WorldWideScience

Sample records for term waste disposal

  1. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  2. Prediction of long-term behaviour for nuclear waste disposal

    International Nuclear Information System (INIS)

    Shoesmith, D.W.; Ikeda, B.M.; King, F.; Sunder, S.

    1996-09-01

    The modelling procedures developed for the long-term prediction of the corrosion of used fuel and of titanium and copper nuclear waste containers are described. The corrosion behaviour of these materials changes with time as the conditions within the conceptual disposal vault evolve from an early warm, oxidizing phase to an indefinite period of cool, anoxic conditions. For the two candidate container materials, this evolution of conditions means that the containers will be initially susceptible to localized corrosion but that in the long-term, corrosion should be more general in nature. The propagation of the pitting of Cu and of the crevice corrosion of Ti alloys is modelled using statistical models. General corrosion processes are modelled deterministically. For the fuel, deterministic electrochemical models have been developed to predict the long-term dissolution rate of U0 2 . The corrosion behaviour of materials in the disposal vault can be influenced by reengineering the vault environment. For instance, increasing the areal loading of containers will produce higher vault temperatures resulting in more extensive drying of the porous backfill materials. The initiation of crevice corrosion on Ti may then be delayed, leading to longer container lifetimes. For copper containers, minimizing the amount Of O 2 initially trapped in the pores of the backfill, or adding reducing agents to consume this O 2 faster, will limit the extent of corrosion, permitting a reduction of the container wall thickness necessary for containment. (author). 55 refs., 19 figs

  3. Long-term safety of geological waste disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Verkerk, B.

    1981-01-01

    The results of recent studies on long-term risks of fission product and radioactive waste disposal in salt vaults are surveyed. Medium-term risks, life span of the salt vault, possible radionuclide migration, consequences of human intervention and the effect of the changes in the ICRP recommendations are discussed. (G.H.)

  4. Source term analysis for a RCRA mixed waste disposal facility

    International Nuclear Information System (INIS)

    Jordan, D.L.; Blandford, T.N.; MacKinnon, R.J.

    1996-01-01

    A Monte Carlo transport scheme was used to estimate the source strength resulting from potential releases from a mixed waste disposal facility. Infiltration rates were estimated using the HELP code, and transport through the facility was modeled using the DUST code, linked to a Monte Carlo driver

  5. Disposal of hazardous wastes

    International Nuclear Information System (INIS)

    Barnhart, B.J.

    1978-01-01

    The Fifth Life Sciences Symposium entitled Hazardous Solid Wastes and Their Disposal on October 12 through 14, 1977 was summarized. The topic was the passage of the National Resources Conservation and Recovery Act of 1976 will force some type of action on all hazardous solid wastes. Some major points covered were: the formulation of a definition of a hazardous solid waste, assessment of long-term risk, list of specific materials or general criteria to specify the wastes of concern, Bioethics, sources of hazardous waste, industrial and agricultural wastes, coal wastes, radioactive wastes, and disposal of wastes

  6. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  7. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  8. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  9. Disposal of radioactive waste: can long-term safety be evaluated

    International Nuclear Information System (INIS)

    1991-01-01

    The long-term safety of any hazardous waste disposal system must be convincingly shown prior to its implementation. For radioactive wastes, safety assessments over timescales far beyond the normal horizon of social and technical planning have already been conducted in many countries. These assessments provide the principal means to investigate, quantify, and explain long-term safety of each selected disposal concept and site for the appropriate authorities and the public. Such assessments are based on four main elements: definition of the disposal system and its environment, identification of possible processes and events that may affect the integrity of the disposal system, quantification of the radiological impact by predictive modelling, and description of associated uncertainties. The NEA Radioactive Waste Management Committee and the IAEA International Radioactive Waste Management Advisory Committee have carefully examined the current scientific methods for safety assessments of radioactive waste disposal systems, as briefly summarized in this report. The Committees have also reviewed the experience now available from using safety assessment methods in many countries, for different disposal concepts and formations, and in the framework of both nationally and internationally conducted studies, as referenced in this report [fr

  10. Low-level waste disposal performance assessments - Total source-term analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wilhite, E.L.

    1995-12-31

    Disposal of low-level radioactive waste at Department of Energy (DOE) facilities is regulated by DOE. DOE Order 5820.2A establishes policies, guidelines, and minimum requirements for managing radioactive waste. Requirements for disposal of low-level waste emplaced after September 1988 include providing reasonable assurance of meeting stated performance objectives by completing a radiological performance assessment. Recently, the Defense Nuclear Facilities Safety Board issued Recommendation 94-2, {open_quotes}Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites.{close_quotes} One of the elements of the recommendation is that low-level waste performance assessments do not include the entire source term because low-level waste emplaced prior to September 1988, as well as other DOE sources of radioactivity in the ground, are excluded. DOE has developed and issued guidance for preliminary assessments of the impact of including the total source term in performance assessments. This paper will present issues resulting from the inclusion of all DOE sources of radioactivity in performance assessments of low-level waste disposal facilities.

  11. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1983-01-01

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.) [pt

  12. Performance assessment studies for the long-term safety evaluation of radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Bujoreanu, D.; Olteanu, M.; Bujoreanu, L.

    2008-01-01

    Especially during the last ten years, a part of Romanian research program 'Management of Radioactive Waste and Spent Fuel' was focused mainly on applicative research for the design of near-surface disposal facility, which intends to accommodate the low and intermediate radioactive waste generated from Cernavoda NPP. In this frame, our contribution was at the acquisition of technical data for the characterization of the future disposal facility. In the present, the project of the disposal facility, located on the Saligny site, near Cernavoda NPP, must be licensed. As regards to the safe disposal, the location of final disposal, the Saligny site, has been characterized through the five geological formations which contain potential routes for transport of radionuclide released from disposal facility, in the receiving zones(potential receiving zones), into liquid and gaseous phases. The technical characteristics of the disposal facility were adapted at the Romanian disposal concept using the reference data from IAEA technical report (IAEA,1999). Input parameters which characterized from physical and chemical point of view the disposal system, were partially taken from literature. The performance assessment studies, which follows the preliminary design development phases and the selection, describes how the source term is affected by the infiltration of water through the disposal facility, degradation process of engineering barriers (reflected in the distribution coefficient values) and solubility limit. The studies regard the evaluation of the source term, sensitivity and uncertainty analysis provide the information on 'how' and 'why' were evaluated, following: (i) radiological safety assessment of near-surface disposal facility on Saligny site; (ii) complexity standard assessment of the Engineering Barriers Systems (EBS); (iii) identification of the elements which must be elaborated for the increase of the disposal safety and the necessity for new technical data for

  13. High-level waste long-term management technology development : Development of a geological disposal system

    International Nuclear Information System (INIS)

    Lee, J. Y.; Choi, J. W.; Lee, M. S.

    2012-04-01

    For the purpose of developing the geological disposal system proposed in this research project successfully, the analysis of source terms of various waste forms, conceptual design and performance assessment of the engineered barrier system including a disposal canister, and the cost analysis based on the domestic unit cost should be carried out. To this end the following research items will be developed at this stage: Ο Development of a technology for assessing the source-term of advanced fuel cycle - Verification and enhancement of a source-term assessment program - Radiological performance assessment of A-Kfs - Assessment of national inventories of major radionuclides Ο Development of disposal canisters for HLA from pyro-processing - Development of canister sealing technology - Estimation of corrosion life-time of canisters with Korean Ebs - Analysis of shear stress on the canister with Korean Ebs Ο Development of a geological disposal system for HLA from advanced fuel cycle - Hydrological analysis for determining the layout of disposal tunnels - Preparation of database regarding the domestic unit disposal cost - Thermal analysis of disposal tunnels with ventilation during operation period - Feasibility assessment of A-Kfs from the technical, safety, and economical points of views

  14. Reference biospheres for the long term safety assessment of radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Crossland, I.G.; Torres, C.

    2002-01-01

    Regulatory guidance on the safety assessment of radioactive waste disposals usually requires the consequences of any radionuclide releases to be considered in terms of their potential impact on human health. This requires consideration of the prevailing biosphere and the habits of the potentially exposed humans within it. However, it could take many thousands of years for migrating radionuclides to reach the surface environment. In these circumstances, an assessment model that was based on the present-day biosphere could be inappropriate while future biospheres would be unpredictable. These and other considerations suggest that a standardised, or reference biosphere, approach may be useful. Theme 1 of the IAEA BIOMASS project was established to develop the concept of reference biospheres into a practical system that can be applied to the assessment of the long term safety of geological disposal facilities for radioactive waste. The technical phase of the project lasted for four years until November 2000 and brought together disparate interests from many countries including waste disposal agencies, regulators and technical experts. Building on the experience from earlier BIOMOVS projects, a methodology was constructed for the logical and defensible construction of mathematical biosphere models that can be used in the total system performance assessment of radioactive waste disposal. The methodology was then further developed through the creation of a series of BIOMASS Example Reference Biospheres ('Examples'). These are stylised biosphere models that, in addition to illustrating the methodology, are intended to be useful assessment tools in their own right. (author)

  15. «Monitored long-term geological disposal», a new approach to the disposal of radioactive waste in Switzerland

    OpenAIRE

    Hufschmied, Peter; Wildi, Walter; Aebersold, Michael; Appel, Detlef; Buser, Marcos; Dermange, François; Eckhardt, Anne; Keusen, Hansrudolf

    2002-01-01

    A Swiss expert group recently developed a new concept for the disposal of radioactive waste called “Monitored Long-Term Geologic Disposal”. This concept aims to combine the advantages of final geological disposal in terms of long term passive safety, with some of the advantages of active safety attributed to long term monitored underground storage: As soon as the waste has been emplaced in the Main facility, the caverns or drifts of the facility are backfilled and sealed. Backfill and sealing...

  16. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  17. Regulatory document R-104, Regulatory objectives, requirements and guidelines for the disposal of radioactive wastes - long-term aspects

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose and scope of this document is to present the regulatory basis for judging the long-term acceptability of radioactive waste disposal options. The basic objectives of radioactive waste disposal are given as are the regulatory requirements to be satisfied. (NEA)

  18. Significance of actinide chemistry for the long-term safety of waste disposal

    International Nuclear Information System (INIS)

    Kim, Jae Il

    2006-01-01

    A geochemical approach to the long-term safety of waste disposal is discussed in connection with the significance of actinides, which shall deliver the major radioactivity inventory subsequent to the relatively short-term decay of fission products. Every power reactor generates transuranic (TRU) elements: plutonium and minor actinides (Np, Am, Cm), which consist chiefly of long-lived nuclides emitting alpha radiation. The amount of TRU actinides generated in a fuel life period is found to be relatively small (about 1 wt% or less in spent fuel) but their radioactivity persists many hundred thousands years. Geological confinement of waste containing TRU actinides demands, as a result, fundamental knowledge on the geochemical behavior of actinides in the repository environment for a long period of time. Appraisal of the scientific progress in this subject area is the main objective of the present paper. Following the introductory discussion on natural radioactivities, the nuclear fuel cycle is briefly brought up with reference to actinide generation and waste disposal. As the long-term disposal safety concerns inevitably with actinides, the significance of the aquatic actinide chemistry is summarized in two parts: the fundamental properties relevant to their aquatic behavior and the geochemical reactions in nanoscopic scale. The constrained space of writing allows discussion on some examples only, for which topics of the primary concern are selected, e.g. apparent solubility and colloid generation, colloid-facilitated migration, notable speciation of such processes, etc. Discussion is summed up to end with how to make a geochemical approach available for the long-term disposal safety of nuclear waste or for the Performance Assessment (PA) as known generally

  19. Long-term risk assessment of radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Girardi, F.; Bertozzi, G.; D'Alessandro, M.

    1978-01-01

    Methods for long-term safety analysis of waste from nuclear power production in the European Community are under study at the Joint Research Centre (JRC) at Ispra, Italy. Aim of the work is to develop a suitable methodology for long-term risk assessment. The methodology under study is based on the assessment of the quantitative value of a system of barriers which may be interposed between waste and man. The barriers considered are: a) quality of the segregation afforded by the geological formation, b) chemical and physical stability of conditioned waste, c) interaction with geological environments (subsoil retention), d) distribution in the biosphere. The methodology is presently being applied to idealized test cases based on the following assumptions: waste are generated during 30 years of operations in a nuclear park (reprocessing + refabrication plant) capable of treating 1000 ton/yr of LWR fuel. High activity waste is conditioned as borosilicate glass (HAW) while low- and medium-level wastes are bituminized (BIP). All waste is disposed off into a salt formation. Transport to the biosphere, following the containment failure occurs by groundwater, with no delay due to retention on adsorbing media. Distribution into the biosphere occurs according to the terrestrial model indicated. Under these assumptions, information was drawn concerning environmental contamination, its levels, contributing elements and pathways to man

  20. Radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Neilson, H.R.

    1982-01-01

    The responsibilities of the Minister of Agriculture, Fisheries and Food and Ministry policy on radioactive waste disposal are described. The disposal of solid radioactive waste at sea is subject to detailed safeguards developed within two international agreements to which the United Kingdom is a contracting party. The agreements are discussed together with a research and monitoring programme to provide scientific data for informed decisions on waste disposal authorisations and dumping licences. (U.K.)

  1. Regulatory issues related to long-term storage and disposal of radioactive wastes in Kazakhstan

    International Nuclear Information System (INIS)

    Kim, A.; Romanenko, O.; Tazhibayeva, I.; Zhunussova, T.

    2012-01-01

    Full text: Reported material is a result of activity accomplished in the framework of cooperation program between Kazakhstan and Norway within 2009-2012. This work was divided into three distinctive parts, as follows: 1. Analysis of existing threats associated with radioactive wastes in the Republic of Kazakhstan. The objective of this part of the work was to reveal the most important threats in the sphere of radioactive waste management in the Republic of Kazakhstan, which require an increased regulatory attention. Threat assessment needed to identify: main radiological threats both for people who work with radioactive wastes and for population living near the radioactive waste storage places now and in the long term which require an increased regulatory attention; problems that need urgent and detailed analysis; and main problems in the realization of regulatory process in Kazakhstan including weakness in the regulatory and legal framework. Threat assessment analysis showed that in order to reduce the level of threats it was necessary to begin developing a national policy and strategy for radioactive waste management which need to be approved by the Government, to develop proposals for Radioactive Wastes new classification, including identification of relevant categories of Radioactive Wastes, as well as criteria for their disposal in accordance with IAEA recommendations and experience from other countries. 2. Development of new classification system for radioactive wastes in Kazakhstan. Following the results of threat assessment performed within the first stage, the objective of the second part of work was to develop a proposal to adopt a new Radioactive Wastes classification in Kazakhstan in accordance with the IAEA recommendations, including implementation of new categories, taking into account international experience and current situation in Kazakhstan. The result of this stage of work was a proposal for a new Radioactive Wastes classification and

  2. Regulating the long-term safety of geological disposal of radioactive waste: practical issues and challenges

    International Nuclear Information System (INIS)

    2008-01-01

    Regulating the long-term safety of geological disposal of radioactive waste is a key part of making progress on the radioactive waste management issue. A survey of member countries has shown that differences exist both in the protection criteria being applied and in the methods for demonstrating compliance, reflecting historical and cultural differences between countries which in turn result in a diversity of decision-making approaches and frameworks. At the same time, however, these differences in criteria are unlikely to result in significant differences in long-term protection, as all the standards being proposed are well below levels at which actual effects of radiological exposure can be observed and a range of complementary requirements is foreseen. In order to enable experts from a wide range of backgrounds to debate the various aspects of these findings, the NEA organised an international workshop in November 2006 in Paris, France. Discussions focused on diversity in regulatory processes; the basis and tools for assuring long-term protection; ethical responsibilities of one generation to later generations and how these can be discharged; and adapting regulatory processes to the long time frames involved in implementing geological disposal. These proceedings include a summary of the viewpoints expressed as well as the 22 papers presented at the workshop. (author)

  3. Investigation of whether various types of radioactive waste are equivalent in terms of the radiological impact associated with their disposal

    International Nuclear Information System (INIS)

    Fearn, H.S.; Smith, G.M.; Davis, J.P.; Hill, M.D.

    1989-01-01

    The aim of this study is to investigate the possibility that various types of waste are equivalent in terms of the risks associated with their disposal in so far as they are viewed by different sections of society. If such a framework can be established it could be used as an aid to decisions as to whether central disposal facilities, to accept waste from several countries, should be constructed. Details are presented of assumed radionuclide inventories for a representative range of radioactive wastes, calculations and results of the radiological impacts of their disposal, and illustrative methods for weighting the various components of impact which when summed provide an overall measure of impact. Five sets of weighting factors have been devised which are intended to represent the views of a) the radiological protection community, b) those with a pro-nuclear industry view, c) those who oppose nuclear power on safety grounds, d) the inhabitants of the country receiving wastes for disposal, and e) the inhabitants of the country dispatching wastes. On the basis of the calculated weighted radiological impacts it is demonstrated how conclusions can be drawn about general views on the disposal of each waste, about likely attitudes to the export of wastes from one country for disposal in another, and attitudes to exchanging wastes between countries. The study is preliminary and of limited scope. However, the results show that the general methodology is practicable and could be applied in a wider ranging investigation

  4. Long-term storage of radioactive solid waste within disposal facilities

    International Nuclear Information System (INIS)

    Wakerley, M.W.; Edmunds, J.

    1986-05-01

    A study of the feasibility and implications of operating potential disposal facilities for low and intermediate level solid radioactive waste in a retrievable storage mode for extended periods of up to 200 years has been carried out. The arisings of conditioned UK radioactive waste up to the year 2030 have been examined. Assignments of these wastes to different types of underground disposal facilities have been made on the basis of their present activity and that which they will have in 200 years time. Five illustrative disposal concepts proposed both in the UK and overseas have been examined with a view to their suitability for adaption for storage/disposal duty. Two concepts have been judged unsuitable because either the waste form or the repository structure were considered unlikely to last the storage phase. Three of the concepts would be feasible from a construction and operational viewpoint. This suggests that with appropriate allowance for geological aspects and good repository and waste form design that storage/disposal within the same facility is achievable. The overall cost of the storage/disposal concepts is in general less than that for separate surface storage followed by land disposal, but more than that for direct disposal. (author)

  5. Radium bearing waste disposal

    International Nuclear Information System (INIS)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A.; Schofield, W.D.

    1995-01-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach

  6. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  7. CONCRETE CONTAINERS FOR LONG TERM STORAGE AND FINAL DISPOSAL OF TRU WASTE AND LONG LIVED ILW

    International Nuclear Information System (INIS)

    Sakamoto, H.; Asano, H.; Tunaboylu, K.; Mayer, G.; Klubertanz, G.; Kobayashi, S.; Komuro, T.; Wagner, E.

    2003-01-01

    Transuranic (TRU) waste packaging development has been conducted since 1998 by the Radioactive Waste Management Funding and Research Centre (RWMC) to support the TRU waste disposal concept in Japan. In this paper, the overview of development status of the reinforced concrete package is introduced. This package has been developed in order to satisfy the Japanese TRU waste disposal concept based on current technology and to provide a low cost package. Since 1998, the basic design work (safety evaluation, manufacturing and handling procedure, economic evaluation, elemental tests etc.) have been carried out. As a result, the basic specification of the package was decided. This report presents the concept as well as the results of basic design, focused on safety analysis and handling procedure of the package. Two types of the packages exist: - Package-A: for non-heat generating TRU waste from reprocessing in 200 l drums and - Package-B: for heat generating TRU-waste from reprocessing

  8. Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site

    International Nuclear Information System (INIS)

    Shott, Gregory J.; Yucel, Vefa

    2009-01-01

    In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results

  9. Surface disposal of low-level and medium-level short-lived waste. How safe is the disposal facility in Dessel in the long term?

    International Nuclear Information System (INIS)

    2014-01-01

    A disposal facility for the disposal of low-level and medium-level short-lived waste is planned to be built on a site located in the community of Dessel (Belgium). The facility will consist of 34 modules, corresponding to a storage volume capacity of approximately 70,000 m3. The disposal concept includes waste containers that are encapsulated in a concrete box which is filled with mortar. Approximately 900 of these blocks, or monoliths, fit inside each module. The article discusses the Research and Development programme that has been conducted at the Belgian Nuclear Research Center SCK-CEN in conjunction with the development of this facility. Main emphasis is on the models that have been developed for predicting the long-term containment of the disposal facility.

  10. Long-term impacts on sewers following food waste disposer installation in housing areas.

    Science.gov (United States)

    Mattsson, Jonathan; Hedström, Annelie; Viklander, Maria

    2014-01-01

    To increase biogas generation and decrease vehicle transportation of solid waste, the integration of food waste disposers (FWDs) into the wastewater system has been proposed. However, concerns have been raised about the long-term impact of the additional load of the FWDs on sewer systems. To examine the said impact, this study has used closed-circuit television inspection techniques to evaluate the status of 181 concrete pipes serving single family housing areas with a diameter of 225 mm, ranging from a 100% connection rate of households with an FWD to none. A minor study was also performed on a multi-family housing area, where mainly plastic pipes (200 mm) were used. The extent and distribution of deposits related to the ratio of FWDs, inclination and pipe sagging (backfalls) were ascertained by using linear regression and analysis of variance. The results showed that FWDs have had an impact on the level of deposits in the sewer, but this has, in turn, been of minor significance. With a high connection rate of FWDs upstream of a pipe, the extent of the total level of deposits, as well as finer sediments, was statistically determined to be greater. However, the majority of the deposits were observed to be small, which would suggest the impact of FWDs on sewer performance to be minor. As food waste not compatible with the FWD was seen in the sewers, educational campaigns could be beneficial to further lower the risks of sewer blocking.

  11. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  12. Long-term degradation (or improvement?) of cementitious grout/concrete for waste disposal at Hanford

    International Nuclear Information System (INIS)

    Piepho, M.G.

    1997-01-01

    If grout and/or concrete barriers and containments are considered for long-term (500 yrs to 100,000 ) waste disposal, then long-term degradation of grout/cement materials (and others) need to be studied. Long-term degradations of a cementitious grout monolith (15.4mW x 10.4mH x 37.6mL) and its containment concrete shell and asphalt shell (each 1-m thick) were analyzed. The main degradation process of the concrete shell was believed to be fractures due to construction joints, shrinkage, thermal stress, settlement, and seismic events. A scenario with fractures was modeled (flow and transport model) for long-term risk performance (out to a million yrs). Even though the concrete/grout is expected to fracture, the concrete/grout chemistry, which has high Ph value, is very beneficial in causing calcite deposits from calcium in the water precipitating in the fractures. These calcite deposits will tend to plug the fracture and keep water from entering. The effectiveness of such plugging needs to be studied more. It's possible that the plugged fractures are more impermeable than the original concrete/grout. The long-term performance of concrete/grout barriers will be determined by its chemistry, not its mechanical properties

  13. Tank Waste Disposal Program redefinition

    Energy Technology Data Exchange (ETDEWEB)

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  14. Strategy for identifying natural analogs of the long-term performance of low-level waste disposal sites

    Energy Technology Data Exchange (ETDEWEB)

    Chatters, J.C.; Waugh, W.J.; Foley, M.G.; Kincaid, C.T.

    1990-07-01

    The US Department of Energy's Low-Level Waste (LLW) Management Program has asked Pacific Northwest Laboratory (PNL) to explore the feasibility of using natural analogs of anticipated waste site and conditions to help validate predictions of the performance of LLW disposal sites. Current regulations require LLW facilities to control the spread of hazardous substances into the environment for at least the next 500 years. Natural analog studies can provide information about processes affecting waste containment that cannot be fully explored through laboratory experimentation and modeling because of the extended period of required performance. For LLW applications, natural analogs include geochemical systems, pedogenic (soil formation) indicators, proxy climate data, and ecological and archaeological settings that portray long-term changes in disposal site environments and the survivability of proposed waste containment materials and structures. Analog data consist of estimates of performance assessment (PA) model input parameters that define possible future environmental states of waste sites, validation parameters that can be predicted by PA models, and descriptive information that can build public confidence in waste disposal practices. This document describes PNL's overall stategy for identifying analogs for LLW disposal systems, reviews lessons learned from past analogs work, outlines the findings of the workshop, and presents examples of analog studies that workshop participants found to be applicable to LLW performance assessment. The lessons from the high-level waste analogs experience and workshop discussions will be used to develop detailed study plans during FY 1990. 39 refs.

  15. Semi-empirical model for carbon steel corrosion in long term geological nuclear waste disposal

    International Nuclear Information System (INIS)

    Foct, F.; Gras, J.M.

    2003-01-01

    In France and other countries, carbon and low alloy steels have been proposed as suitable materials for nuclear waste containers for long term geological disposal since, for such types of steels, general and localised corrosion can be fairly well predicted in geological environments (mainly argillaceous and granitic conditions) during the initial oxic and the following anoxic stages. This paper presents a model developed for the long term estimation of general and localised corrosion of carbon steel in argillaceous and granitic environments. In the case of localised corrosion, the model assumes that pitting and crevice corrosion propagation rates are similar. The estimations are based on numerous data coming from various experimental programmes conducted by the following laboratories: UKAEA (United Kingdom); NAGRA (Switzerland); SCK-CEN (Belgium); JNC (Japan) and ANDRA-CEA-EDF (France). From these data, the corrosion rates measured over long periods (from six months to several years) and derived from mass loss measurements have been selected to construct the proposed models. For general corrosion, the model takes into account an activation energy deduced from the experimental results (Arrhenius law) and proposes three equations for the corrosion rate: one for the oxic conditions, one for the early stage of the anoxic conditions and one for the long term anoxic corrosion. Concerning localised corrosion, a semi-empirical model, based on the evolution of the pitting factor (ratio between the maximum pit depth and the average general corrosion depth) as a function of the general corrosion depth, is proposed. This model is compared to other approaches where the maximum pit depth is directly calculated as a function of time, temperature and oxic or anoxic conditions. Finally, the presented semi-empirical models for long term corrosion estimation are applied to the case of nuclear waste storage. The results obtained by the different methods are then discussed and compared

  16. The Behaviours of Cementitious Materials in Long Term Storage and Disposal of Radioactive Waste. Results of a Coordinated Research Project

    International Nuclear Information System (INIS)

    2013-09-01

    Radioactive waste with widely varying characteristics is generated from the operation and maintenance of nuclear power plants, nuclear fuel cycle facilities, research laboratories and medical facilities. This waste must be treated and conditioned, as necessary, to provide waste forms acceptable for safe storage and disposal. Many countries use cementitious materials (concrete, mortar, etc.) as a containment matrix for immobilization, as well as for engineered structures of disposal facilities. Radionuclide release is dependent on the physicochemical properties of the waste forms and packages, and on environmental conditions. In the use of cement, the diffusion process and metallic corrosion can induce radionuclide release. The advantage of cementitious materials is the added stability and mechanical support during storage and disposal of waste. Long interim storage is becoming an important issue in countries where it is difficult to implement low level waste and intermediate level waste disposal facilities, and in countries where cement is used in the packaging of waste that is not suitable for shallow land disposal. This coordinated research project (CRP), involving 24 research organizations from 21 Member States, investigated the behaviour and performance of cementitious materials used in an overall waste conditioning system based on the use of cement - including waste packaging (containers), waste immobilization (waste form) and waste backfilling - during long term storage and disposal. It also considered the interactions and interdependencies of these individual elements (containers, waste, form, backfill) to understand the processes that may result in degradation of their physical and chemical properties. The main research outcomes of the CRP are summarized in this report under four topical sections: (i) conventional cementitious systems; (ii) novel cementitious materials and technologies; (iii) testing and waste acceptance criteria; and (iv) modelling long

  17. Space disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Priest, C.C.; Nixon, R.F.; Rice, E.E.

    1980-01-01

    It is proposed that certain types of high-level nuclear wastes obtained from the Purex process be injected into space with the aid of Space Shuttles uprated with liquid rocket boosters able to deliver about 45,000 kg to low Earth orbit, a reusable cryogenic orbit-transfer vehicle (OTV) for Earth escape, and an expendable storable-propellant vehicle for the solar-orbit insertion maneuver. It appears feasible to employ the space option for disposing of Purex wastes, but the mass of waste for space disposal is still large and thus consideration needs to be given to additional processes that will selectively separate only the most hazardous radionuclides for disposal in space. Space disposal should present a lower long-term risk to human health than options calling for disposal on Earth. But short-term risks may not be lower than for terrestrial disposal. They must be acceptable for policy-makers to act on the space option. 37 refs

  18. Study on improvement in reliability of inventory assessment in vitrified waste for long-term safety of geological disposal

    International Nuclear Information System (INIS)

    Ishikawa, Masumi; Kaneko, Satoru; Kitayama, Kazumi; Ishiguro, Katsuhiko; Ueda, Hiroyoshi; Wakasugi, Keiichiro; Shinohara, Nobuo; Okumura, Keisuke; Chino, Masamichi; Moriya, Noriyasu

    2009-01-01

    Since quality control issues for vitrified waste are defined mainly with the focus on the transport and interim storage of the waste rather than the long-term safety of geological disposal, they do not cover inventories of long-lived nuclides that are of most interest in the safety assessment of geological disposal. Therefore, we suggest a flow chart for the assessment of inventories of long-lived nuclides in the vitrified waste focusing on the measured values. This includes an indirect assessment with indicative nuclides that have been already measured in the returned vitrified wastes from abroad. In order to apply this flow chart for commercial operation, its applicability should be examined for cases with a variation in burn-up history and with an uncertainty associated with carry-over fraction at reprocessing. We started an R and D program to examine the applicability as well as to improve the reliability of the nuclide generation/decay code and the nuclear data library using liquid waste from spent fuel with a clear irradiation history. To solve the issue of quality control for vitrified waste, a comprehensive study is needed in aspects not only of geological disposal field but also of operation of a nuclear power plant, reprocessing of spent fuel and vitrification of liquid waste. This study is a pioneering study conducted to integrate them. (author)

  19. Risk-based approach to long-term safety assessment for near surface disposal of radioactive waste in Korea

    International Nuclear Information System (INIS)

    Jeong, C.W.; Kim, K.I.; Lee, J.I.

    2000-01-01

    This paper presents the Korean regulatory approach to safety assessment consistent with probabilistic, risk-based long-term safety requirements for near surface disposal facilities. The approach is based on: (1) From the standpoint of risk limitation, normal processes and probabilistic disruptive events should be integrated in a similar manner in terms of potential exposures; and (2) The uncertainties inherent in the safety assessment should be reduced using appropriate exposure scenarios. In addition, this paper emphasizes the necessity of international guidance for quantifying potential exposures and the corresponding risks from radioactive waste disposal. (author)

  20. Use of Long-Term Lysimeter Data in Support of Shallow Land Waste Disposal Cover Design

    International Nuclear Information System (INIS)

    Desotell, L.T.; Hudson, D.B.; Yucel, V.; Carilli, J.T.

    2006-01-01

    Water balance studies using two precision weighing lysimeters have been conducted at the Nevada Test Site in support of low-level radioactive waste disposal since 1994. The lysimeters are located in northern Frenchman Flat approximately 400 meters (m) from the southwest corner of the Area 5 Radioactive Waste Management Site. Frenchman Flat is in the northern Mojave Desert and has an average annual precipitation of 125 millimeters (mm). Each lysimeter consists of a 2 m by 4 m by 2 m deep steel tank filled with native alluvium, supported on a sensitive scale. The scale is instrumented with an electronic load-cell and data-logger for continuous measurement of total soil water storage with a precision of approximately ±800 grams or ±0.1 mm of soil water storage. Data-loggers are linked to cell phone modems for remote data acquisition. One lysimeter is vegetated with native creosote bush, four wing salt bush, and annual grass at the approximate density of the surrounding landscape while the other is maintained as bare soil. Since no drainage has been observed from the bottom of the lysimeters and run-on/run-off is precluded, the change in soil-water storage is equal to precipitation minus evaporation/evapotranspiration. After equilibration, the bare lysimeter contains approximately 20.2 centimeters (cm) of water (10.1 % volumetric water content) and the vegetated lysimeter contains approximately 11.6 cm of water (5.8 % volumetric water content). The finite difference code UNSAT-H was used to simulate the continuous water balance of the lysimeters. Calibrated one-dimensional model simulations were generally in agreement with field data. 30-year model simulations were conducted to evaluate long-term potential transport of radionuclides via the soil water migration pathway. A 30-year climate record was generated by repeating the existing data record. Simulations indicate a 2 m thick closure cover, in conjunction with native vegetation, will essentially eliminate drainage

  1. The basis for confidence in the long-term safety of nuclear waste disposal

    International Nuclear Information System (INIS)

    Allen, C.J.; Whitaker, S.H.

    1993-07-01

    Confidence in the acceptability and the long-term safety of deep geological disposal draws strength from a number of sources: the technical approach, i.e., the use of multiple barriers for redundancy and defence in depth; the adoption of the observational approach to site characterization and to disposal vault design, construction, operation and, eventually, closure; the overall approach, which is based on ongoing review and incremental decision making; and, active and effective involvement of the public in this process

  2. Overview of nuclear waste disposal in space

    International Nuclear Information System (INIS)

    Rice, E.E.; Priest, C.C.

    1981-01-01

    One option receiving consideration by the Department of Energy (DOE) is the space disposal of certain high-level nuclear wastes. The National Aeronautics and Space Administration is assessing the space disposal option in support of DOE studies on alternatives for nuclear waste management. The space disposal option is viewed as a complement, since total disposal of fuel rods from commercial power plants is not considered to be economically practical with Space Shuttle technology. The space disposal of certain high-level wastes may, however, provide reduced calculated and perceived risks. The space disposal option in conjunction with terrestrial disposal may offer a more flexible and lower risk overall waste management system. For the space disposal option to be viable, it must be demonstrated that the overall long-term risks associated with this activity, as a complement to the mined geologic repository, would be significantly less than the long-term risk associated with disposing of all the high-level waste. The long-term risk benefit must be achieved within an acceptable short-term and overall program cost. This paper briefly describes space disposal alternatives, the space disposal destination, possible waste mixes and forms, systems and typical operations, and the energy and cost analysis

  3. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  4. Whither nuclear waste disposal?

    International Nuclear Information System (INIS)

    Cotton, T.A.

    1990-01-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site

  5. Radioactive wastes and their disposal

    International Nuclear Information System (INIS)

    Neumann, L.

    1984-01-01

    The classification of radioactive wastes is given and the achievements evaluated in the disposal of radioactive wastes from nuclear power plants. An experimental pilot unit was installed at the Jaslovske Bohunice nuclear power plant for the bituminization of liquid radioactive wastes. UJV has developed a mobile automated high-output unit for cementation. In 1985 the unit will be tested at the Jaslovske Bohunice and the Dukovany nuclear power plants. A prototype press for processing solid wastes was manufactured which is in operation at the Jaslovske Bohunice plant. A solidification process for atypical wastes from long-term storage of spent fuel elements has been developed to be used for the period of nuclear power plant decommissioning. (E.S.)

  6. Space disposal of nuclear wastes

    Science.gov (United States)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  7. Recent activity on disposal of uranium waste

    International Nuclear Information System (INIS)

    Fujiwara, Noboru

    1999-01-01

    The concept on the disposal of uranium waste has not been discussed in the Atomic Energy Commission of Japan, but the research and development of it are carried out in the company and agency which are related to uranium waste. In this paper, the present condition and problems on disposal of uranium waste were shown in aspect of the nuclear fuel manufacturing companies' activity. As main contents, the past circumstances on the disposal of uranium waste, the past activity of nuclear fuel manufacturing companies, outline and properties of uranium waste were shown, and ideas of nuclear fuel manufacturing companies on the disposal of uranium waste were reported with disposal idea in the long-term program for development and utilization of nuclear energy. (author)

  8. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Petit, J.C.

    1998-04-01

    A deep gap, reflecting a persisting fear, separates the viewpoints of the experts and that of the public on the issue of the disposal of nuclear WASTES. The history of this field is that of the proliferation with time of spokesmen who pretend to speak in the name of the both humans and non humans involved. Three periods can be distinguished: 1940-1970, an era of contestation and confusion when the experts alone represents the interest of all; 1970-1990, an era of contestation and confusion when spokespersons multiply themselves, generating the controversy and the slowing down of most technological projects; 1990-, an era of negotiation, when viewpoints, both technical and non technical, tend to get closer and, let us be optimistic, leading to the overcome of the crisis. We show that, despite major differences, the options and concepts developed by the different actors are base on two categories of resources, namely Nature and Society, and that the consensus is built up through their 'hydridation'. we show in this part that the perception of nuclear power and, in particular of the underground disposal of nuclear wastes, involves a very deep psychological substrate. Trying to change mentalities in the domain by purely scientific and technical arguments is thus in vain. The practically instinctive fear of radioactivity, far from being due only to lack of information (and education), as often postulated by scientists and engineers, is rooted in archetypical structures. These were, without doubt, reactivated in the 40 s by the traumatizing experience of the atomic bomb. In addition, anthropological-linked considerations allow us to conclude that he underground disposal of wastes is seen as a 'rape' and soiling of Mother Earth. This contributes to explaining, beyond any rationality, the refusal of this technical option by some persons. However, it would naturally be simplistic and counter-productive to limit all controversy in this domain to these psychological aspects

  9. Geoenvironment and waste disposal

    International Nuclear Information System (INIS)

    1983-07-01

    Within the activities planned by UNESCO in its Water and Earth Science programme, an interdisciplinary meeting on geology and environment was scheduled by this organization to be held by the beginning of 1983. At this meeting it was intended to consider geological processes in the light of their interaction and influence on the environment with special emphasis on the impact of various means of waste disposal on geological environment and on man-induced changes in the geological environment by mining, human settlements, etc. Considering the increasing interest shown by the IAEA in the field, through environmental studies, site studies, and impact studies for nuclear facilities and particularly nuclear waste disposal, UNESCO expressed the wish to organize the meeting jointly so as to take into account the experience gained by the Agency, and in order to avoid any duplication in the activities of the two organizations. This request was agreed to by the IAEA Secretariat and as a result, the meeting was organized by both organizations and held at IAEA Headquarters in Vienna from 21-23 March 1983. The report of this meeting is herewith presented

  10. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  11. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  12. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  13. Chemical Waste Management and Disposal.

    Science.gov (United States)

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  14. Toxic waste liquor disposal

    International Nuclear Information System (INIS)

    Burton, W.R.

    1985-01-01

    Toxic waste liquors, especially radio active liquors, are disposed in a sub-zone by feeding down a bore hole a first liquid, then a buffer liquid (e.g. water), then the toxic liquors. Pressure variations are applied to the sub-zone to mix the first liquid and liquors to form gels or solids which inhibit further mixing and form a barrier between the sub-zone and the natural waters in the environment of the sub-zone. In another example the location of the sub-zone is selected so that the environement reacts with the liquors to produce a barrier around the zone. Blind bore holes are used to monitor the sub-zone profile. Materials may be added to the liquor to enhance barrier formation. (author)

  15. A study on source term assessment and waste disposal requirement of decontamination and decommissioning for the TRIGA research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Whang, Joo Ho; Lee, Kyung JIn; Lee, Jae Min; Choi, Gyu Seup; Shin, Byoung Sun [Kyunghee Univ., Seoul (Korea, Republic of)

    1999-08-15

    The objective and necessity of the project : TRIGA is the first nuclear facility that decide to decommission and decontamination in our nation. As we estimate the expected life of nuclear power generation at 30 or 40 years, the decommissioning business should be conducted around 2010, and the development of regulatory technique supporting it should be developed previously. From a view of decommissioning and decontamination, the research reactor is just small in scale but it include all decommissioning and decontamination conditions. So, the rules by regulatory authority with decommissioning will be a guide for nuclear power plant in the future. The basis of regulatory technique required when decommissioning the research reactor are the radiological safety security and the data for it. The source term is very important condition not only for security of worker but for evaluating how we dispose the waste is appropriate for conducting the middle store and the procedure after it when the final disposal is considered. The content and the scope in this report contain the procedure of conducting the assessment of the source term which is most important in understanding the general concept of the decommissioning procedure of the decommissioning and decontamination of TRIGA research reactor. That is, the sampling and measuring method is presented as how to measure the volume of the radioactivity of the nuclear facilities. And also, the criterion of classifying the waste occurred in other countries and the site release criteria which is the final step of decommissioning and decontamination presented through MARSSIM. Finally, the program to be applicable through comparing the methods of our nation and other countries ones is presented as plan for disposal of the waste in the decommissioning.

  16. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  17. Radioactive waste products - suitability for final disposal

    International Nuclear Information System (INIS)

    Merz, E.; Odoj, R.; Warnecke, E.

    1985-06-01

    48 papers were read at the conference. Separate records are available for all of them. The main problem in radioactive waste disposal was the long-term sealing to prevent pollution of the biosphere. Problems of conditioning, acceptance, and safety measures were discussed. Final disposal models and repositories were presented. (PW) [de

  18. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  19. Researching radioactive waste disposal

    International Nuclear Information System (INIS)

    Feates, F.; Keen, N.

    1976-01-01

    At present it is planned to use the vitrification process to convert highly radioactive liquid wastes, arising from nuclear power programme, into glass which will be contained in steel cylinders for storage. The UKAEA in collaboration with other European countries is currently assessing the relative suitability of various natural geological structures as final repositories for the vitrified material. The Institute of Geological Sciences has been commissioned to specify the geological criteria that should be met by a rock structure if it is to be used for the construction of a repository though at this stage disposal sites are not being sought. The current research programme aims to obtain basic geological data about the structure of the rocks well below the surface and is expected to continue for at least three years. The results in all the European countries will then be considered so that the United Kingdom can choose a preferred method for isolating their wastes. It is only at that stage that a firm commitment may be made to select a site for a potential repository, when a far more detailed scientific research study will be instituted. Heat transfer problems and chemical effects which may occur within and around repositories are being investigated and a conceptual design study for an underground repository is being prepared. (U.K.)

  20. Application of Polymers for the Long-Term Storage and Disposal of Low- and Intermediate-Level Radioactive Waste

    International Nuclear Information System (INIS)

    Bonin, Hugues W.; Walker, Michael W.; Bui, Van Tam

    2004-01-01

    differences in chemical transition temperatures characteristic of radiation damage. All the changes in these properties are characteristic of the cross-linking phenomenon. For the glass-fiber-reinforced polymers, the results of the tests evidenced minor radiation degradation at the fiber/matrix interfaces. Based on these results, any of the investigated polymers could potentially be used for disposal containers due to their abilities to adequately resist radiation. This allowed proceeding one step further into determining a potential design framework for containers for the long-term storage and disposal of low- and intermediate-level radioactive waste

  1. The legal system of nuclear waste disposal

    International Nuclear Information System (INIS)

    Dauk, W.

    1983-01-01

    This doctoral thesis presents solutions to some of the legal problems encountered in the interpretation of the various laws and regulations governing nuclear waste disposal, and reveals the legal system supporting the variety of individual regulations. Proposals are made relating to modifications of problematic or not well defined provisions, in order to contribute to improved juridical security, or inambiguity in terms of law. The author also discusses the question of the constitutionality of the laws for nuclear waste disposal. Apart from the responsibility of private enterprise to contribute to safe treatment or recycling, within the framework of the integrated waste management concept, and apart from the Government's responsibility for interim or final storage of radioactive waste, there is a third possibility included in the legal system for waste management, namely voluntary measures taken by private enterprise for radioactive waste disposal. The licence to be applied for in accordance with section 3, sub-section (1) of the Radiation Protection Ordinance is interpreted to pertain to all measures of radioactive waste disposal, thus including final storage of radioactive waste by private companies. Although the terminology and systematic concept of nuclear waste disposal are difficult to understand, there is a functionable system of legal provisions contained therein. This system fits into the overall concept of laws governing technical safety and safety engineering. (orig./HSCH) [de

  2. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  3. Nuclear Waste Disposal and Strategies for Predicting Long-Term Performance of Material

    Energy Technology Data Exchange (ETDEWEB)

    Wicks, G G

    2001-03-28

    Ceramics have been an important part of the nuclear community for many years. On December 2, 1942, an historic event occurred under the West Stands of Stagg Field, at the University of Chicago. Man initiated his first self-sustaining nuclear chain reaction and controlled it. The impact of this event on civilization is considered by many as monumental and compared by some to other significant events in history, such as the invention of the steam engine and the manufacturing of the first automobile. Making this event possible and the successful operation of this first man-made nuclear reactor, was the use of forty tons of UO2. The use of natural or enriched UO2 is still used today as a nuclear fuel in many nuclear power plants operating world-wide. Other ceramic materials, such as 238Pu, are used for other important purposes, such as ceramic fuels for space exploration to provide electrical power to operate instruments on board spacecrafts. Radioisotopic Thermoelectric Generators (RTGs) are used to supply electrical power and consist of a nuclear heat source and converter to transform heat energy from radioactive decay into electrical power, thus providing reliable and relatively uniform power over the very long lifetime of a mission. These sources have been used in the Galileo spacecraft orbiting Jupiter and for scientific investigations of Saturn with the Cassini spacecraft. Still another very important series of applications using the unique properties of ceramics in the nuclear field, are as immobilization matrices for management of some of the most hazardous wastes known to man. For example, in long-term management of radioactive and hazardous wastes, glass matrices are currently in production immobilizing high-level radioactive materials, and cementious forms have also been produced to incorporate low level wastes. Also, as part of nuclear disarmament activities, assemblages of crystalline phases are being developed for immobilizing weapons grade plutonium, to

  4. Preliminary plan for disposal-system characterization and long-term performance evaluation of the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Bertram-Howery, S.G.; Hunter, R.L.

    1989-04-01

    The US Department of Energy is planning to dispose of transuranic wastes at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Sandia National Laboratories is responsible for evaluating the compliance of the WIPP with the Environmental Protection Agency's Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). This plan has been developed to present the issues that will be addressed before compliance can be evaluated. These issues examine the procedural nature of the Standard, and the technical requirements for further characterizing the behavior of the disposal system, including uncertainties, to support the compliance assessment. The plan briefly describes the activities that will be conducted prior to 1993 by Sandia to characterize the WIPP disposal system's behavior and predict its performance. 41 refs., 35 figs., 21 tabs

  5. Radioactive waste processing and disposal

    International Nuclear Information System (INIS)

    1980-01-01

    This compilation contains 4144 citations of foreign and domestic reports, journal articles, patents, conference proceedings, and books pertaining to radioactive waste processing and disposal. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  6. Waste disposal developments within BNFL

    International Nuclear Information System (INIS)

    Johnson, L.F.

    1989-01-01

    British Nuclear Fuels plc has broad involvement in topics of radioactive waste generation, treatment, storage and disposal. The Company's site at Drigg has been used since 1959 for the disposal of low level waste and its facilities are now being upgraded and extended for that purpose. Since September 1987, BNFL on behalf of UK Nirex Limited has been managing an investigation of the Sellafield area to assess its suitability for deep underground emplacement of low and intermediate level radioactive wastes. An approach will be described to establish a partnership with the local community to work towards a concept of monitored, underground emplacement appropriate for each waste category. (author)

  7. Nuclear waste management and disposal

    International Nuclear Information System (INIS)

    Czibolya, L.

    1983-01-01

    The general demands for radioactive waste management, the key problem of nuclear fuel cycle are discussed. Various processes have been developed to solidify highly radioactive, long-lived wastes of the reprocessing plants in the form of borosilicate or phosphate glasses. Wastes of medium and low activity are generally solidified using either cement or bitumen or polyethylene as matrices. The alternatives of final waste disposal are reviewed according to French, Soviet, American, British, Swedish, Indian and Japanese experiences. (V.N.)

  8. Safe disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Hooker, P.; Metcalfe, R.; Milodowski, T.; Holliday, D.

    1997-01-01

    A high degree of international cooperation has characterized the two studies reported here which aim to address whether radioactive waste can be disposed of safely. Using hydrogeochemical and mineralogical surveying techniques earth scientists from the British Geological Survey have sought to identify and characterise suitable disposal sites. Aspects of the studies are explored emphasising their cooperative nature. (UK)

  9. Evaluation of waste disposal safety

    International Nuclear Information System (INIS)

    Pedersen, A.

    1982-01-01

    Requirements of the Environmental Agency for high-radioactive waste disposal are, that natural transport mechanisms must not contribute to biospheric pollution, that violent natural phenomena cannot release any biospheric pollution and that human activities will be very limited and health hazard insignificant compared to other man-created risks. Investigation of radioaactive waste disposal in Mors salt deposits has proved these requirements to be satisfied. (EG)

  10. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  11. FFTF disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

  12. FFTF disposable solid waste cask

    International Nuclear Information System (INIS)

    Thomson, J.D.; Goetsch, S.D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper

  13. Financing of radioactive waste disposal

    International Nuclear Information System (INIS)

    Reich, J.

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP) [de

  14. 2010 Survey on long-term preservation of information and memory for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    2011-01-01

    Preservation of information and memory across generations is a cross-cutting theme of increasing importance for radioactive waste management. Because of the experience accumulated by the advanced national programmes that the RWMC represents, and the breadth of its related high-level initiatives, the Committee is uniquely placed internationally to combine resources and help develop state-of-the-art guidance on the long-term preservation of information and memory. In the context of fostering knowledge consolidation and transfer (KCT), the RWMC has already identified - in its reference document on KCT - the area of inter-generational transfer of knowledge as one of two areas needing development. In 2009, the RWMC decided to implement its programme of work in the area of information preservation and long-term memory as a series of projects or lines of actions opened by the RWMC and supervised by its Bureau. In order to better define its first series of projects the RWMC preformed a survey of its organisations needs and available materials and experience. At its meeting in 2010 the RWMC determined that the survey materials provided by organisations from 12 NEA countries constitute a good contribution to the literature in this field, and certainly to the upcoming projects. They provide as well a good baseline of information against which to measure progress a few years hence. This document reports the answers provided by organisations from 12 countries (Belgium, Canada, Finland, France, Hungary, Japan, Korea, Spain, Sweden, Switzerland, United Kingdom, and the USA,) to five questions related to long-term preservation of information and memory in the field of geological disposal. The questions are as follows: o What specific priority areas for long-term memory development have been identified in your agencies/countries? Which are the time scales of largest interest? o Do these priority proceed from good practice or/and from specific laws, regulations, policies exist in

  15. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  16. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. Phase I. Final report. Vol. 4

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D.H.; Cadwell, L.L.; Eberhardt, L.E.; Kennedy, W.E. Jr.; Peloquin, R.A.; Simmons, M.A.

    1984-05-01

    Licensing and regulation of commercial low-level waste (CLLW) burial facilities require that anticipated risks associated with burial sites be evaluated for the life of the facility. This work reviewed the existing capability to evaluate dose to man resulting from the potential redistribution of buried radionuclides by plants and animals that we have termed biotic transport. Through biotic transport, radionuclides can be moved to locations where they can enter exposure pathways to man. We found that predictive models currently in use did not address the long-term risks resulting from the cumulative transport of radionuclides. Although reports in the literature confirm that biotic transport phenomena are common, assessments routinely ignore the associated risks or dismiss them as insignificant without quantitative evaluation. To determine the potential impacts of biotic transport, we made order-of-magnitude estimates of the dose to man for biotic transport processes at reference arid and humid CLLW disposal sites. Estimated doses to site residents after assumed loss of institutional control were comparable to dose estimates for the intruder-agricultural scenario defined in the DEIS for 10 CFR 61 (NRC). The reported lack of potential importance of biotic transport at low-level waste sites in earlier assessment studies is not confirmed by order of magnitude estimates presented in this study. 17 references, 10 figures, 8 tables.

  17. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. Phase I. Final report. Vol. 4

    International Nuclear Information System (INIS)

    McKenzie, D.H.; Cadwell, L.L.; Eberhardt, L.E.; Kennedy, W.E. Jr.; Peloquin, R.A.; Simmons, M.A.

    1984-05-01

    Licensing and regulation of commercial low-level waste (CLLW) burial facilities require that anticipated risks associated with burial sites be evaluated for the life of the facility. This work reviewed the existing capability to evaluate dose to man resulting from the potential redistribution of buried radionuclides by plants and animals that we have termed biotic transport. Through biotic transport, radionuclides can be moved to locations where they can enter exposure pathways to man. We found that predictive models currently in use did not address the long-term risks resulting from the cumulative transport of radionuclides. Although reports in the literature confirm that biotic transport phenomena are common, assessments routinely ignore the associated risks or dismiss them as insignificant without quantitative evaluation. To determine the potential impacts of biotic transport, we made order-of-magnitude estimates of the dose to man for biotic transport processes at reference arid and humid CLLW disposal sites. Estimated doses to site residents after assumed loss of institutional control were comparable to dose estimates for the intruder-agricultural scenario defined in the DEIS for 10 CFR 61 (NRC). The reported lack of potential importance of biotic transport at low-level waste sites in earlier assessment studies is not confirmed by order of magnitude estimates presented in this study. 17 references, 10 figures, 8 tables

  18. Legislative and political aspects of waste disposal

    International Nuclear Information System (INIS)

    Freiwald, J.

    1982-01-01

    In the Senate bill on waste disposal the definition for high-level waste was based on the source of the waste. High-level waste was defined as the liquids and solids resulting from reprocessing. The other terms defined in that bill that are crucial for any legislation dealing with high-level waste are storage and disposal. In the Senate bill, the definition of storage specifically mentioned transuranic (TRU) waste, but it did not include TRU waste in the definition of disposal. In the four House versions of the nuclear waste bill, the definition of high-level waste are addressed more carefully. This paper discusses the following four House committee's versions particularly pointing out how TRU waste is defined and handled: (1) Science Committee bill; (2) Interior Committee bill; (3) Commerce Committee bill; and (4) Armed Service Committee bill. The final language concerning TRU waste will depend on the next series of conference between these Committees. After resolving any differences, conferences will be held between the House and Senate. Here a concensus bill will be developed and it will go to the Rules Committee and then to the floor

  19. TMI abnormal wastes disposal options

    International Nuclear Information System (INIS)

    Ayers, A.L. Jr.

    1984-03-01

    A substantial quantity of high beta-gamma/high-TRU contaminated wastes are expected from cleanup activities of Unit 2 of the Three Mile Island Nuclear Power Station. Those wastes are not disposable because of present regulatory constraints. Therefore, they must be stored temporarily. This paper discusses three options for storage of those wastes at the Idaho National Engineering Laboratory: (1) storage in temporary storage casks; (2) underground storage in vaults; and (3) storage in silos at a hot shop. Each option is analyzed and evaluated. Also included is a discussion of future disposal strategies, which might be pursued when a suitable federal or commercial repository is built

  20. Long{sub t}erm performance of structural component of intermediate- and low-level radioactive waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Whang, J. H.; Kim, S. S.; Chun, T. H.; Lee, J. M.; Yum, M. O.; Kim, J. H.; Kim, M. S. [Kyunghee Univ., Seoul (Korea, Republic of)

    1997-03-15

    Underground repository for intermediate- and low-level radioactive waste is to be sealed and closed after operation. Structural components, which are generally made of cement concrete, are designed and accommodated in the repository for the purpose of operational convenience and stability after closure. To forecast the change of long-term integrity of the structural components, experimental verification, using in-situ or near in-situ conditions, is necessary. Domestic and foreign requirements with regard to the selection criteria and the performance criteria for structural components in disposal facility were surveyed. Characteristics of various types of cement were studied. Materials and construction methods of structural components similar to those of disposal facility was investigated and test items and methods for integrity of cement concrete were included. Literature survey for domestic groundwater characteristics was performed together with Ca-type bentonite ore which is a potential backfill material. Causes or factors affecting the durability of the cement structures were summarized. Experiments to figure out the ions leaching out from and migrating into cement soaked in distilled water and synthetic groundwater, respectively, were carried out. And finally, diffusion of chloride ion through cement was experimentally measured.

  1. Underground radioactive waste disposal concept

    International Nuclear Information System (INIS)

    Frgic, L.; Tor, K.; Hudec, M.

    2002-01-01

    The paper presents some solutions for radioactive waste disposal. An underground disposal of radioactive waste is proposed in deep boreholes of greater diameter, fitted with containers. In northern part of Croatia, the geological data are available on numerous boreholes. The boreholes were drilled during investigations and prospecting of petroleum and gas fields. The available data may prove useful in defining safe deep layers suitable for waste repositories. The paper describes a Russian disposal design, execution and verification procedure. The aim of the paper is to discuss some earlier proposed solutions, and present a solution that has not yet been considered - lowering of containers with high level radioactive waste (HLW) to at least 500 m under the ground surface.(author)

  2. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Burton, W.R.

    1987-01-01

    Radioactive waste of two different activity levels is buried on the same site. The high level waste e.g. intermediate level waste may be in a trench or cells in a trench bottom, and be surmounted by a layer of concrete surmounted by an intrusion barrier comprising drums containing an aggregate of cement and the lower level activity waste, the whole having a substantially impermeable cap. (author)

  3. Decommissioning of a uranium conversion plant and a low level radioactive waste for a long term disposal - 16071

    International Nuclear Information System (INIS)

    Choi, Yun D.; Hwang, D.S.; Chung, U.S.

    2009-01-01

    A decommissioning project for a uranium conversion plant was conducted to restore it to a safe environmental condition and minimal low level radioactive wastes which were converted to stable chemical forms for a long term disposal. In the middle of 2004, a decommissioning program for a conversion plant, which was constructed in 1982, and treated about 300 tons of natural uranium until it was shut down in 1992, obtained its approval from the regulatory body. Actual dismantling and decontaminating activities have been performed since July 2004 and will be finished by December 2009. The decommissioning works were mainly divided into two parts: the inside of the building containing the process equipment; the lagoon sludge generated during the plant operation. The decommissioning of the inside of the building was carried out by dismantling the process equipment, which were firstly segmented and decontaminated by polishing and washing with steam and chemicals or melting, and then decontamination for the surfaces inside the building by excavating or grinding the concrete walls. The decontamination goals were below 0.2 Bq/g for the metallic segments and below 0.4 Bq/cm 2 for the concrete walls. Decontamination methods were selected according to the degree of contamination and a minimization of the low level radioactive wastes was conducted throughout the decommissioning work. The lagoon sludge waste had two types, one was an various inorganic nitrate salt mixture containing a very low concentration of uranium, about 200∼300 ppm, in Lagoon-II and the other was an inorganic nitrate salt mixture containing a few percent of uranium in Lagoon-I. To treat these sludge wastes a thermal decomposition facility was constructed and operated to produce stable sludge wastes containing uranium oxides which are stable in the air. The final sludge wastes after a thermal treating for the sludge waste of Lagoon-I could be reused. The final residual radioactivity for the inside of the

  4. Waste Disposal: R and D on Waste Forms and Packages

    International Nuclear Information System (INIS)

    Van Iseghem, P.

    2000-01-01

    The main objectives of SCK-CEN's programme on waste forms and waste packages are: (1) to determine or to verify various physical and chemical characteristics of radioactive waste forms relevant to the Belgian waste management programme; (2) to improve and to develop tools, methods and approaches for characterising radioactive waste; (3) to assess experimentally or to demonstrate in situ the long-term performance of radioactive waste forms with regard to geological disposal in clay; (4) to assess the performance of candidate overpack materials through in situ and laboratory experiments

  5. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal. A report on Tasks 1 and 2 of Phase I

    International Nuclear Information System (INIS)

    McKenzie, D.H.; Cadwell, L.L.; Cushing, C.E. Jr.; Harty, R.; Kennedy, W.E. Jr.; Simmons, M.A.; Soldat, J.K.; Swartzman, B.

    1982-07-01

    The purpose of the work reported here was to evaluate the relevance of biotic transport to the assessment of impacts and licensing of low-level waste disposal sites. Available computer models and their recent applications at low-level waste disposal sites are considered. Biotic transport mechanisms and processes for both terrestrial and aquatic systems are presented with examples from existing waste disposal sites. Following a proposed system for ranking radionuclides by their potential for biotic transport, recommendations for completing Phase I research are presented. To evaluate the long-term importance of biotic transport at low-level waste sites, scenarios for biotic pathways and mechanisms need to be developed. Scenarios should begin with a description of the waste form and should include a description of biotic processes and mechanisms, approximations of the magnitude of materials transported, and a linkage to processes or mechanisms in existing models. Once these scenarios are in place, existing models could be used to evaluate impacts resulting from biotic transport and to assess the relevance to site selection and licensing of low-level waste disposal sites

  6. Glossary of terms used in the disposal of high-level wastes: Salt Repository Project

    International Nuclear Information System (INIS)

    1987-02-01

    This glossary provides definitions of words and phrases specific to, or used in a special way in, documents of the US Department of Energy's Civilian Radioactive Waste Management Program. In many cases, two or more definitions of a word or phrase are given. Sources are provided for all definitions. 33 refs

  7. Long-Term Performance of Silo Concrete in Low- and Intermediate-Level Waste (LILW) Disposal Facility

    International Nuclear Information System (INIS)

    Jung, Hae Ryong; Kwon, Ki Jung; Lee, Seung Hyun; Lee, Sung Bok; Jeong, Yi Yeong; Yoon, Eui Sik; Kim, Do Gyeum

    2012-01-01

    Concrete has been considered one of the engineered barriers in the geological disposal facility for low- and intermediate-level wastes (LILW). The concrete plays major role as structural support, groundwater infiltration barrier, and transport barrier of radionuclides dissolved from radioactive wastes. It also works as a chemical barrier due to its high pH condition. However, the performance of the concrete structure decrease over a period of time because of several physical and chemical processes. After a long period of time in the future, the concrete would lose its effectiveness as a barrier against groundwater inflow and the release of radionuclides. An subsurface environment below the frost depth should be favorable for concrete longevity as temperature and moisture variation should be minimal, significantly reducing the potential of cracking due to drying shrinkage and thermal expansion and contraction. Therefore, the concrete structures of LILW disposal facilities below groundwater table are expected to have relatively longer service life than those of near-surface or surface concrete structures. LILW in Korea is considered to be disposed of in the Wolsong LILW Disposal Center which is under construction in geological formation. 100,000 waste packages are expected to be disposed in the 6 concrete silos below EL -80m in the Wolsong LILW Disposal Center as first stage. The concrete silo has been considered the main engineered barrier which plays a role to inhibit water inflow and the release of radionuclides to the environments. Although a number of processes are responsible for the degradation of the silo concrete, it is concluded that a reinforcing steel corrosion cause the failure of the silo concrete. Therefore, a concrete silo failure time is calculated based on a corrosion initiation time which takes for chloride ions to penetrate through the concrete cover, and a corrosion propagation time. This paper aims to analyze the concrete failure time in the

  8. Solid waste disposal into salt mines

    International Nuclear Information System (INIS)

    Repke, W.

    1981-01-01

    The subject is discussed as follows: general introduction to disposal of radioactive waste; handling of solid nuclear waste; technology of final disposal, with specific reference to salt domes; conditioning of radioactive waste; safety barriers for radioactive waste; practice of final disposal in other countries. (U.K.)

  9. Nuclear Waste Disposal Program 2016

    International Nuclear Information System (INIS)

    2016-12-01

    This comprehensive brochure published by the Swiss National Cooperative for the Disposal of Radioactive Waste (NAGRA) discusses the many important steps in the management of radioactive waste that have already been implemented in Switzerland. The handling and packaging of waste, its characterisation and inventorying, as well as its interim storage and transport are examined. The many important steps in Swiss management of radioactive waste already implemented and wide experience gained in carrying out the associated activities are discussed. The legal framework and organisational measures that will allow the selection of repository sites are looked at. The various aspects examined include the origin, type and volume of radioactive wastes, along with concepts and designs for deep geological repositories and the types of waste to be stored therein. Also, an implementation plan for the deep geological repositories, the required capacities and the financing of waste management activities are discussed as is NAGRA’s information concept. Several diagrams and tables illustrate the program

  10. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  11. Waste and Disposal: Demonstration

    International Nuclear Information System (INIS)

    Neerdael, B.; Buyens, M.; De Bruyn, D.; Volckaert, G.

    2002-01-01

    Within the Belgian R and D programme on geological disposal, demonstration experiments have become increasingly important. In this contribution to the scientific report 2001, an overview is given of SCK-CEN's activities and achievements in the field of large-scale demonstration experiments. In 2001, main emphasis was on the PRACLAY project, which is a large-scale experiment to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation. The PRACLAY experiment will contribute to enhance understanding of water flow and mass transport in dense clay-based materials as well as to improve the design of the reference disposal concept. In the context of PRACLAY, a surface experiment (OPHELIE) has been developed to prepare and to complement PRACLAY-related experimental work in the HADES Underground Research Laboratory. In 2001, efforts were focussed on the operation of the OPHELIE mock-up. SCK-CEN also contributed to the SELFRAC roject which studies the self-healing of fractures in a clay formation

  12. Disposal and long-term storage in geological formations of solidified radioactive wastes

    International Nuclear Information System (INIS)

    Shischits, I.

    1996-01-01

    The special depository near Krasnoyarsk contains temporarily about 1,100 tons of spent nuclear fuel (SNF) from WWR- should be solidified and for the most part buried in geological formations. Solid wastes and SNF from RBMK reactors are assumed to be buried as well. For this purpose special technologies and underground constructions are required. They are to be created in the geological plots within the territory of Russian Federation and adjacent areas of CIS, meeting the developed list of requirements. The burial structures will vary greatly depending on the geological formation, the amount of wastes and their isotope composition. The well-known constructions such as deep wells, shafts, mines and cavities can be mentioned. There is a need to design constructions, which have no analog in the world practice. In the course of the Project fulfillment the following work will be conducted: -theoretical work followed by code creation for mathematical simulation of processes; - modelling on the base of prototypes made from equivalent materials with the help of simulators; - bench study; - experiments in real conditions; - examination of massif properties in particular plots using achievements of geophysics, including gamma-gamma density detectors and geo locators. Finally, ecological-economical model will be given for designing burial sites

  13. Long-term reactive transport modelling of stabilized/solidified waste: from dynamic leaching tests to disposal scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Windt, Laurent de [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)]. E-mail: laurent.dewindt@ensmp.fr; Badreddine, Rabia [INERIS, Direction des Risques Chroniques, Unite Dechets et Sites Pollues, Parc Technologique Alata BP 2, 60550 Verneuil-en-Halatte (France); Lagneau, Vincent [Ecole des Mines de Paris, CG-Hydrodynamics and Reaction Group, 35 R. St-Honore, 77300 Fontainebleau (France)

    2007-01-31

    Environmental impact assessment of hazardous waste disposal relies, among others, on standardized leaching tests characterized by a strong coupling between diffusion and chemical processes. In that respect, this study shows that reactive transport modelling is a useful tool to extrapolate laboratory results to site conditions characterized by lower solution/solid (L/S) ratios, site specific geometry, infiltration, etc. A cement solidified/stabilized (S/S) waste containing lead is investigated as a typical example. The reactive transport model developed in a previous study to simulate the initial state of the waste as well as laboratory batch and dynamic tests is first summarized. Using the same numerical code (HYTEC), this model is then integrated to a simplified waste disposal scenario assuming a defective cover and rain water infiltration. The coupled evolution of the S/S waste chemistry and the pollutant plume migration are modelled assessing the importance of the cracking state of the monolithic waste. The studied configurations correspond to an undamaged and fully sealed system, a few main fractures between undamaged monoliths and, finally, a dense crack-network in the monoliths. The model considers the potential effects of cracking, first the increase of rain water and carbon dioxide infiltration and, secondly, the increase of L/S ratio and reactive surfaces, using either explicit fracture representation or dual porosity approaches.

  14. Crevice corrosion of passive materials in long term geological nuclear waste disposal

    International Nuclear Information System (INIS)

    Combrade, P.

    2003-01-01

    The use of passive materials for High Level Waste (HLW) containers is dependent on their resistance to crevice corrosion. Using the re-passivation potential as a criterion to guarantee the resistance of passive material to crevice corrosion, susceptibility diagrams can be built up to define the safe domain of use of these alloys for a given corrosion potential. These show that, in the clay water of the French repository site, 316 L stainless steel can be used only in deaerated conditions. In oxidising conditions. Alloy C22 must be used at temperatures above 80 to 90 deg. C, but may not be safe if severe solute concentration occurs. However, a better understanding of the meaning of the re-passivation potential is still required to validate fully its use in oxidising environments. (author)

  15. Marine disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1980-01-01

    In a general sense, the main attraction of the marine environment as a repository for the wastes generated by human activities lies in the degree of dispersion and dilution which is readily attainable. However, the capacity of the oceans to receive wastes without unacceptable consequences is clearly finite and this is even more true of localized marine environments such as estuaries, coastal waters and semi-enclosed seas. Radionuclides have always been present in the marine environment and marine organisms and humans consuming marine foodstuffs have always been exposed, to some degree, to radiation from this source. The hazard associated with ionizing radiations is dependent upon the adsorption of energy from the radiation field within some biological entity. Thus any disposal of radioactive wastes into the marine environment has consequences, the acceptability of which must be assessed in terms of the possible resultant increase in radiation exposure of human and aquatic populations. In the United Kingdom the primary consideration has been and remains the safe-guarding of public health. The control procedures are therefore designed to minimize as far as practicable the degree of human exposure within the overall limits recommended as acceptable by the International Commission on Radiological Protection. There are several approaches through which control could be exercised and the strenghs and weaknesses of each are considered. In this review the detailed application of the critical path technique to the control of the discharge into the north-east Irish Sea from the fuel reprocessing plant at Windscale is given as a practical example. It will be further demonstrated that when human exposure is controlled in this way no significant risk attaches to the increased radiation exposure experienced by populations of marine organisms in the area. (orig.) [de

  16. Inspection and verification of waste packages for near surface disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Extensive experience has been gained with various disposal options for low and intermediate level waste at or near surface disposal facilities. Near surface disposal is based on proven and well demonstrated technologies. To ensure the safety of near surface disposal facilities when available technologies are applied, it is necessary to control and assure the quality of the repository system's performance, which includes waste packages, engineered features and natural barriers, as well as siting, design, construction, operation, closure and institutional controls. Recognizing the importance of repository performance, the IAEA is producing a set of technical publications on quality assurance and quality control (QA/QC) for waste disposal to provide Member States with technical guidance and current information. These publications cover issues on the application of QA/QC programmes to waste disposal, long term record management, and specific QA/QC aspects of waste packaging, repository design and R and D. Waste package QA/QC is especially important because the package is the primary barrier to radionuclide release from a disposal facility. Waste packaging also involves interface issues between the waste generator and the disposal facility operator. Waste should be packaged by generators to meet waste acceptance requirements set for a repository or disposal system. However, it is essential that the disposal facility operator ensure that waste packages conform with disposal facility acceptance requirements. Demonstration of conformance with disposal facility acceptance requirements can be achieved through the systematic inspection and verification of waste packages at both the waste generator's site and at the disposal facility, based on a waste package QA/QC programme established by the waste generator and approved by the disposal operator. However, strategies, approaches and the scope of inspection and verification will be somewhat different from country to country

  17. Transport and nuclear waste disposal

    International Nuclear Information System (INIS)

    Wild, E.

    1999-01-01

    The author assesses both past and future of nuclear waste disposal in Germany. The failure of the disposal concept is, he believes, mainly the fault of the Federal Government. On the basis of the Nuclear Energy Act, the government is obliged to ensure that ultimate-storage sites are established and operated. Up to the present, however, the government has failed - apart from the episode in Asse and Morsleben and espite existing feasible proposals in Konrad and Gorleben - to achieve this objective. This negative development is particularly evident from the projects which have had to be prematurely abandoned. The costs of such 'investment follies' meanwhile amount to several billion DM. At least 92% of the capacity in the intermediate-storage sites are at present unused. Following the closure of the ultimate-storage site in Morsleben, action must be taken to change over to long-term intermediate-storage of operational waste. The government has extensive intermediate-storage capacity at the intermediate-storage site Nord in Greifswald. There, the wate originally planned for storage in Morsleben could be intermediately stored at ERAM-rates. Nuclear waste transportation, too, could long ago have been resumed, in the author's view. For the purpose of improving the transport organisation, a new company was founded which represents exclusively the interests of the reprocessing firms at the nuclear power stations. The author's conclusion: The EVU have done their homework properly and implemented all necessary measures in order to be able to resume transport of fuel elements as soon as possible. The generating station operators favour a solution based upon agreement with the Federal Government. The EVU have already declared their willingness - in the event of unanimous agreement - to set up intermediate-storage sites near the power stations. The ponds in the generating stations, however, are unsuitable for use as intermediate-storage areas. If intermediate-storage areas for

  18. Radioactive waste disposal in Greece

    International Nuclear Information System (INIS)

    Radioactive waste is any material which contains or is contaminated by radionuclides and for which no use is foreseen. According to this definition, a large number of sources, solid, liquid and gaseous, within the Greek territory can be - and, actually, is - declared as waste. The types of such solid sources are presented. It is estimated that these solid sources represent above 90% of all disused sources in Greece. The medical sources of Co-60 and Cs-137 were used in Teletherapy units, while the Ra-226 ones are in the form of needles or tubes used in Brachytherapy. All the industrial sources had been used for measuring moisture, density, thickness, elementary composition, etc. The small sources used by research labs are mainly in the form of discs. The above sources had been imported a long time ago (even 3 decades ago), had been used, and then stored as useless inside the user's premises. Since 1990 all the users of radioactive sources are obliged to return them back to the suppliers when they are no longer in use. In fact, no source is imported unless there is a written declaration of acceptance by its producer. A project concerning the export of all disused sealed sources is in progress. For every source a certificate will be issued, proper container will be purchased and all the necessary documents will be prepared so that it can be transported for final disposal or reuse in a foreign repository facility. Apart from this 'old generated' waste, unsealed radionuclides have always been used in nuclear medicine producing waste. The above radionuclides are used either in vivo (injected or ingested by patients) or in vitro (labeling of blood and other cells). Both uses leave some radioactive waste inside the needles, the tubes, or other material. Since 1991, Greece has a well-established regulatory system for controlling waste from nuclear medicine labs, so that disposing such solid or liquid waste does no harm to the environment. A revision of these regulations has

  19. Commercial low-level radioactive waste disposal in the US

    International Nuclear Information System (INIS)

    Smith, P.

    1995-01-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going

  20. Commercial low-level radioactive waste disposal in the US

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.

    1995-10-01

    Why are 11 states attempting to develop new low-level radioactive waste disposal facilities? Why is only on disposal facility accepting waste nationally? What is the future of waste disposal? These questions are representative of those being asked throughout the country. This paper attempts to answer these questions in terms of where we are, how we got there, and where we might be going.

  1. Sub-seabed disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sivintsaev, Yu.V.

    1990-01-01

    The first stage of investigations of possibility of sub-seabed disposal of long-living intermediate-level radioactive wastes carried out by NIREX (UK) is described. Advantages and disadvantages of sub-seabed disposal of radioactive wastes are considered; regions suitable for disposal, transport means for marine disposal are described. Three types of sub-seabed burials are characterized

  2. Radioactive wastes: sources, treatment, and disposal

    International Nuclear Information System (INIS)

    Wymer, R.G.; Blomeke, J.O.

    1975-01-01

    Sources, treatment, and disposal of radioactive wastes are analyzed in an attempt to place a consideration of the problem of permanent disposal at the level of established or easily attainable technology. In addition to citing the natural radioactivity present in the biosphere, the radioactive waste generated at each phase of the fuel cycle (mills, fabrication plants, reactors, reprocessing plants) is evaluated. The three treatment processes discussed are preliminary storage to permit decay of the short-lived radioisotopes, solidification of aqueous wastes, and partitioning the long-lived α emitters for separate and long-term storage. Dispersion of radioactive gases to the atmosphere is already being done, and storage in geologically stable structures such as salt mines is under active study. The transmutation of high-level wastes appears feasible in principle, but exceedingly difficult to develop

  3. Effluent treatment and waste disposal

    International Nuclear Information System (INIS)

    1990-01-01

    In recent years there has been a great increase in the attention given to environmental matters by the public, media and Government. This has been reflected in the increased stature of environmental pressure groups and the introduction of new regulatory bodies and procedures. However, the satisfactory treatment and disposal of waste depends ultimately upon the development and employment of efficient low cost processes, and the enforcement of effective legislation. This Conference organised by the Yorkshire Branch of IChemE in association with the Institution's Environmental Protection Subject Group, will address the areas of waste monitoring, developments in pollution control processes and process economics and will look forward to future trends in waste disposal. It will also consider the impact of recent legislation upon the process industries. (author)

  4. Long-term risk analysis associated with nuclear waste disposal in space

    Science.gov (United States)

    Friedlander, A. L.; Davis, D. R.

    1979-01-01

    An assessment and verification of previous analytic results on the long term risk of earth reentry for hazardous payloads is presented. The two areas were studied: (1) stability of nominal, near-circular storage orbits in the regions between Venus and earth and between earth and Mars, and (2) probability of earth reentry for off-nominal planet-crossing orbits resulting from deployment system failures. In the first area, numerical integrations of the equations of motion are compared with stability predications based on secular perturbation theory. The agreement is good in terms of the heliocentric distances covered and the general behavior of the orbital history, although certain near-resonance situations can lead to difficulty. In the second area, a Monte Carlo simulation of orbital evolution is used and the results compared with Opik's analytic theory of planetary encounters and collision statistics, with data verified to within a close order-of-magnitude.

  5. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal: Phase 2, Final report

    International Nuclear Information System (INIS)

    McKenzie, D.H.; Cadwell, L.L.; Kennedy, W.E. Jr.; Prohammer, L.A.; Simmons, M.A.

    1986-11-01

    The results reported here establish the relevance and propose a method for including biotic transport in the assessment and licensing process for commercial low-level waste disposal sites. Earlier work identified the biotic transport mechanisms and process scenarios linking biotic transport with dose to man, and developed models for assessment of impacts. Model modification and improvement efforts in enhancing the ability to represent soil erosion and soil transport within the trench cover. Two alternative hypotheses on plant root uptake were incorporated into the model to represent transport of radionuclides by roots that penetrate the buried waste. Enhancements were also made to the scenario for future site intruder activities. Representation of waste package decomposition in the model was confirmed as the best available alternative. Results from sensitivity analyses indicate that additional information is needed to evaluate the alternative hypotheses for plant root uptake of buried wastes. Site-specific evaluations of the contribution from biotic transport to the potential dose to man establish the relevance in the assessment process. The BIOPORT/MAXI1 computer software package is proposed for dose assessments of commercial low-level waste disposal sites

  6. Relevance of biotic pathways to the long-term regulation of nuclear waste disposal: Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, D.H.; Cadwell, L.L.; Kennedy, W.E. Jr.; Prohammer, L.A.; Simmons, M.A.

    1986-11-01

    The results reported here establish the relevance and propose a method for including biotic transport in the assessment and licensing process for commercial low-level waste disposal sites. Earlier work identified the biotic transport mechanisms and process scenarios linking biotic transport with dose to man, and developed models for assessment of impacts. Model modification and improvement efforts in enhancing the ability to represent soil erosion and soil transport within the trench cover. Two alternative hypotheses on plant root uptake were incorporated into the model to represent transport of radionuclides by roots that penetrate the buried waste. Enhancements were also made to the scenario for future site intruder activities. Representation of waste package decomposition in the model was confirmed as the best available alternative. Results from sensitivity analyses indicate that additional information is needed to evaluate the alternative hypotheses for plant root uptake of buried wastes. Site-specific evaluations of the contribution from biotic transport to the potential dose to man establish the relevance in the assessment process. The BIOPORT/MAXI1 computer software package is proposed for dose assessments of commercial low-level waste disposal sites.

  7. Concept for Underground Disposal of Nuclear Waste

    Science.gov (United States)

    Bowyer, J. M.

    1987-01-01

    Packaged waste placed in empty oil-shale mines. Concept for disposal of nuclear waste economically synergistic with earlier proposal concerning backfilling of oil-shale mines. New disposal concept superior to earlier schemes for disposal in hard-rock and salt mines because less uncertainty about ability of oil-shale mine to contain waste safely for millenium.

  8. Geomechanical problems in study of radioactive wastes disposal

    International Nuclear Information System (INIS)

    Feng Yixing

    1987-01-01

    Methods for both low-intermediate level radioactive wastes disposal and high level radioactive waste disposal were introduced briefly. Geomechanical problems in radioactive wastes disposal were discussed. Some suggestions were proposed for the radioactive wastes disposal in China

  9. Low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Balaz, J.; Chren, O.

    2015-01-01

    The Mochovce National Radwaste Repository is a near surface multi-barrier disposal facility for disposal of processed low and very low level radioactive wastes (radwastes) resulting from the operation and decommissioning of nuclear facilities situated in the territory of the Slovak Republic and from research institutes, laboratories, hospitals and other institutions (institutional RAW) which are in compliance with the acceptance criteria. The basic safety requirement of the Repository is to avoid a radioactive release to the environment during its operation and institutional inspection. This commitment is covered by the protection barrier system. The method of solution designed and implemented at the Repository construction complies with the latest knowledge and practice of the repository developments all over the world and meets requirements for the safe radwaste disposal with minimum environmental consequences. All wastes are solidified and have to meet the acceptance criteria before disposal into the Repository. They are processed and treated at the Bohunice RAW Treatment Centre and Liquid RAW Final Treatment Facility at Mochovce. The disposal facility for low level radwastes consists of two double-rows of reinforced concrete vaults with total capacity 7 200 fibre reinforced concrete containers (FCCs) with RAW. One double-row contains 40 The operation of the Repository was started in year 2001 and after ten years, in 2011 was conducted the periodic assessment of nuclear safety with positive results. Till the end of year 2014 was disposed to the Repository 11 514 m 3 RAW. The analysis of total RAW production from operation and decommissioning of all nuclear installation in SR, which has been carried out in frame of the BIDSF project C9.1, has showed that the total volume estimation of conditioned waste is 108 thousand m 3 of which 45.5 % are low level waste (LLW) and 54,5 % very low level waste (VLLW). On the base of this fact there is the need to build 7

  10. The capacitated distribution and waste disposal problem

    OpenAIRE

    Bloemhof-Ruwaard, Jacqueline; Salomon, Marc; Wassenhove, Luk

    1996-01-01

    textabstractWe study the problem of the simultaneous design of a distribution network with plants and waste disposal units, and the coordination of product flows and waste flows within this network. The objective is to minimize the sum of fixed costs for opening plants and waste disposal units, and variable costs related to product and waste flows. The problem is complicated by (i) capacity constraints on plants and waste disposal units, (ii) service requirements (i.e. production must cover t...

  11. Radioecological activity limits for radioactive waste disposal

    International Nuclear Information System (INIS)

    Ahmet, E. Osmanlioglu

    2006-01-01

    Full text: Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides. Near surface disposal term includes broad range of facilities from simple trenches to concrete vaults. Principally, disposal of radioactive waste requires the implementation of measures that will provide safety for human health and environment now and in the future. For this reason preliminary activity limits should be determined to avoid radioecological problems. Radioactive waste has to be safely disposed in a regulated manner, consistent with internationally agreed principles and standards and with national legislations to avoid serious radioecological problems. The purpose of this study, presents a safety assessment approach to derive operational and post-closure radioecological activity limits for the disposal of radioactive waste. Disposal system has three components; the waste, the facility (incl. engineered barriers) and the site (natural barriers). Form of the waste (unconditioned or conditioned) is effective at the beginning of the migration scenerio. Existence of the engineered barriers in the facility will provide long term isolation of the waste from environment. The site characteristics (geology, groundwater, seismicity, climate etc.) are important for the safety of the system. Occupational exposure of a worker shall be controlled so that the following dose limits are not exceeded: an effective dose of 20mSv/y averaged over 5 consecutive years; and an effective dose of 50mSv in any single year. The effective dose limit for members of the public recommended by ICRP and IAEA is 1 mSv/y for exposures from all man-made sources [1,2]. Dose constraints are typically a fraction of the dose limit and ICRP recommendations (0.3 mSv/y) could be applied [3,4]. Radioecological activity concentration limits of each radionuclide in the waste (Bq/kg) were calculated. As a result of this study radioecological activity

  12. Scenarios of radiological impacts in the long-term safety analysis of radioactive waste disposal at the Vector Site located in the Chernobyl exclusion zone

    Energy Technology Data Exchange (ETDEWEB)

    Rybalka, N.; Mykolaichuk, O. [State Nuclear Regulatory Inspectorate of Ukraine, Kyiv (Ukraine); Alekseeva, Z.; Kondratiev, S.; Nikolaev, E. [State Scientific and Technical Center for Nuclear and Radiation Safety, Kyiv (Ukraine)

    2013-07-01

    In Ukraine, at the Vector site in the Chernobyl exclusion zone, it is planned to dispose of large amounts of radioactive wastes, including those of Chernobyl origin, containing transuranium elements. The paper analyzes the main possible scenarios of radiological impacts of the Vector site for a long-term period after expiration of its active administrative control taking into account location of the Vector site in the exclusion zone. In the paper, assessment of total activities that can be disposed of on site is demonstrated, based on non-exceeding of admissible radiological impacts. (orig.)

  13. Handling and disposing of radioactive waste

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1983-01-01

    Radioactive waste has been separated by definition into six categories. These are: commercial spent fuel; high-level wastes; transuranium waste; low-level wastes; decommissioning and decontamination wastes; and mill tailings and mine wastes. Handling and disposing of these various types of radioactive wastes are discussed briefly

  14. Maintenance of records for radioactive waste disposal

    International Nuclear Information System (INIS)

    1999-07-01

    The safety of the radioactive waste disposal concepts does not rely on long term institutional arrangements. However, future generations may need information related to repositories and the wastes confined in them. The potentially needed information therefore has to be identified and collected. A suitable system for the preservation of that information needs to be created as a part of the disposal concept beginning with the planning phase. The IAEA has prepared this technical report to respond to the needs of Member States having repositories or involved in or considering the development of repositories. In many countries policies and systems for record keeping and maintenance of information related to disposal are the subjects of current interest. This report describes the requirements for presenting information about repositories for radioactive waste including long lived and transuranic waste and spent fuel if it is declared as a waste. The report discussed topics of identification, transfer and long term retention of high level information pertaining to the repository in a records management system (RMS) for retrieval if it becomes necessary in the future

  15. Classification and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This paper reviews the historical development in the U.S. of definitions and requirements for permanent disposal of different classes of radioactive waste. We first consider the descriptions of different waste classes that were developed prior to definitions in laws and regulations. These descriptions usually were not based on requirements for permanent disposal but, rather, on the source of the waste and requirements for safe handling and storage. We then discuss existing laws and regulations for disposal of different waste classes. Current definitions of waste classes are largely qualitative, and thus somewhat ambiguous, and are based primarily on the source of the waste rather than the properties of its radioactive constituents. Furthermore, even though permanent disposal is clearly recognized as the ultimate goal of radioactive water management, current laws and regulations do not associated the definitions of different waste classes with requirement for particular disposal systems. Thus, requirements for waste disposal essentially are unaffected by ambiguities in the present waste classification system

  16. Shallow disposal of radioactive waste

    International Nuclear Information System (INIS)

    1985-02-01

    A review and evaluation of computer codes capable of simulating the various processes that are instrumental in determining the dose rate to individuals resulting from the shallow disposal of radioactive waste was conducted. Possible pathways of contamination, as well as the mechanisms controlling radionuclide movement along these pathways have been identified. Potential transport pathways include the unsaturated and saturated ground water systems, surface water bodies, atmospheric transport and movement (and accumulation) in the food chain. Contributions to dose may occur as a result of ingestion of contaminated water and food, inhalation of contaminated air and immersion in contaminated air/water. Specific recommendations were developed regarding the selection and modification of a model to meet the needs associated with the prediction of dose rates to individuals as a consequence of shallow radioactive waste disposal. Specific technical requirements with regards to risk, sensitivity and uncertainty analyses have been addressed

  17. Method of disposing radioactive wastes

    International Nuclear Information System (INIS)

    Isozaki, Kei.

    1983-01-01

    Purpose : To enable safety ocean disposal of radioactive wastes by decreasing the leaching rate of radioactive nucleides, improving the quick-curing nature and increasing the durability. Method : A mixture comprising 2 - 20 parts by weight of alkali metal hydroxide and 100 parts by weight of finely powdered aqueous slags from a blast furnace is added to radioactive wastes to solidify them. In the case of medium or low level radioactive wastes, the solidification agent is added by 200 parts by weight to 100 parts by weight of the wastes and, in the case of high level wastes, the solidification agent is added in such an amount that the wastes occupy about 20% by weight in the total of the wastes and the solidification agent. Sodium hydroxide used as the alkali metal hydroxide is partially replaced with sodium carbonate, a water-reducing agent such as lignin sulfonate is added to improve the fluidity and suppress the leaching rate and the wastes are solidified in a drum can. In this way, corrosions of the vessel can be suppressed by the alkaline nature and the compression strength, heat stability and the like of the product also become excellent. (Sekiya, K.)

  18. Final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-10-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK).

  19. Final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK)

  20. Low level tank waste disposal study

    Energy Technology Data Exchange (ETDEWEB)

    Mullally, J.A.

    1994-09-29

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

  1. Low level tank waste disposal study

    International Nuclear Information System (INIS)

    Mullally, J.A.

    1994-01-01

    Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site

  2. The surface disposal concept for VLL waste

    International Nuclear Information System (INIS)

    2011-01-01

    Disposal facilities for very-low-level (VLL) waste have been designed to accommodate both residues originating from the decommissioning of nuclear facilities and used components. Those residues have very low specific-activity levels that lie below a few hundreds of becquerels per gram (Bq/g). As for the average activity found in any disposal facility, it never exceeds more than a few tens of becquerels per gram. In that case, waste disposal involves no special processing or conditioning, except for handling requirements or volume-gain purposes. The main barrier against radionuclide dispersion is provided by the geological formation being used for waste disposal. Basic disposal concept The design and construction provisions allow for the optimal operation of the disposal facility without any risk of altering the required safety level. They also ensure a satisfactory containment level for several centuries at the end of the operating lifetime. Hence, the natural materials in their original context constitute a particular advantage for the safety demonstration over the long term. With due account of the nature of VLL waste, their containment envelope (drums, big bags, etc.) has no role in confining radioactivity, but rather in facilitating handling and disposal operations, while protecting operators. Approximately 30% of all waste received at the CSTFA undergo a specific treatment before disposal. Low-density residues (plastics, thermal-insulation materials, etc.) are first compacted by a baling press, then strapped and wrapped in clear plastic-sheet. Another bundle press is used to reduce the volume of scrap metal. Some waste, such as the polluted waters generated on site or the sludges sent by producers, are processed in the solidification and stabilisation unit. Disposal cells are excavated progressively, as needed, directly in the clay formation down to a depth of 8 m and are operated in sequence. Cell design has evolved to maximize the disposal volume, and now

  3. High-Level Radioactive Waste: Safe Storage and Ultimate Disposal.

    Science.gov (United States)

    Dukert, Joseph M.

    Described are problems and techniques for safe disposal of radioactive waste. Degrees of radioactivity, temporary storage, and long-term permanent storage are discussed. Included are diagrams of estimated waste volumes to the year 2000 and of an artist's conception of a permanent underground disposal facility. (SL)

  4. Environmental Policy with Collective Waste Disposal

    OpenAIRE

    Hamilton, Stephen F.; Sproul, Thomas W.; Sunding, David; Zilberman, David

    2013-01-01

    Centralized collection and disposal is an integral component of waste management strategies for many solid and liquid wastes, and carbon capture and storage is currently being considered for gaseous waste. In this paper we show how collective waste disposal systems introduce essential changes in the design of optimal environmental policy. Absent collective disposal, an optimal environmental policy imposes relatively stringent regulations on polluters in regions where local environmental damag...

  5. Commercial mixed waste treatment and disposal

    International Nuclear Information System (INIS)

    Vance, J.K.

    1994-01-01

    At the South Clive, Utah, site, Envirocare of Utah, Inc., (Envirocare), currently operates a commercial low-activity, low-level radioactive waste facility, a mixed waste RCRA Part B storage and disposal facility, and an 11e.(2) disposal facility. Envirocare is also in the process of constructing a Mixed Waste Treatment Facility. As the nation's first and only commercial treatment and disposal facility for such waste, the information presented in this segment will provide insight into their current and prospective operations

  6. An assessment of the long-term impact of chemically toxic contaminants from the disposal of nuclear fuel waste

    International Nuclear Information System (INIS)

    Goodwin, B.W.; Garisto, N.C.; Barnard, J.W.

    1987-01-01

    This paper presents a study on the potential for impact on man of chemically toxic contaminants associated with the Canadian concept for the disposal of nuclear fuel waste. The elements of concern are determined through a series of screening criteria such as elemental abundances and solubilities. A systems variability analysis approach is then used to predict the possible concentrations of these elements that may arise in the biosphere. These concentrations are compared with environmental guidelines such as permissible levels in drinking water. Conclusions are made regarding the potential for the chemically toxic contaminants to have an impact on man. 54 refs

  7. Control, oversight and related terms in the international guidance on geological disposal of radioactive waste - Review of definitions and use

    International Nuclear Information System (INIS)

    2014-01-01

    This document presents the most complete analysis of the use of the words control, oversight, etc. as used in NEA, IAEA and ICRP literature connected to radioactive waste disposal. It reveals the many different ways the same word, 'control', has been used in international guidance and ambiguities than can arise, especially so for the post-closure phase of the repository. The newly introduced ICRP terminology, namely the use of the words 'oversight' and 'built-in controls', represents a step forward in terminology and resolves the ambiguity

  8. Environmental effects of reactor waste disposal alternatives

    International Nuclear Information System (INIS)

    Unruh, C.M.

    1980-05-01

    This present document, Environmental Impact Statement on Management of Commercially Generated Radioactive Waste, describes ten alternative methods for disposal of nuclear wastes and evaluates their anticipated environmental impacts. The ten alternatives are: (1) geologic disposal using conventional mining techniques; (2) chemical resynthesis; (3) very deep hole concept; (4) rock melting concept; (5) island disposal; (6) sub-seabed geologic disposal; (7) ice sheet disposal; (8) reverse-well disposal; (9) partitioning and transmutation; and (10) space disposal. In evaluating the various technical strategies, issues and environmental impacts have been analyzed as best understood currently. Based on the analysis presented here, and in the light of the greater depth of knowledge on geologic disposal, DOE proposes that: (1) the disposal of radioactive wastes in geologic formations can likely be developed and applied with minimal environmental consequences; and (2) therefore the program emphasis should be on the establishment of mined repositories as the operative disposal technology

  9. Ultimate disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Roethemeyer, H.

    1991-01-01

    The activities developed by the Federal Institution of Physical Engineering PTB and by the Federal Office for Radiation Protection (BfS) concentrated, among others, on work to implement ultimate storage facilities for radioactive wastes. The book illuminates this development from site designation to the preliminary evaluation of the Gorleben salt dome, to the preparation of planning documents proving that the Konrad ore mine is suitable for a repository. The paper shows the legal provisions involved; research and development tasks; collection of radioactive wastes ready for ultimate disposal; safety analysis in the commissioning and post-operational stages, and product control. The historical development of waste management in the Federal Republic of Germany and international cooperation in this area are outlined. (DG) [de

  10. Dukovany radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Horyna, J.

    1998-01-01

    The most significant source of radioactive wastes in the Czech Republic is the operation of nuclear power plant. The original NPP design included only storage of concentrates and unsorted solid wastes in the nuclear power plant. Our concept of waste management from nuclear power plant operation has been gradually developed and it consists of solidification of radioactive concentrates, volume reduction of solid wastes by compressing and disposal of conditioned wastes in surface concrete vaults. The most significant part of the arising waste was assumed to be evaporator concentrates. in the design of the NPP it has been assumed that up to 1% of fuel element cladding may fail. With a sufficient number of natural and man-made barriers, the release of radioactive material will be limited and delayed, its migration retarded and its concentration sufficiently diluted to assure that the impact will remain in prescribed levels. Initial site selection studies started in the later seventies taking into account social, economic conditions and requirements for the protection of nature. After performed area surveys, the site near the constructed NPP Dukovany has been chosen. Safety assessment of Dukovany repository has been based on 3 critical scenarios: -groundwater transport to the nearest water supply, -Intrusion after end of institutional control, -dwelling on the site after end of institutional control. Compartment models based on the scenarios described above were formulated to estimate committed effective equivalent dose due to different exposure ways. (author)

  11. Cost estimates for greater confinement disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dickman, P.T.; Boland, J.R.

    1983-01-01

    The purpose of greater confinement disposal is to provide an intermediate disposal method for radioactive wastes considered unsuitable for shallow land burial but not requiring the isolation of a deep geologic repository. Presented are cost estimates for various disposal facility alternatives. It is concluded that greater confinement disposal can be cost competitive with shallow land burial and is cost effective in reducing long-term care costs

  12. Radioactive waste disposal and political aspects

    International Nuclear Information System (INIS)

    Blanc, M.

    1992-01-01

    The difficulties presented by the current atomic energy law for the nuclear waste disposal in Switzerland are shown. It is emphasised how important scientific information is in the political solutions for nuclear disposal

  13. The capacitated distribution and waste disposal problem

    NARCIS (Netherlands)

    J.M. Bloemhof-Ruwaard (Jacqueline); M. Salomon (Marc); L.N. van Wassenhove (Luk)

    1996-01-01

    textabstractWe study the problem of the simultaneous design of a distribution network with plants and waste disposal units, and the coordination of product flows and waste flows within this network. The objective is to minimize the sum of fixed costs for opening plants and waste disposal units, and

  14. Disposable products in the hospital waste stream.

    OpenAIRE

    Gilden, D. J.; Scissors, K. N.; Reuler, J. B.

    1992-01-01

    Use of disposable products in hospitals continues to increase despite limited landfill space and dwindling natural resources. We analyzed the use and disposal patterns of disposable hospital products to identify means of reducing noninfectious, nonhazardous hospital waste. In a 385-bed private teaching hospital, the 20 disposable products of which the greatest amounts (by weight) were purchased, were identified, and total hospital waste was tabulated. Samples of trash from three areas were so...

  15. Geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    Tassoni, E.; Giulianelli, G.; Testa, L.; Bocola, W.; Girolimetti, G.; Giacani, G.

    1983-01-01

    The heat dissipation arising from the radioactive decay constitutes an important problem of the geological disposal of high level radioactive waste. A heating experiment was carried out in a clay quarry near Monterotondo (Rome), at 6.4 M in depth by means of a heater whose thermal power ranged from 250 to 500 watt. The experimental results fit well the theoretical values and show that the clay is a homogeneous and isotropic medium. The clay thermal conductivity, which was deducted by means of the ''curve fitting'' method, ranges from 0.015 to 0.017 watt/C

  16. Safety assessment for radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Thanaletchumy Karuppiah; Mohd Abdul Wahab Yusof; Nik Marzuki Nik Ibrahim; Nurul Wahida Ahmad Khairuddin

    2008-08-01

    Safety assessments are used to evaluate the performance of a radioactive waste disposal facility and its impact on human health and the environment. This paper presents the overall information and methodology to carry out the safety assessment for a long term performance of a disposal system. A case study was also conducted to gain hands-on experience in the development and justification of scenarios, the formulation and implementation of models and the analysis of results. AMBER code using compartmental modeling approach was used to represent the migration and fate of contaminants in this training. This safety assessment is purely illustrative and it serves as a starting point for each development stage of a disposal facility. This assessment ultimately becomes more detail and specific as the facility evolves. (Author)

  17. Social dimensions of nuclear waste disposal

    International Nuclear Information System (INIS)

    Grunwald, Armin

    2015-01-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  18. Social dimensions of nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Grunwald, Armin [Karlsruhe Institute of Technology, Karlsruhe (Germany). Inst. for Technology Assessment and Systems Analysis

    2015-07-01

    Nuclear waste disposal is a two-faceted challenge: a scientific and technological endeavour, on the one hand, and confronted with social dimensions, on the other. In this paper I will sketch the respective social dimensions and will give a plea for interdisciplinary research approaches. Relevant social dimensions of nuclear waste disposal are concerning safety standards, the disposal 'philosophy', the process of determining the disposal site, and the operation of a waste disposal facility. Overall, cross-cutting issues of justice, responsibility, and fairness are of major importance in all of these fields.

  19. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    Neeway, James J.; Pierce, Eric M.; Freedman, Vicky L.; Ryan, Joseph V.; Qafoku, Nikolla

    2014-08-04

    The federal facilities located on the Hanford Site in southeastern Washington State have been used extensively by the U.S. government to produce nuclear materials for the U.S. strategic defense arsenal. Currently, the Hanford Site is under the stewardship of the U.S. Department of Energy (DOE) Office of Environmental Management (EM). A large inventory of radioactive and mixed waste resulting from the production of nuclear materials has accumulated, mainly in 177 underground single- and double-shell tanks located in the central plateau of the Hanford Site (Mann et al., 2001). The DOE-EM Office of River Protection (ORP) is proceeding with plans to immobilize and permanently dispose of the low-activity waste (LAW) fraction onsite in a shallow subsurface disposal facility (the Integrated Disposal Facility [IDF]). Pacific Northwest National Laboratory (PNNL) was contracted to provide the technical basis for estimating radionuclide release from the engineered portion of the IDF (the source term) as part of an immobilized low-activity waste (ILAW) glass testing program to support future IDF performance assessments (PAs).

  20. Shallow land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1987-01-01

    The application of basic radiation protection concepts and objectives to the disposal of radioactive wastes requires the development of specific reference levels or criteria for the radiological acceptance of each type of waste in each disposal option. This report suggests a methodology for the establishment of acceptance criteria for the disposal of low-level radioactive waste containing long-lived radionuclides in shallow land burial facilities

  1. Verification and validation for waste disposal models

    International Nuclear Information System (INIS)

    1987-07-01

    A set of evaluation criteria has been developed to assess the suitability of current verification and validation techniques for waste disposal methods. A survey of current practices and techniques was undertaken and evaluated using these criteria with the items most relevant to waste disposal models being identified. Recommendations regarding the most suitable verification and validation practices for nuclear waste disposal modelling software have been made

  2. ICRP guidance on radioactive waste disposal

    International Nuclear Information System (INIS)

    Cooper, J.R.

    2002-01-01

    The International Commission on Radiological Protection (ICRP) issued recommendations for a system of radiological protection in 1991 as the 1990 Recommendations. Guidance on the application of these recommendations in the general area of waste disposal was issued in 1997 as Publication 77 and guidance specific to disposal of solid long-lived radioactive waste was issued as Publication 81. This paper summarises ICRP guidance in radiological protection requirements for waste disposal concentrating on the ones of relevance to the geological disposal of solid radioactive waste. Suggestions are made for areas where further work is required to apply the ICRP guidance. (author)

  3. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  4. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    A number of options for the disposal of vitrified heat-generating radioactive waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the feasibility of three designs for containers which would isolate the waste from the environment for a minimum period of 500 to 1000 years. The study was sub-divided into the following major sections: manufacturing feasibility; stress analysis; integrity in accidents; cost benefit review. The candidate container designs were taken from the results of a previous study by Ove Arup and Partners (1985) and were developed as the study progressed. Their major features can be summarised as follows: (A) a thin-walled corrosion-resistant metal shell filled with lead or cement grout. (B) an unfilled thick-walled carbon steel shell. (C) an unfilled carbon steel shell planted externally with corrosion-resistant metal. Reference repository conditions in clay, granite and salt, reference disposal operations and metals corrosion data have been taken from various European Community radioactive waste management research and engineering projects. The study concludes that design Types A and B are feasible in manufacturing terms but design Type C is not. It is recommended that model containers should be produced to demonstrate the proposed methods of manufacture and that they should be tested to validate the analytical techniques used. (author)

  5. Waste disposal options report. Volume 2

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k eff for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes

  6. Waste disposal options report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  7. Probabilistic safety assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    Robinson, P.C.

    1987-07-01

    Probabilistic safety assessment codes are now widely used in radioactive waste disposal assessments. This report gives an overview of the current state of the field. The relationship between the codes and the regulations covering radioactive waste disposal is discussed and the characteristics of current codes is described. The problems of verification and validation are considered. (author)

  8. Safety assessment for radiactive waste disposal

    International Nuclear Information System (INIS)

    Lewi, J.; Izabel, C.

    1989-11-01

    Whatever their type may be, radioactive waste disposals obey to the following principle: to isolate radioactive substances as long as their potential nocivity is significant. The isolation is obtained by confining barriers. The present paper recalls the role and the limits of the different barriers, for each type of disposal. It presents and comments site selection criteria and waste packages requirements [fr

  9. Evaluation of waste disposal by shale fracturing

    International Nuclear Information System (INIS)

    Weeren, H.O.

    1976-02-01

    The shale fracturing process is evaluated as a means for permanent disposal of radioactive intermediate level liquid waste generated at the Oak Ridge National Laboratory. The estimated capital operating and development costs of a proposed disposal facility are compared with equivalent estimated costs for alternative methods of waste fixation

  10. Disposal of high-activity nuclear wastes

    International Nuclear Information System (INIS)

    Hamilton, E.I.

    1983-01-01

    A discussion is presented on the deep sea ocean disposal for high-activity nuclear wastes. The following topics are covered: effect of ionizing radiation on marine ecosystems; pathways by which radionuclides are transferred to man from the marine environment; information about releases of radioactivity to the sea; radiological protection; storage and disposal of radioactive wastes and information needs. (U.K.)

  11. Nuclear waste disposal educational forum

    International Nuclear Information System (INIS)

    1982-01-01

    In keeping with a mandate from the US Congress to provide opportunities for consumer education and information and to seek consumer input on national issues, the Department of Energy's Office of Consumer Affairs held a three-hour educational forum on the proposed nuclear waste disposal legislation. Nearly one hundred representatives of consumer, public interest, civic and environmental organizations were invited to attend. Consumer affairs professionals of utility companies across the country were also invited to attend the forum. The following six papers were presented: historical perspectives; status of legislation (Senate); status of legislation (House of Representatives); impact on the legislation on electric utilities; impact of the legislation on consumers; implementing the legislation. All six papers have been abstracted and indexed for the Energy Data Base

  12. Packages for radiactive waste disposal

    International Nuclear Information System (INIS)

    Oliveira, R. de.

    1983-01-01

    The development of multi-stage type package for sea disposal of compactable nuclear wastes, is presented. The basic requirements for the project followed the NEA and IAEA recommendations and observations of the solutions adopted by others countries. The packages of preliminary design was analysed, by computer, under several conditions arising out of its nature, as well as their conditions descent, dumping and durability in the deep of sea. The designed pressure equalization mechanic and the effect compacting on the package, by prototypes and specific tests, were studied. These prototypes were also submitted to the transport tests of the 'Regulament for the Safe Transport of Radioactive Materials'. Based on results of the testes and the re-evaluation of the preliminary design, final indications and specifications for excuting the package design, are presented. (M.C.K.) [pt

  13. A Strategy to Conduct an Analysis of the Long-Term Performance of Low-Activity Waste Glass in a Shallow Subsurface Disposal System at Hanford

    Energy Technology Data Exchange (ETDEWEB)

    BP McGrail, WL Ebert, DH Bacon, DM Strachan

    1998-02-18

    Privatized services are being procured to vitrify low-activity tank wastes for eventual disposal in a shallow subsurface facility at the Hanford Site. Over 500,000 metric tons of low-activity waste glass will be generated, which is among the largest volumes of waste within the U.S. Department of Energy (DOE) complex and is one of the largest inventories of long-lived radionuclides planned for disposal in a low-level waste facility. Before immobilized waste can be disposed, DOE must approve a "performance assessment," which is a document that describes the impacts of the disposal facility on public health and environmental resources. Because the release rate of radionuclides from the glass waste form is a key factor determining these impacts, a sound scientific basis for determining their long-term release rates must be developed if this disposal action is to be accepted by regulatory agencies, stakeholders, and the public. In part, the scientific basis is determined from a sound testing strategy. The foundation of the proposed testing strategy is a well accepted mechanistic model that is being used to calculate the glass corrosion behavior over the geologic time scales required for performance assessment. This model requires that six parameters be determined, and the testing program is defined by an appropriate set of laboratory experiments to determine these parameters, and is combined with a set of field experiments to validate the model as a whole. Three general classes of laboratory tests are proposed in this strategy: 1) characterization, 2) accelerated, and 3) service condition. Characterization tests isolate and provide specific information about processes or parameters in theoretical models. Accelerated tests investigate corrosion behavior that will be important over the regulated service life of a disposal system within a laboratory time frame of a few years or less. Service condition tests verify that the techniques used in accelerated tests do not change

  14. General criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    Maxey, M.N.; Musgrave, B.C.; Watkins, G.B.

    1979-01-01

    Techniques are being developed for conversion of radioactive wastes to solids and their placement into repositories. Criteria for such disposal are needed to assure protection of the biosphere. The ALARA (as low as reasonably achievable) principle should be applicable at all times during the disposal period. Radioactive wastes can be categorized into three classes, depending on the activity. Three approaches were developed for judging the adequacy of disposal concepts: acceptable risk, ore body comparison, and three-stage ore body comparison

  15. Periglacial phenomena affecting nuclear waste disposal

    Directory of Open Access Journals (Sweden)

    Niini, H.

    1997-12-01

    Full Text Available Slow future changes in astronomic phenomena seem to make it likely that Finland nll suffer several cold periods during the next 100,000 years. The paper analyses the characteristics of the periglacial factors that are most likely to influence the long-term safety of high-level radioactive waste disposed of in bedrock. These factors and their influences have been divided into two categories, natural and human. It is concluded that the basically natural phenomena are theoretically better understood than the complicated phenomena caused by man. It is therefore important in future research into periglacial phenomena, as well as of the disposal problem, to emphasize not only the proper applications of the results of natural sciences, but especially the effects and control of mankind's own present and future activities.

  16. Disposal and degradation of pesticide waste.

    Science.gov (United States)

    Felsot, Allan S; Racke, Kenneth D; Hamilton, Denis J

    2003-01-01

    Generation of pesticide waste is inevitable during every agricultural operation from storage to use and equipment cleanup. Large-scale pesticide manufacturers can afford sophisticated recovery, treatment, and cleanup techniques. Small-scale pesticide users, for example, single farms or small application businesses, struggle with both past waste problems, including contaminated soils, and disposal of unused product and equipment rinsewater. Many of these problems have arisen as a result of inability to properly handle spills during, equipment loading and rinsewater generated after application. Small-scale facilities also face continued problems of wastewater handling. Old, obsolete pesticide stocks are a vexing problem in numerous developing countries. Pesticide waste is characterized by high concentrations of a diversity of chemicals and associated adjuvants. Dissipation of chemicals at elevated concentrations is much slower than at lower concentrations, in part because of microbial toxicity and mass transfer limitations. High concentrations of pesticides may also move faster to lower soil depths, especially when pore water becomes saturated wish a compound. Thus, if pesticide waste is not properly disposed of, groundwater and surface water contamination become probable. The Waste Management Hierarchy developed as an Australian Code of Practice can serve as a guide for development of a sound waste management plan. In order of desirability, the course of actions include waste avoidance, waste reduction, waste recycling, waste treatment, and waste disposal. Proper management of pesticide stocks, including adequate storage conditions, good inventory practices, and regular turnover of products,. will contribute to waste avoidance and reduction over the long-term. Farmers can also choose to use registered materials that have the lowest recommended application rates or are applied in the least volume of water. Wastewater that is generated during equipment rinsing can be

  17. Radioactive waste storage and disposal: the challenge

    International Nuclear Information System (INIS)

    Prince, A.T.

    1978-03-01

    Solutions to waste management problems are available. After radium is removed, tailings from uranium ores can be disposed of safely in well-designed retention areas. Work is being done on the processing of non-fuel reactor wastes through incineration, reverse osmosis, and evaporation. Spent fuels have been stored safely for years in pools; dry storage in concrete cannisters is being investigated. Ultimate disposal of high-level wastes will be in deep, stable geologic formations. (LL)

  18. Shallow ground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This guidebook outlines the factors to be considered in site selection, design, operation, shut-down and surveillance as well as the regulatory requirements of repositories for safe disposal of radioactive waste in shallow ground. No attempt is made to summarize the existing voluminous literature on the many facets of radioactive waste disposal. In the context of this guidebook, shallow ground disposal refers to the emplacement of radioactive waste, with or without engineered barriers, above or below the ground surface, where the final protective covering is of the order of a few metres thick. Deep geological disposal and other underground disposal methods, management of mill tailings and disposal into the sea have been or will be considered in other IAEA publications. These guidelines have been made sufficiently general to cover a broad variety of climatic, hydrogeological and biological conditions. They may need to be interpreted or modified to reflect local conditions and national regulations

  19. Risks of nuclear waste disposal in space. III - Long-term orbital evolution of small particle distribution

    Science.gov (United States)

    Friedlander, A. L.; Wells, W. C.

    1980-01-01

    A study of long term risks is presented that treats an additional pathway that could result in earth reentry, namely, small radioactive particles released in solar orbit due to payload fragmentation by accidental explosion or meteoroid impact. A characterization of such an event and of the initial mass size distribution of particles is given for two extremes of waste form strength. Attention is given to numerical results showing the mass-time distribution of material and the fraction of initial mass intercepted by earth. It is concluded that it appears that program planners need not be to concerned about the risks of this particular failure mechanism and return pathway.

  20. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CFR Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  1. Geohydrology of industrial waste disposal site

    International Nuclear Information System (INIS)

    Gaynor, R.K.

    1984-01-01

    An existing desert site for hazardous chemical and low-level radioactive waste disposal is evaluated for suitability. This site is characterized using geologic, geohydrologic, geochemical, and other considerations. Design and operation of the disposal facility is considered. Site characteristics are also evaluated with respect to new and proposed regulatory requirements under the Resource Conservation and Recovery Act (1976) regulations, 40 CFR Part 264, and the ''Licensing Requirements for Landfill Disposal of Radioactive Waste,'' 10 CRF Part 61. The advantages and disadvantages of siting new disposal facilities in similar desert areas are reviewed and contrasted to siting in humid locations

  2. An Assessment of Household Solid Waste Disposal

    African Journals Online (AJOL)

    questionnaire, checklist, physical inspection and photographing of dump sites and interview ... composite wastes daily, of which 32.43% are food residues with high .... that 61.26% of the households waste generated are non reuseable. Plate 1shows the waste disposed of in the vicinity. Stanley/Andrew/Dania/Sani. 51. Food.

  3. Safety related aspects of ultimate disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Goemmel, R.

    1992-01-01

    Solutions and questions related to nuclear waste management are presented. In particular, long-term safety of repositories in Germany and Sweden is considered, with special attention being paid to methods of detection, geotechnical barriers and post-operational phase of salt dome repositories, and conditioning of wastes to make them fit for ultimate disposal. (DG) [de

  4. Seismic safety in nuclear-waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, D.W.; Towse, D.

    1979-04-26

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures.

  5. Seismic safety in nuclear-waste disposal

    International Nuclear Information System (INIS)

    Carpenter, D.W.; Towse, D.

    1979-01-01

    Seismic safety is one of the factors that must be considered in the disposal of nuclear waste in deep geologic media. This report reviews the data on damage to underground equipment and structures from earthquakes, the record of associated motions, and the conventional methods of seismic safety-analysis and engineering. Safety considerations may be divided into two classes: those during the operational life of a disposal facility, and those pertinent to the post-decommissioning life of the facility. Operational hazards may be mitigated by conventional construction practices and site selection criteria. Events that would materially affect the long-term integrity of a decommissioned facility appear to be highly unlikely and can be substantially avoided by conservative site selection and facility design. These events include substantial fault movement within the disposal facility and severe ground shaking in an earthquake epicentral region. Techniques need to be developed to address the question of long-term earthquake probability in relatively aseismic regions, and for discriminating between active and extinct faults in regions where earthquake activity does not result in surface ruptures

  6. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  7. Geological aspects of radioactive waste disposal

    International Nuclear Information System (INIS)

    Kobera, P.

    1985-01-01

    Geological formations suitable for burying various types of radioactive wastes are characterized applying criteria for the evaluation and selection of geological formations for building disposal sites for radioactive wastes issued in IAEA technical recommendations. They are surface disposal sites, disposal sites in medium depths and deep disposal sites. Attention is focused on geological formations usable for injecting self-hardening mixtures into cracks prepared by hydraulic decomposition and for injecting liquid radioactive wastes into permeable rocks. Briefly outlined are current trends of the disposal of radioactive wastes in Czechoslovakia and the possibilities are assessed from the geological point of view of building disposal sites for radioactive wastes on the sites of Czechoslovak nuclear power plants at Jaslovske Bohunice, Mochovce, Dukovany, Temelin, Holice (eastern Bohemia), Blahoutovice (northern Moravia) and Zehna (eastern Slovakia). It is stated that in order to design an optimal method of the burial of radioactive waste it will be necessary to improve knowledge of geological conditions in the potential disposal sites at the said nuclear plants. There is usually no detailed knowledge of geological and hydrological conditions at greater depths than 100 m. (Z.M.)

  8. Standard practice for prediction of the long-term behavior of materials, including waste forms, used in engineered barrier systems (EBS) for geological disposal of high-level radioactive waste

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This practice describes test methods and data analyses used to develop models for the prediction of the long-term behavior of materials, such as engineered barrier system (EBS) materials and waste forms, used in the geologic disposal of spent nuclear fuel (SNF) and other high-level nuclear waste in a geologic repository. The alteration behavior of waste form and EBS materials is important because it affects the retention of radionuclides by the disposal system. The waste form and EBS materials provide a barrier to release either directly (as in the case of waste forms in which the radionuclides are initially immobilized), or indirectly (as in the case of containment materials that restrict the ingress of groundwater or the egress of radionuclides that are released as the waste forms and EBS materials degrade). 1.1.1 Steps involved in making such predictions include problem definition, testing, modeling, and model confirmation. 1.1.2 The predictions are based on models derived from theoretical considerat...

  9. Radioactive waste disposal - policy and perspectives

    International Nuclear Information System (INIS)

    Roberts, L.E.J.

    1979-01-01

    Methods are discussed that have been developed and could be used for management and disposal of highly active wastes. The characteristics of such waste are, described and the concept of toxic potential is explained. General principles of waste disposal and the various options which have been considered are discussed. Studies on the incorporation of waste into glass, and on container materials are described. Consideration is also given to the requirements of stores and repositories from the aspect of heat dissipation, design, siting, etc. The advantages and disadvantages of the various types of geological formation ie salt, argillaceous deposits, hardrocks, suitable for containment of highly active wastes are examined. Studies carried out on the safety of repositories and an ocean disposal of the waste are summarised. The review ends with a brief account of the status of the vitrification process in the UK and abroad and of future programmes involving geological and related studies. (UK)

  10. Economics of transuranic waste immobilization and disposal

    International Nuclear Information System (INIS)

    Timmerman, C.L.

    1982-01-01

    Seven proposed transuranic (TRU) waste immobilization systems are assessed and evaluated on the basis of costs. Specific cost components that are estimated include processing costs, transportation costs, and repository or disposal costs. Economics are examined to determine the effects that each component has on the system costs. The evaluation led to two recommended systems based on these cost component evaluations. A cast-cement system is recommended for immobilized TRU wastes disposed in a defense-related waste repository because of lower processing costs and a reduced incentive for waste volume reduction. The joule-heated glass system is recommended for the immobilized TRU wastes placed in a commercial waste repository since the increased disposal cost places a greater emphasis and value upon an immobilization system which provides a large volume reduction

  11. Stability of disposal rooms during waste retrieval

    International Nuclear Information System (INIS)

    Brandshaug, T.

    1989-03-01

    This report presents the results of a numerical analysis to determine the stability of waste disposal rooms for vertical and horizontal emplacement during the period of waste retrieval. It is assumed that waste retrieval starts 50 years after the initial emplacement of the waste, and that access to and retrieval of the waste containers take place through the disposal rooms. It is further assumed that the disposal rooms are not back-filled. Convective cooling of the disposal rooms in preparation for waste retrieval is included in the analysis. Conditions and parameters used were taken from the Nevada Nuclear Waste Storage Investigation (NNWSI) Project Site Characterization Plan Conceptual Design Report (MacDougall et al., 1987). Thermal results are presented which illustrate the heat transfer response of the rock adjacent to the disposal rooms. Mechanical results are presented which illustrate the predicted distribution of stress, joint slip, and room deformations for the period of time investigated. Under the assumption that the host rock can be classified as ''fair to good'' using the Geomechanics Classification System (Bieniawski, 1974), only light ground support would appear to be necessary for the disposal rooms to remain stable. 23 refs., 28 figs., 2 tabs

  12. Radioactive waste disposal in W.A

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1983-01-01

    Radioactive waste in Western Australia arises primarily from medical diagnosis and treatment and from scientific research mainly with a medical orientation. Waste is classified before disposal depending on its level and type of radioactivity and then disposed of either to municipal land fill sites, to the sewerage system or by incineration. The amounts of radioactive materials which may be disposed of to the sewers and air are set by the Radiation Safety Act (1975) Regulations, and the land fill operations are controlled to ensure isolation of the material. Other waste such as unwanted sources used in industrial applications are stored for future disposal. Discussions are being held between officers of the State and Australian Governments aimed at providing suitable disposal methods for sources of this kind

  13. Waste management, ultimate waste disposal and the fuel cycle

    International Nuclear Information System (INIS)

    Rengeling, H.W.

    1991-01-01

    The four main steps of waste management are: interim storage of spent fuel elements, reprocessing of spent fuels and recycling of recovered nuclear materials, direct, ultimate disposal of waste that cannot or should not be reprocessed for technical or economic reasons, disposal of radioactive waste. The expert opinion focusses on ultimate disposal as the most problematic step, stating the legal problems arising from ultimate disposal being carried out by private, licensed contractors, or completely under civil law, discussing the two possibilities also from the point of view of constitutional law and legal policy. Other aspects examined are: distribution of responsibilities, harmonization and systematization of legal provisions; principles to be applied to an evidence to be produced for due waste management; the financing of ultimate disposal: special levies, licence fees, taxes, levies for pollution control. The expert opinion considers special levies as a control measure to be the right instrument in case of ultimate disposal being placed into private hands. (HSCH) [de

  14. Electromagnetic problems in nuclear waste disposal

    International Nuclear Information System (INIS)

    Eloranta, E.H.

    1998-01-01

    The paper reviews the electromagnetic characterization of fractured rock during various phases of radioactive waste disposal investigations and construction, and also discusses the methods of the electromagnetic safeguards monitoring

  15. Environmental restoration waste materials co-disposal

    International Nuclear Information System (INIS)

    Phillips, S.J.; Alexander, R.G.; England, J.L.; Kirdendall, J.R.; Raney, E.A.; Stewart, W.E.; Dagan, E.B.; Holt, R.G.

    1993-09-01

    Co-disposal of radioactive and hazardous waste is a highly efficient and cost-saving technology. The technology used for final treatment of soil-washing size fractionization operations is being demonstrated on simulated waste. Treated material (wasterock) is used to stabilize and isolate retired underground waste disposal structures or is used to construct landfills or equivalent surface or subsurface structures. Prototype equipment is under development as well as undergoing standardized testing protocols to prequalify treated waste materials. Polymer and hydraulic cement solidification agents are currently used for geotechnical demonstration activities

  16. Safety and performance indicators for the assessment of long-term safety of deep geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Hugi, M.; Schneider, J.W.; Dorp, F. van; Zuidema, P.

    2005-01-01

    The evaluation of the ability to isolate radioactive waste and the assessment of the long-term safety of a deep geological repository is usually done in terms of the calculated dose and/or risk for an average individual of the population which is potentially most affected by the potential impacts of the repository. At present, various countries and international organisations are developing so-called complementary indicators to supplement such calculations. These indicators are called ''safety indicators'' if they refer to the safety of the whole repository system; if they address the isolation capability of individual system components or the whole system from a more technical perspective, they are called ''performance indicators''. The need for complementary indicators follows from the long time frames which characterise the safety assessment of a geological repository, and the corresponding uncertainty of the calculated radiation dose. The main reason for these uncertainties is associated with the uncertain long-term prognosis of the surface environment and the related human behaviour. (orig.)

  17. Assessment of radioactive waste disposal in clay

    International Nuclear Information System (INIS)

    Mobbs, S.; Bonne, A.; Marivoet, J.; Dalrymple, G.J.; Laurens, J.M.; Winters, K.H.

    1990-09-01

    Two assessments of the potential radiological impact of disposal of medium-level and alpha-bearing wastes in clay formations have been carried out for the CEC PACOMA project. Both studies included uncertainty and sensitivity analyses. The results indicate that the radiological impact of disposal of these wastes in clay will be small, but a number of topics are identified for further study in order to confirm these results and produce more definitive estimates of the uncertainties associated with them. (author)

  18. Radioactive waste disposal: an international law perspective

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1989-01-01

    The question of radioactive waste disposal is the most intractable technical and political problem facing nuclear industry. Environmentalists world-wide demand a nuclear waste policy that must be ecologically acceptable internationally. Radioactive wastes and oil pollution were the first two types of marine pollution to receive international attention and various marine pollution controls were established. Ocean disposal was co-ordinated by the Nuclear Energy Agency and the Organization of Economic Co-operation and Development in 1967. The first treaty was the 1958 Convention on the High Seas (High Seas Convention). In response to its call for national co-operation the International Atomic Energy Agency (IAEA) established its Brynielson panel. The IAEA first issued guidelines on sea dumping in 1961. The London Dumping Convention, written in 1972, is the only global agreement concerned solely with the disposal of wastes in the marine environment by dumping. None of the global agreements make specific reference to sea-bed disposal of high-level radioactive wastes. Negotiations began at the Third UN Conference on the Law of the Sea (UNCLOS III) for the codification of a comprehensive treaty concerned with the protection, conservation, sustainable use and development of the marine environment. Burial in deep geological formations is a method of HLW disposal which decreases the chances of accidental intrusion by mankind and has little likelihood of malicious intrusion. National waste management programmes of different countries differ but there is agreement on the acceptable technical solutions to issues of waste management. The final disposition of HLW - storage or disposal - has not been decisively determined, but there is growing consensus that geological land-based disposal is the most viable alternative. Expanded international technical co-operation could well reduce the time needed to develop effective waste disposal mechanisms

  19. The Hazardous Waste/Mixed Waste Disposal Facility

    International Nuclear Information System (INIS)

    Bailey, L.L.

    1991-01-01

    The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996

  20. Acceptance criteria for disposal of radioactive waste in Romania

    International Nuclear Information System (INIS)

    Dogaru, D.

    2001-01-01

    In Romania the institutional radioactive waste are managed by National Institute of R and D for Physics and Nuclear Engineering. The institutional radioactive waste are collected, treated and conditioned at the Radioactive Waste Treatment Plant then transferred and disposed to the National Repository of Radioactive Waste at Baita Bihor. National Repository for Radioactive Waste is a long term storage facility. The repository is placed in a former worked out uranium ore mine, being excavated in the Bihor peak. The repository has been sited taking into account the known geological, hydrogeoloical, seismic and meteorological and mining properties of a uranium mining site. In the absence of an updated Safety Analysis Report, the maximum radioactive content permitted by the regulatory authority in the operation license is below the values reported for other engineered repositories in mine galleries. The paper presents the acceptance criteria for disposal of radioactive waste in National Repository for Radioactive Waste at Baita Bihor. (author)

  1. Permanent Disposal of Nuclear Waste in Salt

    Science.gov (United States)

    Hansen, F. D.

    2016-12-01

    Salt formations hold promise for eternal removal of nuclear waste from our biosphere. Germany and the United States have ample salt formations for this purpose, ranging from flat-bedded formations to geologically mature dome structures. Both nations are revisiting nuclear waste disposal options, accompanied by extensive collaboration on applied salt repository research, design, and operation. Salt formations provide isolation while geotechnical barriers reestablish impermeability after waste is placed in the geology. Between excavation and closure, physical, mechanical, thermal, chemical, and hydrological processes ensue. Salt response over a range of stress and temperature has been characterized for decades. Research practices employ refined test techniques and controls, which improve parameter assessment for features of the constitutive models. Extraordinary computational capabilities require exacting understanding of laboratory measurements and objective interpretation of modeling results. A repository for heat-generative nuclear waste provides an engineering challenge beyond common experience. Long-term evolution of the underground setting is precluded from direct observation or measurement. Therefore, analogues and modeling predictions are necessary to establish enduring safety functions. A strong case for granular salt reconsolidation and a focused research agenda support salt repository concepts that include safety-by-design. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Author: F. D. Hansen, Sandia National Laboratories

  2. Development of technical information database for high level waste disposal

    International Nuclear Information System (INIS)

    Kudo, Koji; Takada, Susumu; Kawanishi, Motoi

    2005-01-01

    A concept design of the high level waste disposal information database and the disposal technologies information database are explained. The high level waste disposal information database contains information on technologies, waste, management and rules, R and D, each step of disposal site selection, characteristics of sites, demonstration of disposal technology, design of disposal site, application for disposal permit, construction of disposal site, operation and closing. Construction of the disposal technologies information system and the geological disposal technologies information system is described. The screen image of the geological disposal technologies information system is shown. User is able to search the full text retrieval and attribute retrieval in the image. (S.Y. )

  3. Packaging radioactive wastes for geologic disposal

    International Nuclear Information System (INIS)

    Benton, H.A.

    1996-01-01

    The M ampersand O contractor for the DOE Office of Civilian Radioactive Waste Management is developing designs of waste packages that will contain the spent nuclear fuel assemblies from commercial and Navy reactor plants and various civilian and government research reactor plants, as well as high-level wastes vitrified in glass. The safe and cost effective disposal of the large and growing stockpile of nuclear waste is of national concern and has generated political and technical debate. This paper addresses the technical aspects of disposing of these wastes in large and robust waste packages. The paper discusses the evolution of waste package design and describes the current concepts. In addition, the engineering and regulatory issues that have governed the development are summarized and the expected performance in meeting the requirements are discussed

  4. Radioactive waste management and disposal in Australia

    International Nuclear Information System (INIS)

    Harries, J.R.

    1997-01-01

    A national near-surface repository at a remote and arid location is proposed for the disposal of solid low-level and short-lived intermediate-level radioactive wastes in Australia. The repository will be designed to isolate the radioactive waste from the human environment under controlled conditions and for a period long enough for the radioactivity to decay to low levels. Compared to countries that have nuclear power programs, the amount of waste in Australia is relatively small. Nevertheless, the need for a national disposal facility for solid low-level radioactive and short-lived intermediate-level radioactive wastes is widely recognised and the Federal Government is in the process of selecting a site for a national near-surface disposal facility for low and short-lived intermediate level wastes. Some near surface disposal facilities already exist in Australia, including tailings dams at uranium mines and the Mt Walton East Intractable Waste Disposal Facility in Western Australia which includes a near surface repository for low level wastes originating in Western Australia. 7 refs, 1 fig., 2 tabs

  5. User`s Manual for the SOURCE1 and SOURCE2 Computer Codes: Models for Evaluating Low-Level Radioactive Waste Disposal Facility Source Terms (Version 2.0)

    Energy Technology Data Exchange (ETDEWEB)

    Icenhour, A.S.; Tharp, M.L.

    1996-08-01

    The SOURCE1 and SOURCE2 computer codes calculate source terms (i.e. radionuclide release rates) for performance assessments of low-level radioactive waste (LLW) disposal facilities. SOURCE1 is used to simulate radionuclide releases from tumulus-type facilities. SOURCE2 is used to simulate releases from silo-, well-, well-in-silo-, and trench-type disposal facilities. The SOURCE codes (a) simulate the degradation of engineered barriers and (b) provide an estimate of the source term for LLW disposal facilities. This manual summarizes the major changes that have been effected since the codes were originally developed.

  6. Long-term safety of radioactive waste disposal. Radioactive analysis of samples from spent fuel leaching experiments

    International Nuclear Information System (INIS)

    Geckeis, H.; Degering, D.; Goertzen, A.; Geyer, F.W.; Dressler, P.

    1995-09-01

    In order to assess the long-term performance of spent fuel during direct disposal, high burnup fuel (50 MWd/kg U) has been exposed to non-buffered brine solutions and to deionized water under static anaerobic conditions at 25 C. The leaching behaviour of several radionuclides has been observed over periods of approximately 500 d. Currently used radiometric methods (α-, β-, γ-spectrometry) were applied to the analysis of sample solutions. Due to its low specific activity, uranium was determined using ICP-mass-spectrometry (ICP-MS) or laser induced fluorescence spectrometry (LFS). In order to determine radionuclide concentrations without interferences a preceeding radiochemical separation by ion-exchange, solvent-extraction or extraction chromatography was necessary in most cases. The Sc-isotopes 134/137, which are present in a high excess over other γ-emitting nuclides, were separated using the inorganic ion exchanger ammonium molybdato phosphate (AMP). This step allowed the subsequent γ-spectrometric determination of Am-241, Ag-110m, Ru-106, Sb-125 and Eu-154/155. Activity concentrations of pure β-emitters like Sr-90, Tc-99, I-129 and Pu-241 were determined by liquid scintillation counting (LSC) after selective separation using extraction chromatography or solvent extraction. The actinides Am-241, Cm-242/244, Pu-238/239/240 and Np-237 were analysed by α-spectrometry again after selective separation. The direct analysis of uranium by LFS or ICP-MS was hampered by high salt concentrations. Therefore a separation by extraction chromatography turned out to be necessary, too. The analytical procedures used throughout this work are described in detail. (orig.) [de

  7. Nuclear fuel waste disposal in Canada

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Gillespie, P.A.

    1990-05-01

    Atomic Energy of Canada Limited (AECL) has developed a concept for disposing of Canada's nuclear fuel waste and is submitting it for review under the Federal Environmental Assessment and Review Process. During this review, AECL intends to show that careful, controlled burial 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield is a safe and feasible way to dispose of Canada's nuclear fuel waste. The concept has been assessed without identifying or evaluating any particular site for disposal. AECL is now preparing a comprehensive report based on more than 10 years of research and development

  8. Mixed waste characterization, treatment & disposal focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

  9. Understanding long-term corrosion of Alloy 22 container in the potential Yucca Mountain repository for high-level nuclear waste disposal

    Science.gov (United States)

    Ahn, T.; Jung, H.; He, X.; Pensado, O.

    2008-09-01

    Alloy 22 (Ni-22Cr-13Mo-3W-4Fe) is the candidate material for the waste package outer container in a potential geologic repository for high-level nuclear waste disposal at Yucca Mountain, Nevada. This alloy exhibits very low corrosion rates in the absence of environmental conditions promoting crevice corrosion. However, there are uncertainties regarding Alloy 22's corrosion performance when general corrosion rates and susceptibility to crevice corrosion are extrapolated to a geological time period (e.g. 10 5 years). This paper presents an analysis of available literature information relevant to the long-term extrapolation of general corrosion processes and the crevice corrosion behavior of Alloy 22, under potential repository environments. For assessment of general corrosion rates, potential degradation processes causing the loss of the long-term persistence of passive film formed are considered. For crevice corrosion, induction time, and the extent of susceptibility and opening area, are considered. Disclaimer: The US Nuclear Regulatory Commission (NRC) staff views expressed herein are preliminary and do not constitute a final judgment or determination of the matters addressed nor of the acceptability of a license application for a geologic repository at Yucca Mountain. The paper describes work performed by the Center for Nuclear Waste Regulatory Analyses (CNWRA) for NRC under Contract Number NRC-02-02-012. The activities reported here were performed by CNWRA on behalf of the NRC office of Nuclear Material Safety and Safeguards, Division of High Level Waste Repository Safety. This paper is an independent product of the CNWRA and does not necessarily reflect the view or regulatory position of the NRC.

  10. High-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Burkholder, H.C.

    1985-01-01

    The meeting was timely because many countries had begun their site selection processes and their engineering designs were becoming well-defined. The technology of nuclear waste disposal was maturing, and the institutional issues arising from the implementation of that technology were being confronted. Accordingly, the program was structured to consider both the technical and institutional aspects of the subject. The meeting started with a review of the status of the disposal programs in eight countries and three international nuclear waste management organizations. These invited presentations allowed listeners to understand the similarities and differences among the various national approaches to solving this very international problem. Then seven invited presentations describing nuclear waste disposal from different perspectives were made. These included: legal and judicial, electric utility, state governor, ethical, and technical perspectives. These invited presentations uncovered several issues that may need to be resolved before high-level nuclear wastes can be emplaced in a geologic repository in the United States. Finally, there were sixty-six contributed technical presentations organized in ten sessions around six general topics: site characterization and selection, repository design and in-situ testing, package design and testing, disposal system performance, disposal and storage system cost, and disposal in the overall waste management system context. These contributed presentations provided listeners with the results of recent applied RandD in each of the subject areas

  11. Geomechanics of clays for radioactive waste disposal

    International Nuclear Information System (INIS)

    Come, B.

    1989-01-01

    Clay formations have been studied for many years in the European Community as potential disposal media for radioactive waste. This document brings together results of on-going research about the geomechanical behaviour of natural clay bodies, at normal and elevated temperatures. The work is carried out within the third Community R and D programme on Management and storage of radioactive waste

  12. Disposable products in the hospital waste stream.

    Science.gov (United States)

    Gilden, D J; Scissors, K N; Reuler, J B

    1992-03-01

    Use of disposable products in hospitals continues to increase despite limited landfill space and dwindling natural resources. We analyzed the use and disposal patterns of disposable hospital products to identify means of reducing noninfectious, nonhazardous hospital waste. In a 385-bed private teaching hospital, the 20 disposable products of which the greatest amounts (by weight) were purchased, were identified, and total hospital waste was tabulated. Samples of trash from three areas were sorted and weighed, and potential waste reductions from recycling and substituting reusable items were calculated. Business paper, trash liners, diapers, custom surgical packs, paper gowns, plastic suction bottles, and egg-crate pads were among the 20 top items and were analyzed individually. Data from sorted trash documented potential waste reductions through recycling and substitution of 78, 41, and 18 tonnes per year (1 tonne = 1,000 kg = 1.1 tons) from administration, the operating room, and adult wards, respectively (total hospital waste was 939 tonnes per year). We offer specific measures to substantially reduce nonhazardous hospital waste through substitution, minimization, and recycling of select disposable products.

  13. A disposal centre for immobilized nuclear waste

    International Nuclear Information System (INIS)

    1980-02-01

    This report describes a conceptual design of a disposal centre for immobilized nuclear waste. The surface facilities consist of plants for the preparation of steel cylinders containing nuclear waste immobilized in glass, shaft headframe buildings and all necessary support facilities. The underground disposal vault is located on one level at a depth of 1000 m. The waste cylinders are emplaced into boreholes in the tunnel floors. All surface and subsurface facilities are described, operations and schedules are summarized, and cost estimates and manpower requirements are given. (auth)

  14. A risk-informed approach of quantification of epistemic uncertainty for the long-term radioactive waste disposal. Improving reliability of expert judgements with an advanced elicitation procedure

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Chida, Taiji; Fujita, Tomonari; Tsukamoto, Masaki

    2011-01-01

    A quantification methodology of epistemic uncertainty by expert judgement based on the risk-informed approach is developed to assess inevitable uncertainty for the long-term safety assessment of radioactive waste disposal. The proposed method in this study employs techniques of logic tree, by which options of models and/or scenarios are identified, and Evidential Support Logic (ESL), by which possibility of each option is quantified. In this report, the effect of a feedback process of discussion between experts and input of state-of-the-art knowledge in the proposed method is discussed to estimate alteration of the distribution of expert judgements which is one of the factors causing uncertainty. In a preliminary quantification experiment of uncertainty of degradation of the engineering barrier materials in a tentative sub-surface disposal using the proposed methodology, experts themselves modified questions appropriately to facilitate sound judgements and to correlate those with scientific evidences clearly. The result suggests that the method effectively improves confidence of expert judgement. Also, the degree of consensus of expert judgement was sort of improved in some cases, since scientific knowledge and information of expert judgement in other fields became common understanding. It is suggested that the proposed method could facilitate consensus on uncertainty between interested persons. (author)

  15. Geotechnical practice for waste disposal '87

    International Nuclear Information System (INIS)

    Woods, R.D.

    1987-01-01

    This book contains the proceedings of a Specialty Conference sponsored by the Geotechnical Engineering Division of the American Society of Civil Engineers. Some of the titles of the papers include: Design of Waste Containment Structures, Site Characteristics for Waste Disposal, Containment of Low-Level Radioactive Material, Stabilized Fly Ash for Use in as Low-Permeability Barriers, and Hydrocarbon Refining Waste Stabilization for Landfills

  16. Evaluating pharmaceutical waste disposal in pediatric units

    Directory of Open Access Journals (Sweden)

    Maria Angélica Randoli de Almeida

    Full Text Available Abstract OBJECTIVE To verify the disposal of pharmaceutical waste performed in pediatric units. METHOD A descriptive and observational study conducted in a university hospital. The convenience sample consisted of pharmaceuticals discarded during the study period. Handling and disposal during preparation and administration were observed. Data collection took place at pre-established times and was performed using a pre-validated instrument. RESULTS 356 drugs disposals were identified (35.1% in the clinic, 31.8% in the intensive care unit, 23.8% in the surgical unit and 9.3% in the infectious diseases unit. The most discarded pharmacological classes were: 22.7% antimicrobials, 14.8% electrolytes, 14.6% analgesics/pain killers, 9.5% diuretics and 6.7% antiulcer agents. The most used means for disposal were: sharps’ disposable box with a yellow bag (30.8%, sink drain (28.9%, sharps’ box with orange bag (14.3%, and infectious waste/bin with a white bag (10.1%. No disposal was identified after drug administration. CONCLUSION A discussion of measures that can contribute to reducing (healthcare waste volume with the intention of engaging reflective team performance and proper disposal is necessary.

  17. The Dutch geologic radioactive waste disposal project

    International Nuclear Information System (INIS)

    Hamstra, J.; Verkerk, B.

    1981-01-01

    The Final Report reviews the work on geologic disposal of radioactive waste performed in the Netherlands over the period 1 January 1978 to 31 December 1979. The attached four topical reports cover detailed subjects of this work. The radionuclide release consequences of an accidental flooding of the underground excavations during the operational period was studied by the institute for Atomic Sciences in Agriculture (Italy). The results of the quantitative examples made for different effective cross-sections of the permeable layer connecting the mine excavations with the boundary of the salt dome, are that under all circumstances the concentration of the waste nuclides in drinking water will remain well within the ICRP maximum permissible concentrations. Further analysis work was done on what minima can be achieved for both the maximum local rock salt temperatures at the disposal borehole walls and the maximum global rock salt temperatures halfway between a square of disposal boreholes. Different multi-layer disposal configurations were analysed and compared. A more detailed description is given of specific design and construction details of a waste repository such as the shaft sinking and construction, the disposal mine development, the mine ventilation and the different plugging and sealing procedures for both the disposal boreholes and the shafts. Thanks to the hospitality of the Gesellschaft fuer Strahlenforschung, an underground working area in the Asse mine became available for performing a dry drilling experiment, which resulted successfully in the drilling of a 300 m deep disposal borehole from a mine room at the -750 m level

  18. Alternatives for definse waste-salt disposal

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McDonell, W.R.

    1983-01-01

    Alternatives for disposal of decontaminated high-level waste salt at Savannah River were reviewed to estimate costs and potential environmental impact for several processes. In this review, the reference process utilizing intermediate-depth burial of salt-concrete (saltcrete) monoliths was compared with alternatives including land application of the decontaminated salt as fertilizer for SRP pine stands, ocean disposal with and without containment, and terminal storage as saltcake in existing SRP waste tanks. Discounted total costs for the reference process and its modifications were in the same range as those for most of the alternative processes; uncontained ocean disposal with truck transport to Savannah River barges and storage as saltcake in SRP tanks had lower costs, but presented other difficulties. Environmental impacts could generally be maintained within acceptable limits for all processes except retention of saltcake in waste tanks, which could result in chemical contamination of surrounding areas on tank collapse. Land application would require additional salt decontamination to meet radioactive waste disposal standards, and ocean disposal without containment is not permitted in existing US practice. The reference process was judged to be the only salt disposal option studied which would meet all current requirements at an acceptable cost

  19. The disposal of radioactive waste on land

    Energy Technology Data Exchange (ETDEWEB)

    None

    1957-09-01

    A committee of geologists and geophysicists was established by the National Academy of Sciences-National Research Council at the request of the Atomic Energy Commission to consider the possibilities of disposing of high level radioactive wastes in quantity within the continental limits of the United States. The group was charged with assembling the existing geologic information pertinent to disposal, delineating the unanswered problems associated with the disposal schemes proposed, and point out areas of research and development meriting first attention; the committee is to serve as continuing adviser on the geological and geophysical aspects of disposal and the research and development program. The Committee with the cooperation of the Johns Hopkins University organized a conference at Princeton in September 1955. After the Princeton Conference members of the committee inspected disposal installations and made individual studies. Two years consideration of the disposal problems leads to-certain general conclusions. Wastes may be disposed of safely at many sites in the United States but, conversely, there are many large areas in which it is unlikely that disposal sites can be found, for example, the Atlantic Seaboard. Disposal in cavities mined in salt beds and salt domes is suggested as the possibility promising the most practical immediate solution of the problem. In the future the injection of large volumes of dilute liquid waste into porous rock strata at depths in excess of 5,000 feet may become feasible but means of rendering, the waste solutions compatible with the mineral and fluid components of the rock must first be developed. The main difficulties, to the injection method recognized at present are to prevent clogging of pore space as the solutions are pumped into the rock and the prediction or control of the rate and direction of movement.

  20. Spent fuel, plutonium and nuclear waste: long-term management

    International Nuclear Information System (INIS)

    Collard, G.

    1998-11-01

    Different options for the management of nuclear waste arising from the nuclear fuel cycle are discussed. Special emphasis is on reprocessing followed by geological disposal, geological disposal of reprocessing waste, direct geological disposal of spent nuclear fuel, long term storage. Particular emphasis is on the management of plutonium including recycling, immobilisation and disposal, partitioning and transmutation

  1. A review of the predictive modelling and data requirements for the long-term safety assessment of the deep disposal of low and intermediate level radioactive wastes

    International Nuclear Information System (INIS)

    Broyd, T.W.

    1988-06-01

    This report considers the Her Majesty's Inspectorate of Pollution research and modelling requirements for a robust post-closure radiological risk assessment methodology applicable to the deep disposal of Low-Level Wastes and Intermediate-Level Wastes. Two disposal concepts have been envisaged: horizontal tunnels or galleries in a low permeability stratum of a sedimentary sequence located inland; vertical boreholes or shafts up to 15m diameter lined with concrete and of the order 500m to 1000m deep sunk into the seabed within territorial coastal waters of the United Kingdom. (author)

  2. Nuclear Waste Disposal in France: the Contribution of Economic Analysis

    OpenAIRE

    Héraud , Jean-Alain; Ionescu , Oana

    2011-01-01

    This article addresses the following question: How to deal with uncertainty, emergence of new information and irreversibility in the decision process of the long-term disposal of radioactive waste? Intuitively, one might think that measures taken today are more relevant when they are ‡exible. We show that the theoretical economic insights supplements this intuition and more precisely we emphasize the real options theory as one means of valuing ‡exible strategies in the disposal of highly radi...

  3. Disposal of Hanford site tank wastes

    International Nuclear Information System (INIS)

    Kupfer, M.J.

    1993-09-01

    Between 1943 and 1986, 149 single-shell tanks (SSTs) and 28 double-shell tanks (DSTs) were built and used to store radioactive wastes generated during reprocessing of irradiated uranium metal fuel elements at the U.S. Department of Energy (DOE) Hanford Site in Southeastern Washington state. The 149 SSTs, located in 12 separate areas (tank farms) in the 200 East and 200 West areas, currently contain about 1.4 x 10 5 m 3 of solid and liquid wastes. Wastes in the SSTs contain about 5.7 x 10 18 Bq (170 MCi) of various radionuclides including 90 Sr, 99 Tc, 137 Cs, and transuranium (TRU) elements. The 28 DSTs also located in the 200 East and West areas contain about 9 x 10 4 m 3 of liquid (mainly) and solid wastes; approximately 4 x 10 18 Bq (90 MCi) of radionuclides are stored in the DSTs. Important characteristics and features of the various types of SST and DST wastes are described in this paper. However, the principal focus of this paper is on the evolving strategy for final disposal of both the SST and DST wastes. Also provided is a chronology which lists key events and dates in the development of strategies for disposal of Hanford Site tank wastes. One of these strategies involves pretreatment of retrieved tank wastes to separate them into a small volume of high-level radioactive waste requiring, after vitrification, disposal in a deep geologic repository and a large volume of low-level radioactive waste which can be safely disposed of in near-surface facilities at the Hanford Site. The last section of this paper lists and describes some of the pretreatment procedures and processes being considered for removal of important radionuclides from retrieved tank wastes

  4. Disposal of high level radioactive wastes in geological formations

    International Nuclear Information System (INIS)

    Martins, L.A.M.; Carvalho Bastos, J.P. de

    1978-01-01

    The disposal of high-activity radioactive wastes is the most serious problem for the nuclear industry. Among the solutions, the disposal of wastes in approriated geological formations is the most realistic and feasible. In this work the methods used for geological disposal, as well as, the criteria, programs and analysis for selecting a bite for waste disposal are presented [pt

  5. 10 CFR 20.2005 - Disposal of specific wastes.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Disposal of specific wastes. 20.2005 Section 20.2005 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2005 Disposal of specific wastes. (a) A licensee may dispose of the following licensed material as if it were...

  6. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    Energy Technology Data Exchange (ETDEWEB)

    Wildi, Walter; Dermange, Francois [Univ. of Geneva, CH-1211 Geneva (Switzerland); Appel, Detlef [PanGeo, Hannover (Germany); Buser, Marcos [Buser and Finger, Zurich (Switzerland); Eckhardt, Anne [Basler and Hofmann, Zurich (Switzerland); Hufschmied, Peter [Emch and Berger, Bern (Switzerland); Keusen, Hans-Rudolf [Geotest, Zollikofen (Switzerland); Aebersold, Michael [Swiss Federal Office of Energy (BFE), CH-3003 Bern (Switzerland)

    2000-01-15

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA.

  7. Disposal Concepts for Radioactive Waste. Final Report of the Expert Group on Disposal Concepts for Radioactive Waste (EKRA)

    International Nuclear Information System (INIS)

    Wildi, Walter; Dermange, Francois; Appel, Detlef; Buser, Marcos; Eckhardt, Anne; Hufschmied, Peter; Keusen, Hans-Rudolf; Aebersold, Michael

    2000-01-01

    At the beginning of 1999, talks between the Swiss Federal Government, the siting Cantons (Cantons in which nuclear power plants are located and Canton Nidwalden), environmental organisations and the nuclear power plant operators on the lifetime of the existing power plants and solution of the waste management problem failed to reach a satisfactory outcome. In view of this, the Head of the Federal Department for the Environment, Transport, Energy and Communication (UVEK) decided to set up the Expert Group on Disposal Concepts for Radioactive Waste (EKRA) in June 1999. EKRA then worked on providing the background for a comparison of different waste management concepts. The group developed the concept of monitored long-term geological disposal and compared this with geological disposal, interim storage and indefinite storage. The aspects of active and passive safety, monitoring and control, as well as retrievability of waste were at the fore-front of these deliberations. This report presents the conclusions and recommendations of EKRA

  8. The disposal of nuclear waste in space

    Science.gov (United States)

    Burns, R. E.

    1978-01-01

    The important problem of disposal of nuclear waste in space is addressed. A prior study proposed carrying only actinide wastes to space, but the present study assumes that all actinides and all fission products are to be carried to space. It is shown that nuclear waste in the calcine (oxide) form can be packaged in a container designed to provide thermal control, radiation shielding, mechanical containment, and an abort reentry thermal protection system. This package can be transported to orbit via the Space Shuttle. A second Space Shuttle delivers an oxygen-hydrogen orbit transfer vehicle to a rendezvous compatible orbit and the mated OTV and waste package are sent to the preferred destination. Preferred locations are either a lunar crater or a solar orbit. Shuttle traffic densities (which vary in time) are given and the safety of space disposal of wastes discussed.

  9. The handling and disposal of fusion wastes

    International Nuclear Information System (INIS)

    Broden, K.; Hultgren, Aa.; Olsson, G.

    1985-02-01

    The radioactive wastes from fusion reactor operation will include spent components, wastes from repair operations, and decontamination waste. Various disposal routes may be considered depending on i.a. the contents of tritium and of long-lived nuclides, and on national regulations. The management philosophy and disposal technology developed in Sweden for light water reactor wastes has been studied at STUDSVIK during 1983--84 and found to be applicable also to fusion wastes, provided a detritiation stage is included. These studies will continue during 1985 and include experimental work on selected fusion activation nuclides. The work presented is associated to the CEC fusion research programme. Valuable discussions and contacts with people working in this programme at Saclay, Ispra and Garching are deeply appreciated. (author)

  10. Nuclear waste disposal: two social criteria

    International Nuclear Information System (INIS)

    Rochlin, G.I.

    1977-01-01

    Two criteria--technical irreversibility and site multiplicity--have been suggested for use in establishing standards for the disposal of nuclear wastes. They have been constructed specifically to address the reduction of future risk in the face of inherent uncertainty concerning the social and political developments that might occur over the required periods of waste isolation, to provide for safe disposal without the requirement of a guaranteed future ability to recognize, detect, or repair errors and failures. Decisions as to how to apply or weigh these criteria in conjunction with other waste management goals must be made by societies and their governments. The purpose of this paper was not to preempt this process, but to construct a framework that facilitates consideration of the ethical and normative components of the problem of nuclear waste disposal. The minimum ethical obligation of a waste disposal plan is to examine most thoroughly the potential consequences of present actions, to acknowledge them openly, and to minimize the potential for irremediable harm. An ethically sound waste management policy must reflect not only our knowledge and skills, but our limitations as well

  11. Ocean disposal of radioactive waste: Status report

    International Nuclear Information System (INIS)

    Calmet, D.P.

    1989-01-01

    For hundreds of years, the seas have been used as a place to dispose of wastes resulting from human activities and although no high level radioactive waste (HLW) has been disposed of into the sea, variable amounts of packaged low level radioactive waste (LLW) have been dumped at more than 50 sites in the northern part of the Atlantic and Pacific oceans. So far, samples of sea water, sediments and deep sea organisms collected on the various sites have not shown any excess in the levels of radionuclides above those due to nuclear weapons fallout except on certain occasions where caesium and plutonium were detected at higher levels in samples taken close to packages at the dumping site. Since 1957, the date of its first meeting to design methodologies to assess the safety of ''radioactive waste disposal into the sea'', the IAEA has provided guidance and recommendations for ensuring that disposal of radioactive wastes into the sea will not result in unacceptable hazards to human health and marine organisms, damage to amenities or interference with other legitimate uses of the sea. Since the Convention for the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (referred to as the London Dumping Convention) came into force in 1975, the dumping of waste has been regulated on a global scale. The London Dumping Convention entrusted IAEA with specific responsibilities for the definition of high level radioactive wastes unsuitable for dumping at sea, and for making recommendations to national authorities for issuing special permits for ocean dumping of low level radioactive wastes. This paper presents a status report of immersion operations of low-level radioactive waste and the current studies the IAEA is undertaking on behalf of the LDC

  12. Waste Water Disposal Design And Management II

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book is written about design and management of waste water disposal like settling, floating, aeration and filtration. It explains in detail solo settling, flocculant settling, zone settling, multi-level settling, floating like PPI oil separator, structure of skimming tank and design of skimming tank, water treatment and aeration, aeration device, deaeration like deaeration device for disposal processing of sewage, filtration such as structure and design of Micro-floc filtration, In-line filtration and design of slow sand filter bed.

  13. Vessel for storing and disposing radioactive waste

    International Nuclear Information System (INIS)

    Takakura, Masahide.

    1997-01-01

    A vessel for storing and disposing radioactive wastes is composed of a containing vessel main body having an opening and a lid capable of fitting with the opening. The containing vessel main body is made into a cylindrical shape which can contain radioactive wastes therein. The containing vessel main body and the lid are made of a reinforced material such as carbon steels and stainless steels respectively. A plurality of fin set up-seats are disposed, each at a same distance, detachably to the outer surface of the containing vessel main body in parallel with the axial line of the containing vessel main body. Heat dissipating fins are secured on the outer surface of the fin set-up-seats. With such a constitution, there can be obtained a vessel suitable to underground disposal of radioactive wastes after cooling and storing them till removal of after heat. (I.N.)

  14. Public values associated with nuclear waste disposal

    International Nuclear Information System (INIS)

    Maynard, W.S.; Nealey, S.M.; Hebert, J.A.; Lindell, M.K.

    1976-06-01

    This report presents the major findings from a study designed to assess public attitudes and values associated with nuclear waste disposal. The first objective was to obtain from selected individuals and organizations value and attitude information which would be useful to decision-makers charged with deciding the ultimate disposal of radioactive waste materials. A second research objective was to obtain information that could be structured and quantified for integration with technical data in a computer-assisted decision model. The third general objective of this research was to test several attitude-value measurement procedures for their relevance and applicability to nuclear waste disposal. The results presented in this report are based on questionnaire responses from 465 study participants

  15. Preliminary risk benefit assessment for nuclear waste disposal in space

    Science.gov (United States)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.

    1982-01-01

    This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.

  16. Development of waste packages for the long-term confinement of C-14 in TRU waste disposal. 2. Confinement container with titanium alloy

    International Nuclear Information System (INIS)

    Nakamura, Ario; Owada, Hitoshi; Asano, Hidekazu; Jintoku, Takashi; Nakayama, Gen

    2008-01-01

    The long-term integrity of TRU waste package, with a titanium alloy for the outer corrosion resistance layer and carbon steel for the inner structural vessel, has been evaluated. The target confinement period is settled at 60,000 years in this study (i.e., 10 times of half-life). So the outer corrosion resistance layer with titanium (Ti-Pd alloy) is developed through focus on the high corrosion resistance of Ti alloy as a technology that has long-term confinement. In investigation about integrity of its passive film, the thickness of corrosion layer of 60,000 years is calculated by building an empirical formula between temperature and corrosion current density, considering the results of constant voltage examination in the TRU waste repository assumed environment. About crevice corrosion, its occurrence conditions is investigated in the TRU waste repository assumed environment, then, Ti.Gr-17 is selected as candidate material of the corrosion resistance layer. In investigation about SCC in Ti alloy, using the models of growth of hydride-layer, the thickness of hydride-layer after 60,000 years is estimated by the results of constant currents tests. Then, the hydride-layer of this thickness is confirmed not to generate cracks, in consideration of destructive critical hydride cracking thickness and the models of crack propagation. The knowledge that the process of generation of hydrogenated layers changes with differences in acceleration conditions (i.e., current density) is obtained. So we must confirm the adequacy of this model by the examination with natural condition. (author)

  17. Annual Report 2011 : Institute for Nuclear Waste Disposal. (KIT Scientific Reports ; 7617)

    OpenAIRE

    Geckeis, H. [Hrsg.; Stumpf, T. [Hrsg.

    2012-01-01

    The R&D at the Institute for Nuclear Waste Disposal, INE, (Institut für Nukleare Entsorgung) of the Karlsruhe Institute of Technology (KIT) focuses on (i) long term safety research for nuclear waste disposal, (ii) immobilization of high level radioactive waste (HLW), (iii) separation of minor actinides from HLW and (iv) radiation protection.

  18. Biosphere models for deep waste disposal

    International Nuclear Information System (INIS)

    Olyslaegers, G.

    2005-01-01

    The management of the radioactive waste requires the implementation of disposal systems that ensure an adequate degree of isolation of the radioactivity from man and the environment. Because there are still a lot of uncertainties and a lack of consensus with respect to the importance of the exposure pathways of man, a project BioMoSA (Biosphere Models for Safety Assessment) was elaborated in the Fifth Framework Programme of EURATOM). It aimed at improving the scientific basis for the application of biosphere models in the framework of long-term safety studies for radioactive waste disposal facilities. The section radiological evaluations of SCK-CEN took part in the BioMoSA project. n the BioMoSA project, the reference biosphere methodology developed in the IAEA programme BIOMASS (Biosphere Modelling and Assessment methods) is implemented). We used this methodology in order to increase the transparency of biosphere modelling; t evaluate the importance of the different radionuclides and pathways, and to enhance public confidence in the assessment of potential radiological dose to population groups far into the future. Five European locations, covering a wide range of environmental and agricultural conditions are described and characterised. Each participant developed a specific biosphere model for their site. In order to achieve a consistency in this model derivation, a staged approach has been followed. Successively the biosphere is described and conceptual, mathematical and numerical models are constructed. For each of the locations site-specific parameters are selected. In the project, we had the specific task to make a comparison between the model results generated by the different participants. Results from these studies are presented and discussed

  19. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    The objective of this study was to predict tensile stress levels in thin-walled titanium alloy and thick-walled carbon steel containers designed for the ocean disposal of heat-generating radioactive wastes. Results showed that tensile stresses would be produced in both designs by the expansion of the lead filter, for a temperature rise of 200 0 C. Tensile stress could be reduced if the waste heat output at disposal was reduced. Initial stresses for the titanium-alloy containers could be relieved by heat treatment. (UK)

  20. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2002-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  1. Waste and Disposal: Research and Development

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.

    2002-01-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2001 in three topical areas are reported on: performance assessments (PA), waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. SCK-CEN partcipated in several PA projects supported by the European Commission. In the BENIPA project, the role of bentonite barriers in performance assessments of HLW disposal systems is evaluated. The applicability of various output variables (concentrations, fluxes) as performance and safety indicators is investigated in the SPIN project. The BORIS project investigates the chemical behaviour and the migration of radionuclides at the Borehole injection site at Krasnoyarsk-26 and Tomsk-7. SCK-CEN contributed to an impact assessment of a radium storage facility at Olen (Belgium) and conducted PA for site-specific concepts regarding surface or deep disposal of low-level waste at the nuclear zones in the Mol-Dessel region. As regards R and D on waste forms and packages, SCK continued research on the compatbility of various waste forms (bituminised waste, vitrified waste, spent fuel) with geological disposal in clay. Main emphasis in 2001 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to

  2. Roles and Importance of Microbes in the Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Baik, Min Hoon; Lee, Seung Yeop; Roh, Yeol

    2009-01-01

    Recently the importance and interest for the microbes has been increased because several important results for the effects of microbes on the radioactive waste disposal have been published continuously. In this study, research status and major results on the various roles and effects of microbes in the radioactive waste disposal have been investigated. We investigated and summarized the roles and major results of microbes in a multi-barrier system consisting of an engineered barrier and a natural barrier which is considered in radioactive waste disposal systems. For the engineered barrier, we discussed about the effects of microbes on the corrosion of a waste container and investigated the survival possibility and roles of microbes in a compacted bentonite buffer. For the natural barrier, the roles of microbes present in groundwaters and rocks were discussed and summarized with major results from natural analogue studies. Furthermore, we investigated and summarized the roles and various interactions processes of microbes and their effects on the radionuclide migration and retardation including recent research status. Therefore, it is expected that the effects and roles of microbes on the radioactive waste disposal can be rigorously evaluated if further researches are carried out for a long-term behavior of the disposal system in the deep geological environments and for the effects of microbes on the radionuclide migration through geological media.

  3. Low-level-waste-disposal methodologies

    International Nuclear Information System (INIS)

    Wheeler, M.L.; Dragonette, K.

    1981-01-01

    This report covers the followng: (1) history of low level waste disposal; (2) current practice at the five major DOE burial sites and six commercial sites with dominant features of these sites and radionuclide content of major waste types summarized in tables; (3) site performance with performance record on burial sites tabulated; and (4) proposed solutions. Shallow burial of low level waste is a continuously evolving practice, and each site has developed its own solutions to the handling and disposal of unusual waste forms. There are no existing national standards for such disposal. However, improvements in the methodology for low level waste disposal are occurring on several fronts. Standardized criteria are being developed by both the Nuclear Regulatory Commission (NRC) and by DOE. Improved techniques for shallow burial are evolving at both commercial and DOE facilities, as well as through research sponsored by NRC, DOE, and the Environmental Protection Agency. Alternatives to shallow burial, such as deeper burial or the use of mined cavities is also being investigated by DOE

  4. Disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    Dormuth, K.W.; Nuttall, K.

    1994-01-01

    In 1978, the governments of Canada and Ontario established the Nuclear Fuel Waste Management program. As of the time of the conference, the research performed by AECL was jointly funded by AECL and Ontario Hydro through the CANDU owners' group. Ontario Hydro have also done some of the research on disposal containers and vault seals. From 1978 to 1992, AECL's research and development on disposal cost about C$413 million, of which C$305 was from funds provided to AECL by the federal government, and C$77 million was from Ontario Hydro. The concept involves the construction of a waste vault 500 to 1000 metres deep in plutonic rock of the Canadian Precambrian Shield. Used fuel (or possibly solidified reprocessing waste) would be sealed into containers (of copper, titanium or special steel) and emplaced (probably in boreholes) in the vault floor, surrounded by sealing material (buffer). Disposal rooms might be excavated on more than one level. Eventually all excavated openings in the rock would be backfilled and sealed. Research is organized under the following headings: disposal container, waste form, vault seals, geosphere, surface environment, total system, assessment of environmental effects. A federal Environmental Assessment Panel is assessing the concept (holding public hearings for the purpose) and will eventually make recommendations to assist the governments of Canada and Ontario in deciding whether to accept the concept, and how to manage nuclear fuel waste. 16 refs., 1 tab., 3 figs

  5. Overview on the Multinational Collaborative Waste Storage and Disposal Solutions

    International Nuclear Information System (INIS)

    MARGEANU, C.A.

    2013-01-01

    The main drivers for a Safe, Secure and Global Energy future become clear and unequivocal: Security of supply for energy sources, Low-carbon electricity generation and Extended nuclear power assuring economic nuclear energy production, safe nuclear facilities and materials, safe and secure radioactive waste management and public acceptance. Responsible use of nuclear power requires that – in addition to safety, security and environmental protection associated with NPPs operation – credible solutions to be developed for dealing with the radioactive waste produced and especially for a responsible long term radioactive waste management. The paper deals with the existing multinational initiative in nuclear fuel cycle and the technical documents sustaining the multinational/regional disposal approach. Meantime, the paper far-reaching goal is to highlight on: What is offering the multinational waste storage and disposal solutions in terms of improved nuclear security ‽

  6. Disposal of radioactive wastes by UK NIREX Ltd

    International Nuclear Information System (INIS)

    Ginniff, M.E.

    1989-01-01

    In the United Kingdom UK Nirex Ltd., provides a comprehensive, long-term radioactive waste disposal service for low and intermediate level solid radioactive wastes arising from all radioactive operations in the country. The high level wastes which are not the responsibility of Nirex, are to be vitrified and stored for some 50 years. The low and intermediate wastes are to be emplaced in a deep underground repository and the developments during 1988 towards this objective are presented. Following the publication of a widely circulated consultation document entitled 'The Way Forward', design studies and site selection exercises for a deep underground repository were started. (author)

  7. Cements in Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Glasser, F.P.

    2013-01-01

    burden of proof because with few exceptions, much less is known about their ability chemically to immobilise waste species and their long- term durability relative to Portland cement in a range of natural environments. It is concluded that the most robust of these alternative formulations are based on calcium aluminate and sulfoaluminate cements, on magnesium phosphate and on geopolymers. (author)

  8. Spent fuel as a waste form: Data needs to allow long term performance assessment under repository disposal conditions

    International Nuclear Information System (INIS)

    Oversby, V.M.

    1986-12-01

    Performance assessment calculations are required for high level waste repositories for a period of 10,000 years. The Siting Guidelines require a comparison of sites following site characterization and prior to final site selection to be made over a 100,000 year period. To perform the required calculations, a detailed knowledge of the physical and chemical processes that affect waste form performance will be needed for each site. This paper will review the factors that affect the release of radionuclides from spent fuel under repository conditions, summarize our present state of knowledge, and suggest areas where more work is needed to support the performance assessment calculations. 17 refs., 5 figs., 3 tabs

  9. Properties of α doped glasses referring to the long term disposal of solidified high level radioactive wastes

    International Nuclear Information System (INIS)

    Jacquet-Francillon, N.; Vernaz, E.

    1981-11-01

    The evolution of physical and chemical properties of α doped glasses has been investigated in samples in which the cumulated α dose was increasing in one case up to 3.10 18 α/g. The tests carried out up to now do not ascertain any harmful effects of α activity upon borosilicated glasses. The generated helium is kept occluded in the glass up to a given limit, and is then diffused. Leaching experiments brought to light some particular features concerning the leach rate of α emitters: this does not rise when the temperature or the SA/V ratio is increased, and in fact decreases when the renewing frequency of the water is lessened. Finally it is demonstrated that the majority of the leached α activity is in the form of insoluble material and can be trapped in an 8 μ filter. All these results are extremely encouraging in view of a geological disposal of α containing glasses

  10. Radioactive waste disposal and public acceptance aspects

    Energy Technology Data Exchange (ETDEWEB)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M., E-mail: mouraor@cdtn.b, E-mail: vvmf@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  11. Stakeholder confidence and radioactive waste disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Any significant decisions regarding geologic disposal of radioactive waste will need a comprehensive public review and a thorough involvement of all relevant stakeholders, such as waste generators, waste management agencies, regulatory authorities, local communities and elected officials. The participation of non-technical stakeholders will become increasingly important as more countries move towards siting and implementing geologic repositories. The decision-making process and avenues for stakeholder involvement differ from country to country. It is important to identify similarities and differences, understand the key concerns of the various stakeholders, and develop means to interact effectively. The Nuclear Energy Agency recently set up a Forum on Stakeholder Confidence charged with distilling the lessons that can be learnt from national and international experience. These proceedings of the Forums first workshop held in August 2000 provide an overview of OECD countries' experience in the field of stakeholder confidence and radioactive waste disposal. (author)

  12. Radioactive waste disposal and public acceptance aspects

    International Nuclear Information System (INIS)

    Ulhoa, Barbara M.A.; Aleixo, Bruna L.; Mourao, Rogerio P.; Ferreira, Vinicius V.M.

    2011-01-01

    Part of the public opinion around the world considers the wastes generated due to nuclear applications as the biggest environmental problem of the present time. The development of a solution that satisfies everybody is a great challenge, in that obtaining public acceptance for nuclear enterprises is much more challenging than solving the technical issues involved. Considering that the offering of a final solution that closes the radioactive waste cycle has a potentially positive impact on public opinion, the objective of this work is to evaluate the amount of the radioactive waste volume disposed in a five-year period in several countries and gauge the public opinion regarding nuclear energy. The results show that the volume of disposed radioactive waste increased, a fact that stresses the importance of promoting discussions about repositories and public acceptance. (author)

  13. Pilot tests on radioactive waste disposal in underground facilities

    International Nuclear Information System (INIS)

    Haijtink, B.

    1992-01-01

    The report describes the pilot test carried out in the underground facilities in the Asse salt mine (Germany) and in the Boom clay beneath the nuclear site at Mol (Belgium). These tests include test disposal of simulated vitrified high-level waste (HAW project) and of intermediate level waste and spent HTR fuel elements in the Asse salt mine, as well as an active handling experiment with neutron sources, this last test with a view to direct disposal of spent fuel. Moreover, an in situ test on the performance of a long-term sealing system for galleries in rock salt is described. Regarding the tests in the Boom clay, a combined heating and radiation test, geomechanical and thermo-hydro mechanical tests are dealt with. Moreover, the design of a demonstration test for disposal of high-level waste in clay is presented. Finally the situation concerning site selection and characterization in France and the United Kingdom are described

  14. The experimental testing of the long-term behaviour of cemented radioactive waste from nuclear research reactors in the geological disposal conditions of the boom clay

    Energy Technology Data Exchange (ETDEWEB)

    Sneyers, A.; Marivoet, J.; Iseghem, P. van [SCK-CEN, B-2400 Mol (Belgium)

    1998-07-01

    Liquid wastes, resulting from the reprocessing of spent nuclear fuel from the BR-2 Materials Testing Reactor, will be conditioned in a cement matrix at the dedicated cementation facility of UKAEA at Dounreay. In Belgium, the Boom clay formation is studied as a potential host rock for the final geological disposal of cemented research reactor waste. In view of evaluating the safety of disposal, laboratory leach experiments and in situ tests have been performed. Leach experiments in synthetic clay water indicate that the leach rates of calcium and silicium are relatively low compared to those of sodium and potassium. In situ experiments on inactive samples are performed in order to obtain information on the microchemical and mineralogical changes of the cemented waste in contact with the Boom clay. Finally, results from a preliminary performance assessment calculation suggest a non-negligible maximum dose rate of 5 10{sup -9} Sv/a for {sup 129}I. (author)

  15. Technologies for in situ immobilization and isolation of radioactive wastes at disposal and contaminated sites

    International Nuclear Information System (INIS)

    1997-11-01

    This report describes technologies that have been developed worldwide and the experiences applied to both waste disposal and contaminated sites. The term immobilization covers both solidification and embedding of wastes

  16. Seminar on waste treatment and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-07-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place.

  17. Seminar on waste treatment and disposal

    International Nuclear Information System (INIS)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-01-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place

  18. Monitoring methods for nuclear fuel waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.B.; Barnard, J.W.; Bird, G.A. [and others

    1997-11-01

    This report examines a variety of monitoring activities that would likely be involved in a nuclear fuel waste disposal project, during the various stages of its implementation. These activities would include geosphere, environmental, vault performance, radiological, safeguards, security and community socioeconomic and health monitoring. Geosphere monitoring would begin in the siting stage and would continue at least until the closure stage. It would include monitoring of regional and local seismic activity, and monitoring of physical, chemical and microbiological properties of groundwater in rock and overburden around and in the vault. Environmental monitoring would also begin in the siting stage, focusing initially on baseline studies of plants, animals, soil and meteorology, and later concentrating on monitoring for changes from these benchmarks in subsequent stages. Sampling designs would be developed to detect changes in levels of contaminants in biota, water and air, soil and sediments at and around the disposal facility. Vault performance monitoring would include monitoring of stress and deformation in the rock hosting the disposal vault, with particular emphasis on fracture propagation and dilation in the zone of damaged rock surrounding excavations. A vault component test area would allow long-term observation of containers in an environment similar to the working vault, providing information on container corrosion mechanisms and rates, and the physical, chemical and thermal performance of the surrounding sealing materials and rock. During the operation stage, radiological monitoring would focus on protecting workers from radiation fields and loose contamination, which could be inhaled or ingested. Operational zones would be established to delineate specific hazards to workers, and movement of personnel and materials between zones would be monitored with radiation detectors. External exposures to radiation fields would be monitored with dosimeters worn by

  19. Microbiology and radioactive waste disposal

    International Nuclear Information System (INIS)

    Colasanti, R.; Coutts, D.; Pugh, S.Y.R.; Rosevear, A.

    1990-03-01

    The present Nirex Safety Assessment Research Programme on microbiology is based on experimental as well as theoretical work. It has concentrated on the study of how mixed, natural populations of microbes might survive and grow on the organic component of Low Level Radioactive Wastes (LLW) and PCM (Plutonium Contaminated Waste) in a cementitious waste repository. The present studies indicate that both carbon dioxide and methane will be produced by microbial action within the repository. Carbon dioxide will dissolve and react with the concrete to a limited extent so methane will be the principal component of the produced gas. The concentration of hydrogen, derived from corrosion, will be depressed by microbial action and that this will further elevate methane levels. Actual rates of production will be lower than that in a domestic landfill due to the more extreme pH. Microbial action will clearly affect the aqueous phase chemistry where organic material is present in the waste. The cellulosic fraction is the main determinant of cell growth and the appearance of soluble organics. The structure of the mathematical model which has been developed, predicts the general features which are intuitively expected in a developing microbial population. It illustrates that intermediate compounds will build up in the waste until growth of the next organism needed for sequential degradation is initiated. The soluble compounds in the pore water and the mixture of microbes present in the waste will vary with time and sustain biological activity over a prolonged period. Present estimates suggest that most microbial action in the repository will be complete after 400 years. There is scope for the model to deal with environmental factors such as temperature and pH and to introduce other energy sources such as hydrogen. (author)

  20. Influences of microbiology on nuclear waste disposal

    International Nuclear Information System (INIS)

    Dunk, M.

    1991-05-01

    This study was carried out to determine the effects of microbial activity on the disposal of nuclear waste. The areas chosen for study include nutrient availability (both organic and inorganic), the effect of increased pH and potential gas generation from the waste. Microbes from various soil habitats could grow on a variety of cellulose-based substrates including simulant waste. Increased pH did not appear to greatly effect the growth of these microbes. Gas generation by microbes growing on a simulant waste was determined over an extended period under a variety of nutritional conditions. The simulant waste was a good substrate for microbes and adding inorganic nutrients did not significantly affect the final yield of gas; extrapolated to about 14.6 3 gas per tonne of waste. The experiments have highlighted a number of areas for further research and they are currently being addressed. (author)

  1. Inventory of radioactive waste disposals at sea

    International Nuclear Information System (INIS)

    1999-08-01

    The IAEA was requested by the Contracting Parties to the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (London Convention 1972) to develop and maintain an inventory of radioactive material entering the marine environment from all sources. The rationale for having such an inventory is related to its use as an information base with which the impact of radionuclides from different sources entering the marine environment can be assessed and compared. To respond to the request of the London Convention, the IAEA has undertaken the development of the inventory to include: disposal at sea of radioactive wastes, and accidents and losses at sea involving radioactive materials. This report addresses disposal at sea of radioactive waste, a practice which continued from 1946 to 1993. It is a revision of IAEA-TECDOC-588, Inventory of Radioactive Material Entering the Marine Environment: Sea Disposal of Radioactive Waste, published in 1991. In addition to the data already published in IAEA-TECDOC-588, the present publication includes detailed official information on sea disposal operations carried out by the former Soviet Union and the Russian Federation provided in 1993 as well as additional information provided by Sweden in 1992 and the United Kingdom in 1997 and 1998

  2. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1980-01-01

    A system is disclosed for disposing of radioactive mixed liquid and particulate waste material from nuclear reactors by solidifying the liquid components into a free standing hardened mass with a syrup of partially polymerized particles of urea formaldehyde in water and a liquid curing agent

  3. Ocean disposal of heat generating waste

    International Nuclear Information System (INIS)

    1985-06-01

    A number of options for the disposal of vitrified heat generating waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the engineering and operational aspects of the Penetrator Option for ocean disposal to enable technical comparisons with other options to be made. In the Penetrator Option concept, waste would be loaded into carefully designed containers which would be launched at a suitable deep ocean site where they would fall freely through the water and would embed themselves completely within the seabed sediments. Radiological protection would be provided by a multi-barrier system including the vitrified waste form, the penetrator containment, the covering sediment and the ocean. Calculations and demonstration have shown that penetrators could easily achieve embedment depths in excess of 30m and preliminary radiological assessments indicate that 30m of intact sediment would be an effective barrier for radionuclide isolation. The study concludes that a 75mm thickness of low carbon steel appears to be sufficient to provide a containment life of 500 to 1000 years during which time the waste heat output would have decayed to an insignificant level. Disposal costs have been assessed. (author)

  4. Marine disposal of radioactive wastes - the debate

    International Nuclear Information System (INIS)

    Palmer, R.

    1985-01-01

    The paper presents arguments against the marine disposal of radioactive wastes. Results of American studies of deep-water dump-sites, and strontium levels in fish, are cited as providing evidence of the detrimental effects of marine dumping. The London Dumping Convention and the British dumping programme, are briefly discussed. (U.K.)

  5. Waste Disposal: The PRACLAY Programme

    International Nuclear Information System (INIS)

    De Bruyn, D.

    2000-01-01

    Principal achievements in 2000 with regard to the PRACLAY programme are presented. The PRACLAY project has been conceived: (1) to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation; (2) to improve knowledge on deep excavations in clay through modelling and monitoring; (3) to design, install and operate a complementary mock-up test (OPHELIE) on the surface. In 1999, efforts were focussed on the operation of the OPHELIE mock-up and the CLIPEX project to monitor the evolution of hydro-mechanical parameters of the Boom Clay Formation near the face of a gallery during excavation

  6. Political considerations of nuclear waste disposal policy

    International Nuclear Information System (INIS)

    Friedman, R.S.

    1985-01-01

    In order to create a program for the establishment of nuclear waste repositories several conditions must prevail. Perhaps foremost is the need to alter the public perception of risk. In short, there will need to be recognition that cigarette smoking and automobile driving, acts of volition, are potentially more dangerous to one's health than radiation leaks from nuclear power plants or waste repositories. Second, the process of repository site selection will have to include wide public participation in the process in order to obtain legitimacy. Without it Congress and the state legislatures are certain to override any proposal no matter how widely accepted by scientists and engineers. Finally, states and localities selected as sites for repositories will need to be compensated adequately in exchange for accepting the onus of serving as host. Political scientists have not been notably successful forecasters of policy outcomes. However, the evidence of American history does not provide encouragement that maximization of control at the state and local level and oversight by Congress of administrative actions, as meritorious as they might appear in terms of democracy, are harbingers of success for unpleasant policy decisions. States rights and Congressional intervention to block executive action were used to maintain second-class citizenship status for Black Americans until the judicial process was resorted to as a device to alter policy. Most likely, a major policy breakthrough will occur only after a mishap or tragedy, the final product involving either a waste disposal program in the context of continued use of nuclear power or one premised on its abandonment

  7. Actinide burning and waste disposal

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1990-01-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  8. Final disposal of spent fuels and high activity waste: status and trends in the world

    International Nuclear Information System (INIS)

    Herscovich de Pahissa, Marta

    2007-01-01

    Geological disposal of spent nuclear fuel and high level waste from reprocessing, properly conditioned, is described. This issue is a major challenge related to radioactive waste management. Several options are analyzed, such as application of separation and transmutation to high level waste before final disposal; need of multinational repositories; a phased approach to deep geological disposal and long term surface storage. Bearing in mind this information, a future article will report the state of art in the world. (author) [es

  9. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    Energy Technology Data Exchange (ETDEWEB)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  10. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    International Nuclear Information System (INIS)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-01-01

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used

  11. Progress report on disposal concept for TRU waste in Japan

    International Nuclear Information System (INIS)

    2000-03-01

    The object of this report is to contribute towards establishing a national TRU waste disposal program by integrating the results of research and development work carried out by JNC and the electricity utilities and summarizing the findings concerning safe methods for TRU waste disposal. The report consists of 5 chapters: the first describes the boundary conditions for the review of the TRU waste disposal concept (including geological conditions) and the basic concept adopted; the second describes the generation and characteristics of TRU waste and the third outlines the disposal technology; the fourth gives the key of the safety assessment and the fifth presents the conclusions of the report and lists issues for future consideration. The geological environment of Japan is simply classified into crystalline and sedimentary rock types (in terms of groundwater flow properties and rock strength) and a set of target conditions/properties for each rock type is then established. Based on this, a case which represents the basis for performance assessment (the reference case) will be defined. Alternatives to the reference case are studied to investigate the flexibility of the disposal concept. Under the conditions assumed in this study, the perturbing events considered showed no significant effects on the dose at the 100 meter evaluation point, owing to the relatively high efficiency of the natural barrier. However, the significant effect of these events on nuclide from the EBS shows that, in the case of a less efficient natural barrier, their effects could influence resulting dose. (S.Y.)

  12. Extension of sensitivity and uncertainty analysis for long term dose assessment of high level nuclear waste disposal sites to uncertainties in the human behaviour.

    Science.gov (United States)

    Albrecht, Achim; Miquel, Stéphan

    2010-01-01

    Biosphere dose conversion factors are computed for the French high-level geological waste disposal concept and to illustrate the combined probabilistic and deterministic approach. Both (135)Cs and (79)Se are used as examples. Probabilistic analyses of the system considering all parameters, as well as physical and societal parameters independently, allow quantification of their mutual impact on overall uncertainty. As physical parameter uncertainties decreased, for example with the availability of further experimental and field data, the societal uncertainties, which are less easily constrained, particularly for the long term, become more and more significant. One also has to distinguish uncertainties impacting the low dose portion of a distribution from those impacting the high dose range, the latter having logically a greater impact in an assessment situation. The use of cumulative probability curves allows us to quantify probability variations as a function of the dose estimate, with the ratio of the probability variation (slope of the curve) indicative of uncertainties of different radionuclides. In the case of (135)Cs with better constrained physical parameters, the uncertainty in human behaviour is more significant, even in the high dose range, where they increase the probability of higher doses. For both radionuclides, uncertainties impact more strongly in the intermediate than in the high dose range. In an assessment context, the focus will be on probabilities of higher dose values. The probabilistic approach can furthermore be used to construct critical groups based on a predefined probability level and to ensure that critical groups cover the expected range of uncertainty.

  13. Nuclear chemistry research for the safe disposal of nuclear waste

    International Nuclear Information System (INIS)

    Fanghaenel, Thomas

    2011-01-01

    The safe disposal of high-level nuclear waste and spent nuclear fuel is of key importance for the future sustainable development of nuclear energy. Concepts foresee the isolation of the nuclear waste in deep geological formations. The long-term radiotoxicity of nuclear waste is dominated by plutonium and the minor actinides. Hence it is essential for the performance assessment of a nuclear waste disposal to understand the chemical behaviour of actinides in a repository system. The aqueous chemistry and thermodynamics of actinides is rather complex in particular due to their very rich redox chemistry. Recent results of our detailed study of the Plutonium and Neptunium redox - and complexation behaviour are presented and discussed. (author)

  14. ICRP recommendations and the safe disposal of radioactive waste

    International Nuclear Information System (INIS)

    Webb, G.A.M.; Barraclough, I.M.

    1991-01-01

    There are some special difficulties in setting up and applying radiological protection principle to the disposal of solid radioactive wastes. These were recognized by the International Commission on Radiological Protection (ICRP). One difficulty is the uncertain or probabilistic nature of some of the events or processes that could occur and affect the integrity of a waste repository. The other feature of solid waste disposal that causes difficulty is the length of time period of concern. The practical problem is the difficulties in predicting future conditions and in making the useful estimate of long term radiation impact with sufficient confidence. In this paper, the proposals made by the ICRP to deal with the above difficulties are briefly reviewed. Some suggestions are made as to how the criteria might be clarified, and the necessary calculation made to match the criteria. The reappraisal of the criteria for assessing the radiological safety of waste repositories is needed. (K.I.)

  15. Ecological Risk Assessment of Jarosite Waste Disposal

    Directory of Open Access Journals (Sweden)

    Mihone Kerolli-Mustafa

    2015-07-01

    Full Text Available Jarosite waste, originating from zinc extraction industry, is considered hazardous due to the presence and the mobility of toxic metals that it contains. Its worldwide disposal in many tailing damps has become a major ecological concern. Three different methods, namely modified Synthetic Precipitation Leaching Procedure (SPLP, three-stage BCR sequential extraction procedure and Potential Ecological Risk Index (PERI Method were used to access the ecological risk of jarosite waste disposal in Mitrovica Industrial Park, Kosovo. The combination of these methods can effectively identify the comprehensive and single pollution levels of heavy metals such as Zn, Pb, Cd, Cu, Ni and As present in jarosite waste. Moreover, the great positive relevance between leaching behavior of heavy metals and F1 fraction was supported by principal component analysis (PCA. PERI results indicate that Cd showed a very high risk class to the environment. The ecological risk of heavy metals declines in the following order: Cd>Zn>Cu>Pb>Ni>As.

  16. Waste and Disposal: Research and Development

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P

    2001-04-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2000 in three topical areas are reported on: performance assessments, waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. An impact assessment was completed for the radium storage facility at Olen (Belgium). Geological data, pumping rates and various hydraulic parameters were collected in support of the development of a new version of the regional hydrogeological model for the Mol site. Research and Development on waste forms and waste packages included both in situ and laboratory tests. Main emphasis in 2000 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to laboratory experiments, several large-scale migration experiments were performed in the HADES Underground Research Laboratory. In 2000, the TRANCOM Project to study the influence of dissolved organic matter on radionuclide migration as well as the RESEAL project to demonstrate shaft sealing were continued.

  17. Waste and Disposal: Research and Development

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Van Iseghem, P.

    2001-01-01

    This contribution to the annual report describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 2000 in three topical areas are reported on: performance assessments, waste forms/packages and near- and far field studies. Performance assessment calculations were made for the geological disposal of high-level and long-lived waste in a clay formation. An impact assessment was completed for the radium storage facility at Olen (Belgium). Geological data, pumping rates and various hydraulic parameters were collected in support of the development of a new version of the regional hydrogeological model for the Mol site. Research and Development on waste forms and waste packages included both in situ and laboratory tests. Main emphasis in 2000 was on corrosion studies on vitrified high-level waste, the investigation of localised corrosion of candidate container and overpack materials and the study of the effect of the degradation of cellulose containing waste as well as of bituminized waste on the solubility and the sorption of Pu and Am in geological disposal conditions in clay. With regard to near- and far-field studies, percolation and diffusion experiments to determine migration parameters of key radionuclides were continued. The electromigration technique was used to study the migration of redox sensitive species like uranium. In addition to laboratory experiments, several large-scale migration experiments were performed in the HADES Underground Research Laboratory. In 2000, the TRANCOM Project to study the influence of dissolved organic matter on radionuclide migration as well as the RESEAL project to demonstrate shaft sealing were continued

  18. Active waste disposal monitoring at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-10-01

    This report describes an active waste disposal monitoring system proposed to be installed beneath the low-level radioactive disposal site at the Radioactive Waste Management Complex (RWMC), Idaho National Engineering Laboratory, Idaho. The monitoring instruments will be installed while the waste is being disposed. Instruments will be located adjacent to and immediately beneath the disposal area within the unsaturated zone to provide early warning of contaminant movement before contaminants reach the Snake River Plain Aquifer. This study determined the optimum sampling techniques using existing monitoring equipment. Monitoring devices were chosen that provide long-term data for moisture content, movement of gamma-emitting nuclides, and gas concentrations in the waste. The devices will allow leachate collection, pore-water collection, collection of gasses, and access for drilling through and beneath the waste at a later time. The optimum monitoring design includes gas sampling devices above, within, and below the waste. Samples will be collected for methane, tritium, carbon dioxide, oxygen, and volatile organic compounds. Access tubes will be utilized to define the redistribution of radionuclides within, above, and below the waste over time and to define moisture content changes within the waste using spectral and neutron logging, respectively. Tracers will be placed within the cover material and within waste containers to estimate transport times by conservative chemical tracers. Monitoring the vadose zone below, within, and adjacent to waste while it is being buried is a viable monitoring option. 12 refs., 16 figs., 1 tab

  19. 78 FR 1155 - Low-Level Waste Disposal

    Science.gov (United States)

    2013-01-08

    ... COMMISSION 10 CFR Part 61 RIN 3150-AI92 Low-Level Waste Disposal AGENCY: Nuclear Regulatory Commission... Register on December 7, 2012 entitled, ``Low-Level Waste Disposal'' that announced the availability of a... Low-Level Waste Disposal Requirement (10 CFR part 61)'' is corrected to read ``Regulatory Basis;'' and...

  20. 77 FR 72997 - Low-Level Waste Disposal

    Science.gov (United States)

    2012-12-07

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Part 61 RIN 3150-AI92 Low-Level Waste Disposal AGENCY: Nuclear... low-level radioactive waste (LLRW) disposal facilities to require new and revised site-specific... basis document, ``Regulatory Analysis for Proposed Revisions to Low- Level Waste Disposal Requirement...

  1. Residents' perception of solid waste disposal practices in Sokoto ...

    African Journals Online (AJOL)

    Proper waste disposal is a key to protecting public health. Thus poorly managed and disposed waste encourages breeding of insect vectors and exposed public to increase risk of infection. This study aimed at determining the residents' perception about waste disposal in Sokoto metropolis. This was a descriptive ...

  2. Waste-acceptance criteria for greater-confinement disposal

    International Nuclear Information System (INIS)

    Gilbert, T.L.; Meshkov, N.K.

    1986-01-01

    A methodology for establishing waste-acceptance criteria based on quantitative performance factors that characterize the confinement capabilities of a waste-disposal site and facility has been developed. The methodology starts from the basic objective of protecting public health and safety by providing assurance that dispsoal of the waste will not result in a radiation dose to any member of the general public, in either the short or long term, in excess of an established basic dose limit. The method is based on an explicit, straightforward, and quantitative relationship among individual risk, confinement capabilities, and waste characteristics. A key aspect of the methodology is the introduction of a confinement factor that characterizes the overall confinement capability of a particular facility and can be used for quantitative assessments of the performance of different disposal sites and facilities, as well as for establishing site-specific waste-acceptance criteria. Confinement factors are derived by means of site-specific pathway analyses. They make possible a direct and simple conversion of a basic dose limit into waste-acceptance criteria, specified as concentration limits on radionuclides in the waste streams and expressed in quantitative form as a function of parameters that characterize the site, facility design, waste containers, and waste form. Waste-acceptance criteria can be represented visually as activity/time plots for various waste streams. These plots show the concentrations of radionuclides in a waste stream as a function of time and permit a visual, quantitative assessment of long-term performance, relative risks from different radionuclides in the waste stream, and contributions from ingrowth. 13 refs

  3. Subseabed disposal of nuclear wastes.

    Science.gov (United States)

    Hollister, C D; Anderson, D R; Health, G R

    1981-09-18

    Fine-grained clay formations within stable (predictable) deep-sea regions away from lithospheric plate boundaries and productive surface waters have properties that might serve to permanently isolate radioactive waste. The most important characteristics of such clays are their vertical and lateral unifomity, low permeability, very high cation retention capacity, and potential for self-healing when disturbed. The most attractive abyssal clay formation (oxidized red ciay)covers nearly 30 percent of the sea floor and hence 20 percent of the earth's surface.

  4. Subseabed disposal of nuclear wastes

    International Nuclear Information System (INIS)

    Hollister, C.D.; Anderson, D.R.; Heath, G.R.

    1981-01-01

    Fine-grained clay formations within stable (predictable) deep-sea regions away from lithospheric plate boundaries and productive surface waters have properties that might serve to permanently isolate radioactive waste. The most important characteristics of such clays are their vertical and lateral uniformity, low permeability, very high cation retention capacity, and potential for self-healing when disturbed. The most attractive abyssal clay formation (oxidized red clay) covers nearly 30 percent of the sea floor and hence 20 percent of the earth's surface

  5. The mythology of waste disposal

    International Nuclear Information System (INIS)

    Beckhofer.

    1981-10-01

    This paper, while making a parallel between the mythology of the dangers of alcohol when the United States adopted a constitutional amendment prohibiting intoxicating liquor and public attitudes towards the dangers of nuclear waste burial, outlines the reason for these attitudes. Poor information of the public, from the start, on such dangers, the trauma of the atomic bomb and certain court decisions on nuclear activities which were in fact repealed by the Supreme Court. The paper also stresses the difficulty of dealing with this problem on a rational basis despite proven technical knowledge and successful experiments. (NEA) [fr

  6. Radioactive waste disposal into the ground

    International Nuclear Information System (INIS)

    1965-01-01

    Disposal into ground has sometimes proved to be an expedient and simple method. Where ground disposal has become an established practice, the sites have so far been limited to those remote from population centres; but in other respects, such as in climate and soil conditions, their characteristics vary widely. Experience gained at these sites has illustrated the variety of problems in radioactive waste migration and the resulting pollution and environmental radiation levels that may reasonably be anticipated at other sites, whether remote from population centres or otherwise.

  7. Levelized cost-risk reduction prioritization of waste disposal options

    International Nuclear Information System (INIS)

    Wilkinson, V.K.; Young, J.M.

    1992-01-01

    The prioritization of solid waste disposal options in terms of reduced risk to workers, the public, and the environment has recently generated considerable governmental and public interest. In this paper we address the development of a methodology to establish priorities for waste disposal options, such as incineration, landfills, long-term storage, waste minimization, etc. The study is one result of an overall project to develop methodologies for Probabilistic Risk Assessments (PRAs) of non-reactor nuclear facilities for the US Department of Energy. Option preferences are based on a levelized cost-risk reduction analysis. Option rankings are developed as functions of disposal option cost and timing, relative long- and short-term risks, and possible accident scenarios. We examine the annual costs and risks for each option over a large number of years. Risk, in this paper, is defined in terms of annual fatalities (both prompt and long-term) and environmental restoration costs that might result from either an accidental release or long-term exposure to both plant workers and the public near the site or facility. We use event timing to weigh both costs and risks; near-term costs and risks are discounted less than future expenditures and fatalities. This technique levels the timing of cash flows and benefits by converting future costs and benefits to present value costs and benefits. We give an example Levelized Cost-Benefit Analysis of incinerator location options to demonstrate the methodology and required data

  8. Municipal solid waste disposal in Portugal

    International Nuclear Information System (INIS)

    Magrinho, Alexandre; Didelet, Filipe; Semiao, Viriato

    2006-01-01

    In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day

  9. Disposal of radioactive and other hazardous wastes

    International Nuclear Information System (INIS)

    Boge, R.; Bergman, C.; Bergvall, S.; Gyllander, C.

    1989-01-01

    The purpose of the workshop was discuss legal, scientific and practical aspects of disposal of low- and intermediate-level radioactive waste and other types of hazardous waste. During the workshop the non-radioactive wastes discussed were mainly wastes from energy production, but also industrial, chemical and household wastes. The workshop gave the participants the opportunity to exchange information on policies, national strategies and other important matters. A number of invited papers were presented and the participants brought background papers, describing the national situation, that were used in the working groups. One of the main aims of the workshop was to discuss if the same basic philosophy as that used in radiation protection could be used in the assessment of disposal of non-radioactive waste, as well as to come up with identifications of areas for future work and to propose fields for research and international cooperation. The main text of the report consists of a summary of the discussions and the conclusions reached by the workshop

  10. Interim report on reference biospheres for radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dorp, F. van [NAGRA (Switzerland)] [and others

    1994-10-01

    Primary criteria for repository safety are commonly expressed in terms of risk or dose, and a biosphere model is required to evaluate the corresponding assessment endpoints. Even when other indicators are used to express the safety goals, a biosphere model is still needed in order to justify those indicators. In safety or performance assessments of a repository, the uncertainties in space and time for the different components of the repository system have to be considered. For the biosphere component, prediction of future human habits, in particular, is extremely uncertain. This is especially important in the assessment of deep geological disposal, which involves very long timescales, particularly for wastes containing very long lived radionuclides. Thus, the results of biosphere modelling should not be seen as predictions, but as illustrations of the consequences that may occur, should the postulated release occur today or under other conditions implied by the underlying biosphere model assumptions. Differences in biosphere modelling approaches arise because of differences in regulations, the nature of the wastes to be disposed of, disposal site characteristics, disposal concepts and purposes of the assessment. Differences in treatment of uncertainties can also arise. For example, if doses or risks are anticipated to be far below regulatory limits, assessments may be based upon simplified and, necessarily, conservative biosphere models. At present biosphere models used to assess radioactive waste disposal show significant differences in the features, events and processes (FEPs) included or excluded. In general, the reasons for these differences have not been well documented or explained. Developments in radioecology have implications for biosphere modelling for radioactive waste disposal. In particular, after the Chernobyl accident, radioecological research has been significantly increased. Results of this research are already having and will continue to have a

  11. Conditioning CANDU reactor wastes for disposal

    International Nuclear Information System (INIS)

    Beamer, N.V.; Bourns, W.T.; Buckley, L.P.; Speranzini, R.A.

    1981-12-01

    A Waste Treatment Centre (WTC) is being constructed at the Chalk River Nuclear Laboratories to develop and demonstrate processes for converting reactor wastes to a form suitable for disposal. The WTC contains a starved air incinerator for reducing the volume of combustible solid wastes, a reverse osmosis section for reducing the volume of liquid wastes and an immobilization section for incorporating the conditioned wastes in bitumen. The incinerator is commissioned on inactive waste: approximately 16.5 Mg of waste packaged in polyethylene bags has been incinerated in 17 burns. Average weight and volume reductions of 8.4:1 and 32:1, respectively, have been achieved. Construction of the reverse osmosis section of WTC is complete and inactive commissioning will begin in 1982 January. The reverse osmosis section was designed to process 30,000 m 3 /a of dilute radioactive waste. The incinerator ash and concentrated aqueous waste will be immobiblized in bitumen using a horizontal mixer and wiped-film evaporator. Results obtained during inactive commissioning of the incinerator are described along with recent results of laboratory programs directed at demonstrating the reverse osmosis and bituminization processes

  12. Assessment of the long-term risks of inadvertent human intrusion into a proposed Canadian nuclear fuel waste disposal vault in deep plutonic rock -revision 1

    International Nuclear Information System (INIS)

    Wuschke, D.M.

    1996-04-01

    Canada has conducted an extensive research program on a concept of safe disposal of nuclear fuel wastes deep In plutonic rock of the Canadian Shield. An essential goal of this program has been to develop and demonstrate a methodology to evaluate the performance of the facility against safety criteria established by Canada's regulatory agency, the Atomic Energy Control Board. These criteria are expressed in terms of risk, where risk is defined as the sum, over all significant scenarios, of the product of the probability of the scenario, the magnitude of the resultant dose, and the probability of a health effect per unit dose. This report describes the methodology developed to assess the long-term risk from inadvertent human intrusion into such a facility, and the results of its application to the proposed facility. Four intrusion scenarios were analysed, all initiated by a drilling operation. These scenarios are exposure of a member of the drilling crew, of a technologist conducting a core examination, of a construction worker and of a resident. The consequence of each scenario was estimated using standard computer codes for environmental pathways analysis and radiation dosimetry. For comparison with the risk criterion, an estimate of the probability of each scenario is also required. An event-tree methodology was used to estimate these probabilities. The estimated risks from these intrusion scenarios are several orders of magnitude below the established risk criterion. The event-tree methodology has the advantages of explicity displaying the assumptions made, of permitting easy testing of the sensitivity of the risk estimates to assumptions, and of combining technical and sociological information. (author). 53 refs., 8 tabs., 2 figs

  13. Post-disposal safety assessment of toxic and radioactive waste: waste types, disposal practices, disposal criteria, assessment methods and post-disposal impacts

    International Nuclear Information System (INIS)

    Torres, C.; Simon, I.; Little, R.H.; Charles, D.; Grogan, H.A.; Smith, G.M.; Sumerling, T.J.; Watkins, B.M.

    1993-01-01

    The need for safety assessments of waste disposal stems not only from the implementation of regulations requiring the assessment of environmental effects, but also from the more general need to justify decisions on protection requirements. As waste-disposal methods have become more technologically based, through the application of more highly engineered design concepts and through more rigorous and specific limitations on the types and quantities of the waste disposed, it follows that assessment procedures also must become more sophisticated. It is the overall aim of this study to improve the predictive modelling capacity for post-disposal safety assessments of land-based disposal facilities through the development and testing of a comprehensive, yet practicable, assessment framework. This report records all the work which has been undertaken during Phase 1 of the study. Waste types, disposal practices, disposal criteria and assessment methods for both toxic and radioactive waste are reviewed with the purpose of identifying those features relevant to assessment methodology development. Difference and similarities in waste types, disposal practices, criteria and assessment methods between countries, and between toxic and radioactive wastes are highlighted and discussed. Finally, an approach to identify post-disposal impacts, how they arise and their effects on humans and the environment is described

  14. Possible use of EPDM in radioactive waste disposal: Long term low dose rate and short term high dose rate irradiation in aquatic and atmospheric environment

    Science.gov (United States)

    Hacıoğlu, Fırat; Özdemir, Tonguç; Çavdar, Seda; Usanmaz, Ali

    2013-02-01

    In this study, changes in the properties of ethylene propylene diene terpolymer (EPDM) irradiated with different dose rates in ambient atmosphere and aqueous environment were investigated. Irradiations were carried out both with low dose and high dose rate irradiation sources. EPDM samples which were differentiated from each other by peroxide type and 5-ethylidene 2-norbornene (ENB) contents were used. Long term low dose rate irradiations were carried out for the duration of up to 2.5 years (total dose of 1178 kGy) in two different irradiation environments. Dose rates (both high and low), irradiation environments (in aquatic and open to atmosphere), and peroxide types (aliphatic or aromatic) were the parameters studied. Characterization of irradiated EPDM samples were performed by hardness, compression, tensile, dynamic mechanical analysis (DMA), TGA-FTIR, ATR-FTIR, XRD and SEM tests. It was observed that the irradiation in water environment led to a lower degree of degradation when compared to that of irradiation open to atmosphere for the same irradiation dose. In addition, irradiation environment, peroxide type and dose rate had effects on the extent of change in the properties of EPDM. It was observed that EPDM is relatively radiation resistant and a candidate polymer for usage in radioactive waste management.

  15. Waste disposal in Europe - Looking ahead

    International Nuclear Information System (INIS)

    Verkerk, B.

    1985-01-01

    In this introductory paper a short outline is given of the Commission's programme on management and disposal of radioactive waste, followed by a discussion of the programme structure. This leads to the very important aspect of evaluation of results obtained and the communication of the achievements to the outer world. The important role of the media in this respect is stressed. Looking ahead, an important part of the Third Five years programme, the development of demonstration facilities, is projected against the problem of acceptability. Thinking about the consequences of entering the demonstration stage with respect to future research it turns out to be a broad field of work opens up, when the achievements reached in the radioactive waste area, could be transferred to problems of other toxic wastes and fusion wastes

  16. Geochemical behavior of disposed radioactive waste

    International Nuclear Information System (INIS)

    Barney, G.S.; Navratil, J.D.; Schulz, W.W.

    1984-01-01

    The papers in this book are organized to cover the chemical aspects that are important to understanding the behavior of disposed radioactive wastes. These aspects include radionuclide sorption and desorption, solubility of radionuclide compounds, chemical species of radionuclides in natural waters, hydrothermal geochemical reactions, measurements of radionuclide migration, solid state chemistry of wastes, and waste-form leaching behavior. The information in each of the papers is necessary to predict the transport of radionuclides from wastes via natural waters and thus to predict the safety of the disposed waste. Radionuclide transport in natural waters is strongly dependent on sorption, desorption, dissolution, and precipitation processes. The first two papers discuss laboratory investigations of these processes. Descriptions of sorption and desorption behavior of important radionuclides under a wide range of environmental conditions are presented in the first section. Among the sorbents studied are basalt interbed solids, granites, clays, sediments, hydrous oxides, and pure minerals. Effects of redox conditions, groundwater composition and pH on sorption reactions are described

  17. Special waste disposal in Austria - cost benefit analysis

    International Nuclear Information System (INIS)

    Kuntscher, H.

    1983-01-01

    The present situation of special waste disposal in Austria is summarized for radioactive and nonradioactive wastes. A cost benefit analysis for regulary collection, transport and disposal of industrial wastes, especially chemical wastes is given and the cost burden for the industry is calculated. (A.N.)

  18. Recommended strategy for the disposal of remote-handled transuranic waste

    International Nuclear Information System (INIS)

    Bild, R.W.

    1994-07-01

    The current baseline plan for RH TRU (remote-handled transuranic) waste disposal is to package the waste in special canisters for emplacement in the walls of the waste disposal rooms at the Waste Isolation Pilot Plant (WIPP). The RH waste must be emplaced before the disposal rooms are filled by contact-handled waste. Issues which must be resolved for this plan to be successful include: (1) construction of RH waste preparation and packaging facilities at large-quantity sites; (2) finding methods to get small-quantity site RH waste packaged and certified for disposal; (3) developing transportation systems and characterization facilities for RH TRU waste; (4) meeting lag storage needs; and (5) gaining public acceptance for the RH TRU waste program. Failure to resolve these issues in time to permit disposal according to the WIPP baseline plan will force either modification to the plan, or disposal or long-term storage of RH TRU waste at non-WIPP sites. The recommended strategy is to recognize, and take the needed actions to resolve, the open issues preventing disposal of RH TRU waste at WIPP on schedule. It is also recommended that the baseline plan be upgraded by adopting enhancements such as revised canister emplacement strategies and a more flexible waste transport system

  19. The chemistry of nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Wiles, D.R.

    2002-01-01

    About one-fifth of the world's supply of energy is derived from nuclear fission. While this important source of power avoids the environmental and resource problems of most other fuels, and although nuclear accident statistics are much less alarming, no other peacetime technology has evoked such public disquiet and impassioned feeling. Central to dealing with these fears is the management and disposal of radioactive waste. An expert Canadian panel in 1977 recommended permanent disposal of wastes in deep geological formations, providing a basis for subsequent policies and research. In 1988, the Federal Environmental Assessment Review Office (FEARO) appointed a panel to assess the proposed disposal concepts and to recommend government policy. The panel in turn appointed a Scientific Review Group to examine the underlying science. Behind all these issues lay one central question: How well is the chemistry understood? This became the principal concern of Professor Donald Wiles, the senior nuclear chemist of the Scientific Review Group. In this book, Dr. Wiles carefully describes the nature of radioactivity and of nuclear power and discusses in detail the management of radioactive waste by the multi-barrier system, but also takes an unusual approach to assessing the risks. Using knowledge of the chemical properties of the various radionuclides in spent fuel, this book follows each of the important radionuclides as it travels through the many barriers placed in its path. It turns out that only two radionuclides are able to reach the biosphere, and they arrive at the earth's surface only after many thousands of years. A careful analysis of the critical points of the disposal plan emphasizes site rejection criteria and other stages at which particular care must be taken, demonstrating how dangers can be anticipated and putting to rest the fear of nuclear fuel waste and its geological burial

  20. Low-level waste disposal technology

    International Nuclear Information System (INIS)

    Levin, G.B.

    1983-01-01

    A design has been proposed for a low-level radioactive waste disposal site that should provide the desired isolation under all foreseeable conditions. Although slightly more costly than current practices; this design provides additional reliability. This reliability is desirable to contribute to the closure of the fuel cycle and to demonstrate the responsible management of the uranium cycle by reestablishing confidence in the system

  1. Waste Water Disposal Design And Management V

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book deals with waste water disposal, design and management, which includes biofilm process, double living things treatment and microscopic organism's immobilized processing. It gives descriptions of biofilm process like construction, definition and characteristic of construction of biofilm process, system construction of biofilm process, principle of biofilm process, application of biofilm process, the basic treatment of double living thing and characteristic of immobilized processing of microscopic organism.

  2. Commercial radioactive waste disposal: marriage or divorce

    International Nuclear Information System (INIS)

    Corbett, J.S.

    1977-01-01

    It is shown that the state (South Carolina) is doing a good job in regulating the South Carolina disposal facility of Chemo-Nuclear Inc., and that there is no need for the NRC to reassert Federal control. The efforts in developing a low-level site in New Mexico are described. The NRC Task Force report on Federal/state regulation of commercial low-level radioactive waste burial grounds is discussed

  3. Social impacts of radioactive waste disposal

    International Nuclear Information System (INIS)

    1985-11-01

    In this report an approach is developed for the assessment of socio-economic impacts from radioactive waste disposal. The approach provides recommendations on procedures to be used in identification and prediction of impacts. Two decision-aiding methods are also included. The first provides for the identification of key issues and the illustration of the trade-offs involved in the decision. Multi-attribute scoring and weighting techniques are then proposed for the illustration of impacts using quantitative measures. (author)

  4. Regulating the disposal of cigarette butts as toxic hazardous waste

    OpenAIRE

    Barnes, Richard L

    2011-01-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste...

  5. Monitoring technologies for ocean disposal of radioactive waste

    Science.gov (United States)

    Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.

    1982-01-01

    The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.

  6. Regulatory, administrative and financial problems raised by radioactive waste disposal

    International Nuclear Information System (INIS)

    Reyners, P.

    1980-03-01

    This paper analyses the salient aspects of the non-technical problems involved in radioactive waste disposal: the division of operational, regulatory and administrative responsibilities, the usefulness of providing a form of institutional control of the waste disposed of, and the question of the length of time for such mechanisms, both of which are closely linked to the preceding point. A description follows of the R and D financing mechanisms in the field and of the surveillance systems to be set up. Finally, mention is made of the legal and practical difficulties encountered in the application of the third party liability and insurance regime to long-term waste management and the international dimension of all these questions. (NEA) [fr

  7. Method of ground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Harashina, Heihachi.

    1991-01-01

    Rock bases are drilled to form a disposal hole, an overhanging hole and a burying hole each as a shaft. An appropriate number of canisters prepared by vitrification of high level radioactive wastes are charged in the disposal hole with a gap to the inner wall of the hole. Shock absorbers each made of bentonite are filled between each of the canisters and between the canister and the inner wall of the disposal hole, and the canisters are entirely covered with the layer of the shock absorbers. Further, plucking materials having water sealing property such as cement mortar are filled thereover. With such a constitution, in a case if water should intrude into the overhung portion, since the disposal hole is covered with the large flange portion in addition to the water sealing performance of the plucking, the shock absorbers and the canisters undergo no undesirable effects. Further, in a case if water should intrude to the disposal hole, the shock absorber layers are swollen by water absorption, to suppress the intrusion of water. (T.M.)

  8. Mixed waste disposal facilities at the Savannah River Site

    International Nuclear Information System (INIS)

    Wells, M.N.; Bailey, L.L.

    1991-01-01

    The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission

  9. Comparison of land and ocean disposal alternatives for bulk wastes containing naturally occurring radionuclides

    International Nuclear Information System (INIS)

    Stull, E.A.; Merry-Libby, P.

    1985-01-01

    Land and ocean disposal alternatives for a large volume of wastes and residues containing naturally occurring radionuclides are assessed. These wastes and residues are currently stored at the US Department of Energy's Niagara Falls Storage Site near Lewiston, New York. Both land and ocean disposal are considered for the 180,000 m 3 of slightly contaminated wastes (average 36 pCi/g radium-226), whereas only land disposal is considered for the 11,000 m 3 of residues (average 67,000 pCi/g radium-226). The land and ocean disposal alternatives share similar engineering considerations, occupational and transportation risks, and radiological risks. Impacts from placement of the wastes in the ocean would be negligible. However, the land-based activities required to transport the wastes to the ocean would account for most of the potential impacts associated with the ocean disposal alternatives. Thus, the land and ocean disposal alternatives are comparable in terms of potential environmental impacts

  10. Application of quality assurance to radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1996-08-01

    Nuclear power generation and the use of radioactive materials in medicine, research and industry produce radioactive wastes. In order to assure that wastes are managed safely, the implementation of appropriate management control is necessary. This IAEA publication deals with quality assurance principles for safe disposal. This report may assist managers responsible for safe disposal of radioactive waste in achieving quality in their work; and to regulatory bodies to provide guidance for their licensee waste disposal programmes. 17 refs

  11. Technical responsibilities in low-level waste disposal

    International Nuclear Information System (INIS)

    Murray, R.L.; Walker, C.K.

    1989-01-01

    North Carolina will be the host state for a low-level radioactive waste (LLRW) disposal facility serving the Southeast Compact for 20 yr beginning in 1993. Primary responsibility for the project rests with the North Carolina Low-Level Radioactive Waste Management Authority, a citizen board. The North Carolina project embodies a unique combination of factors that places the authority in a position to exercise technical leadership in the LLRW disposal field. First, the Southeast Compact is the largest in the United States in terms of area, population, and waste generation. second, it is in a humid rather than an arid region. Third, the citizens of the state are intensely interested in preserving life style, environment, and attractiveness of the region to tourists and are especially sensitive to the presence of waste facilities of any kind. Finally, disposal rules set by the Radiation Protection Commission and enforced by the Radiation Protection Section are stricter than the U.S. Nuclear Regulatory Commission's 10CFR61. These four factors support the authority's belief that development of the facility cannot be based solely on engineering and economics, but that social factors, including perceptions of human risk, concerns for the environment, and opinions about the desirability of hosting a facility, should be integral to the project. This philosophy guides the project's many technical aspects, including site selection, site characterization, technology selection and facility design, performance assessment modeling, and waste reduction policies. Each aspect presents its own unique problems

  12. Low level radioactive waste disposal in Kozloduy NPP in Bulgaria

    International Nuclear Information System (INIS)

    Stanchev, V.

    2001-01-01

    Kozloduy NPP is the biggest power plant in the Republic of Bulgaria. It is in operation since 1974 and for the past 25 years it has generated over 263 billion kWh electric power. The NPP share in the total electric production in 1998 was about 50%. It has six units in operation - four WWER 440 B-230 and two WWER 1000 B-320. In the nuclear reactor operation the generation of radioactive waste (RAW) is an inevitable process. The waste must be conditioned, stored and disposed of in a safe manner. There are no national radioactive waste disposal facilities, for waste generated by an NPP, in Bulgaria to the moment. This situation necessitates the storage of operational RAW to be carried out on site for a long period of time (30 to 50 years). Following the principle for protection of human health and environment now and in the future, Kozloduy NPP adopted the concept for conditioning the RAW to a stable solid form and placing the waste in a package which should keep its features for a sufficiently long term so that the package can be safely transported to the disposal site. (author)

  13. Is Yucca Mountain a long-term solution for disposing of US spent nuclear fuel and high-level radioactive waste?

    Science.gov (United States)

    Thorne, M C

    2012-06-01

    On 26 January 2012, the Blue Ribbon Commission on America's Nuclear Future released a report addressing, amongst other matters, options for the managing and disposal of high-level waste and spent fuel. The Blue Ribbon Commission was not chartered as a siting commission. Accordingly, it did not evaluate Yucca Mountain or any other location as a potential site for the storage or disposal of spent nuclear fuel and high-level waste. Nevertheless, if the Commission's recommendations are followed, it is clear that any future proposals to develop a repository at Yucca Mountain would require an extended period of consultation with local communities, tribes and the State of Nevada. Furthermore, there would be a need to develop generally applicable regulations for disposal of spent fuel and high-level radioactive waste, so that the Yucca Mountain site could be properly compared with alternative sites that would be expected to be identified in the initial phase of the site-selection process. Based on what is now known of the conditions existing at Yucca Mountain and the large number of safety, environmental and legal issues that have been raised in relation to the DOE Licence Application, it is suggested that it would be imprudent to include Yucca Mountain in a list of candidate sites for future evaluation in a consent-based process for site selection. Even if there were a desire at the local, tribal and state levels to act as hosts for such a repository, there would be enormous difficulties in attempting to develop an adequate post-closure safety case for such a facility, and in showing why this unsaturated environment should be preferred over other geological contexts that exist in the USA and that are more akin to those being studied and developed in other countries.

  14. Low-level radioactive waste disposal facility closure

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J. (EG and G Idaho, Inc., Idaho Falls, ID (USA))

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs.

  15. Low-level radioactive waste disposal facility closure

    International Nuclear Information System (INIS)

    White, G.J.; Ferns, T.W.; Otis, M.D.; Marts, S.T.; DeHaan, M.S.; Schwaller, R.G.; White, G.J.

    1990-11-01

    Part I of this report describes and evaluates potential impacts associated with changes in environmental conditions on a low-level radioactive waste disposal site over a long period of time. Ecological processes are discussed and baselines are established consistent with their potential for causing a significant impact to low-level radioactive waste facility. A variety of factors that might disrupt or act on long-term predictions are evaluated including biological, chemical, and physical phenomena of both natural and anthropogenic origin. These factors are then applied to six existing, yet very different, low-level radioactive waste sites. A summary and recommendations for future site characterization and monitoring activities is given for application to potential and existing sites. Part II of this report contains guidance on the design and implementation of a performance monitoring program for low-level radioactive waste disposal facilities. A monitoring programs is described that will assess whether engineered barriers surrounding the waste are effectively isolating the waste and will continue to isolate the waste by remaining structurally stable. Monitoring techniques and instruments are discussed relative to their ability to measure (a) parameters directly related to water movement though engineered barriers, (b) parameters directly related to the structural stability of engineered barriers, and (c) parameters that characterize external or internal conditions that may cause physical changes leading to enhanced water movement or compromises in stability. Data interpretation leading to decisions concerning facility closure is discussed. 120 refs., 12 figs., 17 tabs

  16. Application and research of special waste plasma disposal technology

    International Nuclear Information System (INIS)

    Lan Wei

    2007-12-01

    The basic concept of plasma and the principle of waste hot plasma disposal technology are simply introduced. Several sides of application and research of solid waste plasma disposal technology are sumed up. Compared to the common technology, the advantages of waste hot plasma disposal technology manifest further. It becomes one of the most prospective and the most attended high tech disposal technology in particular kind of waste disposal field. The article also simply introduces some experiment results in Southwest Institute of Physics and some work on the side of importation, absorption, digestion, development of foreign plasma torch technology and researching new power sources for plasma torch. (authors)

  17. Biosphere models for safety assessment of radioactive waste disposal

    International Nuclear Information System (INIS)

    Proehl, G.; Olyslaegers, G.; Zeevaert, T.; Kanyar, B.; Bergstroem, U.; Hallberg, B.; Mobbs, S.; Chen, Q.; Kowe, R.

    2004-01-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  18. Biosphere models for safety assesment of radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Proehl, G.; Olyslaegers, G.; Zeevaert, T. [SCK/CEN, Mol (Belgium); Kanyar, B. [University of Veszprem (Hungary). Dept. of Radiochemistry; Pinedo, P.; Simon, I. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain); Bergstroem, U.; Hallberg, B. [Studsvik Ecosafe, Nykoeping (Sweden); Mobbs, S.; Chen, Q.; Kowe, R. [NRPB, Chilton, Didcot (United Kingdom)

    2004-07-01

    The aim of the BioMoSA project has been to contribute in the confidence building of biosphere models, for application in performance assessments of radioactive waste disposal. The detailed objectives of this project are: development and test of practical biosphere models for application in long-term safety studies of radioactive waste disposal to different European locations, identification of features, events and processes that need to be modelled on a site-specific rather than on a generic base, comparison of the results and quantification of the variability of site-specific models developed according to the reference biosphere methodology, development of a generic biosphere tool for application in long term safety studies, comparison of results from site-specific models to those from generic one, Identification of possibilities and limitations for the application of the generic biosphere model. (orig.)

  19. Disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Glasby, G.P.

    1977-01-01

    Although controversy surrounding the possible introduction of nuclear power into New Zealand has raised many points including radiation hazards, reactor safety, capital costs, sources of uranium and earthquake risks on the one hand versus energy conservation and alternative sources of energy on the other, one problem remains paramount and is of global significance - the storage and dumping of the high-level radioactive wastes of the reactor core. The generation of abundant supplies of energy now in return for the storage of these long-lived highly radioactive wastes has been dubbed the so-called Faustian bargain. This article discusses the growth of the nuclear industry and its implications to high-level waste disposal particularly in the deep-sea bed. (auth.)

  20. Generalized economic model for evaluating disposal costs at a low-level waste disposal facility

    International Nuclear Information System (INIS)

    Baird, R.D.; Rogers, V.C.

    1985-01-01

    An economic model is developed which can be used to evaluate cash flows associated with the development, operations, closure, and long-term maintenance of a proposed Low-Level Radioactive Waste disposal facility and to determine the unit disposal charges and unit surcharges which might result. The model includes the effects of nominal interest rate (rate of return on investment, or cost of capital), inflation rate, waste volume growth rate, site capacity, duration of various phases of the facility history, and the cash flows associated with each phase. The model uses standard discounted cash flow techniques on an after-tax basis to determine that unit disposal charge which is necessary to cover all costs and expenses and to generate an adequate rate of return on investment. It separately considers cash flows associated with post-operational activities to determine the required unit surcharge. The model is applied to three reference facilities to determine the respective unit disposal charges and unit surcharges, with various values of parameters. The sensitivity of the model results are evaluated for the unit disposal charge

  1. Moisture monitoring in waste disposal surface barriers.

    Science.gov (United States)

    Brandelik, Alex; Huebner, Christof

    2003-05-01

    Surface barriers for waste disposal sites should prevent waste water and gas emission into the environment. It is necessary to assess their proper operation by monitoring the water regime of the containment. A set of three new water content measuring devices has been developed that provide an economical solution for monitoring the moisture distribution and water dynamic. They will give an early warning service if the barrier system is at risk of being damaged. The cryo soil moisture sensor 'LUMBRICUS' is an in situ self-calibrating absolute water content measuring device. It measures moisture profiles at spot locations down to 2.5 m depth with an accuracy of better than 1.5% and a depth resolution of 0.03 m. The sensor inherently measures density changes and initial cracks of shrinking materials like clay minerals. The large area soil moisture sensor 'TAUPE' is a moisture sensitive electric cable network to be buried in the mineral barrier material of the cover. A report will be given with results and experiences on an exemplary installation at the Waste Disposal Facility Karlsruhe-West. 800 m2 of the barrier construction have been continuously monitored since December 1997. Volumetric water content differences of 1.5% have been detected and localised within 4 m. This device is already installed in two other waste disposal sites. A modified 'TAUPE' was constructed for the control of tunnels and river dams as well. Thin sheet moisture sensor 'FORMI' is specifically designed for moisture measurements in liners like bentonite, textile and plastic. Due to its flexibility it follows the curvature of the liner. The sensor measures independently from neighbouring materials and can be matched to a wide range of different thickness of the material. The sensors are patented in several countries.

  2. Financing responsibility for nuclear waste disposal

    International Nuclear Information System (INIS)

    2004-01-01

    The basic premise for financing arrangements for the disposal of nuclear waste is that the nuclear industry - not the taxpayer - must bear the costs. Present regulations, however, are imperfect in this regard. The Inquiry therefore proposes extending the financial liability of the nuclear industry and introducing new fee-setting arrangements. It is proposed that a new law be enacted to regulate these changes. The present financing system is regulated in the 'Financing Act' 1. Under this Act, the licensed owner and operator of a nuclear reactor is required to pay an annual fee and provide guarantees to the State. Four companies are reactor owners. These companies are wholly or partly owned by other companies according to various arrangements. Each reactor owner is responsible for its own dismantling costs and for its share of allocated common costs of disposal and related measures. If there is insufficient money in the funds, the nuclear industry will still be liable. The basic premise of the Inquiry is that the financing system should be designed so as to minimise the risk that the State (and taxpayers) will need to step in and pay. Although the nuclear industry is intended to have full liability for payment, in practice it does not. This is because the formal full liability for payment in the nuclear industry rests with the reactor companies and not where the industry's long-term ability to pay is to be found. Essentially, the present arrangements mean that: - Companies that cannot be expected to have any long-term ability to pay have unlimited liability, and - Companies that can be expected to have an ability to pay have very limited liability. The Inquiry therefore proposes that ability to pay and liability are brought into line by a formal assumption by owning companies of the sort of liability for payment that now rests solely with the reactor companies. This means that the owning company in each group that is best suited to bear the liability for payment

  3. Public acceptability of risk of radioactive waste disposal

    International Nuclear Information System (INIS)

    Millerd, W.H.

    1977-01-01

    A ''public interest'' viewpoint is presented on the disposal of radioactive wastes. Criteria for the development of disposal methods are needed. The current program to develop disposal sites and methods has become an experiment. The advantages and disadvantages of radwaste disposal as an ongoing experiment are discussed briefly

  4. The role of performance assessment in radioactive waste disposal

    International Nuclear Information System (INIS)

    Stenhouse, M.J.

    1998-01-01

    Performance assessment has many applications in the field of radioactive waste management, none more important than demonstrating the suitability of a particular repository system for waste disposal. The role of performance assessment in radioactive waste disposal is discussed with reference to assessments performed in civilian waste management programmes. The process is, however, relevant, and may be applied directly to the disposal of defence-related wastes. When used in an open and transparent manner, performance assessment is a powerful methodology not only for convincing the authorities of the safety of a disposal concept, but also for gaining the wider acceptance of the general public for repository siting. 26 refs

  5. Disposal and reclamation of southwestern coal and uranium wastes

    International Nuclear Information System (INIS)

    Wewerka, E.M.

    1979-01-01

    The types of solid wastes and effluents produced by the southwestern coal and uranium mining and milling industries are considered, and the current methods for the disposal and reclamation of these materials discussed. The major means of disposing of the solid wastes from both industries is by land fill or in some instances ponding. Sludges or aqueous wastes are normally discharged into settling and evaporative ponds. Basic reclamation measures for nearly all coal and uranium waste disposal sites include solids stabilization, compacting, grading, soil preparation, and revegetation. Impermeable liners and caps are beginning to be applied to disposal sites for some of the more harmful coal and uranium waste materials

  6. The diversity of waste disposal planning in Switzerland

    International Nuclear Information System (INIS)

    McCombie, C.

    1989-01-01

    In this overview of radioactive waste disposal planning in Switzerland, emphasis is placed upon describing the diversity of the planning and explaining the strategic thinking which has resulted in this diversity. Although Switzerland is a small country and has only a modest nuclear programme in absolute terms, planning and preparation for final disposal projects has been progressing for the last 10 or more years on a very broad front. The reasons for this breadth of approach are partly technical and partly determined by political and public pressures. Following a summary of the requirements for disposal and of the relevant boundary conditions, the resulting concepts are described and the controversial issue of repository siting is discussed. The current status of projects for disposal of low and intermediate-level wastes (L/ILW) and of high-level wastes (HLW) is noted; we conclude with some remarks on the advantages and disadvantages from the side of the organization responsible for implementation of repository projects of proceeding on such a broad technical front. (aughor). 2 figs.; 1 tab

  7. Geological Disposal of Radioactive Waste: Technological Implications for Retrievability

    International Nuclear Information System (INIS)

    2009-01-01

    , paying special attention to the buffer, backfill and/or closure of these openings. In a number of countries, it is becoming increasingly important to include provisions for waste retrieval, and retrievability is a legal and/or regulatory requirement in certain cases. Accordingly, the potential benefits and detriments that retrievability may provide are discussed, possible retrievability strategies are outlined and a summary of some of the non-technical considerations and implications is provided, which also includes discussions on IAEA safeguards and safety implications, the cost factors involved and the management of repository information and expertise. The requirement to be able to retrieve waste from a geological repository has technological implications in terms of the design of the disposal system and the associated repository infrastructure. Certain common repository design features (e.g. the use of long lived waste containers) are inherently beneficial in terms of the ability to retrieve waste. However, certain provisions are required to facilitate waste retrieval and the effort involved in any retrieval operations will depend on several factors, which have been outlined by reference to example repository design concepts. In the context of retrievability, the environmental conditions within the repository have potential implications in terms of the timescales of waste container integrity and the operational safety of personnel. During a potentially long period of repository implementation and operation, some critical decisions need to be made about how, when and whether various implementation steps should be taken. This may include decisions as to whether the emplaced waste has to be retrieved. Monitoring information can assist the repository operator (and society) in taking these decisions. More detailed information supporting the analysis (programme, waste inventory, repository design and retrieval concept) is provided in the country annexes. The main

  8. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-12-01

    The feasibility of safe ocean disposal options for heat-generating radioactive waste relies on the existence of suitable disposal sites. This review considers the status of the development of site selection criteria and the results of the study area investigations carried out under various national and international research programmes. In particular, the usefulness of the results obtained is related to the data needed for environmental and emplacement modelling. Preliminary investigations have identified fifteen potential deep ocean study areas in the North Atlantic. From these Great Meteor East (GME), Southern Nares Abyssal Plan (SNAP) and Kings Trough Flank (KTF) were selected for further investigation. The review includes appraisals of regional geology, geophysical studies, sedimentology, geotechnical studies, geochemical studies and oceanography. (author)

  9. Radiotoxicity of nuclear waste and disposal possibilities in the Netherlands

    International Nuclear Information System (INIS)

    Weber, J.

    1980-01-01

    A description is given of the evaluation of the long-term risks of the disposal of nuclear waste in salt-domes. It is generic for the salt-domes in the N-E of the Netherlands. In the far future the isolation of the waste from the biosphere provided by the salt can be violated by diapyrism and by dissolution. Although improbable a diapyrism of 2.5 mm/year cannot be excluded. As this pathway gives the higher risks for future generations it was taken as the basis for the evaluation. (Auth.)

  10. Risk management for outsourcing biomedical waste disposal – Using the failure mode and effects analysis

    International Nuclear Information System (INIS)

    Liao, Ching-Jong; Ho, Chao Chung

    2014-01-01

    Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal

  11. Risk management for outsourcing biomedical waste disposal – Using the failure mode and effects analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Ching-Jong; Ho, Chao Chung, E-mail: ho919@pchome.com.tw

    2014-07-15

    Highlights: • This study is based on a real case in hospital in Taiwan. • We use Failure Mode and Effects Analysis (FMEA) as the evaluation method. • We successfully identify the evaluation factors of bio-medical waste disposal risk. - Abstract: Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included “availability of freezing devices”, “availability of containers for sharp items”, “disposal frequency”, “disposal volume”, “disposal method”, “vehicles meeting the regulations”, and “declaration of three lists”. This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal.

  12. Medical waste disposal at a hospital in Mpumalanga Province ...

    African Journals Online (AJOL)

    Background. Healthcare professionals (HCPs) produce various types of waste in the course of rendering healthcare services. Each classification of waste must be disposed of according to the prescribed guidelines. Incorrect disposal of waste may pose a danger to employees, patients and the environment. HCPs must have ...

  13. A study for the safety evaluation of geological disposal of TRU waste and influence on disposal site design by change of amount of TRU waste (Joint research)

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Kondo, Hitoshi; Takahashi, Kuniaki; Funabashi, Hideaki; Kawatsuma, Shinji; Kamei, Gento; Hirano, Fumio; Mihara, Morihiro; Ueda, Hiroyoshi; Ohi, Takao; Hyodo, Hideaki

    2011-02-01

    In the safety evaluation of the geological disposal of the TRU waste, it is extremely important to share the information with the Research and development organization (JAEA: that is also the waste generator) by the waste disposal entrepreneur (NUMO). In 2009, NUMO and JAEA set up a technical commission to investigate the reasonable TRU waste disposal following a cooperation agreement between these two organizations. In this report, the calculation result of radionuclide transport for a TRU waste geological disposal system was described, by using the Tiger code and the GoldSim code at identical terms. Tiger code is developed to calculate a more realistic performance assessment by JAEA. On the other hand, GoldSim code is the general simulation software that is used for the computation modeling of NUMO TRU disposal site. Comparing the calculation result, a big difference was not seen. Therefore, the reliability of both codes was able to be confirmed. Moreover, the influence on the disposal site design (Capacity: 19,000m 3 ) was examined when 10% of the amount of TRU waste increased. As a result, it was confirmed that the influence of the site design was very little based on the concept of the Second Progress Report on Research and Development for TRU Waste Disposal in Japan. (author)

  14. Conflicts concerning sites for waste treatment and waste disposal plants

    International Nuclear Information System (INIS)

    Werbeck, N.

    1993-01-01

    The erection of waste treatment and waste disposal flants increasingly meets with the disapproval of local residents. This is due to three factors: Firstly, the erection and operation of waste treatment plants is assumed to necessarily entail harmful effects and risks, which may be true or may not. Secondly, these disadvantages are in part considered to be non-compensable. Thirdly, waste treatment plants have a large catchment area, which means that more people enjoy their benefits than have to suffer their disadvantages. If residents in the vicinity of such plants are not compensated for damage sustained or harmed in ways that cannot be compensated for it becomes a rational stance for them, while not objecting to waste treatment and waste disposal plants in principle to object to their being in their own neighbourhood. The book comprehensively describes the subject area from an economic angle. The causes are analysed in detail and an action strategy is pointed, out, which can help to reduce acceptance problems. The individual chapters deal with emissions, risk potentials, optimization calculus considering individual firms or persons and groups of two or more firms or persons, private-economy approaches for the solving of site selection conflicts, collective decision-making. (orig./HSCH) [de

  15. Acceptability criteria for final underground disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sousselier, Y.

    1984-01-01

    Specialists now generally agree that the underground disposal of suitably immobilized radioactive waste offers a means of attaining the basic objective of ensuring the immediate and long-term protection of man and the environment throughout the requisite period of time and in all foreseeable circumstances. Criteria of a more general as well as a more specific nature are practical means through which this basic protection objective can be reached. These criteria, which need not necessarily be quantified, enable the authorities to gauge the acceptability of a given project and provide those responsible for waste management with a basis for making decisions. In short, these principles constitute the framework of a suitably safety-oriented waste management policy. The more general criteria correspond to the protection objectives established by the national authorities on the basis of principles and recommendations formulated by international organizations, in particular the ICRP and the IAEA. They apply to any underground disposal system considered as a whole. The more specific criteria provide a means of evaluating the degree to which the various components of the disposal system meet the general criteria. They must also take account of the interaction between these components. As the ultimate aim is the overall safety of the disposal system, individual components can be adjusted to compensate for the performance of others with respect to the criteria. This is the approach adopted by the international bodies and national authorities in developing acceptability criteria for the final underground radioactive disposal systems to be used during the operational and post-operational phases respectively. The main criteria are reviewed and an attempt is made to assess the importance of the specific criteria according to the different types of disposal systems. (author)

  16. Disposal of radioactive waste. Some ethical aspects

    International Nuclear Information System (INIS)

    Streffer, Christian

    2014-01-01

    The threat posed to humans and nature by radioactive material is a result of the ionizing radiation released during the radioactive decay. The present use of radioactivity in medicine research and technologies produces steadily radioactive waste. It is therefore necessary to safely store this waste, particularly high level waste from nuclear facilities. The decisive factors determining the necessary duration of isolation or confinement are the physical half-life times ranging with some radionuclides up to many million years. It has therefore been accepted worldwide that the radioactive material needs to be confined isolated from the biosphere, the habitat of humans and all other organisms, for very long time periods. Although it is generally accepted that repositories for the waste are necessary, strong public emotions have been built up against the strategies to erect such installations. Apparently transparent information and public participation has been insufficient or even lacking. These problems have led to endeavours to achieve public acceptance and to consider ethical acceptability. Some aspects of such discussions and possibilities will be taken up in this contribution. This article is based on the work of an interdisciplinary group. The results have been published in 'Radioactive Waste - Technical and Normative Aspects of its Disposal' by C. Streffer, C.F. Gethmann, G. Kamp et al. in 'Ethics of Sciences and Technology Assessment', Volume 38, Springer-Verlag Berlin Heidelberg 2011.

  17. Disposal of radioactive waste. Some ethical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Streffer, Christian

    2014-07-01

    The threat posed to humans and nature by radioactive material is a result of the ionizing radiation released during the radioactive decay. The present use of radioactivity in medicine research and technologies produces steadily radioactive waste. It is therefore necessary to safely store this waste, particularly high level waste from nuclear facilities. The decisive factors determining the necessary duration of isolation or confinement are the physical half-life times ranging with some radionuclides up to many million years. It has therefore been accepted worldwide that the radioactive material needs to be confined isolated from the biosphere, the habitat of humans and all other organisms, for very long time periods. Although it is generally accepted that repositories for the waste are necessary, strong public emotions have been built up against the strategies to erect such installations. Apparently transparent information and public participation has been insufficient or even lacking. These problems have led to endeavours to achieve public acceptance and to consider ethical acceptability. Some aspects of such discussions and possibilities will be taken up in this contribution. This article is based on the work of an interdisciplinary group. The results have been published in 'Radioactive Waste - Technical and Normative Aspects of its Disposal' by C. Streffer, C.F. Gethmann, G. Kamp et al. in 'Ethics of Sciences and Technology Assessment', Volume 38, Springer-Verlag Berlin Heidelberg 2011.

  18. Waste classification - history, standards, and requirements for disposal

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1989-01-01

    This document contains an outline of a presentation on the historical development in US of different classes (categories) or radioactive waste, on laws and regulations in US regarding classification of radioactive wastes; and requirements for disposal of different waste classes; and on the application of laws and regulations for hazardous chemical wastes to classification and disposal of naturally occurring and accelerator-produced radioactive materials; and mixed radioactive and hazardous chemical wastes

  19. Waste classification and methods applied to specific disposal sites

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1979-01-01

    An adequate definition of the classes of radioactive wastes is necessary to regulating the disposal of radioactive wastes. A classification system is proposed in which wastes are classified according to characteristics relating to their disposal. Several specific sites are analyzed with the methodology in order to gain insights into the classification of radioactive wastes. Also presented is the analysis of ocean dumping as it applies to waste classification. 5 refs

  20. Assessment of the long-term risk of a meteorite impact on a hypothetical Canadian nuclear fuel waste disposal vault deep in plutonic rock

    International Nuclear Information System (INIS)

    Wuschke, D.M.; Whitaker, S.H.; Goodwin, B.W.; Rasmussen, L.R.

    1995-06-01

    This report describes an assessment of the long-term radiological risk to an individual of the critical group that would result from a meteorite impact on a hypothetical reference disposal vault for used fuel, located 500 m below the Earth's surface. The purpose of the assessment was to determine if this radiological risk could exceed or approach the AECB risk criterion. (author). 47 refs., 5 tabs., 6 figs

  1. Curriculum and instruction in nuclear waste disposal

    International Nuclear Information System (INIS)

    Robinson, M.; Lugaski, T.; Pankratius, B.

    1991-01-01

    Curriculum and instruction in nuclear waste disposal is part of the larger problem of curriculum and instruction in science. At a time when science and technological literacy is crucial to the nation's economic future fewer students are electing to take needed courses in science that might promote such literacy. The problem is directly related to what science teachers teach and how they teach it. Science content that is more relevant and interesting to students must be a part of the curriculum. Science instruction must allow students to be actively involved in investigating or playing the game of science

  2. Geological aspects of the nuclear waste disposal problem

    International Nuclear Information System (INIS)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories

  3. Radioactive waste disposal - ethical and environmental considerations - A Canadian perspective

    International Nuclear Information System (INIS)

    Roots, F.

    1994-01-01

    This work deals with ethical and environmental considerations of radioactive waste disposal in Canada. It begins with the canadian attitudes toward nature and environment. Then are given the canadian institutions which reflect an environmental ethic, the development of a canadian radioactive waste management policy, the establishment of formal assessment and review process for a nuclear fuel waste disposal facility, some studies of the ethical and risk dimensions of nuclear waste decisions, the canadian societal response to issues of radioactive wastes, the analysis of risks associated with fuel waste disposal, the influence of other energy related environmental assessments and some common ground and possible accommodation between the different views. (O.L.). 50 refs

  4. Waste Home Appliance Disposal and Low Temperature Crushing Technology

    Science.gov (United States)

    Hayashi, Masakatsu; Takamura, Yoshiyuki

    From the viewpoint of environmental preservation, considerable interest is being advanced by the recycling of industrial goods such as home appliances. In terms of waste home appliances, there is an urgent need for an improvement in recycling rates for waste, because four items (refrigerators, airconditioners, washing machines and televisions) were designated as primary specified goods under those laws that encourage the use of recycled materials. Under this situation, new merits are being discovered in low temperature crushing technology as an appropriate disposal technology for recycling activities. Here, crushing and separating technology for metal composites, and crushing and sorting technology for plastics will be introduced as examples of low temperature crushing technology developed for waste home appliances that achieves recycling rates of over 90% through recycle system for waste home appliances.

  5. Possibilities of composting disposable diapers with municipal solid wastes.

    Science.gov (United States)

    Colón, Joan; Ruggieri, Luz; Sánchez, Antoni; González, Aina; Puig, Ignasi

    2011-03-01

    The possibilities for the management of disposable diapers in municipal solid waste have been studied. An in-depth revision of literature about generation, composition and current treatment options for disposable diapers showed that the situation for these wastes is not clearly defined in developed recycling societies. As a promising technology, composting of diapers with source-separated organic fraction of municipal solid waste (OFMSW) was studied at full scale to understand the process performance and the characteristics of the compost obtained when compared with that of composting OFMSW without diapers. The experiments demonstrated that the composting process presented similar trends in terms of evolution of routine parameters (temperature, oxygen content, moisture and organic matter content) and biological activity (measured as respiration index). In relation to the quality of both composts, it can be concluded that both materials were identical in terms of stability, maturity and phytotoxicity and showed no presence of pathogenic micro-organisms. However, compost coming from OFMSW with a 3% of disposable diapers presented a slightly higher level of zinc, which can prevent the use of large amounts of diapers mixed with OFMSW.

  6. Legal Regulation of the Disposal of Packaging and Package Waste

    OpenAIRE

    Havlíčková, Dagmar

    2007-01-01

    9. Resumé Legal regulation of the disposal of packaging and package waste Key words: Waste Byproduct of each human activity, according to the Waste act any movable thing which person intends to dispose of or has a duty to dispose of and which is a defined in Schedule Packaging Any product regardless of used material that is intended for the containment, protection, manipulation, supply or presentation Directive Type of secondary European legislation, which contains the binding objectives for ...

  7. Performance assessment for underground radioactive waste disposal systems

    International Nuclear Information System (INIS)

    1985-01-01

    A waste disposal system comprises a number of subsystems and components. The performance of most systems can be demonstrated only indirectly because of the long period that would be required to test them. This report gives special attention to performance assessment of subsystems within the total waste disposal system, and is an extension of an IAEA report on Safety Assessment for the Underground Disposal of Radioactive Wastes

  8. The disposal of radioactive solvent waste

    International Nuclear Information System (INIS)

    Dean, B.; Baker, W.T.

    1976-01-01

    As the use of radioisotope techniques increases, laboratories are faced with the problem of disposing of considerable quantities of organic solvent and aqueous liquid wastes. Incineration or collection by a waste contractor both raise problems. Since most of the radiochemicals are preferentially water soluble, an apparatus for washing the radiochemicals out into water and discharging into the normal drainage system in a high diluted form is described. Despite the disadvantages (low efficiency, high water usuage, loss of solvent in presence of surface active agents, precipitation of phosphors from dioxan based liquids) it is felt that the method has some merit if a suitably improved apparatus can be designed at reasonable cost. (U.K.)

  9. Plasma separation process: Disposal of PSP radioactive wastes

    International Nuclear Information System (INIS)

    1989-07-01

    Radioactive wastes, in the form of natural uranium contaminated scrap hardware and residual materials from decontamination operations, were generated in the PSP facilities in buildings R1 and 106. Based on evaluation of the characteristics of these wastes and the applicable regulations, the various options for the processing and disposal of PSP radioactive wastes were investigated and recommended procedures were developed. The essential features of waste processing included: (1) the solidification of all liquid wastes prior to shipment; (2) cutting of scrap hardware to fit 55-gallon drums and use of inerting agents (diatomaceous earth) to eliminate pyrophoric hazards; and (3) compaction of soft wastes. All PSP radioactive wastes were shipped to the Hanford Site for disposal. As part of the waste disposal process, a detailed plan was formulated for handling and tracking of PSP radioactive wastes, from the point of generation through shipping. In addition, a waste minimization program was implemented to reduce the waste volume or quantity. Included in this document are discussions of the applicable regulations, the types of PSP wastes, the selection of the preferred waste disposal approach and disposal site, the analysis and classification of PSP wastes, the processing and ultimate disposition of PSP wastes, the handling and tracking of PSP wastes, and the implementation of the PSP waste minimization program. 9 refs., 1 fig., 8 tabs

  10. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action`` to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program.

  11. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    International Nuclear Information System (INIS)

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action'' to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ''musts'' and ''wants.'' Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program

  12. Deep borehole disposal of high-level radioactive waste.

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  13. KS 20322007 Near-Surface Disposal Radioactive Waste - Code Of Practice

    International Nuclear Information System (INIS)

    Omondi, C.

    2017-01-01

    To provide a basis for the near-surface disposal of solid radioactive waste to ensures that there is no unacceptable risk to humans, other biota or the environment. Near-Surface Disposal is the disposal of radioactive waste in below or above the natural ground surface, within app. 30 m. The code deals with management aspects associated with radioactive waste disposal only, and is not intended to cover issues related to the production and use of radionuclides. The objective of waste disposal is to isolate radioactive waste in order to ensure that there is no unacceptable health risk to humans and no long-term unacceptable effect to the environment. Radiation protection annual effective dose for exposure of members of the public should not exceed 1 mSv/year and occupational exposure of 20 mSv/year

  14. Preliminary performance assessment strategy for single-shell tank waste disposal

    International Nuclear Information System (INIS)

    Sonnichsen, J.C. Jr.

    1991-10-01

    The disposal of the waste stored in single-shell tanks at the Hanford Site is recognized as a major environmental concern. A comprehensive program has been initiated to evaluate the various alternatives available for disposal of these wastes. Theses wastes will be disposed of in a manner consistent with applicable laws and regulations. Long-term waste isolation is one measure of performance that will be used for purposes of selection. The performance of each disposal alternative will be simulated using numerical models. Contained herein is a discussion of the strategy that has and continues to evolve to establish a general analytical framework to evaluate this performance. This general framework will be used to construct individual models of each waste disposal alternative selected for purposes of evaluation. 30 refs., 3 figs

  15. System for disposing of radioactive waste

    International Nuclear Information System (INIS)

    Gablin, K.A.; Hansen, L.J.

    1977-01-01

    A system is described for disposing of radioactive waste material from nuclear reactors by solidifying the liquid components to produce an encapsulated mass adapted for disposal by burial. The method contemplates mixing of radioactive waste materials, with or without contained solids, with a setting agent capable of solidifying the waste liquids into a free standing hardened mass, placing the resulting liquid mixture in a container with a proportionate amount of a curing agent to effect solidification under controlled conditions, and thereafter burying the container and contained solidified mixture. The setting agent is a water-extendable polymer consisting of a suspension of partially polymerized particles of urea formaldehyde in water, and the curing agent is sodium bisulfate. Methods are disclosed for dewatering slurry-like mixtures of liquid and particulate radioactive waste materials, such as spent ion exchange resin beads, and for effecting desired distribution of non-liquid radioactive materials in the central area of the container prior to solidification, so that the surrounding mass of lower specific radioactivity acts as a partial shield against higher radioactivity of the non-liquid radioactive materials. The methods also provide for addition of non-radioactive filler materials to dilute the mixture and lower the overall radioactivity of the hardened mixture to desired Lowest Specific Activity counts. An inhibiting agent is added to the liquid mixture to adjust the solidification time, and provision is made for adding additional amounts of setting agent and curing agent to take up any free water and further encapsulate the hardened material within the container

  16. Constraints to waste utilization and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Steadman, E.N.; Sondreal, E.A.; Hassett, D.J.; Eylands, K.E.; Dockter, B.A. [Univ. of North Dakota, Grand Forks, ND (United States)

    1995-12-01

    The value of coal combustion by-products for various applications is well established by research and commercial practice worldwide. As engineering construction materials, these products can add value and enhance strength and durability while simultaneously reducing cost and providing the environmental benefit of reduced solid waste disposal. In agricultural applications, gypsum-rich products can provide plant nutrients and improve the tilth of depleted soils over large areas of the country. In waste stabilization, the cementitious and pozzolanic properties of these products can immobilize hazardous nuclear, organic, and metal wastes for safe and effective environmental disposal. Although the value of coal combustion by-products for various applications is well established, the full utilization of coal combustion by-products has not been realized in most countries. The reasons for the under utilization of these materials include attitudes that make people reluctant to use waste materials, lack of engineering standards for high-volume uses beyond eminent replacement, and uncertainty about the environmental safety of coal ash utilization. More research and education are needed to increase the utilization of these materials. Standardization of technical specifications should be pursued through established standards organizations. Adoption of uniform specifications by government agencies and user trade associations should be encouraged. Specifications should address real-world application properties, such as air entrainment in concrete, rather than empirical parameters (e.g., loss on ignition). The extensive environmental assessment data already demonstrating the environmental safety of coal ash by-products in many applications should be more widely used, and data should be developed to include new applications.

  17. Container for processing and disposing radioactive wastes and industrial wastes

    International Nuclear Information System (INIS)

    Araki, Kunio; Kasahara, Yuko; Kasai, Noboru; Sudo, Giichi; Ishizaki, Kanjiro.

    1978-01-01

    Purpose: To improve the performance of containers for radioactive wastes for ocean disposal and on-land disposal such as impact strength, chemical resistance, fire resistance, corrosion resistance, water impermeability and the like. Constitution: Steel fiber-reinforced concrete previously molded in a shape of a container is impregnated with polymerizable impregnating agent selected from the group consisting of a polymerizable monomer, liquid mixture of a polymerizable monomer and an oligomer, a polymer solution, a copolymer solution and the liquid mixture thereof. Then, the polymerizable impregnating agent is polymerized to solidify in the concrete by way of heat-polymerization or radiation-induced polymerization to form a waste container. The container thus obtained can be improved with the impact resistance and wear resistance and further improved with salt water resistance, acid resistance, corrosion resistance and solidity by the impregnation of the polymer, as well as can effectively be prevented from leaching out of radioactive substances. (Furukawa, Y.)

  18. Principles and guidelines for radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    1988-06-01

    Four basic principles relevant to radioactive waste disposal identified. These principles cover the justification of the activity giving rise to the waste, the consideration of risk to present and future generations, the minimization of the need for intervention in the future, and the financial obligations of the licensee. The use of risk limits as opposed to dose limits associated with disposal is discussed, as are the concepts of critical group, de minimis, and ALARA, in the context of a waste disposal facility. Guidance is given on the selection of the preferred waste disposal concept from among several alternatives, and for judging proposed design improvements to the chosen concept

  19. Household waste disposal in Mekelle city, Northern Ethiopia

    International Nuclear Information System (INIS)

    Tadesse, Tewodros; Ruijs, Arjan; Hagos, Fitsum

    2008-01-01

    In many cities of developing countries, such as Mekelle (Ethiopia), waste management is poor and solid wastes are dumped along roadsides and into open areas, endangering health and attracting vermin. The effects of demographic factors, economic and social status, waste and environmental attributes on household solid waste disposal are investigated using data from household survey. Household level data are then analyzed using multinomial logit estimation to determine the factors that affect household waste disposal decision making. Results show that demographic features such as age, education and household size have an insignificant impact over the choice of alternative waste disposal means, whereas the supply of waste facilities significantly affects waste disposal choice. Inadequate supply of waste containers and longer distance to these containers increase the probability of waste dumping in open areas and roadsides relative to the use of communal containers. Higher household income decreases the probability of using open areas and roadsides as waste destinations relative to communal containers. Measures to make the process of waste disposal less costly and ensuring well functioning institutional waste management would improve proper waste disposal

  20. Household waste disposal in Mekelle city, Northern Ethiopia.

    Science.gov (United States)

    Tadesse, Tewodros; Ruijs, Arjan; Hagos, Fitsum

    2008-01-01

    In many cities of developing countries, such as Mekelle (Ethiopia), waste management is poor and solid wastes are dumped along roadsides and into open areas, endangering health and attracting vermin. The effects of demographic factors, economic and social status, waste and environmental attributes on household solid waste disposal are investigated using data from household survey. Household level data are then analyzed using multinomial logit estimation to determine the factors that affect household waste disposal decision making. Results show that demographic features such as age, education and household size have an insignificant impact over the choice of alternative waste disposal means, whereas the supply of waste facilities significantly affects waste disposal choice. Inadequate supply of waste containers and longer distance to these containers increase the probability of waste dumping in open areas and roadsides relative to the use of communal containers. Higher household income decreases the probability of using open areas and roadsides as waste destinations relative to communal containers. Measures to make the process of waste disposal less costly and ensuring well functioning institutional waste management would improve proper waste disposal.

  1. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-02-01

    A study has been made of the requirements and design features for containers to isolate vitrified heat generating radioactive waste from the environment for a period of 500 to 1000 years. The requirements for handling, storing and transporting containers have been identified following a study of disposal operations, and the pressures and temperatures which may possibly be experienced in clay, granite and salt formations have been estimated. A range of possible container designs have been proposed to satisfy the requirements of each of the disposal environments. Alternative design concepts in corrosion resistant or corrosion allowance material have been suggested. Potentially suitable container shell materials have been selected following a review of corrosion studies and although metals have not been specified in detail, titanium alloys and low carbon steels are thought to be appropriate for corrosion resistant and corrosion allowance designs respectively. Performance requirements for container filler materials have been identified and candidate materials assessed. A preliminary container stress analysis has shown the importance of thermal modelling and that if lead is used as a filler it dominates the stress response of the container. Possible methods of manufacturing disposal containers have been assessed and found to be generally feasible. (author)

  2. Evaluating pharmaceutical waste disposal in pediatric units.

    Science.gov (United States)

    Almeida, Maria Angélica Randoli de; Wilson, Ana Maria Miranda Martins; Peterlini, Maria Angélica Sorgini

    2016-01-01

    To verify the disposal of pharmaceutical waste performed in pediatric units. A descriptive and observational study conducted in a university hospital. The convenience sample consisted of pharmaceuticals discarded during the study period. Handling and disposal during preparation and administration were observed. Data collection took place at pre-established times and was performed using a pre-validated instrument. 356 drugs disposals were identified (35.1% in the clinic, 31.8% in the intensive care unit, 23.8% in the surgical unit and 9.3% in the infectious diseases unit). The most discarded pharmacological classes were: 22.7% antimicrobials, 14.8% electrolytes, 14.6% analgesics/pain killers, 9.5% diuretics and 6.7% antiulcer agents. The most used means for disposal were: sharps' disposable box with a yellow bag (30.8%), sink drain (28.9%), sharps' box with orange bag (14.3%), and infectious waste/bin with a white bag (10.1%). No disposal was identified after drug administration. A discussion of measures that can contribute to reducing (healthcare) waste volume with the intention of engaging reflective team performance and proper disposal is necessary. Verificar o descarte dos resíduos de medicamentos realizado em unidades pediátricas. Estudo descritivo e observacional, realizado em um hospital universitário. A amostra de conveniência foi constituída pelos medicamentos descartados durante o período de estudo. Observaram-se a manipulação e o descarte durante o preparo e a administração. A coleta dos dados ocorreu em horários preestabelecidos e realizada por meio de instrumento pré-validado. Identificaram-se 356 descartes de medicamentos (35,1% na clínica, 31,8% na unidade de cuidados intensivos, 23,8% na cirúrgica e 9,3% na infectologia). As classes farmacológicas mais descartadas foram: 22,7% antimicrobianos, 14,8% eletrólitos, 14,6% analgésicos, 9,5% diuréticos e 6,7% antiulcerosos. Vias mais utilizadas: caixa descartável para perfurocortante com

  3. Disposal of radioactive wastes from Czechoslovak nuclear power plants

    International Nuclear Information System (INIS)

    Neumann, L.

    In gaseous radioactive waste disposal, aerosol particles are filtered and gaseous wastes are discharged in the environment. The filters and filter materials used are stored on solid radioactive waste storage sites in the individual power plants. Liquid radioactive wastes are concentrated and the concentrates are stored. Distillates and low-level radioactive waste water are discharged into the hydrosphere. Solid radioactive wastes are stored without treatment in power plant bunkers. Bituminization and cementation of liquid radioactive wastes are discussed. (H.S.)

  4. Spanish program on disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Lopez Perez, B.; Ramos Salvador, L.; Martines Martinez, A.

    1977-01-01

    The Spanish Energetic Program assumes an installed nuclear electrical power of 23.000 MWe by the year 1985. Therefore, Spain is making an effort in the managment of radioactive wastes, that can be synthesized in the following points: 1.- Make-up and review of the regulation on the management of radioactive wastes. 2.- Development of the processes and equipment for the treatment of solid, liquid and gaseous wastes from the CNEN ''Juan Vigon'', as well as those from the Nuclear Center of Soria. Solidification studies of RAA wastes arisen from the reprocessing. 3.- Evaluation of radioactive waste treatment systems of the new installed nuclear power plants. Assistance to the nuclear and radioactive facilities operators. 4.- Increase the storage capacity of the pilot repository for solid radioactive wastes of categories 1 and 2 IAEA, located in Sierra Albarrana. Studies of adequate geological formation for storage of solid wastes of IAEA categories 3 and 4. 5.- Studies about long term surface storage systems for solidified RAA wastes arisen from the reprocessing [es

  5. The long-term radiological safety of a surface disposal facility for low-level waste in Belgium - An international Peer review of key aspects of ONDRAF/NIRAS' safety report of November 2011 in preparation for the license

    International Nuclear Information System (INIS)

    2012-01-01

    An important activity of the OECD Nuclear Energy Agency (NEA) in the field of radioactive waste management is the organisation of independent, international peer reviews of national studies and projects. This report provides an international peer review of the long-term safety strategy and assessment being developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, ONDRAF/NIRAS, as part of the licence application for the construction and operation of a surface disposal facility for short-lived, low- and intermediate-level radioactive waste in the municipality of Dessel, Belgium. The review was carried out by an International Review Team comprised of seven international specialists, all of whom were free of conflict of interest and chosen to bring complementary expertise to the review. To be accessible to both specialist and non-specialist readers, the review findings are provided at several levels of detail

  6. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  7. Status and advice of the low and intermediate level radioactive waste disposal sites in China

    International Nuclear Information System (INIS)

    Teng Keyan; Lu Caixia

    2012-01-01

    With the rapid development of nuclear power industry in China, as well as the decommissioning of the nuclear facilities, and the process of radioactive waste management, a mount of the low and intermediate level radioactive solid wastes will increase rapidly. How to dispose the low and intermediate level radioactive solid wastes, that not only related to Chinese nuclear energy and nuclear technology with sustainable development, but also related to the public health, environment safety. According to Chinese « long-term development plan of nuclear power (2005- 2020) », when construct the nuclear power, should simultaneous consider the sites that dispose the low and intermediate level radioactive waste, In order to adapt to the needs that dispose the increasing low and intermediate level radioactive waste with development of nuclear power. In the future, all countries are facing the enormous challenge of nuclear waste disposal. (authors)

  8. Disposal of high level nuclear wastes: thermodynamic equilibrium and environment ethics

    International Nuclear Information System (INIS)

    Rana, M.A.

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes. (authors)

  9. Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns

    Energy Technology Data Exchange (ETDEWEB)

    Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

    1999-01-21

    In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean &apos

  10. Options for the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Mitchell, N.T.; Laughton, A.S.; Webb, G.A.M.

    1977-01-01

    The management of radioactive waste within the fuel cycle, especially the high-level wastes from reprocessing of nuclear fuel, is currently a matter of particular concern. In the short term (meaning a timescale of tens of years) management by engineered storage is considered to provide a satisfactory solution. Beyond this, however, the two main alternative options which are considered in the paper are: (a) disposal by burial into geologic formations on land; and (b) disposal by emplacement into or onto the seabed. Status of our present knowledge on the land and seabed disposal options is reviewed together with an assessment of the extent to which their reliability and safety can be judged on presently available information. Further information is needed on the environmental behaviour of radioactivity in the form of solidified waste in both situations in order to provide a more complete, scientific assessment. Work done so far has clarified the areas where further research is most needed - for instance modelling of the environmental transfer processes associated with the seabed option. This is discussed together with an indication of the research programmes which are now being pursued

  11. High integrity container evaluation for solid waste disposal burial containers

    International Nuclear Information System (INIS)

    Josephson, W.S.

    1996-01-01

    In order to provide radioactive waste disposal practices with the greatest measure of public protection, Solid Waste Disposal (SWD) adopted the Nuclear Regulatory Commission (NRC) requirement to stabilize high specific activity radioactive waste prior to disposal. Under NRC guidelines, stability may be provided by several mechanisms, one of which is by placing the waste in a high integrity container (HIC). During the implementation process, SWD found that commercially-available HICs could not accommodate the varied nature of weapons complex waste, and in response developed a number of disposal containers to function as HICs. This document summarizes the evaluation of various containers that can be used for the disposal of Category 3 waste in the Low Level Burial Grounds. These containers include the VECTRA reinforced concrete HIC, reinforced concrete culvert, and the reinforced concrete vault. This evaluation provides justification for the use of these containers and identifies the conditions for use of each

  12. The development of criteria for radioactive waste disposal

    International Nuclear Information System (INIS)

    Wagstaff, K.P.

    1985-02-01

    Radiation protection criteria are needed in Canada for judging the acceptability of radioactive waste disposal options for which there are potential long-term radiological impacts. This paper discusses the difficulties encountered in applying the ICRP system of dose limitation to the long term and the alternative approaches to criteria being developed and adopted by various other international and national bodies. Finally, the present situation in Canada is reviewed and conclusions are drawn on the general direction in which national criteria are being formulated and expressed

  13. Appliance of geochemical engineering in radioactive waste disposal

    International Nuclear Information System (INIS)

    Li Shuang; Zhang Chengjiang; Ni Shijun; Li Kuanliang

    2008-01-01

    The basic foundation of applying geochemical engineering to control environment, common engineering models of disposal radioactive waste and the functions of the engineering barriers are introduced in this paper. The authors take the geochemical engineering barrier materiel research of a radioactive waste repository as an example to explain the appliance of geochemical engineering in the disposal of radioactive waste. And the results show that it can enhance the security of the nuclear waste repository if we use geochemical engineering barrier. (authors)

  14. Glasses and ceramics for immobilisation of radioactive wastes for disposal

    International Nuclear Information System (INIS)

    Johnson, K.D.B.; Marples, J.A.C.

    1979-05-01

    The U.K. Research Programme on Radioactive Waste Management includes the development of processes for the conversion of high level liquid reprocessing wastes from thermal and fast reactors to borosilicate glasses. The properties of these glasses and their behaviour under storage and disposal conditions have been examined. Methods for immobilising activity from other wastes by conversion to glass or ceramic forms is described. The U.K. philosophy of final solutions to waste management and disposal is presented. (author)

  15. Scenarios of the TWRS low-level waste disposal program

    International Nuclear Information System (INIS)

    1994-10-01

    As a result of past Department of Energy (DOE) weapons material production operations, Hanford now stores nuclear waste from processing facilities in underground tanks on the 200 Area plateau. An agreement between the DOE, the Environmental Protection Agency (EPA), and the Washington state Department of Ecology (the Tri-Party Agreement, or TPA) establishes an enforceable schedule and a technical framework for recovering, processing, solidifying, and disposing of the Hanford tank wastes. The present plan includes retrieving the tank waste, pretreating the waste to separate into low level and high level streams, and converting both streams to a glass waste form. The low level glass will represent by far the largest volume and lowest quantity of radioactivity (i.e., large volume of waste chemicals) of waste requiring disposal. The low level glass waste will be retrievably stored in sub-surface disposal vaults for several decades. If the low level disposal system proves to be acceptable, the disposal site will be closed with the low level waste in place. If, however, at some time the disposal system is found to be unacceptable, then the waste can be retrieved and dealt with in some other manner. WHC is planning to emplace the waste so that it is retrievable for up to 50 years after completion of the tank waste processing. Acceptability of disposal of the TWRS low level waste at Hanford depends on technical, cultural, and political considerations. The Performance Assessment is a major part of determining whether the proposed disposal action is technically defensible. A Performance Assessment estimates the possible future impact to humans and the environment for thousands of years into the future. In accordance with the TPA technical strategy, WHC plans to design a near-surface facility suitable for disposal of the glass waste

  16. Disposal of Radioactive Wastes in Natural Salt

    International Nuclear Information System (INIS)

    Parker, F.L.; Boegly, W.J.; Bradshaw, R.L.; Empson, F.M.; Hemphill, L.; Struxness, E.G.; Tamura, T.

    1960-01-01

    The proposed use of cavities in salt formations as a disposal site for radioactive wastes is based upon : 1. Existence of salt for geologic time periods, 2. The impermeability of salt to the passage of water; 3. The widespread geographical distribution of salt; 4. The extremely large quantities of salt available; 5. The structural strength of salt; 6. The relatively high thermal conductivity of salt in comparison with other general geologic formations; 7. The possible recovery of valuable fission products in the wastes injected into the salt; 8. The relative ease of forming cavities in salt by mining, and the even greater ease and low cost of developing solution cavities in salt; and 9. The low seismicity in the areas of major salt deposits. Radioactive liquid wastes can be stored in cavities in natural salt formations if the structural properties of the salt are not adversely affected by chemical interaction, pressure, temperature, and radiation. Analytical studies show that it is possible to-store 2-year-old 10,000 MWD/T, 800 gal/ton waste in a sphere of 10 ft diameter without exceeding a temperature of 200° F. Laboratory tests show that the structural properties and thermal conductivity of rock salt are not greatly altered by high radiation doses, although high temperatures increase the creep rate for both irradiated and unirradiated samples. Chemical interaction of liquid wastes with salt produces chlorine and other chlorine compound gases, but the volumes are not excessive. The migration of nuclides through the salt and deformation of the cavity and chamber can only be studied in undisturbed salt in situ. One-fifth-scale models have been run in a bedded salt deposit in Hutchinson, Kansas, and full-scale field tests are in progress. (author) [fr

  17. Ocean disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    1983-01-01

    This study confirms, subject to limitations of current knowledge, the engineering feasibility of free fall penetrators for High Level Radioactive Waste disposal in deep ocean seabed sediments. Restricted sediment property information is presently the principal bar to an unqualified statement of feasibility. A 10m minimum embedment and a 500 year engineered barrier waste containment life are identified as appropriate basic penetrator design criteria at this stage. A range of designs are considered in which the length, weight and cross section of the penetrator are varied. Penetrators from 3m to 20m long and 2t to 100t in weight constructed of material types and thicknesses to give a 500 year containment life are evaluated. The report concludes that the greatest degree of confidence is associated with performance predictions for 75 to 200 mm thick soft iron and welded joints. A range of lengths and capacities from a 3m long single waste canister penetrator to a 20m long 12 canister design are identified as meriting further study. Estimated embedment depths for this range of penetrator designs lie between 12m and 90m. Alternative manufacture, transport and launch operations are assessed and recommendations are made. (author)

  18. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-12-01

    A study of container designs for heat generating radioactive waste disposal in the deep ocean sediments is presented. The purpose of the container would be to isolate the waste from the environment for a period of 500 to 1000 years. The container designs proposed are based on the use of either corrosion allowance or corrosion resistant metals. Appropriate overpack wall thicknesses are suggested for each design using the results of corrosion studies and experiments but these are necessarily preliminary and data relevant to corrosion in deep ocean sediments remain sparse. It is concluded that the most promising design concept involves a thin titanium alloy overpack in which all internal void spaces are filled with lead or cement grout. In situ temperatures for the sediment adjacent to the emplaced 50 year cooled waste containers are calculated to reach about 260 deg C. The behaviour of the sediments at such a high temperature is not well understood and the possibility of 100 years interim storage is recommended for consideration to allow further cooling. Further corrosion data and sediment thermal studies would be required to fully confirm the engineering feasibility of these designs. (author)

  19. Waste disposal in underground mines -- A technology partnership to protect the environment

    International Nuclear Information System (INIS)

    1995-01-01

    Environmentally compatible disposal sites must be found despite all efforts to avoid and reduce the generation of dangerous waste. Deep geologic disposal provides the logical solution as ever more categories of waste are barred from long-term disposal in near-surface sites through regulation and litigation. Past mining in the US has left in its wake large volumes of suitable underground space. EPA studies and foreign practice have demonstrated deep geologic disposal in mines to be rational and viable. In the US, where much of the mined underground space is located on public lands, disposal in mines would also serve the goal of multiple use. It is only logical to return the residues of materials mined from the underground to their origin. Therefore, disposal of dangerous wastes in mined underground openings constitutes a perfect match between mining and the protection and enhancement of the environment

  20. The Groundwater Geochemistry of Waste Disposal Facilities

    Science.gov (United States)

    Bjerg, P. L.; Albrechtsen, H.-J.; Kjeldsen, P.; Christensen, T. H.; Cozzarelli, I. M.

    2003-12-01

    Landfills of solid waste are abundant sources of groundwater pollution. The potential for generatingstrongly contaminated leachate from landfill waste is very substantial. Even for small landfills the timescale can be measured in decades or centuries. This indicates that waste dumps with no measures to control leachate entrance into the groundwater may constitute a source of groundwater contamination long after dumping has ceased. In addition to these dumps, engineered landfills with liners and leachate collection systems may also constitute a source of groundwater contamination due to inadequate design, construction, and maintenance, resulting in the leakage of leachate.Landfills may pose several environmental problems (explosion hazards, vegetation damage, dust and air emissions, etc.), but groundwater pollution by leachate is considered to be the most important one and the focus of this chapter. Landfills differ significantly depending on the waste they receive: mineral waste landfills for combustion ashes, hazardous waste landfills, specific industrial landfills serving a single industry, or municipal waste landfills receiving a mixture of municipal waste, construction, and demolition waste, waste from small industries and minor quantities of hazardous waste. The latter type of landfill (termed "old landfills" in this chapter) is very common all over the world. Municipal landfills are characterized by a high content of organic waste that affects the biogeochemical processes in the landfill body and the generation of strongly anaerobic leachate with a high content of dissolved organic carbon, salts, ammonium, and organic compounds and metals released from the waste.This chapter describes the biogeochemistry of a landfill leachate plume as it emerges from the bottom of a landfill and migrates in an aquifer. The landfill hydrology, source composition, and spreading of contaminants are described in introductory sections. The focus of this chapter is on

  1. The Evolution of Low-Level Radioactive Waste (LLW) Disposal Practices at the Savannah River Site Coupled with Vigorous Stakeholder Interaction

    International Nuclear Information System (INIS)

    Goldston, W. T.; Wilhite, E. L.; Cook, J. R.; Sauls, V. W.

    2002-01-01

    Low-level radioactive waste (LLW) disposal practices at SRS evolved from trench disposal with little long-term performance basis to disposal in robust concrete vaults, again without modeling long-term performance. Now, based on an assessment of long-term performance of various waste forms and methods of disposal, the LLW disposal program allows for a ''smorgasbord'' of various disposal techniques and waste forms, all modeled to ensure long-term performance is understood. New disposal techniques include components-in-grout, compaction/volume reduction prior to disposal, and trench disposal of extremely low activity waste. Additionally, factoring partition coefficient (Kd) measurements based on waste forms has been factored into performance models. This paper will trace the development of the different disposal methods, and the extensive public communications effort that resulted in endorsement of the changes by the SRS Citizens Advisory Board

  2. Storage and disposal of radioactive waste as glass in canisters

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1978-12-01

    A review of the use of waste glass for the immobilization of high-level radioactive waste glass is presented. Typical properties of the canisters used to contain the glass, and the waste glass, are described. Those properties are used to project the stability of canisterized waste glass through interim storage, transportation, and geologic disposal

  3. The waste disposal facility in the Aube District

    International Nuclear Information System (INIS)

    Torres, Patrice

    2013-06-01

    The waste disposal facility in the Aube district is the second surface waste disposal facility built in France. It is located in the Aube district, and has been operated by Andra since 1992. With a footprint of 95 hectares, it is licensed for the disposal of 1 million cubic meters of low- and intermediate-level, short-lived waste packages. The CSA is located a few kilometers away another Andra facility, currently in operation for very-low-level waste, and collection and storage of non-nuclear power waste (the Cires). Contents: Andra in the Aube district, an exemplary industrial operator - The waste disposal facility in the Aube district (CSA); Low- and intermediate-level, short-lived radioactive waste (LILW-SL); The LILW-SL circuit; Protecting present and future generations

  4. Risk methodology for geologic disposal of radioactive waste: interim report

    International Nuclear Information System (INIS)

    Campbell, J.E.; Dillon, R.T.; Tierney, M.S.; Davis, H.T.; McGrath, P.E.; Pearson, F.J. Jr.; Shaw, H.R.; Helton, J.C.; Donath, F.A.

    1978-10-01

    The Fuel Cycle Risk Analysis Division of Sandia Laboratories is funded by the Nuclear Regulatory Commission (NRC) to develop a methodology for assessment of the long-term risks from radioactive waste disposal in deep, geologic media. The first phase of this work, which is documented in this report, involves the following: (1) development of analytical models to represent the processes by which radioactive waste might leave the waste repository, enter the surface environment and eventually reach humans and (2) definition of a hypothetical ''reference system'' to provide a realistic setting for exercise of the models in a risk or safety assessment. The second phase of this work, which will be documented in a later report, will involve use of the analytical models in a demonstration risk or safety assessment of the reference system. The analytical methods and data developed in this study are expected to form the basis for a portion of the NRC repository licensing methodology

  5. Risk management for outsourcing biomedical waste disposal - using the failure mode and effects analysis.

    Science.gov (United States)

    Liao, Ching-Jong; Ho, Chao Chung

    2014-07-01

    Using the failure mode and effects analysis, this study examined biomedical waste companies through risk assessment. Moreover, it evaluated the supervisors of biomedical waste units in hospitals, and factors relating to the outsourcing risk assessment of biomedical waste in hospitals by referring to waste disposal acts. An expert questionnaire survey was conducted on the personnel involved in waste disposal units in hospitals, in order to identify important factors relating to the outsourcing risk of biomedical waste in hospitals. This study calculated the risk priority number (RPN) and selected items with an RPN value higher than 80 for improvement. These items included "availability of freezing devices", "availability of containers for sharp items", "disposal frequency", "disposal volume", "disposal method", "vehicles meeting the regulations", and "declaration of three lists". This study also aimed to identify important selection factors of biomedical waste disposal companies by hospitals in terms of risk. These findings can serve as references for hospitals in the selection of outsourcing companies for biomedical waste disposal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Oblath, S.B.; Pepper, D.W.; Wilhite, E.L.

    1986-01-01

    Waste salt solution, produced during processing of high-level nuclear waste, will be incorporated in a cement matrix for emplacement in an engineered disposal facility. Wasteform characteristics and disposal facility details will be presented along with results of a field test of wasteform contaminant release and of modeling studies to predict releases. 5 refs., 11 figs., 5 tabs

  7. Regulatory mechanisms for underground waste disposal in Nigeria ...

    African Journals Online (AJOL)

    The Federal Ministry of Environment and the Department of Petroleum Resources control underground disposal of wastes in Nigeria with three principal regulations: Guidelines and Standards for Environmental Pollution Control in Nigeria, National Guidelines on Waste Disposal through Underground Injection and the ...

  8. Deep injection disposal of liquid radioactive waste in Russia

    International Nuclear Information System (INIS)

    Foley, M.G.; Ballou, L.; Rybal'chenko, A.I.; Pimenov, M.K.; Kostin, P.P.

    1998-01-01

    Originally published in Russian, Deep Injection Disposal is the most comprehensive account available in the West of the Soviet and Russian practice of disposing of radioactive wastes into deep geological formations. It tells the story of the first 40 years of work in the former Soviet Union to devise, test, and execute a program to dispose by deep injection millions of cubic meters of liquid radioactive wastes from nuclear materials processing. The book explains decisions involving safety aspects, research results, and practical experience gained during the creation and operation of disposal systems. Deep Injection Disposal will be useful for studying other problems worldwide involving the economic use of space beneath the earth's surface. The material in the book is presented with an eye toward other possible applications. Because liquid radioactive wastes are so toxic and the decisions made are so vital, information in this book will be of great interest to those involved in the disposal of nonradioactive waste

  9. Management of radioactive fuel wastes: the Canadian disposal program

    International Nuclear Information System (INIS)

    Boulton, J.

    1978-10-01

    This report describes the research and development program to verify and demonstrate the concepts for the safe, permanent disposal of radioactive fuel wastes from Canadian nuclear reactors. The program is concentrating on deep underground disposal in hard-rock formations. The nature of the radioactive wastes is described, and the options for storing, processing, packaging and disposing of them are outlined. The program to verify the proposed concept, select a suitable site and to build and operate a demonstration facility is described. (author)

  10. Low and medium level radioactive waste disposal in France

    International Nuclear Information System (INIS)

    Potier, J.M.

    1994-01-01

    An integrated management system allowing complete control of radioactive waste, from conditioning and packaging at the generator site to final disposal is presented. A central feature of the system is a comprehensive quality assurance and control program, including specifications for waste processing, packaging and labeling; requirements for transportation and acceptance at the disposal facility; and criteria for siting, design, construction and operation of the disposal facility. 3 refs., 5 figs

  11. Deep geologic disposal of mixed waste in bedded salt: The Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Rempe, N.T.

    1993-01-01

    Mixed waste (i.e., waste that contains both chemically hazardous and radioactive components) poses a moral, political, and technical challenge to present and future generations. But an international consensus is emerging that harmful byproducts and residues can be permanently isolated from the biosphere in a safe and environmentally responsible manner by deep geologic disposal. To investigate and demonstrate such disposal for transuranic mixed waste, derived from defense-related activities, the US Department of Energy has prepared the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. This research and development facility was excavated approximately at the center of a 600 m thick sequence of salt (halite) beds, 655 m below the surface. Proof of the long-term tectonic and hydrological stability of the region is supplied by the fact that these salt beds have remained essentially undisturbed since they were deposited during the Late Permian age, approximately 225 million years ago. Plutonium-239, the main radioactive component of transuranic mixed waste, has a half-life of 24,500 years. Even ten half-lives of this isotope - amounting to about a quarter million years, the time during which its activity will decline to background level represent only 0.11 percent of the history of the repository medium. Therefore, deep geologic disposal of transuranic mixed waste in Permian bedded salt appears eminently feasible

  12. The estimation of radiological impact from the disposal of radionuclides with domestic and commercial wastes

    International Nuclear Information System (INIS)

    Sumerling, T.J.; Sweeney, B.J.

    1987-04-01

    In the UK, limited quantities of radionuclides are disposed of with non-radioactive domestic and commercial wastes under the terms of Exemption Orders or Authorisations granted by the Radiochemical Inspectorate. This report presents a methodology and basis for the calculation of individual and collective doses to workers and to members of the public from such disposals. (author)

  13. Developments in support of low level waste disposal at BNFL's Drigg Site

    International Nuclear Information System (INIS)

    Johnson, L.F.

    1988-01-01

    The continued upgrading of low-level waste pretreatment and disposal practices related to the United Kingdom Drigg disposal site is described, noting the need to take into account operational safety, long term post-closure safety, regulatory and public acceptance factors

  14. Radioactive wastes with negligible heat generation suitable for disposal

    International Nuclear Information System (INIS)

    Brennecke, P.; Schumacher, J.; Warnecke, E.

    1987-01-01

    It is planned to dispose of radioactive wastes with negligible heat generation in the Konrad repository. Preliminary waste acceptance requirements are derived taking the results of site-specific safety assessments as a basis. These requirements must be fulfilled by the waste packages on delivery. The waste amounts which are currently stored and those anticipated up to the year 2000 are discussed. The disposability of these waste packages in the Konrad repository was evaluated. This examination reveals that basically almost all radioactive wastes with negligible heat generation can be accepted. (orig.) [de

  15. Low-Level Waste Disposal Alternatives Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

    2006-09-01

    This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

  16. Notifications Dated October 2, 2014 Submitted by We Energies to Dispose of Polychlorinated Biphenyl Remediation Waste

    Science.gov (United States)

    Disposal Notifications Dated October 2, 2014 for We Energies and the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl Remediation Waste at the Waste Management Disposal Sites in Menomonee Falls and Franklin, WI

  17. Systems engineering programs for geologic nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

    1980-06-01

    The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

  18. Potential radiation criteria for Ontario Hydro's reactor waste disposal program

    International Nuclear Information System (INIS)

    Green, B.J.; Donnelly, K.J.; Russell, S.B.

    1984-01-01

    A ranking procedure developed by Ontario Hydro to assist in the selection of potential reactor waste disposal concepts from a radiological safety viewpoint is presented. This process includes the defining of objective radiological disposal concept ranking criteria and the testing of disposal concepts against the criteria using radiological pathway models. The results of applying the proposed criteria are presented in the assessment and ranking of several example disposal concepts

  19. Final disposal of high-level radioactive waste. State of knowledge and development for safety assessment

    International Nuclear Information System (INIS)

    Sato, Seichi; Muraoka, Susumu; Murano, Toru

    1995-01-01

    In Europe and USA, the formation disposal of high level radioactive waste entered the stage of doing the activities aiming at its execution. Also in Japan, the storage of high level waste began in the spring of 1995. Regarding the utilization of nuclear power, the establishment of the technology for disposing radioactive waste is the subject of fist priority, and the stage that requires its social recognition has set in. There are the features of formation disposal in that the disposal is in the state of confining extremely large amount of radioactivity, and that the assessment of long term safety exceeding tens of thousands years is demanded. The amount of occurrence and the main nuclides of high level radioactive waste, the disposal as seen in the Coady report and in the IAEA standard, the selection of dispersion or confinement and the selection of passive system or long term human participation, the reason why formation disposal is selected, the features of formation disposal and the way of advancing the research, the general techniques of safety assessment, artificial barriers and natural barriers for formation disposal, and the subjects of formation disposal are described. (K.I.) 57 refs

  20. Status report on the disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Culler, F.L. Jr.; McLain, S. (comps.)

    1957-06-25

    A comprehensive survey of waste disposal techniques, requirements, costs, hazards, and long-range considerations is presented. The nature of high level wastes from reactors and chemical processes, in the form of fission product gases, waste solutions, solid wastes, and particulate solids in gas phase, is described. Growth predictions for nuclear reactor capacity and the associated fission product and transplutonic waste problem are made and discussed on the basis of present knowledge. Biological hazards from accumulated wastes and potential hazards from reactor accidents, ore and feed material processing, chemical reprocessing plants, and handling of fissionable and fertile material after irradiation and decontamination are surveyed. The waste transportation problem is considered from the standpoints of magnitude of the problem, present regulations, costs, and cooling periods. The possibilities for ultimate waste management and/or disposal are reviewed and discussed. The costs of disposal, evaporation, storage tanks, and drum-drying are considered.

  1. Disposal Unit Source Term (DUST) data input guide

    International Nuclear Information System (INIS)

    Sullivan, T.M.

    1993-05-01

    Performance assessment of a low-level waste (LLW) disposal facility begins with an estimation of the rate at which radionuclides migrate out of the facility (i.e., the source term). The focus of this work is to develop a methodology for calculating the source term. In general, the source term is influenced by the radionuclide inventory, the wasteforms and containers used to dispose of the inventory, and the physical processes that lead to release from the facility (fluid flow, container degradation, wasteform leaching, and radionuclide transport). The computer code DUST (Disposal Unit Source Term) has been developed to model these processes. This document presents the models used to calculate release from a disposal facility, verification of the model, and instructions on the use of the DUST code. In addition to DUST, a preprocessor, DUSTIN, which helps the code user create input decks for DUST and a post-processor, GRAFXT, which takes selected output files and plots them on the computer terminal have been written. Use of these codes is also described

  2. ALLIANCES: simulation platform for radioactive waste disposal

    International Nuclear Information System (INIS)

    Deville, E.; Montarnal, Ph.; Loth, L.; Chavant, C.

    2009-01-01

    CEA, ANDRA and EDF are jointly developing the software platform ALLIANCES whose aim is to produce a tool for the simulation of nuclear waste storage and disposal. This type of simulations deals with highly coupled thermo-hydro-mechanical-chemical and radioactive (T-H-M-C-R) processes. ALLIANCES' aim is to accumulate within the same simulation environment the already acquired knowledge and to gradually integrate new knowledge. The current version of ALLIANCES contains the following modules: - Hydraulics and reactive transport in unsaturated and saturated media; - Multi-phase flow; - Mechanical thermal-hydraulics; - Thermo-Aeraulics; - Chemistry/Transport coupling in saturated media; - Alteration of waste package coupled with the environment; - Sensitivity analysis tools. The next releases will include more physical phenomena like: reactive transport in unsaturated flow and multicomponent multiphase flow; incorporation of responses surfaces in sensitivity analysis tools; integration of parallel numerical codes for flow and transport. Since the distribution of the first release of ALLIANCES (December 2003), the platform was used by ANDRA for his safety simulation program and by CEA for reactive transport simulations (migration of uranium in a soil, diffusion of different reactive species on laboratory samples, glass/iron/clay interaction). (authors)

  3. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-07-01

    This report is based on an emplacement techniques review prepared for the Department of the Environment in February 1983, which appeared as Chapter III of the Nuclear Energy Agency, Seabed Working Group's Status Report. The original document (DOE/RW/83.032) has been amended to take account of the results of field trials carried out in March 1983 and to better reflect current UK Government policy on ocean disposal of HGW. In particular Figure 7 has been redrawn using more realistic drag factors for the calculation of the terminal velocity in water. This report reviews the work conducted by the SWG member countries into the different techniques of emplacing heat generating radioactive waste into the deep ocean sediments. It covers the waste handling from the port facilities to final emplacement in the seabed and verification of the integrity of the canister isolation system. The two techniques which are currently being considered in detail are drilled emplacement and the free fall penetrator. The feasibility study work in progress for both techniques as well as the mathematical and physical modelling work for embedment depth and hole closure behind the penetrator are reviewed. (author)

  4. The political science of radioactive waste disposal

    International Nuclear Information System (INIS)

    Jacobi, L.R. Jr.

    1996-01-01

    This paper was first presented at the annual meeting of the HPS in New Orleans in 1984. Twelve years later, the basic lessons learned are still found to be valid. In 1984, the following things were found to be true: A government agency is preferred by the public over a private company to manage radioactive waste. Semantics are important--How you say it is important, but how it is heard is more important. Public information and public relations are very important, but they are the last thing of concern to a scientist. Political constituency is important. Don't overlook the need for someone to be on your side. Don't forget that the media is part of the political process-they can make you or break you. Peer technical review is important, but so is citizen review. Sociology is an important issue that scientists and technical people often overlook. In summary, despite the political nature of radioactive waste disposal, it is as true today as it was in 1984 that technical facts must be used to reach sound technical conclusions. Only then, separately and openly, should political factors be considered. So, what can be said today that wasn't said in 1984? Nothing. open-quotes It's deja vu all over again.close quotes

  5. Interim report on reference biospheres for radioactive waste disposal

    International Nuclear Information System (INIS)

    Dorp, F. van

    1994-10-01

    Primary criteria for repository safety are commonly expressed in terms of risk or dose, and a biosphere model is required to evaluate the corresponding assessment endpoints. Even when other indicators are used to express the safety goals, a biosphere model is still needed in order to justify those indicators. In safety or performance assessments of a repository, the uncertainties in space and time for the different components of the repository system have to be considered. For the biosphere component, prediction of future human habits, in particular, is extremely uncertain. This is especially important in the assessment of deep geological disposal, which involves very long timescales, particularly for wastes containing very long lived radionuclides. Thus, the results of biosphere modelling should not be seen as predictions, but as illustrations of the consequences that may occur, should the postulated release occur today or under other conditions implied by the underlying biosphere model assumptions. Differences in biosphere modelling approaches arise because of differences in regulations, the nature of the wastes to be disposed of, disposal site characteristics, disposal concepts and purposes of the assessment. Differences in treatment of uncertainties can also arise. For example, if doses or risks are anticipated to be far below regulatory limits, assessments may be based upon simplified and, necessarily, conservative biosphere models. At present biosphere models used to assess radioactive waste disposal show significant differences in the features, events and processes (FEPs) included or excluded. In general, the reasons for these differences have not been well documented or explained. Developments in radioecology have implications for biosphere modelling for radioactive waste disposal. In particular, after the Chernobyl accident, radioecological research has been significantly increased. Results of this research are already having and will continue to have a

  6. The safe disposal of radioactive wastes in geologic salt formations

    International Nuclear Information System (INIS)

    Kuehn, K.; Proske, R.

    Geologic salt formations appear to be particularly suitable for final storage. Their existance alone - the salt formations in Northern Germany are more than 200 million years old - is proof of their stability and of their isolation from biological cycles. In 1967 the storage of LAW and later, in 1972, of MAW was started in the experimental storage area Asse, south-east of Braunschweig, after the necessary technical preparations had been made. In more than ten years of operation approx. 114,000 drums of slightly active and 1,298 drums of medium-active wastes were deposited without incident. Methods have been developed for filling the available caverns with wastes and salt to ensure the security of long term disposal without supervision. Tests with electric heaters for simulation of heat-generating highly active wastes confirm the good suitability of salt formations for storing these wastes. Safety analyses for the operating time as well as for the long term phase after closure of the final storage area, which among others also comprise the improbable ''greatest expected accident'', namely break through of water, are carried out and confirm the safety of ultimate storage of radioactive wastes in geological salt formations. (orig./HP) [de

  7. Sea disposal of radioactive wastes: The London Convention 1972

    International Nuclear Information System (INIS)

    Sjoeblom, K.L.; Linsley, G.

    1994-01-01

    For many years the oceans were used for the disposal of industrial wastes, including radioactive wastes. In the 1970s, the practice became subject to an international convention which had the aim of regularizing procedures and preventing activities which could lead to marine pollution. This article traces the history of radioactive waste disposal at sea from the time when it first came within the view of international organizations up to the present. 2 figs, 2 tabs

  8. Possibilities of composting disposable diapers with municipal solid wastes

    OpenAIRE

    Colón Jordà, Joan

    2011-01-01

    The possibilities for the management of disposable diapers in municipal solid waste have been studied. An in-depth revision of literature about generation, composition and current treatment options for disposable diapers showed that the situation for these wastes is not clearly defined in developed recycling societies. As a promising technology, composting of diapers with source-separated organic fraction of municipal solid waste (OFMSW) was studied at full scale to understand the process per...

  9. Radioactive Waste Disposal into the Sea

    International Nuclear Information System (INIS)

    1961-01-01

    Preventing pollution of the seas from the discharge of radioactive wastes has been recognized as an international problem of considerable magnitude. In April 1958 the United Nations Conference on the Law of the Sea adopted a Convention on the High Seas, Article 25 of which provides that every State shall take measures to prevent pollution of the seas from the dumping of radioactive wastes, taking into account any standards and regulations which may be formulated by the competent international organizations. The Conference also adopted a resolution recommending that the IAEA pursue studies and take action to assist States in controlling the discharge of radioactive materials into the sea. Later the same year, a Panel of experts was invited by me to meet in Vienna to study the technical and scientific problems connected with radioactive waste disposal into the sea, and Mr. H. Brynielsson of Sweden was designated Chairman of the Panel. Representatives of the United Nations, the Food and Agriculture Organization of the United Nations, the World Health Organization and the United Nations Educational, Scientific and Cultural Organization participated in the work of the Panel. After a second series of meetings in 1959, the Panel completed its study, setting forth the result of its work in a report dated 6 April 1960, which has been submitted to the Agency's Scientific Advisory Committee and to Member States for their information. The Panel's report is now published in the present volume of the Agency's Safety Series in the form in which it was submitted by the Chairman of the Panel. I should like to add that the report represents the views of the experts participating in their individual capacity in the work of the Panel. It is offered as an information document and it should not be regarded as an official statement by the Agency of its views or policies in relation to the subject discussed.

  10. Tank waste remediation system retrieval and disposal mission waste feed delivery plan

    International Nuclear Information System (INIS)

    Potter, R.D.

    1998-01-01

    This document is a plan presenting the objectives, organization, and management and technical approaches for the Waste Feed Delivery (WFD) Program. This WFD Plan focuses on the Tank Waste Remediation System (TWRS) Project's Waste Retrieval and Disposal Mission

  11. Development of a numerical code for the prediction of the long-term behavior of the underground facilities for the high-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Sawada, Masataka; Okada, Tetsuji; Hasegawa, Takuma

    2006-01-01

    Complicated phenomena originated by thermo-hydro-mechanical coupling behavior will occur in the near-field of geological disposal of nuclear waste. Development of a numerical evaluation method for such phenomena is important in order to make a reasonable repository design and a safety assessment. In order to achieve the objective above, a numerical model using the equations which can evaluate the swelling characteristics of buffer materials based on the diffusive double layer theory is proposed, and a numerical scheme for the thermo-hydro-mechanical coupled analysis including the swelling model is constructed. The proposed swelling model can reproduce the behavior observed during both swelling pressure tests and swelling deformation tests. When the developed numerical code is applied to the laboratory heater test using a bentonite specimen, it can reproduce the thermal gradient, the distribution of saturation rate and the variation of porosity. The developed numerical code will be applied to well-controlled laboratory tests and full-scale in-situ tests in the future work. In order to apply to the various geochemical conditions around the engineered barrier, chemical component will be coupled to the present numerical code. (author)

  12. Disposal of slightly contaminated radioactive wastes from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    With regard to the disposal of solid wastes, nuclear power plants basically have two options, disposal in a Part 61 licensed low-level waste site, or receive approval pursuant to 20.2002 for disposal in a manner not otherwise authorized by the NRC. Since 1981, the staff has reviewed and approved 30 requests for disposal of slightly contaminated radioactive materials pursuant to Section 20.2002 (formerly 20.302) for nuclear power plants located in non-Agreement States. NRC Agreement States have been delegated the authority for reviewing and approving such disposals (whether onsite or offsite) for nuclear power plants within their borders. This paper describes the characteristics of the waste disposed of, the review process, and the staff`s guidelines.

  13. Proposed integrated hazardous waste disposal facility. Public environmental review

    International Nuclear Information System (INIS)

    1998-05-01

    This Public Environmental Report describes a proposal by the Health Department of Western Australia to establish a disposal facility for certain hazardous wastes and seeks comments from governments agencies and the public that will assist the EPA to make its recommendations to. The facility would only be used for wastes generated in Western Australia.The proposal specifically includes: a high temperature incinerator for the disposal of organo-chlorines (including agricultural chemicals and PCBs), and other intractable wastes for which this is the optimum disposal method; an area for the burial (after any appropriate conditioning) of low level radioactive intractable wastes arising from the processing of mineral sands (including monazite, ilmenite and zircon) and phosphate rock. Detailed information is presented on those wastes which are currently identified as requiring disposal at the facility.The proposed facility will also be suitable for the disposal of other intractable wastes including radioactive wastes (from industry, medicine and research) and other solid intractable wastes of a chemical nature including spent catalysts etc. Proposals to dispose of these other wastes at this facility in the future will be referred to the Environmental Protection Authority for separate assessment

  14. Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trone, Janis R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Lawrence C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a mined repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.

  15. Preparations for Mixed Waste Disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Clark, D.K.; Perez, P.A.; Doyle, G.

    2006-01-01

    The Radioactive Waste Management Complex (RWMC) at the Nevada Test Site (NTS) is preparing for the receipt and disposal of low-level mixed waste (MV) generated within the U.S. Department of Energy (DOE) complex. The NTS maintains and develops disposal locations to accommodate various waste forms, and is engaged in developing verification and handling processes to ensure proper acceptance and disposal. Operations at the RWMC are focused on ensuring future disposal needs can be accommodated with a maximum benefit to risk ratio. This paper addresses the programmatic developments implemented at the NTS to accommodate the receipt, verification, and disposal of MW. The Radioactive Waste Acceptance Program (RWAP) has incorporated aspects of the Waste Analysis Plan (WAP) into the Nevada Test Site Waste Acceptance Criteria (NTSWAC). The verification program includes statistical sampling components that take into account waste form, program reliability, and other factors. The WAP allows for a conglomerate of verification techniques including visual examination, non-destructive examination, and chemical screening ensuring compliance with the NTSWAC. The WAP also provides for the acceptance of MW with most U.S. Environmental Protection Agency waste codes. The MW sent to the NTS for disposal must meet Land-Disposal Restriction standards. To support the verification processes outlined in the WAP, a Real-Time-Radiography (RTR) facility was constructed. Using a 450 keV, 5-mA tube-head system with a bridge and manipulator assembly, MW packages can undergo non-destructive examination (x-ray) at the RWMC. Prior to the NTS accepting the waste shipment, standard waste boxes, drums, and nominally sized bulk items can be manipulated on a cart and examined directly or skewed in real-time to ensure compliance with NTSWAC requirement s An existing MW disposal cell at the RWMC has been tailored to meet the requirements of a Category 2 non-reactor Nuclear Facility. In retrofitting an existing

  16. Liquid effluent services and solid waste disposal interface control document

    International Nuclear Information System (INIS)

    Carlson, A.B.

    1994-01-01

    This interface control document between Liquid Effluent Services (LES) and Solid Waste Disposal (SWD) establishes the functional responsibilities of each division where interfaces exist between the two divisions. The document includes waste volumes and timing for use in planning the proper waste management capabilities. The interface control document also facilitates integration of existing or planned waste management capabilities of the Liquid Effluent Services and Solid Waste divisions

  17. DISPOSAL OF LOW AND INTERMEDIATE LEVEL WASTE IN HUNGARY

    Directory of Open Access Journals (Sweden)

    Bálint Nős

    2012-07-01

    Full Text Available There are two operating facilities for management of low and intermediate level radioactive waste in Hungary. Experience with radioactive waste has a relatively long history and from its legacy some problems are to be solved, like the question of the historical waste in the Radioactive Waste Treatment and Disposal Facility (RWTDF. Beside the legacy problems the current waste arising from the Nuclear Power Plant (NPP has to be dealt with a safe and economically optimized way.

  18. Pathways for Disposal of Commercially-Generated Tritiated Waste

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, Nancy V. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL). Environmental Sciences and Biotechnology

    2016-09-26

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  19. Pathways for Disposal of Commercially-Generated Tritiated Waste

    International Nuclear Information System (INIS)

    Halverson, Nancy V.

    2016-01-01

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two of these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste

  20. Low-level radioactive waste disposal process and apparatus

    International Nuclear Information System (INIS)

    White, L.E.; Anderson, R.E.; Vander Wall, E.M.

    1980-01-01

    The primary object of this invention is to provide an improved process and apparatus for disposing of low-level liquid radioactive wastes wherein the volume of the wastes can be reduced by a factor of at least ten to thereby minimize costs of storage and ultimate disposal of the wastes. The wastes will be in a form more suitable for storage, transit and burial while still conforming to safety codes. Another object of this invention is to provide a process of disposing of low-level liquid radioactive wastes wherein the wastes are reduced in volume to a mass of free-flowing, solid particles by calcining and the particles are packaged in the presence of a solidifying agent or the particles are compressed, sintered or fused to cause the wastes to be converted to a monolithic product capable of being readily and more safely stored or moved to a burial site. (auth)

  1. Organizing and managing radioactive waste disposal as an experiment

    International Nuclear Information System (INIS)

    Cook, B.J.; Emel, J.L.; Kasperson, R.E.

    1990-01-01

    This paper examines organization and management issues engendered by the national program for permanent disposal of commercial radioactive wastes. The description of current organizational and managerial responses to the waste disposal problem serves as a springboard for consideration of the technical, political, and organizational constraints that impinge upon the waste-management effort. Taking these constraints into account, the authors apply ideas that have emerged from previous radioactive waste-management studies and research on organizations, concluding that a change of course is needed. As an alternative, they propose an experimental approach predicated on the waste-management organization's acknowledging uncertainty and constructing responses that seek to reduce uncertainty systematically and without distortion

  2. Final disposal of nuclear waste. An investigated issue

    International Nuclear Information System (INIS)

    Palmu, J.; Nikula, A.

    1996-01-01

    Since 1978, the nuclear power companies have co-ordinated joint studies of nuclear waste disposal through the Nuclear Waste Commission of Finnish Power Companies. The studies are done primarily to gather basic data, with a view to implementing nuclear waste management in a safe, economical and timely way. The power companies' research, development and design work with regard to nuclear waste has been progressing according to the schedule set by the Government, and Finland has received international recognition for its advanced nuclear waste management programme. Last year, the nuclear power companies set up a joint company, Posiva Oy, to manage the final disposal of spent uranium fuel. (orig.)

  3. Concept development for saltstone and low level waste disposal

    International Nuclear Information System (INIS)

    Wilhite, E.L.

    1987-03-01

    A low-level alkaline salt solution will be a byproduct in the processing of high-level waste at the Savannah River Plant (SRP). This solution will be incorporated into a cement wasteform, saltstone, and placed in surface vaults. Laboratory and field testing and mathematical modeling have demonstrated the predictability of contaminant release from cement wasteforms. Saltstone disposal in surface vaults will meet drinking water standards in shallow groundwater at the disposal area boundary. Planning for new Low-Level Waste (LLW) disposal could incorporate concepts developed for saltstone disposal

  4. Geologic disposal of radioactive waste, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T.H.

    1983-10-01

    Geologic repositories for radioactive waste are evolving from conceptualization to the development of specific designs. Estimates of long-term hazards must be based upon quantitative predictions of environmental releases over time periods of hundreds of thousands of years and longer. This paper summarizes new techniques for predicting the long-term performance of repositories, it presents estimates of future environmental releases and radiation doses that may result for conceptual repositories in various geologic media, and it compares these predictions with an individual dose criterion of 10{sup -4} Sv/y. 50 references, 11 figures, 6 tables.

  5. Thermal impact of waste emplacement and surface cooling associated with geologic disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.S.Y.; Mangold, D.C.; Spencer, R.K.; Tsang, C.F.

    1982-08-01

    The thermal effects associated with the emplacement of aged radioactive wastes in a geologic repository were studied, with emphasis on the following subjects: the waste characteristics, repository structure, and rock properties controlling the thermally induced effects; the current knowledge of the thermal, thermomechanical, and thermohydrologic impacts, determined mainly on the basis of previous studies that assume 10-year-old wastes; the thermal criteria used to determine the repository waste loading densities; and the technical advantages and disadvantages of surface cooling of the wastes prior to disposal as a means of mitigating the thermal impacts. The waste loading densities determined by repository designs for 10-year-old wastes are extended to older wastes using the near-field thermomechanical criteria based on room stability considerations. Also discussed are the effects of long surface cooling periods determined on the basis of far-field thermomechanical and thermohydrologic considerations. The extension of the surface cooling period from 10 years to longer periods can lower the near-field thermal impact but have only modest long-term effects for spent fuel. More significant long-term effects can be achieved by surface cooling of reprocessed high-level waste.

  6. Northeast Regional environmental impact study: Waste disposal technical report

    Science.gov (United States)

    Saguinsin, J. L. S.

    1981-04-01

    The potential for cumulative and interactive environmental impacts associated with the conversion of multiple generating stations in the Northeast is assessed. The estimated quantities and composition of wastes resulting from coal conversion, including ash and SO2 scrubber sludge, are presented. Regulations governing the use of ash and scrubber sludge are identified. Currently available waste disposal schemes are described. The location, capacity, and projected life of present and potential disposal sites in the region are identified. Waste disposal problems, both hazardous and nonhazardous, are evaluated. Environmental regulations within the region as they pertain to coal conversion and as they affect the choice of conversion alternatives are discussed. A regional waste management strategy for solid waste disposal is developed.

  7. Household Willingness to Pay for solid Waste Disposal Services in ...

    African Journals Online (AJOL)

    Solid waste management has become inevitable in the global developmental processes. Thus, the sustainability of funds to manage solid waste is paramount, and it is contingent on the willingness of people to pay for improved solid waste disposal services. The paper, therefore, examined the factors that influence the ...

  8. Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

    International Nuclear Information System (INIS)

    Kwak, Kyung Kil; Ji, Young Yong

    2010-12-01

    The radioactive waste form should be meet the waste acceptance criteria of national regulation and disposal site specification. We carried out a characterization of rad waste form, especially the characteristics of radioactivity, mechanical and physical-chemical properties in various rad waste forms. But asphalt products is not acceptable waste form at disposal site. Thus we are change the product materials. We select the development of the new process or new materials. The asphalt process is treatment of concentrated liquid and spent-resin and that we decide the Development of new waste form for treatment and disposal of concentrated liquid radioactive waste

  9. Alternative disposal technologies for new low-level radioactive waste disposal/storage facilities at the Savannah River Plant

    International Nuclear Information System (INIS)

    Cook, J.R.

    1987-01-01

    A Draft Environmental Impact Statement for Waste Management Activities for groundwater protection has been prepared for the Savannah River Plant. Support documentation for the DEIS included an Environmental Information Document on new radioactive waste disposal and storage facilities in which possible alternative disposal technologies were examined in depth. Six technologies that would meet the needs of the Savannah River Plant that selected for description and analysis include near surface disposal, near surface disposal with exceptions, engineered storage, engineered disposal, vault disposal of untreated waste, and a combination of near surface disposal, engineered disposal, and engineered storage. 2 refs

  10. State-of-the-art report on radioactive waste disposal

    International Nuclear Information System (INIS)

    Larsson, A.

    1989-01-01

    In view of the considerable work required to develop repositories for radioactive waste, an extensive international co-operation has evolved within the area. The work has also engaged the IAEA to a great extent. The Agency has published a number of reports, covering different aspects of waste disposal. Following a recommendation by its Technical Review Committee on Underground Disposal (TRCUD) the Agency will publish a ''state-of-the-art'' report on radioactive waste disposal. The report is still in the preparation stage. In this article the principal subjects of the future report are discussed

  11. Safe management and disposal of nuclear waste. Volume 1

    International Nuclear Information System (INIS)

    1993-01-01

    This proceeding contains six plenary sessions. In the first session, legal aspects about transport, management and disposal of radioactive wastes are studied. In the second session, safety objectives and regulations for radioactive wastes disposal are described. The third session presents papers about operational experience for transport and disposal of nuclear wastes. The fourth session gives paper about safety evaluation. The fifth session presents the technical and political aspects or public relations for site characterization, evaluation and acceptance. The last session describes the strategies for the future, particularly the transmutation of actinides. 37 papers have been selected

  12. High-level nuclear waste disposal: Ethical considerations

    International Nuclear Information System (INIS)

    Maxey, M.N.

    1985-01-01

    Popular skepticism about, and moral objections to, recent legislation providing for the management and permanent disposal of high-level radioactive wastes have derived their credibility from two major sources: government procrastination in enacting waste disposal program, reinforcing public perceptions of their unprecedented danger and the inflated rhetoric and pretensions to professional omnicompetence of influential scientists with nuclear expertise. Ethical considerations not only can but must provide a mediating framework for the resolution of such a polarized political controversy. Implicit in moral objections to proposals for permanent nuclear waste disposal are concerns about three ethical principles: fairness to individuals, equitable protection among diverse social groups, and informed consent through due process and participation

  13. Immobilized low-level waste disposal options configuration study

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.E.

    1995-02-01

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

  14. Immobilized low-level waste disposal options configuration study

    International Nuclear Information System (INIS)

    Mitchell, D.E.

    1995-02-01

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed

  15. The disposal of Canada's nuclear fuel waste: engineering for a disposal facility

    International Nuclear Information System (INIS)

    Simmons, G.R.; Baumgartner, P.

    1994-01-01

    This report presents some general considerations for engineering a nuclear fuel waste disposal facility, alternative disposal-vault concepts and arrangements, and a conceptual design of a used-fuel disposal centre that was used to assess the technical feasibility, costs and potential effects of disposal. The general considerations and alternative disposal-vault arrangements are presented to show that options are available to allow the design to be adapted to actual site conditions. The conceptual design for a used-fuel disposal centre includes descriptions of the two major components of the disposal facility, the Used-Fuel Packaging Plant and the disposal vault; the ancillary facilities and services needed to carry out the operations are also identified. The development of the disposal facility, its operation, its decommissioning, and the reclamation of the site are discussed. The costs, labour requirements and schedules used to assess socioeconomic effects and that may be used to assess the cost burden of waste disposal to the consumer of nuclear energy are estimated. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  16. Waste Isolation Pilot Plant disposal phase final supplemental environmental impact statement. Volume 2: Appendices

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of the Waste Isolation Pilot Plant Disposal Final Supplemental Environmental Impact Statement (SEIS-II) is to provide information on environmental impacts regarding the Department of Energy's (DOE) proposed disposal operations at WIPP. The Proposed Action describes the treatment and disposal of the Basic inventory of TRU waste over a 35-year period. The Action Alternatives proposed the treatment of the Basic Inventory and an Additional Inventory as well as the transportation of the treated waste to WIPP for disposal over a 150- to 190-year period. The three Action Alternatives include the treatment of TRU waste at consolidation sites to meet WIPP planning-basic Waste Acceptance Criteria, the thermal treatment of TRU waste to meet Land Disposal Restrictions, and the treatment of TRU waste by a shred and grout process. SEIS-II evaluates environmental impacts resulting from the various treatment options; the transportation of TRU waste to WIPP using truck, a combination of truck and regular rail service, and a combination of truck and dedicated rail service; and the disposal of this waste in the repository. Evaluated impacts include those to the general environment and to human health. Additional issues associated with the implementation of the alternatives are discussed to provide further understanding of the decisions to be reached and to provide the opportunity for public input on improving DOE's Environmental Management Program. This volume contains the following appendices: Waste inventory; Summary of the waste management programmatic environmental impact statement and its use in determining human health impacts at treatment sites; Air quality; Life-cycle costs and economic impacts; Transportation; Human health; Facility accidents; Long-term consequence analysis for proposed action and action alternatives; Long-term consequence analysis for no action alternative 2; and Updated estimates of the DOE's transuranic waste volumes

  17. Risk methodology for geologic disposal of radioactive waste

    International Nuclear Information System (INIS)

    Cranwell, R.M.; Campbell, J.E.; Ortiz, N.R.; Guzowski, R.V.

    1990-04-01

    This report contains the description of a procedure for selecting scenarios that are potentially important to the isolation of high- level radioactive wastes in deep geologic formations. In this report, the term scenario is used to represent a set of naturally occurring and/or human-induced conditions that represent realistic future states of the repository, geologic systems, and ground-water flow systems that might affect the release and transport of radionuclides from the repository to humans. The scenario selection procedure discussed in this report is demonstrated by applying it to the analysis of a hypothetical waste disposal site containing a bedded-salt formation as the host medium for the repository. A final set of 12 scenarios is selected for this site. 52 refs., 48 figs., 5 tabs

  18. Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    Science.gov (United States)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing.

  19. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW[e]). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34

  20. International low level waste disposal practices and facilities

    International Nuclear Information System (INIS)

    Nutt, W.M.

    2011-01-01

    options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW(e)). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34

  1. The cost of retrievable disposal of radioactive waste in the deep underground. Disposal in salt rock

    International Nuclear Information System (INIS)

    Grupa, J.B.; Jansma, R.

    1999-02-01

    METRO is the Dutch abbreviation for models for safety and economic aspects for retrievable disposal of high-level radioactive waste in the deep underground). In the METRO project mining aspects are studied and calculation models are developed for safety studies. In the first part of the project (METRO-1) a design has been developed, comprising special facilities to simply retrieve disposed waste. In METRO-2 the costs to construct and maintain the mine disposal facility concept as was developed in METRO-1. In METRO-3 it will be studied what the impact is of the retrievability option in the design of the mine on the insulation capacity of a disposal mine. This report is part of METRO-2, presenting an estimation of the costs to dispose radioactive waste in the deep underground, according to the METRO-1 concept. 8 refs

  2. Incineration: why this may be the most environmentally sound method of renal healthcare waste disposal.

    Science.gov (United States)

    James, Ray

    2010-09-01

    The environment and 'green' issues are currently being promoted in the healthcare sector through recently launched initiatives. This paper considers aspects of healthcare waste management, with particular reference to waste generated in dialysis units. With dialysis being dependent upon large amounts of disposables, it generates considerable volumes of waste. This paper focuses upon a typical haemodialysis unit, evaluating and quantifying the volumes and categories of waste generated. Each haemodialysis patient on thrice weekly dialysis generates some 323 kg per year of waste, of which 271 kg is classified as clinical. This equates to 1626 kg of (solid) clinical waste per dialysis bed, which is around three times the volume of clinical waste generated per general hospital bed. Waste disposal routes are considered and this suggests that present healthcare waste paradigms are outmoded. They do not allow for flexible approaches to solving what is a dynamic problem, and there is a need for new thinking models in terms of managing the unsustainable situation of disposal in constantly growing landfills. Healthcare waste management must be considered not only in terms of the environmental impact and potential long-term health effects, but also in terms of society's future energy requirements.

  3. Cost avoidance realized through transportation and disposal of Fernald mixed low-level waste

    International Nuclear Information System (INIS)

    Sparks, A.K.; Dilday, D.R.; Rast, D.M.

    1995-11-01

    Currently, Department of Energy (DOE) facilities are undergoing a transformation from shipping radiologically contaminated waste within the DOE structure for disposal to now include Mixed Low Level Waste (MLLW) shipments to a permitted commercial disposal facility (PCDF) final disposition. Implementing this change can be confusing and is perceived as being more difficult than it actually is. Lack of experience and disposal capacity, sometimes and/or confusing regulatory guidance, and expense of transportation and disposal of MLLW ar contributing factors to many DOE facilities opting to simply store their MLLW. Fernald Environmental Restoration Management Company (FERMCO) established itself as a leader i addressing MLLW transportation and disposal by being one of the first DOE facilities to ship mixed waste to a PCDF (Envirocare of Utah) for disposal. FERMCO's proactive approach in establishing a MLLW Disposal Program produces long-term cost savings while generating interim mixed waste storage space to support FERMCO's cleanup mission. FERMCO's goal for all MLLW shipments was to develop a cost efficient system to accurately characterize, sample and analyze the waste, prepare containers and shipping paperwork, and achieve regulatory compliance while satisfying disposal facility waste acceptance criteria (WAC). This goal required the ability to evolve with the regulations, to address waste streams of varying matrices and contaminants, and to learn from each MLLW shipment campaign. These efforts have produced a successful MLLW Disposal Program at the Fernald Environmental Management Project (FEMP). FERMCO has a massed lessons learned from development of this fledgling program which may be applied complex-wide to ultimately save facilities time and money traditionally wasted by maintaining the status quo

  4. Safety Assessment of the New Very Low-Level Waste Disposal Installation at El Cabril, Spain

    International Nuclear Information System (INIS)

    Lopez, I.; Navarro, M.; Zuloaga, P.

    2009-01-01

    The sixth General Radioactive Waste Plan approved by the Spanish government in 2006, foresees important volumes of wastes with a very low content of radioactivity mainly coming from the dismantling of nuclear power plants, along with the occurrence of some radiological industrial incidents in the past. This fact has boosted the construction of a new disposal installation, specifically designed for this category of waste. This new installation is part of the existing low and intermediate level waste (LILW) disposal facility at El Cabril, and includes four cells with a total capacity of around 130,000 m 3 . The design of the cells is consistent with the European Directive for the disposal of hazardous waste and fulfils the same basic safety criteria as the present facility for LILW. The safety assessment methodology applied for the very low level waste (VLLW) installation is fully coherent with the approach adopted for the existing disposal facility for low and intermediate level waste (concrete vaults disposal system) and takes into account the potential impact of the new installation during both the operational and long-term periods. The license for the VLLW installation was granted by the Spanish Ministry of Industry, Tourism and Commerce (MITYC) in July 2008, following technical approval by the Nuclear Safety Council (CSN), and the first disposal operation occurred in October 2008. (authors)

  5. Experience in the upgrading of radioactive waste disposal facility 'Ekores'

    International Nuclear Information System (INIS)

    Rozdyalovskaya, L.

    2000-01-01

    The national Belarus radioactive disposal facility 'Ekores' is designed for waste from nuclear applications in industry, medicine and research. Currently 12-20 tons of waste and over 6000 various types spent sources annually come to the 'Ekores'. Total activity in the vaults is evaluated as 352.8 TBq. Approximately 150 000 spent sources disposed of in the vaults and wells have total activity about 1327 TBq. In 1997 the Government initiated a project for the facility reconstruction in order to upgrade radiological safety of the site by creating adequate safety conditions for managing and storage of the waste. The reconstruction project developed by Belarus specialists has been reviewed by IAEA experts. This covers modernising technologies for new coming waste and also that the waste currently disposed in the pits is retrieved, sorted and treated in the same way as the new coming waste

  6. Long term radioactive waste management policy

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.; Dina, D.

    2001-01-01

    Radioactive waste management is a key issue of the environmental policy of any company. According to the Romanian Nuclear Act (Law 111/1996) and the Environmental Protection Act (Law 137/1996) the owner is responsible for the management of all radioactive waste effluents at the nuclear installations, including the technical and cost components. The developed policy incorporates the practice in the EU Member States and in the country of the plant supplier (Canada). On short term, the priorities of our radioactive waste management policy are to extend the spent fuel storage capacity using the dry storage technology. On long term the policy includes a facilities for L/ILW packaging for disposal in a new surface repository to be built on the Cernavoda NPP site. For HLW the interim storage for about 50 years will provide the necessary time to select and implement the geological disposal, in accordance with the best international practice. (authors)

  7. Radioactive Waste Technical and Normative Aspects of its Disposal

    CERN Document Server

    Streffer, Christian; Kamp, Georg; Kröger, Wolfgang; Rehbinder, Eckard; Renn, Ortwin; Röhlig, Klaus-Jürgen

    2012-01-01

    Waste caused by the use of radioactive material in research, medicine and technologies, above all high level waste from nuclear power plants, must be disposed of safely. However, the strategies discussed for the disposal of radioactive waste as well as proposals for choosing a proper site for final waste disposal are strongly debated. An appropriate disposal must satisfy complex technical requirements and must meet stringent conditions to appropriately protect man and nature from risks of radioactivity over very long periods. Ethical, legal and social conditions must be considered as well. An interdisciplinary team of experts from relevant fields compiled the current status and developed criteria as well as strategies which meet the requirements of safety and security for present and future generations. The study also provides specific recommendations that will improve and optimize the chances for the selection of a repository site implementing the participation of stakeholders including the general public an...

  8. Performance assessment strategy for low-level waste disposal sites

    International Nuclear Information System (INIS)

    Starmer, R.J.; Deering, L.G.; Weber, M.F.

    1988-01-01

    This paper describes US Nuclear Regulatory Commission (NRC) staff views on predicting the performance of low-level radioactive waste disposal facilities. Under the Atomic Energy Act, as amended, and the Low Level Radioactive Waste Policy Act, as amended, the NRC and Agreement States license land disposal of low-level radioactive waste (LLW) using the requirements in 10 CFR Part 61 or comparable state requirements. The purpose of this paper is to briefly describe regulatory requirements for performance assessment in low-level waste licensing, a strategy for performance assessments to support license applications, and NRC staff licensing evaluation of performance assessments. NRC's current activities in developing a performance assessment methodology will provide an overall systems modeling approach for assessing the performance of LLW disposal facilities. NRC staff will use the methodology to evaluate performance assessments conducted by applicants for LLW disposal facilities. The methodology will be made available to states and other interested parties

  9. Disposal of Kitchen Waste from High Rise Apartment

    Science.gov (United States)

    Ori, Kirki; Bharti, Ajay; Kumar, Sunil

    2017-09-01

    The high rise building has numbers of floor and rooms having variety of users or tenants for residential purposes. The huge quantities of heterogenous mixtures of domestic food waste are generated from every floor of the high rise residential buildings. Disposal of wet and biodegradable domestic kitchen waste from high rise buildings are more expensive in regards of collection and vertical transportation. This work is intended to address the technique to dispose of the wet organic food waste from the high rise buildings or multistory building at generation point with the advantage of gravity and vermicomposting technique. This innovative effort for collection and disposal of wet organic solid waste from high rise apartment is more economical and hygienic in comparison with present system of disposal.

  10. Coastal circulation off Bombay in relation to waste water disposal

    Digital Repository Service at National Institute of Oceanography (India)

    Josanto, V.; Sarma, R.V.

    Flow patterns in the coastal waters of Bombay were studied using recording current meters, direct reading current meters, floats and dye in relation to the proposed waste water disposal project of the Municipal Corporation of Greater Bombay from...

  11. Review of technetium behavior in relation to nuclear waste disposal

    International Nuclear Information System (INIS)

    Paquette, J.; Reid, J.A.K.; Rosinger, E.L.J.

    1992-05-01

    This report contains available information which determine possible methods of the transfer of technetium element from waste disposal facilities to the biosphere. It also includes possible effects upon human beings and environment. 65 refs., 4 tabs., 3 figs

  12. Searching for acceptable solutions to nuclear-waste disposal

    International Nuclear Information System (INIS)

    Bernero, R.M.

    1995-01-01

    Three lettes are presented here, all addressing the problem of nuclear waste disposal. Robert M. Bernero (former director of the Office of Nuclear Material Safety and Safeguards, US NRC) points out there are only 4 options for managing toxic and nuclear waste (recycling, outer space disposal; deep-ocean disposal, geologic disposal) and that the stragegy should prevent people from inadvertently stumbling onto the waste site. Robert Holden (director nuclear Waste Program, National Congress of American Indians) uses Yucca Mountain to illustrate problems and solutions that must be implemented if tribal people's concerns are to be respected. George E. Dials (Manager, Carlsbad Area Office, US DOE) focuses on a positive assessment of WIPP as part of the solution

  13. Tank waste remediation system retrieval and disposal mission infrastructure plan

    International Nuclear Information System (INIS)

    Root, R.W.

    1998-01-01

    This system plan presents the objectives, organization, and management and technical approaches for the Infrastructure Program. This Infrastructure Plan focuses on the Tank Waste Remediation System (TWRS) Project's Retrieval and Disposal Mission

  14. Situation on regulatory aspects of underground disposal of radioactivity wastes in Japan

    International Nuclear Information System (INIS)

    Murano, T.; Asano, T.; Matsubara, N.

    1978-01-01

    At present, in Japan, there exists no law specifically regulating the underground disposal of radioactive wastes although various regulations deal with disposal safety measures in a general way. For the moment, apart from the need to gain public acceptance of such disposal, the problem is essentially one of technical feasibility, and a geological study is currently being undertaken by the Science and Technology Agency. This same Agency is also looking at the problem of a long-term waste management system, but it is the Nuclear Safety Commission, created in 1978, which will be primarily responsible for all regulatory aspects of safety. (NEA) [fr

  15. Disposal of radioactive waste. An overview of the principles involved

    International Nuclear Information System (INIS)

    1982-01-01

    Radioactive waste management strategies and practices have been reviewed in many publications. By and large these documents are technical in nature and they do not normally discuss the motives that determine which course of action should be taken. The present document concentrates on these less well defined aspects and is intended to provide a review of the philosophy underlying the current technical approach to the disposal of radioactive waste. Disposal is the final step in waste management and may be simply defined as a method of dealing with wastes for which there is no intention of retrieval

  16. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    International Nuclear Information System (INIS)

    2010-01-01

    for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd 3 ) (157,437 cubic feet (ft 3 )). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd 3 (756,999 ft 3 ) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd 3 (0.9 million ft 3 ). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls (PCBs)) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with

  17. A common framework for the safe disposal of radioactive waste

    International Nuclear Information System (INIS)

    Metcalf, P.; Barraclough, I.

    2002-01-01

    Various industrial, research and medical activities give rise to waste that contain or are contaminated with radioactive material. In view of the potential radiological hazards associated with such waste they have to be managed and disposed of in such a way as to ensure that such potential hazards are adequately managed and controlled in compliance with the safety principles and criteria. Over the past few decades experience in radioactive waste management has led to the development of various options for radioactive waste management and has also led to the development of principles which the various waste management options should satisfy in order to achieve an acceptable level of safety. International consensus has evolved in respect of the principles. However, complete consensus in respect of demonstrating compliance with the requirements for managing and disposing of the whole range of waste types is still developing. This paper identifies the various waste types that have to be managed, the prevailing safety principles and the disposal options available. It discusses the development of a common framework which would enable demonstration that a particular disposal option would meet the safety principles and requirements for the disposal of a particular waste type. (author)

  18. High-level radioactive waste disposal problem in Russia

    International Nuclear Information System (INIS)

    Velichkin, Vasily I.

    1999-01-01

    This presentation on radioactive waste management in Russia discusses criteria for the selection of disposal sites, how the various types of waste should be contained and stored, and gives a list showing the liable owner, type, volume, activity and storage place of the present amount of radioactive waste. The bulk of this waste, in volume and radioactivity, is at the enterprises of Minatom of the Russian Federation

  19. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China

    Energy Technology Data Exchange (ETDEWEB)

    Dorn, Thomas, E-mail: thomas.dorn@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Nelles, Michael, E-mail: michael.nelles@uni-rostock.de [University of Rostock, Faculty of Agricultural and Environmental Sciences, Department Waste Management, Justus-v.-Liebig-Weg 6, 18059 Rostock (Germany); Flamme, Sabine, E-mail: flamme@fh-muenster.de [University of Applied Sciences Muenster, Corrensstrasse 25, 48149 Muenster (Germany); Jinming, Cai [Hefei University of Technology, 193 Tunxi Road, 230009 Hefei (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer We outline the differences of Chinese MSW characteristics from Western MSW. Black-Right-Pointing-Pointer We model the requirements of four clusters of plant owner/operators in China. Black-Right-Pointing-Pointer We examine the best technology fit for these requirements via a matrix. Black-Right-Pointing-Pointer Variance in waste input affects result more than training and costs. Black-Right-Pointing-Pointer For China technology adaptation and localisation could become push, not pull factors. - Abstract: Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four

  20. Safety indicators for the safety assessment of radioactive waste disposal. Sixth report of the Working Group on Principles and Criteria for Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    2003-09-01

    The report describes a few indicators that are considered to be the most promising for assessing the long term safety of disposal systems. The safety indicators that are discussed here may be applicable to a range of disposal systems for different waste types, including near surface disposal facilities for low level waste. The appropriateness of the different indicators may, however, vary depending on the characteristics of the waste, the facility and the assessment context. The focus of the report is thus on the use of time-scales of containment and transport, and radionuclide concentrations and fluxes, as indicators of disposal system safety, that may complement the more usual safety indicators of dose and risk. Summarised are the broad elements that a safety case for an underground radioactive waste disposal facility should possess and the role and use of performance and safety indicators within these elements. An overview of performance and safety indicators is given. The use is discussed of dose and risk as safety indicators and, in particular, problems that can arise in their use. Also presented are some specific indicators that have the potential to be used as complementary safety indicators. Discussed is also how fluxes of naturally occurring elements and radionuclides due to the operation of natural processes such as erosion and groundwater discharge may be quantified for comparison with fluxes of waste derived contaminants

  1. Solid Waste Disposal in Chinese Cities: An Evaluation of Local Performance

    Directory of Open Access Journals (Sweden)

    Boya Zhou

    2017-12-01

    Full Text Available China meets increasingly serious solid waste problems and has adopted various policies in response in recent years. Meanwhile, few studies have investigated the performance of solid waste disposal through statistical analysis with empirical data. This study examines provincial resource use policy’s influence on the comprehensive utilization rate of industrial solid waste in Chinese cities. Through comparing results for statistical analysis in the year 2009 and 2015 by multiple linear regression analysis, this study analyzes similarities and differences in the drivers for solid waste disposal in the era of the 11th Five-Year Plan and the 12th Five-Year Plan in China. It finds that the adoption of resource use policy positively increases the comprehensive utilization rate of industrial solid waste. Other factors such as industrial SO2 emission, local environmental regulations, GDP per capita, population density and educational level also affect industrial solid waste disposal. Therefore, China should continue implementing solid waste disposal policies, upgrade current industrial systems, push forward economic and social reform and increase environmental education to enhance the effectiveness of solid waste disposal for long-term sustainable development.

  2. Waste management and treatment or disguised disposal?

    International Nuclear Information System (INIS)

    Drum, D.A.; Lauber, J.

    1992-01-01

    A number of political action groups, environmental groups, and waste management industries have purposely used medical waste data and municipal solid waste test results to mislead public officials and communities. Waste management schemes and waste treatment technologies must be measured and compared by the same test criteria. For example, anti-incineration groups often use the toxic dioxin/furan data and/or toxic metal arguments to oppose waste-to-energy incineration technologies. Comparable test data on waste management techniques such as waste composting, autoclaving, and landfilling are either nonexistent or often inappropriately applied. Integrated waste management systems require technologically accurate and complete data, environmentally-appropriate designed systems, and fiscal responsibility. The primary emphasis of waste management and treatment practices must be directed toward minimization, reuse, destruction, and detoxification of municipal solid wastes and medical wastes. The issues and alternatives will be examined

  3. Derivation of Waste Acceptance Criteria for Low and Intermediate Level Waste in Surface Disposal Facility

    International Nuclear Information System (INIS)

    Gagner, L.; Voinis, S.

    2000-01-01

    In France, low- and intermediate-level radioactive wastes are disposed in a near-surface facility, at Centre de l'Aube disposal facility. This facility, which was commissioned in 1992, has a disposal capacity of one million cubic meters, and will be operated up to about 2050. It took over the job from Centre de la Manche, which was commissioned in 1969 and shut down in 1994, after having received about 520,000 cubic meters of wastes. The Centre de l'Aube disposal facility is designed to receive a many types of waste produced by nuclear power plants, reprocessing, decommissioning, as well as by the industry, hospitals and armed forces. The limitation of radioactive transfer to man and the limitation of personnel exposure in all situations considered plausible require limiting the total activity of the waste disposed in the facility as well as the activity of each package. The paper presents how ANDRA has derived the activity-related acceptance criteria, based on the safety analysis. In the French methodology, activity is considered as end-point for deriving the concentration limits per package, whereas it is the starting point for deriving the total activity limits. For the concentration limits (called here LMA) the approach consists of five steps: the determination of radionuclides important for safety with regards to operational and long-term safety, the use of relevant safety scenarios as a tool to derive quantitative limits, the setting of dose constraint per situation associated with scenarios, the setting of contribution factor per radionuclide, and the calculation of concentration activity limits. An exhaustive survey has been performed and has shown that the totality of waste packages which should be delivered by waste generators are acceptable in terms of activity limits in the Centre de l'Aube. Examples of concentration activity limits derived from this methodology are presented. Furthermore those limits have been accepted by the French regulatory body and

  4. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  5. 40 year experience of radioactive waste disposal in France

    Energy Technology Data Exchange (ETDEWEB)

    Solente, N.; Ouzounian, G.; Dutzer, M.; Miguez, R. [ANDRA Agence Nationale pour la Gestion des Dechets Radioactifs, Chatenay-Malabry (France)

    2011-07-01

    France's experience in the management of radioactive waste is supported by forty years of operational activities in the field of surface disposal. This feedback is related to three disposal facilities: Centre de la Manche disposal, not far away Cherbourg, from design to post-closure facility; Centre at Soulaines-Dhuys from site selection to design to operation during nearly 20 years; and, Centre at Morvilliers from site selection to operation for seven years now. During the operational period of Centre de la Manche disposal facility (1969-1994), the safety concept for low-and intermediate level short lived waste (LIL-SLW) was developed and progressively incorporated in the procedures of the facility. The facility entered its institutional control period and the experience of this facility has been useful for the operating facilities. Centre de l'Aube that took over Centre de la Manche, and Morvilliers for very low level wastes. Both facilities currently accommodate the major part of the volume of radioactive wastes that are generated in France. However disposal facilities have to be considered as rare resources. Then new waste management options are being investigated as the disposal of large components or recycling metallic wastes within the nuclear industry. (author)

  6. Summary of the Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    1994-01-01

    This is the Summary of the Environmental Impact Statement (EIS) prepared by Atomic Energy of Canada Limited (AECL) on the concept for disposal of Canada's nuclear fuel waste. The proposed concept is a method for geological disposal, based on a system of natural and engineered barriers. The EIS provides information requested by the Environmental Assessment Panel reviewing the disposal concept and presents AECL's case for the acceptability of the concept. The introductory chapter of this Summary provides background information on several topics related to nuclear fuel waste, including current storage practices for used fuel, the need for eventual disposal of nuclear fuel waste, the options for disposal, and the reasons for Canada's focus on geological disposal. Chapter 2 describes the concept for disposal of nuclear fuel waste. Because the purpose of implementing the concept would he to protect human health and the natural environment far into the future, we discuss the long-term performance of a disposal system and present a case study of potential effects on human health and the natural environment after the closure of a disposal facility. The effects and social acceptability of disposal would depend greatly on how the concept was implemented. Chapter 3 describes AECL's proposed approach to concept implementation. We discuss how the public would be involved in implementation; activities that would be undertaken to protect human health, the natural environment, and the socio-economic environment; and a case study of the potential effects of disposal before the closure of a disposal facility. The last chapter presents AECL's Conclusion, based on more than 15 years of research and development, that implementation of the disposal concept represents a means by which Canada can safely dispose of its nuclear fuel waste. This chapter also presents AECL's recommendation that Canada progress toward disposal of its nuclear fuel waste by undertaking the first stage of concept

  7. Using disposal criteria for choosing waste processing strategy

    International Nuclear Information System (INIS)

    Lindberg, Maria; Andersson, Veronica

    2016-01-01

    Conclusion: • Reading the WAC for the repository will give guidance not only on what is allowed and in which amount but also on what needs to be documented; • Based on a Repository WAC a strategy to achieve allowed characteristics for the waste can be developed to ensure safety during the waste processing and disposal; • Characteristics that in some way are described in the disposal WAC is worth collecting information about; • If a waste form is not present declaring it as zero will make a clear statement instead of leaving the information field blank, in particular later on in the repository lifetime; • A Waste Type Description can only be as good as the Disposal WAC allows – but collect all info that is available even if it is not asked for yet; • Small reflection – don’t try to fit all waste into one WTD – it will only create more work than you really want

  8. Defence nuclear waste disposal in Russia. International perspective

    International Nuclear Information System (INIS)

    Stenhouse, M.J.; Kirko, V.I.

    1998-01-01

    Significant amounts of liquid and solid radioactive waste have been generated in Russia during the production of nuclear weapons, and there is an urgent need to find suitable ways to manage these wastes in a way that protects both the current population and future generations. This book contains contributions from pure and applied scientists and other representatives from Europe, North America, and Russia, who are, or have been, actively involved in the field of radioactive waste management and disposal. First-hand experience of specific problems associated with defence-related wastes in the USA and the Russian Federation is presented, and current plans are described for the disposal of solid wastes arising from civilian nuclear power production programmes in other countries, including Belgium, Bulgaria, Canada, Germany and the UK. The book provides a good insight into ongoing research at local and national level within Russia, devoted to the safe disposal of defence-related radioactive waste. It also demonstrates how existing expertise and technology from civilian nuclear waste management programmes can be applied to solving the problems created by nuclear defence programmes. Contributions address methods of immobilisation, site selection methodology, site characterisation techniques and data interpretation, the key elements of safety/performance assessments of planned deep (geological) repositories for radioactive waste, and radionuclide transport modelling. Concerns associated with certain specific nuclear waste disposal concepts and repository sites are also presented. refs

  9. Safety disposal studies of radioactive and hazardous wastes using cement

    International Nuclear Information System (INIS)

    Aly, M.M.E.

    2000-01-01

    radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials applications, agriculture and medicine. the important of safe management of radioactive waste for the protection of human health and the environment has long been recognized. conditioning of radioactive waste is the transform of radioactive waste into a suitable form for storage and disposal. common immobilization methods include solidification of low radioactive waste in cement or bitumen.in order to improve cement properties to decrease the release of liquid radioactive waste into the environment and its dispersion to a level where the risks to individuals, population and the environment

  10. Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    1994-01-01

    This report describes the many fundamental issues relating to the strategy being proposed by Atomic Energy of Canada Limited for the long-term management of nuclear fuel waste. It discusses the need for a method for disposal of nuclear fuel waste that would permanently protect human health and the natural environment and that would not unfairly burden future generations. It also describes the background and mandate of the Nuclear Fuel Waste Management Program in Canada.

  11. Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-07-01

    This report describes the many fundamental issues relating to the strategy being proposed by Atomic Energy of Canada Limited for the long-term management of nuclear fuel waste. It discusses the need for a method for disposal of nuclear fuel waste that would permanently protect human health and the natural environment and that would not unfairly burden future generations. It also describes the background and mandate of the Nuclear Fuel Waste Management Program in Canada.

  12. Waste disposal technology transfer matching requirement clusters for waste disposal facilities in China.

    Science.gov (United States)

    Dorn, Thomas; Nelles, Michael; Flamme, Sabine; Jinming, Cai

    2012-11-01

    Even though technology transfer has been part of development aid programmes for many decades, it has more often than not failed to come to fruition. One reason is the absence of simple guidelines or decision making tools that help operators or plant owners to decide on the most suitable technology to adopt. Practical suggestions for choosing the most suitable technology to combat a specific problem are hard to get and technology drawbacks are not sufficiently highlighted. Western counterparts in technology transfer or development projects often underestimate or don't sufficiently account for the high investment costs for the imported incineration plant; the differing nature of Chinese MSW; the need for trained manpower; and the need to treat flue gas, bunker leakage water, and ash, all of which contain highly toxic elements. This article sets out requirements for municipal solid waste disposal plant owner/operators in China as well as giving an attribute assessment for the prevalent waste disposal plant types in order to assist individual decision makers in their evaluation process for what plant type might be most suitable in a given situation. There is no 'best' plant for all needs and purposes, and requirement constellations rely on generalisations meaning they cannot be blindly applied, but an alignment of a type of plant to a type of owner or operator can realistically be achieved. To this end, a four-step approach is suggested and a technology matrix is set out to ease the choice of technology to transfer and avoid past errors. The four steps are (1) Identification of plant owner/operator requirement clusters; (2) Determination of different municipal solid waste (MSW) treatment plant attributes; (3) Development of a matrix matching requirement clusters to plant attributes; (4) Application of Quality Function Deployment Method to aid in technology localisation. The technology transfer matrices thus derived show significant performance differences between the

  13. Safety aspects of nuclear waste disposal in space

    Science.gov (United States)

    Rice, E. E.; Edgecombe, D. S.; Compton, P. R.

    1981-01-01

    Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.

  14. Salt disposal of heat-generating nuclear waste

    International Nuclear Information System (INIS)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  15. Low-level waste disposal site selection demonstration

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1984-01-01

    This paper discusses the results of recent studies undertaken at EPRI related to low-level waste disposal technology. The initial work provided an overview of the state of the art including an assessment of its influence upon transportation costs and waste form requirements. The paper discusses work done on the overall system design aspects and computer modeling of disposal site performance characteristics. The results of this analysis are presented and provide a relative ranking of the importance of disposal parameters. This allows trade-off evaluations to be made of factors important in the design of a shallow land burial facility. To help minimize the impact of a shortage of low-level radioactive waste disposal sites, EPRI is closely observing the development of bellweather projects for developing new sites. The purpose of this activity is to provide information about lessons learned in those projects in order to expedite the development of additional disposal facilities. This paper describes most of the major stems in selecting a low-level radioactive waste disposal site in Texas. It shows how the Texas Low-Level Radioactive Waste Disposal Authority started with a wide range of potential siting areas in Texas and narrowed its attention down to a few preferred sites. The parameters used to discriminate between large areas of Texas and, eventually, 50 candidate disposal sites are described, along with the steps in the process. The Texas process is compared to those described in DOE and EPRI handbooks on site selection and to pertinent NRC requirements. The paper also describes how an inventory of low-level waste specific to Texas was developed and applied in preliminary performance assessments of two candidate sites. Finally, generic closure requirements and closure operations for low-level waste facilities in arid regions are given

  16. Salt disposal of heat-generating nuclear waste.

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from

  17. Lining materials for waste disposal containment and waste storage facilities. (Latest citations from the NTIS bibliographic database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the design characteristics, performance, and materials used to make liners for the waste disposal and storage industry. Liners made of concrete, polymeric materials, compacted clays, asphalt, and in-situ glass are discussed. The use of these liners to contain municipal wastes, hazardous waste liquids, and both low-level and high-level radioactive wastes is presented. Liner permeability, transport, stability, construction, and design are studied. Laboratory field measurements for specific wastes are included. (Contains a minimum of 213 citations and includes a subject term index and title list.)

  18. Idaho CERCLA Disposal Facility Complex Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    W. Mahlon Heileson

    2006-10-01

    The Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility (ICDF) has been designed to accept CERCLA waste generated within the Idaho National Laboratory. Hazardous, mixed, low-level, and Toxic Substance Control Act waste will be accepted for disposal at the ICDF. The purpose of this document is to provide criteria for the quantities of radioactive and/or hazardous constituents allowable in waste streams designated for disposal at ICDF. This ICDF Complex Waste Acceptance Criteria is divided into four section: (1) ICDF Complex; (2) Landfill; (3) Evaporation Pond: and (4) Staging, Storage, Sizing, and Treatment Facility (SSSTF). The ICDF Complex section contains the compliance details, which are the same for all areas of the ICDF. Corresponding sections contain details specific to the landfill, evaporation pond, and the SSSTF. This document specifies chemical and radiological constituent acceptance criteria for waste that will be disposed of at ICDF. Compliance with the requirements of this document ensures protection of human health and the environment, including the Snake River Plain Aquifer. Waste placed in the ICDF landfill and evaporation pond must not cause groundwater in the Snake River Plain Aquifer to exceed maximum contaminant levels, a hazard index of 1, or 10-4 cumulative risk levels. The defined waste acceptance criteria concentrations are compared to the design inventory concentrations. The purpose of this comparison is to show that there is an acceptable uncertainty margin based on the actual constituent concentrations anticipated for disposal at the ICDF. Implementation of this Waste Acceptance Criteria document will ensure compliance with the Final Report of Decision for the Idaho Nuclear Technology and Engineering Center, Operable Unit 3-13. For waste to be received, it must meet the waste acceptance criteria for the specific disposal/treatment unit (on-Site or off-Site) for which it is destined.

  19. Analysis of alternatives for immobilized low activity waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Burbank, D.A.

    1997-10-28

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program.

  20. Radioactive waste disposal assessment - overview of biosphere processes and models

    International Nuclear Information System (INIS)

    Coughtrey, P.J.

    1992-09-01

    This report provides an overview of biosphere processes and models in the general context of the radiological assessment of radioactive waste disposal as a basis for HMIP's response to biosphere aspects of Nirex's submissions for disposal of radioactive wastes in a purpose-built repository at Sellafield, Cumbria. The overview takes into account published information from the UK as available from Nirex's safety and assessment research programme and HMIP's disposal assessment programme, as well as that available from studies in the UK and elsewhere. (Author)

  1. Analysis of alternatives for immobilized low-activity waste disposal

    International Nuclear Information System (INIS)

    Burbank, D.A.

    1997-01-01

    This report presents a study of alternative disposal system architectures and implementation strategies to provide onsite near-surface disposal capacity to receive the immobilized low-activity waste produced by the private vendors. The analysis shows that a flexible unit strategy that provides a suite of design solutions tailored to the characteristics of the immobilized low-activity waste will provide a disposal system that best meets the program goals of reducing the environmental, health, and safety impacts; meeting the schedule milestones; and minimizing the life-cycle cost of the program

  2. Dismantlement of waste disposal site in the Musashi Reactor Facility

    International Nuclear Information System (INIS)

    Uchiyama, Takafumi; Morishima, Kayoko; Tanzawa, Tomio; Mitsuhashi, Ishi; Matsumoto, Tetsuo

    2012-01-01

    The decommissioning of the Musashi reactor was decided in 2003. Liquid waste management facility and solid waste management facility at the waste disposal site had been dismantled and removed. After separating nonradioactive wastes from radioactive wastes with confirmation test of no detectable radioactivity, the system of incinerator, electrical components, feedwater and stock solution processing system, and waste treatment facility were dismantled as nonradioactive wastes from 2011 to 2012. Separating waterproof painting and additional shaving of stock solution storage tanks and scraping of concrete floor surfaces were conducted to separate radioactive wastes. Solid waste storage warehouse was also dismantled in 2012. Radioactive wastes packed in containers were moved and stored in the reactor facility. (T. Tanaka)

  3. Compaction of solid wastes in countries without disposal facility: A prelude of future troubles

    International Nuclear Information System (INIS)

    Benitez-Navarro, J.C.; Salgado-Mojena, M.

    2002-01-01

    This paper is intended to launch a technical debate, which will lead up to simple recommendations on what to do with compactable solid wastes in countries without disposal facilities. The paper discusses the problems caused by some practical uncertainties in the long-term management of the radioactive solid wastes produced outside the nuclear fuel cycle, in countries belonging to Groups A, B and C. Compaction is the preferred volume reduction method. But the compacted solid wastes are very probably not in a suitable form for future disposal and would need to be processed again in the near future. (author)

  4. Methodology of safety evaluation about land disposal of low level radioactive wastes

    International Nuclear Information System (INIS)

    Suzuki, Atsuyuki

    1986-01-01

    Accompanying the progress of the construction project of low level radioactive waste storage facilities in Aomori Prefecture, the full scale land disposal of low level radioactive wastes shows its symptom also in Japan. In this report, the scientific methodology to explain the safety about the land disposal of low level radioactive wastes is discussed. The land disposal of general wastes by shallow burying has already had sufficient results. In the case of low level radioactive wastes, also the land disposal by shallow burying is considered. Low level radioactive wastes can be regarded as one form of industrial wastes, as there are many common parts in the scientific and theoretical base of the safety. Attention is paid most to the contamination of ground water. Low level radioactive wastes are solid wastes, accordingly the degree of contamination should be less. The space in which ground water existes, the phenomena of ground water movement, the phenomena of ground water dispersion and Fick's law, the adsorption effect of strata, and the evaluation of source term are explained. These are the method to analyze the degree of contamination from safety evaluation viewpoint. (Kako, I.)

  5. International co-operation with regard to regional repositories for radioactive waste disposal

    International Nuclear Information System (INIS)

    Bredell, P.J.; Fuchs, H.D.

    1997-01-01

    The feasibility of an international waste management system for high level radioactive waste (HLW) and spent nuclear fuel (SNF), based on common interim storage, conditioning and final disposal facilities has been investigated. The approach adopted in this investigation was first, to establish the need for an international waste management facility of this kind; second, to define the system concept; third, to evaluate the concept in terms of its technical, economic, financial, institutional and ethical aspects; fourth, to examine the potential benefits of the system; and finally, to propose typical stakeholder profiles for participants in the system. The system concept appears to be entirely feasible from the point of view of a group of countries, each of which is generating HLW and SNF in such quantities as to render individual domestic final disposal facilities unrealistic, wishing to dispose of this material in a common safe and viable disposal facility provided by one of the participating countries. (author)

  6. Nuclear waste disposal: alternatives to solidification in glass proposed

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1979-01-01

    More than a quarter-million cubic meters of liquid radioactive wastes are now being held at government installations awaiting final disposal. During the past 20 years, the disposal plan of choice has been to incorporate the 40 to 50 radioactive elements dissolved in liquid wastes into blocks of glass, seal the glass in metal canisters, and insert the canisters into deep, geologically stable salt beds. Over the last few years, some geologists and materials scientists have become concerned that perhaps not enough is known yet about the interaction of waste, container, and salt (or any rock) to have a reasonable assurance that the hazardous wastes will be contained successfully. The biggest advantage of glass at present is the demonstrated practicality of producing large, highly radioactive blocks of it. The frontrunner as a successor to glass is ceramics, which are nonmetallic crystalline materials formed at high temperature, such as chinaware or natural minerals. An apparent advantage of ceramics is that they already have an ordered atomic structure, whose properties can be tailored to a particular waste element and to conditions of a specific disposal site. A ceramic tailored for waste disposal called supercalcine-ceramic has been developed. It was emphasized that the best minerals for waste solidification may be those that have proved most stable under natural conditions over geologic time. Disadvantage to ceramics are radiation damage and transmutation. However, it is now obvious that some ceramics are more stable than glass under certain conditions. Metal-encapsulated ceramic, called cermet, is being developed as a waste form. Cermets are considerably more resistant at 100 0 C than a borosilicate waste glass. Researchers are now testing prospective waste forms under the most extreme conditions that might prevail in a waste disposal site

  7. Hospital infections waste and its proper disposal

    International Nuclear Information System (INIS)

    Bhatti, A.Q.; Memon, A.A.; Mahar, R.B.

    2002-01-01

    Hazardous hospital waste is a unique in several ways. There are a large variety of wastes but volume is a small relative to industrial wastes. Hospital infections solid waste is getting to be serious problem day by day. This waste contribute to the overall pollution in the city; much of it is also hazardous, thus putting at risk the health of those who come into contact with it. This paper addresses the various aspects of incineration, recycling and landfill process with detailed illustration. Hospital waste management in rural hospitals of Pakistan with particular reference to Gambat Hospital is discussed in this paper, including study of existing waste management system, estimation of waste production per day from different sources of Hospital and suitable waste management system is recommended. (author)

  8. Source term development for tritium at the Sheffield disposal site

    International Nuclear Information System (INIS)

    MacKenzie, D.R.; Barletta, R.E.; Smalley, J.F.; Kempf, C.R.; Davis, R.E.

    1984-01-01

    The Sheffield low-level radioactive waste disposal site, which ceased operation in 1978, has been the focus of modeling efforts by the NRC for the purpose of predicting long-term site behavior. To provide the NRC with the information required for its modeling effort, a study to define the source term for tritium in eight trenches at the Sheffield site has been undertaken. Tritium is of special interest since significant concentrations of the isotope have been found in groundwater samples taken at the site and at locations outside the site boundary. Previous estimates of tritium site inventory at Sheffield are in wide disagreement. In this study, the tritium inventory in the eight trenches was estimated by reviewing the radioactive shipping records (RSRs) for waste buried in these trenches. It has been found that the tritium shipped for burial at the site was probably higher than previously estimated. In the eight trenches surveyed, which amount to roughly one half the total volume and activity buried at Sheffield, approximately 2350 Ci of tritium from non-fuel cycle sources were identified. The review of RSRs also formed the basis for obtaining waste package descriptions and for contacting large waste generators to obtain more detailed information regarding these waste packages. As a result of this review and the selected generator contacts, the non-fuel cycle tritium waste was categorized. The tritium releases from each of these waste categories were modeled. The results of this modeling effort are presented for each of the eight trenches selected. 3 references, 2 figures

  9. Process for preparing wastes for non-pollutant disposal

    International Nuclear Information System (INIS)

    Debus, A.A.G.; Rosenstiel, T.L.

    1982-01-01

    In disposing of wastes, especially those containing radioactive or toxic substances, wherein the liquid or finely divided solid waste is mixed with water and a hydraulic binder and allowed to set, the binder used comprises a mixture of calcium sulphate hemihydrate, a water-dispersible melamine formaldehyde resin which when cured is hydrophobic and sufficient cross-linking agent to cure the resin. (author)

  10. Materials aspects of nuclear waste disposal in Canada

    International Nuclear Information System (INIS)

    Cameron, D.J.; Strathdee, G.G.

    1979-01-01

    The concept of disposal of nuclear waste in a deep, hard-rock vault raises a number of questions concerning the behavior of materials. The man-made materials under consideration are the waste form, engineered containment, and the buffer and backfill materials. The general approach to developing each of these barriers is presented

  11. Evaluation of Solid Waste Generation, Categories and Disposal ...

    African Journals Online (AJOL)

    The quantity and rate of solid waste generation in several cities in Nigeria, factors influencing the generation, solid waste types and categories, collection, disposal, reuse and recycling, and environmental problems were investigated in this study. The results indicated large generation at high rate without a corresponding ...

  12. Mobile fission and activation products in nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Umeki, H.; Evans, N.; Czervinski, K.; Bruggeman, Ch.; Poineau, F.; Breynaert, A.; Reiler, P.; Pablo, J. de; Pipon, Y.; Molnar, M.; Nishimura, T.; Kienzler, B.; Van Iseghem, P.; Crovisier, J.L.; Wieland, E.; Mace, N.; Pablo, J. de; Spahiu, K.; Cui, D.; Lida, Y.; Charlet, L.; Liu, X.; Sato, H.; Goutelard, F.; Savoye, S.; Glaus, M.; Poinssot, C.; Seby, F.; Sato, H.; Tournassat, Ch.; Montavon, G.; Rotenberg, B.; Spahiu, K.; Smith, G.; Marivoet, J.; Landais, P.; Bruno, J.; Johnson, H.; Umeki, L.; Geckeis, H.; Giffaut, E.; Grambow, B.; Dierckx, A

    2007-07-01

    This document gathers 33 oral presentations that were made at this workshop dedicated to the mobility of some radionuclides in nuclear waste disposal. The workshop was organized into 6 sessions: 1) performance assessment, 2) speciation/interaction in aqueous media, 3) radioactive wastes, 4) redox processes at interfaces, 5) diffusion processes, and 6) retention processes.

  13. Determinants of Solid Waste Disposal Practices in Urban Areas of ...

    African Journals Online (AJOL)

    Waste management is a growing public concern in Ethiopia. This study examined the patterns and determinants of solid waste disposal practices adopted by families using a random sample of 200 households from Jimma town. The descriptive results revealed that open-dumping, burying, burning and composting are the ...

  14. Radiaoctive waste packaging for transport and final disposal

    International Nuclear Information System (INIS)

    Suarez, A.A.

    1989-01-01

    Prior and after the conditioning of radioactive wastes is the packaging design of uppermost importance since it will be the first barrier against water and human intrusion. The choice of the proper package according waste category as well criteria utilized for final disposal are shown. (author) [pt

  15. Project of the century. Nuclear waste disposal; Jahrhundertprojekt Endlagerung

    Energy Technology Data Exchange (ETDEWEB)

    Brunnengraeber, Achim [Freie Univ. Berlin (Germany). Forschungszentrum fuer Umweltpolitik (FFU)

    2017-09-01

    In Germany - as worldwide - no final repository for radioactive wastes from nuclear power plants exists. The interdisciplinary contribution is focused on the question how the new political developments based on the work of the final repository commission will proceed with respect to the site selection. Possible challenges arising on the way to final waste disposal are discussed.

  16. Mobile fission and activation products in nuclear waste disposal

    International Nuclear Information System (INIS)

    Umeki, H.; Evans, N.; Czervinski, K.; Bruggeman, Ch.; Poineau, F.; Breynaert, A.; Reiler, P.; Pablo, J. de; Pipon, Y.; Molnar, M.; Nishimura, T.; Kienzler, B.; Van Iseghem, P.; Crovisier, J.L.; Wieland, E.; Mace, N.; Pablo, J. de; Spahiu, K.; Cui, D.; Lida, Y.; Charlet, L.; Liu, X.; Sato, H.; Goutelard, F.; Savoye, S.; Glaus, M.; Poinssot, C.; Seby, F.; Sato, H.; Tournassat, Ch.; Montavon, G.; Rotenberg, B.; Spahiu, K.; Smith, G.; Marivoet, J.; Landais, P.; Bruno, J.; Johnson, H.; Umeki, L.; Geckeis, H.; Giffaut, E.; Grambow, B.; Dierckx, A.

    2007-01-01

    This document gathers 33 oral presentations that were made at this workshop dedicated to the mobility of some radionuclides in nuclear waste disposal. The workshop was organized into 6 sessions: 1) performance assessment, 2) speciation/interaction in aqueous media, 3) radioactive wastes, 4) redox processes at interfaces, 5) diffusion processes, and 6) retention processes

  17. Household Solid Waste Disposal in Public Housing Estates in Awka ...

    African Journals Online (AJOL)

    The study identified solid waste disposal methods from the households in AHOCOL, Udoka, Iyiagu and Real Housing Estates with an intention to make ... introduction of removable solid waste dumping system and the revitalization of Anambra State Environmental Sanitation and Protection Agency (ANSEPA) in the state.

  18. The diffusion of differentiated waste disposal taxes in the Netherlands

    NARCIS (Netherlands)

    Heijnen, P.

    2007-01-01

    The diffusion of a novel taxing scheme among Dutch municipalities in the period 1998-2005 is studied. In this taxing scheme the waste disposal tax is made dependent on the amount of waste a household produces. Inspecting the pattern of the introduction of this tariff, it seems to be contagious: the

  19. The choice of locations for disposal of dangerous (radioactive) waste

    International Nuclear Information System (INIS)

    Hisschemoller, M.; Midden, C.J.H.; Stallen, P.J.; Rijksuniversiteit Leiden; Nederlandse Centrale Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek, The Hague)

    1985-11-01

    In this report a managerial and psychological analysis, based on literature study and case analysis, is presented of various policy strategies which are or can be followed by governments in decisions about disposal of dangerous waste. Special attention is given to radioactive waste. (Auth.)

  20. Conceptual design report for Central Waste Disposal Facility

    International Nuclear Information System (INIS)

    1984-01-01

    The permanent facilities are defined, and cost estimates are provided for the disposal of Low-Level Radioactive Wastes (LLW) at the Central Waste Disposal Facility (CWDF). The waste designated for the Central Waste Disposal Facility will be generated by the Y-12 Plant, the Oak Ridge Gaseous Diffusion Plant, and the Oak Ridge National Laboratory. The facility will be operated by ORNL for the Office of Defense Waste and By-Products Management of the Deparment of Energy. The CWDF will be located on the Department of Energy's Oak Ridge Reservation, west of Highway 95 and south of Bear Creek Road. The body of this Conceptual Design Report (CDR) describes the permanent facilities required for the operation of the CWDF. Initial facilities, trenches, and minimal operating equipment will be provided in earlier projects. The disposal of LLW will be by shallow land burial in engineered trenches. DOE Order 5820 was used as the performance standard for the proper disposal of radioactive waste. The permanent facilities are intended for beneficial occupancy during the first quarter of fiscal year 1989. 3 references, 9 figures, 7 tables

  1. Studies of reactor waste conditioning and disposal at CRNL

    International Nuclear Information System (INIS)

    Beamer, N.V.; Bourne, W.T.; Buckely, L.P.; Pettipas, W.H.; Burrill, K.A.; Dixon, D.F.; Charlesworth, D.H.

    1982-09-01

    This report is a compilation of five papers presented at the Second Annual Meeting of the Canadian Nuclear Society in Ottawa, 1981 June. These papers describe recent progress in studies being conducted at the Chalk River Nuclear Laboratories related to the permanent disposal of low-and intermediate-level wastes arising in the Canadian nuclear industry. The principal topics discussed include waste processing by incineration, ultrafiltration and reverse osmosis, immobilization in bitumen and glass, and also the strategy for disposal of the conditioned wastes

  2. Treatment and disposal techniques of dangerous municipal solid wastes

    International Nuclear Information System (INIS)

    Beone, G.; Carbone, A.I.; Zagaroli, M.

    1989-01-01

    This paper describes the qualitative and quantitative features of the different types of dangerous municipal solid wastes, according to Italian law. In the second part the impact on environment and man health is presented. This impact should be minimized by suitable controlled disposal techniques, which differ from other municipal waste treatments. Finally, the paper deals with the most appropriate systems for treatment and disposal of such kind of waste. Particularly, some research activities in the field of metal recovery from used batteries, sponsored by ENEA, and carrying out by private companies, are described. (author)

  3. High-level radioactive waste disposal type and theoretical analyses

    International Nuclear Information System (INIS)

    Lu Yingfa; Wu Yanchun; Luo Xianqi; Cui Yujun

    2006-01-01

    Study of high-level radioactive waste disposal is necessary for the nuclear electrical development; the determination of nuclear waste depository type is one of importance safety. Based on the high-level radioactive disposal type, the relative research subjects are proposed, then the fundamental research characteristics of nuclear waste disposition, for instance: mechanical and hydraulic properties of rock mass, saturated and unsaturated seepage, chemical behaviors, behavior of special soil, and gas behavior, etc. are introduced, the relative coupling equations are suggested, and a one dimensional result is proposed. (authors)

  4. Ultimate disposal of radioactive waste - Long-term safe containment. Also a contribution to giving concrete shape to our reponsibility towards the life of future generations

    International Nuclear Information System (INIS)

    Naeser, H.W.; Oberpottkamp, U.

    1995-01-01

    A fundamental issue arising in connection with the plan approval procedure for the construction and operation of radwaste repositories is the question whether the documentation submitted in evidence of appropriate precaution being taken according to the state of the art in science and technology to prevent damage to the population and the environment, is to include evidence that the precautions envisaged and their efficiency can be maintained by the operator over a prolonged period of time. The opinion of the authors is that demanding such evidence of long-term safe containment of hazardous waste is in agreement with Art. 20 a GG (German Constitution) and is to be given for the full period of time that is accessible to assessment and computation using the state-of-the-art means and technology, yielding reliable scientific results void of any data of a speculative nature. Computed evidence is to be submitted for this period of time in compliance with the means and principles given in section 45 StrlSchV (Radiation Protection Ordinance). The article thus is a contribution to giving more concrete shape to the responsibility towards future generations. (orig.) [de

  5. Ethical aspects in connection with the disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Boetsch, W.

    2003-01-01

    The progress of modern natural and technological science and their far-reaching consequences affecting the distant future require increasingly practice-oriented ethical concepts. In the discussions about responseable acting, the question of the ethical tenability of nuclear energy nowadays takes a special position. Above all the problem of the disposal of radioactive wastes - the effects of which on the distant future have to be prognosticated - is controversially discussed in society. The Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) commissioned Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS) in the context of the project ''Disposal of radioactive wastes in the context of ethical objectives'' to summarise the current national and international status of ethical aspects in connection with the disposal of radioactive wastes. One aim of this report is to derive criteria to form the basis of a comprehensive discussion of the ethical aspects of the disposal of radioactive wastes. These criteria are to describe, as far as possible, all content-related aspects that result from radioactive waste disposal. The issues in this report resulting from the opinions, comments and publications presented are to serve as a basis for an experts' meeting at which the important ethical criteria concerning the responsible management of radioactive waste disposal are to be discussed at an interdisciplinary level with all those involved. The results of this report are based on an investigation which gathered the available national and international statements, principles, and criteria relating to the ethical aspects of the disposal of radioactive wastes and to sustainable development in the context of the technological impact assessment up to beginning of 2000. In the meantime, the debate in Germany has become somewhat more pragmatic, i. a. due to the work of the research group ''Arbeitskreis Auswahlverfahren Endlagerstandorte (AkEnd)'' and

  6. Regulating the disposal of cigarette butts as toxic hazardous waste.

    Science.gov (United States)

    Barnes, Richard L

    2011-05-01

    The trillions of cigarette butts generated each year throughout the world pose a significant challenge for disposal regulations, primarily because there are millions of points of disposal, along with the necessity to segregate, collect and dispose of the butts in a safe manner, and cigarette butts are toxic, hazardous waste. There are some hazardous waste laws, such as those covering used tyres and automobile batteries, in which the retailer is responsible for the proper disposal of the waste, but most post-consumer waste disposal is the responsibility of the consumer. Concepts such as extended producer responsibility (EPR) are being used for some post-consumer waste to pass the responsibility and cost for recycling or disposal to the manufacturer of the product. In total, 32 states in the US have passed EPR laws covering auto switches, batteries, carpet, cell phones, electronics, fluorescent lighting, mercury thermostats, paint and pesticide containers, and these could be models for cigarette waste legislation. A broader concept of producer stewardship includes EPR, but adds the consumer and the retailer into the regulation. The State of Maine considered a comprehensive product stewardship law in 2010 that is a much better model than EPR. By using either EPR or the Maine model, the tobacco industry will be required to cover the cost of collecting and disposing of cigarette butt waste. Additional requirements included in the Maine model are needed for consumers and businesses to complete the network that will be necessary to maximise the segregation and collection of cigarette butts to protect the environment.

  7. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    International Nuclear Information System (INIS)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-01-01

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  8. Modeling Coupled Processes in Clay Formations for Radioactive Waste Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hui-Hai; Rutqvist, Jonny; Zheng, Liange; Sonnenthal, Eric; Houseworth, Jim; Birkholzer, Jens

    2010-08-31

    As a result of the termination of the Yucca Mountain Project, the United States Department of Energy (DOE) has started to explore various alternative avenues for the disposition of used nuclear fuel and nuclear waste. The overall scope of the investigation includes temporary storage, transportation issues, permanent disposal, various nuclear fuel types, processing alternatives, and resulting waste streams. Although geologic disposal is not the only alternative, it is still the leading candidate for permanent disposal. The realm of geologic disposal also offers a range of geologic environments that may be considered, among those clay shale formations. Figure 1-1 presents the distribution of clay/shale formations within the USA. Clay rock/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at Mol site, Belgium (Barnichon et al., 2005) have all been under intensive scientific investigations (at both field and laboratory scales) for understanding a variety of rock properties and their relations with flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated and plastic clays (Tsang et al., 2005). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. For both clay rocks, coupled thermal, hydrological, mechanical and chemical (THMC) processes are expected to have a significant impact on the long-term safety of a clay repository. For

  9. INEEL special case waste storage and disposal alternatives

    International Nuclear Information System (INIS)

    Larson, L.A.; Bishop, C.W.; Bhatt, R.N.

    1997-07-01

    Special case waste is historically defined as radioactive waste that does not have a path forward or fit into current Department of Energy management plans for final treatment or disposal. The objectives of this report, relative to special case waste at the Idaho National Engineering and Environmental Laboratory, are to (a) identify its current storage locations, conditions, and configuration; (b) review and verify the currently reported inventory; (c) segregate the inventory into manageable categories; (d) identify the portion that has a path forward or is managed under other major programs/projects; (e) identify options for reconfiguring and separating the disposable portions; (f) determine if the special case waste needs to be consolidated into a single storage location; and (g) identify a preferred facility for storage. This report also provides an inventory of stored sealed sources that are potentially greater than Class C or special case waste based on Nuclear Regulatory Commission and Site-Specific Waste Acceptance Criteria

  10. Classification and disposal of radioactive wastes: History and legal and regulatory requirements

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This document discusses the laws and regulations in the United States addressing classification of radioactive wastes and the requirements for disposal of different waste classes. This review emphasizes the relationship between waste classification and the requirements for permanent disposal

  11. Progress on developing expert systems in waste management and disposal

    International Nuclear Information System (INIS)

    Rivera, A.L.; Ferrada, J.J.

    1990-01-01

    The concept of artificial intelligence (AI) represents a challenging opportunity in expanding the potential benefits from computer technology in waste management and disposal. The potential of this concept lies in facilitating the development of intelligent computer systems to help analysts, decision makers, and operators in waste and technology problem solving similar to the way that machines support the laborer. Because the knowledge of multiple human experts is an essential input in the many aspects of waste management and disposal, there are numerous opportunities for the development of expert systems using software products from AI. This paper presents systems analysis as an attractive framework for the development of intelligent computer systems of significance to waste management and disposal, and it provides an overview of limited prototype systems and the commercially available software used during prototype development activities

  12. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-01-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  13. Microbial processes in radioactive waste disposal

    International Nuclear Information System (INIS)

    Pedersen, Karsten

    2000-04-01

    Independent scientific work has unambiguously demonstrated life to be present in most deep geological formations investigated, down to depths of several kilometres. Microbial processes have consequently become an integral part of the performance safety assessment of high-level radioactive waste (HLW) repositories. This report presents the research record from the last decade of the microbiology research programme of the Swedish Nuclear Fuel and Waste Management Company (SKB) and gives current perspectives of microbial processes in HLW disposal. The goal of the microbiology programme is to understand how microbes may interact with the performance of a future HLW repository. First, for those who are not so familiar with microbes and their ways of living, the concept of 'microbe' is briefly defined. Then, the main characteristics of recognised microbial assemblage and microbial growth, activity and survival are given. The main part of the report summarises data collected during the research period of 1987-1999 and interpretations of these data. Short summaries introduce the research tasks, followed by reviews of the results and insight gained. Sulphate-reducing bacteria (SRB) produce sulphide and have commonly been observed in groundwater environments typical of Swedish HLW repositories. Consequently, the potential for sulphide corrosion of the copper canisters surrounding the HLW must be considered. The interface between the copper canister and the buffer is of special concern. Despite the fact that nowhere are the environmental constraints for life as strong as here, it has been suggested that SRB could survive and locally produce sulphide in concentrations large enough to cause damage to the canister. Experiments conducted thus far have indicated the opposite. Early studies in the research programme revealed previously unknown microbial ecosystems in igneous rock aquifers at depths exceeding 1000 m. This discovery triggered a thorough exploration of the

  14. Microbial processes in radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, Karsten [Goeteborg Univ. (Sweden). Dept. of Cell and Molecular Biology, Microbiology

    2000-04-15

    Independent scientific work has unambiguously demonstrated life to be present in most deep geological formations investigated, down to depths of several kilometres. Microbial processes have consequently become an integral part of the performance safety assessment of high-level radioactive waste (HLW) repositories. This report presents the research record from the last decade of the microbiology research programme of the Swedish Nuclear Fuel and Waste Management Company (SKB) and gives current perspectives of microbial processes in HLW disposal. The goal of the microbiology programme is to understand how microbes may interact with the performance of a future HLW repository. First, for those who are not so familiar with microbes and their ways of living, the concept of 'microbe' is briefly defined. Then, the main characteristics of recognised microbial assemblage and microbial growth, activity and survival are given. The main part of the report summarises data collected during the research period of 1987-1999 and interpretations of these data. Short summaries introduce the research tasks, followed by reviews of the results and insight gained. Sulphate-reducing bacteria (SRB) produce sulphide and have commonly been observed in groundwater environments typical of Swedish HLW repositories. Consequently, the potential for sulphide corrosion of the copper canisters surrounding the HLW must be considered. The interface between the copper canister and the buffer is of special concern. Despite the fact that nowhere are the environmental constraints for life as strong as here, it has been suggested that SRB could survive and locally produce sulphide in concentrations large enough to cause damage to the canister. Experiments conducted thus far have indicated the opposite. Early studies in the research programme revealed previously unknown microbial ecosystems in igneous rock aquifers at depths exceeding 1000 m. This discovery triggered a thorough exploration of the

  15. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  16. Annual report 1999. Department of wastes disposal and storage

    International Nuclear Information System (INIS)

    2000-01-01

    This annual report presents the organization, the personnel, the collaborations, the scientific researches and the publications of the Department of wastes disposal and storage of the CEA. A thematic presentation of the research and development programs is provided bringing information on the liquid effluents processing, the materials and solid wastes processing, the wastes conditioning, the characterization, the storage, the radionuclides chemistry and migration, the dismantling and the environment. (A.L.B.)

  17. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    International Nuclear Information System (INIS)

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning

  18. Geologic disposal of nuclear wastes: salt's lead is challenged

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1979-01-01

    The types of radioactive waste disposal sites available are outlined. The use of salt deposits and their advantages are discussed. The reasons for the selection of the present site for the Waste Isolation Pilot Plant are presented. The possibilities of using salt domes along the Gulf Coast and not-salt rocks as nuclear waste repositories are also discussed. The sea bed characteristics are described and advantages of this type of site selection are presented

  19. FIELD VALIDATION OF CORROSION RATES FOR LOW-LEVEL WASTE DISPOSAL PERFORMANCE ASSESSMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Flitton, M.K. Adler; Seitz, R.R.

    2003-02-27

    Research is being conducted at the Idaho National Engineering and Environmental Laboratory to assess corrosion rates of metals in the subsurface environment in direct support of waste management operations and environmental restoration activities. This research addresses a need identified by Department of Energy-Headquarters when reviewing the performance assessment for the low-level waste disposal facility at the Radioactive Waste Management Complex. Corrosion rates are a key factor determining release rates of long-lived radionuclides from activated metal waste streams. Radionuclide releases from these wastes are key contributors to the projected long-term dose associated with the disposal facility. Short-term results from the corrosion samples buried for one and three years suggest that the corrosion rates assumed for the assessments are conservative. However, the rates appear to be increasing, thus, future retrievals of coupons will be used to identify whether the increasing trend continues.

  20. Ocean disposal option for bulk wastes containing naturally occurring radionuclides: an assessment case history

    International Nuclear Information System (INIS)

    Stull, E.A.; Merry-Libby, P.

    1985-01-01

    There are 180,000 m 3 of slightly contaminated radioactive wastes (36 pCi/g radium-226) currently stored at the US Department of Energy's Niagara Falls Storage Site (NFSS), near Lewiston, New York. These wastes resulted from the cleanup of soils that were contaminated above the guidelines for unrestricted use of property. An alternative to long-term management of these wastes on land is dispersal in the ocean. A scenario for ocean disposal is presented for excavation, transport, and emplacement of these wastes in an ocean disposal site. The potential fate of the wastes and impacts on the ocean environment are analyzed, and uncertainties in the development of two worst-case scenarios for dispersion and pathway analyses are discussed. Based on analysis of a worst-case pathway back to man, the incremental dose from ingesting fish containing naturally occurring radionuclides from ocean disposal of the NFSS wastes is insignificant. Ocean disposal of this type of waste appears to be a technically promising alternative to the long-term maintenance costs and eventual loss of containment associated with management in a near-surface land burial facility