WorldWideScience

Sample records for termed intraguild predation

  1. Role of intraguild predation in aphidophagous guilds

    Czech Academy of Sciences Publication Activity Database

    Hemptinne, J. L.; Magro, A.; Saladin, C.; Dixon, Anthony F. G.

    2012-01-01

    Roč. 136, č. 3 (2012), s. 161-170 ISSN 0931-2048 Institutional support: RVO:67179843 Keywords : aphidophagous guilds * cost of intraguild predation * interspecific predation * intraguild predation * ladybird beetles * omnivory Subject RIV: EH - Ecology, Behaviour Impact factor: 1.560, year: 2012

  2. Biological control of toxic cyanobacteria by mixotrophic predators: an experimental test of intraguild predation theory

    NARCIS (Netherlands)

    Wilken, S.; Verspagen, J.M.H.; Naus-Wiezer, S.M.H.; Van Donk, E.; Huisman, Jef

    2014-01-01

    Intraguild predators both feed on and compete with their intraguild prey. In theory, intraguild predators can therefore be very effective as biological control agents of intraguild prey species, especially in productive environments. We investigated this hypothesis using the mixotrophic chrysophyte

  3. Dynamics of a Stochastic Intraguild Predation Model

    Directory of Open Access Journals (Sweden)

    Zejing Xing

    2016-04-01

    Full Text Available Intraguild predation (IGP is a widespread ecological phenomenon which occurs when one predator species attacks another predator species with which it competes for a shared prey species. The objective of this paper is to study the dynamical properties of a stochastic intraguild predation model. We analyze stochastic persistence and extinction of the stochastic IGP model containing five cases and establish the sufficient criteria for global asymptotic stability of the positive solutions. This study shows that it is possible for the coexistence of three species under the influence of environmental noise, and that the noise may have a positive effect for IGP species. A stationary distribution of the stochastic IGP model is established and it has the ergodic property, suggesting that the time average of population size with the development of time is equal to the stationary distribution in space. Finally, we show that our results may be extended to two well-known biological systems: food chains and exploitative competition.

  4. Intraguild predation reduces redundancy of predator species in multiple predator assemblage.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-07-01

    1. Interference between predator species frequently decreases predation rates, lowering the risk of predation for shared prey. However, such interference can also occur between conspecific predators. 2. Therefore, to understand the importance of predator biodiversity and the degree that predator species can be considered functionally interchangeable, we determined the degree of additivity and redundancy of predators in multiple- and single-species combinations. 3. We show that interference between two invasive species of predatory crabs, Carcinus maenas and Hemigrapsus sanguineus, reduced the risk of predation for shared amphipod prey, and had redundant per capita effects in most multiple- and single-species predator combinations. 4. However, when predator combinations with the potential for intraguild predation were examined, predator interference increased and predator redundancy decreased. 5. Our study indicates that trophic structure is important in determining how the effects of predator species combine and demonstrates the utility of determining the redundancy, as well as the additivity, of multiple predator species.

  5. Dynamics of a delayed intraguild predation model with harvesting

    Science.gov (United States)

    Collera, Juancho A.; Balilo, Aldrin T.

    2018-03-01

    In [1], a delayed three-species intraguild predation (IGP) model was considered. This particular tri-trophic community module includes a predator and its prey which share a common basal resource for their sustenance [3]. Here, it is assumed that in the absence of predation, the growth of the basal resource follows the delayed logistic equation. Without delay time, the IGP model in [1] reduces to the system considered in [7] where it was shown that IGP may induce chaos even if the functional responses are linear. Meanwhile, in [2] the delayed IGP model in [1] was generalized to include harvesting. Under the assumption that the basal resource has some economic value, a constant harvesting term on the basal resource was incorporated. However, both models in [1] and [2] use the delay time as the main parameter. In this research, we studied the delayed IGP model in [1] with the addition of linear harvesting term on each of the three species. The dynamical behavior of this system is examined using the harvesting rates as main parameter. In particular, we give conditions on the existence, stability, and bifurcations of equilibrium solutions of this system. This allows us to better understand the effects of harvesting in terms of the survival or extinction of one or more species in our system. Numerical simulations are carried out to illustrate our results. In fact, we show that the chaotic behavior in [7] unfolds when the harvesting rate parameter is varied.

  6. Dynamics of a intraguild predation model with generalist or specialist predator.

    Science.gov (United States)

    Kang, Yun; Wedekin, Lauren

    2013-11-01

    Intraguild predation (IGP) is a combination of competition and predation which is the most basic system in food webs that contains three species where two species that are involved in a predator/prey relationship are also competing for a shared resource or prey. We formulate two intraguild predation (IGP: resource, IG prey and IG predator) models: one has generalist predator while the other one has specialist predator. Both models have Holling-Type I functional response between resource-IG prey and resource-IG predator; Holling-Type III functional response between IG prey and IG predator. We provide sufficient conditions of the persistence and extinction of all possible scenarios for these two models, which give us a complete picture on their global dynamics. In addition, we show that both IGP models can have multiple interior equilibria under certain parameters range. These analytical results indicate that IGP model with generalist predator has "top down" regulation by comparing to IGP model with specialist predator. Our analysis and numerical simulations suggest that: (1) Both IGP models can have multiple attractors with complicated dynamical patterns; (2) Only IGP model with specialist predator can have both boundary attractor and interior attractor, i.e., whether the system has the extinction of one species or the coexistence of three species depending on initial conditions; (3) IGP model with generalist predator is prone to have coexistence of three species.

  7. Prey-mediated avoidance of an intraguild predator by its intraguild prey

    Science.gov (United States)

    Wilson, R.R.; Blankenship, T.L.; Hooten, M.B.; Shivik, J.A.

    2010-01-01

    Intraguild (IG) predation is an important factor influencing community structure, yet factors allowing coexistence of IG predator and IG prey are not well understood. The existence of spatial refuges for IG prey has recently been noted for their importance in allowing coexistence. However, reduction in basal prey availability might lead IG prey to leave spatial refuges for greater access to prey, leading to increased IG predation and fewer opportunities for coexistence. We determined how the availability of prey affected space-use patterns of bobcats (Lynx rufus, IG prey) in relation to coyote space-use patterns (Canis latrans, IG predators). We located animals from fall 2007 to spring 2009 and estimated bobcat home ranges and core areas seasonally. For each bobcat relocation, we determined intensity of coyote use, distance to water, small mammal biomass, and mean small mammal biomass of the home range during the season the location was collected. We built generalized linear mixed models and used Akaike Information Criteria to determine which factors best predicted bobcat space use. Coyote intensity was a primary determinant of bobcat core area location. In bobcat home ranges with abundant prey, core areas occurred where coyote use was low, but shifted to areas intensively used by coyotes when prey declined. High spatial variability in basal prey abundance allowed some bobcats to avoid coyotes while at the same time others were forced into more risky areas. Our results suggest that multiple behavioral strategies associated with spatial variation in basal prey abundance likely allow IG prey and IG predators to coexist. ?? 2010 Springer-Verlag.

  8. Compensatory growth following transient intraguild predation risk in predatory mites.

    Science.gov (United States)

    Walzer, Andreas; Lepp, Natalia; Schausberger, Peter

    2015-05-01

    Compensatory or catch-up growth following growth impairment caused by transient environmental stress, due to adverse abiotic factors or food, is widespread in animals. Such growth strategies commonly balance retarded development and reduced growth. They depend on the type of stressor but are unknown for predation risk, a prime selective force shaping life history. Anti-predator behaviours by immature prey typically come at the cost of reduced growth rates with potential negative consequences on age and size at maturity. Here, we investigated the hypothesis that transient intraguild predation (IGP) risk induces compensatory or catch-up growth in the plant-inhabiting predatory mite Phytoseiulus persimilis . Immature P. persimilis were exposed in the larval stage to no, low or high IGP risk, and kept under benign conditions in the next developmental stage, the protonymph. High but not low IGP risk prolonged development of P. persimilis larvae, which was compensated in the protonymphal stage by increased foraging activity and accelerated development, resulting in optimal age and size at maturity. Our study provides the first experimental evidence that prey may balance developmental costs accruing from anti-predator behaviour by compensatory growth.

  9. Delay induced stability switch, multitype bistability and chaos in an intraguild predation model.

    Science.gov (United States)

    Shu, Hongying; Hu, Xi; Wang, Lin; Watmough, James

    2015-12-01

    In many predator-prey models, delay has a destabilizing effect and induces oscillations; while in many competition models, delay does not induce oscillations. By analyzing a rather simple delayed intraguild predation model, which combines both the predator-prey relation and competition, we show that delay in intraguild predation models promotes very complex dynamics. The delay can induce stability switches exhibiting a destabilizing role as well as a stabilizing role. It is shown that three types of bistability are possible: one stable equilibrium coexists with another stable equilibrium (node-node bistability); one stable equilibrium coexists with a stable periodic solution (node-cycle bistability); one stable periodic solution coexists with another stable periodic solution (cycle-cycle bistability). Numerical simulations suggest that delay can also induce chaos in intraguild predation models.

  10. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites

    Science.gov (United States)

    Seiter, Michael; Schausberger, Peter

    2015-01-01

    Predation risk is a strong selective force shaping prey morphology, life history and behavior. Anti-predator behaviors may be innate, learned or both but little is known about the transgenerational behavioral effects of maternally experienced predation risk. We examined intraguild predation (IGP) risk-induced maternal effects on offspring anti-predator behavior, including learning, in the predatory mite Phytoseiulus persimilis. We exposed predatory mite mothers during egg production to presence or absence of the IG predator Amblyseius andersoni and assessed whether maternal stress affects the anti-predator behavior, including larval learning ability, of their offspring as protonymphs. Protonymphs emerging from stressed or unstressed mothers, and having experienced IGP risk as larvae or not, were subjected to choice situations with and without IG predator traces. Predator-experienced protonymphs from stressed mothers were the least active and acted the boldest in site choice towards predator cues. We argue that the attenuated response of the protonymphs to predator traces alone represents optimized risk management because no immediate risk existed. Such behavioral adjustment could reduce the inherent fitness costs of anti-predator behaviors. Overall, our study suggests that P. persimilis mothers experiencing IGP risk may prime their offspring to behave more optimally in IGP environments. PMID:26449645

  11. Intraguild predation by shore crabs affects mortality, behavior, growth, and densities of California horn snails

    Science.gov (United States)

    Lorda, J.; Hechinger, R.F.; Cooper, S. D.; Kuris, A. M.; Lafferty, Kevin D.

    2016-01-01

    The California horn snail, Cerithideopsis californica, and the shore crabs, Pachygrapsus crassipesand Hemigrapsus oregonensis, compete for epibenthic microalgae, but the crabs also eat snails. Such intraguild predation is common in nature, despite models predicting instability. Using a series of manipulations and field surveys, we examined intraguild predation from several angles, including the effects of stage-dependent predation along with direct consumptive and nonconsumptive predator effects on intraguild prey. In the laboratory, we found that crabs fed on macroalgae, snail eggs, and snails, and the size of consumed snails increased with predator crab size. In field experiments, snails grew less in the presence of crabs partially because snails behaved differently and were buried in the sediment (nonconsumptive effects). Consistent with these results, crab and snail abundances were negatively correlated in three field surveys conducted at three different spatial scales in estuaries of California, Baja California, and Baja California Sur: (1) among 61 sites spanning multiple habitat types in three estuaries, (2) among the habitats of 13 estuaries, and (3) among 34 tidal creek sites in one estuary. These results indicate that shore crabs are intraguild predators on California horn snails that affect snail populations via predation and by influencing snail behavior and performance.

  12. Threat-sensitive anti-intraguild predation behaviour: maternal strategies to reduce offspring predation risk in mites.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2011-01-01

    Predation is a major selective force for the evolution of behavioural characteristics of prey. Predation among consumers competing for food is termed intraguild predation (IGP). From the perspective of individual prey, IGP differs from classical predation in the likelihood of occurrence because IG prey is usually more rarely encountered and less profitable because it is more difficult to handle than classical prey. It is not known whether IGP is a sufficiently strong force to evolve interspecific threat sensitivity in antipredation behaviours, as is known from classical predation, and if so whether such behaviours are innate or learned. We examined interspecific threat sensitivity in antipredation in a guild of predatory mite species differing in adaptation to the shared spider mite prey (i.e. Phytoseiulus persimilis, Neoseiulus californicus and Amblyseius andersoni). We first ranked the players in this guild according to the IGP risk posed to each other: A. andersoni was the strongest IG predator; P. persimilis was the weakest. Then, we assessed the influence of relative IGP risk and experience on maternal strategies to reduce offspring IGP risk: A. andersoni was insensitive to IGP risk. Threat sensitivity in oviposition site selection was induced by experience in P. persimilis but occurred independently of experience in N. californicus. Irrespective of experience, P. persimilis laid fewer eggs in choice situations with the high- rather than low-risk IG predator. Our study suggests that, similar to classical predation, IGP may select for sophisticated innate and learned interspecific threat-sensitive antipredation responses. We argue that such responses may promote the coexistence of IG predators and prey.

  13. Habitat selection of a parasitoid mediated by volatiles informing on host and intraguild predator densities

    DEFF Research Database (Denmark)

    Cotes, Belén; Rännbäck, Linda Marie; Björkman, Maria

    2015-01-01

    both a parasitoid and its host, parasitoids may reduce the risk of intraguild predation (IGP) by avoiding such patches. In this study, we examined whether the presence of the entomopathogenic fungi Metarhizium brunneum and Beauveria bassiana in soil habitats of a root herbivore, Delia radicum, affects...

  14. Comparison of predator-prey interactions with and without intraguild predation by manipulation of the nitrogen source

    NARCIS (Netherlands)

    Wilken, S.; Verspagen, J.M.H.; Naus-Wiezer, S.; van Donk, E.; Huisman, J.

    2014-01-01

    Theory predicts that intraguild predation leads to different community dynamics than the trophic cascades of a linear food chain. However, experimental comparisons of these two food-web modules are rare. Mixotrophic plankton species combine photoautotrophic and heterotrophic nutrition by grazing

  15. Effects of intraguild predators on nest-site selection by prey.

    Science.gov (United States)

    Huang, Wen-San; Pike, David A

    2012-01-01

    Nest-site selection involves tradeoffs between the risk of predation (on females and/or nests) and nest-site quality (microenvironment), and consequently suitable nesting sites are often in limited supply. Interactions with "classical" predators (e.g., those not competing for shared resources) can strongly influence nest-site selection, but whether intraguild predation also influences this behavior is unknown. We tested whether risk of predation from an intraguild predator [the diurnal scincid lizard Eutropis (Mabuya) longicaudata] influences nest-site selection by its prey (the nocturnal gecko Gekko hokouensis) on Orchid Island, Taiwan. These two species putatively compete for shared resources, including invertebrate prey and nesting microhabitat, but the larger E. longicaudata also predates G. hokouensis (but not its hard-shelled eggs). Both species nested within a concrete wall containing a series of drainage holes that have either one ("closed-in") or two openings ("open"). In allopatry, E. longicaudata preferred to nest within holes that were plugged by debris (thereby protecting eggs from water intrusion), whereas G. hokouensis selected holes that were open at both ends (facilitating escape from predators). When we experimentally excluded E. longicaudata from its preferred nesting area, G. hokouensis not only nested in higher abundances, but also modified its nest-site selection, such that communal nesting was more prevalent and both open and closed-in holes were used equally. Egg viability was unaffected by the choice of hole type, but was reduced slightly (by 7%) in the predator exclusion area (presumably due to higher local incubation temperatures). Our field experiment demonstrates that intraguild predators can directly influence the nest density of prey by altering maternal nest-site selection behavior, even when the predator and prey are active at different times of day and the eggs are not at risk of predation.

  16. Intraguild predation by the generalist predator Orius majusculus on the parasitoid Encarsia formosa

    DEFF Research Database (Denmark)

    Sohrabi, Fariba; Enkegaard, Annie; Shishehbor, Parviz

    2013-01-01

    Intraguild predation of Orius majusculus (Reuter) (Heteroptera: Anthocoridae) on Encarsia formosa (Gahan) (Hymenoptera: Aphelinidae), both natural enemies of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae), was studied under laboratory conditions. The experiments quantified prey consumption b...

  17. Phenotypic plasticity in anti-intraguild predator strategies: mite larvae adjust their behaviours according to vulnerability and predation risk.

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-05-01

    Interspecific threat-sensitivity allows prey to maximize the net benefit of antipredator strategies by adjusting the type and intensity of their response to the level of predation risk. This is well documented for classical prey-predator interactions but less so for intraguild predation (IGP). We examined threat-sensitivity in antipredator behaviour of larvae in a predatory mite guild sharing spider mites as prey. The guild consisted of the highly vulnerable intraguild (IG) prey and weak IG predator Phytoseiulus persimilis, the moderately vulnerable IG prey and moderate IG predator Neoseiulus californicus and the little vulnerable IG prey and strong IG predator Amblyseius andersoni. We videotaped the behaviour of the IG prey larvae of the three species in presence of either a low- or a high-risk IG predator female or predator absence and analysed time, distance, path shape and interaction parameters of predators and prey. The least vulnerable IG prey A. andersoni was insensitive to differing IGP risks but the moderately vulnerable IG prey N. californicus and the highly vulnerable IG prey P. persimilis responded in a threat-sensitive manner. Predator presence triggered threat-sensitive behavioural changes in one out of ten measured traits in N. californicus larvae but in four traits in P. persimilis larvae. Low-risk IG predator presence induced a typical escape response in P. persimilis larvae, whereas they reduced their activity in the high-risk IG predator presence. We argue that interspecific threat-sensitivity may promote co-existence of IG predators and IG prey and should be common in predator guilds with long co-evolutionary history.

  18. Integration of multiple intraguild predator cues for oviposition decisions by a predatory mite

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2012-01-01

    In mutual intraguild predation (IGP), the role of individual guild members is strongly context dependent and, during ontogeny, can shift from an intraguild (IG) prey to a food competitor or to an IG predator. Consequently, recognition of an offspring's predator is more complex for IG than classic prey females. Thus, IG prey females should be able to modulate their oviposition decisions by integrating multiple IG predator cues and by experience. Using a guild of plant-inhabiting predatory mites sharing the spider mite Tetranychus urticae as prey and passing through ontogenetic role shifts in mutual IGP, we assessed the effects of single and combined direct cues of the IG predator Amblyseius andersoni (eggs and traces left by a female on the substrate) on prey patch selection and oviposition behaviour of naïve and IG predator-experienced IG prey females of Phytoseiulus persimilis. The IG prey females preferentially resided in patches without predator cues when the alternative patch contained traces of predator females or the cue combination. Preferential egg placement in patches without predator cues was only apparent in the choice situation with the cue combination. Experience increased the responsiveness of females exposed to the IG predator cue combination, indicated by immediate selection of the prey patch without predator cues and almost perfect oviposition avoidance in patches with the cue combination. We argue that the evolution of the ability of IG prey females to evaluate offspring's IGP risk accurately is driven by the irreversibility of oviposition and the functionally complex relationships between predator guild members. PMID:23264692

  19. Integration of multiple cues allows threat-sensitive anti-intraguild predator responses in predatory mites

    Science.gov (United States)

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Intraguild (IG) prey is commonly confronted with multiple IG predator species. However, the IG predation (IGP) risk for prey is not only dependent on the predator species, but also on inherent (intraspecific) characteristics of a given IG predator such as its life-stage, sex or gravidity and the associated prey needs. Thus, IG prey should have evolved the ability to integrate multiple IG predator cues, which should allow both inter- and intraspecific threat-sensitive anti-predator responses. Using a guild of plant-inhabiting predatory mites sharing spider mites as prey, we evaluated the effects of single and combined cues (eggs and/or chemical traces left by a predator female on the substrate) of the low risk IG predator Neoseiulus californicus and the high risk IG predator Amblyseius andersoni on time, distance and path shape parameters of the larval IG prey Phytoseiulus persimilis. IG prey discriminated between traces of the low and high risk IG predator, with and without additional presence of their eggs, indicating interspecific threat-sensitivity. The behavioural changes were manifest in distance moved, activity and path shape of IG prey. The cue combination of traces and eggs of the IG predators conveyed other information than each cue alone, allowing intraspecific threat-sensitive responses by IG prey apparent in changed velocities and distances moved. We argue that graded responses to single and combined IG predator cues are adaptive due to minimization of acceptance errors in IG prey decision making. PMID:23750040

  20. Fatal attraction? Intraguild facilitation and suppression among predators

    Science.gov (United States)

    Sivy, Kelly J.; Pozzanghera, Casey B.; Grace, James B.; Prugh, Laura R.

    2017-01-01

    Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.

  1. Fatal Attraction? Intraguild Facilitation and Suppression among Predators.

    Science.gov (United States)

    Sivy, Kelly J; Pozzanghera, Casey B; Grace, James B; Prugh, Laura R

    2017-11-01

    Competition and suppression are recognized as dominant forces that structure predator communities. Facilitation via carrion provisioning, however, is a ubiquitous interaction among predators that could offset the strength of suppression. Understanding the relative importance of these positive and negative interactions is necessary to anticipate community-wide responses to apex predator declines and recoveries worldwide. Using state-sponsored wolf (Canis lupus) control in Alaska as a quasi experiment, we conducted snow track surveys of apex, meso-, and small predators to test for evidence of carnivore cascades (e.g., mesopredator release). We analyzed survey data using an integrative occupancy and structural equation modeling framework to quantify the strengths of hypothesized interaction pathways, and we evaluated fine-scale spatiotemporal responses of nonapex predators to wolf activity clusters identified from radio-collar data. Contrary to the carnivore cascade hypothesis, both meso- and small predator occupancy patterns indicated guild-wide, negative responses of nonapex predators to wolf abundance variations at the landscape scale. At the local scale, however, we observed a near guild-wide, positive response of nonapex predators to localized wolf activity. Local-scale association with apex predators due to scavenging could lead to landscape patterns of mesopredator suppression, suggesting a key link between occupancy patterns and the structure of predator communities at different spatial scales.

  2. Molecular analysis of the gut contents of Harmonia axyridis (Coleoptera: Coccinellidae) as a method for detecting intra-guild predation by this species on aphidophagous predators other than coccinellids

    NARCIS (Netherlands)

    Ingels, B.; Aebi, A.; Hautier, L.; Van Leeuwen, T.; De Clercq, P.

    2013-01-01

    Several studies have demonstrated that the invasive ladybird Harmonia axyridis is a strong intra-guild predator of native species of ladybird. Laboratory studies have shown that H. axyridis can be an intra-guild predator of aphid predators other than coccinellids, including the hoverfly Episyrphus

  3. "Reversed" intraguild predation: red fox cubs killed by pine marten.

    Science.gov (United States)

    Brzeziński, Marcin; Rodak, Lukasz; Zalewski, Andrzej

    2014-01-01

    Camera traps deployed at a badger Meles meles set in mixed pine forest in north-eastern Poland recorded interspecific killing of red fox Vulpes vulpes cubs by pine marten Martes martes . The vixen and her cubs settled in the set at the beginning of May 2013, and it was abandoned by the badgers shortly afterwards. Five fox cubs were recorded playing in front of the den each night. Ten days after the first recording of the foxes, a pine marten was filmed at the set; it arrived in the morning, made a reconnaissance and returned at night when the vixen was away from the set. The pine marten entered the den several times and killed at least two fox cubs. It was active at the set for about 2 h. This observation proves that red foxes are not completely safe from predation by smaller carnivores, even those considered to be subordinate species in interspecific competition.

  4. Intraguild Predation Responses in Two Aphidophagous Coccinellids Identify Differences among Juvenile Stages and Aphid Densities.

    Science.gov (United States)

    Rondoni, Gabriele; Ielo, Fulvio; Ricci, Carlo; Conti, Eric

    2014-12-08

    (1) Intraguild predation (IGP) can occur among aphidophagous predators thus reducing their effectiveness in controlling crop pests. Among ladybirds, Coccinella septempunctata L. and Hippodamia variegata Goeze are the most effective predators upon Aphis gossypii Glov., which is an economically important pest of melon. Understanding their likelihood to engage in reciprocal predation is a key point for conservation of biological control. Here, we aim to investigate, under laboratory conditions, the level of IGP between the two above mentioned aphidophagous species. (2) Fourth-instars of the two species were isolated in petri dishes with combinations of different stages of the heterospecific ladybird and different densities of A. gossypii. The occurrence of IGP events was recorded after six hours. (3) C. septempunctata predated H. variegata at a higher rate than vice versa (70% vs. 43% overall). Higher density of the aphid or older juvenile stage of the IG-prey (22% of fourth instars vs. 74% of eggs and second instars) reduces the likelihood of predation. (4) To our knowledge, IGP between C. septempunctata and H. variegata was investigated for the first time. Results represent a baseline, necessary to predict the likelihood of IGP occurrence in the field.

  5. The king of snakes: performance and morphology of intraguild predators (Lampropeltis) and their prey (Pantherophis).

    Science.gov (United States)

    Penning, David A; Moon, Brad R

    2017-03-15

    Across ecosystems and trophic levels, predators are usually larger than their prey, and when trophic morphology converges, predators typically avoid predation on intraguild competitors unless the prey is notably smaller in size. However, a currently unexplained exception occurs in kingsnakes in the genus Lampropeltis Kingsnakes are able to capture, constrict and consume other snakes that are not only larger than themselves but that are also powerful constrictors (such as ratsnakes in the genus Pantherophis ). Their mechanisms of success as intraguild predators on other constrictors remain unknown. To begin addressing these mechanisms, we studied the scaling of muscle cross-sectional area, pulling force and constriction pressure across the ontogeny of six species of snakes ( Lampropeltis californiae , L. getula , L. holbrooki , Pantherophis alleghaniensis , P. guttatus and P. obsoletus ). Muscle cross-sectional area is an indicator of potential force production, pulling force is an indicator of escape performance, and constriction pressure is a measure of prey-handling performance. Muscle cross-sectional area scaled similarly for all snakes, and there was no significant difference in maximum pulling force among species. However, kingsnakes exerted significantly higher pressures on their prey than ratsnakes. The similar escape performance among species indicates that kingsnakes win in predatory encounters because of their superior constriction performance, not because ratsnakes have inferior escape performance. The superior constriction performance by kingsnakes results from their consistent and distinctive coil posture and perhaps from additional aspects of muscle structure and function that need to be tested in future research. © 2017. Published by The Company of Biologists Ltd.

  6. Intraguild predation and cannibalism among larvae of detritivorous caddisflies in subalpine wetlands

    Science.gov (United States)

    Wissinger, S.A.; Sparks, G.B.; Rouse, G.L.; Brown, W.S.; Steltzer, Heidi

    1996-01-01

    Comparative data from subalpine wetlands in Colorado indicate that larvae of the limnephilid caddisflies, Asynarchus nigriculus and Limnephilus externus, are reciprocally abundant among habitats - Limnephilus larvae dominate in permanent waters, whereas Asynarchus larvae dominate in temporary basins. The purpose of this paper is to report on field and laboratory experiments that link this pattern of abundance to biotic interactions among larvae. In the first field experiment, growth and survival were compared in single and mixed species treatments in littoral enclosures. Larvae, which eat mainly vascular plant detritus, grew at similar rates among treatments in both temporary and permanent habitats suggesting that exploitative competition is not important under natural food levels and caddisfly densities. However, the survival of Limnephilus larvae was reduced in the presence of Asynarchus larvae. Subsequent behavioral studies in laboratory arenas revealed that Asynarchus larvae are extremely aggressive predators on Limnephilus larvae. In a second field experiment we manipulated the relative sizes of larvae and found that Limnephilus larvae were preyed on only when Asynarchus larvae had the same size advantage observed in natural populations. Our data suggest that the dominance of Asynarchus larvae in temporary habitats is due to asymmetric intraguild predation (IGP) facilitated by a phenological head start in development. These data do not explain the dominance of Limnephilus larvae in permanent basins, which we show elsewhere to be an indirect effect of salamander predation. Behavioral observations also revealed that Asynarchus larvae are cannibalistic. In contrast to the IGP on Limnephilus larvae, Asynarchus cannibalism occurs among same-sized larvae and often involves the mobbing of one victim by several conspecifics. In a third field experiment, we found that Asynarchus cannibalism was not density-dependent and occurred even at low larval densities. We

  7. Intraguild predation between small pelagic fish in the Bay of Biscay: impact on anchovy (Engraulis encrasicolus L.) egg mortality

    KAUST Repository

    Bachiller, Eneko

    2015-05-12

    Small pelagic fish can play an important role in various ecosystems linking lower and upper trophic levels. Among the factor behind the observed inter-annual variations in small pelagic fish abundance, intra- and inter-specific trophic interactions could have a strong impact on the recruitment variability (e.g. anchovy). Egg cannibalism observed in anchovies has been postulated to be a mechanism that determines the upper limit of the population density and self-regulates the population abundance of the species. On the other hand, predation by other guild species is commonly considered as a regulation mechanism between competing species. This study provides empirical evidence of anchovy cannibalism and predation of the main small pelagic fish species on anchovy eggs and estimates the effect of intraguild predation on the anchovy egg mortality rate. Results show that, depending on the year (2008–2009), up to 33 % of the total anchovy egg mortality was the result of sardine predation and up to 4 % was the result of egg cannibalism together with predation by Atlantic and Atlantic Chub mackerel and sprat. Results also indicate that in the Bay of Biscay, fluctuations in the survival index of the early life stages of anchovy are likely to be attributable at least in part to egg cannibalism and especially to a high sardine predation on anchovy eggs. © 2015 Springer-Verlag Berlin Heidelberg

  8. The dynamics of intraguild predation in Chrysomya albiceps Wied. (Diptera: Calliphoridae): interactions between instars and species under different abundances of food

    OpenAIRE

    Rosa, Gisele S.; Carvalho, Lidia R. de; Reis, Sergio F. dos; Godoy, Wesley A.C.

    2006-01-01

    The pattern of larval interaction in blowflies confined with Chrysomya albiceps Wied. and C. rufifacies Maquart can be changed in response to the predatory behaviour of the two species to a contest-type process instead of the scramble competition that usually occurs in blowflies. Facultative predation is a frequent behaviour in C. albiceps and C. rufifacies that occurs as an alternative food source during the larval stage. In this study, we investigated the dynamics of intraguild predation by...

  9. The dynamics of intraguild predation in Chrysomya albiceps Wied. (Diptera : Calliphoridae): Interactions between instars and species under different abundances of food

    OpenAIRE

    Rosa, Gisele S.; de Carvalho, Lidia R.; dos Reis, Sergio F.; Godoy, Wesley A. C.

    2006-01-01

    The pattern of larval interaction in blowflies confined with Chrysomya albiceps Wied. and C. rufifacies Maquart can be changed in response to the predatory behaviour of the two species to a contest-type process instead of the scramble competition that usually occurs in blowflies. Facultative predation is a frequent behaviour in C. albiceps and C. rufifacies that occurs as an alternative food source during the larval stage. In this study, we investigated the dynamics of intraguild predation by...

  10. Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis

    NARCIS (Netherlands)

    Cakmak, I.; Janssen, A.; Sabelis, M.W.

    2006-01-01

    Abstract. Species at the same trophic level may interact through competition for food, but can also interact through intraguild predation. Intraguild predation is widespread at the second and third trophic level and the effects may cascade down to the plant level. The effects of intraguild predation

  11. Intraguild interactions between the predatory mites Neoseiulus californicus and Phytoseiulus persimilis.

    Science.gov (United States)

    Cakmak, Ibrahim; Janssen, Arne; Sabelis, Maurice W

    2006-01-01

    Species at the same trophic level may interact through competition for food, but can also interact through intraguild predation. Intraguild predation is widespread at the second and third trophic level and the effects may cascade down to the plant level. The effects of intraguild predation can be modified by antipredator behaviour in the intraguild prey. We studied intraguild predation and antipredator behaviour in two species of predatory mite, Neoseiulus californicus and Phytoseiulus persimilis, which are both used for control of the two-spotted spider mite in greenhouse and outdoor crops. Using a Y-tube olfactometer, we assessed in particular whether each of the two predators avoids odours emanating from prey patches occupied by the heterospecific predator. Furthermore, we measured the occurrence and rate of intraguild predation of different developmental stages of P. persimilis and N. californicus on bean leaves in absence or in presence of the shared prey. Neither of the two predator species avoided prey patches with the heterospecific competitor, both when inexperienced with the other predator and when experienced with prey patches occupied by the heterospecific predator. Intraguild experiments showed that N. californicus is a potential intraguild predator of P. persimilis. However, P. persimilis did not suffer much from intraguild predation as long as the shared prey was present. This is probably because N. californicus prefers to feed on two-spotted spider mites rather than on its intraguild prey.

  12. Increased control of thrips and aphids in greenhouses with two species of generalist predatory bugs involved in intraguild predation

    NARCIS (Netherlands)

    Messelink, G.J.; Janssen, A.

    2014-01-01

    The combined release of species of generalist predators can enhance multiple pest control when the predators feed on different prey, but, in theory, predators may be excluded through predation on each other. This study evaluated the co-occurrence of the generalist predators Macrolophus pygmaeus

  13. The dynamics of intraguild predation in Chrysomya albiceps Wied. (Diptera: Calliphoridae): interactions between instars and species under different abundances of food.

    Science.gov (United States)

    Rosa, Gisele S; de Carvalho, Lidia R; dos Reis, Sergio F; Godoy, Wesley A C

    2006-01-01

    The pattern of larval interaction in blowflies confined with Chrysomya albiceps Wied. and C. rufifacies Maquart can be changed in response to the predatory behaviour of the two species to a contest-type process instead of the scramble competition that usually occurs in blowflies. Facultative predation is a frequent behaviour in C. albiceps and C. rufifacies that occurs as an alternative food source during the larval stage. In this study, we investigated the dynamics of intraguild predation by C. albiceps on other fly species in order to analyse interspecific and intraspecific survival in C. albiceps, C. megacephala and C. macellaria Fabricius. The experimental design of the study allowed us to evaluate how factors such as species, density and abundance of food influenced the survival of the calliphorid species. When C. albiceps was confined with C. megacephala or C. macellaria, only adults of C. albiceps survived at different larval densities and abundance of food. In addition, the survival of C. albiceps was higher in two-species experiments when compared to single species experiments. The implications of these results for the dynamics of C. albiceps were discussed.

  14. Ontogenetic shifts in intraguild predation on thrips by phytoseiid mites: the relevance of body size and diet specialization.

    Science.gov (United States)

    Walzer, A; Paulus, H F; Schausberger, P

    2004-12-01

    In greenhouse agroecosystems, a guild of spider mite predators may consist of the oligophagous predatory mite Phytoseiulus persimilis Athias-Henriot, the polyphagous predatory mite Neoseiulus californicus McGregor (both Acari: Phytoseiidae) and the primarily herbivorous but facultatively predatory western flower thrips Frankliniella occidentalis Pergande (Thysanoptera: Thripidae). Diet-specialization and the predator body size relative to prey are crucial factors in predation on F. occidentalis by P. persimilis and N. californicus. Here, it was tested whether the relevance of these factors changes during predator ontogeny. First, the predator (protonymphs and adult females of P. persimilis and N. californicus): prey (F. occidentalis first instars) body size ratios were measured. Second, the aggressiveness of P. persimilis and N. californicus towards F. occidentalis was assessed. Third, survival, development and oviposition of P. persimilis and N. californicus with F. occidentalis prey was determined. The body size ranking was P. persimilis females > N. californicus females > P. persimilis protonymphs > N. californicus protonymphs. Neoseiulus californicus females were the most aggressive predators, followed by highly aggressive N. californicus protonymphs and moderately aggressive P. persimilis protonymphs. Phytoseiulus persimilis females did not attack thrips. Frankliniella occidentalis larvae are an alternative prey for juvenile N. californicus and P. persimilis, enabling them to reach adulthood. Females of N. californicus but not P. persimilis sustained egg production with thrips prey. Within the guild studied here, N. californicus females are the most harmful predators for F. occidentalis larvae, followed by N. californicus and P. persimilis juveniles. Phytoseiulus persimilis females are harmless to F. occidentalis.

  15. Feeding History Affects Intraguild Interactions Between Harmonia Axyridis (Coleoptera: Coccinellidae) and Episyrphus Balteatus (Diptera: Syrphidae)

    NARCIS (Netherlands)

    Ingels, B.; van Hassel, P.; Van Leeuwen, T.; De Clercq, P.

    2015-01-01

    While the effect of several factors such as predator and prey size, morphology and developmental stage on intraguild predation (IGP) is widely investigated, little is known about the influence of diet on the occurrence and outcome of IGP. In the present study, the effect of the diet experienced

  16. Intraguild Competition of Three Noctuid Maize Pests.

    Science.gov (United States)

    Bentivenha, J P F; Baldin, E L L; Hunt, T E; Paula-Moraes, S V; Blankenship, E E

    2016-08-01

    The western bean cutworm Striacosta albicosta (Smith), the fall armyworm Spodoptera frugiperda (J. E. Smith), and the corn earworm Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) are among the major lepidopteran pests of maize in the United States, belonging to the same guild and injuring the reproductive tissues of this crop. Here, intraguild competition of these lepidopterans on non-Bt maize was evaluated through survival analysis of each species under laboratory and field conditions. Competition scenarios were carried out in arenas containing maize silk or ear tissue, using larvae on different stadium of development. Fitness cost competition studies were conducted to examine the influence of intraguild competition and cannibalism and predation rates on larval development. The survival of S. albicosta competing with the other species was significantly lower than in intraspecific competition, even when the larvae were more developed than the competitor. For S. frugiperda, survival remained high in the different competition scenarios, except when competing in a smaller stadium with H. zea Larvae of H. zea had a high rate of cannibalism, higher survival when competing against S. albicosta than S. frugiperda, and reduced survival when the H. zea larvae were at the same development stadium or smaller than the competitors. Based on fitness cost results, the absence of a competitor for the feeding source may confer an advantage to the larval development of S. frugiperda and H. zea Our data suggest that S. frugiperda has a competitive advantage against the other species, while S. albicosta has the disadvantage in the intraguild competition on non-Bt maize. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Predators

    Science.gov (United States)

    Young, Donald D.; McCabe, Thomas R.; Ambrose, Robert E.; Garner, Gerald W.; Weiler, Greg J.; Reynolds, Harry V.; Udevitz, Mark S.; Reed, Dan J.; Griffith, Brad; Douglas, David C.; Reynolds, Patricia E.; Rhode, E.B.

    2002-01-01

    Calving caribou (Rangifer tarandus) of the Central Arctic herd, Alaska, have avoided the infrastructure associated with the complex of petroleum development areas from Prudhoe Bay to Kuparuk (Cameron et al. 1992, Nellemann and Cameron 1998, and Section 4 of this document). Calving females of the Porcupine caribou herd may similarly avoid any oil field roads and pipelines developed in areas traditionally used during the calving and post-calving periods. This may displace the caribou females and calves to areas east and south of the 1002 Area of the Arctic National Wildlife Refuge.Increased calf mortality could occur if calving caribou are displaced into areas that have a higher density of predators, higher rates of predation, or where a higher proportion of the predators regularly use caribou as a food source (Whitten et al. 1992).Our study assessed predation risks to caribou calving in the 1002 Area versus calving in potential displacement areas. Due to funding constraints, our research focused on grizzly bears (Ursus arctos), with wolves (Camus lupus) and golden eagles (Aquila chrysaetos) receiving only cursory attention. Our research objectives were 1) to compare relative abundance of predators within the 1002 Area with that in adjacent peripheral areas, 2) to determine factors affecting predator abundance on the calving grounds, and 3) to quantify the use of caribou as a food source for predators and the importance of caribou to the productivity of predator populations using the coastal plain of the Arctic National Wildlife Refuge.

  18. Interactions among predators and the cascading effects of vertebrate insectivores on arthropod communities and plants.

    Science.gov (United States)

    Mooney, Kailen A; Gruner, Daniel S; Barber, Nicholas A; Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell

    2010-04-20

    Theory on trophic interactions predicts that predators increase plant biomass by feeding on herbivores, an indirect interaction called a trophic cascade. Theory also predicts that predators feeding on predators, or intraguild predation, will weaken trophic cascades. Although past syntheses have confirmed cascading effects of terrestrial arthropod predators, we lack a comprehensive analysis for vertebrate insectivores-which by virtue of their body size and feeding habits are often top predators in these systems-and of how intraguild predation mediates trophic cascade strength. We report here on a meta-analysis of 113 experiments documenting the effects of insectivorous birds, bats, or lizards on predaceous arthropods, herbivorous arthropods, and plants. Although vertebrate insectivores fed as intraguild predators, strongly reducing predaceous arthropods (38%), they nevertheless suppressed herbivores (39%), indirectly reduced plant damage (40%), and increased plant biomass (14%). Furthermore, effects of vertebrate insectivores on predatory and herbivorous arthropods were positively correlated. Effects were strongest on arthropods and plants in communities with abundant predaceous arthropods and strong intraguild predation, but weak in communities depauperate in arthropod predators and intraguild predation. The naturally occurring ratio of arthropod predators relative to herbivores varied tremendously among the studied communities, and the skew to predators increased with site primary productivity and in trees relative to shrubs. Although intraguild predation among arthropod predators has been shown to weaken herbivore suppression, we find this paradigm does not extend to vertebrate insectivores in these communities. Instead, vertebrate intraguild preda-tion is associated with strengthened trophic cascades, and insectivores function as dominant predators in terrestrial plant-arthropod communities.

  19. The roles of large top predators in coastal ecosystems: new insights from long term ecological research

    Science.gov (United States)

    Rosenblatt, Adam E.; Heithaus, Michael R.; Mather, Martha E.; Matich, Philip; Nifong, James C.; Ripple, William J.; Silliman, Brian R.

    2013-01-01

    During recent human history, human activities such as overhunting and habitat destruction have severely impacted many large top predator populations around the world. Studies from a variety of ecosystems show that loss or diminishment of top predator populations can have serious consequences for population and community dynamics and ecosystem stability. However, there are relatively few studies of the roles of large top predators in coastal ecosystems, so that we do not yet completely understand what could happen to coastal areas if large top predators are extirpated or significantly reduced in number. This lack of knowledge is surprising given that coastal areas around the globe are highly valued and densely populated by humans, and thus coastal large top predator populations frequently come into conflict with coastal human populations. This paper reviews what is known about the ecological roles of large top predators in coastal systems and presents a synthesis of recent work from three coastal eastern US Long Term Ecological Research (LTER) sites where long-term studies reveal what appear to be common themes relating to the roles of large top predators in coastal systems. We discuss three specific themes: (1) large top predators acting as mobile links between disparate habitats, (2) large top predators potentially affecting nutrient and biogeochemical dynamics through localized behaviors, and (3) individual specialization of large top predator behaviors. We also discuss how research within the LTER network has led to enhanced understanding of the ecological roles of coastal large top predators. Highlighting this work is intended to encourage further investigation of the roles of large top predators across diverse coastal aquatic habitats and to better inform researchers and ecosystem managers about the importance of large top predators for coastal ecosystem health and stability.

  20. New parasitoid-predator associations: female parasitoids do not avoid competition with generalist predators when sharing invasive prey

    Science.gov (United States)

    Chailleux, Anaïs; Wajnberg, Eric; Zhou, Yuxiang; Amiens-Desneux, Edwige; Desneux, Nicolas

    2014-12-01

    Optimal habitat selection is essential for species survival in ecosystems, and interspecific competition is a key ecological mechanism for many observed species association patterns. Specialized animal species are commonly affected by resource and interference competition with generalist and/or omnivorous competitors, so avoidance behavior could be expected. We hypothesize that specialist species may exploit broad range cues from such potential resource competitors (i.e., cues possibly common to various generalist and/or omnivorous predators) to avoid costly competition regarding food or reproduction, even in new species associations. We tested this hypothesis by studying short-term interactions between a native larval parasitoid and a native generalist omnivorous predator recently sharing the same invasive host/prey, the leaf miner Tuta absoluta. We observed a strong negative effect of kleptoparasitism (food resource stealing) instead of classical intraguild predation on immature parasitoids. There was no evidence that parasitoid females avoided the omnivorous predator when searching for oviposition sites, although we studied both long- and short-range known detection mechanisms. Therefore, we conclude that broad range cue avoidance may not exist in our biological system, probably because it would lead to too much oviposition site avoidance which would not be an efficient and, thus, beneficial strategy. If confirmed in other parasitoids or specialist predators, our findings may have implications for population dynamics, especially in the current context of increasing invasive species and the resulting creation of many new species associations.

  1. Spiny Prey, Fortunate Prey. Dorsal Spines Are an Asset in Intraguild Interactions among Lady Beetles

    Directory of Open Access Journals (Sweden)

    Louis Hautier

    2017-11-01

    Full Text Available The Multicolored Asian Ladybird, Harmonia axyridis, is an extremely successful invasive species. Here we suggest that, in addition to many other traits, the dorsal spines of its larvae contribute to their success, as suggested by behavioral observations of agonistic interactions between H. axyridis and European coccinellids. In coccinellids, the role of dorsal spines in these interactions has been poorly studied and they could be a physical protection against intraguild predators. Dorsal spines of second instar H. axyridis larvae were removed with micro-scissors, which resulted in spineless larvae after molting (spineless group. These larvae were then exposed to starved Coccinella septempunctata larvae. Two control categories were also submitted to interactions: H. axyridis larvae with all their spines (control group and with their spines, but injured by pin stings (injured group. Spine removal at the second instar did not hamper H. axyridis development. The bite rate by C. septempunctata was significantly higher on the spineless H. axyridis and more dorsally located compared to the control and injured groups, while no bite rate difference was observed between the injured and the control group. Our results suggest that in addition to behavioral and chemical defenses, the dorsal spines play a significant protective role against bites. Therefore, spines in ladybirds could be considered as a morphological defense against intraguild predation. In H. axyridis, these defenses might contribute to its success in food resources already exploited by other guild members and thus further facilitate the invasion of new areas.

  2. Lessons from long-term predator control: a case study with the red fox

    NARCIS (Netherlands)

    Kirkwood, R.J.; Sutherland, D.R.; Murphy, S.; Dann, P.

    2014-01-01

    Context: Predator-control aims to reduce an impact on prey species, but efficacy of long-term control is rarely assessed and the reductions achieved are rarely quantified. Aims: We evaluated the changing efficacy of a 58-year-long campaign against red foxes (Vulpes vulpes) on Phillip Island, a

  3. Short- and long-term behavioural, physiological and stoichiometric responses to predation risk indicate chronic stress and compensatory mechanisms.

    Science.gov (United States)

    Van Dievel, Marie; Janssens, Lizanne; Stoks, Robby

    2016-06-01

    Prey organisms are expected to use different short- and long-term responses to predation risk to avoid excessive costs. Contrasting both types of responses is important to identify chronic stress responses and possible compensatory mechanisms in order to better understand the full impact of predators on prey life history and population dynamics. Using larvae of the damselfly Enallagma cyathigerum, we contrasted the effects of short- and long-term predation risk, with special focus on consequences for body stoichiometry. Under short-term predation risk, larvae reduced growth rate, which was associated with a reduced food intake, increased metabolic rate and reduced glucose content. Under long-term predation risk, larvae showed chronic predator stress as indicated by persistent increases in metabolic rate and reduced food intake. Despite this, larvae were able to compensate for the short-term growth reduction under long-term predation risk by relying on physiological compensatory mechanisms, including reduced energy storage. Only under long-term predation risk did we observe an increase in body C:N ratio, as predicted under the general stress paradigm (GSP). Although this was caused by a predator-induced decrease in N content, there was no associated increase in C content. These stoichiometric changes could not be explained by GSP responses because, under chronic predation risk, there was no decrease in N-rich proteins or increase in C-rich fat and sugars; instead glycogen decreased. Our results highlight the importance of compensatory mechanisms and the value of explicitly integrating physiological mechanisms to obtain insights into the temporal dynamics of non-consumptive effects, including effects on body stoichiometry.

  4. Interaction between stress induced by competition, predation, and an insecticide on the response of aquatic invertebrates

    NARCIS (Netherlands)

    Brink, Van den Paul J.; Klein, Sylvan L.; Rico, Andreu

    2017-01-01

    The present study investigated the effects of species interactions like competition and (intraguild) predation on the sensitivity of aquatic organisms to the insecticide chlorpyrifos. In the first experiment, combined effects of chlorpyrifos and different levels of intraspecific and interspecific

  5. A long-term study on crustacean plankton of a shallow tropical lake: the role of invertebrate predation

    Directory of Open Access Journals (Sweden)

    Marlene S. Arcifa

    2015-06-01

    Full Text Available The primary factor that governs the size and species composition of zooplankton is still a controversial issue and temperature is considered the main factor responsible for latitudinal differences. In waters with a narrow temperature range, such as in the tropics, predation may be a more important factor. Nearly three decades of intermittent studies of the crustacean plankton in a shallow tropical lake revealed that the main event that led to their restructuring was the appearance of a second predator, the water mite Krendowskia sp. The new predator and larvae of the dipteran Chaoborus brasiliensis Theobald exerted a combined, although asymmetrical effect on microcrustaceans. The period when the mite was detected was followed by the restructuring of the crustacean plankton community. Predation by these two invertebrates emerged as the factor responsible for community changes, involving an increased contribution of copepods and decreases in the relative abundance of smaller cladoceran species. In the short term, the mite caused a decrease in species richness and the annual mean instantaneous composition of cladocerans, a predominance of large-sized species (Daphnia ambigua Scourfield and Daphnia gessneri Herbst and the virtual disappearance of small species (e.g., Bosmina tubicen Brehm. The long-term impact resulted in increased species richness and the dominance of large and medium-sized cladocerans, such as D. gessneri and Ceriodaphnia richardi Sars. The larger body size of three cladocerans, the two Daphnia species and B. tubicen, in the long term, may be a response to the dominant predator, Chaoborus. The seasonal variation in the predator abundance, mainly Chaoborus larvae, allowed the prey to recover during the cool season. The copepods Tropocyclops prasinus meridionalis (Fischer and Thermocyclops decipiens Kiefer were less affected by predation than the cladocerans; their contribution to the crustacean plankton increased 12-28% after the

  6. Interaction between two predator mites of Tetranychus urticae koch (Acariformes: Tetranychidae) in laboratory

    International Nuclear Information System (INIS)

    Arguelles R, Angelica; Plazas, Natali; Bustos R, Alexander; Cantor R, Fernando; Rodriguez, Daniel; Hilarion, Alejandra

    2013-01-01

    Tetranychus urticae (Acari: Tetranychidae) is an important pest of ornamental crops. A species of predatory mite used for its control is Neoseiulus californicus and Phytoseiulus persimilis (Acari: Phytoseiidae). This research proposes the use of joint releases of the two cited predators for the control of the pest. Several situations leading to interaction were evaluated: high density of one predator and low density of the other one, being the prey present or absent. The scenario with predators in equal densities and in presence of the prey was also evaluated. When a predator is in higher density and the prey present, the predator with the lower density increases the interference with the consumption of preys by the predator with higher density. On the other hand, when the consumption of T. urticae reduces, intraguild predation increases. P. persimilis shows intraguild predation behavior when t. urticae is absent and N. californicus is present, consuming all developmental stages of its conspecific. Instead, N. californicus only feed on conspecific larvae, when the fitofagous was absent and P. persimilis was present. When the two predators were present in the same assemblage and with the same population density, the quantity of T. urticae consumed by both of them was not higher than the consumed one when each predator was present in separate way.

  7. Inter- and intra-guild interactions related to aphids in nettle (Urtica dioica L.) strips closed to field crops.

    Science.gov (United States)

    Alhmedi, A; Haubruge, E; Bodson, B; Francis, F

    2006-01-01

    A field experiment designed to assess the biodiversity related to nettle strips closed to crops, and more particularly the aphid and related beneficial populations, was established in experimental farm located in Gembloux (Belgium). Margin strips of nettle (Urtica dioica) closed to wheat (Triticum aestivum), green pea (Pisum sativum) and rape (Brassicae napus) fields were investigated. The diversity, abundance of aphids and related predators were analysed according to the plant crop species and the differential pesticide application (treated plot and control). Insects were visually observed every week during all the cultivation season. Two main families of aphidophagous predators were found in all field crops and nettle, the Coccinellidae and Syrphidae. The diversity of the aphidophagous predators was shown to be higher on nettle than in field crops, particularly the Chrysopidae, the Anthocoridae and the Miridae. However, a striking difference of ladybird abundance was observed according to the aphid host plant. In one side, Coccinella septempunctata was much more abundant on Acyrthosiphon pisum infested green pea than on the other host plant species. At the opposite, higher occurrence of Harmonia axyridis was observed on the aphid infested nettle plants than on the crop plants. In particular, none of H. axyridis was found in wheat crop. Also, more than only a significant positive correlation between predator and aphid abundance, specialised relations between particular aphid species and some so-called generalist predators was determined in the fields. Finally, intraguild interactions between the aphidophagous predators was assessed and shown that only a significant negative correlation between Episyrphus balteatus and H. axyridis related to the nettle aphid, Micrlophium carnosum, was observed. The relative distribution of the ladybirds, namely C. septempunctata and H. axyridis according to the host plant, nettle strips and crop plots was discussed in relation to

  8. Swimming in turbulence: zooplankton fitness in terms of foraging efficiency and predation risk

    DEFF Research Database (Denmark)

    Visser, Andre; Mariani, Patrizio; Pigolotti, Simone

    2009-01-01

    idealized descriptions of foraging and predation in a turbulent water column, we determine how fast a zooplankter should swim, if at all, and where should it position itself in the vertical to maximize its fitness given certain environmental conditions. Suspension feeding has an advantage over ambush...

  9. Interactions among predators and plant specificity protect herbivores from top predators.

    Science.gov (United States)

    Bosc, Christopher; Pauw, Anton; Roets, Francois; Hui, Cang

    2018-05-04

    The worldwide loss of top predators from natural and agricultural systems has heightened the need to understand how important they are in controlling herbivore abundance. The effect of top predators on herbivore species is likely to depend on 1) the importance of the consumption of intermediate predators by top predators (intra-guild predation; IGP), but also on 2) plant specificity by herbivores, because specialists may defend themselves better (enemy-free space; EFS). Insectivorous birds, as top predators, are generally known to effectively control herbivorous insects, despite also consuming intermediate predators such as spiders, but how this effect varies among herbivore species in relation to the cascading effects of IGP and EFS is not known. To explore this, we excluded birds from natural fynbos vegetation in South Africa using large netted cages and recorded changes in abundance relative to control plots for 199 plant-dwelling intermediate predator and 341 herbivore morpho-species that varied in their estimated plant specificity. We found a strong negative effect of birds on the total abundance of all intermediate predators, with especially clear effects on spiders (strong IGP). In contrast with previous studies, which document a negative effect of birds on herbivores, we found an overall neutral effect of birds on herbivore abundance, but the effect varied among species: some species were negatively affected by birds, suggesting that they were mainly consumed by birds, whereas others, likely released from spiders by IGP, were positively affected. Some species were also effectively neutrally affected by birds. These tended to be more specialized to plants compared to the other species, which may imply that some plant specialists benefited from protection provided by EFS from both birds and spiders. These results suggest that the response of herbivore species to top predators may depend on cascading effects of interactions among predators and on their degree

  10. Manipulating field margins to increase predation intensity in fields of winter wheat (Triticum eastivum)

    DEFF Research Database (Denmark)

    Mansion-Vaquie, Agathe; Ferrante, Marco; Cook, S M

    2017-01-01

    , intraguild predation, hyperparasitism) may complicate the assumption that a higher density of natural enemies would increase the level of biological control. We investigated the natural enemy guild composition and the predation rate along flower vs. grass margins at the edge of winter wheat (Triticum...... to the two margin types: specialists (mostly parasitic wasps) were attracted by the flower margins, while generalists (ground beetles, rove beetles and spiders) were more active in grass margins. The number of artificial caterpillars attacked was significantly greater in grass margins (mean = 48.9%, SD = 24...

  11. Short-term exposure to predation affects body elemental composition, climbing speed and survival ability in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Indrikis Krams

    2016-08-01

    Full Text Available Factors such as temperature, habitat, larval density, food availability and food quality substantially affect organismal development. In addition, risk of predation has a complex impact on the behavioural and morphological life history responses of prey. Responses to predation risk seem to be mediated by physiological stress, which is an adaptation for maintaining homeostasis and improving survivorship during life-threatening situations. We tested whether predator exposure during the larval phase of development has any influence on body elemental composition, energy reserves, body size, climbing speed and survival ability of adult Drosophila melanogaster. Fruit fly larvae were exposed to predation by jumping spiders (Phidippus apacheanus, and the percentage of carbon (C and nitrogen (N content, extracted lipids, escape response and survival were measured from predator-exposed and control adult flies. The results revealed predation as an important determinant of adult phenotype formation and survival ability. D. melanogaster reared together with spiders had a higher concentration of body N (but equal body C, a lower body mass and lipid reserves, a higher climbing speed and improved adult survival ability. The results suggest that the potential of predators to affect the development and the adult phenotype of D. melanogaster is high enough to use predators as a more natural stimulus in laboratory experiments when testing, for example, fruit fly memory and learning ability, or when comparing natural populations living under different predation pressures.

  12. Potential for exploitative competition, not intraguild predation, between invasive harlequin ladybirds and flowerbugs in urban parks

    DEFF Research Database (Denmark)

    Howe, Andrew Gordon; Ravn, Hans Peter; Pipper, Christian Bressen

    2016-01-01

    -content analysis, we investigated the relative frequencies of IGP by H. axyridis on the predatory flowerbug Anthocoris nemoralis Fabricius (Heteroptera: Anthocoridae) and prey overlap for a shared prey, the lime aphid Eucallipterus tiliae L. (Hemiptera: Aphididae), in Tilia × europaea crowns in urban parks...... positive for aphid DNA. Incorporating insect densities revealed that the density of H. axyridis larvae had a strong negative effect on the likelihood of detecting aphid DNA in A. nemoralis. Prey overlap for E. tiliae was widespread in space (2–13 m height in tree crowns) and time (May–October 2011) which...

  13. Intraguild predation among plant pests: western flower thrips larvae feed on whitefly crawlers

    NARCIS (Netherlands)

    van Maanen, R.; Broufas, G.; Oveja, M.F.; Sabelis, M.W.; Janssen, A.

    2012-01-01

    Omnivores obtain resources from more than one trophic level, and choose their food based on quantity and quality of these resources. For example, omnivores may switch to feeding on plants when prey are scarce. Larvae of the western flower thrips Frankiniella occidentalis Pergande (Thysanoptera:

  14. Effects of Intraguild Predation: Evaluating Resource Competition between Two Canid Species with Apparent Niche Separation

    Directory of Open Access Journals (Sweden)

    Adam J. Kozlowski

    2012-01-01

    Full Text Available Many studies determine which habitat components are important to animals and the extent their use may overlap with competitive species. However, such studies are often undertaken after populations are in decline or under interspecific stress. Since habitat selection is not independent of interspecific stress, quantifying an animal's current landscape use could be misleading if the species distribution is suboptimal. We present an alternative approach by modeling the predicted distributions of two sympatric species on the landscape using dietary preferences and prey distribution. We compared the observed habitat use of kit foxes (Vulpes macrotis and coyotes (Canis latrans against their predicted distribution. Data included locations of kit foxes and coyotes, carnivore scat transects, and seasonal prey surveys. Although habitats demonstrated heterogeneity with respect to prey resources, only coyotes showed habitat use designed to maximize access to prey. In contrast, kit foxes used habitats which did not align closely with prey resources. Instead, habitat use by kit foxes represented spatial and behavioral strategies designed to minimize spatial overlap with coyotes while maximizing access to resources. Data on the distribution of prey, their dietary importance, and the species-specific disparities between predicted and observed habitat distributions supports a mechanism by which kit fox distribution is derived from intense competitive interactions with coyotes.

  15. Assessment of the interactions between two predator mites of Tetranychus urticae (Acariformes: Tetranychidae in laboratory

    Directory of Open Access Journals (Sweden)

    Angelica María Argüelles

    2013-01-01

    Full Text Available Tetranychus urticae (Acari: Tetranychidae is one of the most important pests in ornamental cultures. Between the species most used for its control are Neoseilus sp. and Phytoseiulus persimilis (Acari: Phytoseiidae. Knowing the effectivity and ages of the prefers prey of each species of predator. In this search purposed the management of the plague through the use of combined releases, is necessary to evaluate that could occur between them with the prey when they act together. With this aim, we evaluated any situations. For one side was evaluated when a predator with a second predator with more density for the first predator. This situation was analyzed in presence and with absence of its prey. For other side, was evaluated the interactions of both predators are presents at the same density and with the prey. In the fist situation in presence of the prey was observe that increase the age of predator in minor density also increase the interference over the consumption of the high population’s predator over the prey. Moreover when decreased the T. urticae’s consumption increased the intraguild consumption. P. persimilis in absence of T. urticae and in presence of N. californicus approve a behavior of intraguild predation over all the ages of its cospecifics, while that N. californicus only consumed coespecific’s larvae in the phytofagous absence and in presence of  P. persimilis.  When both predators were in the same test at the same population’s density, was not observe a higher consumption of T. urticae that when each predator act for its way.

  16. Connecting Model Species to Nature: Predator-Induced Long-Term Sensitization in "Aplysia Californica"

    Science.gov (United States)

    Mason, Maria J.; Watkins, Amanda J.; Wakabayashi, Jordann; Buechler, Jennifer; Pepino, Christine; Brown, Michelle; Wright, William G.

    2014-01-01

    Previous research on sensitization in "Aplysia" was based entirely on unnatural noxious stimuli, usually electric shock, until our laboratory found that a natural noxious stimulus, a single sublethal lobster attack, causes short-term sensitization. We here extend that finding by demonstrating that multiple lobster attacks induce…

  17. Long-term changes in communities of native coccinellids: population fluctuations and the effect of competition from an invasive non-native species

    Czech Academy of Sciences Publication Activity Database

    Honěk, A.; Martínková, Z.; Dixon, Anthony F. G.; Roy, H. E.; Pekárek, S.

    2016-01-01

    Roč. 9, č. 3 (2016), s. 202-209 ISSN 1752-458X R&D Projects: GA ČR GA14-26561S; GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : ladybird harmonia-axyridis * coleoptera-coccinellidae * intraguild predation * habitat preferences * central-europe * spread * ladybeetle * beetles * history * decline * Adalia * Anatis * Calvia * Coccinella * Halyzia * Harmonia * intraguild predation * invasive alien species * ladybird beetles * Propylea Subject RIV: EH - Ecology, Behaviour Impact factor: 1.840, year: 2016

  18. Intraguild interactions between Euseius stipulatus and the candidate biocontrol agents of Tetranychus urticae in Spanish clementine orchards: Phytoseiulus persimilis and Neoseiulus californicus.

    Science.gov (United States)

    Abad-Moyano, Raquel; Urbaneja, Alberto; Schausberger, Peter

    2010-01-01

    Spanish clementine orchards are frequently infested by the two-spotted spider mte Tetranychus urticae. Natural control of T. urticae is insufficient despite the presence of Neoseiulus californicus and Phytoseiulus persimilis. The phytoseiid community is dominated by the generalist Euseius stipulatus which is poorly adapted to exploit T. urticae. Having the intention to promote biological control of T. urticae by augmentative releases we were interested whether P. persimilis and N. californicus are negatively affected by intraguild (IG) interactions with E. stipulatus. Two experiments were conducted. Firstly, we assessed female aggressiveness (quantified as combination of attack probability and latency) in IG predation on larvae. Secondly, we measured mortality, escaping rate and developmental time of immature IG prey in presence and absence of an adult IG predator female. Euseius stipulatus appeared the strongest IG opponent but microhabitat structure modulated the IG interactions and the advantage of E. stipulatus was partially offset when spider mite webbing was present. Implications of these IG interactions for natural and biological control of T. urticae in clementine orchards are discussed.

  19. Preference for cannibalism and ontogenetic constraints in competitive ability of piscivorous top predators.

    Directory of Open Access Journals (Sweden)

    Pär Byström

    Full Text Available Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over

  20. Preference for cannibalism and ontogenetic constraints in competitive ability of piscivorous top predators.

    Science.gov (United States)

    Byström, Pär; Ask, Per; Andersson, Jens; Persson, Lennart

    2013-01-01

    Occurrence of cannibalism and inferior competitive ability of predators compared to their prey have been suggested to promote coexistence in size-structured intraguild predation (IGP) systems. The intrinsic size-structure of fish provides the necessary prerequisites to test whether the above mechanisms are general features of species interactions in fish communities where IGP is common. We first experimentally tested whether Arctic char (Salvelinus alpinus) were more efficient as a cannibal than as an interspecific predator on the prey fish ninespine stickleback (Pungitius pungitius) and whether ninespine stickleback were a more efficient competitor on the shared zooplankton prey than its predator, Arctic char. Secondly, we performed a literature survey to evaluate if piscivores in general are more efficient as cannibals than as interspecific predators and whether piscivores are inferior competitors on shared resources compared to their prey fish species. Both controlled pool experiments and outdoor pond experiments showed that char imposed a higher mortality on YOY char than on ninespine sticklebacks, suggesting that piscivorous char is a more efficient cannibal than interspecific predator. Estimates of size dependent attack rates on zooplankton further showed a consistently higher attack rate of ninespine sticklebacks compared to similar sized char on zooplankton, suggesting that ninespine stickleback is a more efficient competitor than char on zooplankton resources. The literature survey showed that piscivorous top consumers generally selected conspecifics over interspecific prey, and that prey species are competitively superior compared to juvenile piscivorous species in the zooplankton niche. We suggest that the observed selectivity for cannibal prey over interspecific prey and the competitive advantage of prey species over juvenile piscivores are common features in fish communities and that the observed selectivity for cannibalism over interspecific prey has

  1. Intraguild interactions and behavior of Spodoptera frugiperda and Helicoverpa spp. on maize.

    Science.gov (United States)

    Bentivenha, José Pf; Montezano, Débora G; Hunt, Thomas E; Baldin, Edson Ll; Peterson, Julie A; Victor, Vinícius S; Pannuti, Luiz Er; Vélez, Ana M; Paula-Moraes, Silvana V

    2017-11-01

    Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) is one of the major pests of maize and is in the same feeding guild as the noctuid pests Helicoverpa zea (Boddie) and Helicoverpa armigera (Hübner), recently reported in South and North America. The intraguild interactions of these species were assessed in laboratory and field conditions by determining the survival of larvae in interaction scenarios with non-Bt maize silks and ears. Moreover, a video tracking system was utilized to evaluate behavioral parameters during larval interactions in scenarios with or without food. In intraguild interactions, S. frugiperda had greater survival (55-100%) when competing with Helicoverpa spp. in scenarios where larvae were the same instar or when they were larger (fourth versus second) than their competitor. Frequency and time in food of S. frugiperda larvae were negatively influenced by interactions. Larvae of S. frugiperda moved shorter distances (less than 183.03 cm) compared with H. zea. Overall, S. frugiperda had a competitive advantage over Helicoverpa spp. This study provides significant information regarding noctuid behavior and larval survival during intraguild interactions, which may impact pest prevalence and population dynamics, thereby affecting integrated pest management and insect resistance management of these species in maize. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Predator Politics

    Directory of Open Access Journals (Sweden)

    Mary Louisa Cappelli

    2017-01-01

    Full Text Available Edward Abbey’s Desert Solitaire and Barbara Kingsolver’s Prodigal Summer urges readers to see coyotes as crucial members of the natural community whose predation is essential for the maintenance of biodiversity and ecological stability. Their cultural production provides a human story of ecocritical engagement for understanding the cascading effects of removing top predators from their ecosystems. By envisioning biocentric possibilities within place-based and scientific contexts, Edward Abbey and Barbara Kingsolver share a common theme of political ecology: political processes shape ecological conditions. A close reading of Edward Abbey’s Desert Solitaire and Barbara Kingsolver’s Prodigal Summer provides a literary entryway to connect research, arguments, and discourse across disciplines tasking readers to engage in political discussions of environmental sustainability and to consider viable solutions to preserve the ecological diversity of our predator populations and ecosystems.

  3. Pasta Predation.

    Science.gov (United States)

    Waugh, Michael L.

    1986-01-01

    Presents a predator-prey simulation which involves students in collecting data, solving problems, and making predictions on the evolution of prey populations. Provides directives on how to perform the chi-square test and also includes an Applesoft BASK program that performs the calculations. (ML)

  4. Long-term patterns in European brown hare population dynamics in Denmark: effects of agriculture, predation and climate

    Directory of Open Access Journals (Sweden)

    Asferg Tommy

    2004-10-01

    Full Text Available Abstract Background In Denmark and many other European countries, harvest records suggest a marked decline in European brown hare numbers, a decline often attributed to the agricultural practice. In the present study, we analyse the association between agricultural land-use, predator abundance and winter severity on the number of European brown hares harvested in Denmark in the years 1955 through 2000. Results Winter cereals had a significant negative association with European brown hare numbers. In contrast to this, root crop area was positively related to their numbers. Remaining crop categories were not significantly associated with the European brown hare numbers, though grass out of rotation tended to be positively related. The areas of root crop production and of grass out of rotation have been reduced by approximately 80% and 50%, respectively, while the area of winter cereals has increased markedly (>70%. However, European brown hare numbers were primarily negatively associated with the number of red fox. Finally, we also found a positive association between mild winters and European brown hare numbers. Conclusion The decline of Danish European brown hare populations can mainly be attributed to predation by red fox, but the development in agricultural land-use during the last 45 years have also affected the European brown hare numbers negatively. Additionally, though mild winters were beneficial to European brown hares, the increasing frequency of mild winters during the study period was insufficient to reverse the negative population trend.

  5. Vibrio cholerae as a predator: lessons from evolutionary principles

    Directory of Open Access Journals (Sweden)

    Stefan ePukatzki

    2013-12-01

    Full Text Available Diarrheal diseases are the second-most common cause of death among children under the age of five worldwide. Cholera alone, caused by the marine bacterium Vibrio cholerae, is responsible for several million cases and over 120,000 deaths annually. When contaminated water is ingested, V. cholerae passes through the gastric acid barrier, penetrates the mucin layer of the small intestine, and adheres to the underlying epithelial lining. V. cholerae multiplies rapidly, secretes cholera toxin, and exits the human host in vast numbers during diarrheal purges. How V. cholerae rapidly reaches such high numbers during each purge is not clearly understood. We propose that V. cholerae employs its bactericidal type VI secretion system to engage in intraspecies and intraguild predation for nutrient acquisition to support rapid growth and multiplication.

  6. Foraging trade-offs along a predator-permanence gradient in subalpine wetlands

    Science.gov (United States)

    Wissinger, S.A.; Whiteman, H.H.; Sparks, G.B.; Rouse, G.L.; Brown, W.S.

    1999-01-01

    We conducted a series of field and laboratory experiments to determine the direct and indirect effects of a top predator, the tiger salamander (Ambystoma tigrinum nebulosum), on larvae of two species of limnephilid caddisflies (Limnephilus externus and Asynarchus nigriculus) in subalpine wetlands in central Colorado. Asynarchus larvae predominate in temporary wetlands and are aggressive intraguild predators on Limnephilus larvae, which only predominate in permanent basins with salamanders. We first conducted a field experiment in mesocosms (cattle tanks) to quantify the predatory effects of different life stages of salamanders on the two caddisfly species. Two life stages of the salamanders (larvae and paedomorphs) preferentially preyed on Asynarchus relative to Limnephilus. Subsequent laboratory experiments revealed that high Asynarchus activity rates and relatively ineffective antipredatory behaviors led to higher salamander detection and attack rates compared to Limnephilus. In a second field experiment (full factorial for presence and absence of each of the three species), we found that salamander predation on Asynarchus had an indirect positive effect on Limnephilus: survival was higher in the presence of salamanders + Asynarchus than with just Asynarchus. In the laboratory we compared the predatory effects of salamanders with and without their mouths sewn shut and found the observed indirect positive effect on Limnephilus survival to be mainly the result of reduced numbers of Asynarchus rather than salamander-induced changes in Asynarchus behavior. We argue that indirect effects of predator-predator interactions on shared prey will be mainly density-mediated and not trait-mediated when one of the predators (in this case, Asynarchus) is under strong selection for rapid growth and therefore does not modify foraging behaviors in response to the other predator. The reciprocal dominance of Limnephilus and Asynarchus in habitats with and without salamanders

  7. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff

    DEFF Research Database (Denmark)

    Steiner, Uli; Van Buskirk, Josh

    2009-01-01

    , consistent with the "fight-or-flight" response observed in many organisms. The long term reaction showed the opposite pattern: tadpoles reduced oxygen consumption after three weeks exposure to predators, which would act to reduce the growth cost of predator defence. The results point to an instantaneous...... and reversible stress response to predation risk. This suggests that the tradeoff between avoiding predators and growing rapidly is not caused by changes in metabolic rate, and must be sought in other behavioural or physiological processes....

  8. Unraveling the intraguild competition between Oscheius spp. nematodes and entomopathogenic nematodes: Implications for their natural distribution in Swiss agricultural soils

    Czech Academy of Sciences Publication Activity Database

    Campos-Herrera, R.; Půža, Vladimír; Jaffuel, G.; Blanco-Pérez, R.; Čepulyté-Rakauskiené, R.; Turlings, T. C. J.

    2015-01-01

    Roč. 132, NOV 01 (2015), s. 216-227 ISSN 0022-2011 Institutional support: RVO:60077344 Keywords : Oscheius * quantitative real-time PCR * intraguild competition Subject RIV: EH - Ecology, Behaviour Impact factor: 2.198, year: 2015 http://www.sciencedirect.com/science/article/pii/S0022201115300276

  9. When does an alien become a native species? A vulnerable native mammal recognizes and responds to its long-term alien predator.

    Directory of Open Access Journals (Sweden)

    Alexandra J R Carthey

    Full Text Available The impact of alien predators on native prey populations is often attributed to prey naiveté towards a novel threat. Yet evolutionary theory predicts that alien predators cannot remain eternally novel; prey species must either become extinct or learn and adapt to the new threat. As local enemies lose their naiveté and coexistence becomes possible, an introduced species must eventually become 'native'. But when exactly does an alien become a native species? The dingo (Canis lupus dingo was introduced to Australia about 4000 years ago, yet its native status remains disputed. To determine whether a vulnerable native mammal (Perameles nasuta recognizes the close relative of the dingo, the domestic dog (Canis lupus familiaris, we surveyed local residents to determine levels of bandicoot visitation to yards with and without resident dogs. Bandicoots in this area regularly emerge from bushland to forage in residential yards at night, leaving behind tell-tale deep, conical diggings in lawns and garden beds. These diggings were less likely to appear at all, and appeared less frequently and in smaller quantities in yards with dogs than in yards with either resident cats (Felis catus or no pets. Most dogs were kept indoors at night, meaning that bandicoots were not simply chased out of the yards or killed before they could leave diggings, but rather they recognized the threat posed by dogs and avoided those yards. Native Australian mammals have had thousands of years experience with wild dingoes, which are very closely related to domestic dogs. Our study suggests that these bandicoots may no longer be naïve towards dogs. We argue that the logical criterion for determining native status of a long-term alien species must be once its native enemies are no longer naïve.

  10. Predator avoidance performance of larval fathead minnows (Pimephales promelas) following short-term exposure to estrogen mixtures

    Science.gov (United States)

    McGee, M.R.; Julius, M.L.; Vajda, A.M.; Norris, D.O.; Barber, L.B.; Schoenfuss, H.L.

    2009-01-01

    Aquatic organisms exposed to endocrine disrupting compounds (EDCs) at early life-stages may have reduced reproductive fitness via disruption of reproductive and non-reproductive behavioral and physiological pathways. Survival to reproductive age relies upon optimal non-reproductive trait expression, such as adequate predator avoidance responses, which may be impacted through EDC exposure. During a predator–prey confrontation, larval fish use an innate C-start escape behavior to rapidly move away from an approaching threat. We tested the hypotheses that (1) larval fathead minnows exposed to estrogens, a primary class of EDCs, singularly or in mixture, suffer a reduced ability to perform an innate C-start behavior when faced with a threat stimulus; (2) additive effects will cause greater reductions in C-start behavior; and (3) effects will differ among developmental stages. In this study, embryos (post-fertilization until hatching) were exposed for 5 days to environmentally relevant concentrations of estrone (E1), 17β-estradiol (E2), and 17α-ethinylestradiol (EE2) singularly and in mixture. Exposed embryos were allowed to hatch and grow in control well water until 12 days old. Similarly, post-hatch fathead minnows were exposed for 12 days to these compounds. High-speed (1000 frames/s) video recordings of escape behavior were collected and transferred to National Institutes of Health Image for frame-by-frame analysis of latency period, escape velocity, and total escape response (combination of latency period and escape velocity). When tested 12 days post-hatch, only E1 adversely affected C-start performance of larvae exposed as embryos. Conversely, larvae exposed for 12 days post-hatch did not exhibit altered escape responses when exposed to E1, while adverse responses were seen in E2 and the estrogen mixture. Ethinylestradiol exposure did not elicit changes in escape behaviors at either developmental stage. The direct impact of reduced C-start performance on

  11. Intraguild predation between small pelagic fish in the Bay of Biscay: impact on anchovy (Engraulis encrasicolus L.) egg mortality

    KAUST Repository

    Bachiller, Eneko; Cotano, Unai; Ibaibarriaga, Leire; Santos, Maria; Irigoien, Xabier

    2015-01-01

    could have a strong impact on the recruitment variability (e.g. anchovy). Egg cannibalism observed in anchovies has been postulated to be a mechanism that determines the upper limit of the population density and self-regulates the population abundance

  12. INTERACTIONS BETWEEN BRANCHIATE MOLE SALAMANDERS (AMBYSTOMA TALPOIDEUM) AND LESSER SIRENS (SIREN INTERMEDIA): ASYMMETRICAL COMPETITION AND INTRAGUILD PREDATION. (R825795)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Social Familiarity Reduces Reaction Times and Enhances Survival of Group-Living Predatory Mites under the Risk of Predation

    Science.gov (United States)

    Strodl, Markus Andreas; Schausberger, Peter

    2012-01-01

    Background Social familiarity, which is based on the ability to recognise familiar conspecific individuals following prior association, may affect all major life activities of group-living animals such as foraging, reproduction and anti-predator behaviours. A scarcely experimentally tested explanation why social familiarity is beneficial for group-living animals is provided by limited attention theory. Limited attention theory postulates that focusing on a given task, such as inspection and assessment of unfamiliar group members, has cognitive and associated physiological and behavioural costs with respect to the attention paid to other tasks, such as anti-predator vigilance and response. Accordingly, we hypothesised that social familiarity enhances the anti-predator success of group-living predatory mites, Phytoseiulus persimilis, confronted with an intraguild predator, the predatory mite Amblyseius andersoni. Methodology/Principal Findings We videotaped and analysed the response of two P. persimilis larvae, held in familiar or unfamiliar pairs, to attacks by a gravid A. andersoni female, using the behavioural analyses software EthoVision Pro®. Familiar larvae were more frequently close together, reacted more quickly to predator attacks, survived more predator encounters and survived longer than unfamiliar larvae. Significance In line with the predictions of limited attention theory, we suggest that social familiarity improves anti-predator behaviours because it allows prey to shift attention to other tasks rather than group member assessment. PMID:22927997

  14. Social familiarity reduces reaction times and enhances survival of group-living predatory mites under the risk of predation.

    Directory of Open Access Journals (Sweden)

    Markus Andreas Strodl

    Full Text Available Social familiarity, which is based on the ability to recognise familiar conspecific individuals following prior association, may affect all major life activities of group-living animals such as foraging, reproduction and anti-predator behaviours. A scarcely experimentally tested explanation why social familiarity is beneficial for group-living animals is provided by limited attention theory. Limited attention theory postulates that focusing on a given task, such as inspection and assessment of unfamiliar group members, has cognitive and associated physiological and behavioural costs with respect to the attention paid to other tasks, such as anti-predator vigilance and response. Accordingly, we hypothesised that social familiarity enhances the anti-predator success of group-living predatory mites, Phytoseiulus persimilis, confronted with an intraguild predator, the predatory mite Amblyseius andersoni.We videotaped and analysed the response of two P. persimilis larvae, held in familiar or unfamiliar pairs, to attacks by a gravid A. andersoni female, using the behavioural analyses software EthoVision Pro®. Familiar larvae were more frequently close together, reacted more quickly to predator attacks, survived more predator encounters and survived longer than unfamiliar larvae.In line with the predictions of limited attention theory, we suggest that social familiarity improves anti-predator behaviours because it allows prey to shift attention to other tasks rather than group member assessment.

  15. Short-term effects of avian predation variation on population size and local survival of the multimammate rat, Mastomys natalensis (Rodentia, Muridae)

    DEFF Research Database (Denmark)

    Gulck, T. van; Stocks, R.; Verhagen, Ron

    1998-01-01

    The influence of avian predation on population size and local survival of Mastomys natalensis rats in Tanzania was studied in a capture-recapture study over a six month period on experimental fields with decreased, controlled and increased predation pressure. Bird observations indicated that the ......The influence of avian predation on population size and local survival of Mastomys natalensis rats in Tanzania was studied in a capture-recapture study over a six month period on experimental fields with decreased, controlled and increased predation pressure. Bird observations indicated...... that the placement of perches increased local hunting activity of at least the Black Shouldered Kite but there were no obvious effects on rodent population size or survival. In a single field where avian predation was prevented by covering the field with a net, an increase in survival was observed. The opposite...

  16. Predator recognition in rainbowfish, Melanotaenia duboulayi, embryos.

    Directory of Open Access Journals (Sweden)

    Lois Jane Oulton

    Full Text Available Exposure to olfactory cues during embryonic development can have long term impacts on birds and amphibians behaviour. Despite the vast literature on predator recognition and responses in fishes, few researchers have determined how fish embryos respond to predator cues. Here we exposed four-day-old rainbowfish (Melanotaenia duboulayi embryos to cues emanating from a novel predator, a native predator and injured conspecifics. Their response was assessed by monitoring heart rate and hatch time. Results showed that embryos have an innate capacity to differentiate between cues as illustrated by faster heart rates relative to controls. The greatest increase in heart rate occurred in response to native predator odour. While we found no significant change in the time taken for eggs to hatch, all treatments experienced slight delays as expected if embryos are attempting to reduce exposure to larval predators.

  17. Alien vs. Predator - the native lacewing Chrysoperla carnea is the superior intraguild predator in trials against the invasive ladybird Harmonia axyridis

    Czech Academy of Sciences Publication Activity Database

    Nedvěd, Oldřich; Fois, X.; Ungerová, D.; Kalushkov, P.

    2013-01-01

    Roč. 66, č. 1 (2013), s. 73-78 ISSN 1721-8861 Grant - others:Mze ČR(CZ) QH82047 Institutional support: RVO:60077344 Keywords : Coccinellidae * Chrysopidae * Syrphidae Subject RIV: EH - Ecology, Behaviour Impact factor: 0.722, year: 2013 http://www.bulletinofinsectology.org/pdfarticles/vol66-2013-073-078nedved.pdf

  18. Neuroendocrine changes upon exposure to predator odors.

    Science.gov (United States)

    Hegab, Ibrahim M; Wei, Wanhong

    2014-05-28

    Predator odors are non-intrusive and naturalistic stressors of high ethological relevance in animals. Upon exposure to a predator or its associated cues, robust physiological and molecular anti-predator defensive strategies are elicited thereby allowing prey species to recognize, avoid and defend against a possible predation threat. In this review, we will discuss the nature of neuroendocrine stress responses upon exposure to predator odors. Predator odors can have a profound effect on the endocrine system, including activation of the hypothalamic-pituitary-adrenal axis, and induction of stress hormones such as corticosterone and adrenocorticotropic hormone. On a neural level, short-term exposure to predator odors leads to induction of the c-fos gene, while induction of ΔFosB in a different brain region is detected under chronic predation stress. Future research should aim to elucidate the relationships between neuroendocrine and behavioral outputs to gage the different levels of anti-predator responses in prey species. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Toward a community ecology of landscapes: predicting multiple predator-prey interactions across geographic space.

    Science.gov (United States)

    Schmitz, Oswald J; Miller, Jennifer R B; Trainor, Anne M; Abrahms, Briana

    2017-09-01

    Community ecology was traditionally an integrative science devoted to studying interactions between species and their abiotic environments in order to predict species' geographic distributions and abundances. Yet for philosophical and methodological reasons, it has become divided into two enterprises: one devoted to local experimentation on species interactions to predict community dynamics; the other devoted to statistical analyses of abiotic and biotic information to describe geographic distribution. Our goal here is to instigate thinking about ways to reconnect the two enterprises and thereby return to a tradition to do integrative science. We focus specifically on the community ecology of predators and prey, which is ripe for integration. This is because there is active, simultaneous interest in experimentally resolving the nature and strength of predator-prey interactions as well as explaining patterns across landscapes and seascapes. We begin by describing a conceptual theory rooted in classical analyses of non-spatial food web modules used to predict species interactions. We show how such modules can be extended to consideration of spatial context using the concept of habitat domain. Habitat domain describes the spatial extent of habitat space that predators and prey use while foraging, which differs from home range, the spatial extent used by an animal to meet all of its daily needs. This conceptual theory can be used to predict how different spatial relations of predators and prey could lead to different emergent multiple predator-prey interactions such as whether predator consumptive or non-consumptive effects should dominate, and whether intraguild predation, predator interference or predator complementarity are expected. We then review the literature on studies of large predator-prey interactions that make conclusions about the nature of multiple predator-prey interactions. This analysis reveals that while many studies provide sufficient information

  20. Effects of Beauveria bassiana on predation and behavior of the predatory mite Phytoseiulus persimilis.

    Science.gov (United States)

    Wu, Shengyong; Xing, Zhenlong; Sun, Weinan; Xu, Xuenong; Meng, Ruixia; Lei, Zhongren

    2018-03-01

    Determination of intraguild interactions between entomopathogens and predators is important when attempting to use a combination of these two natural enemy groups for biological control of their shared arthropod pest species. This study assessed the effects of Beauveria bassiana on the predation and associated behavior of the predatory mite, Phytoseiulus persimilis, against Tetranychus urticae. The functional response tests showed that P. persimilis exhibited a Holling type II response on the spider mite, Tetranychus urticae, when treated with either a B. bassiana or Tween-80 suspension. There were no significant differences between the treatments in the number of T. urticae consumed. The laboratory choice test indicated that P. persimilis displayed a significant avoidance response to B. bassiana on bean leaves immediately following spray application. They also spent significantly longer time in self-grooming behavior on leaf disks sprayed with fungal conidia than on discs treated with Tween-80. There were no significant differences in the predation rates on T. urticae eggs between the different treatments. The potted plant investigations indicated that P. persimilis showed significant aversion behavior to the initial fungal spray, but gradually dispersed over the entire bean plants. Observations using scanning electron microscopy revealed that fungal conidia were attached to the body of P. persimilis after mounting the leaf disk treated with B. bassiana, which would account for its varied behavioral responses. Our study suggests that fungal spray did not affect the predation capability of P. persimilis and poses a negligible risk to their behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    Science.gov (United States)

    Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís

    2015-01-01

    Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore

  2. Small but powerful: top predator local extinction affects ecosystem structure and function in an intermittent stream.

    Directory of Open Access Journals (Sweden)

    Pablo Rodríguez-Lozano

    Full Text Available Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators' extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1 leads to a 'mesopredator release', affects primary consumers and changes whole community structures, and (2 triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel, conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to 'mesopredator release', and also to 'prey release' despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem's structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers' extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been

  3. Unraveling the intraguild competition between Oscheius spp. nematodes and entomopathogenic nematodes: Implications for their natural distribution in Swiss agricultural soils.

    Science.gov (United States)

    Campos-Herrera, Raquel; Půža, Vladimir; Jaffuel, Geoffrey; Blanco-Pérez, Rubén; Čepulytė-Rakauskienė, Rasa; Turlings, Ted C J

    2015-11-01

    Entomopathogenic nematodes (EPN) are excellent biological control agents to fight soil-dwelling insect pests. In a previous survey of agricultural soils of Switzerland, we found mixtures of free-living nematodes (FLN) in the genus Oscheius, which appeared to be in intense competition with EPN. As this may have important implications for the long-term persistence of EPN, we studied this intraguild competition in detail. We hypothesized that (i) Oscheius spp. isolates act as scavengers rather than entomopathogens, and (ii) cadavers with relatively small numbers of EPN are highly suitable resources for Oscheius spp. reproduction. To study this, we identified Oscheius spp. isolated from Swiss soils, quantified the outcome of EPN/Oscheius competition in laboratory experiments, developed species-specific primers and probe for quantitative real-time PCR, and evaluated their relative occurrence in the field in the context of the soil food web. Molecular analysis (ITS/D2D3) identified MG-67/MG-69 as Oscheius onirici and MG-68 as O. tipulae (Dolichura-group). Oscheius spp. indeed behaved as scavengers, reproducing in ∼64% of frozen-killed cadavers from controlled experiments. Mixed infection in the laboratory by Oscheius spp. with low (3 IJs) or high (20 IJs) initial EPN numbers revealed simultaneous reproduction in double-exposed cadavers which resulted in a substantial reduction in the number of EPN progeny from the cadaver. This effect depended on the number of EPN in the initial inoculum and differed by EPN species; Heterorhabditis megidis was better at overcoming competition. This study reveals Oscheius spp. as facultative kleptoparasites that compete with EPN for insect cadavers. Using real-time qPCR, we were able to accurately quantify this strong competition between FLN and EPN in cadavers that were recovered after soil baiting (∼86% cadavers with >50% FLN production). The severe competition within the host cadavers and the intense management of the soils in

  4. Predation and caribou populations

    Directory of Open Access Journals (Sweden)

    Dale R. Seip

    1991-10-01

    Full Text Available Predation, especially wolf (Canis lupus predation, limits many North American caribou (Rangifer tarandus populations below the density that food resources could sustain. The impact of predation depends on the parameters for the functional and numerical response of the wolves, relative to the potential annual increment of the caribou population. Differences in predator-avoidance strategies largely explain the major differences in caribou densities that occur naturally in North America. Caribou migrations that spatially separate caribou from wolves allow relatively high densities of caribou to survive. Non-migratory caribou that live in areas where wolf populations are sustained by alternate prey can be eliminated by wolf predation.

  5. Short-term effects of avian predation variation on population size and local survival of the multimammate rat, Mastomys natalensis (Rodentia, Muridae)

    DEFF Research Database (Denmark)

    Gulck, T. van; Stocks, R.; Verhagen, Ron

    1998-01-01

    was not true but this might be due to the small size of the experimental fields. Analysis of weekly collected raptor pellets, over a 15 month period, showed an overrepresentation of M. natalensis as prey and a strong positive correlation between the density of M. natalensis and the avian predation intensity....

  6. Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator

    NARCIS (Netherlands)

    Muñoz-Cárdenas, Karen; Ersin, Firdevs; Pijnakker, Juliette; Houten, van Yvonne; Hoogerbrugge, Hans; Leman, Ada; Pappas, Maria L.; Duarte, Marcus V.A.; Messelink, Gerben J.; Sabelis, Maurice W.; Janssen, Arne

    2017-01-01

    Supplying predators with alternative food can have short-term positive effects on prey densities through predator satiation (functional response) and long-term negative effects through increases of predator populations (numerical response). In biological control, alternative food sources for

  7. Supplying high-quality alternative prey in the litter increases control of an above-ground plant pest by a generalist predator

    NARCIS (Netherlands)

    Muñoz-Cárdenas, K.; Ersin, F.; Pijnakker, J.; van Houten, Y.; Hoogerbrugge, H.; Leman, A.; Pappas, M.L.; Duarte, M.V.A.; Messelink, G.J.; Sabelis, M.W.; Janssen, A.

    Supplying predators with alternative food can have short-term positive effects on prey densities through predator satiation (functional response) and long-term negative effects through increases of predator populations (numerical response). In biological control, alternative food sources for

  8. Selective Predation of a Stalking Predator on Ungulate Prey.

    Directory of Open Access Journals (Sweden)

    Marco Heurich

    Full Text Available Prey selection is a key factor shaping animal populations and evolutionary dynamics. An optimal forager should target prey that offers the highest benefits in terms of energy content at the lowest costs. Predators are therefore expected to select for prey of optimal size. Stalking predators do not pursue their prey long, which may lead to a more random choice of prey individuals. Due to difficulties in assessing the composition of available prey populations, data on prey selection of stalking carnivores are still scarce. We show how the stalking predator Eurasian lynx (Lynx lynx selects prey individuals based on species identity, age, sex and individual behaviour. To address the difficulties in assessing prey population structure, we confirm inferred selection patterns by using two independent data sets: (1 data of 387 documented kills of radio-collared lynx were compared to the prey population structure retrieved from systematic camera trapping using Manly's standardized selection ratio alpha and (2 data on 120 radio-collared roe deer were analysed using a Cox proportional hazards model. Among the larger red deer prey, lynx selected against adult males-the largest and potentially most dangerous prey individuals. In roe deer lynx preyed selectively on males and did not select for a specific age class. Activity during high risk periods reduced the risk of falling victim to a lynx attack. Our results suggest that the stalking predator lynx actively selects for size, while prey behaviour induces selection by encounter and stalking success rates.

  9. The increased risk of predation enhances cooperation

    Science.gov (United States)

    Krams, Indrikis; Bērziņš, Arnis; Krama, Tatjana; Wheatcroft, David; Igaune, Kristīne; Rantala, Markus J.

    2010-01-01

    Theory predicts that animals in adverse conditions can decrease individual risks and increase long-term benefits by cooperating with neighbours. However, some empirical studies suggest that animals often focus on short-term benefits, which can reduce the likelihood that they will cooperate with others. In this experimental study, we tested between these two alternatives by evaluating whether increased predation risk (as a correlate of environmental adversity) enhances or diminishes the occurrence of cooperation in mobbing, a common anti-predator behaviour, among breeding pied flycatchers Ficedula hypoleuca. We tested whether birds would join their mobbing neighbours more often and harass a stuffed predator placed near their neighbours' nests more intensely in areas with a higher perceived risk of predation. Our results show that birds attended mobs initiated by their neighbours more often, approached the stuffed predator significantly more closely, and mobbed it at a higher intensity in areas where the perceived risk of predation was experimentally increased. In such high-risk areas, birds also were more often involved in between-pair cooperation. This study demonstrates the positive impact of predation risk on cooperation in breeding songbirds, which might help in explaining the emergence and evolution of cooperation. PMID:19846454

  10. Predators and the public trust.

    Science.gov (United States)

    Treves, Adrian; Chapron, Guillaume; López-Bao, Jose V; Shoemaker, Chase; Goeckner, Apollonia R; Bruskotter, Jeremy T

    2017-02-01

    behavioural ecologies of humans and predators. The scientific community has not reached consensus on sustainable levels of human-caused mortality for many predator populations. This challenge includes both genuine conceptual uncertainty and exploitation of scientific debate for political gain. Second, human intolerance for predators exposes value conflicts about preferences for some wildlife over others and balancing majority rule with the protection of minorities in a democracy. We examine how differences between traditional assumptions and scientific studies of interactions between people and predators impede evidence-based policy. Even if the prior challenges can be overcome, well-reasoned policy on wild animals faces a greater challenge than other environmental assets because animals and humans change behaviour in response to each other in the short term. These coupled, dynamic responses exacerbate clashes between uses that deplete wildlife and uses that enhance or preserve wildlife. Viewed in this way, environmental assets demand sophisticated, careful accounting by disinterested trustees who can both understand the multidisciplinary scientific measurements of relative costs and benefits among competing uses, and justly balance the needs of all beneficiaries including future generations. Without public trust principles, future trustees will seldom prevail against narrow, powerful, and undemocratic interests. Without conservation informed by public trust thinking predator populations will face repeated cycles of eradication and recovery. Our conclusions have implications for the many subfields of the biological sciences that address environmental trust assets from the atmosphere to aquifers. © 2015 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  11. Interactions between a Top Order Predator and Exotic Mesopredators in the Australian Rangelands

    Directory of Open Access Journals (Sweden)

    Katherine E. Moseby

    2012-01-01

    Full Text Available An increase in mesopredators caused by the removal of top-order predators can have significant implications for threatened wildlife. Recent evidence suggests that Australia’s top-order predator, the dingo, may suppress the introduced cat and red fox. We tested this relationship by reintroducing 7 foxes and 6 feral cats into a 37 km2 fenced paddock in arid South Australia inhabited by a male and female dingo. GPS datalogger collars recorded locations of all experimental animals every 2 hours. Interactions between species, mortality rates, and postmortems were used to determine the mechanisms of any suppression. Dingoes killed all 7 foxes within 17 days of their introduction and no pre-death interactions were recorded. All 6 feral cats died between 20 and 103 days after release and dingoes were implicated in the deaths of at least 3 cats. Dingoes typically stayed with fox and cat carcasses for several hours after death and/or returned several times in ensuing days. There was no evidence of intraguild predation, interference competition was the dominant mechanism of suppression. Our results support anecdotal evidence that dingoes may suppress exotic mesopredators, particularly foxes. We outline further research required to determine if this suppression translates into a net benefit for threatened prey species.

  12. Predator-induced changes in metabolism cannot explain the growth/predation risk tradeoff.

    Directory of Open Access Journals (Sweden)

    Ulrich K Steiner

    2009-07-01

    Full Text Available Defence against predators is usually accompanied by declining rates of growth or development. The classical growth/predation risk tradeoff assumes reduced activity as the cause of these declines. However, in many cases these costs cannot be explained by reduced foraging effort or enhanced allocation to defensive structures under predation risk. Here, we tested for a physiological origin of defence costs by measuring oxygen consumption in tadpoles (Rana temporaria exposed to predation risk over short and long periods of time. The short term reaction was an increase in oxygen consumption, consistent with the "fight-or-flight" response observed in many organisms. The long term reaction showed the opposite pattern: tadpoles reduced oxygen consumption after three weeks exposure to predators, which would act to reduce the growth cost of predator defence. The results point to an instantaneous and reversible stress response to predation risk. This suggests that the tradeoff between avoiding predators and growing rapidly is not caused by changes in metabolic rate, and must be sought in other behavioural or physiological processes.

  13. Differential Habitat Use or Intraguild Interactions: What Structures a Carnivore Community?

    Directory of Open Access Journals (Sweden)

    Matthew E Gompper

    Full Text Available Differential habitat use and intraguild competition are both thought to be important drivers of animal population sizes and distributions. Habitat associations for individual species are well-established, and interactions between particular pairs of species have been highlighted in many focal studies. However, community-wide assessments of the relative strengths of these two factors have not been conducted. We built multi-scale habitat occupancy models for five carnivore taxa of New York's Adirondack landscape and assessed the relative performance of these models against ones in which co-occurrences of potentially competing carnivore species were also incorporated. Distribution models based on habitat performed well for all species. Black bear (Ursus americanus and fisher (Martes pennanti distribution was similar in that occupancy of both species was negatively associated with paved roads. However, black bears were also associated with larger forest fragments and fishers with smaller forest fragments. No models with habitat features were more supported than the null habitat model for raccoons (Procyon lotor. Martens (Martes americana were most associated with increased terrain ruggedness and elevation. Weasel (Mustela spp. occupancy increased with the cover of deciduous forest. For most species dyads habitat-only models were more supported than those models with potential competitors incorporated. The exception to this finding was for the smallest carnivore taxa (marten and weasel where habitat plus coyote abundance models typically performed better than habitat-only models. Assessing this carnivore community as whole, we conclude that differential habitat use is more important than species interactions in maintaining the distribution and structure of this carnivore guild.

  14. Rhinoceros beetles suffer male-biased predation by mammalian and avian predators.

    Science.gov (United States)

    Kojima, Wataru; Sugiura, Shinji; Makihara, Hiroshi; Ishikawa, Yukio; Takanashi, Takuma

    2014-03-01

    Male sexually-selected traits often impose an increased risk of predation on their bearers, causing male-biased predation. We investigated whether males of the sap-feeding Japanese rhinoceros beetle Trypoxylus dichotomus were more susceptible to predation than females by comparing the morphology of beetles caught in bait traps with the remains of beetles found on the ground. The males of this species are larger than the females and have a horn on the head. We found that predation pressure was greater for males than for females, and that larger individuals of both sexes were more vulnerable to predation. We identified two predators, the raccoon dog Nyctereutes procyonoides and jungle crow Corvus macrorhynchos, by monitoring sap-site trees with infrared video cameras. Raccoon dogs visited sap-site trees at night, while crows came after daybreak. The highest frequency of visits by both predators was observed in the first half of August, which matches the peak season of T. dichotomus. Raccoon dogs often left bite marks on the remains of prey, whereas crows did not. Bite marks were found on most of the remains collected at two distant localities, which suggested that predation by raccoon dogs is common. Size- and sex-dependent differences in the conspicuousness and active period of T. dichotomus probably explain these biased predation patterns. Our results suggest that having a large horn/body is costly in terms of the increased risk of predation. Predation cost may act as a stabilizing selection pressure against the further exaggeration of male sexual traits.

  15. Species diversity modulates predation

    NARCIS (Netherlands)

    Kratina, P.; Vos, M.; Anholt, B.R.

    2007-01-01

    Predation occurs in a context defined by both prey and non-prey species. At present it is largely unknown how species diversity in general, and species that are not included in a predator's diet in particular, modify predator–prey interactions.Therefore we studied how both the density and diversity

  16. The risk of predation favors cooperation among breeding prey

    Science.gov (United States)

    Krama, Tatjana; Berzins, Arnis; Rantala, Markus J

    2010-01-01

    Empirical studies have shown that animals often focus on short-term benefits under conditions of predation risk, which reduces the likelihood that they will cooperate with others. However, some theoretical studies predict that animals in adverse conditions should not avoid cooperation with their neighbors since it may decrease individual risks and increase long-term benefits of reciprocal help. We experimentally tested these two alternatives to find out whether increased predation risk enhances or diminishes the occurrence of cooperation in mobbing, a common anti-predator behavior, among breeding pied flycatchers, Ficedula hypoleuca. Our results show that birds attended mobs initiated by their neighbors more often, approached the stuffed predator significantly more closely, and mobbed it at a higher intensity in areas where the perceived risk of predation was experimentally increased. This study demonstrates a positive impact of predation risk on cooperation in breeding songbirds, which might help to explain the emergence and evolution of cooperation. PMID:20714404

  17. Preference alters consumptive effects of predators: top-down effects of a native crab on a system of native and introduced prey.

    Directory of Open Access Journals (Sweden)

    Emily W Grason

    Full Text Available Top-down effects of predators in systems depend on the rate at which predators consume prey, and on predator preferences among available prey. In invaded communities, these parameters might be difficult to predict because ecological relationships are typically evolutionarily novel. We examined feeding rates and preferences of a crab native to the Pacific Northwest, Cancer productus, among four prey items: two invasive species of oyster drill (the marine whelks Urosalpinx cinerea and Ocenebra inornata and two species of oyster (Crassostrea gigas and Ostrea lurida that are also consumed by U. cinerea and O. inornata. This system is also characterized by intraguild predation because crabs are predators of drills and compete with them for prey (oysters. When only the oysters were offered, crabs did not express a preference and consumed approximately 9 juvenile oysters crab(-1 day(-1. We then tested whether crabs preferred adult drills of either U. cinerea or O. inornata, or juvenile oysters (C. gigas. While crabs consumed drills and oysters at approximately the same rate when only one type of prey was offered, they expressed a strong preference for juvenile oysters over drills when they were allowed to choose among the three prey items. This preference for oysters might negate the positive indirect effects that crabs have on oysters by crabs consuming drills (trophic cascade because crabs have a large negative direct effect on oysters when crabs, oysters, and drills co-occur.

  18. Optimal control of native predators

    Science.gov (United States)

    Martin, Julien; O'Connell, Allan F.; Kendall, William L.; Runge, Michael C.; Simons, Theodore R.; Waldstein, Arielle H.; Schulte, Shiloh A.; Converse, Sarah J.; Smith, Graham W.; Pinion, Timothy; Rikard, Michael; Zipkin, Elise F.

    2010-01-01

    We apply decision theory in a structured decision-making framework to evaluate how control of raccoons (Procyon lotor), a native predator, can promote the conservation of a declining population of American Oystercatchers (Haematopus palliatus) on the Outer Banks of North Carolina. Our management objective was to maintain Oystercatcher productivity above a level deemed necessary for population recovery while minimizing raccoon removal. We evaluated several scenarios including no raccoon removal, and applied an adaptive optimization algorithm to account for parameter uncertainty. We show how adaptive optimization can be used to account for uncertainties about how raccoon control may affect Oystercatcher productivity. Adaptive management can reduce this type of uncertainty and is particularly well suited for addressing controversial management issues such as native predator control. The case study also offers several insights that may be relevant to the optimal control of other native predators. First, we found that stage-specific removal policies (e.g., yearling versus adult raccoon removals) were most efficient if the reproductive values among stage classes were very different. Second, we found that the optimal control of raccoons would result in higher Oystercatcher productivity than the minimum levels recommended for this species. Third, we found that removing more raccoons initially minimized the total number of removals necessary to meet long term management objectives. Finally, if for logistical reasons managers cannot sustain a removal program by removing a minimum number of raccoons annually, managers may run the risk of creating an ecological trap for Oystercatchers.

  19. Tests for attraction to prey and predator avoidance by chemical cues in spiders of the beech forest floor

    Directory of Open Access Journals (Sweden)

    Wetter, Melissa B.

    2012-07-01

    Full Text Available Spiders leave draglines, faeces and other secretions behind when traveling through their microhabitat. The presence of these secretions may unintentionally inform other animals, prey as well as predators, about a recent and possible current predation risk or food availability. For a wolf spider, other spiders including smaller conspecifics, form a substantial part of their prey, and larger wolf spiders, again including conspecifics, are potential predators. We tested two hypotheses: that large wolf spiders may locate patches of potential spider prey through the presence of silk threads and/or other secretions; and that prey spiders may use secretions from large wolf spiders to avoid patches with high predation risk. We used large (subadult or adult Pardosa saltans to provide predator cues and mixed dwarf spiders or small (juvenile P. saltans to provide prey cues. Subadult wolf spiders were significantly attracted to litter contaminated by dwarf spiders or small conspecifics after 6 hours but no longer after 24 hours. In contrast, neither dwarf spiders nor small P. saltans showed significant avoidance of substrate contaminated by adult P. saltans. However, small P. saltans showed different activity patterns on the two substrates. The results indicate that wolf spiders are able to increase the efficiency of foraging by searching preferentially in patches with the presence of intraguild prey. The lack of a clear patch selection response of the prey in spite of a modified activity pattern may possibly be associated with the vertical stratification of the beech litter habitat: the reduced volume of spaces in the deeper layers could make downward rather than horizontal movement a fast and safe tactic against a large predator that cannot enter these spaces.

  20. Chaotic population dynamics and biology of the top-predator

    International Nuclear Information System (INIS)

    Rai, Vikas; Upadhyay, Ranjit Kumar

    2004-01-01

    We study how the dynamics of a food chain depends on the biology of the top-predator. We consider two model food chains with specialist and generalist top-predators. Both types of food chains display same type of chaotic behavior, short-term recurrent chaos; but the generating mechanisms are drastically different. Food chains with specialist top-predators are dictated by exogenous stochastic factors. On the contrary, the dynamics of those with the generalist top-predator is governed by deterministic changes in system parameters. The study also suggests that robust chaos would be a rarity

  1. Density-dependent interactions in an Arctic char - brown trout system: competition, predation, or both?

    NARCIS (Netherlands)

    Persson, L.; Amundsen, P.A.; de Roos, A.M.; Knudsen, R.; Primicerio, R.; Klemetsen, A.

    2013-01-01

    In the study of mechanisms structuring fish communities, mixed competition-predation interactions where large predators feed on prey fish versus those in which small predators compete with prey fish for a shared prey have been the focus of substantial research. We used a long-term data set from a

  2. Assessing predation risk: optimal behaviour and rules of thumb.

    Science.gov (United States)

    Welton, Nicky J; McNamara, John M; Houston, Alasdair I

    2003-12-01

    We look at a simple model in which an animal makes behavioural decisions over time in an environment in which all parameters are known to the animal except predation risk. In the model there is a trade-off between gaining information about predation risk and anti-predator behaviour. All predator attacks lead to death for the prey, so that the prey learns about predation risk by virtue of the fact that it is still alive. We show that it is not usually optimal to behave as if the current unbiased estimate of the predation risk is its true value. We consider two different ways to model reproduction; in the first scenario the animal reproduces throughout its life until it dies, and in the second scenario expected reproductive success depends on the level of energy reserves the animal has gained by some point in time. For both of these scenarios we find results on the form of the optimal strategy and give numerical examples which compare optimal behaviour with behaviour under simple rules of thumb. The numerical examples suggest that the value of the optimal strategy over the rules of thumb is greatest when there is little current information about predation risk, learning is not too costly in terms of predation, and it is energetically advantageous to learn about predation. We find that for the model and parameters investigated, a very simple rule of thumb such as 'use the best constant control' performs well.

  3. Prey aggregation is an effective olfactory predator avoidance strategy

    Directory of Open Access Journals (Sweden)

    Asa Johannesen

    2014-05-01

    Full Text Available Predator–prey interactions have a major effect on species abundance and diversity, and aggregation is a well-known anti-predator behaviour. For immobile prey, the effectiveness of aggregation depends on two conditions: (a the inability of the predator to consume all prey in a group and (b detection of a single large group not being proportionally easier than that of several small groups. How prey aggregation influences predation rates when visual cues are restricted, such as in turbid water, has not been thoroughly investigated. We carried out foraging (predation experiments using a fish predator and (dead chironomid larvae as prey in both laboratory and field settings. In the laboratory, a reduction in visual cue availability (in turbid water led to a delay in the location of aggregated prey compared to when visual cues were available. Aggregated prey suffered high mortality once discovered, leading to better survival of dispersed prey in the longer term. We attribute this to the inability of the dead prey to take evasive action. In the field (where prey were placed in feeding stations that allowed transmission of olfactory but not visual cues, aggregated (large groups and semi-dispersed prey survived for longer than dispersed prey—including long term survival. Together, our results indicate that similar to systems where predators hunt using vision, aggregation is an effective anti-predator behaviour for prey avoiding olfactory predators.

  4. Mesopredator release by an emergent superpredator: a natural experiment of predation in a three level guild.

    Directory of Open Access Journals (Sweden)

    Nayden Chakarov

    Full Text Available BACKGROUND: Intraguild predation (IGP is widespread but it is often neglected that guilds commonly include many layers of dominance within. This could obscure the effects of IGP making unclear whether the intermediate or the bottom mesopredator will bear higher costs from the emergence of a new top predator. METHODOLOGY/PRINCIPAL FINDINGS: In one of the most extensive datasets of avian IGP, we analyse the impact of recolonization of a superpredator, the eagle owl Bubo bubo on breeding success, territorial dynamics and population densities of two mesopredators, the northern goshawk Accipiter gentilis and its IG prey, the common buzzard Buteo buteo. The data covers more than two decades and encompass three adjacent plots. Eagle owls only recolonized the central plot during the second decade, thereby providing a natural experiment. Both species showed a decrease in standardized reproductive success and an increase in brood failure within 1.5 km of the superpredator. During the second decade, territory dynamics of goshawks was significantly higher in the central plot compared to both other plots. No such pattern existed in buzzards. Goshawk density in the second decade decreased in the central plot, while it increased in both other plots. Buzzard density in the second decade rapidly increased in the north, remained unchanged in the south and increased moderately in the center in a probable case of mesopredator release. CONCLUSIONS/SIGNIFICANCE: Our study finds support for top-down control on the intermediate mesopredator and both top-down and bottom-up control of the bottom mesopredator. In the face of considerable costs of IGP, both species probably compete to breed in predator-free refugia, which get mostly occupied by the dominant raptor. Therefore for mesopredators the outcome of IGP might depend directly on the number of dominance levels which supersede them.

  5. A specialized araneophagic predator's short-term nutrient utilization depends on the macronutrient content of prey rather than on prey taxonomic affiliation

    DEFF Research Database (Denmark)

    Toft, Søren; Li, Daiqin; Mayntz, David

    2010-01-01

    rate of high-protein flies than of high-lipid flies and spiders but, after 5 days of feeding, there is no significant difference in growth between treatments, and the diets lead to significant changes in the macronutrient composition of P. quei as a result of variable extraction and utilization...... of the prey. The short-term utilization of spider prey is similar to that of high-lipid flies and both differ in several respects from the utilization of high-protein flies. Thus, the short-term nutrient utilization is better explained by prey macronutrient content than by whether the prey is a spider or not....... The results suggest that spider prey may have a more optimal macronutrient composition for P. quei and that P. quei does not depend on spider-specific substances....

  6. Predator avoidance in extremophile fish.

    Science.gov (United States)

    Bierbach, David; Schulte, Matthias; Herrmann, Nina; Zimmer, Claudia; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Riesch, Rüdiger; Plath, Martin

    2013-02-06

    Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail (Xiphophorus hellerii) females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre) and the adjacent sulfidic surface creek (El Azufre), we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared (i.e., predator-naïve) and wild-caught (i.e., predator-experienced) individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1) that predator avoidance is still functional in extremophile Poecilia spp. and (2) that predator recognition and avoidance reactions have a strong genetic basis.

  7. Predator Avoidance in Extremophile Fish

    Science.gov (United States)

    Bierbach, David; Schulte, Matthias; Herrmann, Nina; Zimmer, Claudia; Arias-Rodriguez, Lenin; Indy, Jeane Rimber; Riesch, Rüdiger; Plath, Martin

    2013-01-01

    Extreme habitats are often characterized by reduced predation pressures, thus representing refuges for the inhabiting species. The present study was designed to investigate predator avoidance of extremophile populations of Poecilia mexicana and P. sulphuraria that either live in hydrogen sulfide-rich (sulfidic) springs or cave habitats, both of which are known to have impoverished piscine predator regimes. Focal fishes that inhabited sulfidic springs showed slightly weaker avoidance reactions when presented with several naturally occurring predatory cichlids, but strongest differences to populations from non-sulfidic habitats were found in a decreased shoaling tendency with non-predatory swordtail (Xiphophorus hellerii) females. When comparing avoidance reactions between P. mexicana from a sulfidic cave (Cueva del Azufre) and the adjacent sulfidic surface creek (El Azufre), we found only slight differences in predator avoidance, but surface fish reacted much more strongly to the non-predatory cichlid Vieja bifasciata. Our third experiment was designed to disentangle learned from innate effects of predator recognition. We compared laboratory-reared (i.e., predator-naïve) and wild-caught (i.e., predator-experienced) individuals of P. mexicana from a non-sulfidic river and found no differences in their reaction towards the presented predators. Overall, our results indicate (1) that predator avoidance is still functional in extremophile Poecilia spp. and (2) that predator recognition and avoidance reactions have a strong genetic basis. PMID:25371337

  8. Top predators induce the evolutionary diversification of intermediate predator species.

    Science.gov (United States)

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. Vulnerability and behavioral response to ultraviolet radiation in the components of a foliar mite prey-predator system

    Science.gov (United States)

    Tachi, Fuyuki; Osakabe, Masahiro

    2012-12-01

    Ambient ultraviolet-B (UVB) radiation impacts plant-dwelling arthropods including herbivorous and predatory mites. However, the effects of UVB on prey-predator systems, such as that between the herbivorous spider mite and predatory phytoseiid mite, are poorly understood. A comparative study was conducted to determine the vulnerability and behavioral responses of these mites to ultraviolet (UV) radiation. First, we analyzed dose-response (cumulative irradiance-mortality) curves for the eggs of phytoseiid mites ( Neoseiulus californicus, Neoseiulus womersleyi, and Phytoseiulus persimilis) and the spider mite ( Tetranychus urticae) to UVB radiation from a UV lamp. This indicated that the phytoseiid mites were more vulnerable than the spider mite, although P. persimilis was slightly more tolerant than the other two phytoseiid mites. Second, we compared the avoidance behavior of adult female N. californicus and two spider mite species ( T. urticae, a lower leaf surface user; Panonychus citri, an upper leaf surface user) in response to solar UV and visible light. N. californicus actively avoided both types of radiation, whereas P. citri showed only minimal avoidance behavior. T. urticae actively avoided UV as well as N. californicus but exhibited a slow response to visible light as well as P. citri. Such variation in vulnerability and avoidance behavior accounts for differences in the species adaptations to solar UVB radiation. This may be the primary factor determining habitat use among these mites on host plant leaves, subsequently affecting accessibility by predators and also intraguild competition.

  10. Predator removal and nesting waterbird success at San Francisco Bay, California

    Science.gov (United States)

    Meckstroth, A.M.; Miles, A.K.

    2005-01-01

    The efficacy of long-term predator removal in urbanized areas is poorly understood. The impact of predation on ground-nesting waterbirds, as well as predator abundance and composition in predator removal versus non-removal or reference sites were examined at South San Francisco Bay. The success of natural nests and predator activity was monitored using track plates, trip cameras, wire haircatchers and simulated nests. Removal sites had higher nest densities, but lower hatching success than reference sites. Predator composition and abundance were not different at the removal and reference sites for any predator other than feral Cat (Felis domesticus). Striped Skunk (Mephitis mephitis) comprised the majority (84%) of predators removed, yet remained the most abundant predators in removal and reference sites. Urban environments provide supplemental food that may influence skunks and other nest predators to immigrate into vacancies created by predator removal. Based on the findings from this study, predator removal should be applied intensively over a larger geographic area in order to be a viable management strategy for some mammalian species in urbanized areas.

  11. Predator response to releases of American shad larvae in the Susquehanna River basin

    Science.gov (United States)

    Johnson, James H.; Ringler, N.H.

    1998-01-01

    Predation on American shad (Alosa sapidissima) larvae within the first two hours of release was examined from 1989 to 1992 on 31 occasions at stocking sites in the Susquehanna River basin. Twenty-two fish species consumed shad larvae; the dominant predators were spotfin shiner (Cyprinella spiloptera), mimic shiner (Notropis volucellus) and juvenile smallmouth bass (Micropterus dolomieu). The number of shad larvae found in predator stomachs ranged from 0 to 900. Mortality of shad larvae at the stocking site was usually less than 2%. The greatest mortality (9.6%) occurred at the highest stocking level (1.5 million larvae). Highly variable predation rates and release levels of shad insufficient to achieve predator satiation hindered the ability to determine a specific type of functional response of predators. Predator numbers increased with stocking density, indicating short-term aggregation at the release site. Because of practical problems associated with releasing the large numbers of larvae that would be required to satiate predators, routine stocking at these levels is probably unreasonable. Releases of 400,000 to 700,000 larvae may reduce predation by offsetting depensatory mechanisms that operate on small releases and the effects of increased predation due to predator aggregation on large releases. Night stocking may reduce predation on larval shad at the release site.

  12. Training Lymnaea in the presence of a predator scent results in a long-lasting ability to form enhanced long-term memory.

    Science.gov (United States)

    Forest, Jeremy; Sunada, Hiroshi; Dodd, Shawn; Lukowiak, Ken

    2016-06-01

    Lymnaea exposed to crayfish effluent (CE) gain an enhanced ability to form long-term memory (LTM). We test the hypothesis that a single CE exposure and operant conditioning training leads to long lasting changes in the capability of snails to form LTM when tested in pond water four weeks later. We trained both juvenile and adult snails with a single 0.5 h training session in CE and show that LTM was present 24 h later. Snails trained in a similar manner in just pond water show no LTM. We then asked if such training in CE conferred enhanced memory forming capabilities on these snails four weeks later. That is, would LTM be formed in these snails four weeks later following a single 0.5 h training session in pond water? We found that both adult and juvenile snails previously trained in CE one month previously had enhanced LTM formation abilities. The injection of a DNA methylation blocker, 5-AZA, prior to training in adult snails blocked enhanced LTM formation four weeks later. Finally, this enhanced LTM forming ability was not passed on to the next generation of snails.

  13. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum Following Long-Term Spatial Memory Retrieval.

    Science.gov (United States)

    Vanelzakker, Michael B; Zoladz, Phillip R; Thompson, Vanessa M; Park, Collin R; Halonen, Joshua D; Spencer, Robert L; Diamond, David M

    2011-01-01

    We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval.

  14. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala and Striatum Following Long-Term Spatial Memory Retrieval

    Directory of Open Access Journals (Sweden)

    Michael B VanElzakker

    2011-06-01

    Full Text Available We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 hr later. Rat brains were extracted 30 min after the 24 hr memory test trial for analysis of c-fos mRNA. Four groups were tested: 1 Rats given standard training (Standard; 2 Rats given cat exposure (Predator Stress 30 min prior to training (Pre-Training Stress; 3 Rats given water exposure only (Water Yoked; and 4 Rats given no water exposure (Home Cage. The Standard trained group exhibited excellent 24 hr memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA. The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval.

  15. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum Following Long-Term Spatial Memory Retrieval

    Science.gov (United States)

    VanElzakker, Michael B.; Zoladz, Phillip R.; Thompson, Vanessa M.; Park, Collin R.; Halonen, Joshua D.; Spencer, Robert L.; Diamond, David M.

    2011-01-01

    We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval. PMID:21738501

  16. Understanding predation: implications toward forest management

    Science.gov (United States)

    Harvey R. Smith

    1991-01-01

    It is generally accepted that when gypsy moths rest in the litter survival is low due to predation by ground-foraging generalist predators and that predation can maintain these populations indefinitely. Forest Service research on predators of gypsy moth continues to focus on population dynamics, the mechanisms of predation and forest management implications.

  17. Plant species composition alters the sign and strength of an emergent multi-predator effect by modifying predator foraging behaviour.

    Directory of Open Access Journals (Sweden)

    Andrew Wilby

    Full Text Available The prediction of pest-control functioning by multi-predator communities is hindered by the non-additive nature of species functioning. Such non-additivity, commonly termed an emergent multi-predator effect, is known to be affected by elements of the ecological context, such as the structure and composition of vegetation, in addition to the traits of the predators themselves. Here we report mesocosm experiments designed to test the influence of plant density and species composition (wheat monoculture or wheat and faba bean polyculture on the emergence of multi-predator effects between Adalia bipunctata and Chrysoperla carnea, in their suppression of populations of the aphid Metopolophium dirhodum. The mesocosm experiments were followed by a series of behavioural observations designed to identify how interactions among predators are modified by plant species composition and whether these effects are consistent with the observed influence of plant species composition on aphid population suppression. Although plant density was shown to have no influence on the multi-predator effect on aphid population growth, plant composition had a marked effect. In wheat monoculture, Adalia and Chrysoperla mixed treatments caused greater suppression of M. dirhodum populations than expected. However this positive emergent effect was reversed to a negative multi-predator effect in wheat and faba bean polyculture. The behavioural observations revealed that although dominant individuals did not respond to the presence of faba bean plants, the behaviour of sub-dominants was affected markedly, consistent with their foraging for extra-floral nectar produced by the faba bean. This interaction between plant composition and predator community composition on the foraging behaviour of sub-dominants is thought to underlie the observed effect of plant composition on the multi-predator effect. Thus, the emergence of multi-predator effects is shown to be strongly influenced by

  18. Bat Predation by Spiders

    Science.gov (United States)

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (∼90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed. PMID:23516436

  19. Bat predation by spiders.

    Science.gov (United States)

    Nyffeler, Martin; Knörnschild, Mirjam

    2013-01-01

    In this paper more than 50 incidences of bats being captured by spiders are reviewed. Bat-catching spiders have been reported from virtually every continent with the exception of Antarctica (≈ 90% of the incidences occurring in the warmer areas of the globe between latitude 30° N and 30° S). Most reports refer to the Neotropics (42% of observed incidences), Asia (28.8%), and Australia-Papua New Guinea (13.5%). Bat-catching spiders belong to the mygalomorph family Theraphosidae and the araneomorph families Nephilidae, Araneidae, and Sparassidae. In addition to this, an attack attempt by a large araneomorph hunting spider of the family Pisauridae on an immature bat was witnessed. Eighty-eight percent of the reported incidences of bat catches were attributable to web-building spiders and 12% to hunting spiders. Large tropical orb-weavers of the genera Nephila and Eriophora in particular have been observed catching bats in their huge, strong orb-webs (of up to 1.5 m diameter). The majority of identifiable captured bats were small aerial insectivorous bats, belonging to the families Vespertilionidae (64%) and Emballonuridae (22%) and usually being among the most common bat species in their respective geographic area. While in some instances bats entangled in spider webs may have died of exhaustion, starvation, dehydration, and/or hyperthermia (i.e., non-predation death), there were numerous other instances where spiders were seen actively attacking, killing, and eating the captured bats (i.e., predation). This evidence suggests that spider predation on flying vertebrates is more widespread than previously assumed.

  20. A predator-prey model with a holling type I functional response including a predator mutual interference

    Science.gov (United States)

    Seo, G.; DeAngelis, D.L.

    2011-01-01

    The most widely used functional response in describing predator-prey relationships is the Holling type II functional response, where per capita predation is a smooth, increasing, and saturating function of prey density. Beddington and DeAngelis modified the Holling type II response to include interference of predators that increases with predator density. Here we introduce a predator-interference term into a Holling type I functional response. We explain the ecological rationale for the response and note that the phase plane configuration of the predator and prey isoclines differs greatly from that of the Beddington-DeAngelis response; for example, in having three possible interior equilibria rather than one. In fact, this new functional response seems to be quite unique. We used analytical and numerical methods to show that the resulting system shows a much richer dynamical behavior than the Beddington-DeAngelis response, or other typically used functional responses. For example, cyclic-fold, saddle-fold, homoclinic saddle connection, and multiple crossing bifurcations can all occur. We then use a smooth approximation to the Holling type I functional response with predator mutual interference to show that these dynamical properties do not result from the lack of smoothness, but rather from subtle differences in the functional responses. ?? 2011 Springer Science+Business Media, LLC.

  1. Intraguild competition and enhanced survival of western bean cutworm (Lepidoptera: Noctuidae) on transgenic Cry1Ab (MON810) Bacillus thuringiensis corn.

    Science.gov (United States)

    Dorhout, David L; Rice, Marlin E

    2010-02-01

    The effect of genetically modified corn (event MON810, YieldGard Corn Borer) expressing the Bacillus thuringiensis sp. kurstaki (Berliner) (Bt) endotoxin, Cry1Ab, on the survival of western bean cutworm, Striacosta albicosta (Smith), larvae was examined during intraguild competition studies with either European corn borer, Ostrinia nubilalis (Hübner), or corn earworm, Helicoverpa zea (Boddie), larvae. Competition scenarios were constructed by using either a laboratory or field competition arena containing one of five different diets and one of 13 different larval size-by-species scenarios. The survival of western bean cutworms competing with corn earworms in the laboratory arenas on either a meridic diet or isoline corn silk diet was significantly lower (P corn earworm on a Cry1Ab-MON810 corn silk diet was significant higher (P corn borers generally did not alter the outcomes observed in the western bean cutworm and corn earworm only two-way competitions. These data suggest that Cry1Ab-MON810 corn may confer a competitive advantage to western bean cutworm larvae during intraguild competition, particularly from corn earworms, and that western bean cutworms become equal competitors only when they are of equal or larger size and the diet is Cry1Ab-MON810 corn.

  2. Fasting or fear: disentangling the roles of predation risk and food deprivation in the nitrogen metabolism of consumers.

    Science.gov (United States)

    Dalton, Christopher M; Tracy, Karen E; Hairston, Nelson G; Flecker, Alexander S

    2018-03-01

    Predators can alter nutrient cycles simply by inducing stress in prey. This stress accelerates prey's protein catabolism, nitrogen waste production, and nitrogen cycling. Yet predators also reduce the feeding rates of their prey, inducing food deprivation that is expected to slow protein catabolism and nitrogen cycling. The physiology of prey under predation risk thus balances the influences of predation risk and food deprivation, and this balance is central to understanding the role of predators in nutrient cycles. We explored the separate and combined effects of predation risk and food deprivation on prey physiology and nutrient cycling by exposing guppies (Poecilia reticulata) to predation risk and food deprivation in a 2 × 2 design. We simulated predation risk using chemical cues from a natural predator of guppies, and we created food deprivation by rationing food availability. We measured guppy response as food consumption, growth, tissue energy density, tissue carbon:nitrogen, and nitrogen (N) excretion and assimilation. We found that N-linked physiological processes (N consumption, assimilation, excretion) were strongly affected by predation risk, independent of food consumption. Guppies excreted substantially less under predation risk than they did under food deprivation or control conditions. These results suggest that predation risk, per se, triggers physiological changes in guppies that increase N retention and decrease N excretion. We suggest that slower N metabolism under predation risk is an adaptive response that minimizes protein loss in the face of predictable, predator-induced food restriction. Notably, N metabolism shares common hormonal control with food seeking behavior, and we speculate that increased N retention is a direct and immediate result of reduced food seeking under predation risk. Contrary to predation-stress-based hypotheses for how predators affect nutrient cycling by prey, our result indicates that even short-term exposure to predators

  3. Ocean acidification alters predator behaviour and reduces predation rate.

    Science.gov (United States)

    Watson, Sue-Ann; Fields, Jennifer B; Munday, Philip L

    2017-02-01

    Ocean acidification poses a range of threats to marine invertebrates; however, the emerging and likely widespread effects of rising carbon dioxide (CO 2 ) levels on marine invertebrate behaviour are still little understood. Here, we show that ocean acidification alters and impairs key ecological behaviours of the predatory cone snail Conus marmoreus Projected near-future seawater CO 2 levels (975 µatm) increased activity in this coral reef molluscivore more than threefold (from less than 4 to more than 12 mm min -1 ) and decreased the time spent buried to less than one-third when compared with the present-day control conditions (390 µatm). Despite increasing activity, elevated CO 2 reduced predation rate during predator-prey interactions with control-treated humpbacked conch, Gibberulus gibberulus gibbosus; 60% of control predators successfully captured and consumed their prey, compared with only 10% of elevated CO 2 predators. The alteration of key ecological behaviours of predatory invertebrates by near-future ocean acidification could have potentially far-reaching implications for predator-prey interactions and trophic dynamics in marine ecosystems. Combined evidence that the behaviours of both species in this predator-prey relationship are altered by elevated CO 2 suggests food web interactions and ecosystem structure will become increasingly difficult to predict as ocean acidification advances over coming decades. © 2017 The Author(s).

  4. Predators on private land: broad-scale socioeconomic interactions influence large predator management

    Directory of Open Access Journals (Sweden)

    Hayley S. Clements

    2016-06-01

    Full Text Available The proliferation of private land conservation areas (PLCAs is placing increasing pressure on conservation authorities to effectively regulate their ecological management. Many PLCAs depend on tourism for income, and charismatic large mammal species are considered important for attracting international visitors. Broad-scale socioeconomic factors therefore have the potential to drive fine-scale ecological management, creating a systemic scale mismatch that can reduce long-term sustainability in cases where economic and conservation objectives are not perfectly aligned. We assessed the socioeconomic drivers and outcomes of large predator management on 71 PLCAs in South Africa. Owners of PLCAs that are stocking free-roaming large predators identified revenue generation as influencing most or all of their management decisions, and rated profit generation as a more important objective than did the owners of PLCAs that did not stock large predators. Ecotourism revenue increased with increasing lion (Panthera leo density, which created a potential economic incentive for stocking lion at high densities. Despite this potential mismatch between economic and ecological objectives, lion densities were sustainable relative to available prey. Regional-scale policy guidelines for free-roaming lion management were ecologically sound. By contrast, policy guidelines underestimated the area required to sustain cheetah (Acinonyx jubatus, which occurred at unsustainable densities relative to available prey. Evidence of predator overstocking included predator diet supplementation and frequent reintroduction of game. We conclude that effective facilitation of conservation on private land requires consideration of the strong and not necessarily beneficial multiscale socioeconomic factors that influence private land management.

  5. Biomechanics of predator-prey arms race in lion, zebra, cheetah and impala

    Science.gov (United States)

    Wilson, Alan M.; Hubel, Tatjana Y.; Wilshin, Simon D.; Lowe, John C.; Lorenc, Maja; Dewhirst, Oliver P.; Bartlam-Brooks, Hattie L. A.; Diack, Rebecca; Bennitt, Emily; Golabek, Krystyna A.; Woledge, Roger C.; McNutt, J. Weldon; Curtin, Nancy A.; West, Timothy G.

    2018-02-01

    The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator-prey pairs, lion-zebra and cheetah-impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator-prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate.

  6. Reduction in predator defense in the presence of neighbors in a colonial fish.

    Directory of Open Access Journals (Sweden)

    Franziska C Schädelin

    Full Text Available Predation pressure has long been considered a leading explanation of colonies, where close neighbors may reduce predation via dilution, alarming or group predator attacks. Attacking predators may be costly in terms of energy and survival, leading to the question of how neighbors contribute to predator deterrence in relationship to each other. Two hypotheses explaining the relative efforts made by neighbors are byproduct-mutualism, which occurs when breeders inadvertently attack predators by defending their nests, and reciprocity, which occurs when breeders deliberately exchange predator defense efforts with neighbors. Most studies investigating group nest defense have been performed with birds. However, colonial fish may constitute a more practical model system for an experimental approach because of the greater ability of researchers to manipulate their environment. We investigated in the colonial fish, Neolamprologus caudopunctatus, whether prospecting pairs preferred to breed near conspecifics or solitarily, and how breeders invested in anti-predator defense in relation to neighbors. In a simple choice test, prospecting pairs selected breeding sites close to neighbors versus a solitary site. Predators were then sequentially presented to the newly established test pairs, the previously established stimulus pairs or in between the two pairs. Test pairs attacked the predator eight times more frequently when they were presented on their non-neighbor side compared to between the two breeding sites, where stimulus pairs maintained high attack rates. Thus, by joining an established pair, test pairs were able to reduce their anti-predator efforts near neighbors, at no apparent cost to the stimulus pairs. These findings are unlikely to be explained by reciprocity or byproduct-mutualism. Our results instead suggest a commensal relationship in which new pairs exploit the high anti-predator efforts of established pairs, which invest similarly with or

  7. Predation vulnerability of planktonic copepods: consequences of predator foraging strategies and prey sensory abilities

    DEFF Research Database (Denmark)

    Viitasalo, M; Kiørboe, T; Flinkman, J.

    1998-01-01

    We investigated the vulnerability of 2 copepod species (Eurytemora affinis and Temora longicornis) to predation by predators with different foraging modes, three-spined stickleback Gasterosteus aculeatus juveniles and mysid shrimps Neomysis integer. Copepods were videofilmed escaping from predators...

  8. Coexistence in a One-Predator, Two-Prey System with Indirect Effects

    Directory of Open Access Journals (Sweden)

    Renato Colucci

    2013-01-01

    Full Text Available We study the dynamics of a one-predator, two-prey system in which the predator has an indirect effect on the preys. We show that, in presence of the indirect effect term, the system admits coexistence of the three populations while, if we disregard it, at least one of the populations goes to extinction.

  9. Inter- and intra-guild interactions related to aphids in nettle (Urtica dioica L.) strips closed to field crops.

    OpenAIRE

    Alhmedi, A.; Haubruge, Eric; Bodson, Bernard; Francis, Frédéric

    2006-01-01

    A field experiment designed to assess the biodiversity related to nettle strips closed to crops, and more particularly the aphid and related beneficial populations, was established in experimental farm located in Gembloux (Belgium). Margin strips of nettle (Urtica dioica) closed to wheat (Triticum aestivum), green pea (Pisum sativum) and rape (Brassicae napus) fields were investigated. The diversity, abundance of aphids and related predators were analysed according to the plant crop species a...

  10. Are lemmings prey or predators?

    Science.gov (United States)

    Turchin, P.; Oksanen, L.; Ekerholm, P.; Oksanen, T.; Henttonen, H.

    2000-06-01

    Large oscillations in the populations of Norwegian lemmings have mystified both professional ecologists and lay public. Ecologists suspect that these oscillations are driven by a trophic mechanism: either an interaction between lemmings and their food supply, or an interaction between lemmings and their predators. If lemming cycles are indeed driven by a trophic interaction, can we tell whether lemmings act as the resource (`prey') or the consumer (`predator')? In trophic interaction models, peaks of resource density generally have a blunt, rounded shape, whereas peaks of consumer density are sharp and angular. Here we have applied several statistical tests to three lemming datasets and contrasted them with comparable data for cyclic voles. We find that vole peaks are blunt, consistent with their cycles being driven by the interaction with predators. In contrast, the shape of lemming peaks is consistent with the hypothesis that lemmings are functional predators, that is, their cycles are driven by their interaction with food plants. Our findings suggest that a single mechanism, such as interaction between rodents and predators, is unlikely to provide the `universal' explanation of all cyclic rodent dynamics.

  11. Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use.

    Science.gov (United States)

    Valeix, M; Loveridge, A J; Chamaillé-Jammes, S; Davidson, Z; Murindagomo, F; Fritz, H; Macdonald, D W

    2009-01-01

    Predators may influence their prey populations not only through direct lethal effects, but also through indirect behavioral changes. Here, we combined spatiotemporal fine-scale data from GPS radio collars on lions with habitat use information on 11 African herbivores in Hwange National Park (Zimbabwe) to test whether the risk of predation by lions influenced the distribution of herbivores in the landscape. Effects of long-term risk of predation (likelihood of lion presence calculated over four months) and short-term risk of predation (actual presence of lions in the vicinity in the preceding 24 hours) were contrasted. The long-term risk of predation by lions appeared to influence the distributions of all browsers across the landscape, but not of grazers. This result strongly suggests that browsers and grazers, which face different ecological constraints, are influenced at different spatial and temporal scales in the variation of the risk of predation by lions. The results also show that all herbivores tend to use more open habitats preferentially when lions are in their vicinity, probably an effective anti-predator behavior against such an ambush predator. Behaviorally induced effects of lions may therefore contribute significantly to structuring African herbivore communities, and hence possibly their effects on savanna ecosystems.

  12. Coping with shifting nest predation refuges by European reed Warblers Acrocephalus scirpaceus.

    Directory of Open Access Journals (Sweden)

    Lucyna Halupka

    Full Text Available Predation, the most important source of nest mortality in altricial birds, has been a subject of numerous studies during past decades. However, the temporal dynamics between changing predation pressures and parental responses remain poorly understood. We analysed characteristics of 524 nests of European reed warblers monitored during six consecutive breeding seasons in the same area, and found some support for the shifting nest predation refuge hypothesis. Nest site characteristics were correlated with nest fate, but a nest with the same nest-site attributes could be relatively safe in one season and vulnerable to predation in another. Thus nest predation refuges were ephemeral and there was no between-season consistency in nest predation patterns. Reed warblers that lost their first nests in a given season did not disperse farther for the subsequent reproductive attempt, compared to successful individuals, but they introduced more changes to their second nest sites. In subsequent nests, predation risk remained constant for birds that changed nest-site characteristics, but increased for those that did not. At the between-season temporal scale, individual birds did not perform better with age in terms of reducing nest predation risk. We conclude that the experience acquired in previous years may not be useful, given that nest predation refuges are not stable.

  13. Selective attention in peacocks during predator detection.

    Science.gov (United States)

    Yorzinski, Jessica L; Platt, Michael L

    2014-05-01

    Predation can exert strong selective pressure on the evolution of behavioral and morphological traits in birds. Because predator avoidance is key to survival and birds rely heavily on visual perception, predation may have shaped avian visual systems as well. To address this question, we examined the role of visual attention in antipredator behavior in peacocks (Pavo cristatus). Peacocks were exposed to a model predator while their gaze was continuously recorded with a telemetric eye-tracker. We found that peacocks spent more time looking at and made more fixations on the predator compared to the same spatial location before the predator was revealed. The duration of fixations they directed toward conspecifics and environmental features decreased after the predator was revealed, indicating that the peacocks were rapidly scanning their environment with their eyes. Maximum eye movement amplitudes and amplitudes of consecutive saccades were similar before and after the predator was revealed. In cases where conspecifics detected the predator first, peacocks appeared to learn that danger was present by observing conspecifics' antipredator behavior. Peacocks were faster to detect the predator when they were fixating closer to the area where the predator would eventually appear. In addition, pupil size increased after predator exposure, consistent with increased physiological arousal. These findings demonstrate that peacocks selectively direct their attention toward predatory threats and suggest that predation has influenced the evolution of visual orienting systems.

  14. A Generalist Protist Predator Enables Coexistence in Multitrophic Predator-Prey Systems Containing a Phage and the Bacterial Predator Bdellovibrio

    Directory of Open Access Journals (Sweden)

    Julia Johnke

    2017-10-01

    Full Text Available Complex ecosystems harbor multiple predators and prey species whose direct and indirect interactions are under study. In particular, the combined effects of predator diversity and resource preference on prey removal are not known. To understand the effect of interspecies interactions, combinations of micro-predators—i.e., protists (generalists, predatory bacteria (semi-specialists, and phages (specialists—and bacterial prey were tracked over a 72-h period in miniature membrane bioreactors. While specialist predators alone drove their preferred prey to extinction, the inclusion of a generalist resulted in uniform losses among prey species. Most importantly, presence of a generalist predator enabled coexistence of all predators and prey. As the generalist predator also negatively affected the other predators, we suggest that resource partitioning between predators and the constant availability of resources for bacterial growth due to protist predation stabilizes the system and keeps its diversity high. The appearance of resistant prey strains and subsequent evolution of specialist predators unable to infect the ancestral prey implies that multitrophic communities are able to persist and stabilize themselves. Interestingly, the appearance of BALOs and phages unable to infect their prey was only observed for the BALO or phage in the absence of additional predators or prey species indicating that competition between predators might influence coevolutionary dynamics.

  15. Programming of stress-related behavior and epigenetic neural gene regulation in mice offspring through maternal exposure to predator odor

    Science.gov (United States)

    St-Cyr, Sophie; McGowan, Patrick O.

    2015-01-01

    Perinatal stress mediated through the mother can lead to long-term alterations in stress-related phenotypes in offspring. The capacity for adaptation to adversity in early life depends in part on the life history of the animal. This study was designed to examine the behavioral and neural response in adult offspring to prenatal exposure to predator odor: an ethologically-relevant psychological stressor. Pregnant mice were exposed daily to predator odors or distilled water control over the second half of the pregnancy. Predator odor exposure lead to a transient decrease in maternal care in the mothers. As adults, the offspring of predator odor-exposed mothers showed increased anti-predator behavior, a predator-odor induced decrease in activity and, in female offspring, an increased corticosterone (CORT) response to predator odor exposure. We found a highly specific response among stress-related genes within limbic brain regions. Transcript abundance of Corticotropin-releasing hormone receptor 1 (CRHR1) was elevated in the amygdala in adult female offspring of predator odor-exposed mothers. In the hippocampus of adult female offspring, decreased Brain-derived neurotrophic factor (BDNF) transcript abundance was correlated with a site-specific decrease in DNA methylation in Bdnf exon IV, indicating the potential contribution of this epigenetic mechanism to maternal programming by maternal predator odor exposure. These data indicate that maternal predator odor exposure alone is sufficient to induce an altered stress-related phenotype in adulthood, with implications for anti-predator behavior in offspring. PMID:26082698

  16. Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes.

    Science.gov (United States)

    Tran, Tam T; Janssens, Lizanne; Dinh, Khuong V; Op de Beeck, Lin; Stoks, Robby

    2016-07-01

    How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.

  17. Smelling out predators is innate in birds

    NARCIS (Netherlands)

    Amo, L.; Visser, M.E.; Van Oers, K.

    2011-01-01

    The role of olfaction for predation risk assessment remains barely explored in birds, although predator chemical cues could be useful in predator detection under low visibility conditions for many bird species. We examine whether Great Tits Parus major are able to use the odour of mustelids to

  18. Power lines, roads, and avian nest survival: effects on predator identity and predation intensity.

    Science.gov (United States)

    DeGregorio, Brett A; Weatherhead, Patrick J; Sperry, Jinelle H

    2014-05-01

    1 Anthropogenic alteration of landscapes can affect avian nest success by influencing the abundance, distribution, and behavior of predators. Understanding avian nest predation risk necessitates understanding how landscapes affect predator distribution and behavior. 2 From a sample of 463 nests of 17 songbird species, we evaluated how landscape features (distance to forest edge, unpaved roads, and power lines) influenced daily nest survival. We also used video cameras to identify nest predators at 137 nest predation events and evaluated how landscape features influenced predator identity. Finally, we determined the abundance and distribution of several of the principal predators using surveys and radiotelemetry. 3 Distance to power lines was the best predictor of predator identity: predation by brown-headed cowbirds (Molothrus ater), corvids (Corvus sp. and Cyanocitta cristata), racers (Coluber constrictor), and coachwhips (Masticophis flagellum) increased with proximity to power lines, whereas predation by rat snakes (Elaphe obsoleta) and raptors decreased. In some cases, predator density may reliably indicate nest predation risk because racers, corvids, and cowbirds frequently used power line right-of-ways. 4 Of five bird species with enough nests to analyze individually, daily nest survival of only indigo buntings (Passerina cyanea) decreased with proximity to power lines, despite predation by most predators at our site being positively associated with power lines. For all nesting species combined, distance to unpaved road was the model that most influenced daily nest survival. This pattern is likely a consequence of rat snakes, the locally dominant nest predator (28% of predation events), rarely using power lines and associated areas. Instead, rat snakes were frequently associated with road edges, indicating that not all edges are functionally similar. 5 Our results suggest that interactions between predators and landscape features are likely to be specific to

  19. Learned predation risk management by spider mites

    Directory of Open Access Journals (Sweden)

    Thomas eHackl

    2014-09-01

    Full Text Available Predation is a prime selective force shaping prey behavior. Investment in anti-predator behavior is traded-off against time and energy for other fitness-enhancing activities such as foraging or reproduction. To optimize this benefit/cost trade-off, prey should be able to innately and/or by experience modulate their behavior to the level of predation risk. Here, we assessed learned predation risk management in the herbivorous two-spotted spider mite Tetranychus urticae. We exposed spider mites coming from benign (naïve or high immediate predation risk (experienced environments to latent and/or no risk and assessed their site choice, activity and oviposition. Benign environments were characterized by the absence of any predator cues, high immediate risk environments by killed spider mites, physical presence of the predatory mite Phytoseiulus persimilis and associated chemosensory traces left on the surface, and latent risk environments by only predator traces. In the no-choice experiment both naïve and experienced spider mites laid their first egg later on leaves with than without predator traces. Irrespective of predator traces presence/absence, experienced mites laid their first egg earlier than naïve ones did. Naïve spider mites were more active, indicating higher restlessness, and laid fewer eggs on leaves with predator traces, whereas experienced mites were less active and laid similar numbers of eggs on leaves with and without predator traces. In the choice experiment both naïve and experienced spider mites preferentially resided and oviposited on leaves without predator traces but experienced mites were less active than naïve ones. Overall, our study suggests that spider mites experienced with high predation risk behave bolder under latent risk than naïve spider mites. Since predator traces alone do not indicate immediate risk, we argue that the attenuated anti-predator response of experienced spider mites represents adaptive learned

  20. Invasive predators and global biodiversity loss.

    Science.gov (United States)

    Doherty, Tim S; Glen, Alistair S; Nimmo, Dale G; Ritchie, Euan G; Dickman, Chris R

    2016-10-04

    Invasive species threaten biodiversity globally, and invasive mammalian predators are particularly damaging, having contributed to considerable species decline and extinction. We provide a global metaanalysis of these impacts and reveal their full extent. Invasive predators are implicated in 87 bird, 45 mammal, and 10 reptile species extinctions-58% of these groups' contemporary extinctions worldwide. These figures are likely underestimated because 23 critically endangered species that we assessed are classed as "possibly extinct." Invasive mammalian predators endanger a further 596 species at risk of extinction, with cats, rodents, dogs, and pigs threatening the most species overall. Species most at risk from predators have high evolutionary distinctiveness and inhabit insular environments. Invasive mammalian predators are therefore important drivers of irreversible loss of phylogenetic diversity worldwide. That most impacted species are insular indicates that management of invasive predators on islands should be a global conservation priority. Understanding and mitigating the impact of invasive mammalian predators is essential for reducing the rate of global biodiversity loss.

  1. Influence of predator density on nonindependent effects of multiple predator species.

    Science.gov (United States)

    Griffen, Blaine D; Williamson, Tucker

    2008-02-01

    Interactions between multiple predator species are frequent in natural communities and can have important implications for shared prey survival. Predator density may be an important component of these interactions between predator species, as the frequency of interactions between species is largely determined by species density. Here we experimentally examine the importance of predator density for interactions between predator species and subsequent impacts on prey. We show that aggressive interactions between the predatory shore crabs Carcinus maenas and Hemigrapsus sanguineus increased with predator density, yet did not increase as fast as negative interactions between conspecifics. At low density, interactions between conspecific and heterospecific predators had similar inhibitory impacts on predator function, whereas conspecific interference was greater than interference from heterospecifics at high predator density. Thus the impact of conspecific interference at high predator density was sufficient in itself that interactions with a second predator species had no additional impact on per capita predation. Spatial and temporal variability in predator density is a ubiquitous characteristic of natural systems that should be considered in studies of multiple predator species.

  2. Patch choice under predation hazard

    Czech Academy of Sciences Publication Activity Database

    Křivan, Vlastimil; Vrkoč, Ivo

    2000-01-01

    Roč. 58, č. 4 (2000), s. 329-340 ISSN 0040-5809 R&D Projects: GA ČR GA201/98/0227; GA MŠk VS96086 Institutional research plan: CEZ:AV0Z5007907; CEZ:AV0Z1019905; CEZ:AV0Z1019905 Keywords : adaptive behaviour * heterogeneous environment * predation Subject RIV: BA - General Mathematics Impact factor: 1.833, year: 2000

  3. Temporal dynamics of top predators interactions in the Barents Sea.

    Science.gov (United States)

    Durant, Joël M; Skern-Mauritzen, Mette; Krasnov, Yuri V; Nikolaeva, Natalia G; Lindstrøm, Ulf; Dolgov, Andrey

    2014-01-01

    The Barents Sea system is often depicted as a simple food web in terms of number of dominant feeding links. The most conspicuous feeding link is between the Northeast Arctic cod Gadus morhua, the world's largest cod stock which is presently at a historical high level, and capelin Mallotus villosus. The system also holds diverse seabird and marine mammal communities. Previous diet studies may suggest that these top predators (cod, bird and sea mammals) compete for food particularly with respect to pelagic fish such as capelin and juvenile herring (Clupea harengus), and krill. In this paper we explored the diet of some Barents Sea top predators (cod, Black-legged kittiwake Rissa tridactyla, Common guillemot Uria aalge, and Minke whale Balaenoptera acutorostrata). We developed a GAM modelling approach to analyse the temporal variation diet composition within and between predators, to explore intra- and inter-specific interactions. The GAM models demonstrated that the seabird diet is temperature dependent while the diet of Minke whale and cod is prey dependent; Minke whale and cod diets depend on the abundance of herring and capelin, respectively. There was significant diet overlap between cod and Minke whale, and between kittiwake and guillemot. In general, the diet overlap between predators increased with changes in herring and krill abundances. The diet overlap models developed in this study may help to identify inter-specific interactions and their dynamics that potentially affect the stocks targeted by fisheries.

  4. The modeling of predator-prey interactions

    OpenAIRE

    Muhammad Shakil; H. A. Wahab; Muhammad Naeem, et al.

    2015-01-01

    In this paper, we aim to study the interactions between the territorial animals like foxes and the rabbits. The territories for the foxes are considered to be the simple cells. The interactions between predator and its prey are represented by the chemical reactions which obey the mass action law. In this sense, we apply the mass action law for predator prey models and the quasi chemical approach is applied for the interactions between the predator and its prey to develop the modeled equations...

  5. Study on screening of anti-predator rhizosphere bacterium against Caenorhabditis elegans and its anti predation mechanism

    Directory of Open Access Journals (Sweden)

    HE Qingling

    2016-08-01

    Full Text Available Althoughmicrobial fertilizer is multi-effect,environmental friendly and long-term efficient,its practical application effect is but decreased for being prey by the other creators living in soil frequently.Many bacterium have developed their mechanisms that expel or kill worms to defend themselves from predators.Screening of anti-predator rhizosphere bacterium helps us to find out competitive plant growth promoting rhizobacteria(PGPR.Using Caenorhabditis elegans as sample,this study roughly observed two strains of biocontrol:Pseudomonas aurantiaca JD37 and Pseudomonas fluorescens P13.Using Escherichia coli OP50 as control group,we find the preference order of worms,from highest to lowest,is P13,OP50 and JD37.In slow killing assay,the death rate of worms for JD37 and P13 are 26.12% and 18.66% respectively.The activity and reproduction rate of C.elegans decrease when it is fed on JD37.The results of chemical and micro-biological study show that JD37 cannot produce any currently studied second metabolites which kill worms,while P13 can produce Hydrogen cyanide (HCN.All these results show that JD37 has the ability of anti-predator,and is more competitive under predation pressure,which suggests its broad application prospect as microbial fertilizer.

  6. Species Diversity Enhances Predator Growth Rates

    International Nuclear Information System (INIS)

    Olson, M.H.; Jacobs, R.P.; O'Donnell, E.B.

    2007-01-01

    Predators can be important top-down regulators of community structure and are known to have both positive and negative effects on species diversity. However, little is known about the reciprocal effects of species diversity on predators. Across a set of 80 lakes in Connecticut, USA, we found a strong positive correlation between prey species diversity (using the Shannon-Weiner Diversity Index) and growth rates of largemouth bass (Micropterus salmoides). This correlation was strongest for small predators and decreased with body size. Although the underlying mechanisms are not known, the correlation is not driven by total fish abundance, predator abundance, or productivity.

  7. Ambush frequency should increase over time during optimal predator search for prey

    OpenAIRE

    Alpern, Steve; Fokkink, Robbert; Timmer, Marco; Casas, Jérôme

    2011-01-01

    We advance and apply the mathematical theory of search games to model the problem faced by a predator searching for prey. Two search modes are available: ambush and cruising search. Some species can adopt either mode, with their choice at a given time traditionally explained in terms of varying habitat and physiological conditions. We present an additional explanation of the observed predator alternation between these search modes, which is based on the dynamical nature of the search game the...

  8. Predator attack rate evolution in space: the role of ecology mediated by complex emergent spatial structure and self-shading.

    Science.gov (United States)

    Messinger, Susanna M; Ostling, Annette

    2013-11-01

    Predation interactions are an important element of ecological communities. Population spatial structure has been shown to influence predator evolution, resulting in the evolution of a reduced predator attack rate; however, the evolutionary role of traits governing predator and prey ecology is unknown. The evolutionary effect of spatial structure on a predator's attack rate has primarily been explored assuming a fixed metapopulation spatial structure, and understood in terms of group selection. But endogenously generated, emergent spatial structure is common in nature. Furthermore, the evolutionary influence of ecological traits may be mediated through the spatial self-structuring process. Drawing from theory on pathogens, the evolutionary effect of emergent spatial structure can be understood in terms of self-shading, where a voracious predator limits its long-term invasion potential by reducing local prey availability. Here we formalize the effects of self-shading for predators using spatial moment equations. Then, through simulations, we show that in a spatial context self-shading leads to relationships between predator-prey ecology and the predator's attack rate that are not expected in a non-spatial context. Some relationships are analogous to relationships already shown for host-pathogen interactions, but others represent new trait dimensions. Finally, since understanding the effects of ecology using existing self-shading theory requires simplifications of the emergent spatial structure that do not apply well here, we also develop metrics describing the complex spatial structure of the predator and prey populations to help us explain the evolutionary effect of predator and prey ecology in the context of self-shading. The identification of these metrics may provide a step towards expansion of the predictive domain of self-shading theory to more complex spatial dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. A test of the predator satiation hypothesis, acorn predator size, and acorn preference

    Science.gov (United States)

    C.H. Greenberg; S.J. Zarnoch

    2018-01-01

    Mast seeding is hypothesized to satiate seed predators with heavy production and reduce populations with crop failure, thereby increasing seed survival. Preference for red or white oak acorns could influence recruitment among oak species. We tested the predator satiation hypothesis, acorn preference, and predator size by concurrently...

  10. Landscape forest cover and edge effects on songbird nest predation vary by nest predator

    Science.gov (United States)

    W. Andrew Cox; Frank R. III Thompson; John. Faaborg

    2012-01-01

    Rates of nest predation for birds vary between and within species across multiple spatial scales, but we have a poor understanding of which predators drive such patterns. We video-monitored nests and identified predators at 120 nests of the Acadian Flycatcher (Empidonax virescens) and the Indigo Bunting (Passerina cyanea) at eight...

  11. Predator effects on reef fish settlement depend on predator origin and recruit density.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2017-04-01

    During major life-history transitions, animals often experience high mortality rates due to predation, making predator avoidance particularly advantageous during these times. There is mixed evidence from a limited number of studies, however, regarding how predator presence influences settlement of coral-reef fishes and it is unknown how other potentially mediating factors, including predator origin (native vs. nonnative) or interactions among conspecific recruits, mediate the non-consumptive effects of predators on reef fish settlement. During a field experiment in the Caribbean, approximately 52% fewer mahogany snapper (Lutjanus mahogoni) recruited to reefs with a native predator (graysby grouper, Cephalopholis cruentata) than to predator-free control reefs and reefs with an invasive predator (red lionfish, Pterois volitans) regardless of predator diet. These results suggest that snapper recruits do not recognize nonnative lionfish as a threat. However, these effects depended on the density of conspecific recruits, with evidence that competition may limit the response of snapper to even native predators at the highest recruit densities. In contrast, there was no effect of predator presence or conspecific density on the recruitment of bicolor damselfish (Stegastes partitus). These context-dependent responses of coral-reef fishes to predators during settlement may influence individual survival and shape subsequent population and community dynamics. © 2017 by the Ecological Society of America.

  12. Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands

    Directory of Open Access Journals (Sweden)

    Nyindo Mramba

    2011-07-01

    Full Text Available Abstract Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P P P P An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators.

  13. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    Science.gov (United States)

    Hollander, Franck A; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  14. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird.

    Directory of Open Access Journals (Sweden)

    Franck A Hollander

    Full Text Available In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.

  15. Two-prey one-predator model

    International Nuclear Information System (INIS)

    Elettreby, M.F.

    2009-01-01

    In this paper we propose a new multi-team prey-predator model, in which the prey teams help each other. We study its local stability. In the absence of predator, there is no help between the prey teams. So, we study the global stability and persistence of the model without help.

  16. The functional response of a generalist predator.

    Directory of Open Access Journals (Sweden)

    Sophie Smout

    Full Text Available BACKGROUND: Predators can have profound impacts on the dynamics of their prey that depend on how predator consumption is affected by prey density (the predator's functional response. Consumption by a generalist predator is expected to depend on the densities of all its major prey species (its multispecies functional response, or MSFR, but most studies of generalists have focussed on their functional response to only one prey species. METHODOLOGY AND PRINCIPAL FINDINGS: Using Bayesian methods, we fit an MSFR to field data from an avian predator (the hen harrier Circus cyaneus feeding on three different prey species. We use a simple graphical approach to show that ignoring the effects of alternative prey can give a misleading impression of the predator's effect on the prey of interest. For example, in our system, a "predator pit" for one prey species only occurs when the availability of other prey species is low. CONCLUSIONS AND SIGNIFICANCE: The Bayesian approach is effective in fitting the MSFR model to field data. It allows flexibility in modelling over-dispersion, incorporates additional biological information into the parameter priors, and generates estimates of uncertainty in the model's predictions. These features of robustness and data efficiency make our approach ideal for the study of long-lived predators, for which data may be sparse and management/conservation priorities pressing.

  17. Vertebrate predator-prey interactions in a seasonal environment

    DEFF Research Database (Denmark)

    Schmidt, Niels Martin; Berg, Thomas B; Forchhammer, Mads

    2008-01-01

    erminea predation and stabilising predation from the generalist predators, in Zackenbergdalen mainly the arctic fox Alopex lagopus. In Zackenbergdalen, however, the coupling between the specialist stoat and the lemming population is relatively weak. During summer, the predation pressure is high......The High Arctic, with its low number of species, is characterised by a relatively simple ecosystem, and the vertebrate predator-prey interactions in the valley Zackenbergdalen in Northeast Greenland are centred around the collared lemming Dicrostonyx groenlandicus and its multiple predators...

  18. Do Père David's deer lose memories of their ancestral predators?

    Directory of Open Access Journals (Sweden)

    Chunwang Li

    Full Text Available Whether prey retains antipredator behavior after a long period of predator relaxation is an important question in predator-prey evolution. Père David's deer have been raised in enclosures for more than 1200 years and this isolation provides an opportunity to study whether Père David's deer still respond to the cues of their ancestral predators or to novel predators. We played back the sounds of crows (familiar sound and domestic dogs (familiar non-predators, of tigers and wolves (ancestral predators, and of lions (potential naïve predator to Père David's deer in paddocks, and blank sounds to the control group, and videoed the behavior of the deer during the experiment. We also showed life-size photo models of dog, leopard, bear, tiger, wolf, and lion to the deer and video taped their responses after seeing these models. Père David's deer stared at and approached the hidden loudspeaker when they heard the roars of tiger or lion. The deer listened to tiger roars longer, approached to tiger roars more and spent more time staring at the tiger model. The stags were also found to forage less in the trials of tiger roars than that of other sound playbacks. Additionally, it took longer for the deer to restore their normal behavior after they heard tiger roars, which was longer than that after the trial of other sound playbacks. Moreover, the deer were only found to walk away after hearing the sounds of tiger and wolf. Therefore, the tiger was probably the main predator for Père David's deer in ancient time. Our study implies that Père David's deer still retain the memories of the acoustic and visual cues of their ancestral predators in spite of the long term isolation from natural habitat.

  19. Drosophila increase exploration after visually detecting predators.

    Directory of Open Access Journals (Sweden)

    Miguel de la Flor

    Full Text Available Novel stimuli elicit behaviors that are collectively known as specific exploration. These behaviors allow the animal to become more familiar with the novel objects within its environment. Specific exploration is frequently suppressed by defensive reactions to predator cues. Herein, we examine if this suppression occurs in Drosophila melanogaster by measuring the response of these flies to wild harvested predators. The flies used in our experiments have been cultured and had not lived under predator threat for multiple decades. In a circular arena with centrally-caged predators, wild type Drosophila actively avoided the pantropical jumping spider, Plexippus paykulli, and the Texas unicorn mantis, Phyllovates chlorophaena, indicating an innate defensive reaction to these predators. Interestingly, wild type Drosophila males also avoided a centrally-caged mock spider, and the avoidance of the mock spider became exaggerated when it was made to move within the cage. Visually impaired Drosophila failed to detect and avoid the Plexippus paykulli and the moving mock spider, while the broadly anosmic orco2 mutants were fully capable of detecting and avoiding Plexippus paykulli, indicating that these flies principally relied upon vison to perceive the predator stimuli. During early exploration of the arena, exploratory activity increased in the presence of Plexippus paykulli and the moving mock spider. The elevated activity induced by Plexippus paykulli disappeared after the fly had finished exploring, suggesting the flies were capable of habituating the predator cues. Taken together, these results indicate that despite being isolated from predators for decades Drosophila will visually detect these predators, retain innate defensive behaviors, respond by increasing exploratory activity in the arena rather than suppressing activity, and may habituate to normal predator cues.

  20. Effects of water temperature and fish size on predation vulnerability of juvenile humpback chub to rainbow trout and brown trout

    Science.gov (United States)

    Ward, David L.; Morton-Starner, Rylan

    2015-01-01

    Predation on juvenile native fish by introduced Rainbow Trout and Brown Trout is considered a significant threat to the persistence of endangered Humpback Chub Gila cypha in the Colorado River in the Grand Canyon. Diet studies of Rainbow Trout and Brown Trout in Glen and Grand canyons indicate that these species do eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable, depending on prey size, predator size, and the water temperatures under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile native fish changes in response to fish size and water temperature using captivity-reared Humpback Chub, Bonytail, and Roundtail Chub. Juvenile chub 45–90 mm total length (TL) were exposed to adult Rainbow and Brown trouts at 10, 15, and 20°C to measure predation vulnerability as a function of water temperature and fish size. A 1°C increase in water temperature decreased short-term predation vulnerability of Humpback Chub to Rainbow Trout by about 5%, although the relationship is not linear. Brown Trout were highly piscivorous in the laboratory at any size > 220 mm TL and at all water temperatures we tested. Understanding the effects of predation by trout on endangered Humpback Chub is critical in evaluating management options aimed at preserving native fishes in Grand Canyon National Park.

  1. Simulated predator stimuli reduce brain cell proliferation in two electric fish species, Brachyhypopomus gauderio and Apteronotus leptorhynchus.

    Science.gov (United States)

    Dunlap, Kent D; Keane, Geoffrey; Ragazzi, Michael; Lasky, Elise; Salazar, Vielka L

    2017-07-01

    The brain structure of many animals is influenced by their predators, but the cellular processes underlying this brain plasticity are not well understood. Previous studies showed that electric fish ( Brachyhypopomus occidentalis ) naturally exposed to high predator ( Rhamdia quelen ) density and tail injury had reduced brain cell proliferation compared with individuals facing few predators and those with intact tails. However, these field studies described only correlations between predator exposure and cell proliferation. Here, we used a congener Brachyhypopomus gauderio and another electric fish Apteronotus leptorhynchus to experimentally test the hypothesis that exposure to a predator stimulus and tail injury causes alterations in brain cell proliferation. To simulate predator exposure, we either amputated the tail followed by short-term (1 day) or long-term (17-18 days) recovery or repeatedly chased intact fish with a plastic rod over a 7 day period. We measured cell proliferation (PCNA+ cell density) in the telencephalon and diencephalon, and plasma cortisol, which commonly mediates stress-induced changes in brain cell proliferation. In both species, either tail amputation or simulated predator chase decreased cell proliferation in the telencephalon in a manner resembling the effect of predators in the field. In A. leptorhynchus , cell proliferation decreased drastically in the short term after tail amputation and partially rebounded after long-term recovery. In B. gauderio , tail amputation elevated cortisol levels, but repeated chasing had no effect. In A. leptorhynchus , tail amputation elevated cortisol levels in the short term but not in the long term. Thus, predator stimuli can cause reductions in brain cell proliferation, but the role of cortisol is not clear. © 2017. Published by The Company of Biologists Ltd.

  2. Partitioning mechanisms of predator interference in different habitats.

    Science.gov (United States)

    Griffen, Blaine D; Byers, James E

    2006-01-01

    Prey are often consumed by multiple predator species. Predation rates on shared prey species measured in isolation often do not combine additively due to interference or facilitation among the predator species. Furthermore, the strength of predator interactions and resulting prey mortality may change with habitat type. We experimentally examined predation on amphipods in rock and algal habitats by two species of intertidal crabs, Hemigrapsus sanguineus (top predators) and Carcinus maenas (intermediate predators). Algae provided a safer habitat for amphipods when they were exposed to only a single predator species. When both predator species were present, mortality of amphipods was less than additive in both habitats. However, amphipod mortality was reduced more in rock than algal habitat because intermediate predators were less protected in rock habitat and were increasingly targeted by omnivorous top predators. We found that prey mortality in general was reduced by (1) altered foraging behavior of intermediate predators in the presence of top predators, (2) top predators switching to foraging on intermediate predators rather than shared prey, and (3) density reduction of intermediate predators. The relative importance of these three mechanisms was the same in both habitats; however, the magnitude of each was greater in rock habitat. Our study demonstrates that the strength of specific mechanisms of interference between top and intermediate predators can be quantified but cautions that these results may be habitat specific.

  3. Predation on rose galls: parasitoids and predators determine gall size through directional selection.

    Directory of Open Access Journals (Sweden)

    Zoltán László

    Full Text Available Both predators and parasitoids can have significant effects on species' life history traits, such as longevity or clutch size. In the case of gall inducers, sporadically there is evidence to suggest that both vertebrate predation and insect parasitoid attack may shape the optimal gall size. While the effects of parasitoids have been studied in detail, the influence of vertebrate predation is less well-investigated. To better understand this aspect of gall size evolution, we studied vertebrate predation on galls of Diplolepis rosae on rose (Rosa canina shrubs. We measured predation frequency, predation incidence, and predation rate in a large-scale observational field study, as well as an experimental field study. Our combined results suggest that, similarly to parasitoids, vertebrate predation makes a considerable contribution to mortality of gall inducer larvae. On the other hand, its influence on gall size is in direct contrast to the effect of parasitoids, as frequency of vertebrate predation increases with gall size. This suggests that the balance between predation and parasitoid attack shapes the optimal size of D. rosae galls.

  4. Aquatic insect predators and mosquito control.

    Science.gov (United States)

    Shaalan, Essam Abdel-Salam; Canyon, Deon V

    2009-12-01

    Mosquitoes are serious biting pests and obligate vectors of many vertebrate pathogens. Their immature larval and pupal life stages are a common feature in most tropical and many temperate water bodies and often form a significant proportion of the biomass. Control strategies rely primarily on the use of larvicides and environmental modification to reduce recruitment and adulticides during periods of disease transmission. Larvicides are usually chemical but can involve biological toxins, agents or organisms. The use of insect predators in mosquito control has been exploited in a limited fashion and there is much room for further investigation and implementation. Insects that are recognized as having predatorial capacity with regard to mosquito prey have been identified in the Orders Odonata, Coleoptera, Diptera (primarily aquatic predators), and Hemiptera (primarily surface predators). Although their capacity is affected by certain biological and physical factors, they could play a major role in mosquito control. Furthermore, better understanding for the mosquitoes-predators relationship(s) could probably lead to satisfactory reduction of mosquito-borne diseases by utilizing either these predators in control programs, for instance biological and/or integrated control, or their kairomones as mosquitoes' ovipoisting repellents. This review covers the predation of different insect species on mosquito larvae, predator-prey-habitat relationships, co-habitation developmental issues, survival and abundance, oviposition avoidance, predatorial capacity and integrated vector control.

  5. Birds as predators in tropical agroforestry systems.

    Science.gov (United States)

    Van Bael, Sunshine A; Philpott, Stacy M; Greenberg, Russell; Bichier, Peter; Barber, Nicholas A; Mooney, Kailen A; Gruner, Daniel S

    2008-04-01

    Insectivorous birds reduce arthropod abundances and their damage to plants in some, but not all, studies where predation by birds has been assessed. The variation in bird effects may be due to characteristics such as plant productivity or quality, habitat complexity, and/or species diversity of predator and prey assemblages. Since agroforestry systems vary in such characteristics, these systems provide a good starting point for understanding when and where we can expect predation by birds to be important. We analyze data from bird exclosure studies in forests and agroforestry systems to ask whether birds consistently reduce their arthropod prey base and whether bird predation differs between forests and agroforestry systems. Further, we focus on agroforestry systems to ask whether the magnitude of bird predation (1) differs between canopy trees and understory plants, (2) differs when migratory birds are present or absent, and (3) correlates with bird abundance and diversity. We found that, across all studies, birds reduce all arthropods, herbivores, carnivores, and plant damage. We observed no difference in the magnitude of bird effects between agroforestry systems and forests despite simplified habitat structure and plant diversity in agroforests. Within agroforestry systems, bird reduction of arthropods was greater in the canopy than the crop layer. Top-down effects of bird predation were especially strong during censuses when migratory birds were present in agroforestry systems. Importantly, the diversity of the predator assemblage correlated with the magnitude of predator effects; where the diversity of birds, especially migratory birds, was greater, birds reduced arthropod densities to a greater extent. We outline potential mechanisms for relationships between bird predator, insect prey, and habitat characteristics, and we suggest future studies using tropical agroforests as a model system to further test these areas of ecological theory.

  6. Laying the foundations for a human-predator conflict solution: assessing the impact of Bonelli's eagle on rabbits and partridges.

    Directory of Open Access Journals (Sweden)

    Marcos Moleón

    Full Text Available BACKGROUND: Predation may potentially lead to negative effects on both prey (directly via predators and predators (indirectly via human persecution. Predation pressure studies are, therefore, of major interest in the fields of theoretical knowledge and conservation of prey or predator species, with wide ramifications and profound implications in human-wildlife conflicts. However, detailed works on this issue in highly valuable--in conservation terms--Mediterranean ecosystems are virtually absent. This paper explores the predator-hunting conflict by examining a paradigmatic, Mediterranean-wide (endangered predator-two prey (small game system. METHODOLOGY/PRINCIPAL FINDINGS: We estimated the predation impact ('kill rate' and 'predation rate', i.e., number of prey and proportion of the prey population eaten, respectively of Bonelli's eagle Aquila fasciata on rabbit Oryctolagus cuniculus and red-legged partridge Alectoris rufa populations in two seasons (the eagle's breeding and non-breeding periods, 100 days each in SE Spain. The mean estimated kill rate by the seven eagle reproductive units in the study area was c. 304 rabbits and c. 262 partridges in the breeding season, and c. 237 rabbits and c. 121 partridges in the non-breeding period. This resulted in very low predation rates (range: 0.3-2.5% for both prey and seasons. CONCLUSIONS/SIGNIFICANCE: The potential role of Bonelli's eagles as a limiting factor for rabbits and partridges at the population scale was very poor. The conflict between game profitability and conservation interest of either prey or predators is apparently very localised, and eagles, quarry species and game interests seem compatible in most of the study area. Currently, both the persecution and negative perception of Bonelli's eagle (the 'partridge-eating eagle' in Spanish have a null theoretical basis in most of this area.

  7. Laying the foundations for a human-predator conflict solution: assessing the impact of Bonelli's eagle on rabbits and partridges.

    Science.gov (United States)

    Moleón, Marcos; Sánchez-Zapata, José A; Gil-Sánchez, José M; Barea-Azcón, José M; Ballesteros-Duperón, Elena; Virgós, Emilio

    2011-01-01

    Predation may potentially lead to negative effects on both prey (directly via predators) and predators (indirectly via human persecution). Predation pressure studies are, therefore, of major interest in the fields of theoretical knowledge and conservation of prey or predator species, with wide ramifications and profound implications in human-wildlife conflicts. However, detailed works on this issue in highly valuable--in conservation terms--Mediterranean ecosystems are virtually absent. This paper explores the predator-hunting conflict by examining a paradigmatic, Mediterranean-wide (endangered) predator-two prey (small game) system. We estimated the predation impact ('kill rate' and 'predation rate', i.e., number of prey and proportion of the prey population eaten, respectively) of Bonelli's eagle Aquila fasciata on rabbit Oryctolagus cuniculus and red-legged partridge Alectoris rufa populations in two seasons (the eagle's breeding and non-breeding periods, 100 days each) in SE Spain. The mean estimated kill rate by the seven eagle reproductive units in the study area was c. 304 rabbits and c. 262 partridges in the breeding season, and c. 237 rabbits and c. 121 partridges in the non-breeding period. This resulted in very low predation rates (range: 0.3-2.5%) for both prey and seasons. The potential role of Bonelli's eagles as a limiting factor for rabbits and partridges at the population scale was very poor. The conflict between game profitability and conservation interest of either prey or predators is apparently very localised, and eagles, quarry species and game interests seem compatible in most of the study area. Currently, both the persecution and negative perception of Bonelli's eagle (the 'partridge-eating eagle' in Spanish) have a null theoretical basis in most of this area.

  8. Contrast in edge vegetation structure modifies the predation risk of natural ground nests in an agricultural landscape.

    Directory of Open Access Journals (Sweden)

    Nicole A Schneider

    Full Text Available Nest predation risk generally increases nearer forest-field edges in agricultural landscapes. However, few studies test whether differences in edge contrast (i.e. hard versus soft edges based on vegetation structure and height affect edge-related predation patterns and if such patterns are related to changes in nest conspicuousness between incubation and nestling feeding. Using data on 923 nesting attempts we analyse factors influencing nest predation risk at different edge types in an agricultural landscape of a ground-cavity breeding bird species, the Northern Wheatear (Oenanthe oenanthe. As for many other bird species, nest predation is a major determinant of reproductive success in this migratory passerine. Nest predation risk was higher closer to woodland and crop field edges, but only when these were hard edges in terms of ground vegetation structure (clear contrast between tall vs short ground vegetation. No such edge effect was observed at soft edges where adjacent habitats had tall ground vegetation (crop, ungrazed grassland. This edge effect on nest predation risk was evident during the incubation stage but not the nestling feeding stage. Since wheatear nests are depredated by ground-living animals our results demonstrate: (i that edge effects depend on edge contrast, (ii that edge-related nest predation patterns vary across the breeding period probably resulting from changes in parental activity at the nest between the incubation and nestling feeding stage. Edge effects should be put in the context of the nest predator community as illustrated by the elevated nest predation risk at hard but not soft habitat edges when an edge is defined in terms of ground vegetation. These results thus can potentially explain previously observed variations in edge-related nest predation risk.

  9. Is naïveté forever? Alien predator and aggressor recognition by two endemic island reptiles.

    Science.gov (United States)

    Gérard, A; Jourdan, H; Cugnière, C; Millon, A; Vidal, E

    2014-11-01

    The disproportionate impacts of invasive predators are often attributed to the naïveté (i.e., inefficient or non-existing anti-predator behavior) of island native species having evolved without such predators. Naïveté has long been regarded as a fixed characteristic, but a few recent studies indicate a capacity for behavioral adaptation in native species in contact with alien predators. Here, we tested whether two reptiles endemic to New Caledonia, a skink, Caledoniscincus austrocaledonicus, and a gecko, Bavayia septuiclavis, recognized and responded to the odor of six introduced species (two rodents, the feral cat, and three species of ants). We used an experimental design in which reptiles had a choice of retreat sites with or without the odor of predators or aggressors. Skinks avoided two or three of the predators, whereas geckos avoided at most one. These results suggest that diurnal skinks are more responsive than nocturnal geckos to the odor of introduced predators. Neither skinks nor geckos avoided the three species of ants. Thus, the odors of alien predators are shown to influence retreat site selection by two native island reptiles. Moreover, the study suggests that this loss of naïveté varies among native species, probably as a consequence of the intensity of the threat and of time since introduction. These findings argue for re-thinking the behavioral flexibility of ectothermic reptiles in terms of their responses to biological invasion.

  10. Predation risk of artificial ground nests in managed floodplain meadows

    Science.gov (United States)

    Arbeiter, Susanne; Franke, Elisabeth

    2018-01-01

    Nest predation highly determines the reproductive success in birds. In agricultural grasslands, vegetation characteristics and management practices influences the predation risk of ground breeders. Little is known so far on the predation pressure on non-passerine nests in tall swards. Investigations on the interaction of land use with nesting site conditions and the habitat selection of nest predators are crucial to develop effective conservation measures for grassland birds. In this study, we used artificial nests baited with quail and plasticine eggs to identify potential predators of ground nests in floodplain meadows and related predation risk to vegetation structure and grassland management. Mean daily predation rate was 0.01 (±0.012) after an exposure duration of 21 days. 70% of all observed nest predations were caused by mammals (Red Fox and mustelids) and 17.5% by avian predators (corvids). Nest sites close to the meadow edge and those providing low forb cover were faced with a higher daily predation risk. Predation risk also increased later in the season. Land use in the preceding year had a significant effect on predation risk, showing higher predation rates on unmanaged sites than on mown sites. Unused meadows probably attract mammalian predators, because they provide a high abundance of small rodents and a more favourable vegetation structure for foraging, increasing also the risk of incidental nest predations. Although mowing operation is a major threat to ground-nesting birds, our results suggest that an annual removal of vegetation may reduce predation risk in the subsequent year.

  11. A predator-prey system with stage-structure for predator and nonlocal delay

    DEFF Research Database (Denmark)

    Lin, Z.G.; Pedersen, Michael; Zhang, Lai

    2010-01-01

    This paper deals with the behavior of solutions to the reaction-diffusion system under homogeneous Neumann boundary condition, which describes a prey-predator model with nonlocal delay. Sufficient conditions for the global stability of each equilibrium are derived by the Lyapunov functional...... and the results show that the introduction of stage-structure into predator positively affects the coexistence of prey and predator. Numerical simulations are performed to illustrate the results....

  12. Nest Predation Deviates from Nest Predator Abundance in an Ecologically Trapped Bird

    OpenAIRE

    Hollander, Franck A.; Van Dyck, Hans; San Martin, Gilles; Titeux, Nicolas

    2015-01-01

    In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius ...

  13. The adaptive value of gluttony: predators mediate the life history trade-offs of satiation threshold.

    Science.gov (United States)

    Pruitt, J N; Krauel, J J

    2010-10-01

    Animals vary greatly in their tendency to consume large meals. Yet, whether or how meal size influences fitness in wild populations is infrequently considered. Using a predator exclusion, mark-recapture experiment, we estimated selection on the amount of food accepted during an ad libitum feeding bout (hereafter termed 'satiation threshold') in the wolf spider Schizocosa ocreata. Individually marked, size-matched females of known satiation threshold were assigned to predator exclusion and predator inclusion treatments and tracked for a 40-day period. We also estimated the narrow-sense heritability of satiation threshold using dam-on-female-offspring regression. In the absence of predation, high satiation threshold was positively associated with larger and faster egg case production. However, these selective advantages were lost when predators were present. We estimated the heritability of satiation threshold to be 0.56. Taken together, our results suggest that satiation threshold can respond to selection and begets a life history trade-off in this system: high satiation threshold individuals tend to produce larger egg cases but also suffer increased susceptibility to predation. © 2010 The Authors. Journal Compilation © 2010 European Society For Evolutionary Biology.

  14. Predation risk determines breeding territory choice in a Mediterranean cavity-nesting bird community.

    Science.gov (United States)

    Parejo, Deseada; Avilés, Jesús M

    2011-01-01

    Non-direct effects of predation can be an important component of the total effect of predation, modulating animal population and community dynamics. The isolated effects of predation risk on the spatial organisation of the breeding bird community, however, remains poorly studied. We investigated whether an experimentally increased predation risk prior to reproduction affected breeding territory selection and subsequent reproductive strategies in three Mediterranean cavity-nesting birds, i.e., the little owl Athene noctua, European roller Coracias garrulus and scops owl Otus scops. We found that territories used the previous year were more likely to be re-occupied when they belonged to the safe treatment rather than to the risky treatment. The first choice of breeders of all three species was for safe territories over risky ones. When all breeding attempts in the season (i.e., final occupation) were considered, breeders also preferred safe to risky sites. In addition, little owls laid larger eggs in risky territories than in safe territories. Our study provides experimental evidence of a rapid preventive response of the three most abundant species in a cavity-nesting bird community to a short-term manipulation of predation risk. This response highlights the key role of the non-direct effects of predation in modulating avian community organisation.

  15. Biodiversity effects of the predation gauntlet

    Science.gov (United States)

    Stier, Adrian C.; Stallings, Christopher D.; Samhouri, Jameal F.; Albins, Mark A.; Almany, Glenn R.

    2017-06-01

    The ubiquity of trophic downgrading has led to interest in the consequences of mesopredator release on prey communities and ecosystems. This issue is of particular concern for reef-fish communities, where predation is a key process driving ecological and evolutionary dynamics. Here, we synthesize existing experiments that have isolated the effects of mesopredators to quantify the role of predation in driving changes in the abundance and biodiversity of recently settled reef fishes. On average, predators reduced prey abundance through generalist foraging behavior, which, through a statistical sampling artifact, caused a reduction in alpha diversity and an increase in beta diversity. Thus, the synthesized experiments provide evidence that predation reduces overall abundance within prey communities, but—after accounting for sampling effects—does not cause disproportionate effects on biodiversity.

  16. Apex Predators Program Age and Growth Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Apex Predators Program staff have collected vertebral centra from sportfishing tournaments, cruises, commercial fishermen and strandings in the Northeast US since...

  17. Apex Predators Program Sportfishing Tournament Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Apex Predators Program staff have collected shark sportfishing tournamant data from the Northeast US since the 1960's. These tournaments offer a unique opportunity...

  18. The Effects of Predator Evolution and Genetic Variation on Predator-Prey Population-Level Dynamics.

    Science.gov (United States)

    Cortez, Michael H; Patel, Swati

    2017-07-01

    This paper explores how predator evolution and the magnitude of predator genetic variation alter the population-level dynamics of predator-prey systems. We do this by analyzing a general eco-evolutionary predator-prey model using four methods: Method 1 identifies how eco-evolutionary feedbacks alter system stability in the fast and slow evolution limits; Method 2 identifies how the amount of standing predator genetic variation alters system stability; Method 3 identifies how the phase lags in predator-prey cycles depend on the amount of genetic variation; and Method 4 determines conditions for different cycle shapes in the fast and slow evolution limits using geometric singular perturbation theory. With these four methods, we identify the conditions under which predator evolution alters system stability and shapes of predator-prey cycles, and how those effect depend on the amount of genetic variation in the predator population. We discuss the advantages and disadvantages of each method and the relations between the four methods. This work shows how the four methods can be used in tandem to make general predictions about eco-evolutionary dynamics and feedbacks.

  19. Predators indirectly control vector-borne disease: linking predator-prey and host-pathogen models.

    Science.gov (United States)

    Moore, Sean M; Borer, Elizabeth T; Hosseini, Parviez R

    2010-01-06

    Pathogens transmitted by arthropod vectors are common in human populations, agricultural systems and natural communities. Transmission of these vector-borne pathogens depends on the population dynamics of the vector species as well as its interactions with other species within the community. In particular, predation may be sufficient to control pathogen prevalence indirectly via the vector. To examine the indirect effect of predators on vectored-pathogen dynamics, we developed a theoretical model that integrates predator-prey and host-pathogen theory. We used this model to determine whether predation can prevent pathogen persistence or alter the stability of host-pathogen dynamics. We found that, in the absence of predation, pathogen prevalence in the host increases with vector fecundity, whereas predation on the vector causes pathogen prevalence to decline, or even become extinct, with increasing vector fecundity. We also found that predation on a vector may drastically slow the initial spread of a pathogen. The predator can increase host abundance indirectly by reducing or eliminating infection in the host population. These results highlight the importance of studying interactions that, within the greater community, may alter our predictions when studying disease dynamics. From an applied perspective, these results also suggest situations where an introduced predator or the natural enemies of a vector may slow the rate of spread of an emerging vector-borne pathogen.

  20. Behavioural adjustment in response to increased predation risk: a study in three duck species.

    Directory of Open Access Journals (Sweden)

    Cédric Zimmer

    Full Text Available Predation directly triggers behavioural decisions designed to increase immediate survival. However, these behavioural modifications can have long term costs. There is therefore a trade-off between antipredator behaviours and other activities. This trade-off is generally considered between vigilance and only one other behaviour, thus neglecting potential compensations. In this study, we considered the effect of an increase in predation risk on the diurnal time-budget of three captive duck species during the wintering period. We artificially increased predation risk by disturbing two groups of 14 mallard and teals at different frequencies, and one group of 14 tufted ducks with a radio-controlled stressor. We recorded foraging, vigilance, preening and sleeping durations the week before, during and after disturbance sessions. Disturbed groups were compared to an undisturbed control group. We showed that in all three species, the increase in predation risk resulted in a decrease in foraging and preening and led to an increase in sleeping. It is worth noting that contrary to common observations, vigilance did not increase. However, ducks are known to be vigilant while sleeping. This complex behavioural adjustment therefore seems to be optimal as it may allow ducks to reduce their predation risk. Our results highlight the fact that it is necessary to encompass the whole individual time-budget when studying behavioural modifications under predation risk. Finally, we propose that studies of behavioural time-budget changes under predation risk should be included in the more general framework of the starvation-predation risk trade-off.

  1. Effects of turbidity on predation vulnerability of juvenile humpback chub to rainbow and brown trout

    Science.gov (United States)

    Ward, David L.; Morton-Starner, Rylan; Vaage, Benjamin M.

    2016-01-01

    Predation on juvenile native fish by introduced rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta is considered a significant threat to the persistence of endangered humpback chub Gila cypha in the Colorado River in Grand Canyon. Diet studies of rainbow and brown trout in Glen and Grand canyons indicate that these species eat native fish, but impacts are difficult to assess because predation vulnerability is highly variable depending on the physical conditions under which the predation interactions take place. We conducted laboratory experiments to evaluate how short-term predation vulnerability of juvenile humpback chub changes in response to changes in turbidity. In overnight laboratory trials, we exposed hatchery-reared juvenile humpback chub and bonytail Gila elegans (a surrogate for humpback chub) to adult rainbow and brown trout at turbidities ranging from 0 to 1,000 formazin nephlometric units. We found that turbidity as low as 25 formazin nephlometric units significantly reduced predation vulnerability of bonytail to rainbow trout and led to a 36% mean increase in survival (24–60%, 95% CI) compared to trials conducted in clear water. Predation vulnerability of bonytail to brown trout at 25 formazin nephlometric units also decreased with increasing turbidity and resulted in a 25% increase in survival on average (17–32%, 95% CI). Understanding the effects of predation by trout on endangered humpback chub is important when evaluating management options aimed at preservation of native fishes in Grand Canyon National Park. This research suggests that relatively small changes in turbidity may be sufficient to alter predation dynamics of trout on humpback chub in the mainstem Colorado River and that turbidity manipulation may warrant further investigation as a fisheries management tool.

  2. Weed seed predation in organic and conventional fields

    DEFF Research Database (Denmark)

    Navntoft, Søren; Wratten, S.D.; Kristensen, Kristian

    2009-01-01

    Enhanced biological control of weed seeds may improve sustainability of agricultural production. Biological control due to seed predation may be higher in organic fields because organic production generally supports more seed predators. To investigate such a difference, weed seed predation...... University and in two of the fields used for estimating seed predation. Recording of predators had therefore limited overlap with seed predation assays but was expected to give important information on key seed predators in the region. The mean seed removal rate was 17% in organic fields compared with 10...... edges. Overall, there was no consistent effect of distance from the field edge. Vegetation had a significant influence on the predation rates, with maximum rates at a medium-dense plant cover. Based on the video images, birds were the most important seed predators. The higher weed seed predation rate...

  3. A spatial theory for emergent multiple predator-prey interactions in food webs.

    Science.gov (United States)

    Northfield, Tobin D; Barton, Brandon T; Schmitz, Oswald J

    2017-09-01

    Predator-prey interaction is inherently spatial because animals move through landscapes to search for and consume food resources and to avoid being consumed by other species. The spatial nature of species interactions necessitates integrating spatial processes into food web theory and evaluating how predators combine to impact their prey. Here, we present a spatial modeling approach that examines emergent multiple predator effects on prey within landscapes. The modeling is inspired by the habitat domain concept derived from empirical synthesis of spatial movement and interactions studies. Because these principles are motivated by synthesis of short-term experiments, it remains uncertain whether spatial contingency principles hold in dynamical systems. We address this uncertainty by formulating dynamical systems models, guided by core habitat domain principles, to examine long-term multiple predator-prey spatial dynamics. To describe habitat domains, we use classical niche concepts describing resource utilization distributions, and assume species interactions emerge from the degree of overlap between species. The analytical results generally align with those from empirical synthesis and present a theoretical framework capable of demonstrating multiple predator effects that does not depend on the small spatial or temporal scales typical of mesocosm experiments, and help bridge between empirical experiments and long-term dynamics in natural systems.

  4. Naive Juveniles Are More Likely to Become Breeders after Witnessing Predator Mobbing.

    Science.gov (United States)

    Griesser, Michael; Suzuki, Toshitaka N

    2017-01-01

    Responding appropriately during the first predatory attack in life is often critical for survival. In many social species, naive juveniles acquire this skill from conspecifics, but its fitness consequences remain virtually unknown. Here we experimentally demonstrate how naive juvenile Siberian jays (Perisoreus infaustus) derive a long-term fitness benefit from witnessing knowledgeable adults mobbing their principal predator, the goshawk (Accipiter gentilis). Siberian jays live in family groups of two to six individuals that also can include unrelated nonbreeders. Field observations showed that Siberian jays encounter predators only rarely, and, indeed, naive juveniles do not respond to predator models when on their own but do when observing other individuals mobbing them. Predator exposure experiments demonstrated that naive juveniles had a substantially higher first-winter survival after observing knowledgeable group members mobbing a goshawk model, increasing their likelihood of acquiring a breeding position later in life. Previous research showed that naive individuals may learn from others how to respond to predators, care for offspring, or choose mates, generally assuming that social learning has long-term fitness consequences without empirical evidence. Our results demonstrate a long-term fitness benefit of vertical social learning for naive individuals in the wild, emphasizing its evolutionary importance in animals, including humans.

  5. Central-place foraging and ecological effects of an invasive predator across multiple habitats.

    Science.gov (United States)

    Benkwitt, Cassandra E

    2016-10-01

    Cross-habitat foraging movements of predators can have widespread implications for predator and prey populations, community structure, nutrient transfer, and ecosystem function. Although central-place foraging models and other aspects of optimal foraging theory focus on individual predator behavior, they also provide useful frameworks for understanding the effects of predators on prey populations across multiple habitats. However, few studies have examined both the foraging behavior and ecological effects of nonnative predators across multiple habitats, and none has tested whether nonnative predators deplete prey in a manner predicted by these foraging models. I conducted behavioral observations of invasive lionfish (Pterois volitans) to determine whether they exhibit foraging movements similar to other central-place consumers. Then, I used a manipulative field experiment to test whether their effects on prey populations are consistent with three qualitative predictions from optimal foraging models. Specifically, I predicted that the effects of invasive lionfish on native prey will (1) occur at central sites first and then in surrounding habitats, (2) decrease with increasing distance away from their shelter site, and (3) extend to greater distances when prey patches are spaced closer together. Approximately 40% of lionfish exhibited short-term crepuscular foraging movements into surrounding habitats from the coral patch reefs where they shelter during daylight hours. Over the course of 7 weeks, lionfish depleted native fish populations on the coral patch reefs where they reside, and subsequently on small structures in the surrounding habitat. However, their effects did not decrease with increasing distance from the central shelter site and the influence of patch spacing was opposite the prediction. Instead, lionfish always had the greatest effects in areas with the highest prey densities. The differences between the predicted and observed effects of lionfish

  6. Hypothalamic Circuits for Predation and Evasion.

    Science.gov (United States)

    Li, Yi; Zeng, Jiawei; Zhang, Juen; Yue, Chenyu; Zhong, Weixin; Liu, Zhixiang; Feng, Qiru; Luo, Minmin

    2018-02-21

    The interactions between predator and prey represent some of the most dramatic events in nature and constitute a matter of life and death for both sides. The hypothalamus has been implicated in driving predation and evasion; however, the exact hypothalamic neural circuits underlying these behaviors remain poorly defined. Here, we demonstrate that inhibitory and excitatory projections from the mouse lateral hypothalamus (LH) to the periaqueductal gray (PAG) in the midbrain drive, respectively, predation and evasion. LH GABA neurons were activated during predation. Optogenetically stimulating PAG-projecting LH GABA neurons drove strong predatory attack, and inhibiting these cells reversibly blocked predation. In contrast, LH glutamate neurons were activated during evasion. Stimulating PAG-projecting LH glutamate neurons drove evasion and inhibiting them impeded predictive evasion. Therefore, the seemingly opposite behaviors of predation and evasion are tightly regulated by two dissociable modular command systems within a single neural projection from the LH to the PAG. VIDEO ABSTRACT. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Conservation implications when the nest predators are known

    Science.gov (United States)

    Ribic, Christine; Thompson, Frank

    2012-01-01

    Conservation and management of passerines has largely focused on habitat manipulation or restoration because the natural communities on which these birds depend have been destroyed and fragmented. However, productivity is another important aspect of avian conservation, and nest predation can be a large source of nesting mortality for passerines. Recent studies using video surveillance to identify nest predators allow researchers to start evaluating what methods could be used to mitigate nest predation to help passerines of conservation concern. From recent studies, we identified latitudinal and habitat-related patterns in the importance of predator groups that depredate passerine nests. We then reviewed how knowledge of specific nest predators can benefit conservation of bird species of concern. Mammals were the dominant predator group in northern grasslands. Snakes were the dominant predator group in southern habitats. Fire ants were only a nest predator in southern latitudes. Differences in the importance of predator species or groups were likely the result of both their geographic patterns of distribution and habitat preferences. Some direct and indirect predator control measures developed for waterfowl management potentially could be used to benefit passerine productivity. We reviewed three examples-cowbirds, snakes in shrublands, and ground squirrels in grasslands-to illustrate how different predator control strategies may be needed in different situations. Mitigation of passerine nest predation will need to be based on knowledge of predator communities to be effective. This requires large samples of predation events with identified predators; video technology is essential for this task.

  8. Diversity of protists and bacteria determines predation performance and stability.

    Science.gov (United States)

    Saleem, Muhammad; Fetzer, Ingo; Harms, Hauke; Chatzinotas, Antonis

    2013-10-01

    Predation influences prey diversity and productivity while it effectuates the flux and reallocation of organic nutrients into biomass at higher trophic levels. However, it is unknown how bacterivorous protists are influenced by the diversity of their bacterial prey. Using 456 microcosms, in which different bacterial mixtures with equal initial cell numbers were exposed to single or multiple predators (Tetrahymena sp., Poterioochromonas sp. and Acanthamoeba sp.), we showed that increasing prey richness enhanced production of single predators. The extent of the response depended, however, on predator identity. Bacterial prey richness had a stabilizing effect on predator performance in that it reduced variability in predator production. Further, prey richness tended to enhance predator evenness in the predation experiment including all three protists predators (multiple predation experiment). However, we also observed a negative relationship between prey richness and predator production in multiple predation experiments. Mathematical analysis of potential ecological mechanisms of positive predator diversity-functioning relationships revealed predator complementarity as a factor responsible for both enhanced predator production and prey reduction. We suggest that the diversity at both trophic levels interactively determines protistan performance and might have implications in microbial ecosystem processes and services.

  9. Interactions of bullfrog tadpole predators and an insecticide: Predation release and facilitation

    Science.gov (United States)

    Boone, M.D.; Semlitsch, R.D.

    2003-01-01

    The effect of a contaminant on a community may not be easily predicted, given that complex changes in food resources and predator-prey dynamics may result. The objectives of our study were to determine the interactive effects of the insecticide carbaryl and predators on body size, development, survival, and activity of tadpoles of the bullfrog (Rana catesbeiana). We conducted the study in cattle tank mesocosm ponds exposed to 0, 3.5, or 7.0 mg/l carbaryl, and no predators or two red-spotted newts (Notophthalmus viridescens), bluegill sunfish (Lepomis macrochirus), or crayfish (Orconectes sp.). Carbaryl negatively affected predator survival by eliminating crayfish from all ponds, and by eliminating bluegill sunfish from ponds exposed to the highest concentration of carbaryl; carbaryl exposure did not effect survival of red-spotted newts. Because crayfish were eliminated by carbaryl, bullfrogs were released from predation and survival was near that of predator controls at low concentrations of carbaryl exposure. High concentrations of carbaryl reduced tadpole survival regardless of whether predators survived carbaryl exposure or not. Presence of crayfish and newts reduced tadpole survival, while bluegill sunfish appeared to facilitate bullfrog tadpole survival. Presence of carbaryl stimulated bullfrog tadpole mass and development. Our study demonstrates that the presence of a contaminant stress can alter community regulation by releasing prey from predators that are vulnerable to contaminants in some exposure scenarios.

  10. Do Predation Rates on Artificial Nests Accurately Reflect Predation Rates on Natural Bird Nests?

    Science.gov (United States)

    David I. King; Richard M. DeGraaf; Curtice R. Griffin; Thomas J. Maier

    1999-01-01

    Artificial nests are widely used in avian field studies. However, it is unclear how well predation rates on artificial nests reflect predation rates on natural nests. Therefore, we compared survival rates of artificial nests (unused natural nests baited with House Sparrow eggs) with survival rates of active bird nests in the same habitat at the same sites. Survival...

  11. A predator-2 prey fast-slow dynamical system for rapid predator evolution

    DEFF Research Database (Denmark)

    Piltz, Sofia Helena; Veerman, Frits; Maini, Philip K.

    2017-01-01

    We consider adaptive change of diet of a predator population that switches its feeding between two prey populations. We develop a novel 1 fast-3 slow dynamical system to describe the dynamics of the three populations amidst continuous but rapid evolution of the predator's diet choice. The two ext...

  12. Using process algebra to develop predator-prey models of within-host parasite dynamics.

    Science.gov (United States)

    McCaig, Chris; Fenton, Andy; Graham, Andrea; Shankland, Carron; Norman, Rachel

    2013-07-21

    As a first approximation of immune-mediated within-host parasite dynamics we can consider the immune response as a predator, with the parasite as its prey. In the ecological literature of predator-prey interactions there are a number of different functional responses used to describe how a predator reproduces in response to consuming prey. Until recently most of the models of the immune system that have taken a predator-prey approach have used simple mass action dynamics to capture the interaction between the immune response and the parasite. More recently Fenton and Perkins (2010) employed three of the most commonly used prey-dependent functional response terms from the ecological literature. In this paper we make use of a technique from computing science, process algebra, to develop mathematical models. The novelty of the process algebra approach is to allow stochastic models of the population (parasite and immune cells) to be developed from rules of individual cell behaviour. By using this approach in which individual cellular behaviour is captured we have derived a ratio-dependent response similar to that seen in the previous models of immune-mediated parasite dynamics, confirming that, whilst this type of term is controversial in ecological predator-prey models, it is appropriate for models of the immune system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Prey-predator dynamics driven by the solar radiation - Part 1

    International Nuclear Information System (INIS)

    Sertorio, L.

    2000-01-01

    In this paper is studied a model ecosystem represented by two components: prey and predator. The predator feeds only on the prey, the prey, in turn, feeds on the solar radiation. In this scheme the two-species dynamics is no longer independent of the external physical conditions. Such independence was instead postulated in the Lotka-Volterra scheme. In this paper is considered the growth of the prey not unbounded (exponential), but logistic, where the saturation factor is governed by the available solar flux, more precisely by the percent of the solar flux that contains the photon frequencies which can drive the photosynthesis. In this way the solar flux represents the driving term of the dynamics, as it is expected in general for a realistic ecosystem. The system is asymptotically stable. The equilibrium values of the prey and predator numbers depend on several parameters. The system contains two nonlinear coupling terms and two coupling parameters. The dependence of the equilibrium point on the coupling parameters is studied in detail. According to this model, it can be defined a predator efficiency and a global solar efficiency. It is discussed the relationship between these two functions of the coupling parameters and the maximum value that the predator population can reach

  14. Optimal diving under the risk of predation.

    Science.gov (United States)

    Heithaus, Michael R; Frid, Alejandro

    2003-07-07

    Many air-breathing aquatic foragers may be killed by aerial or subsurface predators while recovering oxygen at the surface; yet the influence of predation risk on time allocation during dive cycles is little known in spite of numerous studies on optimal diving. We modeled diving behavior under the risk of predation at the surface. The relationship between time spent at the surface and the risk of death is predicted to influence the optimal surface interval, regardless of whether foragers accumulate energy at a constant rate while at the food patch, deplete food resources over the course of the dive, or must search for food during the dive. When instantaneous predation risk during a single surface interval decreases with time spent at the surface, a diver should increase its surface interval relative to that which maximizes energy intake, thereby increasing dive durations and reducing the number of surfacings per foraging bout. When instantaneous risk over a single surface interval does not change or increases with increasing time at the surface, divers should decrease their surface interval (and consequently their dive duration) relative to that which maximizes energy intake resulting in more dives per foraging bout. The fitness consequences of selecting a suboptimal surface interval vary with the risk function and the way divers harvest energy when at depth. Finally, predation risk during surface intervals should have important consequences for habitat selection and other aspects of the behavioral ecology of air-breathing aquatic organisms.

  15. Invasion and predation in aquatic ecosystems

    Directory of Open Access Journals (Sweden)

    Judith S. WEIS

    2011-10-01

    Full Text Available This article reviews biological invasions in which predation (or its absence plays a major role in the success of the invader. Examples are described in which the invader out-competes native species for the same food, and cases in which the invader consumes valued native species. In many instances, better predator avoidance by the invasive species or the absence of predators in the new habitat contributes to the success of the invaders; in other cases native or introduced predators appear to be able to keep the invasive species in check. A relatively new management approach in the US is the idea of adding another trophic level – to have humans act as the predators and consume the invasive species. This approach is being utilized in Florida and throughout the Caribbean against the lionfish, but could be extended to other fishes, as well as to various invasive crustaceans and mollusks. This idea is controversial, and current regulations prohibiting the possession of individuals of the invasive species (e.g., mitten crabs or snakefish would preclude the development of a fishery for them [Current Zoology 57 (5: 613–624, 2011].

  16. Gender inequality in predispersal seed predation contributes to female seed set advantage in a gynodioecious species.

    Science.gov (United States)

    Clarke, Gretel L; Brody, Alison K

    2015-05-01

    interactions with both pollinators and seed predators affect reproductive success, floral enemies can cause inequality in seed set between genders. The next step is to understand how the seed set advantage affects long-term fitness and persistence of females in gynodioecious populations.

  17. Evidence of leopard predation on bonobos (Pan paniscus).

    Science.gov (United States)

    D'Amour, Danielle E; Hohmann, Gottfried; Fruth, Barbara

    2006-01-01

    Current models of social organization assume that predation is one of the major forces that promotes group living in diurnal primates. As large body size renders some protection against predators, gregariousness of great apes and other large primate species is usually related to other parameters. The low frequency of observed cases of nonhuman predation on great apes seems to support this assumption. However, recent efforts to study potential predator species have increasingly accumulated direct and indirect evidence of predation by leopards (Panthera pardus) on chimpanzees and gorillas. The following report provides the first evidence of predation by a leopard on bonobos (Pan paniscus). Copyright 2006 S. Karger AG, Basel.

  18. How does the presence of a conspecific individual change the behavioral game that a predator plays with its prey?

    Science.gov (United States)

    Vardi, Reut; Abramsky, Zvika; Kotler, Burt P; Altstein, Ofir; Rosenzweig, Michael L

    2017-07-01

    Behavioral games predators play among themselves may have profound effects on behavioral games predators play with their prey. We studied the behavioral game between predators and prey within the framework of social foraging among predators. We tested how conspecific interactions among predators (little egret) change the predator-prey behavioral game and foraging success. To do so, we examined foraging behavior of egrets alone and in pairs (male and female) in a specially designed aviary consisting of three equally spaced pools with identical initial prey (comet goldfish) densities. Each pool was comprised of a risky microhabitat, rich with food, and a safe microhabitat with no food, forcing the fish to trade off food and safety. When faced with two versus one egret, we found that fish significantly reduced activity in the risky habitat. Egrets in pairs suffered reduced foraging success (negative intraspecific density dependence) and responded to fish behavior and to their conspecific by changing their visiting regime at the different pools-having shorter, more frequent visits. The time egret spent on each visit allowed them to match their long-term capture success rate across the environment to their capture success rate in the pool, which satisfies one aspect of optimality. Overall, egrets in pairs allocated more time for foraging and changed their foraging tactics to focus more on fish under cover and fish 'peeping' out from their shelter. These results suggest that both prey and predator show behavioral flexibility and can adjust to changing conditions as needed in this foraging game.

  19. Combining Methods to Describe Important Marine Habitats for Top Predators: Application to Identify Biological Hotspots in Tropical Waters.

    Science.gov (United States)

    Thiers, Laurie; Louzao, Maite; Ridoux, Vincent; Le Corre, Matthieu; Jaquemet, Sébastien; Weimerskirch, Henri

    2014-01-01

    In tropical waters resources are usually scarce and patchy, and predatory species generally show specific adaptations for foraging. Tropical seabirds often forage in association with sub-surface predators that create feeding opportunities by bringing prey close to the surface, and the birds often aggregate in large multispecific flocks. Here we hypothesize that frigatebirds, a tropical seabird adapted to foraging with low energetic costs, could be a good predictor of the distribution of their associated predatory species, including other seabirds (e.g. boobies, terns) and subsurface predators (e.g., dolphins, tunas). To test this hypothesis, we compared distribution patterns of marine predators in the Mozambique Channel based on a long-term dataset of both vessel- and aerial surveys, as well as tracking data of frigatebirds. By developing species distribution models (SDMs), we identified key marine areas for tropical predators in relation to contemporaneous oceanographic features to investigate multi-species spatial overlap areas and identify predator hotspots in the Mozambique Channel. SDMs reasonably matched observed patterns and both static (e.g. bathymetry) and dynamic (e.g. Chlorophyll a concentration and sea surface temperature) factors were important explaining predator distribution patterns. We found that the distribution of frigatebirds included the distributions of the associated species. The central part of the channel appeared to be the best habitat for the four groups of species considered in this study (frigatebirds, brown terns, boobies and sub-surface predators).

  20. Combining Methods to Describe Important Marine Habitats for Top Predators: Application to Identify Biological Hotspots in Tropical Waters.

    Directory of Open Access Journals (Sweden)

    Laurie Thiers

    Full Text Available In tropical waters resources are usually scarce and patchy, and predatory species generally show specific adaptations for foraging. Tropical seabirds often forage in association with sub-surface predators that create feeding opportunities by bringing prey close to the surface, and the birds often aggregate in large multispecific flocks. Here we hypothesize that frigatebirds, a tropical seabird adapted to foraging with low energetic costs, could be a good predictor of the distribution of their associated predatory species, including other seabirds (e.g. boobies, terns and subsurface predators (e.g., dolphins, tunas. To test this hypothesis, we compared distribution patterns of marine predators in the Mozambique Channel based on a long-term dataset of both vessel- and aerial surveys, as well as tracking data of frigatebirds. By developing species distribution models (SDMs, we identified key marine areas for tropical predators in relation to contemporaneous oceanographic features to investigate multi-species spatial overlap areas and identify predator hotspots in the Mozambique Channel. SDMs reasonably matched observed patterns and both static (e.g. bathymetry and dynamic (e.g. Chlorophyll a concentration and sea surface temperature factors were important explaining predator distribution patterns. We found that the distribution of frigatebirds included the distributions of the associated species. The central part of the channel appeared to be the best habitat for the four groups of species considered in this study (frigatebirds, brown terns, boobies and sub-surface predators.

  1. Predator control promotes invasive dominated ecological states.

    Science.gov (United States)

    Wallach, Arian D; Johnson, Christopher N; Ritchie, Euan G; O'Neill, Adam J

    2010-08-01

    Invasive species are regarded as one of the top five drivers of the global extinction crisis. In response, extreme measures have been applied in an attempt to control or eradicate invasives, with little success overall. We tested the idea that state shifts to invasive dominance are symptomatic of losses in ecosystem resilience, due to the suppression of apex predators. This concept was investigated in Australia where the high rate of mammalian extinctions is largely attributed to the destructive influence of invasive species. Intensive pest control is widely applied across the continent, simultaneously eliminating Australia's apex predator, the dingo (Canis lupus dingo). We show that predator management accounts for shifts between two main ecosystem states. Lethal control fractures dingo social structure and leads to bottom-up driven increases in invasive mesopredators and herbivores. Where control is relaxed, dingoes re-establish top-down regulation of ecosystems, allowing for the recovery of biodiversity and productivity.

  2. Cumulative human impacts on marine predators.

    Science.gov (United States)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J; Halpern, Benjamin S; Breed, Greg A; Nickel, Barry; Teutschel, Nicole M; Crowder, Larry B; Benson, Scott; Dutton, Peter H; Bailey, Helen; Kappes, Michelle A; Kuhn, Carey E; Weise, Michael J; Mate, Bruce; Shaffer, Scott A; Hassrick, Jason L; Henry, Robert W; Irvine, Ladd; McDonald, Birgitte I; Robinson, Patrick W; Block, Barbara A; Costa, Daniel P

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact (CUI) on marine predators by combining electronic tracking data of eight protected predator species (n=685 individuals) in the California Current Ecosystem with data on 24 anthropogenic stressors. We show significant variation in CUI with some of the highest impacts within US National Marine Sanctuaries. High variation in underlying species and cumulative impact distributions means that neither alone is sufficient for effective spatial management. Instead, comprehensive management approaches accounting for both cumulative human impacts and trade-offs among multiple stressors must be applied in planning the use of marine resources.

  3. Predation by crustaceans on native and non-native Baltic clams

    NARCIS (Netherlands)

    Ejdung, G.; Flach, E.; Byrén, L.; Hummel, H.

    2009-01-01

    We studied the effect of crustacean predators on native/non-native Macoma balthica bivalves in aquarium experiments. North Sea M. balthica (NS Macoma) were recently observed in the southern Baltic Sea. They differ genetically and in terms of morphology, behaviour and evolutionary history from Baltic

  4. Predator diversity effects in an exotic freshwater food web.

    Science.gov (United States)

    Naddafi, Rahmat; Rudstam, Lars G

    2013-01-01

    Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs)] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs)]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel) as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs). Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity.

  5. Predator diversity effects in an exotic freshwater food web.

    Directory of Open Access Journals (Sweden)

    Rahmat Naddafi

    Full Text Available Cascading trophic interactions are often defined as the indirect effects of a predator on primary producers through the effect of the predator on herbivores. These effects can be both direct through removal of herbivores [density-mediated indirect interactions (DMIIs] or indirect through changes in the behavior of the herbivores [trait-mediated indirect interactions (TMIIs]. How the relative importance of these two indirect interactions varies with predator diversity remains poorly understood. We tested the effect of predator diversity on both TMIIs and DMIIs on phytoplankton using two competitive invasive dreissenid mussel species (zebra mussel and quagga mussel as the herbivores and combinations of one, two or all three species of the predators pumpkinseed sunfish, round goby, and rusty crayfish. Predators had either direct access to mussels and induced both TMII and DMII, or no direct access and induced only TMII through the presence of risk cues. In both sets of treatments, the predators induced a trophic cascade which resulted in more phytoplankton remaining with predators present than with only mussels present. The trophic cascade was weaker in three-predator and two-predator treatments than in one-predator treatments when predators had direct access to dreissenids (DMIIs and TMIIs. Crayfish had higher cascading effects on phytoplankton than both pumpkinseed and round goby. Increased predator diversity decreased the strength of DMIIs but had no effect on the strength of TMIIs. The strength of TMIIs was higher with zebra than quagga mussels. Our study suggests that inter-specific interference among predators in multi-species treatments weakens the consumptive cascading effects of predation on lower trophic levels whereas the importance of predator diversity on trait mediated effects depends on predator identity.

  6. Predation rates, timing, and predator composition for Scoters (Melanitta spp.) in marine habitats

    Science.gov (United States)

    Anderson, Eric J.; Esler, Daniel N.; Sean, Boyd W.; Evenson, Joseph; Nysewander, David R.; Ward, David H.; Dickson, Rian D.; Uher-Koch, Brian D.; Vanstratt, C.S.; Hupp, Jerry

    2012-01-01

    Studies of declining populations of sea ducks have focused mainly on bottom-up processes with little emphasis on the role of predation. We identified 11 potential predators of White-winged Scoters (Melanitta fusca (L., 1758)) and Surf Scoters (Melanitta perspicillata (L., 1758)) in North American marine habitats. However, of 596 Scoters marked with VHF transmitters along the Pacific coast, mortalities were recovered in association with just two identifiable categories of predators: in southeast Alaska recoveries occurred mainly near mustelid feeding areas, while those in southern British Columbia and Washington occurred mainly near feeding areas of Bald Eagles (Haliaeetus leucocephalus (L., 1766)). Determining whether marked Scoters had been depredated versus scavenged was often not possible, but mortalities occurred more frequently during winter than during wing molt (13.1% versus 0.7% of both species combined, excluding Scoters that died within a postrelease adjustment period). In two sites heavily used by Scoters, diurnal observations revealed no predation attempts and low rates of predator disturbances that altered Scoter behavior (≤ 0.22/h). These and other results suggest that predation by Bald Eagles occurs mainly at sites and times where densities of Scoters are low, while most predation by mustelids probably occurs when Scoters are energetically compromised.

  7. Tadpoles balance foraging and predator avoidance: Effects of predation, pond drying, and hunger

    Science.gov (United States)

    Bridges, C.M.

    2002-01-01

    Organisms are predicted to make trade-offs when foraging and predator avoidance behaviors present conflicting demands. Balancing conflicting demands is important to larval amphibians because adult fitness can be strongly influenced by size at metamorphosis and duration of the larval period. Larvae in temporary ponds must maximize growth within a short time period to achieve metamorphosis before ponds dry, while simultaneously avoiding predators. To determine whether tadpoles trade off between conflicting demands, I examined tadpole (Pseudacris triseriata) activity and microhabitat use in the presence of red-spotted newts (Notopthalmus viridescens) under varying conditions of pond drying and hunger. Tadpoles significantly decreased activity and increased refuge use when predators were present. The proportion of active time tadpoles spent feeding was significantly greater in predator treatments, suggesting tadpoles adaptively balance the conflicting demands of foraging and predator avoidance without making apparent trade-offs. Tadpoles responded to simulated drying conditions by accelerating development. Pond drying did not modify microhabitat use or activity in the presence of predators, suggesting tadpoles perceived predation and hunger as greater immediate threats than desiccation, and did not take more risks.

  8. Stability and Hopf bifurcation analysis of a prey-predator system with two delays

    International Nuclear Information System (INIS)

    Li Kai; Wei Junjie

    2009-01-01

    In this paper, we have considered a prey-predator model with Beddington-DeAngelis functional response and selective harvesting of predator species. Two delays appear in this model to describe the time that juveniles take to mature. Its dynamics are studied in terms of local analysis and Hopf bifurcation analysis. By analyzing the associated characteristic equation, its linear stability is investigated and Hopf bifurcations are demonstrated. The stability and direction of the Hopf bifurcation are determined by applying the normal form method and the center manifold theory. Numerical simulation results are given to support the theoretical predictions.

  9. Predator-prey encounters in turbulent waters

    DEFF Research Database (Denmark)

    Mann, J.; Ott, Søren; Pécseli, H.L.

    2002-01-01

    With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous and isot......With reference to studies of predator-prey encounters in turbulent waters, we demonstrate the feasibility of an experimental method for investigations of particle fluxes to an absorbing surface in turbulent flows. A laboratory experiment is carried out, where an approximately homogeneous...

  10. Predation and Mergers: Is Merger Law Counterproductive?

    OpenAIRE

    Persson, Lars

    1999-01-01

    This Paper shows that predation might help firms overcome the free riding problem of mergers by changing the acquisition situation in the buyer's favour relative to the firms outside the merger. It is also shown that the bidding competition for the prey's assets is most harmful to predators when the use of the prey's assets exerts strong negative externalities on rivals, i.e. when their use severely reduces competitors' profits. The reason is that potential buyers are then willing to pay a hi...

  11. Coexistence with predators (Coexistencia con depredadores)

    Science.gov (United States)

    Bill MacDonald; Mac Donaldson; Caren Cowan

    2006-01-01

    We have asked Caren to join us, too, so we get at least three perspectives, because I don’t think there is one particular philosophy with predators that anybody can say works in every case. If you were to ask me what my predator program is, I would say I don’t really have one. That wasn’t always the case. When I was young, I took great delight in sitting for hours with...

  12. Maintenance, endogeneous, respiration, lysis, decay and predation

    DEFF Research Database (Denmark)

    loosdrecht, Marc C. M. Van; Henze, Mogens

    1999-01-01

    mechanism is microbiologically correct. The lysis/decay model mechanism is a strongly simplified representation of reality. This paper tries to review the processes grouped under endogenous respiration in activated sludge models. Mechanisms and processes such as maintenance, lysis, internal and external...... decay, predation and death-regeneration are discussed. From recent microbial research it has become evident that cells do not die by themselves. Bacteria are however subject to predation by protozoa. Bacteria store reserve polymers that in absence of external substrate are used for growth...

  13. Competition between apex predators? Brown bears decrease wolf kill rate on two continents.

    Science.gov (United States)

    Tallian, Aimee; Ordiz, Andrés; Metz, Matthew C; Milleret, Cyril; Wikenros, Camilla; Smith, Douglas W; Stahler, Daniel R; Kindberg, Jonas; MacNulty, Daniel R; Wabakken, Petter; Swenson, Jon E; Sand, Håkan

    2017-02-08

    Trophic interactions are a fundamental topic in ecology, but we know little about how competition between apex predators affects predation, the mechanism driving top-down forcing in ecosystems. We used long-term datasets from Scandinavia (Europe) and Yellowstone National Park (North America) to evaluate how grey wolf ( Canis lupus ) kill rate was affected by a sympatric apex predator, the brown bear ( Ursus arctos ). We used kill interval (i.e. the number of days between consecutive ungulate kills) as a proxy of kill rate. Although brown bears can monopolize wolf kills, we found no support in either study system for the common assumption that they cause wolves to kill more often. On the contrary, our results showed the opposite effect. In Scandinavia, wolf packs sympatric with brown bears killed less often than allopatric packs during both spring (after bear den emergence) and summer. Similarly, the presence of bears at wolf-killed ungulates was associated with wolves killing less often during summer in Yellowstone. The consistency in results between the two systems suggests that brown bear presence actually reduces wolf kill rate. Our results suggest that the influence of predation on lower trophic levels may depend on the composition of predator communities. © 2017 The Authors.

  14. Predator-prey-subsidy population dynamics on stepping-stone domains with dispersal delays.

    Science.gov (United States)

    Eide, Ragna M; Krause, Andrew L; Fadai, Nabil T; Van Gorder, Robert A

    2018-08-14

    We examine the role of the travel time of a predator along a spatial network on predator-prey population interactions, where the predator is able to partially or fully sustain itself on a resource subsidy. The impact of access to food resources on the stability and behaviour of the predator-prey-subsidy system is investigated, with a primary focus on how incorporating travel time changes the dynamics. The population interactions are modelled by a system of delay differential equations, where travel time is incorporated as discrete delay in the network diffusion term in order to model time taken to migrate between spatial regions. The model is motivated by the Arctic ecosystem, where the Arctic fox consumes both hunted lemming and scavenged seal carcass. The fox travels out on sea ice, in addition to quadrennially migrating over substantial distances. We model the spatial predator-prey-subsidy dynamics through a "stepping-stone" approach. We find that a temporal delay alone does not push species into extinction, but rather may stabilize or destabilize coexistence equilibria. We are able to show that delay can stabilize quasi-periodic or chaotic dynamics, and conclude that the incorporation of dispersal delay has a regularizing effect on dynamics, suggesting that dispersal delay can be proposed as a solution to the paradox of enrichment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Maternal programming of sex-specific responses to predator odor stress in adult rats.

    Science.gov (United States)

    St-Cyr, Sophie; Abuaish, Sameera; Sivanathan, Shathveekan; McGowan, Patrick O

    2017-08-01

    Prenatal stress mediated through the mother can lead to long-term adaptations in stress-related phenotypes in offspring. This study tested the long-lasting effect of prenatal exposure to predator odor, an ethologically relevant and psychogenic stressor, in the second half of pregnancy. As adults, the offspring of predator odor-exposed mothers showed increased anxiety-like behaviors in commonly used laboratory tasks assessing novelty-induced anxiety, increased defensive behavior in males and increased ACTH stress reactivity in females in response to predator odor. Female offspring from predator odor-exposed dams showed increased transcript abundance of glucocorticoid receptor (NR3C1) on the day of birth and FK506 binding protein 5 (FKBP5) in adulthood in the amygdala. The increase in FKBP5 expression was associated with decreased DNA methylation in Fkbp5 intron V. These results indicate a sex-specific response to maternal programming by prenatal predator odor exposure and a potential epigenetic mechanism linking these responses with modifications of the stress axis in females. These results are in accordance with the mismatch hypothesis stating that an animal's response to cues within its life history reflects environmental conditions anticipated during important developmental periods and should be adaptive when these conditions are concurring. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. From complex spatial dynamics to simple Markov chain models: do predators and prey leave footprints?

    DEFF Research Database (Denmark)

    Nachman, Gøsta Støger; Borregaard, Michael Krabbe

    2010-01-01

    to another, are then depicted in a state transition diagram, constituting the "footprints" of the underlying population dynamics. We investigate to what extent changes in the population processes modeled in the complex simulation (i.e. the predator's functional response and the dispersal rates of both......In this paper we present a concept for using presence-absence data to recover information on the population dynamics of predator-prey systems. We use a highly complex and spatially explicit simulation model of a predator-prey mite system to generate simple presence-absence data: the number...... of transition probabilities on state variables, and combine this information in a Markov chain transition matrix model. Finally, we use this extended model to predict the long-term dynamics of the system and to reveal its asymptotic steady state properties....

  17. Effects of seed and seedling predation by small mammals on ...

    African Journals Online (AJOL)

    Seed predation reduced seedling recruitment from seeds planted in March 1986 in mature fynbos, but ... Seed predation did not significantly reduce seedling recruitment from seed planted in July, August and ... AJOL African Journals Online.

  18. Analysis of motility in multicellular Chlamydomonas reinhardtii evolved under predation.

    Directory of Open Access Journals (Sweden)

    Margrethe Boyd

    Full Text Available The advent of multicellularity was a watershed event in the history of life, yet the transition from unicellularity to multicellularity is not well understood. Multicellularity opens up opportunities for innovations in intercellular communication, cooperation, and specialization, which can provide selective advantages under certain ecological conditions. The unicellular alga Chlamydomonas reinhardtii has never had a multicellular ancestor yet it is closely related to the volvocine algae, a clade containing taxa that range from simple unicells to large, specialized multicellular colonies. Simple multicellular structures have been observed to evolve in C. reinhardtii in response to predation or to settling rate-based selection. Structures formed in response to predation consist of individual cells confined within a shared transparent extracellular matrix. Evolved isolates form such structures obligately under culture conditions in which their wild type ancestors do not, indicating that newly-evolved multicellularity is heritable. C. reinhardtii is capable of photosynthesis, and possesses an eyespot and two flagella with which it moves towards or away from light in order to optimize input of radiant energy. Motility contributes to C. reinhardtii fitness because it allows cells or colonies to achieve this optimum. Utilizing phototaxis to assay motility, we determined that newly evolved multicellular strains do not exhibit significant directional movement, even though the flagellae of their constituent unicells are present and active. In C. reinhardtii the first steps towards multicellularity in response to predation appear to result in a trade-off between motility and differential survivorship, a trade-off that must be overcome by further genetic change to ensure long-term success of the new multicellular organism.

  19. Behavioural and physiological responses of limpet prey to a seastar predator and their transmission to basal trophic levels.

    Science.gov (United States)

    Manzur, Tatiana; Vidal, Francisco; Pantoja, José F; Fernández, Miriam; Navarrete, Sergio A

    2014-07-01

    Besides the well-documented behavioural changes induced by predators on prey, predator-induced stress can also include a suite of biochemical, neurological and metabolic changes that may represent important energetic costs and have long-lasting effects on individuals and on the demography of prey populations. The rapid transmission of prey behavioural changes to lower trophic levels, usually associated with alteration of feeding rates, can substantially change and even reverse direction over the long term as prey cope with the energetic costs associated with predation-induced stress. It is therefore critical to evaluate different aspects and assess the costs of non-consumptive predator effects on prey. We investigated the behavioural and physiological responses of an herbivorous limpet, Fissurella limbata, to the presence of chemical cues and direct non-lethal contact by the common seastar predator, Heliaster helianthus. We also evaluated whether the limpets feeding behaviour was modified by the predator and whether this translated into positive or negative effects on biomass of the green alga, Ulva sp. Our experimental results show the presence of Heliaster led to increased movement activity, increased distances travelled, changes in time budget over different environmental conditions and increased feeding rate in the keyhole limpets. Moreover, additional experiments showed that, beyond the increased metabolic rate associated with limpet increased activity, predator chemical cues heighten metabolic rate as part of the induced stress response. Changes in individual movement and displacement distances observed through the 9-day experiment can be interpreted as part of the escape response exhibited by limpets to reduce the risk of being captured by the predator. Increased limpet feeding rate on algae can be visualized as a way individuals compensate for the elevated energetic costs of movement and heightened metabolic rates produced by the predator-induced stress

  20. Experimental evidence for innate predator recognition in the Seychelles warbler

    NARCIS (Netherlands)

    Veen, Thor; Richardson, David S.; Blaakmeer, Karen; Komdeur, Jan

    2000-01-01

    Nest predation is a major determinant of fitness in birds and costly nest defence behaviours have evolved in order to reduce nest predation. Some avian studies have suggested that predator recognition is innate whereas others hate stressed the importance: of learning. However, none of these studies

  1. Species invasion shifts the importance of predator dependence.

    Science.gov (United States)

    Griffen, Blaine D; Delaney, David G

    2007-12-01

    The strength of interference between foraging individuals can influence per capita consumption rates, with important consequences for predator and prey populations and system stability. Here we demonstrate how the replacement of a previously established invader, the predatory crab Carcinus maenas, by the recently invading predatory crab Hemigrapsus sanguineus shifts predation from a species that experiences strong predator interference (strong predator dependence) to one that experiences weak predator interference (weak predator dependence). We demonstrate using field experiments that differences in the strength of predator dependence persist for these species both when they forage on a single focal prey species only (the mussel Mytilus edulis) and when they forage more broadly across the entire prey community. This shift in predator dependence with species replacement may be altering the biomass across trophic levels, consistent with theoretical predictions, as we show that H. sanguineus populations are much larger than C. maenas populations throughout their invaded ranges. Our study highlights that predator dependence may differ among predator species and demonstrates that different predatory impacts of two conspicuous invasive predators may be explained at least in part by different strengths of predator dependence.

  2. A minimal model of predator-swarm interactions.

    Science.gov (United States)

    Chen, Yuxin; Kolokolnikov, Theodore

    2014-05-06

    We propose a minimal model of predator-swarm interactions which captures many of the essential dynamics observed in nature. Different outcomes are observed depending on the predator strength. For a 'weak' predator, the swarm is able to escape the predator completely. As the strength is increased, the predator is able to catch up with the swarm as a whole, but the individual prey is able to escape by 'confusing' the predator: the prey forms a ring with the predator at the centre. For higher predator strength, complex chasing dynamics are observed which can become chaotic. For even higher strength, the predator is able to successfully capture the prey. Our model is simple enough to be amenable to a full mathematical analysis, which is used to predict the shape of the swarm as well as the resulting predator-prey dynamics as a function of model parameters. We show that, as the predator strength is increased, there is a transition (owing to a Hopf bifurcation) from confusion state to chasing dynamics, and we compute the threshold analytically. Our analysis indicates that the swarming behaviour is not helpful in avoiding the predator, suggesting that there are other reasons why the species may swarm. The complex shape of the swarm in our model during the chasing dynamics is similar to the shape of a flock of sheep avoiding a shepherd.

  3. Competition and Dispersal in Predator-Prey Waves

    NARCIS (Netherlands)

    Savill, N.J.; Hogeweg, P.

    1998-01-01

    Dispersing predators and prey can exhibit complex spatio-temporal wave-like patterns if the interactions between them cause oscillatory dynamics. We study the effect of these predator- prey density waves on the competition between prey populations and between predator popu- lations with different

  4. Selective predation and prey class behaviour as possible ...

    African Journals Online (AJOL)

    To test these mechanisms, a study was conducted on Samara Private Game Reserve to investigate the potential impact cheetah (Acinonyx jubatus) predation has had on the kudu (Tragelaphus strepciseros) population. Kudu age and sex data were collected across both predator-present and predator-absent sections using ...

  5. Bird's nesting success and eggs predation within Arusa National ...

    African Journals Online (AJOL)

    Identification of predators was obtained indirectly through punched signs left by predators on artificial and true eggs. Observation was done daily and data were analyzed both qualitatively and quantitatively. The study showed no significant difference in predation effect on eggs in glade versus glade edge X2 = 3.08, Df = 1, ...

  6. Predator confusion is sufficient to evolve swarming behaviour.

    Science.gov (United States)

    Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph

    2013-08-06

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.

  7. Avian nestling predation by endangered Mount Graham red squirrel

    Science.gov (United States)

    Claire A. Zugmeyer; John L. Koprowski

    2007-01-01

    Studies using artificial nests or remote cameras have documented avian predation by red squirrels (Tamiasciurus hudsonicus). Although several direct observations of avian predation events are known in the northern range of the red squirrel distribution, no accounts have been reported in the southern portion. We observed predation upon a hermit thrush...

  8. Coexistence for an Almost Periodic Predator-Prey Model with Intermittent Predation Driven by Discontinuous Prey Dispersal

    Directory of Open Access Journals (Sweden)

    Yantao Luo

    2017-01-01

    Full Text Available An almost periodic predator-prey model with intermittent predation and prey discontinuous dispersal is studied in this paper, which differs from the classical continuous and impulsive dispersal predator-prey models. The intermittent predation behavior of the predator species only happens in the channels between two patches where the discontinuous migration movement of the prey species occurs. Using analytic approaches and comparison theorems of the impulsive differential equations, sufficient criteria on the boundedness, permanence, and coexistence for this system are established. Finally, numerical simulations demonstrate that, for an intermittent predator-prey model, both the intermittent predation and intrinsic growth rates of the prey and predator species can greatly impact the permanence, extinction, and coexistence of the population.

  9. Sexually Violent Predators and Civil Commitment Laws

    Science.gov (United States)

    Beyer Kendall, Wanda D.; Cheung, Monit

    2004-01-01

    This article analyzes the civil commitment models for treating sexually violent predators (SVPs) and analyzes recent civil commitment laws. SVPs are commonly defined as sex offenders who are particularly predatory and repetitive in their sexually violent behavior. Data from policy literature, a survey to all states, and a review of law review…

  10. Cumulative human impacts on marine predators

    DEFF Research Database (Denmark)

    Maxwell, Sara M; Hazen, Elliott L; Bograd, Steven J

    2013-01-01

    Stressors associated with human activities interact in complex ways to affect marine ecosystems, yet we lack spatially explicit assessments of cumulative impacts on ecologically and economically key components such as marine predators. Here we develop a metric of cumulative utilization and impact...

  11. Climate change and marine top predators

    DEFF Research Database (Denmark)

    Climate change affects all components of marine ecosystems. For endothermic top predators, i.e. seabirds and marine mammals, these impacts are often complex and mediated through trophic relationships. In this Research Topic, leading researchers attempt to identify patterns of change among seabirds...... and marine mammals, and the mechanisms through which climate change drives these changes....

  12. Habitat stability, predation risk and 'memory syndromes'.

    Science.gov (United States)

    Dalesman, S; Rendle, A; Dall, S R X

    2015-05-27

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits ('memory syndrome') related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population.

  13. Bald eagle predation on common loon egg

    Science.gov (United States)

    DeStefano, Stephen; McCarthy, Kyle P.; Laskowski, Tom

    2010-01-01

    The Common Loon (Gavia immer) must defend against many potential egg predators during incubation, including corvids, Herring Gulls (Larus argentatus), raccoons (Procyon lotor), striped skunk (Mephitis mephitis), fisher (Martes pennanti), and mink (Neovison vison) (McIntyre 1988, Evers 2004, McCann et al. 2005). Bald Eagles (Haliaeetus leucocephalus) have been documented as predators of both adult Common Loons and their chicks (Vliestra and Paruk 1997, Paruk et al. 1999, Erlandson et al. 2007, Piper et al. 2008). In Wisconsin, where nesting Bald Eagles are abundant (>1200 nesting pairs, >1 young/pair/year), field biologists observed four instances of eagle predation of eggs in loon nests during the period 2002–2004 (M. Meyer pers. comm.). In addition, four cases of eagle predation of incubating adult loons were inferred from evidence found at the loon nest (dozens of plucked adult loon feathers, no carcass remains) and/or loon leg, neck, and skull bones beneath two active eagle nests, including leg bones containing the bands of the nearby (nest surveillance video camera on Lake Umbagog, a large lake (32 km2) at Umbagog National Wildlife Refuge (UNWR) in Maine.

  14. What regulates crab predation on mangrove propagules?

    Science.gov (United States)

    Van Nedervelde, Fleur; Cannicci, Stefano; Koedam, Nico; Bosire, Jared; Dahdouh-Guebas, Farid

    2015-02-01

    Crabs play a major role in some ecosystems. To increase our knowledge about the factors that influence crab predation on propagules in mangrove forests, we performed experiments in Gazi Bay, Kenya in July 2009. We tested whether: (1) crab density influences propagule predation rate; (2) crab size influences food competition and predation rate; (3) crabs depredate at different rates according to propagule and canopy cover species; (4) vegetation density is correlated with crab density; (5) food preferences of herbivorous crabs are determined by size, shape and nutritional value. We found that (1) propagule predation rate was positively correlated to crab density. (2) Crab competitive abilities were unrelated to their size. (3) Avicennia marina propagules were consumed more quickly than Ceriops tagal except under C. tagal canopies. (4) Crab density was negatively correlated with the density of A. marina trees and pneumatophores. (5) Crabs prefer small items with a lower C:N ratio. Vegetation density influences crab density, and crab density affects propagule availability and hence vegetation recruitment rate. Consequently, the mutual relationships between vegetation and crab populations could be important for forest restoration success and management.

  15. Stress triangle: do introduced predators exert indirect costs on native predators and prey?

    Directory of Open Access Journals (Sweden)

    Jennifer R Anson

    Full Text Available Non-consumptive effects of predators on each other and on prey populations often exceed the effects of direct predation. These effects can arise from fear responses elevating glucocorticoid (GC hormone levels (predator stress hypothesis or from increased vigilance that reduces foraging efficiency and body condition (predator sensitive foraging hypothesis; both responses can lead to immunosuppression and increased parasite loads. Non-consumptive effects of invasive predators have been little studied, even though their direct impacts on local species are usually greater than those of their native counterparts. To address this issue, we explored the non-consumptive effects of the invasive red fox Vulpes vulpes on two native species in eastern Australia: a reptilian predator, the lace monitor Varanus varius and a marsupial, the ringtail possum Pseudocheirus peregrinus. In particular, we tested predictions derived from the above two hypotheses by comparing the basal glucocorticoid levels, foraging behaviour, body condition and haemoparasite loads of both native species in areas with and without fox suppression. Lace monitors showed no GC response or differences in haemoparasite loads but were more likely to trade safety for higher food rewards, and had higher body condition, in areas of fox suppression than in areas where foxes remained abundant. In contrast, ringtails showed no physiological or behavioural differences between fox-suppressed and control areas. Predator sensitive foraging is a non-consumptive cost for lace monitors in the presence of the fox and most likely represents a response to competition. The ringtail's lack of response to the fox potentially represents complete naiveté or strong and rapid selection to the invasive predator. We suggest evolutionary responses are often overlooked in interactions between native and introduced species, but must be incorporated if we are to understand the suite of forces that shape community

  16. Dynamics of a Diffusive Predator-Prey Model with Allee Effect on Predator

    Directory of Open Access Journals (Sweden)

    Xiaoqin Wang

    2013-01-01

    Full Text Available The reaction-diffusion Holling-Tanner prey-predator model considering the Allee effect on predator, under zero-flux boundary conditions, is discussed. Some properties of the solutions, such as dissipation and persistence, are obtained. Local and global stability of the positive equilibrium and Turing instability are studied. With the help of the numerical simulations, the rich Turing patterns, including holes, stripes, and spots patterns, are obtained.

  17. Interclonal proteomic responses to predator exposure in Daphnia magna may depend on predator composition of habitats.

    Science.gov (United States)

    Otte, Kathrin A; Schrank, Isabella; Fröhlich, Thomas; Arnold, Georg J; Laforsch, Christian

    2015-08-01

    Phenotypic plasticity, the ability of one genotype to express different phenotypes in response to changing environmental conditions, is one of the most common phenomena characterizing the living world and is not only relevant for the ecology but also for the evolution of species. Daphnia, the water flea, is a textbook example for predator-induced phenotypic plastic defences; however, the analysis of molecular mechanisms underlying these inducible defences is still in its early stages. We exposed Daphnia magna to chemical cues of the predator Triops cancriformis to identify key processes underlying plastic defensive trait formation. To get a more comprehensive idea of this phenomenon, we studied four genotypes with five biological replicates each, originating from habitats characterized by different predator composition, ranging from predator-free habitats to habitats containing T. cancriformis. We analysed the morphologies as well as proteomes of predator-exposed and control animals. Three genotypes showed morphological changes when the predator was present. Using a high-throughput proteomics approach, we found 294 proteins which were significantly altered in their abundance after predator exposure in a general or genotype-dependent manner. Proteins connected to genotype-dependent responses were related to the cuticle, protein synthesis and calcium binding, whereas the yolk protein vitellogenin increased in abundance in all genotypes, indicating their involvement in a more general response. Furthermore, genotype-dependent responses at the proteome level were most distinct for the only genotype that shares its habitat with Triops. Altogether, our study provides new insights concerning genotype-dependent and general molecular processes involved in predator-induced phenotypic plasticity in D. magna. © 2015 John Wiley & Sons Ltd.

  18. The effects of recruitment to direct predator cues on predator responses in meerkats

    OpenAIRE

    Zottl, M.; Lienert, R.; Clutton-Brock, T.; Millesi, E.; Manser, M B.

    2017-01-01

    Behavioral responses of animals to direct predator cues (DPCs; e.g., urine) are common and may improve their survival. We investigated wild meerkat (Suricata suricatta) responses to DPCs by taking an experimental approach. When meerkats encounter a DPC they often recruit group members by emitting a call type, which causes the group members to interrupt foraging and approach the caller. The aim of this study was to identify the qualities of olfactory predator cues, which affect the strength of...

  19. A tropical horde of counterfeit predator eyes.

    Science.gov (United States)

    Janzen, Daniel H; Hallwachs, Winnie; Burns, John M

    2010-06-29

    We propose that the many different, but essentially similar, eye-like and face-like color patterns displayed by hundreds of species of tropical caterpillars and pupae-26 examples of which are displayed here from the dry, cloud, and rain forests of Area de Conservacion Guanacaste (ACG) in northwestern Costa Rica-constitute a huge and pervasive mimicry complex that is evolutionarily generated and sustained by the survival behavior of a large and multispecific array of potential predators: the insect-eating birds. We propose that these predators are variously and innately programmed to flee when abruptly confronted, at close range, with what appears to be an eye of one of their predators. Such a mimetic complex differs from various classical Batesian and Müllerian mimicry complexes of adult butterflies in that (i) the predators sustain it for the most part by innate traits rather than by avoidance behavior learned through disagreeable experiences, (ii) the more or less harmless, sessile, and largely edible mimics vastly outnumber the models, and (iii) there is no particular selection for the eye-like color pattern to closely mimic the eye or face of any particular predator of the insect-eating birds or that of any other member of this mimicry complex. Indeed, selection may not favor exact resemblance among these mimics at all. Such convergence through selection could create a superabundance of one particular false eyespot or face pattern, thereby increasing the likelihood of a bird species or guild learning to associate that pattern with harmless prey.

  20. Bioinsecticide-predator interactions: azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki.

    Directory of Open Access Journals (Sweden)

    Debora B Lima

    Full Text Available Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae. The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot (Acari: Phytoseiidae. Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.

  1. Bioinsecticide-predator interactions: azadirachtin behavioral and reproductive impairment of the coconut mite predator Neoseiulus baraki.

    Science.gov (United States)

    Lima, Debora B; Melo, José Wagner S; Guedes, Nelsa Maria P; Gontijo, Lessando M; Guedes, Raul Narciso C; Gondim, Manoel Guedes C

    2015-01-01

    Synthetic pesticide use has been the dominant form of pest control since the 1940s. However, biopesticides are emerging as sustainable pest control alternatives, with prevailing use in organic agricultural production systems. Foremost among botanical biopesticides is the limonoid azadirachtin, whose perceived environmental safety has come under debate and scrutiny in recent years. Coconut production, particularly organic coconut production, is one of the agricultural systems in which azadirachtin is used as a primary method of pest control for the management of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae). The management of this mite species also greatly benefits from predation by Neoseiulus baraki (Athias-Henriot) (Acari: Phytoseiidae). Here, we assessed the potential behavioral impacts of azadirachtin on the coconut mite predator, N. baraki. We explored the effects of this biopesticide on overall predator activity, female searching time, and mating behavior and fecundity. Azadirachtin impairs the overall activity of the predator, reducing it to nearly half; however, female searching was not affected. In contrast, mating behavior was compromised by azadirachtin exposure particularly when male predators were exposed to the biopesticide. Consequently, predator fecundity was also compromised by azadirachtin, furthering doubts about its environmental safety and selectivity towards biological control agents.

  2. Predation of Five Generalist Predators on Brown Planthopper (Nilaparvata lugens Stål

    Directory of Open Access Journals (Sweden)

    Sri Karindah

    2015-09-01

    Full Text Available Two generalist predators of brown planthopper,Metioche vittaticollis and Anaxipha longipennis (Gryllidae have not been much studied in Indonesia. This research was conducted to study and compare the predatory ability of M. vittaticollis, A. longipennis (Gryllidae and three coleopterans, Paederus fuscipes (Staphylinidae, Ophionea sp. (Carabidae,and Micraspis sp. (Coccinellidae against brown planthopper (fourth and fifth instars under laboratory condition. In total, 20 nymphs of N. lugens were exposed for 2 hour to each predator for 5 consecutive days. Prey consumptions by the predatory crickets, M. vittaticollis and A. longipennis were greater than the other predators and followed by A. longipennis, Micraspis sp., P. fuscipes, and Ophionea sp. respectively. Consumption rates of M. vittaticolis and A. longipenis were also higher than other predators. Micraspis sp was more active on predation in the morning,while M. vittaticollis, A. longipennis, P. fuscipes, and Ophionea sp. were more active both in the morning and the night but not in the afternoon. However, all five species of predators were not so active in preying during the afternoon. In conclusion, a major effort should be extended to conserve these predatory crickets especially M. vittaticollis and A. longipennis.

  3. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease.

    NARCIS (Netherlands)

    Kooi, B.W.; van Voorn, G.A.K.; Pada Das, K.

    2011-01-01

    We study the effects of a non-specified infectious disease of the predator on the dynamics a predator-prey system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI) model is split into a susceptible and an unrecoverable infected population, while all

  4. The Effects of Early-Life Predator Stress on Anxiety- and Depression-Like Behaviors of Adult Rats

    Directory of Open Access Journals (Sweden)

    Lu-jing Chen

    2014-01-01

    Full Text Available Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spontaneous activities immediately following stress but did not increase depression- or anxiety-like behaviors 4 weeks after the stimulation in adulthood. Instead, juvenile predator stress had some protective effects, though not very obvious, in adulthood. We also exposed genetic depression model rats, Wistar Kyoto (WKY rats, to the same predator stress. In WKY rats, the same early-life predator stress did not enhance anxiety- or depression-like behaviors in both the short-term and long-term. However, the stressed WKY rats showed slightly reduced depression-like behaviors in adulthood. These results indicate that in both normal Wistar rats and WKY rats, early-life predator stress led to protective, rather than negative, effects in adulthood.

  5. The Effects of Early-Life Predator Stress on Anxiety- and Depression-Like Behaviors of Adult Rats

    Science.gov (United States)

    Chen, Lu-jing; Shen, Bing-qing; Liu, Dan-dan; Li, Sheng-tian

    2014-01-01

    Childhood emotional trauma contributes significantly to certain psychopathologies, such as post-traumatic stress disorder. In experimental animals, however, whether or not early-life stress results in behavioral abnormalities in adult animals still remains controversial. Here, we investigated both short-term and long-term changes of anxiety- and depression-like behaviors of Wistar rats after being exposed to chronic feral cat stress in juvenile ages. The 2-week predator stress decreased spontaneous activities immediately following stress but did not increase depression- or anxiety-like behaviors 4 weeks after the stimulation in adulthood. Instead, juvenile predator stress had some protective effects, though not very obvious, in adulthood. We also exposed genetic depression model rats, Wistar Kyoto (WKY) rats, to the same predator stress. In WKY rats, the same early-life predator stress did not enhance anxiety- or depression-like behaviors in both the short-term and long-term. However, the stressed WKY rats showed slightly reduced depression-like behaviors in adulthood. These results indicate that in both normal Wistar rats and WKY rats, early-life predator stress led to protective, rather than negative, effects in adulthood. PMID:24839560

  6. Alcohol impairs predation risk response and communication in zebrafish.

    Directory of Open Access Journals (Sweden)

    Thiago Acosta Oliveira

    Full Text Available The effects of ethanol exposure on Danio rerio have been studied from the perspectives of developmental biology and behavior. However, little is known about the effects of ethanol on the prey-predator relationship and chemical communication of predation risk. Here, we showed that visual contact with a predator triggers stress axis activation in zebrafish. We also observed a typical stress response in zebrafish receiving water from these conspecifics, indicating that these fish chemically communicate predation risk. Our work is the first to demonstrate how alcohol effects this prey-predator interaction. We showed for the first time that alcohol exposure completely blocks stress axis activation in both fish seeing the predator and in fish that come in indirect contact with a predator by receiving water from these conspecifics. Together with other research results and with the translational relevance of this fish species, our data points to zebrafish as a promising animal model to study human alcoholism.

  7. Human-caused Disturbance Stimuli as a Form of Predation Risk

    Directory of Open Access Journals (Sweden)

    Alejandro Frid

    2002-06-01

    Full Text Available A growing number of studies quantify the impact of nonlethal human disturbance on the behavior and reproductive success of animals. Athough many are well designed and analytically sophisticated, most lack a theoretical framework for making predictions and for understanding why particular responses occur. Behavioral ecologists have recently begun to fill this theoretical vacuum by applying economic models of antipredator behavior to disturbance studies. In this emerging paradigm, predation and nonlethal disturbance stimuli create similar trade-offs between avoiding perceived risk and other fitness-enhancing activities, such as feeding, parental care, or mating. A vast literature supports the hypothesis that antipredator behavior has a cost to other activities, and that this trade-off is optimized when investment in antipredator behavior tracks short-term changes in predation risk. Prey have evolved antipredator responses to generalized threatening stimuli, such as loud noises and rapidly approaching objects. Thus, when encountering disturbance stimuli ranging from the dramatic, low-flying helicopter to the quiet wildlife photographer, animal responses are likely to follow the same economic principles used by prey encountering predators. Some authors have argued that, similar to predation risk, disturbance stimuli can indirectly affect fitness and population dynamics via the energetic and lost opportunity costs of risk avoidance. We elaborate on this argument by discussing why, from an evolutionary perspective, disturbance stimuli should be analogous to predation risk. We then consider disturbance effects on the behavior of individuals - vigilance, fleeing, habitat selection, mating displays, and parental investment - as well as indirect effects on populations and communities. A wider application of predation risk theory to disturbance studies should increase the generality of predictions and make mitigation more effective without over

  8. Ambush frequency should increase over time during optimal predator search for prey.

    Science.gov (United States)

    Alpern, Steve; Fokkink, Robbert; Timmer, Marco; Casas, Jérôme

    2011-11-07

    We advance and apply the mathematical theory of search games to model the problem faced by a predator searching for prey. Two search modes are available: ambush and cruising search. Some species can adopt either mode, with their choice at a given time traditionally explained in terms of varying habitat and physiological conditions. We present an additional explanation of the observed predator alternation between these search modes, which is based on the dynamical nature of the search game they are playing: the possibility of ambush decreases the propensity of the prey to frequently change locations and thereby renders it more susceptible to the systematic cruising search portion of the strategy. This heuristic explanation is supported by showing that in a new idealized search game where the predator is allowed to ambush or search at any time, and the prey can change locations at intermittent times, optimal predator play requires an alternation (or mixture) over time of ambush and cruise search. Thus, our game is an extension of the well-studied 'Princess and Monster' search game. Search games are zero sum games, where the pay-off is the capture time and neither the Searcher nor the Hider knows the location of the other. We are able to determine the optimal mixture of the search modes when the predator uses a mixture which is constant over time, and also to determine how the mode mixture changes over time when dynamic strategies are allowed (the ambush probability increases over time). In particular, we establish the 'square root law of search predation': the optimal proportion of active search equals the square root of the fraction of the region that has not yet been explored.

  9. Blunted hypothalamo-pituitary adrenal axis response to predator odor predicts high stress reactivity.

    Science.gov (United States)

    Whitaker, Annie M; Gilpin, Nicholas W

    2015-08-01

    Individuals with trauma- and stress-related disorders exhibit increases in avoidance of trauma-related stimuli, heightened anxiety and altered neuroendocrine stress responses. Our laboratory uses a rodent model of stress that mimics the avoidance symptom cluster associated with stress-related disorders. Animals are classified as 'Avoiders' or 'Non-Avoiders' post-stress based on avoidance of predator-odor paired context. Utilizing this model, we are able to examine subpopulation differences in stress reactivity. Here, we used this predator odor model of stress to examine differences in anxiety-like behavior and hypothalamo-pituitary adrenal (HPA) axis function in animals that avoid a predator-paired context relative to those that do not. Rats were exposed to predator odor stress paired with a context and tested for avoidance (24h and 11days), anxiety-like behavior (48h and 5days) and HPA activation following stress. Control animals were exposed to room air. Predator odor stress produced avoidance in approximately 65% of the animals at 24h that persisted 11days post-stress. Both Avoiders and Non-Avoiders exhibited a heightened anxiety-like behavior at 48h and 5days post-stress when compared to unstressed Controls. Non-Avoiders exhibited significant increases in circulating adrenocorticotropin hormone (ACTH) and corticosterone (CORT) concentrations immediately following predator odor stress compared to Controls and this response was significantly attenuated in Avoiders. There was an inverse correlation between circulating ACTH/CORT concentrations and avoidance, indicating that lower levels of ACTH/CORT predicted higher levels of avoidance. These results suggest that stress effects on HPA stress axis activation predict long-term avoidance of stress-paired stimuli, and build on previous data showing the utility of this model for exploring the neurobiological mechanisms of trauma- and stress-related disorders. Copyright © 2015. Published by Elsevier Inc.

  10. Beyond Predation: The Zoophytophagous Predator Macrolophus pygmaeus Induces Tomato Resistance against Spider Mites.

    Directory of Open Access Journals (Sweden)

    Maria L Pappas

    Full Text Available Many predatory insects that prey on herbivores also feed on the plant, but it is unknown whether plants affect the performance of herbivores by responding to this phytophagy with defence induction. We investigate whether the prior presence of the omnivorous predator Macrolophus pygmaeus (Rambur on tomato plants affects plant resistance against two different herbivore species. Besides plant-mediated effects of M. pygmaeus on herbivore performance, we examined whether a plant defence trait that is known to be inducible by herbivory, proteinase inhibitors (PI, may also be activated in response to the interactions of this predator with the tomato plant. We show that exposing tomato plants to the omnivorous predator M. pygmaeus reduced performance of a subsequently infesting herbivore, the two-spotted spider mite Tetranychus urticae Koch, but not of the greenhouse whitefly Trialeurodes vaporariorum (Westwood. The spider-mite infested tomato plants experience a lower herbivore load, i.e., number of eggs deposited and individuals present, when previously exposed to the zoophytophagous predator. This effect is not restricted to the exposed leaf and persists on exposed plants for at least two weeks after the removal of the predators. The decreased performance of spider mites as a result of prior exposure of the plant to M. pygmaeus is accompanied by a locally and systemically increased accumulation of transcripts and activity of proteinase inhibitors that are known to be involved in plant defence. Our results demonstrate that zoophytophagous predators can induce plant defence responses and reduce herbivore performance. Hence, the suppression of populations of certain herbivores via consumption may be strengthened by the induction of plant defences by zoophytophagous predators.

  11. Revealing the role of predator interference in a predator-prey system with disease in prey population

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Kooi, B.W.; Biswas, B.

    2015-01-01

    Predation on a species subjected to an infectious disease can affect both the infection level and the population dynamics. There is an ongoing debate about the act of managing disease in natural populations through predation. Recent theoretical and empirical evidence shows that predation...... on infected populations can have both positive and negative influences on disease in prey populations. Here, we present a predator-prey system where the prey population is subjected to an infectious disease to explore the impact of predator on disease dynamics. Specifically, we investigate how...... on the strength of interference among predators, predators enhance or control disease outbreaks and population persistence. Moreover, the presence of multistable regimes makes the system very sensitive to perturbations and facilitates a number of regime shifts. Since, the habitat structure and the choice...

  12. Local adaptation in transgenerational responses to predators

    Science.gov (United States)

    Walsh, Matthew R.; Castoe, Todd; Holmes, Julian; Packer, Michelle; Biles, Kelsey; Walsh, Melissa; Munch, Stephan B.; Post, David M.

    2016-01-01

    Environmental signals can induce phenotypic changes that span multiple generations. Along with phenotypic responses that occur during development (i.e. ‘within-generation’ plasticity), such ‘transgenerational plasticity’ (TGP) has been documented in a diverse array of taxa spanning many environmental perturbations. New theory predicts that temporal stability is a key driver of the evolution of TGP. We tested this prediction using natural populations of zooplankton from lakes in Connecticut that span a large gradient in the temporal dynamics of predator-induced mortality. We reared more than 120 clones of Daphnia ambigua from nine lakes for multiple generations in the presence/absence of predator cues. We found that temporal variation in mortality selects for within-generation plasticity while consistently strong (or weak) mortality selects for increased TGP. Such results provide us the first evidence for local adaptation in TGP and argue that divergent ecological conditions select for phenotypic responses within and across generations. PMID:26817775

  13. Local adaptation in transgenerational responses to predators.

    Science.gov (United States)

    Walsh, Matthew R; Castoe, Todd; Holmes, Julian; Packer, Michelle; Biles, Kelsey; Walsh, Melissa; Munch, Stephan B; Post, David M

    2016-01-27

    Environmental signals can induce phenotypic changes that span multiple generations. Along with phenotypic responses that occur during development (i.e. 'within-generation' plasticity), such 'transgenerational plasticity' (TGP) has been documented in a diverse array of taxa spanning many environmental perturbations. New theory predicts that temporal stability is a key driver of the evolution of TGP. We tested this prediction using natural populations of zooplankton from lakes in Connecticut that span a large gradient in the temporal dynamics of predator-induced mortality. We reared more than 120 clones of Daphnia ambigua from nine lakes for multiple generations in the presence/absence of predator cues. We found that temporal variation in mortality selects for within-generation plasticity while consistently strong (or weak) mortality selects for increased TGP. Such results provide us the first evidence for local adaptation in TGP and argue that divergent ecological conditions select for phenotypic responses within and across generations. © 2016 The Author(s).

  14. The Great White Guppy: Top Predator

    Science.gov (United States)

    Michalski, G. M.

    2011-12-01

    Nitrogen isotopes are often used to trace the trophic level of members of an ecosystem. As part of a stable isotope biogeochemistry and forensics course at Purdue University, students are introduced to this concept by analyzing nitrogen isotopes in sea food purchased from local grocery stores. There is a systematic increase in 15N/14N ratios going from kelp to clams/shrimp, to sardines, to tuna and finally to shark. These enrichments demonstrate how nitrogen is enriched in biomass as predators consume prey. Some of the highest nitrogen isotope enrichments observed, however, are in the common guppy. We investigated a number of aquarium fish foods and find they typically have high nitrogen isotope ratios because they are made form fish meal that is produced primarily from the remains of predator fish such as tuna. From, a isotope perspective, the guppy is the top of the food chain, more ferocious than even the Great White shark.

  15. Ontogenetic and evolutionary effects of predation and competition on nine-spined stickleback (Pungitius pungitius) body size.

    Science.gov (United States)

    Välimäki, Kaisa; Herczeg, Gábor

    2012-07-01

    1. Individual- and population-level variation in body size and growth often correlates with many fitness traits. Predation and food availability are expected to affect body size and growth as important agents of both natural selection and phenotypic plasticity. How differences in predation and food availability affect body size/growth during ontogeny in populations adapted to different predation and competition regimes is rarely studied. 2. Nine-spined stickleback (Pungitius pungitius) populations originating from habitats with varying levels of predation and competition are known to be locally adapted to their respective habitats in terms of body size and growth. Here, we studied how different levels of perceived predation risk and competition during ontogeny affect the reaction norms of body size and growth in (i) marine and pond populations adapted to different levels of predation and competition and (ii) different sexes. We reared nine-spined stickleback in a factorial experiment under two levels of perceived predation risk (present/absent) and competition (high/low food supply). 3. We found divergence in the reaction norms at two levels: (i) predation-adapted marine stickleback had stronger reactions to predatory cues than intraspecific competition-adapted pond stickleback, the latter being more sensitive to available food than the marine fish and (ii) females reacting more strongly to the treatments than males. 4. The repeated, habitat-dependent nature of the differences suggests that natural selection is the agent behind the observed patterns. Our results suggest that genetic adaptation to certain environmental factors also involves an increase in the range of expressible phenotypic plasticity. We found support for this phenomenon at two levels: (i) across populations driven by habitat type and (ii) within populations driven by sex. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  16. Hydrological disturbance diminishes predator control in wetlands.

    Science.gov (United States)

    Dorn, Nathan J; Cook, Mark I

    2015-11-01

    Effects of predators on prey populations can be especially strong in aquatic ecosystems, but disturbances may mediate the strength of predator limitation and even allow outbreaks of some prey populations. In a two-year study we investigated the numerical responses of crayfish (Procambarus fallax) and small fishes (Poeciliidae and Fundulidae) to a brief hydrological disturbance in replicated freshwater wetlands with an experimental drying and large predatory fish reduction. The experiment and an in situ predation assay tested the component of the consumer stress model positing that disturbances release prey from predator limitation. In the disturbed wetlands, abundances of large predatory fish were seasonally reduced, similar to dynamics in the Everglades (southern Florida). Densities of small fish were unaffected by the disturbance, but crayfish densities, which were similar across all wetlands before drying, increased almost threefold in the year after the disturbance. Upon re-flooding, juvenile crayfish survival was inversely related to the abundance of large fish across wetlands, but we found no evidence for enhanced algal food quality. At a larger landscape scale (500 km2 of the Everglades), crayfish densities over eight years were positively correlated with the severity of local dry disturbances (up to 99 days dry) during the preceding dry season. In contrast, densities of small-bodied fishes in the same wetlands were seasonally depressed by dry disturbances. The results from our experimental wetland drought and the observations of crayfish densities in the Everglades represent a large-scale example of prey population release following a hydrological disturbance in a freshwater ecosystem. The conditions producing crayfish pulses in the Everglades appear consistent with the mechanics of the consumer stress model, and we suggest crayfish pulses may influence the number of nesting wading birds in the Everglades.

  17. Inhibition between invasives: a newly introduced predator moderates the impacts of a previously established invasive predator.

    Science.gov (United States)

    Griffen, Blaine D; Guy, Travis; Buck, Julia C

    2008-01-01

    1. With continued globalization, species are being transported and introduced into novel habitats at an accelerating rate. Interactions between invasive species may provide important mechanisms that moderate their impacts on native species. 2. The European green crab Carcinus maenas is an aggressive predator that was introduced to the east coast of North America in the mid-1800 s and is capable of rapid consumption of bivalve prey. A newer invasive predator, the Asian shore crab Hemigrapsus sanguineus, was first discovered on the Atlantic coast in the 1980s, and now inhabits many of the same regions as C. maenas within the Gulf of Maine. Using a series of field and laboratory investigations, we examined the consequences of interactions between these predators. 3. Density patterns of these two species at different spatial scales are consistent with negative interactions. As a result of these interactions, C. maenas alters its diet to consume fewer mussels, its preferred prey, in the presence of H. sanguineus. Decreased mussel consumption in turn leads to lower growth rates for C. maenas, with potential detrimental effects on C. maenas populations. 4. Rather than an invasional meltdown, this study demonstrates that, within the Gulf of Maine, this new invasive predator can moderate the impacts of the older invasive predator.

  18. Prey-predator dynamics with prey refuge providing additional food to predator

    International Nuclear Information System (INIS)

    Ghosh, Joydev; Sahoo, Banshidhar; Poria, Swarup

    2017-01-01

    Highlights: • The effects of interplay between prey refugia and additional food are reported. • Hopf bifurcation conditions are derived analytically. • Existence of unique limit cycle is shown analytically. • Predator extinction may be possible at very high prey refuge ecological systems. - Abstract: The impacts of additional food for predator on the dynamics of a prey-predator model with prey refuge are investigated. The equilibrium points and their stability behaviours are determined. Hopf bifurcation conditions are derived analytically. Most significantly, existence conditions for unique stable limit cycle in the phase plane are shown analytically. The analytical results are in well agreement with the numerical simulation results. Effects of variation of refuge level as well as the variation of quality and quantity of additional food on the dynamics are reported with the help of bifurcation diagrams. It is found that high quality and high quantity of additional food supports oscillatory coexistence of species. It is observed that predator extinction possibility in high prey refuge ecological systems may be removed by supplying additional food to predator population. The reported theoretical results may be useful to conservation biologist for species conservation in real world ecological systems.

  19. Humans as predators: an overview of predation strategies of hunters with contrasting motivational drivers

    Directory of Open Access Journals (Sweden)

    Fredrik Dalerum

    2018-01-01

    Full Text Available Predator-prey theory suggests that generalist predators are linked to demographic stability of prey whereas specialists are destabilizing. We overview the demographic consequences of different predation strategies and hypothesize that subsistence hunting occurs opportunistically, persecution hunters behave like specialist predators, and recreational hunters behave like generalist predators. Under this hypothesis, persecution hunting would have destabilizing effects, whereas the effects of subsistence and recreational hunting would be neutral or stabilizing. We found poor empirical support for this hypothesis, but there was scarce empirical data. Recreational hunters mainly hunted opportunistically and hunting as managed persecution followed a type III functional response, i.e. with low hunting intensity at low game abundances and a switch to an increased intensity at some level of abundance. We suggest that recreational hunters have limited destabilizing effects on game populations and that hunting may be an ineffective way of complete the removal of invasive species. We urge for further studies quantifying the responses of hunters to game abundances, in particular studies evaluating the responses of subsistence hunters and illegal persecution.

  20. Olfactory systems and neural circuits that modulate predator odor fear

    Directory of Open Access Journals (Sweden)

    Lorey K. Takahashi

    2014-03-01

    Full Text Available When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS and accessory olfactory systems (AOS detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray, paraventricular nucleus of the hypothalamus, and the medial amygdala appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal stress hormone secretion. The medial amygdala also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus appear prominently involve in predator odor fear behavior. The basolateral amygdala, medial hypothalamic nuclei, and medial prefrontal cortex are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator odors activate

  1. Olfactory systems and neural circuits that modulate predator odor fear

    Science.gov (United States)

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator odor fear. For instance, the main (MOS) and accessory olfactory systems (AOS) detect predator odors and different types of predator odors are sensed by specific receptors located in either the MOS or AOS. However, complex predator chemosignals may be processed by both the MOS and AOS, which complicate our understanding of the specific neural circuits connected directly and indirectly from the MOS and AOS to activate the physiological and behavioral components of unconditioned and conditioned fear. Studies indicate that brain structures including the dorsal periaqueductal gray (DPAG), paraventricular nucleus (PVN) of the hypothalamus, and the medial amygdala (MeA) appear to be broadly involved in predator odor induced autonomic activity and hypothalamic-pituitary-adrenal (HPA) stress hormone secretion. The MeA also plays a key role in predator odor unconditioned fear behavior and retrieval of contextual fear memory associated with prior predator odor experiences. Other neural structures including the bed nucleus of the stria terminalis and the ventral hippocampus (VHC) appear prominently involved in predator odor fear behavior. The basolateral amygdala (BLA), medial hypothalamic nuclei, and medial prefrontal cortex (mPFC) are also activated by some but not all predator odors. Future research that characterizes how distinct predator odors are uniquely processed in olfactory systems and neural circuits will provide significant insights into the differences of how diverse predator

  2. Predator cannibalism can intensify negative impacts on heterospecific prey.

    Science.gov (United States)

    Takatsu, Kunio; Kishida, Osamu

    2015-07-01

    Although natural populations consist of individuals with different traits, and the degree of phenotypic variation varies among populations, the impact of phenotypic variation on ecological interactions has received little attention, because traditional approaches to community ecology assume homogeneity of individuals within a population. Stage structure, which is a common way of generating size and developmental variation within predator populations, can drive cannibalistic interactions, which can affect the strength of predatory effects on the predator's heterospecific prey. Studies have shown that predator cannibalism weakens predatory effects on heterospecific prey by reducing the size of the predator population and by inducing less feeding activity of noncannibal predators. We predict, however, that predator cannibalism, by promoting rapid growth of the cannibals, can also intensify predation pressure on heterospecific prey, because large predators have large resource requirements and may utilize a wider variety of prey species. To test this hypothesis, we conducted an experiment in which we created carnivorous salamander (Hynobius retardatus) populations with different stage structures by manipulating the salamander's hatch timing (i.e., populations with large or small variation in the timing of hatching), and explored the resultant impacts on the abundance, behavior, morphology, and life history of the salamander's large heterospecific prey, Rana pirica frog tadpoles. Cannibalism was rare in salamander populations having small hatch-timing variation, but was frequent in those having large hatch-timing variation. Thus, giant salamander cannibals occurred only in the latter. We clearly showed that salamander giants exerted strong predation pressure on frog tadpoles, which induced large behavioral and morphological defenses in the tadpoles and caused them to metamorphose late at large size. Hence, predator cannibalism arising from large variation in the timing

  3. Adaptive behaviour, tri-trophic food-web stability and damping of chaos

    DEFF Research Database (Denmark)

    Visser, Andre; Mariani, Patrizio; Pigolotti, Simone

    2012-01-01

    We examine the effect of adaptive foraging behaviour within a tri-trophic food web with intra-guild predation. The intra-guild prey is allowed to adjust its foraging effort so as to achieve an optimal per capita growth rate in the face of realized feeding, predation risk and foraging cost. Adapti...

  4. The influence of historical climate changes on Southern Ocean marine predator populations: a comparative analysis.

    Science.gov (United States)

    Younger, Jane L; Emmerson, Louise M; Miller, Karen J

    2016-02-01

    The Southern Ocean ecosystem is undergoing rapid physical and biological changes that are likely to have profound implications for higher-order predators. Here, we compare the long-term, historical responses of Southern Ocean predators to climate change. We examine palaeoecological evidence for changes in the abundance and distribution of seabirds and marine mammals, and place these into context with palaeoclimate records in order to identify key environmental drivers associated with population changes. Our synthesis revealed two key factors underlying Southern Ocean predator population changes; (i) the availability of ice-free ground for breeding and (ii) access to productive foraging grounds. The processes of glaciation and sea ice fluctuation were key; the distributions and abundances of elephant seals, snow petrels, gentoo, chinstrap and Adélie penguins all responded strongly to the emergence of new breeding habitat coincident with deglaciation and reductions in sea ice. Access to productive foraging grounds was another limiting factor, with snow petrels, king and emperor penguins all affected by reduced prey availability in the past. Several species were isolated in glacial refugia and there is evidence that refuge populations were supported by polynyas. While the underlying drivers of population change were similar across most Southern Ocean predators, the individual responses of species to environmental change varied because of species specific factors such as dispersal ability and environmental sensitivity. Such interspecific differences are likely to affect the future climate change responses of Southern Ocean marine predators and should be considered in conservation plans. Comparative palaeoecological studies are a valuable source of long-term data on species' responses to environmental change that can provide important insights into future climate change responses. This synthesis highlights the importance of protecting productive foraging grounds

  5. Predation Risk versus Pesticide Exposure: Consequences of Fear and Loathing in the Life of Stream Shredders

    Science.gov (United States)

    Pestana, J. T.; Baird, D. J.; Soares, A. M.

    2005-05-01

    Stream invertebrates are exposed to complex stressor regimes including both biotic and abiotic factors. Species living in streams in agricultural landscapes are often subjected to episodic or continuous exposures to low levels of agrochemicals, which may approach or exceed specific substance guidelines. Sublethal effects of pesticides may result in direct effects on organisms (e.g. reduced physiological performance), which may in turn contribute to indirect effects relating to survival (e.g. increased predation risk). Here, we investigate the possibility that predator-release kairomones can act additively with low-level pesticide exposure to reduce physiological performance and survival of stream invertebrates in previously unforeseen ways. Feeding, metabolic and behavioural responses of two shredder insects, the North American stonefly Pteronarcys comstockii and the European caddisfly Sericostoma vittatum were measured under exposure to the insecticide imidacloprid at different levels of indirect predation stress using predator-release kairomones from Brown Trout (Salmo trutta). Pteronarcys feeding was measured in terms of mass of naturally conditioned alder leaf discs consumed over a 6-day and 10 -day period in animals held in cages in stream mesocosms. Pteronarcys feeding was impaired at 1 ppb in the 6-day trial and at 0,5 ppb in the 10-day trial relatively to unexposed controls. Metabolic rate was measured in the lab in terms of oxygen consumption of Pteronarcys. Animals exposed to 0.5 and 1 ppb imidacloprid showed elevated respiratory rates compared to controls. Laboratory experiments with Sericostoma, currently in progress, are examining the separate and combined effects of imidacloprid and predator kairomone on similar endpoints. These preliminary results are discussed in relation to the development of the Mechanistic Unifying Stressor Effects (MUSE) model which can be used to predict combined ecological effects of multiple stressors at the population level.

  6. Predation on exotic zebra mussels by native fishes: Effects on predator and prey

    Science.gov (United States)

    Magoulick, D.D.; Lewis, L.C.

    2002-01-01

    1. Exotic zebra mussels, Dreissena polymorpha, occur in southern U.S. waterways in high densities, but little is known about the interaction between native fish predators and zebra mussels. Previous studies have suggested that exotic zebra mussels are low profitability prey items and native vertebrate predators are unlikely to reduce zebra mussel densities. We tested these hypotheses by observing prey use of fishes, determining energy content of primary prey species of fishes, and conducting predator exclusion experiments in Lake Dardanelle, Arkansas. 2. Zebra mussels were the primary prey eaten by 52.9% of blue catfish, Ictalurus furcatus; 48.2% of freshwater drum, Aplodinotus grunniens; and 100% of adult redear sunfish, Lepomis microlophus. Blue catfish showed distinct seasonal prey shifts, feeding on zebra mussels in summer and shad, Dorosoma spp., during winter. Energy content (joules g-1) of blue catfish prey (threadfin shad, Dorosoma petenense; gizzard shad, D. cepedianum; zebra mussels; and asiatic clams, Corbicula fluminea) showed a significant species by season interaction, but shad were always significantly greater in energy content than bivalves examined as either ash-free dry mass or whole organism dry mass. Fish predators significantly reduced densities of large zebra mussels (>5 mm length) colonising clay tiles in the summers of 1997 and 1998, but predation effects on small zebra mussels (???5 mm length) were less clear. 3. Freshwater drum and redear sunfish process bivalve prey by crushing shells and obtain low amounts of higher-energy food (only the flesh), whereas blue catfish lack a shell-crushing apparatus and ingest large amounts of low-energy food per unit time (bivalves with their shells). Blue catfish appeared to select the abundant zebra mussel over the more energetically rich shad during summer, then shifted to shad during winter when shad experienced temperature-dependent stress and mortality. Native fish predators can suppress adult zebra

  7. Mixed-mode oscillations and chaos in a prey-predator system with dormancy of predators.

    Science.gov (United States)

    Kuwamura, Masataka; Chiba, Hayato

    2009-12-01

    It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic population dynamics in a simple phytoplankton-zooplankton (-resting eggs) community in a microcosm with a short duration.

  8. Toxicity tests based on predator-prey and competitive interactions between freshwater macroinvertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, E.J.; Blockwell, S.J.; Pascoe, D. [Univ. of Wales Coll. of Cardiff (United Kingdom)

    1994-12-31

    Simple multi-species toxicity tests based on the predation of Daphnia magna Straus by Hydra oligactis (Pallas) and competition between Gammarus pulex (L.) and Asellus aquaticus (L.) were used to determine the effects of three reference chemicals. Criteria examined included functional responses; time to first captures; handling times (predator/prey systems) and co-existence and growth. The tests which proved most practicable and sensitive (lowest observed effects 0.1, 21, and 80 {micro}g/l for lindane, copper and 3,4 dichloroaniline, respectively) were: (1) predator-prey tests: determining changes in the size-structure of predated D. magna populations and (2) competition tests: measuring the feeding rate of G. pulex competing with A. aquaticus, using a bioassay based on the time-response analysis of the consumption of Artemia salina eggs. The concentration of a chemical which affected particular response criteria was fond to depend on the test system employed. Results of the tests indicated that effects were often not dose-related and that a given criterion could be variously affected by different test concentrations. The complex pattern of responses may be explained in terms of the differential sensitivity of the interacting species and perhaps subtle alteration in strategies. The sensitivity of the bioassay endpoints is compared to those of a range of single species tests, and their value for predicting the impact pollutants may have upon natural freshwater ecosystems is discussed.

  9. Comparative Toxicities of Newer and Conventional Insecticides: Against Four Generalist Predator Species.

    Science.gov (United States)

    Prabhaker, Nilima; Naranjo, Steven; Perring, Thomas; Castle, Steven

    2017-12-05

    Generalist insect predators play an essential role in regulating the populations of Bemisia tabaci and other pests in agricultural systems, but may be affected negatively by insecticides applied for pest management. Evaluation of insecticide compatibility with specific predator species can provide a basis for making treatment decisions with the aim of conserving natural enemies. Eleven insecticides representing six modes of action groups were evaluated for toxicity against four predator species and at different developmental stages. Full-concentration series bioassays were conducted on laboratory-reared or insectary-supplied predators using Petri dish and systemic uptake bioassay techniques. Highest toxicities were observed with imidacloprid and clothianidin against first and second instar nymphs of Geocoris punctipes (Say) (Hemiptera: Geocoridae). Later instar nymphs were less susceptible to neonicotinoid treatments based on higher LC50s observed with imidacloprid, thiamethoxam, and dinotefuran against third or fourth instar nymphs. The pyrethroid insecticide bifenthrin was highly toxic against adults of G. punctipes and Orius insidiosus (Say) (Hemiptera: Anthocoridae). Standard concentration/mortality evaluation of nonacute toxicity insecticides, including buprofezin, pyriproxyfen, spirotetramat, and spiromesifen, was inconclusive in terms of generating probit statistics. However, low mortality levels of insects exposed for up to 120 h suggested minimal lethality with the exception of pyriproxyfen that was mildly toxic to Chrysoperla rufilabris (Burmeister) (Neuroptera: Chrysopidae). Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  10. Behavioral consequences of predator stress in the rat elevated T-maze.

    Science.gov (United States)

    Bulos, Erika Mondin; Pobbe, Roger Luis Henschel; Zangrossi, Helio

    2015-07-01

    Analyses of the behavioral reactions of rodents to predators have greatly contributed to the understanding of defense-related human psychopathologies such as anxiety and panic.We here investigated the behavioral consequences of exposing male Wistar rats to a live cat using the elevated T-maze test of anxiety. This test allows the measurement of two defensive responses: inhibitory avoidance and escape, which in terms of pathology have been associated with generalized anxiety and panic disorders, respectively. For comparative reasons, the effects of exposure to the cat were also assessed in the elevated plus-maze. The results showed that a 5-min exposure to the cat selectively facilitated inhibitory avoidance acquisition, an anxiogenic effect, without affecting escape expression in the elevated T-maze. This was seen immediately but not 30 min after contact with the predator. This short-lived anxiogenic effect was also detected in the elevated plus-maze. Previous administration of the benzodiazepine anxiolytic diazepam (2 mg/kg) decreased the immediate avoidance response to the predator and the neophobic reaction to a dummy cat used as a control stimulus. The drug also impaired inhibitory avoidance acquisition in the elevated T-maze, indicating an anxiolytic effect, without affecting escape performance. The results indicate that the state of anxiety evoked during contact with the predator generalizes to both elevated plus- and T-mazes, impacting on defensive responses associated with generalized anxiety disorder.

  11. On multi-team predator-prey models

    International Nuclear Information System (INIS)

    Elettreby, M.F.; Saker, S.H.; Ahmed, E.

    2005-05-01

    Many creatures form teams. This has, at least, two main advantages: the first is the improvement in foraging, since looking for food in a team is more efficient than doing it alone. The second is that living in a team reduces predation risk due to early spotting of predators and that existing in a team gives a higher probability that the predator will attack another member of the team. In this paper models are given where two teams of predators interact with two teams of preys. The teams of each group (predators or preys) help each other. In this paper we propose three different versions of the multi-team predator prey model. We study the equilibrium solutions, the conditions of their local asymptotic stability, persistence and the global stability of the solution of one of the models. Some numerical simulations are done. (author)

  12. Nest predation research: Recent findings and future perspectives

    Science.gov (United States)

    Chalfoun, Anna D.; Ibanez-Alamo, J. D.; Magrath, R. D.; Schmidt, Kenneth A.; Thomson, R. L.; Oteyza, Juan C.; Haff, T. M.; Martin, T.E.

    2016-01-01

    Nest predation is a key source of selection for birds that has attracted increasing attention from ornithologists. The inclusion of new concepts applicable to nest predation that stem from social information, eavesdropping or physiology has expanded our knowledge considerably. Recent methodological advancements now allow focus on all three players within nest predation interactions: adults, offspring and predators. Indeed, the study of nest predation now forms a vital part of avian research in several fields, including animal behaviour, population ecology, evolution and conservation biology. However, within nest predation research there are important aspects that require further development, such as the comparison between ecological and evolutionary antipredator responses, and the role of anthropogenic change. We hope this review of recent findings and the presentation of new research avenues will encourage researchers to study this important and interesting selective pressure, and ultimately will help us to better understand the biology of birds.

  13. The narrow range of perceived predation: a 19 group study

    Directory of Open Access Journals (Sweden)

    Olivier Mesly

    2013-05-01

    Full Text Available This paper rests largely on the works of Mesly (1999 to 2012. It argues that the phenomenon of perceived predation as a functional behavioural phenomenon is subjected to certain limits, a finding based on studies performed on 19 different groups spread over a four-year span. It also finds a constant of k = 1.3 which reflects the invariant nature of perceived predation. These findings add to the theory of financial predation which stipulates that financial predators operate below the limits of detection pertaining to their customers (and market regulators. They are experts at minimizing the perception that clients could have that they are after their money, causing them financial harm, by surprise (perceived predation. Understanding the narrow range in which financial predators operate is setting the grounds to offer better protection to investors and to implementing better control and punitive measures.

  14. Local and landscape drivers of predation services in urban gardens.

    Science.gov (United States)

    Philpott, Stacy M; Bichier, Peter

    2017-04-01

    In agroecosystems, local and landscape features, as well as natural enemy abundance and richness, are significant predictors of predation services that may result in biological control of pests. Despite the increasing importance of urban gardening for provisioning of food to urban populations, most urban gardeners suffer from high pest problems, and have little knowledge about how to manage their plots to increase biological control services. We examined the influence of local, garden scale (i.e., herbaceous and arboreal vegetation abundance and diversity, ground cover) and landscape (i.e., landscape diversity and surrounding land use types) characteristics on predation services provided by naturally occurring predators in 19 urban gardens in the California central coast. We introduced sentinel pests (moth eggs and larvae and pea aphids) onto greenhouse-raised plants taken to gardens and assigned to open or bagged (predator exclosure) treatments. We found high predation rates with between 40% and 90% of prey items removed in open treatments. Predation services varied with local and landscape factors, but significant predictors differed by prey species. Predation of eggs and aphids increased with vegetation complexity in gardens, but larvae predation declined with vegetation complexity. Smaller gardens experienced higher predation services, likely due to increases in predator abundance in smaller gardens. Several ground cover features influenced predation services. In contrast to patterns in rural agricultural landscapes, predation on aphids declined with increases in landscape diversity. In sum, we report the relationships between several local management factors, as well as landscape surroundings, and implications for garden management. © 2017 by the Ecological Society of America.

  15. Predation on hatchery-reared lobsters released in the wild

    OpenAIRE

    van der Meeren, Gro

    2000-01-01

    Predation on hatchery-reared lobsters (Homarus gammarus) in the wild was studied in order to identify predators in southwestern Norway on rocky and sandy substrates in winter and summer. Lobsters of 12–15 mm carapace length were tagged with magnetic microtags. About 51 000 juvenile lobsters were released on 10 occasions at three locations. Predator samplings were by trammel nets, eel traps, and videorecordings during the 24 h immediately following the releases. In summer, loss to ...

  16. Olfactory systems and neural circuits that modulate predator odor fear

    OpenAIRE

    Takahashi, Lorey K.

    2014-01-01

    When prey animals detect the odor of a predator a constellation of fear-related autonomic, endocrine, and behavioral responses rapidly occur to facilitate survival. How olfactory sensory systems process predator odor and channel that information to specific brain circuits is a fundamental issue that is not clearly understood. However, research in the last 15 years has begun to identify some of the essential features of the sensory detection systems and brain structures that underlie predator ...

  17. Predators induce interspecific herbivore competition for food in refuge space

    OpenAIRE

    Pallini, A.; Janssen, A.; Sabelis, M.W.

    1998-01-01

    Resource competition among herbivorous arthropods has long been viewed as unimportant because herbivore populations are controlled by predators. Although recently resurrected as an organizing force in arthropod communities on plants, there is still general agreement that resource competition among herbivores is reduced by predators. Here we show the reverse: predators induce interspecific resource competi-tion among herbivores. We found that thrips larvae (Frankliniella occidentalis) use the ...

  18. Predation rate by wolves on the Porcupine caribou herd

    OpenAIRE

    Hayes, Robert D.; Russell, Donald E.

    2000-01-01

    Large migratory catibou {Rangifer tarandus) herds in the Arctic tend to be cyclic, and population trends are mainly driven by changes in forage or weather events, not by predation. We estimated daily kill rate by wolves on adult caribou in winter, then constructed a time and space dependent model to estimate annual wolf (Canis lupus) predation rate (P annual) on adult Porcupine caribou. Our model adjusts predation seasonally depending on caribou distribution: Pannual = SIGMAdaily* W *Ap(2)*Dp...

  19. Evolution of Swarming Behavior Is Shaped by How Predators Attack.

    Science.gov (United States)

    Olson, Randal S; Knoester, David B; Adami, Christoph

    2016-01-01

    Animal grouping behaviors have been widely studied due to their implications for understanding social intelligence, collective cognition, and potential applications in engineering, artificial intelligence, and robotics. An important biological aspect of these studies is discerning which selection pressures favor the evolution of grouping behavior. In the past decade, researchers have begun using evolutionary computation to study the evolutionary effects of these selection pressures in predator-prey models. The selfish herd hypothesis states that concentrated groups arise because prey selfishly attempt to place their conspecifics between themselves and the predator, thus causing an endless cycle of movement toward the center of the group. Using an evolutionary model of a predator-prey system, we show that how predators attack is critical to the evolution of the selfish herd. Following this discovery, we show that density-dependent predation provides an abstraction of Hamilton's original formulation of domains of danger. Finally, we verify that density-dependent predation provides a sufficient selective advantage for prey to evolve the selfish herd in response to predation by coevolving predators. Thus, our work corroborates Hamilton's selfish herd hypothesis in a digital evolutionary model, refines the assumptions of the selfish herd hypothesis, and generalizes the domain of danger concept to density-dependent predation.

  20. Cooperation under Predation Risk: Experiments on Costs and Benefits

    Science.gov (United States)

    Milinski, Manfred; Luthi, Jean H.; Eggler, Rolf; Parker, Geoffrey A.

    1997-06-01

    Two fish that cooperatively inspect a predator may have negotiated the share of the risk that each takes. A test of both the costs of predator inspection dependent on the distance from which the predator is approached and the potential benefits of cooperation was carried out strictly experimentally. We made either singletons or pairs of dead sticklebacks, Gasterosteus aculeatus, approach hungry pike, Esox lucius, by remote control according to an algorithm that mimicked natural inspection. The predation risk of both single inspectors and parallel inspecting pairs increased with closer inspection distances. A member of an inspecting pair had only about half the risk of that of a single inspector. In pairs, a companion diluted the lead fish's risk of being caught, depending on its distance behind the leader. The absolute risk difference between leader and follower was greatest for close inspection distances and decreased further away from the predator. The leader's relative risk increased with its distance ahead of the laggard. However, for a given distance between leader and laggard, the relative risks to the two fish remained similar with distance from the predator. The cost side of the inequalities that define a 'Prisoner's Dilemma' has thus been measured for this system. In a second experiment the 'attack deterrence hypothesis' of predator inspection (i.e. inspection decreases attack probability) was tested. The pike was offered a choice between two sticklebacks, one of which had carried out a predator inspection visit. There was no indication of attack deterrence through predator inspection.

  1. Predators are attracted to the olfactory signals of prey.

    Directory of Open Access Journals (Sweden)

    Nelika K Hughes

    2010-09-01

    Full Text Available Predator attraction to prey social signals can force prey to trade-off the social imperatives to communicate against the profound effect of predation on their future fitness. These tradeoffs underlie theories on the design and evolution of conspecific signalling systems and have received much attention in visual and acoustic signalling modes. Yet while most territorial mammals communicate using olfactory signals and olfactory hunting is widespread in predators, evidence for the attraction of predators to prey olfactory signals under field conditions is lacking.To redress this fundamental issue, we examined the attraction of free-roaming predators to discrete patches of scents collected from groups of two and six adult, male house mice, Mus domesticus, which primarily communicate through olfaction. Olfactorily-hunting predators were rapidly attracted to mouse scent signals, visiting mouse scented locations sooner, and in greater number, than control locations. There were no effects of signal concentration on predator attraction to their prey's signals.This implies that communication will be costly if conspecific receivers and eavesdropping predators are simultaneously attracted to a signal. Significantly, our results also suggest that receivers may be at greater risk of predation when communicating than signallers, as receivers must visit risky patches of scent to perform their half of the communication equation, while signallers need not.

  2. A self-organized system of smart preys and predators

    Energy Technology Data Exchange (ETDEWEB)

    Rozenfeld, Alejandro F. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP, CONICET, Suc. 4, C.C. 16 (1900) La Plata (Argentina); Albano, Ezequiel V. [Instituto de Investigaciones Fisicoquimicas Teoricas y Aplicadas (INIFTA), Facultad de Ciencias Exactas, UNLP, CONICET, Suc. 4, C.C. 16 (1900) La Plata (Argentina)]. E-mail: ealbano@inifta.unlp.edu.ar

    2004-11-22

    Based on the fact that, a standard prey-predator model (SPPM), exhibits irreversible phase transitions, belonging to the universality class of directed percolation (DP), between prey-predator coexistence and predator extinction [Phys. Lett. A 280 (2001) 45], a self-organized prey-predator model (SOPPM) is formulated and studied by means of extensive Monte Carlo simulations. The SOPPM is achieved defining the parameters of the SPPM as functions of the density of species. It is shown that the SOPPM self-organizes into an active state close the absorbing phase of the SPPM, and consequently their avalanche exponents also belong to the universality class of DP.

  3. Assessment of predation risk through referential communication in incubating birds

    Science.gov (United States)

    Suzuki, Toshitaka N.

    2015-05-01

    Parents of many bird species produce alarm calls when they approach and deter a nest predator in order to defend their offspring. Alarm calls have been shown to warn nestlings about predatory threats, but parents also face a similar risk of predation when incubating eggs in their nests. Here, I show that incubating female Japanese great tits, Parus minor, assess predation risk by conspecific alarm calls given outside the nest cavity. Tits produce acoustically discrete alarm calls for different nest predators: “jar” calls for snakes and “chicka” calls for other predators such as crows and martens. Playback experiments revealed that incubating females responded to “jar” calls by leaving their nest, whereas they responded to “chicka” calls by looking out of the nest entrance. Since snakes invade the nest cavity, escaping from the nest helps females avoid snake predation. In contrast, “chicka” calls are used for a variety of predator types, and therefore, looking out of the nest entrance helps females gather information about the type and location of approaching predators. These results show that incubating females derive information about predator type from different types of alarm calls, providing a novel example of functionally referential communication.

  4. Limit Cycles in Predator-Prey Models

    OpenAIRE

    Puchuri Medina, Liliana

    2017-01-01

    The classic Lotka-Volterra model belongs to a family of differential equations known as “Generalized Lotka-Volterra”, which is part of a classification of four models of quadratic fields with center. These models have been studied to address the Hilbert infinitesimal problem, which consists in determine the number of limit cycles of a perturbed hamiltonian system with center. In this work, we first present an alternative proof of the existence of centers in Lotka-Volterra predator-prey models...

  5. Ontogenetic specialism in predators with multiple niche shifts prevents predator population recovery and establishment

    NARCIS (Netherlands)

    van Leeuwen, A.; Huss, M.; Gårdmark, A.; de Roos, A.M.

    2014-01-01

    The effects of ontogenetic niche shifts on community structure and dynamics are underexplored, despite the occurrence of such shifts in the majority of animal species. We studied the form of niche shifts in a predator that exhibits multiple ontogenetic niche shifts, and analyzed how this life

  6. Variation in predator foraging behavior changes predator-prey spatio-temporal dynamics

    Science.gov (United States)

    1. Foraging underlies the ability of all animals to acquire essential resources and, thus, provides a critical link to understanding population dynamics. A key issue is how variation in foraging behavior affects foraging efficiency and predator-prey interactions in spatially-heterogeneous environmen...

  7. Parental investment decisions in response to ambient nest-predation risk versus actual predation on the prior nest

    Science.gov (United States)

    Chalfoun, A.D.; Martin, T.E.

    2010-01-01

    Theory predicts that parents should invest less in dependent offspring with lower reproductive value, such as those with a high risk of predation. Moreover, high predation risk can favor reduced parental activity when such activity attracts nest predators. Yet, the ability of parents to assess ambient nest-predation risk and respond adaptively remains unclear, especially where nest-predator assemblages are diverse and potentially difficult to assess. We tested whether variation in parental investment by a multi-brooded songbird (Brewer's Sparrow, Spizella breweri) in an environment (sagebrush steppe) with diverse predators was predicted by ambient nest-predation risk or direct experience with nest predation. Variation among eight sites in ambient nest-predation risk, assayed by daily probabilities of nest predation, was largely uncorrelated across four years. In this system risk may therefore be unpredictable, and aspects of parental investment (clutch size, egg mass, incubation rhythms, nestling-feeding rates) were not related to ambient risk. Moreover, investment at first nests that were successful did not differ from that at nests that were depredated, suggesting parents could not assess and respond to territorylevel nest-predation risk. However, parents whose nests were depredated reduced clutch sizes and activity at nests attempted later in the season by increasing the length of incubation shifts (on-bouts) and recesses (off-bouts) and decreasing trips to feed nestlings. In this unpredictable environment parent birds may therefore lack sufficient cues of ambient risk on which to base their investment decisions and instead rely on direct experience with nest predation to inform at least some of their decisions. ?? 2010 The Cooper Ornithological Society.

  8. Responses of urban crows to con- and hetero-specic alarm calls in predator and non-predator zoo enclosures.

    OpenAIRE

    BÍLÁ, Kateřina

    2017-01-01

    I investigated if urban crows respond to con- and heterospecific alarm signals in predator and non-predator contexts in enclosures in the ZOO of Vienna. Crows responded strongly to the crow and also jackdaw alarms in both types of contexts, but also responded to the singing of great tit (control) in the predator context. This suggests that crows are aware of the danger the wolf and bear represent but are generally very cautious at the exotic Zoo animals.

  9. Can camera traps monitor Komodo dragons a large ectothermic predator?

    Directory of Open Access Journals (Sweden)

    Achmad Ariefiandy

    Full Text Available Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis, an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψand varied detection probabilities (p according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site, p (site survey; ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.

  10. Can camera traps monitor Komodo dragons a large ectothermic predator?

    Science.gov (United States)

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species.

  11. Can Camera Traps Monitor Komodo Dragons a Large Ectothermic Predator?

    Science.gov (United States)

    Ariefiandy, Achmad; Purwandana, Deni; Seno, Aganto; Ciofi, Claudio; Jessop, Tim S.

    2013-01-01

    Camera trapping has greatly enhanced population monitoring of often cryptic and low abundance apex carnivores. Effectiveness of passive infrared camera trapping, and ultimately population monitoring, relies on temperature mediated differences between the animal and its ambient environment to ensure good camera detection. In ectothermic predators such as large varanid lizards, this criterion is presumed less certain. Here we evaluated the effectiveness of camera trapping to potentially monitor the population status of the Komodo dragon (Varanus komodoensis), an apex predator, using site occupancy approaches. We compared site-specific estimates of site occupancy and detection derived using camera traps and cage traps at 181 trapping locations established across six sites on four islands within Komodo National Park, Eastern Indonesia. Detection and site occupancy at each site were estimated using eight competing models that considered site-specific variation in occupancy (ψ)and varied detection probabilities (p) according to detection method, site and survey number using a single season site occupancy modelling approach. The most parsimonious model [ψ (site), p (site*survey); ω = 0.74] suggested that site occupancy estimates differed among sites. Detection probability varied as an interaction between site and survey number. Our results indicate that overall camera traps produced similar estimates of detection and site occupancy to cage traps, irrespective of being paired, or unpaired, with cage traps. Whilst one site showed some evidence detection was affected by trapping method detection was too low to produce an accurate occupancy estimate. Overall, as camera trapping is logistically more feasible it may provide, with further validation, an alternative method for evaluating long-term site occupancy patterns in Komodo dragons, and potentially other large reptiles, aiding conservation of this species. PMID:23527027

  12. 'Different strokes for different folks': geographically isolated strains of Lymnaea stagnalis only respond to sympatric predators and have different memory forming capabilities.

    Science.gov (United States)

    Orr, Michael V; Hittel, Karla; Lukowiak, Ken

    2009-07-01

    Gaining insight into how natural trait variation is manifest in populations shaped by differential environmental factors is crucial to understanding the evolution, ecology and sensory biology of natural populations. We have demonstrated that lab-reared Lymnaea detect and respond to the scent of a crayfish predator with specific, appropriate anti-predator behavioral responses, including enhanced long-term memory (LTM) formation, and that such predator detection significantly alters the electrophysiological activity of RPeD1, a neuron that is a necessary site for LTM formation. Here we ask: (1) do distinct populations of wild Lymnaea stagnalis respond only to sympatric predators and if so, can these traits be quantified at both the behavioral and neurophysiological levels, and (2) does the presence of a non-sympatric predator elicit anti-predator behaviors including augmentation of LTM? We tested three different populations of wild (i.e. not lab-reared) snails freshly collected from their natural habitat: (1) polders near Utrecht in The Netherlands, (2) six seasonally isolated ponds in the Belly River drainage in southern Alberta, Canada and (3) a 20-year-old human-made dugout pond in southern Alberta. We found strain-specific variations in the ability to form LTM and that only a sympatric predator evoked anti-predatory behaviors, including enhanced LTM formation and changes in RPeD1 activity.

  13. Fish ladders: safe fish passage or hotspot for predation?

    Directory of Open Access Journals (Sweden)

    Angelo Antonio Agostinho

    Full Text Available Fish ladders are a strategy for conserving biodiversity, as they can provide connectivity between fragmented habitats and reduce predation on shoals that accumulate immediately below dams. Although the impact of predation downstream of reservoirs has been investigated, especially in juvenile salmonids during their downstream movements, nothing is known about predation on Neotropical fish in the attraction and containment areas commonly found in translocation facilities. This study analysed predation in a fish passage system at the Lajeado Dam on the Tocantins River in Brazil. The abundance, distribution, and the permanence (time spent of large predatory fish along the ladder, the injuries imposed by piranhas during passage and the presence of other vertebrate predators were investigated. From December 2002 to October 2003, sampling was conducted in four regions (downstream, along the ladder, in the forebay, and upstream of the reservoir using gillnets, cast nets and counts or visual observations. The captured fish were tagged with thread and beads, and any mutilations were registered. Fish, birds and dolphins were the main predator groups observed, with a predominance of the first two groups. The entrance to the ladder, in the downstream region, was the area with the highest number of large predators and was the only region with relevant non-fish vertebrates. The main predatory fish species were Rhaphiodon vulpinus, Hydrolycus armatus, and Serrasalmus rhombeus. Tagged individuals were detected predating along the ladder for up to 90 days. Mutilations caused by Serrasalmus attacks were noted in 36% of species and 4% of individuals at the top of the ladder. Our results suggested that the high density of fish in the restricted ladder environment, which is associated with injuries suffered along the ladder course and the presence of multiple predator groups with different predation strategies, transformed the fish corridor into a hotspot for

  14. Predators and predation rates of skylark Alauda arvensis and woodlark Lullula arborea nests in a semi-natural area in the Netherlands

    NARCIS (Netherlands)

    Praus, Libor; Hegemann, Arne; Tieleman, B. Irene; Weidinger, Karel

    2014-01-01

    Predation is a major cause of breeding failure in bird species with open nests. Although many studies have investigated nest predation rates, direct identification of nest predators is sporadic, especially in (semi-)natural habitats. We quantified nest success and identified nest predators in a

  15. Anti-predator behaviour of Sahamalaza sportive lemurs, Lepilemur sahamalazensis, at diurnal sleeping sites

    NARCIS (Netherlands)

    Seiler, M.; Schwitzer, C.; Holderied, M.

    2013-01-01

    In response to predation pressure by raptors, snakes, and carnivores, primates employ anti-predator behaviours such as avoiding areas of high predation risk, cryptic behaviour and camouflage, vigilance and group formation (including mixedspecies associations), and eavesdropping on other species’

  16. A predation cost to bold fish in the wild

    DEFF Research Database (Denmark)

    Hulthén, Kaj; Chapman, Ben; Nilsson, Anders P.

    2017-01-01

    in the animal kingdom. Theory predicts that individual behavioural types differ in a cost-benefit trade-off where bolder individuals benefit from greater access to resources while paying higher predation-risk costs. However, explicitly linking predation events to individual behaviour under natural conditions...

  17. Deep-ocean predation by a high Arctic cetacean

    DEFF Research Database (Denmark)

    Laidre, K.L.; Heide-Jørgensen, M.P.; Jørgensen, Ole A

    2004-01-01

    were correlated with predicted whale predation levels based on diving behavior. The difference in Greenland halibut biomass between an area with high predation and a comparable area without whales, approximately 19000 tonnes, corresponded well with the predicted biomass removed by the narwhal sub...

  18. Predator-induced reduction of freshwater carbon dioxide emissions

    Science.gov (United States)

    Atwood, Trisha B.; Hammill, Edd; Greig, Hamish S.; Kratina, Pavel; Shurin, Jonathan B.; Srivastava, Diane S.; Richardson, John S.

    2013-03-01

    Predators can influence the exchange of carbon dioxide between ecosystems and the atmosphere by altering ecosystem processes such as decomposition and primary production, according to food web theory. Empirical knowledge of such an effect in freshwater systems is limited, but it has been suggested that predators in odd-numbered food chains suppress freshwater carbon dioxide emissions, and predators in even-numbered food chains enhance emissions. Here, we report experiments in three-tier food chains in experimental ponds, streams and bromeliads in Canada and Costa Rica in the presence or absence of fish (Gasterosteus aculeatus) and invertebrate (Hesperoperla pacifica and Mecistogaster modesta) predators. We monitored carbon dioxide fluxes along with prey and primary producer biomass. We found substantially reduced carbon dioxide emissions in the presence of predators in all systems, despite differences in predator type, hydrology, climatic region, ecological zone and level of in situ primary production. We also observed lower amounts of prey biomass and higher amounts of algal and detrital biomass in the presence of predators. We conclude that predators have the potential to markedly influence carbon dioxide dynamics in freshwater systems.

  19. Determining sensitive stages for learning to detect predators in ...

    Indian Academy of Sciences (India)

    2014-07-10

    Jul 10, 2014 ... Successful survival and reproduction of prey organisms depend on their ability to detect their potential predators accurately and respond ... Numerous aquatic prey including insects, ... window (pre-gastrulation, neurulation, post-hatching or ..... their increased encounter rates with predators provide them the.

  20. Food acquisition and predator avoidance in a Neotropical rodent

    NARCIS (Netherlands)

    Suselbeek, Lennart; Emsens, Willem-Jan; Hirsch, Ben T.; Kays, Roland; Rowcliffe, J. Marcus; Zamora-Gutierrez, Veronica; Jansen, Patrick A.

    Foraging activity in animals reflects a compromise between acquiring food and avoiding predation. The risk allocation hypothesis predicts that prey animals optimize this balance by concentrating their foraging activity at times of relatively low predation risk, as much as their energy status

  1. Saving the Predators: Teaching About the Role of Predatory Animals.

    Science.gov (United States)

    Soltow, Willow

    1985-01-01

    Discusses the role of predators in regulating prey populations, noting that this is an excellent example of the "interconnectedness" of life. Suggestions for films, books, articles, and student questions are given, and a special section dealing with human attitudes about predators is provided. (DH)

  2. Food aquisition and predator avoidance in a Neotropical rodent

    NARCIS (Netherlands)

    Suselbeek, L.; Emsens, W.J.; Hirsch, B.T.; Kays, R.; Rowcliffe, J.M.; Zamore-Gutierrez, V.; Jansen, P.A.

    2014-01-01

    Foraging activity in animals reflects a compromise between acquiring food and avoiding predation. The Risk Allocation Hypothesis predicts that prey animals optimize this balance by concentrating their foraging activity at times of relatively low predation risk, as much as their energy status

  3. Sleeping birds do not respond to predator odour

    NARCIS (Netherlands)

    Amo, L.; Caro, S.P.; Visser, M.E.

    2011-01-01

    Background: During sleep animals are relatively unresponsive and unaware of their environment, and therefore, more exposed to predation risk than alert and awake animals. This vulnerability might influence when, where and how animals sleep depending on the risk of predation perceived before going to

  4. The Effects of Dispersal and Predator Density on Prey Survival in an Insect-Red Clover Metacommunity.

    Science.gov (United States)

    Stasek, David J; Radl, James N; Crist, Thomas O

    2018-01-01

    Trophic interactions are often studied within habitat patches, but among-patch dispersal of individuals may influence local patch dynamics. Metacommunity concepts incorporate the effects of dispersal on local and community dynamics. There are few experimental tests of metacommunity theory using insects compared to those conducted in microbial microcosms. Using connected experimental mesocosms, we varied the density of the leafhopper Agallia constricta Van Duzee (Homoptera: Cicadellidae) and a generalist insect predator, the damsel bug (Nabis spp., Heteroptera: Nabidae), to determine the effects of conspecific and predator density and varying the time available to dispersal among mesocosms on predation rates, dispersal rates, and leafhopper survival. Conspecific and damsel bug density did not affect dispersal rates in leafhoppers, but this may be due to leafhoppers' aversion to leaving the host plants or the connecting tubes between mesocosms hindering leafhopper movement. Leafhopper dispersal was higher in high-dispersal treatments. Survival rates of A. constricta were also lowest in treatments where dispersal was not limited. This is one of the first experimental studies to vary predator density and the time available to dispersal. Our results indicate that dispersal is the key to understanding short-term processes such as prey survival in predator-prey metacommunities. Further work is needed to determine how dispersal rates influence persistence of communities in multigenerational studies. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  5. Puff and bite: the relationship between the glucocorticoid stress response and anti-predator performance in checkered puffer (Sphoeroides testudineus).

    Science.gov (United States)

    Cull, Felicia; O'Connor, Constance M; Suski, Cory D; Shultz, Aaron D; Danylchuk, Andy J; Cooke, Steven J

    2015-04-01

    Individual variation in the endocrine stress response has been linked to survival and performance in a variety of species. Here, we evaluate the relationship between the endocrine stress response and anti-predator behaviors in wild checkered puffers (Sphoeroides testudineus) captured at Eleuthera Island, Bahamas. The checkered puffer has a unique and easily measurable predator avoidance strategy, which is to inflate or 'puff' to deter potential predators. In this study, we measured baseline and stress-induced circulating glucocorticoid levels, as well as bite force, a performance measure that is relevant to both feeding and predator defence, and 'puff' performance. We found that puff performance and bite force were consistent within individuals, but generally decreased following a standardized stressor. Larger puffers were able to generate a higher bite force, and larger puffers were able to maintain a more robust puff performance following a standardized stressor relative to smaller puffers. In terms of the relationship between the glucocorticoid stress response and performance metrics, we found no relationship between post-stress glucocorticoid levels and either puff performance or bite force. However, we did find that baseline glucocorticoid levels predicted the ability of a puffer to maintain a robust puff response following a repeated stressor, and this relationship was more pronounced in larger individuals. Our work provides a novel example of how baseline glucocorticoids can predict a fitness-related anti-predator behavior. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Alien vs. predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators

    Directory of Open Access Journals (Sweden)

    Rory M. Welsh

    2017-05-01

    Full Text Available Coral microbiomes are known to play important roles in organismal health, response to environmental stress, and resistance to disease. The coral microbiome contains diverse assemblages of resident bacteria, ranging from defensive and metabolic symbionts to opportunistic bacteria that may turn harmful in compromised hosts. However, little is known about how these bacterial interactions influence the mechanism and controls of overall structure, stability, and function of the microbiome. We sought to test how coral microbiome dynamics were affected by interactions between two bacteria: Vibrio coralliilyticus, a known temperature-dependent pathogen of some corals, and Halobacteriovorax, a unique bacterial predator of Vibrio and other gram-negative bacteria. We challenged reef-building coral with V. coralliilyticus in the presence or absence of Halobacteriovorax predators, and monitored microbial community dynamics with 16S rRNA gene profiling time-series. Vibrio coralliilyticus inoculation increased the mean relative abundance of Vibrios by greater than 35% from the 4 to 8 hour time point, but not in the 24 & 32 hour time points. However, strong secondary effects of the Vibrio challenge were also observed for the rest of the microbiome such as increased richness (observed species, and reduced stability (increased beta-diversity. Moreover, after the transient increase in Vibrios, two lineages of bacteria (Rhodobacterales and Cytophagales increased in coral tissues, suggesting that V. coralliilyticus challenge opens niche space for these known opportunists. Rhodobacterales increased from 6.99% (±0.05 SEM to a maximum mean relative abundance of 48.75% (±0.14 SEM in the final time point and Cytophagales from <0.001% to 3.656%. Halobacteriovorax predators are commonly present at low-abundance on coral surfaces. Based on the keystone role of predators in many ecosystems, we hypothesized that Halobacteriovorax predators might help protect corals by

  7. Behavior is a major determinant of predation risk in zooplankton

    DEFF Research Database (Denmark)

    Almeda, Rodrigo; van Someren Gréve, Hans; Kiørboe, Thomas

    2017-01-01

    as prey for different predatory copepods. Copepods with “active” feeding behaviors (feeding-current and cruising feeders) showed significantly higher mortality from predation (~2–8 times) than similarly sized copepods with low motility feeding behavior (ambush feeders). Copepod males, which have a more...... active motile behavior than females (mate-seeking behavior), suffered a higher predation mortality than females in most of the experiments. However, the predation risk for mate-searching behavior in copepods varied depending on feeding behavior with ambush feeders consistently having the greatest......Zooplankton exhibit different small-scale motile behaviors related to feeding and mating activities. These different motile behaviors may result in different levels of predation risk, which may partially determine the structure of planktonic communities. Here, we experimentally determined predation...

  8. Mink predation on brown trout in a Black Hills stream

    Science.gov (United States)

    Davis, Jacob L.; Wilhite, Jerry W.; Chipps, Steven R.

    2016-01-01

    In the early 2000’s, declines in the brown trout (Salmo trutta) fishery in Rapid Creek, South Dakota, caused concern for anglers and fisheries managers. We conducted a radio telemetry study in 2010 and 2011 to identify predation mortality associated with mink, using hatchery-reared (2010) or wild (2011) brown trout. Estimated predation rates by mink (Mustela vison) on radio-tagged brown trout were 30% for hatchery fish and 32% for wild fish. Size frequency analysis revealed that the size distribution of brown trout lost to predation was similar to that of other, radio-tagged brown trout. In both years, a higher proportion of predation mortality (83–92%) occurred during spring, consistent with seasonal fish consumption by mink. Predation by mink appeared to be a significant source of brown trout mortality in our study.

  9. Tropical fish community does not recover 45 years after predator introduction.

    Science.gov (United States)

    Sharpe, D M T; De León, L F; González, R; Torchin, M E

    2017-02-01

    Predation is considered to be an important factor structuring natural communities. However, it is often difficult to determine how it may influence long-term, broad-scale, diversity patterns, particularly in diverse tropical systems. Biological introductions can provide powerful insight to test the sustained consequences of predation in natural communities, if pre-introduction data are available. Half a century ago, Zaret and Paine demonstrated strong and immediate community-level effects following the introduction of a novel apex predator (peacock bass, Cichla monoculus) into Lake Gatun, Panama. To test for long-term changes associated with this predator introduction, we followed up on their classic study by replicating historical sampling methods and examining changes in the littoral fish community at two sites in Lake Gatun 45 years post-introduction. To broaden our inference, we complemented this temporal comparison with a spatial analysis, wherein we compared the fish communities from two lakes with and one lake without peacock bass. Comparisons with historical data revealed that the peacock bass remains the most abundant predator in Lake Gatun. Furthermore, the collapse of the littoral prey community observed immediately following the invasion has been sustained over the past 45 years. The mean abundance of native littoral fish is now 96% lower than it was prior to the introduction. Diversity (rarefied species richness) declined by 64% post-introduction, and some native species appear to have been locally extirpated. We observed a similar pattern across invaded and uninvaded lakes: the mean abundance of native fishes was 5-40 times lower in lakes with (Gatun, Alajuela) relative to the lake without peacock bass (Bayano). In particular, small-bodied native fishes (Characidae, Peociliidae), which are common prey of the peacock bass, were more than two orders of magnitude (307 times) less abundant in Gatun and one order of magnitude (28 times) less abundant in

  10. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems

    Science.gov (United States)

    Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change. PMID:23467451

  11. The effect of turbidity on recognition and generalization of predators and non-predators in aquatic ecosystems.

    Science.gov (United States)

    Chivers, Douglas P; Al-Batati, Fawaz; Brown, Grant E; Ferrari, Maud C O

    2013-02-01

    Recent anthropogenic activities have caused a considerable change in the turbidity of freshwater and marine ecosystems. Concomitant with such perturbations are changes in community composition. Understanding the mechanisms through which species interactions are influenced by anthropogenic change has come to the forefront of many ecological disciplines. Here, we examine how a change in the availability of visual information influences the behavior of prey fish exposed to potential predators and non-predators. When fathead minnows, Pimephales promelas, were conditioned to recognize predators and non-predators in clear water, they showed a highly sophisticated ability to distinguish predators from non-predators. However, when learning occurred under conditions of increased turbidity, the ability of the prey to learn and generalize recognition of predators and non-predators was severely impaired. Our work highlights that changes at the community level associated with anthropogenic perturbations may be mediated through altered trophic interactions, and highlights the need to closely examine behavioral interactions to understand how species interactions change.

  12. Stabilization and complex dynamics in a predator-prey model with predator suffering from an infectious disease

    NARCIS (Netherlands)

    Kooi, B.W.; Voorn, van G.A.K.; Das, pada Krishna

    2011-01-01

    We study the effects of a non-specified infectious disease of the predator on the dynamics a predator–prey system, by evaluating the dynamics of a three-dimensional model. The predator population in this (PSI) model is split into a susceptible and an unrecoverable infected population, while all

  13. Vertebrate predators have minimal cascading effects on plant production or seed predation in an intact grassland ecosystem

    Science.gov (United States)

    John L. Maron; Dean E. Pearson

    2011-01-01

    The strength of trophic cascades in terrestrial habitats has been the subject of considerable interest and debate. We conducted an 8-year experiment to determine how exclusion of vertebrate predators, ungulates alone (to control for ungulate exclusion from predator exclusion plots) or none of these animals influenced how strongly a three-species assemblage of rodent...

  14. Size-selective predation and predator-induced life-history shifts alter the outcome of competition between planktonic grazers

    NARCIS (Netherlands)

    Hülsmann, S.; Rinke, K.; Mooij, W.M.

    2011-01-01

    1.We studied the effect of size-selective predation on the outcome of competition between two differently sized prey species in a homogenous environment. 2. Using a physiologically structured population model, we calculated equilibrium food concentrations for a range of predation scenarios defined

  15. Grey gurnard ( Eutrigla gurnadus ) in the North Sea: an emerging key predator?

    DEFF Research Database (Denmark)

    Floeter, J.; Kempf, A.; Vinther, Morten

    2005-01-01

    Grey gurnard (Eutrigla gurnadus) is a widely distributed demersal species in the North Sea that has been ranked frequently among the 10 dominant species. Since the late 1980s, grey gurnard catch rates in the international bottom trawl surveys showed a pronounced increase and it was included...... as an "other predator" in the North Sea multispecies virtual population analysis (MSVPA) in 1997. The MSVPA results estimated grey gurnard to be responsible for approximately 60% of the total predation mortality on age-0 Atlantic cod (Gadus morhua). Long-term MSVPA predictions led to the extinction of North...... Sea cod. As a possible technical reason, the Holling type II functional response implemented in the model was discussed. In the current analysis, it was demonstrated that the Holling type II functional response was not responsible for the extinction of cod in the model, which was rather a true effect...

  16. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    Science.gov (United States)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  17. Energy efficient sensor nodes placement using Territorial Predator Scent Marking Algorithm (TPSMA)

    International Nuclear Information System (INIS)

    Abidin, H Z; Din, N M

    2013-01-01

    The positions of sensor nodes in a Wireless Sensor Network (WSN) must be able to provide maximum coverage with a longer lifetime. This paper proposed a sensor node placement technique that utilizes a new biologically inspired optimization technique that imitates the behavior of territorial predators in marking their territories with their odors known as Territorial Predator Scent Marking Algorithm (TPSMA). The TPSMA deployed in this paper uses the maximum coverage ratio as the objective function. The performance of the proposed technique is then compared with other schemes in terms of uniformity and average energy consumption. Simulation results show that the WSN deployed with the proposed sensor node placement scheme consumes lower energy compared to the other two schemes and is expected to provide longer lifetime.

  18. Stochastic analysis of a pulse-type prey-predator model

    Science.gov (United States)

    Wu, Y.; Zhu, W. Q.

    2008-04-01

    A stochastic Lotka-Volterra model, a so-called pulse-type model, for the interaction between two species and their random natural environment is investigated. The effect of a random environment is modeled as random pulse trains in the birth rate of the prey and the death rate of the predator. The generalized cell mapping method is applied to calculate the probability distributions of the species populations at a state of statistical quasistationarity. The time evolution of the population densities is studied, and the probability of the near extinction time, from an initial state to a critical state, is obtained. The effects on the ecosystem behaviors of the prey self-competition term and of the pulse mean arrival rate are also discussed. Our results indicate that the proposed pulse-type model shows obviously distinguishable characteristics from a Gaussian-type model, and may confer a significant advantage for modeling the prey-predator system under discrete environmental fluctuations.

  19. Active predation by Greenland shark Somniosus microcephalus

    DEFF Research Database (Denmark)

    Nielsen, Julius; hedeholm, Rasmus; Simon, Malene

    2013-01-01

    and show that the sharks catch epi-benthic species with Atlantic cod being the most important (% IRI = 56 ), followed by squid (% IRI= 13 ) and wolf fish (IRI=4). Furthermore seal was found in 50 % of all stomachs (% IRI= 13). In addition to providing new knowledge of feeding habits of this species......Dansk Havforskermøde 2013 Julius Nielsen, Rasmus Hedeholm, Malene Simon og John Fleng Steffensen The Greenland shark is ubiquitous in the northern part of the North Atlantic ranging from eastern Canada to northwest Russia . Although knowledge is scarce it is believed to be abundant and potentially...... important part of the ecosystem. Whether Greenland sharks in general should be considered opportunistic scavengers or active predators is therefore important in understanding ecosystem dynamics. Due to its sluggish appearance and a maximum reported swimming speed of 74 cm per second scavenging seems...

  20. [Informative predation: Towards a new species concept].

    Science.gov (United States)

    Lherminier, Philippe

    2018-04-01

    We distinguish two types of predations: the predation of matter-energy equals the food chain, and the informative predation is the capture of the information brought by the sexual partners. The cell or parent consumes energy and matter to grow, multiply and produce offspring. A fixed amount of resources is divided by the number of organisms, so individual growth and numerical multiplication are limited by depletion resources of the environment. Inversely, fertilization does not destroy information, but instead produces news. The information is multiplied by the number of partners and children, since each fertilization gives rise to a new genome following a combinatorial process that continues without exhaustion. The egg does not swallow the sperm to feed, but exchange good food for quality information. With the discovery of sex, that is, 1.5 Ga ago, life added soft predation to hard predation, i.e. information production within each species to matter-energy flow between species. Replicative and informative structures are subject to two competing biological constraints: replicative fidelity promotes proliferation, but limits adaptive evolution. On the contrary, the offspring of a couple obviously cannot be a copy of both partners, they are a new production, a re-production. Sexual recombination allows the exponential enrichment of the genetic diversity, thus promoting indefinite adaptive and evolutionary capacities. Evolutionary history illustrates this: the bacteria proliferate but have remained at the first purely nutritive stage in which most of the sensory functions, mobility, defense, and feeding have experienced almost no significant novelty in three billion years. Another world appeared with the sexual management of information. Sexual reproduction actually combines two functions: multiplicative by "vertical transfer" and informative by "horizontal transfer". This distinction is very common: polypus - medusa alternations, parasite multiplication cycles, the

  1. Fortune favours the bold: a higher predator reduces the impact of a native but not an invasive intermediate predator.

    Science.gov (United States)

    Barrios-O'Neill, Daniel; Dick, Jaimie T A; Emmerson, Mark C; Ricciardi, Anthony; MacIsaac, Hugh J; Alexander, Mhairi E; Bovy, Helene C

    2014-05-01

    Emergent multiple predator effects (MPEs) might radically alter predictions of predatory impact that are based solely on the impact of individuals. In the context of biological invasions, determining if and how the individual-level impacts of invasive predators relates to their impacts in multiple-individual situations will inform understanding of how such impacts might propagate through recipient communities. Here, we use functional responses (the relationship between prey consumption rate and prey density) to compare the impacts of the invasive freshwater mysid crustacean Hemimysis anomala with a native counterpart Mysis salemaai when feeding on basal cladoceran prey (i) as individuals, (ii) in conspecific groups and (iii) in conspecific groups in the presence of a higher fish predator, Gasterosteus aculeatus. In the absence of the higher predator, the invader consumed significantly more basal prey than the native, and consumption was additive for both mysid species - that is, group consumption was predictable from individual-level consumption. Invaders and natives were themselves equally susceptible to predation when feeding with the higher fish predator, but an MPE occurred only between the natives and higher predator, where consumption of basal prey was significantly reduced. In contrast, consumption by the invaders and higher predator remained additive. The presence of a higher predator serves to exacerbate the existing difference in individual-level consumption between invasive and native mysids. We attribute the mechanism responsible for the MPE associated with the native to a trait-mediated indirect interaction, and further suggest that the relative indifference to predator threat on the part of the invader contributes to its success and impacts within invaded communities. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  2. Long-term trends in the abundance and community structure of ...

    African Journals Online (AJOL)

    ... increased predation by top predators. Another mechanism contributing to the long-term increase in zooplankton is the observed long-term intensification of coastal upwelling, which could enhance primary and secondary production, and increase advective input of zooplankton populations into the study area and augment ...

  3. Predation risk shapes social networks in fission-fusion populations.

    Directory of Open Access Journals (Sweden)

    Jennifer L Kelley

    Full Text Available Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission and merging (fusion events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes in low-predation fish and over longer time scales (>1.5 hours in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems.

  4. Aquatic macroinvertebrate responses to native and non-native predators

    Directory of Open Access Journals (Sweden)

    Haddaway N. R.

    2014-01-01

    Full Text Available Non-native species can profoundly affect native ecosystems through trophic interactions with native species. Native prey may respond differently to non-native versus native predators since they lack prior experience. Here we investigate antipredator responses of two common freshwater macroinvertebrates, Gammarus pulex and Potamopyrgus jenkinsi, to olfactory cues from three predators; sympatric native fish (Gasterosteus aculeatus, sympatric native crayfish (Austropotamobius pallipes, and novel invasive crayfish (Pacifastacus leniusculus. G. pulex responded differently to fish and crayfish; showing enhanced locomotion in response to fish, but a preference for the dark over the light in response to the crayfish. P.jenkinsi showed increased vertical migration in response to all three predator cues relative to controls. These different responses to fish and crayfish are hypothesised to reflect the predators’ differing predation types; benthic for crayfish and pelagic for fish. However, we found no difference in response to native versus invasive crayfish, indicating that prey naiveté is unlikely to drive the impacts of invasive crayfish. The Predator Recognition Continuum Hypothesis proposes that benefits of generalisable predator recognition outweigh costs when predators are diverse. Generalised responses of prey as observed here will be adaptive in the presence of an invader, and may reduce novel predators’ potential impacts.

  5. Skate Bathyraja spp. egg predation in the eastern Bering Sea.

    Science.gov (United States)

    Hoff, G R

    2009-01-01

    Predation on skate eggs by snails was examined for three skate species at seven nursery sites in three regions (north, middle and south) of the eastern Bering Sea. Mean predation levels were 6.46% for the Alaska skate Bathyraja parmifera, 2.65% for the Aleutian skate Bathyraja aleutica and 22.25% for the Bering skate Bathyraja interrupta. Predation levels were significantly higher at the middle and north sites than the south sites for all species combined. Predation levels decreased with increasing egg-case densities at all nursery sites, and the highest predation levels occurred where egg-case densities were very low. Predated egg-case density increased with increasing snail densities across all nursery sites examined. The Oregon triton Fusitriton oregonensis was the most abundant snail species at all nursery sites and displayed ability to drill holes in the egg case of B. parmifera. Holes left by predatory snails in egg cases of B. parmifera were significantly larger, and of different shape at the middle site compared to the south site. Holes in B. parmifera were also significantly larger than those in egg cases of B. interrupta across all sites examined. Egg cases of B. aleutica possess surface spines that cover the egg case and may inhibit predation by snails at a greater rate than that of the B. parmifera and B. interrupta, which have a smoother egg-case surface.

  6. Informed renesting decisions: the effect of nest predation risk.

    Science.gov (United States)

    Pakanen, Veli-Matti; Rönkä, Nelli; Thomson, Robert L; Koivula, Kari

    2014-04-01

    Animals should cue on information that predicts reproductive success. After failure of an initial reproductive attempt, decisions on whether or not to initiate a second reproductive attempt may be affected by individual experience and social information. If the prospects of breeding success are poor, long-lived animals in particular should not invest in current reproductive success (CRS) in case it generates costs to future reproductive success (FRS). In birds, predation risk experienced during breeding may provide a cue for renesting success. Species having a high FRS potential should be flexible and take predation risk into account in their renesting decisions. We tested this prediction using breeding data of a long-lived wader, the southern dunlin Calidris alpina schinzii. As predicted, dunlin cued on predation risk information acquired from direct experience of nest failure due to predation and ambient nest predation risk. While the overall renesting rate was low (34.5%), the early season renesting rate was high but declined with season, indicating probable temporal changes in the costs and benefits of renesting. We develop a conceptual cost-benefit model to describe the effects of the phase and the length of breeding season on predation risk responses in renesting. We suggest that species investing in FRS should not continue breeding in short breeding seasons in response to predation risk but without time constraints, their response should be similar to species investing in CRS, e.g. within-season dispersal and increased nest concealment.

  7. Reduced flocking by birds on islands with relaxed predation.

    Science.gov (United States)

    Beauchamp, Guy

    2004-05-22

    Adaptive hypotheses for the evolution of flocking in birds have usually focused on predation avoidance or foraging enhancement. It still remains unclear to what extent each factor has contributed to the evolution of flocking. If predation avoidance were the sole factor involved, flocking should not be prevalent when predation is relaxed. I examined flocking tendencies along with mean and maximum flock size in species living on islands where predation risk is either absent or negligible and then compared these results with matched counterparts on the mainland. The dataset consisted of 46 pairs of species from 22 different islands across the world. The tendency to flock was retained on islands in most species, but in pairs with dissimilar flocking tendencies, island species were less likely to flock. Mean and maximum flock size were smaller on islands than on the mainland. Potential confounding factors such as population density, nest predation, habitat type, food type and body mass failed to account for the results. The results suggest that predation is a significant factor in the evolution of flocking in birds. Nevertheless, predation and other factors, such as foraging enhancement, probably act together to maintain the trait in most species.

  8. Predation Risk Shapes Social Networks in Fission-Fusion Populations

    Science.gov (United States)

    Kelley, Jennifer L.; Morrell, Lesley J.; Inskip, Chloe; Krause, Jens; Croft, Darren P.

    2011-01-01

    Predation risk is often associated with group formation in prey, but recent advances in methods for analysing the social structure of animal societies make it possible to quantify the effects of risk on the complex dynamics of spatial and temporal organisation. In this paper we use social network analysis to investigate the impact of variation in predation risk on the social structure of guppy shoals and the frequency and duration of shoal splitting (fission) and merging (fusion) events. Our analyses revealed that variation in the level of predation risk was associated with divergent social dynamics, with fish in high-risk populations displaying a greater number of associations with overall greater strength and connectedness than those from low-risk sites. Temporal patterns of organisation also differed according to predation risk, with fission events more likely to occur over two short time periods (5 minutes and 20 minutes) in low-predation fish and over longer time scales (>1.5 hours) in high-predation fish. Our findings suggest that predation risk influences the fine-scale social structure of prey populations and that the temporal aspects of organisation play a key role in defining social systems. PMID:21912627

  9. Predation as a landscape effect: the trading off by prey species between predation risks and protection benefits.

    Science.gov (United States)

    Mönkkönen, M; Husby, M; Tornberg, R; Helle, P; Thomson, R L

    2007-05-01

    1. Predators impose costs on their prey but may also provide benefits such as protection against other (e.g. nest) predators. The optimal breeding location in relation to the distance from a nesting raptor varies so as to minimize the sum of costs of adult and nest predation. We provide a conceptual model to account for variation in the relative predation risks and derive qualitative predictions for how different prey species should respond to the distance from goshawk Accipiter gentilis nests. 2. We test the model predictions using a comprehensive collection of data from northern Finland and central Norway. First, we carried out a series of experiments with artificial bird nests to test if goshawks may provide protection against nest predation. Second, we conducted standard bird censuses and nest-box experiments to detect how the density or territory occupancy of several prey species varies with distance from the nearest goshawk nest. 3. Nest predation rate increased with distance from goshawk nest indicating that goshawks may provide protection for birds' nests against nest predation. Abundance (or probability of presence) of the main prey species of goshawks peaked at intermediate distances from goshawk nests, reflecting the trade-off. The abundance of small songbird species decreased with distance from goshawk nests. The goshawk poses little risk to small songbirds and they may benefit from goshawk proximity in protection against nest predation. Finally, no pattern with distance in pied flycatcher territory (nest box) occupation rate or the onset of egg-laying was detected. This is expected, as flycatchers neither suffer from marked nest predation risk nor are favoured goshawk prey. 4. Our results suggest that territory location in relation to the nest of a predator is a trade-off situation where adult birds weigh the risk of themselves being predated against the benefits accrued from increased nest survival. Prey species appear able to detect and measure

  10. Desert bighorn sheep lambing habitat: Parturition, nursery, and predation sites

    Science.gov (United States)

    Karsch, Rebekah C.; Cain, James W.; Rominger, Eric M.; Goldstein, Elise J.

    2016-01-01

    Fitness of female ungulates is determined by neonate survival and lifetime reproductive success. Therefore, adult female ungulates should adopt behaviors and habitat selection patterns that enhance survival of neonates during parturition and lactation. Parturition site location may play an important role in neonatal mortality of desert bighorn sheep (Ovis canadensis mexicana) when lambs are especially vulnerable to predation, but parturition sites are rarely documented for this species. Our objectives were to assess environmental characteristics at desert bighorn parturition, lamb nursery, and predation sites and to assess differences in habitat characteristics between parturition sites and nursery group sites, and predation sites and nursery group sites. We used vaginal implant transmitters (VITs) to identify parturition sites and capture neonates. We then compared elevation, slope, terrain ruggedness, and visibility at parturition, nursery, and lamb predation sites with paired random sites and compared characteristics of parturition sites and lamb predation sites to those of nursery sites. When compared to random sites, odds of a site being a parturition site were highest at intermediate slopes and decreased with increasing female visibility. Odds of a site being a predation site increased with decreasing visibility. When compared to nursery group sites, odds of a site being a parturition site had a quadratic relationship with elevation and slope, with odds being highest at intermediate elevations and intermediate slopes. When we compared predation sites to nursery sites, odds of a site being a predation were highest at low elevation areas with high visibility and high elevation areas with low visibility likely because of differences in hunting strategies of coyote (Canis latrans) and puma (Puma concolor). Parturition sites were lower in elevation and slope than nursery sites. Understanding selection of parturition sites by adult females and how habitat

  11. Does a Simple Cope's Rule Mechanism Overlook Predators?

    International Nuclear Information System (INIS)

    Penteriani, V.; Kenward, R.

    2007-01-01

    The Copes rule predicts a tendency for species to evolve towards an increase in size. Recently, it has been suggested that such a tendency is due to the fact that large body sizes provide a general increase in individual fitness. Here we highlight evidence that predator species do not always fit the large-size = high-fitness mechanism for Copes rule. Given the specific requirements of predators and the complexity of prey-predator relationships, any analysis that does not take into account all animal groups may overlook a significant portion of evolutive trends. Generalisations may not be possible regardless of taxa.

  12. Pre-Dispersal Seed Predation in a Species-Rich Forest Community: Patterns and the Interplay with Determinants.

    Directory of Open Access Journals (Sweden)

    Yue Xu

    Full Text Available Pre-dispersal seed predation (PDSP is commonly observed in woody plants, and recognized as a driver of seed production variability that is critical for successful regeneration. Earlier studies on PDSP and its determinants were mostly species specific, with community-level PDSP rarely estimated; and the interactions between the temporal variability of seed production and PDSP remain elusive. In this study, the community seed rain of woody plants in a mixed evergreen-deciduous broadleaf forest was monitored for seven years. We examined predation on collected seeds and analyzed the determinants of PDSP. PDSP was recorded in 17 out of 44 woody plant species, and three-quarters of PDSP was due to insect predators. Annual seed production varied substantially at community level, reversely linked with the temporal variation of PDSP rate. The PDSP rate was biased regarding fruit types, and being significantly correlated with seed mass when using phylogenetic independent contrasts (PICs or without taking into account phylogenetic relations, especially for nuts. PDSP rate was also negatively correlated with seed density, showing a threshold-related predator satiation effect. The community-level PDSP rate was primarily determined by tree height, fruit type, and interannual variation of seed production and seed mass. Our analysis revealed a causal link between seed production and the dynamics of PDSP rate at the community level. The predator satiation effect was primarily contributed by the dominant species, whereas the rare species seemed to apply a distinct "hide-and-seek" strategy to control the risk of PDSP. The mechanistic difference of seed production between the common and rare species can shed new light on species coexistence and community assembly. Long-term monitoring of both seed rain and seed predation is required for understanding the ecological and evolutionary implications of species regeneration strategies in a species-rich forest community.

  13. Evolution of nesting height in an endangered Hawaiian forest bird in response to a non-native predator.

    Science.gov (United States)

    Vanderwerf, Eric A

    2012-10-01

    The majority of bird extinctions since 1800 have occurred on islands, and non-native predators have been the greatest threat to the persistence of island birds. Island endemic species often lack life-history traits and behaviors that reduce the probability of predation and they can become evolutionarily trapped if they are unable to adapt, but few studies have examined the ability of island species to respond to novel predators. The greatest threat to the persistence of the Oahu Elepaio (Chasiempis ibidis), an endangered Hawaiian forest bird, is nest predation by non-native black rats (Rattus rattus). I examined whether Oahu Elepaio nest placement has changed at the individual and population levels in response to rat predation by measuring nest height and determining whether each nest produced offspring from 1996 to 2011. Average height of Oahu Elepaio nests increased 50% over this 16-year period, from 7.9 m (SE 1.7) to 12.0 m (SE 1.1). There was no net change in height of sequential nests made by individual birds, which means individual elepaios have not learned to place nests higher. Nests ≤3 m off the ground produced offspring less often, and the proportion of such nests declined over time, which suggests that nest-building behavior has evolved through natural selection by predation. Nest success increased over time, which may increase the probability of long-term persistence of the species. Rat control may facilitate the evolution of nesting height by slowing the rate of population decline and providing time for this adaptive response to spread through the population. ©2012 Society for Conservation Biology.

  14. Development of a System wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Section II: Evaluation; 1996 Annual Report

    International Nuclear Information System (INIS)

    Young, Franklin R.

    1997-01-01

    Predator control fisheries aimed at reducing predation on juvenile salmonids by northern squawfish (Ptychocheilus oregonensis) were implemented for the seventh consecutive year in the mainstream Columbia and Snake rivers

  15. Extinction and permanence in delayed stage-structure predator-prey system with impulsive effects

    International Nuclear Information System (INIS)

    Pang Guoping; Wang Fengyan; Chen Lansun

    2009-01-01

    Based on the classical stage-structured model and Lotka-Volterra predator-prey model, an impulsive delayed differential equation to model the process of periodically releasing natural enemies at fixed times for pest control is proposed and investigated. We show that the conditions for global attractivity of the 'pest-extinction' ('prey-eradication') periodic solution and permanence of the population of the model depend on time delay. We also show that constant maturation time delay and impulsive releasing for the predator can bring great effects on the dynamics of system by numerical analysis. As a result, the pest maturation time delay is considered to establish a procedure to maintain the pests at an acceptably low level in the long term. In this paper, the main feature is that we introduce time delay and pulse into the predator-prey (natural enemy-pest) model with age structure, exhibit a new modelling method which is applied to investigate impulsive delay differential equations, and give some reasonable suggestions for pest management.

  16. How do brent geese (Branta b. bernicla) cope with evil?; complex relationships between predators and prey

    NARCIS (Netherlands)

    Ebbinge, B.S.; Spaans, B.

    2002-01-01

    Actual predation is rarely observed in the field, and therefore the role of predators is often severely underestimated. Species are limited in their distribution, which is caused not only by predation but also by the anti-predator behaviour that prey-species have developed under the continuous

  17. Costly plastic morphological responses to predator specific odour cues in three-spined sticklebacks (Gasterosteus aculeatus)

    NARCIS (Netherlands)

    Frommen, Joachim G.; Herder, Fabian; Engqvist, Leif; Mehlis, Marion; Bakker, Theo C. M.; Schwarzer, Julia; Thuenken, Timo

    Predation risk is one of the major forces affecting phenotypic variation among and within animal populations. While fixed anti-predator morphologies are favoured when predation level is consistently high, plastic morphological responses are advantageous when predation risk is changing temporarily,

  18. Nest predators of open and cavity nesting birds in oak woodlands

    Science.gov (United States)

    Kathryn L. Purcell; Jared Verner

    1999-01-01

    Camera setups revealed at least three species of rodents and seven species of birds as potential predators at artificial open nests. Surprisingly, among avian predators identified at open nests, one third were Bullock's Orioles (Icterus bullockii). Two rodent species and three bird species were potential predators at artificial cavity nests. This high predator...

  19. The nest predator assemblage for songbirds in Mono Lake basin riparian habitats

    Science.gov (United States)

    Quresh S. Latif; Sacha K. Heath; Grant Ballard

    2012-01-01

    Because nest predation strongly limits avian fitness, ornithologists identify nest predators to inform ecological research and conservation. During 2002–2008, we used both video-monitoring of natural nests and direct observations of predation to identify nest predators of open-cup nesting riparian songbirds along tributaries of Mono Lake, California. Video cameras at...

  20. Pemangsaan Propagul Mangrove Rhizophora sp. Sebagai Bukti Teori Dominance-Predation (Predation of Mangrove Propagule, Rhizophora sp. as Evidence of Dominance-Predation Theory

    Directory of Open Access Journals (Sweden)

    Rudhi Pribadi

    2014-06-01

    Propagule predation on mangrove in some extent reduced its viability to grow into seedling. The predation could happened before (pre-dispersal or after (post-dispersal the propagule drop from the tree.The reasearch was conducted in Pasar Banggi, Rembang District, Central Java. The aim was to investigate the predation rate of Rhizophora mucronata Lamk., R. stylosa Griff. and R. apiculata Blume propagules pre-dispersal and post-dispersal. Firstly, preface experiment for find domination spesies in the location, Second, with applied descriptive-based survey sampling and field experiment methods. Than all propagules of five replication trees were harvested and checked for its condition on pre-dispersal step. The third, with post-dispersal study there were twenty propagules from each spesies and tied them with used nylon string and placed on the forest floor for 2 until 18 days and checked its condition every 2 days after placement. This study is also set for tested the Smith’s theory on propagule predation related to tree domination. Rhizophora stylosa propagule was  most predated before they fall (mean 61,06%, range 45,40-76,05%, followed by R. apiculata (mean 58,18%, range 47,41-68% and the lowest isR. mucronata with mean 11,88% (range 7,06-15,71%. After 18 days of experiment in the field R. stylosa propagule in R. stylosa–dominated area was the lowest predated (mean 46,67% compared to propagule in the area dominated by R. apiculata (63,33% and also in R. mucronata area (83,33 Predated R. mucronata propagule is the highest in the R. mucronata dominated area (mean 95% compared with R. apiculata dominated area (mean 55% and also in R. stylosa dominated area (45%. Pradated of R. apiculata propagule is the lowest in the domination area of R. apiculata (50% compared with R. stylosa area domination with (mean 70% also R. mucronata (73,33%. The result showed that the theory of dominance-predation can be proved only for R. stylosa and R. apiculata spesies, but not for R

  1. How mammalian predation contributes to tropical tree community structure.

    Science.gov (United States)

    Paine, C E Timothy; Beck, Harald; Terborgh, John

    2016-12-01

    The recruitment of seedlings from seeds is the key demographic transition for rain forest trees. Though tropical forest mammals are known to consume many seeds, their effects on tree community structure remain little known. To evaluate their effects, we monitored 8,000 seeds of 24 tree species using exclosure cages that were selectively permeable to three size classes of mammals for up to 4.4 years. Small and medium-bodied mammals removed many more seeds than did large mammals, and they alone generated beta diversity and negative density dependence, whereas all mammals reduced diversity and shaped local species composition. Thus, small and medium-bodied mammals more strongly contributed to community structure and promoted species coexistence than did large mammals. Given that seedling recruitment is seed limited for most species, alterations to the composition of the community of mammalian seed predators is expected to have long-term consequences for tree community structure in tropical forests. © 2016 by the Ecological Society of America.

  2. Invasion of Hydrous Fluids Predates Kimberlite Formation

    Science.gov (United States)

    Kopylova, M. G.; Wang, Q.; Smith, E. M.

    2017-12-01

    Petrological observations on diamonds and peridotite xenoliths in kimberlites point towards an influx of hydrous metasomatic fluids shortly predating kimberlite formation. Diamonds may grow at different times within the same segment of the cratonic mantle, and diamonds that form shortly before (diamonds typically contain 10-25 wt.% water in fluid inclusions, while older octahedrally-grown diamonds host "dry" N2-CO2 fluids. Our recent studies of fluids in diamond now show that many different kinds of diamonds can contain fluid inclusions. Specifically, we found a new way to observe and analyze fluids in octahedrally-grown, non-fibrous diamonds by examining healed fractures. This is a new textural context for fluid inclusions that reveals a valuable physical record of infiltrating mantle fluids, that postdate diamond growth, but equilibrate within the diamond stability field at depths beyond 150 km. Another sign of the aqueous fluids influx is the formation of distinct peridotite textures shortly predating the kimberlite. Kimberlites entrain peridotite xenoliths with several types of textures: older coarse metamorphic textures and younger, sheared textures. The preserved contrast in grain sizes between porphyroclasts and neoblasts in sheared peridotites constrain the maximum duration of annealing. Experimental estimates of the annealing time vary from 7x107 sec (2 years) to 106 years (1 My) depending on olivine hydration, strain rate, pressure, temperature and, ultimately, the annealing mechanism. Kimberlite sampling of sheared peridotites from the lithosphere- asthenosphere boundary (LAB) implies their formation no earlier than 1 My prior to the kimberlite ascent. Water contents of olivine measured by FTIR spectrometry using polarized light demonstrated contrasting hydration of coarse and sheared samples. Olivine from sheared peridotite samples has the average water content of 78±3 ppm, in contrast to the less hydrated coarse peridotites (33±6 ppm). LAB hydration

  3. Invasive plant architecture alters trophic interactions by changing predator abundance and behavior.

    Science.gov (United States)

    Pearson, Dean E

    2009-03-01

    As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa), has fundamentally altered the architecture of native grassland vegetation. Here, I use long-term monitoring, observational studies, and field experiments to document how changes in vegetation architecture have affected native web spider populations and predation rates. Native spiders that use vegetation as web substrates were collectively 38 times more abundant in C. maculosa-invaded grasslands than in uninvaded grasslands. This increase in spider abundance was accompanied by a large shift in web spider community structure, driven primarily by the strong response of Dictyna spiders to C. maculosa invasion. Dictyna densities were 46-74 times higher in C. maculosa-invaded than native grasslands, a pattern that persisted over 6 years of monitoring. C. maculosa also altered Dictyna web building behavior and foraging success. Dictyna webs on C. maculosa were 2.9-4.0 times larger and generated 2.0-2.3 times higher total prey captures than webs on Achillea millefolium, their primary native substrate. Dictyna webs on C. maculosa also captured 4.2 times more large prey items, which are crucial for reproduction. As a result, Dictyna were nearly twice as likely to reproduce on C. maculosa substrates compared to native substrates. The overall outcome of C. maculosa invasion and its transformative effects on vegetation architecture on Dictyna density and web building behavior were to increase Dictyna predation on invertebrate prey >/=89 fold. These results indicate that invasive plants that change the architecture of native vegetation can substantially impact native food webs via nontraditional plant --> predator --> consumer

  4. Competition, predation and species responses to environmental change

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lin; Kulczychi, A. [Rutgers Univ., Cook College, Dept. of Ecology, Evolution and Natural Resources, New Brunswick, NJ (United States)

    2004-08-01

    Despite much effort over the past decade on the ecological consequences of global warming, ecologists still have little understanding of the importance of interspecific interactions in species responses to environmental change. Models predict that predation should mitigate species responses to environmental change, and that interspecific competition should aggravate species responses to environmental change. To test this prediction, we studied how predation and competition affected the responses of two ciliates, Colpidiumstriatum and Parameciumtetraurelia, to temperature change in laboratory microcosms. We found that neither predation nor competition altered the responses of Colpidiumstratum to temperature change, and that competition but not predation altered the responses of Paramecium tetraurelia to temperature change. Asymmetric interactions and temperature-dependent interactions may have contributed to the disparity between model predictions and experimental results. Our results suggest that models ignoring inherent complexities in ecological communities may be inadequate in forecasting species responses to environmental change. (au)

  5. Predation on large mammals in the Kafue National Park, Zambia

    African Journals Online (AJOL)

    Benson, Dr. A. S. Mossman, Dr. J. S. Weir and particularly to Graham Child all of ..... themselves with easily killed species, warthog Phacachaerus aethiopicus, ...... tion made by Wright (1960) that the degree of predation can be manipulated by ...

  6. Coastal niches for terrestrial predators: a stable isotope study

    Energy Technology Data Exchange (ETDEWEB)

    Mellbrand, K.; Hamback, P.A., E-mail: peter.hamback@botan.su.se [Stockholm Univ., Dept. of Botany, Stockholm (Sweden)

    2010-12-15

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  7. Coastal niches for terrestrial predators: a stable isotope study

    International Nuclear Information System (INIS)

    Mellbrand, K.; Hamback, P.A.

    2010-01-01

    The purpose of this study was to identify the use of marine versus terrestrial food items by terrestrial arthropod predators on Baltic Sea shores. The inflow of marine nutrients in the area consists mainly of marine algal detritus and emerging aquatic insects (e.g., chironomids). Diets of coastal arthropods were examined using carbon and nitrogen stable isotope analysis in a two source mixing model. The results suggest that spiders are the terrestrial predators mainly utilizing nutrients and energy of marine origin on Baltic Sea shores, whereas insect predators such as beetles and heteropterans mainly utilize nutrients and energy derived from terrestrial sources, possibly owing to differences in hunting behaviour. That spiders are the predators which benefit the most from the marine inflow suggest that eventual effects of marine subsidies for the coastal ecosystem as a whole are likely mediated by spiders. (author)

  8. Cormorant predation on PIT-tagged lake fish

    DEFF Research Database (Denmark)

    Skov, Christian; Jepsen, Niels; Baktoft, Henrik

    2014-01-01

    The present study use data from recovered PIT (Passive Integrated Transponder) tags to explore species-and size-specific annual predation rates by cormorants on three common lacustrine fishes (size range 120-367 mm) in a European lake; roach (Rutilus rutilus), common bream (Abramis brama) and perch...... (Perca fluviatilis). In addition, we quantify the level of age/size truncation that cormorant predation could introduce in a population of perch, an important fish for recreational angling as well as for trophic interactions and ecosystem function in European lakes. Based on three years of PIT tagging...... of fish in Lake Viborg and subsequent recoveries of PIT tags from nearby cormorant roosting and breeding sites, we show that cormorants are major predators of roach, bream and perch within the size groups we investigated and for all species larger individuals had higher predation rates. Perch appear...

  9. Shark predation on Indian Ocean bottlenose dolphins TUTSiops ...

    African Journals Online (AJOL)

    1988-10-24

    Oct 24, 1988 ... Four species of shark, the Zambesi (Carcharhinus leucas), the tiger (Galeocerdo ... level of shark predation on bottlenose dolphins was unknown it appeared to ..... possible examples of these adaptations. Acknowledgments.

  10. Predator persistence through variability of resource productivity in Tritrophic systems

    DEFF Research Database (Denmark)

    Soudijn, Floor Helena; de Roos, Andre M.

    2017-01-01

    The trophic structure of species communities depends on the energy transfer between trophic levels. Primary productivity varies strongly through time, challenging the persistence of species at higher trophic levels. Yet resource variability has mostly been studied in systems with only one or two...... trophic levels. We test the effect of variability in resource productivity in a tritrophic model system including a resource, a size-structured consumer, and a size-specific predator. The model complies with fundamental principles of mass conservation and the body-size dependence of individual......-level energetics and predator-prey interactions. Surprisingly, we find that resource variability may promote predator persistence. The positive effect of variability on the predator arises through periods with starvation mortality of juvenile prey, which reduces the intraspecific competition in the prey population...

  11. Predators induce interspecific herbivore competition for food in refuge space

    NARCIS (Netherlands)

    Pallini, A.; Janssen, A.; Sabelis, M.W.

    1998-01-01

    Resource competition among herbivorous arthropods has long been viewed as unimportant because herbivore populations are controlled by predators. Although recently resurrected as an organizing force in arthropod communities on plants, there is still general agreement that resource competition among

  12. Signaling by decorating webs: luring prey or deterring predators?

    OpenAIRE

    Ren-Chung Cheng; I-Min Tso

    2007-01-01

    Many organisms convey false signals to mislead their prey or predators. Some orb-weaving spiders build conspicuous structures on webs called decorations. Web decorations and spider colorations are both suggested to be important signals involved in interactions between spiders and other organisms. There are several hypotheses about the functions of signaling by decorations, among which prey attraction had received much support, but empirical evidence regarding predator defense is controversial...

  13. Disentangling mite predator-prey relationships by multiplex PCR.

    Science.gov (United States)

    Pérez-Sayas, Consuelo; Pina, Tatiana; Gómez-Martínez, María A; Camañes, Gemma; Ibáñez-Gual, María V; Jaques, Josep A; Hurtado, Mónica A

    2015-11-01

    Gut content analysis using molecular techniques can help elucidate predator-prey relationships in situations in which other methodologies are not feasible, such as in the case of trophic interactions between minute species such as mites. We designed species-specific primers for a mite community occurring in Spanish citrus orchards comprising two herbivores, the Tetranychidae Tetranychus urticae and Panonychus citri, and six predatory mites belonging to the Phytoseiidae family; these predatory mites are considered to be these herbivores' main biological control agents. These primers were successfully multiplexed in a single PCR to test the range of predators feeding on each of the two prey species. We estimated prey DNA detectability success over time (DS50), which depended on the predator-prey combination and ranged from 0.2 to 18 h. These values were further used to weight prey detection in field samples to disentangle the predatory role played by the most abundant predators (i.e. Euseius stipulatus and Phytoseiulus persimilis). The corrected predation value for E. stipulatus was significantly higher than for P. persimilis. However, because this 1.5-fold difference was less than that observed regarding their sevenfold difference in abundance, we conclude that P. persimilis is the most effective predator in the system; it preyed on tetranychids almost five times more frequently than E. stipulatus did. The present results demonstrate that molecular tools are appropriate to unravel predator-prey interactions in tiny species such as mites, which include important agricultural pests and their predators. © 2015 John Wiley & Sons Ltd.

  14. Evaluation of predator-proof fenced biodiversity projects

    OpenAIRE

    Doelle, Sebastian

    2012-01-01

    There has been recent debate over the role of predator-proof fences in the management of New Zealand’s biodiversity. The debate has arisen due to concern that investments in fenced sanctuaries are less productive than are alternative ways to manage biodiversity. Predator-proof fences are costly and budget constraints limit the area of habitat that can be fenced. The area of habitat enclosed within fences, and number of individuals of species supported, determines project’s ability to contribu...

  15. Can cat predation help competitors coexist in seabird communities?

    Science.gov (United States)

    Pontier, Dominique; Fouchet, David; Bried, Joël

    2010-01-07

    On oceanic islands, nest site availability can be an important factor regulating seabird population dynamics. The potential for birds to secure a nest to reproduce can be an important component of their life histories. The dates at which different seabird species arrive at colonies to breed will have important consequences for their relative chances of success. Early arrival on the island allows birds to obtain nests more easily and have higher reproductive success. However, the presence of an introduced predator may reverse this situation. For instance, in the sub-Antarctic Kerguelen archipelago, early arriving birds suffer heavy predation from introduced cats. Cats progressively switch from seabirds to rabbits, since the local rabbit population starts to peak after early arriving seabird species have already returned to the colony. When late-arriving birds arrive, cat predation pressure on seabirds is thus weaker. In this paper, we investigate the assumption that the advantage of early nest mnopolization conferred to early arriving birds may be counterbalanced by the cost resulting from predation. We develop a mathematical model representing a simplified situation in which two insular seabird species differ only in their arrival date at the colony site and compete for nesting sites. We conclude that predation may ensure the coexistence of the two bird species or favor the late-arriving species, but only when seasonal variations in predation pressure are large. Interestingly, we conclude that arriving early is only favorable until a given level where high reproductive success no longer compensates for the long exposure to strong predation pressure. Our work suggests that predation can help to maintain the balance between species of different phenologies.

  16. Effects of viruses and predators on prokaryotic community composition.

    Science.gov (United States)

    Jardillier, Ludwig; Bettarel, Yvan; Richardot, Mathilde; Bardot, Corinne; Amblard, Christian; Sime-Ngando, Télesphore; Debroas, Didier

    2005-11-01

    Dialysis bags were used to examine the impact of predation and viral lysis on prokaryotic community composition (PCC) over a 5-day experiment in the oligomesotrophic Lake Pavin (France). The impact of the different predator communities (protists and metazoans) of prokaryotes was estimated by water fractionation (protists, which also affected PCC, whereas viruses seemed to be essentially responsible for profound changes in PCC via direct and indirect actions.

  17. Balancing food and predator pressure induces chronic stress in songbirds.

    OpenAIRE

    Clinchy, Michael; Zanette, Liana; Boonstra, Rudy; Wingfield, John C.; Smith, James N. M.

    2004-01-01

    The never-ending tension between finding food and avoiding predators may be the most universal natural stressor wild animals experience. The 'chronic stress' hypothesis predicts: (i) an animal's stress profile will be a simultaneous function of food and predator pressures given the aforesaid tension; and (ii) these inseparable effects on physiology will produce inseparable effects on demography because of the resulting adverse health effects. This hypothesis was originally proposed to explain...

  18. Predator confusion is sufficient to evolve swarming behavior

    OpenAIRE

    Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph

    2012-01-01

    Swarming behaviors in animals have been extensively studied due to their implications for the evolution of cooperation, social cognition, and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favor the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model...

  19. Escape Behavior and Predation Risk of Mainland and Island Spiny-tailed Iguanas (Ctenosaura hemilopha)

    OpenAIRE

    Blázquez, M.C.; Rodríguez-Estrella, Ricardo; Delibes, M.

    1997-01-01

    We investigated the relationships between predator avoidance behavior and predation risk by comparing the wariness of iguanas (Ctenosaura hemilopha) belonging to an island population with few predators with that of iguanas belonging to a mainland population under high predation pressure. We predicted that island iguanas would be less wary than mainland ones. Island iguanas allowed the closer approach of potential predators before their first reaction and fleeing. The responses of both sexes d...

  20. Wary invaders and clever natives: sympatric house geckos show disparate responses to predator scent

    OpenAIRE

    Adam Cisterne; Eric P. Vanderduys; David A. Pike; Lin Schwarzkopf

    2014-01-01

    The ability to detect and avoid potential predators can enhance fitness, but also has costs, and thus many animals respond to potential predators either in a general (avoid all potential predators) or threat-sensitive (selectively avoid dangerous predators) manner. We used 2-choice trials to investigate strategies used by globally invasive house geckos (Hemidactylus frenatus) and native Australian house geckos (Gehyra dubia) to avoid chemical cues from potential snake predators (Acanthophis a...

  1. Predation of Ladybird Beetles (Coleoptera: Coccinellidae) by Amphibians.

    Science.gov (United States)

    Sloggett, John J

    2012-07-18

    Studies of predation of ladybird beetles (Coccinellidae) have focused on a limited number of predator taxa, such as birds and ants, while other potential predators have received limited attention. I here consider amphibians as predators of ladybirds. Published amphibian gut analyses show that ladybirds are quite often eaten by frogs and toads (Anura), with recorded frequencies reaching up to 15% of dietary items. Salamanders (Caudata) eat ladybirds less frequently, probably as their habits less often bring them into contact with the beetles. Amphibians do not appear to be deleteriously affected by the potentially toxic alkaloids that ladybirds possess. Amphibians, especially frogs and toads, use primarily prey movement as a release cue to attack their food; it is thus likely that their ability to discriminate against ladybirds and other chemically defended prey is limited. Because of this poor discriminatory power, amphibians have apparently evolved non-specific resistance to prey defensive chemicals, including ladybird alkaloids. Although amphibian-related ladybird mortality is limited, in certain habitats it could outweigh mortality from more frequently studied predators, notably birds. The gut analyses from the herpetological literature used in this study, suggest that in studying predation of insects, entomologists should consider specialized literature on other animal groups.

  2. Nest predation risk explains variation in avian clutch size

    Science.gov (United States)

    Dillon, Kristen G.; Conway, Courtney J.

    2018-01-01

    Questions about the ecological drivers of, and mechanistic constraints on, productivity have driven research on life-history evolution for decades. Resource availability and offspring mortality are considered among the 2 most important influences on the number of offspring per reproductive attempt. We used a factorial experimental design to manipulate food abundance and perceived offspring predation risk in a wild avian population (red-faced warblers; Cardellina rubrifrons) to identify the mechanistic cause of variation in avian clutch size. Additionally, we tested whether female quality helped explain the extant variation in clutch size. We found no support for the Food Limitation or Female Quality Hypotheses, but we did find support for both predictions of the Nest Predation Risk Hypothesis. Females that experienced an experimentally heightened perception of offspring predation risk responded by laying a smaller clutch than females in the control group. Additionally, predation rates at artificial nests were highest where red-faced warbler clutch size was smallest (at high elevations). Life-history theory predicts that an individual should invest less in reproduction when high nest predation risk reduces the likely benefit from that nesting attempt and, indeed, we found that birds exhibit phenotypic plasticity in clutch size by laying fewer eggs in response to increasing nest predation risk.

  3. Response of predators to Western Sandpiper nest exclosures

    Science.gov (United States)

    Niehaus, Amanda C.; Ruthrauff, Daniel R.; McCaffery, Brian J.

    2004-01-01

    In 2001, predator exclosures were used to protect nests of the Western Sandpiper (Calidris mauri) in western Alaska. During the exclosure experiment, nest contents in exclosures had significantly higher daily survival rates than control nests, however, late in the study predators began to cue in on exclosures and predate the nest contents. An Arctic Fox (Alopex lagopus) dug under one exclosure and took the newly hatched chicks, and Long-tailed Jaegers (Stercorarius longicaudus) learned to associate exclosures with active nests and repeatedly visited them. The jaegers attempted to gain access to exclosed nests and pursued adult sandpipers as they emerged from the exclosures. The exclosures were removed to reduce potential mortality to adult and young sandpipers, but subsequently, post-exclosure nests had lower daily survival rates than controls during the same time period. Predation of post-exclosure eggs and chicks highlighted the lasting influence of the exclosure treatment on offspring survival because predators probably remembered nest locations. Researchers are urged to use caution when considering use of predator exclosures in areas where jaegers occur.

  4. Escaping peril: perceived predation risk affects migratory propensity

    DEFF Research Database (Denmark)

    Hulthén, Kaj; Chapman, Ben B.; Nilsson, P. Anders

    2015-01-01

    Although migratory plasticity is increasingly documented, the ecological drivers of plasticity are not well understood. Predation risk can influence migratory dynamics, but whether seasonal migrants can adjust their migratory behaviour according to perceived risk is unknown. We used electronic ta......) affected timing but not propensity showing that elevated risk carried over to alter migratory behaviour in the wild. Our key finding demonstrates predator-driven migratory plasticity, highlighting the powerful role of predation risk for migratory decision-making and dynamics.......Although migratory plasticity is increasingly documented, the ecological drivers of plasticity are not well understood. Predation risk can influence migratory dynamics, but whether seasonal migrants can adjust their migratory behaviour according to perceived risk is unknown. We used electronic tags...... in their lake summer habitat and monitored individual migration to connected streams over an entire season. Individuals exposed to increased perceived direct predation risk (i.e. a live predator) showed a higher migratory propensity but no change in migratory timing, while indirect risk (i.e. roach density...

  5. Bagworm bags as portable armour against invertebrate predators.

    Science.gov (United States)

    Sugiura, Shinji

    2016-01-01

    Some animals have evolved the use of environmental materials as "portable armour" against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae) construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae). Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators' mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators.

  6. Spizaetus hawk-eagles as predators of arboreal colobines.

    Science.gov (United States)

    Fam, S D; Nijman, V

    2011-04-01

    The predation pressure put on primates by diurnal birds of prey differs greatly between continents. Africa and South America have specialist raptors (e.g. crowned hawk-eagle Stephanoaetus coronatus and harpy eagle Harpia harpyja) whereas in Asia the only such specialist's (Philippine eagle Pithecophaga jefferyi) distribution is largely allopatric with primates. The almost universal absence of polyspecific groups in Asia (common in Africa and South America) may indicate reduced predation pressure. As such there is almost no information on predation pressures on primates in Asia by raptors. Here we report successful predation of a juvenile banded langur Presbytis femoralis (~2 kg) by a changeable hawk-eagle Spizaetus cirrhatus. The troop that was attacked displayed no signs of being alarmed, and no calls were made before the event. We argue that in insular Southeast Asia, especially, large Spizaetus hawk-eagles (~2 kg) are significant predators of arboreal colobines. Using data on the relative size of sympatric Spizaetus hawk-eagles and colobines we make predictions on where geographically we can expect the highest predation pressure (Thai-Malay Peninsula) and which colobines are least (Nasalis larvatus, Trachypithecus auratus, P. thomasi) and most (P. femoralis, T. cristatus) affected.

  7. Interactive effects of prey refuge and additional food for predator in a diffusive predator-prey system

    DEFF Research Database (Denmark)

    Chakraborty, Subhendu; Tiwari, P. K.; Sasmal, S.K.

    2017-01-01

    a predator-prey system with prey refuge and additional food for predator apart from the focal prey in the presence of diffusion. Our main aim is to study the interactive effects of prey refuge and additional food on the system dynamics and especially on the controllability of prey (pest). Different types......Additional food for predators has been considered as one of the best established techniques in integrated pest management and biological conservation programs. In natural systems, there are several other factors, e.g., prey refuge, affect the success of pest control. In this paper, we analyze...... of Turing patterns such as stripes, spots, holes, and mixtures of them are obtained. It is found that the supply of additional food to the predator is unable to control the prey (pest) population when prey refuge is high. Moreover, when both prey refuge and additional food are low, spatial distribution...

  8. Crossing latitudes--long-distance tracking of an apex predator.

    Directory of Open Access Journals (Sweden)

    Luciana C Ferreira

    Full Text Available Tiger sharks (Galeocerdo cuvier are apex predators occurring in most tropical and warm temperate marine ecosystems, but we know relatively little of their patterns of residency and movement over large spatial and temporal scales. We deployed satellite tags on eleven tiger sharks off the north-western coast of Western Australia and used the Brownian Bridge kernel method to calculate home ranges and analyse movement behaviour. One individual recorded one of the largest geographical ranges of movement ever reported for the species, travelling over 4000 km during 517 days of monitoring. Tags on the remainder of the sharks reported for shorter periods (7-191 days. Most of these sharks had restricted movements and long-term (30-188 days residency in coastal waters in the vicinity of the area where they were tagged. Core home range areas of sharks varied greatly from 1166.9 to 634,944 km2. Tiger sharks spent most of their time in water temperatures between 23°-26°C but experienced temperatures ranging from 6°C to 33°C. One shark displayed seasonal movements among three distinct home range cores spread along most of the coast of Western Australia and generalized linear models showed that this individual had different patterns of temperature and depth occupancy in each region of the coast, with the highest probability of residency occurring in the shallowest areas of the coast with water temperatures above 23°C. These results suggest that tiger sharks can migrate over very large distances and across latitudes ranging from tropical to the cool temperate waters. Such extensive long-term movements may be a key element influencing the connectivity of populations within and among ocean basins.

  9. Predicting prey population dynamics from kill rate, predation rate and predator-prey ratios in three wolf-ungulate systems.

    Science.gov (United States)

    Vucetich, John A; Hebblewhite, Mark; Smith, Douglas W; Peterson, Rolf O

    2011-11-01

    1. Predation rate (PR) and kill rate are both fundamental statistics for understanding predation. However, relatively little is known about how these statistics relate to one another and how they relate to prey population dynamics. We assess these relationships across three systems where wolf-prey dynamics have been observed for 41 years (Isle Royale), 19 years (Banff) and 12 years (Yellowstone). 2. To provide context for this empirical assessment, we developed theoretical predictions of the relationship between kill rate and PR under a broad range of predator-prey models including predator-dependent, ratio-dependent and Lotka-Volterra dynamics. 3. The theoretical predictions indicate that kill rate can be related to PR in a variety of diverse ways (e.g. positive, negative, unrelated) that depend on the nature of predator-prey dynamics (e.g. structure of the functional response). These simulations also suggested that the ratio of predator-to-prey is a good predictor of prey growth rate. That result motivated us to assess the empirical relationship between the ratio and prey growth rate for each of the three study sites. 4. The empirical relationships indicate that PR is not well predicted by kill rate, but is better predicted by the ratio of predator-to-prey. Kill rate is also a poor predictor of prey growth rate. However, PR and ratio of predator-to-prey each explained significant portions of variation in prey growth rate for two of the three study sites. 5. Our analyses offer two general insights. First, Isle Royale, Banff and Yellowstone are similar insomuch as they all include wolves preying on large ungulates. However, they also differ in species diversity of predator and prey communities, exploitation by humans and the role of dispersal. Even with the benefit of our analysis, it remains difficult to judge whether to be more impressed by the similarities or differences. This difficulty nicely illustrates a fundamental property of ecological

  10. Environmental forcing and Southern Ocean marine predator populations: effects of climate change and variability.

    Science.gov (United States)

    Trathan, P N; Forcada, J; Murphy, E J

    2007-12-29

    The Southern Ocean is a major component within the global ocean and climate system and potentially the location where the most rapid climate change is most likely to happen, particularly in the high-latitude polar regions. In these regions, even small temperature changes can potentially lead to major environmental perturbations. Climate change is likely to be regional and may be expressed in various ways, including alterations to climate and weather patterns across a variety of time-scales that include changes to the long interdecadal background signals such as the development of the El Niño-Southern Oscillation (ENSO). Oscillating climate signals such as ENSO potentially provide a unique opportunity to explore how biological communities respond to change. This approach is based on the premise that biological responses to shorter-term sub-decadal climate variability signals are potentially the best predictor of biological responses over longer time-scales. Around the Southern Ocean, marine predator populations show periodicity in breeding performance and productivity, with relationships with the environment driven by physical forcing from the ENSO region in the Pacific. Wherever examined, these relationships are congruent with mid-trophic-level processes that are also correlated with environmental variability. The short-term changes to ecosystem structure and function observed during ENSO events herald potential long-term changes that may ensue following regional climate change. For example, in the South Atlantic, failure of Antarctic krill recruitment will inevitably foreshadow recruitment failures in a range of higher trophic-level marine predators. Where predator species are not able to accommodate by switching to other prey species, population-level changes will follow. The Southern Ocean, though oceanographically interconnected, is not a single ecosystem and different areas are dominated by different food webs. Where species occupy different positions in

  11. Developing a predation index and evaluating ways to reduce salmonid losses to predation in the Columbia River basin

    International Nuclear Information System (INIS)

    Nigro, A.A.

    1990-12-01

    We report our results of studies to develop a predation index and evaluate ways to reduce juvenile salmonid losses to predation in the Columbia River Basin. Study objectives of each were: develop an index to estimate predation losses of juvenile salmonids (Oncorhynchus spp) in reservoirs throughout the Columbia River Basin, describe the relationships among predator-caused mortality of juvenile salmonids and physical and biological variables, examine the feasibility of developing bounty, commercial or recreational fisheries on northern squawfish (Ptychocheilus oregonensis) and develop a plan to evaluate the efficacy of predator control fisheries; determine the economic feasibility of developing bounty and commercial fisheries for northern squawfish, assist ODFW with evaluating the economic feasibility of recreational fisheries for northern squawfish and assess the economic feasibility of utilizing northern squawfish, carp (Cyprinus carpio) and suckers (Castostomus spp) in multispecies fisheries; evaluate commercial technology of various fishing methods for harvesting northern squawfish in Columbia River reservoirs and field test the effectiveness of selected harvesting systems, holding facilities and transportation systems; and modify the existing Columbia River Ecosystem Model (CREM) to include processes necessary to evaluate effects of removing northern squawfish on their population size structure and abundance, document the ecological processes, mathematical equations and computer (FORTRAN) programming of the revised version of CREM and conduct systematic analyses of various predator removal scenarios, using revised CREM to generate the simulations. Individual reports are indexed separately

  12. Anti-predator meshing may provide greater protection for sea turtle nests than predator removal.

    Directory of Open Access Journals (Sweden)

    Julie M O'Connor

    Full Text Available The problem of how to protect sea turtle nests from terrestrial predators is of worldwide concern. On Queensland's southern Sunshine Coast, depredation of turtle nests by the introduced European red fox (Vulpes vulpes has been recorded as the primary terrestrial cause of egg and hatchling mortality. We investigated the impact of foxes on the nests of the loggerhead turtle (Caretta caretta and occasional green turtle (Chelonia mydas over ten nesting seasons. Meshing of nests with fox exclusion devices (FEDs was undertaken in all years accompanied by lethal fox control in the first five-year period, but not in the second five-year period. Lethal fox control was undertaken in the study area from 2005 to February 2010, but foxes still breached 27% (range19-52% of turtle nests. In the second five-year period, despite the absence of lethal fox control, the average percentage of nests breached was less than 3% (range 0-4%. Comparison of clutch depredation rates in the two five-year periods demonstrated that continuous nest meshing may be more effective than lethal fox control in mitigating the impact of foxes on turtle nests. In the absence of unlimited resources available for the eradication of exotic predators, the use of FEDs and the support and resourcing of a dedicated volunteer base can be considered an effective turtle conservation tool on some beaches.

  13. Anti-predator meshing may provide greater protection for sea turtle nests than predator removal.

    Science.gov (United States)

    O'Connor, Julie M; Limpus, Colin J; Hofmeister, Kate M; Allen, Benjamin L; Burnett, Scott E

    2017-01-01

    The problem of how to protect sea turtle nests from terrestrial predators is of worldwide concern. On Queensland's southern Sunshine Coast, depredation of turtle nests by the introduced European red fox (Vulpes vulpes) has been recorded as the primary terrestrial cause of egg and hatchling mortality. We investigated the impact of foxes on the nests of the loggerhead turtle (Caretta caretta) and occasional green turtle (Chelonia mydas) over ten nesting seasons. Meshing of nests with fox exclusion devices (FEDs) was undertaken in all years accompanied by lethal fox control in the first five-year period, but not in the second five-year period. Lethal fox control was undertaken in the study area from 2005 to February 2010, but foxes still breached 27% (range19-52%) of turtle nests. In the second five-year period, despite the absence of lethal fox control, the average percentage of nests breached was less than 3% (range 0-4%). Comparison of clutch depredation rates in the two five-year periods demonstrated that continuous nest meshing may be more effective than lethal fox control in mitigating the impact of foxes on turtle nests. In the absence of unlimited resources available for the eradication of exotic predators, the use of FEDs and the support and resourcing of a dedicated volunteer base can be considered an effective turtle conservation tool on some beaches.

  14. Introduced mammalian predators induce behavioural changes in parental care in an endemic New Zealand bird.

    Directory of Open Access Journals (Sweden)

    Melanie Massaro

    Full Text Available The introduction of predatory mammals to oceanic islands has led to the extinction of many endemic birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthornis melanura. We examined parental behaviour of bellbirds at three woodland sites in New Zealand that differed in predation risk: 1 a mainland site with exotic predators present (high predation risk, 2 a mainland site with exotic predators experimentally removed (low risk recently and, 3 an off-shore island where exotic predators were never introduced (low risk always. We also compared parental behaviour of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp. that evolved with native nest predators (high risk always. Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrate that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible.

  15. Introduced mammalian predators induce behavioural changes in parental care in an endemic New Zealand bird

    Science.gov (United States)

    Massaro, M.; Starling-Windhof, A.; Briskie, J.V.; Martin, T.E.

    2008-01-01

    The introduction of predatory mammals to oceanic islands has led to the extension of many birds. Although introduced predators should favour changes that reduce predation risk in surviving bird species, the ability of island birds to respond to such novel changes remains unstudied. We tested whether novel predation risk imposed by introduced mammalian predators has altered the parental behaviour of the endemic New Zealand bellbird (Anthomis melanura). We examined parental behaviour of billbnirds at three woodlands sites in New Zealand that differed in predation risk: 1) a mainland site with exotic predators present (high predation risk), 2) a mainland site with exotic predators experimentally removed (low risk recently) and, 3) an off-shore island where exotic predators were never introduced (low risk always). We also compared parental behavior of bellbirds with two closely related Tasmanian honeyeaters (Phylidonyris spp) that evolved with native nest predators (high risk always). Increased nest predation risk has been postulated to favour reduced parental activity, and we tested whether island bellbirds responded to variation in predation risk. We found that females spent more time on the nest per incubating bout with increased risk of predation, a strategy that minimised activity at the nest during incubation. Parental activity during the nestling period, measured as number of feeding visits/hr, also decreased with increasing nest predation risk across sites, and was lowest among the honeyeaters in Tasmania that evolved with native predators. These results demonstrates that some island birds are able to respond to increased risk of predation by novel predators in ways that appear adaptive. We suggest that conservation efforts may be more effective if they take advantage of the ability of island birds to respond to novel predators, especially when the elimination of exotic predators is not possible.

  16. The effects of simulated acid rain on growth and susceptibility to predation of Phratora polaris (Col., Chrysomelidae)

    Energy Technology Data Exchange (ETDEWEB)

    Palokangas, P.; Neuvonen, S.; Haapala, S. [University of Turku, Ivalo (Finland). Kevo Subarctic Research Inst.

    1995-12-31

    The effects of long-term simulated acid rain on tritrophic interactions between mountain birch, a leaf beetle (Phratora polaris) and its predators were studied. Leaf beetle larvae were fed on foliage treated during 6-7 years with simulated acid rain of pH 3 (both H{sub 2}SO{sub 4} and HNO{sub 3}) or with spring water of pH 6 (irrigated controls). There were significant differences between treatments in the susceptibility of P. polaris to predators. Generally, beetles reared on acid treated birches were more susceptible to predators than those reared on irrigated control trees. This effect was present over several stages in the life cycle of the beetle and for several types of predators: ants preying on larvae, carabids attacking pupae and birds feeding on adult beetles. However, host plant treatment did not have consistent effects on the growth of larvae. This suggests that the defensive ability of leaf beetles is more sensitive to pollution induced variation in host foliage than larval growth. 32 refs., 1 fig., 4 tabs.

  17. Fish predation by semi-aquatic spiders: a global pattern.

    Directory of Open Access Journals (Sweden)

    Martin Nyffeler

    Full Text Available More than 80 incidences of fish predation by semi-aquatic spiders--observed at the fringes of shallow freshwater streams, rivers, lakes, ponds, swamps, and fens--are reviewed. We provide evidence that fish predation by semi-aquatic spiders is geographically widespread, occurring on all continents except Antarctica. Fish predation by spiders appears to be more common in warmer areas between 40° S and 40° N. The fish captured by spiders, usually ranging from 2-6 cm in length, are among the most common fish taxa occurring in their respective geographic area (e.g., mosquitofish [Gambusia spp.] in the southeastern USA, fish of the order Characiformes in the Neotropics, killifish [Aphyosemion spp.] in Central and West Africa, as well as Australian native fish of the genera Galaxias, Melanotaenia, and Pseudomugil. Naturally occurring fish predation has been witnessed in more than a dozen spider species from the superfamily Lycosoidea (families Pisauridae, Trechaleidae, and Lycosidae, in two species of the superfamily Ctenoidea (family Ctenidae, and in one species of the superfamily Corinnoidea (family Liocranidae. The majority of reports on fish predation by spiders referred to pisaurid spiders of the genera Dolomedes and Nilus (>75% of observed incidences. There is laboratory evidence that spiders from several more families (e.g., the water spider Argyroneta aquatica [Cybaeidae], the intertidal spider Desis marina [Desidae], and the 'swimming' huntsman spider Heteropoda natans [Sparassidae] predate fish as well. Our finding of such a large diversity of spider families being engaged in fish predation is novel. Semi-aquatic spiders captured fish whose body length exceeded the spiders' body length (the captured fish being, on average, 2.2 times as long as the spiders. Evidence suggests that fish prey might be an occasional prey item of substantial nutritional importance.

  18. Fish predation by semi-aquatic spiders: a global pattern.

    Science.gov (United States)

    Nyffeler, Martin; Pusey, Bradley J

    2014-01-01

    More than 80 incidences of fish predation by semi-aquatic spiders--observed at the fringes of shallow freshwater streams, rivers, lakes, ponds, swamps, and fens--are reviewed. We provide evidence that fish predation by semi-aquatic spiders is geographically widespread, occurring on all continents except Antarctica. Fish predation by spiders appears to be more common in warmer areas between 40° S and 40° N. The fish captured by spiders, usually ranging from 2-6 cm in length, are among the most common fish taxa occurring in their respective geographic area (e.g., mosquitofish [Gambusia spp.] in the southeastern USA, fish of the order Characiformes in the Neotropics, killifish [Aphyosemion spp.] in Central and West Africa, as well as Australian native fish of the genera Galaxias, Melanotaenia, and Pseudomugil). Naturally occurring fish predation has been witnessed in more than a dozen spider species from the superfamily Lycosoidea (families Pisauridae, Trechaleidae, and Lycosidae), in two species of the superfamily Ctenoidea (family Ctenidae), and in one species of the superfamily Corinnoidea (family Liocranidae). The majority of reports on fish predation by spiders referred to pisaurid spiders of the genera Dolomedes and Nilus (>75% of observed incidences). There is laboratory evidence that spiders from several more families (e.g., the water spider Argyroneta aquatica [Cybaeidae], the intertidal spider Desis marina [Desidae], and the 'swimming' huntsman spider Heteropoda natans [Sparassidae]) predate fish as well. Our finding of such a large diversity of spider families being engaged in fish predation is novel. Semi-aquatic spiders captured fish whose body length exceeded the spiders' body length (the captured fish being, on average, 2.2 times as long as the spiders). Evidence suggests that fish prey might be an occasional prey item of substantial nutritional importance.

  19. Development of a System-Wide Predator Control Program: Stepwise Implementation of a Predation Index, Predator Control Fisheries, and Evaluation Plan in the Columbia River Basin; Northern Pikeminnow Management Program, 2000 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell G.; Glaser, Bryce G.; Amren, Jennifer

    2003-03-01

    (small-sized) Merwin trapnet. We found this floating trapnet to be very effective in catching northern pikeminnow at specific sites. Consequently, in 1993 we examined a system wide fishery using floating trapnets, but found this fishery to be ineffective at harvesting large numbers of northern pikeminnow on a system-wide scale. In 1994, we investigated the use of trapnets and gillnets at specific locations where concentrations of northern pikeminnow were known or suspected to occur during the spring season (i.e., March through early June). In addition, we initiated a concerted effort to increase public participation in the sport-reward fishery through a series of promotional and incentive activities. In 1995, 1996, and 1997, promotional activities and incentives were further improved based on the favorable response in 1994. Results of these efforts are subjects of this annual report under Section I, Implementation. Evaluation of the success of test fisheries in achieving our target goal of a 10-20% annual exploitation rate on northern pikeminnow is presented in Section II of this report. Overall program success in terms of altering the size and age composition of the northern pikeminnow population and in terms of potential reductions in loss of juvenile salmonids to northern pikeminnow predation is also discussed under Section II.

  20. Habitat selection responses of parents to offspring predation risk: An experimental test

    Science.gov (United States)

    Fontaine, J.J.; Martin, T.E.

    2006-01-01

    The ability of nest predation to influence habitat settlement decisions in birds is widely debated, despite its importance in limiting fitness. Here, we experimentally manipulated nest predation risk across a landscape and asked the question, do migratory birds assess and respond to variation in nest predation risk when choosing breeding habitats? We examined habitat preference by quantifying the density and settlement date of eight species of migratory passerines breeding in areas with and without intact nest predator communities. We found consistently more individuals nesting in areas with reduced nest predation than in areas with intact predator assemblages, although predation risk had no influence on settlement or breeding phenology. Additionally, those individuals occupying safer nesting habitats exhibited increased singing activity. These findings support a causal relationship between habitat choice and nest predation risk and suggest the importance of nest predation risk in shaping avian community structure and breeding activity. ?? 2006 by The University of Chicago. All rights reserved.

  1. Breeding phenology of birds: mechanisms underlying seasonal declines in the risk of nest predation.

    Directory of Open Access Journals (Sweden)

    Kathi L Borgmann

    Full Text Available Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation.

  2. Effects of an infectious fungus, Batrachochytrium dendrobatidis, on amphibian predator-prey interactions.

    Directory of Open Access Journals (Sweden)

    Barbara A Han

    2011-02-01

    Full Text Available The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey.

  3. Breeding phenology of birds: mechanisms underlying seasonal declines in the risk of nest predation.

    Science.gov (United States)

    Borgmann, Kathi L; Conway, Courtney J; Morrison, Michael L

    2013-01-01

    Seasonal declines in avian clutch size are well documented, but seasonal variation in other reproductive parameters has received less attention. For example, the probability of complete brood mortality typically explains much of the variation in reproductive success and often varies seasonally, but we know little about the underlying cause of that variation. This oversight is surprising given that nest predation influences many other life-history traits and varies throughout the breeding season in many songbirds. To determine the underlying causes of observed seasonal decreases in risk of nest predation, we modeled nest predation of Dusky Flycatchers (Empidonax oberholseri) in northern California as a function of foliage phenology, energetic demand, developmental stage, conspecific nest density, food availability for nest predators, and nest predator abundance. Seasonal variation in the risk of nest predation was not associated with seasonal changes in energetic demand, conspecific nest density, or predator abundance. Instead, seasonal variation in the risk of nest predation was associated with foliage density (early, but not late, in the breeding season) and seasonal changes in food available to nest predators. Supplemental food provided to nest predators resulted in a numerical response by nest predators, increasing the risk of nest predation at nests that were near supplemental feeders. Our results suggest that seasonal changes in foliage density and factors associated with changes in food availability for nest predators are important drivers of temporal patterns in risk of avian nest predation.

  4. Effects of parents and Brown-headed Cowbirds (Molothrus ater) on nest predation risk for a songbird

    Science.gov (United States)

    Quresh S. Latif; Sacha K. Heath; John T. Rotenberry

    2012-01-01

    Nest predation limits avian fitness, so ornithologists study nest predation, but they often only document patterns of predation rates without substantively investigating underlying mechanisms. Parental behavior and predator ecology are two fundamental drivers of predation rates and patterns, but the role of parents is less certain, particularly for songbirds. Previous...

  5. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Yunger, John A. [Northern Illinois U.

    1996-01-01

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avian vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers were 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in diets. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for £.. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on .f.. leucopus spatial patterns mediated through M. pennsylvanicus. The role of food limitation was studied using natural and manipulative

  6. Predation by Red Foxes (Vulpes vulpes at an Outdoor Piggery

    Directory of Open Access Journals (Sweden)

    Patricia A. Fleming

    2016-10-01

    Full Text Available Outdoor pig operations are an alternative to intensive systems of raising pigs; however for the majority of outdoor pork producers, issues of biosecurity and predation control require significant management and (or capital investment. Identifying and quantifying predation risk in outdoor pork operations has rarely been done, but such data would be informative for these producers as part of their financial and logistical planning. We quantified potential impact of fox predation on piglets bred on an outdoor pork operation in south-western Australia. We used remote sensor cameras at select sites across the farm as well as above farrowing huts to record interactions between predators and pigs (sows and piglets. We also identified animal losses from breeding records, calculating weaning rate as a proportion of piglets born. Although only few piglets were recorded lost to fox predation (recorded by piggery staff as carcasses that are “chewed”, it is likely that foxes were contributing substantially to the 20% of piglets that were reported “missing”. Both sets of cameras recorded a high incidence of fox activity; foxes appeared on camera soon after staff left for the day, were observed tracking and taking live piglets (despite the presence of sows, and removed dead carcasses from in front of the cameras. Newly born and younger piglets appeared to be the most vulnerable, especially when they are born out in the paddock, but older piglets were also lost. A significant ( p = 0.001 effect of individual sow identification on the weaning rate, but no effect of sow age (parity, suggests that individual sow behavior towards predators influences predation risk for litters. We tracked the movement of piglet carcasses by foxes, and confirmed that foxes make use of patches of native vegetation for cover, although there was no effect of paddock, distance to vegetation, or position on the farm on weaning rate. Trials with non-toxic baits reveal high levels

  7. Predation, Competition, and Abiotic Disturbance: Population Dynamics of Small Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Yunger, John A.; /Northern Illinois U. /Northern Illinois U.

    1996-01-01

    Predation and food availability have been implicated in annual non-cyclic fluctuations of vertebrate prey at mid-latitudes. The timing and magnitude of these factors are unclear due to a lack of large-scale field experiments, little attention to interactions, and a failure to closely link vertebrate predators with their prey. From October 1992 to January 1996, small mammal populations were censused on eight 0.6 ha plots at monthly intervals in a 32-ha prairie restoration at Fermi National Accelerator Laboratory, Illinois. Terrestrial vertebrate predators were excluded after July 1993 from four of the eight plots and canid diets monitored. Both terrestrial and avian vertebrate predators were excluded in March 1994. During 1993 small mammal densities (i.e., Microtus Pennsylvanicus, Peromyscus leucopus, and P. maniculatus) were relatively high. Following peak densities in late summer, Microtus numbers wer 2-3x greater on exclusion plots relative to controls due to preferential selection of Microtus by canids, as reflected in dits. Following an ice-storm and crash in small mammal numbers (particularly Microtus), vertebrate predator exclusion had no detectable effect on P. leucopus numbers, probably due to an abundance of alternative prey (i.e., Sylvilagus floridanus). Meadow vole numbers began to increase in Fall 1995, and a numerical effect of predator exclusion, similar to that in 1993, was observed. Predator exclusion had no detectable effect on the movements and spatial patterns of Microtus during 1993. There was a significant decrease in home range and a significant increase in home range overlap for P. leucopus on the predator exclusion plots. The change in spatial behavior may be due to interspecific competition with Microtus resulting from increased densities on exclusion plots. Thus, predators had an indirect effect on P. leucopus spatial patterns mediated through M. Pennsylvanicus. The role of food limitation was studied using natural and manipulative

  8. Reconciling actual and perceived rates of predation by domestic cats

    Science.gov (United States)

    McDonald, Jennifer L; Maclean, Mairead; Evans, Matthew R; Hodgson, Dave J

    2015-01-01

    The predation of wildlife by domestic cats (Felis catus) is a complex problem: Cats are popular companion animals in modern society but are also acknowledged predators of birds, herpetofauna, invertebrates, and small mammals. A comprehensive understanding of this conservation issue demands an understanding of both the ecological consequence of owning a domestic cat and the attitudes of cat owners. Here, we determine whether cat owners are aware of the predatory behavior of their cats, using data collected from 86 cats in two UK villages. We examine whether the amount of prey their cat returns influences the attitudes of 45 cat owners toward the broader issue of domestic cat predation. We also contribute to the wider understanding of physiological, spatial, and behavioral drivers of prey returns among cats. We find an association between actual prey returns and owner predictions at the coarse scale of predatory/nonpredatory behavior, but no correlation between the observed and predicted prey-return rates among predatory cats. Cat owners generally disagreed with the statement that cats are harmful to wildlife, and disfavored all mitigation options apart from neutering. These attitudes were uncorrelated with the predatory behavior of their cats. Cat owners failed to perceive the magnitude of their cats’ impacts on wildlife and were not influenced by ecological information. Management options for the mitigation of cat predation appear unlikely to work if they focus on “predation awareness” campaigns or restrictions of cat freedom. PMID:26306163

  9. Bagworm bags as portable armour against invertebrate predators

    Directory of Open Access Journals (Sweden)

    Shinji Sugiura

    2016-02-01

    Full Text Available Some animals have evolved the use of environmental materials as “portable armour” against natural enemies. Portable bags that bagworm larvae (Lepidoptera: Psychidae construct using their own silk and plant parts are generally believed to play an important role as a physical barrier against natural enemies. However, no experimental studies have tested the importance of bags as portable armour against predators. To clarify the defensive function, I studied the bagworm Eumeta minuscula and a potential predator Calosoma maximoviczi (Coleoptera: Carabidae. Under laboratory conditions, all bagworm larvae were attacked by carabid adults, but successfully defended themselves against the predators’ mandibles using their own bags. The portable bags, which are composed mainly of host plant twigs, may function as a physical barrier against predator mandibles. To test this hypothesis, I removed the twig bags and replaced some with herb leaf bags; all bag-removed larvae were easily caught and predated by carabids, while all bag-replaced larvae could successfully defend themselves against carabid attacks. Therefore, various types of portable bags can protect bagworm larvae from carabid attacks. This is the first study to test the defensive function of bagworm portable bags against invertebrate predators.

  10. Predator facilitation or interference: a game of vipers and owls.

    Science.gov (United States)

    Embar, Keren; Raveh, Ashael; Hoffmann, Ishai; Kotler, Burt P

    2014-04-01

    In predator-prey foraging games, the prey's reaction to one type of predator may either facilitate or hinder the success of another predator. We ask, do different predator species affect each other's patch selection? If the predators facilitate each other, they should prefer to hunt in the same patch; if they interfere, they should prefer to hunt alone. We performed an experiment in a large outdoor vivarium where we presented barn owls (Tyto alba) with a choice of hunting greater Egyptian gerbils (Gerbillus pyramidum) in patches with or without Saharan horned vipers (Cerastes cerastes). Gerbils foraged on feeding trays set under bushes or in the open. We monitored owl location, activity, and hunting attempts, viper activity and ambush site location, and the foraging behavior of the gerbils in bush and open microhabitats. Owls directed more attacks towards patches with vipers, and vipers were more active in the presence of owls. Owls and vipers facilitated each other's hunting through their combined effect on gerbil behavior, especially on full moon nights when vipers are more active. Owls forced gerbils into the bushes where vipers preferred to ambush, while viper presence chased gerbils into the open where they were exposed to owls. Owls and vipers took advantage of their indirect positive effect on each other. In the foraging game context, they improve each other's patch quality and hunting success.

  11. Predation rate by wolves on the Porcupine caribou herd

    Directory of Open Access Journals (Sweden)

    Robert D. Hayes

    2000-04-01

    Full Text Available Large migratory catibou {Rangifer tarandus herds in the Arctic tend to be cyclic, and population trends are mainly driven by changes in forage or weather events, not by predation. We estimated daily kill rate by wolves on adult caribou in winter, then constructed a time and space dependent model to estimate annual wolf (Canis lupus predation rate (P annual on adult Porcupine caribou. Our model adjusts predation seasonally depending on caribou distribution: Pannual = SIGMAdaily* W *Ap(2*Dp. In our model we assumed that wolves killed adult caribou at a constant rate (Kdaily, 0.08 caribou wolf1 day1 based on our studies and elsewhere; that wolf density (W doubled to 6 wolves 1000 km2-1 on all seasonal ranges; and that the average area occupied by the Porcupine caribou herd (PCH in eight seasonal life cycle periods (Dp was two times gteater than the area described by the outer boundaries of telemetry data (Ap /1000 km2. Results from our model projected that wolves kill about 7600 adult caribou each year, regardless of herd size. The model estimated that wolves removed 5.8 to 7.4% of adult caribou as the herd declined in the 1990s. Our predation rate model supports the hypothesis of Bergerud that spacing away by caribou is an effective anti-predatory strategy that greatly reduces wolf predation on adult caribou in the spring and summer.

  12. Animal migration amid shifting patterns of phenology and predation: lessons from a Yellowstone elk herd.

    Science.gov (United States)

    Middleton, Arthur D; Kauffman, Matthew J; McWhirter, Douglas E; Cook, John G; Cook, Rachel C; Nelson, Abigail A; Jimenez, Michael D; Klaver, Robert W

    2013-06-01

    Migration is a striking behavioral strategy by which many animals enhance resource acquisition while reducing predation risk. Historically, the demographic benefits of such movements made migration common, but in many taxa the phenomenon is considered globally threatened. Here we describe a long-term decline in the productivity of elk (Cervus elaphus) that migrate through intact wilderness areas to protected summer ranges inside Yellowstone National Park, USA. We attribute this decline to a long-term reduction in the demographic benefits that ungulates typically gain from migration. Among migratory elk, we observed a 21-year, 70% reduction in recruitment and a 4-year, 19% depression in their pregnancy rate largely caused by infrequent reproduction of females that were young or lactating. In contrast, among resident elk, we have recently observed increasing recruitment and a high rate of pregnancy. Landscape-level changes in habitat quality and predation appear to be responsible for the declining productivity of Yellowstone migrants. From 1989 to 2009, migratory elk experienced an increasing rate and shorter duration of green-up coincident with warmer spring-summer temperatures and reduced spring precipitation, also consistent with observations of an unusually severe drought in the region. Migrants are also now exposed to four times as many grizzly bears (Ursus arctos) and wolves (Canis lupus) as resident elk. Both of these restored predators consume migratory elk calves at high rates in the Yellowstone wilderness but are maintained at low densities via lethal management and human disturbance in the year-round habitats of resident elk. Our findings suggest that large-carnivore recovery and drought, operating simultaneously along an elevation gradient, have disproportionately influenced the demography of migratory elk. Many migratory animals travel large geographic distances between their seasonal ranges. Changes in land use and climate that disparately influence

  13. Animal migration amid shifting patterns of phenology and predation: Lessons from a Yellowstone elk herd

    Science.gov (United States)

    Middleton, Arthur D.; Kauffman, Matthew J.; McWhirter, Douglas E.; Cook, John G.; Cook, Rachel C.; Nelson, Abigail A.; Jimenez, Michael D.; Klaver, Robert W.

    2013-01-01

    Migration is a striking behavioral strategy by which many animals enhance resource acquisition while reducing predation risk. Historically, the demographic benefits of such movements made migration common, but in many taxa the phenomenon is considered globally threatened. Here we describe a long-term decline in the productivity of elk (Cervus elaphus) that migrate through intact wilderness areas to protected summer ranges inside Yellowstone National Park, USA. We attribute this decline to a long-term reduction in the demographic benefits that ungulates typically gain from migration. Among migratory elk, we observed a 21-year, 70% reduction in recruitment and a 4-year, 19% depression in their pregnancy rate largely caused by infrequent reproduction of females that were young or lactating. In contrast, among resident elk, we have recently observed increasing recruitment and a high rate of pregnancy. Landscape-level changes in habitat quality and predation appear to be responsible for the declining productivity of Yellowstone migrants. From 1989 to 2009, migratory elk experienced an increasing rate and shorter duration of green-up coincident with warmer spring–summer temperatures and reduced spring precipitation, also consistent with observations of an unusually severe drought in the region. Migrants are also now exposed to four times as many grizzly bears (Ursus arctos) and wolves (Canis lupus) as resident elk. Both of these restored predators consume migratory elk calves at high rates in the Yellowstone wilderness but are maintained at low densities via lethal management and human disturbance in the year-round habitats of resident elk. Our findings suggest that large-carnivore recovery and drought, operating simultaneously along an elevation gradient, have disproportionately influenced the demography of migratory elk. Many migratory animals travel large geographic distances between their seasonal ranges. Changes in land use and climate that disparately influence

  14. Environmental Variation and Cohort Effects in an Antarctic Predator

    Science.gov (United States)

    Garrott, Robert A.; Rotella, Jay J.; Siniff, Donald B.; Parkinson, Claire L.; Stauffer, Glenn E.

    2011-01-01

    Understanding the potential influence of environmental variation experienced by animals during early stages of development on their subsequent demographic performance can contribute to our understanding of population processes and aid in predicting impacts of global climate change on ecosystem functioning. Using data from 4,178 tagged female Weddell seal pups born into 20 different cohorts, and 30 years of observations of the tagged seals, we evaluated the hypothesis that environmental conditions experienced by young seals, either indirectly through maternal effects and/or directly during the initial period of juvenile nutritional independence, have long-term effects on individual demographic performance. We documented an approximately 3-fold difference in the proportion of each cohort that returned to the pupping colonies and produced a pup within the first 10 years after birth. We found only weak evidence for a correlation between annual environmental conditions during the juvenile-independence period and cohort recruitment probability. Instead, the data strongly supported an association between cohort recruitment probability and the regional extent of sea ice experienced by the mother during the winter the pup was in utero. We suggest that inter-annual variation in winter sea-ice extent influences the foraging success of pregnant seals by moderating the regional abundance of competing predators that cannot occupy areas of consolidated sea ice, and by directly influencing the abundance of mid-trophic prey species that are sea-ice obligates. We hypothesize that this environmentally-induced variation in maternal nutrition dictates the extent of maternal energetic investment in offspring, resulting in cohort variation in mean size of pups at weaning which, in turn, contributes to an individual?s phenotype and its ultimate fitness. These linkages between sea ice and trophic dynamics, combined with demonstrated and predicted changes in the duration and extent of sea

  15. Attracting predators without falling prey: chemical camouflage protects honeydew-producing treehoppers from ant predation.

    Science.gov (United States)

    Silveira, Henrique C P; Oliveira, Paulo S; Trigo, José R

    2010-02-01

    Predaceous ants are dominant organisms on foliage and represent a constant threat to herbivorous insects. The honeydew of sap-feeding hemipterans has been suggested to appease aggressive ants, which then begin tending activities. Here, we manipulated the cuticular chemical profiles of freeze-dried insect prey to show that chemical background matching with the host plant protects Guayaquila xiphias treehoppers against predaceous Camponotus crassus ants, regardless of honeydew supply. Ant predation is increased when treehoppers are transferred to a nonhost plant with which they have low chemical similarity. Palatable moth larvae manipulated to match the chemical background of Guayaquila's host plant attracted lower numbers of predatory ants than unchanged controls. Although aggressive tending ants can protect honeydew-producing hemipterans from natural enemies, they may prey on the trophobionts under shortage of alternative food resources. Thus chemical camouflage in G. xiphias allows the trophobiont to attract predaceous bodyguards at reduced risk of falling prey itself.

  16. Variation in Population Synchrony in a Multi-Species Seabird Community: Response to Changes in Predator Abundance.

    Directory of Open Access Journals (Sweden)

    Gail S Robertson

    Full Text Available Ecologically similar sympatric species, subject to typical environmental conditions, may be expected to exhibit synchronous temporal fluctuations in demographic parameters, while populations of dissimilar species might be expected to show less synchrony. Previous studies have tested for synchrony in different populations of single species, and those including data from more than one species have compared fluctuations in only one demographic parameter. We tested for synchrony in inter-annual changes in breeding population abundance and productivity among four tern species on Coquet Island, northeast England. We also examined how manipulation of one independent environmental variable (predator abundance influenced temporal changes in ecologically similar and dissimilar tern species. Changes in breeding abundance and productivity of ecologically similar species (Arctic Sterna paradisaea, Common S. hirundo and Roseate Terns S. dougallii were synchronous with one another over time, but not with a species with different foraging and breeding behaviour (Sandwich Terns Thalasseus sandvicensis. With respect to changes in predator abundance, there was no clear pattern. Roseate Tern abundance was negatively correlated with that of large gulls breeding on the island from 1975 to 2013, while Common Tern abundance was positively correlated with number of large gulls, and no significant correlations were found between large gull and Arctic and Sandwich Tern populations. Large gull abundance was negatively correlated with productivity of Arctic and Common Terns two years later, possibly due to predation risk after fledging, while no correlation with Roseate Tern productivity was found. The varying effect of predator abundance is most likely due to specific differences in the behaviour and ecology of even these closely-related species. Examining synchrony in multi-species assemblages improves our understanding of how whole communities react to long-term changes

  17. Modelling foraging movements of diving predators: a theoretical study exploring the effect of heterogeneous landscapes on foraging efficiency

    Directory of Open Access Journals (Sweden)

    Marianna Chimienti

    2014-09-01

    represents a useful starting point to understand the energetic reasons for a range of potential predator responses to spatial heterogeneity and environmental uncertainties in terms of search behaviour and predator–prey interactions. We highlight future directions that integrated empirical and modelling studies should take to improve our ability to predict how diving predators will be impacted by the deployment of manmade structures in the marine environment.

  18. Predator and prey perception in copepods due to hydromechanical signals

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Visser, Andre

    1999-01-01

    of the different components of the fluid disturbance. We use this model to argue that prey perception depends on the absolute magnitude of the fluid velocity generated by the moving prey, while predator perception depends on the magnitude of one or several of the components of the fluid velocity gradients...... (deformation rate, vorticity, acceleration) generated by the predator. On the assumption that hydrodynamic disturbances are perceived through the mechanical bending of sensory setae, we estimate the magnitude of the signal strength due to each of the fluid disturbance components. We then derive equations...... for reaction distances as a function of threshold signal strength and the size and velocity of the prey or predator. We provide a conceptual framework for quantifying threshold signal strengths and, hence, perception distances. The model is illustrated by several examples, and we demonstrate, for example, (1...

  19. Enhanced susceptibility to predation in corals of compromised condition

    Directory of Open Access Journals (Sweden)

    Allan J. Bright

    2015-09-01

    Full Text Available The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance.

  20. Enhanced susceptibility to predation in corals of compromised condition.

    Science.gov (United States)

    Bright, Allan J; Cameron, Caitlin M; Miller, Margaret W

    2015-01-01

    The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance.

  1. Animal behaviour and algal camouflage jointly structure predation and selection.

    Science.gov (United States)

    Start, Denon

    2018-05-01

    Trait variation can structure interactions between individuals, thus shaping selection. Although antipredator strategies are an important component of many aquatic systems, how multiple antipredator traits interact to influence consumption and selection remains contentious. Here, I use a common larval dragonfly (Epitheca canis) and its predator (Anax junius) to test for the joint effects of activity rate and algal camouflage on predation and survival selection. I found that active and poorly camouflaged Epitheca were more likely to be consumed, and thus, survival selection favoured inactive and well-camouflaged individuals. Notably, camouflage dampened selection on activity rate, likely by reducing attack rates when Epitheca encountered a predator. Correlational selection is therefore conferred by the ecological interaction of traits, rather than by opposing selection acting on linked traits. I suggest that antipredator traits with different adaptive functions can jointly structure patterns of consumption and selection. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  2. Susceptibility of Select Agents to Predation by Predatory Bacteria

    Directory of Open Access Journals (Sweden)

    Riccardo Russo

    2015-12-01

    Full Text Available Select Agents are microorganisms and toxins considered to be exploitable as biological weapons. Although infections by many Select Agents can be treated by conventional antibiotics, the risk of an emerging or engineered drug resistant strain is of great concern. One group of microorganisms that is showing potential to control drug resistant Gram-negative bacteria are the predatory bacteria from the genera Bdellovibrio spp. and Micavibrio spp. In this study, we have examined the ability of Bdellovibrio bacteriovorus (B. bacteriovorus strain 109J, HD100 and Micavibrio aeruginosavorus (M. aeruginosavorus ARL-13 to prey on a variety of Select Agents. Our findings demonstrate that B. bacteriovorus and M. aeruginosavorus are able to prey efficiently on Yersinia pestis and Burkholderia mallei. Modest predation was also measured in co-cultures of B. bacteriovorus and Francisella tularensis. However, neither of the predators showed predation when Burkholderia pseudomallei and Brucella melitensis were used as prey.

  3. Report on the Predation Index, Predator Control Fisheries, and Program Evaluation for the Columbia River Basin Experimental Northern Pikeminnow Management Program, 2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Russell [Pacific States Marine Fisheries Commission].

    2009-09-10

    effective harvest techniques. During 1991 and 1992, we developed and tested a modified (small-sized) Merwin trapnet. We found this floating trapnet to be very effective in catching northern pikeminnow at specific sites. Consequently, in 1993 we examined a system-wide fishery using floating trapnets, but found this fishery to be ineffective at harvesting large numbers of northern pikeminnow on a system-wide scale. In 1994, we investigated the use of trap nets and gillnets at specific locations where concentrations of northern pikeminnow were known or suspected to occur during the spring season (i.e., March through early June). In addition, we initiated a concerted effort to increase public participation in the sport-reward fishery through a series of promotional and incentive activities. In 1995, 1996, and 1997, promotional activities and incentives were further improved based on the favorable response in 1994. Results of these efforts are subjects of this annual report. Evaluation of the success of test fisheries in achieving our target goal of a 10-20% annual exploitation rate on northern pikeminnow is presented in Report C of this report. Overall program success in terms of altering the size and age composition of the northern pikeminnow population and in terms of potential reductions in loss of juvenile salmonids to northern pikeminnow predation is also discussed in Report C. Program cooperators include the Pacific States Marine Fisheries Commission (PSMFC), Oregon Department of Fish and Wildlife (ODFW), and Washington Department of Fish and Wildlife (WDFW), and the U. S. Department of Agriculture (USDA), Animal Damage Unit as a contractor to test Dam Angling. The PSMFC was responsible for coordination and administration of the program; PSMFC subcontracted various tasks and activities to ODFW and WDFW based on the expertise each brought to the tasks involved in implementing the program and dam angling to the USDA.

  4. The role of ecological context and predation risk-stimuli in revealing the true picture about the genetic basis of boldness evolution in fish

    DEFF Research Database (Denmark)

    Klefoth, Thomas; Skov, Christian; Krause, Jens

    2011-01-01

    To showcase the importance of genotype × environment interactions and the presence of predation risk in the experimental assessment of boldness in fish, we investigated boldness in terms of feeding behavior and refuge use in two genetically different populations of juvenile carp (Cyprinus carpio)...

  5. Plastic responses of a sessile prey to multiple predators: a field and experimental study.

    Directory of Open Access Journals (Sweden)

    Philipp Emanuel Hirsch

    Full Text Available Theory predicts that prey facing a combination of predators with different feeding modes have two options: to express a response against the feeding mode of the most dangerous predator, or to express an intermediate response. Intermediate phenotypes protect equally well against several feeding modes, rather than providing specific protection against a single predator. Anti-predator traits that protect against a common feeding mode displayed by all predators should be expressed regardless of predator combination, as there is no need for trade-offs.We studied phenotypic anti-predator responses of zebra mussels to predation threat from a handling-time-limited (crayfish and a gape-size-limited (roach predator. Both predators dislodge mussels from the substrate but diverge in their further feeding modes. Mussels increased expression of a non-specific defense trait (attachment strength against all combinations of predators relative to a control. In response to roach alone, mussels showed a tendency to develop a weaker and more elongated shell. In response to crayfish, mussels developed a harder and rounder shell. When exposed to either a combination of predators or no predator, mussels developed an intermediate phenotype. Mussel growth rate was positively correlated with an elongated weaker shell and negatively correlated with a round strong shell, indicating a trade-off between anti-predator responses. Field observations of prey phenotypes revealed the presence of both anti-predator phenotypes and the trade-off with growth, but intra-specific population density and bottom substrate had a greater influence than predator density.Our results show that two different predators can exert both functionally equivalent and inverse selection pressures on a single prey. Our field study suggests that abiotic factors and prey population density should be considered when attempting to explain phenotypic diversity in the wild.

  6. Does predation risk affect mating behavior? An experimental test in dumpling squid (Euprymna tasmanica.

    Directory of Open Access Journals (Sweden)

    Amanda M Franklin

    Full Text Available One of the most important trade-offs for many animals is that between survival and reproduction. This is particularly apparent when mating increases the risk of predation, either by increasing conspicuousness, reducing mobility or inhibiting an individual's ability to detect predators. Individuals may mitigate the risk of predation by altering their reproductive behavior (e.g. increasing anti-predator responses to reduce conspicuousness. The degree to which individuals modulate their reproductive behavior in relation to predation risk is difficult to predict because both the optimal investment in current and future reproduction (due to life-history strategies and level of predation risk may differ between the sexes and among species. Here, we investigate the effect of increased predation risk on the reproductive behavior of dumpling squid (Euprymna tasmanica.Females, but not males, showed a substantial increase in the number of inks (an anti-predator behavior before mating commenced in the presence of a predator (sand flathead Platycephalus bassensis. However, predation risk did not affect copulation duration, the likelihood of mating, female anti-predator behavior during or after mating or male anti-predator behavior at any time.Inking is a common anti-predator defense in cephalopods, thought to act like a smokescreen, decoy or distraction. Female dumpling squid are probably using this form of defense in response to the increase in predation risk prior to mating. Conversely, males were undeterred by the increase in predation risk. A lack of change in these variables may occur if the benefit of completing mating outweighs the risk of predation. Prioritizing current reproduction, even under predation risk, can occur when the chance of future reproduction is low, there is substantial energetic investment into mating, or the potential fitness payoffs of mating are high.

  7. Influence of prey body characteristics and performance on predator selection.

    Science.gov (United States)

    Holmes, Thomas H; McCormick, Mark I

    2009-03-01

    At the time of settlement to the reef environment, coral reef fishes differ in a number of characteristics that may influence their survival during a predatory encounter. This study investigated the selective nature of predation by both a multi-species predator pool, and a single common predator (Pseudochromis fuscus), on the reef fish, Pomacentrus amboinensis. The study focused on the early post-settlement period of P. amboinensis, when mortality, and hence selection, is known to be highest. Correlations between nine different measures of body condition/performance were examined at the time of settlement, in order to elucidate the relationships between different traits. Single-predator (P. fuscus) choice trials were conducted in 57.4-l aquaria with respect to three different prey characteristics [standard length (SL), body weight and burst swimming speed], whilst multi-species trials were conducted on open patch reefs, manipulating prey body weight only. Relationships between the nine measures of condition/performance were generally poor, with the strongest correlations occurring between the morphological measures and within the performance measures. During aquaria trials, P. fuscus was found to be selective with respect to prey SL only, with larger individuals being selected significantly more often. Multi-species predator communities, however, were selective with respect to prey body weight, with heavier individuals being selected significantly more often than their lighter counterparts. Our results suggest that under controlled conditions, body length may be the most important prey characteristic influencing prey survival during predatory encounters with P. fuscus. In such cases, larger prey size may actually be a distinct disadvantage to survival. However, these relationships appear to be more complex under natural conditions, where the expression of prey characteristics, the selectivity fields of a number of different predators, their relative abundance, and

  8. Perceptual advertisement by the prey of stalking or ambushing predators.

    Science.gov (United States)

    Broom, Mark; Ruxton, Graeme D

    2012-12-21

    There has been previous theoretical explorations of the stability of signals by prey that they have detected a stalking or ambush predator, where such perceptual advertisement dissuades the predator from attacking. Here we use a game theoretical model to extend the theory to consider some empirically-motivated complexities: (i) many perceptual advertisement signals appear to have the potential to vary in intensity, (ii) higher intensity signals are likely to be most costly to produce, and (iii) some high-cost signals (such as staring directly at the predator) can only be utilised if the prey is very confident of the existence of a nearby predator (that is, there are reserved or unfakable signals). We demonstrate that these complexities still allow for stable signalling. However, we do not find solutions where prey use a range of signal intensities to signal different degrees of confidence in the proximity of a predator; with prey simply adopting a binary response of not signalling or always signalling at the same fixed level. However this fixed level will not always be the cheapest possible signal, and we predict that prey that require more certainty about proximity of a predator will use higher-cost signals. The availability of reserved signals does not prohibit the stability of signalling based on lower-cost signals, but we also find circumstances where only the reserved signal is used. We discuss the potential to empirically test our model predictions, and to develop theory further to allow perceptual advertisement to be combined with other signalling functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Role of type IV pili in predation by Bdellovibrio bacteriovorus.

    Directory of Open Access Journals (Sweden)

    Ryan M Chanyi

    Full Text Available Bdellovibrio bacteriovorus, as an obligate predator of Gram-negative bacteria, requires contact with the surface of a prey cell in order to initiate the life cycle. After attachment, the predator penetrates the prey cell outer membrane and enters the periplasmic space. Attack phase cells of B. bacteriovorus have polar Type IV pili that are required for predation. In other bacteria, these pili have the ability to extend and retract via the PilT protein. B. bacteriovorus has two pilT genes, pilT1 and pilT2, that have been implicated in the invasion process. Markerless in-frame deletion mutants were constructed in a prey-independent mutant to assess the role of PilT1 and PilT2 in the life cycle. When predation was assessed using liquid cocultures, all mutants produced bdelloplasts of Escherichia coli. These results demonstrated that PilT1 and PilT2 are not required for invasion of prey cells. Predation of the mutants on biofilms of E. coli was also assessed. Wild type B. bacteriovorus 109JA and the pilT1 mutant decreased the mass of the biofilm to 35.4% and 27.9% respectively. The pilT1pilT2 mutant was able to prey on the biofilm, albeit less efficiently with 50.2% of the biofilm remaining. The pilT2 mutant was unable to disrupt the biofilm, leaving 92.5% of the original biofilm after predation. The lack of PilT2 function may impede the ability of B. bacteriovorus to move in the extracellular polymeric matrix and find a prey cell. The role of Type IV pili in the life cycle of B. bacteriovorus is thus for initial recognition of and attachment to a prey cell in liquid cocultures, and possibly for movement within the matrix of a biofilm.

  10. Behavioral responses associated with a human-mediated predator shelter.

    Directory of Open Access Journals (Sweden)

    Graeme Shannon

    Full Text Available Human activities in protected areas can affect wildlife populations in a similar manner to predation risk, causing increases in movement and vigilance, shifts in habitat use and changes in group size. Nevertheless, recent evidence indicates that in certain situations ungulate species may actually utilize areas associated with higher levels of human presence as a potential refuge from disturbance-sensitive predators. We now use four-years of behavioral activity budget data collected from pronghorn (Antilocapra americana and elk (Cervus elephus in Grand Teton National Park, USA to test whether predictable patterns of human presence can provide a shelter from predatory risk. Daily behavioral scans were conducted along two parallel sections of road that differed in traffic volume--with the main Teton Park Road experiencing vehicle use that was approximately thirty-fold greater than the River Road. At the busier Teton Park Road, both species of ungulate engaged in higher levels of feeding (27% increase in the proportion of pronghorn feeding and 21% increase for elk, lower levels of alert behavior (18% decrease for pronghorn and 9% decrease for elk and formed smaller groups. These responses are commonly associated with reduced predatory threat. Pronghorn also exhibited a 30% increase in the proportion of individuals moving at the River Road as would be expected under greater exposure to predation risk. Our findings concur with the 'predator shelter hypothesis', suggesting that ungulates in GTNP use human presence as a potential refuge from predation risk, adjusting their behavior accordingly. Human activity has the potential to alter predator-prey interactions and drive trophic-mediated effects that could ultimately impact ecosystem function and biodiversity.

  11. Predator-induced demographic shifts in coral reef fish assemblages

    Science.gov (United States)

    Ruttenberg, B.I.; Hamilton, S.L.; Walsh, S.M.; Donovan, M.K.; Friedlander, A.; DeMartini, E.; Sala, E.; Sandin, S.A.

    2011-01-01

    In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ~10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management. ?? 2011 Ruttenberg et al.

  12. Predator-induced demographic shifts in coral reef fish assemblages.

    Directory of Open Access Journals (Sweden)

    Benjamin I Ruttenberg

    Full Text Available In recent years, it has become apparent that human impacts have altered community structure in coastal and marine ecosystems worldwide. Of these, fishing is one of the most pervasive, and a growing body of work suggests that fishing can have strong effects on the ecology of target species, especially top predators. However, the effects of removing top predators on lower trophic groups of prey fishes are less clear, particularly in highly diverse and trophically complex coral reef ecosystems. We examined patterns of abundance, size structure, and age-based demography through surveys and collection-based studies of five fish species from a variety of trophic levels at Kiritimati and Palmyra, two nearby atolls in the Northern Line Islands. These islands have similar biogeography and oceanography, and yet Kiritimati has ∼10,000 people with extensive local fishing while Palmyra is a US National Wildlife Refuge with no permanent human population, no fishing, and an intact predator fauna. Surveys indicated that top predators were relatively larger and more abundant at unfished Palmyra, while prey functional groups were relatively smaller but showed no clear trends in abundance as would be expected from classic trophic cascades. Through detailed analyses of focal species, we found that size and longevity of a top predator were lower at fished Kiritimati than at unfished Palmyra. Demographic patterns also shifted dramatically for 4 of 5 fish species in lower trophic groups, opposite in direction to the top predator, including decreases in average size and longevity at Palmyra relative to Kiritimati. Overall, these results suggest that fishing may alter community structure in complex and non-intuitive ways, and that indirect demographic effects should be considered more broadly in ecosystem-based management.

  13. The Truth About the Internet and Online Predators

    CERN Document Server

    Dingwell, Heath; Peterson, Fred L

    2011-01-01

    To help readers avoid and recognize risky behaviors, The Truth About the Internet and Online Predators explains many of the dangers associated with the Internet. The A-to-Z entries detail the social, legal, and personal risks of Internet use, while personal testimonies and question-and-answer sections provide readers with an inside look at common issues online. Entries include:. Bullies and cyberbullying. Characteristics of online predators. Chat rooms and instant messaging. Internet safety. Parental control. Peers and peer pressure. Phishing and pharming. Privacy issues. Social networking Web

  14. Predator localization by sensory hairs in free-swimming arthropods

    Science.gov (United States)

    Takagi, Daisuke; Hartline, Daniel K.

    2016-11-01

    Free-swimming arthropods such as copepods rely on minute deflections of cuticular hairs (or "setae") for local flow sensing that is needed to detect food and escape from predators. We present a simple hydrodynamic model to analyze how the location, speed, and size of an approaching distant predator can be inferred from local flow deformation alone. The model informs suitable strategies of escape from an imminent predatory attack. The sensory capabilities of aquatic arthropods could inspire the design of flow sensors in technological applications.

  15. Gregarious nesting - An anti-predator response in laying hens

    DEFF Research Database (Denmark)

    Riber, Anja Brinch

    2012-01-01

    Gregarious nesting can be defined as a behaviour that occurs when a laying hen (Gallus gallus domesticus) given the choice between an occupied and an unoccupied nest site chooses the occupied nest site. It occurs frequently in flocks of laying hens kept under commercial conditions, contrasting...... the behaviour displayed by feral hens that isolate themselves from the flock during nesting activities. What motivates laying hens to perform gregarious nesting is unknown. One possibility is that gregarious nesting is an anti-predator response to the risk of nest predation emerging from behavioural flexibility...

  16. Responses of tadpoles to hybrid predator odours: strong maternal signatures and the potential risk/response mismatch

    OpenAIRE

    Chivers, Douglas P.; Mathiron, Anthony; Sloychuk, Janelle R.; Ferrari, Maud C. O.

    2015-01-01

    Previous studies have established that when a prey animal knows the identity of a particular predator, it can use this knowledge to make an ‘educated guess' about similar novel predators. Such generalization of predator recognition may be particularly beneficial when prey are exposed to introduced and invasive species of predators or hybrids. Here, we examined generalization of predator recognition for woodfrog tadpoles exposed to novel trout predators. Tadpoles conditioned to recognize tiger...

  17. Effects of predation and dispersal on Mastomys natalensis population dynamics in Tanzanian maize fields

    DEFF Research Database (Denmark)

    Vibe-Petersen, Solveig; Leirs, Herwig; de Bruyn, L

    2006-01-01

    ), excluding predators by nets and attracting avian predators by nest boxes and perch poles. Because dispersal of the rodents could mask the predation pressure treatment effects, control and predator exclusion treatments were repeated with enclosed rodent populations. 3.  Population growth during the annual...... risk. Reducing dispersal of rodents removed the effect of predation on population growth and peak size, suggesting that local predators may play a role in driving rodent dispersal, but have otherwise little direct effect on population dynamics....

  18. The effect of chrysanthemum leaf trichome density and prey spatial distribution on predation of Tetranychus urticae (Acari: Tetranychidae) by Phytoseiulus persimilis (Acari: Phytoseiidae).

    Science.gov (United States)

    Skirvin, D J; Stavrinides, M C; Skirvin, D J

    2003-08-01

    The effect of plant architecture, in terms of leaf hairiness, and prey spatial arrangement, on predation rate of eggs of the spider mite, Tetranychus urticae Koch, by the predatory mite Phytoseiulus persimilis Athias-Henriot was examined on cut stems of chrysanthemums. Three levels of leaf hairiness (trichome density) were obtained using two different chrysanthemum cultivars and two ages within one of the cultivars. The number of prey consumed by P. persimilis was inversely related to trichome density. At low prey densities (less than ten eggs per stem), prey consumption did not differ in a biologically meaningful way between treatments. The effect of prey spatial arrangement on the predation rate of P. persimilis was also examined. Predation rates were higher in prey patches on leaves adjacent to the release point of P. persimilis, but significantly greater numbers of prey were consumed in higher density prey patches compared to low density patches. The predators exhibited non-random searching behaviour, spending more time on leaves closest to the release point. The implications of these findings for biological control and predator-prey dynamics are discussed.

  19. Natural and human-induced predation on Cape Cormorants at Dyer Island

    NARCIS (Netherlands)

    Voorbergen, A.; Boer, de W.F.; Underhill, L.G.

    2012-01-01

    To develop conservation strategies for vulnerable seabird species that need attention, it is important to know which factors influence their breeding productivity. Predation of eggs and chicks can have large influences on seabird reproduction, especially when human disturbance facilitates predation.

  20. Factors influencing the predation rates of Anisops breddini (Hemiptera: Notonectidae feeding on mosquito larvae

    Directory of Open Access Journals (Sweden)

    R. Weterings

    2014-12-01

    Full Text Available Notonectidae are a family of water bugs that are known to be important predators of mosquito larvae and have great potential in the biological control of vector mosquitoes. An experiment was conducted to assess mosquito larvae predation by Anisops breddini, a species common to Southeast Asia. The predation rates were recorded in context of prey density, predator density, predator size and prey type. Predation rates were strongly affected by prey type and less by prey density and predator density. They ranged between 1.2 prey items per day for pupae of Aedes aegeypti and Armigeres moultoni to 5.9 for Ae. aegypti larvae. Compared with studies on other Notonectidae species, the predation rates appear low, which is probably caused by the relative small size of the specimens used in this study. An. breddini is very common in the region and often found in urban areas; therefore, the species has potential as a biological control agent.

  1. To Learn Is To Grow, I: Aldo Leopold, Predator Eradication, and Games Refuges.

    Science.gov (United States)

    Dolph, Gary E.

    1998-01-01

    Follows the evolution in the thinking of Aldo Leopold, a game manager who was initially an advocate of predator eradication but who came to see predators as playing an important role in normally functioning ecosystems. (DDR)

  2. Red fox predation on breeding ducks in midcontinent North America

    Science.gov (United States)

    Sargeant, Alan B.; Allen, Stephen H.; Eberhardt, Robert T.

    1984-01-01

    Red fox (Vulpes vulpes) predation on nesting ducks was assessed by examining 1,857 adult duck remains found at 1,432 fox rearing dens from 1968 to 1973. Dabbling ducks were much more vulnerable to foxes than diving ducks. Dabbling ducks (1,798) found at dens consisted of 27% blue-winged teals (Anas discors), 23% mallards (A. platyrhynchos), 20% northern pintails (A. acuta), 9% northern shovelers (Spatula clypeata), 8% gadwalls (A. strepera), 3% green-winged teals (A. crecca), 2% American wigeons (A. americana), and 10% unidentified. Relative abundance of individual species and nesting chronology were the most important factors affecting composition of ducks taken by foxes. Seventy-six percent of 1,376 adult dabbling ducks and 40% of 30 adult diving ducks for which sex was determined were hens. In western North Dakota and western South Dakota, 65% of mallard and northern pintail remains found at dens were hens compared with 76% in eastern North Dakota and eastern South Dakota (P fox predation rates on ducks. Predation rate indices ranged from 0.01 duck/den in Iowa to 1.80 ducks/den in eastern North Dakota. Average annual predation rate indices for dabbling ducks in a 3-county intensive study area in eastern North Dakota were closely correlated with May pond numbers (r = 0.874, P foxes than hens of late nesting species. Predation rate indices were expanded to estimate total numbers of ducks taken by fox families during the denning season. Estimated numbers of dabbling ducks taken annually by individual fox families in 2 physiographic regions comprising the intensive study area ranged from 16.1 to 65.9. Predation was highest during wet years and lowest during dry years and averaged lower, but was more variable, in the region where tillage was greatest and wetland water levels were least stable. Predation in the intensive study area averaged 2.97 adult dabbling ducks/ km2/year and represented an estimated average annual loss of 13.5% of hen and 4.5% of drake

  3. Generalization of predator recognition: Velvet geckos display anti-predator behaviours in response to chemicals from non-dangerous elapid snakes

    Directory of Open Access Journals (Sweden)

    Jonathan K. WEBB, Weiguo DU, David PIKE, Richard SHINE

    2010-06-01

    Full Text Available Many prey species detect chemical cues from predators and modify their behaviours in ways that reduce their risk of predation. Theory predicts that prey should modify their anti-predator responses according to the degree of threat posed by the predator. That is, prey should show the strongest responses to chemicals of highly dangerous prey, but should ignore or respond weakly to chemicals from non-dangerous predators. However, if anti-predator behaviours are not costly, and predators are rarely encountered, prey may exhibit generalised antipredator behaviours to dangerous and non-dangerous predators. In Australia, most elapid snakes eat lizards, and are therefore potentially dangerous to lizard prey. Recently, we found that the nocturnal velvet gecko Oedura lesueurii responds to chemicals from dangerous and non-dangerous elapid snakes, suggesting that it displays generalised anti-predator behaviours to chemicals from elapid snakes. To explore the generality of this result, we videotaped the behaviour of velvet geckos in the presence of chemical cues from two small elapid snakes that rarely consume geckos: the nocturnal golden-crowned snake Cacophis squamulosus and the diurnal marsh snake Hemiaspis signata. We also videotaped geckos in trials involving unscented cards (controls and cologne-scented cards (pungency controls. In trials involving Cacophis and Hemiaspis chemicals, 50% and 63% of geckos spent long time periods (> 3 min freezing whilst pressed flat against the substrate, respectively. Over half the geckos tested exhibited anti-predator behaviours (tail waving, tail vibration, running in response to Cacophis (67% or Hemiaspis (63% chemicals. These behaviours were not observed in control or pungency control trials. Our results support the idea that the velvet gecko displays generalised anti-predator responses to chemical cues from elapid snakes. Generalised responses to predator chemicals may be common in prey species that co-occur with

  4. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    Science.gov (United States)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-01-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastesspp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  5. Predicting synergistic effects of resources and predators on foraging decisions by juvenile Steller sea lions.

    Science.gov (United States)

    Frid, Alejandro; Burns, Jennifer; Baker, Gregory G; Thorne, Richard E

    2009-01-01

    Many theoretical and experimental studies suggest that synergistic interactions between resources and predators influence foraging decisions and their fitness consequences. This framework, however, has been ignored almost completely by hypotheses on causes of the population decline of Steller sea lions (SSLs) (Eumetopias jubatus) in western Alaska. By comparing predictions from a dynamic state variable model to empirical data on the behaviour of individuals instrumented with satellite-linked time-at-depth recorders, we develop and find preliminary support for the hypothesis that, during winter in Prince William Sound, juvenile SSLs (a) underutilise walleye pollock, a predictable resource in deep strata, due to predation risk from Pacific sleeper sharks, and (b) underutilise the potential energy bonanza of inshore aggregations of Pacific herring due to risk from either killer whales, larger conspecifics, or both. Further, under conditions of resource scarcity-induced by overfishing, long-term oceanographic cycles, or their combination-trade-offs between mortality risk and energy gain may influence demographic parameters. Accordingly, computer simulations illustrated the theoretical plausibility that a decline of Pacific herring in shallow strata would greatly increase the number of deep foraging dives, thereby increasing exposure to sleeper sharks and mortality rates. These results suggest that hypotheses on the decline of SSLs should consider synergistic effects of predators and resources on behaviour and mortality rates. Empirical support for our model, however, is limited and we outline tasks for empirical research that emerge from these limitations. More generally, in the context of today's conservation crises, our work illustrates that the greater the dearth of system-specific data, the greater the need to apply principles of behavioural ecology toward the understanding and management of large-scale marine systems.

  6. Environmental conditions and prey-switching by a seabird predator impact juvenile salmon survival

    Science.gov (United States)

    Wells, Brian K.; Santora, Jarrod A.; Henderson, Mark J.; Warzybok, Pete; Jahncke, Jaime; Bradley, Russell W.; Huff, David D.; Schroeder, Isaac D.; Nelson, Peter; Field, John C.; Ainley, David G.

    2017-10-01

    Due to spatio-temporal variability of lower trophic-level productivity along the California Current Ecosystem (CCE), predators must be capable of switching prey or foraging areas in response to changes in environmental conditions and available forage. The Gulf of the Farallones in central California represents a biodiversity hotspot and contains the largest common murre (Uria aalge) colonies along the CCE. During spring, one of the West Coast's most important Chinook salmon (Oncorhynchus tshawytscha) populations out-migrates into the Gulf of the Farallones. We quantify the effect of predation on juvenile Chinook salmon associated with ecosystem-level variability by integrating long-term time series of environmental conditions (upwelling, river discharge), forage species abundance within central CCE, and population size, at-sea distribution, and diet of the common murre. Our results demonstrate common murres typically forage in the vicinity of their offshore breeding sites, but in years in which their primary prey, pelagic young-of-year rockfish (Sebastes spp.), are less available they forage for adult northern anchovies (Engraulis mordax) nearshore. Incidentally, while foraging inshore, common murre consumption of out-migrating juvenile Chinook salmon, which are collocated with northern anchovy, increases and population survival of the salmon is significantly reduced. Results support earlier findings that show timing and strength of upwelling, and the resultant forage fish assemblage, is related to Chinook salmon recruitment variability in the CCE, but we extend those results by demonstrating the significance of top-down impacts associated with these bottom-up dynamics. Our results demonstrate the complexity of ecosystem interactions and impacts between higher trophic-level predators and their prey, complexities necessary to quantify in order to parameterize ecosystem models and evaluate likely outcomes of ecosystem management options.

  7. High trees increase sunflower seed predation by birds in an agricultural landscape of Israel

    Directory of Open Access Journals (Sweden)

    Jessica eSchäckermann

    2014-07-01

    Full Text Available Natural habitats in agricultural landscapes promote agro-ecosystem services but little is known about negative effects (dis-services derived by natural habitats such as crop seed predation. Birds are important seed predators and use high landscape structures to perch and hide. High trees in agricultural landscapes may therefore drive seed predation. We examined if the presence, the distance and the percentages of high trees (tree height >5 m and the percentages of natural habitat surrounding sunflower fields, increased seed predation by birds in Israel. At the field scale, we assessed seed predation across a sample grid of an entire field. At the landscape scale, we assessed seed predation at the field margins and interiors of 20 sunflower fields. Seed predation was estimated as the percentage of removed seeds from sunflower heads. Distances of sample points to the closest high tree and percentage of natural habitat and of high trees in a 1km radius surrounding the fields were measured.We found that seed predation increased with decreasing distance to the closest high tree at the field and landscape scale. At the landscape scale, the percentage of high trees and natural habitat did not increase seed predation. Seed predation in the fields increased by 37 %, with a maximum seed predation of 92 %, when a high tree was available within zero to 50 m to the sunflower fields. If the closest high tree was further away, seed predation was less than 5 %. Sunflower seed predation by birds can be reduced, when avoiding sowing sunflowers within a radius of 50 m to high trees. Farmers should plan to grow crops, not sensitive to bird seed predation, closer to trees to eventually benefit from ecosystem services provided by birds, such as predation of pest insects, while avoiding these locations for growing crops sensitive to bird seed predation. Such management recommendations are directing towards sustainable agricultural landscapes.

  8. Temporal variation in black-caiman-nest predation in varzea of central Brazilian amazonia.

    Science.gov (United States)

    Torralvo, Kelly; Botero-Arias, Robinson; Magnusson, William E

    2017-01-01

    On the Amazon floodplain, the main predators of black caiman (Melanosuchus niger) eggs are jaguars (Panthera onca), tegu lizards (Tupinambis teguixim), capuchin monkeys (Sapajus macrocephalus) and humans (Homo sapiens). In this study, we investigated the relationship between predator attacks on nests and incubation period, and evaluated the influence of initial predation on subsequent predation in the Mamirauá Sustainable Development Reserve. We also evaluated the influence of presence of females near the nests and manipulation of nests on the occurrence of attacks. We compared results from data obtained with camera traps and vestiges left by predators on estimates of rates of predation by different predators. Egg predation was recorded in 32% of the 658 black caiman nests monitored during two years. Our results suggest that the probability of predation on black caiman eggs is relatively constant throughout the incubation period and that predation on eggs was lower when adults, presumably females, were present. Careful opening of nests and handling of eggs did not increase the number of attacks on black caiman nests. Nest opening by a predator appeared to increase the chances of a subsequent attack because most of the attacks on nests occurred soon after a predator first opened the nest. However, attacks by another species of predator do not appear to be necessary to initiate attacks by any other species of predator. Results based on camera traps and vestiges differed, but use of vestiges was adequate for identifying the principal predators on eggs in black caiman nests and, in many circumstances, the vestiges may be better for estimating predation by humans. In this study, opening nests and handling eggs did not increase the number of attacks on black caiman nests.

  9. Temporal variation in black-caiman-nest predation in varzea of central Brazilian amazonia.

    Directory of Open Access Journals (Sweden)

    Kelly Torralvo

    Full Text Available On the Amazon floodplain, the main predators of black caiman (Melanosuchus niger eggs are jaguars (Panthera onca, tegu lizards (Tupinambis teguixim, capuchin monkeys (Sapajus macrocephalus and humans (Homo sapiens. In this study, we investigated the relationship between predator attacks on nests and incubation period, and evaluated the influence of initial predation on subsequent predation in the Mamirauá Sustainable Development Reserve. We also evaluated the influence of presence of females near the nests and manipulation of nests on the occurrence of attacks. We compared results from data obtained with camera traps and vestiges left by predators on estimates of rates of predation by different predators. Egg predation was recorded in 32% of the 658 black caiman nests monitored during two years. Our results suggest that the probability of predation on black caiman eggs is relatively constant throughout the incubation period and that predation on eggs was lower when adults, presumably females, were present. Careful opening of nests and handling of eggs did not increase the number of attacks on black caiman nests. Nest opening by a predator appeared to increase the chances of a subsequent attack because most of the attacks on nests occurred soon after a predator first opened the nest. However, attacks by another species of predator do not appear to be necessary to initiate attacks by any other species of predator. Results based on camera traps and vestiges differed, but use of vestiges was adequate for identifying the principal predators on eggs in black caiman nests and, in many circumstances, the vestiges may be better for estimating predation by humans. In this study, opening nests and handling eggs did not increase the number of attacks on black caiman nests.

  10. Linking predator risk and uncertainty to adaptive forgetting: a theoretical framework and empirical test using tadpoles

    OpenAIRE

    Ferrari, Maud C. O.; Brown, Grant E.; Bortolotti, Gary R.; Chivers, Douglas P.

    2010-01-01

    Hundreds of studies have examined how prey animals assess their risk of predation. These studies work from the basic tennet that prey need to continually balance the conflicting demands of predator avoidance with activities such as foraging and reproduction. The information that animals gain regarding local predation risk is most often learned. Yet, the concept of ‘memory’ in the context of predation remains virtually unexplored. Here, our goal was (i) to determine if the memory window associ...

  11. What cues do ungulates use to assess predation risk in dense temperate forests?

    NARCIS (Netherlands)

    Kuijper, Dries P.J.; Verwijmeren, Mart; Churski, Marcin; Zbyryt, Adam; Schmidt, Krzysztof; Jędrzejewska, Bogumiła; Smit, Chris

    2014-01-01

    Anti-predator responses by ungulates can be based on habitat features or on the near-imminent threat of predators. In dense forest, cues that ungulates use to assess predation risk likely differ from half-open landscapes, as scent relative to sight is predicted to be more important. We studied, in

  12. Joint evolution of predator body size and prey-size preference.

    NARCIS (Netherlands)

    Troost, T.A.; Kooi, B.W.; Dieckmann, U.

    2007-01-01

    We studied the joint evolution of predator body size and prey-size preference based on dynamic energy budget theory. The predators' demography and their functional response are based on general eco-physiological principles involving the size of both predator and prey. While our model can account for

  13. How avian nest site selection responds to predation risk: Testing an 'adaptive peak hypothesis'

    Science.gov (United States)

    Quresh S. Latif; Sacha K. Heath; John T. Rotenberry

    2012-01-01

    1. Nest predation limits avian fitness, so birds should favour nest sites that minimize predation risk. Nevertheless, preferred nest microhabitat features are often uncorrelated with apparent variation in predation rates. 2. This lack of congruence between theory-based expectation and empirical data may arise when birds already occupy ‘adaptive peaks’. If birds nest...

  14. Behavioural interactions between prey (trout smolts) and predators (pike and pikeperch) in an impounded river

    DEFF Research Database (Denmark)

    Jepsen, Niels; Pedersen, Susanne; Thorstad, E.

    2000-01-01

    pikeperch and few female pike have adjusted their behaviour to predation on smolts during the smolt run. The smolt predation in this man-made reservoir is higher than in natural lakes, probably due to the changed physical environment and introduced predators, such as pikeperch. The outlet sluice practice...

  15. Common, but Commonly Overlooked: Red-bellied Woodpeckers as Songbird Nest Predators

    Science.gov (United States)

    Kirsten R. Hazler; Dawn E.W. Drumtra; Matthew R. Marshall; Robert J. Cooper; Paul B. Hamel

    2004-01-01

    Woodpeckers in North America are not widely recognized as nest predators. In this paper, we describe several eyewitness accounts of songbird nest predation by Red-bellied Woodpeckers (Melanerpes carolinus), document evidence that songbirds recognize woodpeckers as nest predators, and show that our observations are consistent with previously published...

  16. Use of artificial nests to investigate predation on freshwater turtle nests

    Science.gov (United States)

    Michael N. Marchand; John A. Litvaitis; Thomas J. Maier; Richard M. DeGraaf

    2002-01-01

    Habitat fragmentation has raised concerns that populations of generalist predators have increased and are affecting a diverse group of prey. Previous research has included the use of artificial nests to investigate the role of predation on birds that nest on or near the ground. Because predation also is a major factor limiting populations of freshwater turtles, we...

  17. Differences in predators of artificial and real songbirds nests: Evidence of bias in artificial nest studies

    Science.gov (United States)

    Frank R. Thompson; Dirk E. Burhans

    2004-01-01

    In the past two decades, many researchers have used artificial nest to measure relative rates of nest predation. Recent comparisons show that real and artificial nests may not be depredated at the same rate, but no one has examined the mechanisms underlying these patterns. We determined differences in predator-specific predation rates of real and artificial nests. we...

  18. Avoiding the nest : responses of field sparrows to the threat of nest predation

    Science.gov (United States)

    Dirk E. Burhans

    2000-01-01

    Nest predation is a major source of reproductive failure in birds (Ricklefs 1969, Martin 1992). Birds confronted with an enemy near the nest may use behaviors to deter the prospect of nest predation. The benefits of nest defense have been shown for many agressive species (Martin 1992), but smaller birds that cannot deter predators may need to resort to other behaviors...

  19. Seasonal shift in the effects of predators on juvenile Atlantic salmon (Salmo salar) energetics

    Science.gov (United States)

    Darren M. Ward; Keith H. Nislow; Carol L. Folt; James Grant

    2011-01-01

    Predator effects on prey populations are determined by the number of prey consumed and effects on the traits of surviving prey. Yet the effects of predators on prey traits are rarely evaluated in field studies. We measured the effects of predators on energetic traits (consumption and growth rates) of juvenile Atlantic salmon (Salmo salar) in a...

  20. Effect of downed woody debris on small mammal anti-predator behavior

    Science.gov (United States)

    Travis M. Hinkelman; John L. Orrock; Susan C Loeb

    2011-01-01

    Anti-Predator behavior can affect prey growth, reproduction, survival, and generate emergent effects in food webs. Small mammals often lower the cost of predation by altering their behavior in response to shrubs, but the importance of other microhabitat features, such as downed woody debris, for anti-predator behavior is unknown. We used giving-up densities to quantify...

  1. Landscape And Edge Effects On The Distribution Of Mammalian Predators In Missouri

    Science.gov (United States)

    William D. Dijak; Frank R. Thompson III

    2000-01-01

    Raccoons (Procyon lotor), opossums (Didelphis virginiana), and striped skunks (Mephitis mephitis) are predators of forest songbird eggs and nestlings. We examined the relative abundance of these predators at landscape and local scales to better understand predation risks. At the landscape scale, we examined the...

  2. Along Came a Spider: Using Live Arthropods in a Predator-Prey Activity

    Science.gov (United States)

    Richardson, Matthew L.; Hari, Janice

    2011-01-01

    We developed a predator-prey activity with eighth-grade students in which they used wolf spiders ("Lycosa carolinensis"), house crickets ("Acheta domestica"), and abiotic factors to address how (1) adaptations in predators and prey shape their interaction and (2) abiotic factors modify the interaction between predators and…

  3. Use of P-32 in Diatraea saccharallis (Fabricius, 1794) (Lepidoptera: Pyralidae) predator's studies

    International Nuclear Information System (INIS)

    Souza-Silva, C.R.; Pacheco, J.M.; Sgrillo, R.B.; Oliveira, A.R.

    1992-01-01

    Eggs and larvae of D. Saccharallis were labelled with P-32 and spread in the sugar cane fields in order to study its predators. Results showed a restricted number of predatory species. Ants were the main predators of larvae and earwigs were the unique eggs predator. (author)

  4. Seasonal and among-stream variation in predator encounter rates for fish prey

    Science.gov (United States)

    Bret C. Harvey; Rodney J. Nakamoto

    2013-01-01

    Recognition that predators have indirect effects on prey populations that may exceed their direct consumptive effects highlights the need for a better understanding of spatiotemporal variation in predator–prey interactions. We used photographic monitoring of tethered Rainbow Trout Oncorhynchus mykiss and Cutthroat Trout O. clarkii to quantify predator encounter rates...

  5. Identity and relative importance of egg predators of rice leaffolders (Lepidoptera:Pyralidae.)

    NARCIS (Netherlands)

    Kraker, de J.; Huis, van A.; Lenteren, van J.C.; Heong, K.L.; Rabbinge, R.

    2000-01-01

    Field andlaboratory studies on predation of rice leaffolder eggs (i.e., Cnaphalocrocis medinalis (Guenée) and Marasmia patnalis Bradley) were conducted to identify major predator species. Direct observations of predation on field-exposed eggs showed that in two seasons Metioche vittaticollis (Stål)

  6. Quantifying predation on Baltic cod early life stages

    DEFF Research Database (Denmark)

    Neumann, Viola; Schaber, Matthias; Eero, Margit

    2017-01-01

    Predation on cod (Gadus morhua) eggs by sprat (Sprattus sprattus) and herring (Clupea harengus) is known to be one of the processes influencing reproductive success of the eastern Baltic cod and has been reported to have contributed to lack of recovery of the stock in the 1990s. This study quanti...

  7. Abundance and distribution of avian and marine mammal predators ...

    African Journals Online (AJOL)

    The principal predators associated with this activity were common dolphins Delphinus capensis and Cape gannets Morus capensis, and their nearshore distribution was associated with sardine and East Coast round herring E. teres. Few clupeoids were encountered along the KwaZulu-Natal continental shelf, although ...

  8. Swimming behaviour of Daphnia clones: differentiation through predator infochemicals

    NARCIS (Netherlands)

    Weber, A.; Van Noordwijk, A.J.

    2002-01-01

    We studied variation in small-scale swimming behavior (SSB) in four clones of Daphnia galeata (water flea) in response to predator infochemicals. The aim of this study was 3-fold. First, we tested for differences in SSB in Daphnia; second, we examined the potential of differences in SSB to explain

  9. Lévy Walks Suboptimal under Predation Risk.

    Directory of Open Access Journals (Sweden)

    Masato S Abe

    2015-11-01

    Full Text Available A key challenge in movement ecology is to understand how animals move in nature. Previous studies have predicted that animals should perform a special class of random walks, called Lévy walk, to obtain more targets. However, some empirical studies did not support this hypothesis, and the relationship between search strategy and ecological factors is still unclear. We focused on ecological factors, such as predation risk, and analyzed whether Lévy walk may not be favored. It was remarkable that the ecological factors often altered an optimal search strategy from Lévy walk to Brownian walk, depending on the speed of the predator's movement, density of predators, etc. This occurred because higher target encounter rates simultaneously led searchers to higher predation risks. Our findings indicate that animals may not perform Lévy walks often, and we suggest that it is crucial to consider the ecological context for evaluating the search strategy performed by animals in the field.

  10. Aspidoscelis deppii (Black-bellied Racerunner). Predation by Great Egrets

    Science.gov (United States)

    Reynolds, Robert P.; Whatton, James F.; Gebhard, Christina A.

    2014-01-01

    Aspidoscelis deppii) is widely distributed from Veracruz and Michoacan, Mexico to Costa Rica (Köhler et al. 2006. The Amphibians and Reptiles of El Salvador. Krieger Publishing Co., Malabar, Florida. 238 pp.). Neotropical lizards are abundant and common prey to all classes of terrestrial vertebrates, and bird predation of lizards is well known.

  11. The effect of cat Felis catus predation on three breeding ...

    African Journals Online (AJOL)

    Breeding success of Pterodroma macroptera, Procellaria aequinoctialis and Pachyptila vittata salvini in three cat-free and three control areas were used to evaluate the effects of cat Felis catus predation on the avifauna of Marion Island. Breeding success of all three species was significantly higher in the combined cat-free ...

  12. Optimal foraging and predator-prey dynamics III

    Czech Academy of Sciences Publication Activity Database

    Křivan, Vlastimil; Eisner, Jan

    2003-01-01

    Roč. 63, - (2003), s. 269-279 ISSN 0040-5809 R&D Projects: GA ČR GA201/03/0091; GA MŠk LA 101 Institutional research plan: CEZ:AV0Z5007907 Keywords : Optimal foraging theory * adaptive behavior * predator-prec population dynamics Subject RIV: EH - Ecology, Behaviour Impact factor: 2.261, year: 2003

  13. Predator efficiency reconsidered for a ladybird-aphid system

    Czech Academy of Sciences Publication Activity Database

    Kindlmann, Pavel; Yasuda, H.; Kajita, Y.; Sato, S.; Dixon, Anthony F. G.

    2015-01-01

    Roč. 3, mar (2015), s. 27 ISSN 2296-701X R&D Projects: GA MŠk(CZ) LO1415; GA ČR GB14-36098G Institutional support: RVO:67179843 Keywords : biological control * generation time ratio * population dynamics * predator-prey systems * ladybirds * aphids Subject RIV: EH - Ecology, Behaviour

  14. Direct identification of predator-prey dynamics in gyrokinetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Sumire, E-mail: sumire.kobayashi@lpp.polytechnique.fr; Gürcan, Özgür D [Laboratoire de Physique des Plasmas, CNRS, Paris-Sud, Ecole Polytechnique, UMR7648, F-91128 Palaiseau (France); Diamond, Patrick H. [University of California, San Diego, La Jolla, California 92093-0319 (United States)

    2015-09-15

    The interaction between spontaneously formed zonal flows and small-scale turbulence in nonlinear gyrokinetic simulations is explored in a shearless closed field line geometry. It is found that when clear limit cycle oscillations prevail, the observed turbulent dynamics can be quantitatively captured by a simple Lotka-Volterra type predator-prey model. Fitting the time traces of full gyrokinetic simulations by such a reduced model allows extraction of the model coefficients. Scanning physical plasma parameters, such as collisionality and density gradient, it was observed that the effective growth rates of turbulence (i.e., the prey) remain roughly constant, in spite of the higher and varying level of primary mode linear growth rates. The effective growth rate that was extracted corresponds roughly to the zonal-flow-modified primary mode growth rate. It was also observed that the effective damping of zonal flows (i.e., the predator) in the parameter range, where clear predator-prey dynamics is observed, (i.e., near marginal stability) agrees with the collisional damping expected in these simulations. This implies that the Kelvin-Helmholtz-like instability may be negligible in this range. The results imply that when the tertiary instability plays a role, the dynamics becomes more complex than a simple Lotka-Volterra predator prey.

  15. Delayed Post Mortem Predation in Lightning Strike Carcasses ...

    African Journals Online (AJOL)

    Campbell Murn

    An adult giraffe was struck dead by lightning on a game farm outside. Phalaborwa, South Africa in March 2014. Interestingly, delayed post-mortem predation occurred on the carcass, which according to the farm owners was an atypical phenomenon for the region. Delayed post-mortem scavenging on lightning strike ...

  16. How to Protect Children from Internet Predators: A Phenomenological Study

    Science.gov (United States)

    Alexander, Rodney T.

    2012-01-01

    Teenage Internet users are the fastest growing segment in the Internet user population. These teenagers are at risk of sexual assault from Internet predators. This phenomenological study explored teacher and counselors' perceptions of how to prevent this sexual assault. Twenty-five teacher and counselor participants were interviewed. A…

  17. Antelope Predation by Nigerian Forest Baboons: Ecological and Behavioural Correlates.

    Science.gov (United States)

    Sommer, Volker; Lowe, Adriana; Jesus, Gonçalo; Alberts, Nienke; Bouquet, Yaëlle; Inglis, David M; Petersdorf, Megan; van Riel, Eelco; Thompson, James; Ross, Caroline

    2016-01-01

    Baboons are well studied in savannah but less so in more closed habitats. We investigated predation on mammals by olive baboons (Papio anubis) at a geographical and climatic outlier, Gashaka Gumti National Park (Nigeria), the wettest and most forested site so far studied. Despite abundant wildlife, meat eating was rare and selective. Over 16 years, baboons killed 7 bushbuck (Tragelaphus scriptus) and 3 red-flanked duiker (Cephalophus rufilatus), mostly still-lying 'parked' infants. Taking observation time into account, this is 1 predation per group every 3.3 months - far lower than at other sites. Some features of meat eating resemble those elsewhere; predation is opportunistic, adult males monopolize most prey, a targeted killing bite is lacking and begging or active sharing is absent. Carcass owners employ evasive tactics, as meat is often competed over, but satiated owners may tolerate others taking meat. Other features are unusual; this is only the second study site with predation records for bushbuck and the only one for red-flanked duiker. The atypical prey and rarity of eating mammals probably reflects the difficulty of acquiring prey animals when vegetation cover is dense. Our data support the general prediction of the socioecological model that environments shape behavioural patterns, while acknowledging their intraspecific or intrageneric plasticity. © 2016 S. Karger AG, Basel.

  18. Parasitology: Parasite survives predation on its host

    DEFF Research Database (Denmark)

    Ponton, Fleur; Lebarbenchon, Camille; Lefèvre, Thierry

    2006-01-01

    As prisoners in their living habitat, parasites should be vulnerable to destruction by the predators of their hosts. But we show here that the parasitic gordian worm Paragordius tricuspidatus is able to escape not only from its insect host after ingestion by a fish or frog but also from...

  19. Conservation implications when the next predators are known. Chapter 2

    Science.gov (United States)

    Frank R., III Thompson; Christine A. Ribic

    2012-01-01

    Conservation and management of passerines has largely focused on habitat manipulation or restoration because the natural communities on which these birds depend have been destroyed and fragmented. However, productivity is another important aspect of avian conservation, and nest predation can be a large source of nesting mortality for passerines. Recent studies using...

  20. Death and danger at migratory stopovers: Problems with "predation risk"

    NARCIS (Netherlands)

    Lank, D.B.; Ydenberg, R.C.

    2003-01-01

    Dierschke (2003) recently published a paper entitled, ``Predation hazard during migratory stopover: are light or heavy birds under risk?¿¿ He measured the body condition of 11 species of passerine migrants depredated by feral cats and raptors at an offshore stopover site, and used these data to

  1. Using Artificial Nests to Study Nest Predation in Birds

    Science.gov (United States)

    Belthoff, James R.

    2005-01-01

    A simple and effective field exercise that demonstrates factors affecting predation on bird nests is described. With instructor guidance, students in high school biology or college-level biology, ecology, animal behavior, wildlife management or ornithology laboratory courses can collaborate to design field experiments related to nest depredation.

  2. Stochastic population oscillations in spatial predator-prey models

    International Nuclear Information System (INIS)

    Taeuber, Uwe C

    2011-01-01

    It is well-established that including spatial structure and stochastic noise in models for predator-prey interactions invalidates the classical deterministic Lotka-Volterra picture of neutral population cycles. In contrast, stochastic models yield long-lived, but ultimately decaying erratic population oscillations, which can be understood through a resonant amplification mechanism for density fluctuations. In Monte Carlo simulations of spatial stochastic predator-prey systems, one observes striking complex spatio-temporal structures. These spreading activity fronts induce persistent correlations between predators and prey. In the presence of local particle density restrictions (finite prey carrying capacity), there exists an extinction threshold for the predator population. The accompanying continuous non-equilibrium phase transition is governed by the directed-percolation universality class. We employ field-theoretic methods based on the Doi-Peliti representation of the master equation for stochastic particle interaction models to (i) map the ensuing action in the vicinity of the absorbing state phase transition to Reggeon field theory, and (ii) to quantitatively address fluctuation-induced renormalizations of the population oscillation frequency, damping, and diffusion coefficients in the species coexistence phase.

  3. Stationary Patterns in One-Predator Two-Prey Models

    DEFF Research Database (Denmark)

    Pedersen, Michael; Zhigui, Lin

    1999-01-01

    Weakly-coupled elliptic system decribing models of simple three-species food webs such as the one-predator, two-prey modelis discussed. We show thatthere is no non-constant solution if diffusions or inter-specific competitions are strong, or if the intrinsic growths of the prey are slow...

  4. Stationary Patterns in One-Predator Two-Prey Models

    DEFF Research Database (Denmark)

    Pedersen, Michael; Zhigui, Lin

    1999-01-01

    Weakly-coupled elliptic system decribing models of simple three-species food webs such as the one-predator, two-prey model is discussed. We show that there is no non-constant solution if diffusions or inter-specific competitions are strong, or if the intrinsic growths of the prey are slow...

  5. Physical and biochemical changes in sludge upon Tubifex tubifex predation

    NARCIS (Netherlands)

    de Valk, S.L.; Khadem, A.F.; Foreman, Christine M.; van Lier, J.B.; de Kreuk, M.K.

    2016-01-01

    Worm predation (WP) on activated sludge leads to increased sludge degradation rates, irrespective of the type of worm used or reactor conditions employed. However, the cause of the increased sludge degradation rates remains unknown. This paper presents a comparative analysis of the physical and

  6. Can Bt maize change the spatial distribution of predator Cycloneda ...

    African Journals Online (AJOL)

    Cultivation of Bt crops is an important tactic in integrated pest management. The effect of Bt maize on arthropod predators needs to be investigated because of the important role of these natural enemies in the absence of target pests. The objective of the present study was to generate information on the distribution model of ...

  7. Predation risk drives social complexity in cooperative breeders

    NARCIS (Netherlands)

    Groenewoud, Frank; Frommen, Joachim Gerhard; Josi, Dario; Tanaka, Hirokazu; Jungwirth, Arne; Taborsky, Michael

    2016-01-01

    Predation risk is a major ecological factor selecting for group living. It is largely ignored, however, as an evolutionary driver of social complexity and cooperative breeding, which is attributed mainly to a combination of habitat saturation and enhanced relatedness levels. Social cichlids neither

  8. Habitat stability, predation risk and ‘memory syndromes’

    Science.gov (United States)

    Dalesman, S.; Rendle, A.; Dall, S.R.X.

    2015-01-01

    Habitat stability and predation pressure are thought to be major drivers in the evolutionary maintenance of behavioural syndromes, with trait covariance only occurring within specific habitats. However, animals also exhibit behavioural plasticity, often through memory formation. Memory formation across traits may be linked, with covariance in memory traits (memory syndromes) selected under particular environmental conditions. This study tests whether the pond snail, Lymnaea stagnalis, demonstrates consistency among memory traits (‘memory syndrome’) related to threat avoidance and foraging. We used eight populations originating from three different habitat types: i) laboratory populations (stable habitat, predator-free); ii) river populations (fairly stable habitat, fish predation); and iii) ditch populations (unstable habitat, invertebrate predation). At a population level, there was a negative relationship between memories related to threat avoidance and food selectivity, but no consistency within habitat type. At an individual level, covariance between memory traits was dependent on habitat. Laboratory populations showed no covariance among memory traits, whereas river populations showed a positive correlation between food memories, and ditch populations demonstrated a negative relationship between threat memory and food memories. Therefore, selection pressures among habitats appear to act independently on memory trait covariation at an individual level and the average response within a population. PMID:26013966

  9. Killing for Girls: Predation Play and Female Empowerment

    Science.gov (United States)

    Bertozzi, Elena

    2012-01-01

    Predation games--games in which the player is actively encouraged and often required to hunt and kill in order to survive--have historically been the purview of male players. Females, though now much more involved in digital games than before, generally play games that stress traditionally feminine values such as socializing with others, shopping,…

  10. Testing for Camouflage Using Virtual Prey and Human "Predators"

    Science.gov (United States)

    Todd, Peter A.

    2009-01-01

    Camouflage is a prevalent feature of the natural world and as such has a ready appeal to students; however, it is a difficult subject to study using real predators and prey. This paper focuses how one fundamental type of camouflage, disruptive colouration (bold markings that break up the outline of the organism), can be tested using paper…

  11. Escape of protists in predator-generated feeding currents

    DEFF Research Database (Denmark)

    Jakobsen, Hans Henrik

    2002-01-01

    The ciliate Strobilidium sp. and 2 flagellates, Chrysochromulina simplex and Gymnodinium sp., were exposed to predator-generated feeding currents, and their escape responses were quantified using 2- and 3-dimensional video techniques. All 3 studied organisms responded by escaping at a defined dis...

  12. Killing the killer: predation between protists and predatory bacteria.

    Science.gov (United States)

    Johnke, Julia; Boenigk, Jens; Harms, Hauke; Chatzinotas, Antonis

    2017-05-01

    Predation by microbes is one of the main drivers of bacterial mortality in the environment. In most ecosystems multiple micropredators compete at least partially for the same bacterial resource. Predatory interactions between these micropredators might lead to shifts within microbial communities. Integrating these interactions is therefore crucial for the understanding of ecosystem functioning. In this study, we investigated the predation between two groups of micropredators, i.e. phagotrophic protists and Bdellovibrio and like organisms (BALOs). BALOs are obligate predators of Gram-negative bacteria. We hypothesised that protists can prey upon BALOs despite the small size and high swimming speed of the latter, which makes them potentially hard to capture. Predation experiments including three protists, i.e. one filter feeder and two interception feeder, showed that BALOs are a relevant prey for these protists. The growth rate on BALOs differed for the respective protists. The filter feeding ciliate was growing equally well on the BALOs and on Escherichia coli, whereas the two flagellate species grew less well on the BALOs compared to E. coli. However, BALOs might not be a favourable food source in resource-rich environments as they are not enabling all protists to grow as much as on bacteria of bigger volume. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Short Communications Predation on tent tortoise and leopard ...

    African Journals Online (AJOL)

    1991-06-26

    Jun 26, 1991 ... Predation by the pale chanting goshawk Melierax canorus on. Psammobates tentorius and Geoche/one pardalis hatchlings oorrelates with the habitat preference of these tortoise spe- ... into the region covered by the VI scute length of prey items ... pairs of birds occupying territories incorporating KBV and.

  14. First record of predation by the alien invasive freshwater fish ...

    African Journals Online (AJOL)

    First record of predation by the alien invasive freshwater fish Micropterus salmoides L. (Centrarchidae) on migrating estuarine fishes in South Africa. ... Estuarine fish species, Monodactylus falciformis, and two species of the family Mugilidae, Mugil cephalus and Myxus capensis, were the most common fish prey in both size ...

  15. Small nonnative fishes as predators of larval razorback suckers

    Science.gov (United States)

    Carpenter, J.; Mueller, G.A.

    2008-01-01

    The razorback sucker (Xyrauchen texanus), an endangered big-river fish of the Colorado River basin, has demonstrated no sustainable recruitment in 4 decades, despite presence of spawning adults and larvae. Lack of adequate recruitment has been attributed to several factors, including predation by nonnative fishes. Substantial funding and effort has been expended on mechanically removing nonnative game fishes, typically targeting large predators. As a result, abundance of larger predators has declined, but the abundance of small nonnative fishes has increased in some areas. We conducted laboratory experiments to determine if small nonnative fishes would consume larval razorback suckers. We tested adults of three small species (threadfin shad, Dorosoma petenense; red shiner, Cyprinella lutrensis; fathead minnow, Pimephales promelas) and juveniles of six larger species (common carp, Cyprinus carpio; yellow bullhead, Ameiurus natalis; channel catfish, Ictalurus punctatus; rainbow trout, Oncorhynchus mykiss; green sunfish, Lepomis cyanellus; bluegill, L. macrochirus). These nonnative fishes span a broad ecological range and are abundant within the historical range of the razorback sucker. All nine species fed on larval razorback suckers (total length, 9-16 mm). Our results suggest that predation by small nonnative fishes could be responsible for limiting recovery of this endangered species.

  16. Bioeconomic modelling of a prey predator system using differential ...

    African Journals Online (AJOL)

    Continuous type gestational delay of predators is incorporated and its effect on the dynamical behavior of the model system is analyzed. Through considering delay as a bifurcation parameter, the occurrence of Hopf bifurcation of the proposed model system with positive economic profit is shown in the neighborhood of the ...

  17. Consequences of a refuge for the predator-prey dynamics of a wolf-elk system in Banff National Park, Alberta, Canada.

    Science.gov (United States)

    Goldberg, Joshua F; Hebblewhite, Mark; Bardsley, John

    2014-01-01

    Refugia can affect predator-prey dynamics via movements between refuge and non-refuge areas. We examine the influence of a refuge on population dynamics in a large mammal predator-prey system. Wolves (Canis lupus) have recolonized much of their former range in North America, and as a result, ungulate prey have exploited refugia to reduce predation risk with unknown impacts on wolf-prey dynamics. We examined the influence of a refuge on elk (Cervus elaphus) and wolf population dynamics in Banff National Park. Elk occupy the Banff townsite with little predation, whereas elk in the adjoining Bow Valley experience higher wolf predation. The Banff refuge may influence Bow Valley predator-prey dynamics through source-sink movements. To test this hypothesis, we used 26 years of wolf and elk population counts and the Delayed Rejection Adaptive Metropolis Markov chain Monte Carlo method to fit five predator-prey models: 1) with no source-sink movements, 2) with elk density-dependent dispersal from the refuge to the non-refuge, 3) with elk predation risk avoidance movements from the non-refuge to the refuge, 4) with differential movement rates between refuge and non-refuge, and 5) with short-term, source-sink wolf movements. Model 1 provided the best fit of the data, as measured by Akaike Information Criterion (AIC). In the top model, Banff and Bow Valley elk had median growth rates of 0.08 and 0.03 (95% credibility intervals [CIs]: 0.027-0.186 and 0.001-0.143), respectively, Banff had a median carrying capacity of 630 elk (95% CI: 471.9-2676.9), Bow Valley elk had a median wolf encounter rate of 0.02 (95% CI: 0.013-0.030), and wolves had a median death rate of 0.23 (95% CI: 0.146-0.335) and a median conversion efficiency of 0.07 (95% CI: 0.031-0.124). We found little evidence for potential source-sink movements influencing the predator-prey dynamics of this system. This result suggests that the refuge was isolated from the non-refuge.

  18. Gopherus Agassizii (Desert Tortoise). Predation/Mountain Lions (Pre-Print)

    Energy Technology Data Exchange (ETDEWEB)

    Paul D. Greger and Philip A. Medica

    2009-01-01

    During a long-term study on tortoise growth within 3 fenced 9-ha enclosures in Rock Valley, Nevada Test Site (NTS), Nye County, Nevada, USA, tortoises have been captured annually since 1964 (Medica et al. 1975. Copeia 1975:630-643; Turner et al. 1987. Copeia 1987:974-979). Between early August and mid October 2003 we observed a significant mortality event. The Rock Valley enclosures were constructed of 6 x 6 mm mesh 1.2 m wide hardware cloth, buried 0.3 m in the soil with deflective flashing on both sides on the top to restrict the movement of small mammals and lizards from entering or leaving the enclosures (Rundel and Gibson 1996, Ecological communities and process in a Mojave Desert ecosystem: Rock Valley, Nevada, Cambridge University Press, Great Britain. 369 pp.). On August 6, 2003, the carcass of an adult female Desert Tortoise No.1411 (carapace length 234 mm when alive) was collected while adult male tortoise No.4414 (carapace length 269 mm) was observed alive and in good health on the same day. Subsequently the carcass of No.4414 was found on October 16, 2003. Between October 16-17, 2003, the remains of 6 (5 adult and 1 juvenile) Desert Tortoises were found, some within each of the 3 enclosures in Rock Valley. A seventh adult tortoise was found on September 26, 2006, its death also attributed to the 2003 mortality event based upon the forensic evidence. Each of the 7 adult Desert Tortoises had the central portion of their carapace broken open approximately to the dorsal portion of the marginal scutes while the plastron was still intact (Figure 1A). Adjacent to 7 of the 8 remains we located numerous bone fragments including parts of the carapace and limbs as well as dried intestines in a nearby Range Rhatany (Krameria parvifolia) shrub. The significance of the frequent use of this shrub is puzzling. Three of the Desert Tortoise shell remains possessed distinctive intercanine punctures measuring 55-60 mm center to center indicating that this was an adult

  19. Diel predator activity drives a dynamic landscape of fear

    Science.gov (United States)

    Kohl, Michel T.; Stahler, Daniel R.; Metz, Matthew C.; Forester, James D.; Kauffman, Matthew J.; Varley, Nathan; White, P.J.; Smith, Douglas W.; MacNulty, Daniel R.

    2017-01-01

    A "landscape of fear" (LOF) is a map that describes continuous spatial variation in an animal's perception of predation risk. The relief on this map reflects, for example, places that an animal avoids to minimize risk. Although the LOF concept is a potential unifying theme in ecology that is often invoked to explain the ecological and conservation significance of fear, quantified examples of a LOF over large spatial scales are lacking as is knowledge about the daily dynamics of a LOF. Despite theory and data to the contrary, investigators often assume, implicitly or explicitly, that a LOF is a static consequence of a predator's mere presence. We tested the prediction that a LOF in a large-scale, free-living system is a highly-dynamic map with "peaks" and "valleys" that alternate across the diel (24-hour) cycle in response to daily lulls in predator activity. We did so with extensive data from the case study of Yellowstone elk (Cervus elaphus) and wolves (Canis lupus) that was the original basis for the LOF concept. We quantified the elk LOF, defined here as spatial allocation of time away from risky places and times, across nearly 1000-km2 of northern Yellowstone National Park and found that it fluctuated with the crepuscular activity pattern of wolves, enabling elk to use risky places during wolf downtimes. This may help explain evidence that wolf predation risk has no effect on elk stress levels, body condition, pregnancy, or herbivory. The ability of free-living animals to adaptively allocate habitat use across periods of high and low predator activity within the diel cycle is an underappreciated aspect of animal behavior that helps explain why strong antipredator responses may trigger weak ecological effects, and why a LOF may have less conceptual and practical importance than direct killing.

  20. Costs and limits of dosage response to predation risk: to what extent can tadpoles invest in anti-predator morphology?

    Science.gov (United States)

    Teplitsky, Céline; Plénet, Sandrine; Joly, Pierre

    2005-09-01

    Inducible defences have long been considered as a polyphenism opposing defended and undefended morphs. However, in nature, preys are exposed to various levels of predation risk and scale their investment in defence to actual predation risk. Still, among the traits that are involved in the defence, some are specific to one predator type while others act as a more generalised defence. The existence of defence costs could prevent an individual investing in all these traits simultaneously. In this study, we investigate the impact of an increasing level of predator density (stickleback, Gasterosteus aculeatus) on the expression of morphological inducible defences in tadpoles of Rana dalmatina. In this species, investment in tail length and tail muscle is a stickleback-specific response while increased tail fin depth is a more general defence. As expected, we found a relationship between investment in defence and level of risk through the responses of tail fin depth and tail length. We also found an exponential increase of defence cost, notably expressed by convex decrease of growth and developmental rates. We found a relative independence of investment in the different traits that compose the defence, revealing a high potential for fine tuning the expression of defended phenotypes with respect to local ecological conditions.

  1. Context Dependent Effect of Landscape on the Occurrence of an Apex Predator across Different Climate Regions.

    Science.gov (United States)

    Fujita, Go; Azuma, Atsuki; Nonaka, Jun; Sakai, Yoshiaki; Sakai, Hatsumi; Iseki, Fumitaka; Itaya, Hiroo; Fukasawa, Keita; Miyashita, Tadashi

    2016-01-01

    In studies of habitat suitability at landscape scales, transferability of species-landscape associations among sites are likely to be critical because it is often impractical to collect datasets across various regions. However, limiting factors, such as prey availability, are not likely to be constant across scales because of the differences in species pools. This is particularly true for top predators that are often the target for conservation concern. Here we focus on gray-faced buzzards, apex predators of farmland-dominated landscapes in East Asia. We investigated context dependency of "buzzard-landscape relationship", using nest location datasets from five sites, each differing in landscape composition. Based on the similarities of prey items and landscape compositions across the sites, we determined several alternative ways of grouping the sites, and then examined whether buzzard-landscape relationship change among groups, which was conducted separately for each way of grouping. As a result, the model of study-sites grouping based on similarities in prey items showed the smallest ΔAICc. Because the terms of interaction between group IDs and areas of broad-leaved forests and grasslands were selected, buzzard-landscape relationship showed a context dependency, i.e., these two landscape elements strengthen the relationship in southern region. The difference in prey fauna, which is associated with the difference in climate, might generate regional differences in the buzzard-landscape associations.

  2. Context Dependent Effect of Landscape on the Occurrence of an Apex Predator across Different Climate Regions.

    Directory of Open Access Journals (Sweden)

    Go Fujita

    Full Text Available In studies of habitat suitability at landscape scales, transferability of species-landscape associations among sites are likely to be critical because it is often impractical to collect datasets across various regions. However, limiting factors, such as prey availability, are not likely to be constant across scales because of the differences in species pools. This is particularly true for top predators that are often the target for conservation concern. Here we focus on gray-faced buzzards, apex predators of farmland-dominated landscapes in East Asia. We investigated context dependency of "buzzard-landscape relationship", using nest location datasets from five sites, each differing in landscape composition. Based on the similarities of prey items and landscape compositions across the sites, we determined several alternative ways of grouping the sites, and then examined whether buzzard-landscape relationship change among groups, which was conducted separately for each way of grouping. As a result, the model of study-sites grouping based on similarities in prey items showed the smallest ΔAICc. Because the terms of interaction between group IDs and areas of broad-leaved forests and grasslands were selected, buzzard-landscape relationship showed a context dependency, i.e., these two landscape elements strengthen the relationship in southern region. The difference in prey fauna, which is associated with the difference in climate, might generate regional differences in the buzzard-landscape associations.

  3. Internal Acoustic Transceivers Reveal the Annual Social Network Patterns in a Coastal Top Predator

    Science.gov (United States)

    Haulsee, D.; Fox, D. A.; Breece, M.; Wetherbee, B.; Brown, L.; Kneebone, J.; Skomal, G.; Oliver, M. J.

    2016-02-01

    Sand Tigers (Carcharias taurus) are large apex predators resident in the coastal ocean along the Eastern US Coast. Although Delaware Bay and surrounding coastal waters are known summer "hot spots" for Sand Tigers, our understanding of their seasonal movements is less well known. Since 2007, we have implanted more than 300 VEMCO acoustic transmitters in Sand Tigers, which have been detected from Cape Canaveral, Florida to Long Island, New York by collaborators in the Atlantic Cooperative Telemetry (ACT) Network. During the summer of 2012, 20 Sand Tigers were implanted with VEMCO Mobile Transceivers (VMTs), which are capable of both transmitting and receiving coded acoustic pings. To date, two of the 20 sharks have been recaptured, and their VMTs recovered. VMTs recorded detections of 350 individuals, from 8 different species. We analyzed their intra- and interspecific social network, which allowed us to reconstruct the approximate locations of Sand Tigers throughout the year. Changes in the interspecific population dynamics throughout the year revealed evidence of fission-fusion social behavior, which is common in mammals, but rarely documented in non-mammalian species. This project is a unique look at the social network of an apex predator and is a useful model for studies quantifying the social structures of marine animals. In addition, understanding how the aggregations of this species changes (in terms of sex and size class segregation) on spatiotemporal scales is critical for effective protection of the species and will be useful as managers develop conservation plans along the East Coast.

  4. Systemic Imidacloprid Affects Intraguild Parasitoids Differently

    Science.gov (United States)

    Roe, R. Michael; Bacheler, Jack S.

    2015-01-01

    Toxoneuron nigriceps (Viereck) (Hymenoptera, Braconidae) and Campoletis sonorensis (Cameron) (Hymenoptera, Ichneumonidae) are solitary endoparasitoids of the tobacco budworm, Heliothis virescens (Fabricius) (Lepidoptera, Noctuidae). They provide biological control of H. virescens populations in Southeastern US agricultural production systems. Field and greenhouse experiments conducted from 2011–2014 compared parasitism rates of parasitoids that developed inside H. virescens larvae fed on tobacco plants treated with and without imidacloprid. The parasitoids in our study did not have a similar response. Toxoneuron nigriceps had reduced parasitism rates, but parasitism rates of C. sonorensis were unaffected. Preliminary data indicate that adult female lifespans of T. nigriceps are also reduced. ELISA was used to measure concentrations of neonicotinoids, imidacloprid and imidacloprid metabolites in H. virescens larvae that fed on imidacloprid-treated plants and in the parasitoids that fed on these larvae. Concentrations were detectable in the whole bodies of parasitized H. virescens larvae, T. nigriceps larvae and T. nigriceps adults, but not in C. sonorensis larvae and adults. These findings suggest that there are effects of imidacloprid on multiple trophic levels, and that insecticide use may differentially affect natural enemies with similar feeding niches. PMID:26658677

  5. Systemic Imidacloprid Affects Intraguild Parasitoids Differently.

    Directory of Open Access Journals (Sweden)

    Sally V Taylor

    Full Text Available Toxoneuron nigriceps (Viereck (Hymenoptera, Braconidae and Campoletis sonorensis (Cameron (Hymenoptera, Ichneumonidae are solitary endoparasitoids of the tobacco budworm, Heliothis virescens (Fabricius (Lepidoptera, Noctuidae. They provide biological control of H. virescens populations in Southeastern US agricultural production systems. Field and greenhouse experiments conducted from 2011-2014 compared parasitism rates of parasitoids that developed inside H. virescens larvae fed on tobacco plants treated with and without imidacloprid. The parasitoids in our study did not have a similar response. Toxoneuron nigriceps had reduced parasitism rates, but parasitism rates of C. sonorensis were unaffected. Preliminary data indicate that adult female lifespans of T. nigriceps are also reduced. ELISA was used to measure concentrations of neonicotinoids, imidacloprid and imidacloprid metabolites in H. virescens larvae that fed on imidacloprid-treated plants and in the parasitoids that fed on these larvae. Concentrations were detectable in the whole bodies of parasitized H. virescens larvae, T. nigriceps larvae and T. nigriceps adults, but not in C. sonorensis larvae and adults. These findings suggest that there are effects of imidacloprid on multiple trophic levels, and that insecticide use may differentially affect natural enemies with similar feeding niches.

  6. The global stability of a delayed predator-prey system with two stage-structure

    International Nuclear Information System (INIS)

    Wang Fengyan; Pang Guoping

    2009-01-01

    Based on the classical delayed stage-structured model and Lotka-Volterra predator-prey model, we introduce and study a delayed predator-prey system, where prey and predator have two stages, an immature stage and a mature stage. The time delays are the time lengths between the immature's birth and maturity of prey and predator species. Results on global asymptotic stability of nonnegative equilibria of the delay system are given, which generalize and suggest that good continuity exists between the predator-prey system and its corresponding stage-structured system.

  7. Predation cues rather than resource availability promote cryptic behaviour in a habitat-forming sea urchin.

    Science.gov (United States)

    Spyksma, Arie J P; Taylor, Richard B; Shears, Nick T

    2017-03-01

    It is well known that predators often influence the foraging behaviour of prey through the so-called "fear effect". However, it is also possible that predators could change prey behaviour indirectly by altering the prey's food supply through a trophic cascade. The predator-sea urchin-kelp trophic cascade is widely assumed to be driven by the removal of sea urchins by predators, but changes in sea urchin behaviour in response to predators or increased food availability could also play an important role. We tested whether increased crevice occupancy by herbivorous sea urchins in the presence of abundant predatory fishes and lobsters is a response to the increased risk of predation, or an indirect response to higher kelp abundances. Inside two New Zealand marine reserves with abundant predators and kelp, individuals of the sea urchin Evechinus chloroticus were rarer and remained cryptic (i.e. found in crevices) to larger sizes than on adjacent fished coasts where predators and kelp are rare. In a mesocosm experiment, cryptic behaviour was induced by simulated predation (the addition of crushed conspecifics), but the addition of food in the form of drift kelp did not induce cryptic behaviour. These findings demonstrate that the 'fear' of predators is more important than food availability in promoting sea urchin cryptic behaviour and suggest that both density- and behaviourally mediated interactions are important in the predator-sea urchin-kelp trophic cascade.

  8. A meta-analysis of predation risk effects on pollinator behaviour.

    Directory of Open Access Journals (Sweden)

    Gustavo Q Romero

    Full Text Available Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36% and time spent on flowers (by 51% by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters nor on pollinator lifestyle (social vs. solitary. However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres, suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.

  9. A meta-analysis of predation risk effects on pollinator behaviour.

    Science.gov (United States)

    Romero, Gustavo Q; Antiqueira, Pablo A P; Koricheva, Julia

    2011-01-01

    Flower-visiting animals are constantly under predation risk when foraging and hence might be expected to evolve behavioural adaptations to avoid predators. We reviewed the available published and unpublished data to assess the overall effects of predators on pollinator behaviour and to examine sources of variation in these effects. The results of our meta-analysis showed that predation risk significantly decreased flower visitation rates (by 36%) and time spent on flowers (by 51%) by pollinators. The strength of the predator effects depended neither on predator taxa and foraging mode (sit-and-wait or active hunters) nor on pollinator lifestyle (social vs. solitary). However, predator effects differed among pollinator taxa: predator presence reduced flower visitation rates and time spent on flowers by Squamata, Lepidoptera and Hymenoptera, but not by Diptera. Furthermore, larger pollinators showed weaker responses to predation risk, probably because they are more difficult to capture. Presence of live crab spiders on flowers had weaker effects on pollinator behaviour than presence of dead or artificial crab spiders or other objects (e.g. dead bees, spheres), suggesting that predator crypsis may be effective to some extent. These results add to a growing consensus on the importance of considering both predator and pollinator characteristics from a community perspective.

  10. Determining nest predators of the Least Bell's Vireo through point counts, tracking stations, and video photography

    Science.gov (United States)

    Peterson, Bonnie L.; Kus, Barbara E.; Deutschman, Douglas H.

    2004-01-01

    We compared three methods to determine nest predators of the Least Bell's Vireo (Vireo bellii pusillus) in San Diego County, California, during spring and summer 2000. Point counts and tracking stations were used to identify potential predators and video photography to document actual nest predators. Parental behavior at depredated nests was compared to that at successful nests to determine whether activity (frequency of trips to and from the nest) and singing vs. non-singing on the nest affected nest predation. Yellow-breasted Chats (Icteria virens) were the most abundant potential avian predator, followed by Western Scrub-Jays (Aphelocoma californica). Coyotes (Canis latrans) were abundant, with smaller mammalian predators occurring in low abundance. Cameras documented a 48% predation rate with scrub-jays as the major nest predators (67%), but Virginia opossums (Didelphis virginiana, 17%), gopher snakes (Pituophis melanoleucus, 8%) and Argentine ants (Linepithema humile, 8%) were also confirmed predators. Identification of potential predators from tracking stations and point counts demonstrated only moderate correspondence with actual nest predators. Parental behavior at the nest prior to depredation was not related to nest outcome.

  11. Lake Pend Oreille Predation Research, Annual Report 2002-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Bassista, Thomas

    2004-02-01

    During August 2002 we conducted a hydroacoustic survey to enumerate pelagic fish >406 mm in Lake Pend Oreille, Idaho. The purpose of this survey was to determine a collective lakewide biomass estimate of pelagic bull trout Salvelinus confluentus, rainbow trout Oncorhynchus mykiss, and lake trout S. namaycush and compare it to pelagic prey (kokanee salmon O. nerka) biomass. By developing hydroacoustic techniques to determine the pelagic predator to prey ratio, we can annually monitor their balance. Hydroacoustic surveys were also performed during December 2002 and February 2003 to investigate the effectiveness of autumn and winter surveys for pelagic predators. The inherent problem associated with hydroacoustic sampling is the inability to directly identify fish species. Therefore, we utilized sonic tracking techniques to describe rainbow trout and lake trout habitat use during our winter hydroacoustic survey to help identify fish targets from the hydroacoustic echograms. During August 2002 we estimated there were 39,044 pelagic fish >406 mm in Lake Pend Oreille (1.84 f/ha). Based on temperature and depth utilization, two distinct groups of pelagic fish >406 mm were located during August; one group was located between 10 and 35 m and the other between 40 and 70 m. The biomass for pelagic fish >406 mm during August 2002 was 73 t (metric ton). This would account for a ratio of 1 kg of pelagic predator for every 2.63 kg of kokanee prey, assuming all pelagic fish >406 mm are predators. During our late fall and winter hydroacoustic surveys, pelagic fish >406 mm were observed at lake depths between 20 and 90 m. During late fall and winter, we tracked three rainbow trout (168 habitat observations) and found that they mostly occupied pelagic areas and predominantly stayed within the top 10 m of the water column. During late fall (one lake trout) and winter (four lake trout), we found that lake trout (184 habitat observations) utilized benthic-nearshore areas 65% of the time

  12. Fear and loathing in the benthos: Responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk.

    Science.gov (United States)

    Pestana, João L T; Loureiro, Susana; Baird, Donald J; Soares, Amadeu M V M

    2009-06-28

    The influence of interactions between pesticide exposure and perceived predation risk on the lethal and sub-lethal responses of two aquatic insects was investigated using the pesticide imidacloprid, and a combination of predator-release kairomones from trout and alarm substances from conspecifics. Laboratory experiments examined feeding and respiration rates of the caddisfly Sericostoma vittatum as well as the growth, emergence and respiration rates of the midge Chironomus riparius, exposed to sub-lethal concentrations of imidacloprid. The effects of the two stressors on burrowing behaviour of both species were also assessed. The results show significant effects of environmentally relevant concentrations of imidacloprid on all endpoints studied. Perceived predation risk also elicited sub-lethal effects in C. riparius and S. vittatum, the latter species being less responsive to predation cues. The effects of simultaneous exposure to both types of stressors were assessed using two different approaches: analysis of variance and conceptual models [concentration addition (CA) and independent action (IA)] normally used for the evaluation of contaminant mixture exposure. Both statistical approaches showed no significant interactions on responses in simultaneous exposures in the majority of parameters assessed with only a signification deviation from the reference CA and IA models being found for C. riparius respiration data contrary to the ANOVA results. Exposure to imidacloprid also compromised antipredator behavioural responses of both insect species, with potential negative consequences in terms of mortality from predation in the field. The results obtained demonstrate that natural and anthropogenic stressors can be treated within the same framework providing compatible data for modelling. For an improved interpretation of ecological effects it will be important to expand the mechanistic study of effects of combined exposure to pesticides and perceived predation risk

  13. Inferring predator behavior from attack rates on prey-replicas that differ in conspicuousness.

    Directory of Open Access Journals (Sweden)

    Yoel E Stuart

    Full Text Available Behavioral ecologists and evolutionary biologists have long studied how predators respond to prey items novel in color and pattern. Because a predatory response is influenced by both the predator's ability to detect the prey and a post-detection behavioral response, variation among prey types in conspicuousness may confound inference about post-prey-detection predator behavior. That is, a relatively high attack rate on a given prey type may result primarily from enhanced conspicuousness and not predators' direct preference for that prey. Few studies, however, account for such variation in conspicuousness. In a field experiment, we measured predation rates on clay replicas of two aposematic forms of the poison dart frog Dendrobates pumilio, one novel and one familiar, and two cryptic controls. To ask whether predators prefer or avoid a novel aposematic prey form independently of conspicuousness differences among replicas, we first modeled the visual system of a typical avian predator. Then, we used this model to estimate replica contrast against a leaf litter background to test whether variation in contrast alone could explain variation in predator attack rate. We found that absolute predation rates did not differ among color forms. Predation rates relative to conspicuousness did, however, deviate significantly from expectation, suggesting that predators do make post-detection decisions to avoid or attack a given prey type. The direction of this deviation from expectation, though, depended on assumptions we made about how avian predators discriminate objects from the visual background. Our results show that it is important to account for prey conspicuousness when investigating predator behavior and also that existing models of predator visual systems need to be refined.

  14. Landscape-moderated bird nest predation in hedges and forest edges

    Science.gov (United States)

    Ludwig, Martin; Schlinkert, Hella; Holzschuh, Andrea; Fischer, Christina; Scherber, Christoph; Trnka, Alfréd; Tscharntke, Teja; Batáry, Péter

    2012-11-01

    Landscape-scale agricultural intensification has caused severe declines in biodiversity. Hedges and forest remnants may mitigate biodiversity loss by enhancing landscape heterogeneity and providing habitat to a wide range of species, including birds. However, nest predation, the major cause of reproductive failure of birds, has been shown to be higher in forest edges than in forest interiors. Little is known about how spatial arrangement (configuration) of hedges affects the avian nest predation. We performed an experiment with artificial ground and elevated nests (resembling yellowhammer and whitethroat nests) baited with quail and plasticine eggs. Nests were placed in three habitat types with different degrees of isolation from forests: forest edges, hedges connected to forests and hedges isolated from forests. Nest predation was highest in forest edges, lowest in hedges connected to forests and intermediate in isolated hedges. In the early breeding season, we found similar nest predation on ground and elevated nests, but in the late breeding season nest predation was higher on ground nests than on elevated nests. Small mammals were the main predators of ground nests and appeared to be responsible for the increase in predation from early to late breeding season, whereas the elevated nests were mainly depredated by small birds and small mammals. High predation pressure at forest edges was probably caused by both forest and open-landscape predators. The influence of forest predators may be lower at hedges, leading to lower predation pressure than in forest edges. Higher predation pressure in isolated than connected hedges might be an effect of concentration of predators in these isolated habitats. We conclude that landscape configuration of hedges is important in nest predation, with connected hedges allowing higher survival than isolated hedges and forest edges.

  15. The scale-dependent impact of wolf predation risk on resource selection by three sympatric ungulates.

    Science.gov (United States)

    Kittle, Andrew M; Fryxell, John M; Desy, Glenn E; Hamr, Joe

    2008-08-01

    Resource selection is a fundamental ecological process impacting population dynamics and ecosystem structure. Understanding which factors drive selection is vital for effective species- and landscape-level management. We used resource selection probability functions (RSPFs) to study the influence of two forms of wolf (Canis lupus) predation risk, snow conditions and habitat variables on white-tailed deer (Odocoileus virginianus), elk (Cervus elaphus) and moose (Alces alces) resource selection in central Ontario's mixed forest French River-Burwash ecosystem. Direct predation risk was defined as the frequency of a predator's occurrence across the landscape and indirect predation risk as landscape features associated with a higher risk of predation. Models were developed for two winters, each at two spatial scales, using a combination of GIS-derived and ground-measured data. Ungulate presence was determined from snow track transects in 64 16- and 128 1-km(2) resource units, and direct predation risk from GPS radio collar locations of four adjacent wolf packs. Ungulates did not select resources based on the avoidance of areas of direct predation risk at any scale, and instead exhibited selection patterns that tradeoff predation risk minimization with forage and/or mobility requirements. Elk did not avoid indirect predation risk, while both deer and moose exhibited inconsistent responses to this risk. Direct predation risk was more important to models than indirect predation risk but overall, abiotic topographical factors were most influential. These results indicate that wolf predation risk does not limit ungulate habitat use at the scales investigated and that responses to spatial sources of predation risk are complex, incorporating a variety of anti-predator behaviours. Moose resource selection was influenced less by snow conditions than cover type, particularly selection for dense forest, whereas deer showed the opposite pattern. Temporal and spatial scale

  16. Predator-induced changes of female mating preferences: innate and experiential effects

    Directory of Open Access Journals (Sweden)

    Indy Jeane

    2011-07-01

    Full Text Available Abstract Background In many species males face a higher predation risk than females because males display elaborate traits that evolved under sexual selection, which may attract not only females but also predators. Females are, therefore, predicted to avoid such conspicuous males under predation risk. The present study was designed to investigate predator-induced changes of female mating preferences in Atlantic mollies (Poecilia mexicana. Males of this species show a pronounced polymorphism in body size and coloration, and females prefer large, colorful males in the absence of predators. Results In dichotomous choice tests predator-naïve (lab-reared females altered their initial preference for larger males in the presence of the cichlid Cichlasoma salvini, a natural predator of P. mexicana, and preferred small males instead. This effect was considerably weaker when females were confronted visually with the non-piscivorous cichlid Vieja bifasciata or the introduced non-piscivorous Nile tilapia (Oreochromis niloticus. In contrast, predator experienced (wild-caught females did not respond to the same extent to the presence of a predator, most likely due to a learned ability to evaluate their predators' motivation to prey. Conclusions Our study highlights that (a predatory fish can have a profound influence on the expression of mating preferences of their prey (thus potentially affecting the strength of sexual selection, and females may alter their mate choice behavior strategically to reduce their own exposure to predators. (b Prey species can evolve visual predator recognition mechanisms and alter their mate choice only when a natural predator is present. (c Finally, experiential effects can play an important role, and prey species may learn to evaluate the motivational state of their predators.

  17. Factors affecting individual foraging specialization and temporal diet stability across the range of a large "generalist" apex predator.

    Science.gov (United States)

    Rosenblatt, Adam E; Nifong, James C; Heithaus, Michael R; Mazzotti, Frank J; Cherkiss, Michael S; Jeffery, Brian M; Elsey, Ruth M; Decker, Rachel A; Silliman, Brian R; Guillette, Louis J; Lowers, Russell H; Larson, Justin C

    2015-05-01

    Individual niche specialization (INS) is increasingly recognized as an important component of ecological and evolutionary dynamics. However, most studies that have investigated INS have focused on the effects of niche width and inter- and intraspecific competition on INS in small-bodied species for short time periods, with less attention paid to INS in large-bodied reptilian predators and the effects of available prey types on INS. We investigated the prevalence, causes, and consequences of INS in foraging behaviors across different populations of American alligators (Alligator mississippiensis), the dominant aquatic apex predator across the southeast US, using stomach contents and stable isotopes. Gut contents revealed that, over the short term, although alligator populations occupied wide ranges of the INS spectrum, general patterns were apparent. Alligator populations inhabiting lakes exhibited lower INS than coastal populations, likely driven by variation in habitat type and available prey types. Stable isotopes revealed that over longer time spans alligators exhibited remarkably consistent use of variable mixtures of carbon pools (e.g., marine and freshwater food webs). We conclude that INS in large-bodied reptilian predator populations is likely affected by variation in available prey types and habitat heterogeneity, and that INS should be incorporated into management strategies to efficiently meet intended goals. Also, ecological models, which typically do not consider behavioral variability, should include INS to increase model realism and applicability.

  18. Factors affecting individual foraging specialization and temporal diet stability across the range of a large “generalist” apex predator

    Science.gov (United States)

    Rosenblatt, Adam E.; Nifong, James C.; Heithaus, Michael R.; Mazzotti, Frank J.; Cherkiss, Michael S.; Jeffery, Brian M.; Elsey, Ruth M.; Decker, Rachel A.; Silliman, Brian R.; Guillette, Louis J.; Lowers, Russell H.; Larson, Justin C.

    2015-01-01

    Individual niche specialization (INS) is increasingly recognized as an important component of ecological and evolutionary dynamics. However, most studies that have investigated INS have focused on the effects of niche width and inter- and intraspecific competition on INS in small-bodied species for short time periods, with less attention paid to INS in large-bodied reptilian predators and the effects of available prey types on INS. We investigated the prevalence, causes, and consequences of INS in foraging behaviors across different populations of American alligators (Alligator mississippiensis), the dominant aquatic apex predator across the southeast US, using stomach contents and stable isotopes. Gut contents revealed that, over the short term, although alligator populations occupied wide ranges of the INS spectrum, general patterns were apparent. Alligator populations inhabiting lakes exhibited lower INS than coastal populations, likely driven by variation in habitat type and available prey types. Stable isotopes revealed that over longer time spans alligators exhibited remarkably consistent use of variable mixtures of carbon pools (e.g., marine and freshwater food webs). We conclude that INS in large-bodied reptilian predator populations is likely affected by variation in available prey types and habitat heterogeneity, and that INS should be incorporated into management strategies to efficiently meet intended goals. Also, ecological models, which typically do not consider behavioral variability, should include INS to increase model realism and applicability.

  19. Acute predator stress impairs the consolidation and retrieval of hippocampus-dependent memory in male and female rats.

    Science.gov (United States)

    Park, Collin R; Zoladz, Phillip R; Conrad, Cheryl D; Fleshner, Monika; Diamond, David M

    2008-04-01

    We have studied the effects of an acute predator stress experience on spatial learning and memory in adult male and female Sprague-Dawley rats. All rats were trained to learn the location of a hidden escape platform in the radial-arm water maze (RAWM), a hippocampus-dependent spatial memory task. In the control (non-stress) condition, female rats were superior to the males in the accuracy and consistency of their spatial memory performance tested over multiple days of training. In the stress condition, rats were exposed to the cat for 30 min immediately before or after learning, or before the 24-h memory test. Predator stress dramatically increased corticosterone levels in males and females, with females exhibiting greater baseline and stress-evoked responses than males. Despite these sex differences in the overall magnitudes of corticosterone levels, there were significant sex-independent correlations involving basal and stress-evoked corticosterone levels, and memory performance. Most importantly, predator stress impaired short-term memory, as well as processes involved in memory consolidation and retrieval, in male and female rats. Overall, we have found that an intense, ethologically relevant stressor produced a largely equivalent impairment of memory in male and female rats, and sex-independent corticosterone-memory correlations. These findings may provide insight into commonalities in how traumatic stress affects the brain and memory in men and women.

  20. Corolla herbivory, pollination success and fruit predation in complex flowers: an experimental study with Linaria lilacina (Scrophulariaceae).

    Science.gov (United States)

    Sánchez-Lafuente, Alfonso M

    2007-02-01

    Herbivory on floral structures has been postulated to influence the evolution of floral traits in some plant species, and may also be an important factor influencing the occurrence and outcome of subsequent biotic interactions related to floral display. In particular, corolla herbivory may affect structures differentially involved in flower selection by pollinators and fruit predators (specifically, those ovopositing in ovaries prior to fruit development); hence floral herbivores may influence the relationships between these mutualistic and antagonistic agents. The effects of corolla herbivory in Linaria lilacina (Scrophulariaceae), a plant species with complex flowers, were considered in relation to plant interactions with pollinators and fruit predators. Tests were made as to whether experimentally created differences in flower structure (resembling those occurring naturally) may translate into differences in reproductive output in terms of fruit or seed production. Flowers with modified corollas, particularly those with lower lips removed, were less likely to be selected by pollinators than control flowers, and were less likely to be successfully visited and pollinated. As a consequence, fruit production was also less likely in these modified flowers. However, none of the experimental treatments affected the likelihood of visitation by fruit predators. Since floral herbivory may affect pollinator visitation rates and reduce seed production, differences among plants in the proportion of flowers affected by herbivory and in the intensity of the damage inflicted on affected flowers may result in different opportunities for reproduction for plants in different seasons.