WorldWideScience

Sample records for term axon maintenance

  1. Sensory axon-derived neuregulin-1 is required for axoglial signaling and normal sensory function but not for long-term axon maintenance

    DEFF Research Database (Denmark)

    Fricker, F.R.; Zhu, N.; Tsantoulas, C.

    2009-01-01

    to represent large-diameter axons that have failed to myelinate. Conditional neuregulin-1 ablation resulted in a reduced sensitivity to noxious mechanical stimuli. These findings emphasize the importance of neuregulin-1 in mediating the signaling between axons and both myelinating and nonmyelinating Schwann...... cells required for normal sensory function. Sensory neuronal survival and axonal maintenance, however, are not dependent on axon-derived neuregulin-1 signaling in adulthood Udgivelsesdato: 2009/6/17...

  2. Sensory axon-derived neuregulin-1 is required for axoglial signaling and normal sensory function but not for long-term axon maintenance

    DEFF Research Database (Denmark)

    Fricker, F.R.; Zhu, N.; Tsantoulas, C.

    2009-01-01

    Neuregulin-1 has a key role in mediating signaling between axons and Schwann cells during development. A limitation to studying its role in adulthood is the embryonic lethality of global Nrg1 gene deletion. We used the Cre-loxP system to generate transgenic mice in which neuregulin-1 is condition......Neuregulin-1 has a key role in mediating signaling between axons and Schwann cells during development. A limitation to studying its role in adulthood is the embryonic lethality of global Nrg1 gene deletion. We used the Cre-loxP system to generate transgenic mice in which neuregulin-1...... is conditionally ablated in the majority of small-diameter and a proportion of large-diameter sensory neurons that have axons conducting in the C- and Adelta-fiber range, respectively. Sensory neuron-specific neuregulin-1 ablation resulted in abnormally large Remak bundles with axons clustered in "polyaxonal...... cells required for normal sensory function. Sensory neuronal survival and axonal maintenance, however, are not dependent on axon-derived neuregulin-1 signaling in adulthood Udgivelsesdato: 2009/6/17...

  3. Schwann cell mitochondria as key regulators in the development and maintenance of peripheral nerve axons.

    Science.gov (United States)

    Ino, Daisuke; Iino, Masamitsu

    2017-03-01

    Formation of myelin sheaths by Schwann cells (SCs) enables rapid and efficient transmission of action potentials in peripheral axons, and disruption of myelination results in disorders that involve decreased sensory and motor functions. Given that construction of SC myelin requires high levels of lipid and protein synthesis, mitochondria, which are pivotal in cellular metabolism, may be potential regulators of the formation and maintenance of SC myelin. Supporting this notion, abnormal mitochondria are found in SCs of neuropathic peripheral nerves in both human patients and the relevant animal models. However, evidence for the importance of SC mitochondria in myelination has been limited, until recently. Several studies have recently used genetic approaches that allow SC-specific ablation of mitochondrial metabolic activity in living animals to show the critical roles of SC mitochondria in the development and maintenance of peripheral nerve axons. Here, we review current knowledge about the involvement of SC mitochondria in the formation and dysfunction of myelinated axons in the peripheral nervous system.

  4. Axonal protection by short-term hyperglycemia with involvement of autophagy in TNF-induced optic nerve degeneration

    Directory of Open Access Journals (Sweden)

    Kana eSase

    2015-10-01

    Full Text Available Previous reports showed that short-term hyperglycemia protects optic nerve axons in a rat experimental hypertensive glaucoma model. In this study, we investigated whether short-term hyperglycemia prevents tumor necrosis factor (TNF-induced optic nerve degeneration in rats and examined the role of autophagy in this axon change process. In phosphate-buffered saline-treated rat eyes, no significant difference in axon number between the normoglycemic (NG and streptozotocin-induced hyperglycemic (HG groups was seen at 2weeks. Substantial degenerative changes in the axons were noted 2 weeks after intravitreal injection of TNF in the NG group. However, the HG group showed significant protective effects on axons against TNF-induced optic nerve degeneration compared with the NG group. This protective effect was significantly inhibited by 3-methyladenine, an autophagy inhibitor. Immunoblot analysis showed that the LC3-II level in the optic nerve was increased in the HG group compared with the NG group. Increased p62 protein levels in the optic nerve after TNF injection was observed in the NG group, and this increase was inhibited in the HG group. Electron microscopy showed that autophagosomes were increased in optic nerve axons in the HG group. Immunohistochemical study showed that LC3 was colocalized with nerve fibers in the retina and optic nerve in both the NG and HG groups. Short-term hyperglycemia protects axons against TNF-induced optic nerve degeneration. This axonal-protective effect may be associated with autophagy machinery.

  5. Protein synthesis in axons and terminals: significance for maintenance, plasticity and regulation of phenotype. With a critique of slow transport theory.

    Science.gov (United States)

    Alvarez, J; Giuditta, A; Koenig, E

    2000-09-01

    This article focuses on local protein synthesis as a basis for maintaining axoplasmic mass, and expression of plasticity in axons and terminals. Recent evidence of discrete ribosomal domains, subjacent to the axolemma, which are distributed at intermittent intervals along axons, are described. Studies of locally synthesized proteins, and proteins encoded by RNA transcripts in axons indicate that the latter comprise constituents of the so-called slow transport rate groups. A comprehensive review and analysis of published data on synaptosomes and identified presynaptic terminals warrants the conclusion that a cytoribosomal machinery is present, and that protein synthesis could play a role in long-term changes of modifiable synapses. The concept that all axonal proteins are supplied by slow transport after synthesis in the perikaryon is challenged because the underlying assumptions of the model are discordant with known metabolic principles. The flawed slow transport model is supplanted by a metabolic model that is supported by evidence of local synthesis and turnover of proteins in axons. A comparison of the relative strengths of the two models shows that, unlike the local synthesis model, the slow transport model fails as a credible theoretical construct to account for axons and terminals as we know them. Evidence for a dynamic anatomy of axons is presented. It is proposed that a distributed "sprouting program," which governs local plasticity of axons, is regulated by environmental cues, and ultimately depends on local synthesis. In this respect, nerve regeneration is treated as a special case of the sprouting program. The term merotrophism is proposed to denote a class of phenomena, in which regional phenotype changes are regulated locally without specific involvement of the neuronal nucleus.

  6. The L1-type cell adhesion molecule Neuroglian is necessary for maintenance of sensory axon advance in the Drosophila embryo

    Directory of Open Access Journals (Sweden)

    Martin Veronica

    2008-04-01

    Full Text Available Abstract Background Cell adhesion molecules have long been implicated in the regulation of axon growth, but the precise cellular roles played by individual cell adhesion molecules and the molecular basis for their action are still not well understood. We have used the sensory system of the Drosophila embryo to shed light on the mechanism by which the L1-type cell adhesion molecule Neuroglian regulates axon growth. Results We have found a highly penetrant sensory axon stalling phenotype in neuroglian mutant embryos. Axons stalled at a variety of positions along their normal trajectory, but most commonly in the periphery some distance along the peripheral nerve. All lateral and dorsal cluster sensory neurons examined, except for the dorsal cluster neuron dbd, showed stalling. Sensory axons were never seen to project along inappropriate pathways in neuroglian mutants and stalled axons showed normal patterns of fasciculation within nerves. The growth cones of stalled axons possessed a simple morphology, similar to their appearance in wild-type embryos when advancing along nerves. Driving expression of the wild-type form of Neuroglian in sensory neurons alone rescued the neuroglian mutant phenotype of both pioneering and follower neurons. A partial rescue was achieved by expressing the Neuroglian extracellular domain. Over/mis-expression of Neuroglian in all neurons, oenocytes or trachea had no apparent effect on sensory axon growth. Conclusion We conclude that Neuroglian is necessary to maintain axon advance along axonal substrates, but is not required for initiation of axon outgrowth, axon fasciculation or recognition of correct growth substrates. Expression of Neuroglian in sensory neurons alone is sufficient to promote axon advance and the intracellular region of the molecule is largely dispensable for this function. It is unlikely, therefore, that Nrg acts as a molecular 'clutch' to couple adhesion of F-actin within the growth cone to the

  7. Effect of Long-Term Cannabis Use on Axonal Fibre Connectivity

    Science.gov (United States)

    Zalesky, Andrew; Solowij, Nadia; Yucel, Murat; Lubman, Dan I.; Takagi, Michael; Harding, Ian H.; Lorenzetti, Valentina; Wang, Ruopeng; Searle, Karissa; Pantelis, Christos; Seal, Marc

    2012-01-01

    Cannabis use typically begins during adolescence and early adulthood, a period when cannabinoid receptors are still abundant in white matter pathways across the brain. However, few studies to date have explored the impact of regular cannabis use on white matter structure, with no previous studies examining its impact on axonal connectivity. The…

  8. Maintenance management during long-term stop of JRR-3

    International Nuclear Information System (INIS)

    Matsui, Yutaka; Suwa, Masayuki; Wada, Shigeru

    2016-01-01

    JRR-3 has been continuing its stop state for more than 5 years as of FY2015 after stopping the use operation of the reactor in November 2010. Different responses are required in the maintenance management for operation resumption, compared with those in normal operation. This paper introduces part of the maintenance managements that are performed during long-term stop. The water qualities of primary coolant and secondary coolant are controlled by measuring pH and conductivity, and the prevention of crevice corrosion of equipment is performed. In the management of pumps for coolant circulation, vibration measurement is performed to confirm that there are no signs of abnormality. As the management of the core structure, the bend measurement of beryllium reflector is performed to confirm that there is no hindrance to operation resumption, and the visual inspection of high burnup fuel elements is performed to confirm that abnormality has not occurred. As for the management of monitoring equipment, the equipment required in shutdown period is subjected to calibration work, and the equipment required in operation period is subjected to soundness check based on the results of cooling system operation. As the functional maintenance of the cooling system, cooling system operating test and 10-day continuous operation of the cooling system are monthly performed to confirm the soundness of equipment. In addition, the competence maintenance and capacity improvement of operators are performed through the cooling system operation and reactor simulator training. (A.O.)

  9. 2003 Long-Term Surveillance and Maintenance Program Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-07-01

    are part of long-term site management. In response to post-closure care requirements set forth in UMTRCA, DOE Headquarters established the Long-Term Surveillance and Maintenance (LTS&M) Program in 1988 at the DOE office in Grand Junction, Colorado. The program assumed long-term management responsibility for sites remediated under UMTRCA and other programs. Since its inception, the LTS&M Program has evolved in response to changing stakeholder needs, improvements in technology, and the addition of more DOE sites as remediation is completed. The mission of the LTS&M Program was to fulfill DOE’s responsibility to implement all activities necessary to ensure regulatory compliance and to protect the public and the environment from long-lived wastes associated with the nation’s nuclear energy, weapons, and research activities. Key components of the LTS&M Program included stakeholder participation, site monitoring and maintenance, records and information management, and research and technology transfer. This report presents summaries of activities conducted in 2003 in fulfillment of the LTS&M Program mission. On December 15, 2003, DOE established the Office of Legacy Management (LM) to allow for optimum management of DOE’s legacy responsibilities. Offices are located in Washington, DC, Grand Junction, Colorado, Morgantown, West Virginia, and Pittsburgh, Pennsylvania, to perform long-term site management, land management, site transition support, records management, and other related tasks. All activities formerly conducted under the LTS&M Program have been incorporated into the Office of Land and Site Management (LM–50), as well as management of remedies involving ground water and surface water contaminated by former processing activities.

  10. 2003 Long-Term Surveillance and Maintenance Program Report

    International Nuclear Information System (INIS)

    2004-01-01

    are part of long-term site management. In response to post-closure care requirements set forth in UMTRCA, DOE Headquarters established the Long-Term Surveillance and Maintenance (LTS&M) Program in 1988 at the DOE office in Grand Junction, Colorado. The program assumed long-term management responsibility for sites remediated under UMTRCA and other programs. Since its inception, the LTS&M Program has evolved in response to changing stakeholder needs, improvements in technology, and the addition of more DOE sites as remediation is completed. The mission of the LTS&M Program was to fulfill DOE's responsibility to implement all activities necessary to ensure regulatory compliance and to protect the public and the environment from long-lived wastes associated with the nation's nuclear energy, weapons, and research activities. Key components of the LTS&M Program included stakeholder participation, site monitoring and maintenance, records and information management, and research and technology transfer. This report presents summaries of activities conducted in 2003 in fulfillment of the LTS&M Program mission. On December 15, 2003, DOE established the Office of Legacy Management (LM) to allow for optimum management of DOE's legacy responsibilities. Offices are located in Washington, DC, Grand Junction, Colorado, Morgantown, West Virginia, and Pittsburgh, Pennsylvania, to perform long-term site management, land management, site transition support, records management, and other related tasks. All activities formerly conducted under the LTS&M Program have been incorporated into the Office of Land and Site Management (LM-50), as well as management of remedies involving ground water and surface water contaminated by former processing activities

  11. Leisure-time activity is an important determinant of long-term weight maintenance after weight loss in the Sibutramine Trial on Obesity Reduction and Maintenance (STORM trial)

    DEFF Research Database (Denmark)

    van Baak, Marleen A; van Mil, Edgar; Astrup, Arne V

    2003-01-01

    The success rate of long-term maintenance of weight loss in obese patients is usually low. To improve the success rate, determinants of long-term weight maintenance must be identified.......The success rate of long-term maintenance of weight loss in obese patients is usually low. To improve the success rate, determinants of long-term weight maintenance must be identified....

  12. Site transition framework for long-term surveillance and maintenance

    International Nuclear Information System (INIS)

    2014-01-01

    This document provides a framework for all U.S. Department of Energy (DOE) facilities and sites where DOE may have anticipated long-term surveillance and maintenance (LTSM) responsibilities. It is a tool to help facilitate a smooth transition from remediation to LTSM, providing a systematic process for affected parties to utilize in analyzing the baseline to understand and manage the actions from EM mission completion through a site's transition into LTSM. The framework is not meant to provide an exhaustive list of the specific requirement and information that are needed. Sites will have unique considerations that may not be adequately addressed by this tool, and it is anticipated that a team comprised of the transferring and receiving organization will use judgment in utilizing this augmenting with other DOE guidance. However the framework should be followed to the extent possible at each site; and adapted to accommodate unique site-specific requirements, needs, and documents. Since the objective of the tool is facilitate better understanding of the conditions of the site and the actions required for transfer, the transition team utilizing the checklist is expected to consult with management of both the receiving and transferring organization to verify that major concerns are addressed. Ideally, this framework should be used as early in the remediation process as possible. Subsequent applications of the Site Transition Framework (STF) to the site should be conducted periodically and used to verify that all appropriate steps have been or will be taken to close-out the site and that actions by both organization are identified to transfer the site to LTSM. The requirements are provided herein

  13. Site transition framework for long-term surveillance and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-04-01

    This document provides a framework for all U.S. Department of Energy (DOE) facilities and sites where DOE may have anticipated long-term surveillance and maintenance (LTSM) responsibilities. It is a tool to help facilitate a smooth transition from remediation to LTSM, providing a systematic process for affected parties to utilize in analyzing the baseline to understand and manage the actions from EM mission completion through a site’s transition into LTSM. The framework is not meant to provide an exhaustive list of the specific requirement and information that are needed. Sites will have unique considerations that may not be adequately addressed by this tool, and it is anticipated that a team comprised of the transferring and receiving organization will use judgment in utilizing this augmenting with other DOE guidance. However the framework should be followed to the extent possible at each site; and adapted to accommodate unique site-specific requirements, needs, and documents. Since the objective of the tool is facilitate better understanding of the conditions of the site and the actions required for transfer, the transition team utilizing the checklist is expected to consult with management of both the receiving and transferring organization to verify that major concerns are addressed. Ideally, this framework should be used as early in the remediation process as possible. Subsequent applications of the Site Transition Framework (STF) to the site should be conducted periodically and used to verify that all appropriate steps have been or will be taken to close-out the site and that actions by both organization are identified to transfer the site to LTSM. The requirements are provided herein.

  14. Long-term maintenance monitoring demonstration on a movable bridge.

    Science.gov (United States)

    2011-09-30

    The maintenance costs related to movable bridges are considerably higher than those of fixed bridges, mostly : because of the complex interaction of the mechanical, electrical and structural components. A malfunction of any : component can cause an u...

  15. Short and long term maintenance strategy for reactor vessel head penetrations

    International Nuclear Information System (INIS)

    Teissier, A.; Heuze, A.

    1995-01-01

    This paper presents elements based on : surveys, operating inspection, theoretical studies, safety analysis, laboratory results, that enabled to determine maintenance options and short and long term strategies for processing on reactor vessel head leaks. (TEC). 1 tab

  16. How visual short-term memory maintenance modulates subsequent visual aftereffects.

    Science.gov (United States)

    Saad, Elyana; Silvanto, Juha

    2013-05-01

    Prolonged viewing of a visual stimulus can result in sensory adaptation, giving rise to perceptual phenomena such as the tilt aftereffect (TAE). However, it is not known if short-term memory maintenance induces such effects. We examined how visual short-term memory (VSTM) maintenance modulates the strength of the TAE induced by subsequent visual adaptation. We reasoned that if VSTM maintenance induces aftereffects on subsequent encoding of visual information, then it should either enhance or reduce the TAE induced by a subsequent visual adapter, depending on the congruency of the memory cue and the adapter. Our results were consistent with this hypothesis and thus indicate that the effects of VSTM maintenance can outlast the maintenance period.

  17. Long-Term Maintenance Scheduling of Smart Distribution System through a PSO-TS Algorithm

    Directory of Open Access Journals (Sweden)

    Jianxue Wang

    2014-01-01

    Full Text Available Asset management of distribution systems is an important issue for smart grid. Maintenance scheduling, as an important part of asset management, affects the reliability of distribution equipment and power supply. This research focuses on long-term distribution system maintenance scheduling aided by available operation information, which is a prominent advantage of smart grid over conventional distribution systems. In this paper, the historical and future operation information in smart grid is taken into account through a decoupled time-varying reliability model of equipment. Based on distribution system reliability assessment, a maintenance scheduling model is proposed to determine the optimal implementation time of maintenance activities to minimize distribution systems’ total cost, while satisfying reliability requirements. A combined algorithm that consists of particle swarm optimization and tabu search is designed and applied to the optimization problem. Numerical result verifies that the proposed method can schedule long-term maintenance of distribution systems in smart grid economically and effectively.

  18. The right hippocampus participates in short-term memory maintenance of object-location associations

    NARCIS (Netherlands)

    Piekema, C.; Kessels, R.P.C.; Mars, R.B.; Petersson, K.M.; Fernandez, G.S.E.

    2006-01-01

    Doubts have been cast on the strict dissociation between short- and long-term memory systems. Specifically, several neuroimaging studies have shown that the medial temporal lobe, a region almost invariably associated with long-term memory, is involved in active short-term memory maintenance.

  19. The right hippocampus participates in short-term memory maintenance of object-location associations.

    NARCIS (Netherlands)

    Piekema, C.; Kessels, R.P.C.; Mars, R.B.; Petersson, K.M.; Fernandez, G.S.E.

    2006-01-01

    Doubts have been cast on the strict dissociation between short- and long-term memory systems. Specifically, several neuroimaging studies have shown that the medial temporal lobe, a region almost invariably associated with long-term memory, is involved in active short-term memory maintenance.

  20. Long-term development of nuclear maintenance service provider in Slovenia

    International Nuclear Information System (INIS)

    Androjna, A.; Racic, Z.; Balazic, D.

    2004-01-01

    In recent years, most utilities have been facing a challenge of optimizing maintenance costs, while maintaining or improving equipment reliability. As the equipment ages and maintenance skills within the plant staff may decline due to a generation exchange, the challenge becomes even stronger. Consequently, many plants are looking for possible solutions through partnering with maintenance service providers. The fact that there is only one nuclear power plant in Slovenia hinders the development of local maintenance contractors to some extent. Additionally, they have to face everincreasing technical and organizational requirements while a longer fuel cycle and shorter outage durations result in a narrower annual scope of outage activities. In such circumstances, it may be very difficult for local maintenance service providers to retain and improve skills and qualifications in the long run. Even more so, since they also face the need to rejuvenate their staff and the interest of subcontractors to participate diminishes. The paper presents a case on long-term development issues as experienced by NUMIP, the leading Slovenian nuclear maintenance service provider. Above all, we would like to contribute to a better understanding of efficient local maintenance support. NUMIP's future strategic options are explored in light of possible partnering relationship with the nuclear power plant, based on trust, win-win attitude and continuous improvement. Long-term benefits of the proposed partnering are indicated for both parties, the nuclear power plant and the local maintenance service provider. (author)

  1. Distinct electrophysiological indices of maintenance in auditory and visual short-term memory.

    Science.gov (United States)

    Lefebvre, Christine; Vachon, François; Grimault, Stephan; Thibault, Jennifer; Guimond, Synthia; Peretz, Isabelle; Zatorre, Robert J; Jolicœur, Pierre

    2013-11-01

    We compared the electrophysiological correlates for the maintenance of non-musical tones sequences in auditory short-term memory (ASTM) to those for the short-term maintenance of sequences of coloured disks held in visual short-term memory (VSTM). The visual stimuli yielded a sustained posterior contralateral negativity (SPCN), suggesting that the maintenance of sequences of coloured stimuli engaged structures similar to those involved in the maintenance of simultaneous visual displays. On the other hand, maintenance of acoustic sequences produced a sustained negativity at fronto-central sites. This component is named the Sustained Anterior Negativity (SAN). The amplitude of the SAN increased with increasing load in ASTM and predicted individual differences in the performance. There was no SAN in a control condition with the same auditory stimuli but no memory task, nor one associated with visual memory. These results suggest that the SAN is an index of brain activity related to the maintenance of representations in ASTM that is distinct from the maintenance of representations in VSTM. © 2013 Elsevier Ltd. All rights reserved.

  2. Designing remote monitoring systems for long term maintenance and reliability

    International Nuclear Information System (INIS)

    Davis, G.E.; Johnson, G.L.; Schrader, F.D.; Stone, M.A.; Wilson, E.F.

    2001-01-01

    Full text: As part of the effort to modernize safeguards equipment, the IAEA is continuing to acquire and install equipment for upgrading obsolete surveillance systems with digital technology; and providing remote-monitoring capabilities where and when economically justified. Remote monitoring is expected to reduce inspection effort, particularly at storage facilities and reactor sites. Remote monitoring technology will not only involve surveillance, but will also include seals, sensors, and other unattended measurement equipment. LLNL's experience with the Argus Security System offers lessons for the design, deployment, and maintenance of remote monitoring systems. Argus is an integrated security system for protection of high-consequence U.S. Government assets, including nuclear materials. Argus provides secure transmission of sensor data, administrative data, and video information to support intrusion detection and access control functions. LLNL developed and deployed the Argus system on its own site in 1988. Since that time LLNL has installed, maintained, and upgraded Argus systems at several Department of Energy and Department of Defense sites in the US as well as at the original LLNL site. Argus has provided high levels of reliability and integrity, as well as reducing overall lifecycle cost through incremental improvements to hardware and software. This philosophy permits expansion of functional capability, hardware upgrade and software upgrade without system outages and with minimum outage of local functions. This presentation will describe Argus design strategies and lessons learned from the Argus program as they apply to the design, development, and maintenance of a remote monitoring network. Hardware failures, software failures, and communication outages are expected and must be addressed by astute selection of system architecture. A combination of redundancy, diversity, and effective functional allocation between field and system level components should

  3. Long term substitution treatment (maintenance treatment of opioid dependent persons

    Directory of Open Access Journals (Sweden)

    Wirl, Charlotte

    2007-03-01

    Full Text Available Health political background: Methadone substitution treatment in Germany is introduced in 1988 in the framework of a scientific pilot study in North Rhein Westphalia. Recent statistics show that by now a broad offer of substitution treatment exists. From 1 June 2002 to 31 December 2003 113,000 substitution treatments have been recorded as being started of which around 56,000 have been recorded as ongoing treatments by 1 December 2003. Scientific background: Substitution treatment (treatment of opioid-dependent persons using substitution substances is one part of addiction treatment. Its goals are harm reduction and the stabilisation of opioid dependent persons. Integration of opioid-dependent persons in a treatment-setting, reduction of consumption of psychoactive substances, reduction of risk behaviour (primarily related to infectious diseases, decrease of mortality and improvements concerning the social, psychic and physic situation are seen as a success of substitution treatment as maintenance therapy. Research questions: The aim of this HTA report is to investigate which indicators can be used to evaluate the effectiveness of substitution treatment. Based on these indicators an evaluation of the medical, social and economical benefit of substitution treatment - also in relation to abstinence oriented treatment - is carried out. Methods: A systematic literature search was performed in 31 international databases which yielded 2451 articles with publication date between 1995 and February 2005. Results: After a twofold selection process 32 publications were included for assessment and 276 publications were used as background literature. Despite serious restrictions due to selection bias and dropout in most studies focusing on substitution treatment, reduction of consumption of illegal opioids, reduction of risk behaviour, criminal behaviour, mortality and incidence of HIV can be seen as an empirically proven success of substitution treatment

  4. Strategies in maintenance for patients receiving long-term therapy (SIMPLE): a study of MMX mesalamine for the long-term maintenance of quiescent ulcerative colitis.

    Science.gov (United States)

    Kane, Sunanda; Katz, Seymour; Jamal, M Mazen; Safdi, Michael; Dolin, Ben; Solomon, Dory; Palmen, Mary; Barrett, Karen

    2012-06-01

    This was a phase IV, multicenter, open-label, 12-14-month study to assess clinical recurrence in patients with ulcerative colitis (UC) who received maintenance treatment with MMX Multi Matrix System (MMX) mesalamine. A secondary outcome was the relationship between long-term efficacy and adherence. Patients with quiescent UC (no rectal bleeding; 0-1 bowel movements more than normal per day) were enrolled directly into a 12-month maintenance phase of the study during which they received MMX mesalamine 2.4 g/day given once daily (QD). Patients with active, mild-to-moderate UC at screening were enrolled into a 2-month acute phase; those who achieved quiescence could continue into the maintenance phase. The primary endpoint was clinical recurrence at Month 6. Of the 290 patients enrolled, 208 entered the maintenance phase; 152 directly and 56 via the acute phase. Following 6 and 12 months of treatment, 76.5% and 64.4% of evaluable patients, respectively, were recurrence-free. The majority of evaluable patients at Month 6 (81.6%) and Month 12 (79.4%) in the maintenance phase were ≥ 80% adherent to MMX mesalamine. At Month 6, clinical recurrence was observed in 20.6% of patients who were ≥ 80% adherent and 36.1% of patients with post-hoc chi-square analysis]); 31.2% and 52.5% at Month 12 (P = 0.01 [post-hoc chi-square analysis]). MMX mesalamine 2.4 g/day QD is effective for maintaining quiescence in patients with UC. Furthermore, adherence to prescribed treatment yielded lower rates of clinical recurrence. Continued education regarding the importance of long-term 5-aminosalicylic acid therapy is warranted. Copyright © 2011 Crohn's & Colitis Foundation of America, Inc.

  5. Long term azathioprine maintenance therapy in ANCA-associated vasculitis: combined results of long-term follow-up data.

    Science.gov (United States)

    de Joode, Anoek A E; Sanders, Jan Stephan F; Puéchal, Xavier; Guillevin, Loic P; Hiemstra, Thomas F; Flossmann, Oliver; Rasmussen, Nils; Westman, Kerstin; Jayne, David R; Stegeman, Coen A

    2017-11-01

    We studied whether in ANCA-associated vasculitis patients, duration of AZA maintenance influenced relapse rate during long-term follow-up. Three hundred and eighty newly diagnosed ANCA-associated vasculitis patients from six European multicentre studies treated with AZA maintenance were included; 58% were male, median age at diagnosis 59.4 years (interquartile range: 48.3-68.2 years); granulomatosis with polyangiitis, n = 236; microscopic polyangiitis, n = 132; or renal limited vasculitis, n = 12. Patients were grouped according to the duration of AZA maintenance after remission induction: ⩽18 months, ⩽24 months, ⩽36 months, ⩽48 months or > 48 months. Primary outcome was relapse-free survival at 60 months. During follow-up, 84 first relapses occurred during AZA-maintenance therapy (1 relapse per 117 patient months) and 71 after withdrawal of AZA (1 relapse/113 months). During the first 12 months after withdrawal, 20 relapses occurred (1 relapse/119 months) and 29 relapses >12 months after withdrawal (1 relapse/186 months). Relapse-free survival at 60 months was 65.3% for patients receiving AZA maintenance >18 months after diagnosis vs 55% for those who discontinued maintenance ⩽18 months (P = 0.11). Relapse-free survival was associated with induction therapy (i.v. vs oral) and ANCA specificity (PR3-ANCA vs MPO-ANCA/negative). Post hoc analysis of combined trial data suggest that stopping AZA maintenance therapy does not lead to a significant increase in relapse rate and AZA maintenance for more than 18 months after diagnosis does not significantly influence relapse-free survival. ANCA specificity has more effect on relapse-free survival than duration of maintenance therapy and should be used to tailor therapy individually. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  6. Maintenance of Lost Weight and Long-Term Management of Obesity.

    Science.gov (United States)

    Hall, Kevin D; Kahan, Scott

    2018-01-01

    Weight loss can be achieved through a variety of modalities, but long-term maintenance of lost weight is much more challenging. Obesity interventions typically result in early weight loss followed by a weight plateau and progressive regain. This review describes current understanding of the biological, behavioral, and environmental factors driving this near-ubiquitous body weight trajectory and the implications for long-term weight management. Treatment of obesity requires ongoing clinical attention and weight maintenance-specific counseling to support sustainable healthful behaviors and positive weight regulation. Published by Elsevier Inc.

  7. Provenance Description of Metadata Vocabularies for the Long-term Maintenance of Metadata

    Directory of Open Access Journals (Sweden)

    Chunqiu Li

    2017-03-01

    Full Text Available Purpose: The purpose of this paper is to discuss provenance description of metadata terms and metadata vocabularies as a set of metadata terms. Provenance is crucial information to keep track of changes of metadata terms and metadata vocabularies for their consistent maintenance. Design/methodology/approach: The W3C PROV standard for general provenance description and Resource Description Framework (RDF are adopted as the base models to formally define provenance description for metadata vocabularies. Findings: This paper defines a few primitive change types of metadata terms, and a provenance description model of the metadata terms based on the primitive change types. We also provide examples of provenance description in RDF graphs to show the proposed model. Research limitations: The model proposed in this paper is defined based on a few primitive relationships (e.g. addition, deletion, and replacement between pre-version and post-version of a metadata term. The model is simplified and the practical changes of metadata terms can be more complicated than the primitive relationships discussed in the model. Practical implications: Formal provenance description of metadata vocabularies can improve maintainability of metadata vocabularies over time. Conventional maintenance of metadata terms is the maintenance of documents of terms. The proposed model enables effective and automated tracking of change history of metadata vocabularies using simple formal description scheme defined based on widely-used standards. Originality/value: Changes in metadata vocabularies may cause inconsistencies in the long-term use of metadata. This paper proposes a simple and formal scheme of provenance description of metadata vocabularies. The proposed model works as the basis of automated maintenance of metadata terms and their vocabularies and is applicable to various types of changes.

  8. Management of remanent lifetime. Short-term benefits of the maintenance evaluation and improvement programme

    International Nuclear Information System (INIS)

    Sainero Garcia, J.

    1993-01-01

    Remanent Lifetime Management, which is scientifically based on knowing the degradatory phenomena associated with aging, today allows us to optimize plant life through a long-term maintenance strategy combining preventive maintenance and condition monitoring programmes. Within a project for Remanent Lifetime Management (RLM), the determination of methods of control and mitigation of degradations due to aging depends on the programme of Maintenance Evaluation and Improvement (MEI). This programme, underpinned by the analysis of degradatory phenomena to which plant components are subjected, evaluates current maintenance practices and defines the complementary actions which would facilitate establishment of a long-term strategy to control aging. Together with this main objective of the RLM project, the MEI programme achieves short-term benefits since, right from the beginning, it offers solutions to mitigate and guard against degradations in crucial plant components, and generally sets out a programme to control aging. The MEI programme further serves as a tool to reach the final objectives of the new 10CFR50.65 rule, 'Requirements for Maintenance Programs for NPPs'. The MEI always offers the option should the Utility Owner decide to extend plant life. (author)

  9. Long-Term Surveillance and Maintenance Plan for the Gnome-Coach, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    Kreie, Ken [USDOE Office of Legacy Management, Grand Junction, CO (United States); Findlay, Rick [Navarro Research and Engineering, Inc., Grand Junction, CO (United States)

    2016-06-08

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) prepared this Long-Term Surveillance and Maintenance Plan (LTSMP) for the Gnome-Coach, New Mexico, Site (the Gnome site). The Gnome site is approximately 25 miles east of Carlsbad in Eddy County, New Mexico (Figure 1). The site was the location of a 3-kiloton-yield underground nuclear test and radioisotope groundwater tracer test. The tests resulted in residual contamination and post-detonation features that require long-term oversight. Long-term responsibility for the site was transferred from the DOE National Nuclear Security Administration Nevada Site Office to LM on October 1, 2006. Responsibilities include surveillance, monitoring, and maintenance of institutional controls (ICs) as part of the long-term stewardship of the site. Long-term stewardship is designed to ensure protection of human health and the environment.

  10. Applying Psychological Theories to Promote Long-Term Maintenance of Health Behaviors

    Science.gov (United States)

    Joseph, Rodney P.; Daniel, Casey L.; Thind, Herpreet; Benitez, Tanya J.; Pekmezi, Dori

    2014-01-01

    Behavioral health theory provides a framework for researchers to design, implement, and evaluate the effects of health promotion programs. However, limited research has examined theories used in interventions to promote long-term maintenance of health behaviors. The purpose of this review was to evaluate the available literature and identify prominent behavioral health theories used in intervention research to promote maintenance of health behaviors. We reviewed theories used in intervention research assessing long-term maintenance (≥ 6 months post-intervention) of physical activity, weight loss, and smoking cessation. Five prominent behavioral theories were referenced by the 34 studies included in the review: Self-Determination Theory, Theory of Planned Behavior, Social Cognitive Theory, Transtheoretical Model, and Social Ecological Model. Descriptions and examples of applications of these theories are provided. Implications for future research are discussed. PMID:28217036

  11. Hepatocyte growth factor promotes long-term survival and axonal regeneration of retinal ganglion cells after optic nerve injury: comparison with CNTF and BDNF.

    Science.gov (United States)

    Wong, Wai-Kai; Cheung, Anny Wan-Suen; Yu, Sau-Wai; Sha, Ou; Cho, Eric Yu Pang

    2014-10-01

    Different trophic factors are known to promote retinal ganglion cell survival and regeneration, but each had their own limitations. We report that hepatocyte growth factor (HGF) confers distinct advantages in supporting ganglion cell survival and axonal regeneration, when compared to two well-established trophic factors ciliary neurotrophic factor (CNTF) and brain-derived neurotrophic factor (BDNF). Ganglion cells in adult hamster were injured by cutting the optic nerve. HGF, CNTF, or BDNF was injected at different dosages intravitreally after injury. Ganglion cell survival was quantified at 7, 14, or 28 days postinjury. Peripheral nerve (PN) grafting to the cut optic nerve of the growth factor-injected eye was performed either immediately after injury or delayed until 7 days post-injury. Expression of heat-shock protein 27 and changes in microglia numbers were quantified in different growth factor groups. The cellular distribution of c-Met in the retina was examined by anti-c-Met immunostaining. Hepatocyte Growth Factor (HGF) was equally potent as BDNF in promoting short-term survival (up to 14 days post-injury) and also supported survival at 28 days post-injury when ganglion cells treated by CNTF or BDNF failed to be sustained. When grafting was performed without delay, HGF stimulated twice the number of axons to regenerate compared with control but was less potent than CNTF. However, in PN grafting delayed for 7 days after optic nerve injury, HGF maintained a better propensity of ganglion cells to regenerate than CNTF. Unlike CNTF, HGF application did not increase HSP27 expression in ganglion cells. Microglia proliferation was prolonged in HGF-treated retinas compared with CNTF or BDNF. C-Met was localized to both ganglion cells and Muller cells, suggesting HGF could be neuroprotective via interacting with both neurons and glia. Compared with CNTF or BDNF, HGF is advantageous in sustaining long-term ganglion cell survival and their propensity to respond to

  12. Olfactory short-term memory encoding and maintenance - an event-related potential study.

    Science.gov (United States)

    Lenk, Steffen; Bluschke, Annet; Beste, Christian; Iannilli, Emilia; Rößner, Veit; Hummel, Thomas; Bender, Stephan

    2014-09-01

    This study examined whether the memory encoding and short term maintenance of olfactory stimuli is associated with neurophysiological activation patterns which parallel those described for sensory modalities such as vision and auditory. We examined olfactory event-related potentials in an olfactory change detection task in twenty-four healthy adults and compared the measured activation to that found during passive olfactory stimulation. During the early olfactory post-processing phase, we found a sustained negativity over bilateral frontotemporal areas in the passive perception condition which was enhanced in the active memory task. There was no significant lateralization in either experimental condition. During the maintenance interval at the end of the delay period, we still found sustained activation over bilateral frontotemporal areas which was more negative in trials with correct - as compared to incorrect - behavioural responses. This was complemented by a general significantly stronger frontocentral activation. Summarizing, we were able to show that olfactory short term memory involves a parallel sequence of activation as found in other sensory modalities. In addition to olfactory-specific frontotemporal activations in the memory encoding phase, we found slow cortical potentials over frontocentral areas during the memory maintenance phase indicating the activation of a supramodal memory maintenance system. These findings could represent the neurophysiological underpinning of the 'olfactory flacon', the olfactory counter-part to the visual sketchpad and phonological loop embedded in Baddeley's working memory model. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Mobile robotics for CANDU reactor maintenance: case studies and near-term improvements

    International Nuclear Information System (INIS)

    Lipsett, M. G.; Rody, K.H.

    1995-01-01

    Although robotics researchers have been promising that robotics would soon be performing tasks in hazardous environments, the reality has yet to live up to the hype. The presently available crop of robots suitable for deployment in industrial situations are remotely operated, requiring skilled users. This talk describes cases where mobile robots have been used successfully in CANDU stations, discusses the difficulties in using mobile robots for reactor maintenance, and provides near-term goals for achievable improvements in performance and usefulness. (author)

  14. I have already a LTMC (Long Term Maintenance Contract) what now

    International Nuclear Information System (INIS)

    Liste Alba, D.

    2010-01-01

    More and more usual, LTMCs (Long Term Maintenance Contracts) mean in the practice a real challenge for those responsible of their implementation and execution. So by the owner as by the contractor sides, great deal of patience is required, as well as common sense and professionalism to complete them successfully. In a summarized way, through this article is reviewed the LTMC experience of in a plant of combined cycle, during the early years of exploitation. (Author)

  15. Stochastic short-term maintenance scheduling of GENCOs in an oligopolistic electricity market

    International Nuclear Information System (INIS)

    Fotouhi Ghazvini, Mohammad Ali; Canizes, Bruno; Vale, Zita; Morais, Hugo

    2013-01-01

    Highlights: ► Decision making under uncertainty. ► Stochastic Mixed Integer Quadratic Programming applied to short-term maintenance scheduling. ► Outage scheduling in Oligopolistic electricity markets. ► Generation companies maintenance scheduling. -- Abstract: In the proposed model, the independent system operator (ISO) provides the opportunity for maintenance outage rescheduling of generating units before each short-term (ST) time interval. Long-term (LT) scheduling for 1 or 2 years in advance is essential for the ISO and the generation companies (GENCOs) to decide their LT strategies; however, it is not possible to be exactly followed and requires slight adjustments. The Cournot-Nash equilibrium is used to characterize the decision-making procedure of an individual GENCO for ST intervals considering the effective coordination with LT plans. Random inputs, such as parameters of the demand function of loads, hourly demand during the following ST time interval and the expected generation pattern of the rivals, are included as scenarios in the stochastic mixed integer program defined to model the payoff-maximizing objective of a GENCO. Scenario reduction algorithms are used to deal with the computational burden. Two reliability test systems were chosen to illustrate the effectiveness of the proposed model for the ST decision-making process for future planned outages from the point of view of a GENCO.

  16. Molecular constraints on synaptic tagging and maintenance of long-term potentiation: a predictive model.

    Directory of Open Access Journals (Sweden)

    Paul Smolen

    Full Text Available Protein synthesis-dependent, late long-term potentiation (LTP and depression (LTD at glutamatergic hippocampal synapses are well characterized examples of long-term synaptic plasticity. Persistent increased activity of protein kinase M ζ (PKMζ is thought essential for maintaining LTP. Additional spatial and temporal features that govern LTP and LTD induction are embodied in the synaptic tagging and capture (STC and cross capture hypotheses. Only synapses that have been "tagged" by a stimulus sufficient for LTP and learning can "capture" PKMζ. A model was developed to simulate the dynamics of key molecules required for LTP and LTD. The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. The model successfully simulated LTP maintained by persistent synaptic PKMζ, STC, LTD, and cross capture, and makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP, and consequently of at least some forms of long-term memory, is predicted to require continual positive feedback in which PKMζ enhances its own synthesis only at potentiated synapses. This feedback underlies bistability in the activity of PKMζ. Second, cross capture requires the induction of LTD to induce dendritic PKMζ synthesis, although this may require tagging of a nearby synapse for LTP. The model also simulates the effects of PKMζ inhibition, and makes additional predictions for the dynamics of CaM kinases. Experiments testing the above predictions would significantly advance the understanding of memory maintenance.

  17. Molecular constraints on synaptic tagging and maintenance of long-term potentiation: a predictive model.

    Science.gov (United States)

    Smolen, Paul; Baxter, Douglas A; Byrne, John H

    2012-01-01

    Protein synthesis-dependent, late long-term potentiation (LTP) and depression (LTD) at glutamatergic hippocampal synapses are well characterized examples of long-term synaptic plasticity. Persistent increased activity of protein kinase M ζ (PKMζ) is thought essential for maintaining LTP. Additional spatial and temporal features that govern LTP and LTD induction are embodied in the synaptic tagging and capture (STC) and cross capture hypotheses. Only synapses that have been "tagged" by a stimulus sufficient for LTP and learning can "capture" PKMζ. A model was developed to simulate the dynamics of key molecules required for LTP and LTD. The model concisely represents relationships between tagging, capture, LTD, and LTP maintenance. The model successfully simulated LTP maintained by persistent synaptic PKMζ, STC, LTD, and cross capture, and makes testable predictions concerning the dynamics of PKMζ. The maintenance of LTP, and consequently of at least some forms of long-term memory, is predicted to require continual positive feedback in which PKMζ enhances its own synthesis only at potentiated synapses. This feedback underlies bistability in the activity of PKMζ. Second, cross capture requires the induction of LTD to induce dendritic PKMζ synthesis, although this may require tagging of a nearby synapse for LTP. The model also simulates the effects of PKMζ inhibition, and makes additional predictions for the dynamics of CaM kinases. Experiments testing the above predictions would significantly advance the understanding of memory maintenance.

  18. Dynamics of target recognition by interstitial axon branching along developing cortical axons.

    Science.gov (United States)

    Bastmeyer, M; O'Leary, D D

    1996-02-15

    Corticospinal axons innervate their midbrain, hindbrain, and spinal targets by extending collateral branches interstitially along their length. To establish that the axon shaft rather than the axonal growth cone is responsible for target recognition in this system, and to characterize the dynamics of interstitial branch formation, we have studied this process in an in vivo-like setting using slice cultures from neonatal mice containing the entire pathway of corticospinal axons. Corticospinal axons labeled with the dye 1,1'-dioctodecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (or Dil) were imaged using time-lapse video microscopy of their pathway overlying the basilar pons, their major hindbrain target. The axon shaft millimeters behind the growth cone exhibits several dynamic behaviors, including the de novo formation of varicosities and filopodia-like extensions, and a behavior that we term "pulsation," which is characterized by a variable thickening and thining of short segments of the axon. An individual axon can have multiple sites of branching activity, with many of the branches being transient. These dynamic behaviors occur along the portion of the axon shaft overlying the basilar pons, but not just caudal to it. Once the collaterals extend into the pontine neuropil, they branch further in the neuropil, while the parent axon becomes quiescent. Thus, the branching activity is spatially restricted to specific portions of the axon, as well as temporally restricted to a relatively brief time window. These findings provide definitive evidence that collateral branches form de novo along corticospinal axons and establish that the process of target recognition in this system is a property of the axon shaft rather than the leading growth cone.

  19. Influence of maximal fat oxidation on long-term weight loss maintenance in humans

    DEFF Research Database (Denmark)

    Dandanell, Sune; Husted, Karina; Amdisen, Signe

    2017-01-01

    Impaired maximal fat oxidation has been linked to obesity and weight regain after weight loss. The aim was to investigate the relationship between maximal fat oxidation (MFO) and long-term weight loss maintenance. Eighty subjects [means (SD): age, 36(13) yrs; BMI, 38(1) kg/m2] were recruited from...... composition (dual X-ray absorptiometry) and fat oxidation (indirect calorimetry) during incremental exercise were measured at follow-up. Blood and a muscle biopsy were sampled. At follow-up, a U-shaped parabolic relationship between MFO and percent weight loss was observed (r = 0.448; P ... a total of 2,420 former participants of an 11- to 12-wk lifestyle intervention. Three groups were established based on percent weight loss at follow-up [5.3(3.3) yr]: clinical weight loss maintenance (CWL), >10% weight loss; moderate weight loss (MWL), 1–10% weight loss; and weight regain (WR). Body...

  20. Selection of multiple cued items is possible during visual short-term memory maintenance.

    Science.gov (United States)

    Matsukura, Michi; Vecera, Shaun P

    2015-07-01

    Recent neuroimaging studies suggest that maintenance of a selected object feature held in visual short-term/working memory (VSTM/VWM) is supported by the same neural mechanisms that encode the sensory information. If VSTM operates by retaining "reasonable copies" of scenes constructed during sensory processing (Serences, Ester, Vogel, & Awh, 2009, p. 207, the sensory recruitment hypothesis), then attention should be able to select multiple items represented in VSTM as long as the number of these attended items does not exceed the typical VSTM capacity. It is well known that attention can select at least two noncontiguous locations at the same time during sensory processing. However, empirical reports from the studies that examined this possibility are inconsistent. In the present study, we demonstrate that (1) attention can indeed select more than a single item during VSTM maintenance when observers are asked to recognize a set of items in the manner that these items were originally attended, and (2) attention can select multiple cued items regardless of whether these items are perceptually organized into a single group (contiguous locations) or not (noncontiguous locations). The results also replicate and extend the recent finding that selective attention that operates during VSTM maintenance is sensitive to the observers' goal and motivation to use the cueing information.

  1. Brain Activation during Associative Short-Term Memory Maintenance is Not Predictive for Subsequent Retrieval

    Directory of Open Access Journals (Sweden)

    Heiko eBergmann

    2015-09-01

    Full Text Available Performance on working memory (WM tasks may partially be supported by long-term memory (LTM processing. Hence, brain activation recently being implicated in WM may actually have been driven by (incidental LTM formation. We examined which brain regions actually support successful WM processing, rather than being confounded by LTM processes, during the maintenance and probe phase of a WM task. We administered a four-pair (faces and houses associative delayed-match-to-sample (WM task using event-related fMRI and a subsequent associative recognition LTM task, using the same stimuli. This enabled us to analyze subsequent memory effects for both the WM and the LTM test by contrasting correctly recognized pairs with incorrect pairs for either task. Critically, with respect to the subsequent WM effect, we computed this analysis exclusively for trials that were forgotten in the subsequent LTM recognition task. Hence, brain activity associated with successful WM processing was less likely to be confounded by incidental LTM formation. The subsequent LTM effect, in contrast, was analyzed exclusively for pairs that previously had been correctly recognized in the WM task, disclosing brain regions involved in successful LTM formation after successful WM processing. Results for the subsequent WM effect showed no significantly activated brain areas for WM maintenance, possibly due to an insensitivity of fMRI to mechanisms underlying active WM maintenance. In contrast, a correct decision at WM probe was linked to activation in the retrieval success network (anterior and posterior midline brain structures. The subsequent LTM analyses revealed greater activation in left dorsolateral prefrontal cortex and posterior parietal cortex in the early phase of the maintenance stage. No supra-threshold activation was found during the WM probe. Together, we obtained clearer insights in which brain regions support successful WM and LTM without the potential confound of the

  2. Brain activation during associative short-term memory maintenance is not predictive for subsequent retrieval.

    Science.gov (United States)

    Bergmann, Heiko C; Daselaar, Sander M; Beul, Sarah F; Rijpkema, Mark; Fernández, Guillén; Kessels, Roy P C

    2015-01-01

    Performance on working memory (WM) tasks may partially be supported by long-term memory (LTM) processing. Hence, brain activation recently being implicated in WM may actually have been driven by (incidental) LTM formation. We examined which brain regions actually support successful WM processing, rather than being confounded by LTM processes, during the maintenance and probe phase of a WM task. We administered a four-pair (faces and houses) associative delayed-match-to-sample (WM) task using event-related functional MRI (fMRI) and a subsequent associative recognition LTM task, using the same stimuli. This enabled us to analyze subsequent memory effects for both the WM and the LTM test by contrasting correctly recognized pairs with incorrect pairs for either task. Critically, with respect to the subsequent WM effect, we computed this analysis exclusively for trials that were forgotten in the subsequent LTM recognition task. Hence, brain activity associated with successful WM processing was less likely to be confounded by incidental LTM formation. The subsequent LTM effect, in contrast, was analyzed exclusively for pairs that previously had been correctly recognized in the WM task, disclosing brain regions involved in successful LTM formation after successful WM processing. Results for the subsequent WM effect showed no significantly activated brain areas for WM maintenance, possibly due to an insensitivity of fMRI to mechanisms underlying active WM maintenance. In contrast, a correct decision at WM probe was linked to activation in the "retrieval success network" (anterior and posterior midline brain structures). The subsequent LTM analyses revealed greater activation in left dorsolateral prefrontal cortex and posterior parietal cortex in the early phase of the maintenance stage. No supra-threshold activation was found during the WM probe. Together, we obtained clearer insights in which brain regions support successful WM and LTM without the potential confound of

  3. Appropriate zinc addition management into PWR primary coolant after the plant long-term maintenance

    International Nuclear Information System (INIS)

    Hirose, Atsushi; Matsui, Ryo; Imamura, Haruki; Takahashi, Akira; Shimizu, Yuichi; Kogawa, Noritaka; Nagamine, Kunitaka

    2014-01-01

    Zinc addition into the PWR primary coolant is known as an effective method to reduce the radioactivity build up. The reduction effect has been confirmed by actual plant experience of the Genkai Nuclear Power Plant Unit 1 to 4 and the Sendai Nuclear Power Plant Unit 1 to 2 which are operated by Kyushu Electric Power Co. in Japan. Zinc addition is suspended at shut-down, and is resumed after heat up or arrival at full power. In usual maintenance, the period when zinc addition is not applied is short; thus it is considered that suspension of zinc addition does not have practical influence on the corrosion and the radioactivity buildup in the oxide layer of surface for the primary equipment and piping. On the other hand, in case the maintenance period is much longer, the new oxide which does not contain zinc has grown, and then the structure of the oxide layer may be changed. Therefore, it is considered that zinc addition suspension in long-term period has possibilities to deteriorate the dose reduction effect. In order to verify the effect of long-term suspension of zinc addition upon oxide layer, the lab experiment was carried out using TT690 alloy which is the constitution material of the steam generator tubes under the conditions of long-term and the subsequent resuming operations. After the experiment, the specimens were analyzed by IMA and chemical analysis. These measurement results suggest the difference of the oxide layer is little or none between long-term suspension of zinc addition and short-term suspension of zinc suspension. Hence it is considered that influence of long-term maintenance on the oxide layer is small. Furthermore, in this study, in order to evaluate the influence of the suspension of zinc addition in the operation period, specimens of oxide film formed with zinc were carried out the corrosion test in the simulated RCS condition without zinc. These measurement results indicate the effect of reduction of the activity build up will become less

  4. Long-term weight loss maintenance for obesity: a multidisciplinary approach

    Directory of Open Access Journals (Sweden)

    Montesi L

    2016-02-01

    Full Text Available Luca Montesi,1 Marwan El Ghoch,2 Lucia Brodosi,1 Simona Calugi,2 Giulio Marchesini,1 Riccardo Dalle Grave2 1Unit of Metabolic Diseases, S Orsola-Malpighi Hospital, “Alma Mater Studiorum” University, Bologna, Italy; 2Department of Eating and Weight Disorders, Villa Garda Hospital, Verona, Italy Abstract: The long-term weight management of obesity remains a very difficult task, associated with a high risk of failure and weight regain. However, many people report that they have successfully managed weight loss maintenance in the long term. Several factors have been associated with better weight loss maintenance in long-term observational and randomized studies. A few pertain to the behavioral area (eg, high levels of physical activity, eating a low-calorie, low-fat diet; frequent self-monitoring of weight, a few to the cognitive component (eg, reduced disinhibition, satisfaction with results achieved, confidence in being able to lose weight without professional help, and a few to personality traits (eg, low novelty seeking and patient–therapist interaction. Trials based on the most recent protocols of lifestyle modification, with a prolonged extended treatment after the weight loss phase, have also shown promising long-term weight loss results. These data should stimulate the adoption of a lifestyle modification-based approach for the management of obesity, featuring a nonphysician lifestyle counselor (also called “lifestyle trainer” or “healthy lifestyle practitioner” as a pivotal component of the multidisciplinary team. The obesity physicians maintain a primary role in engaging patients, in team coordination and supervision, in managing the complications associated with obesity and, in selected cases, in the decision for drug treatment or bariatric surgery, as possible more intensive, add-on interventions to lifestyle treatment. Keywords: obesity, lifestyle modification, cognitive behavior therapy, multidisciplinary treatment

  5. Long-term safety of the maintenance and decommissioning waste of the encapsulation plant

    International Nuclear Information System (INIS)

    Nummi, O.; Kylloenen, J.; Eurajoki, T.

    2012-12-01

    This report, Long-term safety of the maintenance and decommissioning waste of the encapsulation plant, presents the disposal concept for the low and intermediate level waste (L/ILW) that is generated during the operation and decommissioning of the encapsulation plant, and assesses the long-term safety of the disposal of the waste. Radioactive waste originates from the spent nuclear fuel transferred and dried in the encapsulation plant. Radioactive waste accumulates also in the maintenance of the components and systems of the encapsulation plant. The waste is collected, exempted from control if possible and treated for final disposal if necessary. The waste is disposed of in the L/ILW hall which is currently planned to be located at a depth of -180 meters along the access tunnel to the repository for spent fuel. The main engineered barrier in the L/ILW hall is a concrete basin that encases the dried liquid waste. The safety concept of L/ILW disposal is based on the slow release of radioactivity from the L/ILW hall and its limited transport through the bedrock into biosphere. The release and transport of the radioactivity is described by the assessment scenarios, which include expected evolution and unlikely events affecting the long-term safety. The scenarios act as guidelines according to which the conceptual and mathematical models are formed. The long-term safety of the L/ILW hall is assessed using deterministic and probabilistic modeling. Special issues such as human intrusion and radiation effects on other biota are also assessed. The most significant contributor to the dose rates is the short-lived radionuclide 90 Sr followed by long-lived nuclides 129 I and 108 mAg. The annual doses to the public, and release rates of radioactive substances stay below the regulatory constraints in all analyzed scenarios. (orig.)

  6. Structure and maintenance of long-term preparation of jumpers in length and triple

    Directory of Open Access Journals (Sweden)

    Sovenko S. P.

    2013-02-01

    Full Text Available Bases of perfection of long-term preparation of jumpers are presented in length and triple by determination of optimum volume of competition practice and training facilities. The results of analysis of long-term dynamics of sporting results of 84 leading athletes-jumpers of the world, which came forward at the greatest level during 10-20 years, are lighted up. Information is systematized more than 50 literary sources, touching structure and maintenance of long-term preparation of athletes-jumpers. Basic priorities of construction of training process of jumpers are set in length and triple on every stage of long-term perfection. The dynamics of volume of competition practice and trainings facilities of jumpers is certain in length and triple in the process of long-term preparation. As a result of experiment information is complemented to scientifically-methodical literatures, touching the training process of jumpers in length and triple on the stage of maintainance of higher sporting trade.

  7. Design and implementation of an interactive website to support long-term maintenance of weight loss.

    Science.gov (United States)

    Stevens, Victor J; Funk, Kristine L; Brantley, Phillip J; Erlinger, Thomas P; Myers, Valerie H; Champagne, Catherine M; Bauck, Alan; Samuel-Hodge, Carmen D; Hollis, Jack F

    2008-01-25

    For most individuals, long-term maintenance of weight loss requires long-term, supportive intervention. Internet-based weight loss maintenance programs offer considerable potential for meeting this need. Careful design processes are required to maximize adherence and minimize attrition. This paper describes the development, implementation and use of a Web-based intervention program designed to help those who have recently lost weight sustain their weight loss over 1 year. The weight loss maintenance website was developed over a 1-year period by an interdisciplinary team of public health researchers, behavior change intervention experts, applications developers, and interface designers. Key interactive features of the final site include social support, self-monitoring, written guidelines for diet and physical activity, links to appropriate websites, supportive tools for behavior change, check-in accountability, tailored reinforcement messages, and problem solving and relapse prevention training. The weight loss maintenance program included a reminder system (automated email and telephone messages) that prompted participants to return to the website if they missed their check-in date. If there was no log-in response to the email and telephone automated prompts, a staff member called the participant. We tracked the proportion of participants with at least one log-in per month, and analyzed log-ins as a result of automated prompts. The mean age of the 348 participants enrolled in an ongoing randomized trial and assigned to use the website was 56 years; 63% were female, and 38% were African American. While weight loss data will not be available until mid-2008, website use remained high during the first year with over 80% of the participants still using the website during month 12. During the first 52 weeks, participants averaged 35 weeks with at least one log-in. Email and telephone prompts appear to be very effective at helping participants sustain ongoing website use

  8. Novel environments enhance the induction and maintenance of long-term potentiation in the dentate gyrus.

    Science.gov (United States)

    Davis, Cyndy D; Jones, Floretta L; Derrick, Brian E

    2004-07-21

    The induction of long-term potentiation (LTP) in the hippocampal formation can be modulated by different behavioral states. However, few studies have addressed modulation of LTP during behavioral states in which the animal is likely acquiring new information. Here, we demonstrate that both the induction and the longevity of LTP in the dentate gyrus are enhanced when LTP is induced during the initial exploration of a novel environment. These effects are independent from locomotor activity, changes in brain temperature, and theta rhythm. Previous exposure to the novel environment attenuated this enhancement, suggesting that the effects of novelty habituate with familiarity. LTP longevity also was enhanced when induced in familiar environments containing novel objects. Together, these data indicate that both LTP induction and maintenance are enhanced when LTP is induced while rats investigate novel stimuli. We suggest that novelty initiates a transition of the hippocampal formation to a mode that is particularly conducive to synaptic plasticity, a process that could allow for new learning while preserving the stability of previously stored information. In addition, LTP induced in novel environments elicited a sustained late LTP. This suggests that a single synaptic population can display distinct profiles of LTP maintenance and that this depends on the animal's behavioral state during its induction. Furthermore, the duration of LTP enhanced by novelty parallels the time period during which the hippocampal formation is thought necessary for memory, consistent with the view that dentate LTP is of a duration sufficient to sustain memory in the hippocampal formation.

  9. Location-specific effects of attention during visual short-term memory maintenance.

    Science.gov (United States)

    Matsukura, Michi; Cosman, Joshua D; Roper, Zachary J J; Vatterott, Daniel B; Vecera, Shaun P

    2014-06-01

    Recent neuroimaging studies suggest that early sensory areas such as area V1 are recruited to actively maintain a selected feature of the item held in visual short-term memory (VSTM). These findings raise the possibility that visual attention operates in similar manners across perceptual and memory representations to a certain extent, despite memory-level and perception-level selections are functionally dissociable. If VSTM operates by retaining "reasonable copies" of scenes constructed during sensory processing (Serences et al., 2009, p. 207, the sensory recruitment hypothesis), then it is possible that selective attention can be guided by both exogenous (peripheral) and endogenous (central) cues during VSTM maintenance. Yet, the results from the previous studies that examined this issue are inconsistent. In the present study, we investigated whether attention can be directed to a specific item's location represented in VSTM with the exogenous cue in a well-controlled setting. The results from the four experiments suggest that, as observed with the endogenous cue, the exogenous cue can efficiently guide selective attention during VSTM maintenance. The finding is not only consistent with the sensory recruitment hypothesis but also validates the legitimacy of the exogenous cue use in past and future studies. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. Long-Term Body Weight Maintenance among StrongWomen–Healthy Hearts Program Participants

    Directory of Open Access Journals (Sweden)

    Rebecca A. Seguin

    2017-01-01

    Full Text Available Background. The repeated loss and regain of body weight, referred to as weight cycling, may be associated with negative health complications. Given today’s obesity epidemic and related interventions to address obesity, it is increasingly important to understand contexts and factors associated with weight loss maintenance. This study examined BMI among individuals who had previously participated in a 12-week, evidence-based, nationally disseminated nutrition and physical activity program designed for overweight and obese middle-aged and older women. Methods. Data were collected using follow-up surveys. Complete height and weight data were available for baseline, 12-week program completion (post-program and follow-up (approximately 3 years later for 154 women (response rate = 27.5%; BMI characteristics did not differ between responders and nonresponders. Results. Mean BMI decreased significantly from baseline to post-program (−0.5, P<0.001 and post-program to follow-up (−0.7, P<0.001. Seventy-five percent of survey respondents maintained or decreased BMI post-program to follow-up. Self-efficacy and social support for healthy eating behaviors (but not physical activity were associated with BMI maintenance or additional weight loss. Conclusions. These findings support the durability of weight loss following participation in a relatively short-term intervention.

  11. Crestospheres: Long-Term Maintenance of Multipotent, Premigratory Neural Crest Stem Cells

    Directory of Open Access Journals (Sweden)

    Laura Kerosuo

    2015-10-01

    Full Text Available Premigratory neural crest cells comprise a transient, embryonic population that arises within the CNS, but subsequently migrates away and differentiates into many derivatives. Previously, premigratory neural crest could not be maintained in a multipotent, adhesive state without spontaneous differentiation. Here, we report conditions that enable maintenance of neuroepithelial “crestospheres” that self-renew and retain multipotency for weeks. Moreover, under differentiation conditions, these cells can form multiple derivatives in vitro and in vivo after transplantation into chick embryos. Similarly, human embryonic stem cells directed to a neural crest fate can be maintained as crestospheres and subsequently differentiated into several derivatives. By devising conditions that maintain the premigratory state in vitro, these results demonstrate that neuroepithelial neural crest precursors are capable of long-term self-renewal. This approach will help uncover mechanisms underlying their developmental potential, differentiation and, together with the induced pluripotent stem cell techniques, the pathology of human neurocristopathies.

  12. Maintenance-based prognostics of nuclear plant equipment for long-term operation

    International Nuclear Information System (INIS)

    Welz, Zachary; Coble, Jamie; Upadhyaya, Belle; Hines, Wes

    2017-01-01

    While industry understands the importance of keeping equipment operational and well maintained, the importance of tracking maintenance information in reliability models is often overlooked. Prognostic models can be used to predict the failure times of critical equipment, but more often than not, these models assume that all maintenance actions are the same or do not consider maintenance at all. This study investigates the influence of integrating maintenance information on prognostic model prediction accuracy. By incorporating maintenance information to develop maintenance-dependent prognostic models, prediction accuracy was improved by more than 40% compared with traditional maintenance-independent models. This study acts as a proof of concept, showing the importance of utilizing maintenance information in modern prognostics for industrial equipment

  13. Maintenance-based prognostics of nuclear plant equipment for long-term operation

    Energy Technology Data Exchange (ETDEWEB)

    Welz, Zachary; Coble, Jamie; Upadhyaya, Belle; Hines, Wes [University of Tennessee, Knoxville (United States)

    2017-08-15

    While industry understands the importance of keeping equipment operational and well maintained, the importance of tracking maintenance information in reliability models is often overlooked. Prognostic models can be used to predict the failure times of critical equipment, but more often than not, these models assume that all maintenance actions are the same or do not consider maintenance at all. This study investigates the influence of integrating maintenance information on prognostic model prediction accuracy. By incorporating maintenance information to develop maintenance-dependent prognostic models, prediction accuracy was improved by more than 40% compared with traditional maintenance-independent models. This study acts as a proof of concept, showing the importance of utilizing maintenance information in modern prognostics for industrial equipment.

  14. Alloy 600 head penetration cracking at EDF: Short and long term maintenance strategy

    International Nuclear Information System (INIS)

    Teissier, A.; Heuze, A.

    1995-01-01

    The discovering of a small leak on BUGEY 3 NPP Reactor Vessel Head (RHV) during 10 years hydrotest (end of 1991), was the beginning of an industrial challenge in terms of technical and economical aspects. Because of pressure vessel structural engineering and safety analyses, and overall, in-service inspection results on nearly 9/10 of the RVH in EDF plants (47), alloy 600 RVH penetration cracking is not a safety concern for the short term: only a few axial cracks (3%) on more than 3,200 penetrations inspected, and low probability to have an important circumferential crack on ID. Nevertheless, conservative measures have been taken for defense in depth: systematic first in-service inspection for diagnosis, repair criteria for deep crack, reliable and performance leak detection system on line, T cold conversion for 4 loops plants. For the long term, as the phenomenon is evolutionary, cracks have to be repaired. The definitive maintenance strategy is a purely economic choice. EDF decided to replace cracked RVH on a several years schedule and to fit periodic in-service inspection, in connection with crack risk initiation and propagation kinetic. (author)

  15. Acute nutritional axonal neuropathy.

    Science.gov (United States)

    Hamel, Johanna; Logigian, Eric L

    2018-01-01

    This study describes clinical, laboratory, and electrodiagnostic features of a severe acute axonal polyneuropathy common to patients with acute nutritional deficiency in the setting of alcoholism, bariatric surgery (BS), or anorexia. Retrospective analysis of clinical, electrodiagnostic, and laboratory data of patients with acute axonal neuropathy. Thirteen patients were identified with a severe, painful, sensory or sensorimotor axonal polyneuropathy that developed over 2-12 weeks with sensory ataxia, areflexia, variable muscle weakness, poor nutritional status, and weight loss, often with prolonged vomiting and normal cerebrospinal fluid protein. Vitamin B6 was low in half and thiamine was low in all patients when obtained before supplementation. Patients improved with weight gain and vitamin supplementation, with motor greater than sensory recovery. We suggest that acute or subacute axonal neuropathy in patients with weight loss or vomiting associated with alcohol abuse, BS, or dietary deficiency is one syndrome, caused by micronutrient deficiencies. Muscle Nerve 57: 33-39, 2018. © 2017 Wiley Periodicals, Inc.

  16. Successful long-term weight loss maintenance in a rural population

    Directory of Open Access Journals (Sweden)

    Milsom VA

    2011-11-01

    Full Text Available Vanessa A Milsom1,2, Kathryn M Ross Middleton2, Michael G Perri21Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 2Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, USABackground: Few investigations of successful long-term weight loss beyond two years have been conducted, and none has examined weight changes in medically underserved rural populations of older adults. The purpose of this study was to assess long-term weight loss maintenance 3.5 years after the completion of an initial six-month lifestyle intervention for obesity among women aged 50–75 years residing in rural communities.Methods: One hundred and ten obese women with a mean (± standard deviation age of 60.08 ± 6.17 years and mean body mass index of 36.76 ± 5.10 kg/m2 completed an in-person assessment during which their weight and adherence to behavioral weight management strategies were evaluated.Results: Participants showed a mean weight reduction of 10.17% ± 5.0% during the initial six-month intervention and regained 6.95% ± 9.44% from the completion of treatment to follow-up assessment 3.5 years later. A substantial proportion of participants (41.80% were able to maintain weight reductions of 5% or greater from baseline to follow-up. "Successful" participants (those who maintained losses of 5% or greater at follow-up reported weighing themselves, self-monitoring their intake and calories, planning meals in advance, and choosing lower calorie foods with greater frequency than "unsuccessful" participants (those who lost less than 5%.Conclusion: Collectively, these findings indicate that a large proportion of participants were able to maintain clinically significant weight losses for multiple years after treatment, and that self-monitoring was a key component of successful long-term weight management.Keywords: obesity, weight loss, weight maintenance, lifestyle intervention, rural, health disparities

  17. Weight reduction and long-term maintenance after 18 months treatment with orlistat for obesity.

    Science.gov (United States)

    Krempf, M; Louvet, J-P; Allanic, H; Miloradovich, T; Joubert, J-M; Attali, J-R

    2003-05-01

    To determine the effect of orlistat on weight reduction and the long-term maintenance of this weight loss when associated with a continuous mildly reduced energy diet. A multicenter, 18-month, double-blind study conducted in 81 hospital centers. Patients were randomized to orlistat 120 mg or placebo three times daily in conjunction with a mildly reduced-energy diet maintained throughout the study. In total, 696 otherwise healthy, overweight patients aged 18-65 y (BMI >or=28 kg/m(2)) were randomized to treatment with orlistat (n=346) or placebo (n=350). Body weight, anthropometry, lipid and glycemic control parameters and blood pressure. After 18 months, patients treated with orlistat lost significantly more body weight compared with placebo (-6.5+/-0.8 vs -3.0+/-0.8%; P=0.0005). After 12 months, 32.9% of orlistat vs 24.5% of placebo patients lost >or=10% of their initial weight (P=0.04). A significantly greater number of patients receiving orlistat treatment maintained this >or=10% weight loss compared to those receiving placebo (28.1 vs 13.8%; P<0.0001). Compared with placebo, orlistat was associated with a greater decrease in fasting blood glucose (-0.86+/-0.12 vs -0.29+/-0.18 mmol/l; P<0.05) and LDL-cholesterol (-13.0+/-1.3 vs -7.0+/-1.3%; P<0.001). A clinically meaningful reduction in body weight and the maintenance of this weight loss is achievable with orlistat treatment and dietary restriction over a period of 18 months. This weight loss resulted in an improvement in risk factors for coronary heart disease.

  18. Transmodal comparison of auditory, motor, and visual post-processing with and without intentional short-term memory maintenance.

    Science.gov (United States)

    Bender, Stephan; Behringer, Stephanie; Freitag, Christine M; Resch, Franz; Weisbrod, Matthias

    2010-12-01

    To elucidate the contributions of modality-dependent post-processing in auditory, motor and visual cortical areas to short-term memory. We compared late negative waves (N700) during the post-processing of single lateralized stimuli which were separated by long intertrial intervals across the auditory, motor and visual modalities. Tasks either required or competed with attention to post-processing of preceding events, i.e. active short-term memory maintenance. N700 indicated that cortical post-processing exceeded short movements as well as short auditory or visual stimuli for over half a second without intentional short-term memory maintenance. Modality-specific topographies pointed towards sensory (respectively motor) generators with comparable time-courses across the different modalities. Lateralization and amplitude of auditory/motor/visual N700 were enhanced by active short-term memory maintenance compared to attention to current perceptions or passive stimulation. The memory-related N700 increase followed the characteristic time-course and modality-specific topography of the N700 without intentional memory-maintenance. Memory-maintenance-related lateralized negative potentials may be related to a less lateralised modality-dependent post-processing N700 component which occurs also without intentional memory maintenance (automatic memory trace or effortless attraction of attention). Encoding to short-term memory may involve controlled attention to modality-dependent post-processing. Similar short-term memory processes may exist in the auditory, motor and visual systems. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Successful weight loss maintenance includes long-term increased meal responses of GLP-1 and PYY3-36

    DEFF Research Database (Denmark)

    Iepsen, Eva W; Lundgren, Julie; Holst, Jens J

    2016-01-01

    at week 52. Glucagon levels were unaffected by weight loss. CONCLUSIONS: Meal responses of GLP-1 and PYY3-36 remained increased 1 year after weight maintenance, whereas ghrelin and GIP reverted toward before-weight loss values. Thus, an increase in appetite inhibitory mechanisms and a partly decrease...... in appetite-stimulating mechanisms appear to contribute to successful long-term weight loss maintenance.......-week very low-calorie diet (800kcal/day). After weight loss, participants entered a 52-week weight maintenance protocol. Plasma levels of GLP-1, PYY3-36, ghrelin, GIP and glucagon during a 600-kcal meal were measured before weight loss, after weight loss and after 1 year of weight maintenance. Area...

  20. Successful long-term weight loss maintenance in a rural population.

    Science.gov (United States)

    Milsom, Vanessa A; Middleton, Kathryn M Ross; Perri, Michael G

    2011-01-01

    Few investigations of successful long-term weight loss beyond two years have been conducted, and none has examined weight changes in medically underserved rural populations of older adults. The purpose of this study was to assess long-term weight loss maintenance 3.5 years after the completion of an initial six-month lifestyle intervention for obesity among women aged 50-75 years residing in rural communities. One hundred and ten obese women with a mean (± standard deviation) age of 60.08 ± 6.17 years and mean body mass index of 36.76 ± 5.10 kg/m(2) completed an in-person assessment during which their weight and adherence to behavioral weight management strategies were evaluated. Participants showed a mean weight reduction of 10.17% ± 5.0% during the initial six- month intervention and regained 6.95% ± 9.44% from the completion of treatment to follow-up assessment 3.5 years later. A substantial proportion of participants (41.80%) were able to maintain weight reductions of 5% or greater from baseline to follow-up. "Successful" participants (those who maintained losses of 5% or greater at follow-up) reported weighing themselves, self-monitoring their intake and calories, planning meals in advance, and choosing lower calorie foods with greater frequency than "unsuccessful" participants (those who lost less than 5%). Collectively, these findings indicate that a large proportion of participants were able to maintain clinically significant weight losses for multiple years after treatment, and that self-monitoring was a key component of successful long-term weight management.

  1. Long-Term Structural Performance Monitoring of Bridges : Hardware Maintenance and, Long-term Data Collection/Analysis

    Science.gov (United States)

    2011-06-01

    In this project a description of the maintenance of the sensor monitoring systems installed on three California : highway bridges is presented. The monitoring systems consist of accelerometers, strain gauges, pressure sensors, : and displacement sens...

  2. Long-term maintenance of the sea urchin Paracentrotus lividus in culture

    Directory of Open Access Journals (Sweden)

    Paola Cirino

    2017-08-01

    Full Text Available The common sea urchin Paracentrotus lividus (Lamarck, 1816 is an important commercial species in the Mediterranean Sea for the consumption of its gonads (roe. This species has also long been used as an animal model in developmental biology and as an indicator in the assessment of environmental quality. In recent decades, the exploitation of this marine resource has become increasingly intensive, causing the depletion of wild stocks. The ripple effect observed in the laboratory use of this species has been the growing difficulty in finding valiant mature animals in the wild. We focused on the long-term maintenance of wild P. lividus and on the essential question of diet to maintain the animals and improve gonad development. The use of practical ration blocks which are nutrient-rich and show stability, easy storage and handling, resulted reduction in labor requirement and time for feeding streamlining the feeding practice. A significantly higher gonad production and a prolonged period of reproduction were obtained compared to wild caught individuals over the same period of time.

  3. Visual short-term memory: activity supporting encoding and maintenance in retinotopic visual cortex.

    Science.gov (United States)

    Sneve, Markus H; Alnæs, Dag; Endestad, Tor; Greenlee, Mark W; Magnussen, Svein

    2012-10-15

    Recent studies have demonstrated that retinotopic cortex maintains information about visual stimuli during retention intervals. However, the process by which transient stimulus-evoked sensory responses are transformed into enduring memory representations is unknown. Here, using fMRI and short-term visual memory tasks optimized for univariate and multivariate analysis approaches, we report differential involvement of human retinotopic areas during memory encoding of the low-level visual feature orientation. All visual areas show weaker responses when memory encoding processes are interrupted, possibly due to effects in orientation-sensitive primary visual cortex (V1) propagating across extrastriate areas. Furthermore, intermediate areas in both dorsal (V3a/b) and ventral (LO1/2) streams are significantly more active during memory encoding compared with non-memory (active and passive) processing of the same stimulus material. These effects in intermediate visual cortex are also observed during memory encoding of a different stimulus feature (spatial frequency), suggesting that these areas are involved in encoding processes on a higher level of representation. Using pattern-classification techniques to probe the representational content in visual cortex during delay periods, we further demonstrate that simply initiating memory encoding is not sufficient to produce long-lasting memory traces. Rather, active maintenance appears to underlie the observed memory-specific patterns of information in retinotopic cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Long-term weight-loss maintenance in obese patients with knee osteoarthritis

    DEFF Research Database (Denmark)

    Christensen, Pia; Henriksen, Marius; Bartels, Else Marie

    2017-01-01

    Background: A formula low-energy diet (LED) reduces weight effectively in obese patients with knee osteoarthritis, but the role of LED in long-term weight-loss maintenance is unclear.Objective: We aimed to determine the effect of intermittent LED compared with daily meal replacements on weight...... in Frederiksberg, Denmark; they had previously completed a 68-wk lifestyle intervention trial and achieved an average weight loss of 10.5 kg (10% of initial body weight). Participants were randomly assigned to either the intermittent treatment (IN) group with LED for 5 wk every 4 mo for 3 y or to daily meal...... of baseline-carried-forward imputation for missing data.Results: A total of 153 participants (means ± SDs: BMI: 33.3 ± 4.6; age: 63.8 ± 6.3 y; 83% women) were recruited between June and December 2009 and randomly assigned to the IN (n = 76) or RE (n = 77) group. A total of 53 and 56 participants, respectively...

  5. Long-term Maintenance of Fungal Cultures on Perlite in Cryovials – an Alternative for Agar Slants

    Czech Academy of Sciences Publication Activity Database

    Homolka, Ladislav; Lisá, Ludmila

    2008-01-01

    Roč. 53, č. 6 (2008), s. 534-536 ISSN 0015-5632 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510 Keywords : basidiomycete * perlite * long-term maintenance Subject RIV: EE - Microbiology, Virology Impact factor: 1.172, year: 2008

  6. Axonal Membranes and Their Domains: Assembly and Function of the Axon Initial Segment and Node of Ranvier

    Directory of Open Access Journals (Sweden)

    Andrew D. Nelson

    2017-05-01

    Full Text Available Neurons are highly specialized cells of the nervous system that receive, process and transmit electrical signals critical for normal brain function. Here, we review the intricate organization of axonal membrane domains that facilitate rapid action potential conduction underlying communication between complex neuronal circuits. Two critical excitable domains of vertebrate axons are the axon initial segment (AIS and the nodes of Ranvier, which are characterized by the high concentrations of voltage-gated ion channels, cell adhesion molecules and specialized cytoskeletal networks. The AIS is located at the proximal region of the axon and serves as the site of action potential initiation, while nodes of Ranvier, gaps between adjacent myelin sheaths, allow rapid propagation of the action potential through saltatory conduction. The AIS and nodes of Ranvier are assembled by ankyrins, spectrins and their associated binding partners through the clustering of membrane proteins and connection to the underlying cytoskeleton network. Although the AIS and nodes of Ranvier share similar protein composition, their mechanisms of assembly are strikingly different. Here we will cover the mechanisms of formation and maintenance of these axonal excitable membrane domains, specifically highlighting the similarities and differences between them. We will also discuss recent advances in super resolution fluorescence imaging which have elucidated the arrangement of the submembranous axonal cytoskeleton revealing a surprising structural organization necessary to maintain axonal organization and function. Finally, human mutations in axonal domain components have been associated with a growing number of neurological disorders including severe cognitive dysfunction, epilepsy, autism, neurodegenerative diseases and psychiatric disorders. Overall, this review highlights the assembly, maintenance and function of axonal excitable domains, particularly the AIS and nodes of

  7. Temporal phylogeography of Yersinia pestis in Madagascar: Insights into the long-term maintenance of plague.

    Science.gov (United States)

    Vogler, Amy J; Andrianaivoarimanana, Voahangy; Telfer, Sandra; Hall, Carina M; Sahl, Jason W; Hepp, Crystal M; Centner, Heather; Andersen, Genevieve; Birdsell, Dawn N; Rahalison, Lila; Nottingham, Roxanne; Keim, Paul; Wagner, David M; Rajerison, Minoarisoa

    2017-09-01

    Yersinia pestis appears to be maintained in multiple, geographically separate, and phylogenetically distinct subpopulations within the highlands of Madagascar. However, the dynamics of these locally differentiated subpopulations through time are mostly unknown. To address that gap and further inform our understanding of plague epidemiology, we investigated the phylogeography of Y. pestis in Madagascar over an 18 year period. We generated whole genome sequences for 31 strains and discovered new SNPs that we used in conjunction with previously identified SNPs and variable-number tandem repeats (VNTRs) to genotype 773 Malagasy Y. pestis samples from 1995 to 2012. We mapped the locations where samples were obtained on a fine geographic scale to examine phylogeographic patterns through time. We identified 18 geographically separate and phylogenetically distinct subpopulations that display spatial and temporal stability, persisting in the same locations over a period of almost two decades. We found that geographic areas with higher levels of topographical relief are associated with greater levels of phylogenetic diversity and that sampling frequency can vary considerably among subpopulations and from year to year. We also found evidence of various Y. pestis dispersal events, including over long distances, but no evidence that any dispersal events resulted in successful establishment of a transferred genotype in a new location during the examined time period. Our analysis suggests that persistent endemic cycles of Y. pestis transmission within local areas are responsible for the long term maintenance of plague in Madagascar, rather than repeated episodes of wide scale epidemic spread. Landscape likely plays a role in maintaining Y. pestis subpopulations in Madagascar, with increased topographical relief associated with increased levels of localized differentiation. Local ecological factors likely affect the dynamics of individual subpopulations and the associated

  8. Temporal phylogeography of Yersinia pestis in Madagascar: Insights into the long-term maintenance of plague.

    Directory of Open Access Journals (Sweden)

    Amy J Vogler

    2017-09-01

    Full Text Available Yersinia pestis appears to be maintained in multiple, geographically separate, and phylogenetically distinct subpopulations within the highlands of Madagascar. However, the dynamics of these locally differentiated subpopulations through time are mostly unknown. To address that gap and further inform our understanding of plague epidemiology, we investigated the phylogeography of Y. pestis in Madagascar over an 18 year period.We generated whole genome sequences for 31 strains and discovered new SNPs that we used in conjunction with previously identified SNPs and variable-number tandem repeats (VNTRs to genotype 773 Malagasy Y. pestis samples from 1995 to 2012. We mapped the locations where samples were obtained on a fine geographic scale to examine phylogeographic patterns through time. We identified 18 geographically separate and phylogenetically distinct subpopulations that display spatial and temporal stability, persisting in the same locations over a period of almost two decades. We found that geographic areas with higher levels of topographical relief are associated with greater levels of phylogenetic diversity and that sampling frequency can vary considerably among subpopulations and from year to year. We also found evidence of various Y. pestis dispersal events, including over long distances, but no evidence that any dispersal events resulted in successful establishment of a transferred genotype in a new location during the examined time period.Our analysis suggests that persistent endemic cycles of Y. pestis transmission within local areas are responsible for the long term maintenance of plague in Madagascar, rather than repeated episodes of wide scale epidemic spread. Landscape likely plays a role in maintaining Y. pestis subpopulations in Madagascar, with increased topographical relief associated with increased levels of localized differentiation. Local ecological factors likely affect the dynamics of individual subpopulations and the

  9. Routine maintenance: safety term based work selection; Selecao de trabalho baseado no prazo seguro

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Albair de; Filho, Antnio S.; Brendler, Fabiano E.; Adamatti, Gilberto A.; Naruto, Itiro; Araujo, Luiz C.F.; Puerari, Roberto [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This work has objective to present the experience of improvement of routine maintenance system in some refineries of the PETROBRAS system, with the purpose to increase the efficiency in the Industrial Maintenance Management (cost), Utilization and HSE (Health, Safety and Environment), key of success of a petroleum company. The new system is based on the implantation of the culture of work selection in the safe period, through elaboration of new maintenance procedure, with emphasis in decisions shared between Operation and Maintenance Team, resulting in reduction of emergencies, making possible contract of services of maintenance for packages and improved allocation of resources. This work treat about improvement of the system in use, in view of that it has already taken in consideration the consequence of fail in the maintenance with participation of the operators. Besides of these challenge, this modification was made without causing riots in the process of implantation of SAP. As main result, financial profits had got better of resources with increase of safety, considering that they are analyzed in a way it that systematized potential risks. (author)

  10. Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2 regulates axon integrity in the mouse embryo.

    Directory of Open Access Journals (Sweden)

    Amy N Hicks

    Full Text Available Using transposon-mediated gene-trap mutagenesis, we have generated a novel mouse mutant termed Blad (Bloated Bladder. Homozygous mutant mice die perinatally showing a greatly distended bladder, underdeveloped diaphragm and a reduction in total skeletal muscle mass. Wild type and heterozygote mice appear normal. Using PCR, we identified a transposon insertion site in the first intron of Nmnat2 (Nicotinamide mononucleotide adenyltransferase 2. Nmnat2 is expressed predominantly in the brain and nervous system and has been linked to the survival of axons. Expression of this gene is undetectable in Nmnat2(blad/blad mutants. Examination of the brains of E18.5 Nmnat2(blad/blad mutant embryos did not reveal any obvious morphological changes. In contrast, E18.5 Nmnat2(blad/blad homozygotes showed an approximate 60% reduction of spinal motoneurons in the lumbar region and a more than 80% reduction in the sensory neurons of the dorsal root ganglion (DRG. In addition, facial motoneuron numbers were severely reduced, and there was virtually a complete absence of axons in the hind limb. Our observations suggest that during embryogenesis, Nmnat2 plays an important role in axonal growth or maintenance. It appears that in the absence of Nmnat2, major target organs and tissues (e.g., muscle are not functionally innervated resulting in perinatal lethality. In addition, neither Nmnat1 nor 3 can compensate for the loss of Nmnat2. Whilst there have been recent suggestions that Nmnat2 may be an endogenous modulator of axon integrity, this work represents the first in vivo study demonstrating that Nmnat2 is involved in axon development or survival in a mammal.

  11. Prognostic factors for long-term maintenance of urinary continence in patients with incontinence managed by diapers or indwelling catheters.

    Science.gov (United States)

    Ueda, T; Yoshimura, N; Yoshida, O

    2000-03-01

    We examined the prognostic factors for longterm maintenance of continence following nonsurgical treatments in hospitalized patients with urinary incontinence. 313 inpatients (average age: 64 years) in whom urinary incontinence had originally been managed with diapers (n = 158) or indwelling Foley catheters (n = 155) first received nonsurgical rehabilitative treatments. The patients who became continent with these treatments were then evaluated for being either continuously continent or recurrently incontinent during the 5-year follow-up period after discharge from hospital. A multivariate logistic regression analysis was then performed to determine significant risk factors for recurrent urinary incontinence. By initial treatments (mean duration: 144 days), 294 of the 313 patients (94%) were continent and free from diapers or catheters. After the 5-year follow-up period, urinary continence was maintained in 103 (66%) and 62 patients (45%) initially managed with diapers (n = 157) and catheters (n = 137), respectively. Multivariate logistic analysis revealed that in both patient groups, poor posttherapeutic activities of daily living or loss of home care service lowered the maintenance rate of continence. Dementia also lowered the maintenance rate in patients with catheters, but not in those with diapers. In addition, a long history of Foley catheter drainage for over 1 year prior to the initial treatment reduced the maintenance rate (highest odds ratio). Physical disability and poor therapeutic assistance at home are more prominent risk factors for long-term maintenance of urinary continence in elderly patients than problems within the urinary tract.

  12. Axonal and presynaptic RNAs are locally transcribed in glial cells.

    Science.gov (United States)

    Giuditta, Antonio; Chun, Jong Tai; Eyman, Maria; Cefaliello, Carolina; Bruno, Anna Paola; Crispino, Marianna

    2007-01-01

    In the last few years, the long-standing opinion that axonal and presynaptic proteins are exclusively derived from the neuron cell body has been substantially modified by the demonstration that active systems of protein synthesis are present in axons and nerve terminals. These observations have raised the issue of the cellular origin of the involved RNAs, which has been generally attributed to the neuron soma. However, data gathered in a number of model systems indicated that axonal RNAs are synthesized in the surrounding glial cells. More recent experiments on the perfused squid giant axon have definitively proved that axoplasmic RNAs are transcribed in periaxonal glia. Their delivery to the axon occurs by a modulatory mechanism based on the release of neurotransmitters from the stimulated axon and on their binding to glial receptors. In additional experiments on squid optic lobe synaptosomes, presynaptic RNA has been also shown to be synthesized locally, presumably in nearby glia. Together with a wealth of literature data, these observations indicate that axons and nerve terminals are endowed with a local system of gene expression that supports the maintenance and plasticity of these neuronal domains.

  13. Solid Waste Management Units And Areas Of Concern Annual Long-Term Monitoring & Maintenance Report For Calendar Year 2016.

    Energy Technology Data Exchange (ETDEWEB)

    Dotson, Patrick Wells [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Little, Bonnie Colleen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    Long-term controls were maintained at 21 Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) in accordance with the requirements of the “Long-Term Monitoring and Maintenance Plan for SWMUs and AOCs Granted Corrective Action Complete with Controls” in Attachment M of the Resource Conservation and Recovery Act Facility Operating Permit, which took effect February 26, 2015. Maintenance and controls at these SWMUs and AOCs are described and documented in this report. Conditions requiring maintenance or repair activities were not identified for any of the inspected SWMUs or AOCs. Based upon the inspections performed and site conditions observed, the administrative and physical institutional controls in place at the SWMUs and AOCs are effectively providing continued protection of human health and the environment. This report does not present monitoring and maintenance activities for SWMU 76, the Mixed Waste Landfill; those activities adhere to the approved MWL LTMM Plan, Section 4.8.1 requiring a separate annual report which will be submitted to the NMED by June 30, 2017.

  14. Identification of factors promoting ex vivo maintenance of mouse hematopoietic stem cells by long-term single-cell quantification.

    Science.gov (United States)

    Kokkaliaris, Konstantinos D; Drew, Erin; Endele, Max; Loeffler, Dirk; Hoppe, Philipp S; Hilsenbeck, Oliver; Schauberger, Bernhard; Hinzen, Christoph; Skylaki, Stavroula; Theodorou, Marina; Kieslinger, Matthias; Lemischka, Ihor; Moore, Kateri; Schroeder, Timm

    2016-09-01

    The maintenance of hematopoietic stem cells (HSCs) during ex vivo culture is an important prerequisite for their therapeutic manipulation. However, despite intense research, culture conditions for robust maintenance of HSCs are still missing. Cultured HSCs are quickly lost, preventing their improved analysis and manipulation. Identification of novel factors supporting HSC ex vivo maintenance is therefore necessary. Coculture with the AFT024 stroma cell line is capable of maintaining HSCs ex vivo long-term, but the responsible molecular players remain unknown. Here, we use continuous long-term single-cell observation to identify the HSC behavioral signature under supportive or nonsupportive stroma cocultures. We report early HSC survival as a major characteristic of HSC-maintaining conditions. Behavioral screening after manipulation of candidate molecules revealed that the extracellular matrix protein dermatopontin (Dpt) is involved in HSC maintenance. DPT knockdown in supportive stroma impaired HSC survival, whereas ectopic expression of the Dpt gene or protein in nonsupportive conditions restored HSC survival. Supplementing defined stroma- and serum-free culture conditions with recombinant DPT protein improved HSC clonogenicity. These findings illustrate a previously uncharacterized role of Dpt in maintaining HSCs ex vivo. © 2016 by The American Society of Hematology.

  15. Demonstration and manifestation of self-determination and illness resistance--a qualitative study of long-term maintenance of physical activity in posttreatment cancer survivors

    DEFF Research Database (Denmark)

    Midtgaard, Julie; Røssell, Kasper; Christensen, Jesper Frank

    2012-01-01

    The aim of this study was to describe posttreatment cancer survivors' lived experience of long-term maintenance of physical activity (PA).......The aim of this study was to describe posttreatment cancer survivors' lived experience of long-term maintenance of physical activity (PA)....

  16. The axon-protective WLD(S) protein partially rescues mitochondrial respiration and glycolysis after axonal injury.

    Science.gov (United States)

    Godzik, Katharina; Coleman, Michael P

    2015-04-01

    The axon-protective Wallerian degeneration slow (WLD(S)) protein can ameliorate the decline in axonal ATP levels after neurite transection. Here, we tested the hypothesis that this effect is associated with maintenance of mitochondrial respiration and/or glycolysis. We used isolated neurites of superior cervical ganglion (SCG) cultures in the Seahorse XF-24 Metabolic Flux Analyser to determine mitochondrial respiration and glycolysis under different conditions. We observed that both mitochondrial respiration and glycolysis declined significantly during the latent phase of Wallerian degeneration. WLD(S) partially reduced the decline both in glycolysis and in mitochondrial respiration. In addition, we found that depleting NAD levels in uncut cultures led to changes in mitochondrial respiration and glycolysis similar to those rescued by WLD(S) after cut, suggesting that the maintenance of NAD levels in Wld(S) neurites after axonal injury at least partially underlies the maintenance of ATP levels. However, by using another axon-protective mutation (Sarm1(-/-)), we could demonstrate that rescue of basal ECAR (and hence probably glycolysis) rather than basal OCR (mitochondrial respiration) may be part of the protective phenotype to delay Wallerian degeneration. These findings open new routes to study glycolysis and the connection between NAD and ATP levels in axon degeneration, which may help to eventually develop therapeutic strategies to treat neurodegenerative diseases.

  17. An αII Spectrin-Based Cytoskeleton Protects Large-Diameter Myelinated Axons from Degeneration.

    Science.gov (United States)

    Huang, Claire Yu-Mei; Zhang, Chuansheng; Zollinger, Daniel R; Leterrier, Christophe; Rasband, Matthew N

    2017-11-22

    maintenance of axon integrity. We demonstrate the role of the periodic spectrin-dependent cytoskeleton in axons and show that loss of αII spectrin from PNS axons causes preferential degeneration of large-diameter myelinated axons. We show that nodal αII spectrin is found at greater densities in large-diameter myelinated axons, suggesting that nodes are particularly vulnerable domains requiring a specialized cytoskeleton to protect against axon degeneration. Copyright © 2017 the authors 0270-6474/17/3711323-12$15.00/0.

  18. Promoting exercise maintenance: how interventions with booster sessions improve long-term rehabilitation outcomes.

    Science.gov (United States)

    Fleig, Lena; Pomp, Sarah; Schwarzer, Ralf; Lippke, Sonia

    2013-11-01

    Follow-up intervention boosters are supposed to promote exercise maintenance beyond initial treatment. The current quasi-experimental study investigated the benefits of adding telephone-delivered intervention boosters to a self-management exercise intervention for rehabilitants. Psycho-social mechanisms by which the intervention boosters promote exercise maintenance were examined. Between 2009 and 2011, individuals in cardiac and orthopedic rehabilitation (N = 1,166) were allocated to either a self-management exercise intervention or a control group (i.e., questionnaire only). In addition to standard rehabilitation, participants in the intervention group were offered a series of telephone-delivered intervention boosters after 6 weeks and again after 6 months. Self-efficacy, action planning, and satisfaction with previous exercise outcomes were reassessed 12 months after discharge. Habit strength and exercise were measured 18 months after rehabilitation. The intervention with boosters promoted the maintenance of planning, self-efficacy, satisfaction, exercise, and habit strength. Changes in exercise were simultaneously mediated by changes in planning, self-efficacy, and satisfaction. Changes in habit strength were sequentially mediated by planning and exercise. Interventions with boosters that focus on action planning, self-efficacy, and satisfaction help to maintain self-directed postrehabilitation exercise. Frequent exercise performance, in turn, can strengthen exercise habits. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  19. Long-Term Maintenance Therapy Using Rituximab-Induced Continuous B-Cell Depletion in Patients with ANCA Vasculitis

    Science.gov (United States)

    Pendergraft, William F.; Cortazar, Frank B.; Wenger, Julia; Murphy, Andrew P.; Rhee, Eugene P.; Laliberte, Karen A.; Niles, John L.

    2014-01-01

    Background and objectives Remission in the majority of ANCA vasculitis patients is not sustained after a single course of rituximab, and risk of relapse warrants development of a successful strategy to ensure durable remission. Design, setting, participants, & measurements A retrospective analysis of ANCA vasculitis patients who underwent maintenance therapy using rituximab-induced continuous B-cell depletion for up to 7 years was performed. Maintenance therapy with rituximab was initiated after achieving remission or converting from other prior maintenance therapy. Continuous B-cell depletion was achieved in all patients by scheduled rituximab administration every 4 months. Disease activity, serologic parameters, adverse events, and survival were examined. Results In the study, 172 patients (mean age=60 years, 55% women, 57% myeloperoxidase–ANCA) treated from April of 2006 to March of 2013 underwent continuous B-cell depletion with rituximab. Median remission maintenance follow-up time was 2.1 years. Complete remission (Birmingham Vasculitis Activity Score [BVAS]=0) was achieved in all patients. Major relapse (BVAS≥3) occurred in 5% of patients and was associated with weaning of other immunosuppression drugs. Remission was reinduced in all patients. Survival mirrored survival of a general age-, sex-, and ethnicity-matched United States population. Conclusion This analysis provides evidence for long-term disease control using continuous B-cell depletion. This treatment strategy in ANCA vasculitis patients also seems to result in survival rates comparable with rates in a matched reference population. These findings suggest that prospective remission maintenance treatment trials using continuous B-cell depletion are warranted. PMID:24626432

  20. Signal propagation along the axon.

    Science.gov (United States)

    Rama, Sylvain; Zbili, Mickaël; Debanne, Dominique

    2018-03-08

    Axons link distant brain regions and are usually considered as simple transmission cables in which reliable propagation occurs once an action potential has been generated. Safe propagation of action potentials relies on specific ion channel expression at strategic points of the axon such as nodes of Ranvier or axonal branch points. However, while action potentials are generally considered as the quantum of neuronal information, their signaling is not entirely digital. In fact, both their shape and their conduction speed have been shown to be modulated by activity, leading to regulations of synaptic latency and synaptic strength. We report here newly identified mechanisms of (1) safe spike propagation along the axon, (2) compartmentalization of action potential shape in the axon, (3) analog modulation of spike-evoked synaptic transmission and (4) alteration in conduction time after persistent regulation of axon morphology in central neurons. We discuss the contribution of these regulations in information processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Axon-glia interaction and membrane traffic in myelin formation

    Directory of Open Access Journals (Sweden)

    Robin eWhite

    2014-01-01

    Full Text Available In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialised glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarisation followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is established. Continuous communication between neurons and glial cells is essential for myelin maintenance and axonal integrity. A diverse group of diseases, from multiple sclerosis to schizophrenia, have been linked to malfunction of myelinating cells reflecting the physiological importance of the axon-glial unit. This review describes the mechanisms of axonal signal integration by oligodendrocytes emphasising the central role of the Src-family kinase Fyn during CNS myelination. Furthermore, we discuss myelin membrane trafficking with particular focus on endocytic recycling and the control of PLP (proteolipid protein transport by SNARE proteins. Finally, PLP mistrafficking is considered in the context of myelin diseases.

  2. System-level biomechanical approach for the evaluation of term and preterm pregnancy maintenance.

    Science.gov (United States)

    Mahmoud, Hussam; Wagoner Johnson, Amy; Chien, Edward K; Poellmann, Michael J; McFarlin, Barbara

    2013-02-01

    Preterm birth is the primary contributor to perinatal morbidity and mortality, with those born prior to 32 weeks disproportionately contributing compared to those born at 32-37 weeks. Outcomes for babies born prematurely can be devastating. Parturition is recognized as a mechanical process that involves the two processes that are required to initiate labor: rhythmic myometrial contractions and cervical remodeling with subsequent dilation. Studies of parturition tend to separate these two processes rather than evaluate them as a unified system. The mechanical property characterization of the cervix has been primarily performed on isolated cervical tissue, with an implied understanding of the contribution from the uterine corpus. Few studies have evaluated the function of the uterine corpus in the absence of myometrial contractions or in relationship to retaining the fetus. Therefore, the cervical-uterine interaction has largely been neglected in the literature. We suggest that a system-level biomechanical approach is needed to understand pregnancy maintenance. To that end, this paper has two main goals. One goal is to highlight the gaps in current knowledge that need to be addressed in order to develop any comprehensive and clinically relevant models of the system. The second goal is to illustrate the utility of finite element models in understanding pregnancy maintenance of the cervical-uterine system. The paper targets an audience that includes the reproductive biologist/clinician and the engineer/physical scientist interested in biomechanics and the system level behavior of tissues.

  3. Long-Term Weight Maintenance after a 17-Week Weight Loss Intervention with or without a One-Year Maintenance Program: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Tuula Pekkarinen

    2015-01-01

    Full Text Available Background. Weight lost by obese patients is almost always regained over time. Extended treatment may improve maintenance, but solid evidence is lacking. Purpose. We determined effectiveness of maintenance therapy after a weight loss program. Methods. Together 201 patients (mean age 47 years and BMI 42 kg/m2, 71% women were randomly assigned to either a 17-week weight loss program followed by a one-year maintenance program or to a weight loss program without subsequent maintenance intervention. The weight loss program included behavior modification and a very-low-calorie diet, and maintenance program behavior modification. The primary outcome measure was percentage of patients with 5% or more weight loss at the end of maintenance (week 69 and one year later (week 121. Secondary outcomes were weight related changes in lifestyle and quality of life. Results. At week 69, 52% of the patients with and 44% of those without maintenance program had lost weight ≥5%, P=0.40, and, at week 121, 33% and 34%, P=0.77, respectively. At week 121 secondary outcomes did not differ between the groups among those successfully followed up. Conclusions. This one-year maintenance program was not effective in preventing weight regain in severely obese patients. Trial Registration. This trial is registered under clinicaltrials.gov Identifier: NCT00590655.

  4. Three-dimensional carbon nanotube scaffolds for long-term maintenance and expansion of human mesenchymal stem cells.

    Science.gov (United States)

    Lalwani, Gaurav; D'agati, Michael; Gopalan, Anu; Patel, Sunny C; Talukdar, Yahfi; Sitharaman, Balaji

    2017-07-01

    Expansion of mesenchymal stem cells (MSCs) and maintenance of their self-renewal capacity in vitro requires specialized robust cell culture systems. Conventional approaches using animal-derived or artificial matrices and a cocktail of growth factors have limitations such as consistency, scalability, pathogenicity, and loss of MSC phenotype. Herein, we report the use of all-carbon 3-D single- and multiwalled carbon nanotube scaffolds (SWCNTs and MWCNTs) as artificial matrices for long-term maintenance and expansion of human MSCs. Three-dimensional SWCNT and MWCNT scaffolds were fabricated using a novel radical initiated thermal cross-linking method that covalently cross-links CNTs to form 3-D macroporous all-carbon architectures. Adipose-derived human MSCs showed good cell viability, attachment, proliferation, and infiltration in MWCNT and SWCNT scaffolds comparable to poly(lactic-co-glycolic) acid (PLGA) scaffolds (baseline control). ADSCs retained stem cell phenotype after 30 days and satisfied the International Society for Cellular Therapy's (ISCT) minimal criteria for MSCs. Post expansion, (1) ADSCs showed in vitro adherence to tissue culture polystyrene (TCPS); (2) MSC surface antigen expression [CD14(-), CD19(-), CD34(-), CD45(-), CD73(+), CD90(+), CD105(+)]; and (3) trilineage differentiation into osteoblasts, adipocytes, and chondrocytes. Results show that cross-linked 3-D MWCNTs and SWCNTs scaffolds are suitable for ex vivo expansion and maintenance of MSCs for therapeutic applications. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1927-1939, 2017. © 2017 Wiley Periodicals, Inc.

  5. The dose effects of short-term dronabinol (oral THC) maintenance in daily cannabis users.

    Science.gov (United States)

    Vandrey, Ryan; Stitzer, Maxine L; Mintzer, Miriam Z; Huestis, Marilyn A; Murray, Jeannie A; Lee, Dayong

    2013-02-01

    Prior studies have separately examined the effects of dronabinol (oral THC) on cannabis withdrawal, cognitive performance, and the acute effects of smoked cannabis. A single study examining these clinically relevant domains would benefit the continued evaluation of dronabinol as a potential medication for the treatment of cannabis use disorders. Thirteen daily cannabis smokers completed a within-subject crossover study and received 0, 30, 60 and 120mg dronabinol per day for 5 consecutive days. Vital signs and subjective ratings of cannabis withdrawal, craving and sleep were obtained daily; outcomes under active dose conditions were compared to those obtained under placebo dosing. On the 5th day of medication maintenance, participants completed a comprehensive cognitive performance battery and then smoked five puffs of cannabis for subjective effects evaluation. Each dronabinol maintenance period occurred in a counterbalanced order and was separated by 9 days of ad libitum cannabis use. Dronabinol dose-dependently attenuated cannabis withdrawal and resulted in few adverse side effects or decrements in cognitive performance. Surprisingly, dronabinol did not alter the subjective effects of smoked cannabis, but cannabis-induced increases in heart rate were attenuated by the 60 and 120mg doses. Dronabinol's ability to dose-dependently suppress cannabis withdrawal may be therapeutically beneficial to individuals trying to stop cannabis use. The absence of gross cognitive impairment or side effects in this study supports safety of doses up to 120mg/day. Continued evaluation of dronabinol in targeted clinical studies of cannabis treatment, using an expanded range of doses, is warranted. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Generation and Long-term Maintenance of Nerve-free Hydra.

    Science.gov (United States)

    Tran, Cassidy M; Fu, Sharon; Rowe, Trevor; Collins, Eva-Maria S

    2017-07-07

    The interstitial cell lineage of Hydra includes multipotent stem cells, and their derivatives: gland cells, nematocytes, germ cells, and nerve cells. The interstitial cells can be eliminated through two consecutive treatments with colchicine, a plant-derived toxin that kills dividing cells, thus erasing the potential for renewal of the differentiated cells that are derived from the interstitial stem cells. This allows for the generation of Hydra that lack nerve cells. A nerve-free polyp cannot open its mouth to feed, egest, or regulate osmotic pressure. Such animals, however, can survive and be cultured indefinitely in the laboratory if regularly force-fed and burped. The lack of nerve cells allows for studies of the role of the nervous system in regulating animal behavior and regeneration. Previously published protocols for nerve-free Hydra maintenance involve outdated techniques such as mouth-pipetting with hand-pulled micropipette tips to feed and clean the Hydra. Here, an improved protocol for maintenance of nerve-free Hydra is introduced. Fine-tipped forceps are used to force open the mouth and insert freshly killed Artemia. Following force-feeding, the body cavity of the animal is flushed with fresh medium using a syringe and hypodermic needle to remove undigested material, referred to here as "burping". This new method of force-feeding and burping nerve-free Hydra through the use of forceps and syringes eliminates the need for mouth-pipetting using hand-pulled micropipette tips. It thus makes the process safer and significantly more time efficient. To ensure that the nerve cells in the hypostome have been eliminated, immunohistochemistry using anti-tyrosine-tubulin is conducted.

  7. The role of long-term familiarity and attentional maintenance in short-term memory for timbre.

    Science.gov (United States)

    Siedenburg, Kai; McAdams, Stephen

    2017-04-01

    We study short-term recognition of timbre using familiar recorded tones from acoustic instruments and unfamiliar transformed tones that do not readily evoke sound-source categories. Participants indicated whether the timbre of a probe sound matched with one of three previously presented sounds (item recognition). In Exp. 1, musicians better recognised familiar acoustic compared to unfamiliar synthetic sounds, and this advantage was particularly large in the medial serial position. There was a strong correlation between correct rejection rate and the mean perceptual dissimilarity of the probe to the tones from the sequence. Exp. 2 compared musicians' and non-musicians' performance with concurrent articulatory suppression, visual interference, and with a silent control condition. Both suppression tasks disrupted performance by a similar margin, regardless of musical training of participants or type of sounds. Our results suggest that familiarity with sound source categories and attention play important roles in short-term memory for timbre, which rules out accounts solely based on sensory persistence.

  8. Cell-Specific PKM Isoforms Contribute to the Maintenance of Different Forms of Persistent Long-Term Synaptic Plasticity.

    Science.gov (United States)

    Hu, Jiangyuan; Adler, Kerry; Farah, Carole Abi; Hastings, Margaret H; Sossin, Wayne S; Schacher, Samuel

    2017-03-08

    Multiple kinase activations contribute to long-term synaptic plasticity, a cellular mechanism mediating long-term memory. The sensorimotor synapse of Aplysia expresses different forms of long-term facilitation (LTF)-nonassociative and associative LTF-that require the timely activation of kinases, including protein kinase C (PKC). It is not known which PKC isoforms in the sensory neuron or motor neuron L7 are required to sustain each form of LTF. We show that different PKMs, the constitutively active isoforms of PKCs generated by calpain cleavage, in the sensory neuron and L7 are required to maintain each form of LTF. Different PKMs or calpain isoforms were blocked by overexpressing specific dominant-negative constructs in either presynaptic or postsynaptic neurons. Blocking either PKM Apl I in L7, or PKM Apl II or PKM Apl III in the sensory neuron 2 d after 5-hydroxytryptamine (5-HT) treatment reversed persistent nonassociative LTF. In contrast, blocking either PKM Apl II or PKM Apl III in L7, or PKM Apl II in the sensory neuron 2 d after paired stimuli reversed persistent associative LTF. Blocking either classical calpain or atypical small optic lobe (SOL) calpain 2 d after 5-HT treatment or paired stimuli did not disrupt the maintenance of persistent LTF. Soon after 5-HT treatment or paired stimuli, however, blocking classical calpain inhibited the expression of persistent associative LTF, while blocking SOL calpain inhibited the expression of persistent nonassociative LTF. Our data suggest that different stimuli activate different calpains that generate specific sets of PKMs in each neuron whose constitutive activities sustain long-term synaptic plasticity. SIGNIFICANCE STATEMENT Persistent synaptic plasticity contributes to the maintenance of long-term memory. Although various kinases such as protein kinase C (PKC) contribute to the expression of long-term plasticity, little is known about how constitutive activation of specific kinase isoforms sustains long-term

  9. Maintenance of tactile short-term memory for locations is mediated by spatial attention.

    Science.gov (United States)

    Katus, Tobias; Andersen, Søren K; Müller, Matthias M

    2012-01-01

    According to the attention-based rehearsal hypothesis, maintenance of spatial information is mediated by covert orienting towards memorized locations. In a somatosensory memory task, participants simultaneously received bilateral pairs of mechanical sample pulses. For each hand, sample stimuli were randomly assigned to one of three locations (fingers). A subsequent visual retro-cue determined whether the left or right hand sample was to be memorized. The retro-cue elicited lateralized activity reflecting the location of the relevant sample stimulus. Sensory processing during the retention period was probed by task-irrelevant pulses randomized to locations at the cued and uncued hand. The somatosensory N140 was enhanced for probes delivered to the cued hand, relative to uncued. Probes presented shortly after the retro-cue showed greatest attentional modulations. This suggests that transient contributions from retrospective selection overlapped with the sustained effect of attention-based rehearsal. In conclusion, focal attention shifts within tactile mnemonic content occurred after retro-cues and guided sensory processing during retention. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Motor axon excitability during Wallerian degeneration

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez, Susana; Krarup, Christian

    2008-01-01

    Axonal loss and degeneration are major factors in determining long-term outcome in patients with peripheral nerve disorders or injury. Following loss of axonal continuity, the isolated nerve stump distal to the lesion undergoes Wallerian degeneration in several phases. In the initial 'latent' phase...... at ankle distal to axotomy were monitored by 'threshold-tracking'. The plantar compound muscle action potentials (CMAPs) were recorded under anesthesia in three animal models: 8-week-old wild-type mice, 8-week-old slow Wallerian degeneration mutant mice and 3-year-old cats. We found that the progressive...... decrease in CMAP following crush injury was associated with slowing of conduction and marked abnormalities in excitability: increased peak threshold deviations during both depolarizing and hyperpolarizing threshold electrotonus, enhanced superexcitability during the recovery cycle and increased rheobase...

  11. Schwann cell to axon transfer of ribosomes: toward a novel understanding of the role of glia in the nervous system

    NARCIS (Netherlands)

    Court, F.A.; Hendriks, W.T.J.; Mac Gillavry, H.D.; Alvarez, J.; van Minnen, J.

    2008-01-01

    Schwann cells play pivotal roles in the development and maintenance of the peripheral nervous system. Here, we show that intact sciatic nerve axons of mice contain a small population of ribosomes, which increases by several orders of magnitude when axons are desomatized (severed from their cell

  12. The aging methadone maintenance patient: treatment adjustment, long-term success, and quality of life.

    Science.gov (United States)

    Rajaratnam, Ranjit; Sivesind, David; Todman, McWelling; Roane, David; Seewald, Randy

    2009-01-01

    To evaluate the features and modes of adaptation to aging among Methadone Maintenance Treatment (MMT) enrollees. Beth Israel Medical Center in New York City. A sample of 156 MMT enrollees (103/66 percent males and 53/34 percent females) age 24-68 years. Twenty-nine percent of participants were aged 55 or older. A cross-sectional, multivariate, correlational design. Participants were administered the MMSE, ASI, BSI, as well as measures of impulsiveness and quality of life (QOL). Older adults were more likely to have had longer periods of treatment (p age was also associated with less impulsiveness, hostility, paranoia, and interpersonal sensitivity (p 0.05), the Personal Well-Being Index (p > 0.05) and the Satisfaction with Life Scale (p > 0.05), suggesting comparable levels of QOL. Furthermore, the rate of contact for older participants with medical professionals did not differ significantly from that of younger participants (p > 0.05). Only 7.1 percent of older participants reported regular contact with a primary care physician; a rate that is slightly lower than the rate in the overall population. The findings from the present study highlight at least two underappreciated challenges that clinicians are increasingly likely encounter in their work with the aging MMT population. These challenges are: (1) that despite numerous medical and psychiatric complaints, only a small proportion of MMT patients have regular contact with a primary care physician and the rate of contact does not appear to increase with age and (2) even with age-related declines in psychiatric comorbidity and illicit substance use, the suboptimal level of QOL that is characteristic of the MMT population as a whole does not improve with aging and length of tenure in MMT.

  13. An Axenic Plant Culture System for Optimal Growth in Long-Term Studies: Design and Maintenance

    Science.gov (United States)

    Henry, Amelia; Doucette, William; Norton, Jeanette; Jones, Scott; Chard, Julie; Bugbee, Bruce

    2006-01-01

    The symbiotic co-evolution of plants and microbes leads to difficulties in understanding which of the two components is responsible for a given environmental response. Plant-microbe studies greatly benefit from the ability to grow plants in axenic (sterile) culture. Several studies have used axenic plant culture systems, but experimental procedures are often poorly documented, the plant growth environment is not optimal, and axenic conditions are not rigorously verified. We developed a unique axenic system using inert components that promotes plant health and can be kept sterile for at least 70 d. Crested wheatgrass (Agropyron cristatum cv. DII) plants were grown in sand within flow-through glass columns that were positively pressured with filtered air. Plant health was optimized by regulating temperature, light level, CO2 concentration, humidity, and nutrients. The design incorporates several novel aspects, such as pretreatment of the sand with Fe, graduated sand layers to optimize the air-water balance of the root zone, and modification of a laminar flow hood to serve as a plant growth chamber. Adaptations of several sterile techniques were necessary for maintenance of axenic conditions. Axenic conditions were verified by plating and staining leachates as well as rhizoplane stain. This system was designed to study nutrient and water stress effects on root exudates, but is useful for assessing a broad range of plant-microbe-environment interactions. Based on total organic C analysis, 74% of exudates was recovered in the leachate, 6% was recovered in the bulk sand, and 17% was recovered in the rhizosphere sand. Carbon in the leachate after 70 d reached 255 micro-g/d. Fumaric, malic, malonic, oxalic, and succinic acids were measured as components of the root exudates.

  14. The Role of Attention in the Maintenance of Feature Bindings in Visual Short-term Memory

    Science.gov (United States)

    Johnson, Jeffrey S.; Hollingworth, Andrew; Luck, Steven J.

    2008-01-01

    This study examined the role of attention in maintaining feature bindings in visual short-term memory. In a change-detection paradigm, participants attempted to detect changes in the colors and orientations of multiple objects; the changes consisted of new feature values in a feature-memory condition and changes in how existing feature values were…

  15. Efficacy of Adalimumab as a long term maintenance therapy in ulcerative colitis.

    LENUS (Irish Health Repository)

    McDermott, Edel

    2013-03-01

    Adalimumab is a recombinant human IgG1 monoclonal antibody to TNF-alpha. There are limited data with regard to its efficacy in ulcerative colitis. We report experience of adalimumab in ulcerative colitis in a single centre with a focus on the ability of this agent to maintain response and avoid colectomy in the medium to long-term.

  16. New maintenance strategy of Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant for effective ageing management and safe long-term operation

    International Nuclear Information System (INIS)

    Inagaki, Takeyuki; Yamashita, Norimichi

    2009-01-01

    Fukushima Dai-ichi Nuclear Power Plant is the oldest among three nuclear power plants owned and operated by Tokyo Electric Power Company, which consists of six boiling water reactor units. The commercial operation of Unit 1 was commenced in 1971 (37 years old) and Unit 6 in 1978 (29 years old). Currently ageing degradations of systems, structures and components are managed through maintenance programs, component replacement/refurbishment programs and long-term maintenance plans. The long-term maintenance plans are established through ageing management component replacement/refurbishment programs reviews performed before the 30th year of operation and they are for safe and reliable operation after 30 years (long-term operation). However the past maintenance actions and past component replacement/refurbishment programs were not always proactive and past operational experience and maintenance practices suggest that effective/proactive ageing management programs be introduced in earlier stage of the plant operation. In this circumstance, Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant are setting up a new maintenance strategy that includes 1) improving the normal maintenance programs by using ageing degradation data, 2) effective use of information on internal/external operational experience and maintenance practices related to ageing, and 3) proactive component/equipment refurbishment programs during a refreshment outage for safe and reliable long-term operation. To accomplish the goal of this strategy, strengthening engineering capability of plant staff members is a crucial required for the plant. The objective of this paper is to briefly explain main results ageing management reviews, past and current significant ageing issues and management programs against them, and the new maintenance strategy established by Tokyo Electric Power Company and Fukushima Dai-ichi Nuclear Power Plant. (author)

  17. Associations of short-term particle and noise exposures with markers of cardiovascular and respiratory health among highway maintenance workers.

    Science.gov (United States)

    Meier, Reto; Cascio, Wayne E; Ghio, Andrew J; Wild, Pascal; Danuser, Brigitta; Riediker, Michael

    2014-07-01

    Highway maintenance workers are constantly and simultaneously exposed to traffic-related particle and noise emissions, both of which have been linked to increased cardiovascular morbidity and mortality in population-based epidemiology studies. We aimed to investigate short-term health effects related to particle and noise exposure. We monitored 18 maintenance workers, during as many as five 24-hr periods from a total of 50 observation days. We measured their exposure to fine particulate matter (diameter ≤ 2.5 μm; PM2.5), ultrafine particles, and noise, and the cardiopulmonary health end points: blood pressure, proinflammatory and prothrombotic markers in the blood, lung function, and fractional exhaled nitric oxide (FeNO) measured approximately 15 hr after work. Heart rate variability was assessed during a sleep period approximately 10 hr after work. PM2.5 exposure was significantly associated with C-reactive protein and serum amyloid A, and was negatively associated with tumor necrosis factor α. None of the particle metrics were significantly associated with von Willebrand factor or tissue factor expression. PM2.5 and work noise were associated with markers of increased heart rate variability, and with increased high-frequency and low-frequency power. Systolic and diastolic blood pressure on the following morning were significantly associated with noise exposure after work, and nonsignificantly associated with PM2.5. We observed no significant associations between any of the exposures and lung function or FeNO. Our findings suggest that exposure to particles and noise during highway maintenance work might pose a cardiovascular health risk. Actions to reduce these exposures could lead to better health for this population of workers.

  18. The evaluation of the urban parks in Konya province in terms of quality, sufficiency, maintenance, and growth rate.

    Science.gov (United States)

    Güngör, Sertaç; Polat, Ahmet Tuğrul

    2017-04-01

    Nowadays, the understanding of physically, socially, and visually sufficient and high-standard outdoor arrangements has begun to appear. The most important ones among this kind of spaces are urban parks which contain many recreational opportunities and facilities together. The aim of this study is to identify the current situation of the urban parks in Konya province and the facilities in the parks in terms of quality, sufficiency, growth rate, and maintenance. The second purpose of the study is to obtain information about the park users' evaluations of the park officers within the context of park visits and information sources of the users related to the parks. Within the context of the study, the questionnaires were conducted by face-to-face interviews with 494 park users. The urban parks in Konya province were evaluated by the park users in terms of quality, sufficiency, maintenance, and growth rate criteria. While 44.1% of the users evaluated the parks as "good" in terms of quality, 4.7% of the users stated that the quality of the parks was "bad." Considering the sufficiency of the urban parks, the findings represent that majority of the users identified the parks as sufficient and 27.9% of them identified insufficient. 44.1% of the users stated that the parks were well maintained and 10.1% considered the parks were badly maintained. The growth rate of the urban parks in Konya was described as "fast" by 48.6% of the users and as "normal" by 29.8% of the users.

  19. Barriers to and Facilitators of Long Term Weight Loss Maintenance in Adult UK People: A Thematic Analysis

    Science.gov (United States)

    Gupta, Himanshu

    2014-01-01

    Adult obesity and overweight is affecting every region of the world and is described as one of today's most significant and neglected public health problems. The problem has taken the shape of an epidemic not only because the prevalence of obesity has witnessed a dramatic progress in a short period of time, but also because obesity has paved the way for increased risks for morbidity and mortality associated with it. It has been predicted that about half of the adult men and more than a quarter of adult women would be obese by 2030 in the UK and this figure could rise up to 50% in 2050 for whole of the adult UK population. Although a modest 5–10% weight loss maintained in the long term can significantly decrease health risk, few people engage in weight loss activities. Against this background, this review paper aims to investigate the reasons helping and/or hindering adults in the UK maintain weight loss in the long term; using online and organizational data sources and thematically analyzing the data. Self-body perception, enhanced self-confidence, social support, self-motivation, incentives and rewards, increased physical activity levels and healthy eating habits facilitated people in maintaining weight loss in the long term and overall quality of life. Extreme weather conditions, natural phenomena such as accidents, injuries and ill-health, work commitments, inability for time management and to resist the temptation for food constrained the successful long-term weight loss maintenance. PMID:25709786

  20. An Atypical SCF-like Ubiquitin Ligase Complex Promotes Wallerian Degeneration through Regulation of Axonal Nmnat2

    Directory of Open Access Journals (Sweden)

    Yuya Yamagishi

    2016-10-01

    Full Text Available Axon degeneration is a tightly regulated, self-destructive program that is a critical feature of many neurodegenerative diseases, but the molecular mechanisms regulating this program remain poorly understood. Here, we identify S-phase kinase-associated protein 1A (Skp1a, a core component of a Skp/Cullin/F-box (SCF-type E3 ubiquitin ligase complex, as a critical regulator of axon degeneration after injury in mammalian neurons. Depletion of Skp1a prolongs survival of injured axons in vitro and in the optic nerve in vivo. We demonstrate that Skp1a regulates the protein level of the nicotinamide adenine dinucleotide (NAD+ synthesizing enzyme nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2 in axons. Loss of axonal Nmnat2 contributes to a local ATP deficit that triggers axon degeneration. Knockdown of Skp1a elevates basal levels of axonal Nmnat2, thereby delaying axon degeneration through prolonged maintenance of axonal ATP. Consistent with Skp1a functioning through regulation of Nmnat2, Skp1a knockdown fails to protect axons from Nmnat2 knockdown. These results illuminate the molecular mechanism underlying Skp1a-dependent axonal destruction.

  1. Long-term preventive maintenance of instrumentation control equipment for PWR plants

    International Nuclear Information System (INIS)

    Sugitani, S.; Nanba, M.

    2006-01-01

    Since the PWR plants in Japan have been operated more than 30 years, main instrumentation control equipment of analog systems has been renewed to digital control systems. Renewal works had to be done in short period within periodical inspection term and for several facilities. The Mitsubishi LTD group had been provided with these market needs by its digital control system (MELTAC-NplusR 3) applicable to main instrumentation control equipment for primary and secondary systems and had already finished the renewal for practical plants. (T. Tanaka)

  2. Long-term maintenance of the carrier-envelope phase coherence of a femtosecond laser.

    Science.gov (United States)

    Kim, Eok Bong; Lee, Jae-Hwan; Lee, Won-Kyu; Luu, Tran Trung; Nam, Chang Hee

    2010-12-06

    The long-term carrier-envelope phase (CEP) coherence of a femtosecond laser with same pulse-to-pulse CEP value, obtained using the direct locking method, is demonstrated by employing a quasi-common-path interferometer (QPI). For the evaluation of the CEP stability, the phase noise properties of a femtosecond laser with the CEP stabilized using a QPI are compared with those obtained using a Mach-Zehnder f-2f interferometer, for which the phase power spectral density and the Allan deviation were calculated from the beat signals of the interferometers. With the improved CEP stability, the long-term CEP coherent signal with an accumulated phase noise well below 1 radian can be maintained for more than 56 hours, i.e., the CEP coherence is preserved without a phase cycle slip for more than 1.6 × 10(13) pulses at a repetition rate of 80 MHz. The relative stability is also estimated to be approximately 1.4 × 10(-22) at a central wavelength of 790 nm.

  3. Long-Term Surveillance and Maintenance Plan for the U.S. Department of Energy Amchitka, Alaska, Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-01

    This Long-Term Surveillance and Maintenance Plan describes how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at the Amchitka, Alaska, Site1. Three underground nuclear tests were conducted on Amchitka Island. The U.S. Department of Defense, in conjunction with the U.S. Atomic Energy Commission (AEC), conducted the first nuclear test (Long Shot) to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC as a means to study the feasibility of detonating a much larger device. The final nuclear test (Cannikin), the largest United States underground test, was a weapons-related test. Surface disturbances associated with these tests have been remediated. However, radioactivity remains deep below the surface, contained in and around the test cavities, for which no feasible remediation technology has been identified. In 2006, the groundwater model (Hassan et al. 2002) was updated using 2005 data collected by the Consortium for Risk Evaluation with Stakeholder Participation. Model simulation results indicate there is no breakthrough or seepage of radionuclides into the marine environment within 2,000 years. The Amchitka conceptual model is reasonable; the flow and transport simulation is based on the best available information and data. The simulation results are a quantitative prediction supported by the best available science and technology. This Long-Term Surveillance and Maintenance Plan is an additional step intended for the protection of human health and the environment. This plan may be modified from time to time in the future consistent with the mission to protect human health

  4. Inter-axonal interaction defines tiled presynaptic innervation in C. elegans

    OpenAIRE

    Mizumoto, Kota; Shen, Kang

    2013-01-01

    Cellular interactions between neighboring axons are essential for global topographic map formation. Here we show that axonal interactions also precisely instruct the location of synapses. Motoneurons form en passant synapses in Caenorhabditis elegans. While axons from the same neuron class significantly overlap, each neuron innervates a unique and tiled segment of the muscle field by restricting its synapses to a distinct subaxonal domain—a phenomenon we term “synaptic tiling”. Using DA8 and ...

  5. Maintenance Mechanics Technical Terms. English-Thai Lexicon. Introduction to Maintenance Mechanics. Thai Version. Multi-Cultural Competency-Based Vocational/Technical Curricula Series.

    Science.gov (United States)

    Shin, Masako T.

    This English-Thai lexicon and program introduction for maintenance mechanics is one of eight documents in the Multicultural Competency-Based Vocational/Technical Curricula Series. It is intended for use in postsecondary, adult, and preservice teacher and administrator education. The first two sections provide Thai equivalencies of English…

  6. Synaptic Democracy and Vesicular Transport in Axons

    Science.gov (United States)

    Bressloff, Paul C.; Levien, Ethan

    2015-04-01

    Synaptic democracy concerns the general problem of how regions of an axon or dendrite far from the cell body (soma) of a neuron can play an effective role in neuronal function. For example, stimulated synapses far from the soma are unlikely to influence the firing of a neuron unless some sort of active dendritic processing occurs. Analogously, the motor-driven transport of newly synthesized proteins from the soma to presynaptic targets along the axon tends to favor the delivery of resources to proximal synapses. Both of these phenomena reflect fundamental limitations of transport processes based on a localized source. In this Letter, we show that a more democratic distribution of proteins along an axon can be achieved by making the transport process less efficient. This involves two components: bidirectional or "stop-and-go" motor transport (which can be modeled in terms of advection-diffusion), and reversible interactions between motor-cargo complexes and synaptic targets. Both of these features have recently been observed experimentally. Our model suggests that, just as in human societies, there needs to be a balance between "efficiency" and "equality".

  7. Attention Effects During Visual Short-Term Memory Maintenance: Protection or Prioritization?

    Science.gov (United States)

    Matsukura, Michi; Luck, Steven J.; Vecera, Shaun P.

    2007-01-01

    Interactions between visual attention and visual short-term memory (VSTM) play a central role in cognitive processing. For example, attention can assist in selectively encoding items into visual memory. Attention appears to be able to influence items already stored in visual memory as well; cues that appear long after the presentation of an array of objects can affect memory for those objects (Griffin & Nobre, 2003). In five experiments, we distinguished two possible mechanisms for the effects of cues on items currently stored in VSTM. A protection account proposes that attention protects the cued item from becoming degraded during the retention interval. By contrast, a prioritization account suggests that attention increases a cued item’s priority during the comparison process that occurs when memory is tested. The results of the experiments were consistent with the first of these possibilities, suggesting that attention can serve to protect VSTM representations while they are being maintained. PMID:18078232

  8. Long-term budesonide maintenance treatment is partially effective for patients with eosinophilic esophagitis.

    Science.gov (United States)

    Straumann, Alex; Conus, Sebastien; Degen, Lukas; Frei, Cornelia; Bussmann, Christian; Beglinger, Christoph; Schoepfer, Alain; Simon, Hans-Uwe

    2011-05-01

    Topical corticosteroids are effective in inducing clinical and histologic remission in patients with eosinophilic esophagitis (EoE). However, the best long-term management strategy for this chronic inflammatory disease has not been determined. In a randomized, double-blind, placebo-controlled, 50-week trial, we evaluated in 28 patients the efficacy of twice-daily swallowed budesonide (0.25 mg each) to maintain quiescent EoE in remission. Pretreatment and posttreatment activity was assessed clinically, endoscopically, histologically, immunohistologically, and by endosonography. The primary end point was the therapy's ability to maintain EoE in histologic remission. Secondary end points were efficacy in symptom control, prevention of tissue remodeling, and safety. In patients given low-dose budesonide, the load of esophageal eosinophils increased from 0.4 to 31.8 eosinophils/high-power field (P = .017). In patients given placebo, the load increased from 0.7 to 65.0 eosinophils/high-power field (P = .0001); this increase was significantly greater than in patients given budesonide (P = .024). The symptom scores developed in a similar manner in the 2 groups. Budesonide, but not placebo, reduced noneosinophilic markers of inflammation, epithelial cell apoptosis, and remodeling events. Compared with control individuals, patients had significantly thickened esophageal walls, based on endosonography (3.05 vs 2.18 mm; P < .0001). Budesonide therapy was associated with a significant reduction in mucosal thickness (0.75-0.45 mm; P = .025), but epithelial thickness remained stable (261.22 vs 277.23 μm; P = .576). No serious adverse events occurred. Low-dose budesonide is more effective than placebo in maintaining EoE in histologic and clinical remission. Signs of esophageal remodeling showed a trend toward normalization. Long-term administration of topical corticosteroids was well tolerated without induction of epithelial atrophy. Copyright © 2011 AGA Institute. Published by

  9. The Microtubule Regulatory Protein Stathmin Is Required to Maintain the Integrity of Axonal Microtubules in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan

    Full Text Available Axonal transport, a form of long-distance, bi-directional intracellular transport that occurs between the cell body and synaptic terminal, is critical in maintaining the function and viability of neurons. We have identified a requirement for the stathmin (stai gene in the maintenance of axonal microtubules and regulation of axonal transport in Drosophila. The stai gene encodes a cytosolic phosphoprotein that regulates microtubule dynamics by partitioning tubulin dimers between pools of soluble tubulin and polymerized microtubules, and by directly binding to microtubules and promoting depolymerization. Analysis of stai function in Drosophila, which has a single stai gene, circumvents potential complications with studies performed in vertebrate systems in which mutant phenotypes may be compensated by genetic redundancy of other members of the stai gene family. This has allowed us to identify an essential function for stai in the maintenance of the integrity of axonal microtubules. In addition to the severe disruption in the abundance and architecture of microtubules in the axons of stai mutant Drosophila, we also observe additional neurological phenotypes associated with loss of stai function including a posterior paralysis and tail-flip phenotype in third instar larvae, aberrant accumulation of transported membranous organelles in stai deficient axons, a progressive bang-sensitive response to mechanical stimulation reminiscent of the class of Drosophila mutants used to model human epileptic seizures, and a reduced adult lifespan. Reductions in the levels of Kinesin-1, the primary anterograde motor in axonal transport, enhance these phenotypes. Collectively, our results indicate that stai has an important role in neuronal function, likely through the maintenance of microtubule integrity in the axons of nerves of the peripheral nervous system necessary to support and sustain long-distance axonal transport.

  10. The Microtubule Regulatory Protein Stathmin Is Required to Maintain the Integrity of Axonal Microtubules in Drosophila

    Science.gov (United States)

    Duncan, Jason E.; Lytle, Nikki K.; Zuniga, Alfredo; Goldstein, Lawrence S. B.

    2013-01-01

    Axonal transport, a form of long-distance, bi-directional intracellular transport that occurs between the cell body and synaptic terminal, is critical in maintaining the function and viability of neurons. We have identified a requirement for the stathmin (stai) gene in the maintenance of axonal microtubules and regulation of axonal transport in Drosophila . The stai gene encodes a cytosolic phosphoprotein that regulates microtubule dynamics by partitioning tubulin dimers between pools of soluble tubulin and polymerized microtubules, and by directly binding to microtubules and promoting depolymerization. Analysis of stai function in Drosophila , which has a single stai gene, circumvents potential complications with studies performed in vertebrate systems in which mutant phenotypes may be compensated by genetic redundancy of other members of the stai gene family. This has allowed us to identify an essential function for stai in the maintenance of the integrity of axonal microtubules. In addition to the severe disruption in the abundance and architecture of microtubules in the axons of stai mutant Drosophila , we also observe additional neurological phenotypes associated with loss of stai function including a posterior paralysis and tail-flip phenotype in third instar larvae, aberrant accumulation of transported membranous organelles in stai deficient axons, a progressive bang-sensitive response to mechanical stimulation reminiscent of the class of Drosophila mutants used to model human epileptic seizures, and a reduced adult lifespan. Reductions in the levels of Kinesin-1, the primary anterograde motor in axonal transport, enhance these phenotypes. Collectively, our results indicate that stai has an important role in neuronal function, likely through the maintenance of microtubule integrity in the axons of nerves of the peripheral nervous system necessary to support and sustain long-distance axonal transport. PMID:23840848

  11. Pancreatic small cells: Analysis of quiescence, long-term maintenance and insulin expression in vitro

    International Nuclear Information System (INIS)

    Petropavlovskaia, M.; Bodnar, C.A.; Behie, L.A.; Rosenberg, L.

    2007-01-01

    We have previously identified a novel population of small cells in human and canine pancreas characterized by immature morphology, quiescence, and a glucose-responsive insulin secretion. Based on their immature phenotype and predominant presence in small islets, we have hypothesized that small cells serve as islet progenitors. This hypothesis remains untested, however, due to persistent quiescence and scarcity of small cells in vitro. We have recently developed a culture medium that allowed for modest small cell proliferation. In this study we characterized the expression of genes potentially involved in small cell growth regulation by Q-RT-PCR. Our results suggest that quiescence of small cells correlates with up-regulation of Cdk inhibitors p27 Kip1 , p16 INK4a and p21 CIP1 , PTEN, Hep27 and Foxo1a and with down-regulation of c-Myc and the receptors for EGF, FGF2 and HGF. The exit from quiescence correlates with activation of EGFR expression and down-regulation of p27 Kip1 and p16 INK4a . We also report here that small cells can be maintained in long-term non-adherent cultures preserving insulin and glucagon production for up to 208 days. Therefore, expansion of small cells in vitro may have a significant potential for the treatment of diabetes. This study is an important step in understanding the mechanisms involved in small cell growth regulation, which is required to fully evaluate their functional potential

  12. Characterization and long-term maintenance of rat taste cells in culture.

    Science.gov (United States)

    Ozdener, Hakan; Yee, Karen K; Cao, Jie; Brand, Joseph G; Teeter, John H; Rawson, Nancy E

    2006-03-01

    Taste cells have a limited life span and are replaced from a basal cell population, although the specific factors involved in this process are not well known. Short- and long-term cultures of other sensory cells have facilitated efforts to understand the signals involved in proliferation, differentiation, and senescence, yet few studies have reported successful primary culture protocols for taste cells. Furthermore, no studies have demonstrated both proliferation and differentiation in vitro. In this study, we have developed an in vitro culture system to maintain and utilize rat primary taste cells for more than 2 months without losing key molecular and biochemical features. Gustducin, phospholipase C-beta2 (PLC-beta2), T1R3, and T2R5 mRNA were detected in the cultured cells by reverse transcriptase-polymerase chain reaction. Western blot analysis demonstrated gustducin and PLC-beta2 expression in the same samples, which was confirmed by immunocytochemistry. Labeling with bromo-2-deoxyuridine (BrdU) demonstrated proliferation, and a subset of BrdU-labeled cells were also immunoreactive for either gustducin or PLC-beta2, indicating differentiation of newly generated cells in vitro. Cultured cells also exhibited increases in intracellular calcium in response to several taste stimuli. These results indicate that taste cells from adult rats can be generated and maintained under the described conditions for at least 2 months. This system will enable further studies of the processes involved in proliferation, differentiation, and function of mammalian taste receptor cells in an in vitro preparation.

  13. Long-term citalopram maintenance in mice: selective reduction of alcohol-heightened aggression.

    Science.gov (United States)

    Caldwell, Elizabeth E; Miczek, Klaus A

    2008-02-01

    Selective serotonin reuptake inhibitors (SSRIs) alleviate many affective disturbances in human clinical populations and are used in animal models to study the influence of serotonin (5-HT) on aggressive behavior and impulsivity. We hypothesized that long-term SSRI treatment may reduce aggressive behavior escalated by alcohol consumption in mice. Therefore, aggression was tested in male CFW mice to determine whether repeated citalopram (CIT) administration reduces alcohol-heightened aggression. Resident male mice self-administered alcohol by performing an operant response on a panel placed in their home cage that delivered a 6% alcohol solution. Mice repeatedly confronted an intruder 15 min after self-administration of either 1 g/kg alcohol (EtOH) or water (H(2)O). Aggressive behaviors were higher in most mice when tests occurred after EtOH intake relative to H(2)O. Once baseline aggression was established, animals were injected (i.p.) twice daily with 10 mg/kg CIT or saline (SAL) for 32 days. Every 4 days throughout the CIT treatment period, aggressive encounters occurred 6 h after CIT injections, with testing conditions alternating between EtOH and H(2)O intake. Aggression was only modestly affected by CIT in the first 2 weeks of treatment. However, by day 17 of CIT treatment, alcohol-heightened aggressive behavior was abolished, while baseline aggression remained stable. These data lend support for the role of the 5-HT transporter in the control of alcohol-related aggressive behavior, and the time course of effects suggests that a change in density of 5HT(1A) autoreceptors is necessary before antidepressant drugs produce beneficial outcomes.

  14. Long-Term Maintenance of Physical Function in Older Adults Following a DVD-Delivered Exercise Intervention.

    Science.gov (United States)

    Roberts, Sarah; Awick, Elizabeth; Fanning, Jason T; Ehlers, Diane; Motl, Robert W; McAuley, Edward

    2017-01-01

    Previous evidence suggests physical activity interventions effectively produce short-term improvements in physical function for older adults. The present study examined whether improvements in physical function after a DVD-delivered exercise intervention were maintained 18 months postintervention. Older adults (n = 153) randomized to a 6-month DVD-delivered exercise intervention or an attentional control condition were contacted 18 months postintervention. Participants completed the Short Physical Performance Battery (SPPB) and measures of flexibility, strength, and functional limitations were taken. Analyses of variance were conducted to determine if improvements in physical function as a result of the intervention were maintained at follow-up. Improvements in the SPPB, F (1,125) = 3.70, p = .06, η 2 = .03, and upper body strength, F (1,121) = 3.04, p = .08, η 2 = .03 were maintained for the intervention condition. Home-based DVD exercise training interventions may hold promise for long-term maintenance of physical function in older adults.

  15. Factors associated with long-term weight-loss maintenance following bariatric surgery in adolescents with severe obesity.

    Science.gov (United States)

    Ryder, J R; Gross, A C; Fox, C K; Kaizer, A M; Rudser, K D; Jenkins, T M; Ratcliff, M B; Kelly, A S; Kirk, S; Siegel, R M; Inge, T H

    2018-01-01

    Bariatric surgery produces robust weight loss, however, factors associated with long-term weight-loss maintenance among adolescents undergoing Roux-en-Y gastric bypass surgery are unknown. Fifty adolescents (mean±s.d. age and body mass index (BMI)=17.1±1.7 years and 59±11 kg m -2 ) underwent Roux-en-Y gastric bypass surgery, had follow-up visits at 1 year and at a visit between 5 and 12 years following surgery (Follow-up of Adolescent Bariatric Surgery at 5 Plus years (FABS-5+) visit; mean±s.d. 8.1±1.6 years). A non-surgical comparison group (n=30; mean±s.d. age and BMI=15.3±1.7 years and BMI=52±8 kg m -2 ) was recruited to compare weight trajectories over time. Questionnaires (health-related and eating behaviors, health responsibility, impact of weight on quality of life (QOL), international physical activity questionnaire and dietary habits via surgery guidelines) were administered at the FABS-5+ visit. Post hoc, participants were split into two groups: long-term weight-loss maintainers (n=23; baseline BMI=58.2 kg m -2 ; 1-year BMI=35.8 kg m -2 ; FABS-5+ BMI=34.9 kg m -2 ) and re-gainers (n=27; baseline BMI=59.8 kg m -2 ; 1-year BMI=36.8 kg m -2 ; FABS-5+ BMI=48.0 kg m -2 ) to compare factors which might contribute to differences. Data were analyzed using generalized estimating equations adjusted for age, sex, baseline BMI, baseline diabetes status and length of follow-up. The BMI of the surgical group declined from baseline to 1 year (-38.5±6.9%), which, despite some regain, was largely maintained until FABS-5+ (-29.6±13.9% change). The BMI of the comparison group increased from baseline to the FABS-5+ visit (+10.3±20.6%). When the surgical group was split into maintainers and re-gainers, no differences in weight-related and eating behaviors, health responsibility, physical activity/inactivity, or dietary habits were observed between groups. However, at FABS-5+, maintainers had greater overall QOL scores than re

  16. Thyroid hormone is required for pruning, functioning and long-term maintenance of afferent inner hair cell synapses.

    Science.gov (United States)

    Sundaresan, Srividya; Kong, Jee-Hyun; Fang, Qing; Salles, Felipe T; Wangsawihardja, Felix; Ricci, Anthony J; Mustapha, Mirna

    2016-01-01

    Functional maturation of afferent synaptic connections to inner hair cells (IHCs) involves pruning of excess synapses formed during development, as well as the strengthening and survival of the retained synapses. These events take place during the thyroid hormone (TH)-critical period of cochlear development, which is in the perinatal period for mice and in the third trimester for humans. Here, we used the hypothyroid Snell dwarf mouse (Pit1(dw)) as a model to study the role of TH in afferent type I synaptic refinement and functional maturation. We observed defects in afferent synaptic pruning and delays in calcium channel clustering in the IHCs of Pit1(dw) mice. Nevertheless, calcium currents and capacitance reached near normal levels in Pit1(dw) IHCs by the age of onset of hearing, despite the excess number of retained synapses. We restored normal synaptic pruning in Pit1(dw) IHCs by supplementing with TH from postnatal day (P)3 to P8, establishing this window as being critical for TH action on this process. Afferent terminals of older Pit1(dw) IHCs showed evidence of excitotoxic damage accompanied by a concomitant reduction in the levels of the glial glutamate transporter, GLAST. Our results indicate that a lack of TH during a critical period of inner ear development causes defects in pruning and long-term homeostatic maintenance of afferent synapses. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Rodent model for long-term maintenance and development of the viable cysticerci of Taenia saginata asiatica.

    Science.gov (United States)

    Wang, I C; Chung, W C; Lu, S C; Fan, P C

    2000-12-01

    Although oncospheres of Taenia saginata asiatica can develop into cysticerci in immunodeficiency, immunosuppressed, and normal mice, no detailed information on the development features of these cysticerci from SCID mice is available. In the present study, the tumor-like cyst was found in the subcutaneous tissues of each of 10 SCID mice after 38-244 days inoculation with 39,000 oncospheres of T. s. asiatica. These cysts weighed 2.0-9.6 gm and were 1.5-4.3 cm in diameter. The number of cysticerci were collected from these cysts ranged from 125 to 1,794 and the cysticercus recovery rate from 0.3% to 4.6%. All cysticerci were viable with a diameter of 1-6 mm and 9 abnormal ones each with 2 evaginated protoscoleces were also found. The mean length and width of scolex, protoscolex, and bladder were 477 x 558, 756 x 727, and 1,586 x 1,615 microns, respectively. The diameters of suckers and rostellum were 220 microns and 70 microns, respectively. All cysticerci had two rows of rostellar hooks. These findings suggest that the SCID mouse model can be employed as a tool for long-term maintenance of the biological materials for advanced studies of immunodiagnosis, vaccine development, and evaluation of cestocidal drugs which would be most benefit for the good health of the livestocks.

  18. Modelling in vivo action potential propagation along a giant axon.

    Science.gov (United States)

    George, Stuart; Foster, Jamie M; Richardson, Giles

    2015-01-01

    A partial differential equation model for the three-dimensional current flow in an excitable, unmyelinated axon is considered. Where the axon radius is significantly below a critical value R(crit) (that depends upon intra- and extra-cellular conductivity and ion channel conductance) the resistance of the intracellular space is significantly higher than that of the extracellular space, such that the potential outside the axon is uniformly small whilst the intracellular potential is approximated by the transmembrane potential. In turn, since the current flow is predominantly axial, it can be shown that the transmembrane potential is approximated by a solution to the one-dimensional cable equation. It is noted that the radius of the squid giant axon, investigated by (Hodgkin and Huxley 1952e), lies close to R(crit). This motivates us to apply the three-dimensional model to the squid giant axon and compare the results thus found to those obtained using the cable equation. In the context of the in vitro experiments conducted in (Hodgkin and Huxley 1952e) we find only a small difference between the wave profiles determined using these two different approaches and little difference between the speeds of action potential propagation predicted. This suggests that the cable equation approximation is accurate in this scenario. However when applied to the it in vivo setting, in which the conductivity of the surrounding tissue is considerably lower than that of the axoplasm, there are marked differences in both wave profile and speed of action potential propagation calculated using the two approaches. In particular, the cable equation significantly over predicts the increase in the velocity of propagation as axon radius increases. The consequences of these results are discussed in terms of the evolutionary costs associated with increasing the speed of action potential propagation by increasing axon radius.

  19. Acutely damaged axons are remyelinated in multiple sclerosis and experimental models of demyelination.

    Science.gov (United States)

    Schultz, Verena; van der Meer, Franziska; Wrzos, Claudia; Scheidt, Uta; Bahn, Erik; Stadelmann, Christine; Brück, Wolfgang; Junker, Andreas

    2017-08-01

    Remyelination is in the center of new therapies for the treatment of multiple sclerosis to resolve and improve disease symptoms and protect axons from further damage. Although remyelination is considered beneficial in the long term, it is not known, whether this is also the case early in lesion formation. Additionally, the precise timing of acute axonal damage and remyelination has not been assessed so far. To shed light onto the interrelation between axons and the myelin sheath during de- and remyelination, we employed cuprizone- and focal lysolecithin-induced demyelination and performed time course experiments assessing the evolution of early and late stage remyelination and axonal damage. We observed damaged axons with signs of remyelination after cuprizone diet cessation and lysolecithin injection. Similar observations were made in early multiple sclerosis lesions. To assess the correlation of remyelination and axonal damage in multiple sclerosis lesions, we took advantage of a cohort of patients with early and late stage remyelinated lesions and assessed the number of APP- and SMI32- positive damaged axons and the density of SMI31-positive and silver impregnated preserved axons. Early de- and remyelinating lesions did not differ with respect to axonal density and axonal damage, but we observed a lower axonal density in late stage demyelinated multiple sclerosis lesions than in remyelinated multiple sclerosis lesions. Our findings suggest that remyelination may not only be protective over a long period of time, but may play an important role in the immediate axonal recuperation after a demyelinating insult. © 2017 The Authors GLIA Published by Wiley Periodicals, Inc.

  20. Long-term maintenance therapy for vulvar lichen sclerosus: the results of a randomized study comparing topical vitamin E with an emollient.

    Science.gov (United States)

    Virgili, Annarosa; Minghetti, Sara; Borghi, Alessandro; Corazza, Monica

    2013-04-01

    The chronic and relapsing nature of vulvar lichen sclerosus (VLS) represents a challenge for its long-term management after an effective treatment with topical corticosteroids. To compare the effect of topical vitamin E with that of an emollient in reducing the risk of VLS relapse over a 52-week maintenance treatment. 156 patients with VLS were enrolled in a 12-week active treatment phase on topical 0.1% mometasone furoate ointment once daily. Those who achieved disease remission entered a 52-week maintenance phase in which patients were randomized to apply either an emollient or topical vitamin E once daily. 80 patients entered the maintenance phase. At 52 weeks, for the vitamin E maintenance group, the cumulative crude relapse rate was 27.8% and the cumulative modified crude relapse rate was 55.6%. For the emollient maintenance group, the cumulative crude relapse rate was 22.7% and the cumulative modified crude relapse rate was 50.0%. The median time to relapse was 20 weeks for the vitamin E group and 18.7 weeks for the emollient group. Once VLS has been stabilized with topical corticosteroids, long-term treatment with both vitamin E and emollients may be considered in maintain LS remission.

  1. CSPGs inhibit axon branching by impairing mitochondria-dependent regulation of actin dynamics and axonal translation.

    Science.gov (United States)

    Sainath, Rajiv; Ketschek, Andrea; Grandi, Leah; Gallo, Gianluca

    2017-04-01

    Chondroitin sulfate proteoglycans (CSPGs) inhibit the formation of axon collateral branches. The regulation of the axonal cytoskeleton and mitochondria are important components of the mechanism of branching. Actin-dependent axonal plasticity, reflected in the dynamics of axonal actin patches and filopodia, is greatest along segments of the axon populated by mitochondria. It is reported that CSPGs partially depolarize the membrane potential of axonal mitochondria, which impairs the dynamics of the axonal actin cytoskeleton and decreases the formation and duration of axonal filopodia, the first steps in the mechanism of branching. The effects of CSPGs on actin cytoskeletal dynamics are specific to axon segments populated by mitochondria. In contrast, CSPGs do not affect the microtubule content of axons, or the localization of microtubules into axonal filopodia, a required step in the mechanism of branch formation. It is also reported that CSPGs decrease the mitochondria-dependent axonal translation of cortactin, an actin associated protein involved in branching. Finally, the inhibitory effects of CSPGs on axon branching, actin cytoskeletal dynamics and the axonal translation of cortactin are reversed by culturing neurons with acetyl-l-carnitine, which promotes mitochondrial respiration. Collectively these data indicate that CSPGs impair mitochondrial function in axons, an effect which contributes to the inhibition of axon branching. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017. © 2016 Wiley Periodicals, Inc.

  2. The axonal cytoskeleton : from organization to function

    NARCIS (Netherlands)

    Kevenaar, Josta T|info:eu-repo/dai/nl/338771042; Hoogenraad, Casper C|info:eu-repo/dai/nl/227263502

    The axon is the single long fiber that extends from the neuron and transmits electrical signals away from the cell body. The neuronal cytoskeleton, composed of microtubules (MTs), actin filaments and neurofilaments, is not only required for axon formation and axonal transport but also provides the

  3. mRNP assembly, axonal transport, and local translation in neurodegenerative diseases.

    Science.gov (United States)

    Khalil, Bilal; Morderer, Dmytro; Price, Phillip L; Liu, Feilin; Rossoll, Wilfried

    2018-02-17

    The development, maturation, and maintenance of the mammalian nervous system rely on complex spatiotemporal patterns of gene expression. In neurons, this is achieved by the expression of differentially localized isoforms and specific sets of mRNA-binding proteins (mRBPs) that regulate RNA processing, mRNA trafficking, and local protein synthesis at remote sites within dendrites and axons. There is growing evidence that axons contain a specialized transcriptome and are endowed with the machinery that allows them to rapidly alter their local proteome via local translation and protein degradation. This enables axons to quickly respond to changes in their environment during development, and to facilitate axon regeneration and maintenance in adult organisms. Aside from providing autonomy to neuronal processes, local translation allows axons to send retrograde injury signals to the cell soma. In this review, we discuss evidence that disturbances in mRNP transport, granule assembly, axonal localization, and local translation contribute to pathology in various neurodegenerative diseases, including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and Alzheimer's disease (AD). Copyright © 2018. Published by Elsevier B.V.

  4. Slowing of axonal regeneration is correlated with increased axonal viscosity during aging

    Directory of Open Access Journals (Sweden)

    Heidemann Steven R

    2010-10-01

    Full Text Available Abstract Background As we age, the speed of axonal regeneration declines. At the biophysical level, why this occurs is not well understood. Results To investigate we first measured the rate of axonal elongation of sensory neurons cultured from neonatal and adult rats. We found that neonatal axons grew 40% faster than adult axons (11.5 µm/hour vs. 8.2 µm/hour. To determine how the mechanical properties of axons change during maturation, we used force calibrated towing needles to measure the viscosity (stiffness and strength of substrate adhesion of neonatal and adult sensory axons. We found no significant difference in the strength of adhesions, but did find that adult axons were 3 times intrinsically stiffer than neonatal axons. Conclusions Taken together, our results suggest decreasing axonal stiffness may be part of an effective strategy to accelerate the regeneration of axons in the adult peripheral nervous system.

  5. Coevolution of axon guidance molecule Slit and its receptor Robo.

    Directory of Open Access Journals (Sweden)

    Qi Yu

    Full Text Available Coevolution is important for the maintenance of the interaction between a ligand and its receptor during evolution. The interaction between axon guidance molecule Slit and its receptor Robo is critical for the axon repulsion in neural tissues, which is evolutionarily conserved from planarians to humans. However, the mechanism of coevolution between Slit and Robo remains unclear. In this study, we found that coordinated amino acid changes took place at interacting sites of Slit and Robo by comparing the amino acids at these sites among different organisms. In addition, the high level correlation between evolutionary rate of Slit and Robo was identified in vertebrates. Furthermore, the sites under positive selection of slit and robo were detected in the same lineage such as mosquito and teleost. Overall, our results provide evidence for the coevolution between Slit and Robo.

  6. Phosphatidylserine improves axonal transport by inhibition of HDAC and has potential in treatment of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Shiran Naftelberg

    2017-01-01

    Full Text Available Familial dysautonomia (FD is a rare children neurodegenerative disease caused due to a point mutation in the IKBKAP gene that results in decreased IKK complex-associated protein (IKAP protein production. The disease affects mostly the dorsal root ganglion (DRG and the sympathetic ganglion. Recently, we found that the molecular mechanisms underlying neurodegeneration in FD patients are defects in axonal transport of nerve growth factors and microtubule stability in the DRG. Neurons are highly polarized cells with very long axons. In order to survive and maintain proper function, neurons depend on transport of proteins and other cellular components from the neuronal body along the axons. We further demonstrated that IKAP is necessary for axon maintenance and showed that phosphatidylserine acts as an HDAC6 inhibitor to rescue neuronal function in FD cells. In this review, we will highlight our latest research findings.

  7. Remediation of language processing in aphasia: Improving activation and maintenance of linguistic representations in (verbal) short-term memory.

    Science.gov (United States)

    Kalinyak-Fliszar, Michelene; Kohen, Francine; Martin, Nadine

    2011-01-01

    BACKGROUND: Verbal short-term memory (STM) impairments are invariably present in aphasia. Word processing involves a minimal form of verbal STM, i.e., the time course over which semantic and phonological representations are activated and maintained until they are comprehended, produced, or repeated. Thus it is reasonable that impairments of word processing and verbal STM may co-occur. The co-occurrence of language and STM impairments in aphasia has motivated an active area of research that has revealed much about the relationship of these two systems and the effect of their impairment on language function and verbal learning (Freedman & Martin, 2001; Martin & Saffran, 1999; Trojano & Grossi, 1995). In keeping with this view a number of researchers have developed treatment protocols to improve verbal STM in order to improve language function (e.g., Koenig-Bruhin & Studer-Eichenberger, 2007). This account of aphasia predicts that treatment of a fundamental ability, such as STM, which supports language function, should lead to improvements that generalise to content and tasks beyond those implemented in treatment. AIMS: We investigated the efficacy of a treatment for language impairment that targets two language support processes: verbal short-term memory (STM) and executive processing, in the context of a language task (repetition). We hypothesised that treatment of these abilities would improve repetition abilities and performance on other language tasks that require STM. METHOD: A single-participant, multiple-baseline, multiple-probe design across behaviours was used with a participant with conduction aphasia. The treatment involved repetition of words and nonwords under three "interval" conditions, which varied the time between hearing and repeating the stimulus. Measures of treatment effects included acquisition, maintenance, and follow-up data, effect sizes, and pre- and post-treatment performance on a test battery that varies the STM and executive function

  8. Medium-term performance and maintenance of SUDS: a case-study of Hopwood Park Motorway Service Area, UK.

    Science.gov (United States)

    Heal, K V; Bray, R; Willingale, S A J; Briers, M; Napier, F; Jefferies, C; Fogg, P

    2009-01-01

    One of the main barriers to implementing SUDS is concern about performance and maintenance costs since there are few well-documented case-studies. This paper summarizes studies conducted between 2000 and 2008 of the performance and maintenance of four SUDS management trains constructed in 1999 at the Hopwood Park Motorway Service Area, central England. Assessments were made of the wildlife value and sedimentation in the SUDS ponds, the hydraulic performance of the coach park management train, water quality in all management trains, and soil/sediment composition in the grass filter strip, interceptor and ponds. Maintenance procedures and costs were also reviewed. Results demonstrate the benefits of a management train approach over individual SUDS units for flow attenuation, water treatment, spillage containment and maintenance. Peak flows, pond sediment depth and contaminant concentrations in sediment and water decreased through the coach park management train. Of the 2007 annual landscape budget of pounds 15,000 for the whole site, the maintenance costs for SUDS only accounted for pounds 2,500 compared to pounds 4,000 for conventional drainage structures. Furthermore, since sediment has been attenuated in the management trains, the cost of sediment removal after the recommended period of three years was only pounds 554 and, if the design is not compromised, less frequent removal will be required in future.

  9. Relationship of acute axonal damage, Wallerian degeneration, and clinical disability in multiple sclerosis.

    Science.gov (United States)

    Singh, Shailender; Dallenga, Tobias; Winkler, Anne; Roemer, Shanu; Maruschak, Brigitte; Siebert, Heike; Brück, Wolfgang; Stadelmann, Christine

    2017-03-17

    Axonal damage and loss substantially contribute to the incremental accumulation of clinical disability in progressive multiple sclerosis. Here, we assessed the amount of Wallerian degeneration in brain tissue of multiple sclerosis patients in relation to demyelinating lesion activity and asked whether a transient blockade of Wallerian degeneration decreases axonal loss and clinical disability in a mouse model of inflammatory demyelination. Wallerian degeneration and acute axonal damage were determined immunohistochemically in the periplaque white matter of multiple sclerosis patients with early actively demyelinating lesions, chronic active lesions, and inactive lesions. Furthermore, we studied the effects of Wallerian degeneration blockage on clinical severity, inflammatory pathology, acute axonal damage, and long-term axonal loss in experimental autoimmune encephalomyelitis using Wallerian degeneration slow (Wld S ) mutant mice. The highest numbers of axons undergoing Wallerian degeneration were found in the perilesional white matter of multiple sclerosis patients early in the disease course and with actively demyelinating lesions. Furthermore, Wallerian degeneration was more abundant in patients harboring chronic active as compared to chronic inactive lesions. No co-localization of neuropeptide Y-Y1 receptor, a bona fide immunohistochemical marker of Wallerian degeneration, with amyloid precursor protein, frequently used as an indicator of acute axonal transport disturbance, was observed in human and mouse tissue, indicating distinct axon-degenerative processes. Experimentally, a delay of Wallerian degeneration, as observed in Wld S mice, did not result in a reduction of clinical disability or acute axonal damage in experimental autoimmune encephalomyelitis, further supporting that acute axonal damage as reflected by axonal transport disturbances does not share common molecular mechanisms with Wallerian degeneration. Furthermore, delaying Wallerian degeneration

  10. Axonal remodeling in the corticospinal tract after stroke: how does rehabilitative training modulate it?

    Directory of Open Access Journals (Sweden)

    Naohiko Okabe

    2017-01-01

    Full Text Available Stroke causes long-term disability, and rehabilitative training is commonly used to improve the consecutive functional recovery. Following brain damage, surviving neurons undergo morphological alterations to reconstruct the remaining neural network. In the motor system, such neural network remodeling is observed as a motor map reorganization. Because of its significant correlation with functional recovery, motor map reorganization has been regarded as a key phenomenon for functional recovery after stroke. Although the mechanism underlying motor map reorganization remains unclear, increasing evidence has shown a critical role for axonal remodeling in the corticospinal tract. In this study, we review previous studies investigating axonal remodeling in the corticospinal tract after stroke and discuss which mechanisms may underlie the stimulatory effect of rehabilitative training. Axonal remodeling in the corticospinal tract can be classified into three types based on the location and the original targets of corticospinal neurons, and it seems that all the surviving corticospinal neurons in both ipsilesional and contralesional hemisphere can participate in axonal remodeling and motor map reorganization. Through axonal remodeling, corticospinal neurons alter their output selectivity from a single to multiple areas to compensate for the lost function. The remodeling of the corticospinal axon is influenced by the extent of tissue destruction and promoted by various therapeutic interventions, including rehabilitative training. Although the precise molecular mechanism underlying rehabilitation-promoted axonal remodeling remains elusive, previous data suggest that rehabilitative training promotes axonal remodeling by upregulating growth-promoting and downregulating growth-inhibiting signals.

  11. Cell intrinsic control of axon regeneration

    Science.gov (United States)

    Mar, Fernando M; Bonni, Azad; Sousa, Mónica M

    2014-01-01

    Although neurons execute a cell intrinsic program of axonal growth during development, following the establishment of connections, the developmental growth capacity declines. Besides environmental challenges, this switch largely accounts for the failure of adult central nervous system (CNS) axons to regenerate. Here, we discuss the cell intrinsic control of axon regeneration, including not only the regulation of transcriptional and epigenetic mechanisms, but also the modulation of local protein translation, retrograde and anterograde axonal transport, and microtubule dynamics. We further explore the causes underlying the failure of CNS neurons to mount a vigorous regenerative response, and the paradigms demonstrating the activation of cell intrinsic axon growth programs. Finally, we present potential mechanisms to support axon regeneration, as these may represent future therapeutic approaches to promote recovery following CNS injury and disease. PMID:24531721

  12. Sorting of Dendritic and Axonal Vesicles at the Pre-axonal Exclusion Zone

    Directory of Open Access Journals (Sweden)

    Ginny G. Farías

    2015-11-01

    Full Text Available Polarized sorting of newly synthesized proteins to the somatodendritic and axonal domains of neurons occurs by selective incorporation into distinct populations of vesicular transport carriers. An unresolved issue is how the vesicles themselves are sorted to their corresponding neuronal domains. Previous studies concluded that the axon initial segment (AIS is an actin-based filter that selectively prevents passage of somatodendritic vesicles into the axon. We find, however, that most somatodendritic vesicles fail to enter the axon at a more proximal region in the axon hillock, herein referred to as the pre-axonal exclusion zone (PAEZ. Forced coupling of a somatodendritic cargo protein to an axonally directed kinesin is sufficient to drive transport of whole somatodendritic vesicles through the PAEZ toward the distal axon. Based on these findings, we propose that polarized sorting of transport vesicles occurs at the PAEZ and depends on the ability of the vesicles to acquire an appropriately directed microtubule motor.

  13. Modern electronic maintenance principles

    CERN Document Server

    Garland, DJ

    2013-01-01

    Modern Electronic Maintenance Principles reviews the principles of maintaining modern, complex electronic equipment, with emphasis on preventive and corrective maintenance. Unfamiliar subjects such as the half-split method of fault location, functional diagrams, and fault finding guides are explained. This book consists of 12 chapters and begins by stressing the need for maintenance principles and discussing the problem of complexity as well as the requirements for a maintenance technician. The next chapter deals with the connection between reliability and maintenance and defines the terms fai

  14. Radial glia phagocytose axonal debris from degenerating overextending axons in the developing olfactory bulb.

    Science.gov (United States)

    Amaya, Daniel A; Wegner, Michael; Stolt, C Claus; Chehrehasa, Fatemeh; Ekberg, Jenny A K; St John, James A

    2015-02-01

    Axon targeting during the development of the olfactory system is not always accurate, and numerous axons overextend past the target layer into the deeper layers of the olfactory bulb. To date, the fate of the mis-targeted axons has not been determined. We hypothesized that following overextension, the axons degenerate, and cells within the deeper layers of the olfactory bulb phagocytose the axonal debris. We utilized a line of transgenic mice that expresses ZsGreen fluorescent protein in primary olfactory axons. We found that overextending axons closely followed the filaments of radial glia present in the olfactory bulb during embryonic development. Following overextension into deeper layers of the olfactory bulb, axons degenerated and radial glia responded by phagocytosing the resulting debris. We used in vitro analysis to confirm that the radial glia had phagocytosed debris from olfactory axons. We also investigated whether the fate of overextending axons was altered when the development of the olfactory bulb was perturbed. In mice that lacked Sox10, a transcription factor essential for normal olfactory bulb development, we observed a disruption to the morphology and positioning of radial glia and an accumulation of olfactory axon debris within the bulb. Our results demonstrate that during early development of the olfactory system, radial glia play an important role in removing overextended axons from the deeper layers of the olfactory bulb. © 2014 Wiley Periodicals, Inc.

  15. Action Potential Dynamics in Fine Axons Probed with an Axonally Targeted Optical Voltage Sensor.

    Science.gov (United States)

    Ma, Yihe; Bayguinov, Peter O; Jackson, Meyer B

    2017-01-01

    The complex and malleable conduction properties of axons determine how action potentials propagate through extensive axonal arbors to reach synaptic terminals. The excitability of axonal membranes plays a major role in neural circuit function, but because most axons are too thin for conventional electrical recording, their properties remain largely unexplored. To overcome this obstacle, we used a genetically encoded hybrid voltage sensor (hVOS) harboring an axonal targeting motif. Expressing this probe in transgenic mice enabled us to monitor voltage changes optically in two populations of axons in hippocampal slices, the large axons of dentate granule cells (mossy fibers) in the stratum lucidum of the CA3 region and the much finer axons of hilar mossy cells in the inner molecular layer of the dentate gyrus. Action potentials propagated with distinct velocities in each type of axon. Repetitive firing broadened action potentials in both populations, but at an intermediate frequency the degree of broadening differed. Repetitive firing also attenuated action potential amplitudes in both mossy cell and granule cell axons. These results indicate that the features of use-dependent action potential broadening, and possible failure, observed previously in large nerve terminals also appear in much finer unmyelinated axons. Subtle differences in the frequency dependences could influence the propagation of activity through different pathways to excite different populations of neurons. The axonally targeted hVOS probe used here opens up the diverse repertoire of neuronal processes to detailed biophysical study.

  16. AxonSeg: Open Source Software for Axon and Myelin Segmentation and Morphometric Analysis.

    Science.gov (United States)

    Zaimi, Aldo; Duval, Tanguy; Gasecka, Alicja; Côté, Daniel; Stikov, Nikola; Cohen-Adad, Julien

    2016-01-01

    Segmenting axon and myelin from microscopic images is relevant for studying the peripheral and central nervous system and for validating new MRI techniques that aim at quantifying tissue microstructure. While several software packages have been proposed, their interface is sometimes limited and/or they are designed to work with a specific modality (e.g., scanning electron microscopy (SEM) only). Here we introduce AxonSeg, which allows to perform automatic axon and myelin segmentation on histology images, and to extract relevant morphometric information, such as axon diameter distribution, axon density and the myelin g-ratio. AxonSeg includes a simple and intuitive MATLAB-based graphical user interface (GUI) and can easily be adapted to a variety of imaging modalities. The main steps of AxonSeg consist of: (i) image pre-processing; (ii) pre-segmentation of axons over a cropped image and discriminant analysis (DA) to select the best parameters based on axon shape and intensity information; (iii) automatic axon and myelin segmentation over the full image; and (iv) atlas-based statistics to extract morphometric information. Segmentation results from standard optical microscopy (OM), SEM and coherent anti-Stokes Raman scattering (CARS) microscopy are presented, along with validation against manual segmentations. Being fully-automatic after a quick manual intervention on a cropped image, we believe AxonSeg will be useful to researchers interested in large throughput histology. AxonSeg is open source and freely available at: https://github.com/neuropoly/axonseg.

  17. Chondroitin sulfate proteoglycans negatively regulate the positioning of mitochondria and endoplasmic reticulum to distal axons.

    Science.gov (United States)

    Sainath, Rajiv; Armijo-Weingart, Lorena; Ketscheck, Andrea; Xu, Zhuxuan; Li, Shuxin; Gallo, Gianluca

    2017-12-01

    Chondroitin sulfate proteoglycans (CSPGs) are components of the extracellular matrix that inhibit the extension and regeneration of axons. However, the underlying mechanism of action remains poorly understood. Mitochondria and endoplasmic reticulum (ER) are functionally inter-linked organelles important to axon development and maintenance. We report that CSPGs impair the targeting of mitochondria and ER to the growth cones of chicken embryonic sensory axons. The effect of CSPGs on the targeting of mitochondria is blocked by inhibition of the LAR receptor for CSPGs. The regulation of the targeting of mitochondria and ER to the growth cone by CSPGs is due to attenuation of PI3K signaling, which is known to be downstream of LAR receptor activation. Dynactin is a required component of the dynein motor complex that drives the normally occurring retrograde evacuation of mitochondria from growth cones. CSPGs elevate the levels of p150 Glu dynactin found in distal axons, and inhibition of the interaction of dynactin with dynein increased axon lengths on CSPGs. CSPGs decreased the membrane potential of mitochondria, and pharmacological inhibition of mitochondria respiration at the growth cone independent of manipulation of mitochondria positioning impaired axon extension. Combined inhibition of dynactin and potentiation of mitochondria respiration further increased axon lengths on CSPGs relative to inhibition of dynactin alone. These data reveal that the regulation of the localization of mitochondria and ER to growth cones is a previously unappreciated aspect of the effects of CSPGs on embryonic axons. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1351-1370, 2017. © 2017 Wiley Periodicals, Inc.

  18. Regulating Axonal Responses to Injury: The Intersection between Signaling Pathways Involved in Axon Myelination and The Inhibition of Axon Regeneration

    Science.gov (United States)

    Rao, Sudheendra N. R.; Pearse, Damien D.

    2016-01-01

    Following spinal cord injury (SCI), a multitude of intrinsic and extrinsic factors adversely affect the gene programs that govern the expression of regeneration-associated genes (RAGs) and the production of a diversity of extracellular matrix molecules (ECM). Insufficient RAG expression in the injured neuron and the presence of inhibitory ECM at the lesion, leads to structural alterations in the axon that perturb the growth machinery, or form an extraneous barrier to axonal regeneration, respectively. Here, the role of myelin, both intact and debris, in antagonizing axon regeneration has been the focus of numerous investigations. These studies have employed antagonizing antibodies and knockout animals to examine how the growth cone of the re-growing axon responds to the presence of myelin and myelin-associated inhibitors (MAIs) within the lesion environment and caudal spinal cord. However, less attention has been placed on how the myelination of the axon after SCI, whether by endogenous glia or exogenously implanted glia, may alter axon regeneration. Here, we examine the intersection between intracellular signaling pathways in neurons and glia that are involved in axon myelination and axon growth, to provide greater insight into how interrogating this complex network of molecular interactions may lead to new therapeutics targeting SCI. PMID:27375427

  19. Axonal interferon responses and alphaherpesvirus neuroinvasion

    Science.gov (United States)

    Song, Ren

    Infection by alphaherpesviruses, including herpes simplex virus (HSV) and pseudorabies virus (PRV), typically begins at a peripheral epithelial surface and continues into the peripheral nervous system (PNS) that innervates this tissue. Inflammatory responses are induced at the infected peripheral site prior to viral invasion of the PNS. PNS neurons are highly polarized cells with long axonal processes that connect to distant targets. When the peripheral tissue is first infected, only the innervating axons are exposed to this inflammatory milieu, which include type I interferon (e.g. IFNbeta) and type II interferon (i.e. IFNgamma). IFNbeta can be produced by all types of cells, while IFNgamma is secreted by some specific types of immune cells. And both types of IFN induce antiviral responses in surrounding cells that express the IFN receptors. The fundamental question is how do PNS neurons respond to the inflammatory milieu experienced only by their axons. Axons must act as potential front-line barriers to prevent PNS infection and damage. Using compartmented cultures that physically separate neuron axons from cell bodies, I found that pretreating isolated axons with IFNbeta or IFNgamma significantly diminished the number of HSV-1 and PRV particles moving from axons to the cell bodies in an IFN receptor-dependent manner. Furthermore, I found the responses in axons are activated differentially by the two types of IFNs. The response to IFNbeta is a rapid, axon-only response, while the response to IFNgamma involves long distance signaling to the PNS cell body. For example, exposing axons to IFNbeta induced STAT1 phosphorylation (p-STAT1) only in axons, while exposure of axons to IFNgamma induced p-STAT1 accumulation in distant cell body nuclei. Blocking transcription in cell bodies eliminated IFNgamma-, but not IFNbeta-mediated antiviral effects. Proteomic analysis of IFNbeta- or IFNgamma-treated axons identified several differentially regulated proteins. Therefore

  20. Torsional Behavior of Axonal Microtubule Bundles

    Science.gov (United States)

    Lazarus, Carole; Soheilypour, Mohammad; Mofrad, Mohammad R.K.

    2015-01-01

    Axonal microtubule (MT) bundles crosslinked by microtubule-associated protein (MAP) tau are responsible for vital biological functions such as maintaining mechanical integrity and shape of the axon as well as facilitating axonal transport. Breaking and twisting of MTs have been previously observed in damaged undulated axons. Such breaking and twisting of MTs is suggested to cause axonal swellings that lead to axonal degeneration, which is known as “diffuse axonal injury”. In particular, overstretching and torsion of axons can potentially damage the axonal cytoskeleton. Following our previous studies on mechanical response of axonal MT bundles under uniaxial tension and compression, this work seeks to characterize the mechanical behavior of MT bundles under pure torsion as well as a combination of torsional and tensile loads using a coarse-grained computational model. In the case of pure torsion, a competition between MAP tau tensile and MT bending energies is observed. After three turns, a transition occurs in the mechanical behavior of the bundle that is characterized by its diameter shrinkage. Furthermore, crosslink spacing is shown to considerably influence the mechanical response, with larger MAP tau spacing resulting in a higher rate of turns. Therefore, MAP tau crosslinking of MT filaments protects the bundle from excessive deformation. Simultaneous application of torsion and tension on MT bundles is shown to accelerate bundle failure, compared to pure tension experiments. MAP tau proteins fail in clusters of 10–100 elements located at the discontinuities or the ends of MT filaments. This failure occurs in a stepwise fashion, implying gradual accumulation of elastic tensile energy in crosslinks followed by rupture. Failure of large groups of interconnecting MAP tau proteins leads to detachment of MT filaments from the bundle near discontinuities. This study highlights the importance of torsional loading in axonal damage after traumatic brain injury

  1. IMP2 axonal localization, RNA interactome, and function in the development of axon trajectories

    DEFF Research Database (Denmark)

    Preitner, Nicolas; Quan, Jie; Li, Xinmin

    2016-01-01

    RNA-based regulatory mechanisms play important roles in the development and plasticity of neural circuits and neurological disease. Developing axons provide a model well suited to the study of RNA-based regulation, and contain specific subsets of mRNAsthat are locally translated and have roles...... to strong defects in commissural axon trajectories at the midline intermediate target. These results reveal a highly distinctive axonal enrichment of IMP2, show that it interacts with a network of axon guidance-related mRNAs, and reveal that it is required for normal axon pathfinding during vertebrate...

  2. Squid Giant Axons Synthesize NF Proteins.

    Science.gov (United States)

    Crispino, Marianna; Chun, Jong Tai; Giuditta, Antonio

    2018-04-01

    Squid giant axon has been an excellent model system for studying fundamental topics in neurobiology such as neuronal signaling. It has been also useful in addressing the questions of local protein synthesis in the axons. Incubation of isolated squid giant axons with [ 35 S]methionine followed by immunoprecipitation with a rabbit antibody against all squid neurofilament (NF) proteins demonstrates the local synthesis of a major 180 kDa NF protein and of several NF proteins of lower molecular weights. Their identification as NF proteins is based on their absence in the preimmune precipitates. Immunoprecipitates washed with more stringent buffers confirmed these results. Our data are at variance with a recent study based on the same experimental procedure that failed to visualize the local synthesis of NF proteins by the giant axon and thereby suggested their exclusive derivation from nerve cell bodies (as reported by Gainer et al. in Cell Mol Neurobiol 37:475-486, 2017). By reviewing the pertinent literature, we confute the claims that mRNA translation is absent in mature axons because of a putative translation block and that most proteins of mature axons are synthesized in the surrounding glial cells. Given the intrinsic axonal capacity to synthesize proteins, we stress the glial derivation of axonal and presynaptic RNAs and the related proposal that these neuronal domains are endowed with largely independent gene expression systems (as reported by Giuditta et al. in Physiol Rev 88:515-555, 2008).

  3. Ascending Midbrain Dopaminergic Axons Require Descending GAD65 Axon Fascicles for Normal Pathfinding

    Directory of Open Access Journals (Sweden)

    Claudia Marcela Garcia-Peña

    2014-06-01

    Full Text Available The Nigrostriatal pathway (NSP is formed by dopaminergic axons that project from the ventral midbrain to the dorsolateral striatum as part of the medial forebrain bundle. Previous studies have implicated chemotropic proteins in the formation of the NSP during development but little is known of the role of substrate-anchored signals in this process. We observed in mouse and rat embryos that midbrain dopaminergic axons ascend in close apposition to descending GAD65-positive axon bundles throughout their trajectory to the striatum. To test whether such interaction is important for dopaminergic axon pathfinding, we analyzed transgenic mouse embryos in which the GAD65 axon bundle was reduced by the conditional expression of the diphtheria toxin. In these embryos we observed dopaminergic misprojection into the hypothalamic region and abnormal projection in the striatum. In addition, analysis of Robo1/2 and Slit1/2 knockout embryos revealed that the previously described dopaminergic misprojection in these embryos is accompanied by severe alterations in the GAD65 axon scaffold. Additional studies with cultured dopaminergic neurons and whole embryos suggest that NCAM and Robo proteins are involved in the interaction of GAD65 and dopaminergic axons. These results indicate that the fasciculation between descending GAD65 axon bundles and ascending dopaminergic axons is required for the stereotypical NSP formation during brain development and that known guidance cues may determine this projection indirectly by instructing the pathfinding of the axons that are part of the GAD65 axon scaffold.

  4. Dynamics of mitochondrial transport in axons

    Directory of Open Access Journals (Sweden)

    Robert Francis Niescier

    2016-05-01

    Full Text Available The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons.

  5. Long-term effects of 1-year maintenance training on physical functioning and health status in patients with COPD: A randomized controlled study

    DEFF Research Database (Denmark)

    Ringbaek, Thomas; Brondum, Eva; Martinez, Gerd

    2010-01-01

    PURPOSE: To examine whether maintenance training (MT) for 1 year improved the long-term effects of a 7-week chronic obstructive pulmonary disease (COPD) rehabilitation program. METHODS: After a 7-week outpatient rehabilitation program, 96 patients with COPD were randomized to either an MT group (n...... study period. Primary effect parameters were Endurance Shuttle Walk Test (ESWT) time and health status (St. George's Respiratory Questionnaire, SGRQ). Secondary effect parameters were adherence to supervised training, dropout rates, and hospitalization. RESULTS: Compared with the control group, the MT...... or hospital admissions, compared with unsupervised daily training at home. The effect of the MT was closely related to adherence to the program....

  6. hnRNP R and its main interactor, the noncoding RNA 7SK, coregulate the axonal transcriptome of motoneurons.

    Science.gov (United States)

    Briese, Michael; Saal-Bauernschubert, Lena; Ji, Changhe; Moradi, Mehri; Ghanawi, Hanaa; Uhl, Michael; Appenzeller, Silke; Backofen, Rolf; Sendtner, Michael

    2018-03-20

    Disturbed RNA processing and subcellular transport contribute to the pathomechanisms of motoneuron diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. RNA-binding proteins are involved in these processes, but the mechanisms by which they regulate the subcellular diversity of transcriptomes, particularly in axons, are not understood. Heterogeneous nuclear ribonucleoprotein R (hnRNP R) interacts with several proteins involved in motoneuron diseases. It is located in axons of developing motoneurons, and its depletion causes defects in axon growth. Here, we used individual nucleotide-resolution cross-linking and immunoprecipitation (iCLIP) to determine the RNA interactome of hnRNP R in motoneurons. We identified ∼3,500 RNA targets, predominantly with functions in synaptic transmission and axon guidance. Among the RNA targets identified by iCLIP, the noncoding RNA 7SK was the top interactor of hnRNP R. We detected 7SK in the nucleus and also in the cytosol of motoneurons. In axons, 7SK localized in close proximity to hnRNP R, and depletion of hnRNP R reduced axonal 7SK. Furthermore, suppression of 7SK led to defective axon growth that was accompanied by axonal transcriptome alterations similar to those caused by hnRNP R depletion. Using a series of 7SK-deletion mutants, we show that the function of 7SK in axon elongation depends on its interaction with hnRNP R but not with the PTEF-B complex involved in transcriptional regulation. These results propose a role for 7SK as an essential interactor of hnRNP R to regulate its function in axon maintenance. Copyright © 2018 the Author(s). Published by PNAS.

  7. The Genetics of Axon Guidance and Axon Regeneration in Caenorhabditis elegans

    Science.gov (United States)

    Chisholm, Andrew D.; Hutter, Harald; Jin, Yishi; Wadsworth, William G.

    2016-01-01

    The correct wiring of neuronal circuits depends on outgrowth and guidance of neuronal processes during development. In the past two decades, great progress has been made in understanding the molecular basis of axon outgrowth and guidance. Genetic analysis in Caenorhabditis elegans has played a key role in elucidating conserved pathways regulating axon guidance, including Netrin signaling, the slit Slit/Robo pathway, Wnt signaling, and others. Axon guidance factors were first identified by screens for mutations affecting animal behavior, and by direct visual screens for axon guidance defects. Genetic analysis of these pathways has revealed the complex and combinatorial nature of guidance cues, and has delineated how cues guide growth cones via receptor activity and cytoskeletal rearrangement. Several axon guidance pathways also affect directed migrations of non-neuronal cells in C. elegans, with implications for normal and pathological cell migrations in situations such as tumor metastasis. The small number of neurons and highly stereotyped axonal architecture of the C. elegans nervous system allow analysis of axon guidance at the level of single identified axons, and permit in vivo tests of prevailing models of axon guidance. C. elegans axons also have a robust capacity to undergo regenerative regrowth after precise laser injury (axotomy). Although such axon regrowth shares some similarities with developmental axon outgrowth, screens for regrowth mutants have revealed regeneration-specific pathways and factors that were not identified in developmental screens. Several areas remain poorly understood, including how major axon tracts are formed in the embryo, and the function of axon regeneration in the natural environment. PMID:28114100

  8. Meninges-derived cues control axon guidance.

    Science.gov (United States)

    Suter, Tracey A C S; DeLoughery, Zachary J; Jaworski, Alexander

    2017-10-01

    The axons of developing neurons travel long distances along stereotyped pathways under the direction of extracellular cues sensed by the axonal growth cone. Guidance cues are either secreted proteins that diffuse freely or bind the extracellular matrix, or membrane-anchored proteins. Different populations of axons express distinct sets of receptors for guidance cues, which results in differential responses to specific ligands. The full repertoire of axon guidance cues and receptors and the identity of the tissues producing these cues remain to be elucidated. The meninges are connective tissue layers enveloping the vertebrate brain and spinal cord that serve to protect the central nervous system (CNS). The meninges also instruct nervous system development by regulating the generation and migration of neural progenitors, but it has not been determined whether they help guide axons to their targets. Here, we investigate a possible role for the meninges in neuronal wiring. Using mouse neural tissue explants, we show that developing spinal cord meninges produce secreted attractive and repulsive cues that can guide multiple types of axons in vitro. We find that motor and sensory neurons, which project axons across the CNS-peripheral nervous system (PNS) boundary, are attracted by meninges. Conversely, axons of both ipsi- and contralaterally projecting dorsal spinal cord interneurons are repelled by meninges. The responses of these axonal populations to the meninges are consistent with their trajectories relative to meninges in vivo, suggesting that meningeal guidance factors contribute to nervous system wiring and control which axons are able to traverse the CNS-PNS boundary. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Current Opportunities for Clinical Monitoring of Axonal Pathology in Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Parmenion P. Tsitsopoulos

    2017-11-01

    risk factor for neurodegeneration and dementias at long-term following TBI, the secondary injury processes may require prolonged monitoring. The aim of the present review is to summarize the clinical short- and long-term monitoring possibilities of axonal injury in TBI. Increased knowledge of the underlying pathophysiology achieved by advanced clinical monitoring raises hope for the development of novel treatment strategies for axonal injury in TBI.

  10. Developmental downregulation of LIS1 expression limits axonal extension and allows axon pruning

    Directory of Open Access Journals (Sweden)

    Kanako Kumamoto

    2017-07-01

    Full Text Available The robust axonal growth and regenerative capacities of young neurons decrease substantially with age. This developmental downregulation of axonal growth may facilitate axonal pruning and neural circuit formation but limits functional recovery following nerve damage. While external factors influencing axonal growth have been extensively investigated, relatively little is known about the intrinsic molecular changes underlying the age-dependent reduction in regeneration capacity. We report that developmental downregulation of LIS1 is responsible for the decreased axonal extension capacity of mature dorsal root ganglion (DRG neurons. In contrast, exogenous LIS1 expression or endogenous LIS1 augmentation by calpain inhibition restored axonal extension capacity in mature DRG neurons and facilitated regeneration of the damaged sciatic nerve. The insulator protein CTCF suppressed LIS1 expression in mature DRG neurons, and this reduction resulted in excessive accumulation of phosphoactivated GSK-3β at the axon tip, causing failure of the axonal extension. Conversely, sustained LIS1 expression inhibited developmental axon pruning in the mammillary body. Thus, LIS1 regulation may coordinate the balance between axonal growth and pruning during maturation of neuronal circuits.

  11. Protein-pacing caloric-restriction enhances body composition similarly in obese men and women during weight loss and sustains efficacy during long-term weight maintenance

    DEFF Research Database (Denmark)

    Arciero, Paul J; Edmonds, Rohan; He, Feng

    2016-01-01

    Short-Term protein-pacing (P; ~6 meals/day, >30% protein/day) and caloric restriction (CR, ~25% energy deficit) improves total (TBF), abdominal (ABF) and visceral (VAT) fat loss, energy expenditure, and biomarkers compared to heart healthy (HH) recommendations (3 meals/day, 15% protein....../day) in obese adults. Less is known whether obese men and women respond similarly to P-CR during weight loss (WL) and whether a modified P-CR (mP-CR) is more efficacious than a HH diet during long-term (52 week) weight maintenance (WM). The purposes of this study were to evaluate the efficacy of: (1) P......) completed WM. mP-CR regained significantly less body weight (6%), TBF (12%), and ABF (17%) compared to HH (p loss, body composition and biomarkers, and maintains these changes for 52-weeks compared to a traditional HH diet....

  12. Computational comparison of a calcium-dependent jellyfish protein (apoaequorin) and calmodulin-cholesterol in short-term memory maintenance.

    Science.gov (United States)

    Morrill, Gene A; Kostellow, Adele B; Gupta, Raj K

    2017-03-06

    Memory reconsolidation and maintenance depend on calcium channels and on calcium/calmodulin-dependent kinases regulating protein turnover in the hippocampus. Ingestion of a jellyfish protein, apoaequorin, reportedly protects and/or improves verbal learning in adults and is currently widely advertised for use by the elderly. Apoaequorin is a member of the EF-hand calcium binding family of proteins that includes calmodulin. Calmodulin-1 (148 residues) differs from Apoaequorin (195 residues) in that it contains four rather than three Ca 2+ -binding sites and three rather than four cholesterol-binding (CRAC, CARC) domains. All three cholesterol-binding CARC domains in calmodulin have a high interaction affinity for cholesterol compared to only two high affinity CARC domains in apoaequorin. Both calmodulin and apoaequorin can form dimers with a potential of eight bound Ca 2+ ions and six high affinity-bound cholesterol molecules in calmodulin with six bound Ca 2+ ions and a mixed population of eight cholesterols bound to both CARC and CRAC domains in apoaqueorin. MEMSAT-SVM analysis indicates that both calmodulin and apoaqueorin have a pore-lining region. The Peptide-Cutter algorithm predicts that calmodulin-1 contains 11 trypsin-specific cleavage sites (compared to 21 in apoaqueorin), four of which are potentially blocked by cholesterol and three are within the Ca-binding domains and/or the pore-lining region. Three are clustered between the third and fourth Ca 2+ -binding sites. Only calmodulin pore-lining regions contain Ca 2+ binding sites and as dimers may insert into the plasma membrane of neural cells and act as Ca 2+ channels. In a dietary supplement, bound cholesterol may protect both apoaequorin and calmodulin from proteolysis in the gut as well as facilitate uptake across the blood-brain barrier. Our results suggest that a physiological calmodulin-cholesterol complex, not cholesterol-free jellyfish protein, may better serve as a dietary supplement to

  13. Cargo distributions differentiate pathological axonal transport impairments.

    Science.gov (United States)

    Mitchell, Cassie S; Lee, Robert H

    2012-05-07

    Axonal transport is an essential process in neurons, analogous to shipping goods, by which energetic and cellular building supplies are carried downstream (anterogradely) and wastes are carried upstream (retrogradely) by molecular motors, which act as cargo porters. Impairments in axonal transport have been linked to devastating and often lethal neurodegenerative diseases, such as Amyotrophic Lateral Sclerosis, Huntington's, and Alzheimer's. Axonal transport impairment types include a decrease in available motors for cargo transport (motor depletion), the presence of defective or non-functional motors (motor dilution), and the presence of increased or larger cargos (protein aggregation). An impediment to potential treatment identification has been the inability to determine what type(s) of axonal transport impairment candidates that could be present in a given disease. In this study, we utilize a computational model and common axonal transport experimental metrics to reveal the axonal transport impairment general characteristics or "signatures" that result from three general defect types of motor depletion, motor dilution, and protein aggregation. Our results not only provide a means to discern these general impairments types, they also reveal key dynamic and emergent features of axonal transport, which potentially underlie multiple impairment types. The identified characteristics, as well as the analytical method, can be used to help elucidate the axonal transport impairments observed in experimental and clinical data. For example, using the model-predicted defect signatures, we identify the defect candidates, which are most likely to be responsible for the axonal transport impairments in the G93A SOD1 mouse model of ALS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. A new culture technique for hepatocyte organoid formation and long-term maintenance of liver-specific functions.

    Science.gov (United States)

    Mizumoto, Hiroshi; Ishihara, Kazuhisa; Nakazawa, Kohji; Ijima, Hiroyuki; Funatsu, Kazumori; Kajiwara, Toshihisa

    2008-06-01

    To develop a useful hybrid artificial liver, it is important to use cultured hepatocytes that maintain liver-specific functions for a long time. These requirements were achieved recently by the use of a hepatocyte multicellular aggregate (organoid) with a tissue-like structure. In this study, we developed a three-dimensional culture of hepatocytes that formed an organoid. Primary rat hepatocytes were immobilized inside hollow fibers (for plasma separation) by centrifugation. Hepatocytes formed a cylindrical organoid (cylindroid) of 200 mum in diameter by day 2 of culture. We used two types of culture media, medium A (Williams' medium E containing insulin and epidermal growth factor) and medium B (Dulbecco's modified Eagle's medium containing insulin, epidermal growth factor, and hydrocortisone). In medium A, the hepatocyte cylindroid diminished after 14 days of culture and liver-specific functions of the hepatocyte cylindroid nearly disappeared after 1 month of culture. In contrast, hepatocyte cylindroid cultured in medium B maintained its morphology and liver-specific functions for 2-5 months. These results indicate that a combination of the new culture technique and suitable culture medium is effective for expression and maintenance of liver-specific functions of hepatocytes. This culture technique will be helpful in the development of a hybrid artificial liver.

  15. Local synthesis of axonal and presynaptic RNA in squid model systems.

    Science.gov (United States)

    Eyman, Maria; Cefaliello, Carolina; Ferrara, Eugenia; De Stefano, Rosanna; Lavina, Zeno Scotto; Crispino, Marianna; Squillace, Angela; van Minnen, Jan; Kaplan, Barry B; Giuditta, Antonio

    2007-01-01

    The presence of active systems of protein synthesis in axons and nerve endings raises the question of the cellular origin of the corresponding RNAs. Our present experiments demonstrate that, besides a possible derivation from neuronal cell bodies, axoplasmic RNAs originate in periaxonal glial cells and presynaptic RNAs derive from nearby cells, presumably glial cells. Indeed, in perfused squid giant axons, delivery of newly synthesized RNA to the axon perfusate is strongly stimulated by axonal depolarization or agonists of glial glutamate and acetylcholine receptors. Likewise, incubation of squid optic lobe slices with [3H]uridine leads to a marked accumulation of [3H]RNA in the large synaptosomes derived from the nerve terminals of retinal photoreceptor neurons. As the cell bodies of these neurons lie outside the optic lobe, the data demonstrate that presynaptic RNA is locally synthesized, presumably by perisynaptic glial cells. Overall, our results support the view that axons and presynaptic regions are endowed with local systems of gene expression which may prove essential for the maintenance and plasticity of these extrasomatic neuronal domains.

  16. Retinal ganglion cells: Energetics, compartmentation, axonal transport, cytoskeletons and vulnerability.

    Science.gov (United States)

    Yu, Dao-Yi; Cringle, Stephen J; Balaratnasingam, Chandrakumar; Morgan, William H; Yu, Paula K; Su, Er-Ning

    2013-09-01

    Retinal ganglion cells (RGCs) are specialized projection neurons that relay an immense amount of visual information from the retina to the brain. RGC signal inputs are collected by dendrites and output is distributed from the cell body via very thin (0.5-1 μm) and long (∼50 mm) axons. The RGC cell body is larger than other retinal neurons, but is still only a very small fraction (one ten thousandths) of the length and total surface area of the axon. The total distance traversed by RGCs extends from the retina, starting from synapses with bipolar and amacrine cells, to the brain, to synapses with neurons in the lateral geniculate nucleus. This review will focus on the energy demands of RGCs and the relevant tissues that surround them. RGC survival and function unexceptionally depends upon free energy, predominantly adenosine triphosphate (ATP). RGC energy metabolism is vastly different when compared to that of the photoreceptors. Each subcellular component of the RGC is remarkably different in terms of structure, function and extracellular environment. The energy demands and distribution of each component are also distinct as evidenced by the uneven distribution of mitochondria and ATP within the RGC - signifying the presence of intracellular energy gradients. In this review we will describe RGCs as having four subcellular components, (1) Dendrites, (2) Cell body, (3) Non-myelinated axon, including intraocular and optic nerve head portions, and (4) Myelinated axon, including the intra-orbital and intracranial portions. We will also describe how RGCs integrate information from each subcellular component in order achieve intracellular homeostatic stability as well as respond to perturbations in the extracellular environment. The possible cellular mechanisms such as axonal transport and axonal cytoskeleton proteins that are involved in maintaining RGC energy homeostasis during normal and disease conditions will also be discussed in depth. The emphasis of this

  17. Towards an integrative model of visual short-term memory maintenance: Evidence from the effects of attentional control, load, decay, and their interactions in childhood.

    Science.gov (United States)

    Shimi, Andria; Scerif, Gaia

    2017-12-01

    Over the past decades there has been a surge of research aiming to shed light on the nature of capacity limits to visual short-term memory (VSTM). However, an integrative account of this evidence is currently missing. We argue that investigating parameters constraining VSTM in childhood suggests a novel integrative model of VSTM maintenance, and that this in turn informs mechanisms of VSTM maintenance in adulthood. Over 3 experiments with 7-year-olds and young adults (total N=206), we provide evidence for multiple cognitive processes interacting to constrain VSTM performance. While age-related increases in storage capacity are undisputable, we replicate the finding that attentional processes control what information will be encoded and maintained in VSTM in the face of increased competition. Therefore, a central process to the current model is attentional refreshment, a mechanism that it is thought to reactivate and strengthen the signal of the visual representations. Critically, here we also show that attentional influences on VSTM are further constrained by additional factors, traditionally studied to the exclusion of each other, such as memory load and temporal decay. We propose that these processes work synergistically in an elegant manner to capture the adult-end state, whereas their less refined efficiency and modulations in childhood account for the smaller VSTM capacity that 7-year-olds demonstrate compared to older individuals. We conclude that going beyond the investigation of single cognitive mechanisms, to their interactions, holds the promise to understand both developing and fully developed maintenance in VSTM. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Roadside maintenance

    Science.gov (United States)

    2010-01-01

    Roadside Maintenance is a unique element within the highway maintenance program because much of the work involves caring for and/or controlling vegetation. Roadside vegetation, if managed properly, can become more naturally self-sustaining over time ...

  19. Mechanisms of hyperpolarization in regenerated mature motor axons in cat

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Krarup, Christian

    2004-01-01

    We found persistent abnormalities in the recovery of membrane excitability in long-term regenerated motor nerve fibres in the cat as indicated in the companion paper. These abnormalities could partly be explained by membrane hyperpolarization. To further investigate this possibility, we compared...... the changes in excitability in control nerves and long-term regenerated cat nerves (3-5 years after tibial nerve crush) during manoeuvres known to alter axonal membrane Na(+)-K(+) pump function: polarization, cooling to 20 degrees C, reperfusion after 10 min ischaemia, and up to 60 s of repetitive stimulation...

  20. Genetics Home Reference: giant axonal neuropathy

    Science.gov (United States)

    ... connect the brain and spinal cord (central nervous system) to muscles and to sensory cells that detect sensations such as touch, pain, heat, and sound. However, axons in the central nervous system are affected as well. The signs and symptoms ...

  1. Drug therapy for chronic idiopathic axonal polyneuropathy

    NARCIS (Netherlands)

    Vrancken, A. F. J. E.; van Schaik, I. N.; Hughes, R. A. C.; Notermans, N. C.

    2004-01-01

    BACKGROUND: Chronic idiopathic axonal polyneuropathy is an insidiously progressive sensory or sensorimotor polyneuropathy that affects elderly people. Although severe disability or handicap does not occur, it reduces quality of life. OBJECTIVES: To assess whether drug therapy for chronic idiopathic

  2. Dendritic and Axonal Wiring Optimization of Cortical GABAergic Interneurons.

    Science.gov (United States)

    Anton-Sanchez, Laura; Bielza, Concha; Benavides-Piccione, Ruth; DeFelipe, Javier; Larrañaga, Pedro

    2016-10-01

    The way in which a neuronal tree expands plays an important role in its functional and computational characteristics. We aimed to study the existence of an optimal neuronal design for different types of cortical GABAergic neurons. To do this, we hypothesized that both the axonal and dendritic trees of individual neurons optimize brain connectivity in terms of wiring length. We took the branching points of real three-dimensional neuronal reconstructions of the axonal and dendritic trees of different types of cortical interneurons and searched for the minimal wiring arborization structure that respects the branching points. We compared the minimal wiring arborization with real axonal and dendritic trees. We tested this optimization problem using a new approach based on graph theory and evolutionary computation techniques. We concluded that neuronal wiring is near-optimal in most of the tested neurons, although the wiring length of dendritic trees is generally nearer to the optimum. Therefore, wiring economy is related to the way in which neuronal arborizations grow irrespective of the marked differences in the morphology of the examined interneurons.

  3. Prediction of Functional Outcome in Axonal Guillain-Barre Syndrome.

    Science.gov (United States)

    Sung, Eun Jung; Kim, Dae Yul; Chang, Min Cheol; Ko, Eun Jae

    2016-06-01

    To identify the factors that could predict the functional outcome in patients with the axonal type of Guillain-Barre syndrome (GBS). Two hundred and two GBS patients admitted to our university hospital between 2003 and 2014 were reviewed retrospectively. We defined a good outcome as being "able to walk independently at 1 month after onset" and a poor outcome as being "unable to walk independently at 1 month after onset". We evaluated the factors that differed between the good and poor outcome groups. Twenty-four patients were classified into the acute motor axonal neuropathy type. There was a statistically significant difference between the good and poor outcome groups in terms of the GBS disability score at admission, and GBS disability score and Medical Research Council sum score at 1 month after admission. In an electrophysiologic analysis, the good outcome group showed greater amplitude of median, ulnar, deep peroneal, and posterior tibial nerve compound muscle action potentials (CMAP) and greater amplitude of median, ulnar, and superficial peroneal sensory nerve action potentials (SNAP) than the poor outcome group. A lower GBS disability score at admission, high amplitude of median, ulnar, deep peroneal, and posterior tibial CMAPs, and high amplitude of median, ulnar, and superficial peroneal SNAPs were associated with being able to walk at 1 month in patients with axonal GBS.

  4. Local gene expression in axons and nerve endings: the glia-neuron unit.

    Science.gov (United States)

    Giuditta, Antonio; Chun, Jong Tai; Eyman, Maria; Cefaliello, Carolina; Bruno, Anna Paola; Crispino, Marianna

    2008-04-01

    Neurons have complex and often extensively elongated processes. This unique cell morphology raises the problem of how remote neuronal territories are replenished with proteins. For a long time, axonal and presynaptic proteins were thought to be exclusively synthesized in the cell body, which delivered them to peripheral sites by axoplasmic transport. Despite this early belief, protein has been shown to be synthesized in axons and nerve terminals, substantially alleviating the trophic burden of the perikaryon. This observation raised the question of the cellular origin of the peripheral RNAs involved in protein synthesis. The synthesis of these RNAs was initially attributed to the neuron soma almost by default. However, experimental data and theoretical considerations support the alternative view that axonal and presynaptic RNAs are also transcribed in the flanking glial cells and transferred to the axon domain of mature neurons. Altogether, these data suggest that axons and nerve terminals are served by a distinct gene expression system largely independent of the neuron cell body. Such a local system would allow the neuron periphery to respond promptly to environmental stimuli. This view has the theoretical merit of extending to axons and nerve terminals the marginalized concept of a glial supply of RNA (and protein) to the neuron cell body. Most long-term plastic changes requiring de novo gene expression occur in these domains, notably in presynaptic endings, despite their intrinsic lack of transcriptional capacity. This review enlightens novel perspectives on the biology and pathobiology of the neuron by critically reviewing these issues.

  5. Long-term follow-up of cyclophosphamide compared with azathioprine for initial maintenance therapy in ANCA-associated vasculitis

    DEFF Research Database (Denmark)

    Walsh, M.; Faurschou, M.; Berden, A.

    2014-01-01

    BACKGROUND AND OBJECTIVES: Treatment with azathioprine within 3 months of remission induction with cyclophosphamide is a common treatment strategy for patients with ANCA-associated vasculitis. This study comprised patients undergoing long-term follow-up who were randomly allocated to azathioprine...... after 3-6 months or after 12 months of cyclophosphamide treatment. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Patients from 39 European centers between 1995 and 1997 with a new diagnosis of ANCA-associated vasculitis that involved the kidneys or another vital organ were eligible. At the time...

  6. Maintenance methods

    International Nuclear Information System (INIS)

    Sanchis, H.; Aucher, P.

    1990-01-01

    The maintenance method applied at the Hague is summarized. The method was developed in order to solve problems relating to: the different specialist fields, the need for homogeneity in the maintenance work, the equipment diversity, the increase of the materials used at the Hague's new facilities. The aim of the method is to create a knowhow formalism, to facilitate maintenance, to ensure the running of the operations and to improve the estimation of the maintenance cost. One of the method's difficulties is the demonstration of the profitability of the maintenance operations [fr

  7. The Impact of Motor Axon Misdirection and Attrition on Behavioral Deficit Following Experimental Nerve Injuries

    Science.gov (United States)

    Alant, Jacob Daniel de Villiers; Senjaya, Ferry; Ivanovic, Aleksandra; Forden, Joanne; Shakhbazau, Antos; Midha, Rajiv

    2013-01-01

    Peripheral nerve transection and neuroma-in-continuity injuries are associated with permanent functional deficits, often despite successful end-organ reinnervation. Axonal misdirection with non-specific reinnervation, frustrated regeneration and axonal attrition are believed to be among the anatomical substrates that underlie the poor functional recovery associated with these devastating injuries. Yet, functional deficits associated with axonal misdirection in experimental neuroma-in-continuity injuries have not yet been studied. We hypothesized that experimental neuroma-in-continuity injuries would result in motor axon misdirection and attrition with proportional persistent functional deficits. The femoral nerve misdirection model was exploited to assess major motor pathway misdirection and axonal attrition over a spectrum of experimental nerve injuries, with neuroma-in-continuity injuries simulated by the combination of compression and traction forces in 42 male rats. Sciatic nerve injuries were employed in an additional 42 rats, to evaluate the contribution of axonal misdirection to locomotor deficits by a ladder rung task up to 12 weeks. Retrograde motor neuron labeling techniques were utilized to determine the degree of axonal misdirection and attrition. Characteristic histological neuroma-in-continuity features were demonstrated in the neuroma-in-continuity groups and poor functional recovery was seen despite successful nerve regeneration and muscle reinnervation. Good positive and negative correlations were observed respectively between axonal misdirection (pinjuries of mixed motor nerves that contribute to the long-term functional deficits. Although widely accepted in theory, to our knowledge, this is the first experimental evidence to convincingly demonstrate these correlations with data inclusive of the neuroma-in-continuity spectrum. This work emphasizes the need to focus on strategies that promote both robust and accurate nerve regeneration to optimize

  8. Long-term effects of 1-year maintenance training on physical functioning and health status in patients with COPD: A randomized controlled study

    DEFF Research Database (Denmark)

    Ringbaek, Thomas; Brondum, Eva; Martinez, Gerd

    2010-01-01

    PURPOSE: To examine whether maintenance training (MT) for 1 year improved the long-term effects of a 7-week chronic obstructive pulmonary disease (COPD) rehabilitation program. METHODS: After a 7-week outpatient rehabilitation program, 96 patients with COPD were randomized to either an MT group (n...... group had significantly better ESWT times at 3 and 6 months (+43.9 seconds; P= .03, and +75.1 seconds; P= .02) and insignificantly higher ESWT time at 12 months (+66.6 seconds; P= .40). SGRQ total score declined gradually after the 7-week program with no difference between the 2 groups, and after 18...... months, the score was 1.7 units (95% confidence interval: -0.7 to 4.1) worse than at randomization. There was no difference between the 2 groups regarding dropout rates or hospitalization. DISCUSSION: Weekly MT for 12 months improved walking time but had no influence on health-related quality of life...

  9. Long-Term Weight-Loss Maintenance by a Meal Replacement Based Weight Management Program in Primary Care.

    Science.gov (United States)

    Kruschitz, Renate; Wallner-Liebmann, Sandra; Lothaller, Harald; Luger, Maria; Ludvik, Bernhard

    2017-01-01

    Structured obesity treatment programs at primary care level are becoming increasingly important. However, evidence from current treatment approaches in the long term is lacking. In view of this fact we evaluated a standardized, meal replacement-based weight loss program (myLINE®; AENGUS, Graz, Austria) according to the currently applicable guidelines. Data of overweight and obese individuals (n = 70) who participated at least 36 months in the program were analyzed. Data were collected at baseline (T0) as well as after 1, 3, 6, 12, 24, and 36 (T1-T36) months. Body composition was measured by conventional anthropometry and bioelectrical impedance analysis. Compared to T0, a maximum weight, BMI, fat mass, absolute body cell mass (BCM) reduction and an increase of relative BCM could be seen at T6. Subsequently, the findings reveal a significant reduction of body weight and body fat and a satisfying development of body cell mass during the observation period of 36 months. The evaluated program complies with national and international guidelines for the therapy of obesity in adults and is efficient and meaningful for a long-term therapeutic use in primary care.. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  10. Long-Term Weight-Loss Maintenance by a Meal Replacement Based Weight Management Program in Primary Care

    Directory of Open Access Journals (Sweden)

    Renate Kruschitz

    2017-04-01

    Full Text Available Objective: Structured obesity treatment programs at primary care level are becoming increasingly important. However, evidence from current treatment approaches in the long term is lacking. In view of this fact we evaluated a standardized, meal replacement-based weight loss program (myLINE®; AENGUS, Graz, Austria according to the currently applicable guidelines. Methods: Data of overweight and obese individuals (n = 70 who participated at least 36 months in the program were analyzed. Data were collected at baseline (T0 as well as after 1, 3, 6, 12, 24, and 36 (T1-T36 months. Body composition was measured by conventional anthropometry and bioelectrical impedance analysis. Results: Compared to T0, a maximum weight, BMI, fat mass, absolute body cell mass (BCM reduction and an increase of relative BCM could be seen at T6. Subsequently, the findings reveal a significant reduction of body weight and body fat and a satisfying development of body cell mass during the observation period of 36 months. Conclusion: The evaluated program complies with national and international guidelines for the therapy of obesity in adults and is efficient and meaningful for a long-term therapeutic use in primary care..

  11. Long-term effect on symptoms and quality of life of maintenance therapy with esomeprazole 20 mg daily: a post hoc analysis of the LOTUS trial.

    Science.gov (United States)

    Lundell, Lars; Hatlebakk, Jan; Galmiche, Jean-Paul; Attwood, Stephen E; Ell, Christian; Fiocca, Roberto; Persson, Tore; Nagy, Péter; Eklund, Stefan; Lind, Tore

    2015-01-01

    To assess the long-term effect on symptoms and quality of life of esomeprazole 20 mg once daily, a recommended dose for maintenance therapy of gastroesophageal reflux disease (GERD). This is a post hoc analysis of 5 year data from patients in the LOTUS trial (ClinicalTrials.gov identifier: NCT00251927) who were randomized to esomeprazole 20 mg once daily. All participants had chronic, symptomatic GERD responsive to treatment. Gastrointestinal symptoms were assessed by physicians and by using patient-reported outcome instruments. Investigations included gastrointestinal endoscopy (with biopsy sampling), 24 hour esophageal pH monitoring and laboratory measurements. In total, 157 of 256 patients randomized to esomeprazole 20 mg once daily remained on this dose until the end of follow-up or study discontinuation, whereas 99 patients had their dose increased because of inadequate symptom control (of these, 29 subsequently returned to the allocated dose). On logistic regression, a long objectively defined GERD history, smoking, female sex, absence of Helicobacter pylori infection and high supine baseline acid reflux into the esophagus were associated with an increased likelihood of requiring dose escalation to esomeprazole 40 mg daily (all p esomeprazole 20 mg once daily, with no more than mild symptom severity, and mean (standard deviation) percentage time with intraesophageal pH Esomeprazole at a maintenance dose of 20 mg once daily offers effective long-term treatment for chronic GERD in patients initially responsive to the medication, with durable symptom control and sustained reductions in intraesophageal acid exposure.

  12. Five percent weight lost in the first month of intragastric balloon treatment may be a predictor for long-term weight maintenance.

    Science.gov (United States)

    Dogan, Umit Bilge; Gumurdulu, Yuksel; Akin, Mustafa Salih; Yalaki, Serkan

    2013-07-01

    Most of the weight loss with the BioEnterics intragastric balloon (BIB) has occurred during the first 3-4 months. This study aimed to evaluate the effect of initial weight loss on long-term weight maintenance. From 2008 to 2011, 50 patients who had mean body mass index (BMI) of 44.7 ± 12.4 kg/m(2) underwent BIB therapy for 6 months. All patients were given a diet of 1,100 kcal/day. Weight loss parameters [absolute weight loss, BMI loss, percentage of body weight loss (BWL%), and percentage of excess BMI loss] were recorded at the baseline, 1 month, 6 months (time of BIB removal), 12 months, and 18 months from the baseline. Successful weight loss was defined as ≥ 10 % weight loss after 6, 12, and 18 months. Twenty-seven patients (54 %) achieved a percentage of BWL ≥ 10 at the time of removal. Eighteen (36 %) and 12 (24 %) patients were able to maintain weight loss of 10 % at 12 and 18 months. Percentage of BWL after 1 month was positively correlated with BWL% after 6, 12, and 18 months (r = 0.77, 0.65, and 0.62, p < 0.001, respectively). Twenty-four patients who lost 5 % of the BWL after 1 month of treatment succeeded in maintaining a lasting percentage of BWL ≥ 10 after the BIB removal: more precisely, this cutoff point was achieved in 96 % at the time of removal and in 71 %, 50 % at 12 months, and 18 months of follow-up. Five percent BWL after 1 month of treatment may be a predictor for long-term weight maintenance.

  13. Industrial Maintenance Strategies

    International Nuclear Information System (INIS)

    Sajjad Akbar

    2006-01-01

    Industrial plants have become more complex due to technological advancement. This has made the task of maintenance more difficult. The maintenance costs in terms of resources and downtime loss are so high that maintenance function has become a critical factor in a plant's profitability. Industry should devote as much forethought to the management of maintenance function as to production. Maintenance has grown from an art to a precise, technical engineering science. Planning, organizing scheduling and control of maintenance using modern techniques pays dividends in the form of reduced costs and increased reliability. The magnitude and the dimension of maintenance have multiplied due to development in the engineering technologies. Production cost and capacities are directly affected by the breakdown time. Total operating cost including the maintenance cost plays an important role in replacement dimension. The integrated system approach would bring forth the desired results of high maintenance standards. The standards once achieved and sustained, would add to the reliability of the plan and relieve heavy stresses and strains on the engineering logistic support. (author)

  14. Ditch network maintenance in peatland forest as a private investment: short- and long-term effects on financial performance at stand level

    Directory of Open Access Journals (Sweden)

    T. Penttilä

    2008-03-01

    Full Text Available In Finland, most of the suitable peatland has now been ditched for forestry purposes, and ditch network maintenance (DNM is carried out on 70,000–80,000 hectares of land each year. We examined the financial performance of DNM operations on 44 sample plots representing two medium-quality site types located within two different climatic regions in northern Finland. We applied a simulation approach in which actual measurements of trees growing on sample plots were fed into a stand simulator (MOTTI which predicted stand development with and without DNM. The financial assessments involved calculating short-term and long-term effects of DNM by applying, respectively, ROI (return on investment and NPV (net present value analyses. The results indicated that the financial performance of DNM, particularly in the short term, was highly dependent on the availability of government subsidies. Without the DNM subsidy, the return on investment was between 1.6% and 3.7%; whereas with government subsidy it ranged from 3.8% to 8.4%. In the long run, the net present value was ca. 4–14% higher for stands with DNM than for those without.

  15. Long-term maintenance of weight loss with sibutramine in a GP setting following a specialist guided very-low-calorie diet: a double-blind, placebo-controlled, parallel group study

    NARCIS (Netherlands)

    Mathus-Vliegen, E. M. H.

    2005-01-01

    Objective: Very-low-calorie diets (VLCDs) are used to promote short-term weight loss in obese patients. However, long-term maintenance of weight loss is generally poor. We assessed the efficacy and safety of sibutramine in maintaining weight loss achieved in obese patients by means of a 3-month

  16. EFA6 regulates selective polarised transport and axon regeneration from the axon initial segment

    Czech Academy of Sciences Publication Activity Database

    Eva, R.; Koseki, H.; Kanamarlapudi, V.; Fawcett, James

    2017-01-01

    Roč. 130, č. 21 (2017), s. 3663-3675 ISSN 0021-9533 Institutional support: RVO:68378041 Keywords : axon regeneration * axon transport * neuronal polarisation Subject RIV: FH - Neurology OBOR OECD: Neurosciences (including psychophysiology Impact factor: 4.431, year: 2016

  17. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Letzkus, Johannes J.; Stuart, Greg J.

    2007-01-01

    Action potentials are binary signals that transmit information via their rate and temporal pattern. In this context, the axon is thought of as a transmission line, devoid of a role in neuronal computation. Here, we show a highly localized role of axonal Kv1 potassium channels in shaping the action

  18. Axonal cleaved caspase-3 regulates axon targeting and morphogenesis in the developing auditory brainstem

    Directory of Open Access Journals (Sweden)

    Sarah E Rotschafer

    2016-10-01

    Full Text Available Caspase-3 is a cysteine protease that is most commonly associated with cell death. Recent studies have shown additional roles in mediating cell differentiation, cell proliferation, and development of cell morphology. We investigated the role of caspase-3 in the development of chick auditory brainstem nuclei during embryogenesis. Immunofluorescence from embryonic days E6-13 revealed that the temporal expression of cleaved caspase-3 follows the ascending anatomical pathway. Expression is first seen in the auditory portion of VIIIth nerve including central axonal regions projecting to nucleus magnocellularis (NM, then later in NM axons projecting to nucleus laminaris (NL, and subsequently in NL dendrites. To examine the function of cleaved caspase-3 in chick auditory brainstem development, we blocked caspase-3 cleavage in developing chick embryos with the caspase-3 inhibitor Z-DEVD-FMK from E6 to E9, then examined NM and NL morphology and NM axonal targeting on E10. NL lamination in treated embryos was disorganized and the neuropil around NL contained a significant number of glial cells normally excluded from this region. Additionally, NM axons projected into inappropriate portions of NL in Z-DEVD-FMK treated embyros. We found that the presence of misrouted axons was associated with more severe NL disorganization. The effects of axonal caspase-3 inhibition on both NL morphogenesis and NM axon targeting suggest that these developmental processes are coordinated, likely through communication between axons and their targets.

  19. Context-specific differences in fronto-parieto-occipital effective connectivity during short-term memory maintenance.

    Science.gov (United States)

    Kundu, Bornali; Chang, Jui-Yang; Postle, Bradley R; Van Veen, Barry D

    2015-07-01

    Although visual short-term memory (VSTM) performance has been hypothesized to rely on two distinct mechanisms, capacity and filtering, the two have not been dissociated using network-level causality measures. Here, we hypothesized that behavioral tasks challenging capacity or distraction filtering would both engage a common network of areas, namely dorsolateral prefrontal cortex (dlPFC), superior parietal lobule (SPL), and occipital cortex, but would do so according to dissociable patterns of effective connectivity. We tested this by estimating directed connectivity between areas using conditional Granger causality (cGC). Consistent with our prediction, the results indicated that increasing mnemonic load (capacity) increased the top-down drive from dlPFC to SPL, and cGC in the alpha (8-14Hz) frequency range was a predominant component of this effect. The presence of distraction during encoding (filtering), in contrast, was associated with increased top-down drive from dlPFC to occipital cortices directly and from SPL to occipital cortices directly, in both cases in the beta (15-25Hz) range. Thus, although a common anatomical network may serve VSTM in different contexts, it does so via specific functions that are carried out within distinct, dynamically configured frequency channels. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The long-term use of soap does not affect the pH-maintenance mechanism of human skin.

    Science.gov (United States)

    Takagi, Y; Kaneda, K; Miyaki, M; Matsuo, K; Kawada, H; Hosokawa, H

    2015-05-01

    The pH at the surface of healthy human skin is around 5. Cleansing the skin with soap increases the pH of the skin, which then returns to a more acidic pH within a few hours. However, the effects of skin cleansing with soap over a long time on the pH regulatory system is still unclear. We compared the pH of the skin between users of a soap-based cleanser and of a mild-acidic cleanser prior to and following the cleansing. This study had two groups of subjects, one group who had used a soap-based cleanser for more than 5 years and the other group who had used a mild-acidic cleanser for more than 5 years. The pH on the inner forearm of each subject was measured prior to and for 6 h after cleansing with a soap bar. There were no differences between the pH of the skin these two groups prior to cleansing, immediately after cleansing or in the pH recovery rate for 6 h. These results suggest that long-term continuous use of a soap-based cleanser does not affect the pH-maintaining mechanism of human skin. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Muscle and motor neuron ciliary neurotrophic factor receptor α together maintain adult motor neuron axons in vivo.

    Science.gov (United States)

    Lee, Nancy; Serbinski, Carolyn R; Braunlin, Makayla R; Rasch, Matthew S; Rydyznski, Carolyn E; MacLennan, A John

    2016-12-01

    The molecular mechanisms maintaining adult motor innervation are comparatively unexplored relative to those involved during development. In addition to the fundamental neuroscience question, this area has important clinical ramifications given that loss of neuromuscular contact is thought to underlie several adult onset human neuromuscular diseases including amyotrophic lateral sclerosis. Indirect evidence suggests that ciliary neurotrophic factor (CNTF) receptors may contribute to adult motor neuron axon maintenance. To directly address this in vivo, we used adult onset mouse genetic disruption techniques to deplete motor neuron and muscle CNTF receptor α (CNTFRα), the essential ligand binding subunit of the receptor, and incorporated reporters labelling affected motor neuron axons and terminals. The combined depletion of motor neuron and muscle CNTFRα produced a large loss of motor neuron terminals and retrograde labelling of motor neurons with FluoroGold indicated axon die-back well beyond muscle, together revealing an essential role for CNTFRα in adult motor axon maintenance. In contrast, selective depletion of motor neuron CNTFRα did not affect motor innervation. These data, along with our previous work indicating no effect of muscle specific CNTFRα depletion on motor innervation, suggest that motor neuron and muscle CNTFRα function in concert to maintain motor neuron axons. The data also raise the possibility of motor neuron and/or muscle CNTFRα as therapeutic targets for adult neuromuscular denervating diseases. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Predictors of non-use of illicit heroin in opioid injection maintenance treatment of long-term heroin dependence.

    Science.gov (United States)

    Oviedo-Joekes, Eugenia; Sordo, Luis; Guh, Daphne; Marsh, David C; Lock, Kurt; Brissette, Suzanne; Anis, Aslam H; Schechter, Martin T

    2015-02-01

    To investigate baseline and concurrent predictors of non-use of illicit heroin among participants randomized to injectable opioids in the North American Opiate Medication Initiative (NAOMI) clinical trial. NAOMI was an open-label randomized controlled trial comparing the effectiveness of injectable diacetylmorphine and hydromorphone for long-term opioid-dependency. Outcomes were assessed at baseline and during treatment (3, 6, 9, 12months). Days of non-use of illicit heroin in the prior month at each follow-up visit were divided into three categories: Non-use; Low use (1 to 7days) and High use (8days or more). Tested covariates were: Sociodemographics, Health, Treatment, Drug use and illegal activities. Mixed-effect proportional odds models with random intercept for longitudinal ordinal outcomes were used to assess the predictors of the non-use of illicit heroin. 139 participants were included in the present analysis. At each follow-up visit, those with non-use of illicit heroin represented 47.5% to 54.0% of the sample. Fewer days of cocaine use (p=0.074), fewer days engaged in illegal activities at baseline (pheroin. The independent effect of several concurrent factors besides the injection of opioid dose suggests benefits from the clinic that go beyond the provision of the medication alone. Thus, this supervised model of care presents an opportunity to maximize the beneficial impact of medical and psychosocial components of the treatment on improving outcomes associated with non-use of illicit heroin. Copyright © 2014. Published by Elsevier Ltd.

  3. Long-term results of conversion from calcineurin inhibitors to sirolimus in 150 maintenance kidney transplant patients.

    Science.gov (United States)

    Garrouste, Cyril; Kamar, Nassim; Guilbeau-Frugier, Céline; Guitard, Joëlle; Esposito, Laure; Lavayssière, Laurence; Nogier, Marie-Béatrice; Cointault, Olivier; Ribes, David; Rostaing, Lionel

    2012-04-01

    This retrospective single-center study evaluated long-term renal function after conversion from calcineurin inhibitors to sirolimus-based immunosuppression in kidney transplant recipients. From 2001 to 2009, one hundred fifty kidney transplant recipients were converted from calcineurin inhibitors to sirolimus at least 3 months after transplant. After a mean follow-up of 171 weeks, 56.7% of converted patients remained on sirolimus. The 5-year survival rate of the patients (including intent-to-treat) and grafts was 85.5% and 83.6%. Patients on sirolimus showed significant improvement in renal function with a creatinine clearance of 50.9 ± 20.7 and 52.9 ± 20.8 mL/minute at month 0 and month 24. Independent predictive factors associated with a stable estimated glomerular filtration rate at the last follow-up of sirolimus patients were (1) having a living donor, (2) absence of anti-HLA alloantibodies at month 0, and (3) cyclosporine versus tacrolimus used before conversion. Adverse effects were reported in 134 patients (89.3%). They included (1) hospitalization for infection (n=52), (2) de novo proteinuria (n=40), and (3) eight patients with biopsy-proven acute rejection. Sirolimus was stopped and replaced by calcineurin inhibitors in 37 patients after a mean of 16 months treatment. After stopping sirolimus, renal-allograft function remained stable at 2 years. Conversion of calcineurin inhibitors to sirolimus in kidney transplant recipients was associated with improved renal function. The reintroduction of calcineurin inhibitors was safe in patients who were withdrawn from sirolimus owing to adverse effects.

  4. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis

    Science.gov (United States)

    Zambonin, Jessica L.; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R.; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M.; Turnbull, Doug M.; Trapp, Bruce D.; Lassmann, Hans; Franklin, Robin J. M.

    2011-01-01

    Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in

  5. Guidance of retinal axons in mammals.

    Science.gov (United States)

    Herrera, Eloísa; Erskine, Lynda; Morenilla-Palao, Cruz

    2017-11-26

    In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Long-term, feeder-free maintenance of human embryonic stem cells by mussel-inspired adhesive heparin and collagen type I.

    Science.gov (United States)

    Lee, Mihyun; Kim, Youngjin; Ryu, Ji Hyun; Kim, Kyuri; Han, Yong-Mahn; Lee, Haeshin

    2016-03-01

    For practical applications of human embryonic stem cells (hESCs) in regenerative medicine, hESCs should be cultured on a large scale, and at the same time their properties have to be maintained in a controllable manner. Here, we report a chemically defined, scalable culture platform involving co-immobilization of heparin-catechol (HepC) and collagen type-1 (Col) for the long-term maintenance (>18 passages) of hESCs in a feeder-free condition. This platform utilizes a wet-adhesive, mussel-inspired heparin-catechol conjugate as a key component. We hypothesized that the heparin's affinity toward a wide range of proteins, might support undifferentiated in vitro growth of hESC. In fact, on the HepC-coated substrate, most hESC clumps were adhered (∼78% at passage 2 (P2)) and expressed pluripotency markers (Fig. 2). Although HepC alone wasn't able to support long-term maintenance of hESCs in a feeder-free system due to decrease in the adhesion rate of hESCs on HepC coating (∼ 44% at P4) during the repeated passaging processes, we found that when collagen type I was co-immobilized in the process of HepC coating, the long-term maintenance (passage 18 or more) of hESCs could be achieved with 100% adhesion efficiency (Fig. 4). One remarkable observation is that hESCs on collagen type-I underwent spontaneous differentiation after P6 (Fig. 3), which implied co-immobilized HepC played a role to suppress differentiation of hESCs. This study suggests that unlike the previous studies using proteins, peptides, or synthetic polymers, a polysaccharide, heparin, can be used as a cost-effective component for chemically defined, feeder-free culture of hESC. Towards practical applications of human embryonic stem cells (hESCs) in regenerative medicine, hESCs should be cultured on a large scale, and their pluripotent property has to be maintained in a controllable manner. To address these issues, studies that develop chemically defined culture substrates have been explored to replace

  7. Low-dose maintenance steroid treatment could reduce the relapse rate in patients with type 1 autoimmune pancreatitis: a long-term Japanese multicenter analysis of 510 patients.

    Science.gov (United States)

    Kubota, Kensuke; Kamisawa, Terumi; Okazaki, Kazuichi; Kawa, Shigeyuki; Hirano, Kenji; Hirooka, Yoshiki; Uchida, Kazushige; Shiomi, Hideyuki; Ohara, Hirotaka; Shimizu, Kyoko; Arakura, Norikazu; Kanno, Atsushi; Sakagami, Junichi; Itoi, Takao; Ito, Tetsuhide; Ueki, Toshiharu; Nishino, Takayoshi; Inui, Kazuo; Mizuno, Nobumasa; Yoshida, Hitoshi; Sugiyama, Masanori; Iwasaki, Eisuke; Irisawa, Atshishi; Shimosegawa, Toru; Takeyama, Yoshifumi; Chiba, Tsutomu

    2017-08-01

    The effect of maintenance steroid treatment (MST) in reducing the risk of relapse in patients with autoimmune pancreatitis (AIP) remains under debate. The aim of this study was to validate the effect of MST on AIP administered in accordance with the 2010 Japanese consensus guidelines. The clinical data of patients with (n = 510) from 22 high-volume centers in Japan were studied. The primary endpoints were the relapse rates (RRs) in patients administered MST versus those not administered MST. The secondary endpoints were the optimal dose and duration of MST in terms of steroid toxicity and the predictors of relapse. The RRs were 10.0% within 1 year, 25.8% within 3 years and 35.1% within 5 years. The RR in the steroid therapy group reached a plateau at 42.7% at 7 years. In terms of the optimal dosage, the overall RR in the MST 5 mg/day group was 26.1%, which was significantly lower than that in the group which had discontinued steroid therapy (45.2%; p = 0.023) or was receiving MST at 2.5 mg/day (43.4%, p = 0.001). The RRs in the group receiving MST at ≥5 mg/day versus the patient group receiving MST at 5 mg/day were identified as predictors of relapse (OR 0.483; p = 0.001). The RR could continue to increase for 7 years even under MST. Based on our analysis of the side effects of steroid therapy, MST at 5 mg/day for 2 (total 4625 mg) to 3 (total 6425 mg) years might be a rational and safe therapeutic strategy in terms of keeping the RR to <30% while avoiding potential steroid toxicity.

  8. UV Irradiation Accelerates Amyloid Precursor Protein (APP) Processing and Disrupts APP Axonal Transport

    Science.gov (United States)

    Almenar-Queralt, Angels; Falzone, Tomas L.; Shen, Zhouxin; Lillo, Concepcion; Killian, Rhiannon L.; Arreola, Angela S.; Niederst, Emily D.; Ng, Kheng S.; Kim, Sonia N.; Briggs, Steven P.; Williams, David S.

    2014-01-01

    Overexpression and/or abnormal cleavage of amyloid precursor protein (APP) are linked to Alzheimer's disease (AD) development and progression. However, the molecular mechanisms regulating cellular levels of APP or its processing, and the physiological and pathological consequences of altered processing are not well understood. Here, using mouse and human cells, we found that neuronal damage induced by UV irradiation leads to specific APP, APLP1, and APLP2 decline by accelerating their secretase-dependent processing. Pharmacological inhibition of endosomal/lysosomal activity partially protects UV-induced APP processing implying contribution of the endosomal and/or lysosomal compartments in this process. We found that a biological consequence of UV-induced γ-secretase processing of APP is impairment of APP axonal transport. To probe the functional consequences of impaired APP axonal transport, we isolated and analyzed presumptive APP-containing axonal transport vesicles from mouse cortical synaptosomes using electron microscopy, biochemical, and mass spectrometry analyses. We identified a population of morphologically heterogeneous organelles that contains APP, the secretase machinery, molecular motors, and previously proposed and new residents of APP vesicles. These possible cargoes are enriched in proteins whose dysfunction could contribute to neuronal malfunction and diseases of the nervous system including AD. Together, these results suggest that damage-induced APP processing might impair APP axonal transport, which could result in failure of synaptic maintenance and neuronal dysfunction. PMID:24573290

  9. The effect of myelinating Schwann cells on axons.

    Science.gov (United States)

    Martini, R

    2001-04-01

    Myelinating Schwann cells control the number of neurofilaments and elevate the phosphorylation state of neurofilaments in the axon, eventually leading to the typical large axon caliber. Conversely, absence of myelin leads to lower amounts of neurofilaments, reduced phosphorylation levels, and smaller axon diameters. In addition, myelinating Schwann cells mediate the spacing of Na(+) channel clusters during development of the node of Ranvier. When axons are associated with mutant Schwann cells in inherited neuropathies, their calibers are reduced and their neurofilaments are less phosphorylated and more closely spaced. Also, axonal transport is reduced and axons degenerate at the distal ends of long nerves. Myelin-associated glycoprotein may mediate some aspects of Schwann cell-axon communication, but much remains to be learned about the molecular bases of Schwann cell-axon communication. Copyright 2001 John Wiley & Sons, Inc.

  10. Variable laterality of corticospinal tract axons that regenerate after spinal cord injury as a result of PTEN deletion or knock-down

    Science.gov (United States)

    Willenberg, Rafer; Zukor, Katherine; Liu, Kai; He, Zhigang; Steward, Oswald

    2016-01-01

    Corticospinal tract (CST) axons from one hemisphere normally extend and terminate predominantly in the contralateral spinal cord. We previously showed that deleting PTEN in the sensorimotor cortex enables CST axons to regenerate after spinal cord injury and that some regenerating axons extend along the “wrong” side. Here, we characterize the degree of specificity of regrowth in terms of laterality. PTEN was selectively deleted via cortical AAV-Cre injections in neonatal PTEN-floxed mice. As adults, mice received dorsal hemisection injuries at T12 or complete crush injuries at T9. CST axons from one hemisphere were traced by unilateral BDA injections in PTEN-deleted mice with spinal cord injury and in non-injured PTEN-floxed mice that had not received AAV-Cre. In non-injured mice, 97.9 ± 0.7% of BDA-labeled axons in white matter and 88.5 ± 1.0% of BDA-labeled axons in grey matter were contralateral to the cortex of origin. In contrast, laterality of CST axons that extended past a lesion due to PTEN deletion varied across animals. In some cases, regenerated axons extended predominantly on the ipsilateral side, in other cases, axons extended predominantly contralaterally, and in others, axons were similar in numbers on both sides. Similar results were seen in analyses of cases from previous studies using shRNA-mediated PTEN knock-down. These results indicate that CST axons that extend past a lesion due to PTEN deletion or knock-down do not maintain the contralateral rule of the non-injured CST, highlighting one aspect for how resultant circuitry from regenerating axons may differ from that of the uninjured CST. PMID:26878190

  11. Intraneural Injection of ATP Stimulates Regeneration of Primary Sensory Axons in the Spinal Cord.

    Science.gov (United States)

    Wu, Dongsheng; Lee, Sena; Luo, Juan; Xia, Haijian; Gushchina, Svetlana; Richardson, Peter M; Yeh, John; Krügel, Ute; Franke, Heike; Zhang, Yi; Bo, Xuenong

    2018-02-07

    Injury to the peripheral axons of sensory neurons strongly enhances the regeneration of their central axons in the spinal cord. It remains unclear on what molecules that initiate such conditioning effect. Because ATP is released extracellularly by nerve and other tissue injury, we hypothesize that injection of ATP into a peripheral nerve might mimic the stimulatory effect of nerve injury on the regenerative state of the primary sensory neurons. We found that a single injection of 6 μl of 150 μm ATP into female rat sciatic nerve quadrupled the number of axons growing into a lesion epicenter in spinal cord after a concomitant dorsal column transection. A second boost ATP injection 1 week after the first one markedly reinforced the stimulatory effect of a single injection. Single ATP injection increased expression of phospho-STAT3 and GAP43, two markers of regenerative activity, in sensory neurons. Double ATP injections sustained the activation of phospho-STAT3 and GAP43, which may account for the marked axonal growth across the lesion epicenter. Similar studies performed on P2X7 or P2Y2 receptor knock-out mice indicate P2Y2 receptors are involved in the activation of STAT3 after ATP injection or conditioning lesion, whereas P2X7 receptors are not. Injection of ATP at 150 μm caused little Wallerian degeneration and behavioral tests showed no significant long-term adverse effects on sciatic nerve functions. The results in this study reveal possible mechanisms underlying the stimulation of regenerative programs and suggest a practical strategy for stimulating axonal regeneration following spinal cord injury. SIGNIFICANCE STATEMENT Injury of peripheral axons of sensory neurons has been known to strongly enhance the regeneration of their central axons in the spinal cord. In this study, we found that injection of ATP into a peripheral nerve can mimic the effect of peripheral nerve injury and significantly increase the number of sensory axons growing across lesion

  12. Treatment of acute myeloid leukemia with a combination of intensive induction chemotherapy, early consolidation, splenectomy and long-term maintenance chemotherapy.

    Science.gov (United States)

    Machover, D; Rappaport, H; Schwarzenberg, L; Misset, J L; Goldschmidt, E; Lemaigre, G; Dorval, T; De Vassal, F; Ribaud, P; Gaget, H

    1984-04-15

    The authors developed a therapeutic regimen in which 33 patients aged 11 to 61 years (mean +/- SE, 35.9 +/- 2.3 years) with acute myeloid leukemia (AML) were given intensive induction chemotherapy with Adriamycin (doxorubicin) (ADM), vincristine (VCR) and cytosine arabinoside (ARA-C). Twenty-nine of these patients (88%) attained a complete remission (CR) after 1, 2, or 3 courses and were then subjected to an early consolidation course of chemotherapy, identical to that for induction. After consolidation, all patients in CR received a long-term continuous maintenance therapy in which 6-mercaptopurine (6-MP) and methotrexate (MTX) were alternated, associated with periodic reinforcements with daunorubicin (DNR) and VCR. Twenty-five of the 29 patients who achieved a CR were splenectomized soon after the consolidation course. Histologic sections of the spleens, liver biopsy specimens, and lymph nodes, stained routinely and with the naphthol AS-D chloroacetate esterase (NCA) method, showed mature granulocytes and a few NCA positive mononuclear cells, but no proved leukemic infiltrates. For the 25 splenectomized patients, the probability of remaining in CR at 36 and 54 months was 75% and 66%, respectively; the probability of survival at 36 and 54 months was 85% and 75%, respectively. Age older than 40 years and evidence of extramedullary involvement at presentation appeared to carry a bad prognosis for disease-free survival.

  13. [Treatment of acute myeloid leukemia with a protocol combining intensive induction chemotherapy, early consolidation treatment, splenectomy and long-term maintenance chemotherapy. Preliminary study].

    Science.gov (United States)

    Machover, D; Schwarzenberg, L; D'Hubert, E; Lemaigre, G; Caillou, B; Tourani, J M; Michalski, B; Goldschmidt, E; Gaget, H; De Vassal, F; Misset, J L; Dorval, T; Ribaud, P; Jasmin, C; Hayat, M; Rappaport, H; Mathé, G

    1982-12-25

    Twenty-seven patients aged from 10 to 60 years (mean 34.4 +/- 13 years) in the first perceptible phase of acute myeloid leukemia were subjected to intensive induction chemotherapy consisting of adriamycin (ADM), vincristin (VCR) and cytosine arabinoside (ARA-C). Twenty-four patients (89%) attained complete remission (CR) after 1 to 3 cycles and were then given an early consolidation treatment with one of the previous cycles. This was followed by long-term continuous maintenance chemotherapy with 6-mercaptopurine (6-MP) and methotrexate (MTX) alternatively and 3-monthly reinforcement courses of donaurubicin (DNR) and VCR. Twenty of these 24 patients were splenectomized soon after the consolidation treatment. None of the spleens were enlarged, and histological sections of the spleens, liver biopsies and mesenteric lymph-nodes stained with routine dyes and by the naphthol AS-D chloroacetate esterase method revealed mature granulocytes but no demonstrable leukaemic cells. In the group of splenectomized patients, the probabilities of staying in complete remission at 27 and 44 months were 70 +/- 12.6% and 52 +/- 18.5% respectively, and the probabilities of remaining alive at 32 and 55 months were 79 +/- 11% and 57 +/- 19% respectively. Age over 40 and evidence of extramedullary infiltration at presentation appeared to leave little hope of disease-free survival. The rationale for the present therapeutic study is discussed.

  14. Maintenance of C sinks sustains enhanced C assimilation during long-term exposure to elevated [CO2] in Mojave Desert shrubs.

    Science.gov (United States)

    Aranjuelo, Iker; Ebbets, Allison L; Evans, R Dave; Tissue, David T; Nogués, Salvador; van Gestel, Natasja; Payton, Paxton; Ebbert, Volker; Adams, Williams W; Nowak, Robert S; Smith, Stanley D

    2011-10-01

    During the first few years of elevated atmospheric [CO(2)] treatment at the Nevada Desert FACE Facility, photosynthetic downregulation was observed in desert shrubs grown under elevated [CO(2)], especially under relatively wet environmental conditions. Nonetheless, those plants maintained increased A (sat) (photosynthetic performance at saturating light and treatment [CO(2)]) under wet conditions, but to a much lesser extent under dry conditions. To determine if plants continued to downregulate during long-term exposure to elevated [CO(2)], responses of photosynthesis to elevated [CO(2)] were examined in two dominant Mojave Desert shrubs, the evergreen Larrea tridentata and the drought-deciduous Ambrosia dumosa, during the eighth full growing season of elevated [CO(2)] treatment at the NDFF. A comprehensive suite of physiological processes were collected. Furthermore, we used C labeling of air to assess carbon allocation and partitioning as measures of C sink activity. Results show that elevated [CO(2)] enhanced photosynthetic performance and plant water status in Larrea, especially during periods of environmental stress, but not in Ambrosia. δ(13)C analyses indicate that Larrea under elevated [CO(2)] allocated a greater proportion of newly assimilated C to C sinks than Ambrosia. Maintenance by Larrea of C sinks during the dry season partially explained the reduced [CO(2)] effect on leaf carbohydrate content during summer, which in turn lessened carbohydrate build-up and feedback inhibition of photosynthesis. δ(13)C results also showed that in a year when plant growth reached the highest rates in 5 years, 4% (Larrea) and 7% (Ambrosia) of C in newly emerging organs were remobilized from C that was assimilated and stored for at least 2 years prior to the current study. Thus, after 8 years of continuous exposure to elevated [CO(2)], both desert perennials maintained their photosynthetic capacities under elevated [CO(2)]. We conclude that C storage, remobilization

  15. Modeling molecular mechanisms in the axon

    Science.gov (United States)

    de Rooij, R.; Miller, K.E.; Kuhl, E.

    2016-01-01

    Axons are living systems that display highly dynamic changes in stiffness, viscosity, and internal stress. However, the mechanistic origin of these phenomenological properties remains elusive. Here we establish a computational mechanics model that interprets cellular-level characteristics as emergent properties from molecular-level events. We create an axon model of discrete microtubules, which are connected to neighboring microtubules via discrete crosslinking mechanisms that obey a set of simple rules. We explore two types of mechanisms: passive and active crosslinking. Our passive and active simulations suggest that the stiffness and viscosity of the axon increase linearly with the crosslink density, and that both are highly sensitive to the crosslink detachment and reattachment times. Our model explains how active crosslinking with dynein motors generates internal stresses and actively drives axon elongation. We anticipate that our model will allow us to probe a wide variety of molecular phenomena–both in isolation and in interaction–to explore emergent cellular-level features under physiological and pathological conditions. PMID:28603326

  16. Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity

    NARCIS (Netherlands)

    Gensel, J.C.; Nakamura, S.; Guan, Z.; Rooijen, van N.; Ankeny, D.P.; Popovich, P.G.

    2009-01-01

    Activated macrophages can promote regeneration of CNS axons. However, macrophages also release factors that kill neurons. These opposing functions are likely induced simultaneously but are rarely considered together in the same experimental preparation. A goal of this study was to unequivocally

  17. Lifetime oriented maintenance planning in the Netherlands

    NARCIS (Netherlands)

    Straub, A.

    2003-01-01

    In this paper we set up a framework for lifetime oriented maintenance planning as an outcome and input for strategic housing stock management. The maintenance planning holds maintenance activities and costs in the longer term. We consider the maintenance planning as a tool to calculate and implement

  18. Maintenance Mentor

    National Research Council Canada - National Science Library

    Jacobs, John

    2003-01-01

    Maintenance Mentor (MXM) is a research effort conducted by a joint AFRL/HESR and Northrop Grumman Information Technology team to identify the basic, high-level requirements necessary for improving flight line diagnostic capabilities...

  19. Mouse Intermittent Hypoxia Mimicking Apnea of Prematurity: Effects on Myelinogenesis and Axonal Maturation

    Science.gov (United States)

    CAI, JUN; TUONG, CHI MINH; ZHANG, YIPING; SHIELDS, CHRISTOPHER B.; GUO, GANG; FU, HUI; GOZAL, DAVID

    2014-01-01

    Premature babies are at high risk for both infantile apnea and long-term neurobehavioral deficits. Recent studies suggest that diffuse structural changes in brain white matter are a positive predictor of poor cognitive outcomes. Since oligodendrocyte maturation, myelination, axon development and synapse formation mainly occur in the 3rd trimester of gestation and 1st postnatal year, infantile apnea could lead to and/or exaggerate white matter impairments in preterm neonates. Therefore, we investigated oligodendroglia and axon development in a neonatal mouse model of intermittent hypoxia between postnatal days 2 to 10. During critical phases of central nervous system development, intermittent hypoxia induced hypomyelination in the corpus callosum, striatum, fornix and cerebellum, but not the pons or spinal cord. Intermittent hypoxia-elicited alterations in myelin-forming processes were reflected by decreased expression of myelin proteins, including MBP, PLP, MAG and CNPase, possibly due to arrested maturation of oligodendrocytes. Ultra-structural abnormalities were apparent in the myelin sheath and axon. Immature oligodendrocytes were more vulnerable to neonatal intermittent hypoxia exposures than developing axons, suggesting that hypomyelination may contribute, at least partially, to axonal deficits. Insufficient neurofilament synthesis with anomalous components of neurofilament subunits, β-tubulin and MAP2 isoforms indicated immaturity of axons in intermittent hypoxia-exposed mouse brains. In addition, down-regulation of Synapsin I, Synaptophysin and Gap-43 phosphorylation suggested a potential stunt in axonogenesis and synaptogenesis. The region-selective and complex impairment in brain white matter induced by intermittent hypoxia was further associated with electrophysiological changes that may underlie long-term neurobehavioral sequelae. PMID:21953180

  20. Imaging of mitochondrial dynamics in motor and sensory axons of living mice.

    Science.gov (United States)

    Bolea, Irene; Gan, Wen-Biao; Manfedi, Giovanni; Magrané, Jordi

    2014-01-01

    Appropriate distribution and supply of mitochondria to critical neuronal sites are thought to be necessary for the normal maintenance of neuronal architecture and activity, including synaptic plasticity and function. Imaging of neurons in vitro has provided understanding of the basic mechanisms of mitochondrial transport and the regulation of mitochondrial dynamics. However, in vivo imaging studies of neurons are preferable to in vitro approaches because of the advantage of being performed in their natural environment. Here, we present useful protocols to image and study axonal transport of mitochondria in vivo, in the peripheral nerves of mice. Imaging in motor and sensory axons of living mice allows researchers to analyze mitochondrial dynamics in two distinct neuronal populations that are often affected in peripheral neuropathies.

  1. Managed maintenance, the next step in power plant maintenance

    International Nuclear Information System (INIS)

    Butterworth, G.; Anderson, T.M.

    1984-01-01

    The Westinghouse Nuclear Services Integration Division managed maintenance services are described. Essential to the management and control of a total plant maintenance programme is the development of a comprehensive maintenance specification. During recent years Westinghouse has jointly developed total plant engineering-based maintenance specifications with a number of utilities. The process employed and the experience to date are described. To efficiently implement the maintenance programme Westinghouse has developed a computer software program specifically designed for day to day use at the power plant by maintenance personnel. This program retains an equipment maintenance history, schedules maintenance activities, issues work orders and performs a number of sophisticated analyses of the maintenance backlog and forecast, equipment failure rates, etc. The functions of this software program are described and details of Westinghouse efforts to support the utilities in reducing outage times through development of predefined outage plans for critical report maintenance activities are given. Also described is the experience gained in the training of specialized maintenance personnel, employing competency-based training techniques and equipment mock-ups, and the benefits experienced, in terms of improved quality and productivity of maintenance performed. The success experienced with these methods has caused Westinghouse to expand the use of these training techniques to the more routine skill areas of power plant maintenance. A significant reduction in the operating costs of nuclear power plants will only be brought about by a significant improvement in the quality of maintenance. Westinghouse intends to effect this change by expanding its international service capabilities and to make major investments in order to promote technological developments in the area of power plant maintenance. (author)

  2. Mitochondria Localize to Injured Axons to Support Regeneration.

    Science.gov (United States)

    Han, Sung Min; Baig, Huma S; Hammarlund, Marc

    2016-12-21

    Axon regeneration is essential to restore the nervous system after axon injury. However, the neuronal cell biology that underlies axon regeneration is incompletely understood. Here we use in vivo, single-neuron analysis to investigate the relationship between nerve injury, mitochondrial localization, and axon regeneration. Mitochondria translocate into injured axons so that average mitochondria density increases after injury. Moreover, single-neuron analysis reveals that axons that fail to increase mitochondria have poor regeneration. Experimental alterations to axonal mitochondrial distribution or mitochondrial respiratory chain function result in corresponding changes to regeneration outcomes. Axonal mitochondria are specifically required for growth-cone migration, identifying a key energy challenge for injured neurons. Finally, mitochondrial localization to the axon after injury is regulated in part by dual-leucine zipper kinase 1 (DLK-1), a conserved regulator of axon regeneration. These data identify regulation of axonal mitochondria as a new cell-biological mechanism that helps determine the regenerative response of injured neurons. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Diffuse Axonal Injury and Oxidative Stress: A Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Alessandro Frati

    2017-12-01

    Full Text Available Traumatic brain injury (TBI is one of the world’s leading causes of morbidity and mortality among young individuals. TBI applies powerful rotational and translational forces to the brain parenchyma, which results in a traumatic diffuse axonal injury (DAI responsible for brain swelling and neuronal death. Following TBI, axonal degeneration has been identified as a progressive process that starts with disrupted axonal transport causing axonal swelling, followed by secondary axonal disconnection and Wallerian degeneration. These modifications in the axonal cytoskeleton interrupt the axoplasmic transport mechanisms, causing the gradual gathering of transport products so as to generate axonal swellings and modifications in neuronal homeostasis. Oxidative stress with consequent impairment of endogenous antioxidant defense mechanisms plays a significant role in the secondary events leading to neuronal death. Studies support the role of an altered axonal calcium homeostasis as a mechanism in the secondary damage of axon, and suggest that calcium channel blocker can alleviate the secondary damage, as well as other mechanisms implied in the secondary injury, and could be targeted as a candidate for therapeutic approaches. Reactive oxygen species (ROS-mediated axonal degeneration is mainly caused by extracellular Ca2+. Increases in the defense mechanisms through the use of exogenous antioxidants may be neuroprotective, particularly if they are given within the neuroprotective time window. A promising potential therapeutic target for DAI is to directly address mitochondria-related injury or to modulate energetic axonal energy failure.

  4. Diffuse Axonal Injury and Oxidative Stress: A Comprehensive Review.

    Science.gov (United States)

    Frati, Alessandro; Cerretani, Daniela; Fiaschi, Anna Ida; Frati, Paola; Gatto, Vittorio; La Russa, Raffaele; Pesce, Alessandro; Pinchi, Enrica; Santurro, Alessandro; Fraschetti, Flavia; Fineschi, Vittorio

    2017-12-02

    Traumatic brain injury (TBI) is one of the world's leading causes of morbidity and mortality among young individuals. TBI applies powerful rotational and translational forces to the brain parenchyma, which results in a traumatic diffuse axonal injury (DAI) responsible for brain swelling and neuronal death. Following TBI, axonal degeneration has been identified as a progressive process that starts with disrupted axonal transport causing axonal swelling, followed by secondary axonal disconnection and Wallerian degeneration. These modifications in the axonal cytoskeleton interrupt the axoplasmic transport mechanisms, causing the gradual gathering of transport products so as to generate axonal swellings and modifications in neuronal homeostasis. Oxidative stress with consequent impairment of endogenous antioxidant defense mechanisms plays a significant role in the secondary events leading to neuronal death. Studies support the role of an altered axonal calcium homeostasis as a mechanism in the secondary damage of axon, and suggest that calcium channel blocker can alleviate the secondary damage, as well as other mechanisms implied in the secondary injury, and could be targeted as a candidate for therapeutic approaches. Reactive oxygen species (ROS)-mediated axonal degeneration is mainly caused by extracellular Ca 2+ . Increases in the defense mechanisms through the use of exogenous antioxidants may be neuroprotective, particularly if they are given within the neuroprotective time window. A promising potential therapeutic target for DAI is to directly address mitochondria-related injury or to modulate energetic axonal energy failure.

  5. Axon degeneration: make the Schwann cell great again

    Directory of Open Access Journals (Sweden)

    Keit Men Wong

    2017-01-01

    Full Text Available Axonal degeneration is a pivotal feature of many neurodegenerative conditions and substantially accounts for neurological morbidity. A widely used experimental model to study the mechanisms of axonal degeneration is Wallerian degeneration (WD, which occurs after acute axonal injury. In the peripheral nervous system (PNS, WD is characterized by swift dismantling and clearance of injured axons with their myelin sheaths. This is a prerequisite for successful axonal regeneration. In the central nervous system (CNS, WD is much slower, which significantly contributes to failed axonal regeneration. Although it is well-documented that Schwann cells (SCs have a critical role in the regenerative potential of the PNS, to date we have only scarce knowledge as to how SCs 'sense' axonal injury and immediately respond to it. In this regard, it remains unknown as to whether SCs play the role of a passive bystander or an active director during the execution of the highly orchestrated disintegration program of axons. Older reports, together with more recent studies, suggest that SCs mount dynamic injury responses minutes after axonal injury, long before axonal breakdown occurs. The swift SC response to axonal injury could play either a pro-degenerative role, or alternatively a supportive role, to the integrity of distressed axons that have not yet committed to degenerate. Indeed, supporting the latter concept, recent findings in a chronic PNS neurodegeneration model indicate that deactivation of a key molecule promoting SC injury responses exacerbates axonal loss. If this holds true in a broader spectrum of conditions, it may provide the grounds for the development of new glia-centric therapeutic approaches to counteract axonal loss.

  6. B-RAF kinase drives developmental axon growth and promotes axon regeneration in the injured mature CNS

    Science.gov (United States)

    O’Donovan, Kevin J.; Ma, Kaijie; Guo, Hengchang; Wang, Chen; Sun, Fang; Han, Seung Baek; Kim, Hyukmin; Wong, Jamie K.; Charron, Jean; Zou, Hongyan; Son, Young-Jin; He, Zhigang

    2014-01-01

    Activation of intrinsic growth programs that promote developmental axon growth may also facilitate axon regeneration in injured adult neurons. Here, we demonstrate that conditional activation of B-RAF kinase alone in mouse embryonic neurons is sufficient to drive the growth of long-range peripheral sensory axon projections in vivo in the absence of upstream neurotrophin signaling. We further show that activated B-RAF signaling enables robust regenerative growth of sensory axons into the spinal cord after a dorsal root crush as well as substantial axon regrowth in the crush-lesioned optic nerve. Finally, the combination of B-RAF gain-of-function and PTEN loss-of-function promotes optic nerve axon extension beyond what would be predicted for a simple additive effect. We conclude that cell-intrinsic RAF signaling is a crucial pathway promoting developmental and regenerative axon growth in the peripheral and central nervous systems. PMID:24733831

  7. Sensory axonal dysfunction in cervical radiculopathy.

    Science.gov (United States)

    Sung, Jia-Ying; Tani, Jowy; Hung, Kuo-Sheng; Lui, Tai-Ngar; Lin, Cindy Shin-Yi

    2015-06-01

    The aim of this study was to evaluate changes in sensory axonal excitability in the distal nerve in patients with cervical radiculopathy. The patients were classified by the findings of cervical MRI into two subgroups: 22 patients with C6/7 root compression and 25 patients with cervical cord and root compression above/at C6/7. Patients were investigated using conventional nerve conduction studies (NCS) and nerve excitability testing. Sensory nerve excitability testing was undertaken with stimulation at the wrist and recording from digit II (dermatome C6/7). The results were compared with healthy controls. Both preoperative and postoperative tests were performed if the patient underwent surgery. Sensory axonal excitability was significantly different in both cohorts compared with healthy controls, including prolonged strength-duration time constant, reduced S2 accommodation, increased threshold electrotonus hyperpolarisation (TEh (90-100 ms)), and increased superexcitability. The changes in these excitability indices are compatible with axonal membrane hyperpolarisation. In five patients who underwent surgery, the postoperative sensory excitability was tested after 1 week, and showed significant changes in TE (TEh (90-100 ms) and TEh slope, pcervical radiculopathy. These findings suggest that the hyperpolarised pattern might be due to Na(+)-K(+) ATPase overactivation induced by proximal ischaemia, or could reflect the remyelinating process. Distal sensory axons were hyperpolarised even though there were no changes in NCS, suggesting that nerve excitability testing may be more sensitive to clinical symptoms than NCS in patients with cervical radiculopathy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Unidirectional ephaptic stimulation between two myelinated axons.

    Science.gov (United States)

    Capllonch-Juan, Miguel; Kolbl, Florian; Sepulveda, Francisco

    2017-07-01

    Providing realistic sensory feedback for prosthetic devices strongly relies on an accurate modelling of machine-nerve interfaces. Models of these interfaces in the peripheral nervous system usually neglect the effects that ephaptic coupling can have on the selectivity of stimulating electrodes. In this contribution, we study the ephaptic stimulation between myelinated axons and show its relation with the separation between fibers and the conductivity of the medium that surrounds them.

  9. Multifunctional Silk Nerve Guides for Axon Outgrowth

    Science.gov (United States)

    Tupaj, Marie C.

    Peripheral nerve regeneration is a critical issue as 2.8% of trauma patients present with this type of injury, estimating a total of 200,000 nerve repair procedures yearly in the United States. While the peripheral nervous system exhibits slow regeneration, at a rate of 0.5 mm -- 9 mm/day following trauma, this regenerative ability is only possible under certain conditions. Clinical repairs have changed slightly in the last 30 years and standard methods of treatment include suturing damaged nerve ends, allografting, and autografting, with the autograft the gold standard of these approaches. Unfortunately, the use of autografts requires a second surgery and there is a shortage of nerves available for grafting. Allografts are a second option however allografts have lower success rates and are accompanied by the need of immunosuppressant drugs. Recently there has been a focus on developing nerve guides as an "off the shelf" approach. Although some natural and synthetic guidance channels have been approved by the FDA, these nerve guides are unfunctionalized and repair only short gaps, less than 3 cm in length. The goal of this project was to identify strategies for functionalizing peripheral nerve conduits for the outgrowth of neuron axons in vitro . To accomplish this, two strategies (bioelectrical and biophysical) were indentified for increasing axon outgrowth and promoting axon guidance. Bioelectrical strategies exploited electrical stimulation for increasing neurite outgrowth. Biophysical strategies tested a range of surface topographies for axon guidance. Novel methods were developed for integrating electrical and biophysical strategies into silk films in 2D. Finally, a functionalized nerve conduit system was developed that integrated all strategies for the purpose of attaching, elongating, and guiding nervous tissue in vitro. Future directions of this work include silk conduit translation into a rat sciatic nerve model in vivo for the purpose of repairing long

  10. Axonal branching patterns of nucleus accumbens neurons in the rat.

    Science.gov (United States)

    Tripathi, Anushree; Prensa, Lucía; Cebrián, Carolina; Mengual, Elisa

    2010-11-15

    The patterns of axonal collateralization of nucleus accumbens (Acb) projection neurons were investigated in the rat by means of single-axon tracing techniques using the anterograde tracer biotinylated dextran amine. Seventy-three axons were fully traced, originating from either the core (AcbC) or shell (AcbSh) compartment, as assessed by differential calbindin D28k-immunoreactivity. Axons from AcbC and AcbSh showed a substantial segregation in their targets; target areas were either exclusively or preferentially innervated from AcbC or AcbSh. Axon collaterals in the subthalamic nucleus were found at higher than expected frequencies; moreover, these originated exclusively in the dorsal AcbC. Intercompartmental collaterals were observed from ventral AcbC axons into AcbSh, and likewise, interconnections at pallidal and mesencephalic levels were also observed, although mostly from AcbC axons toward AcbSh targets, possibly supporting crosstalk between the two subcircuits at several levels. Cell somata giving rise to short-range accumbal axons, projecting to the ventral pallidum (VP), were spatially intermingled with others, giving rise to long-range axons that innervated VP and more caudal targets. This anatomical organization parallels that of the dorsal striatum and provides the basis for possible dual direct and indirect actions from a single axon on either individual or small sets of neurons. Copyright © 2010 Wiley-Liss, Inc.

  11. Axonal and Transynaptic Spread of Prions

    Science.gov (United States)

    Shearin, Harold

    2014-01-01

    ABSTRACT Natural transmission of prion diseases depends upon the spread of prions from the nervous system to excretory or secretory tissues, but the mechanism of prion transport in axons and into peripheral tissue is unresolved. Here, we examined the temporal and spatial movement of prions from the brain stem along cranial nerves into skeletal muscle as a model of axonal transport and transynaptic spread. The disease-specific isoform of the prion protein, PrPSc, was observed in nerve fibers of the tongue approximately 2 weeks prior to PrPSc deposition in skeletal muscle. Initially, PrPSc deposits had a small punctate pattern on the edge of muscle cells that colocalized with synaptophysin, a marker for the neuromuscular junction (NMJ), in >50% of the cells. At later time points PrPSc was widely distributed in muscle cells, but PrPSc deposition at the NMJ, suggesting additional prion replication and dissemination within muscle cells. In contrast to the NMJ, PrPSc was not associated with synaptophysin in nerve fibers but was found to colocalize with LAMP-1 and cathepsin D during early stages of axonal spread. We propose that PrPSc-bound endosomes can lead to membrane recycling in which PrPSc is directed to the synapse, where it either moves across the NMJ into the postsynaptic muscle cell or induces PrPSc formation on muscle cells across the NMJ. IMPORTANCE Prion diseases are transmissible and fatal neurodegenerative diseases in which prion dissemination to excretory or secretory tissues is necessary for natural disease transmission. Despite the importance of this pathway, the cellular mechanism of prion transport in axons and into peripheral tissue is unresolved. This study demonstrates anterograde spread of prions within nerve fibers prior to infection of peripheral synapses (i.e., neuromuscular junction) and infection of peripheral tissues (i.e., muscle cells). Within nerve fibers prions were associated with the endosomal-lysosomal pathway prior to entry into

  12. Long-term Maintenance of CD4 T Cell Memory Responses to Malaria Antigens in Malian Children Coinfected with Schistosoma haematobium

    Directory of Open Access Journals (Sweden)

    Kirsten E. Lyke

    2018-02-01

    Full Text Available Polyparasitism is common in the developing world. We have previously demonstrated that schistosomiasis-positive (SP Malian children, aged 4–8 years, are protected from malaria compared to matched schistosomiasis-negative (SN children. The effect of concomitant schistosomiasis upon acquisition of T cell memory is unknown. We examined antigen-specific T cell frequencies in 48 Malian children aged 4–14 to a pool of malaria blood stage antigens, and a pool of schistosomal antigens, at a time point during a malaria episode and at a convalescent time point ~6 months later, following cessation of malaria transmission. CD4+ T cell-derived memory responses, defined as one or more significant cytokine (IFN-γ, TNF-α, IL-2, and/or IL-17A responses, was measured to schistoma antigens in 18/23 SP children at one or both time points, compared to 4/23 SN children (P < 0.0001. At the time of malaria infection, 12/24 SN children and 15/23 SP children (P = 0.29 stimulated with malaria antigens demonstrated memory recall as defined by CD4-derived cytokine production. This compares to 7/23 SN children and 16/23 SP children (P = 0.009 at the convalescent timepoint. 46.2% of cytokine-producing CD4+ T cells expressed a single cytokine after stimulation with malaria antigen during the malaria episode. This fell to 40.9% at follow-up with a compensatory rise of multifunctional cytokine secretion over time, a phenomenon consistent with memory maturation. The majority (53.2–59.5% of responses derived from CD45RA−CD62L− effector memory T cells with little variation in the phenotype depending upon the time point or the study cohort. We conclude that detectable T cell memory responses can be measured against both malaria and schistosoma antigens and that the presence of Schistosoma haematobium may be associated with long-term maintenance of T memory to malaria.

  13. Can injured adult CNS axons regenerate by recapitulating development?

    Science.gov (United States)

    Hilton, Brett J; Bradke, Frank

    2017-10-01

    In the adult mammalian central nervous system (CNS), neurons typically fail to regenerate their axons after injury. During development, by contrast, neurons extend axons effectively. A variety of intracellular mechanisms mediate this difference, including changes in gene expression, the ability to form a growth cone, differences in mitochondrial function/axonal transport and the efficacy of synaptic transmission. In turn, these intracellular processes are linked to extracellular differences between the developing and adult CNS. During development, the extracellular environment directs axon growth and circuit formation. In adulthood, by contrast, extracellular factors, such as myelin and the extracellular matrix, restrict axon growth. Here, we discuss whether the reactivation of developmental processes can elicit axon regeneration in the injured CNS. © 2017. Published by The Company of Biologists Ltd.

  14. Regulation and dysregulation of axon infrastructure by myelinating glia.

    Science.gov (United States)

    Pan, Simon; Chan, Jonah R

    2017-12-04

    Axon loss and neurodegeneration constitute clinically debilitating sequelae in demyelinating diseases such as multiple sclerosis, but the underlying mechanisms of secondary degeneration are not well understood. Myelinating glia play a fundamental role in promoting the maturation of the axon cytoskeleton, regulating axon trafficking parameters, and imposing architectural rearrangements such as the nodes of Ranvier and their associated molecular domains. In the setting of demyelination, these changes may be reversed or persist as maladaptive features, leading to axon degeneration. In this review, we consider recent insights into axon-glial interactions during development and disease to propose that disruption of the cytoskeleton, nodal architecture, and other components of axon infrastructure is a potential mediator of pathophysiological damage after demyelination. © 2017 Pan and Chan.

  15. Active polysomes in the axoplasm of the squid giant axon.

    Science.gov (United States)

    Giuditta, A; Menichini, E; Perrone Capano, C; Langella, M; Martin, R; Castigli, E; Kaplan, B B

    1991-01-01

    Axons and axon terminals are widely believed to lack the capacity to synthesize proteins, relying instead on the delivery of proteins made in the perikaryon. In agreement with this view, axoplasmic proteins synthesized by the isolated giant axon of the squid are believed to derive entirely from periaxonal glial cells. However, squid axoplasm is known to contain the requisite components of an extra-mitochondrial protein synthetic system, including protein factors, tRNAs, rRNAs, and a heterogeneous family of mRNAs. Hence, the giant axon could, in principle, maintain an endogenous protein synthetic capacity. Here, we report that the squid giant axon also contains active polysomes and mRNA, which hybridizes to a riboprobe encoding murine neurofilament protein. Taken together, these findings provide direct evidence that proteins (including the putative neuron-specific neurofilament protein) are also synthesized de novo in the axonal compartment.

  16. Myelin-associated proteins labelled by slow axonal transport

    International Nuclear Information System (INIS)

    Giorgi, P.P.; DuBois, H.

    1981-01-01

    This paper deals with the problem of protein metabolism and provides evidence that the neuronal contribution to myelin metabolism may be restricted to lipids only. On the other hand this line of research led to the partial characterization of a group of neuronal proteins probably involved in axo-glial interactions subserving the onset of myelination and the structural maintenance of the mature myelin sheath. Intraocular injection of radioactive amino acids allows the study of the anterograde transport of labelled proteins along retinofugal fibres which are well myelinated. Myelin extracted from the optic nerve and tract under these conditions also contains labelled proteins. Three hypotheses are available to explain this phenomenon. To offer an explanation for this phenomenon the work was planned as follows. a) Characterization of the spatio-temporal pattern of labelling of myelin, in order to define the experimental conditions (survival time and region of the optic pathway to be studied) necessary to obtain maximal labelling. b) Characterization (by gel electrophoresis) of the myelin-associated proteins which become labelled by axonal transport, in order to work on a consistent pattern of labelling. c) Investigation of the possible mechanism responsible for the labelling of myelin-associated proteins. (Auth.)

  17. Does Maintenance CBT Contribute to Long-Term Treatment Response of Panic Disorder with or without Agoraphobia? A Randomized Controlled Clinical Trial

    Science.gov (United States)

    White, Kamila S.; Payne, Laura A.; Gorman, Jack M.; Shear, M. Katherine; Woods, Scott W.; Saksa, John R.; Barlow, David H.

    2013-01-01

    Objective: We examined the possibility that maintenance cognitive behavior therapy (M-CBT) may improve the likelihood of sustained improvement and reduced relapse in a multi-site randomized controlled clinical trial of patients who met criteria for panic disorder with or without agoraphobia. Method: Participants were all patients (N = 379) who…

  18. Axon-glia interaction and membrane traffic in myelin formation

    OpenAIRE

    White, Robin; Krämer-Albers, Eva-Maria

    2014-01-01

    In vertebrate nervous systems myelination of neuronal axons has evolved to increase conduction velocity of electrical impulses with minimal space and energy requirements. Myelin is formed by specialized glial cells which ensheath axons with a lipid-rich insulating membrane. Myelination is a multi-step process initiated by axon-glia recognition triggering glial polarization followed by targeted myelin membrane expansion and compaction. Thereby, a myelin sheath of complex subdomain structure is...

  19. Disruption of Axonal Transport Perturbs Bone Morphogenetic Protein (BMP) - Signaling and Contributes to Synaptic Abnormalities in Two Neurodegenerative Diseases

    Science.gov (United States)

    Kang, Min Jung; Hansen, Timothy J.; Mickiewicz, Monique; Kaczynski, Tadeusz J.; Fye, Samantha; Gunawardena, Shermali

    2014-01-01

    Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases. PMID:25127478

  20. Disruption of axonal transport perturbs bone morphogenetic protein (BMP)--signaling and contributes to synaptic abnormalities in two neurodegenerative diseases.

    Science.gov (United States)

    Kang, Min Jung; Hansen, Timothy J; Mickiewicz, Monique; Kaczynski, Tadeusz J; Fye, Samantha; Gunawardena, Shermali

    2014-01-01

    Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases.

  1. Schwann Cell Glycogen Selectively Supports Myelinated Axon Function

    Science.gov (United States)

    Brown, Angus M; Evans, Richard D; Black, Joel; Ransom, Bruce R

    2012-01-01

    Objectives Interruption of energy supply to peripheral axons is a cause of axon loss. We determined if glycogen was present in mammalian peripheral nerve, and if it supported axon conduction during aglycemia. Methods We used biochemical assay and electron microscopy to determine the presence of glycogen, and electrophysiology to monitor axon function. Results Glycogen was present in sciatic nerve, its concentration varying directly with ambient [glucose]. Electron microscopy detected glycogen granules primarily in myelinating Schwann cell cytoplasm and these diminished after exposure to aglycemia. During aglycemia, conduction failure in large myelinated axons (A fibers) mirrored the time-course of glycogen loss. Latency to CAP failure was directly related to nerve glycogen content at aglycemia onset. Glycogen did not benefit the function of slow-conducting, small diameter unmyelinated axons (C fibers) during aglycemia. Blocking glycogen breakdown pharmacologically accelerated CAP failure during aglycemia in A fibers, but not in C fibers. Lactate was as effective as glucose in supporting sciatic nerve function, and was continuously released into the extracellular space in the presence of glucose and fell rapidly during aglycemia. Interpretation Our findings indicated that glycogen is present in peripheral nerve, primarily in myelinating Schwann cells, and exclusively supports large diameter, myelinated axon conduction during aglycemia. Available evidence suggests that peripheral nerve glycogen breaks down during aglycemia and is passed, probably as lactate, to myelinated axons to support function. Unmyelinated axons are not protected by glycogen and are more vulnerable to dysfunction during periods of hypoglycemia. PMID:23034913

  2. Concepts for regulation of axon integrity by enwrapping glia

    Directory of Open Access Journals (Sweden)

    Bogdan eBeirowski

    2013-12-01

    Full Text Available Long axons and their enwrapping glia (Schwann cells and oligodendrocytes form a unique compound structure that serves as conduit for transport of electric and chemical information in the nervous system. The peculiar cytoarchitecture over an enormous length as well as its substantial energetic requirements make this conduit particularly susceptible to detrimental alterations. Degeneration of long axons independent of neuronal cell bodies is observed comparatively early in a range of neurodegenerative conditions as a consequence of abnormalities in Schwann cells and oligodendrocytes. This leads to the most relevant disease symptoms and highlights the critical role that these glia have for axon integrity, but the underlying mechanisms remain elusive. The quest to understand why and how axons degenerate is now a crucial frontier in disease-oriented research. This challenge is most likely to lead to significant progress if the inextricable link between axons and their flanking glia in pathological situations is recognized. In this review I compile recent advances in our understanding of the molecular programs governing axon degeneration, and mechanisms of enwrapping glia’s non-cell autonomous impact on axon-integrity. A particular focus is placed on emerging evidence suggesting that enwrapping glia nurture long axons by virtue of their intimate association, release of trophic substances, and neurometabolic coupling. The correction of defects in these functions has the potential to stabilize axons in a variety of neuronal diseases in the peripheral and central nervous system.

  3. Axonal branching patterns of ventral pallidal neurons in the rat.

    Science.gov (United States)

    Tripathi, Anushree; Prensa, Lucía; Mengual, Elisa

    2013-09-01

    The ventral pallidum (VP) is a key component of the cortico-basal ganglia circuits that process motivational and emotional information, and also a crucial site for reward. Although the main targets of the two VP compartments, medial (VPm) and lateral (VPl) have already been established, the collateralization patterns of individual axons have not previously been investigated. Here we have fully traced eighty-four axons from VPm, VPl and the rostral extension of VP into the olfactory tubercle (VPr), using the anterograde tracer biotinylated dextran amine in the rat. Thirty to fifty percent of axons originating from VPm and VPr collateralized in the mediodorsal thalamic nucleus and lateral habenula, indicating a close association between the ventral basal ganglia-thalamo-cortical loop and the reward network at the single axon level. Additional collateralization of these axons in diverse components of the extended amygdala and corticopetal system supports a multisystem integration that may take place at the basal forebrain. Remarkably, we did not find evidence for a sharp segregation in the targets of axons arising from the two VP compartments, as VPl axons frequently collateralized in the caudal lateral hypothalamus and ventral tegmental area, the well-known targets of VPm, while VPm axons, in turn, also collateralized in typical VPl targets such as the subthalamic nucleus, substantia nigra pars compacta and reticulata, and retrorubral field. Nevertheless, VPl and VPm displayed collateralization patterns that paralleled those of dorsal pallidal components, confirming at the single axon level the parallel organization of functionally different basal ganglia loops.

  4. Differences in excitability properties of FDI and ADM motor axons.

    Science.gov (United States)

    Bae, Jong Seok; Sawai, Setsu; Misawa, Sonoko; Kanai, Kazuaki; Isose, Sagiri; Kuwabara, Satoshi

    2009-03-01

    The first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles are innervated by the same ulnar nerve, but studies have shown that the former is much more severely affected in amyotrophic lateral sclerosis. In this study, threshold tracking was used to investigate whether membrane properties differ between FDI and ADM motor axons. In 12 normal subjects, compound muscle action potentials were recorded from FDI and ADM after ulnar nerve stimulation at the wrist. The strength-duration time constant was significantly longer in the FDI axons than in the ADM axons, and latent addition studies showed greater threshold changes at the conditioning-test stimulus of 0.2 ms in FDI than in ADM axons. These findings suggest that nodal persistent sodium conductances are more prominent in FDI axons than in ADM axons, and therefore excitability is physiologically higher in FDI axons. Even in the same nerve at the same sites, membrane properties of FDI and ADM motor axons differ significantly, and thus their axonal/neuronal responses to disease may also differ.

  5. A phantom axon setup for validating models of action potential recordings.

    Science.gov (United States)

    Rossel, Olivier; Soulier, Fabien; Bernard, Serge; Guiraud, David; Cathébras, Guy

    2016-08-01

    Electrode designs and strategies for electroneurogram recordings are often tested first by computer simulations and then by animal models, but they are rarely implanted for long-term evaluation in humans. The models show that the amplitude of the potential at the surface of an axon is higher in front of the nodes of Ranvier than at the internodes; however, this has not been investigated through in vivo measurements. An original experimental method is presented to emulate a single fiber action potential in an infinite conductive volume, allowing the potential of an axon to be recorded at both the nodes of Ranvier and the internodes, for a wide range of electrode-to-fiber radial distances. The paper particularly investigates the differences in the action potential amplitude along the longitudinal axis of an axon. At a short radial distance, the action potential amplitude measured in front of a node of Ranvier is two times larger than in the middle of two nodes. Moreover, farther from the phantom axon, the measured action potential amplitude is almost constant along the longitudinal axis. The results of this new method confirm the computer simulations, with a correlation of 97.6 %.

  6. Opportune maintenance and predictive maintenance decision support

    OpenAIRE

    Thomas , Edouard; Levrat , Eric; Iung , Benoît; Cocheteux , Pierre

    2009-01-01

    International audience; Conventional maintenance strategies on a single component are being phased out in favour of more predictive maintenance actions. These new kinds of actions are performed in order to control the global performances of the whole industrial system. They are anticipative in nature, which allows a maintenance expert to consider non-already-planned maintenance actions. Two questions naturally emerge: when to perform a predictive maintenance action; how a maintenance expert c...

  7. Nanostructured self-assembling peptides as a defined extracellular matrix for long-term functional maintenance of primary hepatocytes in a bioartificial liver modular device

    Directory of Open Access Journals (Sweden)

    Giri S

    2013-04-01

    Full Text Available Shibashish Giri,1 Ulf-Dietrich Braumann,2,3 Priya Giri,1,3 Ali Acikgöz,1,4 Patrick Scheibe,3,5 Karen Nieber,6 Augustinus Bader1 1Department of Cell Techniques and Applied Stem Cell Biology, Center for Biotechnology and Biomedicine (BBZ, 2Institute for Medical Informatics, Statistics, and Epidemiology (IMISE, University of Leipzig, Leipzig, Germany; 3Interdisciplinary Center for Bioinformatics (IZBI, University of Leipzig, Leipzig, Germany; 4Klinikum St Georg, Leipzig, Germany; 5Translational Center for Regenerative Medicine (TRM Leipzig, 6Department of Pharmacology for Natural Sciences, Institute of Pharmacy, University of Leipzig, Leipzig, Germany Abstract: Much effort has been directed towards the optimization of the capture of in vivo hepatocytes from their microenvironment. Some methods of capture include an ex vivo cellular model in a bioreactor based liver module, a micropatterned module, a microfluidic 3D chip, coated plates, and other innovative approaches for the functional maintenance of primary hepatocytes. However, none of the above methods meet US Food and Drug Administration (FDA guidelines, which recommend and encourage that the duration of a toxicity assay of a drug should be a minimum of 14 days, to a maximum of 90 days for a general toxicity assay. Existing innovative reports have used undefined extracellular matrices like matrigel, rigid collagen, or serum supplementations, which are often problematic, unacceptable in preclinical and clinical applications, and can even interfere with experimental outcomes. We have overcome these challenges by using integrated nanostructured self-assembling peptides and a special combination of growth factors and cytokines to establish a proof of concept to mimic the in vivo hepatocyte microenvironment pattern in vitro for predicting the in vivo drug hepatotoxicity in a scalable bioartificial liver module. Hepatocyte functionality (albumin, urea was measured at days 10, 30, 60, and 90 and we

  8. Network maintenance

    CERN Multimedia

    GS Department

    2009-01-01

    A site-wide network maintenance operation has been scheduled for Saturday 28 February. Most of the network devices of the general purpose network will be upgraded to a newer software version, in order to improve our network monitoring capabilities. This will result in a series of short (2-5 minutes) random interruptions everywhere on the CERN sites throughout the day. This upgrade will not affect the Computer Centre itself, Building 613, the Technical Network and the LHC experiments, dedicated networks at the pits. For further details of this intervention, please contact Netops by phone 74927 or e-mail mailto:Netops@cern.ch. IT/CS Group

  9. Network maintenance

    CERN Multimedia

    IT Department

    2009-01-01

    A site wide network maintenance has been scheduled for Saturday 28 February. Most of the network devices of the General Purpose network will be upgraded to a newer software version, in order to improve our network monitoring capabilities. This will result in a series of short (2-5 minutes) random interruptions everywhere on the CERN sites along this day. This upgrade will not affect: the Computer centre itself, building 613, the Technical Network and the LHC experiments dedicated networks at the pits. Should you need more details on this intervention, please contact Netops by phone 74927 or email mailto:Netops@cern.ch. IT/CS Group

  10. Death Receptor 6 Promotes Wallerian Degeneration in Peripheral Axons.

    Science.gov (United States)

    Gamage, Kanchana K; Cheng, Irene; Park, Rachel E; Karim, Mardeen S; Edamura, Kazusa; Hughes, Christopher; Spano, Anthony J; Erisir, Alev; Deppmann, Christopher D

    2017-03-20

    Axon degeneration during development is required to sculpt a functional nervous system and is also a hallmark of pathological insult, such as injury [1, 2]. Despite similar morphological characteristics, very little overlap in molecular mechanisms has been reported between pathological and developmental degeneration [3-5]. In the peripheral nervous system (PNS), developmental axon pruning relies on receptor-mediated extrinsic degeneration mechanisms to determine which axons are maintained or degenerated [5-7]. Receptors have not been implicated in Wallerian axon degeneration; instead, axon autonomous, intrinsic mechanisms are thought to be the primary driver for this type of axon disintegration [8-10]. Here we survey the role of neuronally expressed, paralogous tumor necrosis factor receptor super family (TNFRSF) members in Wallerian degeneration. We find that an orphan receptor, death receptor 6 (DR6), is required to drive axon degeneration after axotomy in sympathetic and sensory neurons cultured in microfluidic devices. We sought to validate these in vitro findings in vivo using a transected sciatic nerve model. Consistent with the in vitro findings, DR6 -/- animals displayed preserved axons up to 4 weeks after injury. In contrast to phenotypes observed in Wld s and Sarm1 -/- mice, preserved axons in DR6 -/- animals display profound myelin remodeling. This indicates that deterioration of axons and myelin after axotomy are mechanistically distinct processes. Finally, we find that JNK signaling after injury requires DR6, suggesting a link between this novel extrinsic pathway and the axon autonomous, intrinsic pathways that have become established for Wallerian degeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Age-related changes in axonal transport.

    Science.gov (United States)

    Frolkis, V V; Tanin, S A; Gorban, Y N

    1997-01-01

    In rats the rate of axonal transport (AT) or radiolabeled material decreased in the ventral roots of the spinal cord and the vagal and hypoglossal nerves with aging. A maximum AT deceleration in old age was observed in the vagus. The uncoupling of oxidative phosphorylation, inhibition of glycolysis and hypoxia induced a greater AT deceleration in old rats as compared to adults. Small doses of sodium fluoride accelerated AT, and this correlated with a rise in cAMP levels in ventral roots. High doses of sodium fluoride decelerated AT more markedly in old rats. It was shown that anabolic hormones (sex steroids and thyroxine) accelerated AT in both adult and old rats, whereas insulin induced a rise in AT rate in only adults. The catabolic steroid, hydrocortisone decelerated AT. In old rats castration diminished AT, while thyroidectomy had no effect. It was also shown that hydrocortisone and testosterone were transported along axons, reached fibers of the skeletal muscles, and hyperpolarized the plasma membrane. In old age the latent period was extended. Following 73 to 74 days of irradiation, AT slowed down in all the nerves studied in both adult and old rats. Following irradiation hormonal effects on AT changed, for example, the stimulatory effect of estradiol became weak, especially in old rats. Changes in AT could be an important mechanism of disordering the growth of neurons and innervated cells in old age.

  12. Dynein is the motor for retrograde axonal transport of organelles

    International Nuclear Information System (INIS)

    Schnapp, B.J.; Reese, T.S.

    1989-01-01

    Vesicular organelles in axons of nerve cells are transported along microtubules either toward their plus ends (fast anterograde transport) or toward their minus ends (retrograde transport). Two microtubule-based motors were previously identified by examining plastic beads induced to move along microtubules by cytosol fractions from the squid giant axon: (i) an anterograde motor, kinesin, and (ii) a retrograde motor, which is characterized here. The retrograde motor, a cytosolic protein previously termed HMW1, was purified from optic lobes and extruded axoplasm by nucleotide-dependent microtubule affinity and release; microtubule gliding was used as the assay of motor activity. The following properties of the retrograde motor suggest that it is cytoplasmic dynein: (i) sedimentation at 20-22 S with a heavy chain of Mr greater than 200,000 that coelectrophoreses with the alpha and beta subunits of axonemal dynein, (ii) cleavage by UV irradiation in the presence of ATP and vanadate, and (iii) a molecular structure resembling two-headed dynein from axonemes. Furthermore, bead movement toward the minus end of microtubules was blocked when axoplasmic supernatants were treated with UV/vanadate. Treatment of axoplasmic supernatant with UV/vanadate also blocks the retrograde movement of purified organelles in vitro without changing the number of anterograde moving organelles, indicating that dynein interacts specifically with a subgroup of organelles programmed to move toward the cell body. However, purified optic lobe dynein, like purified kinesin, does not by itself promote the movement of purified organelles along microtubules, suggesting that additional axoplasmic factors are necessary for retrograde as well as anterograde transport

  13. Cortical compression rapidly trimmed transcallosal projections and altered axonal anterograde transport machinery.

    Science.gov (United States)

    Chen, Li-Jin; Wang, Yueh-Jan; Tseng, Guo-Fang

    2017-10-24

    Trauma and tumor compressing the brain distort underlying cortical neurons. Compressed cortical neurons remodel their dendrites instantly. The effects on axons however remain unclear. Using a rat epidural bead implantation model, we studied the effects of unilateral somatosensory cortical compression on its transcallosal projection and the reversibility of the changes following decompression. Compression reduced the density, branching profuseness and boutons of the projection axons in the contralateral homotopic cortex 1week and 1month post-compression. Projection fiber density was higher 1-month than 1-week post-compression, suggesting adaptive temporal changes. Compression reduced contralateral cortical synaptophysin, vesicular glutamate transporter 1 (VGLUT1) and postsynaptic density protein-95 (PSD95) expressions in a week and the first two marker proteins further by 1month. βIII-tubulin and kinesin light chain (KLC) expressions in the corpus callosum (CC) where transcallosal axons traveled were also decreased. Kinesin heavy chain (KHC) level in CC was temporarily increased 1week after compression. Decompression increased transcallosal axon density and branching profuseness to higher than sham while bouton density returned to sham levels. This was accompanied by restoration of synaptophysin, VGLUT1 and PSD95 expressions in the contralateral cortex of the 1-week, but not the 1-month, compression rats. Decompression restored βIII-tubulin, but not KLC and KHC expressions in CC. However, KLC and KHC expressions in the cell bodies of the layer II/III pyramidal neurons partially recovered. Our results show cerebral compression compromised cortical axonal outputs and reduced transcallosal projection. Some of these changes did not recover in long-term decompression. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Tubulation repair mitigates misdirection of regenerating motor axons across a sciatic nerve gap in rats

    OpenAIRE

    Liu, Dan; Mi, Daguo; Zhang, Tuanjie; Zhang, Yanping; Yan, Junying; Wang, Yaxian; Tan, Xuefeng; Yuan, Ying; Yang, Yumin; Gu, Xiaosong; Hu, Wen

    2018-01-01

    The repair of peripheral nerve laceration injury to obtain optimal function recovery remains a big challenge in the clinic. Misdirection of regenerating axons to inappropriate target, as a result of forced mismatch of endoneurial sheaths in the case of end-to-end nerve anastomosis or nerve autografting, represents one major drawback that limits nerve function recovery. Here we tested whether tubulation repair of a nerve defect could be beneficial in terms of nerve regeneration accuracy and ne...

  15. Is action potential threshold lowest in the axon?

    NARCIS (Netherlands)

    Kole, Maarten H. P.; Stuart, Greg J.

    2008-01-01

    Action potential threshold is thought to be lowest in the axon, but when measured using conventional techniques, we found that action potential voltage threshold of rat cortical pyramidal neurons was higher in the axon than at other neuronal locations. In contrast, both current threshold and voltage

  16. Protein-synthesizing machinery in the axon compartment.

    Science.gov (United States)

    Koenig, E; Giuditta, A

    1999-03-01

    Contrary to the prevailing view that the axon lacks the capacity to synthesize proteins, a substantial body of evidence points to the existence of a metabolically active endogenous translational machinery. The machinery appears to be largely localized in the cortical zone of the axon, where, in vertebrate axons, it is distributed longitudinally as intermittent, discrete domains, called periaxoplasmic plaques. Studies, based on translation assays and probes of RNA transcripts in axon models such as the squid giant axon and selected vertebrate axons, provide evidence of locally synthesized proteins, most of which appear to be constituents of the slow axoplasmic transport rate groups. Metabolic and molecular biological findings are consistent with the view that the synthesis of proteins undergoing local turnover in the axonal compartment of macroneurons depends on the activity of an endogenous translational machinery. The documented presence of a metabolically active machinery in presynaptic terminals of squid photoreceptor neurons is also described. Finally, potential sources of axoplasmic RNAs comprising the machinery, which may include the ensheathing cell of the axon, as well as the cognate cell body, are also discussed.

  17. Wnts guide longitudinal axon tracts in the brain

    NARCIS (Netherlands)

    Prasad, A.A.

    2011-01-01

    The human brain contains more than 10 billion neurons that form over 10 trillion connections. The establishment of these connections during development requires axons to extend through the extracellular environment to their synaptic targets. This process of axon guidance is mediated by molecular

  18. Side-To-Side Nerve Bridges Support Donor Axon Regeneration Into Chronically Denervated Nerves and Are Associated With Characteristic Changes in Schwann Cell Phenotype.

    Science.gov (United States)

    Hendry, J Michael; Alvarez-Veronesi, M Cecilia; Snyder-Warwick, Alison; Gordon, Tessa; Borschel, Gregory H

    2015-11-01

    Chronic denervation resulting from long nerve regeneration times and distances contributes greatly to suboptimal outcomes following nerve injuries. Recent studies showed that multiple nerve grafts inserted between an intact donor nerve and a denervated distal recipient nerve stump (termed "side-to-side nerve bridges") enhanced regeneration after delayed nerve repair. To examine the cellular aspects of axon growth across these bridges to explore the "protective" mechanism of donor axons on chronically denervated Schwann cells. In Sprague Dawley rats, 3 side-to-side nerve bridges were placed over a 10-mm distance between an intact donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) distal nerve stump. Green fluorescent protein-expressing TIB axons grew across the bridges and were counted in cross section after 4 weeks. Immunofluorescent axons and Schwann cells were imaged over a 4-month period. Denervated Schwann cells dedifferentiated to a proliferative, nonmyelinating phenotype within the bridges and the recipient denervated CP nerve stump. As donor TIB axons grew across the 3 side-to-side nerve bridges and into the denervated CP nerve, the Schwann cells redifferentiated to the myelinating phenotype. Bridge placement led to an increased mass of hind limb anterior compartment muscles after 4 months of denervation compared with muscles whose CP nerve was not "protected" by bridges. This study describes patterns of donor axon regeneration and myelination in the denervated recipient nerve stump and supports a mechanism where these donor axons sustain a proregenerative state to prevent deterioration in the face of chronic denervation.

  19. SnoN facilitates axonal regeneration after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Jiun L Do

    Full Text Available Adult CNS neurons exhibit a reduced capacity for growth compared to developing neurons, due in part to downregulation of growth-associated genes as development is completed. We tested the hypothesis that SnoN, an embryonically regulated transcription factor that specifies growth of the axonal compartment, can enhance growth in injured adult neurons. In vitro, SnoN overexpression in dissociated adult DRG neuronal cultures significantly enhanced neurite outgrowth. Moreover, TGF-β1, a negative regulator of SnoN, inhibited neurite outgrowth, and SnoN over-expression overcame this inhibition. We then examined whether SnoN influenced axonal regeneration in vivo: indeed, expression of a mutant form of SnoN resistant to degradation significantly enhanced axonal regeneration following cervical spinal cord injury, despite peri-lesional upregulation of TGF-β1. Thus, a developmental mechanism that specifies extension of the axonal compartment also promotes axonal regeneration after adult CNS injury.

  20. Motor Axonal Regeneration After Partial and Complete Spinal Cord Transection

    Science.gov (United States)

    Lu, Paul; Blesch, Armin; Graham, Lori; Wang, Yaozhi; Samara, Ramsey; Banos, Karla; Haringer, Verena; Havton, Leif; Weishaupt, Nina; Bennett, David; Fouad, Karim; Tuszynski, Mark H.

    2012-01-01

    We subjected rats to either partial mid-cervical or complete upper thoracic spinal cord transections and examined whether combinatorial treatments support motor axonal regeneration into and beyond the lesion. Subjects received cAMP injections into brainstem reticular motor neurons to stimulate their endogenous growth state, bone marrow stromal cell grafts in lesion sites to provide permissive matrices for axonal growth, and brain-derived neurotrophic factor (BDNF) gradients beyond the lesion to stimulate distal growth of motor axons. Findings were compared to several control groups. Combinatorial treatment generated motor axon regeneration beyond both C5 hemisection and complete transection sites. Yet despite formation of synapses with neurons below the lesion, motor outcomes worsened after partial cervical lesions and spasticity worsened after complete transection. These findings highlight the complexity of spinal cord repair, and the need for additional control and shaping of axonal regeneration. PMID:22699902

  1. Optimizing preventive maintenance with maintenance templates

    International Nuclear Information System (INIS)

    Dozier, I.J.

    1996-01-01

    Rising operating costs has caused maintenance professionals to rethink their strategy for preventive maintenance (PM) programs. Maintenance Templates are pre-engineered PM task recommendations for a component type based on application of the component. Development of the maintenance template considers the dominant failure cause of the component and the type of preventive maintenance that can predict or prevent the failure from occurring. Maintenance template development also attempts to replace fixed frequency tasks with condition monitoring tasks such as vibration analysis or thermography. For those components that have fixed frequency PM intervals, consideration is given to the maintenance drivers such as criticality, environment and usage. This helps to maximize the PM frequency intervals and maximize the component availability. Maintenance Templates have been used at PECO Energy's Limerick Generating Station during the Reliability Centered Maintenance (RCM) Process to optimize their PM program. This paper describes the development and uses of the maintenance templates

  2. Plasticity of the Axon Initial Segment

    DEFF Research Database (Denmark)

    Petersen, Anders Victor; Cotel, Florence; Perrier, Jean François

    2017-01-01

    undergo important modifications during development. The development of the AIS is governed by intrinsic mechanisms. In addition, surrounding neuronal networks modify its maturation. As a result, neurons get tuned to particular physiological functions. Neuronal activity also influences the morphology......The axon initial segment (AIS) is a key neuronal compartment because it is responsible for action potential initiation. The local density of Na+ channels, the biophysical properties of K+ channels, as well as the length and diameter of the AIS determine the spiking of neurons. These parameters...... of the mature AIS. When excitatory neurons are hyperactive, their AIS undergo structural changes that decrease their excitability and thereby maintain the activity within a given range. These slow homeostatic regulatory mechanisms occur on a time scale of hours or days. In contrast, the activation...

  3. Prolyl Isomerase Pin1 Regulates Axon Guidance by Stabilizing CRMP2A Selectively in Distal Axons

    Czech Academy of Sciences Publication Activity Database

    Balaštík, Martin; Zhou, X.Z.; Alberich-Jorda, Meritxell; Weissová, Romana; Žiak, Jakub; Pazyra-Murphy, M.F.; Cosker, K.E.; Machoňová, Olga; Kozmiková, Iryna; Chen, CH.; Pastorino, L.; Asara, J.M.; Cole, A.; Sutherland, C.; Segal, R. A.; Lu, K.P.

    2015-01-01

    Roč. 13, č. 4 (2015), s. 812-828 ISSN 2211-1247 R&D Projects: GA MŠk(CZ) LK11213; GA MŠk LK21307; GA ČR GA15-03796S; GA MŠk LO1419 Institutional support: RVO:68378050 Keywords : Pin1 * axon guidance * Semaphorin 3A Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.870, year: 2015

  4. Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering

    Czech Academy of Sciences Publication Activity Database

    Šmít, Daniel; Fouquet, C.; Pincet, F.; Zápotocký, Martin; Trembleau, A.

    2017-01-01

    Roč. 6, Apr 19 (2017), č. článku e19907. ISSN 2050-084X R&D Projects: GA ČR(CZ) GA14-16755S; GA MŠk(CZ) 7AMB12FR002 Institutional support: RVO:67985823 Keywords : biophysics * cell adhesion * coarsening * developmental biology * mathematical model * mechanical tension * axon guidance Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 7.725, year: 2016

  5. Neuron Morphology Influences Axon Initial Segment Plasticity.

    Science.gov (United States)

    Gulledge, Allan T; Bravo, Jaime J

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation.

  6. Axonal Regulation of Central Nervous System Myelination: Structure and Function.

    Science.gov (United States)

    Klingseisen, Anna; Lyons, David A

    2018-02-01

    Approximately half of the human brain consists of myelinated axons. Central nervous system (CNS) myelin is made by oligodendrocytes and is essential for nervous system formation, health, and function. Once thought simply as a static insulator that facilitated rapid impulse conduction, myelin is now known to be made and remodeled in to adult life. Oligodendrocytes have a remarkable capacity to differentiate by default, but many aspects of their development can be influenced by axons. However, how axons and oligodendrocytes interact and cooperate to regulate myelination in the CNS remains unclear. Here, we review recent advances in our understanding of how such interactions generate the complexity of myelination known to exist in vivo. We highlight intriguing results that indicate that the cross-sectional size of an axon alone may regulate myelination to a surprising degree. We also review new studies, which have highlighted diversity in the myelination of axons of different neuronal subtypes and circuits, and structure-function relationships, which suggest that myelinated axons can be exquisitely fine-tuned to mediate precise conduction needs. We also discuss recent advances in our understanding of how neuronal activity regulates CNS myelination, and aim to provide an integrated overview of how axon-oligodendrocyte interactions sculpt neuronal circuit structure and function.

  7. Regeneration of axons in the mouse retina after injury.

    Science.gov (United States)

    McConnell, P; Berry, M

    1982-01-01

    It is generally accepted that most axons in the mammalian CNS show only transient growth in response to injury, and numerous hypotheses have been advanced to account for this phenomenon. Detailed knowledge of the time-course and extent of this so-called 'abortive regeneration' is, however, surprisingly lacking. The retina of the adult albino mouse provides a convenient system in which to quantify the response of central axons to injury, since the retina can be prepared as a whole mount, allowing silver-impregnated axons to be followed along their entire course. Using this experimental model, sprouting of injured axons was observed as early as 14 h post lesion (hpl) with rapid growth (20 micrometers/day on average) continuing until 10 dpl. Thereafter, a decline in the overall growth rate was observed, presumably regenerated sprouts began to degenerate. However, not all axons showed this abortive response: numerous unfasciculated axons continued in random growth until at least 100 dpl. One possible interpretation of these results is that the concept of abortive regeneration of injured axons is untenable in regions of the CNS which are lacking in myelin.

  8. Propagation of action potentials in inhomogeneous axon regions.

    Science.gov (United States)

    Ramón, F; Joyner, R W; Moore, J W

    1975-04-01

    Described are studies of propagation of action potentials through inhomogenous axon regions through experiments performed on squid giant axons and by computer simulations. The initial speed of propagation of the action potential is dependent upon the stimulus waveform. For a rectangular pulse of current, the action potential travel initally at a high speed that declines over the distance, reaching a constant speed of propagation at about 1-5 resting length constants; this distance depends on the stimulus strength. additional experiments studied the effects of changing the axon diameter and of introducing a temperature step. It was found that the propagated action potential suffers profound modification in shape and velocity as it reaches the region of transition. In both cases, it was possible to obtain reflected action potentials. A region of increased effective diameter was produced experimentally in the squid giant axon by insertion of an axial wire as usually employed in voltage clamps. It was found that the action potential, at the axial wire tip region, undergoes shape changes similar to those obtained tn simulations of a region of increased diameter as in a junction with the axon and soma in motor neurons. It is conducluded that the gaint axon can be used to reproduce simple electrical behaviors in other structures.-Ramón, F., R. W. Joyner and J.W. Moore. Propagation of action potentials in inhomogeneous axon regions.

  9. A comparison of teeth and implants during maintenance therapy in terms of the number of disease-free years and costs -- an in vivo internal control study.

    Science.gov (United States)

    Fardal, Øystein; Grytten, Jostein

    2013-06-01

    Little is known about the cost minimization and cost effectiveness involved in maintaining teeth and implants for patients treated for periodontal disease. A retrospective study was carried out encompassing all patients who had initial periodontal treatment followed by implant placement and maintenance therapy in a specialist practice in Norway. The neighbouring tooth and the contra-lateral tooth were used as controls. The number of disease-free years and the extra cost over and above maintenance treatment for both teeth and implants were recorded. The sample consisted of 43 patients with an average age of 67.4 years. The patients had 847 teeth at the initial examination and received 119 implants. Two implants were removed 13 and 22 years after insertion. The prevalence of peri-implantitis was 53.5% at the patient level and 31.1% at the implant level. The prevalence of periodontitis was 53.4% at the patient level and 7.6% at the tooth level. The mean number of disease-free years was: implants: 8.66; neighbouring tooth: 9.08; contra-lateral teeth: 9.93. These mean values were not statistically significantly different from each other. The extra cost of maintaining the implants was about five times higher for implants than for teeth. The number of disease-free years was the same for neighbouring teeth, contra-lateral teeth and implants. However, due to the high prevalence of peri-implantitis, the cost of maintaining implants was much higher than the cost of maintaining teeth. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The complexity of self-regulating food intake in weight loss maintenance. A qualitative exploration among short- and long-term weight loss maintainers

    DEFF Research Database (Denmark)

    Pedersen, Susanne; Sniethotta, Falko; Sainsbury, Kirby

    describe and understand the self-regulatory strategies related to food intake in WLM. Methods: Individual interviews (14 female/5 male) were conducted with 9 Danish short- and 10 long-term weight loss maintainers. Initial codes were based on five themes related to food intake: planning, shopping...... between short- and long-term weight loss maintainers. Results: Self-regulatory strategies and self-efficacy beliefs varied between the food-related behaviours and between short- and long-term maintainers. With repeated use of action and coping planning, long-term maintainers had formed habitual routines......, allowing more flexibility and improvisation in the behaviours related to WLM such as buying and storing food, and eating at social gatherings. The short-term maintainers often displayed a weight loss mind-set, focusing on the avoidance of certain behaviours (e.g., buying specific foods), showed less self...

  11. Mitotic motors coregulate microtubule patterns in axons and dendrites.

    Science.gov (United States)

    Lin, Shen; Liu, Mei; Mozgova, Olga I; Yu, Wenqian; Baas, Peter W

    2012-10-03

    Microtubules are nearly uniformly oriented in the axons of vertebrate neurons but are non-uniformly oriented in their dendrites. Studies to date suggest a scenario for establishing these microtubule patterns whereby microtubules are transported into the axon and nascent dendrites with plus-ends-leading, and then additional microtubules of the opposite orientation are transported into the developing dendrites. Here, we used contemporary tools to confirm that depletion of kinesin-6 (also called CHO1/MKLP1 or kif23) from rat sympathetic neurons causes a reduction in the appearance of minus-end-distal microtubules in developing dendrites, which in turn causes them to assume an axon-like morphology. Interestingly, we observed a similar phenomenon when we depleted kinesin-12 (also called kif15 or HKLP2). Both motors are best known for their participation in mitosis in other cell types, and both are enriched in the cell body and dendrites of neurons. Unlike kinesin-12, which is present throughout the neuron, kinesin-6 is barely detectable in the axon. Accordingly, depletion of kinesin-6, unlike depletion of kinesin-12, has no effect on axonal branching or navigation. Interestingly, depletion of either motor results in faster growing axons with greater numbers of mobile microtubules. Based on these observations, we posit a model whereby these two motors generate forces that attenuate the transport of microtubules with plus-ends-leading from the cell body into the axon. Some of these microtubules are not only prevented from moving into the axon but are driven with minus-ends-leading into developing dendrites. In this manner, these so-called "mitotic" motors coregulate the microtubule patterns of axons and dendrites.

  12. Predictors of long term weight loss maintenance in patients at high risk of type 2 diabetes participating in a lifestyle intervention program in primary health care: The DE-PLAN study.

    Science.gov (United States)

    Gilis-Januszewska, Aleksandra; Barengo, Noël C; Lindström, Jaana; Wójtowicz, Ewa; Acosta, Tania; Tuomilehto, Jaakko; Schwarz, Peter E H; Piwońska-Solska, Beata; Szybiński, Zbigniew; Windak, Adam; Hubalewska-Dydejczyk, Alicja

    2018-01-01

    Lifestyle interventions in type 2 diabetes (DM2) prevention implementation studies can be effective and lasting. Long-term weight loss maintenance enhances the intervention effect through a significant decrease in diabetes incidence over time. Our objective was to identify factors predicting long-term successful weight reduction maintenance achieved during a DM2 prevention program in patients with high DM2 risk in primary health care. Study participants (n = 263), middle-aged, slightly obese with baseline increased DM2 risk (Finnish Diabetes Risk Score (FINDRISC)>14), but no diabetes were invited to receive 11 lifestyle counselling sessions, guided physical activity sessions and motivational support during 10-months. The study participants had three clinical examinations during the study (baseline, one and three years). Stepwise regression analysis was used to determine demographic, clinical, and lifestyle predictors of weight reduction maintenance two years after the discontinuation of the intervention. Out of 105 patients who completed all three examinations (baseline age 56.6 (standard deviation (SD) = 10.7), body mass index 31.1 kg/m2 (SD = 4.9), FINDRISC 18.6 (SD = 3.1)), 73 patients (70%) showed weight loss during the intervention (mean weight loss 4.2 kg, SD = 5.1). The total weight loss achieved in the maintainers (27 of 73 study participants) two years after the intervention had finished was 6.54 kg (4.47 kg+2.0 kg). The non-maintainers, on the other hand, returned to their initial weight at the start of the intervention (+0.21 kg). In multivariable analysis baseline history of increased glucose (odds ratio (OR) = 3.7; 95% confidence interval (CI) 1.0-13.6) and reduction of total fat in diet during follow-up (OR = 4.3; 95% CI 1.5-12.2) were independent predictors of successful weight loss. Further studies exploring predictors of weight loss maintenance in diabetes prevention are needed to help health care providers to redesign interventions and improve

  13. Vibigaba (germinated brown rice) and maintenance of long-term normal blood glucose concentration: evaluation of a health claim pursuant to Article 13(5) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Sjödin, Anders Mikael

    2017-01-01

    on the scientific substantiation of a health claim related to Vibigaba (germinated brown rice) and maintenance of long-term normal blood glucose concentration. The scope of the application was proposed to fall under a health claim based on newly developed scientific evidence. The food proposed by the applicant......-term normal blood glucose concentration is a beneficial physiological effect. The Panel notes that the applicant did not perform a comprehensive literature search to identify human intervention studies which could be pertinent to the claim. The applicant did not reply to a specific request from EFSA...... on the design and conduct of the study is insufficient for a complete scientific evaluation. The Panel considers that no conclusions can be drawn from this study for the scientific substantiation of the claim. The Panel concludes that a cause and effect relationship has not been established between...

  14. A randomized controlled trial investigating the safety and efficacy of aripiprazole in the long-term maintenance treatment of pediatric patients with irritability associated with autistic disorder.

    Science.gov (United States)

    Findling, Robert L; Mankoski, Raymond; Timko, Karen; Lears, Katherine; McCartney, Theresa; McQuade, Robert D; Eudicone, James M; Amatniek, Joan; Marcus, Ronald N; Sheehan, John J

    2014-01-01

    To evaluate the efficacy and safety of aripiprazole versus placebo in preventing relapse of irritability symptoms associated with autistic disorder in pediatric patients. This multicenter, double-blind, randomized, placebo-controlled, relapse-prevention trial enrolled patients (6-17 years) who met the current Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DMS-IV-TR) criteria for autistic disorder and who also had serious behavioral problems (ie, tantrums, aggression, self-injurious behavior, or a combination of these behavioral problems) between March 2011 and June 2012. In phase 1, single-blind aripiprazole was flexibly dosed (2-15 mg/d) for 13-26 weeks. Patients with a stable response (≥ 25% decrease in Aberrant Behavior Checklist-irritability subscale score and a rating of "much improved" or "very much improved" on the Clinical Global Impressions-Improvement scale) for 12 consecutive weeks were randomized into phase 2 to continue aripiprazole or switch to placebo. Treatment was continued until relapse or up to 16 weeks. The primary end point was time from randomization to relapse. Eighty-five patients were randomized in phase 2. The difference in time to relapse between aripiprazole and placebo was not statistically significant (P = .097). Kaplan-Meier relapse rates at week 16 were 35% for aripiprazole and 52% for placebo (hazard ratio [HR] = 0.57; number needed to treat [NNT] = 6). The most common adverse events during phase 1 were weight increase (25.2%), somnolence (14.8%), and vomiting (14.2%); and, during phase 2 (aripiprazole vs placebo), they were upper respiratory tract infection (10.3% vs 2.3%), constipation (5.1% vs 0%), and movement disorder (5.1% vs 0%). In this study, there was no statistically significant difference between aripiprazole and placebo in time to relapse during maintenance therapy. However, the HR and NNT suggest some patients will benefit from maintenance treatment. Patients receiving

  15. Maintenance Business Plans.

    Science.gov (United States)

    Adams, Matt

    2002-01-01

    Discusses maintenance business plans, statements which provide accountability for facilities maintenance organizations' considerable budgets. Discusses the plan's components: statement of plan objectives, macro and detailed description of the facility assets, maintenance function descriptions, description of key performance indicators, milestone…

  16. Axon diameter mapping in crossing fibers with diffusion MRI

    DEFF Research Database (Denmark)

    Zhang, Hui; Dyrby, Tim B; Alexander, Daniel C

    2011-01-01

    tissue than measures derived from diffusion tensor imaging. Most existing techniques for axon diameter mapping assume a single axon orientation in the tissue model, which limits their application to only the most coherently oriented brain white matter, such as the corpus callosum, where the single......This paper proposes a technique for a previously unaddressed problem, namely, mapping axon diameter in crossing fiber regions, using diffusion MRI. Direct measurement of tissue microstructure of this kind using diffusion MRI offers a new class of biomarkers that give more specific information about...... orientation assumption is a reasonable one. However, fiber crossings and other complex configurations are widespread in the brain. In such areas, the existing techniques will fail to provide useful axon diameter indices for any of the individual fiber populations. We propose a novel crossing fiber tissue...

  17. Fiber Optic Detection of Action Potentials in Axons

    National Research Council Canada - National Science Library

    Smela, Elisabeth

    2006-01-01

    In prior exploratory research, we had designed a fiber optic sensor utilizing a long period Bragg grating for the purpose of detecting action potentials in axons optically, through a change in index...

  18. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard

    2002-01-01

    cells, while other fibers were unmyelinated. Immunohistochemistry demonstrated that some of the regenerated fibers were tyrosine hydroxylase- or serotonin-immunoreactive, indicating a central origin. These findings suggest that there is a considerable amount of spontaneous regeneration after spinal cord......Here we present evidence for spontaneous and long-lasting regeneration of CNS axons after spinal cord lesions in adult rats. The length of 200 kD neurofilament (NF)-immunolabeled axons was estimated after photochemically induced ischemic spinal cord lesions using a stereological tool. The total...... length of all NF-immunolabeled axons within the lesion cavities was increased 6- to 10-fold at 5, 10, and 15 wk post-lesion compared with 1 wk post-surgery. In ultrastructural studies we found the putatively regenerating axons within the lesion to be associated either with oligodendrocytes or Schwann...

  19. The nigrostriatal pathway: axonal collateralization and compartmental specificity.

    Science.gov (United States)

    Prensa, L; Giménez-Amaya, J M; Parent, A; Bernácer, J; Cebrián, C

    2009-01-01

    This paper reviews two of the major features of the nigrostriatal pathway, its axonal collateralization, and compartmental specificity, as revealed by single-axon labeling experiments in rodents and immunocytological analysis of human postmortem tissue. The dorsal and ventral tiers of the substantia nigra pars compacta harbor various types of neurons the axons of which branch not only within the striatum but also in other major components of the basal ganglia. Furthermore, some nigrostriatal axons send collaterals both to thalamus and to brainstem pedunculopontine tegmental nucleus. In humans, the compartmental specificity of the nigrostriatal pathway is revealed by the fact that the matrix compartment is densely innervated by dopaminergic fibers, whereas the striosomes display different densities of dopaminergic terminals depending on their location within the striatum. The nigral neurons most severely affected in Parkinson's disease are the ventral tier cells that project to the matrix and form deep clusters in the substantia nigra pars reticulata.

  20. Syndecan Promotes Axon Regeneration by Stabilizing Growth Cone Migration

    Directory of Open Access Journals (Sweden)

    Tyson J. Edwards

    2014-07-01

    Full Text Available Growth cones facilitate the repair of nervous system damage by providing the driving force for axon regeneration. Using single-neuron laser axotomy and in vivo time-lapse imaging, we show that syndecan, a heparan sulfate (HS proteoglycan, is required for growth cone function during axon regeneration in C. elegans. In the absence of syndecan, regenerating growth cones form but are unstable and collapse, decreasing the effective growth rate and impeding regrowth to target cells. We provide evidence that syndecan has two distinct functions during axon regeneration: (1 a canonical function in axon guidance that requires expression outside the nervous system and depends on HS chains and (2 an intrinsic function in growth cone stabilization that is mediated by the syndecan core protein, independently of HS. Thus, syndecan is a regulator of a critical choke point in nervous system repair.

  1. Differential compartmentalization of mRNAs in squid giant axon.

    Science.gov (United States)

    Chun, J T; Gioio, A E; Crispino, M; Giuditta, A; Kaplan, B B

    1996-11-01

    Previously, we reported that the squid giant axon contains a heterogeneous population of mRNAs that includes beta-actin, beta-tubulin, kinesin, neurofilament proteins, and enolase. To define the absolute levels and relative distribution of these mRNAs, we have used competitive reverse transcription-PCR to quantify the levels of five mRNAs present in the giant axon and giant fiber lobe (GFL), the location of the parental cell soma. In the GFL, the number of transcripts for these mRNAs varied over a fourfold range, with beta-tubulin being the most abundant mRNA species (1.25 x 10(9) molecules per GFL). Based on transcript number, the rank order of mRNA levels in the GFL was beta-tubulin > beta-actin > kinesin > enolase > microtubule-associated protein (MAP) H1. In contrast, kinesin mRNA was most abundant in the axon (4.1 x 10(7) molecules per axon) with individual mRNA levels varying 15-fold. The rank order of mRNA levels in the axon was kinesin > beta-tubulin > MAP H1 > beta-actin > enolase. The relative abundance of the mRNA species in the axon did not correlate with the size of the transcript, nor was it directly related to their corresponding levels in the GFL. Taken together, these findings confirm that significant amounts of mRNA are present in the giant axon and suggest that specific mRNAs are differentially transported into the axonal domain.

  2. Fcγ receptor-mediated inflammation inhibits axon regeneration.

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    Full Text Available Anti-glycan/ganglioside antibodies are the most common immune effectors found in patients with Guillain-Barré Syndrome, which is a peripheral autoimmune neuropathy. We previously reported that disease-relevant anti-glycan autoantibodies inhibited axon regeneration, which echo the clinical association of these antibodies and poor recovery in Guillain-Barré Syndrome. However, the specific molecular and cellular elements involved in this antibody-mediated inhibition of axon regeneration are not previously defined. This study examined the role of Fcγ receptors and macrophages in the antibody-mediated inhibition of axon regeneration. A well characterized antibody passive transfer sciatic nerve crush and transplant models were used to study the anti-ganglioside antibody-mediated inhibition of axon regeneration in wild type and various mutant and transgenic mice with altered expression of specific Fcγ receptors and macrophage/microglia populations. Outcome measures included behavior, electrophysiology, morphometry, immunocytochemistry, quantitative real-time PCR, and western blotting. We demonstrate that the presence of autoantibodies, directed against neuronal/axonal cell surface gangliosides, in the injured mammalian peripheral nerves switch the proregenerative inflammatory environment to growth inhibitory milieu by engaging specific activating Fcγ receptors on recruited monocyte-derived macrophages to cause severe inhibition of axon regeneration. Our data demonstrate that the antibody orchestrated Fcγ receptor-mediated switch in inflammation is one mechanism underlying inhibition of axon regeneration. These findings have clinical implications for nerve repair and recovery in antibody-mediated immune neuropathies. Our results add to the complexity of axon regeneration in injured peripheral and central nervous systems as adverse effects of B cells and autoantibodies on neural injury and repair are increasingly recognized.

  3. Modality-Specific Axonal Regeneration: Towards selective regenerative neural interfaces

    Directory of Open Access Journals (Sweden)

    Parisa eLotfi

    2011-10-01

    Full Text Available Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed submodality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type-specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF and neurotrophin-3 (NT-3, to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5 fold compared to that in saline or NT-3, whereas the number of branches increased 3 fold in the NT-3 channels. These results were confirmed using a 3-D Y-shaped in vitro assay showing that the arm containing NGF was able to entice a 5-fold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a Y-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted towards the sural nerve, while N-52+ large diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  4. Modality-specific axonal regeneration: toward selective regenerative neural interfaces.

    Science.gov (United States)

    Lotfi, Parisa; Garde, Kshitija; Chouhan, Amit K; Bengali, Ebrahim; Romero-Ortega, Mario I

    2011-01-01

    Regenerative peripheral nerve interfaces have been proposed as viable alternatives for the natural control of robotic prosthetic devices. However, sensory and motor axons at the neural interface are of mixed sub-modality types, which difficult the specific recording from motor axons and the eliciting of precise sensory modalities through selective stimulation. Here we evaluated the possibility of using type specific neurotrophins to preferentially entice the regeneration of defined axonal populations from transected peripheral nerves into separate compartments. Segregation of mixed sensory fibers from dorsal root ganglion neurons was evaluated in vitro by compartmentalized diffusion delivery of nerve growth factor (NGF) and neurotrophin-3 (NT-3), to preferentially entice the growth of TrkA+ nociceptive and TrkC+ proprioceptive subsets of sensory neurons, respectively. The average axon length in the NGF channel increased 2.5-fold compared to that in saline or NT-3, whereas the number of branches increased threefold in the NT-3 channels. These results were confirmed using a 3D "Y"-shaped in vitro assay showing that the arm containing NGF was able to entice a fivefold increase in axonal length of unbranched fibers. To address if such segregation can be enticed in vivo, a "Y"-shaped tubing was used to allow regeneration of the transected adult rat sciatic nerve into separate compartments filled with either NFG or NT-3. A significant increase in the number of CGRP+ pain fibers were attracted toward the sural nerve, while N-52+ large-diameter axons were observed in the tibial and NT-3 compartments. This study demonstrates the guided enrichment of sensory axons in specific regenerative chambers, and supports the notion that neurotrophic factors can be used to segregate sensory and perhaps motor axons in separate peripheral interfaces.

  5. MR imaging of a diffuse axonal injury

    International Nuclear Information System (INIS)

    Inoue, Yukiya; Okamoto, Hisayo; Mitsushima, Minoru; Hori, Tomokatsu; Sasaki, Mamoru; Teraoka, Akira.

    1989-01-01

    Six patients who had been diagnosed as having so-called a 'Diffuse Axonal Injury (DAI)' were examined by means of Magnetic Resonance Imaging (Yokogawa Resona 0.5T and Shimadzu SMT 50A). MRI revealed clear evidence of injured white matter in these patients, while X-ray CT scanning could not demonstrate such lesions definitely. The patients consisted of three adults and three adolescents. They had been injured by traffic accidents or falls. Every patient had lost consciousness immediately, and their coma had continued for at least two weeks after the trauma. X-ray CT scanning demonstrated no complicated lesion, such as intracranial hematoma or brain edema, resulting in increased intracranial pressure and cerebral herniation. In all of the patients, injuries of the deep white matter (corpus callosum, upper pons, or internal capsule, for example) were clearly found by T 2 -weighted imaging. Because these lesions had characteristic features in their localation, as has been described by Adams et al. these patients were diagnosed as having DAI. Also, it was interesting that the focal neurological deficits of these patients correlated well with the local injuries of the white matter. The three young patients recovered to various degrees, but the three adults passed into a vegetative state. The prognosis of the patients seemed to be determined by their age. Because the clinical diagnosis of DAI is controversial, the use of MRI will help in its clinical diagnosis and analysis. (author)

  6. Kinematics of turnaround and retrograde axonal transport

    International Nuclear Information System (INIS)

    Snyder, R.E.

    1986-01-01

    Rapid axonal transport of a pulse of 35 S-methionine-labelled material was studied in vitro in the sensory neurons of amphibian sciatic nerve using a position-sensitive detector. For 10 nerves studied at 23.0 +/- 0.2 degrees C it was found that a pulse moved in the anterograde direction characterized by front edge, peak, and trailing edge transport rates of (mm/d) 180.8 +/- 2.2 (+/- SEM), 176.6 +/- 2.3, and 153.7 +/- 3.0, respectively. Following its arrival at a distal ligature, a smaller pulse was observed to move in the retrograde direction characterized by front edge and peak transport rates of 158.0 +/- 7.3 and 110.3 +/- 3.5, respectively, indicating that retrograde transport proceeds at a rate of 0.88 +/- 0.04 that of anterograde. The retrograde pulse was observed to disperse at a rate greater than the anterograde. Reversal of radiolabel at the distal ligature began 1.49 +/- 0.15 h following arrival of the first radiolabel. Considerable variation was seen between preparations in the way radiolabel accumulated in the end (ligature) regions of the nerve. Although a retrograde pulse was seen in all preparations, in 7 of 10 preparations there was no evidence of this pulse accumulating within less than 2-3 mm of a proximal ligature; however, accumulation was observed within less than 5 mm in all preparations

  7. MR imaging of a diffuse axonal injury

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yukiya; Okamoto, Hisayo; Mitsushima, Minoru; Hori, Tomokatsu (Tottori Univ., Yonago (Japan). School of Medicine); Sasaki, Mamoru; Teraoka, Akira

    1989-04-01

    Six patients who had been diagnosed as having so-called a 'Diffuse Axonal Injury (DAI)' were examined by means of Magnetic Resonance Imaging (Yokogawa Resona 0.5T and Shimadzu SMT 50A). MRI revealed clear evidence of injured white matter in these patients, while X-ray CT scanning could not demonstrate such lesions definitely. The patients consisted of three adults and three adolescents. They had been injured by traffic accidents or falls. Every patient had lost consciousness immediately, and their coma had continued for at least two weeks after the trauma. X-ray CT scanning demonstrated no complicated lesion, such as intracranial hematoma or brain edema, resulting in increased intracranial pressure and cerebral herniation. In all of the patients, injuries of the deep white matter (corpus callosum, upper pons, or internal capsule, for example) were clearly found by T{sub 2}-weighted imaging. Because these lesions had characteristic features in their localation, as has been described by Adams et al. these patients were diagnosed as having DAI. Also, it was interesting that the focal neurological deficits of these patients correlated well with the local injuries of the white matter. The three young patients recovered to various degrees, but the three adults passed into a vegetative state. The prognosis of the patients seemed to be determined by their age. Because the clinical diagnosis of DAI is controversial, the use of MRI will help in its clinical diagnosis and analysis. (author).

  8. CHANGES IN THE ELECTRICAL SURFACE CHARGE AND TRANSPLANTATION PROPERTIES OF TA3 ASCITES TUMOR CELLS DURING SHORT-TERM MAINTENANCE IN AN ISOTONIC SALT SOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Tenforde, T. S.; Richards, W. R.; Kelly, L. S.

    1980-12-01

    TA3 ascites tumor cells maintained in vitro as a dilute suspension in 0.9% NaCl solution (physiological saline) were found to undergo time-dependent degenerative processes leading to alterations in both membrane characteristics and tumor transplantation properties. A 30% decrease in the negative cellular surface charge density occurred within 2 hr. when TA3 cells were incubated in a 0.9% NaCl solution at 23 °C. A similar reduction in negative surface charge density occurred within 0.5 hr. when the medium was maintained at 37 °C. This time-dependent reduction in surface charge was prevented when cellular metabolism was blocked either by maintaining the medium at 4 °C. or by adding 1 mM cyanide ion to a 23 °C medium. TA3 cells incubated as a dilute suspension in 0.9% NaCl solution at 23 °C also exhibited a large 9 time-dependent reduction in proliferative capacity in isogeneic LAF1/J hosts, as indicated by an increase in the tumor dose for 50% mortality (TD50). Lowering the temperature of the medium to 4 °C was observed to slow the onset of the degenerative processes that lead to a decreased transplantability of TA3 cells. The modification in growth properties of TA3 cells maintained in vitro was found to be attributable in part to an alteration in tumor histocompatibility. This effect was demonstrated by comparing the tumor growth kinetics and TD50 values in normal hosts versus hosts that had been immunosuppressed by whole-body irradiation. Following the in vitro maintenance of TA3 cells, nigrosin dye exclusion tests were performed as a means of assessing cell viability. Evidence obtained in this series of experiments indicated that vital staining is an inadequate criterion for judging either the extent of cell membrane damage or the loss of cellular proliferative capacity.

  9. Developmental time windows for axon growth influence neuronal network topology.

    Science.gov (United States)

    Lim, Sol; Kaiser, Marcus

    2015-04-01

    Early brain connectivity development consists of multiple stages: birth of neurons, their migration and the subsequent growth of axons and dendrites. Each stage occurs within a certain period of time depending on types of neurons and cortical layers. Forming synapses between neurons either by growing axons starting at similar times for all neurons (much-overlapped time windows) or at different time points (less-overlapped) may affect the topological and spatial properties of neuronal networks. Here, we explore the extreme cases of axon formation during early development, either starting at the same time for all neurons (parallel, i.e., maximally overlapped time windows) or occurring for each neuron separately one neuron after another (serial, i.e., no overlaps in time windows). For both cases, the number of potential and established synapses remained comparable. Topological and spatial properties, however, differed: Neurons that started axon growth early on in serial growth achieved higher out-degrees, higher local efficiency and longer axon lengths while neurons demonstrated more homogeneous connectivity patterns for parallel growth. Second, connection probability decreased more rapidly with distance between neurons for parallel growth than for serial growth. Third, bidirectional connections were more numerous for parallel growth. Finally, we tested our predictions with C. elegans data. Together, this indicates that time windows for axon growth influence the topological and spatial properties of neuronal networks opening up the possibility to a posteriori estimate developmental mechanisms based on network properties of a developed network.

  10. Parametric Probability Distribution Functions for Axon Diameters of Corpus Callosum

    Directory of Open Access Journals (Sweden)

    Farshid eSepehrband

    2016-05-01

    Full Text Available Axon diameter is an important neuroanatomical characteristic of the nervous system that alters in the course of neurological disorders such as multiple sclerosis. Axon diameters vary, even within a fiber bundle, and are not normally distributed. An accurate distribution function is therefore beneficial, either to describe axon diameters that are obtained from a direct measurement technique (e.g., microscopy, or to infer them indirectly (e.g., using diffusion-weighted MRI. The gamma distribution is a common choice for this purpose (particularly for the inferential approach because it resembles the distribution profile of measured axon diameters which has been consistently shown to be non-negative and right-skewed. In this study we compared a wide range of parametric probability distribution functions against empirical data obtained from electron microscopy images. We observed that the gamma distribution fails to accurately describe the main characteristics of the axon diameter distribution, such as location and scale of the mode and the profile of distribution tails. We also found that the generalized extreme value distribution consistently fitted the measured distribution better than other distribution functions. This suggests that there may be distinct subpopulations of axons in the corpus callosum, each with their own distribution profiles. In addition, we observed that several other distributions outperformed the gamma distribution, yet had the same number of unknown parameters; these were the inverse Gaussian, log normal, log logistic and Birnbaum-Saunders distributions.

  11. Perineurial glia are essential for motor axon regrowth following nerve injury.

    Science.gov (United States)

    Lewis, Gwendolyn M; Kucenas, Sarah

    2014-09-17

    Development and maintenance of the peripheral nervous system (PNS) are essential for an organism to survive and reproduce, and damage to the PNS by disease or injury is often debilitating. Remarkably, the nerves of the PNS are capable of regenerating after trauma. However, full functional recovery after nerve injuries remains poor. Peripheral nerve regeneration has been studied extensively, with particular emphasis on elucidating the roles of Schwann cells and macrophages during degeneration and subsequent regeneration. In contrast, the roles of other essential nerve components, including perineurial glia, are poorly understood. Here, we use laser nerve transection and in vivo, time-lapse imaging in zebrafish to investigate the role and requirement of perineurial glia after nerve injury. We show that perineurial glia respond rapidly and dynamically to nerve transections by extending processes into injury sites and phagocytizing debris. Perineurial glia also bridge injury gaps before Schwann cells and axons, and we demonstrate that these bridges are essential for axon regrowth. Additionally, we show that perineurial glia and macrophages spatially coordinate early debris clearance and that perineurial glia require Schwann cells for their attraction to injury sites. This work highlights the complex nature of cell-cell interactions after injury and introduces perineurial glia as integral players in the regenerative process. Copyright © 2014 the authors 0270-6474/14/3412762-16$15.00/0.

  12. Axonal regeneration and neuronal function are preserved in motor neurons lacking ß-actin in vivo.

    Directory of Open Access Journals (Sweden)

    Thomas R Cheever

    2011-03-01

    Full Text Available The proper localization of ß-actin mRNA and protein is essential for growth cone guidance and axon elongation in cultured neurons. In addition, decreased levels of ß-actin mRNA and protein have been identified in the growth cones of motor neurons cultured from a mouse model of Spinal Muscular Atrophy (SMA, suggesting that ß-actin loss-of-function at growth cones or pre-synaptic nerve terminals could contribute to the pathogenesis of this disease. However, the role of ß-actin in motor neurons in vivo and its potential relevance to disease has yet to be examined. We therefore generated motor neuron specific ß-actin knock-out mice (Actb-MNsKO to investigate the function of ß-actin in motor neurons in vivo. Surprisingly, ß-actin was not required for motor neuron viability or neuromuscular junction maintenance. Skeletal muscle from Actb-MNsKO mice showed no histological indication of denervation and did not significantly differ from controls in several measurements of physiologic function. Finally, motor axon regeneration was unimpaired in Actb-MNsKO mice, suggesting that ß-actin is not required for motor neuron function or regeneration in vivo.

  13. Axon Initial Segment Cytoskeleton: Architecture, Development, and Role in Neuron Polarity.

    Science.gov (United States)

    Jones, Steven L; Svitkina, Tatyana M

    2016-01-01

    The axon initial segment (AIS) is a specialized structure in neurons that resides in between axonal and somatodendritic domains. The localization of the AIS in neurons is ideal for its two major functions: it serves as the site of action potential firing and helps to maintain neuron polarity. It has become increasingly clear that the AIS cytoskeleton is fundamental to AIS functions. In this review, we discuss current understanding of the AIS cytoskeleton with particular interest in its unique architecture and role in maintenance of neuron polarity. The AIS cytoskeleton is divided into two parts, submembrane and cytoplasmic, based on localization, function, and molecular composition. Recent studies using electron and subdiffraction fluorescence microscopy indicate that submembrane cytoskeletal components (ankyrin G, βIV-spectrin, and actin filaments) form a sophisticated network in the AIS that is conceptually similar to the polygonal/triangular network of erythrocytes, with some important differences. Components of the AIS cytoplasmic cytoskeleton (microtubules, actin filaments, and neurofilaments) reside deeper within the AIS shaft and display structural features distinct from other neuronal domains. We discuss how the AIS submembrane and cytoplasmic cytoskeletons contribute to different aspects of AIS polarity function and highlight recent advances in understanding their AIS cytoskeletal assembly and stability.

  14. Long-term tolerability and maintenance of therapeutic response to sodium oxybate in an open-label extension study in patients with fibromyalgia

    Science.gov (United States)

    2013-01-01

    Introduction The long-term safety and therapeutic response of sodium oxybate (SXB) in fibromyalgia syndrome (FM) patients were assessed for a combined period of up to 1 year in a prospective, multicenter, open-label, extension study in patients completing 1 of 2 phase 3 randomized, double-blind, controlled, 14-week trials that examined the efficacy and safety of SXB 4.5 g, SXB 6 g, and placebo for treatment of FM. Methods This extension study comprised an additional 38 weeks of treatment and was carried out at 130 clinical sites in 7 countries. Initial entry criteria for the previous 2 double-blind clinical trials required that patients aged ≥ 18 years met the American College of Rheumatology 1990 criteria for FM, had a body mass index (BMI) Fibromyalgia Impact Questionnaire (FIQ) total scores, and other measures. Responder analyses showed that 68.8% of patients achieved ≥ 30% reduction in pain VAS and 69.7% achieved ≥ 30% reduction in FIQ total score at study endpoint. Conclusions The long-term safety profile of SXB in FM patients was similar to that in the previously reported controlled clinical trials. Improvement in pain and other FM clinical domains was maintained during long-term use. Trial registration ClinicalTrials.gov NCT00423605. PMID:24286114

  15. Long-Term Maintenance of Therapeutic Gains Associated With Cognitive-Behavioral Therapy for Insomnia Delivered Alone or Combined With Zolpidem.

    Science.gov (United States)

    Beaulieu-Bonneau, Simon; Ivers, Hans; Guay, Bernard; Morin, Charles M

    2017-03-01

    To document the long-term sleep outcomes at 12 and 24 months after patients with chronic insomnia were treated with cognitive-behavioral therapy (CBT), either singly or combined with zolpidem medication. Participants were 160 adults with chronic insomnia. They were first randomized for a six-week acute treatment phase involving CBT alone or CBT combined with nightly zolpidem, and randomized for a six-month extended treatment phase involving CBT, no additional treatment, CBT combined with zolpidem as needed, or CBT with zolpidem tapered. This paper reports results of the 12- and 24-month follow-ups on the main outcome measures derived from the Insomnia Severity Index and sleep diaries. Clinical improvements achieved 6 months following the end of treatment were well-maintained in all four conditions, with insomnia remission rates ranging from 48% to 74% at the 12-month follow-up, and from 44% to 63% at the 24-month follow-up. Participants receiving CBT with zolpidem taper in the extended treatment phase had significantly better results than those receiving CBT with continued zolpidem as needed. The magnitude of improvements on sleep diary parameters was similar between conditions, with a slight advantage for the CBT with zolpidem taper condition. The addition of extended CBT did not alter the long-term outcome over improvements obtained during the initial 6-week CBT. The results suggest that CBT for insomnia, when delivered alone or in combination with medication, produce durable sleep improvements up to two years after completion of treatment. These long-term results indicate that even if a combined CBT plus medication approach provide an added benefit immediately after treatment, extending CBT while tapering medication produce better sustained improvements compared to continued use of medication as needed. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e

  16. A Situational Maintenance Model

    DEFF Research Database (Denmark)

    Luxhoj, James T.; Thorsteinsson, Uffe; Riis, Jens Ove

    1997-01-01

    An overview of trend in maintenance management and presentation of a situational model and an analytical tools for identification of managerial efforts in maintenance.......An overview of trend in maintenance management and presentation of a situational model and an analytical tools for identification of managerial efforts in maintenance....

  17. National infrastructure maintenance strategy for South Africa

    CSIR Research Space (South Africa)

    Wall, K

    2009-05-01

    Full Text Available for their strategic infrastructure (if not for all of their infrastructure), maintenance budgets are adequate (even if they could always do with more funding), capacities and skills are adequate, and their leadership has a strong maintenance ethic. OR... in improved motivations for additional funding for maintenance, a prerequisite for receiving increased funding. In terms of the Government Immovable Asset Management Act (“GIAMA”) (South Africa 2007), passed into law early in 2008, it is now obligatory...

  18. In vivo modeling of neuronal function, axonal impairment and connectivity in neurodegenerative and neuropsychiatric disorders using induced pluripotent stem cells.

    Science.gov (United States)

    Korecka, J A; Levy, S; Isacson, O

    2016-06-01

    Modeling neurological diseases using human embryonic or patient-derived induced pluripotent stem cells (iPSCs) improves the understanding of molecular and cellular changes underlying these diseases and can lead to new, potentially personalized therapies. Changes in expression of axon guidance cues and altered cytoskeletal maintenance have been implicated in neurodegenerative and neuropsychiatric disorders. To date, most of the iPSC patient-derived cellular dysfunction and phenotypic studies have been performed in vitro. To study the intrinsic axonal impairments and neuronal connectivity deficits in human disease iPSC-derived neurons we propose to graft these cells into the physiological three-dimensional multi-structural environment of the central nervous system of rodent models to obtain relevant in vivo data. Such human iPSC in vivo chimeric models can allow for neuronal maturation, capture neuropathological phenotypes of axonal and connectivity impairments, and serve as target engagement and drug validation studies using human cells, thus highly relevant for advancement of the drug development process in the late pre-clinical stages. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Klf1, a C2H2 zinc finger-transcription factor, is required for cell wall maintenance during long-term quiescence in differentiated G0 phase.

    Directory of Open Access Journals (Sweden)

    Mizuki Shimanuki

    Full Text Available Fission yeast, Schizoaccharomyces pombe, is a model for studying cellular quiescence. Shifting to a medium that lacks a nitrogen-source induces proliferative cells to enter long-term G0 quiescence. Klf1 is a Krüppel-like transcription factor with a 7-amino acid Cys2His2-type zinc finger motif. The deletion mutant, ∆klf1, normally divides in vegetative medium, but proliferation is not restored after long-term G0 quiescence. Cell biologic, transcriptomic, and metabolomic analyses revealed a unique phenotype of the ∆klf1 mutant in quiescence. Mutant cells had diminished transcripts related to signaling molecules for switching to differentiation; however, proliferative metabolites for cell-wall assembly and antioxidants had significantly increased. Further, the size of ∆klf1 cells increased markedly during quiescence due to the aberrant accumulation of Calcofluor-positive, chitin-like materials beneath the cell wall. After 4 weeks of quiescence, reversible proliferation ability was lost, but metabolism was maintained. Klf1 thus plays a role in G0 phase longevity by enhancing the differentiation signal and suppressing metabolism for growth. If Klf1 is lost, S. pombe fails to maintain a constant cell size and normal cell morphology during quiescence.

  20. Molecular Disorganization of Axons Adjacent to Human Cortical Microinfarcts

    Directory of Open Access Journals (Sweden)

    Hamza Coban

    2017-08-01

    Full Text Available Cortical microinfarcts (CMIs are microscopically identified wedge-shaped ischemic lesions that occur at or near the cortical surface and result from occlusion of penetrating arterioles. These microscopic lesions can be observed with high-resolution magnetic resonance imaging in aging brains and in patients with cerebrovascular disease. Recent studies have suggested that strategically located microinfarcts strongly correlate with cognitive deficits, which can contribute to Alzheimer’s disease as well as other forms of dementia. We have recently shown that the molecular organization of axons into functional microdomains is altered in areas adjacent to white matter lacunar and microinfarcts, creating a peri-infarct penumbral injury in surviving axons. Whether similar changes in nodal, adjacent paranodal, and proximal axon initial segment molecular organization occur in the cortex adjacent to human CMIs is not known. Paraffin-embedded sections of autopsy brain tissue from five patients with CMIs were immunofluorescently labeled for nodal and paranodal markers including beta-IV spectrin, ankyrin-G, and contactin-associated protein. High magnification images from the peri-infarct cortical tissue were generated using confocal microscopy. In surviving cortical tissue adjacent to microinfarcts, we observed a dramatic loss of axon initial segments, suggesting that neuronal firing capacity in adjacent cortical tissue is likely compromised. The number of identifiable nodal/paranodal complexes in surviving cortical tissue is reduced adjacent to microinfarcts, while the average paranodal length is increased indicating a breakdown of axoglial contact. This axonal microdomain disorganization occurs in the relative absence of changes in the structural integrity of myelinated axons as measured by myelin basic protein and neurofilament staining. These findings indicate that the molecular organization of surviving axons adjacent to human CMIs is abnormal

  1. Myelinated sensory and alpha motor axon regeneration in peripheral nerve neuromas

    Science.gov (United States)

    Macias, M. Y.; Lehman, C. T.; Sanger, J. R.; Riley, D. A.

    1998-01-01

    Histochemical staining for carbonic anhydrase and cholinesterase (CE) activities was used to analyze sensory and motor axon regeneration, respectively, during neuroma formation in transected and tube-encapsulated peripheral nerves. Median-ulnar and sciatic nerves in the rodent model permitted testing whether a 4 cm greater distance of the motor neuron soma from axotomy site or intrinsic differences between motor and sensory neurons influenced regeneration and neuroma formation 10, 30, and 90 days later. Ventral root radiculotomy confirmed that CE-stained axons were 97% alpha motor axons. Distance significantly delayed axon regeneration. When distance was negligible, sensory axons grew out sooner than motor axons, but motor axons regenerated to a greater quantity. These results indicate regeneration differences between axon subtypes and suggest more extensive branching of motor axons within the neuroma. Thus, both distance from injury site to soma and inherent motor and sensory differences should be considered in peripheral nerve repair strategies.

  2. NG2 cells response to axonal alteration in the spinal cord white matter in mice with genetic disruption of neurofilament light subunit expression

    Directory of Open Access Journals (Sweden)

    Xiao Zhi

    2008-10-01

    Full Text Available Abstract Background Chondroitin sulphate proteoglycan (NG2 expressing cells, morphologically characterized by multi-branched processes and small cell bodies, are the 4th commonest cell population of non-neuronal cell type in the central nervous system (CNS. They can interact with nodes of Ranvier, receive synaptic input, generate action potential and respond to some pathological stimuli, but the function of the cells is still unclear. We assumed the NG2 cells may play an active role in neuropathogenesis and aimed to determine if NG2 cells could sense and response to the alterations in the axonal contents caused by disruption of neurofilament light subunit (NFL expression. Results In the early neuropathological development stage, our study showed that the diameter of axons of upper motor neurons of NFL-/- mice decreased significantly while the thickness of their myelin sheath increased remarkably. Although there was an obvious morphological distortion in axons with occasionally partial demyelination, no obvious changes in expression of myelin proteins was detected. Parallel to these changes in the axons and their myelination, the processes of NG2 cells were disconnected from the nodes of Ranvier and extended further, suggesting that these cells in the spinal cord white matter could sense the alteration in axonal contents caused by disruption of NFL expression before astrocytic and microglial activation. Conclusion The structural configuration determined by the NFL gene may be important for maintenance of normal morphology of myelinated axons. The NG2 cells might serve as an early sensor for the delivery of information from impaired neurons to the local environment.

  3. Cryogenics maintenance strategy

    Science.gov (United States)

    Cruzat, Fabiola

    2012-09-01

    ALMA is an interferometer composed of 66 independent systems, with specific maintenance requirements for each subsystem. To optimize the observation time and reduce downtime maintenance, requirements are very demanding. One subsystem with high maintenance efforts is cryogenics and vacuum. To organize the maintenance, the Cryogenic and Vacuum department is using and implementing different tools. These are monitoring and problem reporting systems and CMMS. This leads to different maintenance approaches: Preventive Maintenance, Corrective Maintenance and Condition Based Maintenance. In order to coordinate activities with other departments the preventive maintenance schedule is kept as flexible as systems allow. To cope with unavoidable failures, the team has to be prepared to work under any condition with the spares on time. Computerized maintenance management system (CMMS) will help to manage inventory control for reliable spare part handling, the correct record of work orders and traceability of maintenance activities. For an optimized approach the department is currently evaluating where preventive or condition based maintenance applies to comply with the individual system demand. Considering the change from maintenance contracts to in-house maintenance will help to minimize costs and increase availability of parts. Due to increased number of system and tasks the cryo team needs to grow. Training of all staff members is mandatory, in depth knowledge must be built up by doing complex maintenance activities in the Cryo group, use of advanced computerized metrology systems.

  4. Maintenance of nuclear power plants

    International Nuclear Information System (INIS)

    Migaud, D.; Hutin, J.P.; Jouette, I.; Eymond, P.; Devie, P.; Cudelou, C.; Magnier, S.; Frydman, M.

    2016-01-01

    This document gathers different articles concerning the maintenance of the French nuclear power plants. The first article analyses the impact of the recent law on the energetic transition that sets the share of nuclear power at 50% of the electricity produced by 2025. A consequence may be the decommissioning of 17 to 20 reactors by 2025 and the huge maintenance program called 'Grand Carenage' whose aim is to extend operating life over 40 years will have to be re-considered in order to avoid useless expenses. The second article shows that in 2015 the French nuclear reactor fleet got very good results in terms of availability and safety. There were 49 scheduled outages and among them some ended ahead of time. The third article describes the specificities of the maintenance of a nuclear power plant, for instance the redundancy of some systems implies that maintenance has to deal with systems that have never functioned but must be ready to operate at any moment. Another specificity is the complexity of a nuclear power plant that implies an essential phase of preparation for maintenance operations. Because of safety requirements any maintenance operation has to be controlled, checked and may provide feedback. The fourth article presents the 'Grand Carenage' maintenance program that involves the following operations: the replacement of steam generators, the re-tubing of condensers, the replacement of the filtering drums used for cooling water, the testing of the reactor building, the hydraulic test of the primary circuit and the inspection of the reactor vessel. The fifth article focuses on the organization of the work-site for maintenance operations and the example of the Belleville-sur-Loire is described in the sixth article. Important maintenance operations like 'Grand Carenage' requires a strong collaboration with a network of specialized enterprises and as no reactor (except Flamanville EPR) is being built in France, maintenance

  5. Cortical Interneuron Subtypes Vary in Their Axonal Action Potential Properties.

    Science.gov (United States)

    Casale, Amanda E; Foust, Amanda J; Bal, Thierry; McCormick, David A

    2015-11-25

    The role of interneurons in cortical microcircuits is strongly influenced by their passive and active electrical properties. Although different types of interneurons exhibit unique electrophysiological properties recorded at the soma, it is not yet clear whether these differences are also manifested in other neuronal compartments. To address this question, we have used voltage-sensitive dye to image the propagation of action potentials into the fine collaterals of axons and dendrites in two of the largest cortical interneuron subtypes in the mouse: fast-spiking interneurons, which are typically basket or chandelier neurons; and somatostatin containing interneurons, which are typically regular spiking Martinotti cells. We found that fast-spiking and somatostatin-expressing interneurons differed in their electrophysiological characteristics along their entire dendrosomatoaxonal extent. The action potentials generated in the somata and axons, including axon collaterals, of somatostatin-expressing interneurons are significantly broader than those generated in the same compartments of fast-spiking inhibitory interneurons. In addition, action potentials back-propagated into the dendrites of somatostatin-expressing interneurons much more readily than fast-spiking interneurons. Pharmacological investigations suggested that axonal action potential repolarization in both cell types depends critically upon Kv1 channels, whereas the axonal and somatic action potentials of somatostatin-expressing interneurons also depend on BK Ca(2+)-activated K(+) channels. These results indicate that the two broad classes of interneurons studied here have expressly different subcellular physiological properties, allowing them to perform unique computational roles in cortical circuit operations. Neurons in the cerebral cortex are of two major types: excitatory and inhibitory. The proper balance of excitation and inhibition in the brain is critical for its operation. Neurons contain three main

  6. Mechanistic logic underlying the axonal transport of cytosolic proteins

    Science.gov (United States)

    Scott, David A.; Das, Utpal; Tang, Yong; Roy, Subhojit

    2011-01-01

    Proteins vital to presynaptic function are synthesized in the neuronal perikarya and delivered into synapses via two modes of axonal transport. While membrane-anchoring proteins are conveyed in fast axonal transport via motor-driven vesicles, cytosolic proteins travel in slow axonal transport; via mechanisms that are poorly understood. We found that in cultured axons, populations of cytosolic proteins tagged to photoactivable-GFP (PA-GFP) move with a slow motor-dependent anterograde bias; distinct from vesicular-trafficking or diffusion of untagged PA-GFP. The overall bias is likely generated by an intricate particle-kinetics involving transient assembly and short-range vectorial spurts. In-vivo biochemical studies reveal that cytosolic proteins are organized into higher-order structures within axon-enriched fractions that are largely segregated from vesicles. Data-driven biophysical modeling best predicts a scenario where soluble molecules dynamically assemble into mobile supra-molecular structures. We propose a model where cytosolic proteins are transported by dynamically assembling into multi-protein complexes that are directly/indirectly conveyed by motors. PMID:21555071

  7. Functional complexity of the axonal growth cone: a proteomic analysis.

    Directory of Open Access Journals (Sweden)

    Adriana Estrada-Bernal

    Full Text Available The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥ 99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions.

  8. Subtypes of GABAergic neurons project axons in the neocortex

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Higo

    2009-11-01

    Full Text Available γ-aminobutyric acid (GABAergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP-labeled GABAergic neurons in GAD67-Cre knock-in / GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing.

  9. 7 CFR 1435.104 - Loan maintenance.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Loan maintenance. 1435.104 Section 1435.104 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... Loan maintenance. (a) All processors receiving loans shall: (1) Abide by the terms and conditions of...

  10. Technical and organizational considerations for the long-term maintenance and development of digital brain atlases and web-based databases.

    Science.gov (United States)

    Ito, Kei

    2010-01-01

    Digital brain atlas is a kind of image database that specifically provide information about neurons and glial cells in the brain. It has various advantages that are unmatched by conventional paper-based atlases. Such advantages, however, may become disadvantages if appropriate cares are not taken. Because digital atlases can provide unlimited amount of data, they should be designed to minimize redundancy and keep consistency of the records that may be added incrementally by different staffs. The fact that digital atlases can easily be revised necessitates a system to assure that users can access previous versions that might have been cited in papers at a particular period. To inherit our knowledge to our descendants, such databases should be maintained for a very long period, well over 100 years, like printed books and papers. Technical and organizational measures to enable long-term archive should be considered seriously. Compared to the initial development of the database, subsequent efforts to increase the quality and quantity of its contents are not regarded highly, because such tasks do not materialize in the form of publications. This fact strongly discourages continuous expansion of, and external contributions to, the digital atlases after its initial launch. To solve these problems, the role of the biocurators is vital. Appreciation of the scientific achievements of the people who do not write papers, and establishment of the secure academic career path for them, are indispensable for recruiting talents for this very important job.

  11. Axonal transport and axon sprouting in the adult rat dentate gyrus: an autoradiographic study

    International Nuclear Information System (INIS)

    Goldowitz, D.; Cotman, C.W.

    1980-01-01

    In response to an entorhinal lesion, the commissural and associational afferents to the dentate gyrus have been shown to expand beyond their normal terminal zone into the area denervated by the entorhinal lesion. The present study has investigated the axonal transport of [ 3 H]-labeled proteins in the commissural and associational projections following an entorhinal lesion. Injections of [ 3 H]proline, [ 3 H]leucine or [ 3 H)fucose were given in the vicinity of the commissural and associational cells of origin before, immediately subsequent to, or at 5 to 15 days after the entorhinal lesion. The disposition of previously- or newly-synthesized proteins was examined in the commissural and associational terminal field at different times after an entorhinal lesion by light-microscopic autoradiography. (author)

  12. Fast and reliable identification of axons, axon initial segments and dendrites with local field potential recording

    DEFF Research Database (Denmark)

    Petersen, Anders V.; Johansen, Emil O.; Perrier, Jean-Francois

    2015-01-01

    The axon initial segment (AIS) is an essential neuronal compartment. It is usually where action potentials are initiated. Recent studies demonstrated that the AIS is a plastic structure that can be regulated by neuronal activity and by the activation of metabotropic receptors. Studying the AIS...... in live tissue can be difficult because its identification is not always reliable. Here we provide a new technique allowing a fast and reliable identification of the AIS in live brain slice preparations. By simultaneous recording of extracellular local field potentials and whole-cell patch-clamp recording...... of neurons, we can detect sinks caused by inward currents flowing across the membrane. We determine the location of the AIS by comparing the timing of these events with the action potential. We demonstrate that this method allows the unequivocal identification of the AIS of different types of neurons from...

  13. Fast and reliable identification of axons, axon initial segments and dendrites with local field potential recording

    Directory of Open Access Journals (Sweden)

    Anders Victor ePetersen

    2015-10-01

    Full Text Available The axon initial segment (AIS is an essential neuronal compartment. It is usually where action potentials are initiated. Recent studies demonstrated that the AIS is a plastic structure that can be regulated by neuronal activity and by the activation of metabotropic receptors. Studying the AIS in live tissue can be difficult because its identification is not always reliable. Here we provide a new technique allowing a fast and reliable identification of the AIS in live brain slice preparations. By simultaneous recoding of extracellular local field potentials and whole-cell patch-clamp recording of neurons, we can detect sinks caused by inward currents flowing across the membrane. We determine the location of the AIS by comparing the timing of these events with the action potential. We demonstrate that this method allows the unequivocal identification of the AIS of different types of neurons from the brain.

  14. Maintenance analysis method and operational feedback: a comprehensive maintenance management

    International Nuclear Information System (INIS)

    Mathieu Riou; Victor Planchon

    2006-01-01

    Full text of publication follows: Current periodic inspections program carried out on the COGEMA LOGISTICS casks is required by regulations and approved by the competent Authority. Thus, Safety and casks conformity to the according certificate of approval are guaranteed. Nonetheless, based on experience it appeared that some maintenance operations did not seem relevant or were redundant. Then, it was decided to rethink completely our maintenance program to reach the following objectives: - Set up the 'a minima' required inspection operations required to guarantee Safety and conformity to the certificate of approval, - Optimize criteria and periodicities of inspections taking into account: operational feedback, routine inspections carried out for each transport, regulations, environmental impact (ALARA, waste reduction,...), cost-effectiveness (reduction of cask's immobilization period,...). - Set up a maintenance program in Safety Analysis Reports that: stands alone (no need to check the specification or the certificate of approval to have the complete list of inspections mandatory to guarantee Safety), gives objectives instead of means of controls. This approach needs then to be re-evaluated by the competent Authority. Study's scope has been limited to the TN TM 12 cask family which is intensely used. COGEMA LOGISTICS has a high operational feedback on these casks. After Authority agreement, and in accordance with its requirements, study will then be extended to the other casks belonging to the COGEMA LOGISTICS cask fleet. Actually, the term 'maintenance' is linked to 'Base maintenance' and 'Main maintenance' and implicitly means that the cask is immobilized for a given period. To emphasize the modifications, the term 'maintenance' is no longer used and is substituted by 'periodic upkeep'. By changing the name, COGEMA LOGISTICS wants to emphasize that: some operations can for instance be realized while the cask is unloaded, periodicities are thought in terms of

  15. Perilesional edema in radiation necrosis reflects axonal degeneration

    International Nuclear Information System (INIS)

    Perez-Torres, Carlos J; Yuan, Liya; Schmidt, Robert E; Rich, Keith M; Ackerman, Joseph JH; Garbow, Joel R

    2015-01-01

    Recently, we characterized a Gamma Knife® radiation necrosis mouse model with various magnetic resonance imaging (MRI) protocols to identify biomarkers useful in differentiation from tumors. Though the irradiation was focal to one hemisphere, a contralateral injury was observed that appeared to be localized in the white matter only. Interestingly, this injury was identifiable in T2-weighted images, apparent diffusion coefficient (ADC), and magnetization transfer ratio (MTR) maps, but not on post-contrast T1-weighted images. This observation of edema independent of vascular changes is akin to the perilesional edema seen in clinical radiation necrosis. The pathology underlying the observed white-matter MRI changes was explored by performing immunohistochemistry for healthy axons and myelin. The presence of both healthy axons and myelin was reduced in the contralateral white-matter lesion. Based on our immunohistochemical findings, the contralateral white-matter injury is most likely due to axonal degeneration

  16. The nano-architecture of the axonal cytoskeleton.

    Science.gov (United States)

    Leterrier, Christophe; Dubey, Pankaj; Roy, Subhojit

    2017-12-01

    The corporeal beauty of the neuronal cytoskeleton has captured the imagination of generations of scientists. One of the easiest cellular structures to visualize by light microscopy, its existence has been known for well over 100 years, yet we have only recently begun to fully appreciate its intricacy and diversity. Recent studies combining new probes with super-resolution microscopy and live imaging have revealed surprising details about the axonal cytoskeleton and, in particular, have discovered previously unknown actin-based structures. Along with traditional electron microscopy, these newer techniques offer a nanoscale view of the axonal cytoskeleton, which is important for our understanding of neuronal form and function, and lay the foundation for future studies. In this Review, we summarize existing concepts in the field and highlight contemporary discoveries that have fundamentally altered our perception of the axonal cytoskeleton.

  17. The importance of iron in long-term survival of maintenance hemodialysis patients treated with epoetin-alfa and intravenous iron: analysis of 9.5 years of prospectively collected data

    Directory of Open Access Journals (Sweden)

    Shukla Rakesh

    2009-02-01

    not mediated by other predictors in the model. Conclusion Long term survival of maintenance hemodialysis patients was favorably affected by a relatively high hemoglobin level, by moderate intravenous iron administration, and by indicators of iron sufficiency. It was unfavorably influenced by a low hemoglobin level, and by indicators of iron deficiency.

  18. Rationale and design of the VISION study: a randomized, open-label study to evaluate the long-term safety of vonoprazan as maintenance treatment in patients with erosive esophagitis

    Directory of Open Access Journals (Sweden)

    Uemura N

    2018-01-01

    Full Text Available Naomi Uemura,1 Yoshikazu Kinoshita,2 Ken Haruma,3 Takashi Yao,4 Ryoji Kushima,5 Tatsuhiro Kanoo6 1Department of Gastroenterology and Hepatology, National Center for Global Health and Medicine, Kohnodai Hospital, Chiba, Japan; 2Department of Gastroenterology and Hepatology, Faculty of Medicine, Shimane University, Shimane, Japan; 3Department of General Internal Medicine 2, Kawasaki Medical School General Medical Center, Okayama, Japan; 4Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo, Japan; 5Department of Clinical Laboratory Medicine, Shiga University of Medical Science Hospital, Shiga, Japan; 6Takeda Pharmaceutical Co., Ltd, Osaka, Japan Abstract: Erosive esophagitis (EE occurs when the epithelial mucosa is damaged due to gastric acid reflux, and the incidence of this disease is increasing in Japan due to changes in diet and lifestyle. The condition can be treated using proton pump inhibitors (PPIs that act by irreversibly blocking the H+,K+-ATPase responsible for acid secretion. Vonoprazan is a K+ competitive channel inhibitor, which reversibly and potently inhibits gastric acid secretion. However, long-term data on vonoprazan use are limited. The aim of the VISION trial is to investigate the long-term efficacy and safety of vonoprazan in comparison with the PPI lansoprazole. This randomized, multicenter, 5-year, open-label study has a planned recruitment of 195 participants (2:1 allocation vonoprazan:lansoprazole from 33 sites in Japan. The study comprises an 8-week “healing” phase (vonoprazan 20 mg or lansoprazole 30 mg p.o. and a 260-week “maintenance” phase (vonoprazan 10 mg or lansoprazole 15 mg. Safety populations in both phases are defined as participants who receive at least one dose of the study or control drug in the healing and maintenance phases, respectively. The full analysis set in both phases is defined as participants who are randomized and receive at least one dose of the study or

  19. Axoplasmic RNA species synthesized in the isolated squid giant axon.

    Science.gov (United States)

    Rapallino, M V; Cupello, A; Giuditta, A

    1988-07-01

    Isolated squid stellate nerves and giant fiber lobes were incubated for 8 hr in Millipore filtered sea water containing [3H]uridine. The electrophoretic patterns of radioactive RNA purified from the axoplasm of the giant axon and from the giant fiber lobe (cell bodies of the giant axon) demonstrated the presence of RNA species with mobilities corresponding to tRNA and rRNA. The presence of labeled rRNAs was confirmed by the behavior of the large rRNA component (31S) which, in the squid, readily dissociates into its two constituent moyeties (17S and 20S). Comparable results were obtained with the axonal sheath and the stellate nerve. In all the electrophoretic patterns, additional species of radioactive RNA migrated between the 4S and the 20S markers, i.e. with mobilities corresponding to presumptive mRNAs. Chromatographic analysis of the purified RNAs on oligo(dT)cellulose indicated the presence of labeled poly(A)+ RNA in all tissue samples. Radioactive poly(A)+ RNA represented approximately 1% of the total labeled RNA in the axoplasm, axonal sheath and stellate nerve, but more than 2% in the giant fiber lobe. The labeled poly(A)+ RNAs of the giant fibre lobe showed a prevalence of larger species in comparison to the axonal sheath and stellate nerve. In conclusion, the axoplasmic RNAs synthesized by the isolated squid giant axon appear to include all the major classes of axoplasmic RNAs, that is rRNA, tRNA and mRNA.

  20. Pannexin 1 Modulates Axonal Growth in Mouse Peripheral Nerves

    Directory of Open Access Journals (Sweden)

    Steven M. Horton

    2017-11-01

    Full Text Available The pannexin family of channels consists of three members—pannexin-1 (Panx1, pannexin-2 (Panx2, and pannexin-3 (Panx3 that enable the exchange of metabolites and signaling molecules between intracellular and extracellular compartments. Pannexin-mediated release of intracellular ATP into the extracellular space has been tied to a number of cellular activities, primarily through the activity of type P2 purinergic receptors. Previous work indicates that the opening of Panx1 channels and activation of purinergic receptors by extracellular ATP may cause inflammation and apoptosis. In the CNS (central nervous system and PNS (peripheral nervous system, coupled pannexin, and P2 functions have been linked to peripheral sensitization (pain pathways. Purinergic pathways are also essential for other critical processes in the PNS, including myelination and neurite outgrowth. However, whether such pathways are pannexin-dependent remains to be determined. In this study, we use a Panx1 knockout mouse model and pharmacological inhibitors of the Panx1 and the ATP-mediated signaling pathway to fill gaps in our understanding of Panx1 localization in peripheral nerves, roles for Panx1 in axonal outgrowth and myelination, and neurite extension. Our data show that Panx1 is localized to axonal, myelin, and vascular compartments of the peripheral nerves. Knockout of Panx1 gene significantly increased axonal caliber in vivo and axonal growth rate in cultured dorsal root ganglia (DRG neurons. Furthermore, genetic knockout of Panx1 or inhibition of components of purinergic signaling, by treatment with probenecid and apyrase, resulted in denser axonal outgrowth from cultured DRG explants compared to untreated wild-types. Our findings suggest that Panx1 regulates axonal growth in the peripheral nervous system.

  1. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy.

    Directory of Open Access Journals (Sweden)

    Jia-Ying Sung

    Full Text Available This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr. Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05, shortened strength-duration time constant (P<0.01, increased superexcitability (P<0.01, decreased subexcitability (P<0.05, decreased accommodation to depolarizing current (P<0.01, and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1-8 and G2+3 (TNSr 9-24 groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01 in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.

  2. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    International Nuclear Information System (INIS)

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.

    2015-01-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  3. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  4. An Internet- and mobile-based tailored intervention to enhance maintenance of physical activity after cardiac rehabilitation: short-term results of a randomized controlled trial.

    Science.gov (United States)

    Antypas, Konstantinos; Wangberg, Silje C

    2014-03-11

    (Kolmogorov-Smirnov Z=0.823, P=.38, r=.17). At 3 months after discharge, the tailored intervention group (n=7) had a significantly higher median level of overall physical activity (median 5613.0, IQR 2828.0) than the control group (n=12, median 1356.0, IQR 2937.0; Kolmogorov-Smirnov Z=1.397, P=.02, r=.33). The median adherence was 45.0 (95% CI 0.0-169.8) days for the tailored group and 111.0 (95% CI 45.1-176.9) days for the control group; however, the difference was not significant (P=.39). There were no statistically significant differences between the 2 groups in stage of change, self-efficacy, social support, perceived tailoring, anxiety, or depression. Because of the small sample size and the high attrition rate at the follow-up visits, we cannot make conclusions regarding the efficacy of our approach, but the results indicate that the tailored version of the intervention may have contributed to the long-term higher physical activity maintained after cardiac rehabilitation by participants receiving the tailored intervention compared with those receiving the nontailored intervention. ClinicalTrials.gov: NCT01223170; http://clinicaltrials.gov/show/NCT01223170 (Archived by WebCite at http://www.webcitation.org/6Nch4ldcL).

  5. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    Glial reactivity is implicated in CNS repair and regenerative responses. Microglia, the cells responding earliest to axonal injury, produce tumor necrosis factor-alpha (TNFalpha), a cytokine with both cytopathic and neuroprotective effects. We have studied activation of hippocampal microglia...... periods. Message for the immune cytokine interferon-gamma (IFNgamma) was undetectable, and glial reactivity to axonal lesions occurred as normal in IFNgamma-deficient mice. Microglial responses to lesion-induced neuronal injury were markedly enhanced in myelin basic protein promoter-driven transgenic mice...

  6. Two Different Maintenance Strategies in the Hospital Environment: Preventive Maintenance for Older Technology Devices and Predictive Maintenance for Newer High-Tech Devices

    Science.gov (United States)

    Sezdi, Mana

    2016-01-01

    A maintenance program generated through the consideration of characteristics and failures of medical equipment is an important component of technology management. However, older technology devices and newer high-tech devices cannot be efficiently managed using the same strategies because of their different characteristics. This study aimed to generate a maintenance program comprising two different strategies to increase the efficiency of device management: preventive maintenance for older technology devices and predictive maintenance for newer high-tech devices. For preventive maintenance development, 589 older technology devices were subjected to performance verification and safety testing (PVST). For predictive maintenance development, the manufacturers' recommendations were used for 134 high-tech devices. These strategies were evaluated in terms of device reliability. This study recommends the use of two different maintenance strategies for old and new devices at hospitals in developing countries. Thus, older technology devices that applied only corrective maintenance will be included in maintenance like high-tech devices. PMID:27195666

  7. Two Different Maintenance Strategies in the Hospital Environment: Preventive Maintenance for Older Technology Devices and Predictive Maintenance for Newer High-Tech Devices.

    Science.gov (United States)

    Sezdi, Mana

    2016-01-01

    A maintenance program generated through the consideration of characteristics and failures of medical equipment is an important component of technology management. However, older technology devices and newer high-tech devices cannot be efficiently managed using the same strategies because of their different characteristics. This study aimed to generate a maintenance program comprising two different strategies to increase the efficiency of device management: preventive maintenance for older technology devices and predictive maintenance for newer high-tech devices. For preventive maintenance development, 589 older technology devices were subjected to performance verification and safety testing (PVST). For predictive maintenance development, the manufacturers' recommendations were used for 134 high-tech devices. These strategies were evaluated in terms of device reliability. This study recommends the use of two different maintenance strategies for old and new devices at hospitals in developing countries. Thus, older technology devices that applied only corrective maintenance will be included in maintenance like high-tech devices.

  8. Maintenance therapy in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Jean-Luc Harousseau

    2009-08-01

    Full Text Available The treatment of multiple myeloma (MM has changed dramatically in the past twenty years with the introduction of high-dose therapy plus autologous stem-cell transplantation (ASCT in younger patients and, more recently, of three novel agents (thalidomide, bortezomib, and lenalidomide. When conventional chemotherapy was the only available possibility, complete responses (CR were very rare and the objective of maintenance was to prolong remission duration by continuing the same type of treatment that induced the initial response. With recent therapeutic improvements, CR achievement becomes a realistic goal that, in most cases, is significantly correlated with the outcome (1. Therefore, both the nature and the impact of maintenance therapy have changed. Maintenance therapy is based currently on novel agents, and its objective is not only to control the clone but also to further decrease the tumor burden and improve the quality of response. A number of randomized studies show a benefit from maintenance therapy with novel agents (until now, mostly thalidomide, at least in terms of response rate and progression-free survival (PFS. However, there is still a debate as concerns the impact on overall survival (OS and the optimal administration of maintenance therapy.

  9. Unsurfaced Road Maintenance Management

    Science.gov (United States)

    1992-12-01

    This draft manual describes an unsurfaced road maintenance management system for use on military installations. This system is available in either a manual or computerized mode (Micro PAVER). The maintenance standards prescribed should protect Govern...

  10. Winter maintenance performance measure.

    Science.gov (United States)

    2016-01-01

    The Winter Performance Index is a method of quantifying winter storm events and the DOTs response to them. : It is a valuable tool for evaluating the States maintenance practices, performing post-storm analysis, training : maintenance personnel...

  11. Movable bridge maintenance monitoring.

    Science.gov (United States)

    2013-10-01

    Movable bridges have particular maintenance issues, which cost considerably more than those of fixed bridges, : mostly because of the complex interaction of the mechanical, electrical and structural components. In order to track : maintenance and ope...

  12. Selective rab11 transport and the intrinsic regenerative ability of CNS axons.

    Science.gov (United States)

    Koseki, Hiroaki; Donegá, Matteo; Lam, Brian Yh; Petrova, Veselina; van Erp, Susan; Yeo, Giles Sh; Kwok, Jessica Cf; Ffrench-Constant, Charles; Eva, Richard; Fawcett, James W

    2017-08-08

    Neurons lose intrinsic axon regenerative ability with maturation, but the mechanism remains unclear. Using an in-vitro laser axotomy model, we show a progressive decline in the ability of cut CNS axons to form a new growth cone and then elongate. Failure of regeneration was associated with increased retraction after axotomy. Transportation into axons becomes selective with maturation; we hypothesized that selective exclusion of molecules needed for growth may contribute to regeneration decline. With neuronal maturity rab11 vesicles (which carry many molecules involved in axon growth) became selectively targeted to the somatodendritic compartment and excluded from axons by predominant retrograde transport However, on overexpression rab11 was mistrafficked into proximal axons, and these axons showed less retraction and enhanced regeneration after axotomy. These results suggest that the decline of intrinsic axon regenerative ability is associated with selective exclusion of key molecules, and that manipulation of transport can enhance regeneration.

  13. Optimization of surface maintenance

    International Nuclear Information System (INIS)

    Oeverland, E.

    1990-01-01

    The present conference paper deals with methods of optimizing the surface maintenance of steel-made offshore installations. The paper aims at identifying important approaches to the problems regarding the long-range planning of an economical and cost effective maintenance program. The methods of optimization are based on the obtained experiences from the maintenance of installations on the Norwegian continental shelf. 3 figs

  14. Axon diameter and intra-axonal volume fraction of the corticospinal tract in idiopathic normal pressure hydrocephalus measured by q-space imaging.

    Directory of Open Access Journals (Sweden)

    Kouhei Kamiya

    Full Text Available PURPOSE: Previous studies suggest that compression and stretching of the corticospinal tract (CST potentially cause treatable gait disturbance in patients with idiopathic normal pressure hydrocephalus (iNPH. Measurement of axon diameter with diffusion MRI has recently been used to investigate microstructural alterations in neurological diseases. In this study, we investigated alterations in the axon diameter and intra-axonal fraction of the CST in iNPH by q-space imaging (QSI analysis. METHODS: Nineteen patients with iNPH and 10 age-matched controls were recruited. QSI data were obtained with a 3-T system by using a single-shot echo planar imaging sequence with the diffusion gradient applied parallel to the antero-posterior axis. By using a two-component low-q fit model, the root mean square displacements of intra-axonal space ( =  axon diameter and intra-axonal volume fraction of the CST were calculated at the levels of the internal capsule and body of the lateral ventricle, respectively. RESULTS: Wilcoxon's rank-sum test revealed a significant increase in CST intra-axonal volume fraction at the paraventricular level in patients (p<0.001, whereas no significant difference was observed in the axon diameter. At the level of the internal capsule, neither axon diameter nor intra-axonal volume fraction differed significantly between the two groups. CONCLUSION: Our results suggest that in patients with iNPH, the CST does not undergo irreversible axonal damage but is rather compressed and/or stretched owing to pressure from the enlarged ventricle. These analyses of axon diameter and intra-axonal fraction yield insights into microstructural alterations of the CST in iNPH.

  15. Multiple sclerosis and anterograde axonal degeneration study by magnetic resonance

    International Nuclear Information System (INIS)

    Martinez Pardo, P.; Capdevila Cirera, A.; Sanz Marin, P.M.; Gili Planas, J.

    1993-01-01

    Multiple sclerosis (MS) is a disease of the central nervous system that affects specifically the myelin. Its diagnosis by imaging techniques is, since the development of magnetic resonance (MR), relatively simple, and its occasional association with anterograde axonal degeneration (WD) has been reported. In both disorders, there is a lengthening of the T1 and T2 relaxation times. In the present report, 76 patients with MS with less than 4 plaques in the typical periventricular position were studied retrospectively, resulting in a rate of association with anterograde axonal degeneration of 8%. We consider that in spite of their same behavior in MR,MS and WD, with moreover represent completely different pathologies, are perfectly differential by MR. The S-E images with longer repetition and echo times in the axial and coronal planes have proved to be those most sensitive for this differentiation. Given that MS is specific pathology of then myelin, the axonal damages in delayed until several plaques adjacent to an axon affect it. We consider that this, added to the restriction of our study group (less than 4 plaques), is the cause of the pow percentage of the MS-WD association in our study. (Author)

  16. Quantifying mechanical force in axonal growth and guidance

    Directory of Open Access Journals (Sweden)

    Ahmad Ibrahim Mahmoud Athamneh

    2015-09-01

    Full Text Available Mechanical force plays a fundamental role in neuronal development, physiology, and regeneration. In particular, research has shown that force is involved in growth cone-mediated axonal growth and guidance as well as stretch-induced elongation when an organism increases in size after forming initial synaptic connections. However, much of the details about the exact role of force in these fundamental processes remain unknown. In this review, we highlight (1 standing questions concerning the role of mechanical force in axonal growth and guidance and (2 different experimental techniques used to quantify forces in axons and growth cones. We believe that satisfying answers to these questions will require quantitative information about the relationship between elongation, forces, cytoskeletal dynamics, axonal transport, signaling, substrate adhesion, and stiffness contributing to directional growth advance. Furthermore, we address why a wide range of force values have been reported in the literature, and what these values mean in the context of neuronal mechanics. We hope that this review will provide a guide for those interested in studying the role of force in development and regeneration of neuronal networks.

  17. Model of fasciculation and sorting in mixed populations of axons

    Czech Academy of Sciences Publication Activity Database

    Chaudhuri, D.; Borowski, P.; Zápotocký, Martin

    2011-01-01

    Roč. 84, č. 2 (2011), e021908 ISSN 1539-3755 R&D Projects: GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : axon guidance * neurogenesis * mathematical model Subject RIV: FH - Neurology Impact factor: 2.255, year: 2011

  18. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Sally A Marik

    2010-06-01

    Full Text Available Cortical topography can be remapped as a consequence of sensory deprivation, suggesting that cortical circuits are continually modified by experience. To see the effect of altered sensory experience on specific components of cortical circuits, we imaged neurons, labeled with a genetically modified adeno-associated virus, in the intact mouse somatosensory cortex before and after whisker plucking. Following whisker plucking we observed massive and rapid reorganization of the axons of both excitatory and inhibitory neurons, accompanied by a transient increase in bouton density. For horizontally projecting axons of excitatory neurons there was a net increase in axonal projections from the non-deprived whisker barrel columns into the deprived barrel columns. The axon collaterals of inhibitory neurons located in the deprived whisker barrel columns retracted in the vicinity of their somata and sprouted long-range projections beyond their normal reach towards the non-deprived whisker barrel columns. These results suggest that alterations in the balance of excitation and inhibition in deprived and non-deprived barrel columns underlie the topographic remapping associated with sensory deprivation.

  19. Acute Motor Axonal Neuropathy in Association with Hepatitis E

    Directory of Open Access Journals (Sweden)

    Araz Al-Saffar

    2018-02-01

    Full Text Available Guillain–Barré syndrome (GBS is an acute peripheral neuropathy that develops as a result of post-infectious immune-mediated nerve injury. It can be classified into classic and variant GBS. Acute motor axonal neuropathy (AMAN is a subtype of GBS with the key clinical features of pure motor weakness, areflexia, absence of sensory symptoms, and lack of neurophysiologic evidence of demyelination. We reported a case of acute motor axonal neuropathy in association with hepatitis E infection. A young woman was referred to us after a period of nausea, fever, and diarrhea. She had unexplained muscle weakness at admission and has been diagnosed with acute hepatitis E infection. A rigorous clinical neurological assessment revealed bilateral symmetrical weakness, which affects the lower limbs more than the upper limbs, with no evidence of sensory involvement. Neurophysiological measurements indicated acute axonal injury without clues to demyelination. A diagnosis of acute motor axonal neuropathy subtype has been made, to which she only received supportive therapy. The symptoms resolved spontaneously and full recovery of motor function was attained after 35 days of weakness onset with complete normalization of neurophysiologic parameters.

  20. Investigation on the mechanism of peripheral axonal injury in glaucoma

    Directory of Open Access Journals (Sweden)

    Jun- Hong Zhao

    2013-05-01

    Full Text Available AIM: To compare the angles of longitudinal section of sclera around optic nerve heads and the never fiber layer changes in healthy adults and patients with glaucoma, and to investigate the mechanism of peripheral retinal axonal injury, with the combined knowledge of biomechanics. METHODS: The optical nerves and their peripheral tissue specimen in the 12 eyes from health adult donators and 12 eyes from glaucoma patient donators were dyed by Glees' method to compare the angles of longitudinal section of sclera around optic nerve heads(through optic nerve center, and to observe the anatomical features of the peripheral retinal axons. RESULTS: The mean angle of longitudinal section of sclera around optic nerve in healthy adults was 73.3°, while that in patients with absolute glaucoma was 75.6°. The difference showed no significance(t=1.44, P>0.05. There was a sharp bend in the course of peripheral optical fiber in healthy adults. However, the optic nerve fiber disappeared completely in patients with glaucoma end stage. CONCLUSION: The angle between the medial edge and leading edge of sclera(around optic nerve headsis an acute angle. The optical fiber in glaucoma end stage disappeared completely. The phenomenon may be related to high intraocular pressure, the sclera shape, the shear modulus of sclera and axons, and “axonal bending-injury” mechanism.

  1. IFNgamma enhances microglial reactions to hippocampal axonal degeneration

    DEFF Research Database (Denmark)

    Jensen, M B; Hegelund, I V; Lomholt, N D

    2000-01-01

    Glial reactivity is implicated in CNS repair and regenerative responses. Microglia, the cells responding earliest to axonal injury, produce tumor necrosis factor-alpha (TNFalpha), a cytokine with both cytopathic and neuroprotective effects. We have studied activation of hippocampal microglia to p...

  2. Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System

    Directory of Open Access Journals (Sweden)

    Shin Nagayama

    2010-09-01

    Full Text Available In the past decade, much has been elucidated regarding the functional organization of the axonal connection of olfactory sensory neurons to olfactory bulb (OB glomeruli. However, the manner in which projection neurons of the OB process odorant input and send this information to higher brain centers remains unclear. Here, we report long-range, large-scale tracing of the axonal projection patterns of OB neurons using two-photon microscopy. Tracer injection into a single glomerulus demonstrated widely distributed mitral/tufted cell axonal projections on the lateroventral surface of the mouse brain, including the anterior/posterior piriform cortex (PC and olfactory tubercle (OT. We noted two distinct groups of labeled axons: PC-orienting axons and OT-orienting axons. Each group occupied distinct parts of the lateral olfactory tract. PC-orienting axons projected axon collaterals to a wide area of the PC but only a few collaterals to the OT. OT-orienting axons densely projected axon collaterals primarily to the anterolateral OT (alOT. Different colored dye injections into the superficial and deep portions of the OB external plexiform layer revealed that the PC-orienting axon populations originated in presumed mitral cells and the OT-orienting axons in presumed tufted cells. These data suggest that although mitral and tufted cells receive similar odor signals from a shared glomerulus, they process the odor information in different ways and send their output to different higher brain centers via the PC and alOT.

  3. EPR design for maintenance

    International Nuclear Information System (INIS)

    Krugmann, U.

    1998-01-01

    Preventive maintenance is very important in achieving high plant availability. For the European Pressurized Reactor (EPR) preventive maintenance has been carefully addressed in the design stage. This is particularly necessary because of the traditionally different maintenance strategies employed in France and Germany. This paper emphasizes the following features introduced in the ERP design to minimize the duration of the refueling outage: (1) containment accessibility during power operation; (2) overall plant layout to facilitate inspections and maintenances within the containment; and (3) safety system design for enabling preventive maintenance during power operation. (author)

  4. Maintenance management systems

    International Nuclear Information System (INIS)

    Rohan, M. de

    1989-01-01

    This paper is concerned principally with Maintenance Management systems and their effective introduction into organisations. Maintenance improvement is basically a problem of managing the maintenance department in the broadest sense. Improvement does not only lie in the area of special techniques, systems or procedures; although they are valuable tools, but rather in a balanced attack, carefully guided by management. Over recent years, maintenance systems have received the major emphasis and in many instances the selection of the system has become a pre-occupation, whereas the importance of each maintenance function must be recognised and good management practices applied to all maintenance activities. The ingredients for success in the implementation of maintenance management systems are summarised as: having a management committee, clear objectives, project approach using project management techniques and an enthusiastic leader, user managed and data processing supported project, realistic budget and an understanding of the financial audit requirements. (author)

  5. Knowledge based maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, A. [Hamburgische Electacitaets-Werke AG Hamburg (Germany)

    1997-12-31

    The establishment of maintenance strategies is of crucial significance for the reliability of a plant and the economic efficiency of maintenance measures. Knowledge about the condition of components and plants from the technical and business management point of view therefore becomes one of the fundamental questions and the key to efficient management and maintenance. A new way to determine the maintenance strategy can be called: Knowledge Based Maintenance. A simple method for determining strategies while taking the technical condition of the components of the production process into account to the greatest possible degree which can be shown. A software with an algorithm for Knowledge Based Maintenance leads the user during complex work to the determination of maintenance strategies for this complex plant components. (orig.)

  6. Adult-Onset Leukoencephalopathy with Axonal Spheroids and Pigmented Glia Caused by a Novel R782G Mutation in CSF1R.

    Science.gov (United States)

    Foulds, Nicola; Pengelly, Reuben J; Hammans, Simon R; Nicoll, James A R; Ellison, David W; Ditchfield, Adam; Beck, Sarah; Ennis, Sarah

    2015-05-15

    We report a new family with autosomal dominant inheritance of a late onset rapidly progressive leukodystrophy in which exome sequencing has revealed a novel mutation p.R782G in the Colony-Stimulating Factor 1 Receptor gene (CSF1R). Neuropathology of two affected family members showed cerebral white matter degeneration with axonal swellings and pigmented macrophages. The few recently reported families with CSF1R mutations had been previously labelled "hereditary diffuse leukencephalopathy with axonal spheroids" (HDLS) and "pigmentary orthochromatic leukodystrophy" (POLD), disorders which now appear to form a disease continuum. The term "adult-onset leukoencephalopathy with axonal spheroids and pigmented glia" (ALSP) has been proposed to encompass this spectrum. As CSF1R regulates microglia this mutation implies that dysregulation of microglia is the primary cause of the disease.

  7. Creating Value by Integrating Logistic Trains Services and Maintenance Activities

    NARCIS (Netherlands)

    Busstra, Marten; van Dongen, Leonardus Adriana Maria

    2015-01-01

    NedTrain is the Netherlands Railway's subsidiary responsible for rolling stock maintenance. Train sets are brought in for short-term routine maintenance after set intervals of some 75 to 120 days. When a major defect occurs, train sets are allocated to one of the three maintenance depots and are

  8. Balancing preventive and corrective maintenance in Cernavoda Unit 1 NPP

    International Nuclear Information System (INIS)

    Riedel, M.; Marinescu, S.

    2000-01-01

    The paper presents a short reminder of Romania's Cernavoda NPP entering commercial operation and a brief description of the CANDU-6 project on which Unit 1 is based. The short term objectives of the maintenance management, the status of the existing maintenance programmes as well as future predictable maintenance programmes are outlined together with the Government plan to complete the balance of NPP. (author)

  9. Sound-Evoked Activity Influences Myelination of Brainstem Axons in the Trapezoid Body.

    Science.gov (United States)

    Sinclair, James L; Fischl, Matthew J; Alexandrova, Olga; Heβ, Martin; Grothe, Benedikt; Leibold, Christian; Kopp-Scheinpflug, Conny

    2017-08-23

    Plasticity of myelination represents a mechanism to tune the flow of information by balancing functional requirements with metabolic and spatial constraints. The auditory system is heavily myelinated and operates at the upper limits of action potential generation frequency and speed observed in the mammalian CNS. This study aimed to characterize the development of myelin within the trapezoid body, a central auditory fiber tract, and determine the influence sensory experience has on this process in mice of both sexes. We find that in vitro conduction speed doubles following hearing onset and the ability to support high-frequency firing increases concurrently. Also in this time, the diameter of trapezoid body axons and the thickness of myelin double, reaching mature-like thickness between 25 and 35 d of age. Earplugs were used to induce ∼50 dB elevation in auditory thresholds. If introduced at hearing onset, trapezoid body fibers developed thinner axons and myelin than age-matched controls. If plugged during adulthood, the thickest trapezoid body fibers also showed a decrease in myelin. These data demonstrate the need for sensory activity in both development and maintenance of myelin and have important implications in the study of myelin plasticity and how this could relate to sensorineural hearing loss following peripheral impairment. SIGNIFICANCE STATEMENT The auditory system has many mechanisms to maximize the dynamic range of its afferent fibers, which operate at the physiological limit of action potential generation, precision, and speed. In this study we demonstrate for the first time that changes in peripheral activity modifies the thickness of myelin in sensory neurons, not only in development but also in mature animals. The current study suggests that changes in CNS myelination occur as a downstream mechanism following peripheral deficit. Given the required submillisecond temporal precision for binaural auditory processing, reduced myelination might

  10. Genetic Deletion of the Transcriptional Repressor NFIL3 Enhances Axon Growth In Vitro but Not Axonal Repair In Vivo

    NARCIS (Netherlands)

    van der Kallen, Loek R; Eggers, Ruben; Ehlert, Erich M; Verhaagen, J.; Smit, August B; van Kesteren, Ronald E

    2015-01-01

    Axonal regeneration after injury requires the coordinated expression of genes in injured neurons. We previously showed that either reducing expression or blocking function of the transcriptional repressor NFIL3 activates transcription of regeneration-associated genes Arg1 and Gap43 and strongly

  11. Axonal regeneration and development of de novo axons from distal dendrites of adult feline commissural interneurons after a proximal axotomy

    DEFF Research Database (Denmark)

    Fenrich, Keith K; Skelton, Nicole; MacDermid, Victoria E

    2007-01-01

    Following proximal axotomy, several types of neurons sprout de novo axons from distal dendrites. These processes may represent a means of forming new circuits following spinal cord injury. However, it is not know whether mammalian spinal interneurons, axotomized as a result of a spinal cord injur...

  12. A randomized clinical trial of eye movement desensitization and reprocessing (EMDR), fluoxetine, and pill placebo in the treatment of posttraumatic stress disorder: treatment effects and long-term maintenance.

    Science.gov (United States)

    van der Kolk, Bessel A; Spinazzola, Joseph; Blaustein, Margaret E; Hopper, James W; Hopper, Elizabeth K; Korn, Deborah L; Simpson, William B

    2007-01-01

    The relative short-term efficacy and long-term benefits of pharmacologic versus psychotherapeutic interventions have not been studied for posttraumatic stress disorder (PTSD). This study compared the efficacy of a selective serotonin reup-take inhibitor (SSRI), fluoxetine, with a psychotherapeutic treatment, eye movement desensitization and reprocessing (EMDR), and pill placebo and measured maintenance of treatment gains at 6-month follow-up. Eighty-eight PTSD subjects diagnosed according to DSM-IV criteria were randomly assigned to EMDR, fluoxetine, or pill placebo. They received 8 weeks of treatment and were assessed by blind raters posttreatment and at 6-month follow-up. The primary outcome measure was the Clinician-Administered PTSD Scale, DSM-IV version, and the secondary outcome measure was the Beck Depression Inventory-II. The study ran from July 2000 through July 2003. The psychotherapy intervention was more successful than pharmacotherapy in achieving sustained reductions in PTSD and depression symptoms, but this benefit accrued primarily for adult-onset trauma survivors. At 6-month follow-up, 75.0% of adult-onset versus 33.3% of child-onset trauma subjects receiving EMDR achieved asymptomatic end-state functioning compared with none in the fluoxetine group. For most childhood-onset trauma patients, neither treatment produced complete symptom remission. This study supports the efficacy of brief EMDR treatment to produce substantial and sustained reduction of PTSD and depression in most victims of adult-onset trauma. It suggests a role for SSRIs as a reliable first-line intervention to achieve moderate symptom relief for adult victims of childhood-onset trauma. Future research should assess the impact of lengthier intervention, combination treatments, and treatment sequencing on the resolution of PTSD in adults with childhood-onset trauma.

  13. Oligodendrocyte Development in the Absence of Their Target Axons In Vivo.

    Directory of Open Access Journals (Sweden)

    Rafael Almeida

    Full Text Available Oligodendrocytes form myelin around axons of the central nervous system, enabling saltatory conduction. Recent work has established that axons can regulate certain aspects of oligodendrocyte development and myelination, yet remarkably oligodendrocytes in culture retain the ability to differentiate in the absence of axons and elaborate myelin sheaths around synthetic axon-like substrates. It remains unclear the extent to which the life-course of oligodendrocytes requires the presence of, or signals derived from axons in vivo. In particular, it is unclear whether the specific axons fated for myelination regulate the oligodendrocyte population in a living organism, and if so, which precise steps of oligodendrocyte-cell lineage progression are regulated by target axons. Here, we use live-imaging of zebrafish larvae carrying transgenic reporters that label oligodendrocyte-lineage cells to investigate which aspects of oligodendrocyte development, from specification to differentiation, are affected when we manipulate the target axonal environment. To drastically reduce the number of axons targeted for myelination, we use a previously identified kinesin-binding protein (kbp mutant, in which the first myelinated axons in the spinal cord, reticulospinal axons, do not fully grow in length, creating a region in the posterior spinal cord where most initial targets for myelination are absent. We find that a 73% reduction of reticulospinal axon surface in the posterior spinal cord of kbp mutants results in a 27% reduction in the number of oligodendrocytes. By time-lapse analysis of transgenic OPC reporters, we find that the reduction in oligodendrocyte number is explained by a reduction in OPC proliferation and survival. Interestingly, OPC specification and migration are unaltered in the near absence of normal axonal targets. Finally, we find that timely differentiation of OPCs into oligodendrocytes does not depend at all on the presence of target axons

  14. Adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) and Nasu-Hakola disease: lesion staging and dynamic changes of axons and microglial subsets.

    Science.gov (United States)

    Oyanagi, Kiyomitsu; Kinoshita, Michiaki; Suzuki-Kouyama, Emi; Inoue, Teruhiko; Nakahara, Asa; Tokiwai, Mika; Arai, Nobutaka; Satoh, Jun-Ichi; Aoki, Naoya; Jinnai, Kenji; Yazawa, Ikuru; Arai, Kimihito; Ishihara, Kenji; Kawamura, Mitsuru; Ishizawa, Keisuke; Hasegawa, Kazuko; Yagisita, Saburo; Amano, Naoji; Yoshida, Kunihiro; Terada, Seishi; Yoshida, Mari; Akiyama, Haruhiko; Mitsuyama, Yoshio; Ikeda, Shu-Ichi

    2017-11-01

    The brains of 10 Japanese patients with adult onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) encompassing hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) and pigmentary orthochromatic leukodystrophy (POLD) and eight Japanese patients with Nasu-Hakola disease (N-HD) and five age-matched Japanese controls were examined neuropathologically with special reference to lesion staging and dynamic changes of microglial subsets. In both diseases, the pathognomonic neuropathological features included spherically swollen axons (spheroids and globules), axon loss and changes of microglia in the white matter. In ALSP, four lesion stages based on the degree of axon loss were discernible: Stage I, patchy axon loss in the cerebral white matter without atrophy; Stage II, large patchy areas of axon loss with slight atrophy of the cerebral white matter and slight dilatation of the lateral ventricles; Stage III, extensive axon loss in the cerebral white matter and dilatation of the lateral and third ventricles without remarkable axon loss in the brainstem and cerebellum; Stage IV, devastated cerebral white matter with marked dilatation of the ventricles and axon loss in the brainstem and/or cerebellum. Internal capsule and pontine base were relatively well preserved in the N-HD, even at Stage IV, and the swollen axons were larger with a higher density in the ALSP. Microglial cells immunopositive for CD68, CD163 or CD204 were far more obvious in ALSP, than in N-HD, and the shape and density of the cells changed in each stage. With progression of the stage, clinical symptoms became worse to apathetic state, and epilepsy was frequently observed in patients at Stages III and IV in both diseases. From these findings, it is concluded that (i) shape, density and subsets of microglia change dynamically along the passage of stages and (ii) increase of IBA-1-, CD68-, CD163- and CD204-immunopositive cells precedes loss of axons in ALSP. © 2016

  15. Innovation for maintenance technology improvements

    Science.gov (United States)

    Shives, T. R. (Editor); Willard, W. A. (Editor)

    1982-01-01

    A group of 34 submitted entries (32 papers and 2 abstracts) from the 33rd meeting of the Mechanical Failures Prevention Group whose subject was maintenance technology improvement through innovation. Areas of special emphasis included maintenance concepts, maintenance analysis systems, improved maintenance processes, innovative maintenance diagnostics and maintenance indicators, and technology improvements for power plant applications.

  16. Project Surveillance and Maintenance Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The Project Surveillance and Maintenance Plan (PSMP) describes the procedures that will be used by the US Department of Energy (DOE), or other agency as designated by the President to verify that inactive uranium tailings disposal facilities remain in compliance with licensing requirements and US Environmental Protection Agency (EPA) standards for remedial actions. The PSMP will be used as a guide for the development of individual Site Surveillance and Maintenance Plans (part of a license application) for each of the UMTRA Project sites. The PSMP is not intended to provide minimum requirements but rather to provide guidance in the selection of surveillance measures. For example, the plan acknowledges that ground-water monitoring may or may not be required and provides the [guidance] to make this decision. The Site Surveillance and Maintenance Plans (SSMPs) will form the basis for the licensing of the long-term surveillance and maintenance of each UMTRA Project site by the NRC. Therefore, the PSMP is a key milestone in the licensing process of all UMTRA Project sites. The Project Licensing Plan (DOE, 1984a) describes the licensing process. 11 refs., 22 figs., 8 tabs

  17. Random maintenance policies

    CERN Document Server

    Nakagawa, Toshio

    2014-01-01

    Exploring random maintenance models, this book provides an introduction to the implementation of random maintenance, and it is one of the first books to be written on this subject.  It aims to help readers learn new techniques for applying random policies to actual reliability models, and it provides new theoretical analyses of various models including classical replacement, preventive maintenance and inspection policies. These policies are applied to scheduling problems, backup policies of database systems, maintenance policies of cumulative damage models, and reliability of random redundant systems. Reliability theory is a major concern for engineers and managers, and in light of Japan’s recent earthquake, the reliability of large-scale systems has increased in importance. This also highlights the need for a new notion of maintenance and reliability theory, and how this can practically be applied to systems. Providing an essential guide for engineers and managers specializing in reliability maintenance a...

  18. Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner.

    Science.gov (United States)

    Mitew, Stanislaw; Gobius, Ilan; Fenlon, Laura R; McDougall, Stuart J; Hawkes, David; Xing, Yao Lulu; Bujalka, Helena; Gundlach, Andrew L; Richards, Linda J; Kilpatrick, Trevor J; Merson, Tobias D; Emery, Ben

    2018-01-22

    Mounting evidence suggests that neuronal activity influences myelination, potentially allowing for experience-driven modulation of neural circuitry. The degree to which neuronal activity is capable of regulating myelination at the individual axon level is unclear. Here we demonstrate that stimulation of somatosensory axons in the mouse brain increases proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) within the underlying white matter. Stimulated axons display an increased probability of being myelinated compared to neighboring non-stimulated axons, in addition to being ensheathed with thicker myelin. Conversely, attenuating neuronal firing reduces axonal myelination in a selective activity-dependent manner. Our findings reveal that the process of selecting axons for myelination is strongly influenced by the relative activity of individual axons within a population. These observed cellular changes are consistent with the emerging concept that adaptive myelination is a key mechanism for the fine-tuning of neuronal circuitry in the mammalian CNS.

  19. Effect of vesicle traps on traffic jam formation in fast axonal transport.

    Science.gov (United States)

    Kuznetsov, A V

    2010-08-01

    The purpose of this paper is to develop a model for simulation of the formation of organelle traps in fast axonal transport. Such traps may form in the regions of microtubule polar mismatching. Depending on the orientation of microtubules pointing toward the trap region, these traps can accumulate either plus-end or minus-end oriented vesicles. The model predicts that the maximum concentrations of organelles occur at the boundaries of the trap regions; the overall concentration of organelles in the axon with traps is greatly increased compared to that in a healthy axon, which is expected to contribute to mechanical damages of the axon. The organelle traps induce hindrance to organelle transport down the axon; the total organelle flux down the axon with traps is found to be significantly reduced compared to that in a healthy axon. Copyright 2010 Elsevier Inc. All rights reserved.

  20. Efficient retrograde transport of pseudorabies virus within neurons requires local protein synthesis in axons.

    Science.gov (United States)

    Koyuncu, Orkide O; Perlman, David H; Enquist, Lynn W

    2013-01-16

    After replicating in epithelial cells, alphaherpesviruses such as pseudorabies virus (PRV) invade axons of peripheral nervous system neurons and undergo retrograde transport toward the distant cell bodies. Although several viral proteins engage molecular motors to facilitate transport, the initial steps and neuronal responses to infection are poorly understood. Using compartmented neuron cultures to physically separate axon infection from cell bodies, we found that PRV infection induces local protein synthesis in axons, including proteins involved in cytoskeletal remodeling, intracellular trafficking, signaling, and metabolism. This rapid translation of axonal mRNAs is required for efficient PRV retrograde transport and infection of cell bodies. Furthermore, induction of axonal damage, which also induces local protein synthesis, prior to infection reduces virion trafficking, suggesting that host damage signals and virus particles compete for retrograde transport. Thus, similar to axonal damage, virus infection induces local protein translation in axons, and viruses likely exploit this response for invasion. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Reliability-Centered Maintenance

    Science.gov (United States)

    1978-12-29

    C. Mentzer, who directed khe pioneering studies of maintenance policy at United Airlines, and to the Federal Aviation Administration for creating...ANALYSIS 425 D-3 INFORMATION SCIENCi AND DECISION ANALYSIS 427 D-4 MAINTENANCE THEORY AND PHILOSOPHY 430 D-5 MAINTENANCE APPLUCATIONS 436 D-6 A GUIDE...occupants N Operational consequences, which involve an indirect economic loss as well as the direct cost of repair l Nonoperational consequences, which

  2. Status of fusion maintenance

    International Nuclear Information System (INIS)

    Fuller, G.M.

    1984-01-01

    Effective maintenance will be an essential ingredient in determining fusion system productivity. This level of productivity will result only after close attention is paid to the entire system as an entity and appropriate integration of the elements is made. The status of fusion maintenance is reviewed in the context of the entire system. While there are many challenging developmental tasks ahead in fusion maintenance, the required technologies are available in several high-technology industries, including nuclear fission

  3. Software evolution and maintenance

    CERN Document Server

    Tripathy, Priyadarshi

    2014-01-01

    Software Evolution and Maintenance: A Practitioner's Approach is an accessible textbook for students and professionals, which collates the advances in software development and provides the most current models and techniques in maintenance.Explains two maintenance standards: IEEE/EIA 1219 and ISO/IEC14764Discusses several commercial reverse and domain engineering toolkitsSlides for instructors are available onlineInformation is based on the IEEE SWEBOK (Software Engineering Body of Knowledge)

  4. Interactive videodisc in maintenance

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Nguyen Van Nghi, B.

    1986-01-01

    After a recall of the videodisc characteristics, this paper presents its utilization by Electricite de France in the framework of training and maintenance. The SICMA (Interactive Communication System in Maintenance) developed and tested by Electricte de France is presented as also its utilization. It has been tested on the sites of Dampierre and Paluel in the cases of training and maintenance (deconnexion of drive rods of control elements); the conclusions of this experimentation are finally given. 4 refs [fr

  5. Turbine maintenance and modernization

    Energy Technology Data Exchange (ETDEWEB)

    Unga, E. [Teollisuuden Voima Oy, Olkiluoto (Finland)

    1998-12-31

    The disturbance-free operation of the turbine plant plays an important role in reaching good production results. In the turbine maintenance of the Olkiluoto nuclear power plant the lifetime and efficiency of turbine components and the lifetime costs are taken into account in determining the turbine maintenance and modernization/improvement program. The turbine maintenance program and improvement/modernization measures taken in the plant units are described in this presentation. (orig.)

  6. Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy

    Science.gov (United States)

    Morató, Laia; Galino, Jorge; Ruiz, Montserrat; Calingasan, Noel Ylagan; Starkov, Anatoly A.; Dumont, Magali; Naudí, Alba; Martínez, Juan José; Aubourg, Patrick; Portero-Otín, Manuel; Pamplona, Reinald; Galea, Elena; Beal, M. Flint; Ferrer, Isidre; Fourcade, Stéphane

    2013-01-01

    X-linked adrenoleukodystrophy is a neurometabolic disorder caused by inactivation of the peroxisomal ABCD1 transporter of very long-chain fatty acids. In mice, ABCD1 loss causes late onset axonal degeneration in the spinal cord in association with locomotor disability resembling the most common phenotype in patients, adrenomyeloneuropathy. Increasing evidence indicates that oxidative stress and bioenergetic failure play major roles in the pathogenesis of X-linked adrenoleukodystrophy. In this study, we aimed to evaluate whether mitochondrial biogenesis is affected in X-linked adrenoleukodystrophy. We demonstrated that Abcd1 null mice show reduced mitochondrial DNA concomitant with downregulation of mitochondrial biogenesis pathway driven by PGC-1α/PPARγ and reduced expression of mitochondrial proteins cytochrome c, NDUFB8 and VDAC. Moreover, we show that the oral administration of pioglitazone, an agonist of PPARγ, restored mitochondrial content and expression of master regulators of biogenesis, neutralized oxidative damage to proteins and DNA, and reversed bioenergetic failure in terms of ATP levels, NAD+/NADH ratios, pyruvate kinase and glutathione reductase activities. Most importantly, the treatment halted locomotor disability and axonal damage in X-linked adrenoleukodystrophy mice. These results lend support to the use of pioglitazone in clinical trials with patients with adrenomyeloneuropathy and reveal novel molecular mechanisms of action of pioglitazone in neurodegeneration. Future studies should address the effects of this anti-diabetic drug on other axonopathies in which oxidative stress and mitochondrial dysfunction are contributing factors. PMID:23794606

  7. Pioglitazone halts axonal degeneration in a mouse model of X-linked adrenoleukodystrophy.

    Science.gov (United States)

    Morató, Laia; Galino, Jorge; Ruiz, Montserrat; Calingasan, Noel Ylagan; Starkov, Anatoly A; Dumont, Magali; Naudí, Alba; Martínez, Juan José; Aubourg, Patrick; Portero-Otín, Manuel; Pamplona, Reinald; Galea, Elena; Beal, M Flint; Ferrer, Isidre; Fourcade, Stéphane; Pujol, Aurora

    2013-08-01

    X-linked adrenoleukodystrophy is a neurometabolic disorder caused by inactivation of the peroxisomal ABCD1 transporter of very long-chain fatty acids. In mice, ABCD1 loss causes late onset axonal degeneration in the spinal cord in association with locomotor disability resembling the most common phenotype in patients, adrenomyeloneuropathy. Increasing evidence indicates that oxidative stress and bioenergetic failure play major roles in the pathogenesis of X-linked adrenoleukodystrophy. In this study, we aimed to evaluate whether mitochondrial biogenesis is affected in X-linked adrenoleukodystrophy. We demonstrated that Abcd1 null mice show reduced mitochondrial DNA concomitant with downregulation of mitochondrial biogenesis pathway driven by PGC-1α/PPARγ and reduced expression of mitochondrial proteins cytochrome c, NDUFB8 and VDAC. Moreover, we show that the oral administration of pioglitazone, an agonist of PPARγ, restored mitochondrial content and expression of master regulators of biogenesis, neutralized oxidative damage to proteins and DNA, and reversed bioenergetic failure in terms of ATP levels, NAD+/NADH ratios, pyruvate kinase and glutathione reductase activities. Most importantly, the treatment halted locomotor disability and axonal damage in X-linked adrenoleukodystrophy mice. These results lend support to the use of pioglitazone in clinical trials with patients with adrenomyeloneuropathy and reveal novel molecular mechanisms of action of pioglitazone in neurodegeneration. Future studies should address the effects of this anti-diabetic drug on other axonopathies in which oxidative stress and mitochondrial dysfunction are contributing factors.

  8. Signal transmission from motor axons to group Ia muscle spindle afferents: frequency responses and second-order non-linearities.

    Science.gov (United States)

    Windhorst, U; Kokkoroyiannis, T; Laouris, Y; Meyer-Lohmann, J

    1994-03-01

    Spinal recurrent inhibition via Renshaw cells and proprioceptive feedback via skeletal muscle and muscle spindle afferents have been hypothesized to constitute a compound feedback system [Windhorst (1989) Afferent Control of Posture and Locomotion; Windhorst (1993) Robots and Biological Systems--Towards a New Bionics]. To assess their detailed functions, it is necessary to know their dynamic characteristics. Previously we have extensively described the properties of signal transmission from motor axons to Renshaw cells using random motor axon stimulation and data analysis methods based thereupon. Using the same methods, we here compare these properties, in the cat, with those between motor axons and group Ia muscle spindle afferents in terms of frequency responses and nonlinear features. The frequency responses depend on the mean rate (carrier rate) of activation of motor axons and on the strength of coupling between motor units and spindles. In general, they are those of a second-order low-pass system with a cut-off at fairly low frequencies. This contrasts with the dynamics of motor axon-Renshaw cell couplings which are those of a much broader band-pass with its peak in the range of c. 2-15 Hz [Christakos (1987) Neuroscience 23, 613-623]. The second-order non-linearities in motor unit-muscle spindle signal lines are much more diverse than those in motor axon-Renshaw cell couplings. Although the average strength of response declines with mean stimulus rate in both subsystems, there is no systematic relationship between the amount of non-linearity and the average response in the former, whilst there is in the latter. The qualitative appearance of motor unit-muscle spindle non-linearities was complicated as was the average response to motor unit twitches. Thus, whilst Renshaw cells appear to dynamically reflect motor output rather faithfully, muscle spindles seem to signal local muscle fibre length changes and their dynamics. This would be consistent with the

  9. Analysis of maintenance strategies

    International Nuclear Information System (INIS)

    Laakso, K.; Simola, K.

    1998-01-01

    The main topics of the presentation include: (1) an analysis model and methods to evaluate maintenance action programs and the support decision to make changes in them and (2) to understand the maintenance strategies in a systems perspective as a basis for future developments. The subproject showed how systematic models for maintenance analysis and decision support, utilising computerised and statistical tool packages, can be taken into use for evaluation and optimisation of maintenance of active systems from the safety and economic point of view

  10. Army Maintenance System Transformation

    National Research Council Canada - National Science Library

    Gilbertson, Frank V

    2006-01-01

    .... Used in conjunction with pertinent historical data and developed with Army transformation goals in mind, General Systems thinking can provide the framework for guiding maintenance transformation...

  11. Remote Maintenance Monitoring System -

    Data.gov (United States)

    Department of Transportation — The Remote Maintenance and Monitoring System (RMMS) is a collection of subsystems that includes telecommunication components, hardware, and software, which serve to...

  12. A growing field: The regulation of axonal regeneration by Wnt signaling.

    Science.gov (United States)

    Garcia, Armando L; Udeh, Adanna; Kalahasty, Karthik; Hackam, Abigail S

    2018-01-01

    The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that plays critical roles during embryogenesis. Wnt ligands regulate axonal extension, growth cone guidance and synaptogenesis throughout the developing central nervous system (CNS). Recently, studies in mammalian and fish model systems have demonstrated that Wnt/β-catenin signaling also promotes axonal regeneration in the adult optic nerve and spinal cord after injury, raising the possibility that Wnt could be developed as a therapeutic strategy. In this review, we summarize experimental evidence that reveals novel roles for Wnt signaling in the injured CNS, and discuss possible mechanisms by which Wnt ligands could overcome molecular barriers inhibiting axonal growth to promote regeneration. A central challenge in the neuroscience field is developing therapeutic strategies that induce robust axonal regeneration. Although adult axons have the capacity to respond to axonal guidance molecules after injury, there are several major obstacles for axonal growth, including extensive neuronal death, glial scars at the injury site, and lack of axonal guidance signals. Research in rodents demonstrated that activation of Wnt/β-catenin signaling in retinal neurons and radial glia induced neuronal survival and axonal growth, but that activation within reactive glia at the injury site promoted proliferation and glial scar formation. Studies in zebrafish spinal cord injury models confirm an axonal regenerative role for Wnt/β-catenin signaling and identified the cell types responsible. Additionally, in vitro and in vivo studies demonstrated that Wnt induces axonal and neurite growth through transcription-dependent effects of its central mediator β-catenin, potentially by inducing regeneration-promoting genes. Canonical Wnt signaling may also function through transcription-independent interactions of β-catenin with cytoskeletal elements, which could stabilize growing axons and control growth cone

  13. Squid Giant Axon Contains Neurofilament Protein mRNA but does not Synthesize Neurofilament Proteins.

    Science.gov (United States)

    Gainer, Harold; House, Shirley; Kim, Dong Sun; Chin, Hemin; Pant, Harish C

    2017-04-01

    When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon's neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia-axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.

  14. Neocortical axon arbors trade-off material and conduction delay conservation.

    Directory of Open Access Journals (Sweden)

    Julian M L Budd

    2010-03-01

    Full Text Available The brain contains a complex network of axons rapidly communicating information between billions of synaptically connected neurons. The morphology of individual axons, therefore, defines the course of information flow within the brain. More than a century ago, Ramón y Cajal proposed that conservation laws to save material (wire length and limit conduction delay regulate the design of individual axon arbors in cerebral cortex. Yet the spatial and temporal communication costs of single neocortical axons remain undefined. Here, using reconstructions of in vivo labelled excitatory spiny cell and inhibitory basket cell intracortical axons combined with a variety of graph optimization algorithms, we empirically investigated Cajal's conservation laws in cerebral cortex for whole three-dimensional (3D axon arbors, to our knowledge the first study of its kind. We found intracortical axons were significantly longer than optimal. The temporal cost of cortical axons was also suboptimal though far superior to wire-minimized arbors. We discovered that cortical axon branching appears to promote a low temporal dispersion of axonal latencies and a tight relationship between cortical distance and axonal latency. In addition, inhibitory basket cell axonal latencies may occur within a much narrower temporal window than excitatory spiny cell axons, which may help boost signal detection. Thus, to optimize neuronal network communication we find that a modest excess of axonal wire is traded-off to enhance arbor temporal economy and precision. Our results offer insight into the principles of brain organization and communication in and development of grey matter, where temporal precision is a crucial prerequisite for coincidence detection, synchronization and rapid network oscillations.

  15. Site Maintenance Plan: Part 2, Site Maintenance Action Plan for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, E.L.

    1994-06-01

    This Fiscal Year (FY) 1994 Site Maintenance Action Plan (SMAP) is Part II of the Site Maintenance Plan, and has been written by Westinghouse Hanford Company (WHC) to outline the requirements stated in DOE Order 4330.4B, Maintenance Management Program, Chapter 1, Paragraph 3.3.1. The SMAP provides an annual status of maintenance initiatives completed and planned, a summary of performance indicators, a summary of maintenance backlog, a listing of real property and capital equipment maintenance cost estimates that were used to create the FY 1996 infrastructure and maintenance budget input, and a listing of proposed line item and general plant projects. Additionally, assumptions for various Site programs are listed to bring the Site Maintenance Plan into focus with overall Site activities. The primary mission at Hanford is to clean up the Site. In this cleanup process WHC will provide scientific and technological expertise to meet global needs, and partnership with stakeholders in the region to develop regional economic diversification. Other missions at the Hanford Site include energy research and development, and waste management and disposal activities. Their primary mission has a 30-year projected life span and will direct the shutting down and cleanup of defense production facilities and the Fast Flux Test Facility. This long-term mission requires continuous maintenance and in many instances, replacement of existing basic infrastructure, support facilities, and utilities. Without adequate maintenance and capital funding these infrastructure, support facilities, and utilities will continue to deteriorate causing an increase in backlogged work.

  16. Site Maintenance Plan: Part 2, Site Maintenance Action Plan for FY 1994

    International Nuclear Information System (INIS)

    Fisk, E.L.

    1994-06-01

    This Fiscal Year (FY) 1994 Site Maintenance Action Plan (SMAP) is Part II of the Site Maintenance Plan, and has been written by Westinghouse Hanford Company (WHC) to outline the requirements stated in DOE Order 4330.4B, Maintenance Management Program, Chapter 1, Paragraph 3.3.1. The SMAP provides an annual status of maintenance initiatives completed and planned, a summary of performance indicators, a summary of maintenance backlog, a listing of real property and capital equipment maintenance cost estimates that were used to create the FY 1996 infrastructure and maintenance budget input, and a listing of proposed line item and general plant projects. Additionally, assumptions for various Site programs are listed to bring the Site Maintenance Plan into focus with overall Site activities. The primary mission at Hanford is to clean up the Site. In this cleanup process WHC will provide scientific and technological expertise to meet global needs, and partnership with stakeholders in the region to develop regional economic diversification. Other missions at the Hanford Site include energy research and development, and waste management and disposal activities. Their primary mission has a 30-year projected life span and will direct the shutting down and cleanup of defense production facilities and the Fast Flux Test Facility. This long-term mission requires continuous maintenance and in many instances, replacement of existing basic infrastructure, support facilities, and utilities. Without adequate maintenance and capital funding these infrastructure, support facilities, and utilities will continue to deteriorate causing an increase in backlogged work

  17. Operations and maintenance plans for the TFTR

    International Nuclear Information System (INIS)

    Allen, H.L.; Fedor, B.J.

    1978-01-01

    Princeton University Plasma Physics Laboratory (PPPL) is constructing a Tokamak Fusion Test Reactor (TFTR) scheduled to begin operation for fusion research experiments in late 1981, first with hydrogen and deuterium plasmas and later, in the second phase, using tritium for high power fusion studies. This latter mode will introduce considerable complexity to operation and maintenance of the TFTR in terms of meeting requirements for tritium handling, adequate radiation shielding, and corrective and preventive maintenance procedures. In this paper we discuss plans for the installation and preoperational testing of the major subsystems of TFTR, proposed start-up and operating scenarios for the device and the system of operational control. In addition, the TFTR Maintenance Plan and related procedures for specific major maintenance tasks are described, including the use of remote handling equipment and remote manipulators. Each of these topics is addressed in terms of the current status of planning and development

  18. Activated retinal glia mediated axon regeneration in experimental glaucoma.

    Science.gov (United States)

    Lorber, Barbara; Guidi, Alessandra; Fawcett, James W; Martin, Keith R

    2012-01-01

    Glaucoma, a leading cause of blindness, is a neurodegenerative disease characterized by progressive loss of retinal ganglion cell axons in the optic nerve and their cell bodies in the retina. Reactive retinal glial changes have been observed in glaucoma but the role of such glial changes in the pathogenesis of the condition remains unclear. In the present study we found that retinal ganglion cells in an experimental animal model of glaucoma have an increased axon regenerative potential. Regeneration of adult rat retinal ganglion cell axons after optic nerve crush was significantly increased in vivo when combined with intraocular pressure-induced experimental glaucoma. This enhanced axon regeneration response was correlated with a significant increase in activation of glial fibrillary acidic protein+retinal glia. Using a dissociated retinal ganglion cell culture model we showed that reducing the number of activated retinal glia with a glial specific toxin, α-Aminoadipic acid, significantly reduced the growth potential of retinal ganglion cells from glaucomatous rat eyes, suggesting that activated retinal glia mediate, at least in part, the growth promoting effect. This was shown to be mediated by both membrane-bound and soluble glial-derived factors. Neurotrophin and ciliary neurotrophic/leukemia inhibitory factor blockers did not affect the regenerative potential, excluding these growth factors as principal mediators of the enhanced growth response occurring in glaucomatous retinal cultures. These observations are the first to reveal that retinal ganglion cells from glaucomatous rat eyes have an enhanced regenerative capacity. Furthermore, our results suggest that activated retinal glia mediate at least part of this response. Further work to understand and enhance the regeneration-promoting effect of activated retinal glia is required to determine if this approach could be useful as part of a therapeutic strategy to encourage optic nerve regeneration in glaucoma

  19. [Craniocerebral trauma: magnetic resonance imaging of diffuse axonal injury].

    Science.gov (United States)

    Mallouhi, A

    2014-09-01

    Acceleration-deceleration rotational brain trauma is a common cause of disability or death in young adults and often leads to a focal destruction of axons. The resulting pathology, axonal shear injury is referred to as diffuse axonal injury (DAI). The DAI-associated lesions occur bilaterally, are widely dispersed and have been observed in the surface and deep white matter. They are found near to and far from the impact site. When DAI is clinically suspected, magnetic resonance imaging (MRI) is the method of choice for further clarification, especially in patients where cranial computed tomography (CT) is inconspicuous. To investigate the presence of DAI after traumatic brain injury (TBI), a multimodal MRI approach is applied including the common structural and also functional imaging sequences. For structural MRI, fluid-attenuated inversion recovery (FLAIR) weighted and susceptibility contrast imaging (SWI) are the sequences mainly used. The SWI technique is extremely sensitive to blood breakdown products, which appear as small signal voids at three locations, at the gray-white interface, in the corpus callosum and in the brain stem. Functional MRI comprises a group of constantly developing techniques that have great potential in optimal evaluation of the white matter in patients after craniocerebral trauma. These imaging techniques allow the visualization of changes associated with shear injuries, such as functional impairment of axons and decreased blood flow and abnormal metabolic activity of the brain parts affected. The multimodal MRI approach in patients with DAI results in a more detailed and differentiated representation of the underlying pathophysiological changes of the injured nerve tracts and helps to improve the diagnostic and prognostic accuracy of MRI. When DAI is suspected multimodal MRI should be performed as soon as possible after craniocerebral injury.

  20. Spontaneous axonal regeneration in rodent spinal cord after ischemic injury

    DEFF Research Database (Denmark)

    von Euler, Mia; Janson, A M; Larsen, Jytte Overgaard

    2002-01-01

    cells, while other fibers were unmyelinated. Immunohistochemistry demonstrated that some of the regenerated fibers were tyrosine hydroxylase- or serotonin-immunoreactive, indicating a central origin. These findings suggest that there is a considerable amount of spontaneous regeneration after spinal cord...... lesions in rodents and that the fibers remain several months after injury. The findings of tyrosine hydroxylase- and serotonin-immunoreactivity in the axons suggest that descending central fibers contribute to this endogenous repair of ischemic spinal cord injury....

  1. Polyethylene glycol restores axonal conduction after corpus callosum transection.

    Science.gov (United States)

    Bamba, Ravinder; Riley, D Colton; Boyer, Richard B; Pollins, Alonda C; Shack, R Bruce; Thayer, Wesley P

    2017-05-01

    Polyethylene glycol (PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA) were used to measure mean firing rate (MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups ( P < 0.01, P < 0.05). These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  2. Polyethylene glycol restores axonal conduction after corpus callosum transection

    Directory of Open Access Journals (Sweden)

    Ravinder Bamba

    2017-01-01

    Full Text Available Polyethylene glycol (PEG has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA were used to measure mean firing rate (MFR and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups (P < 0.01, P < 0.05. These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  3. Two stable steady states in the Hodgkin-Huxley axons

    OpenAIRE

    Aihara, K.; Matsumoto, G.

    1983-01-01

    Two stable steady states were found in the numerical solution of the Hodgkin-Huxley equations for the intact squid axon bathed in potassium-rich sea water with an externally applied inward current. Under the conditions the two stable steady-states exist, the Hodgkin-Huxley equations have a complex bifurcation structure including, in addition to the two stable steady-states, a stable limit cycle, two unstable equilibrium points, and one asymptotically stable equilibrium point. It was also conc...

  4. Internalization and Axonal Transport of the HIV Glycoprotein gp120

    Science.gov (United States)

    Berth, Sarah; Caicedo, Hector Hugo; Sarma, Tulika; Morfini, Gerardo

    2015-01-01

    The HIV glycoprotein gp120, a neurotoxic HIV glycoprotein that is overproduced and shed by HIV-infected macrophages, is associated with neurological complications of HIV such as distal sensory polyneuropathy, but interactions of gp120 in the peripheral nervous system remain to be characterized. Here, we demonstrate internalization of extracellular gp120 in a manner partially independent of binding to its coreceptor CXCR4 by F11 neuroblastoma cells and cultured dorsal root ganglion neurons. Immunocytochemical and pharmacological experiments indicate that gp120 does not undergo trafficking through the endolysosomal pathway. Instead, gp120 is mainly internalized through lipid rafts in a cholesterol-dependent manner, with a minor fraction being internalized by fluid phase pinocytosis. Experiments using compartmentalized microfluidic chambers further indicate that, after internalization, endocytosed gp120 selectively undergoes retrograde but not anterograde axonal transport from axons to neuronal cell bodies. Collectively, these studies illuminate mechanisms of gp120 internalization and axonal transport in peripheral nervous system neurons, providing a novel framework for mechanisms for gp120 neurotoxicity. PMID:25636314

  5. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    Science.gov (United States)

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-01

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817

  6. Axonal Actin Transport Driven By Metastable Actin Filaments

    Science.gov (United States)

    Chakrabarty, Nilaj; Ganguly, Archan; Roy, Subhojit; Jung, Peter

    Actin is one of the key constituents of the neuronal cytoskeleton and is responsible for driving important cellular processes like axon elongation. Axonal actin is synthesized in the cell body and transported at rates of 0.25 - 3 mm/day, as shown by in-vivo pulse-chase radiolabelling studies. However, the underlying transport mechanisms are unknown. Recent experiments in cultured neurons have revealed a dynamic network of metastable actin filaments (actin trails). Actin trails seem to originate from focal actin hotspots which colocalize with stationary endosomes. Interestingly, the number of actin trails extending anterogradely is higher than the ones extending retrogradely. We hypothesize that the bulk axonal transport of actin originates from this directional asymmetry of the number of actin trails. To test this, we constructed a computational model of actin trail growth and simulated the pulse-chase experiment. In our model, local, metastable trails, which grow with their barbed ends anchored to the hotspots, drive the bulk anterograde transport. Our results indicate that the observed bias of the nucleation probabilities and the elongation rate of actin trails are sufficient to drive the bulk transport of actin at rates that agree with in-vivo pulse chase experiments.

  7. Automating Contextualized Maintenance Documentation

    NARCIS (Netherlands)

    Koornneef, H.; Verhagen, W.J.C.; Curran, Ricky; Borsato, M.; Wognum, N.; Peruzzini, M.; Stjepandić, J.; Verhagen, W.J.C.

    2016-01-01

    Currently, task support information in aircraft maintenance is mostly provided using paper-based solutions, which are burdensome, slow and prone to error. Aircraft maintenance documentation contains vast amounts of information irrelevant for the task at hand and even for the simplest tasks multiple

  8. Maintenance optimization with AREVA

    Energy Technology Data Exchange (ETDEWEB)

    Kostroun, Frank; Herzing, Karl-Heinz; Buschart, Rufus [AREVA NP GmbH, Erlangen (Germany)

    2009-04-15

    Driven by the economic expectations of an energy market that becomes increasingly unregulated, the optimization of the maintenance in a nuclear power plant is a more demand practice. This paper describes on three exemplary product lines of AREVA, how AREVA can support its customers optimizing its maintenance.

  9. Maintenance Trades Guidelines

    Science.gov (United States)

    Weidner, Theodore J.

    2008-01-01

    In 2002, APPA published "Maintenance Staffing Guidelines for Educational Facilities," the first building maintenance trades staffing guideline designed to assist educational facilities professionals with their staffing needs. addresses how facilities professionals can determine the appropriate size and mix of their organization. Contents…

  10. Mining Surveillance and Maintenance Dollars

    International Nuclear Information System (INIS)

    MARTINEZ, R.

    2000-01-01

    Accelerating site cleanup to reduce facility risks to the workers, the public and the environment during a time of declining federal budgets represents a significant technical and economic challenge to U.S. Department of Energy (DOE) Operations Offices and their respective contractors. A significant portion of a facility's recurring annual expenses are associated with routine, long-term surveillance and maintenance (S and M) activities. However, ongoing S and M activities do nothing to reduce risks and basically spend money that could be reallocated towards facility deactivation. This paper discusses the background around DOE efforts to reduce surveillance and maintenance costs, one approach used to perform cost reviews, lessons learned from field implementation and what assistance is available to assist DOE sites in performing these evaluations

  11. Maintenance improvement program

    International Nuclear Information System (INIS)

    Derbonne, D.R.; Plunkett, T.F.; Simpson, J.R.

    1989-01-01

    During fuel cycle 1 at River Bend station, considerable effort was expended to reduce corrective maintenance work orders (MWOs) to <1,000. This was done by complementing the plant staff with costly contract personnel. Coming out of the first refueling outage, most contract personnel were released. The change in MWO backlog started a steady rise. It became readily apparent that to avoid costly contract staff time, a maintenance improvement program (MIP) was necessary. The MIP Was primarily directed at two areas: crew efficiency improvements and improved preplanned MWO packages. The overall effect of the MIP was to achieve significant productivity improvements with reduced operation and maintenance cost by providing frequent accountability to all levels of maintenance supervision. The MIP also produced a feeling of pride among the maintenance department employees that had not really existed before. This was the best benefit of all

  12. Depolarization and electrical stimulation enhance in vitro and in vivo sensory axon growth after spinal cord injury.

    Science.gov (United States)

    Goganau, Ioana; Sandner, Beatrice; Weidner, Norbert; Fouad, Karim; Blesch, Armin

    2018-02-01

    Activity dependent plasticity is a key mechanism for the central nervous system (CNS) to adapt to its environment. Whether neuronal activity also influences axonal regeneration in the injured CNS, and whether electrical stimulation (ES) can activate regenerative programs in the injured CNS remains incompletely understood. Using KCl-induced depolarization, in vivo ES followed by ex-vivo neurite growth assays and ES after spinal cord lesions and cell grafting, we aimed to identify parameters important for ES-enhanced neurite growth and axonal regeneration. Using cultures of sensory neurons, neurite growth was analyzed after KCl-induced depolarization for 1-72h. Increased neurite growth was detected after short-term stimulation and after longer stimulation if a sufficient delay between stimulation and growth measurements was provided. After in vivo ES (20Hz, 2× motor threshold, 0.2ms, 1h) of the intact sciatic nerve in adult Fischer344 rats, sensory neurons showed a 2-fold increase in in vitro neurite length one week later compared to sham animals, an effect not observed one day after ES. Longer ES (7h) and repeated ES (7days, 1h each) also increased growth by 56-67% one week later, but provided no additional benefit. In vivo growth of dorsal column sensory axons into a graft of bone marrow stromal cells 4weeks after a cervical spinal cord lesion was also enhanced with a single post-injury 1h ES of the intact sciatic nerve and was also observed after repeated ES without inducing pain-like behavior. While ES did not result in sensory functional recovery, our data indicate that ES has time-dependent influences on the regenerative capacity of sensory neurons and might further enhance axonal regeneration in combinatorial approaches after SCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Intra-axonal protein synthesis - a new target for neural repair?

    Directory of Open Access Journals (Sweden)

    Jeffery L Twiss

    2016-01-01

    Full Text Available Although initially argued to be a feature of immature neurons with incomplete polarization, there is clear evidence that neurons in the peripheral nervous system retain the capacity for intra-axonal protein synthesis well into adulthood. This localized protein synthesis has been shown to contribute to injury signaling and axon regeneration in peripheral nerves. Recent works point to potential for protein synthesis in axons of the vertebrate central nervous system. mRNAs and protein synthesis machinery have now been documented in lamprey, mouse, and rat spinal cord axons. Intra-axonal protein synthesis appears to be activated in adult vertebrate spinal cord axons when they are regeneration-competent. Rat spinal cord axons regenerating into a peripheral nerve graft contain mRNAs and markers of activated translational machinery. Indeed, levels of some growth-associated mRNAs in these spinal cord axons are comparable to the regenerating sciatic nerve. Markers of active translation tend to decrease when these axons stop growing, but can be reactivated by a second axotomy. These emerging observations raise the possibility that mRNA transport into and translation within axons could be targeted to facilitate regeneration in both the peripheral and central nervous systems.

  14. Glial scar and axonal regeneration in the CNS: lessons from GFAP and vimentin transgenic mice.

    Science.gov (United States)

    Ribotta, M G; Menet, V; Privat, A

    2004-01-01

    Astrocytes play an active role in the brain and spinal cord. For example, they have a function in formation and maintenance of the blood-brain barrier, ion homeostasis, neurotransmitter transport, production of extracellular matrix, and neuromodulation. Moreover, they play a role in preserving or even restoring the structural and physiological integrity after tissue injury. Currently, the function of astrocytes was studied with regard to the controversially discussed aspects of permissivity on the one-hand-side and inhibition of the other side exerted by reactive astrocytes for axonal regrowth in the adult CNS. Accordingly, knock-out mice deficient in vimentin (VIM) and/or glial fibrillary acidic protein (GFAP), the two major IF-proteins of astrocytes, were investigated. In addition, in vitro studies were carried out, on whether the absence of one or both proteins (VIM, GFAP) influences axonal regeneration. In experimental animals, a hemisection of the spinal cord was performed utilizing the above mentioned double-mutant mice. The knock-out mice were generated by gene targeting. Double-mutants were obtained by crossing single null mice. The in vitro results indicate that both VIM and GFAP were absent in astrocytic cultures obtained from double-mutant mice. On the other side, the proteins were detected in more than 85%, of cultured cells from wild types. Co-culture of mutant mice astrocytes with neurons revealed that the neuronal density was different from that obtained in culture with wild type astrocytes. On the other side, there was a marked increase in neuronal density in co-cultures utilizing both GFAP knock-out- or double-mutant mice astrocytes again as compared to co-cultures with wild type astrocytes. Moreover, the neurite length of neurons was significantly increased in experiments with neurons growing on astrocytes from GFAP-knock-out or double-mutant mice. The in vivo experiments demonstrate an increase of nestin (NES) immunoreactivity at three days in

  15. Sodium Channel β2 Subunits Prevent Action Potential Propagation Failures at Axonal Branch Points.

    Science.gov (United States)

    Cho, In Ha; Panzera, Lauren C; Chin, Morven; Hoppa, Michael B

    2017-09-27

    Neurotransmitter release depends on voltage-gated Na + channels (Na v s) to propagate an action potential (AP) successfully from the axon hillock to a synaptic terminal. Unmyelinated sections of axon are very diverse structures encompassing branch points and numerous presynaptic terminals with undefined molecular partners of Na + channels. Using optical recordings of Ca 2+ and membrane voltage, we demonstrate here that Na + channel β2 subunits (Na v β2s) are required to prevent AP propagation failures across the axonal arborization of cultured rat hippocampal neurons (mixed male and female). When Na v β2 expression was reduced, we identified two specific phenotypes: (1) membrane excitability and AP-evoked Ca 2+ entry were impaired at synapses and (2) AP propagation was severely compromised with >40% of axonal branches no longer responding to AP-stimulation. We went on to show that a great deal of electrical signaling heterogeneity exists in AP waveforms across the axonal arborization independent of axon morphology. Therefore, Na v β2 is a critical regulator of axonal excitability and synaptic function in unmyelinated axons. SIGNIFICANCE STATEMENT Voltage-gated Ca 2+ channels are fulcrums of neurotransmission that convert electrical inputs into chemical outputs in the form of vesicle fusion at synaptic terminals. However, the role of the electrical signal, the presynaptic action potential (AP), in modulating synaptic transmission is less clear. What is the fidelity of a propagating AP waveform in the axon and what molecules shape it throughout the axonal arborization? Our work identifies several new features of AP propagation in unmyelinated axons: (1) branches of a single axonal arborization have variable AP waveforms independent of morphology, (2) Na + channel β2 subunits modulate AP-evoked Ca 2+ -influx, and (3) β2 subunits maintain successful AP propagation across the axonal arbor. These findings are relevant to understanding the flow of excitation in the

  16. Microtubule-associated protein 6 mediates neuronal connectivity through Semaphorin 3E-dependent signalling for axonal growth

    Science.gov (United States)

    Deloulme, Jean-Christophe; Gory-Fauré, Sylvie; Mauconduit, Franck; Chauvet, Sophie; Jonckheere, Julie; Boulan, Benoit; Mire, Erik; Xue, Jing; Jany, Marion; Maucler, Caroline; Deparis, Agathe A.; Montigon, Olivier; Daoust, Alexia; Barbier, Emmanuel L.; Bosc, Christophe; Deglon, Nicole; Brocard, Jacques; Denarier, Eric; Le Brun, Isabelle; Pernet-Gallay, Karin; Vilgrain, Isabelle; Robinson, Phillip J.; Lahrech, Hana; Mann, Fanny; Andrieux, Annie

    2015-01-01

    Structural microtubule associated proteins (MAPs) stabilize microtubules, a property that was thought to be essential for development, maintenance and function of neuronal circuits. However, deletion of the structural MAPs in mice does not lead to major neurodevelopment defects. Here we demonstrate a role for MAP6 in brain wiring that is independent of microtubule binding. We find that MAP6 deletion disrupts brain connectivity and is associated with a lack of post-commissural fornix fibres. MAP6 contributes to fornix development by regulating axonal elongation induced by Semaphorin 3E. We show that MAP6 acts downstream of receptor activation through a mechanism that requires a proline-rich domain distinct from its microtubule-stabilizing domains. We also show that MAP6 directly binds to SH3 domain proteins known to be involved in neurite extension and semaphorin function. We conclude that MAP6 is critical to interface guidance molecules with intracellular signalling effectors during the development of cerebral axon tracts. PMID:26037503

  17. Maintenance Process Strategic Analysis

    Science.gov (United States)

    Jasiulewicz-Kaczmarek, M.; Stachowiak, A.

    2016-08-01

    The performance and competitiveness of manufacturing companies is dependent on the availability, reliability and productivity of their production facilities. Low productivity, downtime, and poor machine performance is often linked to inadequate plant maintenance, which in turn can lead to reduced production levels, increasing costs, lost market opportunities, and lower profits. These pressures have given firms worldwide the motivation to explore and embrace proactive maintenance strategies over the traditional reactive firefighting methods. The traditional view of maintenance has shifted into one of an overall view that encompasses Overall Equipment Efficiency, Stakeholders Management and Life Cycle assessment. From practical point of view it requires changes in approach to maintenance represented by managers and changes in actions performed within maintenance area. Managers have to understand that maintenance is not only about repairs and conservations of machines and devices, but also actions striving for more efficient resources management and care for safety and health of employees. The purpose of the work is to present strategic analysis based on SWOT analysis to identify the opportunities and strengths of maintenance process, to benefit from them as much as possible, as well as to identify weaknesses and threats, so that they could be eliminated or minimized.

  18. Application and issues of online maintenance for equipment of nuclear power plants

    International Nuclear Information System (INIS)

    Higasa, Hisakazu

    2011-01-01

    The maintenance systems for long-term safety and repair costs reduction of equipment of nuclear power plants are stated. Planned maintenance contained the breakdown maintenance (BM) and the preventive maintenance, which consists of the time based maintenance (MBM) and the condition based maintenance (CBM). Explained are the characteristics of equipments, maintenance methods, maintenance solutions and the self-evaluation maintenance power, damage mechanism and solutions, and monitoring tools and application. Stated are the maintenance system and application of monitoring technology, periodical maintenance, application of diagnosis, vibration monitoring techniques, decision of vibration monitoring, and application of monitoring techniques for improvement of maintenance. Illustrated are realization of planned maintenance by reorganization of maintenance, a trend of maintenance of equipments, table of classified maintenance systems, change of maintenance program, maintenance data and investigation of damage mechanism, examples of self-evaluation maintenance power, examples of analysis of damage of parts of equipments, evaluation of rotating machines by vibration method, examples of results of diagnosis of bearing of rotating machines, online maintenance system of Asahi Kasei Engineering Corporation, degradation pattern of pomp, estimation of lifetime by total vibration and vibration on acceleration, and improvement of equipments. (S.Y.)

  19. Program integration of predictive maintenance with reliability centered maintenance

    International Nuclear Information System (INIS)

    Strong, D.K. Jr; Wray, D.M.

    1990-01-01

    This paper addresses improving the safety and reliability of power plants in a cost-effective manner by integrating the recently developed reliability centered maintenance techniques with the traditional predictive maintenance techniques of nuclear power plants. The topics of the paper include a description of reliability centered maintenance (RCM), enhancing RCM with predictive maintenance, predictive maintenance programs, condition monitoring techniques, performance test techniques, the mid-Atlantic Reliability Centered Maintenance Users Group, test guides and the benefits of shared guide development

  20. Post bariatric Surgery Acute Axonal Polyneuropathy: Doing Your Best is Not Always Enough.

    Science.gov (United States)

    Yasawy, Zakia Mohammad; Hassan, Ali

    2017-01-01

    Neurological complications are frequently recognized with weight reduction surgeries for morbid obesity. The spectrum of peripheral neuropathies complicating the weight loss surgery is wide, and among them, the acute axonal peripheral neuropathy resembling Guillain-Barre syndrome is rare and only less than a dozen cases are reported. We present three cases, which after bariatric surgery developed acute polyneuropathy that rapidly progressed over 4 weeks from the onset. All patients responded to aggressive parenteral Vitamin B1 and B12 replacement therapy. These cases highlight the fact that bariatric surgery although is a promising option to treat morbid obesity; it is certainly not devoid of potential neurological complications due to micronutrient deficiencies. Delay in the diagnosis of acute polyneuropathy may worsen its long-term sequelae. A multidisciplinary team management with careful nutritional monitoring at regular interval is crucial in all patients for early recognition and intervention to avoid these complications after bariatric surgery.

  1. Framework for Maintenance Planning

    DEFF Research Database (Denmark)

    Soares, C. Guedes; Duarte, J. Caldeira; Garbatov, Y.

    2010-01-01

    the design and during the whole life span of operational use, within an integrated framework founded on risk and reliability based techniques. The document addresses designers, decision makers and professionals responsible for or involved in establishing maintenance plans. The purpose of this document...... is to present maintenance as an integrated approach that needs to be planned, designed, engineered, and controlled by proper qualitative and quantitative techniques. This document outlines the basic premises for maintenance planning and provides the general philosophies that can be followed and points to a best...

  2. Mobile network maintenance (GSM)

    CERN Multimedia

    IT Department

    2009-01-01

    Maintenance work will be carried out on the CERN mobile network infrastructure (GSM) on the 23 and 24 July from 6 p.m. to 6 a.m. in order to replace discontinued equipment and to increase the bandwidth capacity of the GSM mobile network. All CERN GSM emitters (40 units) will be moved one by one to the new infrastructure during the maintenance. The call of a user connected to an emitter at the time of its maintenance will be cut off. However, the general overlapping of the GSM radio coverage should mean that users are able immediately to call again should their call be interrupted. IT/CS/CS

  3. The disruption of mitochondrial axonal transport is an early event in neuroinflammation

    DEFF Research Database (Denmark)

    Errea, Oihana; Moreno, Beatriz; Gonzalez-Franquesa, Alba

    2015-01-01

    of neuroprotective therapies. Energy depletion due to mitochondrial dysfunction has been postulated as an important step in the damage of axons. This prompted us to study the effects of acute inflammation and oxidative stress on the morphology, transport, and function of mitochondria in axons. METHODS: Mouse......BACKGROUND: In brain inflammatory diseases, axonal damage is one of the most critical steps in the cascade that leads to permanent disability. Thus, identifying the initial events triggered by inflammation or oxidative stress that provoke axonal damage is critical for the development...... in axons, increasing the proportion of stationary mitochondria in axons after LPS challenge. Indeed, the two challenges used produced different effects: inflammation mostly reducing retrograde transport and oxidative stress slightly enhancing retrograde transportation. CONCLUSIONS: Neuroinflammation...

  4. Segregation of Axial Motor and Sensory Pathways via Heterotypic Trans-Axonal Signaling

    Science.gov (United States)

    Gallarda, Benjamin W.; Bonanomi, Dario; Müller, Daniel; Brown, Arthur; Alaynick, William A.; Andrews, Shane E.; Lemke, Greg; Pfaff, Samuel L.; Marquardt, Till

    2011-01-01

    Execution of motor behaviors relies on circuitries effectively integrating immediate sensory feedback to efferent pathways controlling muscle activity. It remains unclear how, during neuromuscular circuit assembly, sensory and motor projections become incorporated into tightly coordinated, yet functionally separate pathways. We report that, within axial nerves, establishment of discrete afferent and efferent pathways depends on coordinate signaling between coextending sensory and motor projections. These heterotypic axon-axon interactions require motor axonal EphA3/EphA4 receptor tyrosine kinases activated by cognate sensory axonal ephrin-A ligands. Genetic elimination of trans-axonal ephrin-A → EphA signaling in mice triggers drastic motor-sensory miswiring, culminating in functional efferents within proximal afferent pathways. Effective assembly of a key circuit underlying motor behaviors thus critically depends on trans-axonal signaling interactions resolving motor and sensory projections into discrete pathways. PMID:18403711

  5. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon.

    Science.gov (United States)

    Ma, Marek

    2013-12-01

    Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed. © 2013.

  6. A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord

    DEFF Research Database (Denmark)

    Hoeber, Jan; Konig, Niclas; Trolle, Carl

    2017-01-01

    restores sensory functions. In this study, we elucidate mechanisms underlying stem cell-mediated ingrowth of sensory axons after dorsal root avulsion (DRA). We show that human spinal cord neural stem/progenitor cells (hscNSPC), and also, mesoporous silica particles loaded with growth factor mimetics (Meso......MIM), supported sensory axon regeneration. However, when hscNSPC and MesoMIM were combined, sensory axon regeneration failed. Morphological and tracing analysis showed that sensory axons grow through the newly established glial scar along “bridges” formed by migrating stem cells. Coimplantation of Meso......MIM prevented stem cell migration, “bridges” were not formed, and sensory axons failed to enter the spinal cord. MesoMIM applied alone supported sensory axons ingrowth, but without affecting glial scar formation. In vitro, the presence of MesoMIM significantly impaired migration of hscNSPC without affecting...

  7. Regeneration-associated macrophages: a novel approach to boost intrinsic regenerative capacity for axon regeneration

    Directory of Open Access Journals (Sweden)

    Min Jung Kwon

    2016-01-01

    Full Text Available Axons in central nervous system (CNS do not regenerate spontaneously after injuries such as stroke and traumatic spinal cord injury. Both intrinsic and extrinsic factors are responsible for the regeneration failure. Although intensive research efforts have been invested on extrinsic regeneration inhibitors, the extent to which glial inhibitors contribute to the regeneration failure in vivo still remains elusive. Recent experimental evidence has rekindled interests in intrinsic factors for the regulation of regeneration capacity in adult mammals. In this review, we propose that activating macrophages with pro-regenerative molecular signatures could be a novel approach for boosting intrinsic regenerative capacity of CNS neurons. Using a conditioning injury model in which regeneration of central branches of dorsal root ganglia sensory neurons is enhanced by a preceding injury to the peripheral branches, we have demonstrated that perineuronal macrophages surrounding dorsal root ganglia neurons are critically involved in the maintenance of enhanced regeneration capacity. Neuron-derived chemokine (C-C motif ligand 2 (CCL2 seems to mediate neuron-macrophage interactions conveying injury signals to perineuronal macrophages taking on a soley pro-regenerative phenotype, which we designate as regeneration-associated macrophages (RAMs. Manipulation of the CCL2 signaling could boost regeneration potential mimicking the conditioning injury, suggesting that the chemokine-mediated RAM activation could be utilized as a regenerative therapeutic strategy for CNS injuries.

  8. Optimizing preventive maintenance policy : A data-driven application for a light rail braking system

    NARCIS (Netherlands)

    Corman, F.; Kraijema, S.; Godjevac, M.; Lodewijks, G.

    2017-01-01

    This article presents a case study determining the optimal preventive maintenance policy for a light rail rolling stock system in terms of reliability, availability, and maintenance costs. The maintenance policy defines one of the three predefined preventive maintenance actions at fixed time-based

  9. Patients in long-term maintenance therapy for drug use in Italy: analysis of some parameters of social integration and serological status for infectious diseases in a cohort of 1091 patients

    Directory of Open Access Journals (Sweden)

    Montanari Linda

    2006-08-01

    Full Text Available Abstract Background Heroin addiction often severely disrupts normal social functioning. The aims of this multi-centre study of heroin users in long-term replacement treatment were: i to provide information on aspects of social condition such as employment, educational background, living status, partner status and any history of drug addiction for partners, comparing these data with that of the general population; ii to assess the prevalence of hepatitis, syphilis and HIV, because serological status could be a reflection of the social conditions of patients undergoing replacement treatment for drug addiction; iii to analyse possible relationships between social conditions and serological status. Methods A cross-sectional study was carried out in sixteen National Health Service Drug Addiction Units in northern Italy. The data were collected from February 1, 2002 to August 31, 2002. Recruitment eligibility was: maintenance treatment with methadone or buprenorphine, treatment for the previous six months, and at least 18 years of age. In the centres involved in the study no specific criteria or regulations were established concerning the duration of replacement therapy. Participants underwent a face-to-face interview. Results The conditions of 1091 drug treatment patients were evaluated. The mean duration of drug use was 14.5 years. Duration was shorter in females, in subjects with a higher educational background, and in stable relationships. Most (68% had completed middle school (11–14 years of age. Seventy-nine percent were employed and 16% were unemployed. Fifty percent lived with their parents, 34% with a partner and 14% alone. Males lived more frequently with their parents (55%, and females more frequently with a partner (60%. Sixty-seven percent of male patients with a stable relationship had a partner who had never used heroin. HCV prevalence was 72%, HBV antibodies were detected in 42% of patients, while 30% had been vaccinated; 12.5% of

  10. Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0524 TITLE:Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis PRINCIPAL INVESTIGATOR: Jeffrey D...29 Sep 2015 4. TITLE AND SUBTITLE Oligodendroglial MCT1 and Metabolic Support of Axons in Multiple Sclerosis 5a. CONTRACT NUMBER W81XWH-14-1-0524...MCT1 in injured oligodendroglia of multiple sclerosis patients contributes to axon neurodegeneration and that increasing MCT1 will be protective in the

  11. Mobile robotics for CANDU maintenance

    International Nuclear Information System (INIS)

    Lipsett, M.G.; Rody, K.H.

    1996-01-01

    Although robotics researchers have been promising that robotics would soon be performing tasks in hazardous environments, the reality has yet to live up to the hype. The presently available crop of robots suitable for deployment in industrial situations are remotely operated, requiring skilled users. This talk describes cases where mobile robots have been used successfully in CANDU stations, discusses the difficulties in using mobile robots for reactor maintenance, and provides near-term goals for achievable improvements in performance and usefulness. (author) 5 refs., 2 ills

  12. Evaluation of maintenance strategies.

    Science.gov (United States)

    2013-11-01

    In the mid1990s, the Arizona Department of Transportation (ADOT) initiated the Maintenance Cost : Effectiveness study (SPR 371) with the development of plans and an experiment design to evaluate the : effectiveness of a variety of asphalt pavement...

  13. Experts' meeting: Maintenance '83

    International Nuclear Information System (INIS)

    1983-01-01

    The brochure presents, in full wording, 20 papers read at the experts' meeting ''Maintenance '83'' in Wiesbaden. Most of the papers discuss reliability data (acquisition, evaluation, processing) of nearly all fields of industry. (RW) [de

  14. Excellence through maintenance mastering

    International Nuclear Information System (INIS)

    Lamarche, M.; Guillot, M.; Monier, M.

    1987-01-01

    To improve the overall availability factor of nuclear power plants you have to cut either the forced outage role and the planned outage time or you need to reduce simultaneously the failures and the efforts devoted to avoiding them. Among other results, this goal leads to a decrease in the number of real or anticipated problems. Electricite de France policy, in this matter, is to focus on decreasing the compoents' maintenance needs through a comprehensive modification program, targeted to eliminating the weak points as revealed by the operation. Thereby one may reach, for simple equipment, a nearly maintenance-free condition in which the only maintenance needed is surveillance, which provides assurance that everything is operating properly. A good example of this type of equipment is the family of static components, drums, and pipes whose corrective maintenance is almost nil when their initial condition is good

  15. Factors Influencing Army Maintenance

    Science.gov (United States)

    1989-01-01

    Harz (1981), reports the results of questioning largc- numbers of Subject Matter Experts (SMEs) involved in the maintenance process. The second type of...identified maintenance problems (e.g., Kokenes, 1987; Harz , 1981). The second step was the identificatl i of demand factors that affect the actual...Kokenes, 1987; Harz , 1981). Second, if any of the data on which allocations are based are faulty, or budgetary decisions require a cutback in

  16. Predictive maintenance primer

    International Nuclear Information System (INIS)

    Flude, J.W.; Nicholas, J.R.

    1991-04-01

    This Predictive Maintenance Primer provides utility plant personnel with a single-source reference to predictive maintenance analysis methods and technologies used successfully by utilities and other industries. It is intended to be a ready reference to personnel considering starting, expanding or improving a predictive maintenance program. This Primer includes a discussion of various analysis methods and how they overlap and interrelate. Additionally, eighteen predictive maintenance technologies are discussed in sufficient detail for the user to evaluate the potential of each technology for specific applications. This document is designed to allow inclusion of additional technologies in the future. To gather the information necessary to create this initial Primer the Nuclear Maintenance Applications Center (NMAC) collected experience data from eighteen utilities plus other industry and government sources. NMAC also contacted equipment manufacturers for information pertaining to equipment utilization, maintenance, and technical specifications. The Primer includes a discussion of six methods used by analysts to study predictive maintenance data. These are: trend analysis; pattern recognition; correlation; test against limits or ranges; relative comparison data; and statistical process analysis. Following the analysis methods discussions are detailed descriptions for eighteen technologies analysts have found useful for predictive maintenance programs at power plants and other industrial facilities. Each technology subchapter has a description of the operating principles involved in the technology, a listing of plant equipment where the technology can be applied, and a general description of the monitoring equipment. Additionally, these descriptions include a discussion of results obtained from actual equipment users and preferred analysis techniques to be used on data obtained from the technology. 5 refs., 30 figs

  17. Maintenance of scientific instruments

    International Nuclear Information System (INIS)

    Lucero, E.

    1986-01-01

    During the last years Colombia has increased the use of nuclear techniques, instruments and equipment in ambitious health programs, as well as in research centers, industry and education; this has resulted in numerous maintenance problems. As an alternative solution IAN has established a Central Maintenance Laboratory for nuclear instruments within an International Atomic Energy Agency program for eight Latin American and nine Asian Countries. Established strategies and some results are detailed in this writing

  18. TFTR remote maintenance

    International Nuclear Information System (INIS)

    Bonanos, P.; Lontai, L.

    1977-01-01

    The Tokamak Fusion Test Reactor (TFTR) is the first tokamak designed to utilize tritium plasmas and achieve significant neutron yields. Tritium operations are scheduled for the early 1980's at the Princeton Plasma Physics Laboratory. Complex operations of unprecedented scale must be performed remotely. The design of TFTR and the maintenance system supporting it are developing in parallel. The nature of the problem and a proposed set of maintenance tools are described

  19. Remote maintenance development

    International Nuclear Information System (INIS)

    Zook, C.R.

    1979-01-01

    The concept of remote maintenance as it pertains to nuclear fuel fabrication facilities is quite unique. The future may require completely remote facilities where maintenance will be performed by hybrid manipulators/robots. These units will be capable of being preprogrammed for automatic operation or manually operated with the operator becoming a part of the closed loop control system. These robots will mesh television, computer control, and direct force feedback manual control in a usable new concept of robotics

  20. Ribosomes and polyribosomes are present in the squid giant axon: an immunocytochemical study.

    Science.gov (United States)

    Sotelo, J R; Kun, A; Benech, J C; Giuditta, A; Morillas, J; Benech, C R

    1999-05-01

    Ribosomes and polyribosomes were detected by immuno-electron microscopy in the giant axon and small axons of the squid using a polyclonal antibody against rat brain ribosomes. The ribosomal fraction used as antigen was purified by ultracentrifugation on a sucrose density gradient and shown to contain ribosomal RNAs and native ribosomes. The polyclonal antibody raised in rabbits reacted with at least ten proteins on immunoblots of purified rat brain ribosomes as well as with a set of multiple ribosomal proteins prepared from the squid giant fiber lobe. Immunoreactions were performed on cryostat sections of the stellate nerve cut at a distance of more than 3 cm from the stellate ganglion, using pre-embedding techniques. Ribosomes and polyribosomes were identified within the giant axon and small axons using electron microscopic methods, following binding of peroxidase-conjugated anti-rabbit IgG secondary antibody. Polysomes were more frequently localized in peripheral axoplasm, including the cortical layer of the giant axon, and were generally associated with unidentified cytoskeletal filaments or with dense matrix material. The immunochemical demonstration of ribosomes and polyribosomes in the giant axon and small axons of the squid confirms similar observations in the squid and the goldfish obtained with the method of electron spectroscopic imaging, and strongly supports the view that a local system of protein synthesis is present in axons. The immunochemical method here described offers an alternative tool for the selective identification of ribosomes, and is likely to prove of value in the analyses of other axonal systems.

  1. Regulation of Axonal Midline Guidance by Prolyl 4-Hydroxylation in Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Torpe, Nanna; Pocock, Roger David John

    2014-01-01

    , little is known of its importance in the control of axon guidance. In a screen of prolyl 4-hydroxylase (P4H) mutants, we found that genetic removal of a specific P4H subunit, DPY-18, causes dramatic defects in C. elegans neuroanatomy. In dpy-18 mutant animals, the axons of specific ventral nerve cord......Neuronal wiring during development requires that the growth cones of axons and dendrites are correctly guided to their appropriate targets. As in other animals, axon growth cones in Caenorhabditis elegans integrate information in their extracellular environment via interactions among transiently...

  2. Forced notch signaling inhibits commissural axon outgrowth in the developing chick central nerve system.

    Directory of Open Access Journals (Sweden)

    Ming Shi

    Full Text Available BACKGROUND: A collection of in vitro evidence has demonstrated that Notch signaling plays a key role in the growth of neurites in differentiated neurons. However, the effects of Notch signaling on axon outgrowth in an in vivo condition remain largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: In this study, the neural tubes of HH10-11 chick embryos were in ovo electroporated with various Notch transgenes of activating or inhibiting Notch signaling, and then their effects on commissural axon outgrowth across the floor plate midline in the chick developing central nerve system were investigated. Our results showed that forced expression of Notch intracellular domain, constitutively active form of RBPJ, or full-length Hes1 in the rostral hindbrain, diencephalon and spinal cord at stage HH10-11 significantly inhibited commissural axon outgrowth. On the other hand, inhibition of Notch signaling by ectopically expressing a dominant-negative form of RBPJ promoted commissural axonal growth along the circumferential axis. Further results revealed that these Notch signaling-mediated axon outgrowth defects may be not due to the alteration of axon guidance since commissural axon marker TAG1 was present in the axons in floor plate midline, and also not result from the changes in cell fate determination of commissural neurons since the expression of postmitotic neuron marker Tuj1 and specific commissural markers TAG1 and Pax7 was unchanged. CONCLUSIONS/SIGNIFICANCE: We first used an in vivo system to provide evidence that forced Notch signaling negatively regulates commissural axon outgrowth.

  3. Alterations in the Local Axonal Environment Influence Target Reinnervation and Neuronal Survival after Postnatal Axotomy

    National Research Council Canada - National Science Library

    Dainer, Hugh M

    2000-01-01

    Following peripheral nerve injury in adult animals, Schwann cells (SC) proliferate and provide guidance in the local axonal environment by generating the infrastructure along which regenerating nerves grow...

  4. N-Propionylmannosamine stimulates axonal elongation in a murine model of sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Christian Witzel

    2015-01-01

    Full Text Available Increasing evidence indicates that sialic acid plays an important role during nerve regeneration. Sialic acids can be modified in vitro as well as in vivo using metabolic oligosaccharide engineering of the N-acyl side chain. N-Propionylmannosamine (ManNProp increases neurite outgrowth and accelerates the reestablishment of functional synapses in vitro. We investigated the influence of systemic ManNProp application using a specific in vivo mouse model. Using mice expressing axonal fluorescent proteins, we quantified the extension of regenerating axons, the number of regenerating axons, the number of arborising axons and the number of branches per axon 5 days after injury. Sciatic nerves from non-expressing mice were grafted into those expressing yellow fluorescent protein. We began a twice-daily intraperitoneal application of either peracetylated ManNProp (200 mg/kg or saline solution 5 days before injury, and continued it until nerve harvest (5 days after transection. ManNProp significantly increased the mean distance of axonal regeneration (2.49 mm vs. 1.53 mm; P < 0.005 and the number of arborizing axons (21% vs. 16% P = 0.008 5 days after sciatic nerve grafting. ManNProp did not affect the number of regenerating axons or the number of branches per arborizing axon. The biochemical glycoengineering of the N-acyl side chain of sialic acid might be a promising approach for improving peripheral nerve regeneration.

  5. The time course of ongoing activity during neuritis and following axonal transport disruption.

    Science.gov (United States)

    Satkeviciute, Ieva; Goodwin, George; Bove, Geoffrey M; Dilley, Andrew

    2018-02-21

    Local nerve inflammation (neuritis) leads to ongoing activity and axonal mechanical sensitivity (AMS) along intact nociceptor axons, and disrupts axonal transport. This phenomenon forms the most feasible cause of radiating pain, such as sciatica. We have previously shown that axonal transport disruption without inflammation or degeneration also leads to AMS, but does not cause ongoing activity at the time point when AMS occurs, despite causing cutaneous hypersensitivity. However, there have been no systematic studies of ongoing activity during neuritis or non-inflammatory axonal transport disruption. In this study, we present the time course of ongoing activity from primary sensory neurons following neuritis and vinblastine-induced axonal transport disruption. Whereas 24% of C/slow Aδ-fiber neurons had ongoing activity during neuritis, few (disruption of axonal transport without inflammation does not lead to ongoing activity in sensory neurons, including nociceptors, but does cause a rapid and transient development of AMS. Since it is proposed that AMS underlies mechanically-induced radiating pain, and a transient disruption of axonal transport (as previously reported) leads to transient AMS, it follows that processes that disrupt axonal transport, such as neuritis, must persist to maintain AMS and the associated symptoms.

  6. Segregation of ipsilateral retinal ganglion cell axons at the optic chiasm requires the Shh receptor Boc.

    Science.gov (United States)

    Fabre, Pierre J; Shimogori, Tomomi; Charron, Frédéric

    2010-01-06

    The pattern of contralaterally and ipsilaterally projecting retinal ganglion cell (RGC) axons at the optic chiasm is essential for the establishment of binocular vision. Contralateral axons cross the chiasm midline as they progress from the optic nerve to the optic tract. In contrast, ipsilateral axons deviate from the chiasm and continue in the ipsilateral optic tract, avoiding the chiasm midline. The molecular mechanism underlying this phenomenon is not completely understood. Here we show that the Sonic Hedgehog (Shh) receptor Boc is enriched in ipsilateral RGCs of the developing retina. Together with the presence of Shh at the midline, this complementary expression pattern led us to hypothesize that Shh might repel ipsilateral RGC axons at the chiasm. Consistent with this hypothesis, we found that only Boc-positive RGC axons retract in vitro in response to Shh and that this response is lost in Boc mutant RGCs. In vivo, we show that Boc is required for the normal segregation of ipsilateral axons at the optic chiasm and, conversely, that Boc expression in contralateral RGCs prevents their axons from crossing the optic chiasm. Together, these results suggest that Shh repels ipsilateral RGC axons at the optic chiasm via its receptor Boc. This work identifies a novel molecular pathway required for the segregation of axons at the optic chiasm.

  7. Mechanical configuration and maintenance

    International Nuclear Information System (INIS)

    Brown, T.G.; Casini, G.; Churakov, G.F.

    1982-01-01

    The INTOR engineering design has been strongly influenced by considerations for assembly and maintenance. A maintenance philosophy was established at the outset of the conceptual design to insure that the tokamak configuration would be developed to accommodate maintenance requirements. The main features of the INTOR design are summarized in this paper with primary emphasis on the impact of maintenance considerations. The most apparent configuration design feature is the access provided for torus maintenance. Particular attention was given to the size and location of superconducting magnets and the location of vacuum boundaries. All of the poloidal field (PF) coils are placed outside of the bore of the toroidal field (TF) coils and located above and below an access opening between adjacent TF coils through which torus sectors are removed. A magnet structural configuration consisting of mechanically attached reinforcing members has been designed which facilitates the open access space for torus sector removal. For impurity control, a single null poloidal divertor was selected over a double null design in order to maintain sufficient access for pumping and maintenance of the collector. A double null divertor was found to severely limit access to the torus with the addition of divertor collectors and pumping at the top. For this reason, a single null concept was selected in spite of the more difficult design problems associated with the required asymmetric PF system and higher particle loadings

  8. Biomarker evidence of axonal injury in neuroasymptomatic HIV-1 patients.

    Directory of Open Access Journals (Sweden)

    Jan Jessen Krut

    Full Text Available Prevalence of neurocognitive impairment in HIV-1 infected patients is reported to be high. Whether this is a result of active HIV-related neurodegeneration is unclear. We examined axonal injury in HIV-1 patients by measuring the light subunit of neurofilament protein (NFL in CSF with a novel, sensitive method.With a cross-sectional design, CSF concentrations of neurofilament protein light (NFL (marker of neuronal injury, neopterin (intrathecal immunoactivation and CSF/Plasma albumin ratio (blood-brain barrier integrity were analyzed on CSF from 252 HIV-infected patients, subdivided into untreated neuroasymptomatics (n = 200, HIV-associated dementia (HAD (n = 14 and on combinations antiretroviral treatment (cART (n = 85, and healthy controls (n = 204. 46 HIV-infected patients were included in both treated and untreated groups, but sampled at different timepoints. Furthermore, 78 neuroasymptomatic patients were analyzed before and after treatment initiation.While HAD patients had the highest NFL concentrations, elevated CSF NFL was also found in 33% of untreated neuroasymptomatic patients, mainly in those with blood CD4+ cell counts below 250 cells/μL. CSF NFL concentrations in the untreated neuroasymptomatics and treated groups were equivalent to controls 18.5 and 3.9 years older, respectively. Neopterin correlated with NFL levels in untreated groups while the albumin ratio correlated with NFL in both untreated and treated groups.Increased CSF NFL indicates ongoing axonal injury in many neuroasymptomatic patients. Treatment decreases NFL, but treated patients retain higher levels than controls, indicating either continued virus-related injury or an aging-like effect of HIV infection. NFL correlates with neopterin and albumin ratio, suggesting an association between axonal injury, neuroinflammation and blood-brain barrier permeability. NFL appears to be a sensitive biomarker of subclinical and clinical brain injury in HIV and warrants further

  9. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression.

    Science.gov (United States)

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár

    2018-01-01

    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 10 9 asymmetric synapses, 1.06 × 10 8 symmetric synapses and 1.00 × 10 8 myelinated axons. The density of asymmetric synapses was 5.5/μm 3 and the density of symmetric synapses was 0.5/μm 3 . Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is

  10. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression

    Science.gov (United States)

    Csabai, Dávid; Wiborg, Ove; Czéh, Boldizsár

    2018-01-01

    Stressful experiences can induce structural changes in neurons of the limbic system. These cellular changes contribute to the development of stress-induced psychopathologies like depressive disorders. In the prefrontal cortex of chronically stressed animals, reduced dendritic length and spine loss have been reported. This loss of dendritic material should consequently result in synapse loss as well, because of the reduced dendritic surface. But so far, no one studied synapse numbers in the prefrontal cortex of chronically stressed animals. Here, we examined synaptic contacts in rats subjected to an animal model for depression, where animals are exposed to a chronic stress protocol. Our hypothesis was that long term stress should reduce the number of axo-spinous synapses in the medial prefrontal cortex. Adult male rats were exposed to daily stress for 9 weeks and afterward we did a post mortem quantitative electron microscopic analysis to quantify the number and morphology of synapses in the infralimbic cortex. We analyzed asymmetric (Type I) and symmetric (Type II) synapses in all cortical layers in control and stressed rats. We also quantified axon numbers and measured the volume of the infralimbic cortex. In our systematic unbiased analysis, we examined 21,000 axon terminals in total. We found the following numbers in the infralimbic cortex of control rats: 1.15 × 109 asymmetric synapses, 1.06 × 108 symmetric synapses and 1.00 × 108 myelinated axons. The density of asymmetric synapses was 5.5/μm3 and the density of symmetric synapses was 0.5/μm3. Average synapse membrane length was 207 nm and the average axon terminal membrane length was 489 nm. Stress reduced the number of synapses and myelinated axons in the deeper cortical layers, while synapse membrane lengths were increased. These stress-induced ultrastructural changes indicate that neurons of the infralimbic cortex have reduced cortical network connectivity. Such reduced network connectivity is likely

  11. Using the system maintenance datastore to characterize lifetime maintenance for PLiM

    International Nuclear Information System (INIS)

    Watson, P.; Dam, R.; Nickerson, J.

    2004-01-01

    A comprehensive Plant Life Management (PLiM) program involves evaluating a large amount of information. For any plant, there are numerous maintenance, surveillance and inspection programs for the important systems, structures and components. There is extensive industry experience on component failure modes, degradation mechanisms and recommended maintenance practices. This information forms the basis of the aging assessment work, through which improvements to these plant programs are identified. AECL has developed several tools to manage the quantities of information required in aging assessment studies, such as the SYSTMS (SYtematic approach for the development of STrategy for Maintenance and Surveillance) tool and the System Maintenance Datastore (SMD). The SMD has been developed to serve as a hub to a Systematic based Adaptive Maintenance Program (SAMP), by storing maintenance resource requirements for recommended maintenance tasks for use by the other processes in a SAMP. The SMD can be used to (a) quantify the savings or cost of optimising a maintenance program, (b) characterize and understand long term trends in condition-based maintenance due to component aging, (c) quantify the resource savings due to optimum timing of component replacement or general plant refurbishment, and (d) provide aging assessment cost information for input to plant asset evaluation. The SMD contains data for regular maintenance program tasks, plant condition assessment recommendations, and equipment refurbishment costs. A prototype SMD has been developed with data tables populated with information from operating CANDU stations. The SMD is now available to be used either with a SYSTMS evaluation or with a plant's database of maintenance tasks. (author)

  12. Building relationships for better maintenance.

    Science.gov (United States)

    Lee, Hackman Hon Yin; Scott, David

    2009-02-01

    Effective management of building maintenance is a vital ingredient in ensuring a high quality built environment for any building's occupiers. However, maintenance is not high on the list of priorities for most organisations. Communication between top management personnel looking at maintenance issues from a strategic standpoint and maintenance staff considering them at an operational level is often not as good as it should be. When planning maintenance activities maintenance personnel often draw too heavily on their technical experience and expertise without taking sufficient account of wider organisational objectives or consulting effectively with top management. Senior managers also regularly complain about lack of managerial input from maintenance departments. Such barriers contribute to communication difficulties between top management at a strategic level and maintenance personnel at an operational level. Identifying where the key differences lie in senior managers' and maintenance personnel's viewpoints on maintenance strategy can prove invaluable in achieving some convergence of opinions and optimising the efficiency of the overall building maintenance process.

  13. Differing antidepressant maintenance methodologies.

    Science.gov (United States)

    Safer, Daniel J

    2017-10-01

    The principle evidence that antidepressant medication (ADM) is an effective maintenance treatment for adults with major depressive disorder (MDD) is from placebo substitution trials. These trials enter responders from ADM efficacy trials into randomized, double-blind placebo-controlled (RDBPC) effectiveness trials to measure the rate of MDD relapse over time. However, other randomized maintenance trial methodologies merit consideration and comparison. A systematic review of ADM randomized maintenance trials included research reports from multiple databases. Relapse rate was the main effectiveness outcome assessed. Five ADM randomized maintenance methodologies for MDD responders are described and compared for outcome. These effectiveness trials include: placebo-substitution, ADM/placebo extension, ADM extension, ADM vs. psychotherapy, and treatment as usual. The placebo-substitution trials for those abruptly switched to placebo resulted in unusually high (46%) rates of relapse over 6-12months, twice the continuing ADM rate. These trials were characterized by selective screening, high attrition, an anxious anticipation of a switch to placebo, and a risk of drug withdrawal symptoms. Selectively screened ADM efficacy responders who entered into 4-12month extension trials experienced relapse rates averaging ~10% with a low attrition rate. Non-industry sponsored randomized trials of adults with multiple prior MDD episodes who were treated with ADM maintenance for 1-2years experienced relapse rates averaging 40%. Placebo substitution trial methodology represents only one approach to assess ADM maintenance. Antidepressant maintenance research for adults with MDD should be evaluated for industry sponsorship, attrition, the impact of the switch to placebo, and major relapse differences in MDD subpopulations. Copyright © 2017. Published by Elsevier Inc.

  14. JRR-3 maintenance program utilizing accumulated maintenance data

    International Nuclear Information System (INIS)

    Izumo, Hironobu; Kato, Tomoaki; Kinase, Masami; Torii, Yoshiya; Murayama, Yoji

    2007-07-01

    JRR-3(Japan Research Reactor No.3) has been operated for more than 15 years after the modification, without significant troubles by carrying out maintenance such as the preventive maintenance (mainly time-based maintenance) for the safety-grade equipments and the breakdown maintenance for the non-safety-grade equipments. Unscheduled shutdowns causes by aged non-safety-grade equipments have been increasing, and the resources such as budgets have been decreasing year by year. In this situation, JRR-3 maintenance program was reviewed about safety, reliability and economic efficiency. This report offers the policy of the maintenance review and the future direction of maintenance programs. (author)

  15. Gogo receptor contributes to retinotopic map formation and prevents R1-6 photoreceptor axon bundling.

    Directory of Open Access Journals (Sweden)

    Irina Hein

    Full Text Available BACKGROUND: Topographic maps form the basis of neural processing in sensory systems of both vertebrate and invertebrate species. In the Drosophila visual system, neighboring R1-R6 photoreceptor axons innervate adjacent positions in the first optic ganglion, the lamina, and thereby represent visual space as a continuous map in the brain. The mechanisms responsible for the establishment of retinotopic maps remain incompletely understood. RESULTS: Here, we show that the receptor Golden goal (Gogo is required for R axon lamina targeting and cartridge elongation in a partially redundant fashion with local guidance cues provided by neighboring axons. Loss of function of Gogo in large clones of R axons results in aberrant R1-R6 fascicle spacing. Gogo affects target cartridge selection only indirectly as a consequence of the disordered lamina map. Interestingly, small clones of gogo deficient R axons perfectly integrate into a proper retinotopic map suggesting that surrounding R axons of the same or neighboring fascicles provide complementary spatial guidance. Using single photoreceptor type rescue, we show that Gogo expression exclusively in R8 cells is sufficient to mediate targeting of all photoreceptor types in the lamina. Upon lamina targeting and cartridge selection, R axons elongate within their individual cartridges. Interestingly, here Gogo prevents bundling of extending R1-6 axons. CONCLUSION: Taken together, we propose that Gogo contributes to retinotopic map formation in the Drosophila lamina by controlling the distribution of R1-R6 axon fascicles. In a later developmental step, the regular position of R1-R6 axons along the lamina plexus is crucial for target cartridge selection. During cartridge elongation, Gogo allows R1-R6 axons to extend centrally in the lamina cartridge.

  16. N-cadherin regulates primary motor axon growth and branching during zebrafish embryonic development.

    Science.gov (United States)

    Brusés, Juan L

    2011-06-15

    N-cadherin is a classical type I cadherin that contributes to the formation of neural circuits by regulating growth cone migration and the formation of synaptic contacts. This study analyzed the role of N-cadherin in primary motor axons growth during development of the zebrafish (Danio rerio) embryo. After exiting the spinal cord, primary motor axons migrate ventrally through a common pathway and form the first neuromuscular junction with the muscle pioneer cells located at the horizontal myoseptum, which serves as a choice point for cell-type-specific pathway selection. Analysis of N-cadherin mutants (cdh2(hi3644Tg) ) and embryos injected with N-cadherin antisense morpholinos showed primary motor axons extending aberrant axonal branches at the choice point in ∼40% of the somitic hemisegments and an ∼150% increase in the number of branches per axon length within the ventral myotome. Analysis of individual axons trajectories showed that the caudal (CaP) and rostral (RoP) motor neurons axons formed aberrant branches at the choice point that abnormally extended in the rostrocaudal axis and ventrally to the horizontal myoseptum. Expression of a dominant-interfering N-cadherin cytoplasmic domain in primary motor neurons caused some axons to stall abnormally at the horizontal myoseptum and to impair their migration into the ventral myotome. However, in N-cadherin-depleted embryos, the majority of primary motor axons innervated their appropriate myotomal territories, indicating that N-cadherin regulates motor axon growth and branching without severely affecting the mechanisms that control axonal target selection. Copyright © 2011 Wiley-Liss, Inc.

  17. Plexin A3 and turnout regulate motor axonal branch morphogenesis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Rajiv Sainath

    Full Text Available During embryogenesis motor axons navigate to their target muscles, where individual motor axons develop complex branch morphologies. The mechanisms that control axonal branching morphogenesis have been studied intensively, yet it still remains unclear when branches begin to form or how branch locations are determined. Live cell imaging of individual zebrafish motor axons reveals that the first axonal branches are generated at the ventral extent of the myotome via bifurcation of the growth cone. Subsequent branches are generated by collateral branching restricted to their synaptic target field along the distal portion of the axon. This precisely timed and spatially restricted branching process is disrupted in turnout mutants we identified in a forward genetic screen. Molecular genetic mapping positioned the turnout mutation within a 300 kb region encompassing eight annotated genes, however sequence analysis of all eight open reading frames failed to unambiguously identify the turnout mutation. Chimeric analysis and single cell labeling reveal that turnout function is required cell non-autonomously for intraspinal motor axon guidance and peripheral branch formation. turnout mutant motor axons form the first branch on time via growth cone bifurcation, but unlike wild-type they form collateral branches precociously, when the growth cone is still navigating towards the ventral myotome. These precocious collateral branches emerge along the proximal region of the axon shaft typically devoid of branches, and they develop into stable, permanent branches. Furthermore, we find that null mutants of the guidance receptor plexin A3 display identical motor axon branching defects, and time lapse analysis reveals that precocious branch formation in turnout and plexin A3 mutants is due to increased stability of otherwise short-lived axonal protrusions. Thus, plexin A3 dependent intrinsic and turnout dependent extrinsic mechanisms suppress collateral branch

  18. Ontology Maintenance using Textual Analysis

    Directory of Open Access Journals (Sweden)

    Yassine Gargouri

    2003-10-01

    Full Text Available Ontologies are continuously confronted to evolution problem. Due to the complexity of the changes to be made, a maintenance process, at least a semi-automatic one, is more and more necessary to facilitate this task and to ensure its reliability. In this paper, we propose a maintenance ontology model for a domain, whose originality is to be language independent and based on a sequence of text processing in order to extract highly related terms from corpus. Initially, we deploy the document classification technique using GRAMEXCO to generate classes of texts segments having a similar information type and identify their shared lexicon, agreed as highly related to a unique topic. This technique allows a first general and robust exploration of the corpus. Further, we apply the Latent Semantic Indexing method to extract from this shared lexicon, the most associated terms that has to be seriously considered by an expert to eventually confirm their relevance and thus updating the current ontology. Finally, we show how the complementarity between these two techniques, based on cognitive foundation, constitutes a powerful refinement process.

  19. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  20. Imaging findings in diffuse axonal injury after closed head trauma

    Energy Technology Data Exchange (ETDEWEB)

    Parizel, P.M.; Oezsarlak, Oe.; Goethem, J.W. van; Hauwe, L. van den; Schepper, A.M. de [Department of Radiology, Universitair Ziekenhuis Antwerpen (University of Antwerp), Edegem (Belgium); Dillen, C.; Cosyns, P. [Department of Psychiatry, Universitair Ziekenhuis Antwerpen (University of Antwerp), Edegem (Belgium); Verlooy, J. [Department of Neurosurgery, Universitair Ziekenhuis Antwerpen (University of Antwerp), Edegem (Belgium)

    1998-07-01

    Even in patients with closed head trauma, brain parenchyma can be severely injured due to disruption of axonal fibers by shearing forces during acceleration, deceleration, and rotation of the head. In this article we review the spectrum of imaging findings in patients with diffuse axonal injuries (DAI) after closed head trauma. Knowledge of the location and imaging characteristics of DAI is important to radiologists for detection and diagnosis. Common locations of DAI include: cerebral hemispheric gray-white matter interface and subcortical white matter, body and splenium of corpus callosum, basal ganglia, dorsolateral aspect of brainstem, and cerebellum. In the acute phase, CT may show punctate hemorrhages. The true extent of brain involvement is better appreciated with MR imaging, because both hemorrhagic and non-hemorrhagic lesions (gliotic scars) can be detected. The MR appearance of DAI lesions depends on several factors, including age of injury, presence of hemorrhage or blood-breakdown products (e. g., hemosiderin), and type of sequence used. Technical aspects in MR imaging of these patients are discussed. Non-hemorrhagic lesions can be detected with fluid attenuated inversion recovery (FLAIR), proton-density-, or T2-weighted images, whereas gradient echo sequences with long TE increase the visibility of old hemorrhagic lesions. (orig.) With 12 figs., 12 refs.

  1. Rapid signaling in distinct dopaminergic axons during locomotion and reward

    Science.gov (United States)

    Howe, MW; Dombeck, DA

    2016-01-01

    Summary Dopaminergic projections from the midbrain to striatum are critical for motor control, as their degeneration in Parkinson’s disease results in profound movement deficits. Paradoxically, most recording methods report rapid phasic dopamine signaling (~100ms bursts) to unpredicted rewards, with little evidence for movement-related signaling. The leading model posits that phasic signaling in striatum targeting dopamine neurons drive reward-based learning, while slow variations in firing (tens of seconds to minutes) in these same neurons bias animals towards or away from movement. However, despite widespread acceptance of this model, current methods have provided little evidence to support or refute it. Here, using new optical recording methods, we report the discovery of rapid phasic signaling in striatum-targeting dopaminergic axons that was associated with, and capable of triggering, locomotion in mice. Axons expressing these signals were largely distinct from those signaling during unexpected rewards. These results suggest that dopaminergic neuromodulation can differentially impact motor control and reward learning with sub-second precision and suggest that both precise signal timing and neuronal subtype are important parameters to consider in the treatment of dopamine-related disorders. PMID:27398617

  2. Building Maintenance, Management, and Budgeting.

    Science.gov (United States)

    Pawsey, M. R.

    1982-01-01

    Australian methods and formulas for funding building maintenance and management are outlined and found to be haphazard. Discussed are: ultimate costs of deferred maintenance, major plant replacements, life cycle costing, types of maintenance programs (including full preventive maintenance), use of computer programs for planning, and organization…

  3. Using systematic aging assessments to improve effectiveness of plant maintenance programs

    International Nuclear Information System (INIS)

    Watson, P.; Yang, J.X.; Dam, R.F.; Nickerson, J.H.

    2003-01-01

    Nuclear plant equipment aging assessment studies provided by AECL include life assessments, condition assessments or systematic assessments of maintenance. AECL has developed several tools to apply the results of aging assessment studies to improve the effectiveness of actual plant maintenance programs. The Systematic Assessment of Maintenance and the SYSTMS tool generate maintenance tasks for a system. The System Maintenance Datastore tool assesses the maintenance resources on a system basis, and can thus quantify the savings realized by optimizing the maintenance program. Long term trends in condition-based maintenance due to component aging can be predicted, and resource savings due to optimum timing of component replacement or general plant refurbishment can be quantified. The System based Adaptive Maintenance Process ensures the maintenance program is continually updated to reflect the latest plant equipment condition and maintenance strategy information. (author)

  4. The MERC maintenance system

    International Nuclear Information System (INIS)

    Izquierdo, J.J.; Chauvire, P.; Plessis, L.

    1991-01-01

    Maintenance in the modern commercial reprocessing plants is a subject of the highest priority in order to guarantee availability for the whole life of the plant. The design concept of the UP3 reprocessing plant at La Hague identified several categories of equipment according to their maintenance design principles. Among them, Standard Process Equipment such as pumps, valves, ejectors and filters which need periodic maintenance. These equipment items are designed in removable modular form to avoid the need to disconnect piping. Removal is performed under shielding and without breach of containment through the use of a transfer cask that is connected to the cell containing the equipment to be removed. This transfer cask is called MERC (Mobile Equipment Replacement Cask). Containment is preserved by an air-tight system consisting of coupled doors, with a special connecting gasket. This system can remove and replace failed equipment, without spreading contamination to work areas. (author)

  5. The Kinesin Adaptor Calsyntenin-1 Organizes Microtubule Polarity and Regulates Dynamics during Sensory Axon Arbor Development

    Directory of Open Access Journals (Sweden)

    Mary C. Halloran

    2017-04-01

    Full Text Available Axon growth and branching, and development of neuronal polarity are critically dependent on proper organization and dynamics of the microtubule (MT cytoskeleton. MTs must organize with correct polarity for delivery of diverse cargos to appropriate subcellular locations, yet the molecular mechanisms regulating MT polarity remain poorly understood. Moreover, how an actively branching axon reorganizes MTs to direct their plus ends distally at branch points is unknown. We used high-speed, in vivo imaging of polymerizing MT plus ends to characterize MT dynamics in developing sensory axon arbors in zebrafish embryos. We find that axonal MTs are highly dynamic throughout development, and that the peripheral and central axons of sensory neurons show differences in MT behaviors. Furthermore, we show that Calsyntenin-1 (Clstn-1, a kinesin adaptor required for sensory axon branching, also regulates MT polarity in developing axon arbors. In wild type neurons the vast majority of MTs are directed in the correct plus-end-distal orientation from early stages of development. Loss of Clstn-1 causes an increase in MTs polymerizing in the retrograde direction. These misoriented MTs most often are found near growth cones and branch points, suggesting Clstn-1 is particularly important for organizing MT polarity at these locations. Together, our results suggest that Clstn-1, in addition to regulating kinesin-mediated cargo transport, also organizes the underlying MT highway during axon arbor development.

  6. The role of mitochondria in axonal degeneration and tissue repair in MS

    NARCIS (Netherlands)

    van Horssen, J.; Witte, M.E.; Ciccarelli, O.

    2012-01-01

    Axonal injury is a key feature of multiple sclerosis (MS) pathology and is currently seen as the main correlate for permanent clinical disability. Although little is known about the pathogenetic mechanisms that drive axonal damage and loss, there is accumulating evidence highlighting the central

  7. Structure and Function of an Actin-Based Filter in the Proximal Axon

    Directory of Open Access Journals (Sweden)

    Varuzhan Balasanyan

    2017-12-01

    Full Text Available Summary: The essential organization of microtubules within neurons has been described; however, less is known about how neuronal actin is arranged and the functional implications of its arrangement. Here, we describe, in live cells, an actin-based structure in the proximal axon that selectively prevents some proteins from entering the axon while allowing the passage of others. Concentrated patches of actin in proximal axons are present shortly after axonal specification in rat and zebrafish neurons imaged live, and they mark positions where anterogradely traveling vesicles carrying dendritic proteins halt and reverse. Patches colocalize with the ARP2/3 complex, and when ARP2/3-mediated nucleation is blocked, a dendritic protein mislocalizes to the axon. Patches are highly dynamic, with few persisting longer than 30 min. In neurons in culture and in vivo, actin appears to form a contiguous, semipermeable barrier, despite its apparently sparse distribution, preventing axonal localization of constitutively active myosin Va but not myosin VI. : Balasanyan et al. find dynamic patches of actin in proximal axons of live neurons, mature and newly differentiated, in culture and in vivo. Patches contribute to a filter that sequesters some proteins within the somatodendritic domain while allowing others to pass into the axon, leading to polarized localization of proteins.

  8. The progeroid gene BubR1 regulates axon myelination and motor function

    NARCIS (Netherlands)

    Choi, C.I.; Yoo, K.H.; Hussaini, S.M.; Jeon, B.T.; Welby, J.; Gan, H.; Scarisbrick, I.A.; Zhang, Z.; Baker, D.J.; Deursen, J.M.A. van; Rodriguez, M.; Jang, M.H.

    2016-01-01

    Myelination, the process by which oligodendrocytes form the myelin sheath around axons, is key to axonal signal transduction and related motor function in the central nervous system (CNS). Aging is characterized by degenerative changes in the myelin sheath, although the molecular underpinnings of

  9. Modeling of the axon membrane skeleton structure and implications for its mechanical properties.

    Directory of Open Access Journals (Sweden)

    Yihao Zhang

    2017-02-01

    Full Text Available Super-resolution microscopy recently revealed that, unlike the soma and dendrites, the axon membrane skeleton is structured as a series of actin rings connected by spectrin filaments that are held under tension. Currently, the structure-function relationship of the axonal structure is unclear. Here, we used atomic force microscopy (AFM to show that the stiffness of the axon plasma membrane is significantly higher than the stiffnesses of dendrites and somata. To examine whether the structure of the axon plasma membrane determines its overall stiffness, we introduced a coarse-grain molecular dynamics model of the axon membrane skeleton that reproduces the structure identified by super-resolution microscopy. Our proposed computational model accurately simulates the median value of the Young's modulus of the axon plasma membrane determined by atomic force microscopy. It also predicts that because the spectrin filaments are under entropic tension, the thermal random motion of the voltage-gated sodium channels (Nav, which are bound to ankyrin particles, a critical axonal protein, is reduced compared to the thermal motion when spectrin filaments are held at equilibrium. Lastly, our model predicts that because spectrin filaments are under tension, any axonal injuries that lacerate spectrin filaments will likely lead to a permanent disruption of the membrane skeleton due to the inability of spectrin filaments to spontaneously form their initial under-tension configuration.

  10. Axonal and presynaptic protein synthesis: new insights into the biology of the neuron

    NARCIS (Netherlands)

    Giuditta, A.; Kaplan, B.B.; van Minnen, J.; Alvarez, J.; Koenig, E.

    2002-01-01

    The presence of a local mRNA translation system in axons and terminals was proposed almost 40 years ago. Over the ensuing period, an impressive body of evidence has grown to support this proposal - yet the nerve cell body is still considered to be the only source of axonal and presynaptic proteins.

  11. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  12. A high mitochondrial transport rate characterizes CNS neurons with high axonal regeneration capacity.

    Directory of Open Access Journals (Sweden)

    Romain Cartoni

    Full Text Available Improving axonal transport in the injured and diseased central nervous system has been proposed as a promising strategy to improve neuronal repair. However, the contribution of each cargo to the repair mechanism is unknown. DRG neurons globally increase axonal transport during regeneration. Because the transport of specific cargos after axonal insult has not been examined systematically in a model of enhanced regenerative capacity, it is unknown whether the transport of all cargos would be modulated equally in injured central nervous system neurons. Here, using a microfluidic culture system we compared neurons co-deleted for PTEN and SOCS3, an established model of high axonal regeneration capacity, to control neurons. We measured the axonal transport of three cargos (mitochondria, synaptic vesicles and late endosomes in regenerating axons and found that the transport of mitochondria, but not the other cargos, was increased in PTEN/SOCS3 co-deleted axons relative to controls. The results reported here suggest a pivotal role for this organelle during axonal regeneration.

  13. Schwann Cell and Axon: An Interlaced Unit-From Action Potential to Phenotype Expression.

    Science.gov (United States)

    Court, Felipe A; Alvarez, Jaime

    2016-01-01

    Here we propose a model of a peripheral axon with a great deal of autonomy from its cell body-the autonomous axon-but with a substantial dependence on its ensheathing Schwann cell (SC), the axon-SC unit. We review evidence in several fields and show that (i) axons can extend sprouts and grow without the concurrence of the cell body, but regulated by SCs; (ii) axons synthesize their proteins assisted by SCs that supply them with ribosomes and, probably, with mRNAs by way of exosomes; (iii) the molecular organization of the axoplasm, i.e., its phenotype, is regulated by the SC, as illustrated by the axonal microtubular content, which is down-regulated by the SC; and (iv) the axon has a program for self-destruction that is boosted by the SC. The main novelty of this model axon-SC unit is that it breaks with the notion that all proteins of the nerve cell are specified by its own nucleus. The notion of a collaborative specification of the axoplasm by more than one nucleus, which we present here, opens a new dimension in the understanding of the nervous system in health and disease and is also a frame of reference to understand other tissues or cell associations.

  14. N-docosahexaenoylethanolamine regulates Hedgehog signaling and promotes growth of cortical axons

    Directory of Open Access Journals (Sweden)

    Giorgi Kharebava

    2015-12-01

    Full Text Available Axonogenesis, a process for the establishment of neuron connectivity, is central to brain function. The role of metabolites derived from docosahexaenoic acid (DHA, 22:6n-3 that is specifically enriched in the brain, has not been addressed in axon development. In this study, we tested if synaptamide (N-docosahexaenoylethanolamine, an endogenous metabolite of DHA, affects axon growth in cultured cortical neurons. We found that synaptamide increased the average axon length, inhibited GLI family zinc finger 1 (GLI1 transcription and sonic hedgehog (Shh target gene expression while inducing cAMP elevation. Similar effects were produced by cyclopamine, a regulator of the Shh pathway. Conversely, Shh antagonized elevation of cAMP and blocked synaptamide-mediated increase in axon length. Activation of Shh pathway by a smoothened (SMO agonist (SAG or overexpression of SMO did not inhibit axon growth mediated by synaptamide or cyclopamine. Instead, adenylate cyclase inhibitor SQ22536 abolished synaptamide-mediated axon growth indicating requirement of cAMP elevation for this process. Our findings establish that synaptamide promotes axon growth while Shh antagonizes synaptamide-mediated cAMP elevation and axon growth by a SMO-independent, non-canonical pathway.

  15. Organophosphate-Related Alterations in Myelin and Axonal Transport in the Living Mammalian Brain

    Science.gov (United States)

    2014-10-01

    510. Duncan JE, Goldstein LS. 2006. The Genetics of Axonal Transport and Axonal Transport Disorders PLoS Genet . 2(9): e124. 25 Duysen EG, Li...Gitajn L, Rea W, Yang Y, Stein EA.2007. Cocaine -induced brain activation detected by dynamic manganese-enhanced magnetic resonance imaging (MEMRI

  16. Misdirection and guidance of regenerating axons after experimental nerve injury and repair

    NARCIS (Netherlands)

    de Ruiter, Godard C W; Spinner, Robert J; Verhaagen, J.; Malessy, Martijn J A

    Misdirection of regenerating axons is one of the factors that can explain the limited results often found after nerve injury and repair. In the repair of mixed nerves innervating different distal targets (skin and muscle), misdirection may, for example, lead to motor axons projecting toward skin,

  17. Misdirection and guidance of regenerating axons after experimental nerve injury and repair A review

    NARCIS (Netherlands)

    Ruiter, G.C.W.; Spinner, R.J.; Verhaagen, J.; Malessay, M.J.A.

    2014-01-01

    Misdirection of regenerating axons is one of the factors that can explain the limited results often found after nerve injury and repair. In the repair of mixed nerves innervating different distal targets (skin and muscle), misdirection may, for example, lead to motor axons projecting toward skin,

  18. Misdirection and guidance of regenerating motor axons after experimental nerve injury and repair

    NARCIS (Netherlands)

    Ruiter, Godard de

    2013-01-01

    Misdirection of regenerating motor axons is one of the factors that can explain the disappointing recovery of function often observed after nerve injury and repair. In the first part of this thesis we quantified misdirection of motor axon regeneration after different types of nerve injury and repair

  19. Frizzled3 controls axonal polarity and intermediate target entry during striatal pathway development

    NARCIS (Netherlands)

    Morello, Francesca; Prasad, Asheeta A.; Rehberg, Kati; Baptista Vieira de Sá, Renata; Antón-Bolaños, Noelia; Leyva-Diaz, Eduardo; Adolfs, Youri; Tissir, Fadel; López-Bendito, Guillermina; Pasterkamp, R. Jeroen

    2015-01-01

    The striatum is a large brain nucleus with an important role in the control of movement and emotions.Mediumspiny neurons (MSNs) are striatal output neurons forming prominent descending axon tracts that target different brain nuclei. However, how MSN axon tracts in the forebrain develop remains

  20. Axon-somatic back-propagation in detailed models of spinal alpha motoneurons

    Directory of Open Access Journals (Sweden)

    Pietro eBalbi

    2015-02-01

    Full Text Available Antidromic action potentials following distal stimulation of motor axons occasionally fail to invade the soma of alpha motoneurons in spinal cord, due to their passing through regions of high non-uniformity.Morphologically detailed conductance-based models of cat spinal alpha motoneurons have been developed, with the aim to reproduce and clarify some aspects of the electrophysiological behavior of the antidromic axon-somatic spike propagation. Fourteen 3D morphologically detailed somata and dendrites of cat spinal alpha motoneurons have been imported from an open-access web-based database of neuronal morphologies, NeuroMorpho.org, and instantiated in neurocomputational models. An axon hillock, an axonal initial segment and a myelinated axon are added to each model.By sweeping the diameter of the axonal initial segment (AIS and the axon hillock, as well as the maximal conductances of sodium channels at the AIS and at the soma, the developed models are able to show the relationships between different geometric and electrophysiological configurations and the voltage attenuation of the antidromically travelling wave.In particular, a greater than usually admitted sodium conductance at AIS is necessary and sufficient to overcome the dramatic voltage attenuation occurring during antidromic spike propagation both at the myelinated axon-AIS and at the AIS-soma transitions.

  1. Neurobiology of axonal transport defects in motor neuron diseases: Opportunities for translational research?

    Science.gov (United States)

    De Vos, Kurt J; Hafezparast, Majid

    2017-09-01

    Intracellular trafficking of cargoes is an essential process to maintain the structure and function of all mammalian cell types, but especially of neurons because of their extreme axon/dendrite polarisation. Axonal transport mediates the movement of cargoes such as proteins, mRNA, lipids, membrane-bound vesicles and organelles that are mostly synthesised in the cell body and in doing so is responsible for their correct spatiotemporal distribution in the axon, for example at specialised sites such as nodes of Ranvier and synaptic terminals. In addition, axonal transport maintains the essential long-distance communication between the cell body and synaptic terminals that allows neurons to react to their surroundings via trafficking of for example signalling endosomes. Axonal transport defects are a common observation in a variety of neurodegenerative diseases, and mutations in components of the axonal transport machinery have unequivocally shown that impaired axonal transport can cause neurodegeneration (reviewed in El-Kadi et al., 2007, De Vos et al., 2008; Millecamps and Julien, 2013). Here we review our current understanding of axonal transport defects and the role they play in motor neuron diseases (MNDs) with a specific focus on the most common form of MND, amyotrophic lateral sclerosis (ALS). Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Village Green Design, Operations, and Maintenance Document

    Science.gov (United States)

    The purpose of this report is to document the building, operation and maintenance of a Village Green Bench. The term “village green” refers to outside open areas where people congregate, typically in the center of a town or settlement, such as parks and playgrounds. ...

  3. Maintenance simulation: Software issues

    Energy Technology Data Exchange (ETDEWEB)

    Luk, C.H.; Jette, M.A.

    1995-07-01

    The maintenance of a distributed software system in a production environment involves: (1) maintaining software integrity, (2) maintaining and database integrity, (3) adding new features, and (4) adding new systems. These issues will be discussed in general: what they are and how they are handled. This paper will present our experience with a distributed resource management system that accounts for resources consumed, in real-time, on a network of heterogenous computers. The simulated environments to maintain this system will be presented relate to the four maintenance areas.

  4. Training of maintenance personnel

    International Nuclear Information System (INIS)

    Rabouhams, J.

    1986-01-01

    This lecture precises the method and means developed by EDF to ensure the training of maintenance personnel according to their initial educational background and their experience. The following points are treated: General organization of the training for maintenance personnel in PWR and GCR nuclear power stations and in Creys Malville fast breeder reactor; Basic nuclear training and pedagogical aids developed for this purpose; Specific training and training provided by contractors; complementary training taking into account the operation experience and feedback; Improvement of velocity, competence and safety during shut-down operations by adapted training. (orig.)

  5. Probabilistic methods for maintenance program optimization

    International Nuclear Information System (INIS)

    Liming, J.K.; Smith, M.J.; Gekler, W.C.

    1989-01-01

    In today's regulatory and economic environments, it is more important than ever that managers, engineers, and plant staff join together in developing and implementing effective management plans for safety and economic risk. This need applied to both power generating stations and other process facilities. One of the most critical parts of these management plans is the development and continuous enhancement of a maintenance program that optimizes plant or facility safety and profitability. The ultimate objective is to maximize the potential for station or facility success, usually measured in terms of projected financial profitability, while meeting or exceeding meaningful and reasonable safety goals, usually measured in terms of projected damage or consequence frequencies. This paper describes the use of the latest concepts in developing and evaluating maintenance programs to achieve maintenance program optimization (MPO). These concepts are based on significant field experience gained through the integration and application of fundamentals developed for industry and Electric Power Research Institute (EPRI)-sponsored projects on preventive maintenance (PM) program development and reliability-centered maintenance (RCM)

  6. Intra-axonal Synthesis of SNAP25 Is Required for the Formation of Presynaptic Terminals

    Directory of Open Access Journals (Sweden)

    Andreia F.R. Batista

    2017-09-01

    Full Text Available Localized protein synthesis is a mechanism for developing axons to react acutely and in a spatially restricted manner to extracellular signals. As such, it is important for many aspects of axonal development, but its role in the formation of presynapses remains poorly understood. We found that the induced assembly of presynaptic terminals required local protein synthesis. Newly synthesized proteins were detectable at nascent presynapses within 15 min of inducing synapse formation in isolated axons. The transcript for the t-SNARE protein SNAP25, which is required for the fusion of synaptic vesicles with the plasma membrane, was recruited to presynaptic sites and locally translated. Inhibition of intra-axonal SNAP25 synthesis affected the clustering of SNAP25 and other presynaptic proteins and interfered with the release of synaptic vesicles from presynaptic sites. This study reveals a critical role for the axonal synthesis of SNAP25 in the assembly of presynaptic terminals.

  7. JMJD-1.2/PHF8 controls axon guidance by regulating Hedgehog-like signaling

    DEFF Research Database (Denmark)

    Riveiro, Alba; Mariani, Luca; Malmberg, Kim Emily

    2017-01-01

    Components of the KDM7 family of histone demethylases are implicated in neuronal development and one member, PHF8, is often found to be mutated in cases of X-linked mental retardation. However, how PHF8 regulates neurodevelopmental processes and contributes to the disease is still largely unknown...... the axonal defects. Deficiency of either wrt-8 or grl-16, or reduced expression of homologs of genes promoting Hedgehog signaling, restores correct axon guidance in jmjd-1.2 mutants. Genetic and overexpression data indicate that Hedgehog-related genes act on axon guidance through actin remodelers. Thus, our...... study highlights a novel function of jmjd-1.2 in axon guidance that might be relevant for the onset of X-linked mental retardation and provides compelling evidence of a conserved function of the Hedgehog pathway in C. elegans axon migration....

  8. Lost in the jungle: new hurdles for optic nerve axon regeneration.

    Science.gov (United States)

    Pernet, Vincent; Schwab, Martin E

    2014-07-01

    The poor regenerative capacity of injured central nervous system (CNS) axons leads to permanent neurological deficits after brain, spinal cord, or optic nerve lesions. In the optic nerve, recent studies showed that stimulation of the cytokine or mammalian target of rapamycin (mTOR) signaling pathways potently enhances sprouting and regeneration of injured retinal ganglion cell axons in adult mice, but does not allow the majority of axons to reach their main cerebral targets. New analyses have revealed axon navigation defects in the optic nerve and at the optic chiasm under conditions of strong growth stimulation. We propose that a balanced growth stimulatory treatment will have to be combined with guidance factors and suppression of local growth inhibitory factors to obtain the full regeneration of long CNS axonal tracts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay

    DEFF Research Database (Denmark)

    Colak, Dilek; Ji, Sheng-Jian; Porse, Bo T

    2013-01-01

    Growth cones enable axons to navigate toward their targets by responding to extracellular signaling molecules. Growth-cone responses are mediated in part by the local translation of axonal messenger RNAs (mRNAs). However, the mechanisms that regulate local translation are poorly understood. Here we...... show that Robo3.2, a receptor for the Slit family of guidance cues, is synthesized locally within axons of commissural neurons. Robo3.2 translation is induced by floor-plate-derived signals as axons cross the spinal cord midline. Robo3.2 is also a predicted target of the nonsense-mediated mRNA decay.......2 expression. These data show that local translation is regulated by mRNA stability and that NMD acts locally to influence axonal pathfinding....

  10. PACSIN1, a Tau-interacting protein, regulates axonal elongation and branching by facilitating microtubule instability.

    Science.gov (United States)

    Liu, Yingying; Lv, Kaosheng; Li, Zenglong; Yu, Albert C H; Chen, Jianguo; Teng, Junlin

    2012-11-16

    Tau is a major member of the neuronal microtubule-associated proteins. It promotes tubulin assembly and stabilizes axonal microtubules. Previous studies have demonstrated that Tau forms cross-bridges between microtubules, with some particles located on cross-bridges, suggesting that some proteins interact with Tau and might be involved in regulating Tau-related microtubule dynamics. This study reports that PACSIN1 interacts with Tau in axon. PACSIN1 blockade results in impaired axonal elongation and a higher number of primary axonal branches in mouse dorsal root ganglia neurons, which is induced by increasing the binding ability of Tau to microtubules. In PACSIN1-blocked dorsal root ganglia neurons, a greater amount of Tau is inclined to accumulate in the central domain of growth cones, and it promotes the stability of the microtubule network. Taken together, these results suggest that PACSIN1 is an important Tau binding partner in regulating microtubule dynamics and forming axonal plasticity.

  11. Axonal sprouting regulates myelin basic protein gene expression in denervated mouse hippocampus

    DEFF Research Database (Denmark)

    Jensen, M B; Poulsen, F R; Finsen, B

    2000-01-01

    to 35 days after transection of the entorhino-hippocampal perforant path axonal projection. In situ hybridization analysis showed that anterograde axonal and terminal degeneration lead to upregulated oligodendrocyte MBP mRNA expression starting between day 2 and day 4, in (1) the deep part of stratum...... axonal and terminal degeneration, myelin degenerative changes, microglial activation and axotomi-induced axonal sprouting. Oligodendrocyte MBP mRNA expression reached maximum in both these areas at day 7. MBP gene transcription remained constant in stratum radiatum, stratum pyramidale and stratum oriens...... of CA1, areas that were unaffected by perforant path transection. These results provide strong evidence that oligodendrocyte MBP gene expression can be regulated by axonal sprouting independently of microglial activation in the injured adult CNS....

  12. Activity-dependent myelination of parvalbumin interneurons mediated by axonal morphological plasticity.

    Science.gov (United States)

    Stedehouder, J; Brizee, D; Shpak, G; Kushner, S A

    2018-03-05

    Axonal myelination of neocortical pyramidal neurons is dynamically modulated by neuronal activity. Recent studies have shown that a substantial proportion of neocortical myelin content is contributed by fast-spiking, parvalbumin (PV)-positive interneurons. However, it remains unknown whether the myelination of PV + interneurons is also modulated by intrinsic activity. Here, we utilized cell-type specific Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in adult male and female mice to activate a sparse population of medial prefrontal cortex PV + interneurons. Using single-cell axonal reconstructions, we find that DREADD-stimulated PV + interneurons exhibit a nearly two-fold increase in total length of myelination, predominantly mediated by a parallel increase of axonal arborization and number of internodes. In contrast, the distribution of axonal inter-branch segment distance and myelin internode length were not significantly altered. Topographical analysis revealed that myelination of DREADD-stimulated cells extended to higher axonal branch orders, while retaining a similar inter-branch distance threshold for myelination. Together, our results demonstrate that chemogenetically-induced neuronal activity increases the myelination of neocortical PV + interneurons mediated at least in part by an elaboration of their axonal morphology. SIGNIFICANCE STATEMENT Myelination is the wrapping of an axon in order to optimize conduction velocity in an energy-efficient manner. Previous studies have shown that myelination of neocortical pyramidal neurons is experience and activity-dependent. We now show that activity-dependent myelin plasticity in the adult neocortex extends to parvalbumin-expressing fast-spiking interneurons. Specifically, chemogenetic stimulation of parvalbumin interneurons in the medial prefrontal cortex significantly enhanced axonal myelination, which was paralleled by an increase in axonal arborization. This suggests that activity

  13. Axon Counts Yield Multiple Options for Triceps Fascicular Nerve to Axillary Nerve Transfer.

    Science.gov (United States)

    Khair, M Michael; Schreiber, Joseph J; Rosenblatt, Lauren; Byun, David J; Lee, Steve K; Wolfe, Scott W

    2016-11-01

    To evaluate the relative axonal match between potential donor and recipient nerves, so that maximal reinnervation potential may be reached with the least chance of donor site morbidity. In 10 fresh-frozen cadaveric specimens, the main trunk and anterior, posterior, sensory and teres minor branches of the axillary nerve were identified, as were the radial nerve branches to the long, medial, and lateral heads of the triceps. The swing distances of the triceps fascicular nerve branches and the axillary nerve branches relative to the inferior border of the teres major muscle were recorded. Histomorphological analysis and axon counts were performed on sections of each branch. The median number of axons in the main axillary trunk was 7,887, with 4,052, 1,242, and 1,161 axons in the anterior, posterior, and teres minor branches, respectively. All specimens had a single long head triceps branch (median, 2,302 axons), a range of 1 to 3 branches to the medial head of the triceps (composite axon count, 2,198 axons), and 1 to 3 branches to the lateral head of the triceps (composite average, 1,462 axons). The medial and lateral head branches had sufficient swing distance to reach the anterior branch of the axillary nerve in all 10 specimens, with only 4 specimens having adequate long head branch swing distances. It is anatomically feasible to transfer multiple branches of the radial nerve supplying the medial, lateral, and sometimes, long head of the triceps to all branches of the axillary nerve in an attempt to reinnervate the deltoid and teres minor muscles. Understanding the axon counts of the different possible transfer combinations will improve operative flexibility and enable peripheral nerve surgeons to reinnervate for both abduction and external rotation with the highest donor/recipient axon count ratios. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  14. Dorsal column sensory axons degenerate due to impaired microvascular perfusion after spinal cord injury in rats

    Science.gov (United States)

    Muradov, Johongir M.; Ewan, Eric E.; Hagg, Theo

    2013-01-01

    The mechanisms contributing to axon loss after spinal cord injury (SCI) are largely unknown but may involve microvascular loss as we have previously suggested. Here, we used a mild contusive injury (120 kdyn IH impactor) at T9 in rats focusing on ascending primary sensory dorsal column axons, anterogradely traced from the sciatic nerves. The injury caused a rapid and progressive loss of dorsal column microvasculature and oligodendrocytes at the injury site and penumbra and a ~70% loss of the sensory axons, by 24 hours. To model the microvascular loss, focal ischemia of the T9 dorsal columns was achieved via phototoxic activation of intravenously injected rose bengal. This caused an ~53% loss of sensory axons and an ~80% loss of dorsal column oligodendrocytes by 24 hours. Axon loss correlated with the extent and axial length of microvessel and oligodendrocyte loss along the dorsal column. To determine if oligodendrocyte loss contributes to axon loss, the glial toxin ethidium bromide (EB; 0.3 µg/µl) was microinjected into the T9 dorsal columns, and resulted in an ~88% loss of dorsal column oligodendrocytes and an ~56% loss of sensory axons after 72 hours. EB also caused an ~72% loss of microvessels. Lower concentrations of EB resulted in less axon, oligodendrocyte and microvessel loss, which were highly correlated (R2 = 0.81). These data suggest that focal spinal cord ischemia causes both oligodendrocyte and axon degeneration, which are perhaps linked. Importantly, they highlight the need of limiting the penumbral spread of ischemia and oligodendrocyte loss after SCI in order to protect axons. PMID:23978615

  15. 13 CFR 302.13 - Maintenance of standards.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Maintenance of standards. 302.13... GENERAL TERMS AND CONDITIONS FOR INVESTMENT ASSISTANCE § 302.13 Maintenance of standards. All laborers and mechanics employed by contractors or subcontractors on Projects receiving Investment Assistance under PWEDA...

  16. Diesel Vehicle Maintenance Competencies.

    Science.gov (United States)

    Braswell, Robert; And Others

    Designed to provide a model set of competencies, this manual presents tasks which were identified by employers, employees, and teachers as important in a postsecondary diesel vehicle maintenance curriculum. The tasks are divided into seven major component areas of instruction: chassis and suspension, diesel engines, diesel fuel, electrical,…

  17. Maintenance and environmental qualification

    International Nuclear Information System (INIS)

    Martin, R.S.; Austin, D.G.

    1995-01-01

    The design of today's nuclear generating plants involves many detailed design considerations. This includes comprehensive look at aging effects on plant components over their expected lifetimes. This is important to ensuring that the plant operates safely throughout its life. The effects of aging are required to be documented in detail in today's designs. This documentation provides assurance that safe operating conditions are maintained throughout the station life cycle. This requirement is analogous to the longer standing requirement to ensure pressure boundary integrity. The pressure boundary integrity requirement has existed in the industry since its inception. The subject of plant aging effects and the maintenance of functionality is known as Environmental Qualification (EQ). This paper will attempt to explain the wisdom of EQ and the potential for optimizing maintenance activities (to move from reactive to proactive activities), within the context of the overall maintenance program. It is the author's intent to encourage the active involvement of maintenance professionals in the effective implementation of the ongoing EQ program so that the benefits are maximized

  18. CH Packaging Maintenance Manual

    International Nuclear Information System (INIS)

    Washington TRU Solutions

    2002-01-01

    This procedure provides instructions for performing inner containment vessel (ICV) and outer containment vessel (OCV) maintenance and periodic leakage rate testing on the following packaging seals and corresponding seal surfaces using a nondestructive helium (He) leak test. In addition, this procedure provides instructions for performing ICV and OCV structural pressure tests

  19. Maintenance: problem and solution

    CERN Multimedia

    CERN Bulletin

    2012-01-01

    Equipment that is often unique, machines that are as old as the Laboratory, continuous and demanding performance requirements: these are the challenges faced by CERN’s accelerator maintenance teams. There are some twenty such teams, attached to different departments. A new project aims to standardise their procedures to make their work easier, and you can be a part of it.   “For the past year or so, the Accelerator and Technologies Sector and the GS Department have been working together on identifying the needs of the different teams that perform maintenance on CERN’s equipment. We are now ready to provide computer support with detailed specifics about the processes that need to be set up,” explains Goran Perinić, one of the leaders in CERN’s new Maintenance Management project (MMP). Since the LHC entered operation, the responsibilities of the technical teams have been broadened to cover maintenance of the collider and that of its injectors...

  20. Building Maintenance Syllabus.

    Science.gov (United States)

    Fischer, Joseph; Messier, Joseph

    Building maintenance is a basic two-year trade education course requiring 2 1/2 hours of study on each of 160 teaching days per year. Student abilities should range from those capable of the simplest custodial work to those who may eventually be superintendents of building complexes. The syllabus is organized in sections by traditional skills…

  1. Telephone Exchange Maintenance

    CERN Multimedia

    2005-01-01

    Urgent maintenance work on CERN telephone exchanges will be performed on 24 March from 6 a.m. to 8 a.m. Telephone services may be disrupted or even interrupted during this time. For more details, please contact us by email at Standard.Telephone@cern.ch.

  2. Little languages : little maintenance?

    NARCIS (Netherlands)

    A. van Deursen (Arie); P. Klint (Paul)

    1997-01-01

    textabstractSo-called little, or domain-specific languages (DSLs), have the potential to make software maintenance simpler: domain-experts can directly use the DSL to make required routine modifications. At the negative side, however, more substantial changes may become more difficult: such changes

  3. Operations and maintenance philosophy

    International Nuclear Information System (INIS)

    DUNCAN, G.P.

    1999-01-01

    This Operations and Maintenance (O and M) Philosophy document is intended to establish a future O and M vision, with an increased focus on minimizing worker exposure, ensuring uninterrupted retrieval operations, and minimizing operation life-cycle cost. It is intended that this document would incorporate O and M lessons learned into on-going and future project upgrades

  4. Reversible Axonal Dystrophy by Calcium Modulation in Frataxin-Deficient Sensory Neurons of YG8R Mice

    Directory of Open Access Journals (Sweden)

    Belén Mollá

    2017-08-01

    Full Text Available Friedreich’s ataxia (FRDA is a peripheral neuropathy involving a loss of proprioceptive sensory neurons. Studies of biopsies from patients suggest that axonal dysfunction precedes the death of proprioceptive neurons in a dying-back process. We observed that the deficiency of frataxin in sensory neurons of dorsal root ganglia (DRG of the YG8R mouse model causes the formation of axonal spheroids which retain dysfunctional mitochondria, shows alterations in the cytoskeleton and it produces impairment of axonal transport and autophagic flux. The homogenous distribution of axonal spheroids along the neurites supports the existence of continues focal damages. This lead us to propose for FRDA a model of distal axonopathy based on axonal focal damages. In addition, we observed the involvement of oxidative stress and dyshomeostasis of calcium in axonal spheroid formation generating axonal injury as a primary cause of pathophysiology. Axonal spheroids may be a consequence of calcium imbalance, thus we propose the quenching or removal extracellular Ca2+ to prevent spheroids formation. In our neuronal model, treatments with BAPTA and o-phenanthroline reverted the axonal dystrophy and the mitochondrial dysmorphic parameters. These results support the hypothesis that axonal pathology is reversible in FRDA by pharmacological manipulation of intracellular Ca2+ with Ca2+ chelators or metalloprotease inhibitors, preventing Ca2+-mediated axonal injury. Thus, the modulation of Ca2+ levels may be a relevant therapeutic target to develop early axonal protection and prevent dying-back neurodegeneration.

  5. Maintenance in sustainable manufacturing

    Directory of Open Access Journals (Sweden)

    Vladimir Stuchly

    2014-09-01

    Full Text Available Background: Sustainable development is about reaching a balance between economic, social, and environmental goals, as well as people's participation in the planning process in order to gain their input and support. For a company, sustainable development means adoption of such business strategy and actions that contribute to satisfying present needs of company and stakeholders, as well as simultaneous protection, maintenance and strengthening of human and environmental potential which will be needed in the future. This new approach forces manufacturing companies to change their previous management paradigms. New management paradigm should include new issues and develop innovative methods, practices and technologies striving for solving problem of shortages of resources, softening environment overload and enabling development of environment-friendly lifecycle of products. Hence, its realization requires updating existing production models as they are based on previously accepted paradigm of unlimited resources and unlimited regeneration capabilities. Maintenance plays a crucial role because of its impact on availability, reliability, quality and life cycle cost, thus it should be one of the main pillars of new business running model.  Material and methods: The following paper is a result of research on the literature and observation of practices undertaken by a company within maintenance area. Results and conclusions: The main message is that considering sustainable manufacturing requires considerable expanding range of analysis and focusing on supporting processes. Maintenance offers numerous opportunities of decreasing influence of business processes on natural environment and more efficient resources utilization. The goal of maintenance processes realizing sustainable development strategy is increased profitability of exploitation and optimization of total lifecycle cost without disturbing safety and environmental issues. 

  6. Advances in safety related maintenance

    International Nuclear Information System (INIS)

    2000-03-01

    The maintenance of systems, structures and components in nuclear power plants (NPPs) plays an important role in assuring their safe and reliable operation. Worldwide, NPP maintenance managers are seeking to reduce overall maintenance costs while maintaining or improving the levels of safety and reliability. Thus, the issue of NPP maintenance is one of the most challenging aspects of nuclear power generation. There is a direct relation between safety and maintenance. While maintenance alone (apart from modifications) will not make a plant safer than its original design, deficient maintenance may result in either an increased number of transients and challenges to safety systems or reduced reliability and availability of safety systems. The confidence that NPP structures, systems and components will function as designed is ultimately based on programmes which monitor both their reliability and availability to perform their intended safety function. Because of this, approaches to monitor the effectiveness of maintenance are also necessary. An effective maintenance programme ensures that there is a balance between the improvement in component reliability to be achieved and the loss of component function due to maintenance downtime. This implies that the safety level of an NPP should not be adversely affected by maintenance performed during operation. The nuclear industry widely acknowledges the importance of maintenance in NPP safety and operation and therefore devotes great efforts to develop techniques, methods and tools to aid in maintenance planning, follow-up and optimization, and in assuring the effectiveness of maintenance

  7. Low frequency oscillating gradient spin-echo sequences improve sensitivity to axon diameter: An experimental study in viable nerve tissue.

    Science.gov (United States)

    Kakkar, Lebina S; Bennett, Oscar F; Siow, Bernard; Richardson, Simon; Ianuş, Andrada; Quick, Tom; Atkinson, David; Phillips, James B; Drobnjak, Ivana

    2017-08-01

    Mapping axon diameters within the central and peripheral nervous system could play an important role in our understanding of nerve pathways, and help diagnose and monitor an array of neurological disorders. Numerous diffusion MRI methods have been proposed for imaging axon diameters, most of which use conventional single diffusion encoding (SDE) spin echo sequences. However, a growing number of studies show that oscillating gradient spin echo (OGSE) sequences can provide additional advantages over conventional SDE sequences. Recent theoretical results suggest that this is especially the case in realistic scenarios, such as when fibres have unknown or dispersed orientation. In the present study, we adopt the ActiveAx approach to experimentally investigate the extent of these advantages by comparing the performances of SDE and trapezoidal OGSE in viable nerve tissue. We optimise SDE and OGSE ActiveAx protocols for a rat peripheral nerve tissue and test their performance using Monte Carlo simulations and a 800 mT/m gradient strength pre-clinical imaging experiment. The imaging experiment uses excised sciatic nerve from a rat's leg placed in a MRI compatible viable isolated tissue (VIT) maintenance chamber, which keeps the tissue in a viable physiological state that preserves the structural complexity of the nerve and enables lengthy scan times. We compare model estimates to histology, which we perform on the nerve post scanning. Optimisation produces a three-shell SDE and OGSE ActiveAx protocol, with the OGSE protocol consisting of one SDE sequence and two low-frequency oscillating gradient waveform sequences. Both simulation and imaging results show that the OGSE ActiveAx estimates of the axon diameter index have a higher accuracy and a higher precision compared to those from SDE. Histology estimates of the axon diameter index in our nerve tissue samples are 4-5.8 μm and these are excellently matched with the OGSE estimates 4.2-6.5 μm, while SDE overestimates at

  8. A macroscopic model of traffic jams in axons.

    Science.gov (United States)

    Kuznetsov, A V; Avramenko, A A

    2009-04-01

    The purpose of this paper is to develop a minimal macroscopic model capable of explaining the formation of traffic jams in fast axonal transport. The model accounts for the decrease of the number density of positively (and negatively) oriented microtubules near the location of the traffic jam due to formation of microtubule swirls; the model also accounts for the reduction of the effective velocity of organelle transport in the traffic jam region due to organelles falling off microtubule tracks more often in the swirl region. The model is based on molecular-motor-assisted transport equations and the hydrodynamic model of traffic jams in highway traffic. Parametric analyses of the model's predictions for various values of viscosity of the traffic flow, variance of the velocity distribution, diffusivity of microtubule-bound and free organelles, rate constants for binding to and detachment from microtubules, relaxation time, and average motor velocities of the retrograde and anterograde transport, are carried out.

  9. Neurogenetics of slow axonal transport: from cells to animals.

    Science.gov (United States)

    Sadananda, Aparna; Ray, Krishanu

    2012-09-01

    Slow axonal transport is a multivariate phenomenon implicated in several neurodegenerative disorders. Recent reports have unraveled the molecular basis of the transport of certain slow component proteins, such as the neurofilament subunits, tubulin, and certain soluble enzymes such as Ca(2+)/calmodulin-dependent protein kinase IIa (CaM kinase IIa), etc., in tissue cultured neurons. In addition, genetic analyses also implicate microtubule-dependent motors and other housekeeping proteins in this process. However, the biological relevance of this phenomenon is not so well understood. Here, the authors have discussed the possibility of adopting neurogenetic analyses in multiple model organisms to correlate molecular level measurements of the slow transport phenomenon to animal behavior, thus facilitating the investigation of its biological efficacy.

  10. The axonal guidance receptor neogenin promotes acute inflammation.

    Directory of Open Access Journals (Sweden)

    Klemens König

    Full Text Available Neuronal guidance proteins (NGP were originally described in the context of axonal growth and migration. Yet recent work has demonstrated that NGPs also serve as guidance cues for immune competent cells. A crucial target receptor for NGPs during embryonic development is the neogenin receptor, however its role during acute inflammation is unknown. We report here that neogenin is abundantly expressed outside the nervous system and that animals with endogenous repression of neogenin (Neo1(-/- demonstrate attenuated changes of acute inflammation. Studies using functional inhibition of neogenin resulted in a significant attenuation of inflammatory peritonitis. In studies employing bone marrow chimeric animals we found the hematopoietic presence of Neo1(-/- to be responsible for the attenuated inflammatory response. Taken together our studies suggest that the guidance receptor neogenin holds crucial importance for the propagation of an acute inflammatory response and further define mechanisms shared between the nervous and the immune system.

  11. Video Object Tracking in Neural Axons with Fluorescence Microscopy Images

    Directory of Open Access Journals (Sweden)

    Liang Yuan

    2014-01-01

    tracking. In this paper, we describe two automated tracking methods for analyzing neurofilament movement based on two different techniques: constrained particle filtering and tracking-by-detection. First, we introduce the constrained particle filtering approach. In this approach, the orientation and position of a particle are constrained by the axon’s shape such that fewer particles are necessary for tracking neurofilament movement than object tracking techniques based on generic particle filtering. Secondly, a tracking-by-detection approach to neurofilament tracking is presented. For this approach, the axon is decomposed into blocks, and the blocks encompassing the moving neurofilaments are detected by graph labeling using Markov random field. Finally, we compare two tracking methods by performing tracking experiments on real time-lapse image sequences of neurofilament movement, and the experimental results show that both methods demonstrate good performance in comparison with the existing approaches, and the tracking accuracy of the tracing-by-detection approach is slightly better between the two.

  12. Ephexin1 Is Required for Eph-Mediated Limb Trajectory of Spinal Motor Axons.

    Science.gov (United States)

    Chang, Chih-Ju; Chang, Ming-Yuan; Chou, Szu-Yi; Huang, Chi-Chen; Chuang, Jian-Ying; Hsu, Tsung-I; Chang, Hsing-Fang; Wu, Yi-Hsin; Wu, Chung-Che; Morales, Daniel; Kania, Artur; Kao, Tzu-Jen

    2018-02-21

    The precise assembly of a functional nervous system relies on the guided migration of axonal growth cones, which is made possible by signals transmitted to the cytoskeleton by cell surface-expressed guidance receptors. We investigated the function of ephexin1, a Rho guanine nucleotide exchange factor, as an essential growth-cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show that ephexin1 is expressed in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Ephexin1 loss of function and gain of function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of ephexin1 in motor axon guidance. In addition, ephexin1 loss in mice of either sex led to LMC axon trajectory selection errors. We also show that ephexin1 knockdown attenuates the growth preference of LMC neurites against ephrins in vitro and Eph receptor-mediated retargeting of LMC axons in vivo , suggesting that ephexin1 is required in Eph-mediated LMC motor axon guidance. Finally, both ephexin1 knockdown and ectopic expression of nonphosphorylatable ephexin1 mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating ephexin1 as an Src target in Eph signal relay in this context. In summary, our findings demonstrate that ephexin1 is essential for motor axon guidance and suggest an important role in relaying ephrin:Eph signals that mediate motor axon trajectory selection. SIGNIFICANCE STATEMENT The proper development of functioning neural circuits requires precise nerve connections among neurons or between neurons and their muscle targets. The Eph tyrosine kinase receptors expressed in neurons are important in many contexts during neural-circuit formation, such as axon outgrowth, axon guidance, and synaptic formation, and have been

  13. Neuron Morphology Influences Axon Initial Segment Plasticity123

    Science.gov (United States)

    2016-01-01

    In most vertebrate neurons, action potentials are initiated in the axon initial segment (AIS), a specialized region of the axon containing a high density of voltage-gated sodium and potassium channels. It has recently been proposed that neurons use plasticity of AIS length and/or location to regulate their intrinsic excitability. Here we quantify the impact of neuron morphology on AIS plasticity using computational models of simplified and realistic somatodendritic morphologies. In small neurons (e.g., dentate granule neurons), excitability was highest when the AIS was of intermediate length and located adjacent to the soma. Conversely, neurons having larger dendritic trees (e.g., pyramidal neurons) were most excitable when the AIS was longer and/or located away from the soma. For any given somatodendritic morphology, increasing dendritic membrane capacitance and/or conductance favored a longer and more distally located AIS. Overall, changes to AIS length, with corresponding changes in total sodium conductance, were far more effective in regulating neuron excitability than were changes in AIS location, while dendritic capacitance had a larger impact on AIS performance than did dendritic conductance. The somatodendritic influence on AIS performance reflects modest soma-to-AIS voltage attenuation combined with neuron size-dependent changes in AIS input resistance, effective membrane time constant, and isolation from somatodendritic capacitance. We conclude that the impact of AIS plasticity on neuron excitability will depend largely on somatodendritic morphology, and that, in some neurons, a shorter or more distally located AIS may promote, rather than limit, action potential generation. PMID:27022619

  14. Multichannel activity propagation across an engineered axon network

    Science.gov (United States)

    Chen, H. Isaac; Wolf, John A.; Smith, Douglas H.

    2017-04-01

    Objective. Although substantial progress has been made in mapping the connections of the brain, less is known about how this organization translates into brain function. In particular, the massive interconnectivity of the brain has made it difficult to specifically examine data transmission between two nodes of the connectome, a central component of the ‘neural code.’ Here, we investigated the propagation of multiple streams of asynchronous neuronal activity across an isolated in vitro ‘connectome unit.’ Approach. We used the novel technique of axon stretch growth to create a model of a long-range cortico-cortical network, a modular system consisting of paired nodes of cortical neurons connected by axon tracts. Using optical stimulation and multi-electrode array recording techniques, we explored how input patterns are represented by cortical networks, how these representations shift as they are transmitted between cortical nodes and perturbed by external conditions, and how well the downstream node distinguishes different patterns. Main results. Stimulus representations included direct, synaptic, and multiplexed responses that grew in complexity as the distance between the stimulation source and recorded neuron increased. These representations collapsed into patterns with lower information content at higher stimulation frequencies. With internodal activity propagation, a hierarchy of network pathways, including latent circuits, was revealed using glutamatergic blockade. As stimulus channels were added, divergent, non-linear effects were observed in local versus distant network layers. Pairwise difference analysis of neuronal responses suggested that neuronal ensembles generally outperformed individual cells in discriminating input patterns. Significance. Our data illuminate the complexity of spiking activity propagation in cortical networks in vitro, which is characterized by the transformation of an input into myriad outputs over several network layers

  15. Compensatory axon sprouting for very slow axonal die‐back in a transgenic model of spinal muscular atrophy type III

    Science.gov (United States)

    Udina, Esther; Putman, Charles T.; Harris, Luke R.; Tyreman, Neil; Cook, Victoria E.

    2017-01-01

    Key points Smn +/− transgenic mouse is a model of the mildest form of spinal muscular atrophy.Although there is a loss of spinal motoneurons in 11‐month‐old animals, muscular force is maintained.This maintained muscular force is mediated by reinnervation of the denervated fibres by surviving motoneurons.The spinal motoneurons in these animals do not show an increased susceptibility to death after nerve injury and they retain their regenerative capacity.We conclude that the hypothesized immaturity of the neuromuscular system in this model cannot explain the loss of motoneurons by systematic die‐back. Abstract Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and is the leading genetic cause of infantile death. Patients lack the SMN1 gene with the severity of the disease depending on the number of copies of the highly homologous SMN2 gene. Although motoneuron death in the Smn +/− transgenic mouse model of the mildest form of SMA, SMA type III, has been reported, we have used retrograde tracing of sciatic and femoral motoneurons in the hindlimb with recording of muscle and motor unit isometric forces to count the number of motoneurons with intact neuromuscular connections. Thereby, we investigated whether incomplete maturation of the neuromuscular system induced by survival motoneuron protein (SMN) defects is responsible for die‐back of axons relative to survival of motoneurons. First, a reduction of ∼30% of backlabelled motoneurons began relatively late, at 11 months of age, with a significant loss of 19% at 7 months. Motor axon die‐back was affirmed by motor unit number estimation. Loss of functional motor units was fully compensated by axonal sprouting to retain normal contractile force in four hindlimb muscles (three fast‐twitch and one slow‐twitch) innervated by branches of the sciatic nerve. Second, our evaluation of whether axotomy of motoneurons in the adult Smn +/− transgenic mouse increases their

  16. Compensatory axon sprouting for very slow axonal die-back in a transgenic model of spinal muscular atrophy type III.

    Science.gov (United States)

    Udina, Esther; Putman, Charles T; Harris, Luke R; Tyreman, Neil; Cook, Victoria E; Gordon, Tessa

    2017-03-01

    Smn +/- transgenic mouse is a model of the mildest form of spinal muscular atrophy. Although there is a loss of spinal motoneurons in 11-month-old animals, muscular force is maintained. This maintained muscular force is mediated by reinnervation of the denervated fibres by surviving motoneurons. The spinal motoneurons in these animals do not show an increased susceptibility to death after nerve injury and they retain their regenerative capacity. We conclude that the hypothesized immaturity of the neuromuscular system in this model cannot explain the loss of motoneurons by systematic die-back. Spinal muscular atrophy (SMA) is a common autosomal recessive disorder in humans and is the leading genetic cause of infantile death. Patients lack the SMN1 gene with the severity of the disease depending on the number of copies of the highly homologous SMN2 gene. Although motoneuron death in the Smn +/- transgenic mouse model of the mildest form of SMA, SMA type III, has been reported, we have used retrograde tracing of sciatic and femoral motoneurons in the hindlimb with recording of muscle and motor unit isometric forces to count the number of motoneurons with intact neuromuscular connections. Thereby, we investigated whether incomplete maturation of the neuromuscular system induced by survival motoneuron protein (SMN) defects is responsible for die-back of axons relative to survival of motoneurons. First, a reduction of ∼30% of backlabelled motoneurons began relatively late, at 11 months of age, with a significant loss of 19% at 7 months. Motor axon die-back was affirmed by motor unit number estimation. Loss of functional motor units was fully compensated by axonal sprouting to retain normal contractile force in four hindlimb muscles (three fast-twitch and one slow-twitch) innervated by branches of the sciatic nerve. Second, our evaluation of whether axotomy of motoneurons in the adult Smn +/- transgenic mouse increases their susceptibility to cell death demonstrated

  17. [Maintenance care for dental implant].

    Science.gov (United States)

    Kamoi, K

    1989-10-01

    Dental implant has tried at the early stage in 19th century recovering an oral function and esthetics. Technological revolutions in biochemical and new materials have developed on the remarkable change in the dental implants, nowadays we call the three generation therapy for dental implantology. There are many kinds of methods and techniques in dental implants, however a lot of troublesome complication on the process of surgical phase, construction of prothodontics and prognosis of maintenance care. In the proceedings of this symposium, I would like to propose you how to manage the maintenance care for various kind of dental implants through the methodology and case presentations. Tendenay and future for dental implants The current outlook of dental implant has increasing supply and demand not only dentists but also patients. According to Japanese Welfare Ministry's report in 1987, average missing teeth over sixty years old generations are approximately 42% in accordance with NIDR (U.S.A.) research. They are missed on ten over teeth in full 28th teeth dentitions owing to dental caries and periodontal diseases. Generally speaking, latent implant patients are occupied on the same possibility of needs for dental implants both Japan and U.S.A. Management of maintenance care The patients hardly recognized the importance of plaque control for the maintenance care in the intraoral condition after implantation. Dentists and dental staffs must be instruct patients for importance of plaque removal and control, because they already had forgotten the habit of teeth cleaning, especially in the edenturous conditions. 1) Concept of establishment in oral hygiene. Motivation and instruction for patients include very important factors in dental implants as well as in periodontal diseases. Patients who could not achieve on good oral hygiene levels obtained no good results in the long term observations. To establish good oral hygiene are how to control supra plaque surrounding tissues

  18. A qualitative analysis of facilities maintenance - a school governance function in South Africa

    Directory of Open Access Journals (Sweden)

    M I Xaba

    2012-01-01

    Full Text Available I analysed school facilities maintenance, a school governance function in South Africa. Qualitative interviews were conducted with 13 principals and three deputy principals as coordinators of this function at their schools. The interviews were purposively and conveniently selected to gather data regarding school facilities maintenance and gain insight into the challenges this function presents to schools and their governing bodies. Findings indicate that schools generally do not have organisational structures for planned facilities maintenance, nor do they have policies on facilities maintenance. Evidence of facilities maintenance at schools mainly relates to concerns with facilities repairs, (mostly "as the need arises" and general campus cleanliness; mostly with emergency and corrective forms of maintenance as opposed to crucial preventive maintenance. Therefore, there is a need for interim facilities maintenance committees and, in the long term, a whole-school approach to facilities maintenance that makes facilities maintenance a strategic lever for school functionality.

  19. Short-term clinical study comparing supragingival plaque removal and gingival bleeding reduction of the Philips Jordan HP735 to a manual toothbrush in periodontal patients in a maintenance program.

    Science.gov (United States)

    Steenackers, K; Vijt, J; Leroy, R; De Vree, H; De Boever, J A

    2001-01-01

    The Philips Jordan HP735 was compared to a manual brush for plaque removal efficacy and reduction of gingival bleeding. Subjects in a periodontal maintenance program were randomly divided into two groups; Group I (n = 27), average age 36.9 years, brushed with the manual brush; and Group II (n = 22), average age 32.9 years, brushed with the Philips Jordan HP735 electric brush. A dichotomous plaque and bleeding index was used at six sites on all teeth at baseline, three, six and nine weeks. The subjects did not use any other cleaning devices during the study. No significant statistical difference in plaque score or bleeding score was found between the two groups at baseline. Plaque scores did not statistically significantly decrease over time in either group, and there was no significant difference in plaque removal between groups during the study. The bleeding index decreased significantly in the electric toothbrushing group; however, due to the large variation in bleeding scores between subjects, the difference in the number of bleeding sites was not statistically significant between the two groups. In conclusion, in a group of periodontal patients in a maintenance phase, using an electric toothbrush did not significantly enhance plaque removal, but did decrease bleeding compared to baseline. The difference in bleeding percentages was not statistically significant compared to a manual brush.

  20. Stimulation of nicotinamide adenine dinucleotide biosynthetic pathways delays axonal degeneration after axotomy.

    Science.gov (United States)

    Sasaki, Yo; Araki, Toshiyuki; Milbrandt, Jeffrey

    2006-08-16

    Axonal degeneration occurs in many neurodegenerative diseases and after traumatic injury and is a self-destructive program independent from programmed cell death. Previous studies demonstrated that overexpression of nicotinamide mononucleotide adenylyltransferase 1 (Nmnat1) or exogenous application of nicotinamide adenine dinucleotide (NAD) can protect axons of cultured dorsal root ganglion (DRG) neurons from degeneration caused by mechanical or neurotoxic injury. In mammalian cells, NAD can be synthesized from multiple precursors, including tryptophan, nicotinic acid, nicotinamide, and nicotinamide riboside (NmR), via multiple enzymatic steps. To determine whether other components of these NAD biosynthetic pathways are capable of delaying axonal degeneration, we overexpressed each of the enzymes involved in each pathway and/or exogenously administered their respective substrates in DRG cultures and assessed their capacity to protect axons after axotomy. Among the enzymes tested, Nmnat1 had the strongest protective effects, whereas nicotinamide phosphoribosyl transferase and nicotinic acid phosphoribosyl transferase showed moderate protective activity in the presence of their substrates. Strong axonal protection was also provided by Nmnat3, which is predominantly located in mitochondria, and an Nmnat1 mutant localized to the cytoplasm, indicating that the subcellular location of NAD production is not crucial for protective activity. In addition, we showed that exogenous application of the NAD precursors that are the substrates of these enzymes, including nicotinic acid mononucleotide, nicotinamide mononucleotide, and NmR, can also delay axonal degeneration. These results indicate that stimulation of NAD biosynthetic pathways via a variety of interventions may be useful in preventing or delaying axonal degeneration.

  1. Glia initiate brain assembly through non-canonical Chimaerin/Furin axon guidance in C. elegans

    Science.gov (United States)

    Rapti, Georgia; Li, Chang; Shan, Alan; Lu, Yun; Shaham, Shai

    2017-01-01

    Brain assembly is hypothesized to begin when pioneer axons extend over non-neuronal cells, forming tracts guiding follower axons. Yet pioneer-neuron identities, their guidance substrates, and their interactions, are not well understood. Here, using time-lapse embryonic imaging, genetics, protein-interaction, and functional studies, we uncover the early events of C. elegans brain assembly. We demonstrate that C. elegans glia are key for assembly initiation, guiding pioneer and follower axons using distinct signals. Pioneer sublateral neurons, with unique growth properties, anatomy, and innervation, cooperate with glia to mediate follower-axon guidance. We further identify a CHIN-1/Chimaerin-KPC-1/Furin double mutant that severely disrupts assembly. CHIN-1/Chimaerin and KPC-1/Furin function non-canonically in glia and pioneer neurons for guidance-cue trafficking. We exploit this bottleneck to define roles for glial Netrin and Semaphorin in pioneer- and follower-axon guidance, respectively, and for glial and pioneer-neuron Flamingo/CELSR in follower-axon navigation. Altogether, our studies reveal previously-unknown glial roles in pioneer-axon guidance, suggesting conserved brain-assembly principles. PMID:28846083

  2. Expression of plasminogen activator inhibitor-1 by olfactory ensheathing glia promotes axonal regeneration.

    Science.gov (United States)

    Simón, Diana; Martín-Bermejo, Maria Jesús; Gallego-Hernández, Maria Teresa; Pastrana, Erika; García-Escudero, Vega; García-Gómez, Ana; Lim, Filip; Díaz-Nido, Javier; Avila, Jesús; Moreno-Flores, Maria Teresa

    2011-10-01

    Olfactory ensheathing glia (OEG) cells are known to facilitate repair following axotomy of adult neurons, although the molecular mechanisms involved are not fully understood. We previously identified plasminogen activator inhibitor-1 (PAI-1), proteinase-activated receptor-1 (PAR-1), and thrombomodulin (TM) as candidates to regulate rat OEG-dependent axonal regeneration. In this study, we have validated the involvement of these proteins in promoting axonal regeneration by immortalized human OEGs. We studied the effect of silencing these proteins in OEGs on their capacity to promote the regeneration of severed adult retinal ganglion cells (RGCs) axons. Our results support the role of glial PAI-1 as a downstream effector of PAR-1 in promoting axon regeneration. In contrast, we found that TM inhibits OEG induced-axonal regeneration. We also assessed the signaling pathways downstream of PAR-1 that might modulate PAI-1 expression, observing that specifically inhibiting Gα(i), Rho kinase, or PLC and PKC downregulated the expression of PAI-1 in OEGs, with a concomitant reduction in OEG-dependent axon regeneration in adult RGCs. Our findings support an important role for the thrombin system in regulating adult axonal regeneration by OEGs. Copyright © 2011 Wiley-Liss, Inc.

  3. The Influence of Glutamate on Axonal Compound Action Potential In Vitro.

    Science.gov (United States)

    Abouelela, Ahmed; Wieraszko, Andrzej

    2016-01-01

    Background  Our previous experiments demonstrated modulation of the amplitude of the axonal compound action potential (CAP) by electrical stimulation. To verify assumption that glutamate released from axons could be involved in this phenomenon, the modification of the axonal CAP induced by glutamate was investigated. Objectives  The major objective of this research is to verify the hypothesis that axonal activity would trigger the release of glutamate, which in turn would interact with specific axonal receptors modifying the amplitude of the action potential. Methods  Segments of the sciatic nerve were exposed to exogenous glutamate in vitro, and CAP was recorded before and after glutamate application. In some experiments, the release of radioactive glutamate analog from the sciatic nerve exposed to exogenous glutamate was also evaluated. Results  The glutamate-induced increase in CAP was blocked by different glutamate receptor antagonists. The effect of glutamate was not observed in Ca-free medium, and was blocked by antagonists of calcium channels. Exogenous glutamate, applied to the segments of sciatic nerve, induced the release of radioactive glutamate analog, demonstrating glutamate-induced glutamate release. Immunohistochemical examination revealed that axolemma contains components necessary for glutamatergic neurotransmission. Conclusion  The proteins of the axonal membrane can under the influence of electrical stimulation or exogenous glutamate change membrane permeability and ionic conductance, leading to a change in the amplitude of CAP. We suggest that increased axonal activity leads to the release of glutamate that results in changes in the amplitude of CAPs.

  4. Optogenetically enhanced axon regeneration: motor versus sensory neuron-specific stimulation.

    Science.gov (United States)

    Ward, Patricia J; Clanton, Scott L; English, Arthur W

    2018-02-01

    Brief neuronal activation in injured peripheral nerves is both necessary and sufficient to enhance motor axon regeneration, and this effect is specific to the activated motoneurons. It is less clear whether sensory neurons respond in a similar manner to neuronal activation following peripheral axotomy. Further, it is unknown to what extent enhancement of axon regeneration with increased neuronal activity relies on a reflexive interaction within the spinal circuitry. We used mouse genetics and optical tools to evaluate the precision and selectivity of system-specific neuronal activation to enhance axon regeneration in a mixed nerve. We evaluated sensory and motor axon regeneration in two different mouse models expressing the light-sensitive cation channel, channelrhodopsin (ChR2). We selectively activated either sensory or motor axons using light stimulation combined with transection and repair of the sciatic nerve. Regardless of genotype, the number of ChR2-positive neurons whose axons had regenerated successfully was greater following system-specific optical treatment, with no effect on the number of ChR2-negative neurons (whether motor or sensory neurons). We conclude that acute system-specific neuronal activation is sufficient to enhance both motor and sensory axon regeneration. This regeneration-enhancing effect is likely cell autonomous. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. Modeling the mechanics of axonal fiber tracts using the embedded finite element method.

    Science.gov (United States)

    Garimella, Harsha T; Kraft, Reuben H

    2017-05-01

    A subject-specific human head finite element model with embedded axonal fiber tractography obtained from diffusion tensor imaging was developed. The axonal fiber tractography finite element model was coupled with the volumetric elements in the head model using the embedded element method. This technique enables the calculation of axonal strains and real-time tracking of the mechanical response of the axonal fiber tracts. The coupled model was then verified