, decreasing mouse immobility and swinging time and increasing curling time, results similar to those observed using morphine, a positive control. Treatment with m-trifluoromethyl-diphenyl diselenide induced neither tolerance to the antidepressant-like action nor physical signs of withdrawal, which could be associated with the fact that m-trifluoromethyl-diphenyl diselenide did not change the mouse cortical and hippocampal glutamate uptake and release. m-Trifluoromethyl-diphenyl diselenide treatments altered neither locomotor nor toxicological parameters in mice. These findings demonstrate that m-trifluoromethyl-diphenyl diselenide elicited an antidepressant-like action by direct or indirect μ and δ-opioid receptor activation and the κ-opioid receptor blockade, without inducing tolerance, physical signs of withdrawal and

  1. NPY intraperitoneal injections produce antidepressant-like effects and downregulate BDNF in the rat hypothalamus.

    Science.gov (United States)

    Gelfo, Francesca; Tirassa, Paola; De Bartolo, Paola; Croce, Nicoletta; Bernardini, Sergio; Caltagirone, Carlo; Petrosini, Laura; Angelucci, Francesco

    2012-06-01

    Several studies have documented an involvement of Neuropeptide Y (NPY) in stress-related disorders. Stress-related disorders are also characterized by changes in brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), neurotrophins implicated in the survival and function of neurons. Thus the aim of this study was to investigate whether an NPY intraperitoneal treatment has antidepressant-like effects in rats subjected to a classical stress paradigm, the Forced Swim Test (FST), in association with changes in local brain neurotrophin production. Rats were intraperitoneally injected with either NPY (60 μg/kg) or a vehicle for three consecutive days between two FST sessions and then tested for time spent (or delay onset) in immobile posture. Moreover, we measured by enzyme-linked immunosorbent assay (ELISA) neurotrophin levels in the hypothalamus and corticosterone levels in plasma. The data showed that NPY induced a significant delay in the onset and a significant reduction in the duration of the immobility posture in FST. We also found that NPY decreased BDNF levels in the hypothalamus and corticosterone levels in plasma. Immobility posture in FST can be reduced by antidepressant drugs. Thus, our data show an antidepressant-like effect of NPY associated with changes in BDNF levels in the hypothalamus and reduced activity of hypothalamic-pituitary-adrenal (HPA) axis. These findings, while confirming the involvement of the NPY system in stress-related disorders, suggest that a less invasive route of administration, such as an intraperitoneal injection, may be instrumental in coping with stressful events in animal models and perhaps in humans. © 2012 Blackwell Publishing Ltd.

  2. The antidepressant-like effect of ethynyl estradiol is mediated by both serotonergic and noradrenergic systems in the forced swimming test.

    Science.gov (United States)

    Vega-Rivera, N M; López-Rubalcava, C; Estrada-Camarena, E

    2013-10-10

    17α-Ethynyl-estradiol (EE2, a synthetic steroidal estrogen) induces antidepressant-like effects in the forced swimming test (FST) similar to those induced by 5-HT and noradrenaline reuptake inhibitors (dual antidepressants). However, the precise mechanism of action of EE2 has not been studied. In the present study, the participation of estrogen receptors (ERs) and the serotonergic and the noradrenergic presynaptic sites in the antidepressant-like action of EE2 was evaluated in the FST. The effects of the ER antagonist ICI 182,780 (10 μg/rat; i.c.v.), the serotonergic and noradrenergic terminal destruction with 5,7-dihydroxytryptamine (5,7-DHT; 200 μg/rat, i.c.v.), and N-(2-chloro-ethyl)-N-ethyl-2-bromobenzylamine (DSP4; 10mg/kg, i.p.) were studied in ovariectomized rats treated with EE2 and subjected to the FST. In addition, the participation of α2-adrenergic receptors in the antidepressant-like action of EE2 was explored using the selective α2-receptor antagonist idazoxan (0.25, 0.5 and 1.0mg/kg, i.p.). EE2 induced an antidepressant-like action characterized by a decrease in immobility behavior with a concomitant increase in swimming and climbing behaviors. The ER antagonist, 5,7-DHT, DSP4, and idazoxan blocked the effects of EE2 on the immobility behavior, whereas ICI 182,780 and 5,7-DHT affected swimming behavior. The noradrenergic compound DSP4 altered climbing behavior, while Idazoxan inhibited the increase of swimming and climbing behaviors induced by EE2. Our results suggest that the antidepressant-like action of EE2 implies a complex mechanism of action on monoaminergic systems and estrogen receptors. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Antidepressant-like effects of a water-soluble extract from the culture medium of Ganoderma lucidum mycelia in rats.

    Science.gov (United States)

    Matsuzaki, Hirokazu; Shimizu, Yuta; Iwata, Naohiro; Kamiuchi, Shinya; Suzuki, Fumiko; Iizuka, Hiroshi; Hibino, Yasuhide; Okazaki, Mari

    2013-12-26

    Ganoderma lucidum is a popular medicinal mushroom used for promoting health and longevity in Asian countries. Previously, we reported that a water-soluble extract from a culture medium of Ganoderma lucidum mycelia (MAK) exerts antioxidative and cerebroprotective effects against ischemia-reperfusion injury in vivo. Here, we evaluated the antidepressant and anxiolytic activities of MAK in rats. MAK (0.3 or 1 g/kg, p.o.) was administered in the experimental animals 60 min before the forced swimming, open-field, elevated plus-maze, contextual fear-conditioning, and head twitch tests. Additionally, the mechanisms involved in the antidepressant-like action of MAK were investigated by the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP)- or 5-HT2A agonist (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI)-induced head twitch responses. Treatment with MAK (1 g/kg) exhibited antidepressant-like effects in the forced swimming test, attenuated freezing behavior in the contextual fear-conditioning test, and decreased the number of head twitches induced by DOI, but not with 5-HTP. No significant response was observed in locomotion or anxiety-like behavior, when the animals were evaluated in the open-field or elevated plus-maze test, respectively. These data suggest that MAK has antidepressant-like potential, which is most likely due to the antagonism of 5-HT2A receptors, and possesses anxiolytic-like effects toward memory-dependent and/or stress-induced anxiety in rats.

  4. Antidepressant-like effects of methanol extract of Hibiscus tiliaceus flowers in mice

    Science.gov (United States)

    2012-01-01

    Background Hibiscus tiliaceus L. (Malvaceae) is used in postpartum disorders. Our purpose was to examine the antidepressant, anxiolytic and sedative actions of the methanol extract of H. tiliaceus flowers using animal models. Methods Adult male Swiss albino mice were treated with saline, standard drugs or methanol extract of H. tiliaceus and then subjected to behavioral tests. The forced swimming and tail suspension tests were used as predictive animal models of antidepressant activity, where the time of immobility was considered. The animals were submitted to the elevated plus-maze and ketamine-induced sleeping time to assess anxiolytic and sedative activities, respectively. Results Methanol extract of H. tiliaceus significantly decreased the duration of immobility in both animal models of antidepressant activity, forced swimming and tail suspension tests. This extract did not potentiate the effect of ketamine-induced hypnosis, as determined by the time to onset and duration of sleeping time. Conclusion Our results indicate an antidepressant-like profile of action for the extract of Hibiscus tiliaceus without sedative side effect. PMID:22494845

  5. Antidepressant-like effects of methanol extract of Hibiscus tiliaceus flowers in mice

    Directory of Open Access Journals (Sweden)

    Vanzella Cláudia

    2012-04-01

    Full Text Available Abstract Background Hibiscus tiliaceus L. (Malvaceae is used in postpartum disorders. Our purpose was to examine the antidepressant, anxiolytic and sedative actions of the methanol extract of H. tiliaceus flowers using animal models. Methods Adult male Swiss albino mice were treated with saline, standard drugs or methanol extract of H. tiliaceus and then subjected to behavioral tests. The forced swimming and tail suspension tests were used as predictive animal models of antidepressant activity, where the time of immobility was considered. The animals were submitted to the elevated plus-maze and ketamine-induced sleeping time to assess anxiolytic and sedative activities, respectively. Results Methanol extract of H. tiliaceus significantly decreased the duration of immobility in both animal models of antidepressant activity, forced swimming and tail suspension tests. This extract did not potentiate the effect of ketamine-induced hypnosis, as determined by the time to onset and duration of sleeping time. Conclusion Our results indicate an antidepressant-like profile of action for the extract of Hibiscus tiliaceus without sedative side effect.

  6. Deuterated (d6)-dextromethorphan elicits antidepressant-like effects in mice.

    Science.gov (United States)

    Nguyen, Linda; Scandinaro, Anna L; Matsumoto, Rae R

    2017-10-01

    The over-the-counter antitussive dextromethorphan (DM) may have rapid antidepressant actions based on its overlapping pharmacology with ketamine, which has shown fast antidepressant effects but whose widespread use remains limited by problematic side effects. We have previously shown that DM produces antidepressant-like effects in the forced swim test (FST) and tail suspension test (TST) that are mediated in part through α-amino-3-hydroxy-5-methyl-4-isoxazole propionic (AMPA) and sigma-1 receptors, two protein targets associated with a faster onset of antidepressant efficacy. To utilize DM clinically, however, a major challenge that must be addressed is its rapid first-pass metabolism. Two strategies to inhibit metabolism of DM and maintain stable therapeutic blood levels are 1) chemically modifying DM and 2) adding quinidine, an inhibitor of the primary metabolizer of DM, the cytochrome P450 (CYP) 2D6 enzyme. The purpose of this study was to determine if modified DM (deuterated (d6)-DM) elicits antidepressant-like effects and if AMPA and sigma-1 receptors are involved. Furthermore, d6-DM was tested in conjunction with quinidine to determine if further slowing the metabolism of d6-DM affects its antidepressant-like actions. In the FST and TST, d6-DM produced antidepressant-like effects. Upon further investigation in the FST, the most validated animal model for predicting antidepressant efficacy, d6-DM produced antidepressant-like effects both in the absence and presence of quinidine. However, pretreatment with neither an AMPA receptor antagonist (NBQX) nor sigma-1 receptor antagonists (BD1063, BD1047) significantly attenuated the antidepressant-like effects. The data suggest d6-DM has antidepressant-like effects, though it may be recruiting different molecular targets and/or acting through a different mix or ratio of metabolites from regular DM. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice.

    Science.gov (United States)

    Nguyen, Linda; Matsumoto, Rae R

    2015-12-15

    Dextromethorphan (DM) is an antitussive with rapid acting antidepressant potential based on pharmacodynamic similarities to ketamine. Building upon our previous finding that DM produces antidepressant-like effects in the mouse forced swim test (FST), the present study aimed to establish the antidepressant-like actions of DM in the tail suspension test (TST), another well-established model predictive of antidepressant efficacy. Additionally, using the TST and FST, we investigated the role of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in the antidepressant-like properties of DM because accumulating evidence suggests that AMPA receptors play an important role in the pathophysiology of depression and may contribute to the efficacy of antidepressant medications, including that of ketamine. We found that DM displays antidepressant-like effects in the TST similar to the conventional and fast acting antidepressants characterized by imipramine and ketamine, respectively. Moreover, decreasing the first-pass metabolism of DM by concomitant administration of quinidine (CYP2D6 inhibitor) potentiated antidepressant-like actions, implying DM itself has antidepressant efficacy. Finally, in both the TST and FST, pretreatment with the AMPA receptor antagonist NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide) significantly attenuated the antidepressant-like behavior elicited by DM. Together, the data show that DM exerts antidepressant-like actions through AMPA receptors, further suggesting DM may act as a safe and effective fast acting antidepressant drug. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The novel δ opioid receptor agonist KNT-127 produces antidepressant-like and antinociceptive effects in mice without producing convulsions.

    Science.gov (United States)

    Saitoh, Akiyoshi; Sugiyama, Azusa; Nemoto, Toru; Fujii, Hideaki; Wada, Keiji; Oka, Jun-Ichiro; Nagase, Hiroshi; Yamada, Mitsuhiko

    2011-10-01

    We previously reported that the δ opioid receptor (DOP) agonists SNC80 and TAN-67 produce potent antidepressant-like and antinociceptive effects in rodents. However, SNC80 produced convulsive effects. Recently, we succeeded in synthesizing a novel DOP agonist called KNT-127. The present study examined the convulsive, antidepressant-like, and antinociceptive effects of KNT-127 in mice. In contrast to SNC80, KNT-127 produced no convulsions at doses of up to 100mg/kg. In mice subjected to the forced swim test, a screening model for antidepressants, KNT-127 (1mg/kg, s.c.) significantly decreased the duration of immobility and increased the duration of swimming without influencing spontaneous locomotor activity. These behavioral changes were similar to that observed for the tricyclic antidepressant imipramine (6mg/kg). The antidepressant-like effect of KNT-127 in mice was antagonized by pretreatment with naltrindole (NTI), a selective DOP antagonist, or naltriben, a putative DOP(2) subtype antagonist. In addition, KNT-127 (3mg/kg, s.c.) significantly reduced the number of acetic acid-induced abdominal constrictions and the duration of licking time, respectively, in mice subjected to a writhing test and a formalin test. These antinociceptive effects were antagonized by pretreatment with either NTI or 7-benzylidenenaltrexone, a putative DOP(1) subtype antagonist. We propose that KNT-127 should be considered as a candidate compound for the development of DOP-based antidepressants and/or analgesics that lack convulsive effects. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  9. Preclinical evidence of rapid-onset antidepressant-like effect in Radix Polygalae extract.

    Directory of Open Access Journals (Sweden)

    Im-Joon Shin

    Full Text Available Radix Polygalae (the root of Polygala tenuifolia is a herb widely used in traditional Asian medicine that is thought to exert a variety of neuropsychiatric effects. Radix Polygalae extract can protect against N-methyl D-aspartate (NMDA neurotoxicity and induce brain-derived neurotrophic factor (BDNF expression, suggesting modulatory roles at glutamatergic synapses and possible antidepressant action. In accordance with this hypothesis, Radix Polygalae extract demonstrated antidepressant-like effects in 8-week-old male C57Bl/6 mice by decreasing behavioral despair in the forced swim and tail suspension tasks and increasing hedonic-like behavior in the female urine sniffing test 30 minutes after a single oral administration of 0.1 mg/kg. Reduced latency to acquire a food pellet in the novely suppressed feeding paradigm, without change in anxiety-like behaviors suggested a rapid-onset nature of the antidepressant-like effect. In addition, it decreased the number of failed escapes in the learned helplessness paradigm after two oral administrations 24 hours and 30 minutes before the first test. Finally, it reversed anhedonia as measured by saccharin preference in mice exposed to the chronic stress model after two administrations of 0.1 mg/kg, in contrast to the repeated administration generally needed for similar effect by monoamergic antidepressants. Immobility reduction in tail suspension task was blocked by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA receptor antagonist NBQX, a pattern previously demonstrated by ketamine and other ketamine-like rapid-onset antidepressants. Also similarly to ketamine, Radix Polygalae appeared to acutely decrease phosphorylation of GluR1 serine-845 in the hippocampus while leaving the phosphorylation of hippocampal mTOR serine 2448 unchanged. These findings serve as preclinical evidence that Radix Polygalae extract exerts rapid-onset antidepressant effects by modulating glutamatergic synapses in

  10. Antidepressant-Like Effects of Central BDNF Administration in Mice of Antidepressant Sensitive Catalepsy (ASC) Strain.

    Science.gov (United States)

    Tikhonova, Maria; Kulikov, Alexander V

    2012-08-31

    Although numerous data evidence the implication of brain-derived neurotrophic factor (BDNF) in the pathophysiology of depression, the potential for BDNF to correct genetically defined depressive-like states is poorly studied. This study was aimed to reveal antidepressant-like effects of BDNF (300 ng, 2×, i.c.v.) on behavior and mRNA expression of genes associated with depression-like state in the brain in mice of antidepressant sensitive catalepsy (ASC) strain characterized by high hereditary predisposition to catalepsy and depressive-like features. Behavioral tests were held on the 7th-16th days after the first (4th-13th after the second) BDNF injection. Results showed that BDNF normalized impaired sexual motivation in the ASC males, and this BDNF effect differed, with advantageous effects, from that of widely used antidepressants. The anticataleptic effect of two BDNF injections was enhanced compared with a single administration. A tendency to decrease the immobility duration in tail-suspension test was observed in BDNF-treated ASC mice. The effects on catalepsy and sexual motivation were specific since BDNF did not alter locomotor and exploratory activity or social interest in the ASC mice. Along with behavioral antidepressant-like effects on the ASC mice, BDNF increased hippocampal mRNA levels of Bdnf and Creb1 (cAMP response element-binding protein gene). BDNF also augmented mRNA levels of Arc gene encoding Arc (Activity-regulated cytoskeleton-associated) protein involved in BDNF-induced processes of neuronal and synaptic plasticity in hippocampus and prefrontal cortex. The data suggest that: [1] BDNF is effective in the treatment of some genetically defined behavioral disturbances; [2] BDNF influences sexually-motivated behavior; [3] Arc mRNA levels may serve as a molecular marker of BDNF physiological activity associated with its long-lasting behavioral effects; [4] ASC mouse strain can be used as a suitable model to study mechanisms of BDNF effects on

  11. Antidepressant-like property of Jobelyn®, an African unique herbal formulation, in mice.

    Science.gov (United States)

    Umukoro, S; Eduviere, A T; Aladeokin, A C; Olugbemide, A S

    2014-03-01

    The purpose of this investigation was to evaluate whether Jobelyn® (JB) possesses anti-depressant-like property in the mouse forced swimming test (FST), tail suspension test (TST) and yohimbine-induced lethality test (YLT) in aggregated mice. Mice were given JB (10-100 mg/kg, p.o.) daily for 7 days and then subjected to FST, TST, YLT and open field test. The parameters assessed in both FST and TST were the time (s) spent in active movement (struggling time), first occurrence of immobility (s) and the duration of immobility (s). In the YLT, the mortality rate was recorded 24 h after yohimbine (35 mg/kg, i.p.) administration. In the open field test, the number of line crosses and total distance travelled (m) were measured for 10 min in the open field chamber. JB significantly (popen-field test. Jobelyn® has antidepressant-like activity, which may be related to the stimulation of serotonergic and noradrenergic pathways. The ability of Jobelyn® to delay the onset of immobility and to prolong the struggling time support its use as energizer in general body weakness or exhaustion. © Georg Thieme Verlag KG Stuttgart · New York.

  12. Involvement of sigma-1 receptors in the antidepressant-like effects of dextromethorphan.

    Directory of Open Access Journals (Sweden)

    Linda Nguyen

    Full Text Available Dextromethorphan is an antitussive with a high margin of safety that has been hypothesized to display rapid-acting antidepressant activity based on pharmacodynamic similarities to the N-methyl-D-aspartate (NMDA receptor antagonist ketamine. In addition to binding to NMDA receptors, dextromethorphan binds to sigma-1 (σ1 receptors, which are believed to be protein targets for a potential new class of antidepressant medications. The purpose of this study was to determine whether dextromethorphan elicits antidepressant-like effects and the involvement of σ1 receptors in mediating its antidepressant-like actions. The antidepressant-like effects of dextromethorphan were assessed in male, Swiss Webster mice using the forced swim test. Next, σ1 receptor antagonists (BD1063 and BD1047 were evaluated in conjunction with dextromethorphan to determine the involvement of σ receptors in its antidepressant-like effects. Quinidine, a cytochrome P450 (CYP 2D6 inhibitor, was also evaluated in conjunction with dextromethorphan to increase the bioavailability of dextromethorphan and reduce exposure to additional metabolites. Finally, saturation binding assays were performed to assess the manner in which dextromethorphan interacts at the σ1 receptor. Our results revealed dextromethorphan displays antidepressant-like effects in the forced swim test that can be attenuated by pretreatment with σ1 receptor antagonists, with BD1063 causing a shift to the right in the dextromethorphan dose response curve. Concomitant administration of quinidine potentiated the antidepressant-like effects of dextromethorphan. Saturation binding assays revealed that a Ki concentration of dextromethorphan reduces both the Kd and the Bmax of [(3H](+-pentazocine binding to σ1 receptors. Taken together, these data suggest that dextromethorphan exerts some of its antidepressant actions through σ1 receptors.

  13. Involvement of sigma-1 receptors in the antidepressant-like effects of dextromethorphan.

    Science.gov (United States)

    Nguyen, Linda; Robson, Matthew J; Healy, Jason R; Scandinaro, Anna L; Matsumoto, Rae R

    2014-01-01

    Dextromethorphan is an antitussive with a high margin of safety that has been hypothesized to display rapid-acting antidepressant activity based on pharmacodynamic similarities to the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine. In addition to binding to NMDA receptors, dextromethorphan binds to sigma-1 (σ1) receptors, which are believed to be protein targets for a potential new class of antidepressant medications. The purpose of this study was to determine whether dextromethorphan elicits antidepressant-like effects and the involvement of σ1 receptors in mediating its antidepressant-like actions. The antidepressant-like effects of dextromethorphan were assessed in male, Swiss Webster mice using the forced swim test. Next, σ1 receptor antagonists (BD1063 and BD1047) were evaluated in conjunction with dextromethorphan to determine the involvement of σ receptors in its antidepressant-like effects. Quinidine, a cytochrome P450 (CYP) 2D6 inhibitor, was also evaluated in conjunction with dextromethorphan to increase the bioavailability of dextromethorphan and reduce exposure to additional metabolites. Finally, saturation binding assays were performed to assess the manner in which dextromethorphan interacts at the σ1 receptor. Our results revealed dextromethorphan displays antidepressant-like effects in the forced swim test that can be attenuated by pretreatment with σ1 receptor antagonists, with BD1063 causing a shift to the right in the dextromethorphan dose response curve. Concomitant administration of quinidine potentiated the antidepressant-like effects of dextromethorphan. Saturation binding assays revealed that a Ki concentration of dextromethorphan reduces both the Kd and the Bmax of [(3)H](+)-pentazocine binding to σ1 receptors. Taken together, these data suggest that dextromethorphan exerts some of its antidepressant actions through σ1 receptors.

  14. Antidepressant-Like Effect of Lipid Extract of Channa striatus in Postpartum Model of Depression in Rats

    Directory of Open Access Journals (Sweden)

    Mohamed Saleem Abdul Shukkoor

    2017-01-01

    Full Text Available Postpartum depression affects 15% of women. Channa striatus, a freshwater fish, is consumed in local Malay population as a rejuvenating diet during postpartum period. This study evaluated the antidepressant-like effect of lipid extract of C. striatus fillet and its mechanism of action in female Sprague-Dawley rats in postpartum model of depression. The rats were ovariectomized and treated with high dose of progesterone and estradiol benzoate for 23 days to have hormone-simulated pregnancy. The day 24 and afterwards were considered as the postpartum period. During the postpartum period, lipid extract was administered at 125, 250, and 500 mg/kg through intraperitoneal route for 15 days. Fluoxetine (10 mg/kg was used as the positive control. On postpartum day 15, the animals were tested in forced swimming test (FST and open field test (OFT followed by biochemical analysis. Withdrawal of hormone administration during the postpartum period induced depressive-like behavior in FST. Administration of lipid extract reversed that depressive-like behavior at 125, 250, and 500 mg/kg in FST. In OFT, it decreased the exploratory activity. The mechanism of the antidepressant-like effect may be mediated through the decrease in plasma corticosterone, increase in plasma oxytocin, and decrease in nuclear factor-kappa B in prefrontal cortex of rats.

  15. Murine depression model and its potential applications for discovering foods and farm products with antidepressant-like effects

    Directory of Open Access Journals (Sweden)

    Tatsuhiko eGoto

    2016-03-01

    Full Text Available Advanced societies face increased health problems related to various stresses. Chronic psychological stress is a major risk factor for psychiatric disorders such as depression. Although therapeutic agents reduce several symptoms of depression, most have side effects in a broad range of the population. Furthermore, some victims of depression do not show significant improvement with any drugs, so alternative approaches are needed. Good dietary habits may potentially reduce depressive symptoms, but there is little scientific evidence thus far. Murine depression models are useful to test nutritional approaches in vivo. Our model mice subjected to a subchronic mild social defeat stress (sCSDS paradigm show several alterations in physiological parameters and social behavior. These stress-induced symptoms in sCSDS mice can be used as cues to identify antidepressant-like natural resources including foods and farm products. We previously discovered that sCSDS mice show more vulnerability to social stress by changing dietary condition. In addition, we developed a more objective system for analyzing mouse behavior using a 3D depth-sensing camera to understand relationships between diet and behavior. The combination of sCSDS mice with 3D behavioral analysis is a powerful method for screening ingredients in foods and farm products for antidepressant-like effects.

  16. Antidepressant-like Potentials of Buchholzia Coriacea Seed Extract ...

    African Journals Online (AJOL)

    olayemitoyin

    critical role in learning and memory, the hippocampus is one of the ... seeds were peeled off until a purple color was left. They were ..... influence of stress-induced neuronal loss, which they. 97 ... mood and cognitive performance in an elderly.

  17. Synthesis of Some Novel Thiadiazole Derivative Compounds and Screening Their Antidepressant-Like Activities

    Directory of Open Access Journals (Sweden)

    Nafiz Öncü Can

    2018-03-01

    Full Text Available Novel thiadiazole derivatives were synthesized through the reaction of acetylated 2-aminothiadiazole and piperazine derivatives. The chemical structures of the compounds were clarified by Infrared Spectroscopy (IR, 1H Nuclear Magnetic Resonance Spectroscopy (1H-NMR, 13C Nuclear Magnetic Resonance Spectroscopy (13C-NMR and Electronspray Ionisation Mass Spectroscopy (ESI-MS spectroscopic methods. Antidepressant-like activities were evaluated by the tail-suspension (TST and modified forced swimming (MFST methods. Besides, possible influence of the test compounds on motor activities of the animals were examined by activity cage tests. In the TST, administration of the compounds 2c, 2d, 2e, 2f, 2g and 2h significantly decreased the immobility time of mice regarding the control values. Further, in the MFST, the same compounds reduced the total number of immobility behaviors while increasing swimming performance. However, no change was observed in the total number of climbing behaviors. These data suggested that compounds 2c, 2d, 2e, 2f, 2g and 2h possess notable antidepressant-like activities. Reference drug fluoxetine (10 mg/kg was also exhibited its antidepressant activity, as expected. No significant difference was seen between the locomotor activity values of the test groups signifying that observed antidepressant-like activities are specific. Theoretical calculation of absorption, distribution, metabolism, excretion (ADME properties for the obtained compounds were performed and obtained data supported the antidepressant-like potential of these novel thiadiazole derivatives.

  18. Evidences for the agmatine involvement in antidepressant like effect of bupropion in mouse forced swim test.

    Science.gov (United States)

    Kotagale, Nandkishor R; Tripathi, Sunil J; Aglawe, Manish M; Chopde, Chandrabhan T; Umekar, Milind J; Taksande, Brijesh G

    2013-06-01

    Although bupropion has been widely used in the treatment of depression, the precise mechanism of its therapeutic actions is not fully understood. The present study investigated the role of agmatine in an antidepressant like effect of bupropion in mouse forced swim test. The antidepressant like effect of bupropion was potentiated by pretreatment with agmatine (10-20mg/kg, ip) and by the drugs known to increase endogenous agmatine levels in brain viz., l-arginine (40 μg/mouse, icv), an agmatine biosynthetic precursor, ornithine decarboxylase inhibitor, dl-α-difluoromethyl ornithine hydrochloride, DFMO (12.5 μg/mouse, icv), diamine oxidase inhibitor, aminoguanidine (6.5 μg/mouse, icv) and agmatinase inhibitor, arcaine (50 μg/mouse, icv) as well as imidazoline I1 receptor agonists, moxonidine (0.25mg/kg, ip) and clonidine (0.015 mg/kg, ip) and imidazoline I2 receptor agonist, 2-(2-benzofuranyl)-2-imidazoline hydrochloride, 2-BFI (5mg/kg, ip). Conversely, prior administration of I1 receptor antagonist, efaroxan (1mg/kg, ip) and I2 receptor antagonist, idazoxan (0.25mg/kg, ip) blocked the antidepressant like effect of bupropion and its synergistic combination with agmatine. These results demonstrate involvement of agmatine in the antidepressant like effect of bupropion and suggest agmatine and imidazoline receptors as a potential therapeutic target for the treatment of depressive disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Involvement of monoaminergic systems in the antidepressant-like effect of Eugenia brasiliensis Lam. (Myrtaceae) in the tail suspension test in mice.

    Science.gov (United States)

    Colla, André R S; Machado, Daniele G; Bettio, Luis E B; Colla, Guilherme; Magina, Michele D A; Brighente, Inês M C; Rodrigues, Ana Lúcia S

    2012-09-28

    Several species of Eugenia L. are used in folk medicine for the treatment of various diseases. Eugenia brasiliensis is used for the treatment of inflammatory diseases, whereas Eugenia. uniflora is used for the treatment of symptoms related to depression and mood disorders, and is used in Brazil by the Guarani Indians as a tonic stimulant. To investigate the antidepressant-like effect of hydroalcoholic extracts of different plant species of genus Eugenia and to characterize the participation of the monoaminergic systems in the mechanism of action of the specie that afforded the most prominent antidepressant-like efficacy. In the first set of experiments, the effects of hydroalcoholic extracts of Eugenia beaurepaireana, Eugenia brasiliensis, Eugenia catharinae, Eugenia umbelliflora and Eugenia uniflora and the antidepressant fluoxetine (positive control) administered acutely by p.o. route were evaluated in the tail suspension test (TST) and locomotor activity was assessed in the open-field test in mice. In the second set of experiments, the involvement of the monoaminergic systems in the antidepressant-like activity of Eugenia brasiliensis was evaluated by treating mice with several pharmacological agonists and antagonists. The effects of the combined administration of sub-effective doses of Eugenia brasiliensis and the antidepressants fluoxetine, imipramine and bupropion were also evaluated. The administration of the extracts from Eugenia brasiliensis, Eugenia catharinae and Eugenia umbelliflora, but not Eugenia beaurepaireana and Eugenia uniflora, exerted a significant antidepressant-like effect, without altering locomotor activity. The behavioral profile was similar to fluoxetine. Pre-treatment of mice with ketanserin, haloperidol, SCH23390, sulpiride, prazosin and yohimbine prevented the reduction of immobility time induced by Eugenia brasiliensis. Treatment with sub-effective doses of WAY100635, SKF38393, apomorphine, phenylephrine, but not clonidine, combined

  20. Antidepressant-like responses in the forced swimming test elicited by glutathione and redox modulation.

    Science.gov (United States)

    Rosa, Juliana M; Dafre, Alcir Luiz; Rodrigues, Ana Lúcia S

    2013-09-15

    Glutathione (GSH) displays a broad range of functions, among them a role as a neuromodulator with some neuroprotective properties. Taking into account that oxidative stress has been associated with depressive disorders, this study investigated the possibility that GSH, a major cell antioxidant, elicits an antidepressant-like effect in mice. Thus, GSH was administered by i.c.v. route to mice that were tested in the forced swimming test and in the tail suspension test, two predictive tests for antidepressant drug activity. In addition, GSH metabolism and the redox environment were modulated in order to study the possible mechanisms underlying the effects of GSH in the forced swimming test. The administration of GSH decreased the immobility time in the forced swimming test (300-3000nmol/site) and tail suspension test (100-1000nmol/site), consistent with an antidepressant-like effect. GSH depletion elicited by l-buthionine sulfoximine (3.2μmol/site, i.c.v.) did not alter the antidepressant-like effect of GSH, whereas the inhibition of extracellular GSH catabolism by acivicin (100nmol/site, i.c.v.) prevented the antidepressant-like effect of GSH. Moreover, a sub-effective dose (0.01nmol/site, i.c.v.) of the oxidizing agent DTNB (5,5'-dithiobis(2-nitrobenzoic acid)) potentiated the effect of GSH (100nmol/site, i.c.v.), while the pretreatment (25-100mg/kg, i.p.) with the reducing agent DTT (dl-dithiothreitol) prevented the antidepressant-like effect of GSH (300nmol/site, i.c.v.). DTNB (0.1nmol/site, i.c.v.), produced an antidepressant-like effect, per se, which was abolished by DTT (25mg/kg, i.p.). The results show, for the first time, that centrally administered GSH produces an antidepressant-like effect in mice, which can be modulated by the GSH metabolism and the thiol/disulfide reagents. The redox environment may constitute a new venue for future antidepressant-drug development. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Paracetamol potentiates the antidepressant-like and anticompulsive-like effects of fluoxetine.

    Science.gov (United States)

    Manna, Shyamshree S S; Umathe, Sudhir N

    2015-04-01

    Recent studies suggest the possible involvement of serotonergic and endocannabinoid systems in analgesic, anxiolytic, and anticonvulsant-like actions of paracetamol. Considering the fact that these systems play intricate roles in affective disorders, we investigated the effects of paracetamol in depression-like and compulsion-like behavior. Swiss mice (20-22 g) were subjected to forced swim, tail suspension, or marble-burying tests after an injection of paracetamol either alone or in the presence of AM251 (a CB1 antagonist), fenclonine (pCPA: a 5-HT synthesis inhibitor), AM404 (anandamide uptake inhibitor) or fluoxetine. Paracetamol dose dependently (50-400 mg/kg) decreased depressive and compulsive behaviors. These effects were comparable to those of fluoxetine (5, 10, or 20 mg/kg) and AM404 (10 or 20 mg/kg). Interestingly, fenclonine pretreatment completely abolished the effects of a 50 mg/kg dose of paracetamol. However, similar effects were not observed in AM251-pretreated mice at the same dose. In contrast, AM251 completely antagonized the effects of the 400 mg/kg dose, which was otherwise partially blocked in fenclonine-treated mice. Similar sets of results were observed with fluoxetine and AM404. Thus, it appears that paracetamol-induced antidepressant-like and anticompulsive effects may, at least partially, involve both the serotonergic and the endocannabinoid system. In addition, coadministration of paracetamol and fluoxetine/AM404 at subeffective doses produced synergistic effects, indicating that subthreshold doses of fluoxetine and paracetamol may enable better management in depression and obsessive-compulsive disorder comorbid patients.

  2. Oxytocin induces penile erection and yawning when injected into the bed nucleus of the stria terminalis: Involvement of glutamic acid, dopamine, and nitric oxide.

    Science.gov (United States)

    Sanna, Fabrizio; Bratzu, Jessica; Argiolas, Antonio; Melis, Maria Rosaria

    2017-11-01

    Oxytocin (5-100ng), but not Arg 8 -vasopressin (100ng), injected unilaterally into the bed nucleus of the stria terminalis (BNST) induces penile erection and yawning in a dose-dependent manner in male rats. The minimal effective dose was 20ng for penile erection and 5ng for yawning. Oxytocin responses were abolished not only by the oxytocin receptor antagonist d(CH 2 ) 5 Tyr(Me) 2 -Orn 8 -vasotocin (1μg), but also by (+) MK-801 (1μg), an excitatory amino acid receptor antagonist of the N-methyl-d-aspartic acid (NMDA) subtype, SCH 23390 (1μg), a D1 receptor antagonist, but not haloperidol (1μg), a D2 receptor antagonist, and SMTC (40μg), an inhibitor of neuronal nitric oxide synthase, injected into the BNST 15min before oxytocin. Oxytocin-induced penile erection, but not yawning, was also abolished by CNQX (1μg), an excitatory amino acid receptor antagonist of the AMPA subtype. In contrast, oxytocin responses were not reduced by bicuculline (20ng), a GABA A receptor antagonist, phaclofen (5μg), a GABA B receptor antagonist, CP 376395, a CRF receptor-1 antagonist (5μg), or astressin 2B, a CRF receptor-2 antagonist (150ng). Considering the ability of NMDA (100ng) to induce penile erection and yawning when injected into the BNST and the available evidence showing possible interaction among oxytocin, glutamic acid, and dopamine in the BNST, oxytocin possibly activates glutamatergic neurotransmission in the BNST. This in turn leads to the activation of neural pathways projecting back to the paraventricular nucleus, medial preoptic area, ventral tegmental area, and/or ventral subiculum/amygdala, thereby inducing penile erection and yawning. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Effect of sub-optimal doses of fluoxetine plus estradiol on antidepressant-like behavior and hippocampal neurogenesis in ovariectomized rats.

    Science.gov (United States)

    Vega-Rivera, Nelly M; Fernández-Guasti, Alonso; Ramírez-Rodríguez, Gerardo; Estrada-Camarena, Erika

    2015-07-01

    Estrogens and antidepressants synergize to reduce depressive symptoms and stimulate neurogenesis and neuroplastic events. The aim of this study was to explore whether the antidepressant-like effect induced by the combination of low doses of estradiol (E2) and fluoxetine (FLX) involves changes in cell proliferation, early survival, morphology and dendrite complexity of hippocampal new-immature neurons. The antidepressant-like effects of E2 and/or FLX were evaluated by the forced swimming test (FST), cell proliferation was determined with the endogenous marker Ki67, survival of newborn cells was established with bromo-deoxiuridine (BrdU) and immature neurons were ascertained by doublecortin (DCX) labeling while their dendrite complexity was evaluated with Sholl analysis. Ovariectomized Wistar rats were randomly assigned to one of the following groups: Vehicle (saline/14 days+Oil/-8h before FST); E2 (saline/14 days + E2 2.5 or 10 μg/rat; -8 h before FST); FLX (1.25 or 10 mg/kg for 14 days + oil -8h before FST), and FLX plus E2 (FLX 1.25 mg/kg for 14 days + E2 2.5 μg/rat -8 h before FST). The combination of sub-threshold doses of FLX plus E2 produced antidepressant-like actions similar to those induced by FLX or E2 given independently at optimal doses. Only FLX at an optimal dose and the combination of FLX plus E2 increased cell proliferation, the number of DCX-labeled immature neurons and the complexity of their dendritic tree, suggesting that these events may be responsible for their antidepressant-like effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Antidepressant-like effect of a Ginkgo biloba extract (EGb761) in the mouse forced swimming test: role of oxidative stress.

    Science.gov (United States)

    Rojas, Patricia; Serrano-García, Norma; Medina-Campos, Omar N; Pedraza-Chaverri, José; Ogren, Sven O; Rojas, Carolina

    2011-10-01

    EGb761 is a well-defined mixture of active compounds extracted from Ginkgo biloba leaves. This extract is used clinically due to its neuroprotective effects, exerted probably via its potent antioxidant or free radical scavenger action. Previous studies suggest that oxidative stress, via free radical production, may play an important role in depression and animal models for depression-like behavior. Preclinical studies have suggested that antioxidants may have antidepressants properties. The aim of this study was to investigate the antidepressant-like of EGb761 due to its antioxidant role against oxidative stress induced in the forced swimming test, the most widely used preclinical model for assessing antidepressant-like behavior. Male BALB/c mice were pretreated with EGb761 (10mg/kg, ip) daily for 17 days followed by the forced swimming test and spontaneous locomotor activity. Animals were sacrificed to evaluate lipid peroxidation, different antioxidant enzyme activities, serotonin and dopamine content in midbrain, hippocampus and prefrontal cortex. EGb761 significantly decreased the immobility time (39%) in the forced swimming test. This antidepressant-like effect of EGb761 was associated with a reduction in lipid peroxidation and superoxide radical production (indicated by a downregulation of Mn-superoxide dismutase activity), both of which are indicators of oxidative stress. The protective effect of EGb761 is not related to excitatory or inhibitory effects in locomotor activity, and was also associated with the modulation of serotonergic and dopaminergic neurotransmission. It is suggested that EGb761 produces an antidepressant-like effect, and that an antioxidant effect against oxidative stress may be partly responsible for its observed neuroprotective effects. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Piper sarmentosum Roxb. produces antidepressant-like effects in rodents, associated with activation of the CREB-BDNF-ERK signaling pathway and reversal of HPA axis hyperactivity.

    Science.gov (United States)

    Li, Qing; Qu, Fa-Lin; Gao, Yue; Jiang, Yi-Ping; Rahman, Khalid; Lee, Kuo-Hsiung; Han, Ting; Qin, Lu-Ping

    2017-03-06

    There are many plants of genus Piper which have been reported to induce antidepressant-like effects, Piper sarmentosum (PS) is one of them. PS is a Chinese herbal medicine and a traditional edible vegetable. In the present study, the antidepressant-like effects of PS extracts and the ethyl acetate fraction of PS extracts (PSY) were assessed using the open field test (OFT), forced swimming test (FST), and tail suspension test (TST) in mice. Furthermore, we applied a 4 consecutive weeks of chronic unpredictable mild stress (CUMS) as a model of depression in rats, followed by a sucrose preference test. Then we examined the possible mechanisms of this action. The activity of the hypothalamic-pituitary-adrenal (HPA) axis was evaluated by detecting the serum corticosterone (CORT) concentrations, and the protein expression levels of brain-derived neurotrophic factor (BDNF), the phosphorylated form CREB and ERK1/2 were detected by qRT-PCR or Western blot. The results showed that PS extracts (100, 200mg/kg) and PSY (12.5, 25, 50mg/kg) treatment produced antidepressant-like effects in mice similar to fluoxetine (20mg/kg), indicated by the reduced immobility time in the FST and TST, while both had no influence on the locomotor activity in the OFT. PSY treatment significantly increased sucrose preference and reduced serum CORT levels in CUMS rats. Moreover, PSY up-regulated BDNF protein levels, and increased CREB and ERK phosphorylation levels in the hippocampus on CUMS rats. These findings suggest that the antidepressant-like effects of PS extracts and PSY are mediated, at least in part, by modulating HPA axis, BDNF, CREB and ERK phosphorylation and expression in the hippocampus. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  6. Involvement of nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of tropisetron and ondansetron in mice forced swimming test and tail suspension test.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Amiri, Shayan; Haj-Mirzaian, Arvin; Amini-Khoei, Hossien; Ostadhadi, Sattar; Dehpour, AhmadReza

    2016-06-05

    Antidepressant-like effects of 5-hydroxytryptamine subtype 3 (5-HT3) antagonists including tropisetron and ondansetron have been previously demonstrated in the literature. It was reported that stimulation of 5-HT3 receptors activate the nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway, which is involved in regulation of behavioral and emotional functions. In our study, treating animals with tropisetron (5, 10, and 30mg/kg) and ondansetron (0.01 and 0.1µg/kg) significantly decreased the immobility time in forced swimming test (FST) and tail-suspension test (TST). Co-administration of subeffective doses of tropisetron (1mg/kg) and ondansetron (0.001µg/kg) with subeffective dose of l-NAME (10mg/kg, nonselective NO synthase (NOS) inhibitor) and 7-nitroindazole (25mg/kg, neural NOS inhibitor) exerted antidepressant-like effect in FST and TST, while aminoguanidine (50mg/kg, inducible NOS inhibitor) did not enhance the antidepressant-like effect of 5-HT3 antagonists. Besides, l-arginine (750mg/kg, NO precursor) and sildenafil (5mg/kg, phosphodiesterase inhibitor) suppressed the anti-immobility effect of 5-HT3 antagonists. None of the treatments altered the locomotor behavior of mice in open-field test. Also, hippocampal (but not cortical) nitrite level was significantly lower in tropisetron and ondansetron-treated mice compared with saline-injected mice. Also, co-administration of 7-nitroindazole with tropisetron or ondansetron caused a significant decrease in hippocampal nitrite levels. In conclusion, we suggest that antidepressant-like effect of tropisetron and ondansetron are partially mediated by modulation of NO-cGMP pathway. Copyright © 2016. Published by Elsevier B.V.

  7. Antidepressant-Like Effects of Sanggenon G, Isolated from the Root Bark of Morus alba, in Rats: Involvement of the Serotonergic System.

    Science.gov (United States)

    Lim, Dong Wook; Jung, Jae-Woo; Park, Ji-Hae; Baek, Nam-In; Kim, Yun Tai; Kim, In-Ho; Han, Daeseok

    2015-01-01

    The root bark of Morus alba is commonly used as an alternative medicine due to its numerous health benefits in humans. However, the antidepressant effects of various active components from M. alba have not been fully elucidated. In this study, we aimed to determine whether sanggenon G, an active compound isolated from the root bark of M. alba, exhibited antidepressant-like activity in rats subjected to forced swim test (FST)-induced depression. Acute treatment of rats with sanggenon G (30 mg/kg, intraperitoneally (i.p.)) significantly reduced immobility time and increased swimming time without any significant change in climbing. Rats treated with sanggenon G also exhibited a decrease in the limbic hypothalamic-pituitary-adrenal (HPA) axis response to the FST, as indicated by attenuation of the corticosterone response and decreased c-Fos immunoreactivity in the hypothalamic paraventricular nucleus (PVN). In addition, the antidepressant-like effects of sanggenon G were significantly inhibited by WAY100635 (1 mg/kg, i.p.; a selective 5-hydroxytryptamine1A (5-HT1A) receptor antagonist), but not SCH23390 (0.05 mg/kg, i.p.; a dopamine D1 receptor antagonist). Our findings suggested that the antidepressant-like effects of sanggenon G were mediated by an interaction with the serotonergic system. Further studies are needed to evaluate the potential of sanggenon G as an alternative therapeutic approach for the treatment of depression.

  8. Antidepressant-Like Effects of Vaccinium bracteatum in Chronic Restraint Stress Mice: Functional Actions and Mechanism Explorations.

    Science.gov (United States)

    Oh, Dool-Ri; Kim, Yujin; Choi, Eun-Jin; Jung, Myung-A; Oh, Kyo-Nyeo; Hong, Ji-Ae; Bae, Donghyuck; Kim, Kwangsu; Kang, Huwon; Kim, Jaeyong; Kim, Young Ran; Cho, Seung Sik; Choi, Chul-Young

    2018-01-01

    The fruit of Vaccinium bracteatum Thunb. (VBF) is commonly known as the oriental blueberry in Korea. The aim of this study was to evaluate the antidepressant-like effects of water VBF extract (VBFW) in a mouse model of chronic restraint stress (CRS) and to identify the underlying mechanisms of its action. The behavioral effects of VBFW were assessed in the forced swim test (FST) and open field test (OFT). The levels of serum corticosterone (CORT), brain monoamines, in addition to the extracellular signal-regulated kinases (ERKs)/protein kinase B (Akt) signaling pathway were evaluated. VBFW treatment significantly reduced the immobility time and increased swimming time in FST without altering the locomotor activity in unstressed mice. Furthermore, CRS mice treated with VBFW exhibited a significantly decreased immobility time in FST and serum CORT, increased locomotor activity in OFT, and enhanced brain monoamine neurotransmitters. Similarly, VBFW significantly upregulated the ERKs/Akt signaling pathway in the hippocampus and PFC. In addition, VBFW may reverse CORT-induced cell death by enhancing cyclic AMP-responsive element-binding protein expression through the up-regulation of ERKs/Akt signaling pathways. In addition, VBFW showed the strong antagonistic effect of the 5-HT[Formula: see text] receptor by inhibiting 5-HT-induced intracellular Ca[Formula: see text] and ERK1/2 phosphorylation. Our study provides evidence that antidepressant-like effects of VBFW might be mediated by the regulation of monoaminergic systems and glucocorticoids, which is possibly associated with neuroprotective effects and antagonism of 5-HT[Formula: see text] receptor.

  9. Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis.

    Science.gov (United States)

    Greenberg, Gian D; Laman-Maharg, Abigail; Campi, Katharine L; Voigt, Heather; Orr, Veronica N; Schaal, Leslie; Trainor, Brian C

    2013-01-01

    Depression and anxiety disorders are more common in women than men, and little is known about the neurobiological mechanisms that contribute to this disparity. Recent data suggest that stress-induced changes in neurotrophins have opposing effects on behavior by acting in different brain networks. Social defeat has been an important approach for understanding neurotrophin action, but low female aggression levels in rats and mice have limited the application of these methods primarily to males. We examined the effects of social defeat in monogamous California mice (Peromyscus californicus), a species in which both males and females defend territories. We demonstrate that defeat stress increases mature brain-derived neurotrophic factor (BDNF) protein but not mRNA in the bed nucleus of the stria terminalis (BNST) in females but not males. Changes in BDNF protein were limited to anterior subregions of the BNST, and there were no changes in the adjacent nucleus accumbens (NAc). The effects of defeat on social withdrawal behavior and BDNF were reversed by chronic, low doses of the antidepressant sertraline. However, higher doses of sertraline restored social withdrawal and elevated BDNF levels. Acute treatment with a low dose of sertraline failed to reverse the effects of defeat. Infusions of the selective tyrosine-related kinase B receptor (TrkB) antagonist ANA-12 into the anterior BNST specifically increased social interaction in stressed females but had no effect on behavior in females naïve to defeat. These results suggest that stress-induced increases in BDNF in the anterior BNST contribute to the exaggerated social withdrawal phenotype observed in females.

  10. Title: Sex differences in stress-induced social withdrawal: role of brain derived neurotrophic factor in the bed nucleus of the stria terminalis

    Directory of Open Access Journals (Sweden)

    Gian David Greenberg

    2014-01-01

    Full Text Available Depression and anxiety disorders are more common in women than men, and little is known about the neurobiological mechanisms that contribute to this disparity. Recent data suggest that stress-induced changes in neurotrophins have opposing effects on behavior by acting in different brain networks. Social defeat has been an important approach for understanding neurotrophin action, but low female aggression levels in rats and mice have limited the application of these methods primarily to males. We examined the effects of social defeat in monogamous California mice (Peromyscus californicus, a species in which both males and females defend territories. We demonstrate that defeat stress increases mature brain-derived neurotrophic factor (BDNF protein but not mRNA in the bed nucleus of the stria terminalis (BNST in females but not males. Changes in BDNF protein were limited to anterior subregions of the BNST, and there were no changes in the adjacent nucleus accumbens (NAc. The effects of defeat on social withdrawal behavior and BDNF were reversed by chronic, low doses of the antidepressant sertraline. However, higher doses of sertraline restored social withdrawal and elevated BDNF levels. Acute treatment with a low dose of sertraline failed to reverse the effects of defeat. Infusions of the selective tyrosine-related kinase B receptor (TrkB antagonist ANA-12 into the anterior BNST specifically increased social interaction in stressed females but had no effect on behavior in females naïve to defeat. These results suggest that stress-induced increases in BDNF in the anterior BNST contribute to the exaggerated social withdrawal phenotype observed in females.

  11. Antidepressant-Like Effects of Fractions Prepared from Danzhi-Xiaoyao-San Decoction in Rats with Chronic Unpredictable Mild Stress: Effects on Hypothalamic-Pituitary-Adrenal Axis, Arginine Vasopressin, and Neurotransmitters

    Directory of Open Access Journals (Sweden)

    Li-Li Wu

    2016-01-01

    Full Text Available The aim of the present study was to investigate the antidepressant-like effects of two fractions, including petroleum ether soluble fraction (Fraction A, FA and water-EtOH soluble fraction (Fraction B, FB prepared from the Danzhi-xiaoyao-san (DZXYS by using chronic unpredictable mild stress-induced depressive rat model. The results indicated that DZXYS could ameliorate the depression-like behavior in chronic stress model of rats. The inhibition of hyperactivity of HPA axis and the modulation of monoamine and amino acid neurotransmitters in the hippocampus may be the important mechanisms underlying the action of DZXYS antidepressant-like effect in chronically stressed rats.

  12. Evaluation of Antidepressant-like Effect of Citrus Maxima Leaves in Animal Models of Depression.

    Science.gov (United States)

    Potdar, Vikram H; Kibile, Swati J

    2011-09-01

    This study planned to assess antidepressant like activity of aqueous extract from leaves of Citrus maxima Merr. (Rutaceae). Boiling was used for aqueous extraction. Acute toxicity study was performed in mice. Antidepressant activity was studied using locomotor activity test, modified forced swimming test (FST) and tail suspension test (TST). Three doses 100, 200 and 300 mg/kg of aqueous extract of leaves were selected for testing. Fluoxetine (20 mg/kg, i.p.) and imipramine (30 mg/kg, i.p.) were used as the standard drugs. Aqueous extract of Citrus maxima leaves significantly reduced immobility time in both TST and FST. In locomotor activity testing it showed psychostimulant effect. Extract increased the climbing behavior in FST, which is similar to effect observed with imipramine. The results of this study suggest that antidepressant like effect of Citrus maxima seems to be mediated by an increase in norepinephrine level in synapses.

  13. Antidepressant-Like and Antioxidant Effects of Plinia trunciflora in Mice

    Directory of Open Access Journals (Sweden)

    Cassia Sacchet

    2015-01-01

    Full Text Available The jaboticaba tree, Plinia trunciflora (O. Berg Kausel, is popularly named “jabuticabeira” in Brazil and is used in folk medicine to treat diabetes and chronic inflammation of the tonsils, but studies evaluating the central effects of this species are limited. This study evaluated the antidepressant-like and antioxidant effects of P. trunciflora (PT aqueous extract, in which five different anthocyanins were identified. PT showed significant ferric-reduction power and DPPH radical scavenging activity in vitro and reduced lipid peroxidation both in vitro and ex vivo. At the behavioural level, PT (400 and 800 mg/kg, i.p. dose-dependently reduced immobility time in the tail suspension test in Swiss male mice. The identification of bioactive compounds accompanied by the in vitro and ex vivo antioxidant activity of PT suggests that these activities might be related to the antidepressant-like activity of P. trunciflora.

  14. Genetic ablation of the GluK4 kainate receptor subunit causes anxiolytic and antidepressant-like behavior in mice.

    Science.gov (United States)

    Catches, Justin S; Xu, Jian; Contractor, Anis

    2012-03-17

    There is a clear link between dysregulation of glutamatergic signaling and mood disorders. Genetic variants in the glutamate receptor gene GRIK4, which encodes the kainate receptor subunit GluK4, alter the susceptibility for depression, bipolar disorder and schizophrenia. Here we demonstrate that Grik4(-/-) mice have reduced anxiety and an antidepressant-like phenotype. In the elevated zero-maze, a test for anxiety and risk taking behavior, Grik4(-/-) mice spent significantly more time exploring the open areas of the maze. In anxiogenic tests of marble-burying and novelty-induced suppression of feeding, anxiety-like behavior was consistently reduced in knockout animals. In the forced swim test, a test of learned helplessness that is used to determine depression-like behavior, knockout mice demonstrated significantly less immobility suggesting that Grik4 ablation has an antidepressant-like effect. Finally, in the sucrose preference test, a test for anhedonia in rodents, Grik4(-/-) mice demonstrated increased sucrose preference. Expression of the GluK4 receptor subunit in the forebrain is restricted to the CA3 region of the hippocampus and dentate gyrus regions where KARs are known to modulate synaptic plasticity. We tested whether Grik4 ablation had effects on mossy fiber (MF) plasticity and found there to be a significant impairment in LTP likely through a loss of KAR modulation of excitability of the presynaptic MF axons. These studies demonstrate a clear anxiolytic and antidepressant phenotype associated with ablation of Grik4 and a parallel disruption in hippocampal plasticity, providing support for the importance of this receptor subunit in mood disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Possible involvement of neuropeptide Y Y1 receptors in antidepressant like effect of agmatine in rats.

    Science.gov (United States)

    Kotagale, Nandkishor R; Paliwal, Nikhilesh P; Aglawe, Manish M; Umekar, Milind J; Taksande, Brijesh G

    2013-09-01

    Agmatine and neuropeptide Y (NPY) are widely distributed in central nervous system and critically involved in modulation of depressive behavior in experimental animals. However their mutual interaction, if any, in regulation of depression remain largely unexplored. In the present study we explored the possible interaction between agmatine and neuropeptide Y in regulation of depression like behavior in forced swim test. We found that acute intracerebroventricular (i.c.v.) administration of agmatine (20-40μg/rat), NPY (5 and 10μg/rat) and NPY Y1 receptor agonist, [Leu(31), Pro(34)]-NPY (0.4 and 0.8ng/rat) dose dependently decreased immobility time in forced swim test indicating their antidepressant like effects. In combination studies, the antidepressant like effect of agmatine (10μg/rat) was significantly potentiated by NPY (1 and 5μg/rat, icv) or [Leu(31), Pro(34)]-NPY (0.2 and 0.4ng/rat, icv) pretreatment. Conversely, pretreatment of animals with NPY Y1 receptor antagonist, BIBP3226 (0.1ng/rat, i.c.v.) completely blocked the antidepressant like effect of agmatine (20-40μg/rat) and its synergistic effect with NPY (1μg/rat, icv) or [Leu(31), Pro(34)]-NPY (0.2ng/rat, icv). The results of the present study showed that, agmatine exerts antidepressant like effects via NPYergic system possibly mediated by the NPY Y1 receptor subtypes and suggest that interaction between agmatine and neuropeptide Y may be relevant to generate the therapeutic strategies for the treatment of depression. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Evaluation of antidepressant-like effects of aqueous and ethanolic extracts of Pimpinella anisum fruit in mice

    Directory of Open Access Journals (Sweden)

    Zahra Shahamat

    2016-04-01

    Conclusion: The results of this study suggest that P. anisum possesses an antidepressant-like activity similar to that of fluoxetine, which has a potential clinical value for application in the management of depression.

  17. BDNF/TrkB Pathway Mediates the Antidepressant-Like Role of H2S in CUMS-Exposed Rats by Inhibition of Hippocampal ER Stress.

    Science.gov (United States)

    Wei, Le; Kan, Li-Yuan; Zeng, Hai-Ying; Tang, Yi-Yun; Huang, Hong-Lin; Xie, Ming; Zou, Wei; Wang, Chun-Yan; Zhang, Ping; Tang, Xiao-Qing

    2018-06-01

    Our previous works have shown that hydrogen sulfide (H 2 S) significantly attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors and hippocampal endoplasmic reticulum (ER) stress. Brain-derived neurotrophic factor (BDNF) generates an antidepressant-like effect by its receptor tyrosine protein kinase B (TrkB). We have previously found that H 2 S upregulates the expressions of BDNF and p-TrkB in the hippocampus of CUMS-exposed rats. Therefore, the present work was to explore whether BDNF/TrkB pathway mediates the antidepressant-like role of H 2 S by blocking hippocampal ER stress. We found that treatment with K252a (an inhibitor of BDNF/TrkB pathway) significantly increased the immobility time in the forced swim test and tail suspension test and increased the latency to feed in the novelty-suppressed feeding test in the rats cotreated with sodium hydrosulfide (NaHS, a donor of H 2 S) and CUMS. Similarly, K252a reversed the protective effect of NaHS against CUMS-induced hippocampal ER stress, as evidenced by increases in the levels of ER stress-related proteins, glucose-regulated protein 78, CCAAT/enhancer binding protein homologous protein and cleaved caspase-12. Taken together, our results suggest that BDNF/TrkB pathway plays an important mediatory role in the antidepressant-like action of H 2 S in CUMS-exposed rats, which is by suppression of hippocampal ER stress. These data provide a novel mechanism underlying the protection of H 2 S against CUMS-induced depressive-like behaviors.

  18. Antidepressant-like effects of guanfacine and sex-specific differences in effects on c-fos immunoreactivity and paired-pulse ratio in male and female mice.

    Science.gov (United States)

    Mineur, Yann S; Bentham, Matthew P; Zhou, Wen-Liang; Plantenga, Margreet E; McKee, Sherry A; Picciotto, Marina R

    2015-10-01

    The a2A-noradrenergic agonist guanfacine can decreases stress-induced smoking in female, but not male, human smokers. It is not known whether these effects are due to effects on mood regulation and/or result from nicotinic-cholinergic interactions. The objective of the study was to determine whether there are sex differences in the effect of guanfacine in tests of anxiolytic and antidepressant efficacy in mice at baseline and in a hypercholinergic model of depression induced by the acetylcholinesterase inhibitor physostigmine. The effects of guanfacine were measured in the light/dark box, tail suspension, and the forced swim test in female and male C57BL/6J mice. In parallel, electrophysiological properties were evaluated in the prefrontal cortex, a critical brain region involved in stress responses. c-fos immunoreactivity was measured in other brain regions known to regulate mood. Despite a baseline sex difference in behavior in the forced swim test (female mice were more immobile), guanfacine had similar, dose-dependent, antidepressant-like effects in mice of both sexes (optimal dose, 0.15 mg/kg). An antidepressant-like effect of guanfacine was also observed following pre-treatment with physostigmine. A sex difference in the paired-pulse ratio in the prefrontal cortex (PFC) (male, 1.4; female, 2.1) was observed at baseline that was normalized by guanfacine. Other brain areas involved in cholinergic control of depression-like behaviors, including the basolateral amygdala and lateral septum, showed sex-specific changes in c-fos expression. Guanfacine has a robust antidepressant-like effect and can reverse a depression-like state induced by increased acetylcholine (ACh) signaling. These data suggest that different brain areas are recruited in female and male mice, despite similar behavioral responses to guanfacine.

  19. Antidepressant-like effect of aqueous extract of Channa striatus fillet in mice models of depression.

    Science.gov (United States)

    Saleem, A M; Taufik Hidayat, M; Mat Jais, A M; Fakurazi, S; Moklas, Mohamad; Sulaiman, M R; Amom, Z

    2011-07-01

    Channa (C.) striatus (Malay-Haruan), is a fresh water snakehead fish, consumed as a rejuvenating diet in post-parturition period in local Malay population. The aqueous extract of C. striatus fillet (AECSF) was reported to act through serotonergic receptor system in a previous study. There is no scientific report on neuropharmacological effects of C. striatus. Based on these data, the antidepressant-like effect of C. striatus was evaluated in mice models of depression. AECSF was prepared by steaming the fillets as described previously. Antidepressant activity was studied in male ICR mice using forced swimming test (FST) and tail suspension test (TST). Open-field test was used to evaluate any psychomotor stimulant activity. AECSF was administered intraperitoneally at the concentrations of 30%, 40% and 50% w/v at the dosage of 10 ml/kg. Amitriptyline (10 mg/kg) was used as positive control. All the three concentrations of AECSF (30%, 40% and 50% w/v) significantly reduced the immobility time (p open-field test. AECSF produced significant reduction of immobility time in both FST and TST. Amitriptyline produced a significant reduction of immobility time in both FST and TST similar to previous findings. The AECSF produced a dose-dependent decrease in locomotor activity in the open-field test. This hypolocomotion effect indicated the absence of any psychomotor stimulant activity thereby supporting the antidepressant-like effect of the AECSF. The pharmacological mechanisms of the observed antidepressant-like effect and hypolocomotion effect are not understood from our study. Hence, further studies are required.

  20. Cycloartane triterpenoid saponins from water soluble of Passiflora edulis Sims and their antidepressant-like effects.

    Science.gov (United States)

    Wang, Cong; Xu, Feng-Qing; Shang, Jian-Hua; Xiao, Huai; Fan, Wei-Wei; Dong, Fa-Wu; Hu, Jiang-Miao; Zhou, Jun

    2013-07-30

    Various species of genus Passiflora have been used as traditional folk medicines owing to their sedative and anti-hypertensive properties. Passiflora edulis Sims most widely grown in the warm temperate for their fragrant fruits and their twigs and leaves are used as a folk medicine for treating both anxiety and nervousness in American countries. The present study was to evaluate the antidepressant-like effect and the active components of this plant. The alcohol extracts of the stems (PES, 10 and 2 g/kg of the plant materials) and leaves (PEL, 10 and 2 g/kg of the plant materials) of Passiflora edulis Sims were orally administered to mice for 7 day. The animals were tested in the forced swim test (FST) and tail suspension test (TST). After behavioral assay of ethanol extract, phytochemical research of the stems and leaves (5.7 kg) of Passiflora edulis Sims were developed and further bioactive verification of monomeric compounds were conducted. There are mainly cycloartane triterpenoids and their saponins isolated from this plant, including two new cycloartane triterpenoid saponins named cyclopassifloside ХII (1) and ХIII (2), together with six known cycloartane triterpenoids, cyclopassifloic acids B and E, cyclopassiflosides II, VI, IX and XI. The ethanol extract of Passiflora edulis Sims together with isolated compounds cyclopassiflosides IX and XI may possess antidepressant-like effect. Cycloartane triterpenoid was one of the main compositions of Passiflora edulis Sims and possess antidepressant-like activity. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  1. Monoamine reuptake site occupancy of sibutramine: Relationship to antidepressant-like and thermogenic effects in rats.

    Science.gov (United States)

    Li, Yu-Wen; Langdon, Shaun; Pieschl, Rick; Strong, Todd; Wright, Robert N; Rohrbach, Kenneth; Lelas, Snjezana; Lodge, Nicholas J

    2014-08-15

    Sibutramine was formerly marketed as an anti-obesity agent. The current study investigated the relationships between monoamine reuptake site occupancy for sibutramine and both its antidepressant-like efficacy and thermogenic effects. Sibutramine's effects on locomotor activity (LMA) and food intake were also evaluated. Sibutramine occupied monoamine reuptake binding sites with the rank order of potency of NET>SERT>DAT; at 10mg/kg, po, occupancy was 95% NET, 81% SERT and 73% DAT. Sibutramine produced antidepressant-like behavior in the forced swim test; at the lowest effective dose (3mg/kg, po) occupancy was 61%, 90% and 23% at SERT, NET and DAT sites, respectively. Sibutramine also increased body core temperature in a dose- and time-dependent manner; at the lowest effective dose (30mg/kg) SERT, NET and DAT occupancies were respectively 78%, 86% and 59%. A significant decrease in food consumption was observed at 3 and 10mg/kg, po. LMA was increased at ≥10mg/kg, sc. The relationship between efficacy in the FST and occupancy was also determined for citalopram, fluoxetine and reboxetine. Similarly, the relationship between thermogenesis and target occupancy for several single or double/triple reuptake inhibitors was measured and showed that >40-50% DAT binding was required for thermogenesis. Thermogenesis was blocked by the D1 antagonist SCH39166 (3mg/kg, sc). Our findings indicate that the antidepressant-like effect of sibutramine may result from additive or synergistic actions on the three reuptake binding targets. At higher doses, sibutramine produces thermogenesis; DAT inhibition and activation of dopamine D1 receptors are required for this effect. Published by Elsevier B.V.

  2. Antidepressant-like effects of nicotinic acetylcholine receptor antagonists, but not agonists, in the mouse forced swim and mouse tail suspension tests

    DEFF Research Database (Denmark)

    Andreasen T., Jesper; Olsen, G M; Wiborg, O

    2009-01-01

    Current literature suggests involvement of nicotinic acetylcholine receptors (nAChRs) in major depression. However, it is controversial whether the antidepressant-like effect of nAChR modulation is induced by activation, desensitization or inhibition of central nAChRs. In addition, the specific n......AChR subtype/s involved remains unknown. In this study, we systematically compared the effects of non-selective and selective nicotinic agonists and antagonists in two different tests for antidepressant effects in mice: the tail suspension test and the forced swim test. Compounds: nicotine, RJR-2403 (alpha4...

  3. Pregnanolone Glutamate, a Novel Use-Dependent NMDA Receptor Inhibitor, Exerts Antidepressant-Like Properties in Animal Models.

    Science.gov (United States)

    Holubova, Kristina; Nekovarova, Tereza; Pistovcakova, Jana; Sulcova, Alexandra; Stuchlík, Ales; Vales, Karel

    2014-01-01

    A number of studies demonstrated a rapid onset of an antidepressant effect of non-competitive N-methyl-d-aspartic acid receptor (NMDAR) antagonists. Nonetheless, its therapeutic potential is rather limited, due to a high coincidence of negative side-effects. Therefore, the challenge seems to be in the development of NMDAR antagonists displaying antidepressant properties, and at the same time maintaining regular physiological function of the NMDAR. Previous results demonstrated that naturally occurring neurosteroid 3α5β-pregnanolone sulfate shows pronounced inhibitory action by a use-dependent mechanism on the tonically active NMDAR. The aim of the present experiments is to find out whether the treatment with pregnanolone 3αC derivatives affects behavioral response to chronic and acute stress in an animal model of depression. Adult male mice were used throughout the study. Repeated social defeat and forced swimming tests were used as animal models of depression. The effect of the drugs on the locomotor/exploratory activity in the open-field test was also tested together with an effect on anxiety in the elevated plus maze. Results showed that pregnanolone glutamate (PG) did not induce hyperlocomotion, whereas both dizocilpine and ketamine significantly increased spontaneous locomotor activity in the open field. In the elevated plus maze, PG displayed anxiolytic-like properties. In forced swimming, PG prolonged time to the first floating. Acute treatment of PG disinhibited suppressed locomotor activity in the repeatedly defeated group-housed mice. Aggressive behavior of isolated mice was reduced after the chronic 30-day administration of PG. PG showed antidepressant-like and anxiolytic-like properties in the used tests, with minimal side-effects. Since PG combines GABAA receptor potentiation and use-dependent NMDAR inhibition, synthetic derivatives of neuroactive steroids present a promising strategy for the treatment of mood disorders. -3α5

  4. Antidepressant-like effects of Tagetes lucida Cav. in the forced swimming test.

    Science.gov (United States)

    Guadarrama-Cruz, G; Alarcon-Aguilar, F J; Lezama-Velasco, R; Vazquez-Palacios, G; Bonilla-Jaime, H

    2008-11-20

    Tagetes lucida (Asteraceae), has been referred in Mexican traditional medicine for the treatment of different central nervous system (CNS) diseases, mainly depression. Nevertheless, the available scientific information about this species is scarce and there are no reports related to its possible effect on the CNS. In this work, the antidepressant-like effect of extract of Tagetes lucida was evaluated in rats, as well as its potential adverse effects on male sexual behavior (MSB). Antidepressant activity was studied using forced swimming test (FST), motor activity in the open-field test and on MSB in sexually experienced male. The aqueous extract of Tagetes lucida in doses of 5, 10, 50, 100 and 200mg/(kgday)(-1) were administered orally for 14 consecutive days and evaluated on day 14, 2h after the last dose treatment. Fluoxetine (10mg/(kgday)(-1), p.o.) was used as the control positive. The aqueous extract (10, 50, 100mg/(kgday)(-1)) significantly reduced immobility and increased swimming without affecting climbing behavior in the FST. These same doses were not able to modify neither the motor activity nor the MSB. These data indicate that the extract of Tagetes lucida possesses antidepressant-like properties in rats.

  5. Antidepressant-like activity of Sonchus oleraceus in mouse models of immobility tests.

    Science.gov (United States)

    Vilela, Fabiana Cardoso; Padilha, Marina de Mesquita; Alves-da-Silva, Geraldo; Soncini, Roseli; Giusti-Paiva, Alexandre

    2010-02-01

    The aim of the present work is to evaluate the putative antidepressant-like effects of hydroethanolic and dichloromethanic extracts from the aerial parts of Sonchus oleraceus (Family Asteraceae) on the performance of male mice in the forced swimming test (FST) and tail suspension test (TST) models predictive of depression. The hydroethanolic and dichloromethanic extracts, both in doses of 30, 100, and 300 mg/kg, were orally administered 1 hour before carrying out the FST or the TST. The immobility time in both the FST and the TST was significantly reduced by acute oral treatment with the extracts (dose range, 100-300 mg/kg), without accompanying changes in ambulation, as assessed in an open-field test. This excluded the possibility that the effect of the extracts is due to an activation of locomotion. The efficacy of the extracts was found to be comparable to that of amitriptyline (10 mg/kg, p.o.). The present study provides evidence for an antidepressant-like effect of the active principle(s) present in the extracts of S. oleraceus in mice. Therefore, a standardized S. oleraceus extract or its purified constituents could be of potential interest for the treatment of depressive disorders.

  6. Antidepressant-like effects of a cocoa polyphenolic extract in Wistar-Unilever rats.

    Science.gov (United States)

    Messaoudi, Michaël; Bisson, Jean-François; Nejdi, Amine; Rozan, Pascale; Javelot, Hervé

    2008-12-01

    Depression is a major public health problem affecting about 12% of the world population. Drugs exist but they have many side effects. In the last few years, natural substances (e.g. flavonoids) have been tested to cure such disorders. Cocoa polyphenolic extract is a complex compound prepared from non-roasted cocoa beans containing high levels of flavonoids. The antidepressant-like effect of cocoa polyphenolic extract was evaluated using the forced swimming test in rats. Cocoa polyphenolic extract significantly reduced the duration of immobility at both doses of 24 mg/kg/14 days and 48 mg/kg/14 days, although no change of motor dysfunction was observed with the two doses tested in the open field. The results of the forced swimming test after a subchronic treatment and after an additional locomotor activity test confirm the assumption that the antidepressant-like effect of cocoa polyphenolic extract in the forced swimming test model is specific. Further, it can be speculated that this effect might be related to its content of active polyphenols.

  7. L-Menthone confers antidepressant-like effects in an unpredictable chronic mild stress mouse model via NLRP3 inflammasome-mediated inflammatory cytokines and central neurotransmitters.

    Science.gov (United States)

    Xue, Jinsong; Li, Hongyan; Deng, Xueyang; Ma, Zhanqiang; Fu, Qiang; Ma, Shiping

    2015-07-01

    L-Menthone (MTN) is a Chinese old remedy extracted from the genus Mentha. It has been widely used as a cooling agent and a counterirritant for pain relief, although its antidepressant-like effects have not yet been reported. The present study was designed to investigate whether MTN confers an antidepressant-like effect in mice exposed to unpredictable chronic mild stress (UCMS) and to explore its potential mechanisms. The effects of MTN on mouse behavioral changes were investigated in our study. We determined the levels of the nucleotide binding, oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, inflammatory cytokines and neurotransmitters in the hippocampus of mice. Behavioral tests, including the sucrose preference test (SPT), open field test (OFT), forced swimming test (FST) and tail suspension test (TST) revealed that MTN (15 and 30mg/kg) treatments for 3weeks alleviated the depression symptoms of UCMS in mice. Mice receiving MTN treatments exhibited reduced levels of NLRP3 and caspase-1. Moreover, MTN treatments reversed the UCMS-induced alterations in the concentrations of neurotransmitter norepinephrine (NE) and serotonin (5-HT) and inhibited the expression of pro-inflammatory cytokines (PIC) interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the hippocampus of mice. Taken together, our findings suggested that MTN may play a potential antidepressant-like role in the UCMS mouse model by regulating the NLRP3 inflammasome and mediating inflammatory cytokines and central neurotransmitters, which together provide insight towards the development of novel therapeutic treatments for depression. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Involvement of NMDA receptors in the antidepressant-like effect of tramadol in the mouse forced swimming test.

    Science.gov (United States)

    Ostadhadi, Sattar; Norouzi-Javidan, Abbas; Chamanara, Mohsen; Akbarian, Reyhaneh; Imran-Khan, Muhammad; Ghasemi, Mehdi; Dehpour, Ahmad-Reza

    2017-09-01

    Tramadol is an analgesic agent that is mainly used to treat moderate to severe pain. There is evidence that tramadol may have antidepressant property. However, the mechanisms underlying the antidepressant effects of tramadol have not been elucidated yet. Considering that fact that N-methyl-d-aspartate (NMDA) receptor signaling may play an important role in the pathophysiology of depression, the aim of the present study was to investigate the role of NMDA receptor signaling in the possible antidepressant-like effects of tramadol in the mouse forced swimming test (mFST). We found that tramadol exerted antidepressant-like effects at high dose (40mg/kg, intraperitoneally [i.p.]) in the mFST. Co-administration of non-effective doses of NMDA receptor antagonists (ketamine [1mg/kg, i.p.], MK-801 [0.05mg/kg, i.p.], or magnesium sulfate [10mg/kg, i.p.]) with sub-effective dose of tramadol (20mg/kg, i.p.) exerted significant antidepressant-like effects in the mFST. The antidepressant-like effects of tramadol (40mg/kg) was also inhibited by pre-treatment with non-effective dose of the NMDA receptor agonist NMDA (75mg/kg, i.p.). Our data suggest a role for NMDA receptor signaling in the antidepressant-like effects of tramadol in the mFST. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Ketamine produces antidepressant-like effects through phosphorylation-dependent nuclear export of histone deacetylase 5 (HDAC5) in rats

    Science.gov (United States)

    Choi, Miyeon; Lee, Seung Hoon; Wang, Sung Eun; Ko, Seung Yeon; Song, Mihee; Choi, June-Seek; Duman, Ronald S.; Son, Hyeon

    2015-01-01

    Ketamine produces rapid antidepressant-like effects in animal assays for depression, although the molecular mechanisms underlying these behavioral actions remain incomplete. Here, we demonstrate that ketamine rapidly stimulates histone deacetylase 5 (HDAC5) phosphorylation and nuclear export in rat hippocampal neurons through calcium/calmodulin kinase II- and protein kinase D-dependent pathways. Consequently, ketamine enhanced the transcriptional activity of myocyte enhancer factor 2 (MEF2), which leads to regulation of MEF2 target genes. Transfection of a HDAC5 phosphorylation-defective mutant (Ser259/Ser498 replaced by Ala259/Ala498, HDAC5-S/A), resulted in resistance to ketamine-induced nuclear export, suppression of ketamine-mediated MEF2 transcriptional activity, and decreased expression of MEF2 target genes. Behaviorally, viral-mediated hippocampal knockdown of HDAC5 blocked or occluded the antidepressant effects of ketamine both in unstressed and stressed animals. Taken together, our results reveal a novel role of HDAC5 in the actions of ketamine and suggest that HDAC5 could be a potential mechanism contributing to the therapeutic actions of ketamine. PMID:26647181

  10. The antidepressant-like effect of Mentha spicata essential oil in animal models of depression in male mice

    Directory of Open Access Journals (Sweden)

    Behnam Jedi-Behnia

    2017-06-01

    Full Text Available Background & Objective: Previous researches have revealed analgesic and sedative properties of Mentha spicata (MS. The aim of present study was to evaluate the antidepressant effects of MS essential oil in forced swim test (FST and tail suspension test (TST in male mice. Materials & Methods: In this experimental study, 84 male mice were randomly divided into 14 groups of 6: Negative control groups received normal saline (10 ml/kg,i.p., positive control groups received fluoxetine (20mg/kg, i.p. and imipramine (30mg/kg and treatment groups received MS essential oil (30, 60,120 and 240 mg/kg i.p.. In FST, immobility time, swimming time and climbing time and immobility time in TST were recorded in six minutes. Results: Findings indicated that essential oil at doses of 120 and 240 mg/kg, fluoxetine and imipramine reduced immobility time compared to control group in FST and TST (p0.05. In contrast, imipramine increased climbing time without any significant change in swimming time (p>0.05. Conclusion: Based on the findings of the present study, MS essential oil has antidepressant-like activity similar to fluoxetine and probably their compounds (especially carvone with serotonergic mechanism induced their effect. However, further studies are needed to determine the precise mechanism of its action.

  11. Antidepressant-Like Effects of Shuyusan in Rats Exposed to Chronic Stress: Effects on Hypothalamic-Pituitary-Adrenal Function

    Directory of Open Access Journals (Sweden)

    Liping Chen

    2012-01-01

    Full Text Available This study was to investigate antidepressant activities of Shuyusan (a Chinese herb, using a rats model of depression induced by unpredictable chronic mild stress (UCMS. The administration groups were treated with Shuyusan decoction for 3 weeks and compared with fluoxetine treatment. In order to understand the potential antidepressant-like activities of Shuyusan, tail suspension test (TST and forced swimming test (FST were used as behavioral despair study. The level of corticotropin-releasing factor (CRH, adrenocorticotropic hormone (ACTH, corticosterone (CORT and hippocampus glucocorticoid receptor expression were examined. After modeling, there was a significant prolongation of immobility time in administration groups with the TST and FST. High-dose Shuyusan could reduce the immobility time measured with the TST and FST. The immobility time in high-dose herbs group and fluoxetine group was increased significantly compared with the model group. After 3 weeks herbs fed, the serum contents level of CRH, ACTH, and CORT in high-dose herb group was significantly decreased compared to the model group. The result indicated that Shuyusan had antidepressant activity effects on UCMS model rats. The potential antidepressant effect may be related to decreasing glucocorticoid levels activity, regulating the function of HPA axis, and inhibiting glucocorticoid receptor expression in hippocampus.

  12. Antidepressant-like effect of gallic acid in mice: Dual involvement of serotonergic and catecholaminergic systems.

    Science.gov (United States)

    Can, Özgür Devrim; Turan, Nazlı; Demir Özkay, Ümide; Öztürk, Yusuf

    2017-12-01

    This study was planned to examine the antidepressant potency of gallic acid (30 and 60mg/kg), a phenolic acid widely distributed in nature, together with its possible underlying monoaminergic mechanisms. Antidepressant-like activity was assessed using the tail suspension (TST) and the modified forced swimming tests (MFST). Locomotor activity was evaluated in an activity cage. Administration of gallic acid at 60mg/kg reduced the immobility duration of mice in both the TST and MFST without any changes in the locomotor activity. The anti-immobility effect observed in the TST was abolished with pre-treatment of p-chlorophenylalanine methyl ester (an inhibitor of serotonin synthesis; 100mg/kg i.p. administered for 4-consecutive days), ketanserin (a 5-HT2A/2C antagonist; 1mg/kg i.p.), ondansetron (a 5-HT3 antagonist; 0.3mg/kg i.p.), α-methyl-para-tyrosine methyl ester (an inhibitor of catecholamine synthesis; 100mg/kg i.p.), phentolamine (non-selective alpha-adrenoceptor antagonist; 5mg/kg i.p.), SCH 23390 (a dopamine D1 antagonist; 0.05mg/kg s.c.), and sulpiride (a dopamine D2/D3 antagonist; 50mg/kg i.p.). However, NAN 190 (a 5-HT1A antagonist; 0.5mg/kg i.p.) and propranolol (a non-selective β-adrenoceptor antagonist; 5mg/kg i.p.) pre-treatments were ineffective at reversing the antidepressant-like effects of gallic acid. The results of the present study indicate that gallic acid seems to have a dual mechanism of action by increasing not only serotonin but also catecholamine levels in synaptic clefts of the central nervous system. Further alpha adrenergic, 5-HT2A/2C and 5-HT3 serotonergic, and D1, D2, and D3 dopaminergic receptors also seem to be involved in this antidepressant-like activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Antidepressant-like effects of ecstasy in subjects with a predisposition to depression.

    Science.gov (United States)

    Majumder, Irina; White, Jason M; Irvine, Rodney J

    2012-10-01

    Positive effects of ecstasy on mood and self-esteem due to increased synaptic serotonin levels may indicate a potential antidepressant-like action. This effect may be more prominent in subjects with a pre-existing mood disturbance who may use ecstasy more frequently as a 'self-medication'. This study compared depressive symptoms and the immediate effects of ecstasy on mood in subjects with (WP) and without (NP) a predisposition to depression. Current ecstasy users were assessed using the profile of mood states (POMS) and beck depression inventory (BDI) when drug-free, and during social gathering, when 20 subjects voluntarily consumed ecstasy (ecstasy group) and 20 abstained from ecstasy (control group). Predisposition to depression was determined using the Brief Symptom Inventory. During social gathering, POMS and BDI were administered 60 min after ecstasy consumption, or at matched time for controls. 3,4-Methylenedioxymethamphetamine (MDMA) exposure was confirmed using saliva samples collected 60 min after pill ingestion. There was no difference in ecstasy use patterns between the groups. When drug-free, the WP subjects had greater mood disturbance and depressive symptoms than the NP group (POMS: NP 5.85±1.63, WP 14.5±2.81, pecstasy reported a significant decrease in depressive symptoms (F(1,35)=5.47, p<0.05). A decrease in depressive symptoms was observed in subjects predisposed to depression. This antidepressant-like action of MDMA may contribute to its use, particularly among people with an existing or latent depressive disorder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Antidepressant-like effects of Perilla frutescens seed oil during a forced swimming test.

    Science.gov (United States)

    Lee, Hsiu-Chuan; Ko, Hsiang-Kai; Huang, Brian E T-G; Chu, Yan-Hwa; Huang, Shih-Yi

    2014-05-01

    Unipolar depressive disorder may become one of the major leading causes of disease burden by 2030 according to the World Health Organization (WHO). Thus, the discovery of antidepressive foods is attractive and could have considerable impacts worldwide. We investigated the antidepressant-like effects of Perilla frutescens seed oil on adult male rats subjected to a forced swimming test (FST). Forty Sprague-Dawley rats were housed and fed various diets, including soybean oil-rich, eicosapentaenoic acid (EPA)-rich, and P. frutescens seed oil-rich diets for 6 weeks. After the dietary intervention, animals were tested using an FST and were sacrificed after the test. We analyzed the fatty acid profiles of red blood cells (RBCs) and the brain prefrontal cortex (PFC). Levels of brain-derived neurotrophic factor (BDNF), serotonin, and dopamine in the PFC were also determined. After the FST, the imipramine, EPA-rich, and P. frutescens seed oil-rich groups showed significant shorter immobility time and longer struggling time than the control group (p < 0.05). Levels of BDNF in the P. frutescens seed oil-rich group and levels of serotonin in the EPA-rich group were significantly (p < 0.05) higher than those of the control group. Moreover, the BDNF concentration in the PFC was significantly positively correlated with the struggling time. However, there were no significant differences in dopamine levels between the intervention groups and the control group. In conclusion, a P. frutescens seed oil-rich diet exhibited antidepressant-like properties through modulation of fatty acid profiles and BDNF expression in the brain during an FST.

  15. Involvement of the Cerebral Monoamine Neurotransmitters System in Antidepressant-Like Effects of a Chinese Herbal Decoction, Baihe Dihuang Tang, in Mice Model

    Directory of Open Access Journals (Sweden)

    Meng-Li Chen

    2012-01-01

    Full Text Available Baihe Dihuang Tang (BDT is a renowned Chinese herbal formula which is commonly used for treating patients with mental instability, absentmindedness, insomnia, deficient dysphoria, and other psychological diseases. These major symptoms closely associated with the depressive disorders. BDT was widely popular use for treating emotion-thought disorders for many years in China. In the present study, the antidepressant-like effect of BDT in mice was investigated by using the forced swim test (FST and the tail suspension test (TST. The underlying mechanism was explored by determining the effect of BDT on the level of cerebral monoamine neurotransmitters. BDT (9 and 18 g/kg, p.o. for 14 days administration significantly reduced the immobility time in both the FST and the TST without changing locomotion in the open field-test (OFT. Moreover, BDT treatment at the dose of 18 g/kg inhibited reserpine-induced ptosis. Meanwhile, BDT enhanced 5-HT and NA levels in mouse cerebrum as well as decreased the ratio of 5-HT compared to its metabolite, 5-HIAA, (turnover, 5-HIAA/5-HT after TST. The results demonstrated that the antidepressant-like effect of BDT is mediated, at least partially, via the central monoaminergic neurotransmitter system.

  16. Antidepressant-like properties of sildenafil in a genetic rat model of depression: Role of cholinergic cGMP-interactions

    DEFF Research Database (Denmark)

    Liebenberg, Nico; Brink, Christiaan; Brand, Linda

    2008-01-01

    Background: The N-methyl-D-aspartate (NMDA)/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway has been implicated in the neurobiology of depression. Recently we suggested a possible complex interaction between the cholinergic and NO-cGMP pathways in the antidepressant-like response....... Conclusions: Using a genetic animal model of depression, we have confirmed the antidepressant-like property of sildenafil following “unmasking” by concomitant block of muscarinic receptors. These findings hint at a novel interaction between the cGMP and cholinergic systems in depression, and suggest...

  17. Antidepressant-like effect of oleanolic acid in mice exposed to the repeated forced swimming test.

    Science.gov (United States)

    Yi, Li-Tao; Li, Jing; Liu, Qing; Geng, Di; Zhou, Ya-Fei; Ke, Xiao-Qing; Chen, Huan; Weng, Lian-Jin

    2013-05-01

    The study aimed to explore the antidepressant-like effect of oleanolic acid and its possible mechanism related to the monoaminergic system and neurotrophin in mice exposed to the repeated forced swimming test (FST). Both the duration and the latency of immobility affected by oleanolic acid (10, 20 and 40 mg/kg) were evaluated in the FST repeated at intervals on days 1, 7 and 14, followed by neurochemical and brain-derived neurotrophic factor (BDNF) analyses in the mouse brain regions of frontal cortex and whole hippocampus. A repeated analysis of variance (ANOVA) indicated that over retesting the immobility time increased, whereas latency to immobility tended to decrease. Minute-by-minute analysis showed that immobility time also increased during the 4-min course of the test. In addition, post-hoc Dunnett's test demonstrated that sub-chronic and chronic, but not acute, oleanolic acid treatment reduced the immobility time (sub-chronic: 20 mg/kg, 43.5%; chronic: 10 mg/kg, 19.3%; 20 mg/kg, 31.8%) and increased the latency to immobility (sub-chronic: 10 mg/kg, 60.6%; 20 mg/kg, 80.1%; chronic: 10 mg/kg, 121.8%; 20 mg/kg, 140.8%; 40 mg/kg, 80.0%). Furthermore, chronic administration of oleanolic acid significantly increased serotonin (5-HT) levels (frontal cortex: 44.5%, 41.9%, 27.5% for 10, 20, 40 mg/kg; hippocampus: 57.2%, 80.9% for 10, 20 mg/kg), decreased 5-hydroxyindoleacetic acid (5-HIAA)/5-HT ratio (frontal cortex: 31.6%, 30.1%, 23.5%; hippocampus: 40.6%, 47.7%, 29.2% for 10, 20, 40 mg/kg) and elevated norepinephrine (NE) levels (hippocampus: 20 mg/kg, 45.4%) but did not alter dopamine (DA) levels. Moreover, BDNF levels in the two brain regions were also elevated by chronic oleanolic acid treatment (frontal cortex: 20 mg/kg, 67.2%; hippocampus: 10 mg/kg, 36.4%; 20 mg/kg, 55.1%). Taken together, these findings imply that functions of 5-HT, NE and BDNF may be involved in the antidepressant-like effect of oleanolic acid.

  18. Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test.

    Science.gov (United States)

    Filho, Carlos B; Del Fabbro, Lucian; de Gomes, Marcelo G; Goes, André T R; Souza, Leandro C; Boeira, Silvana P; Jesse, Cristiano R

    2013-01-05

    The opioid system has been implicated as a contributing factor for major depression and is thought to play a role in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of hesperidin in the mouse forced swimming test. Our results demonstrate that hesperidin (0.1, 0.3 and 1 mg/kg; intraperitoneal) decreased the immobility time in the forced swimming test without affecting locomotor activity in the open field test. The antidepressant-like effect of hesperidin (0.3 mg/kg) in the forced swimming test was prevented by pretreating mice with naloxone (1 mg/kg, a nonselective opioid receptor antagonist) and 2-(3,4-dichlorophenyl)-Nmethyl-N-[(1S)-1-(3-isothiocyanatophenyl)-2-(1-pyrrolidinyl)ethyl] acetamide (DIPPA (1 mg/kg), a selective κ-opioid receptor antagonist), but not with naloxone methiodide (1 mg/kg, a peripherally acting opioid receptor antagonist), naltrindole (3 mg/kg, a selective δ-opioid receptor antagonist), clocinnamox (1 mg/kg, a selective μ-opioid receptor antagonist) or caffeine (3 mg/kg, a nonselective adenosine receptor antagonist). In addition, a sub-effective dose of hesperidin (0.01 mg/kg) produced a synergistic antidepressant-like effect in the forced swimming test when combined with a sub-effective dose of morphine (1 mg/kg). The antidepressant-like effect of hesperidin in the forced swimming test on mice was dependent on its interaction with the κ-opioid receptor, but not with the δ-opioid, μ-opioid or adenosinergic receptors. Taken together, these results suggest that hesperidin possesses antidepressant-like properties and may be of interest as a therapeutic agent for the treatment of depressive disorders. Published by Elsevier B.V.

  19. Pregnanolone glutamate, a novel use-dependent NMDA receptor inhibitor, exerts antidepressant-like properties in animal models.

    Directory of Open Access Journals (Sweden)

    Karel eVales

    2014-04-01

    Full Text Available A number of studies demonstrated a rapid onset of an antidepressant effect of non-competitive NMDA receptor antagonists. Nonetheless, its therapeutic potential is rather limited, due to a high coincidence of negative side-effects. Therefore, the challenge seems to be in the development of NMDA receptor (NMDAR antagonists displaying antidepressant properties, and at the same time maintaining regular physiological function of the NMDAR. Previous results demonstrated that naturally occurring neurosteroid 3α5β-pregnanolone sulfate shows pronounced inhibitory action by a use-dependent mechanism on the tonically active NMDAR. The aim of the present experiments is to find out whether the treatment with pregnanolone 3αC derivatives affects behavioral response to chronic and acute stress in an animal model of depression. Adult male mice were used throughout the study. Repeated social defeat and forced swimming tests were used as animal models of depression. The effect of the drugs on the locomotor/exploratory activity in the open-field test was also tested together with an effect on anxiety in the elevated plus maze. Results showed that pregnanolone glutamate (PG did not induce hyperlocomotion, whereas both dizocilpine and ketamine significantly increased spontaneous locomotor activity in the open field. In the elevated plus maze PG displayed anxiolytic-like properties. In forced swimming PG prolonged time to the first floating. Acute treatment of PG disinhibited suppressed locomotor activity in the repeatedly defeated group-housed mice. Aggressive behavior of isolated mice was reduced after the chronic 30-day administration of PG. PG showed antidepressant-like and anxiolytic-like properties in the used tests, with minimal side-effects. Since PG combines GABAA receptor potentiation and use-dependent NMDAR inhibition, synthetic derivatives of neuroactive steroids present a promising strategy for the treatment of mood disorders.

  20. Minocycline produced antidepressant-like effects on the learned helplessness rats with alterations in levels of monoamine in the amygdala and no changes in BDNF levels in the hippocampus at baseline.

    Science.gov (United States)

    Arakawa, Shiho; Shirayama, Yukihiko; Fujita, Yuko; Ishima, Tamaki; Horio, Mao; Muneoka, Katsumasa; Iyo, Masaomi; Hashimoto, Kenji

    2012-01-01

    Previous studies have indicated that minocycline might function as an antidepressant drug. The aim of this study was to evaluate the antidepressant-like effects of minocycline, which is known to suppress activated microglia, using learned helplessness (LH) rats (an animal model of depression). Infusion of minocycline into the cerebral ventricle of LH rats induced antidepressant-like effects. However, infusion of minocycline into the cerebral ventricle of naïve rats did not produce locomotor activation in the open field tests, suggesting that the antidepressant-like effects of minocycline were not attributed to the enhanced locomotion. LH rats showed significantly higher serotonin turnover in the orbitofrontal cortex and lower levels of brain-derived neurotrophic factor (BDNF) in the hippocampus than control rats. However, these alterations in serotonin turnover and BDNF expression remained unchanged after treatment with minocycline. On the contrary, minocycline treatment of LH rats induced significant increases in the levels of dopamine and its metabolites in the amygdala when compared with untreated LH rats. Taken together, minocycline may be a therapeutic drug for the treatment of depression. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Using tests and models to assess antidepressant-like activity in rodents

    Directory of Open Access Journals (Sweden)

    Kedzierska Ewa

    2016-06-01

    Full Text Available In today's world, depression is one of the more prevalent forms of mental illness. According to WHO, about 10%-30% of all women and 7%-15% of all men are afflicted by depression at least once in their life-times. Today, depression is assessed to be affecting 350 million people. Regarding this issue, an important challenge for current psychopharmacology is to develop new, more effective pharmacotherapy and to understand the mechanism of action of known antidepressants. Furthermore, there is the necessity to improve the effectiveness of anti-depression treatment by way of bringing about an understanding of the neurobiology of this illness. In achieving these objectives, animal models of depression can be useful. Yet, presently, all available animal models of depression rely on two principles: the actions of known antidepressants or the responses to stress. In this paper, we present an overview of the most widely used animal tests and models that are employed in assessing antidepressant-like activity in rodents. These include amphetamine potentiation, reversal of reserpine action, the forced swimming test, the tail suspension test, learned helplessness, chronic mild stress and social defeat stress. Moreover, the advantages and major drawbacks of each model are also discussed.

  2. Orally administered whole egg demonstrates antidepressant-like effects in the forced swimming test on rats.

    Science.gov (United States)

    Nagasawa, Mao; Otsuka, Tsuyoshi; Ogino, Yumi; Yoshida, Junki; Tomonaga, Shozo; Yasuo, Shinobu; Furuse, Mitsuhiro

    2014-08-01

    Several studies have reported that vegetarian diets are associated with a higher prevalence of major depression. Therefore, we hypothesised that the consumption of animal products, especially eggs, may have positive effects on mental health, especially on major depression, because a previous study reported that egg consumption produces numerous beneficial effects in humans. The purpose of the present study was to evaluate the effects of chronic whole-egg treatment on depression-like behaviours in Wistar rats, a control strain, and Wistar Kyoto rats, an animal model of depression. In both the rats, either whole-egg solution (5 ml/kg) or distilled water (5 ml/kg) was orally administrated for 35 days. During these periods, the open-field test (OFT) was conducted on the 21st day, and a forced swimming test (FST) was enforced on the 27th and 28th days. On the 36th day, the plasma and brain were collected. Chronic whole-egg treatment did not affect line crossing in the OFT, whereas it reduced the total duration of immobility in the FST on both strains. Furthermore, interestingly, the results indicated the possibility that whole-egg treatment elevated the incorporation of tryptophan into the brain, and the tryptophan concentration in the prefrontal cortex was actually increased by the treatment. This study demonstrated that whole-egg treatment exerts an antidepressant-like effect in the FST. It is suggested that whole egg may be an excellent food for preventing and alleviating the conditions of major depression.

  3. Sex differences in the rapid and the sustained antidepressant-like effects of ketamine in stress-naïve and "depressed" mice exposed to chronic mild stress.

    Science.gov (United States)

    Franceschelli, A; Sens, J; Herchick, S; Thelen, C; Pitychoutis, P M

    2015-04-02

    During the past decade, one of the most striking discoveries in the treatment of major depression was the clinical finding that a single infusion of a sub-anesthetic dose of the N-methyl-d-aspartate receptor antagonist ketamine produces a rapid (i.e. within a few hours) and long-lasting (i.e. up to two weeks) antidepressant effect in both treatment-resistant depressed patients and in animal models of depression. Notably, converging clinical and preclinical evidence support that responsiveness to antidepressant drugs is sex-differentiated. Strikingly, research regarding the antidepressant-like effects of ketamine has focused almost exclusively on the male sex. Herein we report that female C57BL/6J stress-naïve mice are more sensitive to the rapid and the sustained antidepressant-like effects of ketamine in the forced swim test (FST). In particular, female mice responded to lower doses of ketamine (i.e. 3mg/kg at 30 min and 5mg/kg at 24h post-injection), doses that were not effective in their male counterparts. Moreover, tissue levels of the excitatory amino acids glutamate and aspartate, as well as serotonergic activity, were affected in a sex-dependent manner in the prefrontal cortex and the hippocampus, at the same time-points. Most importantly, a single injection of ketamine (10mg/kg) induced sex-dependent behavioral effects in mice subjected to the chronic mild stress (CMS) model of depression. Intriguingly, female mice were more reactive to the earlier effects of ketamine, as assessed in the open field and the FST (at 30 min and 24h post-treatment, respectively) but the antidepressant potential of the drug proved to be longer lasting in males, as assessed in the splash test and the FST (days 5 and 7 post-treatment, respectively). Taken together, present data revealed that ketamine treatment induces sex-dependent rapid and sustained neurochemical and behavioral antidepressant-like effects in stress-naïve and CMS-exposed C57BL/6J mice. Copyright © 2015 IBRO

  4. Antidepressant-like effect of Butea superba in mice exposed to chronic mild stress and its possible mechanism of action.

    Science.gov (United States)

    Mizuki, Daishu; Matsumoto, Kinzo; Tanaka, Ken; Thi Le, Xoan; Fujiwara, Hironori; Ishikawa, Tsutomu; Higuchi, Yoshihiro

    2014-10-28

    Butea superba (BS) is a Thai medicinal plant that has been used as a folk medicine to improve physical and mental conditions and to prevent impaired sexual performance in middle-aged or elderly males. We have previously reported that this plant extract could improve cognitive deficits and depression-like behavior in olfactory bulbectomized mice, an animal model of dementia and depression. In this study we examined the effect of BS on depression-like behavior in mice subjected to unpredictable chronic mild stress (UCMS) to clarify the antidepressant-like activity of BS and the molecular mechanism underlying this effect. UCMS mice were administered BS daily (300 mg of dried herb weight/kg, p.o.) or a reference drug, imipramine (IMP, 10 mg/kg, i.p.), 1 week after starting the UCMS procedure. We employed the sucrose preference test and the tail suspension test to analyze anhedonia and depression-like behavior of mice, respectively. Serum and brain tissues of mice were used for neurochemical and immunohistochemical studies. The UCMS procedure induced anhedonia and depression-like behavior, and BS treatment, as well as IMP treatment, attenuated these symptoms. UCMS caused an elevation of serum corticosterone level, an index of hyper-activation of the hypothalamic-pituitary-adrenal (HPA) axis, in a manner attenuated by BS and IMP treatment. BS treatment also attenuated UCMS-induced decrease in the expression levels of brain-derived neurotrophic factor (BDNF) mRNA, cyclic AMP-responsive element binding protein (CREB) and a phosphorylated form of N-methyl-d-aspartate receptor subunit NR1, synaptic plasticity-related signaling proteins. Moreover, the UCMS procedure reduced doublecortin-positive cells in the dentate gyrus region of the hippocampus. BS administration reversed these UCMS-induced neurochemical and histological abnormalities. These results suggest that BS can ameliorate chronic stress-induced depression-like symptoms and that the effects of BS are mediated by

  5. Antidepressant-like effect of the water extract of the fixed combination of Gardenia jasminoides, Citrus aurantium and Magnolia officinalis in a rat model of chronic unpredictable mild stress.

    Science.gov (United States)

    Xing, Hang; Zhang, Kuo; Zhang, Ruowen; Shi, Huiyan; Bi, Kaishun; Chen, Xiaohui

    2015-12-01

    Water extract of the fixed combination of Gardenia jasminoides Ellis fruit, Citrus aurantium L. fruit and Magnolia officinalis Rehd. et Wils. bark, traditional name - Zhi-Zi-Hou-Po (ZZHPD) is used for treatment of depressive-like symptoms in traditional Chinese medicine for centuries. The present study aimed to explore antidepressant-like effects and potential mechanisms of ZZHPD in a rat model of chronic unpredictable mild stress (CUMS). Antidepressant-like effects of ZZHPD were investigated through behavioral tests, and potential mechanism was assessed by neuroendocrine system, neurotrophin and hippocampal neurogenesis. Antidepressant-like effects of ZZHPD (3.66, 7.32 and 14.64 g/kg/day) were estimated through coat state test, sucrose preference test, forced swimming test and open-field test. Effects of ZZHPD on hypothalamic-pituitary-adrenal (HPA) axis were evaluated by hormones measurement and dexamethasone suppression test. In addition, the expression of brain-derived neurotrophic factor (BDNF) in hippocampus was measured, as well as hippocampal neurogenesis was investigated by doublecortin (DCX) and 5-bromo-2-deoxyuridine/neuronal nuclei (BrdU/NeuN). The results demonstrated that ZZHPD significantly reversed the depressive-like behaviors, normalized the levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT), restored the negative feedback loop of HPA axis and improved the levels of BDNF, DCX and BrdU/NeuN compared with those in CUMS-induced rats. The above results revealed that ZZHPD exerted antidepressant-like effects possibly by normalizing HPA axis function, increasing expression of BDNF in hippocampus and promoting hippocampal neurogenesis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  6. Antidepressant-like effects of alnespirone (S 20499) in the learned helplessness test in rats.

    Science.gov (United States)

    Mac Sweeney, C P; Lesourd, M; Gandon, J M

    1998-03-19

    The effects of the new chroman derivative, alnespirone (S 20499), which is a selective 5-HT1A receptor agonist, were investigated in an animal model of depression, the learned helplessness test. Rats previously submitted to a session of 60 inescapable electric foot shocks (learned helpless controls) exhibited a deficit in escape performance in three subsequent shuttle-box sessions. Alnespirone was administered twice daily via the oral route (2.5, 5, 10, 20 mg kg(-1) day(-1)). It was shown to protect against the elevation in escape failures caused by exposure to the uncontrollable aversive situation at 5 and 10 mg kg(-1) day(-1) p.o. (13+/-2 and 10+/-3 escape failures, respectively, vs. 9+/-2 escape failures in control rats). In addition, alnespirone had a tendency to elevate the number of intertrial crossings during the resting periods, depending on the dose and day on which the avoidance task was performed (15+/-2 intertrial crossings at the dose of 5 mg kg(-1) day(-1), vs. 5+/-2 intertrial crossings for the helpless control rats, on the second day). In comparison, imipramine (64 mg kg(-1) day(-1) p.o.) provided marked protection on all three days of the avoidance task and tended to increase the number of intertrial crossings during the resting periods on the second and the third days. It is concluded that alnespirone exerts antidepressant-like properties in the learned helplessness test in rats, in a manner similar to 8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin), buspirone and ipsapirone, other 5-HT1A receptor agonists.

  7. Subchronic treatment with fluoxetine and ketanserin increases hippocampal brain-derived neurotrophic factor, β-catenin and antidepressant-like effects.

    Science.gov (United States)

    Pilar-Cuéllar, F; Vidal, R; Pazos, A

    2012-02-01

    5-HT(2A) receptor antagonists improve antidepressant responses when added to 5-HT-selective reuptake inhibitors (SSRIs) or tricyclic antidepressants. Here, we have studied the involvement of neuroplasticity pathways and/or the 5-hydroxytryptaminergic system in the antidepressant-like effect of this combined treatment, given subchronically. Expression of brain-derived neurotrophic factor (BDNF) and its receptor (TrkB), 5-bromo-2'-deoxyuridine (BrdU) incorporation, and β-catenin protein expression in different cellular fractions, as well as 5-HT(1A) receptor function were measured in the hippocampus of rats treated with fluoxetine, ketanserin and fluoxetine + ketanserin for 7 days, followed by a forced swimming test (FST) to analyse antidepressant efficacy. mRNA for BDNF was increased in the CA3 field and dentate gyrus of the hippocampus by combined treatment with fluoxetine + ketanserin. Expression of β-catenin was increased in total hippocampal homogenate and in the membrane fraction, but unchanged in the nuclear fraction after combined treatment with fluoxetine + ketanserin. These effects were paralleled by a decreased immobility time in the FST. There were no changes in BrdU incorporation, TrkB expression and 5-HT(1A) receptor function in any of the groups studied. The antidepressant-like effect induced by subchronic co-treatment with a SSRI and a 5-HT(2A) receptor antagonist may mainly be because of modifications in hippocampal neuroplasticity (BDNF and membrane-associated β-catenin), without a significant role for other mechanisms involved in chronic antidepressant response, such as hippocampal neuroproliferation or 5-HT(1A) receptor desensitization in the dorsal raphe nucleus. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  8. Ethanol extract of Rehmannia glutinosa exerts antidepressant-like effects on a rat chronic unpredictable mild stress model by involving monoamines and BDNF.

    Science.gov (United States)

    Wang, Jun-Ming; Pei, Li-Xin; Zhang, Yue-Yue; Cheng, Yong-Xian; Niu, Chun-Ling; Cui, Ying; Feng, Wei-Sheng; Wang, Gui-Fang

    2018-06-01

    The dried roots of Rehmannia glutinosa Libosch. (Scrophulariaceae) are of both medicinal and nutritional importance. Our previous study has found that the 80% ethanol extract of R. glutinosa (RGEE) produced antidepressant-like activities in mouse behavioral despair depression models. However, its mechanisms are still unclear. The present study aimed to observe the antidepressant-like mechanisms of RGEE on a rat chronic unpredictable mild stress (CUMS) model by involving monoaminergic neurotransmitters and brain-derived neurotrophic factor (BDNF). CUMS-stressed rats were orally given RGEE daily (150, 300, and 600 mg/kg) or fluoxetine hydrochloride (FH) for 3 weeks after starting the CUMS procedure. Sucrose preference test was carried out to observe depression-like behavior, and serum and brain tissues were used for neurochemical and fluorescent quantitative reverse transcription PCR analysis. Results demonstrated that CUMS induced depression-like behavior, whereas RGEE and FH administration inhibited this symptom. Furthermore, CUMS caused excessively elevated levels of serum corticosterone (CORT), an index of hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, in a manner attenuated by RGEE and FH administration. RGEE administration also further elevated monoamine neurotransmitters and BDNF levels, up-regulated the mRNA expression of BDNF and tropomyosin-related kinase B (TrkB) in hippocampus of rats suffering CUMS. Together, our findings suggest that RGEE can improve CUMS-evoked depression-like behavior, and indicate its mechanisms may partially be associated with restoring HPA axis dysfunctions, enhancing monoamineergic nervous systems, and up-regulating BDNF and TrkB expression.

  9. Antidepressant-like effects of the cannabinoid receptor ligands in the forced swimming test in mice: mechanism of action and possible interactions with cholinergic system.

    Science.gov (United States)

    Kruk-Slomka, Marta; Michalak, Agnieszka; Biala, Grazyna

    2015-05-01

    The purpose of the experiments was to explore the role of the endocannabinoid system, through cannabinoid (CB) receptor ligands, nicotine and scopolamine, in the depression-related responses using the forced swimming test (FST) in mice. Our results revealed that acute injection of oleamide (10 and 20 mg/kg), a CB1 receptor agonist, caused antidepressant-like effect in the FST, while AM 251 (0.25-3 mg/kg), a CB1 receptor antagonist, did not provoke any effect in this test. Moreover, acute administration of both CB2 receptor agonist, JWH 133 (0.5 and 1 mg/kg) and CB2 receptor antagonist, AM 630 (0.5 mg/kg), exhibited antidepressant action. Antidepressant effects of oleamide and JWH 133 were attenuated by acute injection of both non-effective dose of AM 251, as well as AM 630. Among the all CB compounds used, only the combination of non-effective dose of oleamide (2.5 mg/kg) with non-effective dose of nicotine (0.5 mg/kg) caused an antidepressant effect. However, none of the CB receptor ligands, had influence on the antidepressant effects provoked by nicotine (0.2 mg/kg) injection. In turn, the combination of non-effective dose of oleamide (2.5 mg/kg); JWH (2 mg/kg) or AM 630 (2 mg/kg), but not of AM 251 (0.25 mg/kg), with non-effective dose of scopolamine (0.1 mg/kg), exhibited antidepressant properties. Indeed, all of the CB compounds used, intensified the antidepressant-like effects induced by an acute injection of scopolamine (0.3 mg/kg). Our results provide clear evidence that the endocannabinoid system participates in the depression-related behavior and through interactions with cholinergic system modulate these kind of responses. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Potentiation of omega-3 fatty acid antidepressant-like effects with low non-antidepressant doses of fluoxetine and mirtazapine.

    Science.gov (United States)

    Laino, Carlos Horacio; Fonseca, Cristina; Sterin-Speziale, Norma; Slobodianik, Nora; Reinés, Analía

    2010-12-01

    Despite the advances in psychopharmacology, the treatment of depressive disorders is still not satisfactory. Side effects and resistance to antidepressant drugs are the greatest complications during treatment. Based on recent evidence, omega-3 fatty acids may influence vulnerability and outcome in depressive disorders. The aim of this study was to further characterize the omega-3 antidepressant-like effect in rats in terms of its behavioral features in the depression model forced swimming test either alone or in combination with antidepressants fluoxetine or mirtazapine. Ultimately, we prompted to determine the lowest dose at which omega-3 fatty acids and antidepressant drugs may still represent a pharmacological advantage when employed in combined treatments. Chronic diet supplementation with omega-3 fatty acids produced concentration-dependent antidepressant-like effects in the forced swimming test displaying a behavioral profile similar to fluoxetine but different from mirtazapine. Fluoxetine or mirtazapine at antidepressant doses (10 and 20 mg/kg/day, respectively) rendered additive effects in combination with omega-3 fatty acid supplementation (720 mg/kg/day). Beneficial effects of combined treatment were also observed at sub-effective doses (1 mg/kg/day) of fluoxetine or mirtazapine, since in combination with omega-3 fatty acids (720 mg/kg/day), antidepressants potentiated omega-3 antidepressant-like effects. The antidepressant-like effects occurred in the absence of changes in brain phospholipid classes. The therapeutic approach of combining omega-3 fatty acids with low ineffective doses of antidepressants might represent benefits in the treatment of depression, especially in patients with depression resistant to conventional treatments and even may contribute to patient compliance by decreasing the magnitude of some antidepressant dose-dependent side effects. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Ontogeny of SERT Expression and Antidepressant-like Response to Escitalopram in Wild-Type and SERT Mutant Mice.

    Science.gov (United States)

    Mitchell, Nathan C; Gould, Georgianna G; Koek, Wouter; Daws, Lynette C

    2016-08-01

    Depression is a disabling affective disorder for which the majority of patients are not effectively treated. This problem is exacerbated in children and adolescents for whom only two antidepressants are approved, both of which are selective serotonin reuptake inhibitor (SSRIs). Unfortunately SSRIs are often less effective in juveniles than in adults; however, the mechanism(s) underlying age-dependent responses to SSRIs is unknown. To this end, we compared the antidepressant-like response to the SSRI escitalopram using the tail suspension test and saturation binding of [(3)H]citalopram to the serotonin transporter (SERT), the primary target of SSRIs, in juvenile [postnatal day (P)21], adolescent (P28), and adult (P90) wild-type (SERT+/+) mice. In addition, to model individuals carrying low-expressing SERT variants, we studied mice with reduced SERT expression (SERT+/-) or lacking SERT (SERT-/-). Maximal antidepressant-like effects were less in P21 mice relative to P90 mice. This was especially apparent in SERT+/- mice. However, the potency for escitalopram to produce antidepressant-like effects in SERT+/+ and SERT+/- mice was greater in P21 and P28 mice than in adults. SERT expression increased with age in terminal regions and decreased with age in cell body regions. Binding affinity values did not change as a function of age or genotype. As expected, in SERT-/- mice escitalopram produced no behavioral effects, and there was no specific [(3)H]citalopram binding. These data reveal age- and genotype-dependent shifts in the dose-response for escitalopram to produce antidepressant-like effects, which vary with SERT expression, and may contribute to the limited therapeutic response to SSRIs in juveniles and adolescents. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Evaluation of the antidepressant-like effects of acute and sub-acute administration of crocin and crocetin in mice

    Directory of Open Access Journals (Sweden)

    Bahareh Amin

    2015-08-01

    Full Text Available Objective: The present study was designed to investigate the putative antidepressant effects of crocin and crocetin, two major active ingredients of Crocus sativus L. (saffron using mice in two different regimens of acute and sub-acute administration. Material and Methods: In acute treatment, antidepressant-like activities of crocin and crocetin (10, 20 and 40 mg/kg, i.p. were evaluated using forced swim test (FST. In sub-acute study (21 times with 24-h intervals, antidepressant-like effects of oral administration of drugs were examined using FST and tail suspension test (TST. Locomotor activity and motor coordination were studied using open field and rotarod tests, respectively. Results: Acute treatment with crocin (40 mg/kg and crocetin (20 and 40 mg/kg produced antidepressant-like effect in FST without affecting the baseline locomotion in mice. Sub-acute oral administration of crocin significantly decreased immobility time only at the highest dose (100 mg/kg. Crocetin (12.5, 25 and 50 mg/kg was able to decrease immobility time in FST and TST. Locomotor activity and coordination of mice were not affected by crocin or crocetin. Conclusion: Since higher doses of crocin was required to show antidepressant effects, more efficacy of crocetin may be concluded. This observation provides further support for metabolism of crocin to crocetin following oral administration.

  13. Antidepressant-like effect of harmane and other beta-carbolines in the mouse forced swim test.

    Science.gov (United States)

    Farzin, Davood; Mansouri, Nazanin

    2006-07-01

    The purpose of the present study was to determine the effects of harmane, norharmane and harmine on the immobility time in the mouse forced swim test (FST) - an animal model of depression. After 30 min of the beta-carbolines injections, mice were placed individually in a vertical glass cylinder (height, 25 cm; diameter, 12 cm) containing water about 15 cm deep at 22+/-1 degrees C and forced to swim. Treatment of animals with harmane (5-15 mg/kg, i.p.), norharmane (2.5-10 mg/kg, i.p.) and harmine (5-15 mg/kg, i.p.) reduced dose-dependently the time of immobility. Their antidepressant-like effects were not affected by pretreatment with reserpine at the dose of 5 mg/kg, i.p., 18 h before the test, which did not modify the immobility time. Conversely, when flumazenil (5 mg/kg, i.p.) was administered 30 min before the test, it was able to antagonize completely the antidepressant-like effects of harmane, norharmane and harmine. It was concluded that harmane, norharmane and harmine reduce the immobility time in this test, suggesting an antidepressant-like effect, via an inverse-agonistic mechanism located in the benzodiazepine receptors.

  14. Agmatine produces antidepressant-like effects by activating AMPA receptors and mTOR signaling.

    Science.gov (United States)

    Neis, Vivian Binder; Moretti, Morgana; Bettio, Luis Eduardo B; Ribeiro, Camille M; Rosa, Priscila Batista; Gonçalves, Filipe Marques; Lopes, Mark William; Leal, Rodrigo Bainy; Rodrigues, Ana Lúcia S

    2016-06-01

    The activation of AMPA receptors and mTOR signaling has been reported as mechanisms underlying the antidepressant effects of fast-acting agents, specially the NMDA receptor antagonist ketamine. In the present study, oral administration of agmatine (0.1mg/kg), a neuromodulator that has been reported to modulate NMDA receptors, caused a significant reduction in the immobility time of mice submitted to the tail suspension test (TST), an effect prevented by the administration of DNQX (AMPA receptor antagonist, 2.5μg/site, i.c.v.), BDNF antibody (1μg/site, i.c.v.), K-252a (TrkB receptor antagonist, 1μg/site, i.c.v.), LY294002 (PI3K inhibitor, 10nmol/site, i.c.v.) or rapamycin (selective mTOR inhibitor, 0.2nmol/site, i.c.v.). Moreover, the administration of lithium chloride (non-selective GSK-3β inhibitor, 10mg/kg, p.o.) or AR-A014418 (selective GSK-3β inhibitor, 0.01μg/site, i.c.v.) in combination with a sub-effective dose of agmatine (0.0001mg/kg, p.o.) reduced the immobility time in the TST when compared with either drug alone. Furthermore, increased immunocontents of BDNF, PSD-95 and GluA1 were found in the prefrontal cortex of mice just 1h after agmatine administration. These results indicate that the antidepressant-like effect of agmatine in the TST may be dependent on the activation of AMPA and TrkB receptors, PI3K and mTOR signaling as well as inhibition of GSK-3β, and increase in synaptic proteins. The results contribute to elucidate the complex signaling pathways involved in the antidepressant effect of agmatine and reinforce the pivotal role of these molecular targets for antidepressant responses. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.

  15. Role of bed nucleus of the stria terminalis corticotrophin-releasing factor receptors in frustration stress-induced binge-like palatable food consumption in female rats with a history of food restriction.

    Science.gov (United States)

    Micioni Di Bonaventura, Maria Vittoria; Ciccocioppo, Roberto; Romano, Adele; Bossert, Jennifer M; Rice, Kenner C; Ubaldi, Massimo; St Laurent, Robyn; Gaetani, Silvana; Massi, Maurizio; Shaham, Yavin; Cifani, Carlo

    2014-08-20

    We developed recently a binge-eating model in which female rats with a history of intermittent food restriction show binge-like palatable food consumption after 15 min exposure to the sight of the palatable food. This "frustration stress" manipulation also activates the hypothalamic-pituitary-adrenal stress axis. Here, we determined the role of the stress neurohormone corticotropin-releasing factor (CRF) in stress-induced binge eating in our model. We also assessed the role of CRF receptors in the bed nucleus of the stria terminalis (BNST), a brain region implicated in stress responses and stress-induced drug seeking, in stress-induced binge eating. We used four groups that were first exposed or not exposed to repeated intermittent cycles of regular chow food restriction during which they were also given intermittent access to high-caloric palatable food. On the test day, we either exposed or did not expose the rats to the sight of the palatable food for 15 min (frustration stress) before assessing food consumption for 2 h. We found that systemic injections of the CRF1 receptor antagonist R121919 (2,5-dimethyl-3-(6-dimethyl-4-methylpyridin-3-yl)-7 dipropylamino pyrazolo[1,5-a]pyrimidine) (10-20 mg/kg) and BNST (25-50 ng/side) or ventricular (1000 ng) injections of the nonselective CRF receptor antagonist D-Phe-CRF(12-41) decreased frustration stress-induced binge eating in rats with a history of food restriction. Frustration stress also increased Fos (a neuronal activity marker) expression in ventral and dorsal BNST. Results demonstrate a critical role of CRF receptors in BNST in stress-induced binge eating in our rat model. CRF1 receptor antagonists may represent a novel pharmacological treatment for bingeing-related eating disorders. Copyright © 2014 the authors 0270-6474/14/3411316-09$15.00/0.

  16. Antidepressant-like Effect of Bacopaside I in Mice Exposed to Chronic Unpredictable Mild Stress by Modulating the Hypothalamic-Pituitary-Adrenal Axis Function and Activating BDNF Signaling Pathway.

    Science.gov (United States)

    Zu, Xianpeng; Zhang, Mingjian; Li, Wencai; Xie, Haisheng; Lin, Zhang; Yang, Niao; Liu, Xinru; Zhang, Weidong

    2017-11-01

    Preliminary studies conducted in our laboratory have confirmed that Bacopaside I (BS-I), a saponin compound isolated from Bacopa monnieri, displayed antidepressant-like activity in the mouse behavioral despair model. The present investigation aimed to verify the antidepressant-like action of BS-I using a mouse model of behavioral deficits induced by chronic unpredictable mild stress (CUMS) and further probe its underlying mechanism of action. Mice were exposed to CUMS for a period of 5 consecutive weeks to induce depression-like behavior. Then, oral gavage administrations with vehicle (model group), fluoxetine (12 mg/kg, positive group) or BS-I (5, 15, 45 mg/kg, treated group) once daily were started during the last two weeks of CUMS procedure. The results showed that BS-I significantly ameliorated CUMS-induced depression-like behaviors in mice, as characterized by an elevated sucrose consumption in the sucrose preference test and reduced immobility time without affecting spontaneous locomotor activity in the forced swimming test, tail suspension test and open field test. It was also found that BS-I treatment reversed the increased level of plasma corticosterone and decreased mRNA and protein expressions of glucocorticoid receptor induced by CUMS exposure, indicating that hypothalamic-pituitary-adrenal (HPA) axis hyperactivity of CUMS-exposed mice was restored by BS-I treatment. Furthermore, chronic administration of BS-I elevated expression levels of brain-derived neurotrophic factor (BDNF) (mRNA and protein) and activated the phosphorylation of extracellular signal-regulated kinase and cAMP response element-binding protein in the hippocampus and prefrontal cortex in mice subjected to CUMS procedure. Taken together, these results indicated that BS-I exhibited an obvious antidepressant-like effect in mouse model of CUMS-induced depression that was mediated, at least in part, by modulating HPA hyperactivity and activating BDNF signaling pathway.

  17. Computational and biological evidences on the serotonergic involvement of SeTACN antidepressant-like effect in mice.

    Directory of Open Access Journals (Sweden)

    Mariana G Fronza

    Full Text Available A series of phenylselanyl-1H-1,2,3-triazole-4-carbonitriles with different substituents were screened for their binding affinity with serotonin transporter (SERT and dopamine transporter (DAT by docking molecular. 5-(4methoxyphenyl-1-(2-(phenylselanylphenyl-1H-1,2,3-triazole-4-carbonitrile (SeTACN exhibited the best conformation with SERT even higher than fluoxetine and serotonin, suggesting a competitive inhibition. SeTACN demonstrated additional affinity to other serotonergic receptors involved in antidepressant effects: 5HT1a, 5HT2a and 5HT3. In another set of experiments, SeTACN led to significant reductions in the immobility time of mice submitted to forced swimming test (FST in the dose range of 0.1- 20mg/kg, suggesting an antidepressant-like effect. The possible mechanism of action was investigated using serotonergic and dopaminergic antagonists. The antidepressant-like effect of SeTACN (0.1mg/kg i.g. was prevented by the pretreatment with WAY100635 (a selective 5HT1a antagonist, ketanserin (a 5HT2a/c antagonist and ondansetron (a selective 5ht3 antagonist, PCPA (an inhibitor of serotonin synthesis but not with SCH23390 (dopaminergic D1 antagonist and sulpiride (D2 antagonist. Sub-effective dose of fluoxetine was able to potentiate the effects of a sub-effective dose of SeTACN in FST. None of the treatments affected locomotor activity in open field test (OFT. These results together, suggest that the SeTACN antidepressant-like effect is mediate, at least in parts, by serotonergic system.

  18. The monoaminergic pathways and inhibition of monoamine transporters interfere with the antidepressive-like behavior of ketamine

    Directory of Open Access Journals (Sweden)

    Glauce Socorro de Barros Viana

    2018-06-01

    Full Text Available Ketamine (KET, a NMDA receptor antagonist, has been studied for its rapid and efficacious antidepressant effect, even for the treatment-resistant depression. Although depression is a major cause of disability worldwide, the treatment can be feasible, affordable and cost-effective, decreasing the population health burden. We evaluated the antidepressive-like effects of KET and its actions on monoamine contents (DA and its metabolites, as well as 5-HT and on tyrosine hydroxylase (TH. In addition DAT and SERT (DA and 5-HT transporters, respectively were also assessed. Male Swiss mice were divided into Control and KET-treated groups. The animals were acutely treated with KET (2, 5 or 10 mg/kg, i.p. and subjected to the forced swimming test, for evaluation of the antidepressive-like behavior. Imipramine and fluoxetine were used as references. The results showed that KET decreased dose-dependently the immobility time and shortly after the test, the animals were euthanized for striatal dissections and monoamine determinations. In addition, the brain (striata, hippocampi and prefrontal cortices was immunohistochemically processed for TH, DAT and SERT. KET at its higher dose increased DA and its metabolites (DOPAC and HVA and mainly 5-HT contents, in mice striata, effects associated with increases in TH and decreases in DAT immunoreactivities. Furthermore, reductions in SERT immunoreactivities were observed in the striatum and hippocampus. The results indicate that KET antidepressive-like effect probably involves, among other factors, monoaminergic pathways, as suggested by the increased striatal TH immunoreactivity and reduced brain DA (DAT and 5-HT (SERT transporters. Keywords: Ketamine, Antidepressive effect, Dopaminergic neurotransmission, Serotonergic neurotransmission, Monoamine transporters

  19. Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: an acute and chronic study.

    Science.gov (United States)

    Sanmukhani, Jayesh; Anovadiya, Ashish; Tripathi, Chandrabhanu B

    2011-01-01

    Curcumin is the active ingredient of commonly used spice Curuma longa Linn. In the present study, the antidepressant like activity of curcumin and its combination with fluoxetine and imipramine was studied in acute model (three doses 24, 5 and 1 h before test) of forced swimming test (FST) in glass jar and tail suspension test (TST) in mice and in chronic model (14 day study) of FST with water wheel in rats. All the tests were carried out in the following seven groups (n = 6 in each group), drugs being given orally (doses for mice): Group 1 (vehicle), group 2 (curcumin 50 mg/kg), group 3 (curcumin 100 mg/kg), group 4 (fluoxetine 20 mg/kg), group 5 (imipramine 15 mg/kg), group 6 (curcumin 100 mg/kg plus fluoxetine 20 mg/kg) and group 7 (curcumin 100 mg/kg plus imipramine 15 mg/kg). Equivalent doses for rats were used. Both the acute model of FST and TST, and the chronic model of FST with water wheel showed significant antidepressant like activity of curcumin in 100 mg/kg dose as compared to vehicle control (p fluoxetine and imipramine (p > 0.05) but its addition to fluoxetine and imipramine did not improve their antidepressant activity (p > 0.05). Curcumin increased both the swimming and climbing behavior in FST, thus its antidepressant like activity could be due to an increase in serotonin, norepinephrine and dopamine levels in the brain. Curcumin can be a useful antidepressant especially in cases which respond to drugs having mixed effects on serotonin and catecholamines levels in the brain.

  20. Antidepressant-like effects of young green barley leaf (Hordeum vulgare L.) in the mouse forced swimming test.

    Science.gov (United States)

    Yamaura, Katsunori; Nakayama, Noriyuki; Shimada, Maki; Bi, Yuanyuan; Fukata, Hideki; Ueno, Koichi

    2012-01-01

    Young green barley leaf is one of the richest sources of antioxidants and has been widely consumed for health management in Japan. In this study, we examined whether oral administration of young green barley leaf has an antidepressant effect on the forced swimming test in mice. Mice were individually forced to swim in an open cylindrical container, one hour after oral administration of young green barley leaf (400 or 1000 mg / kg) or imipramine (100 mg / kg). Expression of mRNA for nerve growth factor (NGF), brain-derived neurotrophic factor, and glucocorticoid receptor in the brain was analyzed using real-time quantitative polymerase chain reaction (PCR). There was a significant antidepressant-like effect in the forced swimming test; both 400 and 1000 mg / kg young green barley leaves, as well as the positive control imipramine (100 mg / kg), reduced the immobility duration compared to the vehicle group. The expression of mRNA for NGF detected in the hippocampus immediately after the last swimming test was higher than that in the non-swimming group (Nil). Oral administration of imipramine suppressed this increase to the level of the Nil group. Young green barley leaf (400 and 1000 mg / kg) also showed a moderate decrease in the expression of mRNA for NGF, in a dose-dependent manner. Oral administration of young green barley leaf is able to produce an antidepressant-like effect in the forced swimming test. Consequently it is possible that the antidepressant-like effects of the young green barley leaf are, at least in part, mediated by an inhibition of the increase in the hippocampus levels of NGF.

  1. Agmatine enhances the antidepressant-like effect of lithium in mouse forced swimming test through NMDA pathway.

    Science.gov (United States)

    Mohseni, Gholmreza; Ostadhadi, Sattar; Imran-Khan, Muhammad; Norouzi-Javidan, Abbas; Zolfaghari, Samira; Haddadi, Nazgol-Sadat; Dehpour, Ahmad-Reza

    2017-04-01

    Depression is one the world leading global burdens leading to various comorbidities. Lithium as a mainstay in the treatment of depression is still considered gold standard treatment. Similar to lithium another agent agmatine has also central protective role against depression. Since, both agmatine and lithium modulate various effects through interaction with NMDA receptor, therefore, in current study we aimed to investigate the synergistic antidepressant-like effect of agmatine with lithium in mouse force swimming test. Also to know whether if such effect is due to interaction with NMDA receptor. In our present study we found that when potent dose of lithium (30mg/kg) was administered, it significantly decreased the immobility time. Also, when subeffective dose of agmatine (0.01mg/kg) was coadministered with subeffective dose of lithium (3mg/kg), it potentiated the antidepressant-like effect of subeffective dose of lithium. For the involvement of NMDA receptor in such effect, we administered NMDA receptor antagonist MK-801 (0.05mg/kg) with a combination of subeffective dose of lithium (3mg/kg) and agmatine (0.001mg/kg). A significant antidepressant-like effect was observed. Furthermore, when subeffective dose (50 and 75mg/kg) of NMDA was given it inhibited the synergistic effect of agmatine (0.01mg/kg) with lithium (3mg/kg). Hence, our finding demonstrate that agmatine have synergistic effect with lithium which is mediated by NMDA receptor pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Antidepressant-Like Effect of 1α-Hydroxyvitamin D3 on Mice in the Forced Swimming Test.

    Science.gov (United States)

    Kawaura, Akihiko; Kitamura, Yoshihisa; Tanida, Noritoshi; Akiyama, Junichi; Mizutani, Masatoshi; Harada, Kazuhiro; Morishita, Motoyoshi; Inoue, Shigeki; Kano, Yoshio; Okano, Toshio; Takeda, Eiji

    2017-01-01

    We examined the effect of 1α-hydroxyvitamin D 3 [1α(OH)D 3 ] on mice in the forced swimming test. Intragastric administration of 1.0 μg/kg of 1α(OH)D 3 reduced immobility time in the forced swimming test. At all concentrations tested (0.5, 1.0, 2.0 μg/kg), 1α(OH)D 3 had no effect on locomotor activity, compared with controls. These results suggest that 1α(OH)D 3 may have antidepressant-like activity.

  3. Antidepressant like effects of hydrolysable tannins of Terminalia catappa leaf extract via modulation of hippocampal plasticity and regulation of monoamine neurotransmitters subjected to chronic mild stress (CMS).

    Science.gov (United States)

    Chandrasekhar, Y; Ramya, E M; Navya, K; Phani Kumar, G; Anilakumar, K R

    2017-02-01

    Terminalia catappa L. belonging to Combretaceae family is a folk medicine, known for its multiple pharmacological properties, but the neuro-modulatory effect of TC against chronic mild stress was seldom explored. The present study was designed to elucidate potential antidepressant-like effect of Terminalia cattapa (leaf) hydro-alcoholic extract (TC) by using CMS model for a period of 7 weeks. Identification of hydrolysable tannins was done by using LC-MS. After the CMS exposure, mice groups were administered with imipramine (IMP, 10mg/kg, i.p.) and TC (25, 50 and 100mg/kg of TC, p.o.). Behavioural paradigms used for the study included forced swimming test (FST), tail suspension test (TST) and sucrose preference test (SPT). After behavioural tests, monoamine neurotransmitter, cortisol, AchE, oxidative stress levels and mRNA expression studies relevant to depression were assessed. TC supplementation significantly reversed CMS induced immobility time in FST and other behavioural paradigms. Moreover, TC administration significantly restored CMS induced changes in concentrations of hippocampal neurotransmitters (5-HT, DA and NE) as well as levels of acetyl cholinesterase, cortisol, monoamine oxidases (MAO-A, MAO-B), BDNF, CREB, and p-CREB. It suggests that TC supplementation could supress stress induced depression by regulating monoamine neurotransmitters, CREB, BDNF, cortisol, AchE level as well as by amelioration of oxidative stress. Hence TC can be used as a complementary medicine against depression-like disorder. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Investigation of antidepressant-like and anxiolytic-like actions and cognitive and motor side effects of four N-methyl-D-aspartate receptor antagonists in mice

    DEFF Research Database (Denmark)

    Refsgaard, Louise Konradsen; Pickering, Darryl S; Andreasen T., Jesper

    2017-01-01

    antagonists. MK-801, ketamine, S-ketamine, RO 25-6981 and the positive control, citalopram, were tested for antidepressant-like and anxiolytic-like effects in mice using the forced-swim test, the elevated zero maze and the novelty-induced hypophagia test. Side effects were assessed using a locomotor activity...... test, the modified Y-maze and the rotarod test. All compounds increased swim distance in the forced-swim test. In the elevated zero maze, the GluN2B subtype-selective RO 25-6981 affected none of the measured parameters, whereas all other compounds showed anxiolytic-like effects. In the novelty......-induced hypophagia test, citalopram and MK-801 showed anxiogenic-like action. All NMDAR antagonists induced hyperactivity. The high doses of ketamine and MK-801 impaired performance in the modified Y-maze test, whereas S-ketamine and RO 25-6891 showed no effects in this test. Only MK-801 impaired rotarod performance...

  5. The folic acid combined with 17-β estradiol produces antidepressant-like actions in ovariectomized rats forced to swim.

    Science.gov (United States)

    Molina-Hernández, Miguel; Téllez-Alcántara, N Patricia; Olivera-López, Jorge I; Jaramillo, M Teresa

    2011-01-15

    Folic acid or 17-β estradiol produces antidepressant effects, either alone or combined with several antidepressants. However, the antidepressant-like actions of folic acid combined with 17-β estradiol in the forced swimming test (FST) have not been tested before. Thus, in the present study, ovariectomized female rats received folic acid (5.0 nmol/i.c.v., Pfluoxetine (20.0mg/kg, Pswimming behavior when they were tested in the FST. Combination of subthreshold doses of folic acid (2.5 nmol/i.c.v.; or 25.0mg/kg, p.o.) with subthreshold doses of 17-β estradiol (5.0 μg/rat, Pfluoxetine (15.0mg/kg, Pfluoxetine in the FST reduced immobility in the FST. These antidepressant-like actions probably were due to modifications of the serotonergic system since swimming behavior was increased and these effects were cancelled by ketanserin. Copyright © 2010 Elsevier Inc. All rights reserved.

  6. Antidepressant-Like Effect of Lipid Extract of Channa striatus in Chronic Unpredictable Mild Stress Model of Depression in Rats

    Directory of Open Access Journals (Sweden)

    Mohamed Saleem Abdul Shukkoor

    2016-01-01

    Full Text Available This study evaluated the antidepressant-like effect of lipid extract of C. striatus in chronic unpredictable mild stress (CUMS model of depression in male rats and its mechanism of action. The animals were subjected to CUMS for six weeks by using variety of stressors. At the end of CUMS protocol, animals were subjected to forced swimming test (FST and open field test followed by biochemical assay. The CUMS protocol produced depressive-like behavior in rats by decreasing the body weight, decreasing the sucrose preference, and increasing the duration of immobility in FST. The CUMS protocol increased plasma corticosterone and decreased hippocampal and prefrontal cortex levels of monoamines (serotonin, noradrenaline, and dopamine and brain-derived neurotrophic factor. Further, the CUMS protocol increased interleukin-6 (in hippocampus and prefrontal cortex and nuclear factor-kappa B (in prefrontal cortex but not in hippocampus. The lipid extract of C. striatus (125, 250, and 500 mg/kg significantly (p<0.05 reversed all the above parameters in rats subjected to CUMS, thus exhibiting antidepressant-like effect. The mechanism was found to be mediated through decrease in plasma corticosterone, increase in serotonin levels in prefrontal cortex, increase in dopamine and noradrenaline levels in hippocampus and prefrontal cortex, increase in BDNF in hippocampus and prefrontal cortex, and decrease in IL-6 and NF-κB in prefrontal cortex.

  7. Antidepressant-Like Activity of the Ethanolic Extract from Uncaria lanosa Wallich var. appendiculata Ridsd in the Forced Swimming Test and in the Tail Suspension Test in Mice

    Directory of Open Access Journals (Sweden)

    Lieh-Ching Hsu

    2012-01-01

    Full Text Available This study investigated the antidepressant activity of ethanolic extract of U. lanosa Wallich var. appendiculata Ridsd (ULEtOH for two-weeks administrations by using FST and TST on mice. In order to understand the probable mechanism of antidepressant-like activity of ULEtOH in FST and TST, the researchers measured the levels of monoamines and monoamine oxidase activities in mice brain, and combined the antidepressant drugs (fluoxetine, imipramine, maprotiline, clorgyline, bupropion and ketanserin. Lastly, the researchers analyzed the content of RHY in the ULEtOH. The results showed that ULEtOH exhibited antidepressant-like activity in FST and TST in mice. ULEtOH increased the levels of 5-HT and 5-HIAA in cortex, striatum, hippocampus, and hypothalamus, the levels of NE and MHPG in cortex and hippocampus, the level of NE in striatum, and the level of DOPAC in striatum. Two-week injection of IMI, CLO, FLU and KET enhanced the antidepressant-like activity of ULEtOH. ULEtOH inhibited the activity of MAO-A. The amount of RHY in ULEtOH was 17.12 mg/g extract. Our findings support the view that ULEtOH exerts antidepressant-like activity. The antidepressant-like mechanism of ULEtOH may be related to the increase in monoamines levels in the hippocampus, cortex, striatum, and hypothalamus of mice.

  8. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effects of gabapentin in mouse forced swimming test.

    Science.gov (United States)

    Ostadhadi, Sattar; Akbarian, Reyhaneh; Norouzi-Javidan, Abbas; Nikoui, Vahid; Zolfaghari, Samira; Chamanara, Mohsen; Dehpour, Ahmad-Reza

    2017-07-01

    Gabapentin as an anticonvulsant drug also has beneficial effects in treatment of depression. Previously, we showed that acute administration of gabapentin produced an antidepressant-like effect in the mouse forced swimming test (FST) by a mechanism that involves the inhibition of nitric oxide (NO). Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (K ATP ), in the present study we investigated the involvement of K ATP channels in antidepressant-like effect of gabapentin. Gabapentin at different doses (5-10 mg/kg) and fluoxetine (20 mg/kg) were administrated by intraperitoneal route, 60 and 30 min, respectively, before the test. To clarify the probable involvement of K ATP channels, mice were pretreated with K ATP channel inhibitor or opener. Gabapentin at dose 10 mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20 mg/kg). Co-administration of subeffective dose (1 mg/kg) of glibenclamide (inhibitor of K ATP channels) with gabapentin (3 mg/kg) showed a synergistic antidepressant-like effect. Also, subeffective dose of cromakalim (opener of K ATP channels, 0.1 mg/kg) inhibited the antidepressant-like effect of gabapentin (10 mg/kg). None of the treatments had any impact on the locomotor movement. Our study, for the first time, revealed that antidepressant-like effect of gabapentin in mice is mediated by blocking the K ATP channels.

  9. Antidepressant-like activity of resveratrol treatment in the forced swim test and tail suspension test in mice: the HPA axis, BDNF expression and phosphorylation of ERK.

    Science.gov (United States)

    Wang, Zhen; Gu, Jianhua; Wang, Xueer; Xie, Kai; Luan, Qinsong; Wan, Nianqing; Zhang, Qun; Jiang, Hong; Liu, Dexiang

    2013-11-01

    Resveratrol is a natural polyphenol enriched in Polygonum cuspidatum and has diverse biological activities. There is only limited information about the antidepressant-like effect of resveratrol. The present study assessed whether resveratrol treatment (20, 40 and 80mg/kg, i.p., 21days) has an antidepressant-like effect on the forced swim test (FST) and tail suspension test (TST) in mice and examined what its molecular targets might be. The results showed that resveratrol administration produced antidepressant-like effects in mice, evidenced by the reduced immobility time in the FST and TST, while it had no effect on the locomotor activity in the open field test. Resveratrol treatment significantly reduced serum corticosterone levels, which had been elevated by the FST and TST. Moreover, resveratrol increased brain-derived neurotrophic factor (BDNF) protein and extracellular signal-regulated kinase (ERK) phosphorylation levels in the prefrontal cortex and hippocampus. All of these antidepressant-like effects of resveratrol were essentially similar to those observed with the clinical antidepressant, fluoxetine. These results suggest that the antidepressant-like effects of resveratrol in the FST and TST are mediated, at least in part, by modulating hypothalamic-pituitary-adrenal axis, BDNF and ERK phosphorylation expression in the brain region of mice. © 2013.

  10. Antidepressant-like behavioral, anatomical, and biochemical effects of petroleum ether extract from maca (Lepidium meyenii) in mice exposed to chronic unpredictable mild stress.

    Science.gov (United States)

    Ai, Zhong; Cheng, Ai-Fang; Yu, Yuan-Tao; Yu, Long-Jiang; Jin, Wenwen

    2014-05-01

    Maca has been consumed as a medical food in Peru for thousands of years, and exerts anxiolytic and antidepressant effects. Our present study aimed to evaluate the behavior and anatomical and biochemical effects of petroleum ether extract from maca (ME) in the chronic unpredictable mild stress (CUMS) model of depression in mice. Three different doses of maca extract (125, 250, and 500 mg/kg) were orally administrated in the six-week CUMS procedure. Fluoxetine (10 mg/kg) was used as a positive control drug. Maca extract (250 and 500 mg/kg) significantly decreased the duration of immobility time in the tail suspension test. After treatment with maca extract (250 and 500 mg/kg), the granule cell layer in the dentate gyrus appeared thicker. Maca extract (250 and 500 mg/kg) also induced a significant reduction in corticosterone levels in mouse serum. In mouse brain tissue, after six weeks of treatment, noradrenaline and dopamine levels were increased by maca extract, and the activity of reactive oxygen species was significantly inhibited. Serotonin levels were not significantly altered. These results demonstrated that maca extract (250 and 500 mg/kg) showed antidepressant-like effects and was related to the activation of both noradrenergic and dopaminergic systems, as well as attenuation of oxidative stress in mouse brain.

  11. Antidepressant-like effects of the ethyl acetate soluble fraction of the root bark of Morus alba on the immobility behavior of rats in the forced swim test.

    Science.gov (United States)

    Lim, Dong Wook; Kim, Yun Tai; Park, Ji-Hae; Baek, Nam-In; Han, Daeseok

    2014-06-12

    In this study, the antidepressant-like effects of Morus alba fractions in rats were investigated in the forced swim test (FST). Male Wistar rats (9-week-old) were administered orally the M. alba ethyl acetate (EtOAc 30 and 100 mg/kg) and M. alba n-butanol fractions (n-BuOH 30 and 100 mg/kg) every day for 7 consecutive days. On day 7, 1 h after the final administration of the fractions, the rats were exposed to the FST. M. alba EtOAc fraction at the dose of 100 mg/kg induced a decrease in immobility behavior (p alba EtOAc fraction at the dose of 100 mg/kg decreased the hypothalamic-pituitary-adrenal (HPA) axis response to the stress, as indicated by an attenuated corticosterone response and decreased c-fos immunoreactivity in the hippocampal and hypothalamic paraventricular nucleus (PVN) region. These findings demonstrated that M. alba EtOAc fraction have beneficial effects on depressive behaviors and restore both altered c-fos expression and HPA activity.

  12. Antidepressant-like effect of the organoselenium compound ebselen in mice: evidence for the involvement of the monoaminergic system.

    Science.gov (United States)

    Posser, Thaís; Kaster, Manuella P; Baraúna, Sara Cristiane; Rocha, João B T; Rodrigues, Ana Lúcia S; Leal, Rodrigo B

    2009-01-05

    Ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one] is a seleno-organic compound which possesses a potent antioxidant activity and has been shown to exert neuroprotective effects in vitro and in vivo in a variety of pro-oxidative insults. The present study investigates a possible antidepressant activity of ebselen using two predictive tests for antidepressant activity in rodents: the forced swimming test and tail suspension test. Additionally, the mechanisms involved in the antidepressant-like effect of ebselen in mice were also assessed. Ebselen (10 mg/kg, s.c.) decreased the immobility time in the forced swimming test without accompanying changes in ambulation in the open-field test. In contrast, the administration of ebselen (10-30 mg/kg) did not produce any effect in the tail suspension test. The anti-immobility effect of ebselen (10 mg/kg, s.c.) was not prevented by pre-treatment of mice with p-chlorophenylalanine (PCPA, 100 mg/kg, i.p., an inhibitor of serotonin synthesis, 4 consecutive days), NAN-190 (0.5 mg/kg, i.p., a serotonin 5-HT(1A) receptor antagonist) or ketanserin (5 mg/kg, i.p., a serotonin 5-HT(2A/2C) receptor antagonist). On the other hand, the pre-treatment of mice with prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a dopamine D(1) receptor antagonist) or sulpiride (50 mg/kg, i.p., a dopamine D(2) receptor antagonist) completely blocked the antidepressant-like effect of ebselen (10 mg/kg, s.c.) in the forced swimming test. It may be concluded that ebselen produces an antidepressant-like effect in the forced swimming test that seems to be dependent on its interaction with the noradrenergic and dopaminergic systems, but not with the serotonergic system.

  13. Sex and age differences in the antidepressant-like effect of fluoxetine in the forced swim test.

    Science.gov (United States)

    Fernández-Guasti, Alonso; Olivares-Nazario, Maribel; Reyes, Rebeca; Martínez-Mota, Lucía

    2017-01-01

    This study compared in males and females of three representative ages: young adults (3-5months old), middle-aged (12-15months old) and senescent (23-25months old) the antidepressant-like effect of fluoxetine (FLX, 5.0 and 10mg/kg) in the forced swim test (FST). Intact (non gonadectomized) rats were evaluated. Young adult females were chosen in proestrus/estrus or in metestrus/diestrus, while middle-aged and senescent females were selected in metestrus/diestrus. Locomotion and motor coordination were also recorded. Under basal conditions (without FLX), young adult and middle-aged females showed less immobility than males. This sex difference disappeared at senescence because males diminished their levels of immobility. Thus, senescent males showed lower immobility than middle-aged and young males. FLX (5 and 10mg/kg) produced similar actions in young females irrespective of their estrous cycle phase, therefore, these subgroups were pooled in a single one. Young adult and middle aged females clearly responded to 5 and 10mg/kg of FLX with a reduction in immobility, while young adult and middle-aged males only did to 10mg/kg. In senescent females 10mg/kg FLX reduced immobility. Remarkably, in senescent males this FLX dose did not produce an antidepressant-like effect. FLX marginally affected locomotion; however, at its highest dose (10mg/kg), and only in senescent males, interfered with motor coordination tested in the rotarod. These data show that sex and aging influence behavioral despair without treatment and after FLX. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Antidepressant-like effect of losartan involves TRKB transactivation from angiotensin receptor type 2 (AGTR2) and recruitment of FYN.

    Science.gov (United States)

    Diniz, Cassiano R A F; Casarotto, Plinio C; Fred, Senem M; Biojone, Caroline; Castrén, Eero; Joca, Sâmia R L

    2018-06-01

    The renin-angiotensin system (RAS) is associated with peripheral fluid homeostasis and cardiovascular function, but recent evidence also suggests a functional role in the brain. RAS regulates physiological and behavioral parameters related to the stress response, including depressive symptoms. Apparently, RAS can modulate levels of brain-derived neurotrophic factor (BDNF) and TRKB, which are important in the neurobiology of depression and antidepressant action. However, the interaction between the BDNF/TRKB system and RAS in depression has not been investigated before. Accordingly, in the forced swimming test, we observed an antidepressant-like effect of systemic losartan but not with captopril or enalapril treatment. Moreover, infusion of losartan into the ventral hippocampus (vHC) and prelimbic prefrontal cortex (PL) mimicked the consequences of systemically injected losartan, whereas K252a (a blocker of TRK) infused into these brain areas impaired such effect. PD123319, an antagonist of AT2 receptor (AGTR2), also prevented the systemic losartan effect when infused into PL but not into vHC. Cultured cortical cells of rat embryos revealed that angiotensin II (ANG2), possibly through AGTR2, increased the surface levels of TRKB and its coupling to FYN, a SRC family kinase. Higher Agtr2 levels in cortical cells were reduced after stimulation with glutamate, and only under this condition an interaction between losartan and ANG2 was achieved. TRKB/AGTR2 heterodimers were also observed, in MG87 cells GFP-tagged AGTR2 co-immunoprecipitated with TRKB. Therefore, the antidepressant-like effect of losartan is proposed to occur through a shift of ANG2 towards AGTR2, followed by coupling of TRK/FYN and putative TRKB transactivation. Thus, the blockade of AGTR1 has therapeutic potential as a novel antidepressant therapy. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  15. Fluoxetine, 17-β estradiol or folic acid combined with intra-lateral septal infusions of neuropeptide Y produced antidepressant-like actions in ovariectomized rats forced to swim.

    Science.gov (United States)

    Molina-Hernández, Miguel; Téllez-Alcántara, N Patricia

    2011-12-01

    Folic acid is antidepressant, either alone or combined with several antidepressant drugs. However, the antidepressant-like actions of folic acid combined with intra-lateral septal (LSN) infusions of neuropeptide Y (NPY) in the forced swimming test (FST) have not been tested before. Thus, systemic injections of fluoxetine (20.0mg/kg, Pfluoxetine (15.0 mg/kg, P<0.05; s.c.) combined with subthreshold doses of NPY (2.5 μg/rat, P<0.05; intra-LSN) and these combinations produced antidepressant-like actions; which were canceled by BIBP 3226 (a NPY-Y1 receptor antagonist). It is concluded that folic acid produced antidepressant-like effects probably through the participation of the NPY Y1 receptors found in the lateral septal nuclei. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Antidepressant-like drug effects in juvenile and adolescent mice in the tail suspension test: Relationship with hippocampal serotonin and norepinephrine transporter expression and function.

    Directory of Open Access Journals (Sweden)

    Nathan C Mitchell

    2013-10-01

    Full Text Available Depression is a major health problem for which most patients are not effectively treated. This problem is further compounded in children and adolescents where only two antidepressants [both selective serotonin reuptake inhibitors (SSRIs] are currently approved for clinical use. Mouse models provide tools to identify mechanisms that might account for poor treatment response to antidepressants. However, there are few studies in adolescent mice and none in juvenile mice. The tail suspension test (TST is commonly used to assay for antidepressant-like effects of drugs in adult mice. Here we show that the TST can also be used to assay antidepressant-like effects of drugs in C57Bl/6 mice aged 21 (juvenile and 28 (adolescent days post-partum (P. We found that the magnitude of antidepressant-like response to the SSRI escitalopram was less in P21 mice than in P28 or adult mice. The smaller antidepressant response of juveniles was not related to either maximal binding (Bmax or affinity (Kd for [3H]citalopram binding to the serotonin transporter (SERT in hippocampus, which did not vary significantly among ages. Magnitude of antidepressant-like response to the tricyclic desipramine was similar among ages, as were Bmax and Kd values for [3H]nisoxetine binding to the norepinephrine transporter (NET in hippocampus. Together, these findings suggest that juvenile mice are less responsive to the antidepressant-like effects of escitalopram than adults, but that this effect is not due to delayed maturation of SERT in hippocampus. Showing that the TST is a relevant behavioral assay of antidepressant-like activity in juvenile and adolescent mice sets the stage for future studies of the mechanisms underlying the antidepressant response in these young populations.

  17. Antidepressant-Like Effects of Cordycepin in a Mice Model of Chronic Unpredictable Mild Stress

    Directory of Open Access Journals (Sweden)

    Zhang Tianzhu

    2014-01-01

    Full Text Available Cordycepin (3′-deoxyadenosine, a major bioactive component isolated from Cordyceps militaris, has multiple pharmacological activities. This study is attempted to investigate whether cordycepin (COR possesses beneficial effects on chronic unpredictable mild stress- (CUMS- induced behavioral deficits (depression-like behaviors and explore the possible mechanisms. ICR mice were subjected to chronic unpredictable mild stress for 42 consecutive days. Then, COR and fluoxetine (FLU, positive control drug were administered for 21 consecutive days at the last three weeks of CUMS procedure. The classical behavioral tests, open field test (OFT, sucrose preference test (SPT, tail suspension test (TST, and forced swimming test (FST, were applied to evaluate the antidepressant effects of COR. Then the serotonin (5-HT and noradrenaline (NE concentrations in hippocampal were evaluated by HPLC; tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 in hippocampal were evaluated, and the proteins of TNF-α, IL-6, NF-κBP65 5-HT receptor (5-HTR, and brain-derived neurotrophic factor (BDNF in hippocampal were evaluated by Western blot. Our results indicated that 6 weeks of CUMS exposure induced significant depression-like behavior, with low 5-HT and NE levels, high TNF-α and IL-6 in brain and high hippocampal TNF-α, IL-6, P-NF-κBP65, and 5-HTR levels, and low BDNF expression levels. Whereas, chronic COR (20, 40 mg/kg treatments reversed the behavioral deficiency induced by CUMS exposure, treatment with COR normalized the change of TNF-α, IL-6, 5-HT, and NE levels, which demonstrated that COR could partially restore CUMS-induced 5-HT receptor impairments and inflammation. Besides, hippocampal BDNF expressions were also upregulated after COR treatments. In conclusion, COR remarkably improved depression-like behavior in CUMS mice and its antidepressant activity is mediated, at least in part, by the upregulating BDNF and downregulating 5-HTR levels and

  18. Noradrenergic neurotransmission within the bed nucleus of the stria terminalis modulates the retention of immobility in the rat forced swimming test.

    Science.gov (United States)

    Nagai, Michelly M; Gomes, Felipe V; Crestani, Carlos C; Resstel, Leonardo B M; Joca, Sâmia R L

    2013-06-01

    The bed nucleus of the stria terminalis (BNST) is a limbic structure that has a direct influence on the autonomic, neuroendocrine, and behavioral responses to stress. It was recently reported that reversible inactivation of synaptic transmission within this structure causes antidepressant-like effects, indicating that activation of the BNST during stressful situations would facilitate the development of behavioral changes related to the neurobiology of depression. Moreover, noradrenergic neurotransmission is abundant in the BNST and has an important role in the regulation of emotional processes related to the stress response. Thus, this study aimed to test the hypothesis that activation of adrenoceptors within the BNST facilitates the development of behavioral consequences of stress. To investigate this hypothesis, male Wistar rats were stressed (forced swimming, 15 min) and 24 h later received intra-BNST injections of vehicle, WB4101, RX821002, CGP20712, or ICI118,551, which are selective α(1), α(2), β(1), and β(2) adrenoceptor antagonists, respectively, 10 min before a 5-min forced swimming test. It was observed that administration of WB4101 (10 and 15 nmol), CGP20712 (5 and 10 nmol), or ICI118,551 (5 nmol) into the BNST reduced the immobility time of rats subjected to forced swimming test, indicating an antidepressant-like effect. These findings suggest that activation of α(1), β(1), and β(2) adrenoceptors in the BNST could be involved in the development of the behavioral consequences of stress. © 2013 Wolters Kluwer Health | Lippincott Williams & Wilkins.

  19. Combined α7 nicotinic acetylcholine receptor agonism and partial serotonin transporter inhibition produce antidepressant-like effects in the mouse forced swim and tail suspension tests

    DEFF Research Database (Denmark)

    Andreasen, Jesper T; Redrobe, John P; Nielsen, Elsebet Ø

    2012-01-01

    Emerging evidence points to an involvement of nicotinic acetylcholine receptors (nAChRs) in major depression. Nicotine improves symptoms of depression in humans and shows antidepressant-like effects in rodents. Monoamine release is facilitated by nAChR stimulation, and nicotine-evoked serotonin (5...

  20. Antidepressant-like effects of Gan-Mai-Dazao-Tang via monoamine regulatory pathways on forced swimming test in rats.

    Science.gov (United States)

    Huang, Hsiang-Ling; Lim, Swee-Ling; Lu, Kuan-Hung; Sheen, Lee-Yan

    2018-01-01

    Depression is a highly prevalent and recurrent mental disorder that impacts all aspects of human life. Undesirable effects of the antidepressant drugs led to the development of complementary and alternative therapies. Gan-Mai-Da-Zao-Tang (, gān mài dà zǎo tang) is a traditional herbal formula commonly used for the treatment of depression, but lack of scientific proof on its mechanism. It consisted of Glycyrrhiza uralensis Fisch. (licorice), Triticum aestivum L. (wheat) and Zizphus jujuba Mill. (jujube). The objective of this study is to investigate the antidepressant effects of Gan-Mai-Dazao-Tang and its ingredients in rats exposed to forced swimming test (FST). The 72 of male Nerl: Wistar rats (8 weeks old) were randomized into control (10 mL/kg bw H 2 O), licorice (0.4 g/kg bw), wheat (1.6 g/kg bw), jujube (0.5 g/kg bw), Gan-Mai-Da-Zao-Tang (2.5 g/kg bw of licorice: wheat: jujube in ratio of 5:20:6) and Prozac (18 mg/kg bw) groups. Samples were administered by oral gavage for 21 days. FST was performed on 21st day, with 15 min for pretest followed by 5 min for real test. Then, the animals were sacrificed and brain tissues were collected for monoamines analyses. The Gan-Mai-Da-Zao-Tang (LWJ) showed significantly down-regulation of immobility time, 3,4-dihydroxyphenylacetic acid (DOPAC) and DOPAC/dopamine (DA) turnover rates, and also enhanced the concentration of serotonin (5-HT) and DA in brain tissues, as compared with the control. The LWJ stated the potent antidepressant-like effect by modulating these monoamines concentration, while the licorice, wheat and jujube did not reported significant results as compared with control group. The positive control (Prozac) was noted with significantly reduction in body weight and appetite. In conclusion, the antidepressant-like effects of LWJ might be mediated by the regulation of monoamine neurotransmitters. Thus, it could beneficial in depression treatment as a complementary approach.

  1. Antidepressant-like effects of Gan-Mai-Dazao-Tang via monoamine regulatory pathways on forced swimming test in rats

    Directory of Open Access Journals (Sweden)

    Hsiang-Ling Huang

    2018-01-01

    Full Text Available Depression is a highly prevalent and recurrent mental disorder that impacts all aspects of human life. Undesirable effects of the antidepressant drugs led to the development of complementary and alternative therapies. Gan-Mai-Da-Zao-Tang (甘麥大棗湯, gān mài dà zǎo tang is a traditional herbal formula commonly used for the treatment of depression, but lack of scientific proof on its mechanism. It consisted of Glycyrrhiza uralensis Fisch. (licorice, Triticum aestivum L. (wheat and Zizphus jujuba Mill. (jujube. The objective of this study is to investigate the antidepressant effects of Gan-Mai-Dazao-Tang and its ingredients in rats exposed to forced swimming test (FST. The 72 of male Nerl: Wistar rats (8 weeks old were randomized into control (10 mL/kg bw H2O, licorice (0.4 g/kg bw, wheat (1.6 g/kg bw, jujube (0.5 g/kg bw, Gan-Mai-Da-Zao-Tang (2.5 g/kg bw of licorice: wheat: jujube in ratio of 5:20:6 and Prozac (18 mg/kg bw groups. Samples were administered by oral gavage for 21 days. FST was performed on 21st day, with 15 min for pretest followed by 5 min for real test. Then, the animals were sacrificed and brain tissues were collected for monoamines analyses. The Gan-Mai-Da-Zao-Tang (LWJ showed significantly down-regulation of immobility time, 3,4-dihydroxyphenylacetic acid (DOPAC and DOPAC/dopamine (DA turnover rates, and also enhanced the concentration of serotonin (5-HT and DA in brain tissues, as compared with the control. The LWJ stated the potent antidepressant-like effect by modulating these monoamines concentration, while the licorice, wheat and jujube did not reported significant results as compared with control group. The positive control (Prozac was noted with significantly reduction in body weight and appetite. In conclusion, the antidepressant-like effects of LWJ might be mediated by the regulation of monoamine neurotransmitters. Thus, it could beneficial in depression treatment as a complementary approach.

  2. Possible involvement of ATP-sensitive potassium channels in the antidepressant-like effect of baclofen in mouse forced swimming test.

    Science.gov (United States)

    Nazari, Seyedeh Khadijeh; Nikoui, Vahid; Ostadhadi, Sattar; Chegini, Zahra Hadi; Oryan, Shahrbanoo; Bakhtiarian, Azam

    2016-12-01

    Previous study confirmed that the acute treatment with baclofen by inhibition of the l-arginine-nitric oxide (NO) pathway diminished the immobility behavior in the forced swimming test (FST) of mice. Considering the involvement of NO in adenosine triphosphate (ATP)-sensitive potassium channels (K ATP ), in the present study we investigated the involvement of K ATP channels in antidepressant-like effect of baclofen in the forced swimming test (FST). After assessment of locomotor behavior in the open-field test (OFT), FST was applied for evaluation of the antidepressant-like activity of baclofen in mice. Baclofen at different doses (0.1, 0.3, and 1mg/kg) and fluoxetine (20mg/kg) were administrated by intraperitoneal (ip) route, 30min before the FST or OFT. To clarify the probable involvement of K ATP channels, after determination of sub-effective doses of glibenclamide as a K ATP channel blocker and cromakalim, as an opener of these channels, they were co-administrated with the sub-effective and effective doses of baclofen, respectively. Baclofen at dose 1mg/kg significantly decreased the immobility behavior of mice similar to fluoxetine (20mg/kg). Co-administration of gelibenclamide sub-effective dose (1mg/kg) with baclofen (0.1mg/kg) showed a synergistic antidepressant-like effect in the FST. Also, sub-effective dose of cromakalim (0.1mg/kg) inhibited the antidepressant-like effect of baclofen (1mg/kg) in the FST. All aforementioned treatments had not any impact on the locomotor movement of mice in OFT. Our study for the first time revealed that antidepressant-like effect of baclofen on mice is K ATP -dependent, and baclofen seems that exert this effect by blocking the K ATP channels. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Antidepressant-like effect of rutin isolated from the ethanolic extract from Schinus molle L. in mice: evidence for the involvement of the serotonergic and noradrenergic systems.

    Science.gov (United States)

    Machado, Daniele G; Bettio, Luis E B; Cunha, Mauricio P; Santos, Adair R S; Pizzolatti, Moacir G; Brighente, Inês M C; Rodrigues, Ana Lúcia S

    2008-06-10

    We have recently shown that the hexanic extract from leaves of Schinus molle produces antidepressant-like effects in the tail suspension test in mice. This study investigated the antidepressant-like effect of the ethanolic extract from aerial part of S. molle in the forced swimming test and tail suspension test in mice, two predictive models of depression. Moreover, we investigated the antidepressant potential of rutin, a flavonoid isolated from the ethanolic extract of this plant and the influence of the pretreatment with the inhibitors of serotonin or noradrenaline synthesis, p-chlorophenylalanine methyl ester (PCPA) and alpha-methyl-p-tyrosine (AMPT), respectively in the antidepressant-like effect of this flavonoid. The administration of the ethanolic extract produced a reduction in the immobility time in the tail suspension test (dose range 600-1000 mg/kg, p.o.), but not in the forced swimming test. It also produced a reduction in the ambulation in the open-field test in mice not previously habituated to the arena, but no effect in the locomotor activity in mice previously habituated to the open-field. The administration of rutin reduced the immobility time in the tail suspension test (0.3-3 mg/kg, p.o.), but not in the forced swimming test, without producing alteration in the locomotor activity. In addition, pretreatment of mice with PCPA (100 mg/kg, i.p., for 4 consecutive days) or AMPT (100 mg/kg, i.p.) prevented the anti-immobility effect of rutin (0.3 mg/kg, p.o.) in the tail suspension test. The results firstly indicated the antidepressant-like effect of the ethanolic extract of S. molle in the tail suspension test may be dependent on the presence of rutin that likely exerts its antidepressant-like effect by increasing the availability of serotonin and noradrenaline in the synaptic cleft.

  4. Influence of the brain sexual differentiation process on despair and antidepressant-like effect of fluoxetine in the rat forced swim test.

    Science.gov (United States)

    Gómez, M L; Martínez-Mota, L; Estrada-Camarena, E; Fernández-Guasti, A

    2014-03-07

    Sex differences exist in the depressive disorder prevalence and response to treatment. Several studies suggest that females respond better than males to the action of selective serotonin reuptake inhibitors (SSRIs), suggesting that gonadal hormones modulate mood and the response to these drugs. Sexual steroid hormones exert organizational actions (perennial and on early development) and activational effects (transient and on differentiated tissues). The aim of this study was to analyze sex differences in the forced swim test (FST) in animals without treatment and after fluoxetine (FLX, 0, 2.5, 5.0 and 10.0mg/kg). Initially, we compared male and female adult rats under control conditions or after altering their sexual differentiation process (at day 5 postnatally, PN, 60μg of testosterone propionate to females and male castration to induce or preclude masculinization, respectively). To further analyze if the sex differences depend on organizational or activational steroid hormone action we tested the same animals before and after adult gonadectomy. To prevent variations depending upon the estrous cycle, control and masculinized females were tested in estrus. Control females showed lower immobility and required lower doses of FLX (5mg/kg), to show an antidepressant-like effect, than males (10mg/kg), even after adult gonadectomy. In control males adult orchidectomy prevented FLX's action. Neonatally masculinized females exhibited analogous levels of immobility than control ones; before ovariectomy they responded to FLX similar to controls, but after the surgery they did not respond to fluoxetine. Neonatally orchidectomized males exhibited similar immobility values and response to FLX than control females. The findings suggest that the sex difference in despair depends on the hormones organizational effects and, in males, the response to FLX relies on organizational and activational actions. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Antidepressant-like effects of the aqueous macerate of the bulb of Gladiolus dalenii Van Geel (Iridaceae) in a rat model of epilepsy-associated depression.

    Science.gov (United States)

    Ngoupaye, Gwladys Temkou; Bum, Elisabeth Ngo; Daniels, Willie Mark Uren

    2013-10-20

    In Cameroonian traditional medicine various extracts of Gladiolus dalenii Van Geel (Iridaceae) have been used as a cure for various ailments that include headaches, digestive problems, muscle and joint aches, and some central nervous system disorders such as epilepsy, schizophrenia and mood disorders. Owning to this background, the aim of the study was to investigate whether an aqueous macerate of the bulb of Gladiolus dalenii has any antidepressant activity focusing specifically on depression-like behaviours associated with epilepsy. We used the combined administration of atropine and pilocarpine to rats as our animal model of epilepsy. The forced swim test and spontaneous locomotor activity in the open field test were the two tools used to assess the presence of depression-like behaviour in epileptic and control animals. The following depression-related parameters were determined: plasma ACTH, plasma corticosterone, adrenal gland weight and hippocampal levels of brain-derived neurotrophic factor (BDNF). The effects of Gladiolus dalenii were compared to that of fluoxetine. Our results showed that we had a valid animal model of epilepsy-induced depression as all 3 measures of construct, predictive and face validity were satisfied. The data indicated that Gladiolus dalenii significantly reduced the immobility times in the forced swim test and the locomotor activity as assessed in the open field. A similar pattern was observed when the HPA axis parameters were analysed. Gladiolus dalenii significantly reduced the levels of ACTH, corticosterone, but not the adrenal gland weight. Gladiolus dalenii significantly increased the level of BDNF in the hippocampus. In all parameters measured the effects of Gladiolus dalenii were significantly greater than those of fluoxetine. The results show that Gladiolus dalenii has antidepressant-like properties similar to those of fluoxetine in epilepsy-associated depressive states. The antidepressant activity of Gladiolus dalenii is

  6. Evaluation of antidepressant-like effect of hydroalcoholic extract of Passiflora incarnata in animal models of depression in male mice

    Directory of Open Access Journals (Sweden)

    Jafarpoor Nima

    2014-01-01

    Full Text Available Introduction: Passiflora incarnata (PI is one of the commonest herbal anti-anxiety and sedative agents. The aim of the present study was to investigate the antidepressant effect of hydroalcoholic extract of PI in forced swim test (FST and tail suspension test (TST in male mice. Methods: In this experimental study, 48 male mice were randomly divided into 6 groups of 8: Negative and positive control groups received normal saline (10 ml/kg, fluoxetine (20 mg/kg and imipramine (30 mg/kg, respectively and treatment groups received extracts of PI (200, 400 and 800 mg/kg. Immobility, swimming and climbing behaviors were recorded during 6-min. Results: All doses of PI extract compared to control group significantly reduced the duration of immobility time in both of two tests (p<0.001. Also, these extracts increased swimming time (p<0.001 without significant change of climbing time. Conclusion: PI has considerable antidepressant-like effect in animal models of depression. However, further studies are needed to determine its exact mechanism of action.

  7. P-glycoprotein Inhibition Increases the Brain Distribution and Antidepressant-Like Activity of Escitalopram in Rodents

    Science.gov (United States)

    O'Brien, Fionn E; O'Connor, Richard M; Clarke, Gerard; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F

    2013-01-01

    Despite the clinical prevalence of the antidepressant escitalopram, over 30% of escitalopram-treated patients fail to respond to treatment. Recent gene association studies have highlighted a potential link between the drug efflux transporter P-glycoprotein (P-gp) and response to escitalopram. The present studies investigated pharmacokinetic and pharmacodynamic interactions between P-gp and escitalopram. In vitro bidirectional transport studies revealed that escitalopram is a transported substrate of human P-gp. Microdialysis-based pharmacokinetic studies demonstrated that administration of the P-gp inhibitor cyclosporin A resulted in increased brain levels of escitalopram without altering plasma escitalopram levels in the rat, thereby showing that P-gp restricts escitalopram transport across the blood–brain barrier (BBB) in vivo. The tail suspension test (TST) was carried out to elucidate the pharmacodynamic impact of P-gp inhibition on escitalopram effect in a mouse model of antidepressant activity. Pre-treatment with the P-gp inhibitor verapamil enhanced the response to escitalopram in the TST. Taken together, these data indicate that P-gp may restrict the BBB transport of escitalopram in humans, potentially resulting in subtherapeutic brain concentrations in certain patients. Moreover, by verifying that increasing escitalopram delivery to the brain by P-gp inhibition results in enhanced antidepressant-like activity, we suggest that adjunctive treatment with a P-gp inhibitor may represent a beneficial approach to augment escitalopram therapy in depression. PMID:23670590

  8. Behavioral and biochemical effects of ketamine and dextromethorphan relative to its antidepressant-like effects in Swiss Webster mice.

    Science.gov (United States)

    Nguyen, Linda; Lucke-Wold, Brandon P; Logsdon, Aric F; Scandinaro, Anna L; Huber, Jason D; Matsumoto, Rae R

    2016-09-28

    Ketamine has been shown to produce rapid and robust antidepressant effects in depressed individuals; however, its abuse potential and adverse psychotomimetic effects limit its widespread use. Dextromethorphan (DM) may serve as a safer alternative on the basis of pharmacodynamic similarities to ketamine. In this proof-of-concept study, behavioral and biochemical analyses were carried out to evaluate the potential involvement of brain-derived neurotrophic factor (BDNF) in the antidepressant-like effects of DM in mice, with comparisons to ketamine and imipramine. Male Swiss, Webster mice were injected with DM, ketamine, or imipramine and their behaviors were evaluated in the forced-swim test and the open-field test. Western blots were used to measure BDNF and its precursor, pro-BDNF, protein expression in the hippocampus and the frontal cortex of these mice. Our results show that both DM and imipramine reduced immobility time in the forced-swim test without affecting locomotor activity, whereas ketamine reduced immobility time and increased locomotor activity. Ketamine also rapidly (within 40 min) increased pro-BDNF expression in an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-dependent manner in the hippocampus, whereas DM and imipramine did not alter pro-BDNF or BDNF levels in either the hippocampus or the frontal cortex within this timeframe. These data show that DM shares some features with both ketamine and imipramine. Additional studies examining DM may aid in the development of more rapid, safe, and efficacious antidepressant treatments.

  9. The role of NMDA receptor and nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effect of dextromethorphan in mice forced swimming test and tail suspension test.

    Science.gov (United States)

    Sakhaee, Ehsan; Ostadhadi, Sattar; Khan, Muhammad Imran; Yousefi, Farbod; Norouzi-Javidan, Abbas; Akbarian, Reyhaneh; Chamanara, Mohsen; Zolfaghari, Samira; Dehpour, Ahmad-Reza

    2017-01-01

    Depression is a devastating disorder which has a high impact on the wellbeing of overall society. As such, need for innovative therapeutic agents are always there. Most of the researchers focused on N-methyl-d-aspartate receptor to explore the antidepressant like activity of new therapeutic agents. Dextromethorphan is a cough suppressant agent with potential antidepressant activity reported in mouse force swimming test. Considering N-methyl-d-aspartate as a forefront in exploring antidepressant agents, here we focused to unpin the antidepressant mechanism of dextromethorphan targeting N-methyl-d-aspartate receptor induced nitric oxide-cyclic guanosine monophosphate signaling. Dextromethorphan administered at a dose of 10 and 30mg/kg i.p significantly reduced the immobility time. Interestingly, this effect of drug (30mg/kg) was inhibited when the animals were pretreated either with N-methyl-d-aspartate (75mg/kg), or l-arginine (750mg/kg) as a nitric oxide precursor and/or sildenafil (5mg/kg) as a phosphodiesterase 5 inhibitor. However, the antidepressant effect of Dextromethorphan subeffective dose (3mg/kg) was augmented when the animals were administered with either L-NG-Nitroarginine methyl ester (10mg/kg) non-specific nitric oxide synthase inhibitor, 7-Nitroindazole (30mg/kg) specific neural nitric oxide synthase inhibitor, MK-801 (0.05mg/kg) an N-methyl-d-aspartate receptor antagonist but not aminoguanidine (50mg/kg) which is specific inducible nitric oxide synthase inhibitor as compared to the drugs when administered alone. No remarkable effect on locomotor activity was observed during open field test when the drugs were administered at the above mentioned doses. Therefore, it is evident that the antidepressant like effect of Dextromethorphan is owed due to its inhibitory effect on N-methyl-d-aspartate receptor and NO- Cyclic guanosine monophosphate pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. N-acetylcysteine possesses antidepressant-like activity through reduction of oxidative stress: behavioral and biochemical analyses in rats.

    Science.gov (United States)

    Smaga, Irena; Pomierny, Bartosz; Krzyżanowska, Weronika; Pomierny-Chamioło, Lucyna; Miszkiel, Joanna; Niedzielska, Ewa; Ogórka, Agata; Filip, Małgorzata

    2012-12-03

    The growing body of evidence implicates the significance of oxidative stress in the pathophysiology of depression. The aim of this paper was to examine N-acetylcysteine (NAC) - a putative precursor of the most important tissue antioxidant glutathione - in an animal model of depression and in ex vivo assays to detect oxidative stress parameters. Imipramine (IMI), a classical and clinically-approved antidepressant drug was also under investigation. Male Wistar rats which underwent either bulbectomy (BULB; removal of the olfactory bulbs) or sham surgery (SHAM; olfactory bulbs were left undestroyed) were treated acutely or repeatedly with NAC (50-100mg/kg, ip) or IMI (10mg/kg, ip). Following 10-daily injections with NAC or IMI or their solvents, or 9-daily injections with a corresponding solvent plus acute NAC or acute IMI forced swimming test on day 10, and locomotor activity were performed; immediately after behavioral tests animals were decapitated. Biochemical tests (the total antioxidant capacity - TAC and the superoxide dismutase activity - SOD) were performed on homogenates in several brain structures. In behavioral studies, chronic (but not acute) administration of NAC resulted in a dose-dependent reduction in the immobility time seen only in BULB rats while chronic IMI produced a significant decrease in this parameter in both SHAM and BULB animals. On the other hand, chronic administration of NAC and IMI resulted in a significant increase in cellular antioxidant mechanisms (SOD activity) that reversed the effects of BULB in the frontal cortex, hippocampus and striatum. Our study further supports the antidepressant-like activity of NAC and links its effect as well as IMI actions with the enhancement of brain SOD activity. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Anti-anxiety and anti-depressant like effects of murraya koenigii in experimental models of anxiety and depression

    Directory of Open Access Journals (Sweden)

    Snigdha Sharma

    2017-01-01

    Full Text Available Background: Presence of free radical scavenging activity in Murraya koenigii, commonly known as Curry leaves, has been shown in previous studies. Oxidative stress plays an important role in the development of various neurobehavioral disorders including anxiety and depression. Aim: The present study aimed to evaluate the effects of Murraya koenigii in animal models of depression and anxiety. Materials and Methods: The effect of incremental doses of Murraya koenigii aqueous leaf extract was evaluated on spontaneous motor activity (SMA, open arm incursions in elevated plus maze, and despair behaviour in forced swim (FST and tail suspension (TST tests as compared to control groups in Swiss albino mice. Results: Murraya koenigii 300 mg/kg, p.o. (MK300 and 400 mg/kg, p.o. (MK400 reduced the SMA count from 754 ± 64.9 to 540 ± 29 and 295 ± 34 respectively, which was statistically significant. MK300 and MK400 reduced significantly the open arm count from 29 ± 8.6 to 16 ± 7 and 10 ± 3.9, respectively. On FST, MK400 reduced the duration of immobility from 145.5 ± 29 to 91 ± 17.3, which was statistically significant. On TST, MK produced a dose-dependent decrease in the duration of immobility; however, it was statistically significant only with MK400. Conclusion: Murraya koenigii aqueous leaf extract reduced the despair behavior in experimental animal models, suggesting an anti-depressant like activity. Murraya koenigii extract also reduced spontaneous locomotor activity in a dose-dependent manner suggesting a sedative and/or anxiolytic effect though there wasn't any anxiolytic effect in the elevated plus maze test.

  12. A detailed analysis of open-field habituation and behavioral and neurochemical antidepressant-like effects in postweaning enriched rats.

    Science.gov (United States)

    Brenes, Juan C; Padilla, Michael; Fornaguera, Jaime

    2009-01-30

    Our previous work has shown that male Sprague-Dawley rats reared in social isolation, standard housing and environmental enrichment differ in their spontaneous open-field activity and in some neurobehavioral depressive-like parameters. Here, we extended this evidence by using a shorter postweaning rearing period (1 month) and including additional evaluations. First, in order to obtain a better characterization of the exploratory strategies among rearing conditions we analyzed in detail the spontaneous activity at the first minute and during the 10-min session. Second, we asked whether the changes in open-field activity were related with basal anxiety levels in the elevated plus-maze. Third, behavior in the forced-swimming test was analyzed and afterward, the tissue levels of hippocampal norepinephrine and serotonin were assessed. The possible relationship between neurotransmitters and forced-swimming behavior were explored through correlation analyses. We found that rearing conditions (i) differed on locomotor habituation and on sensory-motor exploration at the first minute and during the 10-min session without modifying the plus-maze behavior; (ii) affected differentially the grooming time, its sequential components, and the relationship between grooming and locomotor parameters; (iii) modified forced-swimming behavior and the hippocampal concentration of norepinephrine, serotonin, and its turnover; and (iv) produced different correlation patterns between both neurotransmitters and forced-swimming behaviors. Overall, environmental enrichment accelerated open-field habituation and led to behavioral and neurochemical antidepressant-like effects. In contract, isolation rearing strongly impaired habituation and simple information processing, but showed marginal effects on depressive-like behavior and on hippocampal neurochemistry. The current results suggest that differential rearing is not only a useful procedure to study behavioral plasticity or rigidity in response

  13. Prominent crista terminalis mimicking a right atrial mass: case report

    Directory of Open Access Journals (Sweden)

    Lange Peter

    2010-10-01

    Full Text Available Abstract The crista terminalis is a normal anatomical structure within the right atrium that is not normally visualised in the standard views obtained while performing a transthoracic echocardiogram. In this case report, transthoracic echocardiography suggested the presence of a right atrial mass in a patient with end stage renal disease. However, subsequent transesophageal echocardiography revealed that the right atrial mass was actually a thick muscular bridge in the right atrium consistent with a prominent crista terminalis. An understanding of the anatomy and the echocardiographic appearance of a prominent crista terminalis will minimize the misdiagnosis of this structure avoiding unnecessary expensive additional tests.

  14. Evaluation of the role of NMDA receptor function in antidepressant-like activity. A new study with citalopram and fluoxetine in the forced swim test in mice.

    Science.gov (United States)

    Wolak, Małgorzata; Siwek, Agata; Szewczyk, Bernadeta; Poleszak, Ewa; Bystrowska, Beata; Moniczewski, Andrzej; Rutkowska, Anita; Młyniec, Katarzyna; Nowak, Gabriel

    2015-06-01

    The NMDA/glutamate receptors are involved in the mechanism of antidepressant activity. The present study was designed to investigate the effect of NMDA receptor ligands (agonists and antagonists of glutamate sites) on the antidepressant-like activity of selective serotonin reuptake inhibitors (SSRIs), citalopram and fluoxetine, in the forced swim test in mice. The antidepressant activity (reduction in immobility time) of citalopram but not of fluoxetine was antagonized by N-methyl-D-aspartate acid and enhanced by CGP37849 (antagonist of the NMDA receptor). The present literature data indicate that the antidepressant-like activity of conventional antidepressants is generally affected by the NMDA receptor, although by modulation from different sites of the complex. Thus, it supports the issue of the ability of NMDA receptor antagonists to enhance the antidepressant action in human depression. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  15. Antidepressant-like effect of m-trifluoromethyl-diphenyl diselenide in the mouse forced swimming test involves opioid and serotonergic systems.

    Science.gov (United States)

    Brüning, César Augusto; Souza, Ana Cristina Guerra; Gai, Bibiana Mozzaquatro; Zeni, Gilson; Nogueira, Cristina Wayne

    2011-05-11

    Serotonergic and opioid systems have been implicated in major depression and in the action mechanism of antidepressants. The organoselenium compound m-trifluoromethyl-diphenyl diselenide (m-CF(3)-PhSe)(2) shows antioxidant and anxiolytic activities and is a selective inhibitor of monoamine oxidase A activity. The present study was designed to investigate the antidepressant-like effect of (m-CF(3)-PhSe)(2) in female mice, employing the forced swimming test. The involvement of the serotonergic and opioid systems in the antidepressant-like effect of (m-CF(3)-PhSe)(2) was appraised. (m-CF(3)-PhSe)(2) at doses of 50 and 100mg/kg (p.o.) exhibited antidepressant-like action in the forced swimming test. The effect of (m-CF(3)-PhSe)(2) (50mg/kg p.o.) was prevented by pretreatment of mice with WAY100635 (0.1mg/kg, s.c. a selective 5-HT(1A) receptor antagonist), ritanserin (4 mg/kg, i.p., a non-selective 5HT(2A/2C) receptor antagonist), ondansetron (1mg/kg, i.p., a selective 5-HT(3) receptor antagonist) and naloxone (1mg/kg, i.p., a non-selective antagonist of opioid receptors). These results suggest that (m-CF(3)-PhSe)(2) produced an antidepressant-like effect in the mouse forced swimming test and this effect seems most likely to be mediated through an interaction with serotonergic and opioid systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Evaluation of antidepressant-like activity of novel water-soluble curcumin formulations and St. John's wort in behavioral paradigms of despair.

    Science.gov (United States)

    Kulkarni, S K; Akula, Kiran Kumar; Deshpande, Jayant

    2012-01-01

    Curcumin is the active principle of Curcuma longa, one of the widely used components in the traditional system of medicine in India. Despite its efficacy in experimental studies aiming at neuronal disorders like depression, curcu-min's poor water solubility challenges the production of therapeutic formulations. This study investigates the antidepressant-like activity of novel water-soluble curcumin formulations, dispensed in three different concentrations. Further, the study comparatively evaluates St. John's wort (SJW), another herbal preparation. These compounds were evaluated in the forced swimming test in mice, and the corresponding changes in the neurotransmitter levels were measured. Three water-soluble curcumin formulations, C-5, C-20 and C-50 (50-200 mg/kg p.o.) decreased the immobility period, and increased serotonin and dopamine levels in the brain tissues. A subeffective dose (50 mg/kg) of these formulations enhanced the antidepressant-like effect of classical antidepressants with varied mechanisms of action. In addition, an SJW dose of 25 mg/kg showed a significant antidepressant-like effect in all the behavioral studies and also significantly increased brain neurotransmitter levels, especially that of serotonin. The effects produced by C-5 were comparable with those of SJW and fluoxetine, respectively. In all these observations, the water-soluble formulations showed a significant antidepressant-like effect, including enhancement of neurotransmitter levels as compared to the similar dose of a conventional curcumin preparation. Thus, these formulations may be used as a novel treatment option in the management of mental depression. Copyright © 2012 S. Karger AG, Basel.

  17. Room-temperature super-extraction system (RTSES optimizes the anxiolytic- and antidepressant-like behavioural effects of traditional Xiao-Yao-San in mice

    Directory of Open Access Journals (Sweden)

    Yin Shih-Hsi

    2012-11-01

    Full Text Available Abstract Background Xiao-Yao-San (XYS is a Chinese medicinal formula for treating anxiety and depression. This study aims to evaluate the use of a room-temperature super-extraction system (RTSES to extract the major active components of XYS and enhance their psycho-pharmacological effects. Methods The neuroprotective roles of XYS/RTSES against reserpine-derived neurotoxicity were evaluated using a glial cell injury system (in vitro and a depression-like C57BL/6 J mouse model (in vivo. The anxiolytic-behavioural effects were measured by the elevated plus-maze (EPM test and the antidepressant effects were evaluated by the forced swimming test (FST and tail suspension test (TST. Glucose tolerance and insulin resistance were assayed by ELISA. The expression of 5-HT1A receptors in the prefrontal cortex was examined by western blotting. Results XYS/RTSES (300 μg/mL diminished reserpine-induced glial cell death more effectively than either XYS (300 μg/mL or fluoxetine (30 μM at 24 h (P = 0.0481 and P = 0.054, respectively. Oral administration of XYS/RTSES (500 mg/kg/day for 4 consecutive weeks significantly elevated the ratios of entries (open arms/closed arms; P = 0.0177 and shuttle activity (P = 0.00149 on the EPM test, and reduced the immobility time by 90% on the TST (P = 0.00000538 and FST (P = 0.0000053839. XYS/RTSES also improved the regulation of blood glucose (P = 0.0305 and increased the insulin sensitivity (P = 0.0093. The Western blot results indicated that the activation of cerebral 5-HT1A receptors may be involved in the mechanisms of XYS/RTSES actions. Conclusion The RTSES could provide a novel method for extracting effective anxiolytic- and antidepressant-like substances. XYS/RTSES improved the regulation of blood glucose and increased the insulin sensitivity in reserpine-induced anxiety and depression. Neuroprotection of glial cells and activation of cerebral 5-HT1A receptors were also involved.

  18. Antidepressant-like effect of fluoxetine may depend on translocator protein activity and pretest session duration in forced swimming test in mice.

    Science.gov (United States)

    Kudryashov, Nikita V; Kalinina, Tatiana S; Shimshirt, Alexander A; Korolev, Anton O; Volkova, Anna V; Voronina, Tatiana A

    2018-06-01

    The antidepressant-like effect of fluoxetine (20 mg/kg i.p.) has been assessed using the forced swimming test (FST) in IRC (CD-1) mice exposed or not to a pretest session of different duration (5 or 20 min). The influence of the mitochondrial translocator protein (TSPO) activity on the antidepressant-like effect of fluoxetine (20 mg/kg i.p.) in the FST was also studied. The antidepressant-like effect of fluoxetine was observed only in mice subjected to a 5-min pretest session 24 h before the FST. The TSPO antagonist PK11195 [1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide; 1 or 3 mg/kg i.p.] inhibited the antidepressant activity of fluoxetine in the FST. In the present study, fluoxetine or PK11195 was administered for a short duration. We suppose that the functional activity of TSPO may depend on a pretest session and that using this procedure is necessary to detect antidepressant activity of fluoxetine-like drugs.

  19. Evaluation of antidepressant like property of amisulpride per se and its comparison with fluoxetine and olanzapine using forced swimming test in albino mice.

    Science.gov (United States)

    Pawar, Ganesh R; Agrawal, Rajendra P; Phadnis, Pradeep; Paliwal, Abhay; Vyas, Savita; Solanki, Pooja

    2009-01-01

    Amisulpride, an atypical antipsychotic was evaluated for antidepressant like activity in forced swimming test in Swiss albino mice. The effect of amisulpride was compared with that of fluoxetine, the standard antidepressant and olanzapine, another atypical antipsychotic claimed to have antidepressant like activity. Both acute and chronic studies were carried out. In both the studies, animals were divided into four groups (n = 8 each) and subjected to oral drug interventions as follows -- Group 1- control (distilled water, 1 mL/kg); Group 2- fluoxetine in a dose of 10 mg/kg 23.5, 5 and 1 h before the test; Group 3-amisulpride in a dose of 70 mg/kg 23.5, 5 and 1 h before the test; Group 4- olanzapine in a dose of 2 mg/kg 23.5, 5 and 1 h before the study. In the chronic study, the treatment was given daily for 28 days with last dose being given 2 h prior to the test. A time sampling method was used to score the behavioral activity in each group. Results of both the studies indicated that animals given amisulpride displayed significant improvement in swimming behavior (p Fluoxetine also showed significant difference in activity as compared to amisulpride and olanzapine (p swimming phases in albino mice (p > 0.05). We conclude that amisulpride per se has an antidepressant like activity comparable to that of olanzapine though the activity was significantly less than that of fluoxetine.

  20. The antidepressant-like effects of topiramate alone or combined with 17β-estradiol in ovariectomized Wistar rats submitted to the forced swimming test.

    Science.gov (United States)

    Molina-Hernández, Miguel; Téllez-Alcántara, N Patricia; Olivera-López, Jorge I; Jaramillo, M Teresa

    2014-09-01

    There is a significant delay in the clinical response of antidepressant drugs, and antidepressant treatments produce side effects. We examined the relationship between 17β-estradiol and topiramate in ovariectomized Wistar rats submitted to the forced swimming test (FST). Topiramate was administered alone or combined with 17β-estradiol to ovariectomized rats submitted to the FST. Topiramate (20 mg/kg, P swimming; these effects were antagonized by finasteride (50 mg/kg). In interaction experiments, topiramate (10 mg/kg) plus 17β-estradiol (5 micrograms per rat; P swimming behavior. Besides, 17β-estradiol (2.5 micrograms per rat) shortened the onset of the antidepressant-like effects of topiramate (P < 0.05). In the open field test, topiramate alone or combined with 17β-estradiol (P < 0.05) reduced locomotion. Topiramate alone or combined with 17β-estradiol produced antidepressant-like actions; and 17β-estradiol shortened the onset of the antidepressant-like effects of topiramate.

  1. Antidepressant-like effect of Hoodia gordonii in a forced swimming test in mice: evidence for involvement of the monoaminergic system

    Directory of Open Access Journals (Sweden)

    M.C.O. Citó

    2015-01-01

    Full Text Available Hoodia gordonii is a plant species used traditionally in southern Africa to suppress appetite. Recently, it has been associated with a significant increase in blood pressure and pulse rate in women, suggesting sympathomimetic activity. The present study investigated the possible antidepressant-like effects of acute and repeated (15 days administration of H. gordonii extract (25 and 50 mg/kg, po to mice exposed to a forced swimming test (FST. Neurochemical analysis of brain monoamines was also carried out to determine the involvement of the monoaminergic system on these effects. Acute administration of H. gordonii decreased the immobility of mice in the FST without accompanying changes in general activity in the open-field test during acute treatment, suggesting an antidepressant-like effect. The anti-immobility effect of H. gordonii was prevented by pretreatment of mice with PCPA [an inhibitor of serotonin (5-HT synthesis], NAN-190 (a 5-HT1A antagonist, ritanserin (a 5-HT2A/2C antagonist, ondansetron (a 5-HT3A antagonist, prazosin (an α1-adrenoceptor antagonist, SCH23390 (a D1 receptor antagonist, yohimbine (an α2-adrenoceptor antagonist, and sulpiride (a D2 receptor antagonist. A significant increase in 5-HT levels in the striatum was detected after acute administration, while 5-HT, norepinephrine and dopamine were significantly elevated after chronic treatment. Results indicated that H. gordonii possesses antidepressant-like activity in the FST by altering the dopaminergic, serotonergic, and noradrenergic systems.

  2. Cystic dilatation of ventriculus terminalis in adults: MRI

    International Nuclear Information System (INIS)

    Matsubayashi, R.; Uchino, A.; Kato, A.; Kudo, S.; Sakai, S.; Murata, S.

    1998-01-01

    We report the MRI findings in two patients with cystic dilatation of the ventriculus terminalis. The latter is usually a tiny ependyma-lined cavity of the conus medullaris. In both cases the markedly dilated ventriculus terminalis was seen as a rounded cavity with regular margins, the content of which gave the same signal as cerebrospinal fluid with all MR pulse sequences. No contrast enhancement was seen. (orig.)

  3. Enhanced antidepressant-like effects of the macromolecule trefoil factor 3 by loading into negatively charged liposomes

    Directory of Open Access Journals (Sweden)

    Qin J

    2014-11-01

    Full Text Available Jing Qin,1 Xu Yang,1–3 Jia Mi,4 Jianxin Wang,1 Jia Hou,1,2 Teng Shen,1 Yongji Li,2 Bin Wang,4 Xuri Li,4 Weili Zhu5 1Department of Pharmaceutics, School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 2Department of Pharmaceutics, School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, 3Department of Pharmacy, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, 4Binzhou Medical University, Yantai, 5National Institute on Drug Dependence, Peking University, Beijing, People’s Republic of China Abstract: Immunocytes, mainly neutrophils and monocytes, exhibit an intrinsic homing property, enabling them to migrate to sites of injury and inflammation. They can thus act as Trojan horses carrying concealed drug cargoes while migrating across impermeable barriers to sites of disease, especially the blood–brain barrier (BBB. In this study, to target circulating phagocytic cells, we formulated negatively charged nanosize liposomes and loaded trefoil factor 3 (TFF3 into liposomes by the pH-gradient method. According to the optimized formulation (5:1.5 of lipid to cholesterol, 10:1 of lipid to drug, 10 mg/mL of lipid concentration, and 10 mmol/L of phosphate-buffered saline, 44.47% entrapment efficiency was obtained for TFF3 liposomes with 129.6 nm particle size and –36.6 mV zeta potential. Compared with neutrally charged liposomes, the negatively charged liposomes showed a strong binding capacity with monocytes and were effectively carried by monocytes to cross the BBB in vitro. Furthermore, enhanced antidepressant-like effects were found in the tail-suspension and forced-swim tests in mice, as measured by decreased immobility time, as well as increased swimming time and reduced immobility in rats. These results suggested that negatively charged liposomes could improve the behavioral responses of TFF3, and our study opens up a new way for the development of

  4. A selective inhibitor of protein kinase A induces behavioural and neurological antidepressant-like effects in rats

    DEFF Research Database (Denmark)

    Liebenberg, Nico; Müller, Heidi Kaastrup; Elfving, Betina

    2011-01-01

    Background: It is well established that cyclic adenosine monophosphate (AMP) signalling via cAMP-dependent protein kinase (PKA) within neurons plays an important role in depression and antidepressant treatment. However, the importance of several newly discovered targets that function independentl...

  5. Evidence for the involvement of NMDA receptors in the antidepressant-like effect of nicotine in mouse forced swimming and tail suspension tests.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Haj-Mirzaian, Arvin; Ostadhadi, Sattar; Ghasemi, Mehdi; Amiri, Shayan; Faizi, Mehrdad; Dehpour, AhmadReza

    2015-10-01

    The antidepressant action of acute nicotine administration in clinical and animal studies is well recognized. But the underlying mechanism for this effect has not been carefully discovered. We attempted to evaluate the possible role of N-Methyl-D-aspartate (NMDA) receptors in the antidepressant-like effect of nicotine. After the assessment of locomotor activity in the open-field test, forced swimming test (FST) and tail suspension test (TST) were used to evaluate the antidepressant-like effect of nicotine in mice. We performed intraperitoneal administration of nicotine at different doses and periods before the tests. To assess the possible involvement of NMDA receptors, non-effective doses of NMDA antagonists and an NMDA agonist were obtained and were administered simultaneously with the non-effective and effective doses of nicotine, respectively. Nicotine (0.2 mg/kg, 30 min before FST/TST) significantly reduced the immobility time of mice similar to fluoxetine (20 mg/kg). Nicotine did not affect the locomotor behavior of mice in open-field test. Co-administration of non-effective doses of NMDA receptor antagonists, ketamine (1 or 0.3 mg/kg), MK-801 (0.05 or 0.005 mg/kg), and magnesium sulfate (10 or 5 mg/kg) with nicotine (0.1 or 0.03 mg/kg) had remarkable synergistic antidepressant effect in both FST and TST. Also, non-effective NMDA (75 or 30 mg/kg) reversed the anti-immobility effect of nicotine (0.2 mg/kg) on mouse FST and TST. Our study has for the first time confirmed that the antidepressant-like effect of nicotine on mice is NMDA-mediated, and nicotine presumably exerts this effect by antagonizing the glutamatergic NMDA receptors.

  6. Dopamine D2/D3 but not dopamine D1 receptors are involved in the rapid antidepressant-like effects of ketamine in the forced swim test.

    Science.gov (United States)

    Li, Yan; Zhu, Zhuo R; Ou, Bao C; Wang, Ya Q; Tan, Zhou B; Deng, Chang M; Gao, Yi Y; Tang, Ming; So, Ji H; Mu, Yang L; Zhang, Lan Q

    2015-02-15

    Major depressive disorder is one of the most prevalent and life-threatening forms of mental illnesses. The traditional antidepressants often take several weeks, even months, to obtain clinical effects. However, recent clinical studies have shown that ketamine, an N-methyl-D-aspartate (NMDA) receptor antagonist, exerts rapid antidepressant effects within 2h and are long-lasting. The aim of the present study was to investigate whether dopaminergic system was involved in the rapid antidepressant effects of ketamine. The acute administration of ketamine (20 mg/kg) significantly reduced the immobility time in the forced swim test. MK-801 (0.1 mg/kg), the more selective NMDA antagonist, also exerted rapid antidepressant-like effects. In contrast, fluoxetine (10 mg/kg) did not significantly reduced the immobility time in the forced swim test after 30 min administration. Notably, pretreatment with haloperidol (0.15 mg/kg, a nonselective dopamine D2/D3 antagonist), but not SCH23390 (0.04 and 0.1 mg/kg, a selective dopamine D1 receptor antagonist), significantly prevented the effects of ketamine or MK-801. Moreover, the administration of sub-effective dose of ketamine (10 mg/kg) in combination with pramipexole (0.3 mg/kg, a dopamine D2/D3 receptor agonist) exerted antidepressant-like effects compared with each drug alone. In conclusion, our results indicated that the dopamine D2/D3 receptors, but not D1 receptors, are involved in the rapid antidepressant-like effects of ketamine. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Pharmacological evidence for the involvement of the NMDA receptor and nitric oxide pathway in the antidepressant-like effect of lamotrigine in the mouse forced swimming test.

    Science.gov (United States)

    Ostadhadi, Sattar; Ahangari, Mohammad; Nikoui, Vahid; Norouzi-Javidan, Abbas; Zolfaghari, Samira; Jazaeri, Farahnaz; Chamanara, Mohsen; Akbarian, Reyhaneh; Dehpour, Ahmad-Reza

    2016-08-01

    Lamotrigine is an anticonvulsant agent that shows clinical antidepressant properties. The aim of the present study was to investigate the involvement of N-methyl-d-aspartate (NMDA) receptors and nitric oxide-cyclic guanosine monophosphate (NO-cGMP) synthesis in possible antidepressant-like effect of lamotrigine in forced swimming test (FST) in mice. Intraperitoneal administration of lamotrigine (10mg/kg) decreased the immobility time in the FST (P<0.01) without any effect on locomotor activity in the open-field test (OFT), while higher dose of lamotrigine (30mg/kg) reduced the immobility time in the FST (P<0.001) as well as the number of crossings in the OFT. Pretreatment of animals with NMDA (75mg/kg), l-arginine (750mg/kg, a substrate for nitric oxide synthase [NOS]) or sildenafil (5mg/kg, a phosphodiesterase [PDE] 5 inhibitor) reversed the antidepressant-like effect of lamotrigine (10mg/kg) in the FST. Injection of l-nitroarginine methyl ester (l-NAME, 10mg/kg, a non-specific NOS inhibitor), 7-nitroindazole (30mg/kg, a neuronal NOS inhibitor), methylene blue (20mg/kg, an inhibitor of both NOS and soluble guanylate cyclase [sGC]), or MK-801 (0.05mg/kg), ketamine (1mg/kg), and magnesium sulfate (10mg/kg) as NMDA receptor antagonists in combination with a sub-effective dose of lamotrigine (5mg/kg) diminished the immobility time of animals in the FST compared with either drug alone. None of the drugs produced significant effects on the locomotor activity in the OFT. Based on our findings, it is suggested that the antidepressant-like effect of lamotrigine might mediated through inhibition of either NMDA receptors or NO-cGMP synthesis. Copyright © 2016. Published by Elsevier Masson SAS.

  8. Tipepidine, a non-narcotic antitussive, exerts an antidepressant-like effect in the forced swimming test in adrenocorticotropic hormone-treated rats.

    Science.gov (United States)

    Kawaura, Kazuaki; Ogata, Yukino; Honda, Sokichi; Soeda, Fumio; Shirasaki, Tetsuya; Takahama, Kazuo

    2016-04-01

    We investigated whether tipepidine exerts an antidepressant-like effect in the forced swimming test in adrenocorticotropic hormone (ACTH)-treated rats, which is known as a treatment-resistant depression model, and we studied the pharmacological mechanisms of the effects of tipepidine. Male Wistar rats (5-7 weeks old) were used in this study. Tipepidine (20 and 40 mg/kg, i.p.) decreased the immobility time in the forced swimming test in ACTH-treated rats. The anti-immobility effect of tipepidine was blocked by a catecholamine-depleting agent, alpha-methyl-p-tyrosine (300 mg/kg, s.c.), but not by a serotonin-depleting agent, p-chlorophenylalanine. The anti-immobility effect of tipepidine was also blocked by a dopamine D1 receptor antagonist, SCH23390 (0.02 mg/kg, s.c.) and an adrenaline α2 receptor antagonist, yohimbine (2 mg/kg, i.p.). In microdialysis technique, tipepidine (40 mg/kg, i.p.) increased the extracellular dopamine level of the nucleus accumbens (NAc) in ACTH-treated rats. These results suggest that tipepidine exerts an antidepressant-like effect in the forced swimming test in ACTH-treated rats, and that the effect of tipepidine is mediated by the stimulation of dopamine D1 receptors and adrenaline α2 receptors. The results also suggest that an increase in the extracellular dopamine level in the NAc may be involved in the antidepressant-like effect of tipepidine in ACTH-treated rats. Copyright © 2016. Published by Elsevier B.V.

  9. Involvement of PI3K/Akt Signaling Pathway and Its Downstream Intracellular Targets in the Antidepressant-Like Effect of Creatine.

    Science.gov (United States)

    Cunha, Mauricio P; Budni, Josiane; Ludka, Fabiana K; Pazini, Francis L; Rosa, Julia Macedo; Oliveira, Ágatha; Lopes, Mark W; Tasca, Carla I; Leal, Rodrigo B; Rodrigues, Ana Lúcia S

    2016-07-01

    Creatine has been proposed to exert beneficial effects in the management of depression, but the cell signaling pathways implicated in its antidepressant effects are not well established. This study investigated the involvement of PI3K/Akt signaling pathway and its downstream intracellular targets in the antidepressant-like effect of creatine. The acute treatment of mice with creatine (1 mg/kg, po) increased the Akt and P70S6K phosphorylation, and HO-1, GPx and PSD95 immunocontents. The pretreatment of mice with LY294002 (10 nmol/mouse, icv, PI3K inhibitor), wortmannin (0.1 μg/mouse, icv, PI3K inhibitor), ZnPP (10 μg/mouse, icv, HO-1 inhibitor), or rapamycin (0.2 nmol/mouse, icv, mTOR inhibitor) prevented the antidepressant-like effect of creatine (1 mg/kg, po) in the TST. In addition, the administration of subeffective dose of either the selective GSK3 inhibitor AR-A014418 (0.01 μg/mouse, icv), the nonselective GSK3 inhibitor lithium chloride (10 mg/kg, po), or the HO-1 inductor CoPP (0.01 μg/mouse, icv), in combination with a subeffective dose of creatine (0.01 mg/kg, po) reduced the immobility time in the TST as compared with either drug alone. No treatment caused significant changes in the locomotor activity of mice. These results indicate that the antidepressant-like effect of creatine in the TST depends on the activation of Akt, Nrf2/HO-1, GPx, and mTOR, and GSK3 inhibition.

  10. The antidepressant-like effect of 7-fluoro-1,3-diphenylisoquinoline-1-amine in the mouse forced swimming test is mediated by serotonergic and dopaminergic systems.

    Science.gov (United States)

    Pesarico, Ana Paula; Sampaio, Tuane Bazanella; Stangherlin, Eluza Curte; Mantovani, Anderson C; Zeni, Gilson; Nogueira, Cristina Wayne

    2014-10-03

    The aim of the present study was to investigate the role of monoaminergic system in the antidepressant-like action of 7-fluoro-1,3-diphenylisoquinoline-1-amine (FDPI), a derivative of isoquinoline class, in Swiss mice. The antidepressant-like effect of FDPI was characterized in the modified forced swimming test (FST) and the possible mechanism of action was investigated by using serotonergic, dopaminergic and noradrenergic antagonists. Monoamine oxidase (MAO) activity and [(3)H]serotonin (5-HT) uptake were determined in prefrontal cortices of mice. The results showed that FDPI (1, 10 and 20mg/kg, i.g.) reduced the immobility time and increased the swimming time but did not alter climbing time in the modified FST. These effects were similar to those of paroxetine (8mg/kg, i.p.), a positive control. Pretreatments with p-chlorophenylalanine (100mg/kg, i.p., an inhibitor of 5-HT synthesis), WAY100635 (0.1mg/kg, s.c., 5-HT1A antagonist), ondansetron (1mg/kg, i.p., a 5-HT3 receptor antagonist), haloperidol (0.2mg/kg, i.p., a non-selective D2 receptor antagonist) and SCH23390 (0.05mg/kg, s.c., a D1 receptor antagonist) were effective to block the antidepressant-like effect of FDPI at a dose of 1mg/kg in the FST. Ritanserin (1mg/kg, i.p., a 5-HT2A/2C receptor antagonist), sulpiride (50mg/kg, i.p., a D2 and D3 receptor antagonist), prazosin (1mg/kg, i.p., an α1 receptor antagonist), yohimbine (1mg/kg, i.p., an α2 receptor antagonist) and propranolol (2mg/kg, i.p., a β receptor antagonist) did not modify the effect of FDPI in the FST. FDPI did not change synaptosomal [(3)H]5-HT uptake. At doses of 10 and 20mg/kg FDPI inhibited MAO-A and MAO-B activities. These results suggest that antidepressant-like effect of FDPI is mediated mostly by serotonergic and dopaminergic systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Age-related changes in the antidepressant-like effect of desipramine and fluoxetine in the rat forced-swim test.

    Science.gov (United States)

    Olivares-Nazario, Maribel; Fernández-Guasti, Alonso; Martínez-Mota, Lucía

    2016-02-01

    Some reports suggest that older patients are less responsive to antidepressants than young adults, but this idea has not been fully supported. Here, we investigated the role of aging in the behavioral effects of the antidepressants, desipramine (DMI) (5, 10, and 20 mg/kg) and fluoxetine (FLX) (5, 10, and 20 mg/kg) in young adults (3-5 months), middle-aged (MA, 12-15 months), and senescent (SE, 23-25 months) male rats in the forced-swim test. In addition, locomotor activity and motor coordination were assessed as side-effects. DMI and fluoxetine produced an antidepressant-like effect in YA and MA animals, although in the latter group, a shift to the right in the dose-response curve was found for DMI. Importantly, neither drug was effective in SE animals. Motor side-effects were produced mainly by DMI in MA and SE rats. Therefore, a decrease in the antidepressant-like effect is associated strongly with senescence as well as an increased vulnerability to motor side-effects, particularly of tricyclics. This study is significant because SE animals are scarcely studied in pharmacological screening tests, and our findings might be useful for improving antidepressant treatments for the increasing aged population.

  12. Revalidation of Ceresa terminalis walker and its placement in Stictocephala Stål (Hemiptera, Membracidae Revalidação de Ceresa terminalis walker e sua alocação em Stictocephala Stål (Hemiptera, Membracidae

    Directory of Open Access Journals (Sweden)

    Gabriel S. de Andrade

    2005-12-01

    Full Text Available Ceresa terminalis Walker, 1851 is reinstated and transferred to Stictocephala Stål, 1869: Stictocephala terminalis (Walker, 1851 sp. rev., comb. nov.Ceresa terminalis Walker, 1851 é revalidada e transferida para Stictocephala Stål, 1869: Stictocephala terminalis (Walker, 1851 sp. rev., comb. nov.

  13. The Post-Ovariectomy Interval Affects the Antidepressant-Like Action of Citalopram Combined with Ethynyl-Estradiol in the Forced Swim Test in Middle Aged Rats

    Directory of Open Access Journals (Sweden)

    Nelly M. Vega Rivera

    2016-05-01

    Full Text Available The use of a combined therapy with low doses of estrogens plus antidepressants to treat depression associated to perimenopause could be advantageous. However the use of these combinations is controversial due to several factors, including the time of intervention in relation to menopause onset. This paper analyzes whether time post-OVX influences the antidepressant-like action of a combination of ethynyl-estradiol (EE2 and citalopram (CIT in the forced swim test (FST. Middle-aged (15 months old female Wistar rats were ovariectomized and after one or three weeks treated with EE2 (1.25, 2.5 or 5.0 µg/rat, s.c.; −48 h or CIT (1.25, 2.5, 5.0 or 10 mg/kg, i.p./3 injections in 24 h and tested in the FST. In a second experiment, after one or three weeks of OVX, rats received a combination of an ineffective dose of EE2 (1.25 µg/rat, s.c., −48 h plus CIT (2.5 mg/kg, i.p./3 injections in 24 h and subjected to the FST. Finally, the uteri were removed and weighted to obtain an index of the peripheral effects of EE2 administration. EE2 (2.5 or 5.0 µg/rat reduced immobility after one but not three weeks of OVX. In contrast, no CIT dose reduced immobility at one or three weeks after OVX. When EE2 (1.25 µg/rat was combined with CIT (2.5 mg/kg an antidepressant-like effect was observed at one but not three weeks post-OVX. The weight of the uteri augmented when EE2 was administrated three weeks after OVX. The data suggest that the time post-OVX is a crucial factor that contributes to observe the antidepressant-like effect of EE2 alone or in combination with CIT.

  14. Antidepressant-like effect of atorvastatin in the forced swimming test in mice: the role of PPAR-gamma receptor and nitric oxide pathway.

    Science.gov (United States)

    Shahsavarian, Arash; Javadi, Shiva; Jahanabadi, Samane; Khoshnoodi, Mina; Shamsaee, Javad; Shafaroodi, Hamed; Mehr, Shahram Ejtemaei; Dehpour, Ahmadreza

    2014-12-15

    Atorvastatin is a synthetic and lipophilic statin which has been reported to have a positive role in reducing depression. The potential antidepressant-like effects of atorvastatin and the possible involvement of peroxisome proliferator-activated receptor gamma (PPAR_γ) and nitric oxide system were determined using forced swimming test (FST) in mice was studied. Atorvastatin (0.01, 0.1 and 1 mg/kg, p.o.) was administered 1 h before FST. To assess the involvement of PPAR_γ in the possible antidepressant effect of atorvastatin, pioglitazone, a PPAR_γ agonist (5 mg/kg), and GW-9662, a specific PPAR_γ antagonist (2 mg/kg), was co-administered with atorvastatin (0.01 mg/kg, p.o.) and then FST was performed. The possible role of nitric oxide pathway was determined by using co-administration of a non-specific NOS inhibitor, N-nitro-L-arginine methyl ester (L-NAME, 10 mg/kg, i.p.), and a NO precursor, L-arginine (750 mg/kg, i.p.) with sub-effective doses of atorvastatin and pioglitazone. Immobility time was significantly decreased after atorvastatin administration (0.1 and 1 mg/kg, p.o.). Administration of pioglitazone or L-NAME in combination with the sub-effective dose of atorvastatin (0.01 mg/kg, p.o.) reduced the immobility time in the FST compared to drugs alone, showing the participation of these pathways; while co-administration of non-effective doses of atorvastatin and pioglitazone with GW9662 or L-arginine reversed antidepressant-like effect of atorvastatin in FST. Data from concurrent use of GW9662 and atorvastatin also demonstrated that the antidepressant effect of atorvastatin was significantly reversed by GW9662. The antidepressant-like effect of atorvastatin on mice in the FST is mediated at least in part through PPAR_γ receptors and NO pathway. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Modulation of neuroplasticity pathways and antidepressant-like behavioural responses following the short-term (3 and 7 days) administration of the 5-HT₄ receptor agonist RS67333.

    Science.gov (United States)

    Pascual-Brazo, Jesús; Castro, Elena; Díaz, Alvaro; Valdizán, Elsa M; Pilar-Cuéllar, Fuencisla; Vidal, Rebeca; Treceño, Begoña; Pazos, Angel

    2012-06-01

    It has been recently suggested that activation of 5-HT₄ receptors might exert antidepressant-like effects in rats after 3 d treatment, suggesting a new strategy for developing faster-acting antidepressants. We studied the effects of 3 d and 7 d treatment with the 5-HT₄ receptor partial agonist RS67333 (1.5 mg/kg.d) in behavioural tests of chronic efficacy and on neuroplastic-associated changes, such as adult hippocampal neurogenesis, expression of CREB, BDNF, β-catenin, AKT and 5-HT₄ receptor functionality. RS67333 treatment up-regulated hippocampal cell proliferation, β-catenin expression and pCREB/CREB ratio after 3 d treatment. This short-term treatment also reduced immobility time in the forced swim test (FST), together with a partial reversion of the anhedonic-like state (sucrose consumption after chronic corticosterone). Administration of RS67333 for 7 d resulted in a higher increase in the rate of hippocampal cell proliferation, a significant desensitization of 5-HT₄ receptor-coupled adenylate cyclase activity and a more marked increase in the expression of neuroplasticity-related proteins (BDNF, CREB, AKT): these changes reached the same magnitude as those observed after 3 wk administration of classical antidepressants. Consistently, a positive behavioural response in the novelty suppressed feeding (NSF) test and a complete reversion of the anhedonic-like state (sucrose consumption) were also observed after 7 d treatment. These results support the antidepressant-like profile of RS67333 with a shorter onset of action and suggest that this time period of administration (3-7 d) could be a good approximation to experimentally predict the onset of action of this promising strategy.

  16. Role of different types of potassium channels in the antidepressant-like effect of agmatine in the mouse forced swimming test.

    Science.gov (United States)

    Budni, Josiane; Gadotti, Vinícius M; Kaster, Manuella P; Santos, Adair R S; Rodrigues, Ana Lúcia S

    2007-12-01

    The administration of agmatine elicits an antidepressant-like effect in the mouse forced swimming test by a mechanism dependent on the inhibition of the NMDA receptors and the L-arginine-nitric oxide (NO) pathway. Since it has been reported that the NO can activate different types of potassium (K(+)) channels in several tissues, the present study investigates the possibility of synergistic interactions between different types of K(+) channel inhibitors and agmatine in the forced swimming test. Treatment of mice by i.c.v. route with subeffective doses of tetraethylammonium (a non specific inhibitor of K(+) channels, 25 pg/site), glibenclamide (an ATP-sensitive K(+) channels inhibitor, 0.5 pg/site), charybdotoxin (a large- and intermediate-conductance calcium-activated K(+) channel inhibitor, 25 pg/site) or apamin (a small-conductance calcium-activated K(+) channel inhibitor, 10 pg/site), augmented the effect of agmatine (0.001 mg/kg, i.p.) in the forced swimming test. Furthermore, the administration of agmatine and the K(+) channel inhibitors, alone or in combination, did not affect locomotion in the open-field test. Moreover, the reduction in the immobility time elicited by an active dose of agmatine (10 mg/kg, i.p.) in the forced swimming test was prevented by the pre-treatment of mice with the K(+) channel openers cromakalim (10 microg/site, i.c.v.) and minoxidil (10 microg/site, i.c.v.), without affecting locomotion. Together these data raise the possibility that the antidepressant-like effect of agmatine in the forced swimming test is related to its modulatory effects on neuronal excitability, via inhibition of K(+) channels.

  17. Antidepressant-like effect of the extract from leaves of Schinus molle L. in mice: evidence for the involvement of the monoaminergic system.

    Science.gov (United States)

    Machado, Daniele G; Kaster, Manuella P; Binfaré, Ricardo W; Dias, Munique; Santos, Adair R S; Pizzolatti, Moacir G; Brighente, Inês M C; Rodrigues, Ana Lúcia S

    2007-03-30

    Schinus molle L. (Anacardiaceae), among other uses, is popularly employed for the treatment of depression. In this study, the antidepressant-like effect of the hexanic extract from leaves of S. molle was investigated in the mouse tail suspension test (TST), a predictive model of depression. The immobility time in the TST was significantly reduced by the extract (dose range 30-600 mg/kg, p.o.), without accompanying changes in ambulation when assessed in an open-field test. The efficacy of extract was found to be comparable to that of fluoxetine (10 mg/kg, p.o.). The anti-immobility effect of the extract (100 mg/kg, p.o.) was prevented by pretreatment of mice with p-chlorophenylalanine methyl ester (PCPA, 100 mg/kg, i.p., an inhibitor of serotonin synthesis, for four consecutive days), NAN-190 (0.5 mg/kg, i.p., a 5-HT(1A) receptor antagonist), WAY100635 (0.1 mg/kg, s.c., a selective 5-HT(1A) receptor antagonist), ketanserin (5 mg/kg, i.p., a 5-HT(2A/2C) receptor antagonist), MDL72222 (0.1 mg/kg, i.p., a 5-HT(3) receptor antagonist), prazosin (1 mg/kg, i.p., an alpha(1)-adrenoceptor antagonist), yohimbine (1 mg/kg, i.p., an alpha(2)-adrenoceptor antagonist), SCH23390 (0.05 mg/kg, s.c., a D(1) receptor antagonist) or sulpiride (50 mg/kg, i.p., a D(2) receptor antagonist). It may be concluded that the hexanic extract of S. molle produces an antidepressant-like effect that seems to be dependent on its interaction with the serotonergic, noradrenergic and dopaminergic systems. These results provide evidence that the extract from S. molle shares with established antidepressants some pharmacological effects, at least at a preclinical level.

  18. Development of the nervus terminalis: origin and migration.

    Science.gov (United States)

    Whitlock, Kathleen E

    2004-09-01

    The origin of the nervus terminalis is one of the least well understood developmental events involved in generating the cranial ganglia of the forebrain in vertebrate animals. This cranial nerve forms at the formidable interface of the anteriormost limits of migrating cranial neural crest cells, the terminal end of the neural tube and the differentiating olfactory and adenohypophyseal placodes. The complex cellular interactions that give rise to the various structures associated with the sensory placode (olfactory) and endocrine placode (adenohypophysis) surround and engulf this enigmatic cranial nerve. The tortured history of nervus terminalis development (see von Bartheld, this issue, pages 13-24) reflects the lack of consensus on the origin (or origins), as well as the experimental difficulties in uncovering the origin, of the nervus terminalis. Recent technical advances have allowed us to make headway in understanding the origin(s) of this nerve. The emergence of the externally fertilized zebrafish embryo as a model system for developmental biology and genetics has shed new light on this century-old problem. Coupled with new developmental models are techniques that allow us to trace lineage, visualize gene expression, and genetically ablate cells, adding to our experimental tools with which to follow up on studies provided by our scientific predecessors. Through these techniques, a picture is emerging in which the origin of at least a subset of the nervus terminalis cells lies in the cranial neural crest. In this review, the data surrounding this finding will be discussed in light of recent findings on neural crest and placode origins. Copyright 2004 Wiley-Liss, Inc.

  19. Test-retest paradigm of the forced swimming test in female mice is not valid for predicting antidepressant-like activity: participation of acetylcholine and sigma-1 receptors.

    Science.gov (United States)

    Su, Jing; Hato-Yamada, Noriko; Araki, Hiroaki; Yoshimura, Hiroyuki

    2013-01-01

    The forced swimming test (FST) in mice is widely used to predict the antidepressant activity of a drug, but information describing the immobility of female mice is limited. We investigated whether a prior swimming experience affects the immobility duration in a second FST in female mice and whether the test-retest paradigm is a valid screening tool for antidepressants. Female ICR mice were exposed to the FST using two experimental paradigms: a single FST and a double FST in which mice had experienced FST once 24 h prior to the second trail. The initial FST experience reliably prolonged immobility duration in the second FST. The antidepressants imipramine and paroxetine significantly reduced immobility duration in the single FST, but not in the double FST. Scopolamine and the sigma-1 (σ1) antagonist NE-100 administered before the second trial significantly prevented the prolongation of immobility. Neither a 5-HT1A nor a 5-HT2A receptor agonist affected immobility duration. We suggest that the test-retest paradigm in female mice is not adequate for predicting antidepressant-like activity of a drug; the prolongation of immobility in the double FST is modulated through acetylcholine and σ1 receptors.

  20. Erinacine A-Enriched Hericium erinaceus Mycelium Produces Antidepressant-Like Effects through Modulating BDNF/PI3K/Akt/GSK-3β Signaling in Mice.

    Science.gov (United States)

    Chiu, Chun-Hung; Chyau, Charng-Cherng; Chen, Chin-Chu; Lee, Li-Ya; Chen, Wan-Ping; Liu, Jia-Ling; Lin, Wen-Hsin; Mong, Mei-Chin

    2018-01-24

    Antidepressant-like effects of ethanolic extract of Hericium erinaceus (HE) mycelium enriched in erinacine A on depressive mice challenged by repeated restraint stress (RS) were examined. HE at 100, 200 or 400 mg/kg body weight/day was orally given to mice for four weeks. After two weeks of HE administration, all mice except the control group went through with 14 days of RS protocol. Stressed mice exhibited various behavioral alterations, such as extending immobility time in the tail suspension test (TST) and forced swimming test (FST), and increasing the number of entries in open arm (POAE) and the time spent in the open arm (PTOA). Moreover, the levels of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) were decreased in the stressed mice, while the levels of interleukin (IL)-6 and tumor necrosis factor (TNF)-α were increased. These changes were significantly inverted by the administration of HE, especially at the dose of 200 or 400 mg/kg body weight/day. Additionally, HE was shown to activate the BDNF/TrkB/PI3K/Akt/GSK-3β pathways and block the NF-κB signals in mice. Taken together, erinacine A-enriched HE mycelium could reverse the depressive-like behavior caused by RS and was accompanied by the modulation of monoamine neurotransmitters as well as pro-inflammatory cytokines, and regulation of BDNF pathways. Therefore, erinacine A-enriched HE mycelium could be an attractive agent for the treatment of depressive disorders.

  1. Development of the nervus terminalis in mammals including toothed whales and humans.

    Science.gov (United States)

    Oelschläger, H A; Buhl, E H; Dann, J F

    1987-01-01

    The early ontogenesis and topography of the mammalian terminalis system was investigated in 43 microslide series of toothed whale and human embryos and fetuses. In early embryonal stages the development of the nasal pit, the olfacto-terminalis placode, and the olfactory bulb anlage is rather similar in toothed whales and humans. However, toothed whales do not show any trace of the vomeronasalis complex. In early fetal stages the olfactory bulb anlage in toothed whales is reduced and leaves the isolated future terminalis ganglion (ganglia) which contains the greatest number of cells within Mammalia. The ganglion is connected with the nasal mucosa via peripheral fiber bundles and with the telencephalon via central terminalis rootlets. The functional implications of the terminalis system in mammals and its evolution in toothed whales are discussed. Obviously, the autonomic component has been enlarged in the course of perfect adaptation to an aquatic environment.

  2. Persistence of the nervus terminalis in adult bats: a morphological and phylogenetical approach.

    Science.gov (United States)

    Oelschläger, H A

    1988-01-01

    The presence of the terminalis system in adult bats is demonstrated by light microscopical investigation of several species of Microchiroptera. In late embryonic and fetal stages of the mouse-eared bat (Myotis myotis) the compact central terminalis ganglion gradually differentiates into a three-dimensional network of cord-like ganglia and fiber bundles. Rostrally the terminalis system is in immediate contact with the medial-most fila olfactoria; caudally terminalis rootlets attach near the border between the olfactory bulb and the septum of the brain. With respect to the findings presented here it seems likely that all mammals develop a terminalis system in early ontogenesis and retain it until the adult stage. However, considerable differences concerning the number of persisting neurons may be found among some mammalian orders.

  3. Involvement of N-methyl-d-aspartate receptors in the antidepressant-like effect of 5-hydroxytryptamine 3 antagonists in mouse forced swimming test and tail suspension test.

    Science.gov (United States)

    Kordjazy, Nastaran; Haj-Mirzaian, Arya; Amiri, Shayan; Ostadhadi, Sattar; Amini-Khoei, Hossein; Dehpour, Ahmad Reza

    2016-02-01

    Recent evidence indicates that 5-hydroxytryptamine 3 (5-HT3) antagonists such as ondansetron and tropisetron exert positive behavioral effects in animal models of depression. Due to the ionotropic nature of 5-HT3 and N-methyl-d-aspartate (NMDA) receptors, plus their contribution to the pathophysiology of depression, we investigated the possible role of NMDA receptors in the antidepressant-like effect of 5-HT3 receptor antagonists in male mice. In order to evaluate the animals' behavior in response to different treatments, we performed open-field test (OFT), forced swimming test (FST), and tail-suspension test (TST), which are considered as valid tasks for measuring locomotor activity and depressive-like behaviors in mice. Our data revealed that intraperitoneal (i.p.) administration of tropisetron (5, 10, and 30mg/kg) and ondansetron (0.01, and 0.1μg/kg) significantly decreased the immobility time in FST and TST. Also, co-administration of subeffective doses of tropisetron (1mg/kg, i.p.) or ondansetron (0.001μg/kg, i.p.) with subeffective doses of NMDA receptor antagonists, ketamine (1mg/kg, i.p.), MK-801 (0.05mg/kg, i.p.) and magnesium sulfate (10mg/kg, i.p.) resulted in a reduced immobility time both in FST and TST. The subeffective dose of NMDA (NMDA receptor agonist, 75mg/kg, i.p.) abolished the effects of 5-HT3 antagonists in FST and TST, further supporting the presumed interaction between 5-HT3 and NMDA receptors. These treatments did not affect the locomotor behavior of animals in OFT. Finally, the results of our study suggest that the positive effects of 5-HT3 antagonists on the coping behavior of mice in FST and TST are at least partly mediated through NMDA receptors participation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Involvement of NMDA receptors and L-arginine/nitric oxide/cyclic guanosine monophosphate pathway in the antidepressant-like effects of topiramate in mice forced swimming test.

    Science.gov (United States)

    Ostadhadi, Sattar; Khan, Muhammad Imran; Norouzi-Javidan, Abbas; Chamanara, Mohsen; Jazaeri, Farahnaz; Zolfaghari, Samira; Dehpour, Ahmad-Reza

    2016-04-01

    Topiramate (TPM) is an agent primarily used in the treatment of epilepsy. Using mice model of forced swimming test (FST) the current study was basically aimed to investigate the influence of TPM on depression by inhibiting NMDA receptor and nitric oxide-cGMP production. When TPM was administered in a dose of 20 and 30 mg/kg by i.p. route it reduced the immobility time during FST. However this effect of TPM (30 mg/kg, i.p.) in the FST was abolished when the mice were pretreated either with NMDA (75 mg/kg, i.p.), or l-arginine (750 mg/kg, i.p. NO precursor), or sildenafil (5mg/kg, i.p. Phosphodiesterase 5 inhibitor). The immobility time in the FST was reduced after administration of L-NAME (10mg/kg, i.p, a non-specific NOS inhibitor), 7-nitoinidazol (30 mg/kg, i.p. a nNOS inhibitor) or MK-801 (0.05 mg/kg, i.p, a NMDA receptor antagonist) in combination with a subeffective dose of TPM (10mg/kg, i.p.) as compared with single use of either drug. Co-administrated of lower doses of MK-801 (0.01 mg/kg) or L-NAME (1mg/kg) failed to effect immobility time. However, simultaneous administration of these two agents in the same doses with subeffective dose of TPM (10mg/kg, i.p.), reduced the immobility time during FST. None of these drugs were found to have a profound effect on the locomotor activity per se during the open field test. Taken together, our data demonstrates that TPM exhibit antidepressant-like effect which is accomplished either due to inhibition of NMDA receptors or NO-cGMP production. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Erinacine A-Enriched Hericium erinaceus Mycelium Produces Antidepressant-Like Effects through Modulating BDNF/PI3K/Akt/GSK-3β Signaling in Mice

    Directory of Open Access Journals (Sweden)

    Chun-Hung Chiu

    2018-01-01

    Full Text Available Antidepressant-like effects of ethanolic extract of Hericium erinaceus (HE mycelium enriched in erinacine A on depressive mice challenged by repeated restraint stress (RS were examined. HE at 100, 200 or 400 mg/kg body weight/day was orally given to mice for four weeks. After two weeks of HE administration, all mice except the control group went through with 14 days of RS protocol. Stressed mice exhibited various behavioral alterations, such as extending immobility time in the tail suspension test (TST and forced swimming test (FST, and increasing the number of entries in open arm (POAE and the time spent in the open arm (PTOA. Moreover, the levels of norepinephrine (NE, dopamine (DA and serotonin (5-HT were decreased in the stressed mice, while the levels of interleukin (IL-6 and tumor necrosis factor (TNF-α were increased. These changes were significantly inverted by the administration of HE, especially at the dose of 200 or 400 mg/kg body weight/day. Additionally, HE was shown to activate the BDNF/TrkB/PI3K/Akt/GSK-3β pathways and block the NF-κB signals in mice. Taken together, erinacine A-enriched HE mycelium could reverse the depressive-like behavior caused by RS and was accompanied by the modulation of monoamine neurotransmitters as well as pro-inflammatory cytokines, and regulation of BDNF pathways. Therefore, erinacine A-enriched HE mycelium could be an attractive agent for the treatment of depressive disorders.

  6. Modulation of OCT3 expression by stress, and antidepressant-like activity of decynium-22 in an animal model of depression.

    Science.gov (United States)

    Marcinkiewcz, C A; Devine, D P

    2015-04-01

    The organic cation transporter-3 (OCT3) is a glucocorticoid-sensitive uptake mechanism that has been shown to regulate the bioavailability of monoamines in brain regions that are implicated in the pathophysiology of depression. In the present study, the relative impacts of acute stress alone and acute stress with a history of repeated stress (chronic+acute) were evaluated in two strains of rats: the stress-vulnerable Wistar-Kyoto (WKY) strain and the somewhat more stress-resilient Long-Evans (LE) strain. OCT3 mRNA was significantly upregulated in the hippocampus of LE rats 2h after exposure to acute restraint stress, but not in acutely-restrained rats with a history of repeated social defeat stress. WKY rats exhibited a very different pattern. OCT3 mRNA was unaffected by acute restraint stress alone but was robustly upregulated after repeated+acute stress. There was also a corresponding increase in cytosolic OCT3 protein following repeated+acute stress in WKY rats 3h after presentation of the acute stressor. These results are consistent with the hypothesis that altered expression of the OCT3 may play a role in stress coping, and strain differences in regulation of this expression may contribute to differences in physiological and behavioral responses to stress. Furthermore, the OCT3 inhibitor, decynium 22 (1 and 10μg/kg, i.p.) reduced immobility of WKY rats, but not that of LE rats, in the forced swim test, suggesting that blockade of the OCT3 has antidepressant-like effects. Since WKY rats also appear to be resistant to the behavioral effects of traditional antidepressants, this also suggests that OCT3 antagonism may be an alternative therapeutic strategy for the treatment of depression in individuals who do not respond to conventional antidepressants. Published by Elsevier Inc.

  7. Seasonal changes of fructans in dimorphic roots of Ichthyothere terminalis (Spreng.) Blake (Asteraceae) growing in Cerrado.

    Science.gov (United States)

    de Almeida, Lorrayne Veloso; Ferri, Pedro Henrique; Seraphin, José Carlos; de Moraes, Moemy Gomes

    2017-11-15

    Cerrado is a floristically rich savanna in Brazil, whose vegetation consists of a physiognomic mosaic, influenced by rainfall seasonality. In the dry season rainfall is substantially lower and reduces soil water supply, mainly for herbs and subshrubs. Climatic seasonal variations may well define phenological shifts and induce fluctuations of plant reserve pools. Some Cerrado native species have thickened underground organs that bear buds and store reserves, as adaptive features to enable plant survival following environmental stresses. Asteraceae species accumulate fructans in storage organs, which are not only reserve, but also protecting compounds against the effects of cold and drought. Ichthyothere terminalis is one Asteraceae species abundant in cerrado rupestre, with underground organs consisting of thickened orthogravitropic and diagravitropic roots. The objectives of this study were to analyze how abiotic environmental factors and plant phenology influence fructan dynamics in field grown plants, and verify if fructan metabolism differs in both root types for one year. I. terminalis accumulates inulin-type fructans in 10-40% of the dry mass in both root types. Fructan dynamics have similar patterns described for other Asteraceae species, exhibiting a proportional increase of polysaccharides with the senescence of the aerial organs. Multivariate analyzes showed that, as rainfall decreased, environmental factors had a stronger influence on metabolite levels than phenological shifts in both root types. Only slight differences were found in fructan dynamics between orthogravitropic and diagravitropic roots, suggesting they may have similar fructan metabolism regulation. However, these small differences may reflect distinct microclimatic conditions in both root types and also represent the influence of sink strength. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Ontogenetic organization of the FMRFamide immunoreactivity in the nervus terminalis of the lungfish, Neoceratodus forsteri.

    Science.gov (United States)

    Fiorentino, Maria; D'Aniello, Biagio; Joss, Jean; Polese, Gianluca; Rastogi, Rakesh K

    2002-08-19

    The development of the nervus terminalis system in the lungfish, Neoceratodus forsteri, was investigated by using FMRFamide as a marker. FMRFamide immunoreactivity appears first within the brain, in the dorsal hypothalamus at a stage around hatching. At a slightly later stage, immunoreactivity appears in the olfactory mucosa. These immunoreactive cells move outside the olfactory organ to form the ganglion of the nervus terminalis. Immunoreactive processes emerge from the ganglion of the nervus terminalis in two directions, one which joins the olfactory nerve to travel to the brain and the other which courses below the brain to enter at the level of the preoptic nucleus. Neither the ganglion of the nervus terminalis nor the two branches of the nervus terminalis form after surgical removal of the olfactory placode at a stage before the development of FMRFamide immunoreactivity external to the brain. Because this study has confirmed that the nervus terminalis in lungfish comprises both an anterior and a posterior branch, it forms the basis for discussion of homology between these branches and the nervus terminalis of other anamniote vertebrates. Copyright 2002 Wiley-Liss, Inc.

  9. Light-modulated release of RFamide-like neuropeptides from nervus terminalis axon terminals in the retina of goldfish.

    Science.gov (United States)

    Fischer, A J; Stell, W K

    1997-03-01

    The nervus terminalis of teleosts, a cranial nerve anatomically associated with the olfactory system, projects to visual system targets including retina and optic tectum. It is known to contain gonadotropin-releasing hormone and RFamide-like peptides, but its function remains unknown. We have probed nervus terminalis function in goldfish by measuring peptide content in retina and tectum with a radioimmunoassay for A18Famide (neuropeptide AF; bovine morphine-modulating peptide). We found that retinal peptide content increased in the dark and decreased in the light, whereas tectal peptide content decreased in the dark and increased in the light. In addition, RFamide-like peptide content in the retina was transiently decreased by severing both olfactory tracts, increased in light-adapted eyes treated with a GABAergic agonist (isoguvacine), and decreased in dark-adapted eyes treated with GABAergic antagonists (bicuculline and picrotoxin). We also found that RFamide-like peptide release could be induced in dark-adapted isolated-superfused retinas by exposure to light or a high concentration (102.5 mM) of potassium ions. We interpret the increase and decrease in peptide content as reflecting a decrease and increase, respectively, in rate of peptide release. We propose that the release and accumulation of RFamide-like peptides in axon terminals of nervus terminalis processes in the retina are modulated primarily by neurons intrinsic to the retina and regulated by light. Peptide release appears to be inhibited tonically in the dark by GABA acting through GABAA receptors; light facilitates peptide release by disinhibition due to a reduction in GABA release. In addition, we propose that electrical signals originating outside the retina can override these intrinsic release-modulating influences.

  10. Central projections of the nervus terminalis in four species of amphibians.

    Science.gov (United States)

    Hofmann, M H; Meyer, D L

    1989-01-01

    The central projections of the nervus terminalis were investigated in two anuran and two urodele species by means of horseradish peroxidase injections into one nasal cavity. In anurans, the nervus terminalis projects to the medial septum, to the preoptic nucleus, to the nucleus of the anterior commissure and to the hypothalamus. In addition to these structures, the dorsal thalamus, the infundibulum and the mesencephalic tegmentum are innervated in urodeles. The structure containing the highest density of terminals in the amphibians investigated is the hypothalamus. In one anuran and one urodele species, the contralateral hypothalamus is primarily innervated, whereas in the other two species the majority of fibers remain ipsilateral. A comparison with other vertebrates shows that the terminalis system in urodeles has the greatest diversity of connections. Anurans, in contrast, lack some connections that are present in urodeles and fishes. These findings have implications for a possible relation of the nervus terminalis to an aquatic habitat.

  11. The nervus terminalis in the mouse: light and electron microscopic immunocytochemical studies.

    Science.gov (United States)

    Jennes, L

    1987-01-01

    The distribution of gonadotropin-releasing hormone (GnRH)-containing neurons and fibers in the olfactory bulb was studied with light and electron microscopic immunohistochemistry in combination with retrograde transport of "True Blue" and horseradish peroxidase and lesion experiments. GnRH-positive neurons are found in the septal roots of the nervus terminalis, in the ganglion terminale, intrafascicularly throughout the nervus terminalis, in a dorso-ventral band in the caudal olfactory bulb, in various layers of the main and accessory olfactory bulb, and in the basal aspects of the nasal epithelium. Electron microscopic studies show that the nerve fibers in the nervus terminalis are not myelinated and are not surrounded by Schwann cell sheaths. In the ganglion terminale, "smooth" GnRH neurons are seen in juxtaposition to immunonegative neurons. Occasionally, axosomatic specializations are found in the ganglion terminale, but such synaptic contacts are not seen intrafascicularly in the nervus terminalis. Retrograde transport studies indicate that certain GnRH neurons in the septal roots of the nervus terminalis were linked to the amygdala. In addition, a subpopulation of nervus terminalis-related GnRH neurons has access to fenestrated capillaries whereas other GnRH neurons terminate at the nasal epithelium. Lesions of the nervus terminalis caudal to the ganglion terminale result in sprouting of GnRH fibers at both sites of the knife cut. The results suggest that GnRH in the olfactory system of the mouse can influence a variety of target sites either via the blood stream, via the external cerebrospinal fluid or via synaptic/asynaptic contacts with, for example, the receptor cells in the nasal mucosa.

  12. Garcinia mangostana Linn displays antidepressant-like and pro-cognitive effects in a genetic animal model of depression: a bio-behavioral study in the Flinders Sensitive Line rat.

    Science.gov (United States)

    Oberholzer, Inge; Möller, Marisa; Holland, Brendan; Dean, Olivia M; Berk, Michael; Harvey, Brian H

    2018-04-01

    There is abundant evidence for both disorganized redox balance and cognitive deficits in major depressive disorder (MDD). Garcinia mangostana Linn (GM) has anti-oxidant activity. We studied the antidepressant-like and pro-cognitive effects of raw GM rind in Flinders Sensitive Line (FSL) rats, a genetic model of depression, following acute and chronic treatment compared to a reference antidepressant, imipramine (IMI). The chemical composition of the GM extract was analysed for levels of α- and γ-mangostin. The acute dose-dependent effects of GM (50, 150 and 200 mg/kg po), IMI (20 mg/kg po) and vehicle were determined in the forced swim test (FST) in FSL rats, versus Flinders Resistant Line (FRL) control rats. Locomotor testing was conducted using the open field test (OFT). Using the most effective dose above coupled with behavioral testing in the FST and cognitive assessment in the novel object recognition test (nORT), a fixed dose 14-day treatment study of GM was performed and compared to IMI- (20 mg/kg/day) and vehicle-treated animals. Chronic treated animals were also assessed with respect to frontal cortex and hippocampal monoamine levels and accumulation of malondialdehyde. FSL rats showed significant cognitive deficits and depressive-like behavior, with disordered cortico-hippocampal 5-hydroxyindole acetic acid (5-HIAA) and noradrenaline (NA), as well as elevated hippocampal lipid peroxidation. Acute and chronic IMI treatment evoked pronounced antidepressant-like effects. Raw GM extract contained 117 mg/g and 11 mg/g α- and γ-mangostin, respectively, with acute GM demonstrating antidepressant-like effects at 50 mg/kg/day. Chronic GM (50 mg/kg/d) displayed significant antidepressant- and pro-cognitive effects, while demonstrating parity with IMI. Both behavioral and monoamine assessments suggest a more prominent serotonergic action for GM as opposed to a noradrenergic action for IMI, while both IMI and GM reversed hippocampal lipid peroxidation in

  13. Primary olfactory projections and the nervus terminalis in the African lungfish: implications for the phylogeny of cranial nerves.

    Science.gov (United States)

    von Bartheld, C S; Claas, B; Münz, H; Meyer, D L

    1988-08-01

    Primary olfactory and central projections of the nervus terminalis were investigated by injections of horseradish peroxidase into the olfactory epithelium in the African lungfish. In addition, gonadotropin-releasing hormone (GnRH) immunoreactivity of the nervus terminalis system was investigated. The primary olfactory projections are restricted to the olfactory bulb located at the rostral pole of the telencephalon; they do not extend into caudal parts of the telencephalon. A vomeronasal nerve and an accessory olfactory bulb could not be identified. The nervus terminalis courses through the dorsomedial telencephalon. Major targets include the nucleus of the anterior commissure and the nucleus praeopticus pars superior. some fibers cross to the contralateral side. A few fibers reach the diencephalon and mesencephalon. No label is present in the "posterior root of the nervus terminalis" (= "Pinkus's nerve" or "nervus praeopticus"). GnRH immunoreactivity is lacking in the "anterior root of the nervus terminalis," whereas it is abundant in nervus praeopticus (Pinkus's nerve). These findings may suggest that the nervus terminalis system originally consisted of two distinct cranial nerves, which have fused-in evolution-in most vertebrates. Theories of cranial nerve phylogeny are discussed in the light of the assumed "binerval origin" of the nervus terminalis system.

  14. Congenital Generalized Hypertrichosis Terminalis with Gingival Hyperplasia and a Coarse Face: a Case Report

    Directory of Open Access Journals (Sweden)

    Kazandjieva Jana

    2016-03-01

    Full Text Available Congenital generalized hypertrichosis, in its most common form, is idiopathic. In the absence of underlying endocrine or metabolic disorders, congenital generalized hypertrichosis is rare in humans, affecting as few as one in a billion individuals and may be an isolated condition of the skin, or a component feature of other disorders or syndromes. Congenital generalized hypertrichosis terminalis is an extremely rare condition, a distinct subset of disorders with congenital hypertrichosis, presenting with excessive hair as the primary clinical feature. Congenital generalized hypertrichosis terminalis is characterized by universal excessive growth of pigmented terminal hair and often accompanied with gingival hyperplasia and/or a coarse face. Gingival hyperplasia may be delayed even until puberty. Its pathogenesis may be caused by one of the following mechanisms: conversion of vellus to terminal hairs and/or prolonged anagenetic stage, and/or increase in the number of hair follicles. Since the Middle Ages, less than 60 individuals with congenital hypertrichosis terminalis have been described, and, according to the most recent estimates, less than 40 cases were documented adequately and definitively in the literature. Recent articles identified congenital generalized hypertrichosis terminalis as a genomic disorder.

  15. Neuronal Correlates of Fear Conditioning in the Bed Nucleus of the Stria Terminalis

    Science.gov (United States)

    Haufler, Darrell; Nagy, Frank Z.; Pare, Denis

    2013-01-01

    Lesion and inactivation studies indicate that the central amygdala (CeA) participates in the expression of cued and contextual fear, whereas the bed nucleus of the stria terminalis (BNST) is only involved in the latter. The basis for this functional dissociation is unclear because CeA and BNST form similar connections with the amygdala and…

  16. Apoptosis during sexual differentiation of the bed nucleus of the stria terminalis in the rat brain

    NARCIS (Netherlands)

    Chung, W. C.; Swaab, D. F.; de Vries, G. J. [=Geert J.

    2000-01-01

    The bed nucleus of the stria terminalis (BST) in the rat forebrain differs between males and females. To test whether apoptosis may contribute to the development of sex differences in the BST, the incidence of apoptosis was determined in sham-treated males and sham-treated females sacrificed on

  17. Antidepressant-like effects of the acute and chronic administration of nicotine in the rat forced swimming test and its interaction with fluoxetine [correction of flouxetine].

    Science.gov (United States)

    Vázquez-Palacios, G; Bonilla-Jaime, H; Velázquez-Moctezuma, J

    2004-05-01

    An antidepressant action of nicotine (NIC) has recently been suggested. Flouxetine, a selective serotonin reuptake inhibitor, is currently the most widely used antidepressant. In the present study, we analyzed the effects of the administration of NIC, fluoxetine (FLX), and the combination of both drugs given acutely, subchronically, and chronically as well as 7 days after chronic administration of these drugs on the forced swim test. Results showed that NIC induced a significant reduction of the time in immobility during the forced swim test (antidepressant effect), with a concomitant increase in swimming activity (serotonergic activation), after acute administration. These effects remain the same after subchronic and chronic administration. FLX failed to induce any effect after acute administration but did induce a significant decrease of immobility and an increase of swimming after subchronic administration. The effect of the chronic administration was significantly larger compared to subchronic administration. The combination of both drugs induced a larger effect than that observed after a single administration but only after subchronic treatment. No effect was observed after the end of the 7-day treatments. Data suggest that NIC has an antidepressant action that is expressed faster than FLX but remains the same later. Thus, cholinergic-serotonergic interactions could play an important role in the treatment of depression.

  18. Using the trans-lamina terminalis route via a pterional approach to resect a retrochiasmatic craniopharyngioma involving the third ventricle.

    Science.gov (United States)

    Weil, Alexander G; Robert, Thomas; Alsaiari, Sultan; Obaid, Sami; Bojanowski, Michel W

    2016-01-01

    Retrochiasmatic craniopharyngiomas involving the anterior third ventricle are challenging to access. Although the pterional approach is a common route for suprasellar lesions, when the craniopharyngioma extends behind the chiasma into the third ventricle, access is even more difficult, and the lamina terminalis may offer a good working window. The translamina terminalis approach provides direct access to the retrochiasmatic portion of the tumor with minimal brain retraction and no manipulation of the visual nerves. In this video, we emphasize the utility of using the lamina terminalis corridor to resect the retrochiasmatic intraventricular portion of a craniopharyngioma. The video can be found here: https://youtu.be/hrLNC0hDKe4 .

  19. Antidepressant-like effect of a new selenium-containing compound is accompanied by a reduction of neuroinflammation and oxidative stress in lipopolysaccharide-challenged mice.

    Science.gov (United States)

    Casaril, Angela M; Domingues, Micaela; Fronza, Mariana; Vieira, Beatriz; Begnini, Karine; Lenardão, Eder J; Seixas, Fabiana K; Collares, Tiago; Nogueira, Cristina W; Savegnago, Lucielli

    2017-09-01

    Organoselenium compounds and indoles have gained attention due to their wide range of pharmacological properties. Depression is a recurrent and disabling psychiatric illness and current evidences support that oxidative stress and neuroinflammation are mechanisms underlying the pathophysiology of this psychiatric condition. Here, we evaluated the effect of 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole (CMI) in lipopolysaccharide (LPS)-induced depressive-like behaviour, neuroinflammation and oxidative stress in male mice. CMI pre-treatment (20 and 50 mg/kg, intragastrically) significantly attenuated LPS (0.83 mg/kg, intraperitoneally)-induced depressive-like behaviour in mice by reducing the immobility time in the tail suspension test (TST) and forced swimming test (FST). CMI pre-treatment ameliorated LPS-induced neuroinflammation by reducing the levels of interleukin (IL)-1β, IL-4 and IL-6 in the hippocampus and prefrontal cortex, as well as markers of oxidative damage. Additionally, we investigated the toxicological effects of CMI (200 mg/kg, i.g.) in the liver, kidney and brain through determination of the activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), δ-aminolevulinate dehydratase (δ-ALA-D) and creatinine levels. These biomarkers were not modified, indicating the possible absence of neuro-, hepato- and nephrotoxic effects. Our results suggest that CMI could be a therapeutic approach for the treatment of depression and other neuropsychiatric disorders associated with inflammation and oxidative stress.

  20. Targeting the Microbiota-Gut-Brain Axis: Prebiotics Have Anxiolytic and Antidepressant-like Effects and Reverse the Impact of Chronic Stress in Mice.

    Science.gov (United States)

    Burokas, Aurelijus; Arboleya, Silvia; Moloney, Rachel D; Peterson, Veronica L; Murphy, Kiera; Clarke, Gerard; Stanton, Catherine; Dinan, Timothy G; Cryan, John F

    2017-10-01

    The realization that the microbiota-gut-brain axis plays a critical role in health and disease, including neuropsychiatric disorders, is rapidly advancing. Nurturing a beneficial gut microbiome with prebiotics, such as fructo-oligosaccharides (FOS) and galacto-oligosaccharides (GOS), is an appealing but underinvestigated microbiota manipulation. Here we tested whether chronic prebiotic treatment modifies behavior across domains relevant to anxiety, depression, cognition, stress response, and social behavior. C57BL/6J male mice were administered FOS, GOS, or a combination of FOS+GOS for 3 weeks prior to testing. Plasma corticosterone, microbiota composition, and cecal short-chain fatty acids were measured. In addition, FOS+GOS- or water-treated mice were also exposed to chronic psychosocial stress, and behavior, immune, and microbiota parameters were assessed. Chronic prebiotic FOS+GOS treatment exhibited both antidepressant and anxiolytic effects. Moreover, the administration of GOS and the FOS+GOS combination reduced stress-induced corticosterone release. Prebiotics modified specific gene expression in the hippocampus and hypothalamus. Regarding short-chain fatty acid concentrations, prebiotic administration increased cecal acetate and propionate and reduced isobutyrate concentrations, changes that correlated significantly with the positive effects seen on behavior. Moreover, FOS+GOS reduced chronic stress-induced elevations in corticosterone and proinflammatory cytokine levels and depression-like and anxiety-like behavior in addition to normalizing the effects of stress on the microbiota. Taken together, these data strongly suggest a beneficial role of prebiotic treatment for stress-related behaviors. These findings strengthen the evidence base supporting therapeutic targeting of the gut microbiota for brain-gut axis disorders, opening new avenues in the field of nutritional neuropsychopharmacology. Copyright © 2017 Society of Biological Psychiatry. Published by

  1. Antidepressant-like effects and possible mechanisms of amantadine on cognitive and synaptic deficits in a rat model of chronic stress.

    Science.gov (United States)

    Yu, Mei; Zhang, Yuan; Chen, Xiaoyu; Zhang, Tao

    2016-01-01

    The aim of this study was to examine whether amantadine (AMA), as a low-affinity noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, is able to improve cognitive deficits caused by chronic stress in rats. Male Wistar rats were divided into four groups: control, control + AMA, stress and stress + AMA groups. The chronic stress model combined chronic unpredictable stress (CUS) with isolated feeding. Animals were exposed to CUS continued for 21 days. AMA (25 mg/kg) was administrated p.o. for 20 days from the 4th day of CUS to the 23rd. Weight and sucrose consumption were measured during model establishing period. Spatial memory was evaluated using the Morris water maze (MWM) test. Following MWM testing, both long-term potentiation (LTP) and depotentiation were recorded in the hippocampal CA1 region. NR2B and postsynaptic density protein 95 (PSD-95) proteins were measured by Western-blot analysis. AMA increased weight and sucrose consumption of stressed rats. Spatial memory and reversal learning in stressed rats were impaired relative to controls, whereas AMA significantly attenuated cognitive impairment. AMA also mitigated the chronic stress-induced impairment of hippocampal synaptic plasticity, in which both the LTP and depotentiation were significantly inhibited in stressed rats. Moreover, AMA enhanced the expression of hippocampal NR2B and PSD-95 in stressed rats. The data suggest that AMA may be an effective therapeutic agent for depression-like symptoms and associated cognitive disturbances.

  2. Attenuation of oxidative and nitrosative stress in cortical area associates with antidepressant-like effects of tropisetron in male mice following social isolation stress.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Amiri, Shayan; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Kordjazy, Nastaran; Olson, Carl O; Rastegar, Mojgan; Naserzadeh, Parvaneh; Marzban, Hassan; Dehpour, Ahmad Reza; Hosseini, Mir-Jamal; Samiei, Elika; Mehr, Shahram Ejtemaei

    2016-06-01

    Tropisetron, a 5-HT3 receptor antagonist widely used as an antiemetic, has been reported to have positive effects on mood disorders. Adolescence is a critical period during the development of brain, where exposure to chronic stress during this time is highly associated with the development of depression. In this study, we showed that 4 weeks of juvenile social isolation stress (SIS) provoked depressive-like behaviors in male mice, which was associated with disruption of mitochondrial function and nitric oxide overproduction in the cortical areas. In this study, tropisetron (5mg/kg) reversed the negative behavioral effects of SIS in male mice. We found that the effects of tropisetron were mediated through mitigating the negative activity of inducible nitric oxide synthase (iNOS) on mitochondrial activity. Administration of aminoguanidine (specific iNOS inhibitor, 20mg/kg) augmented the protective effects of tropisetron (1mg/kg) on SIS. Furthermore, l-arginine (nitric oxide precursor, 100mg/kg) abolished the positive effects of tropisetron. These results have increased our knowledge on the pivotal role of mitochondrial function in the pathophysiology of depression, and highlighted the role of 5-HT3 receptors in psychosocial stress response during adolescence. Finally, we observed that tropisetron alleviated the mitochondrial dysfunction through decreased nitrergic system activity in the cerebral cortex. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Antidepressant-like activity of venlafaxine and clonidine in mice exposed to single prolonged stress - A model of post-traumatic stress disorder. Pharmacodynamic and molecular docking studies.

    Science.gov (United States)

    Malikowska, Natalia; Fijałkowski, Łukasz; Nowaczyk, Alicja; Popik, Piotr; Sałat, Kinga

    2017-10-15

    Post-traumatic stress disorder (PTSD) is a growing issue worldwide characterized by stress and anxiety in response to re-experiencing traumatic events which strongly impair patient's quality of life and social functions. Available antidepressant and anxiolytic drugs are not efficacious in the majority of treated individuals. This necessitates a significant medical demand to develop novel therapeutic strategies for PTSD. Animal model of PTSD was induced using a mouse single prolonged stress protocol (mSPS). To assess the activity of venlafaxine and clonidine, the forced swim test (FST) was used repeatedly 24h, 3days, 8days, 15days and 25days after mSPS. To get insight into a possible mechanism of anti-PTSD action, molecular docking procedure was utilized for the most active drug. This in silico part comprised molecular docking of enantiomers of venlafaxine to human transporters for serotonin (hSERT), norepinephrine (hNET) and dopamine (hDAT). In mSPS-subjected mice FST revealed the effectiveness of venlafaxine, however in non SPS-subjected mice both venlafaxine and clonidine were active. Molecular docking studies indicated that the affinity of venlafaxine to monoamine transporters is growing in the following rank order: hDATPTSD. Its mechanism of action, i.e., SERT, NET and DAT inhibition indicates potential drug targets for PTSD treatment. We expect that these results will contribute to a broader application of VLX in PTSD patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of co-administration of memantine and sertraline on the antidepressant-like activity and brain-derived neurotrophic factor (BDNF) levels in the rat brain.

    Science.gov (United States)

    Amidfar, Meysam; Réus, Gislaine Z; Quevedo, João; Kim, Yong-Ku; Arbabi, Mohammad

    2017-01-01

    A developing body of data has drawn attention to the N-methyl-d-aspartate (NMDA) receptor antagonists as potential drugs for the treatment of major depressive disorder (MDD). We investigated the possibility of synergistic interactions between the antidepressant sertraline with the uncompetitive NMDA receptor antagonist, memantine. The present study was aimed to evaluate behavioural and molecular effects of the chronic treatment with memantine and sertraline alone or in combination in rats. To this aim, rats were chronically treated with memantine (2.5 and 5mg/kg) and sertraline (5mg/kg) for 14days once a day, and then exposed to the forced swimming test. The brain-derived neurotrophic factor (BDNF) levels were assessed in the hippocampus and prefrontal cortex in all groups by ELISA sandwich assay. Sertraline and memantine (2.5mg/kg) alone did not have effect on the immobility time; however, the effect of sertraline was enhanced by both doses of memantine. Combined treatment with memantine and sertraline produced stronger increases in the BDNF protein levels in the hippocampus and prefrontal cortex. Our results indicate that co-administration of antidepressant memantine with sertraline may induce a more pronounced antidepressant activity than treatment with each antidepressant alone. Antidepressant properties using the combination of memantine and sertraline could be attributed to increased levels of BDNF. This finding may be of particular importance in the case of drug-resistant patients and could suggest a method of obtaining significant antidepressant actions whereas limiting side effects. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Ontogenesis of neurons producing luteinizing hormone-releasing hormone (LHRH) in the nervus terminalis of the rat.

    Science.gov (United States)

    Schwanzel-Fukuda, M; Morrell, J I; Pfaff, D W

    1985-08-15

    Immunoreactive luteinizing hormone-releasing hormone (LHRH) was first detected at 15 days of gestation in ganglion cells associated with the peripheral, intracranial, and central parts of the nervus terminalis of the rat. LHRH was not detected in any other structure of the central nervous system at this age. In the 17-day-old fetal rat, 62% of the total LHRH-reactive neuronal population was found in ganglion cells of the nervus terminalis. At this same age, immunoreactive beta-luteinizing hormone (beta-LH) was first seen in gonadotropes of the anterior pituitary gland. At 19 days of gestation, 31% of the total number of LHRH-reactive neurons observed in the rat brain was found in the nervus terminalis, and immunoreactive processes were first seen in the organum vasculosum of the lamina terminalis and in the median eminence. Our data indicate that from 15 to 19 days of gestation the nervus terminalis is a principal source of LHRH in the fetal rat. Presence of the decapeptide in the nervus terminalis prior to appearance of beta-LH in the anterior pituitary suggests a possible role for LHRH in this system on maturation of the gonadotropes and differentiation of the brain-pituitary-gonadal axis.

  6. The nervus terminalis ganglion in Anguilla rostrata: an immunocytochemical and HRP histochemical analysis.

    Science.gov (United States)

    Grober, M S; Bass, A H; Burd, G; Marchaterre, M A; Segil, N; Scholz, K; Hodgson, T

    1987-12-08

    Immunocytochemistry and retrograde horseradish peroxidase (HRP) transport were used to study the ganglion of the nervus terminalis in the American eel, Anguilla rostrata. Luteinizing hormone releasing hormone (LHRH) like immunoreactivity was found in large, ganglion-like cells located ventromedially at the junction of the telencephalon and olfactory bulb and in fibers within the retina and olfactory epithelium. HRP transport from the retina demonstrated direct connections with both the ipsi- and contralateral populations of these ganglion-like cells. Given the well-documented role of both olfaction and vision during migratory and reproductive phases of the life cycle of eels, the robust nature of a nervus terminalis system in these fish may present a unique opportunity to study the behavioral correlates of structure-function organization in a discrete population of ganglion-like cells.

  7. Ontogenetic development of the nervus terminalis in toothed whales. Evidence for its non-olfactory nature.

    Science.gov (United States)

    Buhl, E H; Oelschläger, H A

    1986-01-01

    For the first time in cetaceans, the development of the terminalis system and its continuity between the olfactory placode and the telencephalon has been demonstrated by light microscopy. In the early development of toothed whales (Odontoceti) this system is partially incorporated within the fila olfactoria which grow out from the olfactory placode. As the peripheral olfactory system is reduced in later stages, a strongly developed ganglionlike structure (terminalis ganglion) remains within the primitive meninx. Peripherally it is connected via the cribriform plate with ganglionic cell clusters near the septal mucosa. Centrally it is attached to the telencephalon (olfactory tubercle, septal region) by several nerve fibre bundles. In contrast to all other mammalian groups, toothed whales and dolphins are anosmatic while being totally adapted to aquatic life. Therefore the remaining ganglion and plexus must have non-olfactory properties. They may be responsible for the autonomic innervation of intracranial arteries and of the large mucous epithelia in the accessory nasal air sacs. The morphology, evolution and functional implications of the terminalis system in odontocetes and other mammals are discussed.

  8. Central projections of the nervus terminalis and the nervus praeopticus in the lungfish brain revealed by nitric oxide synthase.

    Science.gov (United States)

    Schober, A; Meyer, D L; Von Bartheld, C S

    1994-11-01

    Lungfishes possess two cranial nerves that are associated with the olfactory system: the nervus terminalis enters the telencephalon with the olfactory nerve, and the nervus praeopticus enters the diencephalon at the level of the optic nerve. We investigated the central projections of the nervus terminalis and the nervus praeopticus in the Australian lungfish (Neoceratodus forsteri) and in the African lungfish (Protopterus dolloi) by NADPH-diaphorase histochemistry (nitric oxide synthase; NOS) and compared them with the projections of the nervus terminalis of the frog (Xenopus laevis). In Neoceratodus, NOS-positive fascicles of the nervus terminalis divide and project with a ventral component through the septum and with a dorsal component through the pallium; fibers of both trajectories extend caudally beyond the anterior commissure and join the lateral forebrain bundle. In the nervus praeopticus, about 300 fibers contain NOS; they innervate the preoptic nucleus and continue their course through the diencephalon; many fibers cross in the commissure of the posterior tuberculum. In Protopterus, ganglion cells of the nervus terminalis and of the nervus praeopticus contain NOS. NOS-positive fibers of the nervus terminalis project through the septal region but not through the pallium. Several major fascicles cross in the rostral part of the anterior commissure, where they are joined by a small number of NOS-containing fibers of the nervus praeopticus. Both nerves innervate the preoptic nucleus. The number and pathways of the fascicles of the nervus terminalis are not always symmetric between the two sides. The nervus terminalis fascicles remain in a ventral position, whereas the nervus praeopticus gives rise to the more dorsal fascicles. Many fibers of the two nerves extend throughout the diencephalon and cross in the commissure of the posterior tuberculum. These findings demonstrate many similarities but also significant differences between the contributions of the

  9. Anxiolytic-like and antidepressant-like activities of MCL0129 (1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynaphthalen-1-yl)butyl]piperazine), a novel and potent nonpeptide antagonist of the melanocortin-4 receptor.

    Science.gov (United States)

    Chaki, Shigeyuki; Hirota, Shiho; Funakoshi, Takeo; Suzuki, Yoshiko; Suetake, Sayoko; Okubo, Taketoshi; Ishii, Takaaki; Nakazato, Atsuro; Okuyama, Shigeru

    2003-02-01

    We investigated the effects of a novel melanocortin-4 (MC4) receptor antagonist,1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynaphthalen-1-yl)butyl]piperazine (MCL0129) on anxiety and depression in various rodent models. MCL0129 inhibited [(125)I][Nle(4)-D-Phe(7)]-alpha-melanocyte-stimulating hormone (alpha-MSH) binding to MC4 receptor with a K(i) value of 7.9 nM, without showing affinity for MC1 and MC3 receptors. MCL0129 at 1 microM had no apparent affinity for other receptors, transporters, and ion channels related to anxiety and depression except for a moderate affinity for the sigma(1) receptor, serotonin transporter, and alpha(1)-adrenoceptor, which means that MCL0129 is selective for the MC4 receptor. MCL0129 attenuated the alpha-MSH-increased cAMP formation in COS-1 cells expressing the MC4 receptor, whereas MCL0129 did not affect basal cAMP levels, thereby indicating that MCL0129 acts as an antagonist at the MC4 receptor. Swim stress markedly induced anxiogenic-like effects in both the light/dark exploration task in mice and the elevated plus-maze task in rats, and MCL0129 reversed the stress-induced anxiogenic-like effects. Under nonstress conditions, MCL0129 prolonged time spent in the light area in the light/dark exploration task and suppressed marble-burying behavior. MCL0129 shortened immobility time in the forced swim test and reduced the number of escape failures in inescapable shocks in the learned helplessness test, thus indicating an antidepressant potential. In contrast, MCL0129 had negligible effects on spontaneous locomotor activity, Rotarod performance, and hexobarbital-induced anesthesia. These observations indicate that MCL0129 is a potent and selective MC4 antagonist with anxiolytic- and antidepressant-like activities in various rodent models. MC4 receptor antagonists may prove effective for treating subjects with stress-related disorders such as depression and/or anxiety.

  10. Chronic treatment with caffeine and its withdrawal modify the antidepressant-like activity of selective serotonin reuptake inhibitors in the forced swim and tail suspension tests in mice. Effects on Comt, Slc6a15 and Adora1 gene expression.

    Science.gov (United States)

    Szopa, Aleksandra; Doboszewska, Urszula; Herbet, Mariola; Wośko, Sylwia; Wyska, Elżbieta; Świąder, Katarzyna; Serefko, Anna; Korga, Agnieszka; Wlaź, Aleksandra; Wróbel, Andrzej; Ostrowska, Marta; Terlecka, Joanna; Kanadys, Adam; Poleszak, Ewa; Dudka, Jarosław; Wlaź, Piotr

    2017-12-15

    Recent preclinical and clinical data suggest that low dose of caffeine enhances the effects of common antidepressants. Here we investigated the effects of chronic administration of caffeine (5mg/kg, twice daily for 14days) and its withdrawal on day 15th on the activity of per se ineffective doses of fluoxetine (5mg/kg) and escitalopram (2mg/kg) given on day 15th. We found decreased immobility time in the forced swim and tail suspension tests in mice in which caffeine was administered simultaneously with antidepressants on day 15th following a 14-day caffeine treatment and no alterations in the spontaneous locomotor activity. A decrease in the level of escitalopram and an increase in the level of caffeine in serum were observed after concomitant administration of these compounds, while the joint administration of caffeine and fluoxetine was not associated with changes in their levels in serum or brain. Caffeine withdrawal caused a decrease in Adora1 mRNA level in the cerebral cortex (Cx). Administration of escitalopram or fluoxetine followed by caffeine withdrawal caused an increase in this gene expression, whereas administration of escitalopram, but not fluoxetine, on day 15th together with caffeine caused a decrease in Adora1 mRNA level in the Cx. Furthermore, antidepressant-like activity observed after joint administration of the tested drugs with caffeine was associated with decreased Slc6a15 mRNA level in the Cx. The results show that withdrawal of caffeine after its chronic intake may change activity of antidepressants with concomitant alterations within monoamine, adenosine and glutamate systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Potential damages, seasonal abundance and distribution of Empoasca terminalis Distant (Homoptera: Cicadellidae on soybean in South Sulawesi

    Directory of Open Access Journals (Sweden)

    Andi Nasruddin

    2015-09-01

    Full Text Available Plant damages caused by leafhopper, Empoasca terminalis Distant (Homoptera: Cicadellidae on soybean were first encountered in 2007 in Makassar, South Sulawesi. The insect has been constantly associated with soybean crops in the province ever since. The purposes of the present study were to (i evaluate potential yield loss attributable to the leafhopper in an experimental set up, (ii seasonal abundance of E. terminalis, and (iii distribution of E. terminalis in all major soybean-producing areas in the province. Potential yield loss due to the leafhopper was assessed in a field experiment using two large plots. One of the plots was kept leafhopper-free by weekly insecticide sprays; and the other plot was left unsprayed to allow leafhopper infestation to occur. Adult abundance was weekly monitored using a sweep net throughout the season. Nymph abundance was determined by direct count on the plant leaves. Leafhopper distribution was assessed through surveys conducted in all major soybean-producing areas in South Sulawesi, from 2009–2013. The results of the study showed that E. terminalis caused an average yield loss of 26% on susceptible crops without insecticide use. First leafhopper infestation in all planting seasons occurred two weeks after the plant emergence. Rainfall negatively correlated with the leafhopper abundance. The leafhopper existed in all major soybean production areas in the province. Therefore, our results confirmed the status of E. terminalis as an important soybean pest in the region. In addition, crops planted early in the dry season could escape from heavy leafhopper infestation.

  12. Amygdala and bed nucleus of the stria terminalis circuitry: Implications for addiction-related behaviors.

    Science.gov (United States)

    Stamatakis, Alice M; Sparta, Dennis R; Jennings, Joshua H; McElligott, Zoe A; Decot, Heather; Stuber, Garret D

    2014-01-01

    Complex motivated behavioral processes, such as those that can go awry following substance abuse and other neuropsychiatric disorders, are mediated by a distributive network of neurons that reside throughout the brain. Neural circuits within the amygdala regions, such as the basolateral amygdala (BLA), and downstream targets such as the bed nucleus of the stria terminalis (BNST), are critical neuroanatomical structures for orchestrating emotional behavioral responses that may influence motivated actions such as the reinstatement of drug seeking behavior. Here, we review the functional neurocircuitry of the BLA and the BNST, and discuss how these circuits may guide maladaptive behavioral processes such as those seen in addiction. Thus, further study of the functional connectivity within these brain regions and others may provide insight for the development of new treatment strategies for substance use disorders. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Nervus terminalis, olfactory nerve, and optic nerve representation of luteinizing hormone-releasing hormone in primates.

    Science.gov (United States)

    Witkin, J W

    1987-01-01

    The luteinizing hormone-releasing hormone (LHRH) system was examined immunocytochemically in olfactory bulbs of adult monkeys, including two New World species (squirrel monkey, Saimiri sciureus and owl monkey, Aotus trivirgatus) and one Old World species (cynomolgus macaque, Macaca fasciculata), and in the brain and nasal region of a fetal rhesus macaque Macaca mulatta. LHRH neurons and fibers were found sparsely distributed in the olfactory bulbs in all adult monkeys. There was more LHRH in the accessory olfactory bulb (which is absent in Old World monkeys). In the fetal macaque there was a rich distribution of LHRH neurons and fibers along the pathway of the nervus terminalis, anterior and ventral to the olfactory bulb, and in the nasal septum, with fibers branching into the olfactory epithelium. In addition, there were LHRH neurons and fibers in the optic nerve.

  14. The nervus terminalis of the guinea pig: a new luteinizing hormone-releasing hormone (LHRH) neuronal system.

    Science.gov (United States)

    Schwanzel-Fukuda, M; Silverman, A J

    1980-05-15

    Immunoreactive LHRH-like material has been found in the cells and fibers of the nervus terminalis in fetal and adult guinea pig brains. LHRH-containing neurons and axons are seen in the nasal mucosa intermingled with fibers of the olfactory nerves, in ganglia along the ventromedial surfaces of the olfactory bulbs and forebrain, and in clusters surrounding perforating branches of the anterior cerebral artery in the regions of the septal nuclei and olfactory tubercle. Nonreactive neurons are found adjacent to the LHRH-positive cells in all of the ganglia. LHRH-immunoreactive cells and axons of the nervus terminalis are in intimate contact with cerebral blood vessels and the cerebrospinal fluid along the intracranial course of this nerve, deep to the meninges. The possible involvement of these structures in the neural mechanisms of sexual behavior and the neurohormonal regulation of reproductive function are discussed.

  15. Ventriculus Terminalis in Adults: Unusual Magnetic Resonance Imaging Features and Review of the Literature

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Sang Hyun; Chung, Tae Sub; Cho, Yong Eun; Kim, Keun Su [Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Seong Koo [Dept. of Radiology, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-09-15

    The ventriculus terminalis (VT) in adults is a rare pathology. We report various MR imaging features of the adult VT. Ten patients were included in this retrospective review.. All patients had undergone magnetic resonance (MR imaging with a surface coil that used two different 1.5T MR systems. All patients had undergone initial and follow-up MR imaging with contrast enhancement using gadopentate dimeglumine. Three patients underwent additional MR imaging using the echocardiogram-gated spatial modulation of magnetization (SPAMM) technique. If a shift in tagging band during the systolic phase was less than half of the band space, it was defined as a 'non-pulsatile fluid'. Two neuroradiologists independently reviewed these images, while clinical symptoms and outcomes were statistically analyzed between the treated and non-treated group. All cases presented an intramedullary cystic lesion in the conus medullaris and showed the same signal intensity as CSF. Three VTs had intracystic septation and cord edema, which were pathologically confirmed after surgery; two of these were associated with kyphotic deformity and spinal arteriovenous malformation. SPAMM-MRI of 3 patients demonstrated non-pulsatile fluid motion within the VT. In the treated group, clinical symptoms improved better than the non-treated group. The adult VT shows some unusual imaging features, including septation, cord edema, and coexistence of a spinal AVM, as well as the typical findings. Surgical maneuvers may be considered as a treatment option in adult VT with progressive neurological symptoms.

  16. Extrabulbar olfactory system and nervus terminalis FMRFamide immunoreactive components in Xenopus laevis ontogenesis.

    Science.gov (United States)

    Pinelli, Claudia; D'Aniello, Biagio; Polese, Gianluca; Rastogi, Rakesh K

    2004-09-01

    The extrabulbar olfactory system (EBOS) is a collection of nerve fibers which originate from primary olfactory receptor-like neurons and penetrate into the brain bypassing the olfactory bulbs. Our description is based upon the application of two neuronal tracers (biocytin, carbocyanine DiI) in the olfactory sac, at the cut end of the olfactory nerve and in the telencephalon of the developing clawed frog. The extrabulbar olfactory system was observed already at stage 45, which is the first developmental stage compatible with our techniques; at this stage, the extrabulbar olfactory system fibers terminated diffusely in the preoptic area. A little later in development, i.e. at stage 50, the extrabulbar olfactory system was maximally developed, extending as far caudally as the rhombencephalon. In the metamorphosing specimens, the extrabulbar olfactory system appeared reduced in extension; caudally, the fiber terminals did not extend beyond the diencephalon. While a substantial overlapping of biocytin/FMRFamide immunoreactivity was observed along the olfactory pathways as well as in the telencephalon, FMRFamide immunoreactivity was never observed to be colocalized in the same cellular or fiber components visualized by tracer molecules. The question whether the extrabulbar olfactory system and the nervus terminalis (NT) are separate anatomical entities or represent an integrated system is discussed.

  17. Tracing of single fibers of the nervus terminalis in the goldfish brain.

    Science.gov (United States)

    von Bartheld, C S; Meyer, D L

    1986-01-01

    Central projections of the nervus terminalis (n.t.) in the goldfish were investigated using cobalt- and horseradish peroxidase-tracing techniques. Single n.t. fibers were identified after unilateral application of cobalt chloride-lysine to the rostral olfactory bulb. The central course and branching patterns of individual n.t. fibers were studied in serial sections. Eight types of n.t. fibers are differentiated according to pathways and projection patterns. Projection areas of the n.t. include the contralateral olfactory bulb, the ipsilateral periventricular preoptic nucleus, both retinae, the caudal zone of the periventricular hypothalamus bilaterally, and the rostral optic tectum bilaterally. N.t. fibers cross to contralateral targets in the anterior commissure, the optic chiasma, the horizontal commissure, the posterior commissure, and possibly the habenular commissure. We propose criteria that differentiate central n.t. fibers from those of the classical secondary olfactory projections. Branching patterns of eight n.t. fiber types are described. Mesencephalic projections of the n.t. and of secondary olfactory fibers are compared and discussed with regard to prior reports on the olfactory system of teleosts. Further fiber types for which the association with the n.t. could not be established with certainty were traced to the torus longitudinalis, the torus semicircularis, and to the superior reticular nucleus on the ipsilateral side.

  18. Allopregnanolone in the bed nucleus of the stria terminalis modulates contextual fear in rats.

    Science.gov (United States)

    Nagaya, Naomi; Acca, Gillian M; Maren, Stephen

    2015-01-01

    Trauma- and stress-related disorders are among the most common types of mental illness affecting the U.S. population. For many of these disorders, there is a striking sex difference in lifetime prevalence; for instance, women are twice as likely as men to be affected by posttraumatic stress disorder (PTSD). Gonadal steroids and their metabolites have been implicated in sex differences in fear and anxiety. One example, allopregnanolone (ALLO), is a neuroactive metabolite of progesterone that allosterically enhances GABAA receptor activity and has anxiolytic effects. Like other ovarian hormones, it not only occurs at different levels in males and females but also fluctuates over the female reproductive cycle. One brain structure that may be involved in neuroactive steroid regulation of fear and anxiety is the bed nucleus of the stria terminalis (BNST). To explore this question, we examined the consequences of augmenting or reducing ALLO activity in the BNST on the expression of Pavlovian fear conditioning in rats. In Experiment 1, intra-BNST infusions of ALLO in male rats suppressed freezing behavior (a fear response) to the conditioned context, but did not influence freezing to a discrete tone conditioned stimulus (CS). In Experiment 2, intra-BNST infusion of either finasteride (FIN), an inhibitor of ALLO synthesis, or 17-phenyl-(3α,5α)-androst-16-en-3-ol, an ALLO antagonist, in female rats enhanced contextual freezing; neither treatment affected freezing to the tone CS. These findings support a role for ALLO in modulating contextual fear via the BNST and suggest that sex differences in fear and anxiety could arise from differential steroid regulation of BNST function. The susceptibility of women to disorders such as PTSD may be linked to cyclic declines in neuroactive steroid activity within fear circuitry.

  19. Neurogenetic and morphogenetic heterogeneity in the bed nucleus of the stria terminalis

    International Nuclear Information System (INIS)

    Bayer, S.A.

    1987-01-01

    Neurogenesis and morphogenesis in the rat bed nucleus of the stria terminalis (strial bed nucleus) were examined with [ 3 H]thymidine autoradiography. For neurogenesis, the experimental animals were the offspring of pregnant females given an injection of [ 3 H]thymidine on 2 consecutive gestational days. Nine groups of embryos were exposed to [ 3 H]thymidine on E13-E14, E14-E15,... E21-E22, respectively. On P60, the percentage of labeled cells and the proportion of cells originating during 24-hour periods were quantified at six anteroposterior levels in the strial bed nucleus. On the basis of neurogenetic gradients, the strial bed nucleus was divided into anterior and posterior parts. The anterior strial bed nucleus shows a caudal (older) to rostral (younger) neurogenetic gradient. Cells in the vicinity of the anterior commissural decussation are generated mainly between E13 and E16, cells just posterior to the nucleus accumbens mainly between E15 and E17. Within each rostrocaudal level, neurons originate in combined dorsal to ventral and medial to lateral neurogenetic gradients so that the oldest cells are located ventromedially and the youngest cells dorsolaterally. The most caudal level has some small neurons adjacent to the internal capsule that originate between E17 and E20. In the posterior strial bed nucleus, neurons extend ventromedially into the posterior preoptic area. Cells are generated simultaneously along the rostrocaudal plane in a modified lateral (older) to medial (younger) neurogenetic gradient. Ventrolateral neurons originate mainly between E13 and E16, dorsolateral neurons mainly between E15 and E16, and medial neurons mainly between E15 and E17. The youngest neurons are clumped into a medial core area just ventral to the fornix

  20. Allopregnanolone in the bed nucleus of the stria terminalis modulates contextual fear in rats

    Directory of Open Access Journals (Sweden)

    Naomi eNagaya

    2015-08-01

    Full Text Available Trauma- and stress-related disorders are among the most common types of mental illness affecting the U.S. population. For many of these disorders, there is a striking sex difference in lifetime prevalence; for instance, women are twice as likely as men to be affected by posttraumatic stress disorder (PTSD. Gonadal steroids and their metabolites have been implicated in sex differences in fear and anxiety. One example, allopregnanolone (ALLO, is a neuroactive metabolite of progesterone that allosterically enhances GABAA receptor activity and has anxiolytic effects. Like other ovarian hormones, it not only occurs at different levels in males and females but also fluctuates over the female reproductive cycle. One brain structure that may be involved in neuroactive steroid regulation of fear and anxiety is the bed nucleus of the stria terminalis (BNST. To explore this question, we examined the consequences of augmenting or reducing ALLO activity in the BNST on the expression of Pavlovian fear conditioning in rats. In Experiment 1, intra-BNST infusions of ALLO in male rats suppressed freezing behavior (a fear response to the conditioned context, but did not influence freezing to a discrete tone conditioned stimulus (CS. In Experiment 2, intra-BNST infusion of either finasteride, an inhibitor of ALLO synthesis, or 17-phenyl-(3α,5α-androst-16-en-3-ol, an ALLO antagonist, in female rats enhanced contextual freezing; neither treatment affected freezing to the tone CS. These findings support a role for ALLO in modulating contextual fear via the BNST and suggest that sex differences in fear and anxiety could arise from differential steroid regulation of BNST function. The susceptibility of women to disorders such as PTSD may be linked to cyclic declines in neuroactive steroid activity within fear circuitry.

  1. Composición fitoquímica del extracto de raíz de Ichthyothere terminalis de dos regiones geográficas de Colombia

    OpenAIRE

    Ortiz-Rojas, Luz Yineth; Chaves-Bedoya, Giovanni

    2017-01-01

    Resumen Se reporta el análisis fitoquímico de dos extractos de raíz de Ichthyothere terminalis, colectadas en las localidades de Cumaral (Meta) y Abrego (Norte de Santander), Colombia. Los extractos se obtuvieron en etanol por destilación a presión reducida y fueron caracterizados por pruebas cualitativas, así como por cromatografía de gases acoplada a espectrometría de masas (GC-MS). El análisis GC-MS reveló diferencias en los compuestos en Ichthyothere terminalis de acuerdo al lugar de proc...

  2. FMRFamide-like immunoreactive neurons of the nervus terminalis of teleosts innervate both retina and pineal organ.

    Science.gov (United States)

    Ekström, P; Honkanen, T; Ebbesson, S O

    1988-09-13

    The tetrapeptide FMRFamide (Phe-Met-Arg-Phe-NH2) was first isolated from molluscan ganglia. Subsequently, it has become clear that vertebrate brains also contain endogenous FMRFamide-like substances. In teleosts, the neurons of the nervus terminalis contain an FMRFamide-like substance, and provide a direct innervation to the retina (Proc. Natl. Acad. Sci. U.S.A., 81 [1984] 940-944). Here we report the presence of FMRFamide-immunoreactive axonal bundles in the pineal organ of Coho salmon and three-spined sticklebacks. The largest numbers of axons were observed proximal to the brain, in the pineal stalk, while the distal part of the pineal organ contained only few axons. No FMRFamide-like-immunoreactive (IR) cell bodies were observed in the pineal organ. In adult fish it was not possible to determine the origin of these axons, due to the large numbers of FMRFamide-like IR axons in the teleost brain. However, by following the development of FMRFamide-like IR neurons in the embryonic and larval stickleback brain, it was possible to conclude that, at least in newly hatched fish, FMRFamide-like IR axons that originate in the nucleus nervus terminalis reach the pineal organ. Thus, it seems there is a direct connection between a specialized part of the chemosensory system and both the retina and the pineal organ in teleost fish.

  3. How Human Amygdala and Bed Nucleus of the Stria Terminalis May Drive Distinct Defensive Responses.

    Science.gov (United States)

    Klumpers, Floris; Kroes, Marijn C W; Baas, Johanna M P; Fernández, Guillén

    2017-10-04

    The ability to adaptively regulate responses to the proximity of potential danger is critical to survival and imbalance in this system may contribute to psychopathology. The bed nucleus of the stria terminalis (BNST) is implicated in defensive responding during uncertain threat anticipation whereas the amygdala may drive responding upon more acute danger. This functional dissociation between the BNST and amygdala is however controversial, and human evidence scarce. Here we used data from two independent functional magnetic resonance imaging studies [ n = 108 males and n = 70 (45 females)] to probe how coordination between the BNST and amygdala may regulate responses during shock anticipation and actual shock confrontation. In a subset of participants from Sample 2 ( n = 48) we demonstrate that anticipation and confrontation evoke bradycardic and tachycardic responses, respectively. Further, we show that in each sample when going from shock anticipation to the moment of shock confrontation neural activity shifted from a region anatomically consistent with the BNST toward the amygdala. Comparisons of functional connectivity during threat processing showed overlapping yet also consistently divergent functional connectivity profiles for the BNST and amygdala. Finally, childhood maltreatment levels predicted amygdala, but not BNST, hyperactivity during shock anticipation. Our results support an evolutionary conserved, defensive distance-dependent dynamic balance between BNST and amygdala activity. Shifts in this balance may enable shifts in defensive reactions via the demonstrated differential functional connectivity. Our results indicate that early life stress may tip the neural balance toward acute threat responding and via that route predispose for affective disorder. SIGNIFICANCE STATEMENT Previously proposed differential contributions of the BNST and amygdala to fear and anxiety have been recently debated. Despite the significance of understanding their

  4. Corticotropin-Releasing Factor Receptors Modulate Oxytocin Release in the Dorsolateral Bed Nucleus of the Stria Terminalis (BNST in Male Rats

    Directory of Open Access Journals (Sweden)

    Daisy Martinon

    2018-03-01

    Full Text Available The neuropeptide oxytocin (OT plays an important role in the regulation of social and anxiety-like behavior. Our previous studies have shown that OT neurons send projections from the hypothalamus to the dorsolateral bed nucleus of the stria terminalis (BNSTdl, a forebrain region critically involved in the modulation of anxiety-like behavior. Importantly, these OT terminals in the BNSTdl express presynaptic corticotropin releasing factor (CRF receptor type 2 (CRFR2. This suggests that CRFR2 might be involved in the modulation of OT release. To test this hypothesis, we measured OT content in microdialysates collected from the BNSTdl of freely-moving male Sprague-Dawley rats following the administration of a selective CRFR2 agonist (Urocortin 3 or antagonist (Astressin 2B, As2B. To determine if type 1 CRF receptors (CRFR1 are also involved, we used selective CRFR1 antagonist (NBI35965 as well as CRF, a putative ligand of both CRFR1 and CRFR2. All compounds were delivered directly into the BNSTdl via reverse dialysis. OT content in the microdialysates was measured with highly sensitive and selective radioimmunoassay. Blocking CRFR2 with As2B caused an increase in OT content in BNSTdl microdialysates, whereas CRFR2 activation by Urocortin 3 did not have an effect. The As2B-induced increase in OT release was blocked by application of the CRFR1 antagonist demonstrating that the effect was dependent on CRFR1 transmission. Interestingly, CRF alone caused a delayed increase in OT content in BNSTdl microdialysates, which was dependent on CRF2 but not CRF1 receptors. Our results suggest that members of the CRF peptide family modulate OT release in the BNSTdl via a fine-tuned mechanism that involves both CRFR1 and CRFR2. Further exploration of mechanisms by which endogenous OT system is modulated by CRF peptide family is needed to better understand the role of these neuropeptides in the regulation of anxiety and the stress response.

  5. Synaptic Plasticity in the Bed Nucleus of the Stria Terminalis: Underlying Mechanisms and Potential Ramifications for Reinstatement of Drug- and Alcohol-Seeking Behaviors.

    Science.gov (United States)

    Harris, Nicholas A; Winder, Danny G

    2018-06-13

    The bed nucleus of the stria terminalis (BNST) is a component of the extended amygdala that shows significant changes in activity and plasticity through chronic exposure to drugs and stress. The region is critical for stress- and cue-induced reinstatement of drug-seeking behaviors and is thus a candidate region for the plastic changes that occur in abstinence that prime addicted patients for reinstatement behaviors. Here, we discuss the various forms of long-term potentiation (LTP) and long-term depression (LTD) in the rodent BNST and highlight the way that these changes in excitatory transmission interact with exposure to alcohol and other drugs of abuse, as well as other stressors. In addition, we highlight potential areas for future research in this area, including investigating input- and cell-specific bidirectional changes in activity. As we continue to accrue foundational knowledge in the mechanisms and effects of plasticity in the BNST, molecular targets and treatment strategies that are relevant to reinstatement behaviors will also begin to emerge. Here, we briefly discuss the effects of catecholamine receptor modulators on synaptic plasticity in the BNST due to the role of norepinephrine in LTD and dopamine on the short-term component of LTP as well as the role that signaling at these receptors plays in reinstatement of drug- and alcohol-seeking behaviors. We hope that insights gained on the specific changes in plasticity that occur within the BNST during abstinence from alcohol and other drugs of abuse will provide insight into the biological underpinnings of relapse behavior in human addicts and inform future treatment modalities for addiction that tackle this complex biological problem.

  6. Enhancement of cortical extracellular 5-HT by 5-HT1A and 5-HT2C receptor blockade restores the antidepressant-like effect of citalopram in non-responder mice.

    Science.gov (United States)

    Calcagno, Eleonora; Guzzetti, Sara; Canetta, Alessandro; Fracasso, Claudia; Caccia, Silvio; Cervo, Luigi; Invernizzi, Roberto W

    2009-07-01

    We recently found that the response of DBA/2 mice to SSRIs in the forced swim test (FST) was impaired and they also had a smaller basal and citalopram-stimulated increase in brain extracellular serotonin (5-HT) than 'responder' strains. We employed intracerebral microdialysis, FST and selective antagonists of 5-HT1A and 5-HT2C receptors to investigate whether enhancing the increase in extracellular 5-HT reinstated the anti-immobility effect of citalopram in the FST. WAY 100635 (0.3 mg/kg s.c.) or SB 242084 (1 mg/kg s.c.), respectively a selective 5-HT1A and 5-HT2C receptor antagonist, raised the effect of citalopram (5 mg/kg) on extracellular 5-HT in the medial prefrontal cortex of DBA/2N mice (citalopram alone 5.2+/-0.3 fmol/20 microl, WAY 100635+citalopram 9.9+/-2.1 fmol/20 microl, SB 242084+ citalopram 7.6+/-1.0 fmol/20 microl) to the level reached in 'responder' mice given citalopram alone. The 5-HT receptor antagonists had no effect on the citalopram-induced increase in extracellular 5-HT in the dorsal hippocampus. The combination of citalopram with WAY 100635 or SB 242084 significantly reduced immobility time in DBA/2N mice that otherwise did not respond to either drug singly. Brain levels of citalopram in mice given citalopram alone or with 5-HT antagonists did not significantly differ. The results confirm that impaired 5-HT transmission accounts for the lack of effect of citalopram in the FST and suggest that enhancing the effect of SSRIs on extracellular 5-HT, through selective blockade of 5-HT1A and 5-HT2C receptors, could be a useful strategy to restore the response in treatment-resistant depression.

  7. MR Imaging of Ventriculus Terminalis of The Conus Medullaris. A report of two operated patients and review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Dullerud, Reidar; Server, A. [Ullevaal Univ. Hospital, Oslo (Norway). Div. of Radiology; Berg-Johnsen, J. [The National Hospital, Oslo (Norway). Dept. of Neurosurgery

    2003-07-01

    We report on 2 patients in whom a cystic dilation of the conus medullaris was incidentally found at MR imaging carried out in the work-up for sciatica. The cysts were well circumscribed and had signal intensity identical to the CSF on both T1- and T2-weighted images. There was no evidence of contrast enhancement. None of the patients had specific symptoms related to the spinal cord. At surgery, no evidence of malignancy was seen in any of the patients. A benign cystic dilation, also called dilated ventriculus terminalis, occasionally can be seen in the conus medullaris as an incidental finding at thoracolumbar MR imaging. Unless the expansion per se indicates cyst drainage, these patients may be monitored by clinical and MR follow-up, avoiding surgery in a substantial number of cases.

  8. MR Imaging of Ventriculus Terminalis of The Conus Medullaris. A report of two operated patients and review of the literature

    International Nuclear Information System (INIS)

    Dullerud, Reidar; Server, A.; Berg-Johnsen, J.

    2003-01-01

    We report on 2 patients in whom a cystic dilation of the conus medullaris was incidentally found at MR imaging carried out in the work-up for sciatica. The cysts were well circumscribed and had signal intensity identical to the CSF on both T1- and T2-weighted images. There was no evidence of contrast enhancement. None of the patients had specific symptoms related to the spinal cord. At surgery, no evidence of malignancy was seen in any of the patients. A benign cystic dilation, also called dilated ventriculus terminalis, occasionally can be seen in the conus medullaris as an incidental finding at thoracolumbar MR imaging. Unless the expansion per se indicates cyst drainage, these patients may be monitored by clinical and MR follow-up, avoiding surgery in a substantial number of cases

  9. The nervus terminalis in amphibians: anatomy, chemistry and relationship with the hypothalamic gonadotropin-releasing hormone system.

    Science.gov (United States)

    Muske, L E; Moore, F L

    1988-01-01

    The nervus terminalis (TN), a component of the olfactory system, is found in most vertebrates. The TN of some fishes and mammals contains neurons immunoreactive (ir) to gonadotropin-releasing hormone (LHRH), and to several other neuropeptides and neurotransmitter systems, but there is little information on TN chemistry in other vertebrate taxa. Using immunocytochemical techniques, we found LHRH-ir neurons in amphibian TNs. In anurans, but not in a urodele, the TN was also found to contain Phe-Met-Arg-Phe-NH2 (FMRFamide) immunoreactivity. LHRH-ir neurons of the TN and those of the septal-hypothalamic system are morphologically homogeneous and form a distinct anatomical continuum in amphibians. Based upon topographical and cytological criteria, we hypothesize that LHRH-ir systems in vertebrates might derive embryonically from the TN.

  10. Phytophthora terminalis sp. nov. and Phytophthora occultans sp. nov., two invasive pathogens of ornamental plants in Europe.

    Science.gov (United States)

    Man In 't Veld, Willem A; Rosendahl, Karin C H M; van Rijswick, Patricia C J; Meffert, Johan P; Westenberg, Marcel; van de Vossenberg, Bart T L H; Denton, Geoff; van Kuik, Fons A J

    2015-01-01

    In the past decade several Phytophthora strains were isolated from diseased Pachysandra terminalis plants suffering stem base and root rot, originating from the Netherlands and Belgium. All isolates were homothallic and had a felt-like colony pattern, produced semi-papillate sporangia, globose oogonia and had a maximum growth at ~ 27 C. Several additional Phytophthora strains were isolated from diseased Buxus sempervirens plants, originating from the Netherlands and Belgium, which had sustained stem base and root rot; similar strains also were isolated from Acer palmatum, Choisya ternata and Taxus in the United Kingdom. All isolates were homothallic and had a stellate colony pattern, produced larger semi-papillate sporangia and smaller globose oogonia than the isolates from Pa. terminalis and had a maximum growth temperature of ~ 30 C. Phylogenetic analyses of both species using the internal transcribed spacer region of the nuc rDNA (ITS), mt cytochrome oxidases subunit I gene (CoxI) and nuc translation elongation factor 1-α gene (TEF1α) revealed that all sequences of each species were identical at each locus and unique to that species, forming two distinct clusters in subclade 2a. Sequence analysis of partial β-tubulin genes showed that both taxa share an identical sequence that is identical to that of Ph. himalsilva, a species originating from Asia, suggesting a common Asian origin. Pathogenicity trials demonstrated disease symptoms on their respective hosts, and re-isolation and re-identification of the inoculated pathogens confirmed Koch's postulates. © 2015 by The Mycological Society of America.

  11. Screening of the Antidepressant-like Activity of Two Hypericum ...

    African Journals Online (AJOL)

    Eighty percent methanol extract of H. quartinianum and H. revolutum was investigated using learned helplessness models of depression such as tail suspension test (TST), forced swimming tests (FST) and avoidance tests. In addition, locomotor activity was investigated with open field test (OFT). Mice (for TST, avoidance ...

  12. Passive immunization of fetal rats with antiserum to luteinizing hormone-releasing hormone (LHRH) or transection of the central roots of the nervus terminalis does not affect rat pups' preference for home nest.

    Science.gov (United States)

    Schwanzel-Fukuda, M; Pfaff, D W

    1987-01-01

    Luteinizing hormone-releasing hormone (LHRH) is found immunocytochemically in cell bodies and fibers of the nervus terminalis, a cranial nerve which courses from the nasal septum through the cribriform plate of the ethmoid bone (medial to the olfactory and vomeronasal nerves) and enters the forebrain, caudal to the olfactory bulbs. Immunoreactive LHRH is first detected in the nervus terminalis of the fetal rat at 15 days of gestation, preceding its detection by immunocytochemistry in any other area of the brain, including the median eminence, and preceding detection of immunoreactive luteinizing hormone (LH) in the anterior pituitary. During development of the rat fetus, the nervus terminalis is the principal source of LHRH in the nervous system from days 15 through 19 of a 21 day gestation period. We tested the notion that the LHRH system of the nervus terminalis is important for olfactory performance by examining the effects of administration of antisera to LHRH during fetal development (versus saline controls), or medial olfactory peduncle transections, in the neonatal rat, which would sever the central projections of the nervus terminalis (versus lateral peduncle transection, complete transection of the olfactory peduncles and the central nervus terminalis or controls) on preferences of rat pups for home nest. The hypothesis that LHRH is important for this chemosensory response was not confirmed. Neither antisera to LHRH nor medical olfactory peduncle transection disrupted preference for home shavings. Only complete olfactory peduncle transection had a significant effect compared to unoperated and sham-operated controls.

  13. Recovery of stress-impaired social behavior by an antagonist of the CRF binding protein, CRF6-33, in the bed nucleus of the stria terminalis of male rats.

    Science.gov (United States)

    Vasconcelos, Mailton; Stein, Dirson J; Albrechet-Souza, Lucas; Miczek, Klaus A; de Almeida, Rosa Maria M

    2018-01-09

    Social stress is recognized to promote the development of neuropsychiatric and mood disorders. Corticotropin releasing factor (CRF) is an important neuropeptide activated by social stress, and it contributes to neural and behavioral adaptations, as indicated by impaired social interactions and anhedonic effects. Few studies have focused on the role of the CRF binding protein (CRFBP), a component of the CRF system, and its activity in the bed nucleus of stria terminalis (BNST), a limbic structure connecting amygdala and hypothalamus. In this study, animals' preference for sweet solutions was examined as an index of stress-induced anhedonic responses in Wistar rats subjected to four brief intermittent episodes of social defeat. Next, social approach was assessed after local infusions of the CRFBP antagonist, CRF fragment 6-33 (CRF 6-33 ) into the BNST. The experience of brief episodes of social defeat impaired social approach behaviors in male rats. However, intra-BNST CRF 6-33 infusions restored social approach in stressed animals to the levels of non-stressed rats. CRF 6-33 acted selectively on social interaction and did not alter general exploration in nether stressed nor non-stressed rats. These findings suggest that BNST CRFBP is involved in the modulation of anxiety-like responses induced by social stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Immunocytochemical localization of luteinizing hormone-releasing hormone (LHRH) in the nervus terminalis and brain of the big brown bat, Eptesicus fuscus.

    Science.gov (United States)

    Oelschläger, H A; Northcutt, R G

    1992-01-15

    Little is known about the immunohistochemistry of the nervous system in bats. This is particularly true of the nervus terminalis, which exerts strong influence on the reproductive system during ontogeny and in the adult. Luteinizing hormone-releasing hormone (LHRH) was visualized immunocytochemically in the nervus terminalis and brain of juvenile and adult big brown bats (Eptesicus fuscus). The peripheral LHRH-immunoreactive (ir) cells and fibers (nervus terminalis) are dispersed along the basal surface of the forebrain from the olfactory bulbs to the prepiriform cortex and the interpeduncular fossa. A concentration of peripheral LHRH-ir perikarya and fibers was found at the caudalmost part of the olfactory bulbs, near the medioventral forebrain sulcus; obviously these cells mediate between the bulbs and the remaining forebrain. Within the central nervous system (CNS), LHRH-ir perikarya and fibers were distributed throughout the olfactory tubercle, diagonal band, preoptic area, suprachiasmatic and supraoptic nuclei, the bed nuclei of stria terminalis and stria medullaris, the anterior lateral and posterior hypothalamus, and the tuber cinereum. The highest concentration of cells was found within the arcuate nucleus. Fibers were most concentrated within the median eminence, infundibular stalk, and the medial habenula. The data obtained suggest that this distribution of LHRH immunoreactivity may be characteristic for microchiropteran (insectivorous) bats. The strong projections of LHRH-containing nuclei in the basal forebrain (including the arcuate nucleus) to the habenula, may indicate close functional contact between these brain areas via feedback loops, which could be important for the processing of thermal and other environmental stimuli correlated with hibernation.

  15. Nervus terminalis ganglion of the bonnethead shark (Sphyrna tiburo): evidence for cholinergic and catecholaminergic influence on two cell types distinguished by peptide immunocytochemistry.

    Science.gov (United States)

    White, J; Meredith, M

    1995-01-16

    The nervus terminalis is a ganglionated vertebrate cranial nerve of unknown function that connects the brain and the peripheral nasal structures. To investigate its function, we have studied nervus terminalis ganglion morphology and physiology in the bonnethead shark (Sphyrna tiburo), where the nerve is particularly prominent. Immunocytochemistry for gonadotropin-releasing hormone (GnRH) and Leu-Pro-Leu-Arg-Phe-NH2 (LPLRFamide) revealed two distinct populations of cells. Both were acetylcholinesterase positive, but LPLR-Famide-immunoreactive cells consistently stained more darkly for acetylcholinesterase activity. Tyrosine hydroxylase immunocytochemistry revealed fibers and terminal-like puncta in the ganglion, primarily in areas containing GnRH-immunoreactive cells. Consistent with the anatomy, in vitro electrophysiological recordings provided evidence for cholinergic and catecholaminergic actions. In extracellular recordings, acetylcholine had a variable effect on baseline ganglion cell activity, whereas norepinephrine consistently reduced activity. Electrical stimulation of the nerve trunks suppressed ganglion activity, as did impulses from the brain in vivo. During electrical suppression, acetylcholine consistently increased activity, and norepinephrine decreased activity. Muscarinic and, to a lesser extent, alpha-adrenergic antagonists both increased activity during the electrical suppression, suggesting involvement of both systems. Intracellular recordings revealed two types of ganglion cells that were distinguishable pharmacologically and physiologically. Some cells were hyperpolarized by cholinergic agonists and unaffected by norepinephrine; these cells did not depolarize with peripheral nerve trunk stimulation. Another group of cells did depolarize with peripheral trunk stimulation; a representative of this group was depolarized by carbachol and hyperpolarized by norepinephrine. These and other data suggest that the bonnethead nervus terminalis ganglion

  16. Emerging Role for Corticotropin Releasing Factor Signaling in the Bed Nucleus of the Stria Terminalis at the Intersection of Stress and Reward

    OpenAIRE

    Silberman, Yuval; Winder, Danny G.

    2013-01-01

    Stress and anxiety play an important role in the development and maintenance of drug and alcohol addiction. The bed nucleus of the stria terminalis (BNST), a brain region involved in the production of long-term stress-related behaviors, plays an important role in animal models of relapse, such as reinstatement to previously extinguished drug-seeking behaviors. While a number of neurotransmitter systems have been suggested to play a role in these behaviors, recent evidence points to the neurop...

  17. Corticotropin Releasing Factor in the Bed Nucleus of the Stria Terminalis in Socially Defeated and Non-stressed Mice with a History of Chronic Alcohol Intake.

    Science.gov (United States)

    Albrechet-Souza, Lucas; Viola, Thiago W; Grassi-Oliveira, Rodrigo; Miczek, Klaus A; de Almeida, Rosa M M

    2017-01-01

    Stress exposure has been identified as one risk factor for alcohol abuse that may facilitate the transition from social or regulated use to the development of alcohol dependence. Preclinical studies have shown that dysregulation of the corticotropin releasing factor (CRF) neurotransmission has been implicated in stress-related psychopathologies such as depression and anxiety, and may affect alcohol consumption. The bed nucleus of the stria terminalis (BNST) contains CRF-producing neurons which seem to be sensitive to stress. In this study, adult male C57BL/6 mice previously defeated in resident-intruder confrontations were evaluated in the elevated plus-maze and tail suspension test. Mice were also tested for sweet solution intake before and after social stress. After having had continuous access to ethanol (20% weight/volume) for 4 weeks, control and stressed mice had CRF type 1 (CRFR1) or type 2 (CRFR2) receptor antagonists infused into the BNST and then had access to ethanol for 24 h. In separate cohorts of control and stressed mice, we assessed mRNA levels of BNST CRF, CRFR1 and CRFR2 . Stressed mice increased their intake of sweet solution after ten sessions of social defeat and showed reduced activity in the open arms of the elevated plus-maze. When tested for ethanol consumption, stressed mice persistently drank significantly more than controls during the 4 weeks of access. Also, social stress induced higher BNST CRF mRNA levels. The selective blockade of BNST CRFR1 with CP376,395 effectively reduced alcohol drinking in non-stressed mice, whereas the selective CRFR2 antagonist astressin2B produced a dose-dependent increase in ethanol consumption in both non-stressed controls and stressed mice. The 10-day episodic defeat stress used here elicited anxiety- but not depressive-like behaviors, and promoted an increase in ethanol drinking. CRF-CRFR1 signaling in the BNST seems to underlie ethanol intake in non-stressed mice, whereas CRFR2 modulates alcohol

  18. Corticotropin Releasing Factor in the Bed Nucleus of the Stria Terminalis in Socially Defeated and Non-stressed Mice with a History of Chronic Alcohol Intake

    Directory of Open Access Journals (Sweden)

    Lucas Albrechet-Souza

    2017-10-01

    Full Text Available Stress exposure has been identified as one risk factor for alcohol abuse that may facilitate the transition from social or regulated use to the development of alcohol dependence. Preclinical studies have shown that dysregulation of the corticotropin releasing factor (CRF neurotransmission has been implicated in stress-related psychopathologies such as depression and anxiety, and may affect alcohol consumption. The bed nucleus of the stria terminalis (BNST contains CRF-producing neurons which seem to be sensitive to stress. In this study, adult male C57BL/6 mice previously defeated in resident-intruder confrontations were evaluated in the elevated plus-maze and tail suspension test. Mice were also tested for sweet solution intake before and after social stress. After having had continuous access to ethanol (20% weight/volume for 4 weeks, control and stressed mice had CRF type 1 (CRFR1 or type 2 (CRFR2 receptor antagonists infused into the BNST and then had access to ethanol for 24 h. In separate cohorts of control and stressed mice, we assessed mRNA levels of BNST CRF, CRFR1 and CRFR2. Stressed mice increased their intake of sweet solution after ten sessions of social defeat and showed reduced activity in the open arms of the elevated plus-maze. When tested for ethanol consumption, stressed mice persistently drank significantly more than controls during the 4 weeks of access. Also, social stress induced higher BNST CRF mRNA levels. The selective blockade of BNST CRFR1 with CP376,395 effectively reduced alcohol drinking in non-stressed mice, whereas the selective CRFR2 antagonist astressin2B produced a dose-dependent increase in ethanol consumption in both non-stressed controls and stressed mice. The 10-day episodic defeat stress used here elicited anxiety- but not depressive-like behaviors, and promoted an increase in ethanol drinking. CRF-CRFR1 signaling in the BNST seems to underlie ethanol intake in non-stressed mice, whereas CRFR2 modulates

  19. Effect of desipramine and citalopram treatment on forced swimming test-induced changes in cocaine- and amphetamine-regulated transcript (CART) immunoreactivity in mice.

    Science.gov (United States)

    Chung, Sung; Kim, Hee Jeong; Kim, Hyun Ju; Choi, Sun Hye; Kim, Jin Wook; Kim, Jeong Min; Shin, Kyung Ho

    2014-05-01

    Recent study demonstrates antidepressant-like effect of cocaine- and amphetamine-regulated transcript (CART) in the forced swimming test (FST), but less is known about whether antidepressant treatments alter levels of CART immunoreactivity (CART-IR) in the FST. To explore this possibility, we assessed the treatment effects of desipramine and citalopram, which inhibit the reuptake of norepinephrine and serotonin into the presynaptic terminals, respectively, on changes in levels of CART-IR before and after the test swim in mouse brain. Levels of CART-IR in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), and hypothalamic paraventricular nucleus (PVN) were significantly increased before the test swim by desipramine and citalopram treatments. This increase in CART-IR in the AcbSh, dBNST, and PVN before the test swim remained elevated by desipramine treatment after the test swim, but this increase in these brain areas returned to near control levels after test swim by citalopram treatment. Citalopram, but not desipramine, treatment increased levels of CART-IR in the central nucleus of the amygdala (CeA) and the locus ceruleus (LC) before the test swim, and this increase was returned to control levels after the test swim in the CeA, but not in the LC. These results suggest common and distinct regulation of CART by desipramine and citalopram treatments in the FST and raise the possibility that CART in the AcbSh, dBNST, and CeA may be involved in antidepressant-like effect in the FST.

  20. Activity alterations in the bed nucleus of the stria terminalis and amygdala during threat anticipation in generalized anxiety disorder.

    Science.gov (United States)

    Buff, Christine; Brinkmann, Leonie; Bruchmann, Maximilian; Becker, Michael P I; Tupak, Sara; Herrmann, Martin J; Straube, Thomas

    2017-11-01

    Sustained anticipatory anxiety is central to Generalized Anxiety Disorder (GAD). During anticipatory anxiety, phasic threat responding appears to be mediated by the amygdala, while sustained threat responding seems related to the bed nucleus of the stria terminalis (BNST). Although sustained anticipatory anxiety in GAD patients was proposed to be associated with BNST activity alterations, firm evidence is lacking. We aimed to explore temporal characteristics of BNST and amygdala activity during threat anticipation in GAD patients. Nineteen GAD patients and nineteen healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) during a temporally unpredictable threat anticipation paradigm. We defined phasic and a systematic variation of sustained response models for blood oxygen level-dependent responses during threat anticipation, to disentangle temporally dissociable involvement of the BNST and the amygdala. GAD patients relative to HC responded with increased phasic amygdala activity to onset of threat anticipation and with elevated sustained BNST activity that was delayed relative to the onset of threat anticipation. Both the amygdala and the BNST displayed altered responses during threat anticipation in GAD patients, albeit with different time courses. The results for the BNST activation hint towards its role in sustained threat responding, and contribute to a deeper understanding of pathological sustained anticipatory anxiety in GAD. © The Author (2017). Published by Oxford University Press.

  1. Mechanisms of Neuroplasticity and Ethanol’s Effects on Plasticity in the Striatum and Bed Nucleus of the Stria Terminalis

    Science.gov (United States)

    Lovinger, David M.; Kash, Thomas L.

    2015-01-01

    Long-lasting changes in synaptic function (i.e., synaptic plasticity) have long been thought to contribute to information storage in the nervous system. Although synaptic plasticity mainly has adaptive functions that allow the organism to function in complex environments, it is now clear that certain events or exposure to various substances can produce plasticity that has negative consequences for organisms. Exposure to drugs of abuse, in particular ethanol, is a life experience that can activate or alter synaptic plasticity, often resulting in increased drug seeking and taking and in many cases addiction. Two brain regions subject to alcohol’s effects on synaptic plasticity are the striatum and bed nucleus of the stria terminalis (BNST), both of which have key roles in alcohol’s actions and control of intake. The specific effects depend on both the brain region analyzed (e.g., specific subregions of the striatum and BNST) and the duration of ethanol exposure (i.e., acute vs. chronic). Plastic changes in synaptic transmission in these two brain regions following prolonged ethanol exposure are thought to contribute to excessive alcohol drinking and relapse to drinking. Understanding the mechanisms underlying this plasticity may lead to new therapies for treatment of these and other aspects of alcohol use disorder. PMID:26259092

  2. Agmatine, by Improving Neuroplasticity Markers and Inducing Nrf2, Prevents Corticosterone-Induced Depressive-Like Behavior in Mice.

    Science.gov (United States)

    Freitas, Andiara E; Egea, Javier; Buendia, Izaskun; Gómez-Rangel, Vanessa; Parada, Esther; Navarro, Elisa; Casas, Ana Isabel; Wojnicz, Aneta; Ortiz, José Avendaño; Cuadrado, Antonio; Ruiz-Nuño, Ana; Rodrigues, Ana Lúcia S; Lopez, Manuela G

    2016-07-01

    Agmatine, an endogenous neuromodulator, is a potential candidate to constitute an adjuvant/monotherapy for the management of depression. A recent study by our group demonstrated that agmatine induces Nrf2 and protects against corticosterone effects in a hippocampal neuronal cell line. The present study is an extension of this previous study by assessing the antidepressant-like effect of agmatine in an animal model of depression induced by corticosterone in mice. Swiss mice were treated simultaneously with agmatine or imipramine at a dose of 0.1 mg/kg/day (p.o.) and corticosterone for 21 days and the daily administrations of experimental drugs were given immediately prior to corticosterone (20 mg/kg/day, p.o.) administrations. Wild-type C57BL/6 mice (Nrf2 (+/+)) and Nrf2 KO (Nrf2 (-/-)) were treated during 21 days with agmatine (0.1 mg/kg/day, p.o.) or vehicle. Twenty-four hours after the last treatments, the behavioral tests and biochemical assays were performed. Agmatine treatment for 21 days was able to abolish the corticosterone-induced depressive-like behavior and the alterations in the immunocontent of mature BDNF and synaptotagmin I, and in the serotonin and glutamate levels. Agmatine also abolished the corticosterone-induced changes in the morphology of astrocytes and microglia in CA1 region of hippocampus. In addition, agmatine treatment in control mice increased noradrenaline, serotonin, and dopamine levels, CREB phosphorylation, mature BDNF and synaptotagmin I immunocontents, and reduced pro-BDNF immunocontent in the hippocampus. Agmatine's ability to produce an antidepressant-like effect was abolished in Nrf2 (-/-) mice. The present results reinforce the participation of Nrf2 in the antidepressant-like effect produced by agmatine and expand literature data concerning its mechanisms of action.

  3. α(2A)-adrenergic receptors filter parabrachial inputs to the bed nucleus of the stria terminalis.

    Science.gov (United States)

    Flavin, Stephanie A; Matthews, Robert T; Wang, Qin; Muly, E Chris; Winder, Danny G

    2014-07-09

    α2-adrenergic receptors (AR) within the bed nucleus of the stria terminalis (BNST) reduce stress-reward interactions in rodent models. In addition to their roles as autoreceptors, BNST α(2A)-ARs suppress glutamatergic transmission. One prominent glutamatergic input to the BNST originates from the parabrachial nucleus (PBN) and consists of asymmetric axosomatic synapses containing calcitonin gene-related peptide (CGRP) and vGluT2. Here we provide immunoelectron microscopic data showing that many asymmetric axosomatic synapses in the BNST contain α(2A)-ARs. Further, we examined optically evoked glutamate release ex vivo in BNST from mice with virally delivered channelrhodopsin2 (ChR2) expression in PBN. In BNST from these animals, ChR2 partially colocalized with CGRP, and activation generated EPSCs in dorsal anterolateral BNST neurons that elicited two cell-type-specific outcomes: (1) feedforward inhibition or (2) an EPSP that elicited firing. We found that the α(2A)-AR agonist guanfacine selectively inhibited this PBN input to the BNST, preferentially reducing the excitatory response in ex vivo mouse brain slices. To begin to assess the overall impact of α(2A)-AR control of this PBN input on BNST excitatory transmission, we used a Thy1-COP4 mouse line with little postsynaptic ChR2 expression nor colocalization of ChR2 with CGRP in the BNST. In slices from these mice, we found that guanfacine enhanced, rather than suppressed, optogenetically initiated excitatory drive in BNST. Thus, our study reveals distinct actions of PBN afferents within the BNST and suggests that α(2A)-AR agonists may filter excitatory transmission in the BNST by inhibiting a component of the PBN input while enhancing the actions of other inputs. Copyright © 2014 the authors 0270-6474/14/349319-13$15.00/0.

  4. Localization and function of the cannabinoid CB1 receptor in the anterolateral bed nucleus of the stria terminalis.

    Directory of Open Access Journals (Sweden)

    Nagore Puente

    Full Text Available BACKGROUND: The bed nucleus of the stria terminalis (BNST is involved in behaviors related to natural reward, drug addiction and stress. In spite of the emerging role of the endogenous cannabinoid (eCB system in these behaviors, little is known about the anatomy and function of this system in the anterolateral BNST (alBNST. The aim of this study was to provide a detailed morphological characterization of the localization of the cannabinoid 1 (CB1 receptor a necessary step toward a better understanding of the physiological roles of the eCB system in this region of the brain. METHODOLOGY/PRINCIPAL FINDINGS: We have combined anatomical approaches at the confocal and electron microscopy level to ex-vivo electrophysiological techniques. Here, we report that CB1 is localized on presynaptic membranes of about 55% of immunopositive synaptic terminals for the vesicular glutamate transporter 1 (vGluT1, which contain abundant spherical, clear synaptic vesicles and make asymmetrical synapses with alBNST neurons. About 64% of vGluT1 immunonegative synaptic terminals show CB1 immunolabeling. Furthermore, 30% and 35% of presynaptic boutons localize CB1 in alBNST of conditional mutant mice lacking CB1 mainly from GABAergic neurons (GABA-CB1-KO mice and mainly from cortical glutamatergic neurons (Glu-CB1-KO mice, respectively. Extracellular field recordings and whole cell patch clamp in the alBNST rat brain slice preparation revealed that activation of CB1 strongly inhibits excitatory and inhibitory synaptic transmission. CONCLUSIONS/SIGNIFICANCE: This study supports the anterolateral BNST as a potential neuronal substrate of the effects of cannabinoids on stress-related behaviors.

  5. Distribution of FMRFamide-like immunoreactivity in the brain, retina and nervus terminalis of the sockeye salmon parr, Oncorhynchus nerka.

    Science.gov (United States)

    Ostholm, T; Ekström, P; Ebbesson, S O

    1990-09-01

    Neurons displaying FMRFamide(Phe - Met - Arg - Phe - NH2)-like immunoreactivity have recently been implicated in neural plasticity in salmon. We now extend these findings by describing the extent of the FMRF-like immunoreactive (FMRF-IR) system in the brain, retina and olfactory system of sockeye salmon parr using the indirect peroxidase anti-peroxidase technique. FMRF-IR perikarya were found in the periventricular hypothalamus, mesencephalic laminar nucleus, nucleus nervi terminalis and retina (presumed amacrine cells), and along the olfactory nerves. FMRF-IR fibers were distributed throughout the brain with highest densities in the ventral area of the telencephalon, in the medial forebrain bundle, and at the borders between layers III/IV and IV/V in the optic tectum. High densities of immunoreactive fibers were also observed in the area around the torus semicircularis, in the medial hypothalamus, median raphe, ventromedial tegmentum, and central gray. In the retina, immunopositive fibers were localized to the inner plexiform layer, but several fiber elements were also found in the outer plexiform layer. The olfactory system displayed FMRF-IR fibers in the epithelium and along the olfactory nerves. These findings differ from those reported in other species as follows: (i) FMRF-IR cells in the retina have not previously been reported in teleosts; (ii) the presence of FMRF-IR fibers in the outer plexiform layer of the retina is a new finding for any species; (iii) the occurrence of immunopositive cells in the mesencephalic laminar nucleus has to our knowledge not been demonstrated previously.

  6. Activation of Hypocretin-1/Orexin-A Neurons Projecting to the Bed Nucleus of the Stria Terminalis and Paraventricular Nucleus Is Critical for Reinstatement of Alcohol Seeking by Neuropeptide S.

    Science.gov (United States)

    Ubaldi, Massimo; Giordano, Antonio; Severi, Ilenia; Li, Hongwu; Kallupi, Marsida; de Guglielmo, Giordano; Ruggeri, Barbara; Stopponi, Serena; Ciccocioppo, Roberto; Cannella, Nazzareno

    2016-03-15

    Environmental conditioning is a major trigger for relapse in abstinent addicts. We showed that activation of the neuropeptide S (NPS) system exacerbates reinstatement vulnerability to cocaine and alcohol via stimulation of the hypocretin-1/orexin-A (Hcrt-1/Ox-A) system. Combining pharmacologic manipulations with immunohistochemistry techniques, we sought to determine how NPS and Hcrt-1/Ox-A systems interact to modulate reinstatement of alcohol seeking in rats. Intrahypothalamic injection of NPS facilitated discriminative cue-induced reinstatement of alcohol seeking. This effect was blocked by the selective Hcrt-1/Ox-A antagonist SB334867 microinjected into the hypothalamic paraventricular nucleus (PVN) or into the bed nucleus of the stria terminalis (BNST) but not into the ventral tegmental area or the locus coeruleus. Combining double labeling and confocal microscopy analyses, we found that NPS-containing axons are in close apposition to hypothalamic Hcrt-1/Ox-A positive neurons, a significant proportion of which express NPS receptors, suggesting a direct interaction between the two systems. Retrograde tracing experiments showed that intra-PVN or intra-BNST red fluorobead unilateral injection labeled bilaterally Hcrt-1/Ox-A somata, suggesting that NPS could recruit two distinct neuronal pathways. Confirming this assumption, intra-BNST or PVN Hcrt-1/Ox-A injection enhanced alcohol seeking similarly to hypothalamic NPS injection but to a lesser degree. Results suggest that the Hcrt-1/Ox-A neurocircuitry mediating the facilitation of cue-induced reinstatement by NPS involves structures critically involved in stress regulation such as the PVN and the BNST. These findings open to the tempting hypothesis of a role of the NPS system in modulating the interactions between stress and environmental conditioning factors in drug relapse. Copyright © 2016. Published by Elsevier Inc.

  7. Development-dependent behavioral change toward pups and synaptic transmission in the rhomboid nucleus of the bed nucleus of the stria terminalis.

    Science.gov (United States)

    Amano, Taiju; Shindo, Sayaka; Yoshihara, Chihiro; Tsuneoka, Yousuke; Uki, Haruka; Minami, Masabumi; Kuroda, Kumi O

    2017-05-15

    Sexually naïve male C57BL/6 mice aggressively bite unfamiliar pups. This behavior, called infanticide, is considered an adaptive reproductive strategy of males of polygamous species. We recently found that the rhomboid nucleus of the bed nucleus of the stria terminalis (BSTrh) is activated during infanticide and that the bilateral excitotoxic lesions of BSTrh suppress infanticidal behavior. Here we show that 3-week-old male C57BL/6 mice rarely engaged in infanticide and instead, provided parental care toward unfamiliar pups, consistent with observations in rats and other rodent species. This inhibition of infanticide at the periweaning period is functional because the next litter will be born at approximately the time of weaning of the previous litter through maternal postpartum ovulation. However, the mechanism of this age-dependent behavioral change is unknown. Therefore, we performed whole-cell patch clamp recordings of BSTrh and compared evoked neurotransmission in response to the stimulation of the stria terminalis of adult and 3-week-old male mice. Although we were unable to detect a significant difference in the amplitudes of inhibitory neurotransmission, the amplitudes and the paired-pulse ratio of evoked excitatory postsynaptic currents differed between adult and 3-week-old mice. These data suggest that maturation of the synaptic terminal in BSTrh that occurred later than 3 weeks after birth may mediate by the adaptive change from parental to infanticidal behavior in male mice. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Synaptology of luteinizing hormone-releasing hormone (LHRH)-immunoreactive cells in the nervus terminalis of the gray short-tailed opossum (Monodelphis domestica).

    Science.gov (United States)

    Zheng, L M; Pfaff, D W; Schwanzel-Fukuda, M

    1990-05-08

    Light and electron microscopic immunocytochemistry were used to examine the structure of LHRH neurons and fibers in the nervus terminalis of the gray short-tailed opossum (Monodelphis domestica). LHRH-immunoreactive neurons and fibers form a loose plexus within the fascicular network of the ganglion terminale on the median surface of the olfactory bulb. There are at least two populations of LHRH-immunoreactive neurons within the network of the ganglion terminale: fusiform and round neurons similar to those described in the forebrain. At the ultrastructural level, axosomatic and axodendritic contacts were seen between LHRH-immunoreactive and nonimmunoreactive elements in the ganglion terminale. These contacts were classified as 1) synaptic input, with asymmetric synapses seen between a nonimmunoreactive axon terminal and a LHRH-immunoreactive cell body or a nonimmunoreactive axon terminal and a LHRH-immunoreactive dendritic process. 2) synaptic output, with symmetric synapses seen between LHRH-immunoreactive and nonimmunoreactive processes. This study is the first systematic examination of the ultrastructure of the LHRH-immunoreactive neurons and their synaptic contacts in the nervus terminalis. The possible integrative roles for this LHRH-immunoreactive system are discussed.

  9. Molecular phenotyping of transient postnatal tyrosine hydroxylase neurons in the rat bed nucleus of the stria terminalis.

    Science.gov (United States)

    Carter, David A

    2017-07-01

    The bed nucleus of the stria terminalis (BNST) is a complex integrative centre in the forebrain, composed of multiple sub-nuclei, each with discrete populations of neurons. Progress in understanding BNST function, both in the adult and during postnatal maturation, is dependent upon a more complete characterization of neuronal phenotypes in the BNST. The aim of the current study was to define the molecular phenotype of one postnatal BNST neuronal population, in order to identify molecular factors that may underlie both (protein marker-related) immaturity, and secondly, the transience of this phenotype. This BNST population was originally identified by high, but transient expression of the EGR1 transcription factor (TF) in postnatal rat lateral intermediate BNST (BNSTLI). The current results confirm a high level of Egr1 activation in postnatal day 10 (PN10) male BNSTLI that is lost at PN40, and now demonstrate a similar pattern of transient activation in female brains. Apparent cellular immaturity in this population, as indicated by low levels of the adult neuronal marker NeuN/RBFOX3, was found to be uncorrelated with both key neuronal regulator protein expression (SOX2 and REST), and also RBFOX2 protein levels. The BNSTLI neurons have a partial catecholaminergic phenotype (tyrosine hydroxylase-positive/dopa decarboxylase-negative; TH+ve/DDC-ve) that is lost at PN40. In contrast, the co-expressed neuropeptide, somatostatin, is maintained, albeit at lower levels, at PN40. The transcriptional basis of the transient and partial catecholaminergic phenotype was investigated by analysing TFs known to maintain adult dopaminergic (TH+ve/DDC+ve) neuronal phenotypes. The BNSTLI neurons were shown to lack forkhead TFs including FOXA1, FOXA2 and FOXO1. In addition, the BNSTLI neurons had low, primarily cytoplasmic, expression of NR4A2/NURR1, an orphan nuclear receptor that is critical for adult maintenance of midbrain dopamine neurons. These results detail the molecular features

  10. Correlation of catecholamine levels in the bed nucleus of the stria terminalis and reduced sexual behavior in middle-aged male rats.

    Science.gov (United States)

    Chen, Joyce C; Tsai, Houng-Wei; Yeh, Kuei-Ying; Tai, Mei-Yun; Tsai, Yuan-Feen

    2008-07-01

    The correlation between dopamine (DA) and norepinephrine (NE) levels in the bed nucleus of the stria terminalis (BNST) and male sexual behavior was examined in middle-aged rats. Male rats (18-19 months) were divided into: (a) Group MIE, consisting of rats showing mounts, intromissions, and ejaculations; (b) Group MI, composed of rats showing mounts and intromissions, but no ejaculation; and (c) Group NC, consisting of noncopulators. Young adult rats (4-5 months) displaying complete copulatory behavior were used as the control. Tissue levels of DA, NE, and DA metabolites in the BNST were measured by high-pressure liquid chromatography. DA, but not NE, levels in MIE rats were significantly lower than those in young controls. DA and NE levels in MIE rats were significantly higher than those in NC rats. These results suggest that DA and NE in the BNST might play an important role in the control of male sexual behavior in middle-aged rats.

  11. Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress.

    Science.gov (United States)

    Bettio, Luis E B; Freitas, Andiara E; Neis, Vivian B; Santos, Danúbia B; Ribeiro, Camille M; Rosa, Priscila B; Farina, Marcelo; Rodrigues, Ana Lúcia S

    2014-12-01

    Guanosine is a guanine-based purine that modulates glutamate uptake and exerts neurotrophic and neuroprotective effects. In a previous study, our group demonstrated that this endogenous nucleoside displays antidepressant-like properties in a predictive animal model. Based on the role of oxidative stress in modulating depressive disorders as well as on the association between the neuroprotective and antioxidant properties of guanosine, here we investigated if its antidepressant-like effect is accompanied by a modulation of hippocampal oxidant/antioxidant parameters. Adult Swiss mice were submitted to an acute restraint stress protocol, which is known to cause behavioral changes that are associated with neuronal oxidative damage. Animals submitted to ARS exhibited an increased immobility time in the forced swimming test (FST) and the administration of guanosine (5mg/kg, p.o.) or fluoxetine (10mg/kg, p.o., positive control) before the exposure to stressor prevented this alteration. Moreover, the significantly increased levels of hippocampal malondialdehyde (MDA; an indicator of lipid peroxidation), induced by ARS were not observed in stressed mice treated with guanosine. Although no changes were found in the hippocampal levels of reduced glutathione (GSH), the group submitted to ARS procedure presented enhanced glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD) activities and reduced catalase (CAT) activity in the hippocampus. Guanosine was able to prevent the alterations in GPx, GR, CAT activities, and in SOD/CAT activity ratio, but potentiated the increase in SOD activity elicited by ARS. Altogether, the present findings indicate that the observed antidepressant-like effects of guanosine might be related, at least in part, to its capability of modulating antioxidant defenses and mitigating hippocampal oxidative damage induced by ARS. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Inhibition of Phosphodiesterase 4 by FCPR03 Alleviates Lipopolysaccharide-Induced Depressive-Like Behaviors in Mice: Involvement of p38 and JNK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Hui Yu

    2018-02-01

    Full Text Available Inflammatory responses induced by peripheral administration of lipopolysaccharide (LPS triggers depressive-like behavioral syndrome in rodents. Inhibition of phosphodiesterase 4 (PDE4 produces a robust anti-inflammatory effect in inflammatory cells. Unfortunately, archetypal PDE4 inhibitors cause intolerable gastrointestinal side-effects, such as vomiting and nausea. N-isopropyl-3-(cyclopropylmethoxy-4-difluoromethoxy benzamide (FCPR03 is a novel, selective PDE4 inhibitor with little, or no, emetic potency. Our previous studies show that FCPR03 is effective in attenuating neuroinflammation in mice treated with LPS. However, whether FCPR03 could exert antidepressant-like effect induced by LPS is largely unknown. In the present study, mice injected intraperitoneally (i.p. with LPS was established as an in vivo animal model of depression. The antidepressant-like activities of FCPR03 were evaluated using a tail suspension test, forced swimming test, and sucrose preference test. We demonstrated that administration of FCPR03 (1 mg/kg produced antidepressant-like effects in mice challenged by LPS, as evidenced by decreases in the duration of immobility in the forced swim and tail suspension tests, while no significant changes in locomotor activity were observed. FCPR03 also increased sucrose preference in mice treated with LPS. In addition, treatment with FCPR03 abolished the downregulation of brain-derived neurotrophic factor induced by LPS and decreased the level of corticosterone in plasma. Meanwhile, periphery immune challenge by LPS induced enhanced phosphorylation of p38-mitogen activated protein kinase (p38 and c-Jun N-terminal kinase (JNK in both the cerebral cortex and hippocampus in mice. Interestingly, treatment with FCPR03 significantly blocked the role of LPS and reduced the levels of phosphorylated p38 and JNK. Collectively, these results indicate that FCPR03 shows antidepressant-like effects in mice challenged by LPS, and the p38/JNK

  13. Involvement of the oxytocin system in the bed nucleus of the stria terminalis in the sex-specific regulation of social recognition

    Science.gov (United States)

    Dumais, Kelly M.; Alonso, Andrea G.; Immormino, Marisa A.; Bredewold, Remco; Veenema, Alexa H.

    2015-01-01

    Sex differences in the oxytocin (OT) system in the brain may explain why OT often regulates social behaviors in sex-specific ways. However, a link between sex differences in the OT system and sex-specific regulation of social behavior has not been tested. Here, we determined whether sex differences in the OT receptor (OTR) or in OT release in the posterior bed nucleus of the stria terminalis (pBNST) mediates sex-specific regulation of social recognition in rats. We recently showed that, compared to female rats, male rats have a three-fold higher OTR binding density in the pBNST, a sexually dimorphic area implicated in the regulation of social behaviors. We now demonstrate that OTR antagonist (5 ng/0.5 μl/side) administration into the pBNST impairs social recognition in both sexes, while OT (100 pg/0.5 μl/side) administration into the pBNST prolongs the duration of social recognition in males only. These effects seem specific to social recognition, as neither treatment altered total social investigation time in either sex. Moreover, baseline OT release in the pBNST, as measured with in vivo microdialysis, did not differ between the sexes. However, males showed higher OT release in the pBNST during social recognition compared to females. These findings suggest a sex-specific role of the OT system in the pBNST in the regulation of social recognition. PMID:26630388

  14. Distinct phasic and sustained brain responses and connectivity of amygdala and bed nucleus of the stria terminalis during threat anticipation in panic disorder.

    Science.gov (United States)

    Brinkmann, L; Buff, C; Feldker, K; Tupak, S V; Becker, M P I; Herrmann, M J; Straube, T

    2017-11-01

    Panic disorder (PD) patients are constantly concerned about future panic attacks and exhibit general hypersensitivity to unpredictable threat. We aimed to reveal phasic and sustained brain responses and functional connectivity of the amygdala and the bed nucleus of the stria terminalis (BNST) during threat anticipation in PD. Using functional magnetic resonance imaging (fMRI), we investigated 17 PD patients and 19 healthy controls (HC) during anticipation of temporally unpredictable aversive and neutral sounds. We used a phasic and sustained analysis model to disentangle temporally dissociable brain activations. PD patients compared with HC showed phasic amygdala and sustained BNST responses during anticipation of aversive v. neutral stimuli. Furthermore, increased phasic activation was observed in anterior cingulate cortex (ACC), insula and prefrontal cortex (PFC). Insula and PFC also showed sustained activation. Functional connectivity analyses revealed partly distinct phasic and sustained networks. We demonstrate a role for the BNST during unpredictable threat anticipation in PD and provide first evidence for dissociation between phasic amygdala and sustained BNST activation and their functional connectivity. In line with a hypersensitivity to uncertainty in PD, our results suggest time-dependent involvement of brain regions related to fear and anxiety.

  15. Emerging Role for Corticotropin Releasing Factor Signaling in the Bed Nucleus of the Stria Terminalis at the Intersection of Stress and Reward

    Directory of Open Access Journals (Sweden)

    Yuval eSilberman

    2013-05-01

    Full Text Available Stress and anxiety play an important role in the development and maintanence of drug and alcohol addiction. The bed nucleus of the stria terminalis (BNST, a brain region involved in the production of long-term stress related behaviors, plays an important role in animal models of relapse, such as reinstatement to previously extinguished drug-seeking behaviors. While a number of neurotransmitter systems have been suggested to play a role in these behaviors, recent evidence points to the neuropeptide corticotropin releasing factor (CRF as being critically important in BNST mediated reinstatement behaviors. The BNST is a complex brain region with multiple afferent and efferent systems and a variety of cell types and there has only been limited work trying to understand how CRF modulates this complex neuronal system. Recent work from our lab and others have begun to unravel these BNST neurocircuits and explore their roles in CRF-related reinstatement behaviors. This review will examine the role of BNST CRF signaling in drug addiction and reinstatment with an emphasis on critical neurocircuitry within the BNST that may offer new insights into treatments for addiction.

  16. Emerging role for corticotropin releasing factor signaling in the bed nucleus of the stria terminalis at the intersection of stress and reward.

    Science.gov (United States)

    Silberman, Yuval; Winder, Danny G

    2013-01-01

    Stress and anxiety play an important role in the development and maintenance of drug and alcohol addiction. The bed nucleus of the stria terminalis (BNST), a brain region involved in the production of long-term stress-related behaviors, plays an important role in animal models of relapse, such as reinstatement to previously extinguished drug-seeking behaviors. While a number of neurotransmitter systems have been suggested to play a role in these behaviors, recent evidence points to the neuropeptide corticotropin releasing factor (CRF) as being critically important in BNST-mediated reinstatement behaviors. Although numerous studies indicate that the BNST is a complex brain region with multiple afferent and efferent systems and a variety of cell types, there has only been limited work to determine how CRF modulates this complex neuronal system at the circuit level. Recent work from our lab and others have begun to unravel these BNST neurocircuits and explore their roles in CRF-related reinstatement behaviors. This review will examine the role of CRF signaling in drug addiction and reinstatement with an emphasis on critical neurocircuitry within the BNST that may offer new insights into treatments for addiction.

  17. Icariin reverses corticosterone-induced depression-like behavior, decrease in hippocampal brain-derived neurotrophic factor (BDNF) and metabolic network disturbances revealed by NMR-based metabonomics in rats.

    Science.gov (United States)

    Gong, Meng-Juan; Han, Bin; Wang, Shu-mei; Liang, Sheng-wang; Zou, Zhong-jie

    2016-05-10

    Previously published reports have revealed the antidepressant-like effects of icariin in a chronic mild stress model of depression and in a social defeat stress model in mice. However, the therapeutic effect of icariin in an animal model of glucocorticoid-induced depression remains unclear. This study aimed to investigate antidepressant-like effect and the possible mechanisms of icariin in a rat model of corticosterone (CORT)-induced depression by using a combination of behavioral and biochemical assessments and NMR-based metabonomics. The depression model was established by subcutaneous injections of CORT for 21 consecutive days in rats, as evidenced by reduced sucrose intake and hippocampal brain-derived neurotrophic factor (BDNF) levels, together with an increase in immobility time in a forced swim test (FST). Icariin significantly increased sucrose intake and hippocampal BDNF level and decreased the immobility time in FST in CORT-induced depressive rats, suggesting its potent antidepressant activity. Moreover, metabonomic analysis identified eight, five and three potential biomarkers associated with depression in serum, urine and brain tissue extract, respectively. These biomarkers are primarily involved in energy metabolism, lipid metabolism, amino acid metabolism and gut microbe metabolism. Icariin reversed the pathological process of CORT-induced depression, partially via regulation of the disturbed metabolic pathways. These results provide important mechanistic insights into the protective effects of icariin against CORT-induced depression and metabolic dysfunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure.

    Science.gov (United States)

    Kinsman, Brian J; Browning, Kirsteen N; Stocker, Sean D

    2017-09-15

    Changes in extracellular osmolarity stimulate thirst and vasopressin secretion through a central osmoreceptor; however, central infusion of hypertonic NaCl produces a greater sympathoexcitatory and pressor response than infusion of hypertonic mannitol/sorbitol. Neurons in the organum vasculosum of the lamina terminalis (OVLT) sense changes in extracellular osmolarity and NaCl. In this study, we discovered that intracerebroventricular infusion or local OVLT injection of hypertonic NaCl increases lumbar sympathetic nerve activity, adrenal sympathetic nerve activity and arterial blood pressure whereas equi-osmotic mannitol/sorbitol did not alter any variable. In vitro whole-cell recordings demonstrate the majority of OVLT neurons are responsive to hypertonic NaCl or mannitol. However, hypertonic NaCl stimulates a greater increase in discharge frequency than equi-osmotic mannitol. Intracarotid or intracerebroventricular infusion of hypertonic NaCl evokes a greater increase in OVLT neuronal discharge frequency than equi-osmotic sorbitol. Collectively, these novel data suggest that subsets of OVLT neurons respond differently to hypertonic NaCl versus osmolarity and subsequently regulate body fluid homeostasis. These responses probably reflect distinct cellular mechanisms underlying NaCl- versus osmo-sensing. Systemic or central infusion of hypertonic NaCl and other osmolytes readily stimulate thirst and vasopressin secretion. In contrast, central infusion of hypertonic NaCl produces a greater increase in arterial blood pressure (ABP) than equi-osmotic mannitol/sorbitol. Although these responses depend on neurons in the organum vasculosum of the lamina terminalis (OVLT), these observations suggest OVLT neurons may sense or respond differently to hypertonic NaCl versus osmolarity. The purpose of this study was to test this hypothesis in Sprague-Dawley rats. First, intracerebroventricular (icv) infusion (5 μl/10 min) of 1.0 m NaCl produced a significantly greater

  19. Long-term treatment with peony glycosides reverses chronic unpredictable mild stress-induced depressive-like behavior via increasing expression of neurotrophins in rat brain.

    Science.gov (United States)

    Mao, Qing-Qiu; Xian, Yan-Fang; Ip, Siu-Po; Tsai, Sam-Hip; Che, Chun-Tao

    2010-07-11

    The root part of Paeonia lactiflora Pall., commonly known as peony, is a commonly used Chinese herb for the treatment of depression-like disorders. Previous studies in our laboratory have showed that total glycosides of peony (TGP) produced antidepressant-like action in various mouse models of behavioral despair. The present study aimed to investigate the mechanism(s) underlying the antidepressant-like action of TGP by measuring neurotrophins including brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in non-stressed and chronic unpredictable mild stress (CUMS)-treated rats. TGP (80 or 160 mg/kg/day) was administered by oral gavage to the animals for 5 weeks. The results showed that CUMS caused depression-like behavior in rats, as indicated by the significant decreases in sucrose consumption and locomotor activity (assessed by open-field test). In addition, it was found that BDNF contents in the hippocampus and frontal cortex were significantly decreased in CUMS-treated rats. CUMS treatment also significantly decreased the level of NGF in the frontal cortex of the animals. Daily intragastric administration of TGP (80 or 160 mg/kg/day) during the five weeks of CUMS significantly suppressed behavioral and biochemical changes induced by CUMS. Treating non-stressed animals with TGP (160 mg/kg) for 5 weeks also significantly increased BDNF contents in the hippocampus and frontal cortex, and NGF contents in the frontal cortex. The results suggest that the antidepressant-like action of TGP is mediated, at least in part, by increasing the expression of BDNF and NGF in selective brain tissues. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Consistency and diversity of spike dynamics in the neurons of bed nucleus of stria terminalis of the rat: a dynamic clamp study.

    Directory of Open Access Journals (Sweden)

    Attila Szücs

    Full Text Available Neurons display a high degree of variability and diversity in the expression and regulation of their voltage-dependent ionic channels. Under low level of synaptic background a number of physiologically distinct cell types can be identified in most brain areas that display different responses to standard forms of intracellular current stimulation. Nevertheless, it is not well understood how biophysically different neurons process synaptic inputs in natural conditions, i.e., when experiencing intense synaptic bombardment in vivo. While distinct cell types might process synaptic inputs into different patterns of action potentials representing specific "motifs" of network activity, standard methods of electrophysiology are not well suited to resolve such questions. In the current paper we performed dynamic clamp experiments with simulated synaptic inputs that were presented to three types of neurons in the juxtacapsular bed nucleus of stria terminalis (jcBNST of the rat. Our analysis on the temporal structure of firing showed that the three types of jcBNST neurons did not produce qualitatively different spike responses under identical patterns of input. However, we observed consistent, cell type dependent variations in the fine structure of firing, at the level of single spikes. At the millisecond resolution structure of firing we found high degree of diversity across the entire spectrum of neurons irrespective of their type. Additionally, we identified a new cell type with intrinsic oscillatory properties that produced a rhythmic and regular firing under synaptic stimulation that distinguishes it from the previously described jcBNST cell types. Our findings suggest a sophisticated, cell type dependent regulation of spike dynamics of neurons when experiencing a complex synaptic background. The high degree of their dynamical diversity has implications to their cooperative dynamics and synchronization.

  1. Combined effects of dietary fructooligosaccharide and Bacillus licheniformis on innate immunity, antioxidant capability and disease resistance of triangular bream (Megalobrama terminalis).

    Science.gov (United States)

    Zhang, Chun-Nuan; Li, Xiang-Fei; Xu, Wei-Na; Jiang, Guang-Zhen; Lu, Kang-Le; Wang, Li-Na; Liu, Wen-Bin

    2013-11-01

    This study was conducted to investigate the effects of fructooligosaccharide (FOS) and Bacillus licheniformis (B. licheniformis) and their interaction on innate immunity, antioxidant capability and disease resistance of triangular bream Megalobrama terminalis (average initial weight 30.5 ± 0.5 g). Nine experimental diets were formulated to contain three FOS levels (0, 0.3% and 0.6%) and three B. licheniformis levels (0, 1 × 10(7), 5 × 10(7) CFU g(-1)) according to a 3 × 3 factorial design. At the end of the 8-week feeding trial, fish were challenged by Aeromonas hydrophila (A. hydrophila) and survival rate was recorded for the next 7 days. The results showed that leucocyte counts, alternative complement activity as well as total serum protein and globulin contents all increased significantly (P licheniformis levels increased from 0 to 1 × 10(7) CFU g(-1), while little difference (P > 0.05) was observed in these parameters in terms of dietary FOS levels. Both plasma alkaline phosphatase and phenoloxidase activities were significantly (P 0.05) by both FOS and B. licheniformis. Liver catalase, glutathione peroxidase as well as plasma SOD activities of fish fed 1 × 10(7) CFU g(-1)B. licheniformis were all significantly (P 0.05) by either FOS levels or B. licheniformis contents, whereas a significant (P licheniformis. The results of this study indicated that dietary FOS and B. licheniformis could significantly enhance the innate immunity and antioxidant capability of triangular bream, as well as improve its disease resistance. The best combination of these two prebiotics and/or probiotics was 0.3% FOS and 1 × 10(7) CFU g(-1)B. licheniformis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Oxytocin receptor neurotransmission in the dorsolateral bed nucleus of the stria terminalis facilitates the acquisition of cued fear in the fear-potentiated startle paradigm in rats.

    Science.gov (United States)

    Moaddab, Mahsa; Dabrowska, Joanna

    2017-07-15

    Oxytocin (OT) is a hypothalamic neuropeptide that modulates fear and anxiety-like behaviors. Dorsolateral bed nucleus of the stria terminalis (BNST dl ) plays a critical role in the regulation of fear and anxiety, and expresses high levels of OT receptor (OTR). However, the role of OTR neurotransmission within the BNST dl in mediating these behaviors is unknown. Here, we used adult male Sprague-Dawley rats to investigate the role of OTR neurotransmission in the BNST dl in the modulation of the acoustic startle response, as well as in the acquisition and consolidation of conditioned fear using fear potentiated startle (FPS) paradigm. Bilateral intra-BNST dl administration of OT (100 ng) did not affect the acquisition of conditioned fear response. However, intra-BNST dl administration of specific OTR antagonist (OTA), (d(CH 2 ) 5 1 , Tyr(Me) 2 , Thr 4 , Orn 8 , des-Gly-NH 2 9 )-vasotocin, (200 ng), prior to the fear conditioning session, impaired the acquisition of cued fear, without affecting a non-cued fear component of FPS. Neither OTA, nor OT affected baseline startle or shock reactivity during fear conditioning. Therefore, the observed impairment of cued fear after OTA infusion resulted from the specific effect on the formation of cued fear. In contrast to the acquisition, neither OTA nor OT affected the consolidation of FPS, when administered after the completion of fear conditioning session. Taken together, these results reveal the important role of OTR neurotransmission in the BNST dl in the formation of conditioned fear to a discrete cue. This study also highlights the role of the BNST dl in learning to discriminate between threatening and safe stimuli. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Differential co-localization with choline acetyltransferase in nervus terminalis suggests functional differences for GnRH isoforms in bonnethead sharks (Sphyrna tiburo).

    Science.gov (United States)

    Moeller, John F; Meredith, Michael

    2010-12-17

    The nervus terminalis (NT) is a vertebrate cranial nerve whose function in adults is unknown. In bonnethead sharks, the nerve is anatomically independent of the olfactory system, with two major cell populations within one or more ganglia along its exposed length. Most cells are immunoreactive for either gonadotropin-releasing hormone (GnRH) or RF-amide-like peptides. To define further the cell populations and connectivity, we used double-label immunocytochemistry with antisera to different isoforms of GnRH and to choline acetyltransferase (ChAT). The labeling patterns of two GnRH antisera revealed different populations of GnRH-immunoreactive (ir) cell profiles in the NT ganglion. One antiserum labeled a large group of cells and fibers, which likely contain mammalian GnRH (GnRH-I) as described in previous studies and which were ChAT immunoreactive. The other antiserum labeled large club-like structures, which were anuclear, and a sparse number of fibers, but with no clear labeling of cell bodies in the ganglion. These club structures were choline acetyltrasferase (ChAT)-negative, and preabsorption control tests suggest they may contain chicken-GnRH-II (GnRH-II) or dogfish GnRH. The second major NT ganglion cell-type was immunoreactive for RF-amides, which regulate GnRH release in other vertebrates, and may provide an intraganglionic influence on GnRH release. The immunocytochemical and anatomical differences between the two GnRH-immunoreactive profile types indicate possible functional differences for these isoforms in the NT. The club-like structures may be sites of GnRH release into the general circulation since these structures were observed near blood vessels and resembled structures seen in the median eminence of rats. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Endogenous oxytocin is necessary for preferential Fos expression to male odors in the bed nucleus of the stria terminalis in female Syrian hamsters.

    Science.gov (United States)

    Martinez, Luis A; Levy, Marisa J; Petrulis, Aras

    2013-09-01

    Successful reproduction in mammals depends on proceptive or solicitational behaviors that enhance the probability of encountering potential mates. In female Syrian hamsters, one such behavior is vaginal scent marking. Recent evidence suggests that the neuropeptide oxytocin (OT) may be critical for regulating this behavior. Blockade of OT receptors in the bed nucleus of the stria terminalis (BNST) or the medial preoptic area (MPOA) decreases vaginal marking responses to male odors; lesion data suggest that BNST, rather than MPOA, mediates this effect. However, how OT interacts with sexual odor processing to drive preferential solicitation is not known. To address this issue, intact female Syrian hamsters were exposed to male or female odors and their brains processed for immunohistochemistry for Fos, a marker of recent neuronal activation, and OT. Additional females were injected intracerebroventricularly (ICV) with an oxytocin receptor antagonist (OTA) or vehicle, and then tested for vaginal marking and Fos responses to sexual odors. Colocalization of OT and Fos in the paraventricular nucleus of the hypothalamus was unchanged following exposure to male odors, but decreased following exposure to female odors. Following injections of OTA, Fos expression to male odors was decreased in BNST, but not in MPOA or the medial amygdala (MA). Fos expression in BNST may be functionally relevant for vaginal marking, given that there was a positive correlation between Fos expression and vaginal marking for BNST, but not MPOA or MA. Together, these data suggest that OT facilitation of neuronal activity in BNST underlies the facilitative effects of OT on solicitational responses to male odors. © 2013.

  5. Involvement of the oxytocin system in the bed nucleus of the stria terminalis in the sex-specific regulation of social recognition.

    Science.gov (United States)

    Dumais, Kelly M; Alonso, Andrea G; Immormino, Marisa A; Bredewold, Remco; Veenema, Alexa H

    2016-02-01

    Sex differences in the oxytocin (OT) system in the brain may explain why OT often regulates social behaviors in sex-specific ways. However, a link between sex differences in the OT system and sex-specific regulation of social behavior has not been tested. Here, we determined whether sex differences in the OT receptor (OTR) or in OT release in the posterior bed nucleus of the stria terminalis (pBNST) mediates sex-specific regulation of social recognition in rats. We recently showed that, compared to female rats, male rats have a three-fold higher OTR binding density in the pBNST, a sexually dimorphic area implicated in the regulation of social behaviors. We now demonstrate that OTR antagonist (5 ng/0.5 μl/side) administration into the pBNST impairs social recognition in both sexes, while OT (100 pg/0.5 μl/side) administration into the pBNST prolongs the duration of social recognition in males only. These effects seem specific to social recognition, as neither treatment altered total social investigation time in either sex. Moreover, baseline OT release in the pBNST, as measured with in vivo microdialysis, did not differ between the sexes. However, males showed higher OT release in the pBNST during social recognition compared to females. These findings suggest a sex-specific role of the OT system in the pBNST in the regulation of social recognition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Fluoxetine reverses the behavioral despair induced by neurogenic stress in mice: role of N-methyl-d-aspartate and opioid receptors.

    Science.gov (United States)

    Haj-Mirzaian, Arya; Kordjazy, Nastaran; Ostadhadi, Sattar; Amiri, Shayan; Haj-Mirzaian, Arvin; Dehpour, AhmadReza

    2016-06-01

    Opioid and N-methyl-d-aspartate (NMDA) receptors mediate different effects of fluoxetine. We investigated whether opioid and NMDA receptors are involved in the protective effect of fluoxetine against the behavioral despair induced by acute physical stress in male mice. We used the forced swimming test (FST), tail suspension test (TST), and open-field test (OFT) for behavioral evaluation. We used fluoxetine, naltrexone (opioid receptor antagonist), MK-801 (NMDA receptor antagonist), morphine (opioid receptor agonist), and NMDA (NMDA receptor agonist). Acute foot-shock stress (FSS) significantly induced behavioral despair (depressive-like) and anxiety-like behaviors in tests. Fluoxetine (5 mg/kg) reversed the depressant-like effect of FSS, but it did not alter the locomotion and anxiety-like behavior in animals. Acute administration of subeffective doses of naltrexone (0.3 mg/kg) or MK-801 (0.01 mg/kg) potentiated the antidepressant-like effect of fluoxetine, while subeffective doses of morphine (1 mg/kg) and NMDA (75 mg/kg) abolished this effect of fluoxetine. Also, co-administration of subeffective doses of naltrexone (0.05 mg/kg) and MK-801 (0.003 mg/kg) with fluoxetine (1 mg/kg) induced a significant decrease in the immobility time in FST and TST. Our results showed that opioid and NMDA receptors (alone or in combination) are involved in the antidepressant-like effect of fluoxetine against physical stress.

  7. GluN2B-containing NMDA receptors blockade rescues bidirectional synaptic plasticity in the bed nucleus of the stria terminalis of cocaine self-administering rats.

    Science.gov (United States)

    deBacker, Julian; Hawken, Emily R; Normandeau, Catherine P; Jones, Andrea A; Di Prospero, Cynthia; Mechefske, Elysia; Gardner Gregory, James; Hayton, Scott J; Dumont, Éric C

    2015-01-01

    Drugs of abuse have detrimental effects on homeostatic synaptic plasticity in the motivational brain network. Bidirectional plasticity at excitatory synapses helps keep neural circuits within a functional range to allow for behavioral flexibility. Therefore, impaired bidirectional plasticity of excitatory synapses may contribute to the behavioral hallmarks of addiction, yet this relationship remains unclear. Here we tracked excitatory synaptic strength in the oval bed nucleus of the stria terminalis (ovBNST) using whole-cell voltage-clamp recordings in brain slices from rats self-administering sucrose or cocaine. In the cocaine group, we measured both a persistent increase in AMPA to NMDA ratio (A:N) and slow decay time of NMDA currents throughout the self-administration period and after withdrawal from cocaine. In contrast, the sucrose group exhibited an early increase in A:N ratios (acquisition) that returned toward baseline values with continued self-administration (maintenance) and after withdrawal. The sucrose rats also displayed a decrease in NMDA current decay time with continued self-administration (maintenance), which normalized after withdrawal. Cocaine self-administering rats exhibited impairment in NMDA-dependent long-term depression (LTD) that could be rescued by GluN2B-containing NMDA receptor blockade. Sucrose self-administering rats demonstrated no impairment in NMDA-dependent LTD. During the maintenance period of self-administration, in vivo (daily intraperitoneally for 5 days) pharmacologic blockade of GluN2B-containing NMDA receptors did not reduce lever pressing for cocaine. However, in vivo GluN2B blockade did normalize A:N ratios in cocaine self-administrating rats, and dissociated the magnitude of ovBNST A:N ratios from drug-seeking behavior after protracted withdrawal. Altogether, our data demonstrate when and how bidirectional plasticity at ovBNST excitatory synapses becomes dysfunctional with cocaine self-administration and that NMDA

  8. Resveratrol ameliorates depressive-like behavior in repeated corticosterone-induced depression in mice.

    Science.gov (United States)

    Ali, Syed Hamid; Madhana, Rajaram Mohanrao; K V, Athira; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Pitta, Sathish; Mahareddy, Jalandhar Reddy; Lahkar, Mangala

    2015-09-01

    A mouse model of depression has been recently developed by exogenous corticosterone (CORT) administration, which has shown to mimic HPA-axis induced depression-like state in animals. The present study aimed to examine the antidepressant-like effect and the possible mechanisms of resveratrol, a naturally occurring polyphenol of phytoalexin family, on depressive-like behavior induced by repeated corticosterone injections in mice. Mice were injected subcutaneously (s.c.) with 40mg/kg corticosterone (CORT) chronically for 21days. Resveratrol and fluoxetine were administered 30min prior to the CORT injection. After 21-days treatment with respective drugs, behavioral and biochemical parameters were estimated. Since brain derived neurotrophic factor (BDNF) has been implicated in antidepressant activity of many drugs, we also evaluated the effect of resveratrol on BDNF in the hippocampus. Three weeks of CORT injections in mice resulted in depressive-like behavior, as indicated by the significant decrease in sucrose consumption and increase in immobility time in the forced swim test and tail suspension test. Further, there was a significant increase in serum corticosterone level and a significant decrease in hippocampus BDNF level in CORT-treated mice. Treatment of mice with resveratrol significantly ameliorated all the behavioral and biochemical changes induced by corticosterone. These results suggest that resveratrol produces an antidepressant-like effect in CORT-induced depression in mice, which is possibly mediated by rectifying the stress-based hypothalamic-pituitary-adrenal (HPA) axis dysfunction paradigm and upregulation of hippocampal BDNF levels. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Agmatine abolishes restraint stress-induced depressive-like behavior and hippocampal antioxidant imbalance in mice.

    Science.gov (United States)

    Freitas, Andiara E; Bettio, Luis E B; Neis, Vivian B; Santos, Danúbia B; Ribeiro, Camille M; Rosa, Priscila B; Farina, Marcelo; Rodrigues, Ana Lúcia S

    2014-04-03

    Agmatine has been recently emerged as a novel candidate to assist the conventional pharmacotherapy of depression. The acute restraint stress (ARS) is an unavoidable stress situation that may cause depressive-like behavior in rodents. In this study, we investigated the potential antidepressant-like effect of agmatine (10mg/kg, administered acutely by oral route) in the forced swimming test (FST) in non-stressed mice, as well as its ability to abolish the depressive-like behavior and hippocampal antioxidant imbalance induced by ARS. Agmatine reduced the immobility time in the mouse FST (1-100mg/kg) in non-stressed mice. ARS caused an increase in the immobility time in the FST, indicative of a depressive-like behavior, as well as hippocampal lipid peroxidation, and an increase in the activity of hippocampal superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR) activities, reduced catalase (CAT) activity and increased SOD/CAT ratio, an index of pro-oxidative conditions. Agmatine was effective to abolish the depressive-like behavior induced by ARS and to prevent the ARS-induced lipid peroxidation and changes in SOD, GR and CAT activities and in SOD/CAT activity ratio. Hippocampal levels of reduced glutathione (GSH) were not altered by any experimental condition. In conclusion, the present study shows that agmatine was able to abrogate the ARS-induced depressive-like behavior and the associated redox hippocampal imbalance observed in stressed restraint mice, suggesting that its antidepressant-like effect may be dependent on its ability to maintain the pro-/anti-oxidative homeostasis in the hippocampus. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Infralimbic cortex Rho-kinase inhibition causes antidepressant-like activity in rats.

    Science.gov (United States)

    Inan, Salim Yalcin; Soner, Burak Cem; Sahin, Ayse Saide

    2015-03-03

    Depression is one of the most common psychiatric disorders in the world; however, its mechanisms remain unclear. Recently, a new signal-transduction pathway, namely Rho/Rho-kinase signalling, has been suggested to be involved in diverse cellular events in the central nervous system; such as epilepsy, anxiety-related behaviors, regulation of dendritic and axonal morphology, antinociception, subarachnoid haemorrhage, spinal cord injury and amyotrophic lateral sclerosis. However there is no evidence showing the involvement of Rho-kinase pathway in depression. In addition, the infralimbic cortex, rodent equivalent to subgenual cingulate cortex has been shown to be responsible for emotional responses. Thus, in the present study, intracranial guide cannulae were stereotaxically implanted bilaterally into the infralimbic cortex, and the effects of repeated microinjections of a Rho-kinase (ROCK) inhibitor Y-27632 (10 nmol) were investigated in rats. Y-27632 significantly decreased immobility time and increased swimming and climbing behaviors when compared to fluoxetine (10 μg) and saline groups in the forced swim test. In addition, Y-27632 treatment did not affect spontaneous locomotor activity and forelimb use in the open-field and cylinder tests respectively; but it enhanced limb placing accuracy in the ladder rung walking test. Our results suggest that Y-27632 could be a potentially active antidepressant agent. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten.

    Science.gov (United States)

    Park, Soo-Hyun; Sim, Yun-Beom; Han, Pyung-Lim; Lee, Jin-Koo; Suh, Hong-Won

    2010-06-01

    Opuntia ficus-indica var. saboten. is widely cultivated in Jeju Island (South Korea) for use in manufacture of health foods. This study described antidepressant effect of two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. The expression of the hypothalamic POMC mRNA or plasma β-endorphin levels were increased by extract of Opuntia ficus-indica var. saboten or its flavoniods administered orally. In addition, antidepressant activity was studied using tail suspension test (TST), forced swimming test (FST) and rota-rod test in chronically restraint immobilization stress group in mice. After restraint stress (2 hrs/day for 14 days), animals were kept in cage for 14 days without any further stress, bet with drugs. Mice were fed with a diet supplemented for 14 days and during the behavioral test period with kaempferol or quercitrin (30 mg/kg/day). POMC mRNA or plasma β-endorphin level was increased by extract of Opuntia ficus-indica var. saboten and its flavoniods. In addition, immobility time in TST and FST was significantly reduced by kaempferol or quercitrin. In rota-rod test, the time of permanence was maintained to the semblance of control group in turning at 15 rpm. Our results suggest that two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. show a potent antidepressant effect.

  12. Antidepressant-like Effect of Kaempferol and Quercitirin, Isolated from Opuntia ficus-indica var. saboten

    Science.gov (United States)

    Park, Soo-Hyun; Sim, Yun-Beom; Han, Pyung-Lim; Lee, Jin-Koo

    2010-01-01

    Opuntia ficus-indica var. saboten. is widely cultivated in Jeju Island (South Korea) for use in manufacture of health foods. This study described antidepressant effect of two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. The expression of the hypothalamic POMC mRNA or plasma β-endorphin levels were increased by extract of Opuntia ficus-indica var. saboten or its flavoniods administered orally. In addition, antidepressant activity was studied using tail suspension test (TST), forced swimming test (FST) and rota-rod test in chronically restraint immobilization stress group in mice. After restraint stress (2 hrs/day for 14 days), animals were kept in cage for 14 days without any further stress, bet with drugs. Mice were fed with a diet supplemented for 14 days and during the behavioral test period with kaempferol or quercitrin (30 mg/kg/day). POMC mRNA or plasma β-endorphin level was increased by extract of Opuntia ficus-indica var. saboten and its flavoniods. In addition, immobility time in TST and FST was significantly reduced by kaempferol or quercitrin. In rota-rod test, the time of permanence was maintained to the semblance of control group in turning at 15 rpm. Our results suggest that two flavonoids (kaempferol and quercitrin) isolated from the Opuntia ficus-indica var. saboten. show a potent antidepressant effect. PMID:22110339

  13. Metabonomic Study on the Antidepressant-Like Effects of Banxia Houpu Decoction and Its Action Mechanism

    Directory of Open Access Journals (Sweden)

    Zhanqiang Ma

    2013-01-01

    Full Text Available The aim of this study was to establish an experimental model for metabonomic profiles of the rat’s brain and then to investigate the antidepressant effect of Banxia Houpu decoction (BHD and its possible mechanisms. Behavioral research and metabonomics method based on UPLC-MS were used to assess the efficacy of different fractions of BHD on chronic unpredictable mild stress (CUMS model of depression. There was a significant difference between the BHD group and the model group. Eight endogenous metabolites, which are contributing to the separation of the model group and control group, were detected, while BHD group regulated the perturbed metabolites showing that there is a tendency of recovery compared to control group. Therefore, we think that those potential metabolite biomarkers have some relationship with BHD’s antidepression effect. This work appraised the antidepressant effect of Banxia Houpu decoction as well as revealing a metabonomics method, a valuable parameter in the TCM research.

  14. Antidepressant-Like Activity of Ethanol Extract of Ganoderma lucidum (Reishi in Mice

    Directory of Open Access Journals (Sweden)

    Aslam Muhammad

    2017-05-01

    Full Text Available Ganoderma lucidum, known as “Lingzhi” in China, is one among greatly regarded fungi around the world. In old Chinese encyclopedias of medical “Shen Nong’s Ben Cao Jing” and “Ben Cao Gang Mu”, it is rated as extraordinarily precious fungus. In this study, antidepressant activity of ethanol extract of Ganoderma lucidum has been assessed. The extract was given orally by gavage at the dose of 20 mg/kg, 75 mg/kg, and 130 mg/kg body weight. Fluoxetine (20 mg/kg p.o. was used as the standard drug. The results of our study show that Ganoderma lucidum significantly decreased immobility time in forced swim test and tail suspension test. Open field test was used to assess locomotor activity of the mice to exclude the false positive results. In open field test, Ganoderma lucidum didn’t affect the total movement and ambulatory movement at the same doses that significantly reduced immobility time in the forced swim test and tail suspension test. Thus, it is concluded that ethanol extract of Ganoderma lucidum has antidepressant activity in mice.

  15. Antidepressant-like effects of oleoylethanolamide in a mouse model of chronic unpredictable mild stress.

    Science.gov (United States)

    Jin, Peng; Yu, Hai-Ling; Tian-Lan; Zhang, Feng; Quan, Zhe-Shan

    2015-06-01

    Oleoylethanolamide (OEA) is an endocannabinoid analog that belongs to a family of endogenous acylethanolamides. Increasing evidence suggests that OEA may act as an endogenous neuroprotective factor and participate in the control of mental disorder-related behaviors. In this study, we examined whether OEA is effective against depression and investigated the role of circulating endogenous acylethanolamides during stress. Mice were subjected to 28days of chronic unpredictable mild stress (CUMS), and during the last 21days, treated with oral OEA (1.5-6mg/kg) or 6mg/kg fluoxetine. Sucrose preference and open field test activity were used to evaluate depression-like behaviors during CUMS and after OEA treatment. Weights of the prefrontal cortex and hippocampus were determined, and the adrenal index was measured. Furthermore, changes in serum adrenocorticotropic hormone (ACTH), corticosterone (CORT) and total antioxidant capacity (T-AOC), brain-derived neurotrophic factor (BDNF), and lipid peroxidation product malondialdehyde (MDA) levels, and superoxide dismutase (SOD) activities in the hippocampus and prefrontal cortex were detected. Our findings indicate that OEA normalized sucrose preferences, locomotion distances, rearing frequencies, prefrontal cortex and hippocampal atrophy, and adrenal indices. In addition, OEA reversed the abnormalities of BDNF and MDA levels and SOD activities in the hippocampus and prefrontal cortex, as well as changes in serum levels of ACTH, CORT, and T-AOC. The antidepressant effects of OEA may be related to the regulation of BDNF levels in the hippocampus and prefrontal cortex, antioxidant defenses, and normalizing hyperactivity in the hypothalamic-pituitary-adrenal axis (HPA). Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Antidepressant-Like Activity of Ethanol Extract of Ganoderma lucidum (Reishi) in Mice

    OpenAIRE

    Aslam Muhammad; Nasir Ali

    2017-01-01

    Ganoderma lucidum, known as “Lingzhi” in China, is one among greatly regarded fungi around the world. In old Chinese encyclopedias of medical “Shen Nong’s Ben Cao Jing” and “Ben Cao Gang Mu”, it is rated as extraordinarily precious fungus. In this study, antidepressant activity of ethanol extract of Ganoderma lucidum has been assessed. The extract was given orally by gavage at the dose of 20 mg/kg, 75 mg/kg, and 130 mg/kg body weight. Fluoxetine (20 mg/kg p.o.) was used as the sta...

  17. Antidepressant- like effects of BCEF0083 in the chronic unpredictable stress models

    Institute of Scientific and Technical Information of China (English)

    LanlanZhou; LiangMING; ChuangengMa; YanCheng; QinJiang

    2004-01-01

    AIM: Depression is a complicated disease, There are no satisfactory drugs to therapy depression so far. BCEF is a new type of bioactive compounds from entomogenous fungi. Depression animal models are effective to evaluate the antidepressant property of drugs. Several animal models of depression have been inn'oduced, however, only a few have been

  18. Minocycline does not evoke anxiolytic and antidepressant-like effects in C57BL/6 mice.

    Science.gov (United States)

    Vogt, M A; Mallien, A S; Pfeiffer, N; Inta, I; Gass, P; Inta, D

    2016-03-15

    Minocycline is a broad-spectrum tetracycline antibiotic with multiple actions, including anti-inflammatory and neuroprotective effects, that was proposed as novel treatment for several psychiatric disorders including schizophrenia and depression. However, there are contradictory results regarding antidepressant effects of minocycline in rodent models. Additionally, the possible anxiolytic effect of minocycline is still poorly investigated. Therefore, we aimed to clarify in the present study the influence of minocycline on behavioral correlates of mood disorders in standard tests for depression and anxiety, the Porsolt Forced Swim Test (FST), Elevated O-Maze, Dark-Light Box Test and Openfield Test in adult C57BL/6 mice. We found, unexpectedly, that mice treated with minocycline (20-40mg/kg, i.p.) did not display antidepressant- or anxiolytic-like behavioral changes in contrast to mice treated with diazepam (0.5mg/kg, anxiety tests) or imipramine (20mg/kg, depressive-like behavior). These results are relevant for future studies, considering that C57BL/6 mice, the most widely used strain in pharmacological and genetic animal models, did not react as expected to the treatment regime applied. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Antidepressant-like effect of agmatine is not mediated by serotonin

    DEFF Research Database (Denmark)

    Krass, Maarja; Wegener, Gregers; Vasar, Eero

    2008-01-01

    The aim of this study was to characterize the behavioral effects of systemically administered agmatine in animal models predictive of antidepressant- and anxiolytic-like activity and clarify whether the effects of agmatine depend on the intact serotonergic system. Only the highest dose of agmatin...

  20. Acute agmatine administration, similar to ketamine, reverses depressive-like behavior induced by chronic unpredictable stress in mice.

    Science.gov (United States)

    Neis, Vivian B; Bettio, Luis E B; Moretti, Morgana; Rosa, Priscila B; Ribeiro, Camille M; Freitas, Andiara E; Gonçalves, Filipe M; Leal, Rodrigo B; Rodrigues, Ana Lúcia S

    Agmatine is an endogenous neuromodulator that has been shown to have antidepressant-like properties. We have previously demonstrated that it can induce a rapid increase in BDNF levels after acute administration, suggesting that agmatine may be a fast-acting antidepressant. To investigate this hypothesis, the present study evaluated the effects of a single administration of agmatine in mice subjected to chronic unpredictable stress (CUS), a model of depression responsive only to chronic treatment with conventional antidepressants. The ability of agmatine to reverse CUS-induced behavioral and biochemical alterations was evaluated and compared with those elicited by the fast-acting antidepressant (ketamine) and the conventional antidepressant (fluoxetine). After exposed to CUS for 14days, mice received a single oral dose of agmatine (0.1mg/kg), ketamine (1mg/kg) or fluoxetine (10mg/kg), and were submitted to behavioral evaluation after 24h. The exposure to CUS caused an increased immobility time in the tail suspension test (TST) but did not change anhedonic-related parameters in the splash test. Our findings provided evidence that, similarly to ketamine, agmatine is able to reverse CUS-induced depressive-like behavior in the TST. Western blot analyses of prefrontal cortex (PFC) demonstrated that mice exposed to CUS and/or treated with agmatine, fluoxetine or ketamine did not present alterations in the immunocontent of synaptic proteins [i.e. GluA1, postsynaptic density protein 95 (PSD-95) and synapsin]. Altogether, our findings indicate that a single administration of agmatine is able to reverse behavioral alterations induced by CUS in the TST, suggesting that this compound may have fast-acting antidepressant-like properties. However, there was no alteration in the levels of synaptic proteins in the PFC, a result that need to be further investigated in other time points. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Protective effects of peony glycosides against corticosterone-induced cell death in PC12 cells through antioxidant action.

    Science.gov (United States)

    Mao, Qing-Qiu; Xian, Yan-Fang; Ip, Siu-Po; Tsai, Sam-Hip; Che, Chun-Tao

    2011-02-16

    Previous studies in our laboratory have shown that total glycosides of peony (TGP) produced antidepressant-like action in various mouse models of behavioral despair. However, the molecular mechanism by which TGP exerts antidepressant-like effect is not fully understood. This study examined the protective effects of TGP against corticosterone-induced neurotoxicity in rat pheochromocytoma (PC12) cells and ts possible mechanisms. The direct antioxidant effect of TGP was investigated by using a 2,2'-azinobis-(3-ethylbenzothiazoline- 6-sulphonic acid) (ABTS) radical cation-scavenging assay in a cell-free system. PC12 cells were treated with 200 μM of corticosterone in the absence or presence of TGP in varying concentrations for 48 h. Cell viability, lactate dehydrogenase (LDH) activity, intracellular reactive oxygen species (ROS) level, malondialdehyde (MDA) content, glutathione (GSH) content, superoxide dismutase (SOD) activity, and catalase (CAT) activity were then determined. TGP displayed antioxidant properties in the cell-free system, and the IC50 value in the ABTS radical cation-scavenging assay was 9.9 mg/L. TGP treatment at increasing doses (1-10 mg/L) protected against corticosterone-induced cytotoxicity in PC12 cells in a dose-dependent manner. The cytoprotection afforded by TGP treatment was associated with decreases in the intracellular ROS and MDA levels, and increases in the GSH level, SOD activity, and CAT activity in corticosterone-treated PC12 cells. The results suggest that TGP has a neuroprotective effect on corticosterone-induced neurotoxicity in PC12 cells, which may be related to its antioxidant action. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Effects of Agmatine on Depressive-Like Behavior Induced by Intracerebroventricular Administration of 1-Methyl-4-phenylpyridinium (MPP(+)).

    Science.gov (United States)

    Moretti, Morgana; Neis, Vivian Binder; Matheus, Filipe Carvalho; Cunha, Mauricio Peña; Rosa, Priscila Batista; Ribeiro, Camille Mertins; Rodrigues, Ana Lúcia S; Prediger, Rui Daniel

    2015-10-01

    Considering that depression is a common non-motor comorbidity of Parkinson's disease and that agmatine is an endogenous neuromodulator that emerges as a potential agent to manage diverse central nervous system disorders, this study investigated the antidepressant-like effect of agmatine in mice intracerebroventricularly (i.c.v.) injected with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP(+)). Male C57BL6 mice were treated with agmatine (0.0001, 0.1 or 1 mg/kg) and 60 min later the animals received an i.c.v. injection of MPP(+) (1.8 µg/site). Twenty-four hours after MPP(+) administration, immobility time, anhedonic behavior, and locomotor activity were evaluated in the tail suspension test (TST), splash test, and open field test, respectively. Using Western blot analysis, we investigated the putative modulation of MPP(+) and agmatine on striatal and frontal cortex levels of tyrosine hydroxylase (TH) and brain-derived neurotrophic factor (BDNF). MPP(+) increased the immobility time of mice in the TST, as well as induced an anhedonic-like behavior in the splash test, effects which were prevented by pre-treatment with agmatine at the three tested doses. Neither drug, alone or in combination, altered the locomotor activity of mice. I.c.v. administration of MPP(+) increased the striatal immunocontent of TH, an effect prevented by the three tested doses of agmatine. MPP(+) and agmatine did not alter the immunocontent of BDNF in striatum and frontal cortex. These results demonstrate for the first time the antidepressant-like effects of agmatine in an animal model of depressive-like behavior induced by the dopaminergic neurotoxin MPP(+).

  3. Stress-induced activation of the brainstem Bcl-xL gene expression in rats treated with fluoxetine: correlations with serotonin metabolism and depressive-like behavior.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Berezova, Inna V; Dygalo, Nikolay N

    2012-01-01

    Mechanisms underlying stress-induced depression and antidepressant drug action were shown to involve alterations in serotonergic (5-HT) neurotransmission and expression of genes coding for proteins associated with neurotrophic signaling pathways and cell-survival in the hippocampus and cortex. Expression of these genes in the brainstem containing 5-HT neurons may also be related to vulnerability or resilience to stress-related psychopathology. Here we investigated 5-HT markers and expression of genes for Brain-Derived Neurotrophic Factor (BDNF) and apoptotic proteins in the brainstem in relation to swim stress-induced behavioral despair. We found that anti-apoptotic Bcl-xL gene is sensitive to stress during the course of fluoxetine administration. Responsiveness of this gene to stress appeared concomitantly with an antidepressant-like effect of fluoxetine in the forced swim test. Bcl-xL transcript levels showed negative correlations with duration of immobility in the test and 5-HT turnover in the brainstem. In contrast, BDNF and pro-apoptotic protein Bax mRNA levels were unchanged by either fluoxetine or stress, suggesting specificity of Bcl-xL gene responses to these treatments. We also found that the levels of mRNAs for tryptophan hydroxylase-2 (TPH2) and 5-HT transporter (5-HTT) were significantly down-regulated following prolonged treatment with fluoxetine, but were not affected by stress. Unlike TPH2 and 5-HTT, 5-HT1A receptor mRNA levels were not altered by fluoxetine but significantly increased in response to swim stress. These data show that long-term fluoxetine treatment leads to changes in 5-HT and Bcl-xL responses to stress associated with antidepressant-like effects of the drug. This article is part of a Special Issue entitled 'Anxiety and Depression'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Reproduction phase-related expression of GnRH-like immunoreactivity in the olfactory receptor neurons, their projections to the olfactory bulb and in the nervus terminalis in the female Indian major carp Cirrhinus mrigala (Ham.).

    Science.gov (United States)

    Biju, K C; Singru, Praful S; Schreibman, Martin P; Subhedar, Nishikant

    2003-10-01

    The reproductive biology of the Indian major carp Cirrhinus mrigala is tightly synchronized with the seasonal changes in the environment. While the ovaries show growth from February through June, the fish spawn in July-August to coincide with the monsoon; thereafter the fish pass into the postspawning and resting phases. We investigated the pattern of GnRH immunoreactivity in the olfactory system at regular intervals extending over a period of 35 months. Although no signal was detected in the olfactory organ of fish collected from April through February following year, distinct GnRH-like immunoreactivity appeared in the fish collected in March. Intense immunoreactivity was noticed in several olfactory receptor neurons (ORNs) and their axonal fibers as they extend over the olfactory nerve, spread in the periphery of the olfactory bulb (OB), and terminate in the glomerular layer. Strong immunoreactivity was seen in some fascicles of the medial olfactory tracts extending from the OB to the telencephalon. Some neurons of the ganglion cells of nervus terminalis showed GnRH immunostaining during March; no immunoreactivity was detected at other times of the year. Plexus of GnRH immunoreactive fibers extending throughout the bulb represented a different component of the olfactory system; the fiber density showed a seasonal pattern that could be related to the status of gonadal maturity. While it was highest in the prespawning phase, significant reduction in the fiber density was noticed in the fish of spawning and the following regressive phases. Taken together the data suggest that the GnRH in the olfactory system of C. mrigala may play a major role in translation of the environmental cues and influence the downstream signals leading to the stimulation of the brain-pituitary-ovary axis.

  5. Agmatine Reverses Sub-chronic Stress induced Nod-like Receptor Protein 3 (NLRP3) Activation and Cytokine Response in Rats.

    Science.gov (United States)

    Sahin, Ceren; Albayrak, Ozgur; Akdeniz, Tuğba F; Akbulut, Zeynep; Yanikkaya Demirel, Gulderen; Aricioglu, Feyza

    2016-10-01

    The activation of Nod-like receptor protein 3 (NLRP3) has lately been implicated in stress and depression as an initiator mechanism required for the production of interleukin (IL)-1β and IL-18. Agmatine, an endogenous polyamine widely distributed in mammalian brain, is a novel neurotransmitter/neuromodulator, with antistress, anxiolytic and antidepressant-like effects. In this study, we examined the effect of exogenously administered agmatine on NLRP3 inflammasome pathway/cytokine responses in rats exposed to restraint stress for 7 days. The rats were divided into three groups: stress, stress+agmatine (40 mg/kg; i.p.) and control groups. Agmatine significantly down-regulated the gene expressions of all stress-induced NLRP3 inflammasome components (NLRP3, NF-κB, PYCARD, caspase-1, IL-1β and IL-18) in the hippocampus and prefrontal cortex (PFC) and reduced pro-inflammatory cytokine levels not only in both brain regions, but also in serum. Stress-reduced levels of IL-4 and IL-10, two major anti-inflammatory cytokines, were restored back to normal by agmatine treatment in the PFC. The findings of the present study suggest that stress-activated NLRP3 inflammasome and cytokine responses are reversed by an acute administration of agmatine. Whether antidepressant-like effect of agmatine can somehow, at least partially, be mediated by the inhibition of NLRP3 inflammasome cascade and relevant inflammatory responses requires further studies in animal models of depression. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  6. Ghrelin mediates stress-induced food-reward behavior in mice.

    Science.gov (United States)

    Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Savitt, Joseph M; Lutter, Michael; Zigman, Jeffrey M

    2011-07-01

    The popular media and personal anecdotes are rich with examples of stress-induced eating of calorically dense "comfort foods." Such behavioral reactions likely contribute to the increased prevalence of obesity in humans experiencing chronic stress or atypical depression. However, the molecular substrates and neurocircuits controlling the complex behaviors responsible for stress-based eating remain mostly unknown, and few animal models have been described for probing the mechanisms orchestrating this response. Here, we describe a system in which food-reward behavior, assessed using a conditioned place preference (CPP) task, is monitored in mice after exposure to chronic social defeat stress (CSDS), a model of prolonged psychosocial stress, featuring aspects of major depression and posttraumatic stress disorder. Under this regime, CSDS increased both CPP for and intake of high-fat diet, and stress-induced food-reward behavior was dependent on signaling by the peptide hormone ghrelin. Also, signaling specifically in catecholaminergic neurons mediated not only ghrelin's orexigenic, antidepressant-like, and food-reward behavioral effects, but also was sufficient to mediate stress-induced food-reward behavior. Thus, this mouse model has allowed us to ascribe a role for ghrelin-engaged catecholaminergic neurons in stress-induced eating.

  7. Antidepressant-like effects of the xanthine oxidase enzyme inhibitor allopurinol in rats. A comparison with fluoxetine.

    Science.gov (United States)

    Gürbüz Özgür, Börte; Aksu, Hatice; Birincioğlu, Mustafa; Dost, Turhan

    2015-11-01

    Allopurinol is a xanthine oxidase enzyme inhibitor that is widely used for the treatment of hyperuricemia and gout. The activity of tryptophan 2,3-dioxygenase, which metabolizes tryptophan (TRP), is decreased by xanthine oxidase inhibitors, causing TRP levels in the body to be increased. Increases in TRP levels in the brain might have antidepressant effects. The purpose of this study is to evaluate the antidepressant effects of allopurinol compared to those of fluoxetine, which is a proven antidepressant. Thirty-two Wistar albino male rats were divided into four groups (control, 10mg/kg fluoxetine, 50mg/kg allopurinol, 50mg/kg allopurinol+10 mg/kg fluoxetine; n=8 per group), and forced swimming tests were performed before and after 14days of drug administration. Serotonin, 5-hydroxyindolacetic acid and uric acid levels were measured in blood samples after the final treatment. When allopurinol and fluoxetine were administered separately, a decrease in the duration of immobility and an increased duration of swimming were observed in the forced swimming test. The results showed similar antidepressant efficacies between allopurinol and fluoxetine. However, we found no statistically significant difference in the antidepressant effect of the combined therapy versus single drug therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Environmental enrichment has antidepressant-like action without improving learning and memory deficits in olfactory bulbectomized rats

    NARCIS (Netherlands)

    Hendriksen, H.; Meulendijks, D.; Douma, T.N.; Bink, D.I.; Breuer, M.E.; Westphal, K.G.; Olivier, B.; Oosting, R.S.

    2012-01-01

    Depression, especially in the elderly, is associated with poor cognitive functioning. Exercise has received much attention in the treatment for depression and also dementia. Here we studied the effect of an enriched environment combined with voluntary exercise (EE/VE) on the olfactory bulbectomized

  9. Selective serotonin reuptake inhibitors potentiate the rapid antidepressant-like effects of serotonin4 receptor agonists in the rat.

    Directory of Open Access Journals (Sweden)

    Guillaume Lucas

    2010-02-01

    Full Text Available We have recently reported that serotonin(4 (5-HT(4 receptor agonists have a promising potential as fast-acting antidepressants. Here, we assess the extent to which this property may be optimized by the concomitant use of conventional antidepressants.We found that, in acute conditions, the 5-HT(4 agonist prucalopride was able to counteract the inhibitory effect of the selective serotonin reuptake inhibitors (SSRI fluvoxamine and citalopram on 5-HT neuron impulse flow, in Dorsal Raphé Nucleus (DRN cells selected for their high (>1.8 Hz basal discharge. The co-administration of both prucalopride and RS 67333 with citalopram for 3 days elicited an enhancement of DRN 5-HT neuron average firing rate, very similar to what was observed with either 5-HT(4 agonist alone. At the postsynaptic level, this translated into the manifestation of a tonus on hippocampal postsynaptic 5-HT(1A receptors, that was two to three times stronger when the 5-HT(4 agonist was combined with citalopram. Similarly, co-administration of citalopram synergistically potentiated the enhancing effect of RS 67333 on CREB protein phosphorylation within the hippocampus. Finally, in the Forced Swimming Test, the combination of RS 67333 with various SSRIs (fluvoxamine, citalopram and fluoxetine was more effective to reduce time of immobility than the separate administration of each compound.These findings strongly suggest that the adjunction of an SSRI to a 5-HT(4 agonist may help to optimize the fast-acting antidepressant efficacy of the latter.

  10. Possible involvement of the JAK/STAT signaling pathway in N-acetylcysteine-mediated antidepressant-like effects.

    Science.gov (United States)

    Al-Samhari, Marwa M; Al-Rasheed, Nouf M; Al-Rejaie, Salim; Al-Rasheed, Nawal M; Hasan, Iman H; Mahmoud, Ayman M; Dzimiri, Nduna

    2016-03-01

    Advances in depression research have targeted inflammation and oxidative stress to develop novel types of treatment. The JAK/STAT signaling pathway plays pivotal roles in immune and inflammatory responses. The present study was designed to investigate the effects of N-acetylcysteine, a putative precursor of the antioxidant glutathione, in an animal model of depression, with an emphasis on the JAK/STAT signaling pathway. Fluoxetine, a classical antidepressant drug was also under investigation. Male Wistar rats were subjected to forced swimming test and given N-acetylcysteine and fluoxetine immediately after the pre-test session, 5 h later and 1 h before the test session of the forced swimming test. N-acetylcysteine decreased immobility time (P acetylcysteine produced significant (P acetylcysteine significantly (P acetylcysteine. Therefore, depression research may target the JAK/STAT signaling pathway to provide a novel effective therapy. © 2015 by the Society for Experimental Biology and Medicine.

  11. Possible involvement of the JAK/STAT signaling pathway in N-acetylcysteine-mediated antidepressant-like effects

    OpenAIRE

    Al-Samhari, Marwa M; Al-Rasheed, Nouf M; Al-Rejaie, Salim; Al-Rasheed, Nawal M; Hasan, Iman H; Mahmoud, Ayman M; Dzimiri, Nduna

    2015-01-01

    Advances in depression research have targeted inflammation and oxidative stress to develop novel types of treatment. The JAK/STAT signaling pathway plays pivotal roles in immune and inflammatory responses. The present study was designed to investigate the effects of N-acetylcysteine, a putative precursor of the antioxidant glutathione, in an animal model of depression, with an emphasis on the JAK/STAT signaling pathway. Fluoxetine, a classical antidepressant drug was also under investigation....

  12. Pharmacological Evaluation of Antidepressant-Like Effect of Genistein and Its Combination with Amitriptyline: An Acute and Chronic Study

    Directory of Open Access Journals (Sweden)

    Gaurav Gupta

    2015-01-01

    Full Text Available The present study was designed to evaluate the acute and chronic antidepressant effect of genistein in combination with amitriptyline in mice. Animals were divided into six groups (n=6 for treatment with water, genistein, or amitriptyline, either alone or in combination for ten days. Animals were subjected to locomotor activity testing; tail suspension test (TST; and forced swim test (FST and immobility time was recorded on day one and day ten. Acute treatment of all treatment groups did not significantly reduce the immobility time (p>0.05. Chronic treatment of combination of genistein (10 mg/kg and amitriptyline (5 mg/kg and 10 mg/kg significantly reduced the immobility time as compared to control group (p<0.001 and was comparable to amitriptyline alone (10 mg/kg. However, no changes in anti-immobility activity in combination of subeffective doses of genistein (5 mg/kg and amitriptyline (5 mg/kg were observed. Genistein at its standard dose (10 mg/kg rendered synergistic effects in combination with subeffective dose of amitriptyline (5 mg/kg and additive effects in combination with therapeutic dose of amitriptyline (10 mg/kg.

  13. P-glycoprotein Inhibition Increases the Brain Distribution and Antidepressant-Like Activity of Escitalopram in Rodents

    OpenAIRE

    O'Brien, Fionn E; O'Connor, Richard M; Clarke, Gerard; Dinan, Timothy G; Griffin, Brendan T; Cryan, John F

    2013-01-01

    Despite the clinical prevalence of the antidepressant escitalopram, over 30% of escitalopram-treated patients fail to respond to treatment. Recent gene association studies have highlighted a potential link between the drug efflux transporter P-glycoprotein (P-gp) and response to escitalopram. The present studies investigated pharmacokinetic and pharmacodynamic interactions between P-gp and escitalopram. In vitro bidirectional transport studies revealed that escitalopram is a transported subst...

  14. Chelidonic acid evokes antidepressant-like effect through the up-regulation of BDNF in forced swimming test.

    Science.gov (United States)

    Jeong, Hyun-Ja; Yang, Shi-Young; Kim, Hee-Yun; Kim, Na-Rae; Jang, Jae-Bum; Kim, Hyung-Min

    2016-08-01

    Depression is usually accompanied by neuro-inflammatory reactions. Chelidonic acid, in particular, has shown anti-inflammatory effects. The objective of this study was to evaluate the anti-depressant effects of chelidonic acid and to discuss the potential mechanisms of a forced swimming test. Chelidonic acid was administered orally once a day for 14 days. On the 14th day, chelidonic acid resulted in a significant decrease in immobility time during the forced swimming test without alteration of locomotor activity, in an open field test. Chelidonic acid also increased the number of nissl bodies in the hippocampus. Brain-derived neurotrophic factor expression and extracellular signal-regulated protein kinase phosphorylation in the hippocampus were up-regulated by the administration of chelidonic acid. Chelidonic acid administration significantly increased the mRNA expression of hippocampal estrogen receptor-β. The levels of hippocampal interleukin (IL)-1β, IL-6, and tumor necrosis factor-α were effectively attenuated by the administration of chelidonic acid. In addition, chelidonic acid significantly increased the levels of 5-hydroxytryptamine (serotonin), dopamine, and norepinephrine compared with those levels for the mice that were administered distilled water in the hippocampus. These results suggest that chelidonic acid might serve as a new therapeutic strategy for the regulation of depression associated with inflammation. © 2016 by the Society for Experimental Biology and Medicine.

  15. Pregnanolone glutamate, a novel use-dependent NMDA receptor inhibitor, exerts antidepressant-like properties in animal models

    Czech Academy of Sciences Publication Activity Database

    Holubová, Kristína; Nekovářová, Tereza; Pistovčáková, J.; Šulcová, A.; Stuchlík, Aleš; Valeš, Karel

    2014-01-01

    Roč. 8, Apr 16 (2014), s. 130 ISSN 1662-5153 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP303/12/1464; GA MZd(CZ) NT13403; GA TA ČR(CZ) TE01020028 Grant - others:GA MŠk(CZ) LM2011017; GA MŠk(CZ) ED1.1.00/02.0068 Program:ED Institutional support: RVO:67985823 Keywords : depression * anxiety * NMDA channel blocker * neuroactive steroid * 3a5b-pregnanolone glutamate Subject RIV: FH - Neurology Impact factor: 3.270, year: 2014

  16. Resting-state functional connectivity of the bed nucleus of the stria terminalis in post-traumatic stress disorder and its dissociative subtype.

    Science.gov (United States)

    Rabellino, Daniela; Densmore, Maria; Harricharan, Sherain; Jean, Théberge; McKinnon, Margaret C; Lanius, Ruth A

    2018-03-01

    The bed nucleus of the stria terminals (BNST) is a subcortical structure involved in anticipatory and sustained reactivity to threat and is thus essential to the understanding of anxiety and stress responses. Although chronic stress and anxiety represent a hallmark of post-traumatic stress disorder (PTSD), to date, few studies have examined the functional connectivity of the BNST in PTSD. Here, we used resting state functional Magnetic Resonance Imaging (fMRI) to investigate the functional connectivity of the BNST in PTSD (n = 70), its dissociative subtype (PTSD + DS) (n = 41), and healthy controls (n = 50). In comparison to controls, PTSD showed increased functional connectivity of the BNST with regions of the reward system (ventral and dorsal striatum), possibly underlying stress-induced reward-seeking behaviors in PTSD. By contrast, comparing PTSD + DS to controls, we observed increased functional connectivity of the BNST with the claustrum, a brain region implicated in consciousness and a primary site of kappa-opioid receptors, which are critical to the dynorphin-mediated dysphoric stress response. Moreover, PTSD + DS showed increased functional connectivity of the BNST with brain regions involved in attention and salience detection (anterior insula and caudate nucleus) as compared to PTSD and controls. Finally, BNST functional connectivity positively correlated with default-mode network regions as a function of state identity dissociation, suggesting a role of BNST networks in the disruption of self-relevant processing characterizing the dissociative subtype. These findings represent an important first step in elucidating the role of the BNST in aberrant functional networks underlying PTSD and its dissociative subtype. © 2017 Wiley Periodicals, Inc.

  17. Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats.

    Science.gov (United States)

    Choi, Miyeon; Lee, Seung Hoon; Park, Min Hyeop; Kim, Yong-Seok; Son, Hyeon

    2017-08-05

    Ketamine shows promise as a therapeutic agent for the treatment of depression. The increased expression of brain-derived neurotrophic factor (BDNF) has been associated with the antidepressant-like effects of ketamine, but the mechanism of BDNF induction is not well understood. In the current study, we demonstrate that the treatment of rats with ketamine results in the dose-dependent rapid upregulation of Bdnf promoter IV activity and expression of Bdnf exon IV mRNAs in rat hippocampal neurons. Transfection of histone deacetylase 5 (HDAC5) into rat hippocampal neurons similarly induces Bdnf mRNA expression in response to ketamine, whereas transfection of a HDAC5 phosphorylation-defective mutant (Ser259 and Ser498 replaced by Ala259 and Ala498), results in the suppression of ketamine-mediated BDNF promoter IV transcriptional activity. Viral-mediated hippocampal knockdown of HDAC5 induces Bdnf mRNA and protein expression, and blocks the enhancing effects of ketamine on BDNF expression in both unstressed and stressed rats, and thereby providing evidence for the role of HDAC5 in the regulation of Bdnf expression. Taken together, our findings implicate HDAC5 in the ketamine-induced transcriptional regulation of Bdnf, and suggest that the phosphorylation of HDAC5 regulates the therapeutic actions of ketamine. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Depressive-like behavior induced by tumor necrosis factor-α is abolished by agmatine administration.

    Science.gov (United States)

    Neis, Vivian Binder; Manosso, Luana Meller; Moretti, Morgana; Freitas, Andiara E; Daufenbach, Juliana; Rodrigues, Ana Lúcia S

    2014-03-15

    Agmatine, an endogenous cationic amine, has been shown to exert antidepressant-like effects. This study investigated the ability of agmatine administered orally to abolish the depressive-like behavior induced by the administration of the pro-inflammatory cytokine, tumor necrosis factor (TNF-α) in mice. In control animals, agmatine (0.001, 0.01, 0.1, and 1 mg/kg) reduced the immobility time in the tail suspension test (TST). Acute administration of TNF-α (0.001 fg/mouse, i.c.v.) increased immobility time in the TST, indicative of a depressive-like behavior, and agmatine (0.0001, 0.1, and 1 mg/kg) prevented this effect. Additionally, we examined the effects of the combined administration of sub-effective doses of agmatine with antidepressants, the NMDA receptor antagonist MK-801 and the neuronal nitric oxide synthase inhibitor 7-nitroindazole (7-NI) in mice exposed to either TNF-α or saline. In control mice, administration of a sub-effective dose of agmatine (0.0001 mg/kg) combined with sub-effective doses of either fluoxetine (5 mg/kg, p.o.), imipramine (0.1 mg/kg, p.o.), bupropion (1 mg/kg, p.o.), MK-801 (0.001 mg/kg, p.o.) or 7-NI (25 mg/kg, i.p.) produced a synergistic antidepressant-like effect in the TST. All these administrations prevented the increased immobility time induced by TNF-α. The effect of agmatine in the TNF-α model of depression appears to be associated, at least partially, with an activation of the monoaminergic systems and inhibition of NMDA receptors and nitric oxide synthesis, although converging signal transduction pathways that may underlie the effect of agmatine should be further investigated. This set of results indicates that agmatine may constitute a new therapeutic alternative for the treatment of depression associated with inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Attenuation of MPTP-induced dopaminergic neurotoxicity by TV3326, a cholinesterase-monoamine oxidase inhibitor.

    Science.gov (United States)

    Sagi, Yotam; Weinstock, Marta; Youdim, Moussa B H

    2003-07-01

    (R)-[(N-propargyl-(3R) aminoindan-5-yl) ethyl methyl carbamate] (TV3326) is a novel cholinesterase and brain-selective monoamine oxidase (MAO)-A/-B inhibitor. It was developed for the treatment of dementia co-morbid with extra pyramidal disorders (parkinsonism), and depression. On chronic treatment in mice it attenuated striatal dopamine depletion induced by MPTP and prevented the reduction in striatal tyrosine hydroxylase activity, like selective B and non-selective MAO inhibitors. TV3326 preferentially inhibits MAO-B in the striatum and hippocampus, and the degree of MAO-B inhibition correlates with the prevention of MPTP-induced dopamine depletion. Complete inhibition of MAO-B is not necessary for full protection from MPTP neurotoxicity. Unlike that seen after treatment with other MAO-A and -B inhibitors, recovery of striatal and hippocampal MAO-A and -B activities from inhibition by TV3326 did not show first-order kinetics. This has been attributed to the generation of a number of metabolites by TV3326 that cause differential inhibition of these enzymes. Inhibition of brain MAO-A and -B by TV3326 resulted in significant elevations of dopamine, noradrenaline and serotonin in the striatum and hippocampus. This may explain its antidepressant-like activity, resembling that of moclobemide in the forced-swim test in rats.

  20. Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice.

    Science.gov (United States)

    Taksande, Brijesh G; Faldu, Dharmesh S; Dixit, Madhura P; Sakaria, Jay N; Aglawe, Manish M; Umekar, Milind J; Kotagale, Nandkishor R

    2013-11-15

    Chronic stress exposure and resulting dysregulation of the hypothalamic pituitary adrenal axis develops susceptibility to variety of neurological and psychiatric disorders. Agmatine, a putative neurotransmitter has been reported to be released in response to various stressful stimuli to maintain the homeostasis. Present study investigated the role of agmatine on chronic unpredictable mild stress (CUMS) induced behavioral and biochemical alteration in mice. Exposure of mice to CUMS protocol for 28 days resulted in diminished performance in sucrose preference test, splash test, forced swim test and marked elevation in plasma corticosterone levels. Chronic agmatine (5 and 10 mg/kg, ip, once daily) treatment started on day-15 and continued till the end of the CUMS protocol significantly increased sucrose preference, improved self-care and motivational behavior in the splash test and decreased duration of immobility in the forced swim test. Agmatine treatment also normalized the elevated corticosterone levels and prevented the body weight changes in chronically stressed animals. The pharmacological effect of agmatine was comparable to selective serotonin reuptake inhibitor, fluoxetine (10mg/kg, ip). Results of present study clearly demonstrated the anti-depressant like effect of agmatine in chronic unpredictable mild stress induced depression in mice. Thus the development of drugs based on brain agmatinergic modulation may represent a new potential approach for the treatment of stress related mood disorders like depression. © 2013 Published by Elsevier B.V.

  1. Effects of fisetin on oxaliplatin-induced neuropathic pain in mice

    Directory of Open Access Journals (Sweden)

    Hong Liu

    2015-03-01

    Full Text Available Common chemotherapeutic agents such as oxaliplatin often cause neuropathic pain during cancer treatment in patients. Such neuropathic pain is difficult to treat and responds poorly to common analgesics, which represents a challenging clinical issue. Fisetin is a naturally occurring flavonoid and this study tested the potential anti-hyperalgesic effects of fisetin in a mice model of oxaliplatin-induced neuropathic pain. Fisetin (1-4 mg/kg, i.p. did not significantly alter the mechanical hypersensitivity in oxaliplatin-treated mice but produced a dose-dependent anti-hyperalgesic effect during repeated treatment. Repeated treatment with fisetin also prevented chronic neuropathic pain-induced depressive-like behavior in a forced swimming test. Both the antihyperalgesic and the antidepressant-like effects of fisetin can be blocked by a selective 5-HT1A receptor antagonist WAY100635 (1 mg/kg. Together, these results demonstrate that fisetin has significant analgesic efficacy against chronic neuropathic pain, which could be a useful analgesic in the management of neuropathic pain.

  2. Paeonol attenuates lipopolysaccharide-induced depressive-like behavior in mice.

    Science.gov (United States)

    Tao, Weiwei; Wang, Hanqing; Su, Qiang; Chen, Yanyan; Xue, Wenda; Xia, Baomei; Duan, Jinao; Chen, Gang

    2016-04-30

    The present study was designed to detect the anti-depressant effects of paeonol and the possible mechanisms in the lipopolysaccharide-induced depressive-like behavior. Open-field test(OFT), tail suspension test(TST) and forced swimming test(FST) were used to evaluate the behavioral activity. The contents of 5-hydroxytryptamine (5-HT) and norepinephrine (NE) in mice hippocampus were determined by HPLC-ECD. Serum interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α levels were evaluated by enzyme-linked immunosorbent assay (ELISA). Our results showed that LPS significantly decreased the levels of 5-HT and NE in the hippocampus. LPS also reduced open-field activity, as well as increased immobility duration in FST and TST. Paeonol administration could effectively reverse the alterations in the concentrations of 5-HT, NE and reduce the IL-6 and TNF-α levels. Moreover, paeonol effectively downregulated brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB) and Nuclear factor-κB (NF-κB) in hippocampal. In conclusion, paeonol administration exhibited significant antidepressant-like effects in mice with LPS-induced depression. Copyright © 2016. Published by Elsevier Ireland Ltd.

  3. 5-HT(1A) receptor antagonism reverses and prevents fluoxetine-induced sexual dysfunction in rats.

    Science.gov (United States)

    Sukoff Rizzo, Stacey J; Pulicicchio, Claudine; Malberg, Jessica E; Andree, Terrance H; Stack, Gary P; Hughes, Zoë A; Schechter, Lee E; Rosenzweig-Lipson, Sharon

    2009-09-01

    Sexual dysfunction associated with antidepressant treatment continues to be a major compliance issue for antidepressant therapies. 5-HT(1A) antagonists have been suggested as beneficial adjunctive treatment in respect of antidepressant efficacy; however, the effects of 5-HT(1A) antagonism on antidepressant-induced side-effects has not been fully examined. The present study was conducted to evaluate the ability of acute or chronic treatment with 5-HT(1A) antagonists to alter chronic fluoxetine-induced impairments in sexual function. Chronic 14-d treatment with fluoxetine resulted in a marked reduction in the number of non-contact penile erections in sexually experienced male rats, relative to vehicle-treated controls. Acute administration of the 5-HT(1A) antagonist WAY-101405 resulted in a complete reversal of chronic fluoxetine-induced deficits on non-contact penile erections at doses that did not significantly alter baselines. Chronic co-administration of the 5-HT(1A) antagonists WAY-100635 or WAY-101405 with fluoxetine prevented fluoxetine-induced deficits in non-contact penile erections in sexually experienced male rats. Moreover, withdrawal of WAY-100635 from co-treatment with chonic fluoxetine, resulted in a time-dependent reinstatement of chronic fluoxetine-induced deficits in non-contact penile erections. Additionally, chronic administration of SSA-426, a molecule with dual activity as both a SSRI and 5-HT(1A) antagonist, did not produce deficits in non-contact penile erections at doses demonstrated to have antidepressant-like activity in the olfactory bulbectomy model. Taken together, these data suggest that 5-HT(1A) antagonist treatment may have utility for the management of SSRI-induced sexual dysfunction.

  4. Curcumin reverses the depressive-like behavior and insulin resistance induced by chronic mild stress.

    Science.gov (United States)

    Shen, Ji-Duo; Wei, Yu; Li, Yu-Jie; Qiao, Jing-Yi; Li, Yu-Cheng

    2017-08-01

    Increasing evidence has demonstrated that patients with depression have a higher risk of developing type 2 diabetes. Insulin resistance has been identified as the key mechanism linking depression and diabetes. The present study established a rat model of depression complicated by insulin resistance using a 12-week exposure to chronic mild stress (CMS) and investigated the therapeutic effects of curcumin. Sucrose intake tests were used to evaluate depressive-like behaviors, and oral glucose tolerance tests (OGTT) and intraperitoneal insulin tolerance tests (IPITT) were performed to evaluate insulin sensitivity. Serum parameters were detected using commercial kits. Real-time quantitative PCR was used to examine mRNA expression. CMS rats exhibited reduced sucrose consumption, increased serum glucose, insulin, triglyceride (TG), low density lipoprotein-cholesterol (LDL-C), non-esterified fatty acid (NEFA), glucagon, leptin, and corticosterone levels, as well as impaired insulin sensitivity. Curcumin upregulated the phosphorylation of insulin receptor substrate (IRS)-1 and protein kinase B (Akt) in the liver, enhanced insulin sensitivity, and reversed the metabolic abnormalities and depressive-like behaviors mentioned above. Moreover, curcumin increased the hepatic glycogen content by inhibiting glycogen synthase kinase (GSK)-3β and prevented gluconeogenesis by inhibiting phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6-phosphatase (G6Pase). These results suggest that curcumin not only exerted antidepressant-like effects, but also reversed the insulin resistance and metabolic abnormalities induced by CMS. These data may provide evidence to support the potential use of curcumin against depression and/or metabolic disorders.

  5. Magnesium Isoglycyrrhizinate attenuates lipopolysaccharide-induced depressive-like behavior in mice.

    Science.gov (United States)

    Jiang, Wenjiao; Chen, Qianying; Li, Peijin; Lu, Qianfeng; Pei, Xue; Sun, Yilin; Wang, Guangji; Hao, Kun

    2017-02-01

    Magnesium Isoglycyrrhizinate (MI) is a magnesium salt of 18α-GA stereoisomer which has been reported to exert hepatoprotective activity. The aim of the present study was to ascertain the underlying mechanisms behind the action of Magnesium Isoglycyrrhizinate on neuroinflammatation and oxidative stress in LPS-stimulated mice. Mice were pretreated with Magnesium Isoglycyrrhizinate (MI, 25, 50mg/kg) as well as fluoxetine (Flu, positive control, 20mg/kg) once daily for one week before intraperitoneal injection of LPS (0.83mg/kg). Pretreatments with MI and Flu significantly improved immobility time in tail suspension test (TST) and forced swim test (FST) as well as locomotor activity in open-field test (OFT). In addition, the levels of pro-inflammatory cytokines and oxidative stress in serum and hippocampus were also suppressed effectively by MI and Flu administrations. Western blot analysis showed the up-regulated levels of p-Jak3, p-STAT3, p-NF-κBp65, and p-IκBα in mice exposed to LPS, while different degrees of down-regulation in these expression were observed in MI (25, 50mg/kg) and Flu (20mg/kg) groups respectively. Taken together, our obtained results demonstrated that Magnesium Isoglycyrrhizinate (MI) exhibited an antidepressant-like effect in LPS-induced mice, which might be mediated by JAK/STAT/NF-κB signaling pathway. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. The aqueous extract of Albizia adianthifolia leaves attenuates 6-hydroxydopamine-induced anxiety, depression and oxidative stress in rat amygdala.

    Science.gov (United States)

    Beppe, Galba Jean; Dongmo, Alain Bertrand; Foyet, Harquin Simplice; Dimo, Théophile; Mihasan, Marius; Hritcu, Lucian

    2015-10-19

    While the Albizia adianthifolia (Schumach.) W. Wright (Fabaceae) is a traditional herb largely used in the African traditional medicine as analgesic, purgative, antiinflammatory, antioxidant, antimicrobial, memory-enhancer, anxiolytic and antidepressant drug, there are no scientific data that clarify the anxiolytic and antidepressant-like effects in 6-hydroxydopamine (6-OHDA)-lesioned animal model of Parkinson's disease. This study was undertaken in order to identify the effects of aqueous extract of A. adianthifolia leaves on 6-hydroxydopamine-induced anxiety, depression and oxidative stress in the rat amygdala. The effect of the aqueous extract of A. adianthifolia leaves (150 and 300 mg/kg, orally, daily, for 21 days) on anxiety and depression was assessed using elevated plus-maze and forced swimming tests, as animal models of anxiety and depression. Also, the antioxidant activity in the rat amygdala was assessed using assessed using superoxide dismutase, glutathione peroxidase and catalase specific activities, the total content of the reduced glutathione, protein carbonyl and malondialdehyde levels. Statistical analyses were performed using by one-way analysis of variance (ANOVA). Significant differences were determined by Tukey's post hoc test. F values for which p amygdala. Our results suggest that the aqueous extract ameliorates 6-OHDA-induced anxiety and depression by attenuation of the oxidative stress in the rat amygdala. These pieces of evidence accentuate its use in traditional medicine.

  7. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  8. The Effects of Inhaled Pimpinella peregrina Essential Oil on Scopolamine-Induced Memory Impairment, Anxiety, and Depression in Laboratory Rats.

    Science.gov (United States)

    Aydin, Emel; Hritcu, Lucian; Dogan, Gulden; Hayta, Sukru; Bagci, Eyup

    2016-11-01

    In the present study, we identified the effects of inhaled Pimpinella peregrina essential oil (1 and 3 %, for 21 continuous days) on scopolamine-induced memory impairment, anxiety, and depression in laboratory rats. Y-maze and radial arm-maze tests were used for assessing memory processes. Also, the anxiety and depressive responses were studied by means of the elevated plus-maze and forced swimming tests. The scopolamine alone-treated rats exhibited the following: decrease of the spontaneous alternation percentage in Y-maze test, increase of the number of working and reference memory errors in radial arm-maze test, along with decrease of the exploratory activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming time and increase of immobility time within forced swimming test. Inhalation of the P. peregrina essential oil significantly improved memory formation and exhibited anxiolytic- and antidepressant-like effects in scopolamine-treated rats. Our results suggest that the P. peregrina essential oil inhalation ameliorates scopolamine-induced memory impairment, anxiety, and depression. Moreover, studies on the P. peregrina essential oil may open a new therapeutic window for the prevention of neurological abnormalities closely related to Alzheimer's disease.

  9. Eugenia uniflora fruit (red type) standardized extract: a potential pharmacological tool to diet-induced metabolic syndrome damage management.

    Science.gov (United States)

    Oliveira, Pathise Souto; Chaves, Vitor Clasen; Bona, Natália Pontes; Soares, Mayara Sandrielly Pereira; Cardoso, Juliane de Souza; Vasconcellos, Flávia Aleixo; Tavares, Rejane Giacomelli; Vizzotto, Marcia; Silva, Luísa Mariano Cerqueira da; Grecco, Fabiane Borelli; Gamaro, Giovana Duzzo; Spanevello, Roselia Maria; Lencina, Claiton Leoneti; Reginatto, Flávio Henrique; Stefanello, Francieli Moro

    2017-08-01

    The aim of this study was to investigate the effect of Eugenia uniflora fruit (red type) extract on metabolic status, as well as on neurochemical and behavioral parameters in an animal model of metabolic syndrome induced by a highly palatable diet (HPD). Rats were treated for 150days and divided into 4 experimental groups: standard chow (SC) and water orally, SC and E. uniflora extract (200mg/kg daily, p.o), HPD and water orally, HPD and extract. Our data showed that HPD caused glucose intolerance, increased visceral fat, weight gain, as well as serum glucose, triacylglycerol, total cholesterol and LDL cholesterol; however, E. uniflora prevented these alterations. The extract decreased lipid peroxidation and prevented the reduction of superoxide dismutase and catalase activities in the prefrontal cortex, hippocampus and striatum of animals submitted to HPD. We observed a HPD-induced reduction of thiol content in these cerebral structures. The extract prevented increased acetylcholinesterase activity in the prefrontal cortex caused by HPD and the increase in immobility time observed in the forced swim test. Regarding chemical composition, LC/MS analysis showed the presence of nine anthocyanins as the major compounds. In conclusion, E. uniflora extract showed benefits against metabolic alterations caused by HPD, as well as exhibited antioxidant and antidepressant-like effects. Copyright © 2017. Published by Elsevier Masson SAS.

  10. Systemic N-terminal fragments of adrenocorticotropin reduce inflammation- and stress-induced anhedonia in rats.

    Science.gov (United States)

    Markov, Dmitrii D; Yatsenko, Ksenia A; Inozemtseva, Lyudmila S; Grivennikov, Igor A; Myasoedov, Nikolai F; Dolotov, Oleg V

    2017-08-01

    Emerging evidence implicates impaired self-regulation of the hypothalamic-pituitary-adrenal (HPA) axis and inflammation as important and closely related components of the pathophysiology of major depression. Antidepressants show anti-inflammatory effects and are suggested to enhance glucocorticoid feedback inhibition of the HPA axis. HPA axis activity is also negatively self-regulated by the adrenocorticotropic hormone (ACTH), a potent anti-inflammatory peptide activating five subtypes of melanocortin receptors (MCRs). There are indications that ACTH-mediated feedback can be activated by noncorticotropic N-terminal ACTH fragments such as a potent anti-inflammatory MC1/3/4/5R agonist α-melanocyte-stimulating hormone (α-MSH), corresponding to ACTH(1-13), and a MC3/5R agonist ACTH(4-10). We investigated whether intraperitoneal administration of rats with these peptides affects anhedonia, which is a core symptom of depression. Inflammation-related anhedonia was induced by a single intraperitoneal administration of a low dose (0.025mg/kg) of lipopolysaccharide (LPS). Stress-related anhedonia was induced by the chronic unpredictable stress (CUS) procedure. The sucrose preference test was used to detect anhedonia. We found that ACTH(4-10) pretreatment decreased LPS-induced increase in serum corticosterone and tumor necrosis factor (TNF)-α, and a MC3/4R antagonist SHU9119 blocked this effect. Both α-MSH and ACTH(4-10) alleviated LPS-induced anhedonia. In the CUS model, these peptides reduced anhedonia and normalized body weight gain. The data indicate that systemic α-MSH and ACTH(4-10) produce an antidepressant-like effect on anhedonia induced by stress or inflammation, the stimuli that trigger the release of ACTH and α-MSH into the bloodstream. The results suggest a counterbalancing role of circulating melanocortins in depression and point to a new approach for antidepressant treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Chronic treatment with fluoxetine and sertraline prevents forced swimming test-induced hypercontractility of rat detrusor muscle.

    Science.gov (United States)

    Bilge, Sirri; Bozkurt, Ayhan; Bas, Duygu B; Aksoz, Elif; Savli, Evren; Ilkaya, Fatih; Kesim, Yuksel

    2008-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) reuptake inhibitors represent important targets for the development of new treatments for detrusor overactivity and urinary incontinence. The present study was undertaken to investigate the effects of the forced swimming test (FST) on the contractile response of isolated rat detrusor muscle and to examine the effects of in vivo treatments of fluoxetine and sertraline on altered detrusor muscle contractility. Fluoxetine (20 mg/kg ip) and sertraline (10 mg/kg ip) were administered once a day for 14 days. Rats were exposed to the FST on the 15th day. After the test, detrusor muscles were removed and placed in organ baths, and the contraction responses induced by carbachol, potassium chloride (KCl) and electrical field stimulation (EFS) were recorded. The contractile responses of detrusor muscle strips to carbachol and electrical field stimulation were found to be increased at all carbachol doses and frequencies, respectively. FST also increased the contractile responses to KCl, which is used to test the differences in postreceptor-mediated contractions. The hypercontractile responses of detrusor strips to carbachol, EFS and KCl were abolished by treatment with both fluoxetine and sertraline. These treatments also decreased the immobility duration in the FST consistent with an antidepressant-like effect in this test. The results of this study provide the first evidence that FST increases contractility of the rat detrusor muscle, and this hypercontractility was abolished by chronic treatments of fluoxetine and sertraline at antidepressant doses by decreasing the postreceptor-mediated events.

  12. Agmatine attenuates nicotine induced conditioned place preference in mice through modulation of neuropeptide Y system.

    Science.gov (United States)

    Kotagale, Nandkishor R; Walke, Sonali; Shelkar, Gajanan P; Kokare, Dadasaheb M; Umekar, Milind J; Taksande, Brijesh G

    2014-04-01

    The purpose of the present study was to examine the effect of agmatine on nicotine induced conditioned place preference (CPP) in male albino mice. Intra-peritoneal (ip) administration of nicotine (1mg/kg) significantly increased time spent in drug-paired compartment. Agmatine (20 and 40 mg/kg, ip) co-administered with nicotine during the 6 days conditioning sessions completely abolished the acquisition of nicotine-induced CPP in mice. Concomitant administration of neuropeptide Y (NPY) (1 pg/mouse, icv) or [Leu(31), Pro(34)]-NPY (0.1 pg/mouse, icv), selective NPY Y1 receptor agonist potentiated the inhibitory effect of agmatine (10 mg/kg, ip) on nicotine CPP. Conversely, pretreatment with NPY Y1 receptor antagonist, BIBP3226 (0.01 ng/mouse, icv) blocked the effect of agmatine (20 mg/kg, ip) on nicotine induced CPP. In immunohistochemical study, nicotine decreased NPY-immunoreactivity in nucleus accumbens shell (AcbSh), bed nucleus of stria terminalis, lateral part (BNSTl), arcuate nucleus (ARC) and paraventricular nucleus (PVN). Conversely, administration of agmatine prior to the nicotine significantly reversed the effect of nicotine on NPY-immunoreactivity in the above brain nuclei. This data indicate that agmatine attenuate nicotine induced CPP via modulation of NPYergic neurotransmission in brain. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Ghrelin alleviates anxiety- and depression-like behaviors induced by chronic unpredictable mild stress in rodents.

    Science.gov (United States)

    Huang, Hui-Jie; Zhu, Xiao-Cang; Han, Qiu-Qin; Wang, Ya-Lin; Yue, Na; Wang, Jing; Yu, Rui; Li, Bing; Wu, Gen-Cheng; Liu, Qiong; Yu, Jin

    2017-05-30

    As a regulator of food intake, ghrelin also plays a key role in mood disorders. Previous studies reported that acute ghrelin administration defends against depressive symptoms of chronic stress. However, the effects of long-term ghrelin on rodents under chronic stress hasn't been revealed. In this study, we found chronic peripheral administration of ghrelin (5nmol/kg/day for 2 weeks, i.p.) could alleviate anxiety- and depression-like behaviors induced by chronic unpredictable mild stress (CUMS). The depression-like behaviors were assessed by the forced swimming test (FST), and anxiety-like behaviors were assessed by the open field test (OFT) and the elevated plus maze test (EPM). Meanwhile, we observed that peripheral acylated ghrelin, together with gastral and hippocampal ghrelin prepropeptide mRNA level, were significantly up-regulated in CUMS mice. Besides, the increased protein level of growth hormone secretagogue receptor (GHSR) in hippocampus were also detected. These results suggested that the endogenous ghrelin/GHSR pathway activated by CUMS plays a role in homeostasis. Further results showed that central treatment of ghrelin (10μg/rat/day for 2 weeks, i.c.v.) or GHRP-6 (the agonist of GHSR, 10μg/rat/day for 2 weeks, i.c.v.) significantly alleviated the depression-like behaviors induced by CUMS in FST and sucrose preference test (SPT). Based on these results, we concluded that central GHSR is involved in the antidepressant-like effect of exogenous ghrelin treatment, and ghrelin/GHSR may have the inherent neuromodulatory properties against depressive symptoms. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Ginsenoside Rg1 alleviates corticosterone-induced dysfunction of gap junctions in astrocytes.

    Science.gov (United States)

    Xia, Cong-Yuan; Chu, Shi-Feng; Zhang, Shuai; Gao, Yan; Ren, Qian; Lou, Yu-Xia; Luo, Piao; Tian, Man-Tong; Wang, Zhi-Qi; Du, Guo-Hua; Tomioka, Yoshihisa; Yamakuni, Tohru; Zhang, Yi; Wang, Zhen-Zhen; Chen, Nai-Hong

    2017-08-17

    Ginsenoside Rg1 (Rg1), one of the major bioactive ingredients of Panax ginseng C. A. Mey, has neuroprotective effects in animal models of depression, but the mechanism underlying these effects is still largely unknown AIM OF THE STUDY: Gap junction intercellular communication (GJIC) dysfunction is a potentially novel pathogenic mechanism for depression. Thus, we investigated that whether antidepressant-like effects of Rg1 were related to GJIC. Primary rat prefrontal cortical and hippocampal astrocytes cultures were treated with 50μM CORT for 24h to induce gap junction damage. Rg1 (0.1, 1, or 10μM) or fluoxetine (1μM) was added 1h prior to CORT treatment. A scrape loading and dye transfer assay was performed to identify the functional capacity of gap junctions. Western blot was used to detect the expression and phosphorylation of connexin43 (Cx43), the major component of gap junctions. Treatment of primary astrocytes with CORT for 24h inhibited GJIC, decreased total Cx43 expression, and increased the phosphorylation of Cx43 at serine368 in a dose-dependent manner. Pre-treatment with 1μM and 10μM Rg1 significantly improved GJIC in CORT-treated astrocytes from the prefrontal cortex and hippocampus, respectively, and this was accompanied by upregulation of Cx43 expression and downregulation of Cx43 phosphorylation. These findings provide the first evidence indicating that Rg1 can alleviate CORT-induced gap junction dysfunction, which may have clinical significance in the treatment of depression. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. Licofelone Attenuates LPS-induced Depressive-like Behavior in Mice: A Possible Role for Nitric Oxide.

    Science.gov (United States)

    Mousavi, Seyyedeh Elaheh; Saberi, Pegah; Ghasemkhani, Naeemeh; Fakhraei, Nahid; Mokhtari, Rezvan; Dehpour, Ahmad Reza

    2018-01-01

    Licofelone, a dual cyclooxygenase/5-lipoxygenase inhibitor, possesses antioxidant, antiapoptotic, neuroprotective, and anti-inflammatory properties. The aim of the present study was to investigate the effect of licofelone on lipopolysaccharide (LPS)-induced depression in a mouse model and also a possible role for nitric oxide (NO). To elucidate the role of NO on this effect of licofelone (5 and 20 mg/kg, i.p.), L-NAME, a non-specific NO synthase (NOS) inhibitor; aminoguanidine (AG), a specific inducible NOS (iNOS) inhibitor; 7-nitroindazole (7-NI) a preferential neuronal NOS inhibitor (nNOS) and; L-arginine (L-Arg), as a NO donor, were used. The animal's behaviors were evaluated employing forced swimming test (FST), tail suspension test (TST) and open field test (OFT). LPS (0.83 mg/kg, i.p.) induced depressive-like behavior increasing immobility time in FST and TST. Conversely, licofelone (20 mg/kg i.p.) reversed the depressive effect of LPS and lowered the immobility time in FST and TST. On the other hand, pretreatment with L-Arg also reversed the antidepressant-like effect of licofelone (20 mg/kg) in FST and TST. On the other hand, L-NAME (10 and 30 mg/kg), AG (50 and 100 mg/kg) and 7-NI (60 mg/kg) could potentiate licofelone (5 mg/kg) and lowered the immobility duration. NO down-regulation possibly through iNOS and nNOS inhibition may involve in the antidepressant property of licofelone. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  16. Comparison of fluoxetine and 1-methyl-L-tryptophan in treatment of depression-like illness in Bacillus Calmette-Guerin-induced inflammatory model of depression in mice.

    Science.gov (United States)

    Rana, Proteesh; Sharma, Amit K; Jain, Smita; Deshmukh, Pravin; Bhattacharya, S K; Banerjee, B D; Mediratta, Pramod K

    2016-11-01

    The inflammatory response system has been implicated in the pathophysiology of major depression. The pro-inflammatory cytokines like interferon-γ induce the enzyme indoleamine-2,3-dioxygenase (IDO) of the kynurenine pathway of tryptophan metabolism. The induction of IDO reduces the availability of tryptophan for serotonin synthesis. Furthermore, the metabolites of kynurenine pathway have neurotoxic property, which along with decreased serotonin may account for depression-like illness. The aim of this study was to compare the effects of treatment with fluoxetine and 1-methyl-L-tryptophan (1-MT) on Bacillus Calmette-Guerin (BCG)-induced inflammatory model of depression in mice. Behavioral tests included locomotor activity, forced swim test (FST) and tail suspension test (TST). Oxidative stress was assessed by examining the levels of thiobarbituric acid reactive species (TBARS) and non-protein thiols (NP-SH) in homogenized whole brain samples. Comet assays were performed to assess neurotoxicity. The results of this study demonstrate that BCG treatment resulted in an increase in duration of immobility in FST and TST as compared to the saline group. Further, it produced a significant increase in the brain TBARS levels and decrease in the brain NP-SH levels. The hippocampal tissue from BCG group had significantly more comet cells than the saline group. 1-MT and fluoxetine were able to reverse the BCG-induced depression-like behavior and the derangement in oxidative stress parameters. Fluoxetine and 1-MT also reversed the BCG-induced neurotoxicity in such mice. 1-Methyl-L-tryptophan exhibits antidepressant-like effect comparable to that of fluoxetine in treating BCG-induced depression-like behavior in mice.

  17. Beneficial effects of benzodiazepine diazepam on chronic stress-induced impairment of hippocampal structural plasticity and depression-like behavior in mice.

    Science.gov (United States)

    Zhao, Yunan; Wang, Zhongli; Dai, Jianguo; Chen, Lin; Huang, Yufang; Zhan, Zhen

    2012-03-17

    Whether benzodiazepines (BZDs) have beneficial effects on the progress of chronic stress-induced impairment of hippocampal structural plasticity and major depression is uncertain. The present study designed four preclinical experiments to determine the effects of BZDs using chronic unpredictable stress model. In Experiment 1, several time course studies on behavior and hippocampus response to stress were conducted using the forced swim and tail suspension tests (FST and TST) as well as hippocampal structural plasticity markers. Chronic stress induced depression-like behavior in the FST and TST as well as decreased hippocampal structural plasticity that returned to normal within 3 wk. In Experiment 2, mice received p.o. administration of three diazepam dosages prior to each variate stress session for 4 wk. This treatment significantly antagonized the elevation of stress-induced corticosterone levels. Only low- (0.5mg/kg) and medium-dose (1mg/kg) diazepam blocked the detrimental effects of chronic stress. In Experiment 3, after 7 wk of stress sessions, daily p.o. diazepam administration during 1 wk recovery phase dose-dependently accelerated the recovery of stressed mice. In Experiment 4, 1 wk diazepam administration to control mice enhanced significantly hippocampal structural plasticity and induced an antidepressant-like behavioral effect, whereas 4 wk diazepam administration produced opposite effects. Hence, diazepam can slow the progress of chronic stress-induced detrimental consequences by normalizing glucocorticoid hormones. Considering the adverse effect of long-term diazepam administration on hippocampal plasticity, the preventive effects of diazepam may depend on the proper dose. Short-term diazepam treatment enhances hippocampal structural plasticity and is beneficial to recovery following chronic stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Isoflurane produces antidepressant effects and induces TrkB signaling in rodents

    DEFF Research Database (Denmark)

    Antila, Hanna; Ryazantseva, Maria; Popova, Dina

    2017-01-01

    A brief burst-suppressing isoflurane anesthesia has been shown to rapidly alleviate symptoms of depression in a subset of patients, but the neurobiological basis of these observations remains obscure. We show that a single isoflurane anesthesia produces antidepressant-like behavioural effects...

  19. Can Ocimum basilicum relieve chronic unpredictable mild stress-induced depression in mice?

    Science.gov (United States)

    Ayuob, Nasra Naeim; Firgany, Alaa El-Din L; El-Mansy, Ahmed A; Ali, Soad

    2017-10-01

    Depression is one of the important world-wide health problems. This study aimed to assess the ameliorative effect of Ocimum basilicum (OB) essential oil on the behavioral, biochemical and histopathological changes resulted from exposure to chronic unpredictable mild stress (CUMS). It also aimed to investigate the underlying mechanism in an animal model of depression. Forty male Swiss albino mice were divided into four groups (n=10): control, CUMS (exposed to CUMS for 4weeks), CUMS plus fluoxetine, and CUMS plus OB. At the end of the experiment, behavioral changes, serum corticosterone level, protein and gene expressions of brain derived neurotropic factor (BDNF) and glucocorticoid receptors (GR) in the hippocampus was all assessed. Immunoexpression of surface makers of glial fibrillary acidic protein (GFAP), Ki67, Caspase-3, BDNF and GR in the hippocampus were estimated. Data were analyzed by using the statistical package for the social sciences (SPSS). OB alleviated both behavioral and biochemical changes recorded in mice after exposure to CUMS. It also reduced neuronal atrophy observed in the hippocampal region III cornu ammonis (CA3) and dentate gyrus and restored back astrocyte number. OB decreased apoptosis in both neurons and glial cells and increased neurogenesis in the dentate gyrus in a pattern comparable to that of fluoxetine. Increased BDNF and GR gene and protein expressions seems to be behind the antidepressant-like effect of OB. Ocimum basilicum ameliorates the changes induced after exposure to the chronic stress. Assessing Ocimum basilicum efficacy on human as antidepressant is recommended in further studies. Copyright © 2017. Published by Elsevier Inc.

  20. Antidepressant-like effects of nicotine and mecamylamine in the mouse forced swim and tail suspension tests: role of strain, test and sex

    DEFF Research Database (Denmark)

    Andreasen T., Jesper; Redrobe, John P

    2009-01-01

    , but not mecamylamine, increased swim distance in C57BL/6J mice. Both drugs increased swim distance in BALB/c mice. Effects in the mFST were independent of sex. In the mTST, mecamylamine decreased immobility in NMRI mice only, independent of sex. Nicotine was devoid of effects in the mTST, except in female C57BL/6J...

  1. Nicotine, but not mecamylamine, enhances antidepressant-like effects of citalopram and reboxetine in the mouse forced swim and tail suspension tests

    DEFF Research Database (Denmark)

    Andreasen T., Jesper; Redrobe, John P

    2009-01-01

    and 10mg/kg citalopram and 3 and 10mg/kg reboxetine in the mTST. No concomitant locomotor stimulation was observed at the tested dose combinations. Mecamylamine was effective on its own in some tests, but did not augment the effects of citalopram or reboxetine at the doses tested. The data show...... activity and facilitates serotonin and noradrenaline release. Thus, we hypothesise that nicotine may enhance the behavioural effects of serotonin (e.g., citalopram) and/or noradrenaline (e.g., reboxetine) reuptake inhibitors. Here, we tested if nicotine enhanced the activity of citalopram or reboxetine...... in the mouse forced swim test (mFST) and the mouse tail suspension test (mTST). The potential for mecamylamine to augment antidepressant drug action was also investigated. Sub-threshold and threshold doses of citalopram (3 and 10mg/kg) or reboxetine (3, 10 and 20mg/kg) were tested alone and in combination...

  2. Effects of nitric oxide synthesis inhibitor or fluoxetine treatment on depression-like state and cardiovascular changes induced by chronic variable stress in rats.

    Science.gov (United States)

    Almeida, Jeferson; Duarte, Josiane O; Oliveira, Leandro A; Crestani, Carlos C

    2015-01-01

    Comorbidity between mood disorders and cardiovascular disease has been described extensively. However, available antidepressants can have cardiovascular side effects. Treatment with selective inhibitors of neuronal nitric oxide synthase (nNOS) induces antidepressant effects, but whether the antidepressant-like effects of these drugs are followed by cardiovascular changes has not been previously investigated. Here, we tested in male rats exposed to chronic variable stress (CVS) the hypothesis that nNOS blockers are advantageous compared with conventional antidepressants in terms of cardiovascular side effects. We compared the effects of chronic treatment with the preferential nNOS inhibitor 7-nitroindazole (7-NI) with those evoked by the conventional antidepressant fluoxetine on alterations that are considered as markers of depression (immobility in the forced swimming test, FST, decreased body weight gain and increased plasma corticosterone concentration) and cardiovascular changes caused by CVS. Rats were exposed to a 14-day CVS protocol, while being concurrently treated daily with either 7-NI (30 mg/kg) or fluoxetine (10 mg/kg). Fluoxetine and 7-NI prevented the increase in immobility in the FST induced by CVS and reduced plasma corticosterone concentration in stressed rats. Both these treatments also prevented the CVS-evoked reduction of the depressor response to vasodilator agents and baroreflex changes. Fluoxetine and 7-NI-induced cardiovascular changes independent of stress exposure, including cardiac autonomic imbalance, increased intrinsic heart rate and vascular sympathetic modulation, a reduction of the pressor response to vasoconstrictor agents, and impairment of baroreflex activity. Altogether, these findings provide evidence that fluoxetine and 7-NI have similar effects on the depression-like state induced by CVS and on cardiovascular function.

  3. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septo-temporal axis in adulthood and middle age

    Science.gov (United States)

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-01-01

    -level modifications in middle-age were associated with modest enhancement in contextual fear memory precision, anxiety-like behavior and antidepressant-like behavioral responses. PMID:25850664

  4. Fluoxetine induces input-specific hippocampal dendritic spine remodeling along the septotemporal axis in adulthood and middle age.

    Science.gov (United States)

    McAvoy, Kathleen; Russo, Craig; Kim, Shannen; Rankin, Genelle; Sahay, Amar

    2015-11-01

    -level modifications in middle-age were associated with modest enhancement in contextual fear memory precision, anxiety-like behavior and antidepressant-like behavioral responses. © 2015 Wiley Periodicals, Inc.

  5. Induced Abortion

    Science.gov (United States)

    ... Education & Events Advocacy For Patients About ACOG Induced Abortion Home For Patients Search FAQs Induced Abortion Page ... Induced Abortion FAQ043, May 2015 PDF Format Induced Abortion Special Procedures What is an induced abortion? What ...

  6. [Exploring life-experience of the staff and volunteers assisting pediatric patients in end-of-life situations] [Article in Italian] • I vissuti dello staff e dei volontari che assistono pazienti pediatrici terminali

    Directory of Open Access Journals (Sweden)

    Rosapia Lauro Grotto

    2014-06-01

    Full Text Available The development of guidelines for palliative care in the paediatric settings is judged to be still incomplete and characterized by many controversial issues; in order to explore the life-experience of individual health care professionals, we proposed a semi-structured questionnaire with open questions on end-of-life procedures to the staff members of the Paediatric Onco-hematology Ward of the University of Padua, of the Oncology Ward and in the Home Assistance Module of the Giannetta Gaslini Hospital, Genoa, both in Italy. This paper will focus on the responses provided to the third question: “In your opinion, can inducing the suspension of the state of consciousness be counted among end-of-life procedures? If so, how and when?”. Staff members were found to face challenging interactions at at least three levels: within the professional team, with respect to the parents and with respect to the adolescent patients. Among the most complex issues raised by the participants we found the moral distress sometimes experienced by nurses with respect to the decisions assumed by doctors, as stated by a nurse: “Everything is subjective in those 24 hours  (… and you are to do or not do certain things and it makes you feel distressed”. Second, it emerged that the relationship with the parents becomes very challenging when the two are not in agreement: “The father wants to give the morphine, but the mother secretly closes the drip”. Finally, the relationship of trust with the adolescent patients is under threat when they ‘want to know’ while parents seem to be unable to tolerate this degree of painful but essential self-consciousness in their ‘child’: “He locked me in the room and asked, ‘Am I dying?’, and I wanted to die at that point…”. Our study shows that health care professionals require not just guidelines but a tailor-made training and support which integrate much deeply the therapeutic as well as the moral and

  7. Neural correlates underlying naloxone-induced amelioration of sexual behavior deterioration due to an alarm pheromone

    Directory of Open Access Journals (Sweden)

    Tatsuya eKobayashi

    2015-02-01

    Full Text Available Sexual behavior is suppressed by various types of stressors. We previously demonstrated that an alarm pheromone released by stressed male Wistar rats is a stressor to other rats, increases the number of mounts needed for ejaculation, and decreases the hit rate (described as the number of intromissions/sum of the mounts and intromissions. This deterioration in sexual behavior was ameliorated by pretreatment with the opioid receptor antagonist naloxone. However, the neural mechanism underlying this remains to be elucidated. Here, we examined Fos expression in 31 brain regions of pheromone-exposed rats and naloxone-pretreated pheromone-exposed rats 60 min after 10 intromissions. As previously reported, the alarm pheromone increased the number of mounts and decreased the hit rate. In addition, Fos expression was increases in the anterior medial division, anterior lateral division and posterior division of the bed nucleus of the stria terminalis, parvocellular part of the paraventricular nucleus of the hypothalamus, arcuate nucleus, dorsolateral and ventrolateral periaqueductal gray, and nucleus paragigantocellularis. Fos expression decreased in the magnocellular part of the paraventricular nucleus of the hypothalamus. Pretreatment with naloxone blocked the pheromone-induced changes in Fos expression in the magnocellular part of the paraventricular nucleus of the hypothalamus, ventrolateral periaqueductal gray, and nucleus paragigantocellularis. Based on these results, we hypothesize that the alarm pheromone deteriorated sexual behavior by activating the ventrolateral periaqueductal gray-nucleus paragigantocellularis cluster and suppressing the magnocellular part of the paraventricular nucleus of the hypothalamus via the opioidergic pathway.

  8. 20(S)-protopanaxadiol (PPD) alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of Egr-1, c-Fos and c-Jun in mice.

    Science.gov (United States)

    Lu, Cong; Dong, Liming; Lv, Jingwei; Wang, Yan; Fan, Bei; Wang, Fengzhong; Liu, Xinmin

    2018-01-05

    20(S)-protopanaxadiol (PPD) possesses various biological properties, including anti-inflammatory, antitumor and anti-fatigue properties. Recent studies found that PPD functioned as a neurotrophic agent to ameliorate the sensory deficit caused by glutamate-induced excitotoxicity through its antioxidant effects and exhibited strong antidepressant-like effects in vivo. The objective of the present study was first to investigate the effect of PPD in scopolamine (SCOP)-induced memory deficit in mice and the potential mechanisms involved. In this study, mice were pretreated with PPD (20 and 40 μmol/kg) and donepezil (1.6 mg/kg) intraperitoneally (i.p) for 14 days. Then, open field test was used to assess the effect of PPD on the locomotor activity and mice were daily injected with SCOP (0.75 mg/kg) to induce cognitive deficits and then subjected to behavioral tests by object location recognition (OLR) experiment and Morris water maze (MWM) task. The cholinergic system function, oxidative stress biomarkers and protein expression of Egr-1, c-Fos, and c-Jun in mouse hippocampus were examined. PPD was found to significantly improve the performance of amnesia mice in OLR and MWM tests. PPD regulated cholinergic function by inhibiting SCOP-induced elevation of acetylcholinesterase (AChE) activity, decline of choline acetyltransferase (ChAT) activity and decrease of acetylcholine (Ach) level. PPD suppressed oxidative stress by increasing activities of antioxidant enzymes such as superoxide dismutase (SOD) and lowering maleic diadehyde (MDA) level. Additionally, PPD significantly elevated the expression of Egr-1, c-Fos, and c-Jun in hippocampus at protein level. Taken together, all these results suggested that 20(S)-protopanaxadiol (PPD) may be a candidate compound for the prevention against memory loss in some neurodegenerative diseases such as Alzheimer's disease (AD). Copyright © 2017. Published by Elsevier B.V.

  9. Origin and pharmacological response of atrial tachyarrhythmias induced by activation of mediastinal nerves in canines.

    Science.gov (United States)

    Armour, J Andrew; Richer, Louis-Philippe; Pagé, Pierre; Vinet, Alain; Kus, Teresa; Vermeulen, Michel; Nadeau, Réginald; Cardinal, René

    2005-03-31

    We sought to determine the sites of origin of atrial tachyarrhythmias induced by activating mediastinal nerves, as well as the response of such arrhythmias to autonomic modulation. Under general anaesthesia, atrioventricular block was induced after thoracotomy in 19 canines. Brief trains of 5 electrical stimuli were delivered to right-sided mediastinal nerves during the atrial refractory period. Unipolar electrograms were recorded from 191 right and left atrial epicardial sites under several conditions, i.e. (i) with intact nervous systems and following (ii) acute decentralization of the intrathoracic nervous system or administration of (iii) atropine, (iv) timolol, (v) hexamethonium. Concomitant right atrial endocardial mapping was performed in 7 of these dogs. Mediastinal nerve stimulation consistently initiated bradycardia followed by atrial tachyarrhythmias. In the initial tachyarrhythmia beats, early epicardial breakthroughs were identified in the right atrial free wall (28/50 episodes) or Bachmann bundle region (22/50), which corresponded to endocardial sites of origin associated with the right atrial subsidiary pacemaker complex, i.e. the crista terminalis and dorsal locations including the right atrial aspect of the interatrial septum. Neuronally induced responses were eliminated by atropine, modified by timolol and unaffected by acute neuronal decentralization. After hexamethonium, responses to extra-pericardial but not intra-pericardial nerve stimulation were eliminated. It is concluded that concomitant activation of cholinergic and adrenergic efferent intrinsic cardiac neurons induced by right-sided efferent neuronal stimulation initiates atrial tachyarrhythmias that originate from foci anatomically related to the right atrial pacemaker complex and tissues underlying major atrial ganglionated plexuses.

  10. Saikosaponin D relieves unpredictable chronic mild stress induced depressive-like behavior in rats: involvement of HPA axis and hippocampal neurogenesis.

    Science.gov (United States)

    Li, Hong-Yan; Zhao, Ying-Hua; Zeng, Min-Jie; Fang, Fang; Li, Min; Qin, Ting-Ting; Ye, Lu-Yu; Li, Hong-Wei; Qu, Rong; Ma, Shi-Ping

    2017-11-01

    Saikosaponin D (SSD), a major bioactive component isolated from Radix Bupleuri, has been reported to exert neuroprotective properties. The present study was designed to investigate the anti-depressant-like effects and the potential mechanisms of SSD. Behavioural tests including sucrose preference test (SPT), open field test (OFT) and forced swim test (FST) were performed to study the antidepressant-like effects of SSD. In addition, we examined corticosterone and glucocorticoid receptor (GR) levels to evaluate hypothalamic-pituitary-adrenal (HPA) axis function. Furthermore, hippocampal neurogenesis was assessed by testing doublecortin (DCX) levels, and neurotrophic molecule levels were also investigated in the hippocampus of rats. We found that unpredictable chronic mild stress (UCMS) rats displayed lost body weight, decreased sucrose consumption in SPT, reduced locomotive activity in OFT, and increased immobility time in FST. Chronic treatment with SSD (0.75, 1.50 mg/kg) remarkably ameliorated the behavioral deficiency induced by UCMS procedure. SSD administration downregulated elevated serum corticosterone levels, as well as alleviated the suppression of GR expression and nuclear translocation caused by UCMS, suggesting that SSD is able to remit the dysfunction of HPA axis. In addition, Western blot and immunohistochemistry analysis showed that SSD treatment significantly increased the generation of neurons in the hippocampus of UCMS rats indicated by elevated DCX levels. Moreover, hippocampal neurotrophic molecule levels of UCMS rats such as phosphorylated cAMP response element binding protein (p-CREB) and brain-derived neurotrophic factor (BDNF) were raised after SSD treatment. Together, Our results suggest that SSD opposed UCMS-induced depressive behaviors in rats, which was mediated, partially, by the enhancement of HPA axis function and consolidation of hippocampal neurogenesis.

  11. Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice.

    Science.gov (United States)

    Kv, Athira; Madhana, Rajaram Mohanrao; Js, Indu Chandran; Lahkar, Mangala; Sinha, Swapnil; Naidu, V G M

    2018-05-15

    Major depressive disorder (MDD) is a multifactorial neuropsychiatric disorder. Chronic administration of corticosterone (CORT) to rodents is used to mimic the stress associated dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis, a well-established feature found in depressive patients. Recently, preclinical studies have demonstrated the antidepressant potential of histone deacetylase (HDAC) inhibitors. So, we examined the antidepressant potential of vorinostat (VOR), a HDAC inhibitor against CORT injections in male mice. VOR (25 mg/kg; intraperitoneal) and fluoxetine (FLX) (15 mg/kg; oral) treatments were provided to CORT administered mice. At the end of dosing schedule, neurobehavioral tests were conducted; followed by mechanistic evaluation through biochemical analysis, RTPCR and western blot in serum and hippocampus. Neurobehavioral tests revealed the development of anxiety/depressive-like behavior in CORT mice as compared to the vehicle control. Depressive-mice showed concomitant HPA axis dysregulation as observed from the significant increase in serum CORT and ACTH. Chronic CORT administration was found to significantly increase hippocampal malondialdehyde (MDA) and iNOS levels while lowering glutathione (GSH) content, as compared to vehicle control. VOR treatment, in a similar manner to the classical antidepressant FLX, significantly ameliorated anxiety/depressive-like behavior along with HPA axis alterations induced by CORT. The antidepressant-like ability of drug treatments against chronic CORT induced stress model, as revealed in our study, may be due to their potential to mitigate inflammatory damage and oxidative stress via modulation of hippocampal NF-κB p65, COX-2, HDAC2 and phosphorylated JNK levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Pro-arrhythmogenic effects of atrial fibrillation-induced electrical remodelling: insights from the three-dimensional virtual human atria.

    Science.gov (United States)

    Colman, Michael A; Aslanidi, Oleg V; Kharche, Sanjay; Boyett, Mark R; Garratt, Clifford; Hancox, Jules C; Zhang, Henggui

    2013-09-01

    Chronic atrial fibrillation (AF) is associated with structural and electrical remodelling in the atria, which are associated with a high recurrence of AF. Through biophysically detailed computer modelling, this study investigated mechanisms by which AF-induced electrical remodelling promotes and perpetuates AF. A family of Courtemanche-Ramirez-Nattel variant models of human atrial cell action potentials (APs), taking into account of intrinsic atrial electrophysiological properties, was modified to incorporate various experimental data sets on AF-induced changes of major ionic channel currents (ICaL, IKur, Ito, IK1, IKs, INaCa) and on intracellular Ca(2+) handling. The single cell models for control and AF-remodelled conditions were incorporated into multicellular three-dimensional (3D) atrial tissue models. Effects of the AF-induced electrical remodelling were quantified as the changes of AP profile, AP duration (APD) and its dispersion across the atria, and the vulnerability of atrial tissue to the initiation of re-entry. The dynamic behaviour of re-entrant excitation waves in the 3D models was characterised. In our simulations, AF-induced electrical remodelling abbreviated atrial APD non-uniformly across the atria; this resulted in relatively short APDs co-existing with marked regional differences in the APD at junctions of the crista terminalis/pectinate muscle, pulmonary veins/left atrium. As a result, the measured tissue vulnerability to re-entry initiation at these tissue junctions was increased. The AF-induced electrical remodelling also stabilized and accelerated re-entrant excitation waves, leading to rapid and sustained re-entry. Under the AF-remodelled condition, re-entrant scroll waves in the 3D model degenerated into persistent and erratic wavelets, leading to fibrillation. In conclusion, realistic 3D atrial tissue models indicate that AF-induced electrical remodelling produces regionally heterogeneous and shortened APD; these respectively facilitate

  13. Increasing adult hippocampal neurogenesis in mice after exposure to unpredictable chronic mild stress may counteract some of the effects of stress.

    Science.gov (United States)

    Culig, Luka; Surget, Alexandre; Bourdey, Marlene; Khemissi, Wahid; Le Guisquet, Anne-Marie; Vogel, Elise; Sahay, Amar; Hen, René; Belzung, Catherine

    2017-11-01

    Major depression is hypothesized to be associated with dysregulations of the hypothalamic-pituitary-adrenal (HPA) axis and impairments in adult hippocampal neurogenesis. Adult-born hippocampal neurons are required for several effects of antidepressants and increasing the rate of adult hippocampal neurogenesis (AHN) before exposure to chronic corticosterone is sufficient to protect against its harmful effects on behavior. However, it is an open question if increasing AHN after the onset of chronic stress exposure would be able to rescue behavioral deficits and which mechanisms might be involved in recovery. We investigated this question by using a 10-week unpredictable chronic mild stress (UCMS) model on a transgenic mouse line (iBax mice), in which the pro-apoptotic gene Bax can be inducibly ablated in neural stem cells following Tamoxifen injection, therefore enhancing the survival of newborn neurons in the adult brain. We did not observe any effect of our treatment in non-stress conditions, but we did find that increasing AHN after 2 weeks of UCMS is sufficient to counteract the effects of UCMS on certain behaviors (splash test and changes in coat state) and endocrine levels and thus to display some antidepressant-like effects. We observed that increasing AHN lowered the elevated basal corticosterone levels in mice exposed to UCMS. This was accompanied by a tamoxifen-induced reversal of the lack of stress-induced decrease in neuronal activation in the anteromedial division of the bed nucleus of the stria terminalis (BSTMA) after intrahippocampal dexamethasone infusion, pointing to a possible mechanism through which adult-born neurons might have exerted their effects. Our results contribute to the neurogenesis hypothesis of depression by suggesting that increasing AHN may be beneficial not just before, but also after exposure to stress by counteracting several of its effects, in part through regulating the HPA axis. Copyright © 2017 Elsevier Ltd. All rights

  14. Effects of Gladiolus dalenii on the Stress-Induced Behavioral, Neurochemical, and Reproductive Changes in Rats

    Directory of Open Access Journals (Sweden)

    David Fotsing

    2017-09-01

    Full Text Available Gladiolus dalenii is a plant commonly used in many regions of Cameroon as a cure for various diseases like headaches, epilepsy, schizophrenia, and mood disorders. Recent studies have revealed that the aqueous extract of G. dalenii (AEGD exhibited antidepressant-like properties in rats. Therefore, we hypothesized that the AEGD could protect from the stress-induced behavioral, neurochemical, and reproductive changes in rats. The objective of the present study was to elucidate the effect of the AEGD on behavioral, neurochemical, and reproductive characteristics, using female rats subjected to chronic immobilization stress. The chronic immobilization stress (3 h per day for 28 days was applied to induce female reproductive and behavioral impairments in rats. The immobilization stress was provoked in rats by putting them separately inside cylindrical restrainers with ventilated doors at ambient temperature. The plant extract was given to rats orally everyday during 28 days, 5 min before induction of stress. On a daily basis, a vaginal smear was made to assess the duration of the different phases of the estrous cycle and at the end of the 28 days of chronic immobilization stress, the rat’s behavior was assessed in the elevated plus maze. They were sacrificed by cervical disruption. The organs were weighed, the ovary histology done, and the biochemical parameters assessed. The findings of this research revealed that G. dalenii increased the entries and the time of open arm exploration in the elevated plus maze. Evaluation of the biochemical parameters levels indicated that there was a significant reduction in the corticosterone, progesterone, and prolactin levels in the G. dalenii aqueous extract treated rats compared to stressed rats whereas the levels of serotonin, triglycerides, adrenaline, cholesterol, glucose estradiol, follicle stimulating hormone and luteinizing hormone were significantly increased in the stressed rats treated with, G. dalenii

  15. (3H)-dihydrotestosterone in catecholamine neurons of rat brain stem: combined localization by autoradiography and formaldehyde-induced fluorescence

    International Nuclear Information System (INIS)

    Heritage, A.S.; Stumpf, W.E.; Sar, M.; Grant, L.D.

    1981-01-01

    A combined formaldehyde-induced fluorescence (FIF)-autoradiography procedure was used to determine how and where the androgen, dihydrotestosterone (DHT), is associated with catecholamine systems in the rat brain. With this dual localization method, ( 3 H)-DHT target sites can be visualized in relation to catecholamine perikarya and terminals. In the hindbrain, catecholamine neurons adjacent to the fourth ventricle (group A4), the nucleus (n.) olivaris superior (group A5), the n. parabranchialis medialis (group A7), and in the locus coeruleus (group A6) and subcoeruleal regions, as well as in the substantia grisea centralis, concentrate ( 3 H)-DHT in their nuclei. ( 3 H)-DHT target neurons appear to be innervated by numerous catecholamine terminals in the following hindbrain regions: n. motorius dorsalis nervi vagi, n. tractus solitarii, n. commissuralis, n. raphe pallidus, n. olivaris inferior, the ventrolateral portion of the substantia grisea centralis, n. cuneiformis, and the ventrolateral reticular formation in the caudal mesencephalon. In the forebrain, ( 3 H)-DHT concentrates in nuclei of catecholamine neurons located in the n. arcuatus and n. periventricularis (group A12). In addition, ( 3 H)-DHT target neurons appear to be innervated by numerous catecholamine terminals in the following forebrain regions: n. periventricularis rotundocellularis, n. paraventricularis, n. dorsomedialis, n. periventricularis, area retrochiasmatica, n. interstititalis striae terminalis (ventral portion), and n. amygdaloideus centralis. The disclosure of a morphologic association between ( 3 H)-DHT target sites and certain brain catecholamine systems suggests a close functional interdependence between androgens and catecholamines

  16. Agmatine attenuates chronic unpredictable mild stress-induced anxiety, depression-like behaviours and cognitive impairment by modulating nitrergic signalling pathway.

    Science.gov (United States)

    Gawali, Nitin B; Bulani, Vipin D; Gursahani, Malvika S; Deshpande, Padmini S; Kothavade, Pankaj S; Juvekar, Archana R

    2017-05-15

    Agmatine, a neurotransmitter/neuromodulator, has shown to exert numerous effects on the CNS. Chronic stress is a risk factor for development of depression, anxiety and deterioration of cognitive performance. Compelling evidences indicate an involvement of nitric oxide (NO) pathway in these disorders. Hence, investigation of the beneficial effects of agmatine on chronic unpredictable mild stress (CUMS)-induced depression, anxiety and cognitive performance with the involvement of nitrergic pathway was undertaken. Mice were subjected to a battery of stressors for 28days. Agmatine (20 and 40mg/kg, i.p.) alone and in combination with NO modulators like L-NAME (15mg/kg, i.p.) and l-arginine (400mg/kg i.p.) were administered daily. The results showed that 4-weeks CUMS produces significant depression and anxiety-like behaviour. Stressed mice have also shown a significant high serum corticosterone (CORT) and low BDNF level. Chronic treatment with agmatine produced significant antidepressant-like behaviour in forced swim test (FST) and sucrose preference test, whereas, anxiolytic-like behaviour in elevated plus maze (EPM) and open field test (OFT) with improved cognitive impairment in Morris water maze (MWM). Furthermore, agmatine administration reduced the levels of acetylcholinesterase and oxidative stress markers. In addition, agmatine treatment significantly increased the BDNF level and inhibited serum CORT level in stressed mice. Treatment with L-NAME (15mg/kg) potentiated the effect of agmatine whereas l-arginine abolished the anxiolytic, antidepressant and neuroprotective effects of agmatine. Agmatine showed marked effect on depression and anxiety-like behaviour in mice through nitrergic pathway, which may be related to modulation of oxidative-nitrergic stress, CORT and BDNF levels. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Resolvin D1 and D2 Reverse Lipopolysaccharide-Induced Depression-Like Behaviors Through the mTORC1 Signaling Pathway.

    Science.gov (United States)

    Deyama, Satoshi; Ishikawa, Yuka; Yoshikawa, Kotomi; Shimoda, Kento; Ide, Soichiro; Satoh, Masamichi; Minami, Masabumi

    2017-07-01

    Resolvin D1 and D2 are bioactive lipid mediators that are generated from docosahexaenoic acid. Although recent preclinical studies suggest that these compounds have antidepressant effects, their mechanisms of action remain unclear. We investigated mechanisms underlying the antidepressant effects of resolvin D1 and resolvin D2 in lipopolysaccharide (0.8 mg/kg, i.p.)-induced depression model mice using a tail suspension test. I.c.v. infusion of resolvin D1 (10 ng) and resolvin D2 (10 ng) produced antidepressant effects; these effects were significantly blocked by a resolvin D1 receptor antagonist WRW4 (10 µg, i.c.v.) and a resolvin D2 receptor antagonist O-1918 (10 µg, i.c.v.), respectively. The mammalian target of rapamycin complex 1 inhibitor rapamycin (10 mg/kg, i.p.) and a mitogen-activated protein kinase kinase inhibitor U0126 (5 µg, i.c.v.) significantly blocked the antidepressant effects of resolvin D1 and resolvin D2. An AMPA receptor antagonist NBQX (10 mg/kg, i.p.) and a phosphoinositide 3-kinase inhibitor LY294002 (3 µg, i.c.v.) blocked the antidepressant effects of resolvin D1 significantly, but not of resolvin D2. Bilateral infusions of resolvin D1 (0.3 ng/side) or resolvin D2 (0.3 ng/side) into the medial prefrontal cortex or dentate gyrus of the hippocampus produced antidepressant effects. These findings demonstrate that resolvin D1 and resolvin D2 produce antidepressant effects via the mammalian target of rapamycin complex 1 signaling pathway, and that the medial prefrontal cortex and dentate gyrus are important brain regions for these antidepressant effects. These compounds and their receptors may be promising targets for the development of novel rapid-acting antidepressants, like ketamine and scopolamine. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  18. Differential involvement of 5-HT(1A) and 5-HT(1B/1D) receptors in human interferon-alpha-induced immobility in the mouse forced swimming test.

    Science.gov (United States)

    Zhang, Hongmei; Wang, Wei; Jiang, Zhenzhou; Shang, Jing; Zhang, Luyong

    2010-01-01

    Although Interferon-alpha (IFN-alpha, CAS 9008-11-1) is a powerful drug in treating several viral infections and certain tumors, a considerable amount of neuropsychiatric side-effects such as depression and anxiety are an unavoidable consequence. Combination with the selective serotonin (5-HT) reuptake inhibitor (SSRI) fluoxetine (CAS 56296-78-7) significantly improved the situation. However, the potential 5-HT(1A) receptor- and 5-HT(1B) receptor-signals involved in the antidepressant effects are still unclear. The effects of 5-HT(1A) receptor- and 5-HT(1B) receptor signals were analyzed by using the mouse forced swimming test (FST), a predictive test of antidepressant-like action. The present results indicated that (1) fluoxetine (administrated intragastrically, 30 mg/kg; not subactive dose: 15 mg/kg) significantly reduced IFN-alpha-induced increase of the immobility time in the forced swimming test; (2) 5-HT(1A) receptor- and 5-HT(1B) receptor ligands alone or in combination had no effects on IFN-alpha-induced increase of the immobility time in the FST; (3) surprisingly, WAY 100635 (5-HT(1A) receptor antagonist, 634908-75-1) and 8-OH-DPAT(5-HT(1A) receptor agonist, CAS 78950-78-4) markedly enhanced the antidepressant effect of fluoxetine at the subactive dose (15 mg/kg, i. g.) on the IFN-alpha-treated mice in the FST. Further investigations showed that fluoxetine combined with WAY 100635 and 8-OH-DPAT failed to produce antidepressant effects in the FST. (4) Co-application of CGS 12066A (5-HT(1B) receptor agonist, CAS 109028-09-3) or GR 127935 (5-HT(1B/1D) receptor antagonist, CAS 148642-42-6) with fluoxetine had no synergistic effects on the IFN-alpha-induced increase of immobility time in FST. (5) Interestingly, co-administration of GR 127935, WAY 100635 and fluoxetine significantly reduced the IFN-alpha-induced increase in immobility time of FST, being more effective than co-administration of WAY 100635 and fluoxetine. All results suggest that (1) compared to

  19. Agmatine ameliorates lipopolysaccharide induced depressive-like behaviour in mice by targeting the underlying inflammatory and oxido-nitrosative mediators.

    Science.gov (United States)

    Gawali, Nitin B; Bulani, Vipin D; Chowdhury, Amrita A; Deshpande, Padmini S; Nagmoti, Dnyaneshwar M; Juvekar, Archana R

    2016-10-01

    Experimental and clinical evidence indicates that pro-inflammatory cytokines, oxidative stress and brain-derived neurotrophic factor (BDNF) signalling mechanisms play a role in the pathophysiology of depression. Agmatine is a neurotransmitter and/or neuromodulator that has emerged as a potential agent to manage diverse central nervous system disorders. Agmatine has been shown to exert antidepressant-like effect. The present study investigated ability of agmatine to abolish the depressive-like behaviour induced by the administration of the lipopolysaccharide (LPS) in mice. Agmatine (20 and 40mg/kg) was administered daily for 7days, then the mice were challenged with saline or LPS (0.83mg/kg; i.p.) on the 7th day. After 24h of LPS administration we tested mice for depressive-like behaviour. LPS treated animals presented an increase in immobility time in the forced-swim test (FST), tail suspension test (TST) which was reversed by agmatine pre-treatment (20 and 40mg/kg). Oxidative/nitrosative stress evoked by LPS was ameliorated by both doses of agmatine in hippocampus (HC) and prefrontal cortex (PFC). Administration of LPS caused an increase in interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), whereas BDNF was down regulated in the HC. Agmatine pre-treatment at 40mg/kg ameliorated LPS-induced neuroinflammation by attenuating brain IL-1β and TNF-α level. In addition, agmatine pre-treatment also up-regulated the BDNF level in the HC. The present study shows that pre-treatment of agmatine is able to abolish the behavioural responses in the FST and TST elicited by the LPS-induced model of depression that may depend on the inhibition of pro-inflammatory mediators, reduction of oxidative stress as well as activation neuroplasticity-related signalling in mice, suggesting that agmatine may constitute an monotherapy/adjuvant for the management of depression associated with inflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Attenuation of ethanol abstinence-induced anxiety- and depressive-like behavior by the phosphodiesterase-4 inhibitor rolipram in rodents.

    Science.gov (United States)

    Gong, Mei-Fang; Wen, Rui-Ting; Xu, Ying; Pan, Jian-Chun; Fei, Ning; Zhou, Yan-Meng; Xu, Jiang-Ping; Liang, Jian-Hui; Zhang, Han-Ting

    2017-10-01

    Withdrawal symptoms stand as a core feature of alcohol dependence. Our previous results have shown that inhibition of phosphodiesterase-4 (PDE4) decreased ethanol seeking and drinking in alcohol-preferring rodents. However, little is known about whether PDE4 is involved in ethanol abstinence-related behavior. The objective of this study was to characterize the role of PDE4 in the development of anxiety- and depressive-like behavior induced by abstinence from ethanol exposure in different animal models. Using three rodent models of ethanol abstinence, we examined the effects of rolipram, a prototypical, selective PDE4 inhibitor, on (1) anxiety-like behavior induced by repeated ethanol abstinence in the elevated plus maze test in fawn-hooded (FH/Wjd) rats, (2) anxiety-like behavior in the open-field test and light-dark transition test following acute ethanol abstinence in C57BL/6J mice, and (3) anxiety- and depressive-like behavior induced by protracted ethanol abstinence in the elevated plus maze, forced-swim, and tail-suspension tests in C57BL/6J mice. Pretreatment with rolipram (0.1 or 0.2 mg/kg) significantly increased entries and time spent in the open arms of the elevated plus maze test in rats with repeated ethanol abstinence. Similarly, in mice with acute ethanol abstinence, administration of rolipram (0.25 or 0.5 mg/kg) dose-dependently increased the crossings in the central zone of the open-field test and duration and transitions on the light side of the light-dark transition test, suggesting anxiolytic-like effects of rolipram. Consistent with these, chronic treatment with rolipram (0.1, 0.3, or 1.0 mg/kg) increased entries in the open arms of the elevated plus maze test; it also reduced the increased duration of immobility in both the forced-swim and tail-suspension tests in mice after protracted ethanol abstinence, suggesting antidepressant-like effects of rolipram. These results provide the first demonstration for that PDE4 plays a role in modulating

  1. Induced Seismicity

    Science.gov (United States)

    Keranen, Katie M.; Weingarten, Matthew

    2018-05-01

    The ability of fluid-generated subsurface stress changes to trigger earthquakes has long been recognized. However, the dramatic rise in the rate of human-induced earthquakes in the past decade has created abundant opportunities to study induced earthquakes and triggering processes. This review briefly summarizes early studies but focuses on results from induced earthquakes during the past 10 years related to fluid injection in petroleum fields. Study of these earthquakes has resulted in insights into physical processes and has identified knowledge gaps and future research directions. Induced earthquakes are challenging to identify using seismological methods, and faults and reefs strongly modulate spatial and temporal patterns of induced seismicity. However, the similarity of induced and natural seismicity provides an effective tool for studying earthquake processes. With continuing development of energy resources, increased interest in carbon sequestration, and construction of large dams, induced seismicity will continue to pose a hazard in coming years.

  2. Lipopolysaccharide-induced neuronal activation in the paraventricular and dorsomedial hypothalamus depends on ambient temperature.

    Directory of Open Access Journals (Sweden)

    Samuel P Wanner

    Full Text Available Systemic inflammatory response syndrome is associated with either fever or hypothermia, but the mechanisms responsible for switching from one to the other are unknown. In experimental animals, systemic inflammation is often induced by bacterial lipopolysaccharide (LPS. To identify the diencephalic and brainstem structures involved in the fever-hypothermia switch, we studied the expression of c-Fos protein, a marker of neuronal activation, in rats treated with the same high dose of LPS (0.5 mg/kg, intravenously either in a thermoneutral (30 °C or cool (24 °C environment. At 30 °C, LPS caused fever; at 24 °C, the same dose caused profound hypothermia. Both fever and hypothermia were associated with the induction of c-Fos in many brain areas, including several structures of the anterior preoptic, paraventricular, lateral, and dorsal hypothalamus, the bed nucleus of the stria terminalis, the posterior pretectal nucleus, ventrolateral periaqueductal gray, lateral parabrachial nucleus, area postrema, and nucleus of the solitary tract. Every brain area studied showed a comparable response to LPS at the two different ambient temperatures used, with the exception of two areas: the dorsomedial hypothalamic nucleus (DMH, which we studied together with the adjacent dorsal hypothalamic area (DA, and the paraventricular hypothalamic nucleus (PVH. Both structures had much stronger c-Fos expression during LPS hypothermia than during fever. We propose that PVH and DMH/DA neurons are involved in a circuit, which - depending on the ambient temperature - determines whether the thermoregulatory response to bacterial LPS will be fever or hypothermia.

  3. Distinct neuronal activation patterns are associated with PCP-induced social withdrawal and its reversal by the endocannabinoid-enhancing drug URB597.

    Science.gov (United States)

    Matricon, Julien; Seillier, Alexandre; Giuffrida, Andrea

    2016-09-01

    The fatty acid amide hydrolase inhibitor, URB597, an endocannabinoid enhancing drug, reverses social withdrawal in the sub-chronic PCP rat model of schizophrenia, but reduces social interaction (SI) in controls. To identify the anatomical substrates associated with PCP-induced social withdrawal and the contrasting effects of URB597 on SI in PCP- versus saline-treated rats, we analyzed SI-induced c-Fos expression in 28 brain areas relevant to schizophrenia and/or social behavior following vehicle or URB597 administration. In saline-treated rats, SI was accompanied by changes in c-Fos expression in the infralimbic and orbitofrontal cortices, dorsomedial caudate putamen, ventrolateral nucleus of the septum, dorsolateral periaqueductal gray (dlPAG) and central amygdala. Except for the dlPAG, these changes were not observed in PCP-treated rats or in saline-treated rats receiving URB597. In the dorsomedial part of the bed nucleus of the stria terminalis (dmBNST), SI-induced c-Fos expression was observed only in PCP-treated rats. Interestingly, URB597 in PCP-treated rats restored a similar c-Fos expression pattern as observed in saline-treated rats: activation of the orbitofrontal cortex, inhibition of the central amygdala and suppression of activation of the dmBNST. These data suggest that orbitofrontal cortex, central amygdala and dmBNST play a critical role in the reversal of PCP-induced social withdrawal by URB597. Copyright © 2016 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  4. Control of stress-induced depressive disorders by So-ochim-tang-gamibang, a Korean herbal medicine.

    Science.gov (United States)

    Choi, Jung Eun; Park, Dae-Myung; Chun, Eunho; Choi, Jeong June; Seo, Ji Hye; Kim, Seunghyung; Son, Jaemin; Do, Moonho; Kim, Sun Yeou; Park, Yang-Chun; Jung, In Chul; Jin, Mirim

    2017-01-20

    So-ochim-tang-gamibang (SOCG) is a Korean herbal medicine formula that has been applied to treat depressive moods and depression associated somatoform pain. This decoction consists of Cyperus rotundus L. (Cyperi Rhizoma), Lindera aggregata (Sims) Kosterm. (Linderae Radix), Aquilaria agallochum (Lour.) Roxb. ex Finl. (Aquilariae Resinatum Lignum), Glycyrrhiza uralensis Fisch. (Glycyrrhizae Radix) Platycodon grandiflorum (Jacq.) A. DC. (Platycodi Radix), and Citrus aurantium L. (Aurantii Fructus). The aim of this study is to assess antidepressant-like effects of SOCG and to investigate its possible cellular and molecular mechanisms. Using chronic restraint stress animal model, effects of SOCG on depressive-like behaviors, corticosterone, and hippocampal expressions of a neurotrophic factor and an apoptotic marker, were investigated. Mice were exposed to restraint stress 6h per day over a period of two weeks, and orally administrated either SOCG (30, 100, or 300mg/kg/day). The depressive-like behaviors were analyzed by forced swimming test and open field test. The serum levels of corticosterone were measured by enzyme-linked immunosorbent assay. Expressions of caspase-3 and BDNF in the hippocampus were analyzed by immunofluorescence. Further, effects of SOCG were examined in corticosterone-treated PC12 cells. Cellular toxicity was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assays. Real-time PCR was applied to investigate the cellular expression levels of Bax, Bcl-2, and BDNF. The levels of caspase-3 and BDNF were examined by Western blotting. Administration of SOCG not only reduced immobility time of restraint-stressed mice in a dose-dependent manner, but also significantly increased the distance mice moved and the number of crossings in the open field test. Further, SOCG significantly reduced the serum level of corticosterone and expression of caspase-3, while increased expression of BDNF in vivo. SOCG

  5. Vasopressin infusion into the lateral septum of adult male rats rescues progesterone-induced impairment in social recognition.

    Science.gov (United States)

    Bychowski, M E; Mena, J D; Auger, C J

    2013-08-29

    It is well established that social recognition memory is mediated, in part, by arginine vasopressin (AVP). AVP cells within the bed nucleus of the stria terminalis (BST) and medial amygdala (MeA) send AVP-ergic projections to the lateral septum (LS). We have demonstrated that progesterone treatment decreases AVP immunoreactivity within the BST, the MeA and the LS, and that progesterone treatment impairs social recognition. These data suggested that progesterone may impair social recognition memory by decreasing AVP. In the present experiment, we hypothesized that infusions of AVP into the LS would rescue the progesterone-induced impairment in social recognition within adult male rats. One week after adult male rats underwent cannula surgery, they were given systemic injections of either a physiological dose of progesterone or oil control for 3 days. Four hours after the last injection, we tested social recognition memory using the social discrimination paradigm, a two-trial test that is based on the natural propensity for rats to be highly motivated to investigate novel conspecifics. Immediately after the first exposure to a juvenile, each animal received bilateral infusions of either AVP or artificial cerebrospinal fluid into the LS. Our results show that, as expected, control animals exhibited normal social discrimination. In corroboration with our previous results, animals given progesterone have impaired social discrimination. Interestingly, animals treated with progesterone and AVP exhibited normal social discrimination, suggesting that AVP treatment rescued the impairment in social recognition caused by progesterone. These data also further support a role for progesterone in modulating vasopressin-dependent behavior within the male brain. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Vasopressin infusion into the lateral septum of adult male rats rescues progesterone induced impairment in social recognition

    Science.gov (United States)

    Bychowski, Meaghan E.; Mena, Jesus D.; Auger, Catherine J.

    2013-01-01

    It is well established that social recognition memory is mediated, in part, by arginine vasopressin (AVP). AVP cells within the bed nucleus of the stria terminalis (BST) and medial amygdala (MeA) send AVP-ergic projections to the lateral septum (LS). We have demonstrated that progesterone treatment decreases AVP immunoreactivity within the BST, the MeA and the LS, and that progesterone treatment impairs social recognition. These data suggested that progesterone may impair social recognition memory by decreasing AVP. In the present experiment, we hypothesized that infusions of AVP into the LS would rescue the progesterone induced impairment in social recognition within adult male rats. One week after adult male rats underwent cannula surgery, they were given systemic injections of either a physiological dose of progesterone or oil control for three days. Four hours after the last injection, we tested social recognition memory using the social discrimination paradigm, a two-trial test that is based on the natural propensity for rats to be highly motivated to investigate novel conspecifics. Immediately after the first exposure to a juvenile, each animal received bilateral infusions of either AVP or artificial CSF (aCSF) into the LS. Our results show that, as expected, control animals exhibited normal social discrimination. In corroboration with our previous results, animals given progesterone have impaired social discrimination. Interestingly, animals treated with progesterone and AVP exhibited normal social discrimination, suggesting that AVP treatment rescued the impairment in social recognition caused by progesterone. These data also further support a role for progesterone in modulating vasopressin dependent behavior within the male brain. PMID:23639881

  7. Changes in central sodium and not osmolarity or lactate induce panic-like responses in a model of panic disorder.

    Science.gov (United States)

    Molosh, Andre I; Johnson, Philip L; Fitz, Stephanie D; Dimicco, Joseph A; Herman, James P; Shekhar, Anantha

    2010-05-01

    Panic disorder is a severe anxiety disorder characterized by recurrent panic attacks that can be consistently provoked with intravenous (i.v.) infusions of hypertonic (0.5 M) sodium lactate (NaLac), yet the mechanism/CNS site by which this stimulus triggers panic attacks is unclear. Chronic inhibition of GABAergic synthesis in the dorsomedial hypothalamus/perifornical region (DMH/PeF) of rats induces a vulnerability to panic-like responses after i.v. infusion of 0.5 M NaLac, providing an animal model of panic disorder. Using this panic model, we previously showed that inhibiting the anterior third ventricle region (A3Vr; containing the organum vasculosum lamina terminalis, the median preoptic nucleus, and anteroventral periventricular nucleus) attenuates cardiorespiratory and behavioral responses elicited by i.v. infusions of NaLac. In this study, we show that i.v. infusions of 0.5 M NaLac or sodium chloride, but not iso-osmolar D-mannitol, increased 'anxiety' (decreased social interaction) behaviors, heart rate, and blood pressure responses. Using whole-cell patch-clamp preparations, we also show that bath applications of NaLac (positive control), but not lactic acid (lactate stimulus) or D-mannitol (osmolar stimulus), increases the firing rates of neurons in the A3Vr, which are retrogradely labeled from the DMH/PeF and which are most likely glutamatergic based on a separate study using retrograde tracing from the DMH/PeF in combination with in situ hybridization for vesicular glutamate transporter 2. These data show that hypertonic sodium, but not hyper-osmolarity or changes in lactate, is the key stimulus that provokes panic attacks in panic disorder, and is consistent with human studies.

  8. Chronic stress induces sex-specific alterations in methylation and expression of corticotropin-releasing factor gene in the rat.

    Directory of Open Access Journals (Sweden)

    Linda Sterrenburg

    Full Text Available BACKGROUND: Although the higher prevalence of depression in women than in men is well known, the neuronal basis of this sex difference is largely elusive. METHODS: Male and female rats were exposed to chronic variable mild stress (CVMS after which immediate early gene products, corticotropin-releasing factor (CRF mRNA and peptide, various epigenetic-associated enzymes and DNA methylation of the Crf gene were determined in the hypothalamic paraventricular nucleus (PVN, oval (BSTov and fusiform (BSTfu parts of the bed nucleus of the stria terminalis, and central amygdala (CeA. RESULTS: CVMS induced site-specific changes in Crf gene methylation in all brain centers studied in female rats and in the male BST and CeA, whereas the histone acetyltransferase, CREB-binding protein was increased in the female BST and the histone-deacetylase-5 decreased in the male CeA. These changes were accompanied by an increased amount of c-Fos in the PVN, BSTfu and CeA in males, and of FosB in the PVN of both sexes and in the male BSTov and BSTfu. In the PVN, CVMS increased CRF mRNA in males and CRF peptide decreased in females. CONCLUSIONS: The data confirm our hypothesis that chronic stress affects gene expression and CRF transcriptional, translational and secretory activities in the PVN, BSTov, BSTfu and CeA, in a brain center-specific and sex-specific manner. Brain region-specific and sex-specific changes in epigenetic activity and neuronal activation may play, too, an important role in the sex specificity of the stress response and the susceptibility to depression.

  9. Traxoprodil, a selective antagonist of the NR2B subunit of the NMDA receptor, potentiates the antidepressant-like effects of certain antidepressant drugs in the forced swim test in mice.

    Science.gov (United States)

    Poleszak, Ewa; Stasiuk, Weronika; Szopa, Aleksandra; Wyska, Elżbieta; Serefko, Anna; Oniszczuk, Anna; Wośko, Sylwia; Świąder, Katarzyna; Wlaź, Piotr

    2016-08-01

    One of the newest substances, whose antidepressant activity was shown is traxoprodil, which is a selective antagonist of the NR2B subunit of the NMDA receptor. The main goal of the present study was to evaluate the effect of traxoprodil on animals' behavior using the forced swim test (FST), as well as the effect of traxoprodil (10 mg/kg) on the activity of antidepressants, such as imipramine (15 mg/kg), fluoxetine (5 mg/kg), escitalopram (2 mg/kg) and reboxetine (2.5 mg/kg). Serotonergic lesion and experiment using the selective agonists of serotonin receptors 5-HT1A and 5-HT2 was conducted to evaluate the role of the serotonergic system in the antidepressant action of traxoprodil. Brain concentrations of tested agents were determined using HPLC. The results showed that traxoprodil at a dose of 20 and 40 mg/kg exhibited antidepressant activity in the FST and it was not related to changes in animals' locomotor activity. Co-administration of traxoprodil with imipramine, fluoxetine or escitalopram, each in subtherapeutic doses, significantly affected the animals' behavior in the FST and, what is important, these changes were not due to the severity of locomotor activity. The observed effect of traxoprodil is only partially associated with serotonergic system and is independent of the effect on the 5-HT1A and 5-HT2 serotonin receptors. The results of an attempt to assess the nature of the interaction between traxoprodil and the tested drugs show that in the case of joint administration of traxoprodil and fluoxetine, imipramine or escitalopram, there were interactions in the pharmacokinetic phase.

  10. Inducing autophagy

    DEFF Research Database (Denmark)

    Harder, Lea M; Bunkenborg, Jakob; Andersen, Jens S.

    2014-01-01

    catabolism, which has recently been found to induce autophagy in an MTOR independent way and support cancer cell survival. In this study, quantitative phosphoproteomics was applied to investigate the initial signaling events linking ammonia to the induction of autophagy. The MTOR inhibitor rapamycin was used...... as a reference treatment to emphasize the differences between an MTOR-dependent and -independent autophagy-induction. By this means 5901 phosphosites were identified of which 626 were treatment-specific regulated and 175 were coregulated. Investigation of the ammonia-specific regulated sites supported that MTOR...

  11. Patterns of Brain Activation and Meal Reduction Induced by Abdominal Surgery in Mice and Modulation by Rikkunshito.

    Directory of Open Access Journals (Sweden)

    Lixin Wang

    Full Text Available Abdominal surgery inhibits food intake and induces c-Fos expression in the hypothalamic and medullary nuclei in rats. Rikkunshito (RKT, a Kampo medicine improves anorexia. We assessed the alterations in meal microstructure and c-Fos expression in brain nuclei induced by abdominal surgery and the modulation by RKT in mice. RKT or vehicle was gavaged daily for 1 week. On day 8 mice had no access to food for 6-7 h and were treated twice with RKT or vehicle. Abdominal surgery (laparotomy-cecum palpation was performed 1-2 h before the dark phase. The food intake and meal structures were monitored using an automated monitoring system for mice. Brain sections were processed for c-Fos immunoreactivity (ir 2-h after abdominal surgery. Abdominal surgery significantly reduced bouts, meal frequency, size and duration, and time spent on meals, and increased inter-meal interval and satiety ratio resulting in 92-86% suppression of food intake at 2-24 h post-surgery compared with control group (no surgery. RKT significantly increased bouts, meal duration and the cumulative 12-h food intake by 11%. Abdominal surgery increased c-Fos in the prelimbic, cingulate and insular cortexes, and autonomic nuclei, such as the bed nucleus of the stria terminalis, central amygdala, hypothalamic supraoptic (SON, paraventricular and arcuate nuclei, Edinger-Westphal nucleus (E-W, lateral periaqueduct gray (PAG, lateral parabrachial nucleus, locus coeruleus, ventrolateral medulla and nucleus tractus solitarius (NTS. RKT induced a small increase in c-Fos-ir neurons in the SON and E-W of control mice, and in mice with surgery there was an increase in the lateral PAG and a decrease in the NTS. These findings indicate that abdominal surgery inhibits food intake by increasing both satiation (meal duration and satiety (meal interval and activates brain circuits involved in pain, feeding behavior and stress that may underlie the alterations of meal pattern and food intake inhibition

  12. Strain differences in paroxetine-induced reduction of immobility time in the forced swimming test in mice: role of serotonin.

    Science.gov (United States)

    Guzzetti, Sara; Calcagno, Eleonora; Canetta, Alessandro; Sacchetti, Giuseppina; Fracasso, Claudia; Caccia, Silvio; Cervo, Luigi; Invernizzi, Roberto W

    2008-10-10

    We studied the antidepressant-like effect of paroxetine in strains of mice carrying different isoforms of tryptophan hydroxylase-2 (TPH-2), the enzyme responsible for the synthesis of brain serotonin (5-HT). The effect of paroxetine alone and in combination with pharmacological treatments enhancing or lowering 5-HT synthesis or melatonin was assessed in the forced swimming test in mice carrying allelic variants of TPH-2 (1473C in C57BL/6 and 1473G in DBA/2 and BALB/c). Changes in brain 5-hydroxytryptophan (5-HTP) accumulation and melatonin levels were measured by high-performance liquid chromatography. Paroxetine (2.5 and 5 mg/kg) reduced immobility time in C57BL/6J and C57BL/6N mice but had no such effect in DBA/2J, DBA/2N and BALB/c mice, even at 10 mg/kg. Enhancing 5-HT synthesis with tryptophan reinstated the antidepressant-like effect of paroxetine in DBA/2J, DBA/2N and BALB/c mice whereas inhibition of 5-HT synthesis prevented the effect of paroxetine in C57BL/6N mice. The response to paroxetine was not associated with changes in locomotor activity, brain melatonin or brain levels of the drug measured at the end of the behavioral test. These results support the importance of 5-HT synthesis in the response to SSRIs and suggest that melatonin does not contribute to the ability of tryptophan to rescue the antidepressant-like effect of paroxetine.

  13. Antidepressant and antioxidant activities of Artemisia absinthium L ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-12-15

    Dec 15, 2009 ... Mora S, Millıan R, Lungenstrass H, Dııaz-Vıeliz G, Morıan JA, Herrera-. Ruiz M, Tortoriello J (2006). The hydroalcoholic extract of Salvia elegans induces anxiolytic- and antidepressant-like effects in rats. J. Ethnopharmacol. 106: 76-81. Morteza-Semnani K, Mahmoudi M, Riahi G (2007). Effects of essential.

  14. On the effect of minocycline on the depressive-like behavior of mice repeatedly exposed to malathion: interaction between nitric oxide and cholinergic system.

    Science.gov (United States)

    Saeedi Saravi, Seyed Soheil; Amirkhanloo, Roya; Arefidoust, Alireza; Yaftian, Rahele; Saeedi Saravi, Seyed Sobhan; Shokrzadeh, Mohammad; Dehpour, Ahmad Reza

    2016-06-01

    This study was performed to investigate the antidepressant-like effect of minocycline in mice exposed to organophosphate pesticide malathion and possible involvement of nitric oxide/cGMP pathway in this paradigm. Mice were administered specific doses of malathion once daily for 7 consecutive days. After induction of depression, different doses of minocycline were daily injected alone or combined with non-specific NOS inhibitor, L-NAME, specific inducible NOS inhibitor, AG, NO precursor, L-arginine, and PDE5I, sildenafil. After locomotion assessment in open-field test, immobility times were recorded in the FST and TST. Moreover, hippocampal nitrite concentrations and acetylcholinesterase activity were measured. The results showed that repeated exposure to malathion induces depressive-like behavior at dose of 250 mg/kg. Minocycline (160 mg/kg) significantly reduced immobility times in FST and TST (P minocycline (80 mg/kg) with either L-NAME (3 mg/kg) or AG (25 mg/kg) significantly exerted a robust antidepressant-like effect in FST and TST (P minocycline at the same dose which has antidepressant-like effect, significantly reduced hippocampal nitrite concentration. The investigation indicates the essential role for NO/cGMP pathway in malathion-induced depressive-like behavior and antidepressant-like effect of minocycline. Moreover, the interaction between nitrergic and cholinergic systems are suggested to be involved in malathion-induced depression.

  15. Anti-Depressant-Like Effect of Kaempferitrin Isolated from Justicia spicigera Schltdl (Acanthaceae in Two Behavior Models in Mice: Evidence for the Involvement of the Serotonergic System

    Directory of Open Access Journals (Sweden)

    Julia Cassani

    2014-12-01

    Full Text Available We evaluated the antidepressant-like effect of kaempferitrin (Km isolated from the plant Justicia spicigera (Asteraceae, which is used in traditional medicine for relieving emotional disorders, such as “la tristeza” (sadness or dysthymia and “el humor” (mood changes. The actions of Km were evaluated in a forced swimming test (FST and a suspension tail test (TST in mice. We explored the involvement of the serotonergic system and the hypothalamic-hypophysis-adrenal axis (HPA in the antidepressant-like effect of Km. To evaluate nonspecific effects of Km on general activity, the open field test (OFT was performed. Km at 5, 10, and 20 mg/kg induced an antidepressant-like effect. Sub-effective dose of Km (1 mg/kg produced a synergistic effect with imipramine (6.25 mg/kg and fluoxetine (10 mg/kg but not with desipramine (3.12 mg/kg. Pretreatment with p-chlorophenylalanine methyl ester (PCPA, a serotonin synthesis inhibitor, N-{2-(4-(2-methoxyphenyl-1-piperazinyl}-N-(2-pyridinylcyclohexecarboxamide (WAY-100635, a selective 5-HT1A receptor antagonist, and 8OH-DPAT, a selective 5-HT1A agonist, but not pindolol (10 mg/kg blocked the anti- immobility effect induced by Km. Taken together, these results indicate that the antidepressant-like effect of Km is related to the serotonergic system, principally 5-HT1A. This effect was not related to changes in locomotor activity.

  16. Exercise-Induced Asthma

    Science.gov (United States)

    ... Videos for Educators Search English Español Exercise-Induced Asthma KidsHealth / For Parents / Exercise-Induced Asthma What's in ... Exercise-Induced Asthma Print What Is Exercise-Induced Asthma? Most kids and teens with asthma have symptoms ...

  17. Lennujaama kontor nüüd nõukogudeaegses terminalis / Kai Ilustrumm

    Index Scriptorium Estoniae

    Ilustrumm, Kai

    2004-01-01

    Tallinna Lennujaama hoone rekonstrueerimine läks maksma üle 20 milj. Eesti krooni. Kolmandiku hoonest hõlmavad kontoriruumid, ülejäänud osa saab kasutada mitmesuguste ürituste teenindamiseks. Renoveerimisplaani kavandasid Andres ja Reet Põime, sisekujunduse Tiiu Raudsepp-Truus

  18. Muuga terminal 2 - panus Vene Raudteele. Konkurent tooks terminali teenuste odavnemise / Jaroslav Tavgen

    Index Scriptorium Estoniae

    Tavgen, Jaroslav

    2011-01-01

    Muuga konteinerterminali operaatori konkursi kaotanud Muuga CT omanik AS Transiidikeskus ei ole Tallinna Sadama otsusega rahul ja leiab, et selle konkursi võitnud Rail Garant ei suuda kaubavedu suurendada

  19. Tallinna Lennujaama vana terminali renoveerimine = Renovation of Tallinn Airport's old terminal / Epp Lankots

    Index Scriptorium Estoniae

    Lankots, Epp, 1976-

    2005-01-01

    Arhitektid: Andres Põime, Reet Põime, Tiiu Truus. Tallinna Lennujaama reisijateterminali projekteerisid 1939. a. arhitektid Roman Koolmar ja Artur Jürvetson, hoone valmis Paula Koido rekonstrueerimisprojekti järgi. Ill.: 2 värv. sisevaadet, välisvaade

  20. The nervus terminalis in the chick: a FMRFamide-immunoreactive and AChE-positive nerve.

    Science.gov (United States)

    Wirsig-Wiechmann, C R

    1990-07-16

    The chick terminal nerve (TN) was examined by immunocytochemical and histochemical methods. Molluscan cardioexcitatory peptide-immunoreactive (FMRFamide-ir) and acetylcholinesterase (AChE)-positive TN perikarya and fibers were distributed along olfactory and trigeminal nerves. FMRFamide-ir TN fibers terminated in the olfactory lamina propria and epithelium and in ganglia along the rostroventral nasal septum. This initial description of several populations of avian TN neurons should provide the foundation for future developmental studies of this system.

  1. Nervus terminalis projection to the retina in the 'four-eyed' fish, Anableps anableps.

    Science.gov (United States)

    Meyer, D L; Malz, C R; Jadhao, A G

    1996-08-02

    The eye of the surface dwelling 'four-eyed' fish, Anableps possesses an aquatic and an aerial optical system. The aerial system is strongly hyperopic when the animal dives, i.e. during mating, and the dorsal pupil is submerged. We studied the retino-petal nervus terminals projection to the aerial and to the aquatic retina by Phe-Met-Arg-Phe-NH2 (FMRF) immunocytochemistry and found both to be equally innervated. This finding sheds doubt on the proposed functional significance of this projection for reproductive behaviour.

  2. Drug-induced thrombocytopenia

    DEFF Research Database (Denmark)

    Pedersen-Bjergaard, U; Andersen, M; Hansen, P B

    1997-01-01

    induced by non-cytotoxic drugs is characterised by heterogeneous clinical picture and recovery is generally rapid. Although corticosteroids seem inefficient, we still recommend that severe symptomatic cases of drug-induced thrombocytopenia are treated as idiopathic thrombocytopenic purpura due...

  3. Pattern of c-Fos expression induced by tail suspension test in the mouse brain

    Directory of Open Access Journals (Sweden)

    Kentaro Hiraoka

    2017-06-01

    Full Text Available The tail suspension test (TST has been widely used as a screening assay for antidepressant drugs. However, the neural substrates underlying the stress response and antidepressant-like effect during the TST remain largely unknown despite the prevalence of this test. In the present study, we used immunohistochemistry to examine alterations in c-Fos expression as a measure of neuronal activity in the mouse brain after acute administration of the antidepressant drugs nortriptyline or escitalopram (or saline as a control with or without a subsequent TST session. We found that without the TST session, nortriptyline administration enhanced the density of c-Fos-immunoreactive cells in regions of the central extended amygdala, paraventricular hypothalamic nucleus, and relevant regions of the brain stem, whereas escitalopram did not change c-Fos expression in any region. Following the TST in the absence of antidepressant drugs, we observed a significant increase in c-Fos-positive cell density in a number of brain regions within the limbic telencephalon, hypothalamus, and brain stem. We detected a statistically significant interaction using an analysis of variance between the main effects of the drug and stress response in four regions: the infralimbic cortex, lateral septal nucleus (intermediate part, ventrolateral preoptic nucleus, and solitary nucleus. Following the TST, escitalopram but not nortriptyline increased c-Fos-positive cell density in the infralimbic cortex and ventrolateral preoptic nucleus, whereas nortriptyline but not escitalopram increased c-Fos expression in the solitary nucleus. Both antidepressants significantly increased c-Fos expression in the lateral septal nucleus (intermediate part. The present results indicate that neuronal activity increases in septo-hypothalamic regions and related structures, especially the lateral septal nucleus, following administration of drugs producing an antidepressant-like effect in mice subjected to

  4. Exercise-Induced Bronchoconstriction (EIB)

    Science.gov (United States)

    ... Conditions & Treatments ▸ Conditions Dictionary ▸ Exercise-Induced Bronchoconstriction Share | Exercise-Induced Bronchoconstriction (EIB) « Back to A to Z Listing Exercise-Induced Bronchoconstriction, (EIB), often known as exercise-induced ...

  5. Stimulation of entorhinal cortex-dentate gyrus circuitry is antidepressive.

    Science.gov (United States)

    Yun, Sanghee; Reynolds, Ryan P; Petrof, Iraklis; White, Alicia; Rivera, Phillip D; Segev, Amir; Gibson, Adam D; Suarez, Maiko; DeSalle, Matthew J; Ito, Naoki; Mukherjee, Shibani; Richardson, Devon R; Kang, Catherine E; Ahrens-Nicklas, Rebecca C; Soler, Ivan; Chetkovich, Dane M; Kourrich, Saïd; Coulter, Douglas A; Eisch, Amelia J

    2018-04-16

    Major depressive disorder (MDD) is considered a 'circuitopathy', and brain stimulation therapies hold promise for ameliorating MDD symptoms, including hippocampal dysfunction. It is unknown whether stimulation of upstream hippocampal circuitry, such as the entorhinal cortex (Ent), is antidepressive, although Ent stimulation improves learning and memory in mice and humans. Here we show that molecular targeting (Ent-specific knockdown of a psychosocial stress-induced protein) and chemogenetic stimulation of Ent neurons induce antidepressive-like effects in mice. Mechanistically, we show that Ent-stimulation-induced antidepressive-like behavior relies on the generation of new hippocampal neurons. Thus, controlled stimulation of Ent hippocampal afferents is antidepressive via increased hippocampal neurogenesis. These findings emphasize the power and potential of Ent glutamatergic afferent stimulation-previously well-known for its ability to influence learning and memory-for MDD treatment.

  6. Induced pluripotency with endogenous and inducible genes

    International Nuclear Information System (INIS)

    Duinsbergen, Dirk; Eriksson, Malin; Hoen, Peter A.C. 't; Frisen, Jonas; Mikkers, Harald

    2008-01-01

    The recent discovery that two partly overlapping sets of four genes induce nuclear reprogramming of mouse and even human cells has opened up new possibilities for cell replacement therapies. Although the combination of genes that induce pluripotency differs to some extent, Oct4 and Sox2 appear to be a prerequisite. The introduction of four genes, several of which been linked with cancer, using retroviral approaches is however unlikely to be suitable for future clinical applications. Towards developing a safer reprogramming protocol, we investigated whether cell types that express one of the most critical reprogramming genes endogenously are predisposed to reprogramming. We show here that three of the original four pluripotency transcription factors (Oct4, Klf4 and c-Myc or MYCER TAM ) induced reprogramming of mouse neural stem (NS) cells exploiting endogenous SoxB1 protein levels in these cells. The reprogrammed neural stem cells differentiated into cells of each germ layer in vitro and in vivo, and contributed to mouse development in vivo. Thus a combinatorial approach taking advantage of endogenously expressed genes and inducible transgenes may contribute to the development of improved reprogramming protocols

  7. Diet induced thermogenesis

    Directory of Open Access Journals (Sweden)

    Westerterp KR

    2004-08-01

    Full Text Available Objective Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. Methods Measuring conditions include nutritional status of the subject, physical activity and duration of the observation. Diet characteristics are energy content and macronutrient composition. Results Most studies measure diet-induced thermogenesis as the increase in energy expenditure above basal metabolic rate. Generally, the hierarchy in macronutrient oxidation in the postprandial state is reflected similarly in diet-induced thermogenesis, with the sequence alcohol, protein, carbohydrate, and fat. A mixed diet consumed at energy balance results in a diet induced energy expenditure of 5 to 15 % of daily energy expenditure. Values are higher at a relatively high protein and alcohol consumption and lower at a high fat consumption. Protein induced thermogenesis has an important effect on satiety. In conclusion, the main determinants of diet-induced thermogenesis are the energy content and the protein- and alcohol fraction of the diet. Protein plays a key role in body weight regulation through satiety related to diet-induced thermogenesis.

  8. Induced quantum conformal gravity

    International Nuclear Information System (INIS)

    Novozhilov, Y.V.; Vassilevich, D.V.

    1988-11-01

    Quantum gravity is considered as induced by matter degrees of freedom and related to the symmetry breakdown in the low energy region of a non-Abelian gauge theory of fundamental fields. An effective action for quantum conformal gravity is derived where both the gravitational constant and conformal kinetic term are positive. Relation with induced classical gravity is established. (author). 15 refs

  9. Induced radioactivity at CERN

    CERN Multimedia

    1970-01-01

    A description of some of the problems and some of the advantages associated with the phenomenon of induced radioactivity at accelerator centres such as CERN. The author has worked in this field for several years and has recently written a book 'Induced Radioactivity' published by North-Holland.

  10. Diet induced thermogenesis

    NARCIS (Netherlands)

    Westerterp, K.R.

    2004-01-01

    OBJECTIVE: Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. METHODS: Measuring

  11. Bleomycin-induced pneumonitis

    NARCIS (Netherlands)

    S. Sleijfer (Stefan)

    2001-01-01

    textabstractThe cytotoxic agent bleomycin is feared for its induction of sometimes fatal pulmonary toxicity, also known as bleomycin-induced pneumonitis (BIP). The central event in the development of BIP is endothelial damage of the lung vasculature due to bleomycin-induced

  12. Fluoxetine reverts chronic restraint stress-induced depression-like behaviour and increases neuropeptide Y and galanin expression in mice

    DEFF Research Database (Denmark)

    Christiansen, Søren Hofman Oliveira; Olesen, Mikkel Vestergaard; Wörtwein, Gitta

    2011-01-01

    Stressful life events and chronic stress are implicated in the development of depressive disorder in humans. Neuropeptide Y (NPY) and galanin have been shown to modulate the stress response, and exert antidepressant-like effects in rodents. To further investigate these neuropeptides in depression......-like behaviour, NPY and galanin gene expression was studied in brains of mice subjected to chronic restraint stress (CRS) and concomitant treatment with the antidepressant fluoxetine (FLX). CRS caused a significant increase in depression-like behaviour that was associated with increased NPY mRNA levels...... in the medial amygdala. Concomitant FLX treatment reverted depression-like effects of CRS and led to significant increases in levels of NPY and galanin mRNA in the dentate gyrus, amygdala, and piriform cortex. These findings suggest that effects on NPY and galanin gene expression could play a role...

  13. Induced abortion in Taiwan.

    Science.gov (United States)

    Wang, P D; Lin, R S

    1995-04-01

    Induced abortion is widely practised in Taiwan; however, it had been illegal until 1985. It was of interest to investigate induced abortion practices in Taiwan after its legalization in 1985 in order to calculate the prevalence rate and ratio of induced abortion to live births and to pregnancies in Taiwan. A study using questionnaires through personal interviews was conducted on more than seventeen thousand women who attended a family planning service in Taipei metropolitan areas between 1991 and 1992. The reproductive history and sexual behaviour of the subjects were especially focused on during the interviews. Preliminary findings showed that 46% of the women had a history of having had an induced abortion. Among them, 54.8% had had one abortion, 29.7% had had two, and 15.5% had had three or more. The abortion ratio was 379 induced abortions per 1,000 live births and 255 per 1,000 pregnancies. The abortion ratio was highest for women younger than 20 years of age, for aboriginal women and for nulliparous women. When logistic regression was used to control for confounding variables, we found that the number of previous live births is the strongest predictor relating to women seeking induced abortion. In addition, a significant positive association exists between increasing number of induced abortions and cervical dysplasia.

  14. Photon induced reactions

    International Nuclear Information System (INIS)

    Mecking, B.A.

    1982-04-01

    Various aspects of medium energy nuclear reactions induced by real photons are reviewed. Special emphasis is put on high accuracy experiments that will become possible with the next generation of electron accelerators. (orig.)

  15. Induced Noise Control

    National Research Council Canada - National Science Library

    Maidanik, G

    2002-01-01

    The induced noise control parameter is defined in terms of the ratio of the stored energy in a master dynamic system, when it is coupled to an adjunct dynamic system, to that stored energy when the coupling is absent...

  16. Beam induced RF heating

    CERN Document Server

    Salvant, B; Arduini, G; Assmann, R; Baglin, V; Barnes, M J; Bartmann, W; Baudrenghien, P; Berrig, O; Bracco, C; Bravin, E; Bregliozzi, G; Bruce, R; Bertarelli, A; Carra, F; Cattenoz, G; Caspers, F; Claudet, S; Day, H; Garlasche, M; Gentini, L; Goddard, B; Grudiev, A; Henrist, B; Jones, R; Kononenko, O; Lanza, G; Lari, L; Mastoridis, T; Mertens, V; Métral, E; Mounet, N; Muller, J E; Nosych, A A; Nougaret, J L; Persichelli, S; Piguiet, A M; Redaelli, S; Roncarolo, F; Rumolo, G; Salvachua, B; Sapinski, M; Schmidt, R; Shaposhnikova, E; Tavian, L; Timmins, M; Uythoven, J; Vidal, A; Wenninger, J; Wollmann, D; Zerlauth, M

    2012-01-01

    After the 2011 run, actions were put in place during the 2011/2012 winter stop to limit beam induced radio frequency (RF) heating of LHC components. However, some components could not be changed during this short stop and continued to represent a limitation throughout 2012. In addition, the stored beam intensity increased in 2012 and the temperature of certain components became critical. In this contribution, the beam induced heating limitations for 2012 and the expected beam induced heating limitations for the restart after the Long Shutdown 1 (LS1) will be compiled. The expected consequences of running with 25 ns or 50 ns bunch spacing will be detailed, as well as the consequences of running with shorter bunch length. Finally, actions on hardware or beam parameters to monitor and mitigate the impact of beam induced heating to LHC operation after LS1 will be discussed.

  17. Vitiligo, drug induced (image)

    Science.gov (United States)

    ... this person's face have resulted from drug-induced vitiligo. Loss of melanin, the primary skin pigment, occasionally ... is the case with this individual. The typical vitiligo lesion is flat and depigmented, but maintains the ...

  18. Terahertz Induced Electromigration

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    2014-01-01

    We report the first observation of THz-field-induced electromigration in subwavelength metallic gap structures after exposure to intense single-cycle, sub-picosecond electric field transients of amplitude up to 400 kV/cm.......We report the first observation of THz-field-induced electromigration in subwavelength metallic gap structures after exposure to intense single-cycle, sub-picosecond electric field transients of amplitude up to 400 kV/cm....

  19. Diet induced thermogenesis

    OpenAIRE

    Westerterp KR

    2004-01-01

    Objective Daily energy expenditure consists of three components: basal metabolic rate, diet-induced thermogenesis and the energy cost of physical activity. Here, data on diet-induced thermogenesis are reviewed in relation to measuring conditions and characteristics of the diet. Methods Measuring conditions include nutritional status of the subject, physical activity and duration of the observation. Diet characteristics are energy content and macronutrient composition. Resu...

  20. Laser-induced interactions

    International Nuclear Information System (INIS)

    Green, W.R.

    1979-01-01

    This dissertation discusses some of the new ways that lasers can be used to control the energy flow in a medium. Experimental and theoretical considerations of the laser-induced collision are discussed. The laser-induced collision is a process in which a laser is used to selectively transfer energy from a state in one atomic or molecular species to another state in a different species. The first experimental demonstration of this process is described, along with later experiments in which lasers were used to create collisional cross sections as large as 10 - 13 cm 2 . Laser-induced collisions utilizing both a dipole-dipole interaction and dipole-quadrupole interaction have been experimentally demonstrated. The theoretical aspects of other related processes such as laser-induced spin-exchange, collision induced Raman emission, and laser-induced charge transfer are discussed. Experimental systems that could be used to demonstrate these various processes are presented. An experiment which produced an inversion of the resonance line of an ion by optical pumping of the neutral atom is described. This type of scheme has been proposed as a possible method for constructing VUV and x-ray lasers

  1. Radiation-induced apoptosis

    International Nuclear Information System (INIS)

    Ohyama, Harumi

    1995-01-01

    Apoptosis is an active process of gene-directed cellular self-destruction that can be induced in many cell types via numerous physiological and pathological stimuli. We found that interphasedeath of thymocytes is a typical apoptosis showing the characteristic features of apoptosis including cell shrinkage, chromatin condensation and DNA degradation. Moderate dose of radiation induces extensive apoptosis in rapidly proliferating cell population such as the epithelium of intestinal crypt. Recent reports indicate that the ultimate form of radiation-induced mitotic death in several cells is also apoptosis. One of the hallmarks of apoptosis is the enzymatic internucleosomal degradation of chromatin DNA. We identified an endonuclease responsible for the radiation-induced DNA degradation in rat thymocytes. The death-sparing effects of interrupting RNA and protein synthesis suggested a cell genetic program for apoptosis. Apoptosis of thymocytes initiated by DNA damage, such as radiation and radio mimetic substance, absolutely requires the protein of p53 cancer suppresser gene. The cell death induced by glucocorticoid, or aging, has no such requirement. Expression of oncogene bcl-2 rescues cells from the apoptosis. Massive apoptosis in radiosensitive cells induced by higher dose radiation may be fatal. It is suggested that selective apoptotic elimination of cells would play an important role for protection against carcinogenesis and malformation through removal of cells with unrepaired radiation-induced DNA damages. Data to evaluate the significance of apoptosis in the radiation risk are still poor. Further research should be done in order to clarify the roles of the cell death on the acute and late effects of irradiation. (author)

  2. Chemical-induced Vitiligo

    Science.gov (United States)

    Harris, John E.

    2016-01-01

    Synopsis Chemical-induced depigmentation of the skin has been recognized for over 75 years, first as an occupational hazard but then extending to those using household commercial products as common as hair dyes. Since their discovery, these chemicals have been used therapeutically in patients with severe vitiligo to depigment their remaining skin and improve their appearance. The importance of recognizing this phenomenon was highlighted during an outbreak of vitiligo in Japan during the summer of 2013, when over 16,000 users of a new skin lightening cosmetic cream developed skin depigmentation at the site of contact with the cream and many in remote areas as well. Depigmenting chemicals appear to be analogs of the amino acid tyrosine that disrupt melanogenesis and result in autoimmunity and melanocyte destruction. Because chemical-induced depigmentation is clinically and histologically indistinguishable from non-chemically induced vitiligo, and because these chemicals appear to induce melanocyte autoimmunity, this phenomenon should be known as “chemical-induced vitiligo”, rather than less accurate terms that have been previously used. PMID:28317525

  3. The convulsive and electroencephalographic changes produced by nonpeptidic delta-opioid agonists in rats: comparison with pentylenetetrazol.

    Science.gov (United States)

    Jutkiewicz, Emily M; Baladi, Michelle G; Folk, John E; Rice, Kenner C; Woods, James H

    2006-06-01

    delta-Opioid agonists produce convulsions and antidepressant-like effects in rats. It has been suggested that the antidepressant-like effects are produced through a convulsant mechanism of action either through overt convulsions or nonconvulsive seizures. This study evaluated the convulsive and seizurogenic effects of nonpeptidic delta-opioid agonists at doses that previously were reported to produce antidepressant-like effects. In addition, delta-opioid agonist-induced electroencephalographic (EEG) and behavioral changes were compared with those produced by the chemical convulsant pentylenetetrazol (PTZ). For these studies, EEG changes were recorded using a telemetry system before and after injections of the delta-opioid agonists [(+)-4-[(alphaR)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N,N-diethylbenz (SNC80) and [(+)-4-[alpha(R)-alpha-[(2S,5R)-2,5-dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-hydroxyphenyl)methyl]-N,N-diethylbenzamide [(+)-BW373U86]. Acute administration of nonpeptidic delta-opioid agonists produced bilateral ictal and paroxysmal spike and/or sharp wave discharges. delta-Opioid agonists produced brief changes in EEG recordings, and tolerance rapidly developed to these effects; however, PTZ produced longer-lasting EEG changes that were exacerbated after repeated administration. Studies with antiepileptic drugs demonstrated that compounds used to treat absence epilepsy blocked the convulsive effects of nonpeptidic delta-opioid agonists. Overall, these data suggest that delta-opioid agonist-induced EEG changes are not required for the antidepressant-like effects of these compounds and that neural circuitry involved in absence epilepsy may be related to delta-opioid agonist-induced convulsions. In terms of therapeutic development, these data suggest that it may be possible to develop delta-opioid agonists devoid of convulsive properties.

  4. The olfactory gonadotropin-releasing hormone immunoreactive system in mouse.

    Science.gov (United States)

    Jennes, L

    1986-10-29

    to the ganglion terminale induced sprouting mostly at the distal site of the knife cut while most but not all GnRH fibers proximal to the lesion had disappeared. The results of the present study indicate that the olfactory GnRH system is mostly associated with the nervus terminalis. This cranial nerve apparently projects to the central nervous system as well as the periphery. The results of the HRP uptake studies suggest that the GnRH neurons in the nervus terminalis have access to fenestrated capillaries in the subepithelial connective tissue of the nasal mucosa, to the nasal epithelium proper, and to the subarachnoid space.(ABSTRACT TRUNCATED AT 400 WORDS)

  5. [Drug induced diarrhea].

    Science.gov (United States)

    Morard, Isabelle; Hadengue, Antoine

    2008-09-03

    Diarrhea is a frequent adverse event involving the most frequently antibiotics, laxatives and NSAI. Drug induced diarrhea may be acute or chronic. It may be due to expected, dose dependant properties of the drug, to immuno-allergic or bio-genomic mechanisms. Several pathophysiological mechanisms have been described resulting in osmotic, secretory or inflammatory diarrhea, shortened transit time, or malabsorption. Histopathological lesions sometimes associated with drug induced diarrhea are usually non specific and include ulcerations, inflammatory or ischemic lesions, fibrous diaphragms, microscopic colitis and apoptosis. The diagnosis of drug induced diarrhea, sometimes difficult to assess, relies on the absence of other obvious causes and on the rapid disappearance of the symptoms after withdrawal of the suspected drug.

  6. Rosuvastatin-induced pemphigoid.

    LENUS (Irish Health Repository)

    Murad, Aizuri A

    2012-01-01

    Statins are widely prescribed medications and very well tolerated. Rosuvastatin is another member of this drug used to treat dyslipidaemia. It is a competitive inhibitor of the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase. Immunobullous disease is usually idiopathic but can be drug-induced. Both idiopathic and iatrogenic forms share common clinical and immunohistological features. The authors report a case of pemphigoid induced by rosuvastatin, a commonly prescribed medication. To our knowledge, there is limited report on rosuvastatin associated with pemphigoid in the literature.

  7. Cervical osteophyte induced dysphagia

    International Nuclear Information System (INIS)

    Davies, R.P.; Sage, M.R.; Brophy, B.P.

    1989-01-01

    Although cervical spondylosis is a common disorder, dysphagia induced by osteophyte formation is uncommon. Fewer than one hundred cases of cervical osteophyte induced dysphagia have been reported, with little attention to the diagnosis by barium swallow. The radiological features of two cases treated surgically with good results are described. Both cases complained of dysphagia while one had associated respiratory obstruction on forward flexion of his neck. The features on barium study of cervical osteophytes causing dysphagia include deformity at the level of osteophyte formation, in both AP and lateral projections. Tracheal aspirations due to deformity at the laryngeal inlet and interference with epiglottic retroversion may be present. 8 refs., 3 figs

  8. Exercise-induced rhabdomyolysis.

    Science.gov (United States)

    Lee, George

    2014-11-03

    Exercise-induced rhabdomyolysis, or exertional rhabdomyolysis (ER), is a clinical entity typically considered when someone presents with muscle stiffness, swelling, and pain out of proportion to the expected fatigue post exercise. The diagnosis is confirmed by myoglobinuria, and an elevated serum Creatinine Phosphokinase (CPK) level, usually 10 times the normal range. However, an elevation in CPK is seen in most forms of strenuous exercise, up to 20 times the upper normal range. Therefore, there is no definitive pathologic CPK cut-off. Fortunately the dreaded complication of acute renal failure is rare compared to other forms rhabdomyolysis. We review the risks, diagnosis, clinical course and treatment for exercise- induced rhabdomyolysis.

  9. Migraine induced by hypoxia

    DEFF Research Database (Denmark)

    Arngrim, Nanna; Schytz, Henrik Winther; Britze, Josefine

    2016-01-01

    in the visual cortex were measured by proton magnetic resonance spectroscopy. The circumference of cranial arteries was measured by 3 T high-resolution magnetic resonance angiography. Hypoxia induced migraine-like attacks in eight patients compared to one patient after sham (P = 0.039), aura in three...... and possible aura in 4 of 15 patients. Hypoxia did not change glutamate concentration in the visual cortex compared to sham, but increased lactate concentration (P = 0.028) and circumference of the cranial arteries (P ... suggests that hypoxia may provoke migraine headache and aura symptoms in some patients. The mechanisms behind the migraine-inducing effect of hypoxia should be further investigated....

  10. Airbag induced corneal ectasia.

    Science.gov (United States)

    Mearza, Ali A; Koufaki, Fedra N; Aslanides, Ioannis M

    2008-02-01

    To report a case of airbag induced corneal ectasia. Case report. A patient 3 years post-LASIK developed bilateral corneal ectasia worse in the right eye following airbag deployment in a road traffic accident. At last follow up, best corrected vision was 20/40 with -4.00/-4.00 x 25 in the right eye and 20/25 with -1.25/-0.50 x 135 in the left eye. This is a rare presentation of trauma induced ectasia in a patient post-LASIK. It is possible that reduction in biomechanical integrity of the cornea from prior refractive surgery contributed to this presentation.

  11. Sleep-inducing factors.

    Science.gov (United States)

    García-García, Fabio; Acosta-Peña, Eva; Venebra-Muñoz, Arturo; Murillo-Rodríguez, Eric

    2009-08-01

    Kuniomi Ishimori and Henri Piéron were the first researchers to introduce the concept and experimental evidence for a chemical factor that would presumably accumulate in the brain during waking and eventually induce sleep. This substance was named hypnotoxin. Currently, the variety of substances which have been shown to alter sleep includes peptides, cytokines, neurotransmitters and some substances of lipidic nature, many of which are well known for their involvement in other biological activities. In this chapter, we describe the sleep-inducing properties of the vasoactive intestinal peptide, prolactin, adenosine and anandamide.

  12. Synthesis, potential anticonvulsant and antidepressant effects of 2-(5-methyl-2,3-dioxoindolin-1-ylacetamide derivatives

    Directory of Open Access Journals (Sweden)

    Xinghua Zhen

    2015-07-01

    Full Text Available A new series of 2-(5-methyl-2,3-dioxoindolin-1-ylacetamide derivatives were synthesized and evaluated for their anticonvulsive activity in a pentylenetetrazole (PTZ-evoked convulsion model and antidepressant activity in the forced swimming test (FST model. Eleven synthesized compounds were found to be protective against PTZ-induced seizure and showed the anticonvulsant activity. In addition, four of the synthesized compounds (4l, 4m, 4p and 4q showed potent antidepressant-like activity. Among these compounds, compound 4l was found to have the most potent antidepressant-like activity, and significantly reduced the duration of immobility time at 100 mg/kg dose level when compared to the vehicle control, which is similar to the reference drug fluoxetine.

  13. Inducible laryngeal obstruction

    DEFF Research Database (Denmark)

    Halvorsen, Thomas; Walsted, Emil Schwarz; Bucca, Caterina

    2017-01-01

    Inducible laryngeal obstruction (ILO) describes an inappropriate, transient, reversible narrowing of the larynx in response to external triggers. ILO is an important cause of a variety of respiratory symptoms and can mimic asthma. Current understanding of ILO has been hampered by imprecise nomenc...

  14. Drug-induced apnea.

    Science.gov (United States)

    Boutroy, M J

    1994-01-01

    Drugs have been in the past and will in the future still be liable to induce apnea in neonates, infants and older children. At these different stages of development, the child may be abnormally vulnerable to respiratory disorders and apnea, and doses of drugs, without any abnormal side effects in adult patients, can be harmful in younger subjects. Drugs responsible for apnea during development are numerous, but more than half of the problems are induced by sedatives and hypnotics, among which phenothiazines, barbiturates, benzodiazepines (included transplacentally acquired) and general anesthetics are a few. Other pharmacological families are apnea inducers in the neonatal period and childhood: analgesics and opioid narcotics, agents acting at the levels of neuromuscular function and autonomic ganglia, and cardiovascular agents. The pathogenesis of these apneas depends on the disturbance of any mechanism responsible for the respiratory activity: medullary centers and brain stem structures, afferent influx to CNS, sleep stages, upper airways, lungs and respiratory muscles. At key stages such as birth and infancy, drugs may emphasize the particular sensitivity of the mechanisms responsible for inducing apnea. This might explain unexpected respiratory disorders during development.

  15. Metronidazole-Induced Pancreatitis

    Directory of Open Access Journals (Sweden)

    E. O'Halloran

    2010-01-01

    Conclusion. This case provides the eighth report of Metronidazole induced pancreatitis. All of the cases were reported in females and ran a benign course.Early diagnosis, discontinuation of the drug and supportive care will lead to a successful recovery in the majority of cases.

  16. XTC-induced hepatitis

    NARCIS (Netherlands)

    Oranje, W.A.; van Pol, V.; van der Wurff, A.A.; Zeijen, R.N.; Stockbrügger, R.W.; Arends, J.W.

    1994-01-01

    XTC-induced hepatitis. Oranje WA, von Pol P, vd Wurff A, Zeijen RN, Stockbrugger RW, Arends JW. Department of Internal Medicine, University Hospital, Maastricht, Netherlands. An increasing number of severe complications associated with the use of XTC is being reported. After 11 earlier case reports

  17. Bowthruster-induced damage

    NARCIS (Netherlands)

    Schokking, L.A.; Janssen, P.C.; Verhagen, H.J.

    2003-01-01

    The stability of stones in propeller-induced jet wash is still difficult to predict. Especially the trend of bowthrusters increasing in size and power in sea going ships (especially ferries) over the last years may be a reason for concern when dealing with the protection of slopes and beds. But also

  18. Muon-induced fission

    International Nuclear Information System (INIS)

    Polikanov, S.

    1980-01-01

    A review of recent experimental results on negative-muon-induced fission, both of 238 U and 232 Th, is given. Some conclusions drawn by the author are concerned with muonic atoms of fission fragments and muonic atoms of the shape isomer of 238 U. (author)

  19. Calotropis procera -induced keratitis

    Directory of Open Access Journals (Sweden)

    Pandey Nidhi

    2009-01-01

    Full Text Available Calotropis procera produces copious amounts of latex, which has been shown to possess several pharmacological properities. Its local application produces intense inflammatory response. In the 10 cases of Calotropis procera -induced keratitis reported here, the clinical picture showed corneal edema with striate keratopathy without any evidence of intraocular inflammation. The inflammation was reversed by the local application of steroid drops.

  20. Induced nuclear beta decay

    International Nuclear Information System (INIS)

    Reiss, H.R.

    1986-01-01

    Certain nuclear beta decay transitions normally inhibited by angular momentum or parity considerations can be induced to occur by the application of an electromagnetic field. Such decays can be useful in the controlled production of power, and in fission waste disposal

  1. Hyperthermia-induced apoptosis

    NARCIS (Netherlands)

    Nijhuis, E.H.A.

    2008-01-01

    This thesis describes a number of studies that investigated several aspects of heat-induced apoptosis in human lymphoid malignancies. Cells harbour both pro- and anti-apoptotic proteins and the balance between these proteins determines whether a cell is susceptible to undergo apoptosis. In this

  2. Drug induced aseptic meningitis

    African Journals Online (AJOL)

    PROF. EZECHUKWU

    2013-09-29

    Sep 29, 2013 ... Abstract. Drug-induced aseptic meningitis (DIAM) is a rare but important and often challenging diagnosis for the physician. Intake of antimicrobials, steroids, anal- gesics amongst others has been implicated. Signs and symptoms generally develop within 24-48 hours of drug ingestion. The pa- tient often ...

  3. Contrast induced nephropathy

    DEFF Research Database (Denmark)

    Stacul, Fulvio; van der Molen, Aart J; Reimer, Peter

    2011-01-01

    PURPOSE: The Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) has updated its 1999 guidelines on contrast medium-induced nephropathy (CIN). AREAS COVERED: Topics reviewed include the definition of CIN, the choice of contrast medium, the prophylactic me...

  4. Radiation-induced pneumothorax

    International Nuclear Information System (INIS)

    Epstein, D.M.; Littman, P.; Gefter, W.B.; Miller, W.T.; Raney, R.B. Jr.

    1983-01-01

    Pneumothorax is an uncommon complication of radiation therapy to the chest. The proposed pathogenesis is radiation-induced fibrosis promoting subpleural bleb formation that ruptures resulting in pneumothorax. We report on two young patients with primary sarcomas without pulmonary metastases who developed spontaneous pneumothorax after irradiation. Neither patient had antecedent radiographic evidence of pulmonary fibrosis

  5. Irradiation-Induced Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

    1999-08-09

    This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

  6. Lupus induced by medicaments

    International Nuclear Information System (INIS)

    Canas D, Carlos Alberto; Perafan B, Pablo Eduardo

    2001-01-01

    We describe a 55 years old female patient who consulted by fever syndrome, artralgias and the presence of high tittles positives antinuclear antibodies. She had arterial hypertension in treatment with captopril. We suspected the clinical diagnoses of drug-induced lupus; the withdraw of captopril was associated with the remission of the clinical and laboratory manifestations

  7. Glucocorticoid-induced hyperglycaemia

    NARCIS (Netherlands)

    Gerards, M.C.

    2018-01-01

    This thesis contains studies on current practice, clinical implications and treatment of excess glucocorticoid receptor (GCR) stimulation, with a focus on glucocorticoid-induced hyperglycaemia (GCIH). Chapter 1 is a general introduction to the glucocorticoid hormone. In chapter 2 , we have

  8. Understanding induced seismicity

    NARCIS (Netherlands)

    Elsworth, Derek; Spiers, Christopher J.|info:eu-repo/dai/nl/304829323; Niemeijer, Andre R.|info:eu-repo/dai/nl/370832132

    2016-01-01

    Fluid injection–induced seismicity has become increasingly widespread in oil- and gas-producing areas of the United States (1–3) and western Canada. It has shelved deep geothermal energy projects in Switzerland and the United States (4), and its effects are especially acute in Oklahoma, where

  9. Geomagnetism and Induced Voltage

    Science.gov (United States)

    Abdul-Razzaq, W.; Biller, R. D.

    2010-01-01

    Introductory physics laboratories have seen an influx of "conceptual integrated science" over time in their classrooms with elements of other sciences such as chemistry, biology, Earth science, and astronomy. We describe a laboratory to introduce this development, as it attracts attention to the voltage induced in the human brain as it…

  10. INDUCED ABORTION IN NIGERIA

    African Journals Online (AJOL)

    2014-06-01

    Jun 1, 2014 ... 95% of women would have had an induced abortion. (10), which ... who were fluent in both English and the local language were chosen ... the woman and society. The Muslims ... that “traditional methods are only effective at the early stages of ... modern and traditional family planning services. However ...

  11. Advertising-Induced Embarrassment

    NARCIS (Netherlands)

    Puntoni, S.; Hooge, de I.E.; Verbeke, W.J.M.I.

    2015-01-01

    Abstract Consumer embarrassment is a concern for many advertisers. Yet little is known about ad-induced embarrassment. The authors investigate when and why consumers experience embarrassment as a result of exposure to socially sensitive advertisements. The theory distinguishes between viewing

  12. The effects of ifenprodil on the activity of antidepressant drugs in the forced swim test in mice.

    Science.gov (United States)

    Poleszak, Ewa; Wośko, Sylwia; Serefko, Anna; Wlaź, Aleksandra; Kasperek, Regina; Dudka, Jarosław; Wróbel, Andrzej; Nowak, Gabriel; Wlaź, Piotr

    2014-12-01

    According to reports in the literature, more than 30% of depressive patients fail to achieve remission. Therapy with the conventional antidepressant drugs may induce the serious adverse reactions. Moreover, its benefits may be seen at least 2-4 weeks after the first dose. Therefore, the alternative strategies for prevention and treatment of depression are sought. The main aim of our study was to assess the effects of ifenprodil given at a non-active dose (10mg/kg) on the activity of antidepressant agents from diverse pharmacological groups. The antidepressant-like effect was assessed by the forced swim test in mice. Ifenprodil potentiated the antidepressant-like effect of imipramine (15mg/kg) and fluoxetine (5mg/kg) while did not reduce the immobility time of animals which simultaneously received reboxetine (2.5mg/kg) or tianeptine (15mg/kg). The concomitant administration of certain commonly prescribed antidepressant drugs that affect the serotonergic neurotransmission (i.e., typical tricyclic antidepressants and selective serotonin reuptake inhibitors) with a negative modulator selectively binding to the GluN1/N2B subunits of the NMDA receptor complex (i.e., ifenprodil) may induce a more pronounced antidepressant-like effect than monotherapy. However, these findings still need to be confirmed in further experiments. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Uterine contraction induced by Tanzanian plants used to induce abortion

    DEFF Research Database (Denmark)

    Nikolajsen, Tine; Nielsen, Frank; Rasch, Vibeke

    2011-01-01

    Women in Tanzania use plants to induce abortion. It is not known whether the plants have an effect.......Women in Tanzania use plants to induce abortion. It is not known whether the plants have an effect....

  14. [Hydroxyurea-induced pneumonia].

    Science.gov (United States)

    Girard, A; Ricordel, C; Poullot, E; Claeyssen, V; Decaux, O; Desrues, B; Delaval, P; Jouneau, S

    2014-05-01

    Hydroxyurea is an antimetabolite drug used in the treatment of myeloproliferative disorders. Common adverse effects include haematological, gastrointestinal cutaneous manifestations, and fever. Hydroxyurea-induced pneumonitis is unusual. A female patient was treated with hydroxyurea for polycythemia vera. She was admitted 20 days after commencing treatment with a high fever, productive cough, clear sputum and nausea. A chest CT-scan showed diffuse ground-glass opacities. Microbiological investigations were negative. The symptoms disappeared a few days after discontinuation of the drug and rechallenge led to a relapse of symptoms. Our case and 15 earlier cases of hydroxyurea-induced pneumonitis are reviewed. Two patterns of this disease may exist: an acute febrile form occurring within 1 month of introduction of hydroxyurea and a subacute form without fever. Even if uncommon, one should be aware of this complication of hydroxyurea. Copyright © 2013. Published by Elsevier Masson SAS.

  15. Hydroxychloroquine-induced erythroderma.

    Science.gov (United States)

    Pai, Sunil B; Sudershan, Bhuvaneshwari; Kuruvilla, Maria; Kamath, Ashwin; Suresh, Pooja K

    2017-01-01

    Erythroderma is characterized by diffuse erythema and scaling of the skin involving more than 90% of the total body skin surface area. Drug-induced erythroderma has rarely been reported with hydroxychloroquine. We report a case of a 50-year-old female patient, with systemic lupus erythematosus, who developed itchy lesions all over the body 1 month after starting treatment with hydroxychloroquine. Drug-induced erythroderma was suspected. Hydroxychloroquine was withdrawn and the patient was treated with emollients, mid-potency corticosteroids, and oral antihistamines. A biopsy was done which confirmed the diagnosis of erythroderma. She recovered with treatment and was discharged. A careful history and clinical examination to search for potential causative factors will help prevent disabling sequelae in erythroderma.

  16. Mild induced hypothermia

    DEFF Research Database (Denmark)

    Johansen, Maria E; Jensen, Jens-Ulrik; Bestle, Morten H

    2014-01-01

    INTRODUCTION: Coagulopathy associates with poor outcome in sepsis. Mild induced hypothermia has been proposed as treatment in sepsis but it is not known whether this intervention worsens functional coagulopathy. MATERIALS AND METHODS: Interim analysis data from an ongoing randomized controlled...... trial; The Cooling And Surviving Septic shock (CASS) study. Patients suffering severe sepsis/septic shock are allocated to either mild induced hypothermia (cooling to 32-34°C for 24hours) or control (uncontrolled temperature). TRIAL REGISTRATION: NCT01455116. Thrombelastography (TEG) is performed three....... At enrollment, 3%, 38%, and 59% had a hypocoagulable, normocoagulable, and hypercoagulable TEG clot strength (MA), respectively. In the hypothermia group, functional coagulopathy improved during the hypothermia phase, measured by R and MA, in patients with hypercoagulation as well as in patients...

  17. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......, to reconstruct the distribution of the Cole-Cole parameters of the earth. The accurate modeling of the transmitter waveform had a strong influence on the forward response, and we showed that the difference between a solution using a step response and a solution using the accurate modeling often is above 100...

  18. Topiramate Induced Excessive Sialorrhea

    Directory of Open Access Journals (Sweden)

    Ersel Dag

    2015-11-01

    Full Text Available It is well-known that drugs such as clozapine and lithium can cause sialorrhea. On the other hand, topiramate has not been reported to induce sialorrhea. We report a case of a patient aged 26 who was given antiepileptic and antipsychotic drugs due to severe mental retardation and intractable epilepsy and developed excessive sialorrhea complaint after the addition of topiramate for the control of seizures. His complaints continued for 1,5 years and ended after giving up topiramate. We presented this case since it was a rare sialorrhea case induced by topiramate. Clinicians should be aware of the possibility of sialorrhea development which causes serious hygiene and social problems when they want to give topiramate to the patients using multiple drugs.

  19. Noise-Induced Hearing Loss

    Science.gov (United States)

    ... Home » Health Info » Hearing, Ear Infections, and Deafness Noise-Induced Hearing Loss On this page: What is ... I find additional information about NIHL? What is noise-induced hearing loss? Every day, we experience sound ...

  20. Induced quantum torsion

    International Nuclear Information System (INIS)

    Denardo, G.; Spallucci, E.

    1985-07-01

    We study pregeometry in the framework of a Poincare gauge field theory. The Riemann-Cartan space-time is shown to be an ''effective geometry'' for this model in the low energy limit. By using Heat Kernel techniques we find the induced action for curvature and torsion. We obtain in this way the usual Einstein-Hilbert action plus an axial Maxwell term describing the propagation of a massless, axial vector torsion field. (author)

  1. Cisplatin Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Seyed Seifollah Beladi Mousavi

    2014-02-01

    The standard approach to prevent cisplatin-induced nephrotoxicity is the administration of lower doses of cisplatin in combination with the administration of full intravenous isotonic saline before and after cisplatin administration. Although a number of pharmacologic agents including sodium thiosulfate, N-acetylcysteine, theophylline and glycine have been evaluated for prevention of nephrotoxicity, none have proved to have an established role, thus, additional clinical studies will be required to confirm their probable effects.

  2. Amitriptyline induced cervical dystonia

    Directory of Open Access Journals (Sweden)

    Shivanand B Hiremath

    2016-01-01

    Full Text Available Tricyclic antidepressants (TCAs, such as amitriptyline, have many side effects. But extrapyramidal tract symptom is an uncommon side effect of these drugs. Here, we report a case of a 28-year-old male who is suffering from amitriptyline induced cervical dystonia. Though rare, this side effect is an uncomfortable condition and may influence drug compliance. So clinicians should be aware of this side effect while treating a patient with amitriptyline.

  3. Polycation induced actin bundles

    OpenAIRE

    Muhlrad, Andras; Grintsevich, Elena E.; Reisler, Emil

    2011-01-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations an...

  4. Induced current heating probe

    International Nuclear Information System (INIS)

    Thatcher, G.; Ferguson, B.G.; Winstanley, J.P.

    1984-01-01

    An induced current heating probe is of thimble form and has an outer conducting sheath and a water flooded flux-generating unit formed from a stack of ferrite rings coaxially disposed in the sheath. The energising coil is made of solid wire which connects at one end with a coaxial water current tube and at the other end with the sheath. The stack of ferrite rings may include non-magnetic insulating rings which help to shape the flux. (author)

  5. Induced QCD I: theory

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Bastian B. [Institute for Theoretical Physics, Goethe-University of Frankfurt,60438 Frankfurt (Germany); Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany); Lohmayer, Robert; Wettig, Tilo [Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany)

    2016-11-14

    We explore an alternative discretization of continuum SU(N{sub c}) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N{sub b} auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N{sub b} can be as small as N{sub c}. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N{sub c}) to SU(N{sub c}), (ii) derive refined bounds on N{sub b} for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.

  6. Laser induced energy transfer

    International Nuclear Information System (INIS)

    Falcone, R.W.

    1979-01-01

    Two related methods of rapidly transferring stored energy from one excited chemical species to another are described. The first of these, called a laser induced collision, involves a reaction in which the energy balance is met by photons from an intense laser beam. A collision cross section of ca 10 - 17 cm 2 was induced in an experiment which demonstrated the predicted dependence of the cross section on wavelength and power density of the applied laser. A second type of laser induced energy transfer involves the inelastic scattering of laser radiation from energetically excited atoms, and subsequent absorption of the scattered light by a second species. The technique of producing the light, ''anti-Stokes Raman'' scattering of visible and infrared wavelength laser photons, is shown to be an efficient source of narrow bandwidth, high brightness, tunable radiation at vacuum ultraviolet wavelengths by using it to excite a rare gas transition at 583.7 A. In addition, this light source was used to make the first measurement of the isotopic shift of the helium metastable level at 601 A. Applications in laser controlled chemistry and spectroscopy, and proposals for new types of lasers using these two energy transfer methods are discussed

  7. Radiation-induced myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Gaenshirt, H [Heidelberg Univ. (F.R. Germany). Neurologische Klinik

    1975-10-01

    12 cases of radiation-induced myelopathy after /sup 60/Co teletherapy are reported on. Among these were 10 thoracal lesions, one cerviothoracal lesion, and one lesion of the medulla oblongata. In 9 cases, Hodgkin's disease had been the primary disease, tow patients had been irradiated because of suspected vertebral metastases of cancer of the breast, and one patient had suffered from a glomus tumour of the petrous bone. The spinal doses had exceeded the tolerance doses recommended in the relevant literature. There was no close correlation between the radiation dose and the course of the disease. The latency periods between the end of the radiotherapy and the onset of the neurological symptons varied from 6 to 16 mouths and were very constant in 7 cases with 6 to 9 months. The segmental height of the lesion corresponded to the level of irradiation. The presenting symptons of radiation-induced myelopathy are buruing dysaesthesias and Brown-Sequard's paralysis which may develop into transverse lesion of the cord with paraplegia still accompanied by dissociated perception disorders. The disease developed intermittently. Disturbances of the bladder function are frequent. The fluid is normal in most cases. Myelographic examinations were made in 8 cases. 3 cases developed into stationary cases exhibiting. Brown-Sequard syndrome, while 9 patients developed transverse lesion of the cord with paraplegia. 3 patients have died; antopsy findings are given for two of these. In the pathogenesis of radiation-induced myelopathy, the vascular factor is assumed to be of decisive importance.

  8. Baby universes with induced gravity

    International Nuclear Information System (INIS)

    Gao Yihong; Gao Hongbo

    1989-01-01

    In this paper some quantum effects of baby universes with induced gravity are discussed. It is proved that the interactions between the baby-parent universes are non-local, and argue that the induced low-energy cosmological constant is zero. This argument does not depend on the detail of the induced potential

  9. Modulatory effect of cilostazol on tramadol-induced behavioral and neurochemical alterations in rats challenged across the forced swim despair test

    Directory of Open Access Journals (Sweden)

    Noha M. Gamil

    2016-06-01

    Full Text Available Pain-associated depression is encountered clinically in some cases such as cancer, chronic neuropathy, and after operations. Tramadol is an opioid analgesic drug that may modulate monoaminergic neurotransmission by inhibition of noradrenaline and serotonin reuptake that may contribute to its antidepressant-like effects. Clinically, tramadol is used either alone or in combination with other NSAIDs in the treatment of cases associated with pain and depression, e.g. low back pain, spinal cord injury, and post-operative pain management. However, tramadol monotherapy as an antidepressant is impeded by severe adverse effects including seizures and serotonin syndrome. Interestingly, phosphodiesterase-III inhibitors demonstrated novel promising antidepressant effects. Among which, cilostazol was reported to attenuate depression in post-stroke cases, geriatrics and patients undergoing carotid artery stenting. Therefore, this study was carried out to investigate the possible antidepressant-like effects of tramadol and/or cilostazol on the behavioral level in experimental animals, and to examine the neurochemical and biochemical effects of tramadol, cilostazol and their combination in rats, in order to explore the probable mechanisms of action underlying their effects. To achieve our target, male albino mice and rats were randomly allocated into five groups and administered either vehicle for control, fluoxetine (20 mg/kg, p.o., tramadol HCl (20 mg/kg, p.o., cilostazol (100 mg/kg, p.o., or combination of both tramadol and cilostazol. At day 14, mice and rats were challenged in the tail suspension test and forced swim test, respectively. Rats were sacrificed and brains were isolated for determination of brain monoamines, MDA, NO, SOD, and TNF-α. The current results showed that concurrent administration of cilostazol to tramadol-treated animals modulated depression on the behavioral level, and showed ameliorative neurochemical and biochemical effects

  10. Mechanism of synergistic action following co-treatment with pramipexole and fluoxetine or sertraline in the forced swimming test in rats.

    Science.gov (United States)

    Rogóz, Zofia; Skuza, Grazyna

    2006-01-01

    The aim of the present study was to examine the effect of combined treatment of male Wistar rats with pramipexole and fluoxetine or sertraline in the forced swimming test. The obtained results showed that co-treatment with pramipexole (0.1 mg/kg) and fluoxetine (10 mg/kg) or sertraline (5 mg/kg) (in doses inactive per se) exhibited antidepressant-like activity in the forced swimming test. Sulpiride (a dopamine D(2/3) receptor antagonist) and WAY 100635 (a 5-HT(1A) receptor antagonist), either being ineffective in the forced swimming test, inhibited the antidepressant-like effect induced by co-administration of pramipexole and fluoxetine or sertraline. However, SCH 23390 (a dopamine D(1) receptor antagonist) only partly did not alter the effect of pramipexole given jointly with antidepressant drugs; on the other hand, S 33084 (a dopamine D(3) receptor antagonist) only partly decreased (in a statistically insignificant manner) that effect. Moreover, progesterone and BD 1047 (a sigma(1) receptor antagonist) counteracted the antidepressant-like effect induced by co-administration of pramipexole and sertraline (but not pramipexole and fluoxetine). In that test, active behavior did not reflect the increases in general activity, since combined administration of pramipexole and fluoxetine or sertraline failed to enhance the locomotor activity of rats. None of the tested drugs (SCH 23390, sulpiride, S 33084, WAY 100635, BD 1047 and progesterone) - alone or in combination with pramipexole and fluoxetine or sertraline - changed locomotor activity. The results described in the present paper indicate that co-administration of pramipexole and fluoxetine or sertraline may induce a more pronounced antidepressive activity than does treatment with pramipexole alone, and that in addition to other mechanisms, dopamine D(2/3) and 5-HT(1A) receptors may contribute to the antidepressant-like activity of pramipexole and fluoxetine or sertraline in the forced swimming test in rats

  11. A dual inhibitor of FAAH and TRPV1 channels shows dose-dependent effect on depression-like behaviour in rats.

    Science.gov (United States)

    Kirkedal, Christian; Wegener, Gregers; Moreira, Fabricio; Joca, Sâmia Regiane Lourenco; Liebenberg, Nico

    2017-12-01

    The cannabinoid receptor 1 (CB1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) are proposed to mediate opposite behavioural responses. Their common denominator is the endocannabinoid ligand anandamide (AEA), which is believed to mediate antidepressant-like effect via CB1-R stimulation and depressive-like effect via TRPV1 activation. This is supposed to explain the bell-shaped dose-response curve for anandamide in preclinical models. We investigated this assumption by administering the dual inhibitor of AEA hydrolysis and TRPV1 activation N-arachidonoyl-serotonin (AA-5HT) into the medial prefrontal cortex of rats. AA-5HT was given in three different doses (0.125, 0.250, 0.500 nmol/0.4 µl/side) and rat behaviour was assessed in the forced swim test. Our results show significant antidepressant-like effect of AA-5HT (0.250 nmol) but no effects of low or high doses. The effect of 0.250 nmol AA-5HT was partially attenuated when coadministering the inverse CB1-agonist rimonabant (1.6 µg). A 0.250 nmol of AA-5HT administration into the medial prefrontal cortex induced a significant antidepressant-like effect that was partially attenuated by locally blocking CB1-receptor.

  12. Effects of co-treatment with mirtazapine and low doses of risperidone on immobility time in the forced swimming test in mice.

    Science.gov (United States)

    Rogóż, Zofia

    2010-01-01

    The aim of the present study was to examine the effect of mirtazapine (MIR) and risperidone (an atypical antipsychotic drug), given separately or jointly, on immobility time in the forced swimming test in male C57BL/6J mice. Fluoxetine (FLU) was used as a reference drug. MIR (2.5, 5 and 10 mg/kg) and FLU (5 and 10 mg/kg), or risperidone in low doses (0.05 and 0.1 mg/kg) given alone did not change the immobility time of mice in the forced swimming test. Joint administration of MIR (5 and 10 mg/kg) or FLU (10 mg/kg) and risperidone (0.1 mg/kg) produced antidepressant-like activity in the forced swimming test. WAY100636 (a 5-HT(1A) receptor antagonist) inhibited, while yohimbine (an α(2)-adrenergic receptor antagonist) potentiated the antidepressant-like effect induced by co-administration of MIR and risperidone. Active behavior in that test did not reflect an increase in general activity, since combined administration of antidepressants and risperidone failed to enhance the locomotor activity of mice. The obtained results indicate that risperidone applied in a low dose enhances the antidepressant-like activity of MIR and that, among other mechanisms, 5-HT(1A)-, and α(2)-adrenergic receptors may play a role in this effect.

  13. Antidepressant Potentials of Components from Trichilia monadelpha (Thonn. J.J. de Wilde in Murine Models

    Directory of Open Access Journals (Sweden)

    Kennedy Kwami Edem Kukuia

    2018-01-01

    Full Text Available Trichilia monadelpha is a common medicinal plant used traditionally in treating central nervous system conditions such as epilepsy, depression, pain, and psychosis. In this study, the antidepressant-like effect of crude extracts of the stem bark of T. monadelpha was investigated using two classical murine models, forced swimming test (FST and tail suspension test (TST. The extracts, petroleum ether, ethyl acetate, and hydroethanolic extracts (30–300 mg/kg, p.o., standard drug (imipramine; fluoxetine, 3–30 mg/kg, p.o., and saline (vehicle were given to mice one hour prior to the acute study. In a separate experiment the components (flavonoids, saponins, alkaloids, tannins, and terpenoids; 30–300 mg/kg, p.o. from the most efficacious extract fraction were screened to ascertain which components possessed the antidepressant effect. All the extracts and components significantly induced a decline in immobility in the FST and TST, indicative of an antidepressant-like activity. The extracts and some components showed increase in swimming and climbing in the FST as well as a significant enhancement in swinging and/or curling scores in the TST, suggesting a possible involvement of monoaminergic and/or opioidergic activity. This study reveals the antidepressant-like potential of the stem bark extracts and components of T. monadelpha.

  14. Enhanced anti-immobility effects of Sanggenon G isolated from the root bark of Morus alba combined with the α2-antagonist yohimbine in the rat forced swim test.

    Science.gov (United States)

    Lim, Dong Wook; Baek, Nam-In; Kim, Yun Tai; Lee, Changho; Kim, In-Ho; Han, Daeseok

    2016-07-01

    In this study, we aimed to determine whether Sanggenon G, an active compound isolated from the root bark of Morus alba, exhibited enhanced anti-immobility activity with the addition of the α2-antagonist yohimbine in rats subjected to forced swim test (FST)-induced depression. Fluoxetine (a selective serotonin reuptake inhibitor) treatment in rats reduced the immobility time, and pretreatment with yohimbine significantly enhanced the antidepressant-like behavior of fluoxetine at 5, 10 and 20 mg/kg. Similarly, Sanggenon G significantly decreased the immobility time, reducing immobility by a maximum of 43.9 % when treated at a dose of 20 mg/kg. Furthermore, pretreatment with yohimbine significantly enhanced the antidepressant-like behavior of Sanggenon G at 5 and 10 mg/kg. Our findings suggest that the antidepressant-like effect of Sanggenon G could be facilitated by concomitant use of the α2-antagonist. Further studies are needed to evaluate the potential of Sanggenon G as an alternative therapeutic approach for the treatment of depression.

  15. Potential antidepressant properties of IDN 5491 (hyperforin-trimethoxybenzoate), a semisynthetic ester of hyperforin.

    Science.gov (United States)

    Cervo, Luigi; Mennini, Tiziana; Rozio, Marco; Ekalle-Soppo, Charlotte Blanche; Canetta, Alessandro; Burbassi, Silvia; Guiso, Giovanna; Pirona, Lorenza; Riva, Antonella; Morazzoni, Paolo; Caccia, Silvio; Gobbi, Marco

    2005-03-01

    Hyperforin is one of the possible active principles mediating the antidepressant activity of Hypericum perforatum L. extracts. The ester derivative IDN 5491 (hyperforin-trimethoxybenzoate) showed antidepressant-like properties in the forced swimming test (FST) in rats, with no effect on open-field activity, when given as three intraperitoneal injections in 24 h at 3.125 and 6.25 mg/kg. The plasma concentrations of IDN 5491 were 30-50 microM, and those of hyperforin much lower but still close to those after effective doses of hyperforin-dicyclohexylammonium and Hypericum extract. This suggests that hyperforin plays a role in the antidepressant-like effect of the ester and of Hypericum extract. In vitro binding and uptake data showed that IDN 5491 is inactive on a wide panel of CNS targets at a concentration (14 microM) much higher than that measured in the brain of treated rats (0.3 microM). Like the extract, the antidepressant-like effect of IDN 5491 was blocked by (-)-sulpiride, a selective D2 receptor antagonist and by BD-1047, a selective sigma1 antagonist. Ex-vivo binding studies showed that brain sigma1 receptors are occupied after in vivo treatment with IDN 5491, possibly by an unknown metabolite or by endogenous ligand induced by hyperforin.

  16. Polycation induced actin bundles.

    Science.gov (United States)

    Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil

    2011-04-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Induced mutations in citrus

    International Nuclear Information System (INIS)

    Spiegel-Roy, P.; Vardi, Aliza

    1990-01-01

    Full text: Parthenocarpic tendency is an important prerequisite for successful induction of seedlessness in breeding and especially in mutation breeding. A gene for asynapsis and accompanying seedless fruit has been found by us in inbred progeny of cv. 'Wilking'. Using budwood irradiation by gamma rays, seedless mutants of 'Eureka' and 'Villafranca' lemon (original clone of the latter has 25 seeds) and 'Minneola' tangelo have been obtained. Ovule sterility of the three mutants is nearly complete, with some pollen fertility still remaining. A semi-compact mutant of Shamouti orange has been obtained by irradiation. A programme for inducing seedlessness in easy peeling citrus varieties and selections has been initiated. (author)

  18. Shear-induced chaos

    International Nuclear Information System (INIS)

    Lin, Kevin K; Young, Lai-Sang

    2008-01-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed

  19. Shear-induced chaos

    Science.gov (United States)

    Lin, Kevin K.; Young, Lai-Sang

    2008-05-01

    Guided by a geometric understanding developed in earlier works of Wang and Young, we carry out numerical studies of shear-induced chaos in several parallel but different situations. The settings considered include periodic kicking of limit cycles, random kicks at Poisson times and continuous-time driving by white noise. The forcing of a quasi-periodic model describing two coupled oscillators is also investigated. In all cases, positive Lyapunov exponents are found in suitable parameter ranges when the forcing is suitably directed.

  20. Xerostomia induced by radiotherapy

    Directory of Open Access Journals (Sweden)

    Alimi D

    2015-08-01

    Full Text Available David Alimi Department of Anesthesiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USAWe read with great interest the excellent review on xerostomia induced by radiotherapy, by Pinna et al.1 The authors should be congratulated for a very detailed review of the physiopathology, clinical symptoms, and therapeutic management of an extremely difficult condition. Although we agree that the use of anticholinergic medication represents treatment, it requires the patient to have residual salivary gland function. Unfortunately, it is well established that in most cases radiotherapy destroys most of the salivary gland and associated salivary secretions.     

  1. Cannabis induced asystole.

    Science.gov (United States)

    Brancheau, Daniel; Blanco, Jessica; Gholkar, Gunjan; Patel, Brijesh; Machado, Christian

    2016-01-01

    Cannabis or marijuana is the most used recreational, and until recently illegal, drug in the United States. Although cannabis has medicinal use, its consumption has been linked to motor vehicle accidents in dose dependent fashion. Marijuana and other cannabinoids produce a multitude of effects on the human body that may result in these motor vehicle accidents. Some of the effects that marijuana has been known to cause include altered sensorium, diminished reflexes, and increased vagal tone. We present a case of cannabis induced asystole from hypervagotonia. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Pacing-induced Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Alex Koo

    2017-10-01

    Full Text Available We present a case of pacing-induced cardiomyopathy. The patient presented with clinical symptoms of dyspnea, leg swelling, and orthopnea several months after a dual-chambered pacemaker was placed for third-degree heart block. The echocardiogram demonstrated a depressed ejection fraction. Coronary angiography was performed, which showed widely patent vessels. Single- and dual-chambered pacemakers create ventricular dyssynchrony, which in turn can cause structural, molecular changes leading to cardiomyopathy. With early intervention of biventricular pacemaker replacement, these changes can be reversible; thus, a timely diagnosis and awareness is warranted.

  3. Induced skeletal mutations

    International Nuclear Information System (INIS)

    Selby, P.B.

    1979-01-01

    This paper describes a large-scale experiment that, by means of breeding tests, confirmed that many dominant skeletal mutations are induced by large-dose radiation exposure. The author also discusses: (1) the major advantages and disadvantages of the skeletal method in improving estimates of genetic hazard to man; (2) future uses of the skeletal method; (3) direct estimation of risk beyond the first generation using the skeletal method; and (4) the possibility of using the skeletal method as a quick and easy screen for chemical mutagens

  4. Trauma Induced Coagulopathy

    DEFF Research Database (Denmark)

    Genét, Gustav Folmer; Johansson, Per; Meyer, Martin Abild Stengaard

    2013-01-01

    It remains debated whether traumatic brain injury (TBI) induces a different coagulopathy compared to non-TBI. This study investigated traditional coagulation tests, biomarkers of coagulopathy and endothelial damage in trauma patients with and without TBI. Blood from 80 adult trauma patients were...... sampled (median of 68 min (IQR 48-88) post-injury) upon admission to our trauma centre. Plasma/serum were retrospectively analysed for biomarkers reflecting sympathoadrenal activation (adrenaline, noradrenaline), coagulation activation/inhibition and fibrinolysis (protein C, activated protein C, tissue...

  5. Trastuzumab-induced cardiomyopathy.

    Science.gov (United States)

    Guglin, Maya; Cutro, Raymond; Mishkin, Joseph D

    2008-06-01

    Trastuzumab is a recombinant humanized monoclonal antibody used for the treatment of advanced breast cancer. It improves survival and increases response to chemotherapy. The major side effect of trastuzumab is cardiotoxicity manifesting as a reduction in left ventricular systolic function, either asymptomatic or with signs and symptoms of heart failure. Although reversible in most cases, cardiotoxicity frequently results in the discontinuation of trastuzumab. The objective of this review is to summarize facts about trastuzumab-induced cardiotoxicity and to highlight the areas of future investigations. We searched PubMed for trials involving trastuzumab used as an adjuvant therapy for breast cancer, including the metastatic breast cancer setting, and focused on cardiotoxicity.

  6. Docetaxel-induced neuropathy

    DEFF Research Database (Denmark)

    Eckhoff, Lise; Feddersen, Søren; Knoop, Ann

    2015-01-01

    Background. Docetaxel is a highly effective treatment of a wide range of malignancies but is often associated with peripheral neuropathy. The genetic variability of genes involved in the transportation or metabolism of docetaxel may be responsible for the variation in docetaxel-induced peripheral...... neuropathy (DIPN). The main purpose of this study was to investigate the impact of genetic variants in GSTP1 and ABCB1 on DIPN. Material and methods. DNA was extracted from whole blood from 150 patients with early-stage breast cancer who had received adjuvant docetaxel from February 2011 to May 2012. Two...

  7. Chemotherapy-induced polyneuropathy

    DEFF Research Database (Denmark)

    Zedan, Ahmed; Vilholm, Ole Jakob

    2014-01-01

    Chemotherapy-induced polyneuropathy (CIPN) is a common, but underestimated, clinical challenge. Incidence varies depending on many factors that are equally as important as the type of chemotherapeutic agent itself. Moreover, the assessment of CIPN is still uncertain, as several of the most...... frequently used scales do not rely on a formal neurological evaluation and depend on patients' reports and examiners' interpretations. Therefore, the aim of this MiniReview was to introduce the most common chemotherapies that cause neuropathy, and in addition to this, highlight the most significant...

  8. Contrast induced nephropathy

    DEFF Research Database (Denmark)

    Stacul, Fulvio; van der Molen, Aart J; Reimer, Peter

    2011-01-01

    PURPOSE: The Contrast Media Safety Committee (CMSC) of the European Society of Urogenital Radiology (ESUR) has updated its 1999 guidelines on contrast medium-induced nephropathy (CIN). AREAS COVERED: Topics reviewed include the definition of CIN, the choice of contrast medium, the prophylactic me....../min/1.73 m (2) is CIN risk threshold for intravenous contrast medium. • Hydration with either saline or sodium bicarbonate reduces CIN incidence. • Patients with eGFR = 60 ml/min/1.73 m (2) receiving contrast medium can continue metformin normally....

  9. Extrahypothalamic vasopressin and oxytocin in the human brain; presence of vasopressin cells in the bed nucleus of the stria terminalis

    NARCIS (Netherlands)

    Fliers, E.; Guldenaar, S. E.; van de Wal, N.; Swaab, D. F.

    1986-01-01

    In the present study, the distribution of extrahypothalamic vasopressin (VP) and oxytocin (OXT) in the human brain was investigated by means of immunocytochemistry. In the septum verum, few VP fibers were found in the nucleus septalis lateralis and medialis (NSL and NSM), and in the bed nucleus of

  10. Denervation (ablation) of nerve terminalis in renal arteries: early results of interventional treatment of arterial hypertension in Poland.

    Science.gov (United States)

    Bartuś, Krzysztof; Sadowski, Jerzy; Kapelak, Bogusław; Zajdel, Wojciech; Godlewski, Jacek; Bartuś, Stanisław; Bochenek, Maciej; Bartuś, Magdalena; Żmudka, Krzysztof; Sobotka, Paul A

    2013-01-01

    Arterial hypertension is one of the main causes of cardiovascular disease morbidity and overall mortality. To report the single centre experiences with changes in arterial blood pressure (BP) in patients after intra-arterial application of radiofrequency (RF) energy to cause renal sympathetic efferent and somatic afferent nerve and report vascular and kidney safety in a six month follow up. Twenty-eight patients, with hypertension despite medical therapy (median age 52.02 years, range 42-72 years) consented to therapeutic renal nerve ablation. SIMPLICITY RF catheters and generator provided by Ardian (currently Medtronic Inc., USA) were used to perform renal artery angiography and ablation. The mean BP at baseline, and after one month, three months and six months were measured [mm Hg]: systolic 176.6; 162.3 (p = 0.004); 150.6 (p arterial renal nerve denervation was not associated with either vascular or renal complications out to six months. Nerve ablation of renal arteries led to significant reduction of mean values of arterial systolic, diastolic BP and significant reduction of pulse pressure. The Polish experience is not significantly different compared to that reported in the Symplicity I and Symplicity II international cohorts. The long term durability of this therapy and its application to earlier stages of hypertension or other disease states will require further investigation.

  11. Ion induced Auger spectroscopy

    International Nuclear Information System (INIS)

    Thomas, E.W.; Legg, K.O.; Metz, W.A.

    1980-01-01

    Auger electron spectra are induced by impact of heavy ions (e.g. Ar + ) on surfaces; it has been suggested that analysis of such spectra would be a useful technique for surface analysis. We have examined the Auger spectra for various projectile-target combinations and present as representative data the spectra for 100 keV Ar + impact on Al, Cr, Mn, Fe and Co. For a projectile incident on a species of higher nuclear charge the spectrum is dominated by Auger lines from the projectile, broadened considerably by the Doppler effect due to the projectile's motion. The spectra are not characteristic of the target and therefore offer no opportunity for surface analysis. For a projectile incident on a target of lower nuclear charge the spectrum is that of the target species but the spectrum is consistent with the source being sputtered excited atoms; the Auger electrons do not come from the surface. We conclude that the ion induced Auger spectra are in general not a convenient method for surface analysis. (orig.)

  12. Curcumin Protects Neurons from Glutamate-Induced Excitotoxicity by Membrane Anchored AKAP79-PKA Interaction Network

    Directory of Open Access Journals (Sweden)

    Kui Chen

    2015-01-01

    Full Text Available Now stimulation of AMPA receptor as well as its downstream pathways is considered as potential central mediators in antidepressant mechanisms. As a signal integrator which binds to AMPA receptor, A-kinase anchoring protein 79-(AKAP79- PKA complex is regarded as a potential drug target to exert neuroprotective effects. A well-tolerated and multitarget drug curcumin has been confirmed to exert antidepressant-like effects. To explore whether AKAP79-PKA complex is involved in curcumin-mediated antiexcitotoxicity, we detected calcium signaling, subcellular location of AKAP79-PKA complex, phosphorylation of glutamate receptor, and ERK and AKT cascades. In this study, we found that curcumin protected neurons from glutamate insult by reducing Ca2+ influx and blocking the translocation of AKAP79 from cytomembrane to cytoplasm. In parallel, curcumin enhanced the phosphorylation of AMPA receptor and its downstream pathways in PKA-dependent manner. If we pretreated cells with PKA anchoring inhibitor Ht31 to disassociate PKA from AKAP79, no neuroprotective effects were observed. In conclusion, our results show that AKAP79-anchored PKA facilitated the signal relay from AMPA receptor to AKT and ERK cascades, which may be crucial for curcumin-mediated antiexcitotoxicity.

  13. Induced Seismicity Monitoring System

    Science.gov (United States)

    Taylor, S. R.; Jarpe, S.; Harben, P.

    2014-12-01

    There are many seismological aspects associated with monitoring of permanent storage of carbon dioxide (CO2) in geologic formations. Many of these include monitoring underground gas migration through detailed tomographic studies of rock properties, integrity of the cap rock and micro seismicity with time. These types of studies require expensive deployments of surface and borehole sensors in the vicinity of the CO2 injection wells. Another problem that may exist in CO2 sequestration fields is the potential for damaging induced seismicity associated with fluid injection into the geologic reservoir. Seismic hazard monitoring in CO2 sequestration fields requires a seismic network over a spatially larger region possibly having stations in remote settings. Expensive observatory-grade seismic systems are not necessary for seismic hazard deployments or small-scale tomographic studies. Hazard monitoring requires accurate location of induced seismicity to magnitude levels only slightly less than that which can be felt at the surface (e.g. magnitude 1), and the frequencies of interest for tomographic analysis are ~1 Hz and greater. We have developed a seismo/acoustic smart sensor system that can achieve the goals necessary for induced seismicity monitoring in CO2 sequestration fields. The unit is inexpensive, lightweight, easy to deploy, can operate remotely under harsh conditions and features 9 channels of recording (currently 3C 4.5 Hz geophone, MEMS accelerometer and microphone). An on-board processor allows for satellite transmission of parameter data to a processing center. Continuous or event-detected data is kept on two removable flash SD cards of up to 64+ Gbytes each. If available, data can be transmitted via cell phone modem or picked up via site visits. Low-power consumption allows for autonomous operation using only a 10 watt solar panel and a gel-cell battery. The system has been successfully tested for long-term (> 6 months) remote operations over a wide range

  14. Traffic forecasts ignoring induced demand

    DEFF Research Database (Denmark)

    Næss, Petter; Nicolaisen, Morten Skou; Strand, Arvid

    2012-01-01

    the model calculations included only a part of the induced traffic, the difference in cost-benefit results compared to the model excluding all induced traffic was substantial. The results show lower travel time savings, more adverse environmental impacts and a considerably lower benefitcost ratio when...... induced traffic is partly accounted for than when it is ignored. By exaggerating the economic benefits of road capacity increase and underestimating its negative effects, omission of induced traffic can result in over-allocation of public money on road construction and correspondingly less focus on other...... performance of a proposed road project in Copenhagen with and without short-term induced traffic included in the transport model. The available transport model was not able to include long-term induced traffic resulting from changes in land use and in the level of service of public transport. Even though...

  15. Paliperidone palmitate-induced sialorrhoea

    Directory of Open Access Journals (Sweden)

    Cengiz Cengisiz

    2016-03-01

    Full Text Available Extrapyramidal, metabolic, and cardiac side effects were reported for atypical antipsychotics; although a few resources show paliperidone-induced sialorrhea, there are no resources that show paliperidone palmitate-induced sialorrhea. In this paper, we present the paliperidone palmitate-induced sialorrhea side effects of a patient who applied on our clinic [Cukurova Med J 2016; 41(0.100: 8-13

  16. Radiation-induced cancer

    International Nuclear Information System (INIS)

    Dutrillaux, B.; CEA Fontenay-aux-Roses, 92

    1998-01-01

    The induction of malignant diseases is one of the most concerning late effects of ionising radiation. A large amount of information has been collected form atomic bomb survivors, patients after therapeutic irradiation, occupational follow-up and accidentally exposed populations. Major uncertainties persist in the (very) low range i.e, population and workers radioprotection. A review of the biological mechanisms leading to cancer strongly suggests that the vast majority of radiation-induced malignancies arise as a consequence of recessive mutations can be unveiled by ageing, this process being possibly furthered by constitutional or acquired genomic instability. The individual risk is likely to be very low, probably because of the usual dose level. However, the magnitude of medical exposure and the reliance of our societies on nuclear industry are so high that irreproachable decision-making processes and standards for practice are inescapable. (author)

  17. Radiation-induced nondisjunction

    International Nuclear Information System (INIS)

    Uchida, I.A.

    1979-01-01

    The methodology and results of epidemiological studies of the effects of preconception diagnostic x-rays of the abdomen on chromosome segregation in humans are described. The vast majority of studies show the same positive, though not significant, trend to increased nondisjunction among the offspring of irradiated women. The results of the various studies, however, cannot be pooled because of differing methodologies used. Abnormal chromosome segregation during mitotic division has been inducted experimentally by the in vitro exposure of human lymphocytes to a low dose of 50 R gamma irradiation. First meiotic nondisjunction has been successfully induced by whole body exposure of female mice to a low dose of radiation. The question of time-related repair of the mechanism involved in chromosome segregation is raised

  18. Radiation induced oral mucositis

    Directory of Open Access Journals (Sweden)

    P S Satheesh Kumar

    2009-01-01

    Full Text Available Patients receiving radiotherapy or chemotherapy will receive some degree of oral mucositis The incidence of oral mucositis was especially high in patients: (i With primary tumors in the oral cavity, oropharynx, or nasopharynx; (ii who also received concomitant chemotherapy; (iii who received a total dose over 5,000 cGy; and (iv who were treated with altered fractionation radiation schedules. Radiation-induced oral mucositis affects the quality of life of the patients and the family concerned. The present day management of oral mucositis is mostly palliative and or supportive care. The newer guidelines are suggesting Palifermin, which is the first active mucositis drug as well as Amifostine, for radiation protection and cryotherapy. The current management should focus more on palliative measures, such as pain management, nutritional support, and maintenance, of good oral hygiene

  19. Laser induced nuclear reactions

    International Nuclear Information System (INIS)

    Ledingham, Ken; McCanny, Tom; Graham, Paul; Fang Xiao; Singhal, Ravi; Magill, Joe; Creswell, Alan; Sanderson, David; Allott, Ric; Neely, David; Norreys, Peter; Santala, Marko; Zepf, Matthew; Watts, Ian; Clark, Eugene; Krushelnick, Karl; Tatarakis, Michael; Dangor, Bucker; Machecek, Antonin; Wark, Justin

    1998-01-01

    Dramatic improvements in laser technology since 1984 have revolutionised high power laser technology. Application of chirped-pulse amplification techniques has resulted in laser intensities in excess of 10 19 W/cm 2 . In the mid to late eighties, C. K. Rhodes and K. Boyer discussed the possibility of shining laser light of this intensity onto solid surfaces and to cause nuclear transitions. In particular, irradiation of a uranium target could induce electro- and photofission in the focal region of the laser. In this paper it is shown that μCi of 62 Cu can be generated via the (γ,n) reaction by a laser with an intensity of about 10 19 Wcm -2

  20. Radiation induced pesticidal microbes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants.

  1. Radiation induced microbial pesticide

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Young Keun; Kim, Jae Sung; Kim, Jin Kyu; Lee, Sang Jae

    2000-01-01

    To control plant pathogenic fungi, 4 strains of bacteria (K1, K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 13 kinds of fungi. Mutants of K1 and YS1 strains were induced by gamma-ray radiation and showed promising antifungal activities. These wild type and mutants showed resistant against more than 27 kinds of commercial pesticides among 30 kinds of commercial pesticides test particularly, YS1-1006 mutant strain showed resistant against hydrogen oxide. And mutants had increased antifungal activity against Botryoshaeria dothidea. These results suggested that radiation could be an useful method for the induction of functional mutants. (author)

  2. Aripiprazole-induced priapism

    Directory of Open Access Journals (Sweden)

    Satya K Trivedi

    2016-01-01

    Full Text Available Priapism is a urologic emergency representing a true disorder of penile erection that persists beyond or is unrelated to sexual interest or stimulation. A variety of psychotropic drugs are known to produce priapism, albeit rarely, through their antagonistic action on alpha-1 adrenergic receptors. We report such a case of priapism induced by a single oral dose of 10 mg aripiprazole, a drug with the least affinity to adrenergic receptors among all atypical antipsychotics. Polymorphism of alpha-2A adrenergic receptor gene in schizophrenia patients is known to be associated with sialorrhea while on clozapine treatment. Probably, similar polymorphism of alpha-1 adrenergic receptor gene could contribute to its altered sensitivity and resultant priapism. In future, pharmacogenomics-based approach may help in personalizing the treatment and effectively prevent the emergence of such side effects.

  3. [Cannabis-induced disorders].

    Science.gov (United States)

    Soyka, M; Preuss, U; Hoch, E

    2017-03-01

    Use and misuse of cannabis and marihuana are frequent. About 5% of the adult population are current users but only 1.2% are dependent. The medical use of cannabis is controversial but there is some evidence for improvement of chronic pain and spasticity. The somatic toxicity of cannabis is well proven but limited and psychiatric disorders induced by cannabis are of more relevance, e.g. cognitive disorders, amotivational syndrome, psychoses and delusional disorders as well as physical and psychological dependence. The withdrawal symptoms are usually mild and do not require pharmacological interventions. To date there is no established pharmacotherapy for relapse prevention. Psychosocial interventions include psychoeducation, behavioral therapy and motivational enhancement. The CANDIS protocol is the best established German intervention among abstinence-oriented therapies.

  4. Induced seismicity. Final report

    International Nuclear Information System (INIS)

    Segall, P.

    1997-01-01

    The objective of this project has been to develop a fundamental understanding of seismicity associated with energy production. Earthquakes are known to be associated with oil, gas, and geothermal energy production. The intent is to develop physical models that predict when seismicity is likely to occur, and to determine to what extent these earthquakes can be used to infer conditions within energy reservoirs. Early work focused on earthquakes induced by oil and gas extraction. Just completed research has addressed earthquakes within geothermal fields, such as The Geysers in northern California, as well as the interactions of dilatancy, friction, and shear heating, on the generation of earthquakes. The former has involved modeling thermo- and poro-elastic effects of geothermal production and water injection. Global Positioning System (GPS) receivers are used to measure deformation associated with geothermal activity, and these measurements along with seismic data are used to test and constrain thermo-mechanical models

  5. Macroscopic Optomechanically Induced Transparency

    Science.gov (United States)

    Pate, Jacob; Castelli, Alessandro; Martinez, Luis; Thompson, Johnathon; Chiao, Ray; Sharping, Jay

    Optomechanically induced transparency (OMIT) is an effect wherein the spectrum of a cavity resonance is modified through interference between coupled excitation pathways. In this work we investigate a macroscopic, 3D microwave, superconducting radio frequency (SRF) cavity incorporating a niobium-coated, silicon-nitride membrane as the flexible boundary. The boundary supports acoustic vibrational resonances, which lead to coupling with the microwave resonances of the SRF cavity. The theoretical development and physical understanding of OMIT for our macroscopic SRF cavity is the same as that for other recently-reported OMIT systems despite vastly different optomechanical coupling factors and device sizes. Our mechanical oscillator has a coupling factor of g0 = 2 π . 1 ×10-5 Hz and is roughly 38 mm in diameter. The Q = 5 ×107 for the SRF cavity allows probing of optomechanical effects in the resolved sideband regime.

  6. [Glucocorticoid induced osteoporosis].

    Science.gov (United States)

    Anić, Branimir; Mayer, Miroslav

    2014-01-01

    Secondary osteoporosis most often develops due to glucocorticoid therapy. Glucocorticoids affect all stages of the bone remodeling cycle, its formation and resorption. Osteoblasts are primarily affected, decreasing their activity and enhancing apoptosis. Patients treated with glucocorticoids have lower bone mineral density and increased fracture risk. Glucocorticoid-induced osteoporosis can be prevented by administering the minimal effective dose of glucocorticoids, calcium and vitamin D supplementation or, if possible, by hormone replace- ment therapy. Moreover, appropriate physical activity should be encouraged. Patients who are at higher risk for low-energy fractures (for example post-menopausal women) have to be actively treated, usually with antiresorptive drugs among which bisphosphonates are currently the first line therapy.

  7. Radiation induced genomic instability

    International Nuclear Information System (INIS)

    Morgan, W.

    2003-01-01

    This presentation will focus on delayed genetic effects occurring in the progeny of cells after exposure to ionizing radiation. We have developed a model system for investigating those genetic effects occurring multiple generations after radiation exposure. The presentation will describe some of the delayed effects observed after radiation exposures including delayed chromosomal rearrangements, and recombination events as determined by a plasmid based assay system. We will present new data on how changes in gene expression as measured by differential display and DNA microarray analysis provides a mechanism by which cells display a memory of irradiation, and introduce candidate genes that may play a role in initiating and perpetuation the unstable phenotype. These results will be discussed in terms of the recently described non-targeted Death Inducing Effect (DIE) where by secreted factors from clones of unstable cells can elicit effects in non irradiated cells and may serve to perpetuate the unstable phenotype in cells that themselves were not irradiated

  8. Radiation induced pesticidal microbes

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Y. K.; Kim, J. S.; Kim, J. K.; Lee, S. J.; Lim, D. S.

    2001-01-01

    To isolate pesticidal microbes against plant pathogenic fungi, 4 strains of bacteria(K1. K3, K4, YS1) were isolated from mushroom compost and hot spring. K4, K1, K3, YS1 strain showed wide antifungal spectrum and high antifungal activities against 12 kinds of fungi. Specific proteins and the specific transcribed genes were found from the YS1 and its radiation-induced mutants. And knock-out mutants of antifungal activity were derived by transposon mutagenesis. From these knock-out mutants, the antifungal activity related genes and its modification by gamma-ray radiation are going to be studied. These results suggested that radiation could be an useful tool for the induction of functional mutants

  9. Alcohol-Induced Blackout

    Directory of Open Access Journals (Sweden)

    Dai Jin Kim

    2009-11-01

    Full Text Available For a long time, alcohol was thought to exert a general depressant effect on the central nervous system (CNS. However, currently the consensus is that specific regions of the brain are selectively vulnerable to the acute effects of alcohol. An alcohol-induced blackout is the classic example; the subject is temporarily unable to form new long-term memories while relatively maintaining other skills such as talking or even driving. A recent study showed that alcohol can cause retrograde memory impairment, that is, blackouts due to retrieval impairments as well as those due to deficits in encoding. Alcoholic blackouts may be complete (en bloc or partial (fragmentary depending on severity of memory impairment. In fragmentary blackouts, cueing often aids recall. Memory impairment during acute intoxication involves dysfunction of episodic memory, a type of memory encoded with spatial and social context. Recent studies have shown that there are multiple memory systems supported by discrete brain regions, and the acute effects of alcohol on learning and memory may result from alteration of the hippocampus and related structures on a cellular level. A rapid increase in blood alcohol concentration (BAC is most consistently associated with the likelihood of a blackout. However, not all subjects experience blackouts, implying that genetic factors play a role in determining CNS vulnerability to the effects of alcohol. This factor may predispose an individual to alcoholism, as altered memory function during intoxication may affect an individual‟s alcohol expectancy; one may perceive positive aspects of intoxication while unintentionally ignoring the negative aspects. Extensive research on memory and learning as well as findings related to the acute effects of alcohol on the brain may elucidate the mechanisms and impact associated with the alcohol- induced blackout.

  10. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  11. Prolactin induces adrenal hypertrophy

    Directory of Open Access Journals (Sweden)

    E.J. Silva

    2004-02-01

    Full Text Available Although adrenocorticotropic hormone is generally considered to play a major role in the regulation of adrenal glucocorticoid secretion, several reports have suggested that other pituitary hormones (e.g., prolactin also play a significant role in the regulation of adrenal function. The aim of the present study was to measure the adrenocortical cell area and to determine the effects of the transition from the prepubertal to the postpubertal period on the hyperprolactinemic state induced by domperidone (4.0 mg kg-1 day-1, sc. In hyperprolactinemic adult and young rats, the adrenals were heavier, as determined at necropsy, than in the respective controls: adults (30 days: 0.16 ± 0.008 and 0.11 ± 0.007; 46 days: 0.17 ± 0.006 and 0.12 ± 0.008, and 61 days: 0.17 ± 0.008 and 0.10 ± 0.004 mg for treated and control animals, respectively; P < 0.05, and young rats (30 days: 0.19 ± 0.003 and 0.16 ± 0.007, and 60 days: 0.16 ± 0.006 and 0.13 ± 0.009 mg; P < 0.05. We selected randomly a circular area in which we counted the nuclei of adrenocortical cells. The area of zona fasciculata cells was increased in hyperprolactinemic adult and young rats compared to controls: adults: (61 days: 524.90 ± 47.85 and 244.84 ± 9.03 µm² for treated and control animals, respectively; P < 0.05, and young rats: (15 days: 462.30 ± 16.24 and 414.28 ± 18.19; 60 days: 640.51 ± 12.91 and 480.24 ± 22.79 µm²; P < 0.05. Based on these data we conclude that the increase in adrenal weight observed in the hyperprolactinemic animals may be due to prolactin-induced adrenocortical cell hypertrophy.

  12. Congruence properties of induced representations

    DEFF Research Database (Denmark)

    Mayer, Dieter; Momeni, Arash; Venkov, Alexei

    In this paper we study representations of the projective modular group induced from the Hecke congruence group of level 4 with Selberg's character. We show that the well known congruence properties of Selberg's character are equivalent to the congruence properties of the induced representations...

  13. Laser-induced nuclear fusion

    International Nuclear Information System (INIS)

    Jablon, Claude

    1977-01-01

    Research programs on laser-induced thermonuclear fusion in the United States, in Europe and in USSR are reviewed. The principle of the fusion reactions induced is explained, together with the theoretical effects of the following phenomena: power and type of laser beams, shape and size of the solid target, shock waves, and laser-hydrodynamics coupling problems [fr

  14. Force induced DNA melting

    International Nuclear Information System (INIS)

    Santosh, Mogurampelly; Maiti, Prabal K

    2009-01-01

    When pulled along the axis, double-strand DNA undergoes a large conformational change and elongates by roughly twice its initial contour length at a pulling force of about 70 pN. The transition to this highly overstretched form of DNA is very cooperative. Applying a force perpendicular to the DNA axis (unzipping), double-strand DNA can also be separated into two single-stranded DNA, this being a fundamental process in DNA replication. We study the DNA overstretching and unzipping transition using fully atomistic molecular dynamics (MD) simulations and argue that the conformational changes of double-strand DNA associated with either of the above mentioned processes can be viewed as force induced DNA melting. As the force at one end of the DNA is increased the DNA starts melting abruptly/smoothly above a critical force depending on the pulling direction. The critical force f m , at which DNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the DNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base pairs. The fraction of Watson-Crick base pair hydrogen bond breaking as a function of force does not show smooth and continuous behavior and consists of plateaus followed by sharp jumps.

  15. Chemotherapy-induced hypocalcemia.

    Science.gov (United States)

    Ajero, Pia Marie E; Belsky, Joseph L; Prawius, Herbert D; Rella, Vincent

    2010-01-01

    To present a unique case of transient, asymptomatic chemotherapy-induced hypocalcemia not attributable to hypomagnesemia or tumor lysis syndrome and review causes of hypocalcemia related to cancer with and without use of chemotherapy. We present a case detailing the clinical and laboratory findings of a patient who had severe hypocalcemia during chemotherapy and discuss causes of hypocalcemia with an extensive literature review of chemotherapeutic agents associated with this biochemical abnormality. In a 90-year-old man, hypocalcemia developed during 2 courses of chemotherapy for Hodgkin lymphoma, with partial recovery between courses and normal serum calcium 10 months after completion of treatment. Magnesium, vitamin D, and parathyroid hormone levels were low normal. There was no evidence of tumor lysis syndrome. Of the various agents administered, vinca alkaloids seemed the most likely cause. Serial testing suggested that the underlying mechanism may have been acquired, reversible hypoparathyroidism. No other similar case was found in the published literature. The severe hypocalcemia in our patient could not be attributed to hypomagnesemia or tumor lysis syndrome, and it was clearly associated with the timing of his chemotherapeutic regimen. Possibilities include direct parathyroid hormone suppression or alteration of calcium sensing by the chemotherapeutic drugs. Serum calcium surveillance before and during chemotherapeutic management of cancer patients may reveal more instances and provide insight into the exact mechanism of this lesser known yet striking complication.

  16. Collision-induced coherence

    International Nuclear Information System (INIS)

    Bloembergen, N.

    1985-01-01

    Collision-induced coherence is based on the elimination of phase correlations between coherent Feynman-type pathways which happen to interfere destructively in the absence of damping for certain nonlinear processes. One consequence is the appearance of the extra resonances in four-wave light mixing experiments, for which the intensity increases with increasing buffer gas pressure. These resonances may occur between a pair of initially unpopulated excited states, or between a pair of initially equally populated ground states. The pair of levels may be Zeeman substrates which became degenerate in zero magnetic field. The resulting collision-enhanced Hanle resonances can lead to very sharp variations in the four-wave light mixing signal as the external magnetic field passes through zero. The theoretical description in terms of a coherence grating between Zeeman substrates is equivalent to a description in terms of a spin polarization grating obtained by collision-enhanced transverse optical pumping. The axis of quantization in the former case is taken perpendicular to the direction of the light beams; in the latter case is taken parallel to this direction

  17. Linezolid induced retinopathy.

    Science.gov (United States)

    Park, Dae Hyun; Park, Tae Kwann; Ohn, Young-Hoon; Park, Jong Sook; Chang, Jee Ho

    2015-12-01

    While optic neuropathy is a well-known cause of visual disturbances in linezolid-treated patients, the possibility of linezolid-related retinopathy has not been investigated. Here, we report a case of retinopathy demonstrated by multifocal electroretinogram (mfERG) in a linezolid-treated patient. A 61-year-old man with extensively drug-resistant pulmonary tuberculosis treated with linezolid for 5 months presented with painless loss of vision in both eyes. The patient's best corrected visual acuity was 20/50 in the right eye and 20/100 in the left eye. Fundus examination revealed mild disc edema, and color vision was defective in both eyes. Humphrey visual field tests showed a superotemporal field defect in the right eye and central and pericentral field defect in the left eye. Optical coherence tomography (OCT) revealed only mild optic disc swelling. In mfERG, central amplitudes were depressed in both eyes. Four months after the cessation of linezolid, visual acuity was restored to 20/20 right eye and 20/25 left eye. The color vision and visual field had improved. The OCT and mfEFG findings improved as well. Although the clinical features were similar to linezolid-induced optic neuropathy, the mfERG findings suggest the possibility of a retinopathy through cone dysfunction.

  18. Food-induced anaphylaxis.

    Science.gov (United States)

    Järvinen, Kirsi M

    2011-06-01

    Food-induced anaphylaxis is the leading single cause of anaphylaxis treated in emergency departments and increasing in prevalence. Food allergy is an increasing problem in westernized countries around the world, with a cumulative prevalence of 3-6%. Peanut, tree nuts, and shellfish are the most commonly implicated foods in anaphylaxis, although milk is a common trigger in children. Asthmatics, adolescents, and those with a prior reaction are at increased risk for more severe reactions. Most first reactions and reactions in children most commonly occur at home, whereas most subsequent reactions and reactions in adults occur outside home. Studies on schools have identified inadequate management plans and symptom recognition whereas those on restaurants report lack of prior notification by allergic individuals and lack in staff education. Epinephrine, although underutilized is the drug of choice with multiple doses needed in up to one-fifth of reactions. Diagnosis is currently based on convincing history and allergy testing supported by elevated serum tryptase, if available. Long-term management includes strict avoidance and emergency action plan. With a growing population of food-allergic children and adults, markers to predict which individuals are at increased risk for anaphylaxis as well as new therapies are vigorously sought.

  19. Methaemoglobinemia Induced by MDMA?

    Directory of Open Access Journals (Sweden)

    L. L. W. Verhaert

    2011-01-01

    Full Text Available Case. A 45-year-old man with a blank medical history presented at the emergency room with dizziness and cyanosis. Physical examination showed cyanosis with a peripheral saturation (SpO2 of 85%, he did not respond to supplemental oxygen. Arterial blood gas analysis showed a striking chocolate brown colour. Based on these data, we determined the arterial methaemoglobin concentration. This was 32%. We gave 100% oxygen and observed the patient in a medium care unit. The next day, patient could be discharged in good condition. Further inquiry about exhibitions and extensive history revealed that the patient used MDMA (3,4- methylenedioxymethamphetamine, the active ingredient of ecstasy. Conclusion. Acquired methaemoglobinemia is a condition that occurs infrequently, but is potentially life threatening. Different nutrients, medications, and chemicals can induce methaemoglobinemia by oxidation of haemoglobin. The clinical presentation of a patient with methaemoglobinemia is due to the impossibility of O2 binding and transport, resulting in tissue hypoxia. Important is to think about methaemoglobin in a patient who presents with cyanosis, a peripheral saturation of 85% that fails to respond properly to the administration of O2. Because methaemoglobin can be reduced physiologically, it is usually sufficient to remove the causative agent, to give O2, and to observe the patient.

  20. Induced mutations in castor

    International Nuclear Information System (INIS)

    Ganesan, K.; Javad Hussain, H.S.; Vindhiyavarman, P.

    2001-01-01

    Castor (Ricinus communis L.) is an important oilseed crop in India. To create variability mutations were induced in two cultivars 'TMV5' (maturing in 130-140 days) and 'CO1' (perennial type). Gamma rays and diethyl sulphate and ethidium bromide were used for seed treatment. Ten doses, from 100 to 1000 Gy were employed. For chemical mutagenesis five concentrations of mutagenes from 10 to 50 mM were tried. No economic mutants could be isolated after treatment with the chemical mutagens. The following economic mutants were identified in the dose 300 Gy of gamma rays. Annual types from perennial CO 1 castor CO 1 is a perennial variety (8-10 years) with bold seeds (100 seed weight 90 g) and high oil content (57%). Twenty-one lines were isolated with annual types (160-180 days) with high yield potential as well as bold seeds and high oil content. These mutants, identified in M 3 generation were bred true in subsequent generations up to M 8 generation. Critical evaluation of the mutants in yield evaluation trials is in progress

  1. Laughter-induced syncope.

    Science.gov (United States)

    Kim, Alexander J; Frishman, William H

    2012-01-01

    Reported cases of syncope caused directly by laughter are rare. The common scenario described in a few reports involved episodes of fortuitous laughter, sometimes followed by a short prodrome of lightheadedness, facial flushing, and dizziness, followed by an episode of definite syncope. There were no seizure-like movements, automatisms, or bladder or bowel incontinence. After the syncopal episodes that were seconds in length, the patients regained consciousness, and at that point were fully oriented. These episodes could recur in a similar situation with such laughter. Many of these patients subsequently underwent full syncope workups, without elucidating a primary cardiac or neurologic cause. In this review of laughter-induced syncope, we describe a patient of ours who fit these descriptions. This phenomenon is likely a subtype of benign Valsalva-related syncope, with autonomic reflex arcs coming into play that ultimately result in global cerebral hypoperfusion. Besides the Valsalva produced by a great fit of laughter, laughter itself has its own neuroendocrine and vasculature effects that may play a role.

  2. Radiation-induced cerebrovasculopathy

    International Nuclear Information System (INIS)

    Ikeyama, Yukihide; Abiko, Seisho; Kurokawa, Yasushi; Okamura, Tomomi; Watanabe, Kohsaku; Inoue, Shinichi; Fujii, Yasuhiro.

    1993-01-01

    We reported a patient who suffered from cerebrovasculopathy after irradiation therapy for astrocytoma located at the left temporal lobe. An eleven year-old boy who presented with headache and vomiting received partial removal of a tumor. Histological diagnosis of the tumor was astrocytoma (grade II). His preoperative cerebral angiograms showed mass sign solely, without stenosis or occlusion of the cerebral vessel. Postoperatively, he was treated with irradiation therapy involving the whole brain with a total of 30 Gy, and gamma knife therapy. Six months after irradiation, he started suffering from frequent cerebral ischemic attacks, but there was no regrowth of the tumor visible on CT scans. Cerebral angiograms were made again, and revealed multifocal stenoses in the bilateral internal carotid arteries, middle cerebral arteries, and the anterior cerebral artery. His symptoms did not improve after conservative treatment with steroids, calcium antagonist, or low molecular weight dextran. Although he received a superficial temporal artery-middle cerebral artery (STA-MCA) anastomoses bilaterally, multiple cerebral infarctions appeared. Although irradiation therapy is acceptable in patients with brain tumor, cerebrovasculopathy after irradiation should be considered as one of the most important complications, and the risk incurred by irradiation therapy should lead to more careful consideration and caution when treating intracranial brain tumors, especially in children. From our experience, the usefulness of bypass surgery for radiation-induced cerebrovasculopathy is still controversial. (author)