WorldWideScience

Sample records for terephthalate pbt random

  1. Study of lamellar structure and crystallization behavior of poly(butylene terephthalate (PBT) in PBT/ABS and PBT/ABS/MMA-GMA blends using DSC, SAXS and DMTA

    International Nuclear Information System (INIS)

    Mantovani, Gerson L.; Pessan, Luiz A.; Hage, Elias; Torriani, Iris L.

    2001-01-01

    The effects of processing conditions and blend composition in the crystallization behaviour and lamellar structure of poly(butylene terephthalate) (PBT) in blends with acrylonitrile-butadiene-styrene copolymer (ABS) were studied. Differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) and dynamic mechanical thermal analysis (DMTA) were used to observe those effects. Addition of reactive acrylic compatibilizer to the PBT/ABS blends has promoted an increase in the heat of crystallization of the related blends. The Long Period (L), obtained from the peak in the Lorentz-corrected SAXS pattern, was used to observe the effect in the lamellar structure of PBT phase in the blends. The results were in good agreement with the calculated values from de correlation function and the values of L do not show a significant dependence with the PBT mass fraction, either in the binary blends (PBT/ABS) or in the compatibilized blends. A slight but clear increase of the long period (from 3 to 5 angstrom) is noted for the systems injection molded at 240 deg C when compared to the ones molded at 260 deg C, although PBT crystallinity in the blends does not change significantly with blend composition or processing conditions. DMTA curves show a slight shift in the temperature of the tan δ main peaks for both PBT and ABS phases in the compatibilized blends, thereby indicating changes in the degree of miscibility or interaction between phases of those blends. Changes in the compatibilized blends miscibility may be responsible by the effects in the crystallization behaviour and lamellar structure of the PBT/ABS blends. (author)

  2. Study of lamellar structure and crystallization behavior of poly(butylene terephthalate (PBT) in PBT/ABS and PBT/ABS/MMA-GMA blends using DSC, SAXS and DMTA

    Energy Technology Data Exchange (ETDEWEB)

    Mantovani, Gerson L.; Pessan, Luiz A.; Hage, Elias [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais]. E-mail: elias@power.ufscar.br; Plivelic, Tomas S. [Laboratorio Nacional de Luz Sincrotron (LNLS), Campinas, SP (Brazil); Torriani, Iris L. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Fisica Gleb Wataghin

    2001-07-01

    The effects of processing conditions and blend composition in the crystallization behaviour and lamellar structure of poly(butylene terephthalate) (PBT) in blends with acrylonitrile-butadiene-styrene copolymer (ABS) were studied. Differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS) and dynamic mechanical thermal analysis (DMTA) were used to observe those effects. Addition of reactive acrylic compatibilizer to the PBT/ABS blends has promoted an increase in the heat of crystallization of the related blends. The Long Period (L), obtained from the peak in the Lorentz-corrected SAXS pattern, was used to observe the effect in the lamellar structure of PBT phase in the blends. The results were in good agreement with the calculated values from de correlation function and the values of L do not show a significant dependence with the PBT mass fraction, either in the binary blends (PBT/ABS) or in the compatibilized blends. A slight but clear increase of the long period (from 3 to 5 angstrom) is noted for the systems injection molded at 240 deg C when compared to the ones molded at 260 deg C, although PBT crystallinity in the blends does not change significantly with blend composition or processing conditions. DMTA curves show a slight shift in the temperature of the tan {delta} main peaks for both PBT and ABS phases in the compatibilized blends, thereby indicating changes in the degree of miscibility or interaction between phases of those blends. Changes in the compatibilized blends miscibility may be responsible by the effects in the crystallization behaviour and lamellar structure of the PBT/ABS blends. (author)

  3. Reaction kinetics of polybutylene terephthalate polycondensation reaction

    NARCIS (Netherlands)

    Darda, P. J.; Hogendoorn, J. A.; Versteeg, G. F.; Souren, F.

    2005-01-01

    The kinetics of the forward polycondensation reaction of polybutylene terephthalate (PBT) has been investigated using thermogravimetric analysis (TGA). PBT - prepolymer with an initial degree of polymerization of 5.5 was used as starting material. The PBT prepolymer was prepared from dimethyl

  4. Toughening modification of poly(butylene terephthalate)/poly(ethylene terephthalate) blends by an epoxy-functionalized elastomer

    Science.gov (United States)

    Zhang, Weizhou; Wang, Kai; Yan, Wei; Guo, Weihong

    2017-10-01

    New toughened poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) (PET) (40/60 wt%) blends were obtained by melting with Glycidyl methacrylate grafted poly(ethylene octane) copolymer (POE-g-GMA), varying the POE-g-GMA content up to 20 wt%, in a twin-screw extruder, followed by injection molding. The influence of POE-g-GMA on the properties of the PBT/PET blends was investigated by mechanical testing, Fourier transform infrared (FT-IR) analysis, gel fractions analysis, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and scanning electronic microscopy (SEM). The mechanical testing results indicated that the incorporation of POE-g-GMA led to increases in the notched impact strength and decreases in the tensile strength, flexural strength, and flexural modulus. When POE-g-GMA content reached 20 wt%, the notched impact strength (8.0 kJ m-2) was achieved for the PBT/PET/POE-g-GMA blends. FT-IR results proved that some PBT/PET/POE-g-GMA copolymers were produced, which improved the compatibility between POE-g-GMA and the PBT/PET matrix. The extent of crosslinking was observed by gel fraction measurements. DMA results further testified chain-extending and micro-crosslink reactions occurred between POE-g-GMA and PBT/PET blends. In addition, the reactions induced by POE-g-GMA affected the crystallization behavior of PBT/PET blends obviously, as observed from DSC results. By means of SEM observation of the impact fracture surface morphology, and the discussion of the micro-crosslink reaction process between the epoxide-containing elastomers and PBT/PET matrix, the toughening mechanism was proposed to be taken into account the shear yielding of PBT/PET matrix and cavitation of elastomer particles.

  5. The Effect of Knitting Parameter and Finishing on Elastic Property of PET/PBT Warp Knitted Fabric

    Directory of Open Access Journals (Sweden)

    Chen Qing

    2017-12-01

    Full Text Available This study investigated the elastic elongation and elastic recovery of the elastic warp knittedfabric made of PET( polyethylene terephthalate and PBT(polybutylene terephthalate filament. Using 50/24F PET and 50D/24F PBT in two threadingbars, the tricot, locknit and satin warp knitted fabrics were produced on the E28 tricot warpknitting machine. The knitting parameters influencing the elastic elongation under 100N wereanalyzed in terms of fabric structure, yarn run-in speed and drawing density set on machine.Besides, dyeing temperature and heat setting temperature/time were also examined in order toretain proper elastic elongation and elastic recovery. The relationship between elastic elongationand knitting parameter and finishing parameter were analyzed. Finally, the elastic recovery ofPET/PBT warp knitted fabric was examined to demonstrate the elastic property of final finishedfabric. This study could help us to further exploit the use of PET/PBT warp knitted fabric in thedevelopment of elastic garment in future.

  6. Gas-permeation properties of poly(ethylene oxide) poly(butylene terephthalate block copolymers

    NARCIS (Netherlands)

    Metz, S.J.; Mulder, M.H.V.; Wessling, Matthias

    2004-01-01

    This paper reports the gas-permeation properties of poly(ethylene oxide) (PEO) poly(butylene terephthalate) (PBT) segmented multiblock copolymers. These block copolymers allow a precise structural modification by the amount of PBT and the PEO segment length, enabling a systematic study of the

  7. Thermal and mechanical properties of TPU/PBT reinforced by carbon fiber

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jintao; Liu, Huanyu; Lu, Xiang; Qu, Jinping, E-mail: jpqu@scut.edu.cn [National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510640, Guangdong (China)

    2016-03-09

    In this study, thermal, mechanical properties and processability were performed on a series of carbon fiber (CF) filled thermoplastic polyurethane (TPU)/poly (butylene terephthalate) (PBT) composites to identify the effect of CF weight fraction on the properties of TPU/PBT. Scanning Electronic Microscope (SEM) show that CFs are uniformly dispersed in TPU/PBT matrix and there are no agglomerations. Melt flow index (MFI) show that the melt viscosity increased with the CF loading. Thermogravimetric analysis (TGA) revealed that the introduction of CF into organic materials tend to improve their thermal stability. The mechanical properties indicated that tensile strength and modulus, flexural strength and modulus, improved with an increase in CF loading, but the impact strength decreased by the loading of CF.

  8. Zero-order release of lysozyme from (poly)ethylene glycol)/poly(butylene terephthalate) matrices

    NARCIS (Netherlands)

    Bezemer, J.M.; Radersma, R.; Grijpma, Dirk W.; Dijkstra, Pieter J.; Feijen, Jan; van Blitterswijk, Clemens

    2000-01-01

    Protein release from a series of biodegradable poly(ether ester) multiblock copolymers, based on poly(ethylene glycol) (PEG) and poly(butylene terephthalate) (PBT) was investigated. Lysozyme-containing PEG/PBT films and microspheres were prepared using an emulsion technique. Proteins were

  9. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan; Shevate, Rahul; Kumar, Mahendra; Peinemann, Klaus-Viktor

    2015-01-01

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  10. CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes

    KAUST Repository

    Karunakaran, Madhavan

    2015-07-31

    CO2-selective graphene oxide (GO) nano-composite membranes were prepared for the first time by embedding GO into a commercially available poly(ethylene oxide)–poly(butylene terephthalate) (PEO–PBT) copolymer (PolyActive™). The as-prepared GO membrane shows high CO2 permeability (143 Barrer) and CO2/N2 selectivity (α = 73).

  11. Effect of Polymer Form and its Consolidation on Mechanical Properties and Quality of Glass/PBT Composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Pillai, Saju; Charca, Samuel

    2014-01-01

    different material systems included in this study; Glass/CBT (CBT160 powder based resin), Glass/PBT (prepreg tapes), and Glass/PBT (commingled yarns). The different types of thermoplastic polymer resin systems used for the manufacturing of the composite UD laminate dictate the differences in final......The aim of this study was to understand the role of the processing in determining the mechanical properties of glass fibre reinforced polybutylene terephthalate composites (Glass/PBT). Unidirectional (UD) composite laminates were manufactured by the vacuum consolidation technique using three...... mechanical properties which were evaluated by through compression, flexural and short beam transverse bending tests. Microscopy was used to evaluate the quality of the processed laminates, and fractography was used to characterize the observed failure modes. The study provides an improved understanding...

  12. In vivo and in vitro degradation of poly(ether ester) block copolymers based on poly(ethylene glycol) and poly(butylene terephthalate

    NARCIS (Netherlands)

    Deschamps, A.A.; van Apeldoorn, Aart A.; Hayen, H.; de Bruijn, Joost Dick; Karst, U.; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Two in vivo degradation studies were performed on segmented poly(ether ester)s based on polyethylene glycol (PEG) and poly(butylene terephthalate) (PBT) (PEOT/PBT). In a first series of experiments, the in vivo degradation of melt-pressed discs of different copolymer compositions were followed up

  13. Effect of Polymer Form and its Consolidation on Mechanical Properties and Quality of Glass/PBT Composites

    Science.gov (United States)

    Durai Prabhakaran, R. T.; Pillai, Saju; Charca, Samuel; Oshkovr, Simin Ataollahi; Knudsen, Hans; Andersen, Tom Løgstrup; Bech, Jakob Ilsted; Thomsen, Ole Thybo; Lilholt, Hans

    2014-04-01

    The aim of this study was to understand the role of the processing in determining the mechanical properties of glass fibre reinforced polybutylene terephthalate composites (Glass/PBT). Unidirectional (UD) composite laminates were manufactured by the vacuum consolidation technique using three different material systems included in this study; Glass/CBT (CBT160 powder based resin), Glass/PBT (prepreg tapes), and Glass/PBT (commingled yarns). The different types of thermoplastic polymer resin systems used for the manufacturing of the composite UD laminate dictate the differences in final mechanical properties which were evaluated by through compression, flexural and short beam transverse bending tests. Microscopy was used to evaluate the quality of the processed laminates, and fractography was used to characterize the observed failure modes. The study provides an improved understanding of the relationships between processing methods, resin characteristics, and mechanical performance of thermoplastic resin composite materials.

  14. Tribological Characterisation of PBT + Glass Bead Composites with the Help of Block-on-Ring Test

    Directory of Open Access Journals (Sweden)

    C. Georgescu

    2013-06-01

    Full Text Available The materials involved in this research study were produced by diemoulding in order to obtain bone samples type 1A (SR EN ISO 527‐2:2003. These composites have a matrix of polybutylene terephthalate(PBT commercial grade Crastin 6130NC010,DuPont. The valuesfor theglass beads concentrations were established at 10 % and 20 %(wt.Block‐on‐ring tests were run in order to characterize the tribologicalbehaviour of this friction couple (PBT and PBT composites with glassbeads on steel. The block was manufactured by cutting parts from thebone samples, having the dimensions of 16.5 mm × 10 mm × 4 mm. Theother triboelement was the external ring of the tapered rolling bearing KBS 30202, having dimensions of Ø35 mm × 10 mm and was made ofsteel grade DIN 100Cr6. There were analysed the followingcharacteristics: friction coefficient (mean value over a test andscattering range, wear (wear rate. There are also presented particular aspects oftheworn surfaces, asinvestigated fromSEMimages

  15. Comportamento mecânico e termo-mecânico de blendas poliméricas PBT/ABS Mechanical and thermo-mechanical behavior of PBT/ABS polymer blends

    Directory of Open Access Journals (Sweden)

    Luís Antonio S. Ferreira

    1997-03-01

    Full Text Available RESUMO: Blendas de poli(tereftalato de butileno (PBT e copolímero ABS foram estudadas usando-se três tipos diferentes de ABS. As blendas foram caracterizadas mecanicamente através de ensaios de tração e de impacto, e termo-mecanicamente através da determinação da temperatura de deflexão térmica (HDT. Uma influência mais pronunciada foi observada para a variação da composição química do ABS, em relação às diferentes composições de fase, onde blendas com ABS de maior proporção de acrilonitrila mostraram melhor comportamento. Foi observado que baixos níveis de ABS nas blendas proporcionam principalmente um aumento pronunciado da HDT e sem variação da resistência ao impacto, em relação ao PBT puro. Por outro lado, baixos níveis de PBT nas blendas não alteram as propriedades em relação ao ABS puro, com exceção da resistência ao impacto, que mostrou uma redução significativa.ABSTRACT: Polymer blends of poly(butylene terephthalate, PBT, and three grades of Acrylonitrile-Butadiene-Styrene copolymer, ABS, were studied. Polymer blends were characterized by impact resistance, tensile strength and heat deflection temperature tests. It was observed a stronger influence of the chemical composition of the ABS resin on the blends properties, mainly for the blends with higher ABS content which show better properties, than the phase composition of the ABS. It was observed that low levels of ABS in the blends promote mainly a high increase in HDT at the same level of impact resistance, as compared to neat PBT. On the other hand, low levels of PBT in the blend basically keep all the properties at the same level except the impact resistance which shows a significant decrease.

  16. Comparative Studies on Thermal, Mechanical, and Flame Retardant Properties of PBT Nanocomposites via Different Oxidation State Phosphorus-Containing Agents Modified Amino-CNTs.

    Science.gov (United States)

    Zhu, San-E; Wang, Li-Li; Chen, Hao; Yang, Wei; Yuen, Anthony Chun-Yin; Chen, Timothy Bo-Yuan; Luo, Cheng; Bi, Wen-Mei; Hu, En-Zhu; Zhang, Jian; Si, Jing-Yu; Lu, Hong-Dian; Hu, Kun-Hong; Chan, Qing Nian; Yeoh, Guan Heng

    2018-01-26

    High-performance poly(1,4-butylene terephthalate) (PBT) nanocomposites have been developed via the consideration of phosphorus-containing agents and amino-carbon nanotube (A-CNT). One-pot functionalization method has been adopted to prepare functionalized CNTs via the reaction between A-CNT and different oxidation state phosphorus-containing agents, including chlorodiphenylphosphine (DPP-Cl), diphenylphosphinic chloride (DPP(O)-Cl), and diphenyl phosphoryl chloride (DPP(O₃)-Cl). These functionalized CNTs, DPP(O x )-A-CNTs ( x = 0, 1, 3), were, respectively, mixed with PBT to obtain the CNT-based polymer nanocomposites through a melt blending method. Scanning electron microscope observations demonstrated that DPP(O x )-A-CNT nanoadditives were homogeneously distributed within PBT matrix compared to A-CNT. The incorporation of DPP(O x )-A-CNT improved the thermal stability of PBT. Moreover, PBT/DPP(O₃)-A-CNT showed the highest crystallization temperature and tensile strength, due to the superior dispersion and interfacial interactions between DPP(O₃)-A-CNT and PBT. PBT/DPP(O)-A-CNT exhibited the best flame retardancy resulting from the excellent carbonization effect. The radicals generated from decomposed polymer were effectively trapped by DPP(O)-A-CNT, leading to the reduction of heat release rate, smoke production rate, carbon dioxide and carbon monoxide release during cone calorimeter tests.

  17. Morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate)/poly(ethylene-co-methacrylic acid) blends

    International Nuclear Information System (INIS)

    Huang, J.-W.; Wen, Y.-L.; Kang, C.-C.; Yeh, M.-Y.; Wen, S.-B.

    2007-01-01

    The morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate) (PBT) and poly(ethylene-co-methacrylic acid) (PEMA) blends were studied with scanning electron microscopy, X-ray diffraction and differential scanning calorimetry (DSC). PEMA forms immiscible, yet compatible, blends with PBT. Subsequent DSC scans on melt-crystallized samples exhibited two melting endotherms (T mI and T mII ). The presence of PEMA would facilitate the recrystallization during heating scan and retard PBT molecular chains to form a perfect crystal in cooling crystallization. The dispersion phases of molten PEMA acts as nucleating agents to enhance the crystallization rate of PBT. The solidified PBT could act as nucleating agents to enhance the crystallization of PEMA, but also retard the molecular mobility to reduce crystallization rate. The U* and K g of Hoffman-Lauritzen theory were also determined by Vyazovkin's methods to support the interpretation

  18. Study and development of nanocomposites PBT/bentonite clay treated by ionizing radiation: preparation and characterization; Estudo e desenvolvimento de nanocompositos PBT/argila bentonita tratados por radiacao ionizante: preparacao e caracterizacao

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, Mariana do Nascimento

    2014-07-01

    This work describes the preparation and characterization of composites based on poly (butylene terephthalate) - PBT and brazilian modified clay prepared by the melt intercalation. PBT nanocomposites with 3 and 5 % by weight of organically modified clay, by the addition of a quaternary ammonium salt, were prepared by extrusion using a twin-screw extruder machine. After the extrusion process, the materials were injected to obtain specimens tests samples for the characterization tests. Part of the specimens samples were irradiated using an electron beam accelerator with 1.5 MeV at room temperature in the presence of air. Samples of pure PBT and irradiated and non-irradiated nanocomposites were characterized by mechanical tests of tensile, flexural and impact, heat distortion temperature (HDT), X - ray diffraction (XRD), scanning electron microscopy (SEM), melt flow index (MFI) thermogravimetry (TG) and differential scanning calorimetry (DSC) and the correlation between the properties was discussed. The results showed that the addition of clay, in both percentages, promoted an increase greater than 50 % in tensile strength at break and a gain of around 35% in heat distortion temperature when compared to the pure polymer. The treatment with ionizing radiation of electron beam at the doses used in this study showed no significant changes in material properties. (author)

  19. Damage mechanisms in PBT-GF30 under thermo-mechanical cyclic loading

    International Nuclear Information System (INIS)

    Schaaf, A.; De Monte, M.; Hoffmann, C.; Vormwald, M.; Quaresimin, M.

    2014-01-01

    The scope of this paper is the investigation of damage mechanisms at microscopic scale on a short glass fiber reinforced polybutylene terephthalate (PBT-GF30) under thermo-mechanical cyclic loading. In addition the principal mechanisms are verified through micro mechanical FE models. In order to investigate the fatigue behavior of the material both isothermal strain controlled fatigue (ISCF) tests at three different temperatures and thermo-mechanical fatigue (TMF) tests were conducted on plain and notched specimens, manufactured by injection molding. The goal of the work is to determine the damage mechanisms occurring under TMF conditions and to compare them with the mechanisms occurring under ISCF. For this reason fracture surfaces of TMF and ISCF samples loaded at different temperature levels were analyzed using scanning electron microscopy. Furthermore, specimens that failed under TMF were examined on microsections revealing insight into both crack initiation and crack propagation. The findings of this investigation give valuable information about the main damage mechanisms of PBT-GF30 under TMF loading and serve as basis for the development of a TMF life estimation methodology

  20. A novel process for production of spherical PBT powders and their processing behavior during laser beam melting

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jochen, E-mail: jochen.schmidt@fau.de; Sachs, Marius; Fanselow, Stephanie; Wirth, Karl-Ernst; Peukert, Wolfgang [Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Particle Technology, Cauerstr. 4, D-91058 Erlangen (Germany); Zhao, Meng; Wudy, Katrin; Drexler, Maximilian; Drummer, Dietmar [Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Polymer Technology, Am Weichselgarten 9, D-91058 Erlangen (Germany)

    2016-03-09

    Additive manufacturing processes like laser beam melting of polymers are established for production of prototypes and individualized parts. The transfer to other areas of application and to serial production is currently hindered by the limited availability of polymer powders with good processability. Within this contribution a novel process route for the production of spherical polymer micron-sized particles of good flowability has been established and applied to produce polybutylene terephthalate (PBT) powders. Moreover, the applicability of the PBT powders in selective laser beam melting and the dependencies of process parameters on device properties will be outlined. First, polymer micro particles are produced by a novel wet grinding method. To improve the flowability the produced particles the particle shape is optimized by rounding in a heated downer reactor. A further improvement of flowability of the cohesive spherical PBT particles is realized by dry coating. An improvement of flowability by a factor of about 5 is achieved by subsequent rounding of the comminution product and dry-coating as proven by tensile strength measurements of the powders. The produced PBT powders were characterized with respect to their processability. Therefore thermal, rheological, optical and bulk properties were analyzed. Based on these investigations a range of processing parameters was derived. Parameter studies on thin layers, produced in a selective laser melting system, were conducted. Hence appropriate parameters for processing the PBT powders by laser beam melting, like building chamber temperature, scan speed and laser power have been identified.

  1. A novel process for production of spherical PBT powders and their processing behavior during laser beam melting

    International Nuclear Information System (INIS)

    Schmidt, Jochen; Sachs, Marius; Fanselow, Stephanie; Wirth, Karl-Ernst; Peukert, Wolfgang; Zhao, Meng; Wudy, Katrin; Drexler, Maximilian; Drummer, Dietmar

    2016-01-01

    Additive manufacturing processes like laser beam melting of polymers are established for production of prototypes and individualized parts. The transfer to other areas of application and to serial production is currently hindered by the limited availability of polymer powders with good processability. Within this contribution a novel process route for the production of spherical polymer micron-sized particles of good flowability has been established and applied to produce polybutylene terephthalate (PBT) powders. Moreover, the applicability of the PBT powders in selective laser beam melting and the dependencies of process parameters on device properties will be outlined. First, polymer micro particles are produced by a novel wet grinding method. To improve the flowability the produced particles the particle shape is optimized by rounding in a heated downer reactor. A further improvement of flowability of the cohesive spherical PBT particles is realized by dry coating. An improvement of flowability by a factor of about 5 is achieved by subsequent rounding of the comminution product and dry-coating as proven by tensile strength measurements of the powders. The produced PBT powders were characterized with respect to their processability. Therefore thermal, rheological, optical and bulk properties were analyzed. Based on these investigations a range of processing parameters was derived. Parameter studies on thin layers, produced in a selective laser melting system, were conducted. Hence appropriate parameters for processing the PBT powders by laser beam melting, like building chamber temperature, scan speed and laser power have been identified.

  2. THE COMBINED EFFECT OF ORGANIC PHOSPHINATE BASED FLAME RETARDANT AND ZINC BORATE ON THE FIRE BEHAVIOR OF POLY(BUTYLENE TEREPHTHALATE

    Directory of Open Access Journals (Sweden)

    Mustafa Erdem ÜREYEN

    2016-12-01

    Full Text Available Neat poly(butylene terephthalate is highly combustible. It is not self-extinguishing, and after ignition it burns with dripping. To meet the fire safety requirements, it should be rendered flame retardant. The most common flame retardants for PBT are based on halogenated (most often brominated or phosphorus compounds. Although their efficiency is lower than halogen based flame retardants, expensive phosphorus based flame retardants for polyester are preferred, because of low smoke generation, nontoxicity and low corrosion properties. Zinc borate has been widely used with other flame retardants in wood products and in several polymers. In this work the fire behavior of zinc borate, phosphinic acid and zinc borate/phosphinic acid combination doped poly(butylene terephthalate was investigated. Firstly, the mean particle size of zinc borate (2ZnO.3B2O3.3.5H2O powders were reduced by attrition milling. Samples were produced by twin screw micro compounder. The fire properties of the ZnB, DPA and ZnB/DPA doped PBT were investigated and compared to each other by LOI and thermal analysis. LOI values of ZnB/PBT samples were found very low even with higher filling content. At higher loading of ZnB, the dripping of the sample strongly decreased and char residue increased. It was seen that organic diethyl phosphinic acid based additives DPA is particularly effective with PBT. It was found that the combination of DPA and ZnB can be used to increase the char residue, decrease spread of flame and the melt dripping of PBT.

  3. Crystallization kinetics and morphology of PBT/MMT and PTT/MMT nanocomposites during injection molding

    International Nuclear Information System (INIS)

    Favaro, Marcia M.; Branciforti, Marcia C.; Bretas, Rosario E.S.

    2009-01-01

    This work had as main objective to study the crystallization of nanocomposites of poly(butylene terephthalate) (PBT) and poly(trimethylene terephthalate) (PTT) with a montmorillonite nanoclay (MMT) using an on-line optical monitoring system during the injection molding and to characterize the morphologies of the injection samples by polarized light optical microscopy (PLOM), wide angle X-ray diffraction (WAXS) and differential scanning calorimetry (DSC). The optical system allowed to analyze the crystallization process by the changes of the optical properties during the solidification of the materials. It was concluded that the MMT lamellae accelerated the overall crystallization of the polymers. By PLOM, it was observed that the nanoclay caused qualitative changes on the morphology of the PTT (polymer with slow crystallization kinetics). The crystallinity indexes were not affected by the addition of the MMT; however, by WAXS it was shown that the nanocomposites had a higher orientation degree. (author)

  4. Study and development of nanocomposites PBT/bentonite clay treated by ionizing radiation: preparation and characterization

    International Nuclear Information System (INIS)

    Sartori, Mariana do Nascimento

    2014-01-01

    This work describes the preparation and characterization of composites based on poly (butylene terephthalate) - PBT and brazilian modified clay prepared by the melt intercalation. PBT nanocomposites with 3 and 5 % by weight of organically modified clay, by the addition of a quaternary ammonium salt, were prepared by extrusion using a twin-screw extruder machine. After the extrusion process, the materials were injected to obtain specimens tests samples for the characterization tests. Part of the specimens samples were irradiated using an electron beam accelerator with 1.5 MeV at room temperature in the presence of air. Samples of pure PBT and irradiated and non-irradiated nanocomposites were characterized by mechanical tests of tensile, flexural and impact, heat distortion temperature (HDT), X - ray diffraction (XRD), scanning electron microscopy (SEM), melt flow index (MFI) thermogravimetry (TG) and differential scanning calorimetry (DSC) and the correlation between the properties was discussed. The results showed that the addition of clay, in both percentages, promoted an increase greater than 50 % in tensile strength at break and a gain of around 35% in heat distortion temperature when compared to the pure polymer. The treatment with ionizing radiation of electron beam at the doses used in this study showed no significant changes in material properties. (author)

  5. Nucleation Mechanisms of Aromatic Polyesters, PET, PBT, and PEN, on Single-Wall Carbon Nanotubes: Early Nucleation Stages

    Directory of Open Access Journals (Sweden)

    Adriana Espinoza-Martínez

    2012-01-01

    Full Text Available Nucleation mechanisms of poly(ethylene terephthalate (PET, poly(butylene terephthalate (PBT, and poly(ethylene naphthalate (PEN on single-wall carbon nanotubes (SWNTs are proposed, based on experimental evidence, theoretical epitaxy analysis, and semiempirical quantum chemical calculations. In order to elucidate early nucleation stages polyester-coated nanotubes were obtained from highly diluted solutions. High-resolution transmission electron microscopy (HRTEM revealed helical morphologies for PET/SWNTs and PEN/SWNTs and the formation of lobules with different orientations for PBT/SWNTs. To explain the morphological behavior one model was proposed based on crystallographic interactions, that is, epitaxy. Theoretical epitaxy calculations indicated that epitaxy is not possible from the strict epitaxy point of view. Instead, aromatic self-assembly mechanism was proposed based on π-π interactions and the chirality of the nanotube. It was proposed that the mechanism implies two steps to produce helical or lobular morphologies with different orientations. In the first step polymer chains were approached, aligned parallel to the nanotube axis and adsorbed due to electrostatic interactions and the flexibility of the molecule. However, due to π-π interactions between the aromatic rings of the polymer and the nanotube, in the second step chains reoriented on the nanotube surface depending on the chirality of the nanotube. The mechanism was supported by semi-empirical calculations.

  6. Poly(ethylene oxide)/poly(butylene terephthalate) segmented block copolymers: the effect of copolymer composition on physical properties and degradation behavior

    NARCIS (Netherlands)

    Deschamps, A.A.; Grijpma, Dirk W.; Feijen, Jan

    2001-01-01

    In this study, the influence of copolymer composition on the physical properties and the degradation behavior of thermoplastic elastomers based on poly(ethylene oxide) (PEO) and poly(butylene terephthalate) (PBT) segments is investigated. These materials are intended to be used in medical

  7. Tissue engineering of fish skin: behavior of fish cells on poly(ethylene glycol terephthalate)/poly(butylene terephthalate) copolymers in relation to the composition of the polymer substrate as an initial step in constructing a robotic/living tissue hybrid.

    Science.gov (United States)

    Pouliot, Roxane; Azhari, Rosa; Qanadilo, Hala F; Mahmood, Tahir A; Triantafyllou, Michael S; Langer, Robert

    2004-01-01

    This study presents the development of a biosynthetic fish skin to be used on aquatic robots that can emulate fish. Smoothness of the external surface is desired in improving high propulsive efficiency and maneuvering agility of autonomous underwater vehicles such as the RoboTuna (Triantafyllou, M., and Triantafyllou, G. Sci. Am. 272, 64, 1995). An initial step was to determine the seeding density and select a polymer for the scaffolds. The attachment and proliferation of chinook salmon embryo (CHSE-214) and brown bullhead (BB) cells were studied on different compositions of a poly(ethylene glycol terephthalate) (PEGT) and poly(butylene terephthalate) (PBT) copolymer (Polyactive). Polymer films were used, cast of three different compositions of PEGT/PBT (weight ratios of 55/45, 60/40, and 70/30) and two different molecular masses of PEGT (300 and 1000 Da). When a 55 wt% and a 300-Da molecular mass form of PEGT was used, maximum attachment and proliferation of CHSE-214 and BB cells were achieved. Histological studies and immunostaining indicate the presence of collagen and cytokeratins in the extracellular matrix formed after 14 days of culture. Porous scaffolds of PEGT/PBT copolymers were also used for three-dimensional tissue engineering of fish skin, using BB cells. Overall, our results indicate that fish cells can attach, proliferate, and express fish skin components on dense and porous Polyactive scaffolds.

  8. The influence of manganese–cobalt oxide/graphene on reducing fire hazards of poly(butylene terephthalate)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dong; Zhang, Qiangjun; Zhou, Keqing; Yang, Wei [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); USTC-CityU Joint Advanced Research Centre, Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, 166 Ren’ai Road, Suzhou, Jiangsu 215123 (China); Gong, Xinglong, E-mail: gongxl@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026 (China); CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-08-15

    Highlights: • MnCo{sub 2}O{sub 4}–GNS hybrids are synthesized by a two-stage liquid phase method. • MnCo{sub 2}O{sub 4}–GNS/PBT composites were prepared via a masterbatch-melt blending method. • Fire hazards are monitored and evaluated by cone calorimeter and TG-IR. • MnCo{sub 2}O{sub 4}–GNS hybrids decrease thermal hazards and smoke hazards of PBT composites. • MnCo{sub 2}O{sub 4}–GNS hybrids perform better catalytic oxidation of CO and organic volatile. - Abstract: By means of direct nucleation and growth on the surface of graphene and element doping of cobalt oxide (Co{sub 3}O{sub 4}) nano-particles, manganese–cobalt oxide/graphene hybrids (MnCo{sub 2}O{sub 4}–GNS) were synthesized to reduce fire hazards of poly(butylene terephthalate) (PBT). The structure, elemental composition and morphology of the obtained hybrids were surveyed by X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy, respectively. Thermogravimetric analysis was applied to simulate and study the influence of MnCo{sub 2}O{sub 4}–GNS hybrids on thermal degradation of PBT during combustion. The fire hazards of PBT and its composites were assessed by the cone calorimeter. The cone test results had showed that peak HRR and SPR values of MnCo{sub 2}O{sub 4}–GNS/PBT composites were lower than that of pure PBT and Co{sub 3}O{sub 4}–GNS/PBT composites. Furthermore, the incorporation of MnCo{sub 2}O{sub 4}–GNS hybrids gave rise to apparent decrease of pyrolysis products containing aromatic compounds, carbonyl compounds, carbon monoxide and carbon dioxide, attributed to combined impact of physical barrier for graphene and cat O{sub 4} for organic volatiles and carbon monoxide.

  9. The influence of manganese–cobalt oxide/graphene on reducing fire hazards of poly(butylene terephthalate)

    International Nuclear Information System (INIS)

    Wang, Dong; Zhang, Qiangjun; Zhou, Keqing; Yang, Wei; Hu, Yuan; Gong, Xinglong

    2014-01-01

    Highlights: • MnCo 2 O 4 –GNS hybrids are synthesized by a two-stage liquid phase method. • MnCo 2 O 4 –GNS/PBT composites were prepared via a masterbatch-melt blending method. • Fire hazards are monitored and evaluated by cone calorimeter and TG-IR. • MnCo 2 O 4 –GNS hybrids decrease thermal hazards and smoke hazards of PBT composites. • MnCo 2 O 4 –GNS hybrids perform better catalytic oxidation of CO and organic volatile. - Abstract: By means of direct nucleation and growth on the surface of graphene and element doping of cobalt oxide (Co 3 O 4 ) nano-particles, manganese–cobalt oxide/graphene hybrids (MnCo 2 O 4 –GNS) were synthesized to reduce fire hazards of poly(butylene terephthalate) (PBT). The structure, elemental composition and morphology of the obtained hybrids were surveyed by X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy, respectively. Thermogravimetric analysis was applied to simulate and study the influence of MnCo 2 O 4 –GNS hybrids on thermal degradation of PBT during combustion. The fire hazards of PBT and its composites were assessed by the cone calorimeter. The cone test results had showed that peak HRR and SPR values of MnCo 2 O 4 –GNS/PBT composites were lower than that of pure PBT and Co 3 O 4 –GNS/PBT composites. Furthermore, the incorporation of MnCo 2 O 4 –GNS hybrids gave rise to apparent decrease of pyrolysis products containing aromatic compounds, carbonyl compounds, carbon monoxide and carbon dioxide, attributed to combined impact of physical barrier for graphene and cat O 4 for organic volatiles and carbon monoxide

  10. Studies on the effect of compatibilizers on mechanical, thermal and flow properties of polycarbonate/poly (butylene terephthalate) blends

    Science.gov (United States)

    Kumar, Ravindra; Kar, Kamal K.; Kumar, Vijai

    2018-01-01

    Bisphenol-A polycarbonate (PC) and poly(butylene terephthalate) (PBT) were melt blended with ethylene-n-butylacrylate-glycidylmethacrylate terpolymer (E-BA-GMA) at various proportions in order to study the effects of compatibilizers on mechanical, thermal and flow properties of blends. Furthermore, on the basis of this study, PC and PBT were melt-blended at 60/40 proportion with three different compatibilizers viz., ethylene-n-butylacrylate copolymer (E-BA), E-BA-GMA and random copolymer of ethylene and glycidylmethacrylate (E-GMA) at 3 phr loading in a co-rotating twin screw extruder. Tensile, flexural and impact tests were carried out on injection molded samples of PC/PBT blends. The notched izod impact strength increases enormously (˜2-3 times) on addition of any one of the three compatibilizers, and elongation at break (%) also improves tremendously (3, 5 and 4 times) on incorporation of E-BA, E-BA-GMA and E-GMA copolymer, respectively while other mechanical properties decreases slightly (3%-8%) on addition of any one of these compatibilizers. The heat deflection temperature (HDT) raises ˜8 °C-9 °C on addition of either E-BA-GMA or E-GMA, while E-BA shows a negative effect on HDT. The melt flow index diminishes significantly (˜5%-20%) on incorporation of these compatibilizers. The morphology studies via scanning electron microscopy of these four blends were carried out to confirm the mechanical results.

  11. Fatigue damage mechanisms in short fiber reinforced PBT+PET GF30

    International Nuclear Information System (INIS)

    Klimkeit, B.; Castagnet, S.; Nadot, Y.; Habib, A. El; Benoit, G.; Bergamo, S.; Dumas, C.; Achard, S.

    2011-01-01

    Research highlights: → Final macroscopic cracking only affects the few last percent of the lifetime → Classical approach based on fracture surface observation is not sufficient to characterize micro-mechanisms → Different techniques (scanning electron microscopy, replica technique, infra-red imaging) are compared to the macroscopic mechanical behavior evolution (stiffness, viscous damping, ratcheting effect) → The influence of surrounding fibers on some observed damage processes is being evidenced for the first time. - Abstract: The fatigue damage of a glass-reinforced PolyButylene Terephthalate and PolyEthylene Terephthalate with the fiber volume fraction of 30% (PBT+PET GF30) is investigated by means of various techniques. Fatigue tests at R = 0.1 are carried out on dogbone specimens and tubular specimens with different fiber orientations. The macroscopic evolution of the material behavior is evaluated and fatigue damage mechanisms are observed with a replica technique, Infrared imaging and scanning electron microscopy. A fatigue damage scenario is finally proposed. It is shown that the propagation of a single macroscopic crack is not the major fatigue mechanism under fatigue loading. Damage is spatially distributed in the material and the classical circular crack at the end of the fiber is confirmed as the based fatigue mechanisms. It is also shown that the damage observed alongside the fibers is related to spatial distribution of fiber rather than stress distribution around one single fiber.

  12. Poly(Butylene Terephthalate Based Composites Containing Alumina Whiskers: Influence of Filler Functionalization on Dielectric Properties

    Directory of Open Access Journals (Sweden)

    Pietro Russo

    2014-01-01

    Full Text Available Poly(butylene terephthalate (PBT is one of the most widely used semicrystalline thermoplastics polyester because of its superior thermal and mechanical properties, high dimensional stability and excellent processability. In this research PBT-based nanocomposites, including various amounts (up to 10 wt% of commercial alumina whiskers, have been prepared by using a Brabender internal chamber mixer and analysed in terms of morphological features and dielectric properties. Specific attention has been focused on the effect of the filler functionalization considering 3-glycidoxy propylmethoxysilane (GPS or 3-methacryloxypropyltrimethoxysilane (MPS as coupling agents. Tests, performed on compounds filled with neat and functionalized alumina whiskers, show a clear dependence of relative dielectric permittivity εr, invariance of dissipation factor (tgδ, and a sensible increase of volume electrical resistivity (ρv with the filler’s content and are encouraging for a future introduction of such composites in many electrical applications.

  13. Mixture toxicity of PBT-like chemicals

    DEFF Research Database (Denmark)

    Syberg, Kristian; Dai, Lina; Ramskov, Tina

    addition is a suitable model for default estimations of mixture effects. One of the major challenges is therefore how to select specific chemicals for actual mixture toxicity assessments. Persistant chemicals are likely to be present in the environment for an extended period of time, thus increasing...... the likelihood of them being present in environmentally found mixtures. Persistant, bioaccumulative and toxic (PBT) chemicals are therefore a highly relevant group of chemicals to consider for mixture toxicity regulation. The present study evaluates to what extent a number of PBT-like chemicals posess concern...... beyond that of the individual components. Firstly, the effects of three chemicals with PBT-like properties (acetyl cedrene, pyrene and triclosan) was examined on the freshwater snail, Potamopyrgus antipodarum. Secondly, mixture bioaccumulation of the same three chemicals were assessed experimentally...

  14. Normal Force Influence on 3D Texture Parameters Characterizing the Friction Couple Steel – PBT + 10 % PTFE

    Directory of Open Access Journals (Sweden)

    C. Georgescu

    2014-03-01

    Full Text Available This study presents the influence of the normal force on the surface quality of the friction couple steel – polybutylene terephthalate (PBT + 10 % polytetrafluoroethylene (PTFE. There were calculated the average values of the amplitude and functional parameters, as obtained from investigating square areas on the wear tracks, with the help of a proposed methodology, for initial and tested surfaces generated on the blocks and on counterpart ring made of rolling bearing steel, for the following test conditions: three normal forces (F = 1 N, F = 2.5 N and F =5 N, three sliding speeds (v = 0.25 m/s, v = 0.50 m/s and v = 0.75 m/s and a sliding distance of L = 7500 m. The conclusion of the research study was that the tested normal force range has an insignificant influence on the surface quality for the tested materials and parameters. This friction couple could be recommended for variable conditions (speed and load in dry regimes.

  15. Effects of Poly(cyclohexanedimethylene terephthalate on Microstructures, Crystallization Behavior and Properties of the Poly(ester ether Elastomers

    Directory of Open Access Journals (Sweden)

    Yi-Cheng Feng

    2017-06-01

    Full Text Available To understand the role of molecular structure on the crystallization behavior of copolyester in thermoplastic poly(ether ester elastomers (TPEEs, series of poly(butylene-co-1,4-cyclohexanedimethylene terephthalate (P(BT-co-CT-b-poly(tetramethylene glycol (PTMG are synthesized through molten polycondensation process. The effects of poly(cyclohexanedimethylene terephthalate (PCT content on the copolymer are investigated by Fourier transform infrared spectroscopy (FT-IR, 1H and 13C nuclear magnetic resonance (NMR, gel permeation chromatographs (GPC, wide-angle X-ray diffraction (WAXD, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, mechanical, and visible light transmittance tests. FT-IR and NMR results confirm the incorporation of PCT onto the copolymer. WAXD and DSC indicate that the crystalline structure of the copolymers changed from α-PBT lattice to trans-PCT lattice when the molar fraction of PCT (MPCT is above 30%, while both crystallization and melting temperatures reach the minima. An increase in MPCT led to an increase in the number sequence length of PCT, the thermal stability and the visible light transmittance of the copolymer, but to a slight decrease in tensile strength and elastic modulus.

  16. Influence of Thermo-Oxidative Ageing on the Thermal and Dynamical Mechanical Properties of Long Glass Fibre-Reinforced Poly(Butylene Terephthalate) Composites Filled with DOPO.

    Science.gov (United States)

    Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie

    2017-05-04

    In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing.

  17. Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2016-07-01

    Full Text Available Materials based on biodegradable polyesters, such as poly(butylene terephthalate (PBT or poly(butylene terephthalate-co-poly(alkylene glycol terephthalate (PBTAT, have potential application as pro-regenerative scaffolds for bone tissue engineering. Herein, the preparation of films composed of PBT or PBTAT and an engineered spider silk protein, (eADF4(C16, that displays multiple carboxylic acid moieties capable of binding calcium ions and facilitating their biomineralization with calcium carbonate or calcium phosphate is reported. Human mesenchymal stem cells cultured on films mineralized with calcium phosphate show enhanced levels of alkaline phosphatase activity suggesting that such composites have potential use for bone tissue engineering.

  18. Influência das condições de processamento na obtenção de blendas PBT/ABS Influence of the processing parameters during preparation of PBT/ABS blends

    Directory of Open Access Journals (Sweden)

    José D Ambrósio

    2010-01-01

    Full Text Available Foram desenvolvidos dispositivos para obtenção de fitas extrudadas de blendas poli(tereftalato de butileno/terpolímero acrilonitrila-butadieno-estireno (PBT/ABS, que serviram para correlacionar diretamente as condições de preparação destas blendas em extrusoras com rosca dupla corotacional e interpenetrante (ERDCI com as suas propriedades. Quando compatibilizada com terpolímero reativo metacrilato de metila-co-metacrilato de glicidila-co-acrilato de etila (MGE, a blenda ternária PBT/ABS/MGE apresentou maior viscosidade, menor entalpia de fusão e menor temperatura de transição frágil dúctil (TTFD que a blenda binária PBT/ABS, devido possivelmente à reação do grupo epóxi do MGE com os terminais de cadeias do PBT. A blenda compatibilizada e processada com velocidade de rotação das roscas de 120 rpm apresentou maior viscosidade, menor entalpia de fusão e melhores propriedades de resistência ao impacto que aquela processada a 240 rpm. A maior velocidade de rotação das roscas pode ter degradado os componentes da blenda. A taxa de alimentação foi a variável de processo que mais influenciou nas propriedades da blenda, pois a taxa de 3,5 kg/h deteriorou completamente as propriedades de impacto, reduziu a viscosidade e aumentou a entalpia de fusão, quando comparada com a taxa de 7,0 kg/h. A deterioração das propriedades de impacto foi atribuída ao maior tempo de residência da blenda na ERDCI, que submeteu a blenda ao cisalhamento e à temperatura por mais tempo, causando degradação dos componentes da blenda.In order to correlate processing conditions in intermeshing co-rotational twin-screw extrusion (ICTSE and properties of PBT/ABS blends, devices have been developed to obtain extruded strips from PBT/ABS blends. The PBT/ABS blend compatibilized with reactive copolymer methyl methacrylate- glycidyl methacrylate (MGE has shown higher viscosity, lower heat of fusion and lower ductile-brittle transition temperature (DBTT

  19. Reversible aggregation of lysozyme in a biodegradable amphiphilic multiblock copolymer.

    Science.gov (United States)

    van de Weert, Marco; van Dijkhuizen-Radersma, Riemke; Bezemer, Jeroen M; Hennink, Wim E; Crommelin, Daan J A

    2002-07-01

    Lysozyme-loaded poly(ethylene glycol terephthalate)-poly(butylene terephthalate) (PEGT/PBT) films were prepared using a water-in-oil emulsification solvent evaporation method. Infrared spectroscopic analysis of the dried films indicated the presence of non-covalent lysozyme aggregates in the polymer matrix. The use of methanol to enhance the drying rate of the films increased the relative amount of aggregates. Surprisingly, quantitative in-vitro release of fully active, non-aggregated lysozyme was observed, indicating that lysozyme forms reversible aggregates during encapsulation in PEGT/PBT films.

  20. Tissue engineering of bovine articular cartilage within porous poly(ether ester) copolymer scaffolds with different structures

    NARCIS (Netherlands)

    Mahmood, Tahir A.; Shastri, V. Prasad; van Blitterswijk, Clemens; Langer, Robert; Riesle, J.U.

    2005-01-01

    The potential of porous poly(ether ester) scaffolds made from poly(ethylene glycol) terephthalate: poly(butylene terephthalate) (PEGT:PBT) block copolymers produced by various methods to enable cartilaginous tissue formation in vitro was studied. Scaffolds were fabricated by two different processes:

  1. Amelioration of rCBF and PbtO2 following TBI at high altitude by hyperbaric oxygen pre-conditioning.

    Science.gov (United States)

    Hu, Shengli; Li, Fei; Luo, Haishui; Xia, Yongzhi; Zhang, Jiuquan; Hu, Rong; Cui, Gaoyu; Meng, Hui; Feng, Hua

    2010-03-01

    Hypobaric hypoxia at high altitude can lead to brain damage and pre-conditioning with hyperbaric oxygen (HBO) can reduce ischemic/hypoxic brain injury. This study investigates the effects of high altitude on traumatic brain injury (TBI) and examines the neuroprotection provided by HBO preconditioning against TBI. Rats were randomly divided into four groups: HBO pre-conditioning group (HBOP, n=10), high altitude group (HA, n=10), plain control group (PC, n=10) and plain sham operation group (sham, n=10). All groups were subjected to head trauma by weight drop device except for the sham group. Rats from each group were examined for neurological function, regional cerebral blood flow (rCBF) and brain tissue oxygen pressure (PbtO(2)) and were killed for analysis by transmission electron microscope. The score of neurological deficits in the HA group was highest, followed by the HBOP group and the PC group, respectively. Both rCBF and PbtO(2) were the lowest in the HA group. Brain morphology and structure seen via the transmission electron microscope was diminished in the HA group, while fewer pathological injuries occurred in the HBOP and PC groups. High altitude aggravates TBI significantly and HBO pre-conditioning can attenuate TBI in rats at high altitude by improvement of rCBF and PbtO(2). Pre-treatment with HBO might be beneficial for people traveling to high altitude locations.

  2. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    OpenAIRE

    Ammar F. Abbas

    2016-01-01

    Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production.PET plastic waste conversion to terephthalic acid by depolymerization process was examined. The effect ...

  3. New Titanium-Based Catalysts for the Synthesis of Poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Yang, Youngkeun; Yoon, Seungwoong; Hwang, Yongtaek; Song, Bogeun

    2012-01-01

    Poly(ethylene terephthalate) (PET) is a polymer with relatively low cost and high performance, which is widely used in various applications such as bottles, textile fibers, films and engineering plastics for automobiles and electric industries. Commercial catalysts used for synthesis of PET are in general antimony (Sb) compounds. Antimony(III) oxide, antimony(III) acetate and antimony(III) glycolate are used as a catalyst in 95% of PET manufacturing industries worldwide. The few organoantimony compounds that have been identified in environmental and biological samples are all in the form of methylated Sb-species. The Sb trace element is extremely toxic to mammals, and interferes with embryonic and fetal development, also, carcinogenic to humans. In addition to being found in drinking water, food packaging and soft-drink bottles. According to the World Health Organization (WHO), Sb species concentration lower than 20 ppb are acceptable for drinking water. According to a recent study, in 14 brands of bottled water from Canada, Sb concentrations increased on average 19% during 6 months storage at room temperature, but 48 brands of water from 11 European countries increased on average 90% under identical conditions. Therefore, a very important challenge for polyester catalysis is to come-up with a new Sb-free catalysts with low environmental impact. Intensive efforts have been made to find other stable and more environmental friendly non-antimony catalysts, such as those based on titanium. Titanium-based catalysts have been known for many years and actually are used for polybutylene terephthalate (PBT) and polypropylene terephthalate (PPT) production, however, polycondensation (PC) of PET manufacture is not well studied in literature. To date, only few esterification processes have been applied for the synthesis of PET by titanium catalysts. Herein, we report an efficient synthesis characterization and polymerization of PET for a series of new nontoxic organotitanium

  4. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar F. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production.PET plastic waste conversion to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained.The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy.A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide.

  5. Porous PEOT/PBT scaffolds for bone tissue engineering: preparation, characterization, and in vitro bone marrow cell culturing

    NARCIS (Netherlands)

    Claase, M.B.; Grijpma, Dirk W.; Mendes, S.C.; Mendes, Sandra C.; de Bruijn, Joost Dick; Feijen, Jan

    2003-01-01

    The preparation, characterization, and in vitro bone marrow cell culturing on porous PEOT/PBT copolymer scaffolds are described. These scaffolds are meant for use in bone tissue engineering. Previous research has shown that PEOT/PBT copolymers showed in vivo degradation, calcification, and bone

  6. The Effectiveness of Song Technique in Teaching Paper Based TOEFL (PBT)'s Listening Comprehension Section

    Science.gov (United States)

    Kuswoyo, Heri

    2013-01-01

    Among three sections that follow the Paper-Based TOEFL (PBT), many test takers find listening comprehension section is the most difficult. Thus, in this research the researcher aims to explore how students learn PBT's listening comprehension section effectively through song technique. This sounds like a more interesting and engaging way to learn…

  7. Alkaline Depolymerization of Polyethylene Terephthalate Plastic Waste

    Directory of Open Access Journals (Sweden)

    Ammar S. Abbas

    2016-02-01

    Full Text Available Depolymerization reaction is considered one of the most significant ways of converting waste polyethylene terephthalate in to terephthalic acid. The water polyethylene terephthalate bottle waste was collected from different places in Baghdad. The collection step shows that there is plenty amount of polyethylene terephthalate suitable to be an important source of terephthalic acid production. PET plastic waste converting to terephthalic acid by depolymerization process was examined. The effect of ethylene glycol amount, reaction time (up to 90 minutes and reaction temperature (from 70 to 170° C on the polyethylene terephthalate conversion was obtained. The kinetic study shows that the ordination of the depolymerization reaction of PET is first order irreversible reaction with 31103.5 J/mole activation energy. A 97.9 % terephthalic acid purity has been obtained by purification with N, N-dimethylformamide. Normal 0 false false false EN-US X-NONE AR-SA

  8. Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties

    Science.gov (United States)

    Saravana Kumar, P.; Balachandran, C.; Duraipandiyan, V.; Ramasamy, D.; Ignacimuthu, S.; Al-Dhabi, Naif Abdullah

    2015-02-01

    The application of microorganisms for the synthesis of nanoparticles as an eco-friendly and promising approach is welcome due to its non-toxicity and simplicity. The aim of this study was to synthesize silver nanoparticle using Streptomyces sp. (09 PBT 005). 09 PBT 005 was isolated from the soil sample of the agriculture field in Vengodu, Thiruvannamalai district, Tamil Nadu, India. 09 PBT 005 was subjected to molecular characterization by 16S rRNA sequence analysis. It was found that 09 PBT 005 belonged to Streptomyces sp. The isolate Streptomyces sp. 09 PBT 005 was inoculated in fermentation medium and incubated at 30 ºC for 12 days in different pH conditions. The 0.02 molar concentration showed good antibacterial activity against Gram-positive and Gram-negative bacteria at pH-7. The synthesis of silver nanoparticles was investigated by UV-Vis spectroscopy, scanning electron microscopy and Fourier Transform Infrared analysis. The synthesized AgNPs sizes were found to be in the dimensions ranging between 198 and 595 nm. The cytotoxicity of the synthesized nanoparticles was studied against A549 adenocarcinoma lung cancer cell line. It showed 83.23 % activity at 100 μl with IC 50 value of 50 μl. This method will be useful in the biosynthesis of nanoparticles.

  9. Preparation and characterization of an aromatic polyester/polyaniline composite and its improved counterpart

    Directory of Open Access Journals (Sweden)

    C. S. Wu

    2012-06-01

    Full Text Available Poly(butylene terephthalate (PBT composites containing polyaniline (PANI were prepared using a melt-blending process. Maleic anhydride-grafted PBT (PBT-g-MA and PANI were used to improve the compatibility of PANI within the PBT matrix. PBT-g-MA/PANI composites exhibited noticeably superior mechanical properties compared with those of PBT/PANI due to greater compatibility with the added PANI. The antibacterial and antistatic properties of the composites were also evaluated. Escherichia coli were chosen as the standard bacteria for determining the antibacterial properties of the composite materials. The PBT-g-MA/PANI composites showed markedly enhanced antibacterial and antistatic properties compared to PBT/PANI composites due to the formation of imide bonds from condensation of the anhydride carboxyl acid groups of PBT-g-MA with the amino groups of PANI. The optimal level of PANI in the composites was 9 wt%, as excess PANI led to separation of the two organic phases, lowering their compatibility.

  10. Magnetic field assisted μ-solid phase extraction of anti-inflammatory and loop diuretic drugs by modified polybutylene terephthalate nanofibers

    International Nuclear Information System (INIS)

    Bagheri, Habib; Khanipour, Peyman; Asgari, Sara

    2016-01-01

    A magnetic nanocomposite consisting of nanoparticles–polybutylene terephthalate (MNPs–PBT) was electrospun and used as an extracting medium for an on-line μ-solid phase extraction (μ–SPE)–high performance liquid chromatography (HPLC) set–up with an ultraviolet (UV) detection system. Due to the magnetic property of the prepared nanofibers, the whole extraction procedure was implemented under an external magnetic field to enhance the extraction efficiencies. The developed method along with the synthesized nanocomposite were found to be appropriate for the determination of trace levels of selected drugs including furosemide, naproxen, diclofenac and clobetasol propionate in the urine sample. The prepared MNPs-PBT electrospun nanocomposite was characterized using the scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared (FT–IR) spectroscopy. The prepared magnetic fibers showed high porosity, which was another driving force for the extraction efficiency enhancement. Major parameters affecting the extraction efficiency of the selected drugs were optimized. The limits of detections (LOD) of the studied drugs were in the range of 0.4–1.6 μg L"−"1 and the limits of quantification (LOQ) were 1–4 μg L"−"1 under the optimized conditions. Relative standard deviation (RSD%) for three replicates at three concentration levels of 6, 100 and 400 μg L"−"1 were 5.9–8.0% while acceptable linear range with two orders of magnitude was obtained (R"2 = 0.99). The method was validated by the determination of the selected drugs in urine samples and the results indicated that this method has sufficient potential for enrichment and determination of the desired drugs in the urine sample. The relative recovery values were found to be in the range of 78–91%. Implementing the developed on–line μ–SPE method under the external magnetic field induction, led to higher extraction efficiencies for the selected

  11. Magnetic field assisted μ-solid phase extraction of anti-inflammatory and loop diuretic drugs by modified polybutylene terephthalate nanofibers

    Energy Technology Data Exchange (ETDEWEB)

    Bagheri, Habib, E-mail: bagheri@sharif.edu; Khanipour, Peyman; Asgari, Sara

    2016-08-31

    A magnetic nanocomposite consisting of nanoparticles–polybutylene terephthalate (MNPs–PBT) was electrospun and used as an extracting medium for an on-line μ-solid phase extraction (μ–SPE)–high performance liquid chromatography (HPLC) set–up with an ultraviolet (UV) detection system. Due to the magnetic property of the prepared nanofibers, the whole extraction procedure was implemented under an external magnetic field to enhance the extraction efficiencies. The developed method along with the synthesized nanocomposite were found to be appropriate for the determination of trace levels of selected drugs including furosemide, naproxen, diclofenac and clobetasol propionate in the urine sample. The prepared MNPs-PBT electrospun nanocomposite was characterized using the scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared (FT–IR) spectroscopy. The prepared magnetic fibers showed high porosity, which was another driving force for the extraction efficiency enhancement. Major parameters affecting the extraction efficiency of the selected drugs were optimized. The limits of detections (LOD) of the studied drugs were in the range of 0.4–1.6 μg L{sup −1} and the limits of quantification (LOQ) were 1–4 μg L{sup −1} under the optimized conditions. Relative standard deviation (RSD%) for three replicates at three concentration levels of 6, 100 and 400 μg L{sup −1} were 5.9–8.0% while acceptable linear range with two orders of magnitude was obtained (R{sup 2} = 0.99). The method was validated by the determination of the selected drugs in urine samples and the results indicated that this method has sufficient potential for enrichment and determination of the desired drugs in the urine sample. The relative recovery values were found to be in the range of 78–91%. Implementing the developed on–line μ–SPE method under the external magnetic field induction, led to higher extraction efficiencies

  12. NATIONAL COW MILK SURVEY FOR PERSISTENT, BIOACCUMULATIVE AND TOXIC (PBT) POLLUTANTS

    Science.gov (United States)

    This is a survey for persistent, bioaccumulative, and toxic (PBT) pollutants in the U.S. milk supply. The EPA Environmental Radiation Ambient Monitoring System (ERAMS) was used to collect two sets of milk samples, one set in July 2000 and the second in January 2001. ERAMS has abo...

  13. Nanoparticles Embedded in Amphiphilic Membranes for Carbon Dioxide Separation and Dehumidification.

    Science.gov (United States)

    Yong, Wai Fen; Ho, Yan Xun; Chung, Tai-Shung

    2017-10-23

    Polymers containing ethylene oxide (EO) groups have gained significant interest as the EO groups have favorable interactions with polar molecules such as H 2 O, quadrupolar molecules such as CO 2 , and metal ions. However, the main challenges of poly(ethylene oxide) (PEO) membranes are their weak mechanical properties and high crystallinity nature. The amphiphilic copolymer made from PEO terephthalate and poly(butylene terephthalate) (PEOT/PBT) comprises both hydrophilic and hydrophobic segments. The hydrophilic PEOT segment is thermosensitive, which facilities gas transports whereas the hydrophobic PBT segment is rigid, which provides mechanical robustness. This work demonstrates a new strategy to design amphiphilic mixed matrix membranes (MMMs) by incorporating zeolitic imidazolate framework, ZIF-71, into the PEOT/PBT copolymer. The resultant membrane shows an enhanced CO 2 permeability with an ideal CO 2 /N 2 selectivity surpassing the original PEOT/PBT and Robeson's Upper bound line. The nanoparticles-embedded amphiphilic membranes exhibit characteristics of high transparency and mechanical robustness. Mechanically strong composite hollow fiber membranes consisting of PEOT/PBT/ZIF-71 as the selective layer were also prepared. The resultant hollow fibers possess an excellent CO 2 permeance of 131 GPU (gas permeation units), CO 2 /N 2 selectivity of 52.6, H 2 O permeance of 9300 GPU and H 2 O/N 2 selectivity of 3700, showing great potential for industrial CO 2 capture and dehumidification. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Poly(butylene terephthalate)/montmorillonite nanocomposites: Effect of montmorillonite on the morphology, crystalline structure, isothermal crystallization kinetics and mechanical properties

    International Nuclear Information System (INIS)

    Kalkar, Arun K.; Deshpande, Vineeta D.; Vatsaraj, Bhakti S.

    2013-01-01

    Graphical abstract: - Highlights: • Effect of amount of clay content, its dispersion on crystalline structure of PBT. • Regime break temperature shifts to lower temperature for PCN4 up to 197 °C. • Tensile modulus enhanced up to 95% for PCN3 compared to PBT. - Abstract: Nanocomposites (PCNs), based on poly(butylene terephthalte) (PBT) and organoclay (Cloisite-15A) MMT were prepared by melt intercalation compounding process. The nanoscale dispersion and the microcrystal structure studied qualitatively using; X-ray diffraction (XRD) and electron microscopy (SEM, TEM and AFM). The XRD results indicated that the crystal size is highly dependent on the crystallization temperature. The isothermal crystallization kinetics of PBT in PCNs analysis indicated that the overall crystallization of PBT involved heterogeneous nucleated three-dimensional spherical primary crystallization growth process. The crystallization rate, however, is dependent on the PCN-composition, crystallization temperature and the dispersion state of clay in PCNs. Further analysis, based on Hoffman-Lauritzen theory revealed that the neat PBT and PBT in PCNs crystallization follow regime-II kinetics for temperature 195 °C–205 °C and enters the regime-III kinetics in lower T c range, 185 °C–195 °C. The improvement in mechanical properties is highly dependent on the level of clay exfoliation in PBT matrix

  15. Microspheres for protein delivery prepared from amphiphilic multiblock copolymers. 1. influence of preparation techniques on particle characteristics and protein delivery

    NARCIS (Netherlands)

    Bezemer, J.M.; Radersma, R.; Grijpma, Dirk W.; Dijkstra, Pieter J.; van Blitterswijk, Clemens; Feijen, Jan

    2000-01-01

    The entrapment of lysozyme in amphiphilic multiblock copolymer microspheres by emulsification and subsequent solvent removal processes was studied. The copolymers are composed of hydrophilic poly(ethylene glycol) (PEG) blocks and hydrophobic poly(butylene terephthalate) (PBT) blocks. Direct solvent

  16. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling

    NARCIS (Netherlands)

    Gnanasekaran, K.; Heijmans, T.; van Bennekom, S.; Woldhuis, H.; Wijnia, S.; de With, G.; Friedrich, H.

    2017-01-01

    Fused deposition modeling (FDM) is limited by the availability of application specific functional materials. Here we illustrate printing of non-conventional polymer nanocomposites (CNT- and graphene-based polybutylene terephthalate (PBT)) on a commercially available desktop 3D printer leading toward

  17. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix

    NARCIS (Netherlands)

    Liu, Qing; de Wijn, J.R.; van Blitterswijk, Clemens

    1998-01-01

    In an effort to make composites from hydroxyapatite and a PEG/PBT copolymer (PolyactiveTM 70/30), chemical linkages were introduced between the filler particles and polymer matrix using hexamethylene diisocyanate as a coupling agent. Infrared spectra (IR) and thermal gravimetric analysis (TGA)

  18. Development of human biotransformation QSARs and application for PBT assessment refinement.

    Science.gov (United States)

    Papa, Ester; Sangion, Alessandro; Arnot, Jon A; Gramatica, Paola

    2018-02-01

    Toxicokinetics heavily influence chemical toxicity as the result of Absorption, Distribution, Metabolism (Biotransformation) and Elimination (ADME) processes. Biotransformation (metabolism) reactions can lead to detoxification or, in some cases, bioactivation of parent compounds to more toxic chemicals. Moreover, biotransformation has been recognized as a key process determining chemical half-life in an organism and is thus a key determinant for bioaccumulation assessment for many chemicals. This study addresses the development of QSAR models for the prediction of in vivo whole body human biotransformation (metabolism) half-lives measured or empirically-derived for over 1000 chemicals, mainly represented by pharmaceuticals. Models presented in this study meet regulatory standards for fitting, validation and applicability domain. These QSARs were used, in combination with literature models for the prediction of biotransformation half-lives in fish, to refine the screening of the potential PBT behaviour of over 1300 Pharmaceuticals and Personal Care Products (PPCPs). The refinement of the PBT screening allowed, among others, for the identification of PPCPs, which were predicted as PBTs on the basis of their chemical structure, but may be easily biotransformed. These compounds are of lower concern in comparison to potential PBTs characterized by large predicted biotransformation half-lives. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. A controlled release system for proteins based on poly(ether ester) block-copolymers: polymer network characterization

    NARCIS (Netherlands)

    Bezemer, J.M.; Grijpma, Dirk W.; Dijkstra, Pieter J.; van Blitterswijk, Clemens; Feijen, Jan

    1999-01-01

    The properties of a series of multiblock copolymers, based on hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(butylene terephthalate) (PBT) blocks were investigated with respect to their application as a matrix for controlled release of proteins. The degree of swelling, Q, of the

  20. Intracellular degradation of microspheres based on cross-linked dextran hydrogels or amphiphilic block copolymers: A comparative Raman microscopy study

    Science.gov (United States)

    van Manen, Henk-Jan; van Apeldoorn, Aart A; Verrijk, Ruud; van Blitterswijk, Clemens A; Otto, Cees

    2007-01-01

    Micro- and nanospheres composed of biodegradable polymers show promise as versatile devices for the controlled delivery of biopharmaceuticals. Whereas important properties such as drug release profiles, biocompatibility, and (bio)degradability have been determined for many types of biodegradable particles, information about particle degradation inside phagocytic cells is usually lacking. Here, we report the use of confocal Raman microscopy to obtain chemical information about cross-linked dextran hydrogel microspheres and amphiphilic poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) microspheres inside RAW 264.7 macrophage phagosomes. Using quantitative Raman microspectroscopy, we show that the dextran concentration inside phagocytosed dextran microspheres decreases with cell incubation time. In contrast to dextran microspheres, we did not observe PEGT/PBT microsphere degradation after 1 week of internalization by macrophages, confirming previous studies showing that dextran microsphere degradation proceeds faster than PEGT/PBT degradation. Raman microscopy further showed the conversion of macrophages to lipid-laden foam cells upon prolonged incubation with both types of microspheres, suggesting that a cellular inflammatory response is induced by these biomaterials in cell culture. Our results exemplify the power of Raman microscopy to characterize microsphere degradation in cells and offer exciting prospects for this technique as a noninvasive, label-free optical tool in biomaterials histology and tissue engineering. PMID:17722552

  1. Processing and characterization of recycled poly(ethylene terephthalate) blends with chain extenders, thermoplastic elastomer, and/or poly(butylene adipate-co-terephthalate)

    Science.gov (United States)

    Yottha Srithep; Alireza Javadi; Srikanth Pilla; Lih-Sheng Turng; Shaoqin Gong; Craig Clemons; Jun Peng

    2011-01-01

    Poly(ethylene terephthalate) (PET) resin is one of the most widely used thermoplastics, especially in packaging. Because thermal and hydrolytic degradations, recycled PET (RPET) exhibits poor mechanical properties and lacks moldability. The effects of adding elastomeric modifiers, chain extenders (CE), and poly(butylenes adipate-co-terephthalate), PBAT, as a toughener...

  2. Estudo da tenacidade à fratura por meio do método do trabalho essencial de fratura (EWF) da blenda PBT/ABS, reforçada com fibra de vidro

    OpenAIRE

    Carlos do Amaral Razzino

    2008-01-01

    O terpolímero acrilonitrila-butadieno-estireno (ABS) com alto teor de borracha tem sido utilizado para tenacificar PBT. Como resultados, são obtidas blendas de PBT/ABS super tenazes sob impacto Izod entalhado. No entanto, ocorre uma redução significativa no módulo elástico. O desenvolvimento de um balanço de rigidez-tenacidade em blendas de PBT/ABS pode ser alcançado pela adição de fibras curtas de vidro. O desempenho dos compósitos é fortemente dependente da interface matriz-fibra e conseque...

  3. 76 FR 54791 - Polyethylene Terephthalate (PET) Film From Korea

    Science.gov (United States)

    2011-09-02

    ... Terephthalate (PET) Film From Korea Determination On the basis of the record \\1\\ developed in the subject five... order on polyethylene terephthalate (PET) film from Korea would not be likely to lead to continuation or... was given by posting copies of the notice in the Office of the Secretary, U.S. International Trade...

  4. Blends of polyester ionomers with polar polymers: Interactions, reactions, and compatibilization

    Science.gov (United States)

    Boykin, Timothy Lamar

    The compatibility of amorphous and semicrystalline polyester ionomers with various polar polymers (i.e., polyesters and polyamides) has been investigated for their potential use as minor component compatibilizers. The degree of compatibility (i.e., ranging from incompatible to miscible) between the polyester ionomers and the polar polymers was determined by evaluating the effect of blend composition on the melting behavior and phase behavior of binary blends. In addition, the origin of compatibility and/or incompatibility for each of the binary blends (i.e., polyamide/ionomer and polyester/ionomer) was determined by evaluating blends prepared by both solution and melt mixed methods. Subsequent to investigation of the binary blends, the effect of polyester ionomer addition on the compatibility of polyamide/polyester blends was investigated by evaluating the mechanical properties and phase morphology of ionomer compatibilized polyamide/polyester blends. Polyester ionomers (amorphous and semicrystalline) were shown to exhibit a high degree of compatibility (even miscibility) with polyamides, such as nylon 6,6 (N66). Compatibility was attributed to specific interactions between the metal counterion of the polyester ionomer and the amide groups of N66. The degree of compatibility (or miscibility) was shown to be dependent on the counterion type of the ionomer, with the highest degree exhibited by blends containing the divalent form of the polyester ionomers. Although polyester ionomers were shown to exhibit incompatibility with both poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), increasing the time of melt processing significantly enhanced the compatibility of the polyester ionomers with both PET and PBT. The observed enhancement in compatibility was attributed to ester-ester interchange between the polyester blend components, which was confirmed by NMR spectroscopy. The addition of polyester ionomers as a minor component compatibilizer (i

  5. A density functional theory-based investigation of adhesion of poly(butylene terephthalate) on aluminum

    International Nuclear Information System (INIS)

    David, Melanie; Roman, Tanglaw; Nakanishi, Hiroshi; Kasai, Hideaki; Ando, Naoki; Naritomi, Masanori

    2006-01-01

    We investigate the adhesion of PBT on aluminum using density functional theory-based calculations. The geometric structure of the PBT monomer is first relaxed then an aluminum atom is connected to the monomer in different orientations. We calculate their total energies and determine the orientation that gives the strongest binding between the monomer and the aluminum atom. Binding is strongest when the Al connects linearly with the carbonyl oxygen in the ester group. We present binding mechanisms and total energy relationships for the different orientations

  6. 21 CFR 177.1315 - Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-1, 4-cyclohexylene dimethylene... Ethylene-1, 4-cyclohexylene dimethylene terephthalate copolymers. Ethylene-1, 4-cyclohexylene dimethylene... purposes of this section, ethylene-1,4-cyclohexylene dimethylene terephthalate copolymers (1,4-benzene...

  7. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. Copyright © 2016, American Association for the Advancement of Science.

  8. PBT blends with rigid polymer and elastomer inclusions: the effect of component type and reactivity on mechanical behavior

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Kotek, Jiří; Munteanu, B. S.; Kaprálková, Ludmila

    2004-01-01

    Roč. 53, č. 12 (2004), s. 2066-2071 ISSN 0959-8103 R&D Projects: GA ČR GA106/01/0601 Institutional research plan: CEZ:AV0Z4050913 Keywords : PBT * ternary blend * improved balance of properties Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.125, year: 2004

  9. The radiation chemistry of aqueous sodium terephthalate solutions

    International Nuclear Information System (INIS)

    Matthews, R.W.

    1980-04-01

    The radiation chemistry of cobalt-60 gamma-irradiated aqueous sodium terephthalate solutions has been studied. In aerated 4 x 10 -4 M sodium hydroxide solutions, the main products are hydroxyterephthalate (HTA) (G = 0.99 +- 0.01), carbonate (G = 1.31 +- 0.08), and peroxides (G = 2.84 +- 0.04). The HTA and carbonate species are both formed as a result of hydroxyl radical attack and account for approximately 90 per cent of hydroxyl radical reactions. Oxygen needs to be present for efficient conversion of the terephthalate-OH radical adduct to HTA and oxygenation increases G(HTA) above the aerated solution value. G(HTA) is unaffected by changes in terephthalate concentration between 1 x 10 -4 M and 1 x 10 -2 M in sodium hydroxide solutions at pH 10. Decreasing the solution pH does however affect G(HTA). In phosphate buffered solutions pH 6.85, G(HTA) is 0.93 +- 0.01 and lower values are obtained with further decrease in solution pH. The lowering of the G(HTA) value is attributed to recombination reactions between the terephthalate-OH radical products and reducing radical products. Experimental evidence supporting the recombination postulate was obtained from the measurement of a parallel decrease in the peroxide yield and the observation of a dose rate effect on G(HTA). Competition kinetic studies with the added solutes carbonate and bicarbonate gave the rate ratios k (OH + TA 2- ) : k(OH + CO 3 2- ) : k(OH + HCO 3 - ) = 1 : 0.105 : 0.0036

  10. Compatibility Assessment of Fuel System Infrastructure Plastics with Bio-oil and Diesel Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kass, Michael D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Janke, Christopher James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Connatser, Raynella M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Lewis, Samuel Arthur [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Keiser, James R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fuels, Engines and Emissions Research Center; Gaston, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States). National Bioenergy Center

    2017-12-05

    We report that bio-oil derived via fast pyrolysis is being developed as a renewable fuel option for petroleum distillates. The compatibility of neat bio-oil with 18 plastic types was evaluated using neat diesel fuel as the baseline. The plastic materials included polyphenylene sulfide (PPS), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyoxymethylene (POM), POM copolymer, high density polyethylene (HDPE), polybutylene terephthalate (PBT), polypropylene (PP), polyethylene terephthalate glycol (PETG), polythiourea (PTU), four nylon grades, and four thermosetting resins. Specimens of each material were immersed in the test fuels for a period of 16 weeks to achieve full saturation. Except for PP and HDPE, the plastic materials underwent higher volume expansion in bio-oil than in the baseline diesel (which was negligible in most cases). This volume increase corresponds to the higher polarity of the bio-oil. PPS, PET, and PTFE were unaffected by bio-oil exposure, but modest swelling (between 2 and 5%) occurred for the two acetals (POM and POM copolymer), Nylon-12, PBT, PETG, and the four resin grades. More moderate swelling (8–15%) was noted for Nylon-6, Nylon-6/6, and Nylon-11, and excessive swell (>40%) occurred for PTU. The nonpolar nature of PP and HDPE matches that of diesel, leading to higher solubility (swell) in this fuel type. Finally, the relatively low volume expansion following exposure indicates that many of the existing infrastructure plastics (excluding PTU) should be suitable for use with bio-oil.

  11. Radiation-modified blends of the basis of polyethylene terephthalate and polypropylene

    International Nuclear Information System (INIS)

    Mery-Meri, R.; Revyakin, O.; Zicans, J.

    2000-01-01

    The binary composite systems on the basis of post-consumer poly-(ethylene terephthalate) and polypropylene have been investigated. Mechanical properties of the compositions were studied in detail in order to expand the application possibilities of tested binary composites. Structural changes of the poly (ethylene terephthalate) / polypropylene blends depending on the concentration of the components were investigated also. Additionally, the optimum processing conditions were established. Particular attention was paid to study the influence of the ionizing γ-radiation on the structural and mechanical properties of the composition systems tested. The magnitude of the adsorbed dose od γ-radiation was established to affect differently the structure of poly(ethylene terephalate) and polypropylene. At small absorbed doses (50 kGy) crosslinking of the polymer was observed for both poly(ethylene terephthalate) and polypropylene resulting in the increase of some mechanical properties of pure materials as well of their compositions, whereas the absorbed dose of 300 kGy caused the destruction of the tested materials. It is important to mention that the rate of radiation-chemical destruction of polypropylene is higher than poly(ethylene terephthalate) destruction rate. (author)

  12. 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling

    OpenAIRE

    Gnanasekaran, K.; Heijmans, T.; van Bennekom, S.; Woldhuis, H.; Wijnia, S.; de With, G.; Friedrich, H.

    2017-01-01

    Fused deposition modeling (FDM) is limited by the availability of application specific functional materials. Here we illustrate printing of non-conventional polymer nanocomposites (CNT- and graphene-based polybutylene terephthalate (PBT)) on a commercially available desktop 3D printer leading toward printing of electrically conductive structures. The printability, electrical conductivity and mechanical stability of the polymer nanocomposites before and after 3D printing was evaluated. The res...

  13. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation.

    Science.gov (United States)

    Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin

    2018-01-26

    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 Å resolution. IsPETase has a Ser-His-Asp catalytic triad at its active site and contains an optimal substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moieties of PET. Based on structural and site-directed mutagenesis experiments, the detailed process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested. Moreover, other PETase candidates potentially having high PET-degrading activities are suggested based on phylogenetic tree analysis of 69 PETase-like proteins.

  14. Prospective Preference Assessment of Patients' Willingness to Participate in a Randomized Controlled Trial of Intensity-Modulated Radiotherapy Versus Proton Therapy for Localized Prostate Cancer

    International Nuclear Information System (INIS)

    Shah, Anand; Efstathiou, Jason A.; Paly, Jonathan J.; Halpern, Scott D.; Bruner, Deborah W.; Christodouleas, John P.; Coen, John J.; Deville, Curtiland; Vapiwala, Neha; Shipley, William U.; Zietman, Anthony L.; Hahn, Stephen M.; Bekelman, Justin E.

    2012-01-01

    Purpose: To investigate patients’ willingness to participate (WTP) in a randomized controlled trial (RCT) comparing intensity-modulated radiotherapy (IMRT) with proton beam therapy (PBT) for prostate cancer (PCa). Methods and Materials: We undertook a qualitative research study in which we prospectively enrolled patients with clinically localized PCa. We used purposive sampling to ensure a diverse sample based on age, race, travel distance, and physician. Patients participated in a semi-structured interview in which they reviewed a description of a hypothetical RCT, were asked open-ended and focused follow-up questions regarding their motivations for and concerns about enrollment, and completed a questionnaire assessing characteristics such as demographics and prior knowledge of IMRT or PBT. Patients’ stated WTP was assessed using a 6-point Likert scale. Results: Forty-six eligible patients (33 white, 13 black) were enrolled from the practices of eight physicians. We identified 21 factors that impacted patients’ WTP, which largely centered on five major themes: altruism/desire to compare treatments, randomization, deference to physician opinion, financial incentives, and time demands/scheduling. Most patients (27 of 46, 59%) stated they would either “definitely” or “probably” participate. Seventeen percent (8 of 46) stated they would “definitely not” or “probably not” enroll, most of whom (6 of 8) preferred PBT before their physician visit. Conclusions: A substantial proportion of patients indicated high WTP in a RCT comparing IMRT and PBT for PCa.

  15. Ethylenediammonium dication: H-bonded complexes with terephthalate, chloroacetate, phosphite, selenite and sulfamate anions. Detailed vibrational spectroscopic and theoretical studies of ethylenediammonium terephthalate

    Science.gov (United States)

    Marchewka, M. K.; Drozd, M.

    2012-12-01

    Crystalline complexes between ethylenediammonium dication and terephthalate, chloroacetate, phosphite, selenite and sulfamate anions were obtained by slow evaporation from water solution method. Room temperature powder infrared and Raman measurements were carried out. For ethylenediammonium terephthalate theoretical calculations of structure were performed by two ways: ab-initio HF and semiempirical PM3. In this case the PM3 method gave more accurate structure (closer to X-ray results). The additional PM3 calculations of vibrational spectra were performed. On the basis theoretical approach and earlier vibrational studies of similar compounds the vibrational assignments for observed bands have been proposed. All compounds were checked for second harmonic generation (SHG).

  16. Prospective Preference Assessment of Patients' Willingness to Participate in a Randomized Controlled Trial of Intensity-Modulated Radiotherapy Versus Proton Therapy for Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Anand [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Efstathiou, Jason A.; Paly, Jonathan J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Halpern, Scott D. [Department of Medicine, University of Pennsylvania, Philadelphia, PA (United States); Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA (United States); Center for Bioethics, University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA (United States); Bruner, Deborah W. [Winship Cancer Institute, Emory University, Atlanta, GA (United States); Christodouleas, John P. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Coen, John J. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Deville, Curtiland; Vapiwala, Neha [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Shipley, William U.; Zietman, Anthony L. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Hahn, Stephen M. [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Bekelman, Justin E., E-mail: bekelman@uphs.upenn.edu [Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, PA (United States)

    2012-05-01

    Purpose: To investigate patients' willingness to participate (WTP) in a randomized controlled trial (RCT) comparing intensity-modulated radiotherapy (IMRT) with proton beam therapy (PBT) for prostate cancer (PCa). Methods and Materials: We undertook a qualitative research study in which we prospectively enrolled patients with clinically localized PCa. We used purposive sampling to ensure a diverse sample based on age, race, travel distance, and physician. Patients participated in a semi-structured interview in which they reviewed a description of a hypothetical RCT, were asked open-ended and focused follow-up questions regarding their motivations for and concerns about enrollment, and completed a questionnaire assessing characteristics such as demographics and prior knowledge of IMRT or PBT. Patients' stated WTP was assessed using a 6-point Likert scale. Results: Forty-six eligible patients (33 white, 13 black) were enrolled from the practices of eight physicians. We identified 21 factors that impacted patients' WTP, which largely centered on five major themes: altruism/desire to compare treatments, randomization, deference to physician opinion, financial incentives, and time demands/scheduling. Most patients (27 of 46, 59%) stated they would either 'definitely' or 'probably' participate. Seventeen percent (8 of 46) stated they would 'definitely not' or 'probably not' enroll, most of whom (6 of 8) preferred PBT before their physician visit. Conclusions: A substantial proportion of patients indicated high WTP in a RCT comparing IMRT and PBT for PCa.

  17. Tissue response to intraperitoneal implants of polyethylene oxide-modified polyethylene terephthalate.

    Science.gov (United States)

    Desai, N P; Hubbell, J A

    1992-01-01

    Polyethylene terephthalate films surface modified with polyethylene oxide of mol wt 18,500 g/mol (18.5 k) by a previously described technique, were implanted in the peritoneal cavity of mice, along with their respective untreated controls, for periods of 1-28 d. The implants were retrieved and examined for tissue reactivity and cellular adherence. The control polyethylene terephthalate surfaces showed an initial inflammatory reaction followed by an extensive fibrotic response with a mean thickness of 60 microns at 28 d. By contrast, polyethylene oxide-modified polyethylene terephthalate showed only a mild inflammatory response and no fibrotic encapsulation throughout the implantation period: at 28 d a cellular monolayer was observed. Apparently either the polyethylene oxide-modified surface was stimulating less inflammation, which was in turn stimulating less fibroblastic overgrowth, or the cellular adhesion to the polyethylene oxide-modified surface was too weak to support cellular multilayers.

  18. Ablative dose proton beam therapy for stage I and recurrent non-small cell lung carcinomas. Ablative dose PBT for NSCLC

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Uk; Cho, Kwan Ho; Kim, Joo Young; Kim, Dae Yong; Kim, Tae Hyun; Suh, Yang-Gun; Kim, Yeon-Joo [Research Institute and Hospital, National Cancer Center, Proton Therapy Center, Goyang (Korea, Republic of); Moon, Sung Ho [Research Institute and Hospital, National Cancer Center, Proton Therapy Center, Goyang (Korea, Republic of); Research Institute and Hospital, National Cancer Center, Center for Lung Cancer, Goyang (Korea, Republic of); Research Institute and Hospital, National Cancer Center, Proton Therapy Center, Ilsandong-gu, Goyang-si, Gyeonggi-do, 410-769 (Korea, Republic of); Pyo, Hong Ryull [Samsung Medical Center, Sungkyunkwan University School of Medicine, Department of Radiation Oncology, Seoul (Korea, Republic of)

    2016-09-15

    To evaluate the efficacy and safety of ablative dose hypofractionated proton beam therapy (PBT) for patients with stage I and recurrent non-small cell lung carcinoma (NSCLC). A total of 55 patients with stage I (n = 42) and recurrent (n = 13) NSCLC underwent hypofractionated PBT and were retrospectively reviewed. A total dose of 50-72 CGE (cobalt gray equivalent) in 5-12 fractions was delivered. The median follow-up duration was 29 months (range 4-95 months). There were 24 deaths (43.6%) during the follow-up period: 11 died of disease progression and 13 from other causes. Kaplan-Meier overall survival rate (OS) at 3 years was 54.9% and the median OS was 48.6 months (range 4-95 months). Local progression was observed in 7 patients and the median time to local progression was 9.3 months (range 5-14 months). Cumulative actuarial local control rate (LCR), lymph node metastasis-free survival, and distant metastasis-free survival rates at 3 years were 85.4, 78.4, and 76.5%, respectively. Larger tumor diameter was significantly associated with poorer LCR (3-year: 94% for ≤3 cm vs. 65% for >3 cm, p = 0.006) on univariate analysis and also an independent prognostic factor for LCR (HR 6.9, 95% CI = 1.3-37.8, p = 0.026) on multivariate analysis. No grade 3 or 4 treatment-related toxicities developed. One grade 5 treatment-related adverse event occurred in a patient with symptomatic idiopathic pulmonary fibrosis. Ablative dose hypofractionated PBT was safe and promising for stage I and recurrent NSCLC. (orig.) [German] Beurteilung von Wirksamkeit und Sicherheit hypofraktionierter Protonentherapie (PBT) mit ablativen Dosen fuer nichtkleinzellige Lungenkarzinome (NSCLC) im Stadium I und rekurrierende NSCLC. Retrospektiv wurden insgesamt 55 NSCLC-Patienten (Stadium I: n = 42; rekurrierender Tumor: n = 13), analysiert. Sie waren mit einer Gesamtdosis von 50-72 CGE (''cobalt gray equivalent'') in 5-12 Fraktionen behandelt worden. Der Median der Follow

  19. An anti-ferromagnetic terephthalate-bridged trigonal prismatic ...

    Indian Academy of Sciences (India)

    M. Scheme 1. Possible coordination modes of terephthalate. (tp). 2. ..... W and Atwood J L 2009 In Supramolecular Chemistry .... (a) Jiang Z Q, Zhao Z, Jiang G Y, Hou D C, Kang Y ... (a) Li H, Eddaoudi M, O'Keeffe M and Yaghi O M 1999.

  20. 76 FR 48122 - Polyethylene Terephthalate Film, Sheet, and Strip From Brazil: Preliminary Results of Antidumping...

    Science.gov (United States)

    2011-08-08

    ... on polyethylene terephthalate film, sheet, and strip (PET film) from Brazil. This administrative..., 2011. FOR FURTHER INFORMATION CONTACT: Deborah Scott or Robert James, AD/CVD Operations, Office 7... antidumping duty order on PET film from Brazil. See Polyethylene Terephthalate Film, Sheet, and Strip From...

  1. Synthesis and Verification of Biobased Terephthalic Acid from Furfural

    Science.gov (United States)

    Tachibana, Yuya; Kimura, Saori; Kasuya, Ken-Ichi

    2015-02-01

    Exploiting biomass as an alternative to petrochemicals for the production of commodity plastics is vitally important if we are to become a more sustainable society. Here, we report a synthetic route for the production of terephthalic acid (TPA), the monomer of the widely used thermoplastic polymer poly(ethylene terephthalate) (PET), from the biomass-derived starting material furfural. Biobased furfural was oxidised and dehydrated to give maleic anhydride, which was further reacted with biobased furan to give its Diels-Alder (DA) adduct. The dehydration of the DA adduct gave phthalic anhydride, which was converted via phthalic acid and dipotassium phthalate to TPA. The biobased carbon content of the TPA was measured by accelerator mass spectroscopy and the TPA was found to be made of 100% biobased carbon.

  2. A New Esterase from Thermobifida halotolerans Hydrolyses Polyethylene Terephthalate (PET and Polylactic Acid (PLA

    Directory of Open Access Journals (Sweden)

    Georg Steinkellner

    2012-02-01

    Full Text Available A new esterase from Thermobifida halotolerans (Thh_Est was cloned and expressed in E. coli and investigated for surface hydrolysis of polylactic acid (PLA and polyethylene terephthalate (PET. Thh_Est is a member of the serine hydrolases superfamily containing the -GxSxG- motif with 85–87% homology to an esterase from T. alba, to an acetylxylan esterase from T. fusca and to various Thermobifida cutinases. Thh_Est hydrolyzed the PET model substrate bis(benzoyloxyethylterephthalate and PET releasing terephthalic acid and mono-(2-hydroxyethyl terephthalate in comparable amounts (19.8 and 21.5 mmol/mol of enzyme while no higher oligomers like bis-(2-hydroxyethyl terephthalate were detected. Similarly, PLA was hydrolyzed as indicated by the release of lactic acid. Enzymatic surface hydrolysis of PET and PLA led to a strong hydrophilicity increase, as quantified with a WCA decrease from 90.8° and 75.5° to 50.4° and to a complete spread of the water drop on the surface, respectively.

  3. 78 FR 79400 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China: Initiation...

    Science.gov (United States)

    2013-12-30

    ... order on polyethylene terephthalate film, sheet, and strip (``PET film'') from the People's Republic of... INFORMATION CONTACT: Jonathan Hill, AD/CVD Operations, Office IV, Enforcement & Compliance, International... Operations, Office IV ``Initiation of Antidumping New Shipper Review of Polyethylene Terephthalate Film...

  4. 78 FR 35245 - Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China: Final...

    Science.gov (United States)

    2013-06-12

    ... polyethylene terephthalate film, sheet, and strip (``PET film'') from the People's Republic of China (``PRC... Film, Sheet, and Strip From the People's Republic of China: Final Results of Antidumping Duty..., 2011. \\1\\ See Polyethylene Terephthalate Film, Sheet, and Strip From the People's Republic of China...

  5. 76 FR 76941 - Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-12-09

    ... on polyethylene terephthalate film, sheet and strip (PET Film) from Taiwan. The period of review (POR... Halle, AD/CVD Operations, Office 6, Import Administration, International Trade Administration, U.S... Results in the Administrative Review on Polyethylene Terephthalate Film, Sheet and Strip from Taiwan (PET...

  6. Layered double hydroxide/polyethylene terephthalate nanocomposites. Influence of the intercalated LDH anion and the type of polymerization heating method

    International Nuclear Information System (INIS)

    Herrero, M.; Martinez-Gallegos, S.; Labajos, F.M.; Rives, V.

    2011-01-01

    Conventional and microwave heating routes have been used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate had been previously intercalated in the LDH. PXRD and TEM were used to detect the degree of dispersion of the filler and the type of the polymeric composites obtained, and FTIR spectroscopy confirmed that the polymerization process had taken place. The thermal stability of these composites, as studied by thermogravimetric analysis, was enhanced when the microwave heating method was applied. Dodecyl sulphate was more effective than terephthalate to exfoliate the samples, which only occurred for the terephthalate ones under microwave irradiation. - Graphical abstract: Conventional and microwave heating routes were used to prepare PET-LDH (polyethylene terephthalate-layered double hydroxide) composites with 1-10 wt% LDH by in situ polymerization. To enhance the compatibility between PET and the LDH, terephthalate or dodecyl sulphate was previously intercalated into the LDH. The microwave process improves the dispersion and the thermal stability of nanocomposites due to the interaction of the microwave radiation and the dipolar properties of EG and the homogeneous heating. Highlights: → LDH-PET compatibility is enhanced by preintercalation of organic anions. → Dodecylsulphate performance is much better than that of terephthalate. → Microwave heating improves the thermal stability of the composites. → Microwave heating improves as well the dispersion of the inorganic phase.

  7. Enhancing the Dyeability of Polypropylene Fibers by Melt Blending with Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Fereshteh Mirjalili

    2013-01-01

    Full Text Available Attempts were made to modify polypropylene fibers by melt blending with polyethylene terephthalate in order to enhance the dyeability of the resultant fiber. Five blends of polypropylene/polyethylene terephthalate/compatibilizer were prepared and subsequently spun into fibers. Three disperse dyes were used to dye such modified fibers at boiling and 130°C. The dyeing performance of the blend fibers, as well as the morphological, chemical, thermal, and mechanical properties, of the corresponding blends was characterized by means of spectrophotometry, polarized optical microscopy, scanning electron microscopy (SEM, FT-IR spectroscopy, differential scanning calorimetry (DSC, and tensile testing.

  8. Evaluation of Acoustic Cavitation in Terephthalic Acid Solutions Containing Gold Nanoparticles by the Spectrofluorometry Method

    Directory of Open Access Journals (Sweden)

    Ameneh Sazgarnia

    2012-01-01

    Full Text Available Background. When a liquid is irradiated with high intensity and low-frequency ultrasound, acoustic cavitation occurs. The existence of particles in a liquid provides nucleation sites for cavitation bubbles and leads to a decrease in the ultrasonic intensity threshold needed for cavitation onset. Materials and Methods. The study was designed to measure hydroxyl radicals in terephthalic acid solutions containing gold nanoparticles in a near field of a 1 MHz sonotherapy probe. The effect of ultrasound irradiation parameters containing mode of sonication and ultrasound intensity in hydroxyl radicals production have been investigated by the spectrofluorometry method. Results. Recorded fluorescence signal in terephthalic acid solution containing gold nanoparticles was higher than the terephthalic acid solution without gold nanoparticles. Also, the results showed that any increase in intensity of the sonication would be associated with an increase in the fluorescence intensity. Conclusion. Acoustic cavitation in the presence of gold nanoparticles has been introduced as a way for improving therapeutic effects on the tumors in sonodynamic therapy. Also, the terephthalic acid dosimetry is suitable for detecting and quantifying free hydroxyl radicals as a criterion of cavitation production over a certain range of conditions in medical ultrasound fields.

  9. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Varaprasad, Kokkarachedu, E-mail: varmaindian@gmail.com [Centro de Investigación de Polímeros Avanzados (CIPA), Avenida Collao 1202, Edificio de Laboratorios, Concepción (Chile); Pariguana, Manuel [Centro de Investigación de Polímeros Avanzados (CIPA), Avenida Collao 1202, Edificio de Laboratorios, Concepción (Chile); Centro de Innovación Tecnológica Agroindustrial CITE Agroindustrial, Panamericana Sur Km, 293.3, Ica (Peru); Raghavendra, Gownolla Malegowd [Department of Packaging, Yonsei University, Wonju, Gangwon-do 220 710 (Korea, Republic of); Jayaramudu, Tippabattini [Center for Nano Cellulose Future Composites, Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Ku, Incheon 402–751 (Korea, Republic of); Sadiku, Emmanuel Rotimi [Department of Polymer Technology, Tshwane University of Technology, CSIR-Campus, Pretoria 0040 (South Africa)

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. - Graphical abstract: Biodegradable metal-oxide/polymer nanocomposites films prepared by using poly-ε-caprolactone with disposed PET oil bottles terephthalic acid monomer. The development of biodegradable film provides a new material with desirable mechanical, physical and chemical properties and can be utilized for industrial applications. - Highlights: • Terephthalic acid obtained from disposed PET oil bottles via precipitation technique. • New nano metal-oxides were developed by double precipitation technique. • Nano metal-oxide polymer films were synthesized by solvent evaporation method. • Nano metal-oxide polymer films exhibit superior mechanical characteristics.

  10. Physical and dielectric properties of irradiated polypropylene and poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Kita, H.; Okamoto, K.

    1986-01-01

    The effect of high-energy electron irradiation in air and in nitrogen on the physical and dielectric properties of polypropylene and poly(ethylene terephthalate) has been studied by measurements of electric strength, dielectric constant, dissipation factor, tensile strength, gel fraction and molecular weight distribution. Electric strength of polypropylene was improved by irradiation, while dielectric properties of poly(ethylene terephthalate) were virtually unaffected by irradiation of 1.0-20 Mrad. Possible mechanisms for increasing electric strength are discussed from the point of view of degradation and oxidation taking place simultaneously with crosslinking of polypropylene. The maximum dose level to improve the electric strength of polypropylene is determined to be about 5 Mrad. (author)

  11. Structure-Property of Metal Organic Frameworks Calcium Terephthalates Anodes for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Wang, Liping; Mou, Chengxu; Sun, Yang; Liu, Wei; Deng, Qijiu; Li, Jingze

    2015-01-01

    Graphical Abstract: Effects of hydration water in calcium terephthalates anodes on the structure, operational voltage and electrochemical performance are systematically studied. Display Omitted -- Highlights: •Metal organic frameworks CaC 8 H 4 O 4 ·3H 2 O and CaC 8 H 4 O 4 are applied as anodes for lithium ion batteries. •Appearance of hydration water leads different crystallography structures and electrochemical performance. •Anhydrous CaC 8 H 4 O 4 has a spacious ordered layer structure, a higher Ca-O chemical bonding interaction and a higher transparent lithium ion diffusion coefficient, delivering a higher capacity, better cycling performance and rate performance than CaC 8 H 4 O 4 ·3H 2 O. -- Abstract: Metal organic frameworks have attracted considerable interest as electrode materials for lithium ion batteries. In this paper, the metal organic frameworks hydrated calcium terephthalate (CaC 8 H 4 O 4 ·3H 2 O) and anhydrous calcium terephthalate (CaC 8 H 4 O 4 ) as anodes for lithium ion batteries are comparatively studied. Crystallography and local chemical bond analysis are combined to interpret the structure-property of calcium terephthalates. Results show that the anhydrous CaC 8 H 4 O 4 has a spacious ordered layer structure and a higher Ca-O chemical bonding interaction, delivering a higher capacity, better cycling performance and rate performance than CaC 8 H 4 O 4 ·3H 2 O

  12. Microbial degradation of aliphatic and aliphatic-aromatic co-polyesters.

    Science.gov (United States)

    Shah, Aamer Ali; Kato, Satoshi; Shintani, Noboru; Kamini, Numbi Ramudu; Nakajima-Kambe, Toshiaki

    2014-04-01

    Biodegradable plastics (BPs) have attracted much attention since more than a decade because they can easily be degraded by microorganisms in the environment. The development of aliphatic-aromatic co-polyesters has combined excellent mechanical properties with biodegradability and an ideal replacement for the conventional nondegradable thermoplastics. The microorganisms degrading these polyesters are widely distributed in various environments. Although various aliphatic, aromatic, and aliphatic-aromatic co-polyester-degrading microorganisms and their enzymes have been studied and characterized, there are still many groups of microorganisms and enzymes with varying properties awaiting various applications. In this review, we have reported some new microorganisms and their enzymes which could degrade various aliphatic, aromatic, as well as aliphatic-aromatic co-polyesters like poly(butylene succinate) (PBS), poly(butylene succinate)-co-(butylene adipate) (PBSA), poly(ε-caprolactone) (PCL), poly(ethylene succinate) (PES), poly(L-lactic acid) (PLA), poly(3-hydroxybutyrate) and poly(3-hydoxybutyrate-co-3-hydroxyvalterate) (PHB/PHBV), poly(ethylene terephthalate) (PET), poly(butylene terephthalate) (PBT), poly(butylene adipate-co-terephthalate (PBAT), poly(butylene succinate-co-terephthalate) (PBST), and poly(butylene succinate/terephthalate/isophthalate)-co-(lactate) (PBSTIL). The mechanism of degradation of aliphatic as well as aliphatic-aromatic co-polyesters has also been discussed. The degradation ability of microorganisms against various polyesters might be useful for the treatment and recycling of biodegradable wastes or bioremediation of the polyester-contaminated environments.

  13. Mass transfer analysis for terephthalic acid biodegradation by ...

    African Journals Online (AJOL)

    Biodegradation of terephthalic acid (TA) by polyvinyl alcohol (PVA)-alginate immobilized Pseudomonas sp. was carried out in a packed-bed reactor. The effect of inlet TA concentration on biodegradation was investigated at 30°C, pH 7 and flow rate of 20 ml/min. The effects of flow rate on mass transfer and biodegradation ...

  14. Recovery of Terephthalic Acid by employing magnetic nanoparticles as a solid support

    Directory of Open Access Journals (Sweden)

    Elmira Ghamary

    2018-03-01

    Full Text Available Abstract The aim of this research work is focused on the improvement of Terephthalic acid recovery from PET wastes by using organically modified nano-Fe3O4@Cyanuric Chloride as the solid support. The performance of organically modified nano magnetic was examined in detail and the obtained results were compared with the unsupported reaction data. Required reaction time for complete glycolysis of the wastes, consumption of the solvent as well as catalyst decreases up 99%, 37.5% and 40% respectively. Result showed that nano-Fe 3O4@Cyanuric Chloride delivered good performance as solid support in depolymerizing of PET to the terephthalic acid.

  15. Molecular structure and vibrational spectra of Bis(melaminium) terephthalate dihydrate: A DFT computational study

    Science.gov (United States)

    Tanak, Hasan; Marchewka, Mariusz K.; Drozd, Marek

    2013-03-01

    The experimental and theoretical vibrational spectra of Bis(melaminium) terephthalate dihydrate were studied. The Fourier transform infrared (FT-IR) spectra of the Bis(melaminium) terephthalate dihydrate and its deuterated analogue were recorded in the solid phase. The molecular geometry and vibrational frequencies of Bis(melaminium) terephthalate dihydrate in the ground state have been calculated by using the density functional method (B3LYP) with 6-31++G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction. The molecule contains the weak hydrogen bonds of Nsbnd H⋯O, Nsbnd H⋯N and Osbnd H⋯O types, and those bonds are calculated with DFT method. In addition, molecular electrostatic potential, frontier molecular orbitals and natural bond orbital analysis of the title compound were investigated by theoretical calculations. The lack of the second harmonic generation (SHG) confirms the presence of macroscopic center of inversion.

  16. Análise do desenvolvimento morfológico da blenda polimérica PBT/ABS durante as etapas de mistura por extrusão e moldagem por injeção Analysis of the morphological development of PBT/ABS blends during the extrusion and injection molding processes

    Directory of Open Access Journals (Sweden)

    Edson N. Ito

    2004-06-01

    Full Text Available O enfoque principal deste trabalho foi observar o desenvolvimento da morfologia de fases da blenda binária PBT/ABS e desta blenda compatibilizada pela adição de um copolímero acrílico reativo, durante a etapa de mistura por extrusão e de moldagem por injeção. A evolução da morfologia das blendas, durante a etapa de mistura, foi analisada através do uso de amostras coletadas de uma extrusora de rosca dupla co-rotacional, com acessório especialmente projetado para coleta in line. A morfologia observada nas amostras obtidas por injeção foi realizada utilizando amostras retiradas de corpos de prova moldados. As amostras obtidas por extrusão e por moldagem por injeção foram posteriormente preparadas através de crio-ultramicrotomia e observadas através de microscopia eletrônica de transmissão (TEM. Uma "Função Dispersão" foi desenvolvida neste trabalho para comparar as diversas morfologias sob diferentes condições de processamento e de compatibilização. A adição de compatibilizante favorece a formação de uma morfologia de domínios de ABS dispersos em PBT, ao longo do canhão da extrusora, e previne satisfatoriamente o fenômeno de coalescência destes domínios durante o processo de moldagem por injeção. A função dispersão foi utilizada principalmente para mostrar a tendência da evolução morfológica e mostrou um bom desempenho para tal.The aim of this work was to observe the development of the phase morphology of the PBT/ABS blends during their extrusion mixing and injection molding steps. The evolution of the blend morphology during the mixing stage was analyzed using a specially designed co-rotational twin-screw extruder with a collecting device located along the barrel. Blend samples were collected in-line along the length of the extruder barrel during the blending process. Blend morphology was also observed from specimens molded through injection molding. All the samples were observed by transmission

  17. Non-toxic poly(ethylene terephthalate)/clay nanocomposites with enhanced barrier properties

    KAUST Repository

    Hayrapetyan, Suren; Kelarakis, Antonios; Estevez, Luis; Lin, Qin; Dana, Kausik; Chung, Yi-Lin; Giannelis, Emmanuel P.

    2012-01-01

    Motivated by the technological need for poly(ethylene terephthalate) materials with improved barrier properties together with the requirement for sustainability this study focuses on an eco-friendly sulfonated polyester as clay compatibilizer

  18. Medical effects of poly-ethylene terephthalate (PET) non-woven ...

    African Journals Online (AJOL)

    In this study, bamboo activated charcoal was mixed with acrylic resin in various proportions and deposited on poly-ethylene terephthalate (PET) non-woven fabrics. A series of characterizations were carried out to estimate the performances of PET non-woven fabrics such as far infrared ray emission, heat retention, negative ...

  19. Speciation of antimony in polyethylene terephthalate bottles

    International Nuclear Information System (INIS)

    Martin, R.R.; Ablett, J.; Shotyk, W.S.; Naftel, S.; Northrup, P.

    2010-01-01

    Antimony contamination has been reported in drinking water from polyethylene terephthalate (PET) bottles. Micro-X-ray fluorescence (XRF) analysis has been used to identify the distribution and chemical form of residual antimony used as a catalyst in the manufacture of PET bottles. The results are consistent with clusters of Sb(III) having dimensions of the order of tens of micrometers, clearly showing the ability of synchrotron radiation analyses to both map elemental distribution and determine oxidation state.

  20. Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans

    Science.gov (United States)

    Buitinga, Mijke; Truckenmüller, Roman; Engelse, Marten A.; Moroni, Lorenzo; Ten Hoopen, Hetty W. M.; van Blitterswijk, Clemens A.; de Koning, Eelco JP.; van Apeldoorn, Aart A.; Karperien, Marcel

    2013-01-01

    Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. This study validates a novel microwell scaffold platform to be used for the extrahepatic transplantation of islet of Langerhans. Scaffolds were fabricated from either a thin polymer film or an electrospun mesh of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) block copolymer (composition: 4000PEOT30PBT70) and were imprinted with microwells, ∼400 µm in diameter and ∼350 µm in depth. The water contact angle and water uptake were 39±2° and 52.1±4.0 wt%, respectively. The glucose flux through electrospun scaffolds was three times higher than for thin film scaffolds, indicating enhanced nutrient diffusion. Human islets cultured in microwell scaffolds for seven days showed insulin release and insulin content comparable to those of free-floating control islets. Islet morphology and insulin and glucagon expression were maintained during culture in the microwell scaffolds. Our results indicate that the microwell scaffold platform prevents islet aggregation by confinement of individual islets in separate microwells, preserves the islet’s native rounded morphology, and provides a protective environment without impairing islet functionality, making it a promising platform for use in extrahepatic islet transplantation. PMID:23737999

  1. The Mechanical Properties of Recycled Polyethylene-Polyethylene Terephthalate Composites

    Directory of Open Access Journals (Sweden)

    Ehsan Avazverdi

    2015-02-01

    Full Text Available Polyethylene terephthalate (PET, one of the thermoplastic polymers, is encountered with arduous problems in its recycling. After recycling, its mechanical properties drop dramatically and therefore it cannot be used to produce the products as virgin PET does. Polyethylene is a thermoplastic polymer which can be easily recycled using the conventional recycling processes. The decreased mechanical properties of virgin polyethylene due to the environmental factors can be improved by reinforcing fillers. In this paper, we studied the effects of adding recycled polyethylene terephthalate (rPET as a filler, in various amounts with different sizes, on the physical and mechanical properties of recycled polyethylene. Composite samples were prepared using an internal mixer at temperature 185°C, well below rPET melting point (250°C, and characterized by their mechanical properties. To improve the compatibility between different components, PE grafted with maleic anhydride was added as a coupling agent in all the compositions under study. The mechanical properties of the prepared samples were performed using the tensile strength, impact strength, surface hardness and melt flow index (MFI tests. To check the dispersity of the polyethylene terephthalate powder in the polyethylene matrix, light microscopy was used. The results showed that the addition of rPET improved the tensile energy, tensile modulus and surface hardness of the composites while reduced the melt flow index, elongation-at-yield, tensile strength and fracture energy of impact test. We could conclude that with increasing rPET percentage in the recycled polyethylene matrix, the composite became brittle, in other words it decreased the plastic behavior of recycled polyethylene. Decreasing particle size led to higher surface contacts, increased the mechanical properties and made the composite more brittle. The light microscopy micrographs of the samples showed a good distribution of small r

  2. Influence of ECR-RF plasma modification on surface and thermal properties of polyester copolymer

    Directory of Open Access Journals (Sweden)

    Fray Miroslawa El

    2015-12-01

    Full Text Available In this paper we report a study on influence of radio-frequency (RF plasma induced with electron cyclotron resonance (ECR on multiblock copolymer containing butylene terephthalate hard segments (PBT and butylene dilinoleate (BDLA soft segments. The changes in thermal properties were studied by DSC. The changes in wettability of PBT-BDLA surfaces were studied by water contact angle (WCA. We found that ECR-RF plasma surface treatment for 60 s led to decrease of WCA, while prolonged exposure of plasma led to increase of WCA after N2 and N2O2 treatment up to 70°–80°. The O2 reduced the WCA to 50°–56°. IR measurements confirmed that the N2O2 plasma led to formation of polar groups. SEM investigations showed that plasma treatment led to minor surfaces changes. Collectively, plasma treatment, especially O2, induced surface hydrophilicity what could be beneficial for increased cell adhesion in future biomedical applications of these materials.

  3. Sistem Scoring Conversion TOEFL Paper Based Test (PBT Politeknik Negeri Cilacap Menggunakan Metode User Centered Design

    Directory of Open Access Journals (Sweden)

    Cahya Vikasari

    2017-06-01

    Full Text Available Sistem komputer interaktif untuk dipakai oleh useruntuk mendukung pekerjannya. User merupakan object yang penting didalam pengembangan dan pembangun sistem. User adalah personal-personal yang terlibat langsung dalam pemakaian aplikasi. Konsep dari UCD adalah user sebagai pusat dari proses pengembangan sistem, dan tujuan/sifat-sifat, konteks dan lingkungan sistem semua didasarkan dari pengalaman pengguna Pembangunan sistem skoring test TOEFL paper based test (PBT di UPT bahasa politeknik negeri cilacapmenggunakan metode UCD. Dengan menggunakan metode UCD sistem dapat   mempermudah dan mempercepat pendaftaran oleh calon pendaftar dengan tampilan antarmuka yang user friendly , mempermudah proses pengelolaan data dan rekap data pendaftar, mempermudah pengkonversian skor TOEFL yang dilakukan secara otomatis, serta  meminimalisir terjadinya kesalahan, duplikasi data dan duplikasi kegiatan.

  4. Establishing Evidence-Based Indications for Proton Therapy: An Overview of Current Clinical Trials

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Mark V., E-mail: mmishra@umm.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Aggarwal, Sameer [Department of Internal Medicine, University of Maryland School of Medicine, Baltimore, Maryland (United States); Bentzen, Soren M. [Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, Maryland (United States); Knight, Nancy [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States); Mehta, Minesh P. [Miami Cancer Institute at Baptist Health South Florida, Miami, Florida (United States); Regine, William F. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland (United States)

    2017-02-01

    Purpose: To review and assess ongoing proton beam therapy (PBT) clinical trials and to identify major gaps. Methods and Materials: Active PBT clinical trials were identified from (clinicaltrials.gov) and the World Health Organization International Clinical Trials Platform Registry. Data on clinical trial disease site, age group, projected patient enrollment, expected start and end dates, study type, and funding source were extracted. Results: A total of 122 active PBT clinical trials were identified, with target enrollment of >42,000 patients worldwide. Ninety-six trials (79%), with a median planned sample size of 68, were classified as interventional studies. Observational studies accounted for 21% of trials but 71% (n=29,852) of planned patient enrollment. The most common PBT clinical trials focus on gastrointestinal tract tumors (21%, n=26), tumors of the central nervous system (15%, n=18), and prostate cancer (12%, n=15). Five active studies (lung, esophagus, head and neck, prostate, breast) will randomize patients between protons and photons, and 3 will randomize patients between protons and carbon ion therapy. Conclusions: The PBT clinical trial portfolio is expanding rapidly. Although the majority of ongoing studies are interventional, the majority of patients will be accrued to observational studies. Future efforts should focus on strategies to encourage optimal patient enrollment and retention, with an emphasis on randomized, controlled trials, which will require support from third-party payers. Results of ongoing PBT studies should be evaluated in terms of comparative effectiveness, as well as incremental effectiveness and value offered by PBT in comparison with conventional radiation modalities.

  5. Trials of separation of the rare-earth elements on the way of fractional precipitation of terephthalates

    Energy Technology Data Exchange (ETDEWEB)

    Brzyska, W. (Uniwersytet Marii Curie-Sklodowskiej, Lublin (Poland))

    1980-01-01

    A possibility of the rare-earth elements separation on the way of fractional precipitation of terephthalates in the presence of a complexing agent was studied. Selecting an appropriate quantity of the complexing agent, it is possible to obtain fractions differing in their composition. In the first fractions the light lanthanides accumulate, whereas in the last one accumulate Y and heavy lanthanides. The advantage of this method is that the terephthalic acid can be regenerated practically in 100%.

  6. Molar mass of poly(ethylene terephthalate) (PET) during ultimate uniaxial drawing

    NARCIS (Netherlands)

    Göschel, U.; Cools, P.J.C.H.

    2000-01-01

    The changes of the average molar mass Mw, Mn, Mz, and molar mass distributions during multistep uniaxial drawing of poly(ethylene terephthalate) (PET) to achieve ultimate mechanical properties have been studied in detail by means of size exclusion chromatography (SEC) with triple detection:

  7. Molar-Mass of Poly(Ethylene-Terephthalate) (PET) During Ultimate Uniaxial Drawing

    NARCIS (Netherlands)

    Göschel, A.G.P.U.; Cools, P.J.C.H.

    2000-01-01

    The changes of the average molar mass Mw, Mn, Mz, and molar mass distributions during multistep uniaxial drawing of poly(ethylene terephthalate) (PET) to achieve ultimate mechanical properties have been studied in detail by means of size exclusion chromatography (SEC) with triple detection:

  8. Application of reactive siloxane prepolymers for the synthesis of thermoplastic poly(ester–siloxanes and poly(ester–ether–siloxanes

    Directory of Open Access Journals (Sweden)

    VESNA V. ANTIC

    2007-02-01

    Full Text Available Thermoplastic poly(ester–siloxanes (TPES and poly(ester–ether–siloxane s, (TPEES, based on poly(butylene terephthalate (PBT as the hard segment and different siloxane-prepolymers as the soft segments, were prepared. The TPES and TPEES were synthesized by catalyzed two-step transesterification from dimethyl terephthalate, (DMT, 1,4-butanediol, (BD and a siloxane-prepolymer. Incorporation of dicarboxypropyl- or disilanol-terminated poly(dimethylsiloxanes (PDMS into the polar poly(butylene terephthalate chains resulted in rather inhomogeneous TPES copolymers, which was a consequence of a prononuced phase separation of the polar and non-polar reactants during synthesis. Two concepts were employed to avoid or reduce phase separation: 1 the use of siloxane-containing triblock prepolymers with hydrophilic terminal blocks, such as ethylene oxide (EO, poly(propylene oxide (PPO or poly(caprolactone (PLC when the terminal blocks serve as a compatibilizer between the extremely non-polar PDMS and the polar DMT and BD, and 2 the use of a high-boiling solvent (1,2,4-trichlorobenzene during the first phase of the reaction. Homogeneity was significantly improved in the case of copolymers based on PCL–PDMS–PCL.

  9. Development of biodegradable metaloxide/polymer nanocomposite films based on poly-ε-caprolactone and terephthalic acid.

    Science.gov (United States)

    Varaprasad, Kokkarachedu; Pariguana, Manuel; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Sadiku, Emmanuel Rotimi

    2017-01-01

    The present investigation describes the development of metal-oxide polymer nanocomposite films from biodegradable poly-ε-caprolactone, disposed poly(ethylene terephthalate) oil bottles monomer and zinc oxide-copper oxide nanoparticles. The terephthalic acid and zinc oxide-copper oxide nanoparticles were synthesized by using a temperature-dependent precipitation technique and double precipitation method, respectively. The terephthalic acid synthesized was confirmed by FTIR analysis and furthermore, it was characterized by thermal analysis. The as-prepared CuO-ZnO nanoparticles structure was confirmed by XRD analysis and its morphology was analyzed by SEM/EDS and TEM. Furthermore, the metal-oxide polymer nanocomposite films have excellent mechanical properties, with tensile strength and modulus better than pure films. The metal-oxide polymer nanocomposite films that were successfully developed show a relatively brighter colour when compared to CuO film. These new metal-oxide polymer nanocomposite films can replace many non-degradable plastics. The new metal-oxide polymer nanocomposite films developed are envisaged to be suitable for use in industrial and domestic packaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Dynamic modeling and control of industrial crude terephthalic acid hydropurification process

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhi; Zhong, Weimin; Liu, Yang; Luo, Na; Qian, Feng [East China University of Science and Technology, Shanghai (China)

    2015-04-15

    Purified terephthalic acid (PTA) is critical to the development of the polyester industry. PTA production consists of p-xylene oxidation reaction and crude terephthalic acid (CTA) hydropurification. The hydropurification process is necessary to eliminate 4-carboxybenzaldehyde (4-CBA), which is a harmful byproduct of the oxidation reaction process. Based on the dynamic model of the hydropurification process, two control systems are studied using Aspen Dynamics. The first system is the ratio control system, in which the mass flows of CTA and deionized water are controlled. The second system is the multivariable predictive control-proportional-integral-derivative cascade control strategy, in which the concentrations of 4-CBA and carbon monoxide are chosen as control variables and the reaction temperature and hydrogen flow are selected as manipulated variables. A detailed dynamic behavior is investigated through simulation. Results show that the developed control strategies exhibit good control performances, thereby providing theoretical guidance for advanced control of industry-scale PTA production.

  11. Polyesters production from the mixture of phthalic acid, terephthalic and glycerol

    International Nuclear Information System (INIS)

    Carvalho, A.L.S.; Oliveira, J.C.; Miranda, C.S.; Boaventura, J.S.; Jose, N.M.; Carvalho, R.F.

    2010-01-01

    Glycerin, a byproduct of biodiesel is currently an environmental and economic problem for producers of this renewable fuel in Brazil and in others parts of the world. In order to offer new proposals for recovery, it is used for the manufacture of polyesters used in applications in diverse areas such as construction and automobile industry. This work reports the production of polymer from the mixture of terephthalic and phthalic acid in three different proportions. The polyesters showed good thermal stability, analyzed by TGA and DSC, with an increase proportional to the terephthalic acid content. The X-ray diffraction patterns show that the samples are semi crystalline polymers. The micrographs indicated the presence of a smoother surface in the polyester that has a larger amount of phthalic acid, as reported in the literature. Therefore, the materials showed good thermal properties and morphological characteristics, so it consists in a new alternative to use glycerin. (author)

  12. Toughening of recycled poly(ethylene terephthalate) with clay-compatibilized rubber phase

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Sukhanov, Valentin; Rotrekl, Jakub; Kaprálková, Ludmila

    2010-01-01

    Roč. 116, č. 6 (2010), s. 3621-3628 ISSN 0021-8995 R&D Projects: GA ČR GA106/06/0044 Institutional research plan: CEZ:AV0Z40500505 Keywords : recycled poly (ethylene terephthalate) * nanocomposite * clay compatibilization Subject RIV: JI - Composite Materials Impact factor: 1.240, year: 2010

  13. Effect of Zinc Oxide Nanoparticles and Sodium Hydroxide on the Self-Cleaning and Antibacterial Properties of Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Mohammad Mirjalili

    2017-12-01

    Full Text Available In this study, the synthesis of zinc oxide nanoparticles was carried out, together with the hydrolysis of polyethylene terephthalate, using sodium hydroxide to increase surface activity and enhance nanoparticle adsorption. Polyester fabrics were treated with zinc acetate and sodium hydroxide in an ultrasonic bath, resulting in the formation of ZnO nanospheres. The presence of zinc oxide on the surface of the polyethylene terephthalate was confi rmed using scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDS. The self-cleaning property of treated fabrics was evaluated through discolouring using methylene blue stain under solar irradiation. The antibacterial activities of the samples against common pathogenic bacteria, including Escherichia coli and Staphylococcus aureus, were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound-treated polyethylene terephthalate improved significantly.

  14. Chemical recycling of poly(ethylene terephthalate. Application to the synthesis of multiblock copolyesters

    Directory of Open Access Journals (Sweden)

    F. Malek

    2014-08-01

    Full Text Available The chemical recycling of the poly(ethylene terephthalate, (PET, has been successfully carried out by glycolysis in the presence of bis (2-hydroxyethyl terephthalate (BHET resulting in the formation of hydroxytelechelic oligomers. These oligomers were then treated with carboxytelechelic poly(ε-caprolactone oligomers of Mn = 2300 and Mn = 730 g•mol–1 molecular weight, in the absence or presence of the titanium tetrabutyloxide (Ti(OBu4 as a catalyst to get multiblock copolyesters. The chemical structure of the synthesized copolyesters was investigated by size exclusion chromatography (SEC and proton Nuclear Magnetic Resonance (1H NMR spectroscopy. Moreover the differential scanning calorimetry (DSC was used to explore their thermal properties. The ester-ester interchange reaction was observed between the two oligopolyesters, was studied and discussed in detail.

  15. Sol-gel synthesis and characterization of hybrid inorganic-organic Tb(III)-terephthalate containing layered double hydroxides

    Science.gov (United States)

    Smalenskaite, A.; Salak, A. N.; Ferreira, M. G. S.; Skaudzius, R.; Kareiva, A.

    2018-06-01

    Mg3/Al1 and Mg3Al1-xTbx layered double hydroxides (LDHs) intercalated with terephthalate anion were synthesized using sol-gel method. The obtained materials were characterized by X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, fluorescence spectroscopy (FLS) and scanning electron microscopy (SEM). The Tb3+ substitution effects in the Mg3Al1-xTbx LDHs were investigated by changing the Tb3+ concentration in the cation layers. The study indicates that the organic guest-terephthalate in the interlayer spacing of the LDH host influences the luminescence of the hybrid inorganic-organic materials.

  16. Effect of the Linker in Terephthalate-Functionalized Conducting Redox Polymers

    International Nuclear Information System (INIS)

    Yang, Li; Huang, Xiao; Gogoll, Adolf; Strømme, Maria; Sjödin, Martin

    2016-01-01

    The combination of high capacity redox active pendent groups and conducting polymers, realized in conducting redox polymers (CRPs), provides materials with high charge storage capacity that are electronically conducting which makes CRPs attractive for electrical energy storage applications. In this report, six polythiophene and poly(3,4-ethylenedioxythiophene)(PEDOT)-based CRPs with a diethyl terephthalate unit covalently bound to the polymer chain by various linkers have been synthesized and characterized electrochemically. The effects of the choice of polymer backbone and of the nature of the link on the electrochemistry, and in particular the cycling stability of these polymers, are discussed. All CRPs show both the doping of the polymer backbone as well as the redox behavior of the pendent groups and the redox potential of the pendent groups in the CRPs is close to that of corresponding monomer, indicating insignificant interaction between the pendant and the polymer backbone. While all CRPs show various degrees of charge decay upon electrochemical redox conversion, the PEDOT-based CRPs show significantly improved stability compared to the polythiophene counterparts. Moreover, we show that by the right choice of link the cycling stability of diethyl terephthalate substituted PEDOT-based CRPs can be significantly improved.

  17. Recycling of waste poly(ethylene terephthalate) with castor oil using microwave heating

    Czech Academy of Sciences Publication Activity Database

    Beneš, Hynek; Slabá, J.; Walterová, Zuzana; Rais, David

    2013-01-01

    Roč. 98, č. 11 (2013), s. 2232-2243 ISSN 0141-3910 R&D Projects: GA MPO 2A-2TP1/135 Institutional support: RVO:61389013 Keywords : poly(ethylene terephthalate) * castor oil * chemical recycling Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.633, year: 2013

  18. Surface treatment of poly(ethylene terephthalate) by gamma-ray induced graft copolymerization of methyl acrylate and its toughening effect on poly(ethylene terephthalate)/elastomer blend

    International Nuclear Information System (INIS)

    Ma, Liang; Wang, Mozhen; Ge, Xuewu

    2013-01-01

    To improve the compatibility between ethylene-methyl acrylate-glycidyl methacrylate random terpolymer (E-MA-GMA) elastomer and poly(ethylene terephthalate) (PET), thereby enhance the toughening effect of E-MA-GMA on PET, γ-radiation-induced graft copolymerization technique was used to graft methyl acrylate (MA) monomer onto PET. The produced PET-g-PMA copolymer can be used as a self-compatibilizer in PET/E-MA-GMA blend since the copolymer contains the same segments, respectively, with PET and E-MA-GMA. The impact strength of PET/E-MA-GMA blend increased nearly by 30% in the presence of less than 0.1 wt% PET-g-PMA compared with that of the neat PET/elastomer blend, without loss of the tensile strength of the blends. This work proposed a potential application of radiation-induced grafting copolymerization technique on the in-situ compatibilization of PET/elastomer blends so as to improve the integral mechanical properties of PET based engineering plastic. - Highlights: • PMA was grafted onto PET resins by γ-ray radiation-induced copolymerization. • The obtained PET-g-PMA can improve the compatibility between PET and E-MA-GMA. • A small amount of PET-g-PMA can enhance the impact strength of PET/E-MA-GMA blend

  19. 21 CFR 177.1345 - Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene/1,3-phenylene oxyethylene isophthalate... Ethylene/1,3-phenylene oxyethylene isophthalate/ terephthalate copolymer. Ethylene/1, 3-phenylene... polymers complying with § 177.1630. (a) Identity. For the purpose of this section, ethylene/1,3-phenylene...

  20. Poly(butylene terephthalate) based novel achiral stationary phase investigated under supercritical fluid chromatography conditions.

    Science.gov (United States)

    Nagai, Kanji; Shibata, Tohru; Shinkura, Satoshi; Ohnishi, Atsushi

    2018-05-11

    Poly(butylene terephthalate) based novel stationary phase (SP), composed of planar aromatic phenyl group together with ester group monomer units, was designed for supercritical fluid chromatography (SFC) use. As expected from its structure, this phase shows planarity recognition of isomeric aromatics and closely similar compounds. Interestingly, for most analytes, the retention behavior of this SP is significantly distinct from that of the 2-ethylpyridine based SPs which is among the most well-known SFC dedicated phases. Although the poly(butylene terephthalate) is coated on silica gel, the performance of the column did not change by using extended range modifiers such as THF, dichloromethane or ethyl acetate and column robustness was confirmed by cycle durability testing. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation

    OpenAIRE

    Joo, Seongjoon; Cho, In Jin; Seo, Hogyun; Son, Hyeoncheol Francis; Sagong, Hye-Young; Shin, Tae Joo; Choi, So Young; Lee, Sang Yup; Kim, Kyung-Jin

    2018-01-01

    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal ...

  2. Preparation of poly(ethylene terephthalate/layered double hydroxide nanocomposites by in-situ polymerization and their thermal property

    Directory of Open Access Journals (Sweden)

    Q. Jiao

    2012-06-01

    Full Text Available Terephthalate (TA intercalated layered double hydroxides (LDHs were synthesized using hydroxides as raw materials, and poly(ethylene terephthalate (PET/LDH nanocomposites with different contents of TA intercalated LDHs were prepared by in-situ polymerization. The structure, morphology and thermal property of PET/LDH nanocomposites were investigated. The TA intercalated LDHs were partially exfoliated and well dispersed in PET matrix. The PET/LDH nanocomposites exhibit enhanced thermal stability relative to pure PET, confirmed by the thermogravimetric analysis results. The results of differential scanning calorimetry suggest that LDH nanoparticles could effectively promote the nucleation and crystallization of PET.

  3. Effect of the 6PBT stirrer eccentricity and off-bottom clearance on mixing of pseudoplastic fluid in a stirred tank

    Science.gov (United States)

    Luan, Deyu; Zhang, Shengfeng; Wei, Xing; Duan, Zhenya

    The aim of this work is to investigate the effect of the shaft eccentricity on the flow field and mixing characteristics in a stirred tank with the novel stirrer composed of perturbed six-bent-bladed turbine (6PBT). The difference between coaxial and eccentric agitations is studied using computational fluid dynamics (CFD) simulations combined with standard k-ε turbulent equations, that offer a complete image of the three-dimensional flow field. In order to determine the capability of CFD to forecast the mixing process, particle image velocimetry (PIV), which provide an accurate representation of the time-averaged velocity, was used to measure fluid velocity. The test liquid used was 1.25% (wt) xanthan gum solution, a pseudoplastic fluid with a yield stress. The comparison of the experimental and simulated mean flow fields has demonstrated that calculations based on Reynolds-averaged Navier-Stokes equations are suitable for obtaining accurate results. The effects of the shaft eccentricity and the stirrer off-bottom distance on the flow model, mixing time and mixing efficiency were extensively analyzed. It is observed that the microstructure of the flow field has a significant effect on the tracer mixing process. The eccentric agitation can lead to the flow model change and the non-symmetric flow structure, which would possess an obvious superiority of mixing behavior. Moreover, the mixing rate and mixing efficiency are dependent on the shaft eccentricity and the stirrer off-bottom distance, showing the corresponding increase of the eccentricity with the off-bottom distance. The efficient mixing process of pseudoplastic fluid stirred by 6PBT impeller is obtained with the considerably low mixing energy per unit volume when the stirrer off-bottom distance, C, is T/3 and the eccentricity, e, is 0.2. The research results provide valuable references for the improvement of pseudoplastic fluid agitation technology.

  4. Does Perturbation Training Prevent Falls after Discharge from Stroke Rehabilitation? A Prospective Cohort Study with Historical Control.

    Science.gov (United States)

    Mansfield, Avril; Schinkel-Ivy, Alison; Danells, Cynthia J; Aqui, Anthony; Aryan, Raabeae; Biasin, Louis; DePaul, Vincent G; Inness, Elizabeth L

    2017-10-01

    Individuals with stroke fall frequently, and no exercise intervention has been shown to prevent falls post stroke. Perturbation-based balance training (PBT), which involves practicing reactions to instability, shows promise for preventing falls in older adults and individuals with Parkinson's disease. This study aimed to determine if PBT during inpatient stroke rehabilitation can prevent falls after discharge into the community. Individuals with subacute stroke completed PBT as part of routine inpatient rehabilitation (n = 31). Participants reported falls experienced in daily life for up to 6 months post discharge. Fall rates were compared to a matched historical control group (HIS) who did not complete PBT during inpatient rehabilitation. Five of 31 PBT participants, compared to 15 of 31 HIS participants, reported at least 1 fall. PBT participants reported 10 falls (.84 falls per person per year) whereas HIS participants reported 31 falls (2.0 falls per person per year). When controlled for follow-up duration and motor impairment, fall rates were lower in the PBT group than the HIS group (rate ratio: .36 [.15, .79]; P = .016). These findings suggest that PBT is promising for reducing falls post stroke. While this was not a randomized controlled trial, this study may provide sufficient evidence for implementing PBT in stroke rehabilitation practice. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  5. Enhanced bone marrow stromal cell adhesion and growth on segmented poly(ether ester)s based on poly(ethylene oxide) and poly(butylene terephthalate)

    NARCIS (Netherlands)

    Claase, M.B.; Olde riekerink, M.B.; de Bruijn, Joost Dick; Grijpma, Dirk W.; Engbers, G.H.M.; Feijen, Jan

    2003-01-01

    In previous studies in rats and goats, hydrophilic compositions of the PEOT/PBT block copolymer family have shown in vivo calcification and bone bonding. These copolymers are therefore interesting candidates as scaffolding materials in bone tissue engineering applications. Model studies using goat

  6. Effect of oral administration of terephthalic acid on testicular functions of rats

    International Nuclear Information System (INIS)

    Cui Lunbiao; Dai Guidong; Xu Lichun; Wang Shouling; Song Ling; Zhao Renzhen; Xiao Hang; Zhou Jianwei; Wang Xinru

    2004-01-01

    To investigate the toxic effect of terephthalic acid (TPA) on testicular functions of rats, male Sprague-Dawley rats were orally administered TPA in diet at the levels 0 (control), 0.2, 1 and 5% for 90 days. Testicular functions were assessed by histopathology, testicular sperm head counts, daily sperm production, sperm motility (measured by computer-assisted sperm analysis, CASA), biochemical indices (marker testicular enzymes), and serum testosterone. Oral feeding with terephthalic acid did not cause body and testes weight loss in TPA-treated groups. Histopathologically, damages of spermatogenic cells and Sertoli cells were observed by electron microscope, testicular sperm head counts, daily sperm production, and activities of sorbitol dehydrogenase (SDH) were decreased significantly in the 5% TPA group. The motility of spermatozoa was reduced significantly in all treated groups, which was correlated with administration doses. Serum testosterone concentrations were not declined in treated groups. In conclusion, TPA can cause impairment of testicular functions. The primary sites of action may be spermatogenic cells and Sertoli cells. The results of the present study provide first information of TPA on testicular functions in male rats

  7. Surface characterization of polyethylene terephthalate films treated by ammonia low-temperature plasma

    International Nuclear Information System (INIS)

    Zheng Zhiwen; Ren Li; Feng Wenjiang; Zhai Zhichen; Wang Yingjun

    2012-01-01

    In order to study the surface characterization and protein adhesion behavior of polyethylene terephthalate film, low temperature ammonia plasma was used to modify the film. Effects of plasma conditions of the surface structures and properties were investigated. Results indicated that surface hydrophilicity of polyethylene terephthalate was significantly improved by ammonia plasma treatment. Ammonia plasma played the role more important than air treatment in the process of modification. Furthermore, by Fourier Transform Infrared spectra some new bonds such as -N=O and N-H which could result in the improvement of the surface hydrophilicity were successfully grafted on the film surface. Atom force microscope experiments indicated that more protein adsorbed on hydrophobic surfaces than hydrophilic ones, and the blobs arranged in a straight line at etching surface by plasma. Modified membrane after ammonia plasma treatment had a good cell affinity and could be effective in promoting the adhesion and growth of cells on the material surface. Timeliness experiments showed that the plasma treatment gave the material a certain performance only in a short period of time and the hydrophobicity recovered after 12 days.

  8. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. Copyright © 2016, American Association for the Advancement of Science.

  9. In vitro studies of PBT Nonwoven Fabrics adsorbent for the removal of low density lipoprotein from hyperlipemia plasma

    Energy Technology Data Exchange (ETDEWEB)

    Cao Ye; Wang Hong [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052 (China); Yang Chao [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Zhong Rui [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052 (China); Lei Yu [Chengdu Blood Center, Chengdu 610041 (China); Sun Kang [State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240 (China); Liu Jiaxin, E-mail: jxliu8122@vip.sina.com [Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu 610052 (China)

    2011-06-15

    Polyanion ligands such as acrylic acid (AA) and heparin were grafted on PBT Nonwoven Fabrics (PBTNF) to study their effect on the adsorption of low density lipoprotein (LDL). These modified PBTNFs were characterized by Horizontal Attenuated Total Reflectance Fourier Transform Infrared spectroscopy and X-ray Photoelectron spectroscopy. The blood compatibilities of the modified PBTNFs were examined using in vitro hemolysis rate (HR), platelet adhesion, total protein (TP) and activated partial thromboplastin time. The results showed that direct immobilized heparin could improve PBTNF-PAA's blood compatibility and decrease the adsorption capability of useful high density lipoprotein, but would possess so low bioactivity that could not further improve the absorption of LDL and TC. Since the PBTNF-PAA55-Heparin adsorbent had quite good adsorption selectivity for these proteins, it can be an excellent candidate for depletion of LDL with good blood compatibility.

  10. Conjugative plasmid pAW63 brings new insights into the genesis of the Bacillus anthracis virulence plasmid pXO2 and of the Bacillus thuringiensis plasmid pBT9727

    Directory of Open Access Journals (Sweden)

    Mahillon Jacques

    2005-07-01

    Full Text Available Abstract Background Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis belong to the genetically close-knit Bacillus cereus sensu lato group, a family of rod-shaped Gram-positive bacteria. pAW63 is the first conjugative plasmid from the B. cereus group to be completely sequenced. Results The 71,777 bp nucleotide sequence of pAW63 reveals a modular structure, including a 42 kb tra region encoding homologs of the Type IV secretion systems components VirB11, VirB4 and VirD4, as well as homologs of Gram-positive conjugation genes from Enterococcus, Lactococcus, Listeria, Streptococcus and Staphylococcus species. It also firmly establishes the existence of a common backbone between pAW63, pXO2 from Bacillus anthracis and pBT9727 from the pathogenic Bacillus thuringiensis serovar konkukian strain 97-27. The alignment of these three plasmids highlights the presence of well conserved segments, in contrast to distinct regions of high sequence plasticity. The study of their specific differences has provided a three-point reference framework that can be exploited to formulate solid hypotheses concerning the functionalities and the molecular evolution of these three closely related plasmids. This has provided insight into the chronology of their divergence, and led to the discovery of two Type II introns on pAW63, matching copies of the mobile element IS231L in different loci of pXO2 and pBT9727, and the identification on pXO2 of a 37 kb pathogenicity island (PAI containing the anthrax capsule genes. Conclusion The complete sequence determination of pAW63 has led to a functional map of the plasmid yielding insights into its conjugative apparatus, which includes T4SS-like components, as well as its resemblance to other large plasmids of Gram-positive bacteria. Of particular interest is the extensive homology shared between pAW63 and pXO2, the second virulence plasmid of B. anthracis, as well as pBT9727 from the pathogenic strain B. thuringiensis

  11. The effect of hot multistage drawing on molecular structure and optical properties of polyethylene terephthalate fibers

    Directory of Open Access Journals (Sweden)

    Aminoddin Haji

    2012-08-01

    Full Text Available In this work, mechanical and structural parameters related to the optical properties of polyethylene terephthalate (PET fibers drawn at hot multistage have been investigated. The changes in optical parameters upon changing draw ratio are used to obtain the mechanical orientation factors and , various orientation functions f2(θ, f4(θ and f6(θ, and amorphous and crystalline orientation functions (f a and f c. Also, the numbers of random links between the network junction points (N1, the average optical orientation (Fav, and the distribution function of segment ω(cos θ were calculated. In addition, an empirical formula was suggested to correlate changes in the birefringence with the draw ratio and its constants were determined. The study demonstrated change on the molecular orientation functions and structural parameters upon hot multistage drawing. Significant variations in the characteristic properties of the drawn PET fibers were due to reorientation of the molecules caused by applied heat and external tension.

  12. The Depolymerization of Poly(Ethylene Terephthalate) (PET) Using N-Heterocyclic Carbenes from Ionic Liquids

    Science.gov (United States)

    Kamber, Nahrain E.; Tsujii, Yasuhito; Keets, Kate; Waymouth, Robert M.; Pratt, Russell C.; Nyce, Gregory W.; Hedrick, James L.

    2010-01-01

    The depolymerization of the plastic polyethylene terephthalate (PET or PETE) is described in this laboratory procedure. The transesterification reaction used to depolymerize PET employs a highly efficient N-heterocyclic carbene catalyst derived from a commercially available imidazolium ionic liquid. N-heterocyclic carbenes are potent nucleophilic…

  13. Thermal degradation and isothermal crystalline behavior of poly(trimethylene terephthalate)

    Institute of Scientific and Technical Information of China (English)

    Jian Liu; Shu Guang Bian; Min Xiao; Shuan Jin Wang; Yue Zhong Meng

    2009-01-01

    Poly(trimethylene terephthalate)(PTT)is an excellent fiber material.Its thermal degradation and isothermal crystalline behaviors were in this study investigated using thermogravimetric analysis(TGA),thermogravimetric analysis-Fourier transform infrared spectroscopy(TGA-FTIR)analysis,differential scanning calorimetry(DSC)and X-ray diffraction(XRD).The thermal degradation mechanism of PTT follows Mclafferty rearrangement principle.The PTT with intrinsicviscosity(IV)of 0.74 dL/g has a maximum crystallinity of about 55%at 190℃,as demonstrated by DSC and XRD measurements consistently.

  14. Significant Enhancement of Mechanical and Thermal Properties of Thermoplastic Polyester Elastomer by Polymer Blending and Nanoinclusion

    Directory of Open Access Journals (Sweden)

    Manwar Hussain

    2016-01-01

    Full Text Available Thermoplastic elastomer composites and nanocomposites were fabricated via melt processing technique by blending thermoplastic elastomer (TPEE with poly(butylene terephthalate (PBT thermoplastic and also by adding small amount of organo modified nanoclay and/or polytetrafluoroethylene (PTFE. We study the effect of polymer blending on the mechanical and thermal properties of TPEE blends with and without nanoparticle additions. Significant improvement was observed by blending only TPEE and virgin PBT polymers. With a small amount (0.5 wt.% of nanoclay or PTFE particles added to the TPEE composite, there was further improvement in both the mechanical and thermal properties. To study mechanical properties, flexural strength (FS, flexural modulus (FM, tensile strength (TS, and tensile elongation (TE were all investigated. Thermogravimetric analysis (TGA and differential scanning calorimetry (DSC were used to analyze the thermal properties, including the heat distortion temperature (HDT, of the composites. Scanning electron microscopy (SEM was used to observe the polymer fracture surface morphology. The dispersion of the clay and PTFE nanoparticles was confirmed by transmission electron microscopy (TEM analysis. This material is proposed for use as a baffle plate in the automotive industry, where both high HDT and high modulus are essential.

  15. Morphology study of nanofibers produced by extraction from polymer blend fibers using image processing

    International Nuclear Information System (INIS)

    Dehghan, Neda; Tavanaie, Mohammad Ali; Payvandy, Pedram

    2015-01-01

    The morphology of nanofibers extracted from the industrial-scale produced polypropylene/polybutylene terephthalate (PP/PBT) blend fibers was studied. To study the morphology and diameter measurements of the nanofibers, image processing method was used, and the results were compared with the results of a conventional visual method. Comparing these two methods indicated the good performance of image processing methods for the measuring of nanofiber diameter. Among the various applied image processing methods, the fuzzy c-means (FCM) method was determined as the best for image thresholding. Additionally, the distance transform method was determined as the best way for measuring nanofiber diameter. According to high regression coefficient (R=0.98) resulting between the draw ratio and nanofibers diameter, the high effectiveness of draw ratio to nanofiber diameter is concluded. The spherical (drop) shapes of the PBT dispersed phase particles were eventually deformed into very thin fibrils during the drawing process. The results of measuring the nanofiber diameters showed that the diameter means of nanofibers varied from 420 nm to 175 nm with the highest draw ratio. Good uniformity for diameter of nanofibers was observed, which had not been observed in previous works.

  16. Morphology study of nanofibers produced by extraction from polymer blend fibers using image processing

    Energy Technology Data Exchange (ETDEWEB)

    Dehghan, Neda; Tavanaie, Mohammad Ali; Payvandy, Pedram [University of Yazd, Yazd (Iran, Islamic Republic of)

    2015-09-15

    The morphology of nanofibers extracted from the industrial-scale produced polypropylene/polybutylene terephthalate (PP/PBT) blend fibers was studied. To study the morphology and diameter measurements of the nanofibers, image processing method was used, and the results were compared with the results of a conventional visual method. Comparing these two methods indicated the good performance of image processing methods for the measuring of nanofiber diameter. Among the various applied image processing methods, the fuzzy c-means (FCM) method was determined as the best for image thresholding. Additionally, the distance transform method was determined as the best way for measuring nanofiber diameter. According to high regression coefficient (R=0.98) resulting between the draw ratio and nanofibers diameter, the high effectiveness of draw ratio to nanofiber diameter is concluded. The spherical (drop) shapes of the PBT dispersed phase particles were eventually deformed into very thin fibrils during the drawing process. The results of measuring the nanofiber diameters showed that the diameter means of nanofibers varied from 420 nm to 175 nm with the highest draw ratio. Good uniformity for diameter of nanofibers was observed, which had not been observed in previous works.

  17. Characterization of products from pyrolysis of coal with the addition of polyethylene terephthalate

    Czech Academy of Sciences Publication Activity Database

    Havelcová, Martina; Bičáková, Olga; Sýkorová, Ivana; Weishauptová, Zuzana; Melegy, A.

    2016-01-01

    Roč. 154, DEC 15 (2016), 123-131 ISSN 0378-3820 R&D Projects: GA ČR(CZ) GA13-18482S Grant - others:OPPK(XE) CZ.2.16/3.1.00/21538 Program:OPPK Institutional support: RVO:67985891 Keywords : pyrolysis * sub-bituminous coal * polyethylene terephthalate * coke Subject RIV: DD - Geochemistry Impact factor: 3.752, year: 2016

  18. 78 FR 48651 - Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan; Preliminary Results of Antidumping...

    Science.gov (United States)

    2013-08-09

    ... duty order on polyethylene terephthalate film, sheet, and strip (PET Film) from Taiwan. The period of.... (SMTC) (collectively, Shinkong), producer and exporter of PET Film from Taiwan. The Department...: Milton Koch, AD/CVD Operations, Office 6, Import Administration, International Trade Administration, U.S...

  19. Morphology and thermal properties of recycled polyacrylonitrile fiber blends with poly(ethylene terephthalate): Microstructural characterization

    CSIR Research Space (South Africa)

    Adegbola, TA

    2016-04-01

    Full Text Available The compounding of rPAN/PET [polyacrylonitrile/poly(ethylene terephthalate]; 30/70, 50/50, and 70/30 wt %) using a melt-blending technique was the main focus of this investigation. An X-ray diffraction study indicated the possibility of interphase...

  20. A Prospective Randomized Study of Brain Tissue Oxygen Pressure-Guided Management in Moderate and Severe Traumatic Brain Injury Patients

    Directory of Open Access Journals (Sweden)

    Chien-Min Lin

    2015-01-01

    Full Text Available The purpose of this study was to compare the effect of PbtO2-guided therapy with traditional intracranial pressure- (ICP- guided treatment on the management of cerebral variables, therapeutic interventions, survival rates, and neurological outcomes of moderate and severe traumatic brain injury (TBI patients. From 2009 to 2010, TBI patients with a Glasgow coma scale 20 mmHg, and 27 patients were treated with ICP-guided therapy (ICP 60 mmHg in the neurosurgical intensive care unit (NICU; demographic characteristics were similar across groups. The survival rate in the PbtO2-guided group was also significantly increased at 3 and 6 months after injury. Moreover, there was a significant correlation between the PbtO2 signal and Glasgow outcome scale-extended in patients from 1 to 6 months after injury. This finding demonstrates that therapy directed by PbtO2 monitoring is valuable for the treatment of patients with moderate and severe TBI and that increasing PaO2 to 150 mmHg may be efficacious for preventing cerebral hypoxic events after brain trauma.

  1. 76 FR 30910 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Final Results of Countervailing...

    Science.gov (United States)

    2011-05-27

    ... shipper review of polyethylene terephthalate film, sheet and strip (PET Film) from India for SRF Limited... Operations, Office 6, Import Administration, International Trade Administration, U.S. Department of Commerce..., International Trade Compliance Analyst, AD/CVD Operations, Office 6: New Shipper Reviews of the Antidumping Duty...

  2. 75 FR 6634 - Polyethylene Terephthalate Film, Sheet, and Strip from India: Final Results of Countervailing...

    Science.gov (United States)

    2010-02-10

    ... of the countervailing duty order on polyethylene terephthalate film, sheet, and strip (PET film) from....'' EFFECTIVE DATE: February 10, 2010. FOR FURTHER INFORMATION CONTACT: Elfi Blum, AD/CVD Operations, Office 6... Assistant Secretary for Import Administration, from Barbara E. Tillman, Director, AD/CVD Operations, Office...

  3. 78 FR 77649 - Polyethylene Terephthalate Film, Sheet, and Strip From the United Arab Emirates; Preliminary...

    Science.gov (United States)

    2013-12-24

    ... Film, Sheet, and Strip From the United Arab Emirates; Preliminary Results of Antidumping Duty... film, sheet, and strip (PET Film) from the United Arab Emirates (UAE). The period of review (POR) is... Administrative Review: Polyethylene Terephthalate Film, Sheet, and Strip from the United Arab Emirates...

  4. The formation and growing properties of poly(ethylene terephthalate) fiber growing media after thermo-oxidative treatment

    International Nuclear Information System (INIS)

    Chang, C.P.; Lin, S.M.

    2007-01-01

    This research uses three kinds of recycled synthetic fibers that all possess excellent thermal plasticity property as raw material to develop a new firm cultivation media: polyethylene terephthalate, polyamide and polypropylene. One can not only freely control plants cultivation growing condition by changing bulk density of the media, but also solve disposal problem after usage by applying thermal oxidative treatment during manufacturing processes. The water content, air permeability and formation conditions of these fiber growing media that are required in plants growing habitat were discussed, and compared the fallout with rockwool (RW) growing media that is commonly used at present days. The results indicated that the polyethylene terephthalate fiber media could attain best formation characteristics among these fibers at the same bulk density range. Furthermore, the fiber media that were thermo-oxidative treated at 240-260 deg. C could obtained above 90% total porosity, 23-49% air capacity and 48-68% water availability, water contents raised from 1735-1094 to 2145-1156% under bulk densities of 0.03-0.09 g/cm 3 , which conforms to the common plant growing habitat conditions. Its performance well surpasses the rockwool growing media. We also discovered that the thermo-oxidative treated polyethylene terephthalate (PET) fiber media could be easily broken down and become powdery by exerting pressure, thus greatly reduce its volume and effectively improve disposal processes that are difficult presently for the huge refuse create by rockwool

  5. 78 FR 50029 - Polyethylene Terephthalate Film, Sheet and Strip From Brazil: Preliminary Results of Antidumping...

    Science.gov (United States)

    2013-08-16

    ... the antidumping duty order on polyethylene terephthalate film, sheet and strip (PET film) from Brazil... any reviewable entries, shipments or sales of subject PET film by Terphane during the POR, we are.... FOR FURTHER INFORMATION CONTACT: Tyler Weinhold or Robert James, AD/CVD Operations, Office 7, Import...

  6. Non-toxic poly(ethylene terephthalate)/clay nanocomposites with enhanced barrier properties

    KAUST Repository

    Hayrapetyan, Suren

    2012-01-01

    Motivated by the technological need for poly(ethylene terephthalate) materials with improved barrier properties together with the requirement for sustainability this study focuses on an eco-friendly sulfonated polyester as clay compatibilizer to facilitate polymer mixing during melt compounding. We demonstrate that the nanocomposites based on sulfonated polyester are a reliable alternative to their imidazolium counterparts, exhibiting enhanced properties (water vapor and UV transmission), without sacrificing the excellent transparency, clarity and mechanical strength of the matrix. © 2011 Elsevier Ltd. All rights reserved.

  7. 78 FR 67113 - Polyethylene Terephthalate Film, Sheet and Strip From India and Taiwan: Preliminary Results of...

    Science.gov (United States)

    2013-11-08

    ... antidumping duty orders on Polyethylene Terephthalate Film, Sheet and Strip (``PET Film'') from India and... Operations, Office VII, Enforcement and Compliance, International Trade Administration, U.S. Department of...) 482-2371, respectively. SUPPLEMENTARY INFORMATION: Background The antidumping duty orders on PET Film...

  8. Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system.

    Science.gov (United States)

    Wu, J H; Liu, W T; Tseng, I C; Cheng, S S

    2001-02-01

    The microbial composition and spatial distribution in a terephthalate-degrading anaerobic granular sludge system were characterized using molecular techniques. 16S rDNA clone library and sequence analysis revealed that 78.5% of 106 bacterial clones belonged to the delta subclass of the class Proteobacteria; the remaining clones were assigned to the green non-sulfur bacteria (7.5%), Synergistes (0.9%) and unidentified divisions (13.1%). Most of the bacterial clones in the delta-Proteobacteria formed a novel group containing no known bacterial isolates. For the domain Archaea, 81.7% and 18.3% of 72 archaeal clones were affiliated with Methanosaeta and Methanospirillum, respectively. Spatial localization of microbial populations inside granules was determined by transmission electron microscopy and fluorescent in situ hybridization with oligonucleotide probes targeting the novel delta-proteobacterial group, the acetoclastic Methanosaeta, and the hydrogenotrophic Methanospirillum and members of Methanobacteriaceae. The novel group included at least two different populations with identical rod-shape morphology, which made up more than 87% of the total bacterial cells, and were closely associated with methanogenic populations to form a nonlayered granular structure. This novel group was presumed to be the primary bacterial population involved in the terephthalate degradation in the methanogenic granular consortium.

  9. 78 FR 9670 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Final Results of Administrative...

    Science.gov (United States)

    2013-02-11

    ... administrative review of the antidumping duty order on polyethylene terephthalate film (PET Film) from India.\\1.... (Polyplex), and SRF Limited (SRF), producers and exporters of PET Film from India. Based on the results of... FURTHER INFORMATION CONTACT: Elfi Blum or Toni Page, AD/CVD Operations, Office 6, Import Administration...

  10. 76 FR 76948 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Final Results of Countervailing...

    Science.gov (United States)

    2011-12-09

    ... review of polyethylene terephthalate film, sheet and strip (PET Film) from India for Ester Industries Ltd... export of PET Film from India. Also, based on our analysis of Ester's comments, we made certain revisions..., Office 6, Import Administration, International Trade Administration, U.S. Department of Commerce, 14th...

  11. Interfacial characteristics of polyethylene terephthalate-based piezoelectric multi-layer films

    International Nuclear Information System (INIS)

    Liu, Z.H.; Pan, C.T.; Chen, Y.C.; Liang, P.H.

    2013-01-01

    The study examines the deformation between interfaces and the adhesion mechanism of multi-layer flexible electronic composites. Indium tin oxide (ITO), aluminum (Al), and zinc oxide (ZnO) were deposited on a polyethylene terephthalate (PET) substrate using radio frequency magnetron sputtering at room temperature to form flexible structures (e.g., ITO/PET, Al/PET, ZnO/ITO/PET, and ZnO/Al/PET) for piezoelectric transducers. ITO and Al films are used as the conductive layers. A ZnO thin film shows a high (002) c-axis preferred orientation at 2θ = 34.45° and excellent piezoelectric properties. Nanoscratching and nano-indention testing were conducted to analyze the adhesion following periodic mechanical stress. Additionally, two Berkovich and conical probes with a curvature radius of 40 nm and 10 μm are examined for the scratching test. A 4-point probe is used to measure the conductive properties. The plastic deformation between the ductile Al film and PET substrate is observed using scanning electron microscopy to examine the chip formation on the ITO/PET. Delamination between the ZnO and Al/PET substrate was not observed. The result suggests that ZnO film has excellent adhesion with Al/PET compared to ITO/PET. - Highlights: ► Interfaces and adhesion mechanism of multi-layer flexible electronic composites ► Polyethylene terephthalate (PET) based flexible structures ► Nano-scratching and nano-indention tests were used to analyze adhesion. ► Using two various probes of Berkovich and conical ► Piezoelectric zinc oxide film has excellent adhesion with aluminum/PET

  12. The mechanical properties of brick containing recycled concrete aggregate and polyethylene terephthalate waste as sand replacement

    Science.gov (United States)

    Sheikh Khalid, Faisal; Bazilah Azmi, Nurul; Natasya Mazenan, Puteri; Shahidan, Shahiron; Ali, Noorwirdawati

    2018-03-01

    This research focuses on the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. This study aims to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate (RCA) and polyethylene terephthalate (PET) waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 0.5%, 1.0% and 1.5% by weight of natural sand. Based on the results of compressive strength, only RCA 25% with 0.5% PET achieve lower strength than normal bricks while others showed a high strength. However, all design mix reaches strength more than 7N/mm2 as expected. Besides that, the most favorable mix design that achieves high compressive strength is 75% of RCA with 0.5% PET.

  13. Performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate with different mix design ratio

    Science.gov (United States)

    Azmi, N. B.; Khalid, F. S.; Irwan, J. M.; Mazenan, P. N.; Zahir, Z.; Shahidan, S.

    2018-04-01

    This study is focuses to the performance of composite sand cement brick containing recycle concrete aggregate and waste polyethylene terephthalate. The objective is to determine the mechanical properties such as compressive strength and water absorption of composite brick containing recycled concrete aggregate and polyethylene terephthalate waste and to determine the optimum mix ratio of bricks containing recycled concrete aggregate and polyethylene terephthalate waste. The bricks specimens were prepared by using 100% natural sand, they were then replaced by RCA at 25%, 50% and 75% with proportions of PET consists of 1.0%, 1.5%, 2.0% and 2.5% by weight of natural sand. Based on the results of compressive strength, it indicates that the replacement of RCA shows an increasing strength as the strength starts to increase from 25% to 50% for both mix design ratio. The strength for RCA 75% volume of replacement started to decrease as the volume of PET increase. However, the result of water absorption with 50% RCA and 1.0% PET show less permeable compared to control brick at both mix design ratio. Thus, one would expect the density of brick decrease and the water absorption to increase as the RCA and PET content is increased.

  14. 76 FR 30908 - Polyethylene Terephthalate Film, Sheet, and Strip From India: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-05-27

    ... polyethylene terephthalate film, sheet and strip (PET Film) from India for SRF Limited (SRF), covering the... Page or Elfi Blum, AD/CVD Operations, Office 6, Import Administration, International Trade... Interested Parties From Elfi Blum, International Trade Compliance Analyst, AD/CVD Operations, Office 6: New...

  15. Poly(butylene adipate-co-terephthalate) and sunflower head residue composites: Effects of composition and compatibilization on properties

    Science.gov (United States)

    Utilizing the abundant byproducts generated from processing of agricultural materials has sustainable and cost–saving potential benefits. In this work, Sunflower Head Residues (SHR) in 3 different compositions were introduced into biodegradable Poly(butylene adipate-co-terephthalate) (PBAT) matrices...

  16. Electron beam induced modification of poly(ethylene terephthalate) films

    International Nuclear Information System (INIS)

    Vasiljeva, I.V.; Mjakin, S.V.; Makarov, A.V.; Krasovsky, A.N.; Varlamov, A.V.

    2006-01-01

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  17. Electron beam induced modification of poly(ethylene terephthalate) films

    Energy Technology Data Exchange (ETDEWEB)

    Vasiljeva, I.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation)]. E-mail: radiant@skylink.spb.ru; Mjakin, S.V. [Technology Center RADIANT, 10, Kurchatova Str., 194223 St. Petersburg (Russian Federation); Makarov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Krasovsky, A.N. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation); Varlamov, A.V. [St.-Petersburg State University of Cinema and Television, 13, ul. Pravdy, 191126 St. Petersburg (Russian Federation)

    2006-10-15

    Electron beam processing of poly(ethylene terephthalate) (PET) films is found to promote significant changes in the melting heat, intrinsic viscosity and polymer film-liquid (water, isooctane and toluene) boundary surface tension. These properties are featured with several maximums depending on the absorbed dose and correlating with the modification of PET surface functionality. Studies using adsorption of acid-base indicators and IR-spectroscopy revealed that the increase of PET surface hydrophilicity is determined by the oxidation of methylene and methyne groups. Electron beam treatment of PET films on the surface of N-vinylpyrrolidone aqueous solution provided graft copolymerization with this comonomer at optimum process parameters (energy 700 keV, current 1 mA, absorbed dose 50 kGy)

  18. 78 FR 47276 - Polyethylene Terephthalate (PET) Film, Sheet, and Strip From India: Final Results of the...

    Science.gov (United States)

    2013-08-05

    ... (PET) Film, Sheet, and Strip From India: Final Results of the Expedited Second Sunset Review of the... terephthalate (PET) film, sheet, and strip (``PET film'') from India. The Department finds that revocation of... INFORMATION CONTACT: Sean Carey or Dana Mermelstein, AD/CVD Operations, Office 6, Import Administration...

  19. 76 FR 9745 - Polyethylene Terephthalate Film, Sheet, and Strip From Taiwan: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-02-22

    ... review of the antidumping duty order on polyethylene terephthalate film (PET Film) from Taiwan. See... Jun Jack Zhao, AD/CVD Operations, Office 6, Import Administration, International Trade Administration... products produced by Nan Ya, are not covered by the scope of the antidumping order on PET Film from Taiwan...

  20. 76 FR 71512 - Polyethylene Terephthalate Film, Sheet, and Strip From Korea: Final Results of Antidumping Duty...

    Science.gov (United States)

    2011-11-18

    ... terephthalate film, sheet, and strip (PET film) from Korea, covering the June 1, 2009, to May 31, 2010, period... the preliminary results. In addition, the Department is revoking the antidumping order on PET film... CONTACT: Tyler Weinhold or Robert James, AD/CVD Operations, Office 7, Import Administration, International...

  1. 78 FR 42105 - Polyethylene Terephthalate Film, Sheet, and Strip From India and Taiwan; Notice of Commission...

    Science.gov (United States)

    2013-07-15

    ... countervailing duty order on polyethylene terephthalate film, sheet, and strip (``PET'' film) from India and the antidumping duty orders on PET film from India and Taiwan would be likely to lead to continuation or...-205-3169), Office of Investigations, U.S. International Trade Commission, 500 E Street SW., Washington...

  2. Surface characterization of polyethylene terephthalate/silica nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Parvinzadeh, Mazeyar, E-mail: mparvinzadeh@gmail.com [Department of Textile, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Moradian, Siamak [Department of Polymer and Color Engineering, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Rashidi, Abosaeed [Department of Textile, Islamic Azad University, Science and Research Branch, Tehran (Iran, Islamic Republic of); Yazdanshenas, Mohamad-Esmail [Department of Textile, Islamic Azad University, Yazd Branch, Yazd (Iran, Islamic Republic of)

    2010-02-15

    Poly(ethylene terephthalate) (PET) based nanocomposites containing hydrophilic (i.e. Aerosil 200 or Aerosil TT 600) or hydrophobic (i.e. Aerosil R 972) nano-silica were prepared by melt compounding. Influence of nano-silica type on surface properties of the resultant nanocomposites was investigated by the use of Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), contact angle measurement (CAM), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). The possible interaction between nano-silica particles and PET functional groups at bulk and surface were elucidated by transmission FTIR and FTIR-ATR spectroscopy, respectively. AFM studies of the resultant nanocomposites showed increased surface roughness compared to pure PET. Contact angle measurements of the resultant PET composites demonstrated that the wettability of such composites depends on surface treatment of the particular nano-silica particles used. SEM images illustrated that hydrophilic nano-silica particles tended to migrate to the surface of the PET matrix.

  3. Response to Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-08-19

    Yang et al suggest that the use of low-crystallinity poly(ethylene terephthalate) (PET) exaggerates our results. However, the primary focus of our study was identifying an organism capable of the biological degradation and assimilation of PET, regardless of its crystallinity. We provide additional PET depolymerization data that further support several other lines of data showing PET assimilation by growing cells of Ideonella sakaiensis. Copyright © 2016, American Association for the Advancement of Science.

  4. Influence of Flame Retardants on the Melt Dripping Behaviour of Thermoplastic Polymers

    Directory of Open Access Journals (Sweden)

    Melissa Matzen

    2015-08-01

    Full Text Available Melt flow and dripping of the pyrolysing polymer melt can be both a benefit and a detriment during a fire. In several small-scale fire tests addressing the ignition of a defined specimen with a small ignition source, well-adjusted melt flow and dripping are usually beneficial to pass the test. The presence of flame retardants often changes the melt viscosity crucially. The influence of certain flame retardants on the dripping behaviour of four commercial polymers, poly(butylene terephthalate (PBT, polypropylene (PP, polypropylene modified with ethylene-propylene rubber (PP-EP and polyamide 6 (PA 6, is analysed based on an experimental monitoring of the mass loss due to melt dripping, drop size and drop temperature as a function of the furnace temperature applied to a rod-shaped specimen. Investigating the thermal transition (DSC, thermal and thermo-oxidative decomposition, as well as the viscosity of the polymer and collected drops completes the investigation. Different mechanisms of the flame retardants are associated with their influence on the dripping behaviour in the UL 94 test. Reduction in decomposition temperature and changed viscosity play a major role. A flow limit in flame-retarded PBT, enhanced decomposition of flame-retarded PP and PP-EP and the promotion of dripping in PA 6 are the salient features discussed.

  5. Recurrent plot analysis of discharge sequences in tracking test of polybutylene polymers

    Energy Technology Data Exchange (ETDEWEB)

    Du, B X; Gu, L; Dong, D S [Key Laboratory of Power System Simulation and Control of Ministry of Education, Department of Electrical Engineering, School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Zheng, X L [Henan Electric Power Survey and Design Institute, Henan 450007 (China)], E-mail: duboxue@tju.edu.cn

    2008-10-07

    Polymers are required to use in radiation environments as insulation materials. However, they often suffer from tracking failure. There is an increasing demand to evaluate radiation effects on dielectric performance. This paper presents a recurrence plot (RP) approach to analyse surface discharge sequences of gamma-ray irradiated polymer materials based on tracking test. Studying the non-linear characteristics of discharge sequences can assist in understanding the underlying mechanism of the discharge process. Discharge sequences of the test are extended to m-dimensional phase space by using the phase space reconstructed method. As test samples, polybutylene terephthalate (PBT) and polybutylene naphthalate (PBN) were irradiated to 100 kGy and then up to 1 MGy with a dosage rate of 10 kGy h{sup -1} by using a {sup 60}Co gamma source. The tracking tests were carried out according to the test method described in IEC60112. It is found that the RPs can give visual recurrent patterns of discharge sequences for identification of the effects of gamma-ray radiation dosage on the resistance to tracking of the polymers. The detection of recurrent patterns together with comparative tracking index value results indicate that with the increase in the radiation dosage, the resistance to tracking of PBT decreases, but increases for PBN.

  6. 78 FR 45512 - Polyethylene Terephthalate Film from India and Taiwan: Extension of Time Limits for Preliminary...

    Science.gov (United States)

    2013-07-29

    ... or Jacky Arrowsmith at 202-482-1396 or 202-482-5255, respectively, AD/CVD Operations, Office 6... terephthalate film (PET Film) from India and Taiwan, pursuant to section 751(c) of the Tariff Act of 1930, as..., Office of Investigations, International Trade Commission, regarding ``Sunset Reviews Initiated on April 2...

  7. 76 FR 57715 - Polyethylene Terephthalate Film, Sheet, and Strip From the Republic of Korea: Revocation of...

    Science.gov (United States)

    2011-09-16

    ..., and strip from the Republic of Korea would not be likely to lead to continuation or recurrence of... of Sales at Less Than Fair Value: Polyethylene Terephthalate Film, Sheet, and Strip From the Republic..., the Department determined that revocation of the antidumping duty order would be likely to lead to the...

  8. 76 FR 22867 - Polyethylene Terephthalate Film, Sheet, and Strip From the United Arab Emirates: Final Results of...

    Science.gov (United States)

    2011-04-25

    ... Film, Sheet, and Strip From the United Arab Emirates: Final Results of Antidumping Duty Administrative...) from the United Arab Emirates. This review covers two producers/ exporters of subject merchandise: JBF... Polyethylene Terephthalate Film, Sheet, and Strip From the United Arab Emirates: Preliminary Results of...

  9. 78 FR 29700 - Polyethylene Terephthalate Film, Sheet, and Strip From the United Arab Emirates: Final Results of...

    Science.gov (United States)

    2013-05-21

    ... Film, Sheet, and Strip From the United Arab Emirates: Final Results of Antidumping Duty Administrative... (PET Film) from the United Arab Emirates.\\1\\ This review covers two producers/exporters of subject... Terephthalate Film, Sheet, and Strip from the United Arab Emirates: Preliminary Results of Antidumping Duty...

  10. Confinement-induced vitrification in polyethylene terephthalate

    International Nuclear Information System (INIS)

    Balta Calleja, F. J.; Flores, A.; Di Marco, G.; Pieruccini, M.

    2007-01-01

    Dynamic mechanical thermal analysis performed on cold-drawn polyethylene terephthalate (PET), cold crystallized (annealed) in the temperature interval 100-140 deg. C, reveals the presence of marginally glassy domains above the annealing temperature T a . This suggests that the thermodynamic force driving crystallization causes the structural arrest of some noncrystalline domains. The latter thus need a temperature higher than T a to completely defreeze. Differential scanning calorimetry supports this point of view. Analogous investigations on unoriented PET, cold crystallized in the same conditions, do not show the same peculiarities; thus, chain orientation is relevant to vitrification. This phenomenology is first cast in the language of thermodynamics by introducing an excess chemical potential δμ describing the presence of structural constraints in the amorphous domains and the effect of chain orientation. For a first test of this picture, the orientation contribution to δμ is calculated by means of the Gaussian chain model (this implicitly assumes that δμ is related to the density fluctuations). The resulting expression is then used to discuss the structural differences between cold-drawn and unoriented PET samples reported in the literature

  11. The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ziyu [The School of Metallurgy and Materials, The College of Physical Sciences and Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Hay, J.N., E-mail: j.n.hay@bham.ac.uk [The School of Metallurgy and Materials, The College of Physical Sciences and Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Jenkins, M.J. [The School of Metallurgy and Materials, The College of Physical Sciences and Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2013-01-20

    Graphical abstract: Changes to infra-red spectra of poly(ethylene terephthalate) on heating and cooling. Highlights: Black-Right-Pointing-Pointer Microgram samples have been analysed to determine glass transition, crystallization and melting behaviour of PET. Black-Right-Pointing-Pointer The absorbance of cis/trans bands have been followed with temperature on heating and cooling. Black-Right-Pointing-Pointer Fractional crystallinity was determined directly without calibration. Black-Right-Pointing-Pointer The IR absorption bands are characterized as type I or type II according to their behaviour with temperature. - Abstract: Thermal analysis-FTIR spectroscopy, TA-FTIR, has been used to characterize the phase transitions in thin films of poly(ethylene terephthalate) and it has been shown to have distinct advantages over other TA techniques in particular it was not so limited in sensitivity. Since the technique measured property, such as amorphous content or fractional crystallinity directly rather than the rate of change of the properties with time or temperature, it was not so restricted in the time scale over which measurements were made. It also had the advantage of measuring the change in concentration of different functional groups with temperature and determining the temperature range over which chain mobility set in and defining the type of molecular groups involved in the configurational changes. The change in absorbance and shift in peak position with temperature are discussed in terms of the separation of crystalline and amorphous bands as well as defining the cis/trans ratio as a function of temperature. Depending on the change in absorbance or peak position with temperature of the IR bands, they have been characterized as type I or type II behaviour. Measurements on both have been used to characterize the glass transition, crystallization and melting behaviour of PET.

  12. The thermal analysis of poly(ethylene terephthalate) by FTIR spectroscopy

    International Nuclear Information System (INIS)

    Chen, Ziyu; Hay, J.N.; Jenkins, M.J.

    2013-01-01

    Graphical abstract: Changes to infra-red spectra of poly(ethylene terephthalate) on heating and cooling. Highlights: ► Microgram samples have been analysed to determine glass transition, crystallization and melting behaviour of PET. ► The absorbance of cis/trans bands have been followed with temperature on heating and cooling. ► Fractional crystallinity was determined directly without calibration. ► The IR absorption bands are characterized as type I or type II according to their behaviour with temperature. - Abstract: Thermal analysis-FTIR spectroscopy, TA-FTIR, has been used to characterize the phase transitions in thin films of poly(ethylene terephthalate) and it has been shown to have distinct advantages over other TA techniques in particular it was not so limited in sensitivity. Since the technique measured property, such as amorphous content or fractional crystallinity directly rather than the rate of change of the properties with time or temperature, it was not so restricted in the time scale over which measurements were made. It also had the advantage of measuring the change in concentration of different functional groups with temperature and determining the temperature range over which chain mobility set in and defining the type of molecular groups involved in the configurational changes. The change in absorbance and shift in peak position with temperature are discussed in terms of the separation of crystalline and amorphous bands as well as defining the cis/trans ratio as a function of temperature. Depending on the change in absorbance or peak position with temperature of the IR bands, they have been characterized as type I or type II behaviour. Measurements on both have been used to characterize the glass transition, crystallization and melting behaviour of PET.

  13. Synthesis of terephthalic acid via Diels-Alder reactions with ethylene and oxidized variants of 5-hydroxymethylfurfural

    Science.gov (United States)

    Pacheco, Joshua J.; Davis, Mark E.

    2014-01-01

    Terephthalic acid (PTA), a monomer in the synthesis of polyethylene terephthalate (PET), is obtained by the oxidation of petroleum-derived p-xylene. There is significant interest in the synthesis of renewable, biomass-derived PTA. Here, routes to PTA starting from oxidized products of 5-hydroxymethylfurfural (HMF) that can be produced from biomass are reported. These routes involve Diels-Alder reactions with ethylene and avoid the hydrogenation of HMF to 2,5-dimethylfuran. Oxidized derivatives of HMF are reacted with ethylene over solid Lewis acid catalysts that do not contain strong Brønsted acids to synthesize intermediates of PTA and its equally important diester, dimethyl terephthalate (DMT). The partially oxidized HMF, 5-(hydroxymethyl)furoic acid (HMFA), is reacted with high pressure ethylene over a pure-silica molecular sieve containing framework tin (Sn-Beta) to produce the Diels-Alder dehydration product, 4-(hydroxymethyl)benzoic acid (HMBA), with 31% selectivity at 61% HMFA conversion after 6 h at 190 °C. If HMFA is protected with methanol to form methyl 5-(methoxymethyl)furan-2-carboxylate (MMFC), MMFC can react with ethylene in the presence of Sn-Beta for 2 h to produce methyl 4-(methoxymethyl)benzenecarboxylate (MMBC) with 46% selectivity at 28% MMFC conversion or in the presence of a pure-silica molecular sieve containing framework zirconium (Zr-Beta) for 6 h to produce MMBC with 81% selectivity at 26% MMFC conversion. HMBA and MMBC can then be oxidized to produce PTA and DMT, respectively. When Lewis acid containing mesoporous silica (MCM-41) and amorphous silica, or Brønsted acid containing zeolites (Al-Beta), are used as catalysts, a significant decrease in selectivity/yield of the Diels-Alder dehydration product is observed. PMID:24912153

  14. Proton beam therapy in non-small cell lung cancer: state of the art

    Directory of Open Access Journals (Sweden)

    Harada H

    2017-08-01

    Full Text Available Hideyuki Harada, Shigeyuki Murayama Radiation and Proton Therapy Center, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka, Japan Abstract: This review summarizes the past and present status of proton beam therapy (PBT for lung cancer. PBT has a unique characteristic called the Bragg peak that enables a reduction in the dose of normal tissue around the tumor, but is sensitive to the uncertainties of density changes. The heterogeneity in electron density for thoracic lesions, such as those in the lung and mediastinum, and tumor movement according to respiration necessitates respiratory management for PBT to be applied in lung cancer patients. There are two types of PBT – a passively scattered approach and a scanning approach. Typically, a passively scattered approach is more robust for respiratory movement and a scanning approach could result in a more conformal dose distribution even when the tumor shape is complex. Large tumors of centrally located lung cancer may be more suitably irradiated than with intensity-modulated radiotherapy (IMRT or stereotactic body radiotherapy (SBRT. For a locally advanced lung cancer, PBT can spare the lung and heart more than photon IMRT. However, no randomized controlled trial has reported differences between PBT and IMRT or SBRT for early-stage and locally advanced lung cancers. Therefore, a well-designed controlled trial is warranted. Keywords: proton beam therapy, non-small cell lung cancer, survival, SBRT, IMRT

  15. Cell Proliferation on Polyethylene Terephthalate Treated in Plasma Created in SO2/O2 Mixtures

    Directory of Open Access Journals (Sweden)

    Nina Recek

    2017-02-01

    Full Text Available Samples of polymer polyethylene terephthalate were exposed to a weakly ionized gaseous plasma to modify the polymer surface properties for better cell cultivation. The gases used for treatment were sulfur dioxide and oxygen of various partial pressures. Plasma was created by an electrodeless radio frequency discharge at a total pressure of 60 Pa. X-ray photoelectron spectroscopy showed weak functionalization of the samples’ surfaces with the sulfur, with a concentration around 2.5 at %, whereas the oxygen concentration remained at the level of untreated samples, except when the gas mixture with oxygen concentration above 90% was used. Atomic force microscopy revealed highly altered morphology of plasma-treated samples; however, at high oxygen partial pressures this morphology vanished. The samples were then incubated with human umbilical vein endothelial cells. Biological tests to determine endothelialization and possible toxicity of the plasma-treated polyethylene terephthalate samples were performed. Cell metabolic activity (MTT and in vitro toxic effects of unknown compounds (TOX were assayed to determine the biocompatibility of the treated substrates. The biocompatibility demonstrated a well-pronounced maximum versus gas composition which correlated well with development of the surface morphology.

  16. Controlled change of transport properties of poly(ethylene terephthalate) track membranes by plasma method

    International Nuclear Information System (INIS)

    Kravets, L I; Dmitriev, S N; Drachev, A I; Gilman, A B; Lazea, A; Dinescu, G

    2007-01-01

    A process of plasma polymerization of dimethylaniline and acrylic acid vapours on the surface of poly(ethylene terephthalate) track membranes has been investigated. The surface and hydrodynamic properties of the composite membranes produced in this case have been studied. It is shown that the water permeability of the obtained polymeric membranes can be controlled by changing the filtrate pH. Membranes with such properties can be used for controllable drug delivery and in sensor control

  17. Oxygen Barrier Properties and Melt Crystallization Behavior of Poly(ethylene terephthalate)/Graphene Oxide Nanocomposites

    OpenAIRE

    Szymczyk, Anna; Paszkiewicz, Sandra; Pawelec, Iwona; Lisiecki, Slawomir; Jotko, Marek; Spitalsky, Zdenko; Mosnácek, Jaroslav; Roslaniec, Zbigniew

    2015-01-01

    Poly(ethylene terephthalate) nanocomposites with low loading (0.1–0.5 wt%) of graphene oxide (GO) have been prepared by using in situ polymerization method. TEM study of nanocomposites morphology has shown uniform distribution of highly exfoliated graphene oxide nanoplatelets in PET matrix. Investigations of oxygen permeability of amorphous films of nanocomposites showed that the nanocomposites had better oxygen barrier properties than the neat PET. The improvement of oxygen permeability for ...

  18. 76 FR 45508 - Polyethylene Terephthalate Film, Sheet and Strip From the United Arab Emirates: Extension of Time...

    Science.gov (United States)

    2011-07-29

    ... Film, Sheet and Strip From the United Arab Emirates: Extension of Time Limit for Preliminary Results of... polyethylene terephthalate film, sheet and strip from the United Arab Emirates (UAE) for the period November 01... producer and/or exporter of the subject merchandise to the United States: JBF RAK LLC (JBF). Extension of...

  19. Hydrophilic-impermeable modified polyethylene terephthalate for selective endothelialization

    Science.gov (United States)

    Chetouane, D.; Fafet, J. F.; Barbet, R.; Dieval, F.

    2017-10-01

    The aim of this study was to create a modified polyethylene terephthalate (PET) responding to vascular implants’ requirements, mainly with a surface promoting selective endothelialization. The surface alteration was carried out by hydrophilic functionalization in an alkaline solution with the presence of specific surfactant (TA). The carboxylic groups resulting from this reaction were quantified by colorimetric titration using bleu toluidine O dye (TBO). A single-sided coating process was then optimized to cover the PET surface by micro spherical structures’ polymeric layer. This coating provided to the PET surface high impermeability to the water under a pressure of 120 mmHg and enhanced its hydrophilic property. This spherical topography reduced the adhesion of Mesenchymal Stem Cells (MSC) by 37% and inhibited their proliferation after 3 days by 50%. The hydrophilic functionalized PET (PET-TA) surface decreased the MSC adhesion by 50% and promoted HUVEC attachment with a number twice more important than the number of HUVEC adhered onto non treated-PET.

  20. Phase Separation and Elastic Properties of Poly(Trimethylene Terephthalate)-block-poly(Ethylene Oxide) Copolymers

    OpenAIRE

    Elżbieta Piesowicz; Sandra Paszkiewicz; Anna Szymczyk

    2016-01-01

    A series of poly(trimethylene terephthalate)-block-poly(ethylene oxide) (PTT-b-PEOT) copolymers with different compositions of rigid PTT and flexible PEOT segments were synthesized via condensation in the melt. The influence of the block length and the block ratio on the micro-separated phase structure and elastic properties of the synthesized multiblock copolymers was studied. The PEOT segments in these copolymers were kept constant at 1130, 2130 or 3130 g/mol, whereas the PTT content varied...

  1. Low-voltage electroosmotic pumping using polyethylene terephthalate track-etched membrane

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ceming; Wang Lin [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Xue Jianming, E-mail: jmxue@pku.edu.cn [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)

    2012-09-01

    We present experimental investigations of electroosmotic (EO) pumping using polyethylene terephthalate (PET) track-etched membrane at a low applied voltage. An EO pump based on PET track-etched membrane has been designed and fabricated. Pumping performance of the device is experimentally studied in terms of flow rate as a function of applied voltage and KCl aqueous concentration. The PET track-etched membrane EO pump can generate flow rates on the order of 10 {mu}l min{sup -1} cm{sup -2} at several applied volts. The measured flow rate tends to decrease with increasing KCl aqueous concentration. In addition, we study the EO flow in cylindrical nanopore with use of a continuum model, composed of Nernst Planck equations, Poisson equation and Navier Stokes equations.

  2. Electrical conduction in 100 keV Kr+ ion implanted poly (ethylene terephthalate)

    Science.gov (United States)

    Goyal, P. K.; Kumar, V.; Gupta, Renu; Mahendia, S.; Anita, Kumar, S.

    2012-06-01

    Polyethylene terephthalate (PET) samples have been implanted to 100 keV Kr+ ions at the fluences 1×1015-- 1×1016 cm-2. From I-V characteristics, the conduction mechanism was found to be shifted from ohmic to space charge limited conduction (SCLC) after implantation. The surface conductivity of these implanted samples was found to increase with increasing implantation dose. The structural alterations in the Raman spectra of implanted PET samples indicate that such an increase in the conductivity may be attributed to the formation of conjugated double bonded carbonaceous structure in the implanted layer of PET.

  3. Hidrólise parcial da superfície do polyethylene terephthalate (PET: transformando um rejeito em um material de troca catiônica para aplicação ambiental Partial hydrolysis of pet surface: transforming a plastic waste into a material with cationic exchange properties for environmental application

    Directory of Open Access Journals (Sweden)

    Marcelo G. Rosmaninho

    2009-01-01

    Full Text Available In this work it is proposed a simple and versatile undergraduate chemical experiment in polymer and environmental technology based on the process of polyethylene terephthalate (PET hydrolysis. Polyethylene terephthalate from post-consume bottles is submitted to a controlled partial hydrolysis which allows the students to follow the reaction by a simple procedure. The students can explore the reaction kinetics, the effect of catalysts and the exposed polyethylene terephthalate surface area on the hydrolysis reaction. The second and innovative part of this experiment is the technological and environmental application of the hydrolyzed polyethylene terephthalate as a material with cation exchange properties. The surface hydrolyzed polyethylene terephthalate can be used as adsorbent for cationic contaminants.

  4. Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly (ethylene terephthalate) composites

    International Nuclear Information System (INIS)

    Dehghani, Alireza; Madadi Ardekani, Sara; Al-Maadeed, Mariam A.; Hassan, Azman; Wahit, Mat Uzir

    2013-01-01

    Highlights: • A novel natural fiber reinforced recycled poly (ethylene terephthalate) composite was prepared. • Mechanical performance and thermal behavior of the composites were investigated. • Composites with improved toughness and strength were achieved. - Abstract: Development of a recycled poly (ethylene terephthalate) (PETr) reinforced with surface treated date palm leaf fiber (DPLF) composites with enhanced mechanical properties have been studied. Surface modified date palm leaf fiber reinforced PETr composites were prepared using twin-screw extruder followed by injection molding and the influence of the DPLF content on the mechanical and thermal behavior of the PETr matrix was evaluated. Upon the addition of fibers, remarkable enhancements in the mechanical properties of the composites were observed. Scanning electron microscopy (SEM) images taken from DPLF fibers showed significant enhancements in the fiber’s surface topography after the surface treatment process. Dynamic mechanical analysis (DMA) indicated that the addition of DPLF to PETr matrix increased the composites toughness. The crystallization behavior of the samples, analyzed by differential scanning calorimetry (DSC) indicated an increase in the onset crystallization temperature and showed a higher degree of crystallinity of the composites as compared to PETr, demonstrating that DPLF particles could act as nucleating agents. The results point to the composite’s potential in wider indoor applications

  5. SAXS studies of the injection molding effects on the nanostructure of polyesters. II: polytrimetylene terephthalate (PTT)

    International Nuclear Information System (INIS)

    Marinelli, Alessandra L.; Plivelic, Tomas; Torriani, Iris; Bretas, Rosario E.S.

    2005-01-01

    In this work, the nanoperiodicity of some PTT samples, injection molded at different conditions, was evaluated as a function of the thickness of the samples. From the small angle X-ray scattering (SAXS) results, it was possible to observe that, as expected, there is a gradient of the L and lc values found through the thickness of the PTT samples. It was also found that at the center of the PTT sample injection molded at low injection temperature, Ti, the crystallinity degree evaluated previously by wide angle X-ray diffraction (WAXD) is high and the orientation in this region must be also high, because smaller values of L and l C were found at this region of the sample. The opposite trend was found to PBT.(author)

  6. Plastic Degradation and Its Environmental Implications with Special Reference to Poly(ethylene terephthalate

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2012-12-01

    Full Text Available With increasing global consumption and their natural resistance to degradation, plastic materials and their accumulation in the environment is of increasing concern. This review aims to present a general overview of the current state of knowledge in areas that relate to biodegradation of polymers, especially poly(ethylene terephthalate (PET. This includes an outline of the problems associated with plastic pollution in the marine environment, a description of the properties, commercial manufacturing and degradability of PET, an overview of the potential for biodegradation of conventional polymers and biodegradable polymers already in production.

  7. Deformation mechanisms of a porous structure of the poly(ethylene terephthalate) nuclear track membrane

    International Nuclear Information System (INIS)

    Ovchinnikov, V.V.

    1989-01-01

    The deformation mechanisms of a porous structure of the nuclear track membrane made of poly(ethylene terephthalate) are investigated in the temperature range from 333 to 473 K. It is shown that the pore size of the membrane can both decrease and increase. The analytical equation based on the Alfrey mechanical approach to the relaxation deformation of polymers describes the experimental data satisfactorily over the whole range of temperatures and pore radii of the membranes. 21 refs.; 5 figs.; 3 tabs

  8. Exposure to di-2-ethylhexyl terephthalate in a convenience sample of U.S. adults from 2000 to 2016.

    Science.gov (United States)

    Silva, Manori J; Wong, Lee-Yang; Samandar, Ella; Preau, James L; Calafat, Antonia M; Ye, Xiaoyun

    2017-10-01

    Di-2-ethylhexyl terephthalate (DEHTP), a structural isomer of di-2-ethylhexyl phthalate (DEHP), is a plasticizer used in a variety of commercial applications, but data on Americans' exposure to DEHTP do not exist. We investigated the exposure to DEHTP in a convenience group of U.S. adults by analyzing urine collected anonymously in 2000 (N = 44), 2009 (N = 61), 2011 (N = 81), 2013 (N = 92), and 2016 (N = 149) for two major DEHTP oxidative metabolites: mono-2-ethyl-5-carboxypentyl terephthalate (MECPTP) and mono-2-ethyl-5-hydroxyhexyl terephthalate (MEHHTP). For comparison, we also quantified the analogous DEHP metabolites mono-2-ethyl-5-hydroxyhexyl phthalate (MEHHP) and mono-2-ethyl-5-carboxypentyl phthalate (MECPP). We detected MECPTP, MEHHP, and MECPP in all samples collected in 2016 with geometric means of 13.1, 4.1, and 6.7 ng/mL, respectively; we detected MEHHTP in 91% of the samples (geometric mean = 3.1 ng/mL). Concentrations of MECPTP correlated well with those of MEHHTP (R 2  = 0.8, p  0.05) suggesting different sources of exposure to DEHP and DEHTP. We also evaluated the fraction of the metabolites eliminated in their free (i.e., unconjugated) form. The median percent of unconjugated species was lower for the DEHP metabolites (MECPP [45.5%], MEHHP [1.9%]) compared to the DEHTP metabolites (MECPTP [98.8%], MEHHTP [21.2%]). Contrary to the downward trend from 2000 to 2016 in urinary concentrations of MEHHP and MECPP, we observed an upward trend for MEHHTP and MECPTP. These preliminary data suggest that exposure to DEHTP may be on the rise. Nevertheless, general population exposure data using MEHHTP and MECPTP as exposure biomarkers would increase our understanding of exposure to DEHTP, one of the known DEHP alternatives.

  9. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature

    OpenAIRE

    Hal?sz, Istv?n Zolt?n; B?r?ny, Tam?s

    2016-01-01

    In this work, the effect of mixing temperature (Tmix) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity cha...

  10. HPLC study of migration of terephthalic acid and isophthalic acid from PET bottles into edible oils.

    Science.gov (United States)

    Khaneghah, Amin Mousavi; Limbo, Sara; Shoeibi, Shahram; Mazinani, Somayeh

    2014-08-01

    Polyethylene terephthalate (PET) containers for food oil packaging were evaluated with a newly established determination method for terephthalic acid (TPA) and isophthalic acid (IPA). The analysis of monomers, TPA and IPA that migrate from PET bottles into oils was performed using high-pressure liquid chromatography with a diode array detector. Three types of commercial oils (sunflower oil, canola oil and blended oil which included sunflower oil, soy bean oil and cottonseed oil) were bottled in PET containers. These samples were incubated for 10 days at 49 °C as accelerated test condition. The means of recovery for this method varied from 70% to 72% and from 101% to 111% for TPA and IPA, respectively. The results showed that the amounts of specific migration of TPA and IPA into the samples conform to European Union legislation that identifies specific migration limits. More important, the results highlighted a different behavior of migration as a function of the fatty acid profile. Previous investigations have been performed with food simulants such as HB307 or 20% ethanol but our study used real food samples and determined trace amounts of the migrated compounds. Further investigation will be needed to better explain the influence of fatty acid conformation on migration of PET monomers. © 2013 Society of Chemical Industry.

  11. Modification of N-Methyl-N-Nitrosourea initiated bladder carcinogenesis in Wistar rats by terephthalic acid

    International Nuclear Information System (INIS)

    Cui Lunbiao; Shi Yuan; Dai Guidong; Pan Hongxin; Chen Jianfeng; Song Ling; Wang Shouling; Chang, Hebron C.; Sheng Hongbing; Wang Xinru

    2006-01-01

    The effect of terephthalic acid (TPA) on urinary bladder carcinogenesis was examined. Male Wistar rats were initiated by injection of N-Methyl-N-Nitrosourea (MNU) (20 mg/kg b.w. ip) twice a week for 4 weeks, then given basal diet containing 5% TPA, 5% TPA plus 4% Sodium bicarbonate (NaHCO 3 ) or 1% TPA for the next 22 weeks, and then euthanized. 5% TPA treatment induced a high incidence of urinary bladder calculi and a large amount of precipitate. Though 5% TPA plus 4% Sodium bicarbonate (NaHCO 3 ) and 1% TPA treatment did not induce urinary bladder calculi formation, they resulted in a moderate increase in urinary precipitate. Histological examination of urinary bladder revealed that MNU-5% TPA treatment resulted in a higher incidence of simple hyperplasia, papillary or nodular hyperplasia (PN hyperplasia), papilloma and cancer than MNU control. MNU-5% TPA plus 4% Sodium bicarbonate (NaHCO 3 ) and 1% TPA treatment increased slightly the incidence of simple hyperplasia and PN hyperplasia (not statistically significant). The major elements of the precipitate are phosphorus, potassium, sulfur, chloride, calcium and TPA. The present study indicated that the calculi induced by TPA had a strong promoting activity on urinary bladder carcinogenesis and the precipitate containing calcium terephthalate (CaTPA) may also have weak promoting activity on urinary bladder carcinogenesis

  12. Characterization polyethylene terephthalate nanocomposites mixing with nano-silica and titanium oxide

    Directory of Open Access Journals (Sweden)

    Rusu Mircea A.

    2017-01-01

    Full Text Available Polyethylene terephthalate (PET based nanocomposites containing nano-silica (Aerosil (Degusa and titanium oxide (TiO2 (Merk were prepared by melt compounding. Influence of nano-silica and titanium oxide on properties of the resulting nanocomposites was investigated by scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR and atomic force microscopy (AFM. The possible interaction between nano-silica and titanium oxide particles with PET functional groups at bulk and surface was elucidated by transmission of FTIR-ATR spectroscopy. AFM studies of the resulting nanocomposites showed an increased surface roughness compared to pure PET. SEM images illustrated that nano-silica particles have tendency to migrate to the surface of the PET matrix much more than titanium oxide powder.

  13. Perioperative Blood Transfusion Promotes Worse Outcomes of Bladder Cancer after Radical Cystectomy: A Systematic Review and Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    You-Lin Wang

    Full Text Available Multiple studies have investigated the effect of perioperative blood transfusion (PBT for patients with radical cystectomy (RC, but the results have been inconsistent. We conducted a systematic review and meta-analysis to investigate the relationship between PBT and the clinical outcomes of RC patients.We searched MEDLINE, EMBASE, the Cochrane library and BIOSIS previews to identify relevant literature for studies that focused on the relationship of PBT and outcomes of patients undergoing RC. A fixed or random effects model was used in this meta-analysis to calculate the pooled hazard ratio (HR with 95% confidence intervals (CIs.A total of 7080 patients in 6 studies matched the selection criteria. Aggregation of the data suggested that PBT in patients who underwent RC correlated with increased all-cause mortality, cancer-specific mortality and cancer recurrence. The combined HRs were 1.19 (n = 6 studies, 95% CI: 1.11-1.27, Z = 4.71, P<0.00001, 1.17 (n = 4 studies, 95% CI: 1.06-1.30, Z = 3.06, P = 0.002, 1.14 (n = 3 studies, 95% CI: 1.03-1.27, Z = 2.50, P = 0.01, respectively. The all-cause mortality associated with PBT did not vary by the characteristics of the study, including number of study participants, follow-up period and the median blood transfusion ratio of the study.Our data showed that PBT significantly increased the risks of all-cause mortality, cancer-specific mortality and cancer recurrence in patients undergoing RC for bladder cancer.

  14. Plasma-chemical modification of the structure and properties of poly(ethylene terephthalate) track membranes

    International Nuclear Information System (INIS)

    Kravets, L I; Dmitriev, S N; Dinescu, G; Lazea, A; Sleptsov, V V; Elinson, V M

    2007-01-01

    A process of extraction of the low-molecular products of the synthesis from the poly(ethylene terephthalate) track membranes modified by plasma has been investigated. It is shown that the deposition of a thin polymeric hydrocarbon film by cyclohexane plasma on the membrane surface with preliminary treatment in a plasma of non-polymerizing gases, for example oxygen, allows one to produce membranes possessing a high productivity. Their advantages are much better hydrodynamic properties and a small amount of the low-molecular products of the synthesis extracted by organic solvents

  15. Solvothermal synthesis of uranium(VI) phases with aromatic carboxylate ligands: A dinuclear complex with 4-hydroxybenzoic acid and a 3D framework with terephthalic acid

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingjie, E-mail: yzx@ansto.gov.au [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Karatchevtseva, Inna [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Bhadbhade, Mohan [Mark Wainwright Analytical Centre, University of New South Wales, Kensington, NSW 2052 (Australia); Tran, Toan Trong; Aharonovich, Igor [School of Physics and Advanced Materials, University of Technology Sydney, Ultimo, NSW 2007 (Australia); Fanna, Daniel J.; Shepherd, Nicholas D. [School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 (Australia); Lu, Kim [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Li, Feng [School of Science and Health, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751 (Australia); Lumpkin, Gregory R. [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2016-02-15

    With the coordination of dimethylformamide (DMF), two new uranium(VI) complexes with either 4-hydroxybenzoic acid (H{sub 2}phb) or terephthalic acid (H{sub 2}tph) have been synthesized under solvothermal conditions and structurally characterized. [(UO{sub 2}){sub 2}(Hphb){sub 2}(phb)(DMF)(H{sub 2}O){sub 3}]·4H{sub 2}O (1) has a dinuclear structure constructed with both pentagonal and hexagonal bipyramidal uranium polyhedra linked through a µ{sub 2}-bridging ligand via both chelating carboxylate arm and alcohol oxygen bonding, first observation of such a coordination mode of 4-hydroxybenzoate for 5 f ions. [(UO{sub 2})(tph)(DMF)] (2) has a three-dimensional (3D) framework built with pentagonal bipyramidal uranium polyhedra linked with µ{sub 4}-terephthalate ligands. The 3D channeled structure is facilitated by the unique carboxylate bonding with nearly linear C–O–U angles and the coordination of DMF molecules. The presence of phb ligands in different coordination modes, uranyl ions in diverse environments and DMF in complex 1, and tph ligand, DMF and uranyl ion in complex 2 has been confirmed by Raman spectroscopy. In addition, their thermal stability and photoluminescence properties have been investigated. - Graphical abstract: With the coordination of dimethylformamide, two new uranyl complexes with either 4-hydroxybenzoate or terephthalate have been synthesized under solvothermal conditions and structurally characterized. - Highlights: • Solvent facilitates the synthesis of two new uranium(VI) complexes. • A dinuclear complex with both penta- and hexagonal bipyramidal uranium polyhedral. • A unique µ{sub 2}-bridging mode of 4-hydroxybenzoate via alcohol oxygen for 5 f ions. • A 3D framework with uranium polyhedra and µ{sub 4}-terephthalate ligands. • Vibration modes and photoluminescence properties are reported.

  16. Selective capillary diffusion of equimolar H2/D2 gas mixtures through etched ion track membranes prepared from polyethylene terephthalate and polyimide

    International Nuclear Information System (INIS)

    Schmidt, K.; Angert, N.; Trautmann, C.

    1996-01-01

    The selective capillary diffusion of equimolar H 2 /D 2 gas mixtures through ion track membranes prepared from polyethylene terephthalate and polyimide was investigated at a temperature of 293 K, a primary pressure of 0.15 MPa and a secondary pressure of 10 -4 MPa. Different values of the separation factor Z(H 2 /D 2 ) between experiment and computer simulation exists in the case of polyethylene terephthalate ion track membranes because of multiple pores. Membranes for which multiple pores were reduced by varying the irradiation angle showed an increased separation factor. The separation factor is a function of the pore diameter. This is shown for polyimide ion track membranes with a pore size in the range of 0.17 and 0.5 μm. After grafting with styrene the separation factor increased, indicating grafting within the pores. (orig.)

  17. Time, Temperature and Amount of Distilled Water Effects on the Purity and Yield of Bis(2-hydroxyethyl Terephthalate Purification System

    Directory of Open Access Journals (Sweden)

    H.W. Goh

    2015-07-01

    Full Text Available Polyethylene terephthalate (PET bottle is one of the common plastic wastes existed in the municipal solid waste in Malaysia. One alternative to solve the abundant of PET wastes is chemical recycling of the wastes to produce a value added product. This technology not only can decrease the PET wastes in landfill sites but also can produce many useful recycled PET products. Bis(2-hydroxyethyl terephthalate (BHET obtained from glycolysis reaction of PET waste was purified using crystallization process. The hot distilled water was added to glycolysis product followed by cooling and filtration to extract BHET in white solid form from the product. The effect of three operating conditions namely crystallization time, crystallization temperatures and amount of distilled water used to the yield of crystallization process were investigated. The purity of crystallization products were analyzed using HPLC and DSC. The optimum conditions of 3 hours crystallization time, 2 °C crystallization temperature and 5:1 mass ratio of distilled water used to glycolize solid gave the highest yield and purity of the crystallization process. © 2015 BCREC UNDIP. All rights reservedReceived: 12nd August 2014; Revised: 4th February 2015; Accepted: 5th February 2015How to Cite: Goh, H.W., Salmiaton, A., Abdullah, N., Idris, A. (2015. Time, Temperature and Amount of Distilled Water Effects on the Purity and Yield of Bis(2-hydroxyethyl Terephthalate Purification System. Bulletin of Chemical Reaction Engineering & Catalysis, 10 (2: 143-154. (doi:10.9767/bcrec.10.2.7195.143-154 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7195.143-154  

  18. Effect of [gamma]-irradiation on latent tracks of polyethylene terephthalate (PET) film

    Science.gov (United States)

    Hiroki, A.; Asano, M.; Yamaki, T.; Yoshida, M.

    2005-04-01

    The pre-treatment effect of γ-irradiation on latent tracks of polyethylene terephthalate (PET) films bombarded with swift heavy ions was investigated by electric conductometry and scanning electron microscope (SEM) observation. The Xe-ion bombarded PET films were etched for 6 h in 0.2 M NaOH aqueous solution at 70 °C to prepare track-etched membranes. As γ-irradiation doses increased in the range of 0-160 kGy, the surface pore diameter obtained by SEM observation decreased while that obtained by conductometry became large. This inconsistent result between the two methods was due to an increase in the crosslinked region in the latent tracks caused by γ-irradiation.

  19. Rapid compression induced solidification of two amorphous phases of poly(ethylene terephthalate)

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S M [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Liu, X R [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Su, L [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Huang, D H [Laboratory of High Pressure Physics, Southwest Jiaotong University, Chengdu, 610031 (China); Li, L B [Foods Research Centre Unilever R and D, Vlaardingen Olivier van Noortlaan, 120, 3133 AT Vlaardingen (Netherlands)

    2006-08-21

    Melts of poly(ethylene terephthalate) were solidified by rapid compression to 2 GPa within 20 ms and by a series of comparative processes including natural cooling, slow compressing and rapid cooling, respectively. By combining XRD and differential scanning calorimetry data of the recovered samples, it is made clear that rapid compression induces two kinds of amorphous phases. One is relatively stable and can also be formed in the slow compression and the cooling processes. Another is metastable and transforms to crystalline phase at 371 K. This metastable amorphous phase cannot be obtained by slow compression or natural cooling, and its crystallization temperature is remarkably different from that of the metastable amorphous phase formed in the rapid cooling sample.

  20. Decreasing redox voltage of terephthalate-based electrode material for Li-ion battery using substituent effect

    Science.gov (United States)

    Lakraychi, A. E.; Dolhem, F.; Djedaïni-Pilard, F.; Thiam, A.; Frayret, C.; Becuwe, M.

    2017-08-01

    The preparation and assessment versus lithium of a functionalized terephthalate-based as a potential new negative electrode material for Li-ion battery is presented. Inspired from molecular modelling, a decrease in redox potential is achieved through the symmetrical adjunction of electron-donating fragments (-CH3) on the aromatic ring. While the electrochemical activity of this organic material was maximized when used as nanocomposite and without any binder, the potential is furthermore lowered by 110 mV upon functionalization, consistently with predicted value gained from DFT calculations.

  1. Simultaneous recovery of benzene-rich oil and metals by steam pyrolysis of metal-poly(ethylene terephthalate) composite waste.

    Science.gov (United States)

    Kumagai, Shogo; Grause, Guido; Kameda, Tomohito; Yoshioka, Toshiaki

    2014-03-18

    The possibility of simultaneous recovery of benzene and metals from the hydrolysis of poly(ethylene terephthalate) (PET)-based materials such as X-ray films, magnetic tape, and prepaid cards under a steam atmosphere at a temperature of 450 °C was evaluated. The hydrolysis resulted in metal-containing carbonaceous residue and volatile terephthalic acid (TPA). The effects of metals and additives on the recovery process were also investigated. All metals were quantitatively recovered, and silver, maghemite (γ-Fe2O3), and anatase (TiO2) were recovered without any changes in their crystal structures or compositions. In a second step, TPA was decarboxylized in the presence of calcium oxide (CaO) at 700 °C, producing benzene with an average yield of 34% and purity of 76%. Maghemite (γ-Fe2O3) incorporated in magnetic tape and prepaid cards could decarboxylate TPA. Aluminum present in the prepaid cards produced hydrogen by the reaction with steam. However, the presence of metals had no adverse influence on the recovery of benzene-rich oil in the presence of CaO. Therefore, this method can be applied to PET-based materials containing inorganic substances, which cannot be recycled effectively otherwise.

  2. Melting and crystallization of in-situ polymerized cyclic butylene terephthalates with and without organoclay: a modulated DSC study

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available The polymerization of cyclic butylene terephthalate oligomers (CBT were studied in presence (in 5 wt.% and absence of an organoclay (Cloisite® 30B by modulated DSC (MDSC. The organoclay containing samples were produced by dry and melt blending, respectively. The first heating, causing the polymerization of the CBT catalyzed by an organotin compound, was followed by cooling prior to the second heating. The MDSC scans covered the temperature interval between 0 and 260°C. The aim of this protocol was to study the crystallization and melting behavior of the resulting polybutylene terephthalate (pCBT and its organoclay modified nanocomposites. It was found that the thermal behaviors of the polymerizing and polymerized CBT (pCBT were strongly affected by the sample preparation. The organoclay suppressed the crystallization of the pCBT produced during the first heating. However, results from the second heating suggest that more perfect crystallites were formed in the organoclay modified pCBT variants. The organoclay also affected the conversion and mean molecular mass of the resulting pCBT which were slightly lower than those of the plain pCBT polymerized under identical conditions.

  3. Texturation and superhydrophobicity of polyethylene terephthalate thanks to plasma technology

    International Nuclear Information System (INIS)

    Tarrade, Jeanne; Darmanin, Thierry; Taffin de Givenchy, Elisabeth; Guittard, Frédéric; Debarnot, Dominique

    2014-01-01

    Anti-bioadhesive surfaces were designed from polyethylene terephthalate (PET) by three steps plasma-treatment. First, the nano-pattern is created by oxygen plasma-treatment with controlled dimensions. Then, the plasma-treated polymeric surface was hydrophobized with a tetrafluorocarbon plasma, allowing to obtain a water contact angle of 145 ± 4°. However, the SEM pictures give evidence to show the degradation of the structuration caused by the CF 4 -plasma and consequently, the superhydrophobicity was not reached. Thus, a plasma-polypyrrole layer was deposited before the plasma-fluorination, which has a protective role against the degradation generated by fluorinated species, preserving the structuration and improving the fluorination rate. Therefore, the obtained surfaces are superhydrophobic with water contact angle of 157 ± 2° and a hysteresis of 65 ± 3°. The ability of these surfaces to reduce bioadhesion will be performed in further work.

  4. The study on grafting comonomer of n-butyl acrylate and styrene onto poly(ethylene terephthalate) film by gamma-ray induced graft copolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Ping Xiang; Wang Mozhen [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ge Xuewu, E-mail: xwge@ustc.edu.c [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2010-09-15

    Poly(ethylene terephthalate) (PET) film was successfully grafted with n-butyl acrylate and styrene comonomer through gamma-ray induced graft copolymerization. The degree of grafting (DG) and the composition of grafted side chain were characterized by {sup 1}H NMR. It was found that St can inhibit the homopolymerization of BA effectively and increase the DG when the concentration of comonomer mixture is kept constant. The proportion of St to BA in grafted side chain has a positive dependence on the feed ratio of St, which ultimately approaches the feed ratio. The thermal properties of poly(ethylene terephthalate)-graft-poly(n-butyl acrylate-co-styrene) (PET-g-P(BA-co-St)) films were investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). The T{sub g} of PET decreases with the DG, indicating that the grafted P(BA-co-St) copolymer has good compatibility with PET backbone.

  5. Zinc terephthalates ZnC_8H_4O_4 as anodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Wang, Liping; Zou, Jian; Chen, Shulin; Yang, Jingyi; Qing, Fangzhu; Gao, Peng; Li, Jingze

    2017-01-01

    Graphical abstract: Both of well-crystalline and amorphous zinc terephthalates ZnC_8H_4O_4 are synthesized and amorphous structure demonstrates a higher capacity and better cycling performance. - Highlights: • Crystalline and amorphous ZnC_8H_4O_4 are obtained. • Both crystalline and amorphous ZnC_8H_4O_4 have σ_e of 10"−"7 S m"−"1. • Lithium ion diffusion is the rate-determine process. • Amorphous has a high capacity and durable performance. • Amorphous ZnC_8H_4O_4 has a high apparent lithium ion diffusion coefficient. - Abstract: Organic materials offer the advantages of cost-effective, environmental benignity, and molecular structural diversity as applications of electrode materials for lithium ion batteries. In fact, their lithium storage behaviors in terms of dynamics and kinetics intrinsically lie in ion migration in solids. Thus the solid forms including crystalline and amorphous states are crucial for the properties. In this study, a conventional carbonyl type organic material, namely zinc terephthalate (ZnC_8H_4O_4), is obtained in both well-crystalline and amorphous forms and applied as anodes for lithium ion batteries. ZnC_8H_4O_4 with amorphous structure shows higher lithium storage capacity and better capacity retention compared with that of crystalline one. It is ascribed that the amorphous phase provides a higher lithium ion diffusion coefficient than the crystalline one under the conditions of similar electronic conductivity.

  6. Characterization of polyethylene terephthalate (PET) detector to search for rare events in cosmic rays

    International Nuclear Information System (INIS)

    Dey, S.; Maulik, A.; Raha, Sibaji; Sara, Swapan; Syam, D.

    2015-01-01

    A particular brand of commercially available plastic, identified as polyethylene terephthalate (PET) has been used as a Nuclear Track Detector (NTD) to detect heavy charged particles. It was found that PET has a much higher detection threshold compared to other commercially available NTDs, making PET particularly suitable for detecting rare events in cosmic rays. To characterize and calibrate PET, systemetic studies were carried out using ions from various accelerators in India and Europe. Results of those studies have shown that PET can be effectively used as a charge particle detector with good energy and charge resolution. (author)

  7. STUDIES ON POLY (ETHYLENE TEREPHTHALATE)- POLY ( TETRAMETHYLENE ETHER ) MULTIBLOCK COPOLYMER.Ⅰ. COM POSITIONAL HOMOGENEITY

    Institute of Scientific and Technical Information of China (English)

    ZHAN Yongjian; YING Qicong; WU Meiyan; QIAN Renyuan

    1991-01-01

    The compositional homogeneity of a poly (ethylene terephthalate )-poly (tetramethylene ether)multiblock copolymer sample with low content of hard segment was examined by GPC, TLC, and solubility method. The copolymer sample was found to have a uniform composition as a function of elution volume over the major portion of sample from GPC method. However within one elution fraction, the copolymer chains, although having the same hydrodynamic volume, may have some difference in composition. Two fractions with different composition were obtained by precipitation in ethanol. Some low molar mass copolymers were also separated by a TLC technique from the copolymer sample.

  8. Ultrathin Hydrophobic Coatings Obtained on Polyethylene Terephthalate Materials in Supercritical Carbon Dioxide with Co-Solvents

    Science.gov (United States)

    Kumeeva, T. Yu.; Prorokova, N. P.

    2018-02-01

    The surface properties of ultradisperse polytetrafluoroethylene coatings on polyethylene terephthalate materials modified in a supercritical carbon dioxide medium with co-solvent additions (aliphatic alcohols) were analyzed. An atomic force microscopy study revealed the peculiarities of the morphology of the hydrophobic coatings formed in the presence of co-solvents. The contribution of the co-solvents to the formation of the surface layer with a low surface energy was evaluated from the surface energy components of the modified polyester material. The stability of the coatings against dry friction was analyzed.

  9. Preparation of polymer blends from glycerol, fumaric acid and of poly(ethylene terephthalate) (PET) recycled

    International Nuclear Information System (INIS)

    Medeiros, Marina A.O.; Guimaraes, Danilo H.; Brioude, Michel M.; Jose, Nadia M.; Prado, Luis A.S. de A.

    2011-01-01

    Polymer blends based on recycled poly(ethylene terephthalate) (PET) and poly(glycerol fumarate) polyesters were prepared in different PET concentrations. The PET powder was dispersed during the poly(glycerol fumarate) synthesis at 260 deg C. The resulting blends were characterized by X-ray diffraction. The thermal stability of the materials was evaluated by thermogravimetric analysis and differential scanning calorimetry. The morphology was studies by scanning electron microscopy. The blends were clearly immiscible. The possibility of (interfacial) compatibilization of the PET domains, caused by transesterification reactions between PET and glycerol were discussed. (author)

  10. Research on Permeability of Poly(ethylene) Terephthalate Track Membranes Modified in Plasma

    CERN Document Server

    Dmitriev, S N; Sleptsov, V V; Elinson, V M; Potrjasaj, V V

    2001-01-01

    The properties of poly(ethylene) terephthalate track membranes subjected to the plasma RF-discharge treatment in air have been investigated. The effect of the treatment conditions in plasma on the structure and the properties of the membranes formed in the gas-discharge etching has been studied. It has been figured out that the influence of the air plasma on the membranes under study leads to a formation of asymmetric membranes with a higher flow rate, the structure and chemical composition of their superficial layer are changed. It is shown that the presence of the modified layer on the surface of the membranes causes changing their hydrodynamic characteristics - water permeability of the membranes treated in plasma in a greater degree depends upon {pH} of the filtered solution.

  11. The use of poly(ethylene terephthalate)-poly(aniline) composite for trypsin immobilisation

    Energy Technology Data Exchange (ETDEWEB)

    Caramori, S.S. [Laboratorio de Quimica de Proteinas, Departamento de Bioquimica e Biologia Molecular, Instituto de Ciencias Biologicas, Universidade Federal de Goias, Cx. Postal 131, 74001-970 Goiania-GO (Brazil)], E-mail: samanthabio@hotmail.com; Fernandes, K.F. [Laboratorio de Quimica de Proteinas, Departamento de Bioquimica e Biologia Molecular, Instituto de Ciencias Biologicas, Universidade Federal de Goias, Cx. Postal 131, 74001-970 Goiania-GO (Brazil)], E-mail: katia@icb.ufg.br

    2008-08-01

    This paper presents trypsin immobilisation on strips of poly(ethylene terephthalate)-poly(aniline), activated with glutaraldehyde (PET-PANIG) composite. The photomicrography of the material showed changes corresponding to the chemical modifications produced in the steps of synthesis. The immobilisation process was very efficient under optimal conditions (18.6%). The immobilised and free enzyme presented the same pH and temperature optimum. PET-PANIG-trypsin was able to hydrolyse casein, albumin, gelatine, and skimmed milk. Km{sub app} value for PET-PANIG-trypsin was very close to Km of the free enzyme for casein. Immobilised trypsin showed higher stability than the free enzyme, with 100% activity after 14 days of storage at 4 deg. C and 100% operational stability after 4 cycles of use.

  12. Experimental characterisation of Polyethylene Terephthalate (PET) bottle Eco-bricks

    International Nuclear Information System (INIS)

    Taaffe, Jonathan; O’Sullivan, Seán; Rahman, Muhammad Ekhlasur; Pakrashi, Vikram

    2014-01-01

    Highlights: • Characterisation of a novel “Eco-brick” by recycling PET bottles and plastic waste. • Eco-bricks have properties for possible uses in construction. • Consistent manufacturing of Eco-bricks demonstrated to be possible. • Weight of Eco-bricks has a nearly linear relationship with mechanical strength. • Light passage and sound reduction potential of Eco-bricks shown to be good. - Abstract: This paper addresses the issue of recycling waste plastic by considering the feasibility of use of Eco-bricks for constructional purposes. The Eco-bricks are formed by packing plastic within Polyethylene Terephthalate (PET) bottles. Guidelines were provided for the construction of Eco-bricks. Experiments were carried out to characterise some of the properties of these bricks. Compression test, sound insulation assessment and light transmission were considered in this regard and compared with traditional construction materials and conditions. Possible applications of Eco-bricks were discussed. The paper presents the first attempt to characterise these bricks and the results encourage future use of them to a significantly wider extent and for various purposes

  13. Multiple Syntrophic Interactions in a Terephthalate-Degrading Methanogenic Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios; Chen, Chia-Lung; Tringe, Susannah G.; McHardy, Alice C.; Copeland, Alex 5; Kyrpides, Nikos C.; Hugenholtz, Philip; Liu, Wen-Tso

    2010-08-05

    Terephthalate (TA) is one of the top 50 chemicals produced worldwide. Its production results in a TA-containing wastewater that is treated by anaerobic processes through a poorly understood methanogenic syntrophy. Using metagenomics, we characterized the methanogenic consortium tinside a hyper-mesophilic (i.e., between mesophilic and thermophilic), TA-degrading bioreactor. We identified genes belonging to dominant Pelotomaculum species presumably involved in TA degradation through decarboxylation, dearomatization, and modified ?-oxidation to H{sub 2}/CO{sub 2} and acetate. These intermediates are converted to CH{sub 4}/CO{sub 2} by three novel hyper-mesophilic methanogens. Additional secondary syntrophic interactions were predicted in Thermotogae, Syntrophus and candidate phyla OP5 and WWE1 populations. The OP5 encodes genes capable of anaerobic autotrophic butyrate production and Thermotogae, Syntrophus and WWE1 have the genetic potential to oxidize butyrate to COsub 2}/H{sub 2} and acetate. These observations suggest that the TA-degrading consortium consists of additional syntrophic interactions beyond the standard H{sub 2}-producing syntroph ? methanogen partnership that may serve to improve community stability.

  14. The influence of ultraviolet radiation on poly (ethylene terephthalate)

    International Nuclear Information System (INIS)

    Kattan, M.

    2004-11-01

    The thermals properties of the polyethylene terephthalate samples exposed to UV radiation were studied. The results show a slight decrease ofΔ Cp and glass transition temperature values with the increase of the exposed times. The kinetics study of the cooled anisothermal crystallization, shows a weak increase of the values of the apparent energy with the irradiation times. Results obtained from the thermogravimetric analysis of the irradiated specimens indicate a stable thermal behavior. The results show that the PET material is a good resistant for the UV radiation, and the UV radiation affects only the exposed surface of the material and not the whole volume. The decrease of Tg is due to the changes in the molecular weight which occur at the surface of the irradiations samples. The decease of Δ Cp values is probably because of some degradation of the aromatic part of PET at the surface, which gives a double increase of the specific heat capacity. In addition, the changes of the surface properties obstruct the crystallization process at the surface. (Author)

  15. Ionic liquids as surfactants for layered double hydroxide fillers: effect on the final properties of poly(butylene adipate-co-terephthalate)

    Czech Academy of Sciences Publication Activity Database

    Livi, S.; Lins, L. C.; Peter, Jakub; Beneš, Hynek; Kredatusová, Jana; Donato, R. K.; Pruvost, S.

    2017-01-01

    Roč. 7, č. 10 (2017), s. 1-16, č. článku 297. ISSN 2079-4991 R&D Projects: GA ČR(CZ) GA17-08273S Institutional support: RVO:61389013 Keywords : ionic liquids * poly(butylene adipate-co-terephthalate) * layered double hydroxide Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 3.553, year: 2016

  16. On the Diels-Alder approach to solely biomass-derived polyethylene terephthalate (PET): conversion of 2,5-dimethylfuran and acrolein into p-xylene.

    Science.gov (United States)

    Shiramizu, Mika; Toste, F Dean

    2011-10-24

    Polyethylene terephthalate (PET) is a polymeric material with high global demand. Conventionally, PET is produced from fossil-fuel-based materials. Herein, we explored the feasibility of a sustainable method for PET production by using solely bio-renewable resources. Specifically, 2,5-dimethylfuran (derived from lignocellulosic biomass through 5-(hydroxymethyl)furfural) and acrolein (produced from glycerol, a side product of biodiesel production) were converted into the key intermediate p-xylene (a precursor of terephthalic acid). This synthesis consists of a sequential Diels-Alder reaction, oxidation, dehydration, and decarboxylation. In particular, the pivotal first step, the Diels-Alder reaction, was studied in detail to provide useful kinetic and thermodynamic data. Although it was found that this reaction requires low temperature to proceed efficiently, which presents a limitation on economic feasibility on an industrial scale, the concept was realized and bio-derived p-xylene was obtained in 34% overall yield over four steps. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mechanical and Morphological Properties of Poly-3-hydroxybutyrate/Poly(butyleneadipate-co-terephthalate)/Layered Double Hydroxide Nanocomposites

    OpenAIRE

    Pak, Yen Leng; Bin Ahmad, Mansor; Shameli, Kamyar; Yunus, Wan Md Zin Wan; Ibrahim, Nor Azowa; Zainuddin, Norhazlin

    2013-01-01

    Nanocomposites of poly-3-hydroxybutyrate/poly(butyleneadipate-co-terephthalate)/layered double hydroxide (PHB/PBAT/LDH) were prepared from a binary blend of PHB/PBAT and stearate-Zn3Al LDH via a solution casting method using chloroform as solvent in this study. The pristine Zn3Al LDH was synthesized from nitrate salts solution at pH 7 by using coprecipitation technique and then was modified by stearate anions surfactant via ion exchange reaction. As a result, the basal spacing of the LDH was ...

  18. SU-F-T-202: An Evaluation Method of Lifetime Attributable Risk for Comparing Between Proton Beam Therapy and Intensity Modulated X-Ray Therapy for Pediatric Cancer Patients by Averaging Four Dose-Response Models for Carcinoma Induction

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, M; Shirato, H [Department of Radiation Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan); Ito, Y [Department of Biostatistics, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido (Japan); Sakurai, H; Mizumoto, M; Kamizawa, S [Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Murayama, S; Yamashita, H [Proton Therapy Division, Shizuoka Cancer Center Hospital, Nagaizumi, Shizuoka (Japan); Takao, S; Suzuki, R [Department of Medical Physics, Hokkaido University Hospital, Sapporo, Hokkaido (Japan)

    2016-06-15

    Purpose: To examine how much lifetime attributable risk (LAR) as an in silico surrogate marker of radiation-induced secondary cancer would be lowered by using proton beam therapy (PBT) in place of intensity modulated x-ray therapy (IMXT) in pediatric patients. Methods: From 242 pediatric patients with cancers who were treated with PBT, 26 patients were selected by random sampling after stratification into four categories: a) brain, head, and neck, b) thoracic, c) abdominal, and d) whole craniospinal (WCNS) irradiation. IMXT was re-planned using the same computed tomography and region of interest. Using dose volume histogram (DVH) of PBT and IMXT, the LAR of Schneider et al. was calculated for the same patient. The published four dose-response models for carcinoma induction: i) full model, ii) bell-shaped model, iii) plateau model, and ix) linear model were tested for organs at risk. In the case that more than one dose-response model was available, the LAR for this patient was calculated by averaging LAR for each dose-response model. Results: Calculation of the LARs of PBT and IMXT based on DVH was feasible for all patients. The mean±standard deviation of the cumulative LAR difference between PBT and IMXT for the four categories was a) 0.77±0.44% (n=7, p=0.0037), b) 23.1±17.2%,(n=8, p=0.0067), c) 16.4±19.8% (n=8, p=0.0525), and d) 49.9±21.2% (n=3, p=0.0275, one tailed t-test), respectively. The LAR was significantly lower by PBT than IMXT for the the brain, head, and neck region, thoracic region, and whole craniospinal irradiation. Conclusion: In pediatric patients who had undergone PBT, the LAR of PBT was significantly lower than the LAR of IMXT estimated by in silico modeling. This method was suggested to be useful as an in silico surrogate marker of secondary cancer induced by different radiotherapy techniques. This research was supported by the Translational Research Network Program, JSPS KAKENHI Grant No. 15H04768 and the Global Institution for

  19. SU-F-T-202: An Evaluation Method of Lifetime Attributable Risk for Comparing Between Proton Beam Therapy and Intensity Modulated X-Ray Therapy for Pediatric Cancer Patients by Averaging Four Dose-Response Models for Carcinoma Induction

    International Nuclear Information System (INIS)

    Tamura, M; Shirato, H; Ito, Y; Sakurai, H; Mizumoto, M; Kamizawa, S; Murayama, S; Yamashita, H; Takao, S; Suzuki, R

    2016-01-01

    Purpose: To examine how much lifetime attributable risk (LAR) as an in silico surrogate marker of radiation-induced secondary cancer would be lowered by using proton beam therapy (PBT) in place of intensity modulated x-ray therapy (IMXT) in pediatric patients. Methods: From 242 pediatric patients with cancers who were treated with PBT, 26 patients were selected by random sampling after stratification into four categories: a) brain, head, and neck, b) thoracic, c) abdominal, and d) whole craniospinal (WCNS) irradiation. IMXT was re-planned using the same computed tomography and region of interest. Using dose volume histogram (DVH) of PBT and IMXT, the LAR of Schneider et al. was calculated for the same patient. The published four dose-response models for carcinoma induction: i) full model, ii) bell-shaped model, iii) plateau model, and ix) linear model were tested for organs at risk. In the case that more than one dose-response model was available, the LAR for this patient was calculated by averaging LAR for each dose-response model. Results: Calculation of the LARs of PBT and IMXT based on DVH was feasible for all patients. The mean±standard deviation of the cumulative LAR difference between PBT and IMXT for the four categories was a) 0.77±0.44% (n=7, p=0.0037), b) 23.1±17.2%,(n=8, p=0.0067), c) 16.4±19.8% (n=8, p=0.0525), and d) 49.9±21.2% (n=3, p=0.0275, one tailed t-test), respectively. The LAR was significantly lower by PBT than IMXT for the the brain, head, and neck region, thoracic region, and whole craniospinal irradiation. Conclusion: In pediatric patients who had undergone PBT, the LAR of PBT was significantly lower than the LAR of IMXT estimated by in silico modeling. This method was suggested to be useful as an in silico surrogate marker of secondary cancer induced by different radiotherapy techniques. This research was supported by the Translational Research Network Program, JSPS KAKENHI Grant No. 15H04768 and the Global Institution for

  20. Analysis of polyethylene terephthalate PET plastic bottle jointing system using finite element method (FEM)

    Science.gov (United States)

    Zaidi, N. A.; Rosli, Muhamad Farizuan; Effendi, M. S. M.; Abdullah, Mohamad Hariri

    2017-09-01

    For almost all injection molding applications of Polyethylene Terephthalate (PET) plastic was analyzed the strength, durability and stiffness of properties by using Finite Element Method (FEM) for jointing system of wood furniture. The FEM was utilized for analyzing the PET jointing system for Oak and Pine as wood based material of furniture. The difference pattern design of PET as wood jointing furniture gives the difference value of strength furniture itself. The results show the wood specimen with grooves and eclipse pattern design PET jointing give lower global estimated error is 28.90%, compare to the rectangular and non-grooves wood specimen of global estimated error is 63.21%.

  1. Growth and optical properties of Ag clusters deposited on poly(ethylene terephthalate)

    International Nuclear Information System (INIS)

    Flores-Camacho, J M; Weidlinger, G; Sun, L D; Hohage, M; Primetzhofer, D; Bauer, P; Zeppenfeld, P; Schmidegg, K

    2011-01-01

    The growth and concomitant evolution of the optical properties of Ag nano-clusters deposited on biaxially extruded poly(ethylene terephthalate) films is studied by reflectance difference spectroscopy. It is demonstrated by low energy ion scattering and simulated optical spectra that the clusters form a two-dimensional layer buried beneath the surface of the substrate. The experimental spectra are described by simulations in which different configurations of the host such as anisotropy, amorphization, and dilution are considered in an effective medium approach. The contribution of the anisotropic substrate is used to explain the resulting line shapes. We also discuss the role of the rate of change of the filling fraction with Ag coverage in the evolution of the spectra and the detection of the onset of coalescence by optical means.

  2. Research on permeability of poly(ethylene) terephthalate track membranes modified in plasma

    International Nuclear Information System (INIS)

    Dmitriev, S.N.; Kravets, L.I.; Sleptsov, V.V.; Elinson, V.M.; Potryasaj, V.V.

    2001-01-01

    The properties of poly(ethylene) terephthalate track membranes subjected to the plasma RF-discharge treatment in air have been investigated. The effect of the treatment conditions in plasma on the structure and the properties of the membranes formed in the gas-discharge etching has been studied. It has been figured out that the influence of the air plasma on the membranes under study leads to a formation of asymmetric membranes with a higher flow rate, the structure and chemical composition of their superficial layer are changed. It is shown that the presence of the modified layer on the surface of the membranes causes changing their hydrodynamic characteristics - water permeability of the membranes treated in plasma in a greater degree depends upon pH of the filtered solution. (author)

  3. Effects of high energy (MeV) ion beam irradiation on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Singh, Nandlal; Sharma, Anita; Avasthi, D.K.

    2003-01-01

    Irradiation effects of 50 MeV Li 3+ ion beams in polyethylene terephthalate (PET) films were studied with respect to their structural and electrical properties by using Fourier transform infrared (FTIR) spectroscopy and ac electrical measurement in the frequency range: 50-100 kHz at different temperatures of 30-150 deg. C. It is found that ac resistivity of PET decreases as frequency increases. The temperature dependencies of dielectric loss tangent exhibit a peak (T g ) at 60 deg. C. The capacitance value of irradiated PET is almost temperature independent and ones increases with an increasing of lithium fluence. FTIR spectra show various bands related to C-H, C-O, C-O-C molecular bonds and groups which get modified or break down due to ion beam irradiation

  4. Electron-beam-induced conduction in polyethylene terephthalate films

    Energy Technology Data Exchange (ETDEWEB)

    Beckley, L M; Lewis, T J; Taylor, D M [University Coll. of North Wales, Bangor (UK). School of Electronic Engineering Science

    1976-06-21

    Measurements are reported of electron-beam-induced conduction in thin polyethylene terephthalate (PET) films for electron energies up to 10 keV. The ratio of induced dielectric current to incident beam current (the gain) is orders of magnitude less than unity over practically the whole range of beam penetration. This result is quite unlike that normally found for inorganic dielectrics where the gain will exceed unity and reach a maximum at or near full penetration. In spite of the very different gain characteristics it is shown that the model recently proposed by Nunes de Oliviera and Gross (J. App. Phys.; 46:3132 (1975)), and by Aris et al (IEE Conf. Publ. No.129.; 267 (1975) and J. Phys. C. Solid State Phys.; 9:797 (1976)) and applied to mica and tantalum oxide respectively is also applicable to PET. Use is made of the known carrier mobility and lifetime data for this polymer and it is shown that very large space-charge distortions of the field can be produced by the beam which may well account for the frequent sample failure experienced during the experiments. The work supports suggestions by earlier workers that the current in unirradiated PET is electrode limited and predicts the maximum (space-charge limited) current likely to occur in this polymer.

  5. Surface modification of polyethylene terephthalate using excimer and CO2 laser

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Dadsetan, M.

    2002-01-01

    Complete text of publication follows. Attempts have been made to evaluate microstructuring which affects cell behaviour, physical and chemical changes produced by laser irradiation onto the polyethylene terephthalate (PET) surface. The surfaces of PET were irradiated using the CO 2 laser and KrF excimer pulsed laser. The changes in chemical and physical properties of the irradiated PET surface were investigated by attenuated total reflectance infrared spectroscopy (ATR-IR) and contact angle measurements. ATR-IR Spectra showed that the crystallinity in the surface region decreased due to the CO 2 laser and excimer laser irradiation. Scanning electron microscopy observations showed that the morphology of the laser irradiated PET surface changed due to laser irradiation. The results obtained from the cell behaviour studies revealed that changes of physico-chemical properties of the laser treated PET film have significantly changed in comparison with the unmodified PET

  6. On the ranking of chemicals based on their PBT characteristics: comparison of different ranking methodologies using selected POPs as an illustrative example.

    Science.gov (United States)

    Sailaukhanuly, Yerbolat; Zhakupbekova, Arai; Amutova, Farida; Carlsen, Lars

    2013-01-01

    Knowledge of the environmental behavior of chemicals is a fundamental part of the risk assessment process. The present paper discusses various methods of ranking of a series of persistent organic pollutants (POPs) according to the persistence, bioaccumulation and toxicity (PBT) characteristics. Traditionally ranking has been done as an absolute (total) ranking applying various multicriteria data analysis methods like simple additive ranking (SAR) or various utility functions (UFs) based rankings. An attractive alternative to these ranking methodologies appears to be partial order ranking (POR). The present paper compares different ranking methods like SAR, UF and POR. Significant discrepancies between the rankings are noted and it is concluded that partial order ranking, as a method without any pre-assumptions concerning possible relation between the single parameters, appears as the most attractive ranking methodology. In addition to the initial ranking partial order methodology offers a wide variety of analytical tools to elucidate the interplay between the objects to be ranked and the ranking parameters. In the present study is included an analysis of the relative importance of the single P, B and T parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Research on water permeability of poly(ethylene) terephthalate track membranes modified with plasma

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Sleptsov, V.V.; Elinson, V.M.; Potryasay, V.V.

    2001-01-01

    The properties of poly(ethylene) terephthalate track membranes subjected to effect of plasma of the RF-discharge in air have been investigated. The influence conditions of a plasma treatment on the surface properties and hydrodynamic characteristics of the membranes has been studied. It has been found that the effect of the air plasma on the researched membranes results in a formation of asymmetric track membranes with a higher flow rate, the structure and chemical composition of their superficial layer are changed. It was shown that the availability of the modified layer on the membrane surface caused changing in their hydrodynamic characteristics - the water permeability of the membranes, processed in plasma, in a greater degree depends upon pH of a filtered solution. (author)

  8. The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions

    OpenAIRE

    Carné Sánchez, Arnau; Collinson, Simon R.

    2011-01-01

    The glycolysis of postconsumer polyethylene terephthalate (PET) waste was evaluated with catalysts of zinc acetate, zinc stearate and zinc sulfate, showing that zinc acetate was the most soluble and effective. The chemical recycling by solvolysis of polylactic acid (PLA) and PET waste in either methanol or ethanol was investigated. Zinc acetate as a catalyst was found to be necessary to yield an effective depolymerization of waste PLA giving lactate esters, while with the same reaction condit...

  9. Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury.

    Science.gov (United States)

    Ponce, Lucido L; Pillai, Shibu; Cruz, Jovany; Li, Xiaoqi; Julia, H; Gopinath, Shankar; Robertson, Claudia S

    2012-06-01

    Monitoring brain tissue PO2 (PbtO2) is part of multimodality monitoring of patients with traumatic brain injury (TBI). However, PbtO2 measurement is a sampling of only a small area of tissue surrounding the sensor tip. To examine the effect of catheter location on the relationship between PbtO2 and neurological outcome. A total of 405 patients who had PbtO2 monitoring as part of standard management of severe traumatic brain injury were studied. The relationships between probe location and resulting PbtO2 and outcome were examined. When the probe was located in normal brain, PbtO2 averaged 30.8 ± 18.2 compared with 25.6 ± 14.8 mm Hg when placed in abnormal brain (P < .001). Factors related to neurological outcome in the best-fit logistic regression model were age, PbtO2 probe position, postresuscitation motor Glasgow Coma Scale score, and PbtO2 trend pattern. Although average PbtO2 was significantly related to outcome in univariate analyses, it was not significant in the final logistic model. However, the interaction between PbtO2 and probe position was statistically significant. When the PbtO2 probe was placed in abnormal brain, the average PbtO2 was higher in those with a favorable outcome, 28.8 ± 12.0 mm Hg, compared with those with an unfavorable outcome, 19.5 ± 13.7 mm Hg (P = .01). PbtO2 and outcome were not related when the probe was placed in normal-appearing brain. These results suggest that the location of the PbtO2 probe determines the PbtO2 values and the relationship of PbtO2 to neurological outcome.

  10. Solvent-Induced Crystallization in Poly(Ethylene Terephthalate) during Mass Transport

    Science.gov (United States)

    Ouyang, Hao

    2001-03-01

    The solvent transport in poly(ethylene terephthalate) (PET) and related phase transformation were investigated. The data of mass sorption were analyzed according to Harmon¡¦s model for Case I (Fickian), Case II (swelling) and anomalous transport. This transport process in PET is accompanied by the induced crystallization of the original amorphous state. The transformation was studied by wide angle x-ray scattering (WAXS), small angle x-ray scattering (SAXS), Differential Scanning Calorimeter (DSC), density gradient column, and Fourier Transform Infra-Red (FTIR). During this process, the matrix is under a compressive strain that causes different kinetic path of crystallization as compared to that by thermal annealing. This state of strain will assist the development of the solvent-induced crystallization. It also can be explained in terms of the principle of Le Chatelier if the local equilibrium is assumed. The model regarding the crystallization was proposed in terms of the study of long period L, the crystal thickness lc and the thickness of amorphous layer la, obtained from the linear correlation function and interface distribution function.

  11. Influence of flavour absorption by food-packaging materials (low-density polyethylene, polycarbonate and polyethylene terephthalate) on taste perception of a model solution and orange juice

    NARCIS (Netherlands)

    Willige, van R.W.G.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.

    2003-01-01

    The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic

  12. Effects of annealing temperature on mechanical durability of indium-tin oxide film on polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Machinaga, Hironobu; Ueda, Eri; Mizuike, Atsuko; Takeda, Yuuki; Shimokita, Keisuke; Miyazaki, Tsukasa

    2014-01-01

    Effects of the annealing temperature on mechanical durability of indium-tin oxide (ITO) thin films deposited on polyethylene terephthalate (PET) substrates were investigated. The ITO films were annealed at the range from 150 °C to 195 °C after the DC sputtering deposition for the production of polycrystalline ITO layers on the substrates. The onset strains of cracking in the annealed ITO films were evaluated by the uniaxial stretching tests with electrical resistance measurements during film stretching. The results indicate that the onset strain of cracking in the ITO film is clearly increased by increasing the annealing temperature. The in-situ measurements of the inter-planer spacing of the (222) plane in the crystalline ITO films during film stretching by using synchrotron radiation strongly suggest that the large compressive stress in the ITO film increases the onset strain of cracking in the film. X-ray stress analyses of the annealed ITO films and thermal mechanical analyses of the PET substrates also clarifies that the residual compressive stress in the ITO film is enhanced with increasing the annealing temperature due to the considerably larger shrinkage of the PET substrate. - Highlights: • Indium-tin oxide (ITO) films were deposited on polyethylene terephthalate (PET). • Mechanical durability of the ITO is improved by high temperature post-annealing. • The shrinkage in the PET increases with rising the post-annealing temperature. • The shrinkage of the PET enhances the compressive stress in the ITO film. • Large compressive stress in the ITO film may improve its mechanical durability

  13. Adsorption of anionic surfactant on porous and nonporous polyethylene terephthalate films

    International Nuclear Information System (INIS)

    Yamauchi, Yu.; Apel, P.Yu.

    2016-01-01

    We study the adsorption of anionic surfactant, sodium dodecyl diphenyloxide disulfonate (SDDD) on three types of polyethylene terephthalate (PET) substrates from aqueous solutions of SDDD of different concentrations. Neutral electrolyte (KCl) was added to the solutions to vary the ionic strength. Three types of substrates were used: 1) original PET film; 2) etched nonporous film, obtained from pristine film by chemical etching and bearing negative charge on the surface; 3) etched porous membranes, fabricated from pristine film by ion irradiation and subsequent chemical etching. The membranes have negative charge on the flat surface and on the inner pore walls. The comparison shows that the negative charge on the flat surface has weak effect on adsorption of the anionic surfactant, and the SDDD adsorption on the inner walls of pores is much weaker than on flat surface, even if the pore radius is significantly larger than the Debye length. This «exclusion» effect strongly depends on ionic strength of solution. [ru

  14. Polyesters production from the mixture of phthalic acid, terephthalic and glycerol; Producao de poliesteres a partir da mistura de acido ftalico, tereftalico e glicerol

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, A.L.S.; Oliveira, J.C.; Miranda, C.S.; Boaventura, J.S.; Jose, N.M., E-mail: adrianaequfba@gmail.co [Universidade Federal da Bahia (GECIM/UFBA), Salvador, BA (Brazil). Inst. de Quimica. Grupo de Energia e Ciencias dos Materiais; Carvalho, R.F. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Escola Politecnica. Curso de Mestrado em Engenharia Ambiental Urbana

    2010-07-01

    Glycerin, a byproduct of biodiesel is currently an environmental and economic problem for producers of this renewable fuel in Brazil and in others parts of the world. In order to offer new proposals for recovery, it is used for the manufacture of polyesters used in applications in diverse areas such as construction and automobile industry. This work reports the production of polymer from the mixture of terephthalic and phthalic acid in three different proportions. The polyesters showed good thermal stability, analyzed by TGA and DSC, with an increase proportional to the terephthalic acid content. The X-ray diffraction patterns show that the samples are semi crystalline polymers. The micrographs indicated the presence of a smoother surface in the polyester that has a larger amount of phthalic acid, as reported in the literature. Therefore, the materials showed good thermal properties and morphological characteristics, so it consists in a new alternative to use glycerin. (author)

  15. Effect of rare earth hypophosphite and melamine cyanurate on fire performance of glass-fiber reinforced poly(1,4-butylene terephthalate) composites

    International Nuclear Information System (INIS)

    Yang, Wei; Tang, Gang; Song, Lei; Hu, Yuan; Yuen, Richard K.K.

    2011-01-01

    Highlights: ► We synthesize and characterize two types of rare earth hypophosphite (REHP). ► REHP and melamine cyanurate are used as flame retardants. ► We prepare fire retarded glass-fiber/poly(1,4-butylene terephthalate) composites. ► The flammability of these composites is significantly reduced. - Abstract: This work mainly deals with a novel flame retardant system for glass-fiber reinforced poly(1,4-butylene terephthalate) (GRPBT) composites using trivalent rare earth hypophosphite (REHP) and melamine cyanurate (MC) through melt blending method. Firstly, two types of REHP, lanthanum hypophosphite and cerium hypophosphite, were synthesized and characterized. Thermal gravimetric analysis (TGA) was employed to investigate the thermal decomposition behavior of REHP and flame retardant treated GRPBT composites. Thermal combustion properties were measured using microscale combustion calorimeter. Fire performance was evaluated by limiting oxygen index, Underwriters Laboratories 94 and cone calorimeter. The results showed that the flammability of GRPBT is significantly reduced by the incorporation of the flame retardant mixture. Mechanism analysis revealed that the addition of MC reduces the condensed phase effect of REHP, but improves the flame inhibition in gas phase.

  16. Perioperative Blood Transfusion as a Significant Predictor of Biochemical Recurrence and Survival after Radical Prostatectomy in Patients with Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Jung Kwon Kim

    Full Text Available There have been conflicting reports regarding the association of perioperative blood transfusion (PBT with oncologic outcomes including recurrence rates and survival outcomes in prostate cancer. We aimed to evaluate whether perioperative blood transfusion (PBT affects biochemical recurrence-free survival (BRFS, cancer-specific survival (CSS, and overall survival (OS following radical prostatectomy (RP for patients with prostate cancer.A total of 2,713 patients who underwent RP for clinically localized prostate cancer between 1993 and 2014 were retrospectively analyzed. We performed a comparative analysis based on receipt of transfusion (PBT group vs. no-PBT group and transfusion type (autologous PBT vs. allogeneic PBT. Univariate and multivariate Cox-proportional hazard regression analysis were performed to evaluate variables associated with BRFS, CSS, and OS. The Kaplan-Meier method was used to calculate survival estimates for BRFS, CSS, and OS, and log-rank test was used to conduct comparisons between the groups.The number of patients who received PBT was 440 (16.5%. Among these patients, 350 (79.5% received allogeneic transfusion and the other 90 (20.5% received autologous transfusion. In a multivariate analysis, allogeneic PBT was found to be statistically significant predictors of BRFS, CSS, and OS; conversely, autologous PBT was not. The Kaplan-Meier survival analysis showed significantly decreased 5-year BRFS (79.2% vs. 70.1%, log-rank, p = 0.001, CSS (98.5% vs. 96.7%, log-rank, p = 0.012, and OS (95.5% vs. 90.6%, log-rank, p < 0.001 in the allogeneic PBT group compared to the no-allogeneic PBT group. In the autologous PBT group, however, none of these were statistically significant compared to the no-autologous PBT group.We found that allogeneic PBT was significantly associated with decreased BRFS, CSS, and OS. This provides further support for the immunomodulation hypothesis for allogeneic PBT.

  17. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    Science.gov (United States)

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed.

  18. Effect of optically modified polyethylene terephthalate fiber socks on chronic foot pain

    Directory of Open Access Journals (Sweden)

    Gordon Ian L

    2009-04-01

    Full Text Available Abstract Background Increasing experimental and clinical evidence suggests that illumination of the skin with relatively low intensity light may lead to therapeutic results such as reduced pain or improved wound healing. The goal of this study was to evaluate prospectively whether socks made from polyethylene terephthalate (PET incorporating optically active particles (Celliant™ ameliorates chronic foot pain resulting from diabetic neuropathy or other disorders. Such optically modified fiber is thought to modify the illumination of the skin in the visible and infrared portions of the spectrum, and consequently reduce pain. Methods A double-blind, randomized trial with 55 subjects (38 men, 17 women enrolled (average age 59.7 ± 11.9 years, 26 with diabetic neuropathy and 29 with other pain etiologies. Subjects twice completed the Visual Analogue Scale (VAS, Brief Pain Inventory (BPI, McGill Pain Questionnaire (MPQ, and SF-36 a week apart (W1+2 before receiving either control or Celliant™ socks. The same questionnaires were answered again one and two weeks (W3+4 later. The questionnaires provided nine scores for analyzing pain reduction: one VAS score, two BPI scores, five MPQ scores, and the bodily pain score on the SF-36. Mean W1+2 and W3+4 scores were compared to measure pain reduction. Results More pain reduction was reported by Celliant™ subjects for 8 of the 9 pain questions employed, with a significant (p = 0.043 difference between controls and Celliant™ for McGill question III. In neuropathic subjects, Celliant™ caused more pain reduction in 6 of the 9 questions, but not significantly. In non-neuropathic subjects 8 of 9 questions showed more pain reduction with the Celliant™ socks. Conclusion Socks with optically modified PET (Celliant™ appear to have a beneficial impact on chronic foot pain. The mechanism could be related to the effects seen with illumination of tissues with visible and infrared light. Trial Registration

  19. Up-cycling of PET (polyethylene terephthalate) to the biodegradable plastic PHA (polyhydroxyalkanoate).

    Science.gov (United States)

    Kenny, Shane T; Runic, Jasmina Nikodinovic; Kaminsky, Walter; Woods, Trevor; Babu, Ramesh P; Keely, Chris M; Blau, Werner; O'Connor, Kevin E

    2008-10-15

    The conversion of the petrochemical polymer polyethylene terephthalate (PET) to a biodegradable plastic polyhydroxyal-kanoate (PHA) is described here. PET was pyrolised at 450 degrees C resulting in the production of a solid, liquid, and gaseous fraction. The liquid and gaseous fractions were burnt for energy recovery, whereas the solid fraction terephthalic acid (TA) was used as the feedstock for bacterial production of PHA. Strains previously reported to grow on TA were unable to accumulate PHA. We therefore isolated bacteria from soil exposed to PET granules at a PET bottle processing plant From the 32 strains isolated, three strains capable of accumulation of medium chain length PHA (mclPHA) from TA as a sole source of carbon and energy were selected for further study. These isolates were identified using 16S rDNA techniques as P. putida (GO16), P. putida (GO19), and P. frederiksbergensis (GO23). P. putida GO16 and GO19 accumulate PHA composed predominantly of a 3-hydroxydecanoic acid monomer while P. frederiksbergensis GO23 accumulates 3-hydroxydecanoic acid as the predominant monomer with increased amounts of 3-hydroxydodecanoic acid and 3-hydroxydodecenoic acid compared to the other two strains. PHA was detected in all three strains when nitrogen depleted below detectable levels in the growth medium. Strains GO16 and GO19 accumulate PHA at a maximal rate of approximately 8.4 mg PHA/l/h for 12 h before the rate of PHA accumulation decreased dramatically. Strain GO23 accumulates PHA at a lower maximal rate of 4.4 mg PHA/l/h but there was no slow down in the rate of PHA accumulation over time. Each of the PHA polymers is a thermoplastic with the onset of thermal degradation occurring around 308 degrees C with the complete degradation occurring by 370 degrees C. The molecular weight ranged from 74 to 123 kDa. X-ray diffraction indicated crystallinity of the order of 18-31%. Thermal analysis shows a low glass transition (-53 degrees C) with a broad melting

  20. Study on Optoelectronic Characteristics of Sn-Doped ZnO Thin Films on Poly(ethylene terephthalate) and Indium Tin Oxide/Poly(ethylene terephthalate) Flexible Substrates

    Science.gov (United States)

    Cheng, Chi-Hwa; Chen, Mi; Chiou, Chin-Lung; Liu, Xing-Yang; Weng, Lin-Song; Koo, Horng-Show

    2013-05-01

    Transparent conductive oxides of Sn-doped ZnO (SZO) films with doping weight ratios of 2.0, 3.0, 4.0, and 5.0 wt % have been deposited on indium tin oxide (ITO)/poly(ethylene terephthalate) (PET) and PET flexible substrates at room temperature by pulsed laser deposition (PLD). Resultant films of SZO on ITO/PET and PET flexible substrates are amorphous in phase. It is found that undoped and SZO films on ITO/PET is anomalously better than films on PET in optical transmittance in the range of longer wavelength, possibly due to the refraction index difference between SZO, ITO films, and PET substrates, Burstein-Moss effect and optical interference of SZO/ITO bilayer films and substrate materials, and furthermore resulting in the decrement of reflection. The lowest electrical resistivity (ρ) of 4.0 wt % SZO films on flexible substrates of PET and ITO/PET are 3.8×10-2 and ρ= 1.2×10-2 Ω.cm, respectively. It is found that electrical and optical properties of the resultant films are greatly dependent on various amount of Sn element doping effect and substrate material characteristics.

  1. Interface detection in poly-ethylene terephthalate-metal laminates using variable energy positron annihilation

    International Nuclear Information System (INIS)

    Escobar Galindo, R.; Schut, H.; Veen, A. van; Rastogi, R.; Vellinga, W.P.; Meijer, H.E.H.

    2005-01-01

    Thin coatings of poly-ethylene terephthalate (PET) on metal ('laminates') have been studied with a variable energy positron annihilation technique. A correlation between PET crystallinity and the positron annihilation parameter S related to the free volume in the polymer is found. It is shown that buried interfaces in these systems may be detected provided the S parameter of the polymer coating is lower than that of the substrate and higher than that of the surface. Also it is found that large positron diffusion lengths in the substrate favour interface detection. Further, changes in S parameter of PET-metal laminates were measured during uniaxial deformation and shown to be in qualitative accordance with a very simple model description that accounts for changes in free volume in PET during plastic deformation as well as the area fraction of cracks occurring in the PET

  2. In vitro Blood Compatibility of Polyethylene Terephthalate with Covalently Bounded Hirudin on Surface

    Institute of Scientific and Technical Information of China (English)

    LI Fang; WANG Jin; HUANG San

    2011-01-01

    Polyethylene terephthalate (PET,Dacron) was modified by surface immobilization of hirudin with glutaraldehyde(GA) as coupling reagent to improve the blood compatibility.Hirudin-immobilizcd PETs were characterized by X-ray photoelectron spectroscopy (XPS) and contact angle measurements.The blood compatibility of the PETs was evaluated by platelet adhesion evaluation and fibrinogen conformational change measurements in vitro.The results showed the decrease of platelet adhesion and activation on hirudinimmobilized PET with increasing of glutaraldehyde concentration.Fibrinogen experiment showed that fibrinogen adherence and conformational changes of PET-HRD were less than those of untreated PET,which made the materials difficult to form thrombus.The proper reason of blood compatibility improvement was low interface tension between hirudin-immobilized PETs and blood,as well as blood proteins,and low ratio of dispersive/polar component of the surface energy(γsd/γsp) and high hydrophilicity.

  3. Modification of the poly(ethylene) terephthalate track membrane structure and surface in the plasma of non-polymerized gases

    International Nuclear Information System (INIS)

    Kravets, L.I.; Dmitriev, S.N.; Apel, P.Y.

    1999-01-01

    An investigation of the properties of poly(ethylene) terephthalate track membranes (PETTMs) treated with a plasma RF-discharge in non-polymerized gases has been performed. The influence of the plasma treatment conditions on the basic properties of the membranes has been studied. It was arranged that the effect of non-polymerized gases plasma on the PETTMs results to etching a membrane's surface layer. The membranes' pore size and the form in this case change. It is shown that it is possible to change the structure of track membranes directly by gas discharge etching

  4. Protein crystallography and site-direct mutagenesis analysis of the poly(ethylene terephthalate) hydrolase PETase from Ideonella sakaiensis.

    Science.gov (United States)

    Liu, Bing; He, Lihui; Wang, Liping; Li, Tao; Li, Changcheng; Liu, Huayi; Luo, Yunzi; Bao, Rui

    2018-03-30

    Compared with traditional recycle strategies, biodegradation provides a sustainable solution for poly (ethylene terephthalate) (PET) wastes disposal. PETase, a newly identified enzyme from Ideonella sakaiensis, has high efficiency and specificity towards PET, which provides a prominent prospect on PET degradation. Based on the biochemical analysis, we propose that the wide substrate-binding pocket is critical for its excellent property on crystallized PET hydrolysis. Structure-guided site-directed mutagenesis exhibited improvement in PETase catalytic efficiency, providing valuable insight on how the molecular engineering of PETase can optimize its application in biocatalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Anaerobic horizontal flow reactor with polyethylene terephthalate as support material

    Directory of Open Access Journals (Sweden)

    Marcelo Muñoz

    2016-06-01

    Full Text Available A pilot anaerobic reactor was installed to remove the organic load of wastewater from dairy industry. It uses a bacterial inoculum previously acclimated to the substrate. It was disposed horizontally and filled with pieces of polyethylene terephthalate (PET, from plastic bottles. The reactor was operated at room temperature, during 100 days, in three phases: 1 the reactor was stabilized with volumetric organic load from 0.013 to 0.500 kg/day.m³; 2 the hydraulic retention time was of 1 day and the volumetric organic load of 3 kg/day.m³; 3 the volumetric organic load was incremented from 4 to 6.6 kg/day.m³ and the hydraulic retention time was 1 day. Organic material removal efficiencies was of 85%, and approximately 75% were obtained in the second and third phase, respectively. The Y value was 0.15, indicating that 0.15 kg of biomass were generated by kg of QDO supplied to the reactor. Finally, the biomass generated inside the reactor was analyzed, obtaining a value of 18868 mg/L, which is a higher value than those of conventional systems.

  6. Recycling of poly(ethylene terephthalate – A review focusing on chemical methods

    Directory of Open Access Journals (Sweden)

    B. Geyer

    2016-07-01

    Full Text Available Recycling of poly(ethylene terephthalate (PET is of crucial importance, since worldwide amounts of PETwaste increase rapidly due to its widespread applications. Hence, several methods have been developed, like energetic, material, thermo-mechanical and chemical recycling of PET. Most frequently, PET-waste is incinerated for energy recovery, used as additive in concrete composites or glycolysed to yield mixtures of monomers and undefined oligomers. While energetic and thermo-mechanical recycling entail downcycling of the material, chemical recycling requires considerable amounts of chemicals and demanding processing steps entailing toxic and ecological issues. This review provides a thorough survey of PET-recycling including energetic, material, thermo-mechanical and chemical methods. It focuses on chemical methods describing important reaction parameters and yields of obtained reaction products. While most methods yield monomers, only a few yield undefined low molecular weight oligomers for impaired applications (dispersants or plasticizers. Further, the present work presents an alternative chemical recycling method of PET in comparison to existing chemical methods.

  7. Influence of laser surface modifying of polyethylene terephthalate on fibroblast cell adhesion

    International Nuclear Information System (INIS)

    Mirzadeh, H.; Dadsetan, M.

    2003-01-01

    Attempts have been made to evaluate the changes in physical and chemical properties of the polyethylene terephthalate (PET) surface due to laser irradiation. These changes have been investigated from viewpoints of microstructuring and its effect on fibroblast cell behavior. The surfaces of PET were irradiated using CO 2 and KrF excimer pulsed laser. The changes were characterized by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, scanning electron microscopy (SEM) and contact angle measurements. The data from ATR-FTIR spectra showed that the crystallinity in the surface region decreased due to the CO 2 and excimer laser irradiation. SEM observations showed that specific microstructures were created on the PET surface due to laser irradiation. In order to study biocompatibility and cell behavior, we utilized standard in vitro L929-fibroblast cell culture system. Fibroblast cell adhesion and spreading were significantly correlated to the morphology and wettability of the laser irradiated PET surface

  8. Starch/poly (butylene adipate-co-terephthalate/montmorillonite films produced by blow extrusion

    Directory of Open Access Journals (Sweden)

    Rodrigo A. L. Santos

    2014-07-01

    Full Text Available This study aims to prepare biodegradable films from cassava starch, poly (butylene adipate-co-terephthalate (PBAT, and montmorillonite (MMT using blow-extrusion process and analyze the effects of different types and concentrations of MMT on the microstructure, physicochemical, and mechanical properties of the resulting films. The films were produced by blending 30% of PBAT with glycerol (17.5%, starch (49.0-52.5%, and four different types of montmorillonite (Cloisite® Na+, 10A, 15A, and 30B at two different concentrations (1.75% and 3.5%. All the films prepared in this study showed an increase in the basal spacing of MMT layers. In particular, the films with 10A and 30B showed the highest increase in intercalation basal spacing, suggesting the formation of intercalated composites. The addition of nanoclays decreased the elongation of films. The addition of Cloisite® 10A resulted in films with the lowest WVP values and the highest stability to water adsorption under different RH conditions.

  9. Influence of UV-Irradiation on Latent Tracks in Polyethylene Terephthalate Films

    International Nuclear Information System (INIS)

    Wen Qi; Wang Peng-Fei; Ling Yun; Wang Mao; Yan Dong-Xiao; Wang Yu-Gang; Cao Xing-Zhong; Wang Bao-Yi

    2016-01-01

    Polyethylene terephthalate (PET) films in thickness of 12 μm are irradiated by Xe and Au ions at the energies of 9.5 and 11.4MeV/u and with the ion fluence from 5 × 10"9 cm"−"2 to 1 × 10"1"1 cm"−"2. After irradiation, ultra-violet lights are used to illuminate the samples with latent tracks at the wavelength of 365 nm with flux density of 4.2 mW/cm"−"2. UV-irradiation effects on tracked PET are investigated by the UV-vis spectrum and positron annihilation lifetime spectroscopy (PALS). It is found that carbonaceous clusters in PET films are generated by ion irradiation and decomposed with UV illumination by calculating the optical energy band gap E_g in the UV-vis spectrum. The free volumes behave differently in track and bulk after UV illumination. In our experiment, the PALS results show an increase in radius and density of free volume in tracked PET films after UV treatment, which indicates an expansion in radius of latent tracks. (paper)

  10. Ultrasonic Characterisation of Epoxy Resin/Polyethylene Terephthalate (PET Char Powder Composites

    Directory of Open Access Journals (Sweden)

    Imran ORAL

    2016-11-01

    Full Text Available This study is carried out in order to determine the elastic properties of the Epoxy Resin (ER / Polyethylene terephthalate (PET Char Powder Composites by ultrasonic wave velocity measurement method. Plastic waste was recycled as raw material for the preparation of epoxy composite materials. The supplied chars were mixed with epoxy resin matrix at weight percentages of 10 %, 20 % and 30 % for preparing ER/PET Char Powder (PCP composites. The effect of PET char powder on the elastic properties of ER/PCP composites were investigated by ultrasonic pulse-echo method. According to the obtained results, the composition ratio of 80:20 is the most appropriate composition ratio, which gave the highest elastic constants values for ER/PCP composites. On the other hand, the best electrical conductivity value was obtained for 70:30 composition ratio. It was observed that ultrasonic shear wave velocity correlated more perfectly than any other parameters with hardness.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.12190

  11. Fabrication and mechanical properties of self-reinforced poly(ethylene terephthalate composites

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available Self-reinforced poly(ethylene terephthalate (PET composites prepared by using a modified film-stacking technique were examined in this study. The starting materials included a high tenacity PET yarn (reinforcement and a low melting temperature biodegradable polyester resin (matrix, both of which differ in their melting temperatures with a value of 56°C. This experiment produced composite sheets at three consolidation temperatures (Tc: 215, 225, and 235°C at a constant holding time (th: 6.5 min, and three holding times (3, 6.5 and 10 min at a constant consolidation temperature of 225°C. This study observed a significant improvement in the mechanical properties obtained in self-reinforced PET composites compared to the pure polyester resin. The results of tensile, flexural, and Izod impact tests proved that optimal conditions are low consolidation temperature and short holding time. The absorbed impact energy of the best self-reinforced PET composite material was 854.0 J/m, which is 63 times that of pure polyester resin.

  12. Thermal conductivity of plasma modified polyethylene terephthalate and polyamide-6 layers

    Directory of Open Access Journals (Sweden)

    G. Kalacska

    2016-05-01

    Full Text Available Tribological performance of the materials greatly depends on the temperature of the contacting zones and surfaces and hence on the heat conducting behaviour of the materials. Heat conduction of polymers is, however, greatly affected even by a very narrow (few tens of nm modified layer formed on the surface after subjecting the polymer to plasma treatment. In this article the heat flow inhibiting properties of plasma modified surface layers were investigated on polyethylene terephthalate (PET and polyamide-6 (PA6 engineering polymers. Nitrogen Plasma Immersion Ion Implantation gave rise to compositional and structural changes of the polymers in a depth of 110 nm. It was found that even this thin layer exhibited significant heat flow inhibiting effect. The modified layer considerably decreased the thermal conductivity coefficient of the treated polymer and resulted in a reduced heat transmission for PET and PA6 by 33 and 28%, respectively. This new information supports and is in accordance with the former tribological results about extra friction heat generation experienced under NPIII surface layer of PA6 and PET during dry sliding.

  13. Ultrafiltration membranes from waste polyethylene terephthalate and additives: synthesis and characterization

    Directory of Open Access Journals (Sweden)

    Smitha Rajesh

    2014-01-01

    Full Text Available The synthesis and characterization of asymmetric ultrafiltration membranes from recycled polyethylene terephthalate (PET and polyvinylpyrrolidone (PVP is reported. PET is currently used in many applications, including the manufacture of bottles and tableware. Monomer extraction from waste PET is expensive, and this process has not yet been successfully demonstrated on a viable scale. Hence, any method to recycle or regenerate PET once it has been used is of significant importance from scientific and environmental research viewpoints. Such a process would be a green alternative due to reduced raw monomer consumption and the additional benefit of reduced manufacturing costs. The membranes described here were prepared by a phase-inversion process, which involved casting a solution containing PET, m-cresol as solvent, and polyethylene glycol (PEG of different molecular weights as additives. The membranes were characterized in terms of pure water permeability (PWP, molecular weight cut-off (MWCO, and flux and membrane morphology. The results show that the addition of PEG with high molecular weights leads to membranes with higher PWP. The presence of additives affects surface roughness and membrane morphology.

  14. Flow-induced crystallization of a nano composite of poly(butylene adipate-co-terephthalate)/montmorillonite

    International Nuclear Information System (INIS)

    Bonel, Alan B.; Rego, Bruna T.; Beatrice, Cesar A.G.; Marini, Juliano; Bretas, Rosario E.S.

    2011-01-01

    Poly(butylene adipate-co-terephthalate) (PBAT) with 5wt% of an organically modified montmorillonite with polar surfactant was prepared by melt blending in a co-rotational twin-screw extruder at 160 degree C. 100rpm and 1 kg/h. Both pure polymer and nano composite were characterized by wide measurements. The study of the flow-induced crystallization was also done by rheological measurements, monitoring the viscosity as a function of time. The nano clay's lamellas were intercalated in the polymer m loss moduli of the nano composite, at low frequencies, showed that the particles of the nano clay were well dispersed and distributed thru the PBAT matrix. Finally, the presence of the nano clay's particles reduced the induction tim crystals growth, due to the strong interactions with the PBAT chains. (author)

  15. Covalent immobilization of lysozyme onto woven and knitted crimped polyethylene terephthalate grafts to minimize the adhesion of broad spectrum pathogens

    International Nuclear Information System (INIS)

    Al Meslmani, Bassam M.; Mahmoud, Gihan F.; Leichtweiß, Thomas; Strehlow, Boris; Sommer, Frank O.; Lohoff, Michael D.; Bakowsky, Udo

    2016-01-01

    Graft-associated infections entirely determine the short-term patency of polyethylene terephthalate PET cardiovascular graft. We attempted to enzymatically inhibit the initial bacterial adhesion to PET grafts using lysozyme. Lysozyme was covalently immobilized onto woven and knitted forms of crimped PET grafts by the end-point method. Our figures of merit revealed lysozyme immobilization yield of 15.7 μg/cm"2, as determined by the Bradford assay. The activity of immobilized lysozyme on woven and knitted PET manifested 58.4% and 55.87% using Micrococcus lysodeikticus cells, respectively. Noteworthy, the adhesion of vein catheter-isolated Staphylococcus epidermidis decreased by 6- to 8-folds and of Staphylococcus aureus by 11- to 12-folds, while the Gram-negative Escherichia coli showed only a decrease by 3- to 4-folds. The anti-adhesion efficiency was specific for bacterial cells and no significant effect was observed on adhesion and growth of L929 cells. In conclusion, immobilization of lysozyme onto PET grafts can inhibit the graft-associated infection. - Highlights: • Lysozyme was covalently immobilized on crimped polyethylene terephthalate (PET). • The activity of immobilized lysozyme was meaningfully reduced. • The maintained activity significantly declined the adhesion of Gram-positive stains. • The enzymatic anti-adhesion efficiency reported lesser extent against Gram-negative. • The anti-bacterial activity displayed no significant effect on cells compatibility.

  16. Covalent immobilization of lysozyme onto woven and knitted crimped polyethylene terephthalate grafts to minimize the adhesion of broad spectrum pathogens

    Energy Technology Data Exchange (ETDEWEB)

    Al Meslmani, Bassam M., E-mail: almeslmanib@yahoo.com [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Mahmoud, Gihan F., E-mail: mahmoudg@staff.uni-marburg.de [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Department of Pharmaceutics and Industrial Pharmacy, Helwan University, Ain Helwan, 11795 Cairo (Egypt); Leichtweiß, Thomas, E-mail: Thomas.Leichtweiss@phys.Chemie.uni-giessen.de [Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, 35392 Giessen (Germany); Strehlow, Boris, E-mail: strehlo4@staff.uni-marburg.de [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany); Sommer, Frank O., E-mail: sommerf@med.uni-marburg.de [Institute for Medical Microbiology and Hospital Hygiene, Marburg University, Hans Meerwein Str 2, 35032 Marburg (Germany); Lohoff, Michael D., E-mail: lohoff@med.uni-marburg.de [Institute for Medical Microbiology and Hospital Hygiene, Marburg University, Hans Meerwein Str 2, 35032 Marburg (Germany); Bakowsky, Udo, E-mail: ubakowsky@aol.com [Department of Pharmaceutical Technology and Biopharmaceutics, Marburg University, Ketzerbach 63, 35037 Marburg (Germany)

    2016-01-01

    Graft-associated infections entirely determine the short-term patency of polyethylene terephthalate PET cardiovascular graft. We attempted to enzymatically inhibit the initial bacterial adhesion to PET grafts using lysozyme. Lysozyme was covalently immobilized onto woven and knitted forms of crimped PET grafts by the end-point method. Our figures of merit revealed lysozyme immobilization yield of 15.7 μg/cm{sup 2}, as determined by the Bradford assay. The activity of immobilized lysozyme on woven and knitted PET manifested 58.4% and 55.87% using Micrococcus lysodeikticus cells, respectively. Noteworthy, the adhesion of vein catheter-isolated Staphylococcus epidermidis decreased by 6- to 8-folds and of Staphylococcus aureus by 11- to 12-folds, while the Gram-negative Escherichia coli showed only a decrease by 3- to 4-folds. The anti-adhesion efficiency was specific for bacterial cells and no significant effect was observed on adhesion and growth of L929 cells. In conclusion, immobilization of lysozyme onto PET grafts can inhibit the graft-associated infection. - Highlights: • Lysozyme was covalently immobilized on crimped polyethylene terephthalate (PET). • The activity of immobilized lysozyme was meaningfully reduced. • The maintained activity significantly declined the adhesion of Gram-positive stains. • The enzymatic anti-adhesion efficiency reported lesser extent against Gram-negative. • The anti-bacterial activity displayed no significant effect on cells compatibility.

  17. Magnetron sputtered transparent conductive zinc-oxide stabilized amorphous indium oxide thin films on polyethylene terephthalate substrates at ambient temperature

    International Nuclear Information System (INIS)

    Yan, Y.; Zhang, X.-F.; Ding, Y.-T.

    2013-01-01

    Amorphous transparent conducting zinc-oxide stabilized indium oxide thin films, named amorphous indium zinc oxide (a-IZO), were deposited by direct current magnetron sputtering at ambient temperature on flexible polyethylene terephthalate substrates. It has been demonstrated that the electrical resistivity could attain as low as ∼ 5 × 10 −4 Ω cm, which was noticeably lower than amorphous indium tin oxide films prepared at the same condition, while the visible transmittance exceeded 84% with the refractive index of 1.85–2.00. In our experiments, introduction of oxygen gas appeared to be beneficial to the improvement of the transparency and electrical conductivity. Both free carrier absorption and indirect transition were observed and Burstein–Moss effect proved a-IZO to be a degenerated amorphous semiconductor. However, the linear relation between the optical band gap and the band tail width which usually observed in covalent amorphous semiconductor such as a-Si:H was not conserved. Besides, porosity could greatly determine the resistivity and optical constants for the thickness variation at this deposition condition. Furthermore, a broad photoluminescence peak around 510 nm was identified when more than 1.5 sccm oxygen was introduced. - Highlights: ► Highly conducting amorphous zinc-oxide stabilized indium oxide thin films were prepared. ► The films were fabricated on polyethylene terephthalate at ambient temperature. ► Introduction of oxygen can improve the transparency and electrical conductivity. ► The linear relation between optical band gap and band tail width was not conserved

  18. Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Alok, E-mail: aljymittal@yahoo.co.in [Department of Chemistry, Maulana Azad National Institute of Technology (A Deemed University), Bhopal 462051 (India); Soni, R.K.; Dutt, Krishna; Singh, Swati [Department of Chemistry, Ch. Charan Singh University, Meerut 250004 (India)

    2010-06-15

    Polyethylene terephthalate (PET) waste flakes were degraded with aqueous methylamine and aqueous ammonia, respectively at room temperature in the presence and absence of quaternary ammonium salt as a catalyst for different periods of time. The aminolysed and ammonolysed PET samples were investigated for the surface morphology with the help of scanning electron micrograph (SEM). It shows that the semi-crystalline PET waste samples reduce to monodisperse rods before fully degradation to the end products. The presence of the catalyst provides site for degradation of PET waste and enhances the rate of degradation. The SEM shows early developments of fissures in comparison to the one in absence of quaternary ammonium salt used as catalyst.

  19. Scanning electron microscopic study of hazardous waste flakes of polyethylene terephthalate (PET) by aminolysis and ammonolysis

    International Nuclear Information System (INIS)

    Mittal, Alok; Soni, R.K.; Dutt, Krishna; Singh, Swati

    2010-01-01

    Polyethylene terephthalate (PET) waste flakes were degraded with aqueous methylamine and aqueous ammonia, respectively at room temperature in the presence and absence of quaternary ammonium salt as a catalyst for different periods of time. The aminolysed and ammonolysed PET samples were investigated for the surface morphology with the help of scanning electron micrograph (SEM). It shows that the semi-crystalline PET waste samples reduce to monodisperse rods before fully degradation to the end products. The presence of the catalyst provides site for degradation of PET waste and enhances the rate of degradation. The SEM shows early developments of fissures in comparison to the one in absence of quaternary ammonium salt used as catalyst.

  20. EFFECT OF INTERFACIAL ADHESION ON CRYSTALLIZATION AND MECHANICAL PROPERTIES OF POLY (ETHYLENE TEREPHTHALATE)/GLASS BEAD COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    OU Yuchun; YU Zhongzhen; ZHU Jin; LI Ge; ZHU Shanguang

    1996-01-01

    The interfacial adhesion between poly (ethylene terephthalate) (PET) and glass bead was investigated by scanning electron microscope and parallel-plate rheometer. Effect of interfacial adhesion on the crystallization and mechanical properties of PET/glass bead composites was also studied by differential scanning calorimeter and mechanical testers.The results obtained indicate that the glass bead has a heterogeneous nucleation effect on the PET crystallization. Although better interfacial adhesion is advantageous to the increase of the tensile strength of the composite, yet it is unfavorable to the crystallization of PET. It should be pointed out that the crystallization rate of filled PET is always higher than that of pure PET, regardless of the state of interfacial adhesion.

  1. Correlation of molecular conformation with adhesion at AlOx/poly (ethylene terephthalate) interface studied by sum-frequency generation spectroscopy

    International Nuclear Information System (INIS)

    Miyamae, Takayuki; Nozoye, Hisakazu

    2004-01-01

    The interface between AlO x and poly(ethylene terephthalate) has been investigated by sum-frequency generation (SFG). A considerable improvement in adhesion strength was achieved by short time Ar plasma modification. The increase of the adhesion strength shows good correlation with the increase of the SFG peak strength. By depositing AlO x , the increase of SFG intensities and appearance of a new peak are observed, indicating the formation of a C=O···Al bond at the interface. Surface-modification and interfacial adhesion property are discussed

  2. Commentary on "Patient-reported outcomes after 3-dimensional conformal, intensity-modulated, or proton beam radiotherapy for localized prostate cancer." Gray PJ, Paly JJ, Yeap BY, Sanda MG, Sandler HM, Michalski JM, Talcott JA, Coen JJ, Hamstra DA, Shipley WU, Hahn SM, Zietman AL, Bekelman JE, Efstathiou JA. Harvard Radiation Oncology Program, Boston, MA.: Cancer 2013;119(9):1729-35. doi: 10.1002/cncr.27956. [Epub 2013 Feb 22].

    Science.gov (United States)

    Gottschalk, Alexander

    2014-04-01

    Recent studies have suggested differing toxicity patterns for patients with prostate cancer who receive treatment with 3-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT), or proton beam therapy (PBT). The authors reviewed patient-reported outcomes data collected prospectively using validated instruments that assessed bowel and urinary quality of life (QOL) for patients with localized prostate cancer who received 3DCRT (n = 123), IMRT (n = 153) or PBT (n = 95). Clinically meaningful differences in mean QOL scores were defined as those exceeding half the standard deviation of the baseline mean value. Changes from baseline were compared within groups at the first post-treatment follow-up (2-3 months from the start of treatment) and at 12 months and 24 months. At the first post-treatment follow-up, patients who received 3DCRT and IMRT, but not those who received PBT, reported a clinically meaningful decrement in bowel QOL. At 12 months and 24 months, all 3 cohorts reported clinically meaningful decrements in bowel QOL. Patients who received IMRT reported clinically meaningful decrements in the domains of urinary irritation/obstruction and incontinence at the first post-treatment follow-up. At 12 months, patients who received PBT, but not those who received IMRT or 3DCRT, reported a clinically meaningful decrement in the urinary irritation/obstruction domain. At 24 months, none of the 3 cohorts reported clinically meaningful changes in urinary QOL. Patients who received 3DCRT, IMRT, or PBT reported distinct patterns of treatment-related QOL. Although the timing of toxicity varied between the cohorts, patients reported similar modest QOL decrements in the bowel domain and minimal QOL decrements in the urinary domains at 24 months. Prospective randomized trials are needed to further examine these differences. © 2013 Published by Elsevier Inc.

  3. THERMAL DEGRADATION OF THERMOTROPIC LIQUID CRYSTALLINE TERPOLYESTERS BASED ON VANILLIC ACID, p-HYDROXYBENZOIC ACID AND POLY(ETHYLENE TEREPHTHALATE)

    Institute of Scientific and Technical Information of China (English)

    LI Xingui; HUANG Meirong; GUAN Guihe; SUN Tong

    1993-01-01

    Nine thermotropic liquid crystalline terpolyesters based on vanillic acid(V), p-hydroxybenzoic acid(H) and poly(ethylene terephthalate)(E) were investigated by thermogravimetry to ascertain their thermostability and the kinetic parameters for thermal degradation. Overall activation energy data of the degradation had been calculated over the range 5~70% weight loss. The temperatures and the activation energy of the degradation lie in the ranges of 384~394 ℃ at a heating rate of 1 ℃/min and 176~205 KJ/mol at the weight loss of 5%, respectively, which suggests that the terpolyesters have good thermostability.

  4. Improved damp heat stability of Ga-Doped ZnO thin film by pretreatment of the polyethylene terephthalate substrate

    Science.gov (United States)

    Kim, B. B.; Seo, S. G.; Lim, Y. S.; Choi, H.-S.; Seo, W.-S.; Park, H.-H.

    2013-09-01

    A study on the damp heat stability of transparent conducting ZnO thin film grown on a polyethylene terephthalate substrate (PET) is reported. By thermal annealing of the PET substrate at 100°C with Ar flow in a vacuum chamber prior to the sputtering growth of Ga-doped ZnO (GZO) thin film, significantly enhanced damp heat stability was achieved at 60°C with a 90% relative humidity. Electrical and structural characterizations of the GZO thin films were carried out and the effects of the pretreatment on the improved damp heat stability are discussed.

  5. Surface Treatment of PEOT/PBT (55/45 with a Dielectric Barrier Discharge in Air, Helium, Argon and Nitrogen at Medium Pressure

    Directory of Open Access Journals (Sweden)

    Pieter Cools

    2018-03-01

    Full Text Available This work describes the surface modification of 300PEO-PEOT/PBT 55/45 thin films using a medium pressure dielectric barrier discharge system operated in argon, helium, nitrogen or dry air to improve cell-surface interactions of this established biomaterial. The first part of the paper describes the optimization of the plasma processing parameters using water contact angle goniometry. The optimized samples are then characterized for changes in surface topography and surface chemical composition using atomic force microscopy (AFM and X-ray fluorescence spectroscopy (XPS respectively. For all plasma treatments, a pronounced increase in surface wettability was observed, of which the extent is dependent on the used plasma discharge gas. Except for dry air, only minor changes in surface topography were noted, while XPS confirmed that the changes in wettability were mainly chemical in nature with the incorporation of 5–10% of extra oxygen as a variety of polar groups. Similarly, for the nitrogen plasma, 3.8% of nitrogen polar groups were additionally incorporated. Human foreskin fibroblast (HFF in vitro analysis showed that within the first 24 h after cell seeding, the effects on cell-surface interactivity were highly dependent on the used discharge gas, nitrogen plasma treatment being the most efficient. Differences between untreated and plasma-treated samples were less pronounced compared to other biodegradable materials, but a positive influence on cell adhesion and proliferation was still observed.

  6. Proton Beam Therapy Interference With Implanted Cardiac Pacemakers

    International Nuclear Information System (INIS)

    Oshiro, Yoshiko; Sugahara, Shinji; Noma, Mio; Sato, Masato; Sakakibara, Yuzuru; Sakae, Takeji; Hayashi, Yasutaka; Nakayama, Hidetsugu; Tsuboi, Koji; Fukumitsu, Nobuyoshi; Kanemoto, Ayae; Hashimoto, Takayuki; Tokuuye, Koichi

    2008-01-01

    Purpose: To investigate the effect of proton beam therapy (PBT) on implanted cardiac pacemaker function. Methods and Materials: After a phantom study confirmed the safety of PBT in patients with cardiac pacemakers, we treated 8 patients with implanted pacemakers using PBT to a total tumor dose of 33-77 gray equivalents (GyE) in dose fractions of 2.2-6.6 GyE. The combined total number of PBT sessions was 127. Although all pulse generators remained outside the treatment field, 4 patients had pacing leads in the radiation field. All patients were monitored by means of electrocardiogram during treatment, and pacemakers were routinely examined before and after PBT. Results: The phantom study showed no effect of neutron scatter on pacemaker generators. In the study, changes in heart rate occurred three times (2.4%) in 2 patients. However, these patients remained completely asymptomatic throughout the PBT course. Conclusions: PBT can result in pacemaker malfunctions that manifest as changes in pulse rate and pulse patterns. Therefore, patients with cardiac pacemakers should be monitored by means of electrocardiogram during PBT

  7. The Effect of Sodium Hyaluronate on Ligamentation and Biomechanical Property of Tendon in Repair of Achilles Tendon Defect with Polyethylene Terephthalate Artificial Ligament: A Rabbit Tendon Repair Model.

    Science.gov (United States)

    Li, Shengkun; Ma, Kui; Li, Hong; Jiang, Jia; Chen, Shiyi

    2016-01-01

    The Achilles tendon is the most common ruptured tendon of human body. Reconstruction with polyethylene terephthalate (PET) artificial ligament is recommended in some serious cases. Sodium hyaluronate (HA) is beneficial for the healing of tendon injuries. We aimed to determine the effect of sodium hyaluronate in repair of Achilles tendon defect with PET artificial ligament in an animal tendon repair model. Sixteen New Zealand White rabbits were divided into two groups. Eight rabbits repaired with PET were assigned to PET group; the other eight rabbits repaired with PET along with injection of HE were assigned to HA-PET group. All rabbits were sacrificed at 4 and 8 weeks postoperatively for biomechanical and histological examination. The HA-PET group revealed higher biomechanical property compared with the PET group. Histologically, more collagen tissues grew into the HA-PET group compared with PET group. In conclusion, application of sodium hyaluronate can improve the healing of Achilles tendon reconstruction with polyethylene terephthalate artificial ligament.

  8. The Effect of Sodium Hyaluronate on Ligamentation and Biomechanical Property of Tendon in Repair of Achilles Tendon Defect with Polyethylene Terephthalate Artificial Ligament: A Rabbit Tendon Repair Model

    Directory of Open Access Journals (Sweden)

    Shengkun Li

    2016-01-01

    Full Text Available The Achilles tendon is the most common ruptured tendon of human body. Reconstruction with polyethylene terephthalate (PET artificial ligament is recommended in some serious cases. Sodium hyaluronate (HA is beneficial for the healing of tendon injuries. We aimed to determine the effect of sodium hyaluronate in repair of Achilles tendon defect with PET artificial ligament in an animal tendon repair model. Sixteen New Zealand White rabbits were divided into two groups. Eight rabbits repaired with PET were assigned to PET group; the other eight rabbits repaired with PET along with injection of HE were assigned to HA-PET group. All rabbits were sacrificed at 4 and 8 weeks postoperatively for biomechanical and histological examination. The HA-PET group revealed higher biomechanical property compared with the PET group. Histologically, more collagen tissues grew into the HA-PET group compared with PET group. In conclusion, application of sodium hyaluronate can improve the healing of Achilles tendon reconstruction with polyethylene terephthalate artificial ligament.

  9. Alterations of papilla dimensions after orthodontic closure of the maxillary midline diastema: a retrospective longitudinal study.

    Science.gov (United States)

    Jeong, Jin-Seok; Lee, Seung-Youp; Chang, Moontaek

    2016-06-01

    The aim of this study was to evaluate alterations of papilla dimensions after orthodontic closure of the diastema between maxillary central incisors. Sixty patients who had a visible diastema between maxillary central incisors that had been closed by orthodontic approximation were selected for this study. Various papilla dimensions were assessed on clinical photographs and study models before the orthodontic treatment and at the follow-up examination after closure of the diastema. Influences of the variables assessed before orthodontic treatment on the alterations of papilla height (PH) and papilla base thickness (PBT) were evaluated by univariate regression analysis. To analyze potential influences of the 3-dimensional papilla dimensions before orthodontic treatment on the alterations of PH and PBT, a multiple regression model was formulated including the 3-dimensional papilla dimensions as predictor variables. On average, PH decreased by 0.80 mm and PBT increased after orthodontic closure of the diastema (Porthodontic treatment influenced the alteration of PH. With respect to the alteration of PBT, the diastema width (P=0.045) and PBT (P=0.000) were found to be influential factors. PBT before the orthodontic treatment significantly influenced the alteration of PBT in the multiple regression model. PH decreased but PBT increased after orthodontic closure of the diastema. The papilla dimensions before orthodontic treatment influenced the alterations of PH and PBT after closure of the diastema. The PBT increased more when the diastema width before the orthodontic treatment was larger.

  10. Effect of calcium-ozone treatment on chemical and biological properties of polyethylene terephthalate.

    Science.gov (United States)

    Rashid, Ahmed Nafis; Tsuru, Kanji; Ishikawa, Kunio

    2015-05-01

    Ozone (O3 ) treatment of polyethylene terephthalate (PET) in distilled water was performed in the presence and absence of calcium (Ca(2+) ). PET was oxidized and thus carboxylic and hydroxyl functional groups were introduced on its surface after O3 treatment, regardless of the presence or absence of Ca(2+) . In the case of O3 treatment with Ca(2+) , PET surface was modified with Ca(2+) . Ca(2+) immobilization was confirmed by X-ray photoelectron spectrometric analysis. Hydrophilicity was investigated by measuring contact angles (CA). CA of PET decreased significantly after ozonation. Surface topography of PET before and after ozone treatment was observed by scanning electron microscopy, and showed no morphological changes. In vitro studies showed enhanced rat bone marrow cell responses on the O3 -treated PET surface. Ca(2+) -O3 oxidation at 37°C for 6 h is expected to be an effective method to fabricate PET with good biocompatibility. © 2014 Wiley Periodicals, Inc.

  11. High gamma dose response of the electrical properties of polyethylene terephthalate thin films

    International Nuclear Information System (INIS)

    Radwan, R.M.

    2007-01-01

    Electrical properties of polyethylene terephthalate (PET), irradiated with gamma rays, have been investigated. The PET films were irradiated with high gamma dose levels in the range from 100 to 2000 kGy. The changes in the DC (σ DC ) and the ac (σ ac ) conductivities, with the dose, have been performed. The effect of gamma irradiation on the dielectric constant (ε') and loss (ε'') has been determined. Also, the dose dependence of the frequency exponent index (S), the resonance frequency (Fc) and the hopping frequency (ω P ) have been obtained. The obtained results show that increasing gamma dose leads to slight increase in σ DC , σ ac and ε', while no change was observed in ε'' value. Meanwhile, S, Fc and ω P are inversely proportional to the dose. Accordingly, the study suggests the possibility of using PET films in electronic components (capacitors, resistors, etc.), especially that operate at high gamma dose environments for the frequency independent applications

  12. Rheological Properties and Foaming Behavior of Poly(Ethylene Terephthalates) Modified with Pyromellitic Dianhydride

    Science.gov (United States)

    Yang, Zhao-Ping; Xin, Chun-Ling; Guo, Ya-Feng; Luo, Yi-Wei; He, Ya-Dong

    2016-05-01

    Improving the melt viscoelasticity of poly(ethylene terephthalate) (PET) is a well-known method to obtain foamable PET. The aim of this study is to prepare high melt strength PET and evaluate the influence of rheological properties of PET on the foaming behavior. For this purpose, pyromelliticdianhydride was used as the chain extender to modify a linear PET through melt reactive processing. The rheological properties of the unmodified and modified PETs were measured by a dynamic rheometer. Results showed that the modified PET had higher complex viscosity than the unmodified one. Furthermore, the batch foaming by using supercritical CO2 as a blowing agent was carried to evaluate the foamability of modified PETs. It was found that an enlarged foaming temperature window was obtained for modified PETs compared to unmodified PET. Moreover, the modified PETs foams exhibited higher expansion ratio, smaller cell size and higher cell density at high temperatures than the neat PET.

  13. Crystallization and melting behavior of nanoclay-containing polypropylene/poly(trimethylene terephthalate blends

    Directory of Open Access Journals (Sweden)

    S. H. Jafari

    2012-02-01

    Full Text Available This contribution concerns preparation and characterization of polypropylene (PP/poly(trimethylene terephthalate (PTT melt-mixed blends in the presence of organically-modified montmorillonite nanoclays and functional compatibilizers. Immiscibility and nanocomposite formation were confirmed via transmission electron microscopy. An intercalated structure was observed by wide angle X-ray diffraction technique. Crystallization, and melting characteristics were studied by differential scanning calorimetry in both isothermal and non-isothermal modes, supplemented by temperature modulated DSC (TMDSC. A concurrent crystallization was found for both polymeric components in the blends. Whereas blending favored PP crystallizability, it interrupted that of PTT. The addition compatibilizers interfered with rate, temperature, and degree of crystallization of PP and PTT. On the contrary, nanoclays incorporation increased crystallizability of each individual component. However, as for blend nanocomposite samples, the way the crystallization behavior changed was established to depend on the type of nanoclay. Based on kinetic analysis, isothermal crystallization nucleation followed athermal mechanism, while that of non-isothermal obeyed thermal mode. Addition of nanoclays shifted nucleation mechanism from athermal to thermal mode.

  14. Acetate-assisted Synthesis of Chromium(III) Terephthalate and Its Gas Adsorption Properties

    International Nuclear Information System (INIS)

    Zhou, Jingjing; Liu, Kaiyu; Kong, Chunlong; Chen, Liang

    2013-01-01

    We report a facile synthetic approach of high-quality chromium(III) terephthalate [MIL-101(Cr)] by acetate-assisted method in the absence of toxic HF. Results indicate that the morphology and surface area of the MIL-101(Cr) can be tuned by modifying the molar ratio of acetate/Cr(NO 3 ) 3 . The Brunauer-Emmett-Teller (BET) surface area of MIL-101(Cr) synthesized at the optimized condition can exceed 3300 m 2 /g. It is confirmed that acetate could promote the dissolution of di-carboxylic linker and accelerate the nucleation ratio. So the pure and small size of MIL-101(Cr) with clean pores can be obtained. CO 2 , CH 4 and N 2 adsorption isotherms of the samples are studied at 298 K and 313 K. Compared with the traditional method, MIL-101(Cr) synthesized by acetate-assisted method possess enhanced CO 2 selective adsorption capacity. At 1.0 bar 298 K, it exhibits 47% enhanced CO 2 adsorption capacity. This may be attributed to the high surface area together with clean pores of MIL-101(Cr)

  15. 120 MeV Ni Ion beam induced modifications in poly (ethylene terephthalate) used in commercial bottled water

    International Nuclear Information System (INIS)

    Kumar, Vijay; Sonkawade, R. G.; Ali, Yasir; Dhaliwal, A. S.

    2012-01-01

    We report the effects of heavy ion irradiation on the optical, structural, and chemical properties of polyethylene terephthalate (PET) film used in commercial bottled water. PET bottles were exposed with 120 MeV Ni ions at fluences varying from 3 x 10 10 to 3 x 10 12 ion/cm 2 . The modifications so induced were analyzed by using UV-Vis, X-ray diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy. Substantial decrease in optical band gap is observed with the increase in ion fluence. In the FTIR spectra, most of bands are decreased due the degradation of the molecular structure. XRD measurements show the decrease in peak intensity, which reflects the loss of crystallinity after irradiation.

  16. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment.

    Science.gov (United States)

    Sun, Hongtao; Zheng, Maohua; Wang, Yanmin; Diao, Yunfeng; Zhao, Wanyong; Wei, Zhengjun

    2016-01-01

    The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2) in the course of mild hypothermia treatment (MHT) for treating severe traumatic brain injury (sTBI). There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP), jugular venous oxygen saturation (SjvO2), and cerebral perfusion pressure (CPP) were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome.

  17. Study of the radiosterilization dose effect on properties of poly(ethylene terephthalate) - PET recycled

    International Nuclear Information System (INIS)

    Isoldi, Ana Beatriz Godoy; Silva, Leonardo Gondim de Andrade e; Rosario, Salmo Cordeiro do

    2002-01-01

    The packing are in constant development, in function, especially, the process of globalization. The opening of the brazilian market after currency stabilization, caused technological innovations, change of habits and costumes of the population and environmental matters. Year after year, because of cost reductions, it became more extreme the hard study of the polymeric materials and their copolymers, their possible blends and their recycling, always seeking a better wrapping of the products, especially when it concerns to the food, increasing its shelf life. The process of sterilization of foods and modification of polymers through radiation are targets of growing interest by of the current industries linked to the nutrition and packing sectors. The objective of this paper is to discuss the application of the radiation (electron beam) in the sterilization of packings of recycled poly(ethylene terephthalate) PET, evaluating the possible effects on their properties. (author)

  18. Recovery of electrical resistance in copper films on polyethylene terephthalate subjected to a tensile strain

    International Nuclear Information System (INIS)

    Glushko, O.; Marx, V.M.; Kirchlechner, C.; Zizak, I.; Cordill, M.J.

    2014-01-01

    Substantial recovery (decrease) of electrical resistance during and after unloading is demonstrated for copper films on polyethylene terephthalate substrates subjected to a tensile strain with different peak values. Particularly, the films strained to 5% exhibit full resistance recovery after unloading despite clearly visible plastic deformation of the film. The recovery of electrical resistance in connection with the mechanical behavior of film/substrate couple is discussed with the help of in situ scanning electron microscopy and X-ray diffraction analysis. - Highlights: • Tensile tests on 200 nm Cu films on PET substrate are performed. • Electrical resistance is recorded in-situ during loading and unloading. • Significant recovery (decrease) of resistance is observed during and after unloading. • Films strained to 5% demonstrate full resistance recovery. • Viscoelastic relaxation of PET is responsible for recovery of Cu film resistance

  19. Study on the synthesis of dimethyl 1,4-cyclohexanedicarboxylate by catalytic hydrogenation of dimethyl terephthalate

    Directory of Open Access Journals (Sweden)

    LI Yuanhua

    2016-12-01

    Full Text Available In the field of polymer industry,1,4-cyclohexanedimethanol (CHDM occupies an important position especially for the synthesis of highly valued polyester products.In industry,CHDM is prepared from dimethyl terephthalate (DMT through a two-step hydrogenation process Palladium supported on magnesium oxide (Pd/MgO was prepared by animpregnation method and was characterized by x-ray diffraction (XRD,transmission electron microscope (TEM and scan electron microscope (SEM.During the hydrogenation of DMT to synthesize dimethyl 1,4-cyclohexanedicarboxylate (DMCD,the as-prepared Pd/MgO was used as the catalyst with methyl acetate as the solvent.Under optimized reaction conditions (reaction temperature:180 ℃,reaction pressure:4.5 MPa,the conversion of DMT was 100% and the selectivity of DMCD was 99%.Such a catalyst shows a good potential in industrial applications.

  20. A study of thermal decomposition and combustion products of disposable polyethylene terephthalate (PET) plastic using high resolution fourier transform infrared spectroscopy selected ion flow tube mass spectrometry...

    Czech Academy of Sciences Publication Activity Database

    Sovová, Kristýna; Ferus, Martin; Matulková, Irena; Španěl, Patrik; Dryahina, Kseniya; Dvořák, O.; Civiš, Svatopluk

    2009-01-01

    Roč. 106, 9-10 (2009), s. 1205-1214 ISSN 0026-8976 R&D Projects: GA AV ČR IAA400400705; GA ČR GA202/06/0776 Institutional research plan: CEZ:AV0Z40400503 Keywords : polyethylene terephthalate (PET) * coimbustion * high resolution FTIR spectroscopy * SIFT-MS Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.634, year: 2009

  1. Characterization of polyethylene terephthalate/polyaniline blends as potential antioxidant materials

    International Nuclear Information System (INIS)

    Nand, Ashveen V.; Ray, Sudip; Travas-Sejdic, Jadranka; Kilmartin, Paul A.

    2012-01-01

    Highlights: ► Successful incorporation of particulate polyaniline, consisting of nanorods, in PET was achieved. ► Interactions between PET and polyaniline in the blends were characterized using FTIR, XPS, DSC and DMTA. ► Polyaniline introduced free radical scavenging capacity in PET. - Abstract: Polyethylene terephthalate (PET) blends with a nanorod form of polyaniline (NR-PANI), formed by a falling pH synthesis, were prepared by dispersion in a melt of PET at 265 °C. Blends with 1, 2 and 3 wt% NR-PANI loading were prepared. Optical microscopy revealed an even distribution of NR-PANI particles within the PET matrix. The blends were characterized using FTIR, XPS, DSC and DMTA. Melt flow index values suggested hydrolysis of PET chains to lower molecular weight units when NR-PANI was blended. Some PET hydrolysis was also evident from the increasing oxygen to carbon ratios with an increased NR-PANI content in the blends. While the PET glass transition temperature remained relatively unaffected, the degree of PET crystallinity was increased with the addition of NR-PANI. The electrical conductivity as well as the free radical scavenging capacity of PET increased with greater NR-PANI loading in the matrix. The mechanical properties of PET, however, declined with NR-PANI loading suggesting a lack of adequate interfacial adhesion between the NR-PANI particles and the PET matrix.

  2. Present developments in reaching an international consensus for a model-based approach to particle beam therapy.

    Science.gov (United States)

    Prayongrat, Anussara; Umegaki, Kikuo; van der Schaaf, Arjen; Koong, Albert C; Lin, Steven H; Whitaker, Thomas; McNutt, Todd; Matsufuji, Naruhiro; Graves, Edward; Mizuta, Masahiko; Ogawa, Kazuhiko; Date, Hiroyuki; Moriwaki, Kensuke; Ito, Yoichi M; Kobashi, Keiji; Dekura, Yasuhiro; Shimizu, Shinichi; Shirato, Hiroki

    2018-03-01

    Particle beam therapy (PBT), including proton and carbon ion therapy, is an emerging innovative treatment for cancer patients. Due to the high cost of and limited access to treatment, meticulous selection of patients who would benefit most from PBT, when compared with standard X-ray therapy (XRT), is necessary. Due to the cost and labor involved in randomized controlled trials, the model-based approach (MBA) is used as an alternative means of establishing scientific evidence in medicine, and it can be improved continuously. Good databases and reasonable models are crucial for the reliability of this approach. The tumor control probability and normal tissue complication probability models are good illustrations of the advantages of PBT, but pre-existing NTCP models have been derived from historical patient treatments from the XRT era. This highlights the necessity of prospectively analyzing specific treatment-related toxicities in order to develop PBT-compatible models. An international consensus has been reached at the Global Institution for Collaborative Research and Education (GI-CoRE) joint symposium, concluding that a systematically developed model is required for model accuracy and performance. Six important steps that need to be observed in these considerations include patient selection, treatment planning, beam delivery, dose verification, response assessment, and data analysis. Advanced technologies in radiotherapy and computer science can be integrated to improve the efficacy of a treatment. Model validation and appropriately defined thresholds in a cost-effectiveness centered manner, together with quality assurance in the treatment planning, have to be achieved prior to clinical implementation.

  3. Patterns of Care in Proton Radiation Therapy for Pediatric Central Nervous System Malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Odei, Bismarck [University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California (United States); Frandsen, Jonathan E.; Boothe, Dustin [Department of Radiation Oncology, University of Utah Huntsman Cancer Hospital, Salt Lake City, Utah (United States); Ermoian, Ralph P. [Department of Radiation Oncology, University of Washington Medical Center, Seattle, Washington (United States); Poppe, Matthew M., E-mail: Matthew.poppe@hci.utah.edu [Department of Radiation Oncology, University of Utah Huntsman Cancer Hospital, Salt Lake City, Utah (United States)

    2017-01-01

    Purpose: Proton beam therapy (PBT) potentially allows for improved sparing of normal tissues, hopefully leading to decreased late side effects in children. Using a national registry, we sought to perform a patterns-of-care analysis for children receiving PBT for primary malignancies of the central nervous system (CNS). Methods and Materials: Using the National Cancer Data Base, we identified pediatric patients with primary CNS malignancies that were diagnosed between 2004 and 2012. We used a standard t test for comparison of means and χ{sup 2} testing to identify differences in demographic and clinical characteristics. Univariate and multivariate logistical regression was applied to identify predictors of PBT use. Results: We identified 4637 pediatric patients receiving radiation therapy from 2004 to 2012, including a subset of 267 patients treated with PBT. We found that PBT use increased with time from <1% in 2004 to 15% in 2012. In multivariate logistical regression, we found the following to be predictors of receipt of PBT: private insurance, the highest income bracket, younger age, living in a metropolitan area, and residing >200 miles from a radiation treatment facility (P<.05). Conclusions: We noted the proportion of children receiving PBT to be significantly increasing over time from <1% to 15% from 2004 to 2012. We also observed important disparities in receipt of PBT based on socioeconomic status. Children from higher-income households and with private insurance were more likely to use this expensive technology. As we continue to demonstrate the potential benefits of PBT in children, efforts are needed to expand the accessibility of PBT for children of all socioeconomic backgrounds and regions of the country.

  4. Assessment of a new method for the analysis of decomposition gases of polymers by a combining thermogravimetric solid-phase extraction and thermal desorption gas chromatography mass spectrometry.

    Science.gov (United States)

    Duemichen, E; Braun, U; Senz, R; Fabian, G; Sturm, H

    2014-08-08

    For analysis of the gaseous thermal decomposition products of polymers, the common techniques are thermogravimetry, combined with Fourier transformed infrared spectroscopy (TGA-FTIR) and mass spectrometry (TGA-MS). These methods offer a simple approach to the decomposition mechanism, especially for small decomposition molecules. Complex spectra of gaseous mixtures are very often hard to identify because of overlapping signals. In this paper a new method is described to adsorb the decomposition products during controlled conditions in TGA on solid-phase extraction (SPE) material: twisters. Subsequently the twisters were analysed with thermal desorption gas chromatography mass spectrometry (TDS-GC-MS), which allows the decomposition products to be separated and identified using an MS library. The thermoplastics polyamide 66 (PA 66) and polybutylene terephthalate (PBT) were used as example polymers. The influence of the sample mass and of the purge gas flow during the decomposition process was investigated in TGA. The advantages and limitations of the method were presented in comparison to the common analysis techniques, TGA-FTIR and TGA-MS. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Patterns of Care in Proton Radiation Therapy for Pediatric Central Nervous System Malignancies

    International Nuclear Information System (INIS)

    Odei, Bismarck; Frandsen, Jonathan E.; Boothe, Dustin; Ermoian, Ralph P.; Poppe, Matthew M.

    2017-01-01

    Purpose: Proton beam therapy (PBT) potentially allows for improved sparing of normal tissues, hopefully leading to decreased late side effects in children. Using a national registry, we sought to perform a patterns-of-care analysis for children receiving PBT for primary malignancies of the central nervous system (CNS). Methods and Materials: Using the National Cancer Data Base, we identified pediatric patients with primary CNS malignancies that were diagnosed between 2004 and 2012. We used a standard t test for comparison of means and χ"2 testing to identify differences in demographic and clinical characteristics. Univariate and multivariate logistical regression was applied to identify predictors of PBT use. Results: We identified 4637 pediatric patients receiving radiation therapy from 2004 to 2012, including a subset of 267 patients treated with PBT. We found that PBT use increased with time from 200 miles from a radiation treatment facility (P<.05). Conclusions: We noted the proportion of children receiving PBT to be significantly increasing over time from <1% to 15% from 2004 to 2012. We also observed important disparities in receipt of PBT based on socioeconomic status. Children from higher-income households and with private insurance were more likely to use this expensive technology. As we continue to demonstrate the potential benefits of PBT in children, efforts are needed to expand the accessibility of PBT for children of all socioeconomic backgrounds and regions of the country.

  6. Wood plastic composites based on microfibrillar blends of high density polyethylene/poly(ethylene terephthalate).

    Science.gov (United States)

    Lei, Yong; Wu, Qinglin

    2010-05-01

    High-melting-temperature poly(ethylene terephthalate) (PET) was successfully introduced into wood plastic composites through a two-step reactive extrusion technology. Wood flour was added into pre-prepared PET/high density polyethylene (HDPE) microfibrillar blends (MFBs) in the second extrusion at the temperature for processing HDPE. Addition of 25% in situ formed PET microfibers obviously increased the mechanical properties of HDPE, and more significant enhancement by the in situ formed recycled PET microfibers was observed for the recycled HDPE. Adding 2% E-GMA improved the compatibility between matrix and microfibers in MFBs, resulting further enhanced mechanical properties. The subsequent addition of 40% wood flour did not influence the size and morphology of PET microfibers, and improved the comprehensive mechanical properties of MFBs. The wood flour increased the crystallinity level of HDPE in the compatibilized MFB in which PET phase did not crystallize. The storage modulus of MFB was greatly improved by wood flour. Published by Elsevier Ltd.

  7. Effect of clay structure and type of organomodifier on the thermal properties of poly(ethylene terephthalate) based nanocomposites

    International Nuclear Information System (INIS)

    Papageorgiou, George Z.; Karandrea, Eva; Giliopoulos, Dimitrios; Papageorgiou, Dimitrios G.; Ladavos, Athanasios; Katerinopoulou, Aikaterini; Achilias, Dimitris S.; Triantafyllidis, Konstantinos S.; Bikiaris, Dimitrios N.

    2014-01-01

    Graphical abstract: - Highlights: • Poly(ethylene terephthalate) nanocomposites were prepared using 4 different clay types. • Nanomer I30E clay was exfoliated into PET, as it was found from XRD. • The intercalation of Kunipia-CTAB resulted in less pronounced effect on PET crystallization. • The immobilized amorphous fraction, activation energy and nucleation activity were calculated. • Nanomer I30E clay facilitated the crystallization process. - Abstract: In the current investigation, nanocomposites of poly(ethylene terephthalate) (PET) with different types of organo-clays were produced using the melt mixing technique. Two types of commercial inorganic clays (Laponite-synthetic hectorite and Kunipia-montmorillonite) were studied after cation-exchange with hexadecyltrimethylammonium bromide (CTAB) while two commercial organo-modified montmorillonite clays (Nanomer I.30E modified with primary octadecylammonium ions and Cloisite 10A modified with quaternary dimethyl benzyl hydrogenated-tallow ammonium ions) were also investigated. The structure of the nanocomposites was studied by X-ray diffraction measurements. A detailed crystallization analysis was carried out by means of both isothermal and non-isothermal (melt and cold) measurements. All data were analyzed using the simple Avrami equation along with advanced isoconversional methods. The nucleation activity of the filler was investigated in every case. Lauritzen–Hoffman analysis was employed to isothermal data to estimate the nucleation parameters. From all these measurements it was found that the organo-clay I.30E induces the higher crystallization rates and lower activation energy and is more effective regarding the PET crystallization compared to the other types of organo-clays. The I.30E organo-clay nanocomposite exhibited also the higher immobilized amorphous fraction and the higher nucleation parameter K g in the Lauritzen–Hoffman analysis. This is due to its better dispersion and exfoliation

  8. Effect of clay structure and type of organomodifier on the thermal properties of poly(ethylene terephthalate) based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Papageorgiou, George Z.; Karandrea, Eva; Giliopoulos, Dimitrios [Department of Chemistry, Aristotle University of Thessaloniki (AUTH), GR-54124 Thessaloniki (Greece); Papageorgiou, Dimitrios G. [Solid State Physics Department, School of Physics, Aristotle University of Thessaloniki AUTH, GR-54124 Thessaloniki (Greece); Ladavos, Athanasios; Katerinopoulou, Aikaterini [University of Patras, Agrinio 30100 (Greece); Achilias, Dimitris S.; Triantafyllidis, Konstantinos S. [Department of Chemistry, Aristotle University of Thessaloniki (AUTH), GR-54124 Thessaloniki (Greece); Bikiaris, Dimitrios N., E-mail: dbic@chem.auth.gr [Department of Chemistry, Aristotle University of Thessaloniki (AUTH), GR-54124 Thessaloniki (Greece)

    2014-01-20

    Graphical abstract: - Highlights: • Poly(ethylene terephthalate) nanocomposites were prepared using 4 different clay types. • Nanomer I30E clay was exfoliated into PET, as it was found from XRD. • The intercalation of Kunipia-CTAB resulted in less pronounced effect on PET crystallization. • The immobilized amorphous fraction, activation energy and nucleation activity were calculated. • Nanomer I30E clay facilitated the crystallization process. - Abstract: In the current investigation, nanocomposites of poly(ethylene terephthalate) (PET) with different types of organo-clays were produced using the melt mixing technique. Two types of commercial inorganic clays (Laponite-synthetic hectorite and Kunipia-montmorillonite) were studied after cation-exchange with hexadecyltrimethylammonium bromide (CTAB) while two commercial organo-modified montmorillonite clays (Nanomer I.30E modified with primary octadecylammonium ions and Cloisite 10A modified with quaternary dimethyl benzyl hydrogenated-tallow ammonium ions) were also investigated. The structure of the nanocomposites was studied by X-ray diffraction measurements. A detailed crystallization analysis was carried out by means of both isothermal and non-isothermal (melt and cold) measurements. All data were analyzed using the simple Avrami equation along with advanced isoconversional methods. The nucleation activity of the filler was investigated in every case. Lauritzen–Hoffman analysis was employed to isothermal data to estimate the nucleation parameters. From all these measurements it was found that the organo-clay I.30E induces the higher crystallization rates and lower activation energy and is more effective regarding the PET crystallization compared to the other types of organo-clays. The I.30E organo-clay nanocomposite exhibited also the higher immobilized amorphous fraction and the higher nucleation parameter K{sub g} in the Lauritzen–Hoffman analysis. This is due to its better dispersion and

  9. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization

    Science.gov (United States)

    Shen, Tao; Liu, Yong; Zhu, Yan; Yang, De-Quan; Sacher, Edward

    2017-07-01

    Ag nanoparticles (NPs) have been widely applied, as important antibacterial materials, on textile and polymer surfaces. However, their adhesion to nonreactive polymer surfaces is generally too weak for many applications. Here, we propose a two-step process, atmospheric plasma treatment followed by a surface chemical modification process, which enhances their adhesion to polyethylene terephthalate (PET) surfaces. We found that, compared to either plasma treatments or surface chemical functionalizations, alone, this combination greatly enhanced their adhesion. The plasma treatment resulted in an increase of active sites (sbnd OH, sbnd CHdbnd O and COOH) at the PET surface, permitting increased bonding to 3-aminopropyltriethoxysilane (APTES), whose sbnd NH2 groups were then able to form a bonding complex with the Ag NPs.

  10. Rigid Polyurethane Foam from Glyco lysed Polyethylene Terephthalate Dissolved in Palm-based Polyol

    International Nuclear Information System (INIS)

    Khairiah Badri; Lily Iliyana Mohd Dawi; Nur Ashikin Abdul Aziz

    2013-01-01

    An investigation on the thermal and mechanical properties of rigid polyurethane (PU) foam from polyethylene terephthalate (PET) waste (of plastic drinking bottles) was conducted. The PET waste was glyco lysed with ethylene glycol prior to blending with palm based-polyol (PKO-p). This blend was then reacted with 2, 4-methylene diphenyl diisocyanate (MDI) at a ratio of 1:1 to form the PU foam. The incorporation of the glyco lysed PET (g-PET) into the PKO-p was studied at 50, 70 and 100 % w/ w loading. PU foam prepared from 100 % w/ w g-PET (without PKO-p) resulted in PU with high glass transition temperature and mechanical strength. This water-blown foam has molded and core densities of 182 kg m -3 and 179 kg m -3 , respectively, with maximum compressive stress and modulus at 396 kPa and 1920 kPa, respectively. An initial enthalpy value of 3164.8 cal g -1 and a glass transition temperature of 65 degree Celsius were observed. (author)

  11. Recycling polyethylene terephthalate wastes as short fibers in Strain-Hardening Cementitious Composites (SHCC).

    Science.gov (United States)

    Lin, Xiuyi; Yu, Jing; Li, Hedong; Lam, Jeffery Y K; Shih, Kaimin; Sham, Ivan M L; Leung, Christopher K Y

    2018-05-26

    As an important portion of the total plastic waste bulk but lack of reuse and recycling, the enormous amounts of polyethylene terephthalate (PET) solid wastes have led to serious environmental issues. This study explores the feasibility of recycling PET solid wastes as short fibers in Strain-Hardening Cementitious Composites (SHCCs), which exhibit strain-hardening and multiple cracking under tension, and therefore have clear advantages over conventional concrete for many construction applications. Based on micromechanical modeling, fiber dispersion and alkali resistance, the size of recycled PET fibers was first determined. Then the hydrophobic PET surface was treated with NaOH solution followed by a silane coupling agent to achieve the dual purpose of improving the fiber/matrix interfacial frictional bond (from 0.64 MPa to 0.80 MPa) and enhancing the alkali resistance for applications in alkaline cementitious environment. With surface treatment, recycling PET wastes as fibers in SHCCs is a promising approach to significantly reduce the material cost of SHCCs while disposing hazardous PET wastes in construction industry. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Surface treatment of polyethylene terephthalate film using atmospheric pressure glow discharge in air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in polymer surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of Polyethylene terephthalate (PET) film surface for improving hydrophilicity using the non-thermal plasma generated by atmospheric pressure glow discharge (APGD) in air is conducted. The discharge characteristics of APGD are shown by measurement of their electrical discharge parameters and observation of light-emission phenomena, and the surface properties of PET before and after the APGD treatment are studied using contact angle measurement, x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the APGD is homogeneous and stable in the whole gas gap, which differs from the commonly filamentary dielectric barrier discharge (DBD). A short time (several seconds) APGD treatment can modify the surface characteristics of PET film markedly and uniformly. After 10 s APGD treatment, the surface oxygen content of PET surface increases to 39%, and the water contact angle decreases to 19 degree, respectively. (authors)

  13. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    Science.gov (United States)

    Bahre, H.; Bahroun, K.; Behm, H.; Steves, S.; Awakowicz, P.; Böke, M.; Hopmann, Ch; Winter, J.

    2013-02-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered.

  14. Surface pre-treatment for barrier coatings on polyethylene terephthalate

    International Nuclear Information System (INIS)

    Bahre, H; Böke, M; Winter, J; Bahroun, K; Behm, H; Hopmann, Ch; Steves, S; Awakowicz, P

    2013-01-01

    Polymers have favourable properties such as light weight, flexibility and transparency. Consequently, this makes them suitable for food packaging, organic light-emitting diodes and flexible solar cells. Nonetheless, raw plastics do not possess sufficient barrier functionality against oxygen and water vapour, which is of paramount importance for most applications. A widespread solution is to deposit thin silicon oxide layers using plasma processes. However, silicon oxide layers do not always fulfil the requirements concerning adhesion and barrier performance when deposited on films. Thus, plasma pre-treatment is often necessary. To analyse the influence of a plasma-based pre-treatment on barrier performance, different plasma pre-treatments on three reactor setups were applied to a very smooth polyethylene terephthalate film before depositing a silicon oxide barrier layer. In this paper, the influence of oxygen and argon plasma pre-treatments towards the barrier performance is discussed examining the chemical and topological change of the film. It was observed that a short one-to-ten-second plasma treatment can reduce the oxygen transmission rate by a factor of five. The surface chemistry and the surface topography change significantly for these short treatment times, leading to an increased surface energy. The surface roughness rises slowly due to the development of small spots in the nanometre range. For very long treatment times, surface roughness of the order of the barrier layer's thickness results in a complete loss of barrier properties. During plasma pre-treatment, the trade-off between surface activation and roughening of the surface has to be carefully considered. (paper)

  15. Method to measure composition modifications in polyethylene terephthalate during ion beam irradiation

    Science.gov (United States)

    Abdesselam, M.; Stoquert, J. P.; Chami, S.; Djebara, M.; Chami, A. C.; Siad, M.

    2009-01-01

    Matter losses of polyethylene terephthalate (PET, Mylar) films induced by 1600 keV deuteron beams have been investigated in situ simultaneously by nuclear reaction analysis (NRA), deuteron forward elastic scattering (DFES) and hydrogen elastic recoil detection (HERD) in the fluence range from 1 × 10 14 to 9 × 10 16 cm -2. Volatile degradation products escape from the polymeric film, mostly as hydrogen-, oxygen- and carbon-containing molecules. Appropriate experimental conditions for observing the composition and thickness changes during irradiation are determined. 16O(d,p 0) 17O, 16O(d,p 1) 17O and 12C(d,p 0) 13C nuclear reactions were used to monitor the oxygen and carbon content as a function of deuteron fluence. Hydrogen release was determined simultaneously by H(d,d)H DFES and H(d,H)d HERD. Comparisons between NRA, DFES and HERD measurements show that the polymer carbonizes at high fluences because most of the oxygen and hydrogen depletion has already occured below a fluence of 3 × 10 16 cm -2. Release curves for each element are determined. Experimental results are consistent with the bulk molecular recombination (BMR) model.

  16. Comparison of Alcohol Withdrawal Outcomes in Patients Treated with Benzodiazepines Alone versus Adjunctive Phenobarbital: a Retrospective Cohort Study

    Directory of Open Access Journals (Sweden)

    Lauren Z. Gashlin

    2015-03-01

    Full Text Available Background: For treatment of severe alcohol withdrawal syndrome, high dose benzodiazepines (BZDs may cause delirium and over-sedation. Phenobarbital (PBT is a long-acting barbiturate effective for the treatment of alcohol withdrawal. Given the potential benefits of PBT, we sought to investigate the effectiveness of PBT as adjunctive treatment for alcohol withdrawal. Methods: This was a retrospective cohort study on patients with a diagnosis of alcohol withdrawal who had a CIWA-Ar score > 10 treated with either BZDs alone (BZD alone group or BZDs with adjunctive PBT (PBT-adjunct group. The patients received at least one dose of PBT in addition to BZDs (variable doses in the PBT-adjunct group, and three doses of 20 mg diazepam equivalents within 6 hours in the BZD alone group. The primary endpoint was the proportion of patients with a CIWA-Ar score < 10 at 24 hours after initial treatment. Duration of withdrawal and cumulative dose of BZDs were also assessed. Results: Seven subjects in the adjunctive phenobarbital and 21 in the benzodiazepine group were included in the final analysis. Two patients (28.6% in the PBT-adjunct group and 5 patients (23.8% in the BZD only group achieved the primary endpoint, though the difference between the two groups was not statistically significant (P = 0.588. The median (IQR duration of withdrawal symptoms was 44 (12-62 hours in the PBT-adjunct group compared to 53 (37-87 hours in the BZD only group, with no significant difference between the groups (P = 0.249. The median (IQR cumulative BZD dose requirement (diazepam equivalent in the PBT-adjunct group was significantly lower than BZD alone group (25 (20-226 vs. 326 (160-550 mg, P = 0.02. Conclusion: PBT appears to be a safe and effective alternative to BZDs for the treatment of alcohol withdrawal in non-critically ill patients and may be BZD sparing.

  17. Development of high shrinkage polyethylene terephthalate (PET) shape memory polymer tendons for concrete crack closure

    Science.gov (United States)

    Teall, Oliver; Pilegis, Martins; Sweeney, John; Gough, Tim; Thompson, Glen; Jefferson, Anthony; Lark, Robert; Gardner, Diane

    2017-04-01

    The shrinkage force exerted by restrained shape memory polymers (SMPs) can potentially be used to close cracks in structural concrete. This paper describes the physical processing and experimental work undertaken to develop high shrinkage die-drawn polyethylene terephthalate (PET) SMP tendons for use within a crack closure system. The extrusion and die-drawing procedure used to manufacture a series of PET tendon samples is described. The results from a set of restrained shrinkage tests, undertaken at differing activation temperatures, are also presented along with the mechanical properties of the most promising samples. The stress developed within the tendons is found to be related to the activation temperature, the cross-sectional area and to the draw rate used during manufacture. Comparisons with commercially-available PET strip samples used in previous research are made, demonstrating an increase in restrained shrinkage stress by a factor of two for manufactured PET filament samples.

  18. Combined effect of solvents and gamma irradiation on the infrared absorption spectra of polyethylene terephthalate

    International Nuclear Information System (INIS)

    Rabie, S.M.; ElBially, A.; Elshourbaguie, S.

    1991-01-01

    The combined effect of solvents and gamma irradiation on the intensities of infrared absorption bands of polyethylene terephthalate, particularly the bands sensitive to conformational changes, were studied. The results revealed that solvent treatment of PET results in significant changes in the intensities of its infrared absorption bands and the exposure of PET to gamma radiation in the presence of solvents helps in the appearance of the two bands at 1550 and 1630 cm . Also, the combined effect of solvents and gamma irradiation on the intensities of the absorption bands is greater than the effect of each agent alone. The extent of the induced changes depends on the nature of solvent and the applied dosage. Further more, for any given solvent or dosage, the rate of change of the intensities of the trans band is not equal to that of the gauche bands.3 fig

  19. The clinical results of proton beam therapy in patients with idiopathic pulmonary fibrosis: a single center experience

    International Nuclear Information System (INIS)

    Ono, Takashi; Hareyama, Masato; Nakamura, Tatsuya; Kimura, Kanako; Hayashi, Yuichiro; Azami, Yusuke; Hirose, Katsumi; Hatayama, Yoshiomi; Suzuki, Motohisa; Wada, Hitoshi; Kikuchi, Yasuhiro; Nemoto, Kenji

    2016-01-01

    The purpose of this study is to retrospectively evaluate the incidence of lung toxicities after proton beam therapy (PBT) in patients with idiopathic pulmonary fibrosis (IPF). Patients diagnosed with primary lung cancer or lung metastasis who were treated with PBT between January 2009 and May 2015 were recruited from our database retrospectively. Cases of pneumonitis (excluding infection-related pneumonitis) were evaluated using the Common Terminology Criteria for Adverse Events version 4.0, and the Fletcher-Hugh-Jones classification of respiratory status was used to evaluate pretreatment and posttreatment respiratory function. Sixteen IPF patients received PBT for lung tumors, 15 received PBT for primary lung cancer, and one patient received PBT for metastasis from lung cancer. The cohort was composed of 14 men and 2 women, with a median age of 76 years (range: 63–89 years). The median follow-up time was 12 months (range: 4–39 months). The median dose of PBT was 80.0 Gy relative biological dose effectiveness (RBE) (range: 66.0–86.4 Gy [RBE]). The cumulative incidence of pneumonitis was 19.8 % (95 % confidence interval [CI]: 0–40.0 %), including one case of grade 5 pneumonitis. Reduced respiratory function was observed after PBT in seven patients, including one patient with pleural dissemination; five of these patients required home oxygen therapy. This study suggests that PBT can be performed more safely in IPF patients than surgery or X-ray irradiation. Although PBT has become a treatment choice for lung tumors of patients with IPF, the adverse events warrant serious attention

  20. Initial clinical outcomes of proton beam radiotherapy for hepatocellular carcinoma.

    Science.gov (United States)

    Yu, Jeong Il; Yoo, Gyu Sang; Cho, Sungkoo; Jung, Sang Hoon; Han, Youngyih; Park, Seyjoon; Lee, Boram; Kang, Wonseok; Sinn, Dong Hyun; Paik, Yong-Han; Gwak, Geum-Youn; Choi, Moon Seok; Lee, Joon Hyeok; Koh, Kwang Cheol; Paik, Seung Woon; Park, Hee Chul

    2018-03-01

    This study aimed to evaluate the initial outcomes of proton beam therapy (PBT) for hepatocellular carcinoma (HCC) in terms of tumor response and safety. HCC patients who were not indicated for standard curative local modalities and who were treated with PBT at Samsung Medical Center from January 2016 to February 2017 were enrolled. Toxicity was scored using the Common Terminology Criteria for Adverse Events (CTCAE) version 4.0. Tumor response was evaluated using modified Response Evaluation Criteria in Solid Tumors (mRECIST). A total of 101 HCC patients treated with PBT were included. Patients were treated with an equivalent dose of 62-92 GyE 10 . Liver function status was not significantly affected after PBT. Greater than 80% of patients had Child-Pugh class A and albumin-bilirubin (ALBI) grade 1 up to 3-months after PBT. Of 78 patients followed for three months after PBT, infield complete and partial responses were achieved in 54 (69.2%) and 14 (17.9%) patients, respectively. PBT treatment of HCC patients showed a favorable infield complete response rate of 69.2% with acceptable acute toxicity. An additional follow-up study of these patients will be conducted.

  1. Influence of the addition of bentonite clay in poli (butylene adipate co-terephthalic) / poly(lactic acid) membranes

    International Nuclear Information System (INIS)

    Morais, D.D.S.; Medeiros, K.M.; Araujo, E.M.; Melo, T.J.A.; Barbosa, R.

    2014-01-01

    The processes of membrane separation have been used in many different sectors of industrial activity, ranging from the chemical industry, food, pharmaceutical, medical and biotech. In this paper, a bentonite clay was added by melt intercalation in a poly(butylene adipate-co-terephthalic acid)/poly(lactic acid) blend at levels 1 and 3 wt% of clay. After that, membranes were produced by solvent evaporation technique. From the XRD results, it was verified the possible formation of exfoliated/partially exfoliated structures in the membranes. By DSC, it was observed that the addition of clay did not promote alterations in glass transition temperature and crystalline melting of the PBAT/PLA matrix. The morphology of the membranes were observed by SEM and it was verified the clay formation of porous membranes. (author)

  2. Grafting of copolymer styrene maleic anhydride on poly(ethylene terephthalate) film by chemical reaction and by plasma method

    Energy Technology Data Exchange (ETDEWEB)

    Bigan, Muriel; Bigot, Julien [Laboratoire de Chimie Organique et Macromoleculaire (UMR 8009), Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France); Mutel, Brigitte [Laboratoire de Genie des Procedes d' Interactions Fluides reactifs-Materiaux (UPRES-EA 3751), Batiment C5, Universite des Sciences et Technologies de Lille, 59655 Villeneuve d' Ascq Cedex (France)], E-mail: Brigitte.mutel@univ-lille1.fr; Coqueret, Xavier [Laboratoire Reactions Selectives et Applications (UMR-CNRS 6519) Universite de Reims Champagne-Ardennes, B.P. 1039, 51687 Reims Cedex 2 (France)

    2008-02-15

    This work deals with the chemical grafting of a styrene maleic anhydride copolymer on the surface of a previously hydrolyzed polyethylene terephthalate (PET) film 12 {mu}m thick via covalent bond. Two different ways are studied. The first one involves an activation of the hydrolyzed PET by the triethylamine before the grafting step. In the second one, the copolymer reacts with the 4-dimethylaminopyridine in order to form maleinyl pyridinium salt which reacts with alcohol function of the hydrolyzed PET. Characterization and quantification of the grafting are performed by Fourier transform infrared spectroscopy. Factorial experiment designs are used to optimize the process and to estimate experimental parameters effects. The opportunity to associate the chemical process to a cold remote nitrogen plasma one is also examined.

  3. Treatment of poly(ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth

    Science.gov (United States)

    Kuzminova, Anna; Vandrovcová, Marta; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Hanuš, Jan; Bačáková, Lucie; Slavínská, Danka; Biederman, Hynek

    2015-12-01

    In this contribution an effect of dielectric barrier discharge (DBD) sustained in air at atmospheric pressure on surface properties of poly(ethylene terephthalate) (PET) foils is studied. It is found that exposure of PET to DBD plasma leads to rapid changes of surface chemical composition, wettability, surface morphology as well as mechanical properties of PET surface. In addition, based on biological tests that were performed using two cell types (Saos-2 human osteoblast-like cells and HUVEC human umbilical vein endothelial cells), it may be concluded that DBD plasma treatment positively influences cell growth on PET. This effect was found to be connected predominantly with increased surface energy and oxygen content of the surface of treated PET foils.

  4. Comparison between poly(ethylene naphthalate) and poly(ethylene terephthalate) in terms of gamma-ray irradiation on their dielectric properties

    Science.gov (United States)

    Miyamoto, Maki; Ohki, Yoshimichi

    2017-06-01

    The effects of gamma-rays on the complex permittivity (\\varepsilon '\\text{r} and \\varepsilon ''\\text{r}) and electrical conductivity were compared between poly(ethylene naphthalate) (PEN) and poly(ethylene terephthalate) (PET). Although both \\varepsilon '\\text{r} and \\varepsilon ''\\text{r} increase in PET with an increase in the total dose of gamma irradiation, such increases are hardly observed in PEN. The conductivity is always smaller in PEN than in PET. Therefore, it has been confirmed that charge transport is less activated by gamma irradiation in PEN than in PET. Together with experimental results obtained by ultraviolet-visible absorption spectroscopy and thermogravimetric analysis, it can be concluded that PEN has a superior anti-gamma-ray dielectric property to PET.

  5. Three-dimensional assembly of tissue-engineered cartilage constructs results in cartilaginous tissue formation without retainment of zonal characteristics.

    Science.gov (United States)

    Schuurman, W; Harimulyo, E B; Gawlitta, D; Woodfield, T B F; Dhert, W J A; van Weeren, P R; Malda, J

    2016-04-01

    Articular cartilage has limited regenerative capabilities. Chondrocytes from different layers of cartilage have specific properties, and regenerative approaches using zonal chondrocytes may yield better replication of the architecture of native cartilage than when using a single cell population. To obtain high seeding efficiency while still mimicking zonal architecture, cell pellets of expanded deep zone and superficial zone equine chondrocytes were seeded and cultured in two layers on poly(ethylene glycol)-terephthalate-poly(butylene terephthalate) (PEGT-PBT) scaffolds. Scaffolds seeded with cell pellets consisting of a 1:1 mixture of both cell sources served as controls. Parallel to this, pellets of superficial or deep zone chondrocytes, and combinations of the two cell populations, were cultured without the scaffold. Pellet cultures of zonal chondrocytes in scaffolds resulted in a high seeding efficiency and abundant cartilaginous tissue formation, containing collagen type II and glycosaminoglycans (GAGs) in all groups, irrespective of the donor (n = 3), zonal population or stratified scaffold-seeding approach used. However, whereas total GAG production was similar, the constructs retained significantly more GAG compared to pellet cultures, in which a high percentage of the produced GAGs were secreted into the culture medium. Immunohistochemistry for zonal markers did not show any differences between the conditions. We conclude that spatially defined pellet culture in 3D scaffolds is associated with high seeding efficiency and supports cartilaginous tissue formation, but did not result in the maintenance or restoration of the original zonal phenotype. The use of pellet-assembled constructs leads to a better retainment of newly produced GAGs than the use of pellet cultures alone. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Guiding of slow Ne7+ ions through nanocapillaries in insulating polyethylene terephthalate: Incident current dependence

    International Nuclear Information System (INIS)

    Stolterfoht, N.; Hellhammer, R.; Bundesmann, J.; Fink, D.; Kanai, Y.; Kambara, T.; Ikeda, T.; Hoshino, M.; Yamazaki, Y.

    2007-01-01

    The transmission of highly charged ions through nanocapillaries in insulating polyethylene terephthalate (PET) polymers was investigated. In experiments at laboratories in RIKEN (Japan) and HMI (Germany) different detection methods were applied to study the ion current dependence in a wide range covering two orders of magnitude. At HMI an electrostatic ion spectrometer was used and at RIKEN a two-dimensional position sensitive detector was implemented. New PET samples with parallel capillaries and low density were manufactured. For tilted capillaries, the ions are guided along the capillary axis, since the majority of ions are deflected in a charge patch created in the capillary entrance. The results provide insights into the mechanisms of capillary guiding. The fraction of transmitted ions was found to be nearly independent on the incident ion current indicating a sudden increase in the discharge current depleting the entrance charge patch. The experimental results were well-reproduced by model calculations based on a nonlinear (exponential) expression for the discharge current

  7. Effect of organo-modified montmorillonite on poly(butylene succinate/poly(butylene adipate-co-terephthalate nanocomposites

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available The composite material based on poly(butylene succinate (PBS, poly(butylene adipate-co-terephthalate (PBAT and organo-modified montmorillonite (OMMT were prepared by melt blending technique and characterized. Sodium montmorillonite (Na-MMT was successfully modified by octadecylammonium (ODA and dimethyldioctadecylammonium (DDOA salts to become OMMT through cation exchange technique which is shown by the increase of basal spacing of clay by XRD. The addition of the OMMT to the PBS/PBAT blends produced nanocomposites which is proved by XRD and TEM. Tensile tests showed increase in tensile strength and modulus which is attributed to the existence of strong interactions between PBS/PBAT and clay, particularly with OMMT. Highest tensile strength of nanocomposite was observed at 1 wt% of OMMT incorporated. TGA study showed that the thermal stability of the blend increased after the addition of clays. SEM micrographs of the fracture surfaces show that the morphology of the blend becomes homogeneous and smoother with presence of OMMT.

  8. Diffusion of CO2 Molecules in Polyethylene Terephthalate/Polylactide Blends Estimated by Molecular Dynamics Simulations

    International Nuclear Information System (INIS)

    Liao, Liqiong; Fu, Yizheng; Liang, Ziaoyan; Mei, Linyu; Liu, Yaqing

    2013-01-01

    Molecular dynamics (MD) simulations have been used to study the diffusion behavior of small gas molecules (CO 2 ) in polyethylene terephthalate (PET)/polylactide (PLA) blends. The Flory-Huggins interaction parameters (χ) determined from the cohesive energy densities are smaller than the critical value of Flory-Huggins interaction parameters (χ critical ), and that indicates the good compatibility of PET/PLA blends. The diffusion coefficients of CO 2 are determined via MD simulations at 298 K. That the order of diffusion coefficients is correlated with the availably fractional free volume (FFV) of CO 2 in the PET/PLA blends means that the FFV plays a vital role in the diffusion behavior of CO 2 molecules in PET/PLA blends. The slopes of the log (MSD) as a function of log (t) are close to unity over the entire composition range of PET/PLA blends, which confirms the feasibility of MD approach reaches the normal diffusion regime of CO 2 in PET/PLA blends

  9. Prognostic value of changes in brain tissue oxygen pressure before and after decompressive craniectomy following severe traumatic brain injury.

    Science.gov (United States)

    Lubillo, Santiago T; Parrilla, Dácil M; Blanco, José; Morera, Jesús; Dominguez, Jaime; Belmonte, Felipe; López, Patricia; Molina, Ismael; Ruiz, Candelaria; Clemente, Francisco J; Godoy, Daniel A

    2018-05-01

    OBJECTIVE In severe traumatic brain injury (TBI), the effects of decompressive craniectomy (DC) on brain tissue oxygen pressure (PbtO 2 ) and outcome are unclear. The authors aimed to investigate whether changes in PbtO 2 after DC could be used as an independent prognostic factor. METHODS The authors conducted a retrospective, observational study at 2 university hospital ICUs. The study included 42 patients who were admitted with isolated moderate or severe TBI and underwent intracranial pressure (ICP) and PbtO 2 monitoring before and after DC. The indication for DC was an ICP higher than 25 mm Hg refractory to first-tier medical treatment. Patients who underwent primary DC for mass lesion evacuation were excluded. However, patients were included who had undergone previous surgery as long as it was not a craniectomy. ICP/PbtO 2 monitoring probes were located in an apparently normal area of the most damaged hemisphere based on cranial CT scanning findings. PbtO 2 values were routinely recorded hourly before and after DC, but for comparisons the authors used the first PbtO 2 value on ICU admission and the number of hours with PbtO 2 areas under the curve for the mean PbtO 2 values at 12 and 24 hours after DC were 0.878 (95% CI 0.75-1, p areas of the most damaged hemisphere, have independent prognostic value for the 6-month outcome in TBI patients.

  10. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry.

    Science.gov (United States)

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L9 (3(4)) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70°C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile-butadiene-styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Oxygen Barrier Properties and Melt Crystallization Behavior of Poly(ethylene terephthalate/Graphene Oxide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Anna Szymczyk

    2015-01-01

    Full Text Available Poly(ethylene terephthalate nanocomposites with low loading (0.1–0.5 wt% of graphene oxide (GO have been prepared by using in situ polymerization method. TEM study of nanocomposites morphology has shown uniform distribution of highly exfoliated graphene oxide nanoplatelets in PET matrix. Investigations of oxygen permeability of amorphous films of nanocomposites showed that the nanocomposites had better oxygen barrier properties than the neat PET. The improvement of oxygen permeability for PET nanocomposite films over the neat PET is approximately factors of 2–3.3. DSC study on the nonisothermal crystallization behaviors proves that GO acts as a nucleating agent to accelerate the crystallization of PET matrix. The evolution of the lamellar nanostructure of nanocomposite and neat PET was monitored by SAXS during nonisothermal crystallization from the melt. It was found that unfilled PET and nanocomposite with the highest concentration of GO (0.5 wt% showed almost similar values of the long period (L=11.4 nm for neat PET and L=11.5 nm for PET/0.5GO.

  12. Proton Therapy for Craniopharyngioma - An Early Report from a Single European Centre.

    Science.gov (United States)

    Ajithkumar, T; Mazhari, A-L; Stickan-Verfürth, M; Kramer, P-H; Fuentes, C-S; Lambert, J; Thomas, H; Müller, H; Fleischhack, G; Timmermann, B

    2018-05-01

    Proton beam therapy (PBT) is being increasingly used for craniopharyngioma. We describe our early outcome of patients treated with PBT. Between August 2013 and July 2016, 18 patients with craniopharyngiomas were treated with 54 Cobalt Gray Equivalent (CGE) in 30 fractions over 6 weeks at our centre. The early outcome of 16 patients included in a registry study was analysed. Radiological response was assessed by RECIST criteria and the disease- and treatment-related toxicities were scored according to the CTCAE 4.0. All patients are alive at a median follow-up of 32.6 months (range 9.2-70.6 months) from initial diagnosis. The median age at PBT was 10.2 years (range 5.4-46.9 years). One patient progressed 8.7 months after PBT and subsequently had complete resection of the tumour. At a median follow-up of 18.4 months after PBT, five patients remained in complete remission, four in partial remission and seven with stable disease. The most common adverse effects during PBT were grade 1 (cutaneous in seven patients and fatigue in six patients). There were no treatment-related grade 3 toxicities. Our early results are encouraging and comparable with the limited literature on PBT for craniopharyngioma. Copyright © 2018. Published by Elsevier Ltd.

  13. Preparation and characterization of polymer blends based on recycled PET and polyester derived by terephthalic acid

    International Nuclear Information System (INIS)

    Ohara, L.; Miranda, C.S.; Fiuza, R.P.; Luporini, S.; Carvalho, R.F.; Jose, N.M.

    2010-01-01

    Environmentally friendly materials, made from industrial waste, are being increasingly used as a solution to the growing amount of waste generated by society, but also as a cheaper alternative to replace conventional materials for use in construction. In this work were investigated the properties of polymer blends based on recycled PET and a polyester derived from terephthalic acid and glycerin, a co-product of biodiesel. The samples were characterized by XRD, TGA, DSC, FTIR and SEM. The polyester synthesized showed a degradation event near 300 deg C. The blends with higher ratio of PET showed thermal behavior similar to pure PET. The X-ray diffraction showed that the polymer blends are semicrystalline materials. The micrographs presents the presence of a smooth surface, indicating the possibility of miscibility between the arrays. Therefore, the blending makes possible the fabrication of low-cost materials with applications in several areas. (author)

  14. UTILIZING WASTE PLASTIC POLYPROPYLENE AND POLYETHYLENE TEREPHTHALATE AS ALTERNATIVE AGGREGATES TO PRODUCE LIGHTWEIGHT CONCRETE: A REVIEW

    Directory of Open Access Journals (Sweden)

    IBRAHIM H. ALFAHDAWI

    2016-08-01

    Full Text Available In recent times, there is an increasing need for the fabrication of mortar and concrete that can be characterised as sustainable and environmentally friendly. Ideally, this concrete should be inexpensive, lightweight, and outstanding in terms of its physical and mechanical specifications. Plastic materials have increasingly been used in the fabrication of different types of concrete admixtures and mortar constituents. These plastic materials take the form of fillers or shredded fibres derived from polypropylene and polyethylene terephthalate. The use of plastic materials presents the following benefits: (i enhanced mixture quality and (ii a reduction in the amount of accumulated single-use plastic materials that negatively impact the environment. This work reviews several previous studies on the utilisation and preparations of plastic materials and their effects on the physical and mechanical properties of concrete. Other topics, including hardened concrete, fresh concrete, application, and thermo-physical characteristics, are also elaborated.

  15. Wearable supercapacitors on polyethylene terephthalate fabrics with good wash fastness and high flexibility

    Science.gov (United States)

    Wang, Guixia; Babaahmadi, Vahid; He, Nanfei; Liu, Yixin; Pan, Qin; Montazer, Majid; Gao, Wei

    2017-11-01

    All solid-state micro-supercapacitors (MSC) have emerged as attractive energy-storage units for portable and wearable electronics. Here, we describe a textile-based solid-state MSC via laser scribing of graphene oxide (GO) coatings on a flexible polyethylene terephthalate (PET) fabric. The laser-scribed graphene oxide layers (LGO) possess three-dimensionally porous structure suitable for electrochemical-double-layer formation. To improve the wash fastness and the flexibility of the as-prepared MSCs, glutaraldehyde (GA) was employed to crosslink the GO layers and PVA-gel electrolyte onto the PET fabric. The resultant all solid-state MSCs exhibited excellent flexibility, high areal specific capacitance (756 μF·cm-2 at 20 mV·s-1), and good rate capability when subject to bending and laundering. Furthermore, the MSC device showed a high power density of about 1.4 W·cm-3 and an energy density of 5.3 × 10-5 Wh·cm-3, and retained 98.3% of its initial capacitance after 1000 cycles at a current density of 0.5 mA·cm-2. This work is the first demonstration of in-plane MSCs on PET fabric surfaces with enhanced durability and flexibility.

  16. Magnetic properties of thin films obtained by ion implantation of 3d metals in polyethylene-terephthalate

    International Nuclear Information System (INIS)

    Petukhov, V.Yu.; Ibragimova, M.I.; Khabibullina, N.R; Zheglov, E.P.; Muller, R.

    2002-01-01

    Polymer films containing small metal particles have been attracting particular interest because of their unique properties. Implantation of metal ions in polymers is one of the methods to synthesize metal-polymer nano-composite materials. Ion implantation makes possible the magnetic nano-structures with controlled parameters. Previously, we showed that 3d-metal implantation into numerous polymers (polymethylmethacrylate, phosphorus containing polymethylmethacrylate) resulted in the formation of a composite film consisting of metal nanoparticles buried in an implanted layer. The particles are usually found to be distributed randomly in the surface layer. It has been established that structural peculiarities, phase composition, and magnetic properties of synthesized metal-polymer systems depend on the type of the initial polymer matrix, ion types, as well as conditions of ion implantation. In the present study we have been prepared thin metal-polymer composite films by ion-beam implantation of Fe + and Co + ions in polyethylene terephthalate. The implantation of 40 keV ions at room temperature with doses from 2·10 1 6 to 3·10 17 cm -2 have been performed, with the ion current density not exceeding 10 μA/cm 2 . The magnetic properties have been investigated both by ferromagnetic resonance (FMR) and vibrating sample magnetometry (VSM). FMR spectra were recorded using magnetic radio spectrometer Varian E-12 with frequency of 9.5 GHz at room temperature. The dependencies of FMR spectra on orientation have been measured for all samples. Measurements were carried out for two orientations of the sample, normal direction of the films being either parallel or perpendicular to dc magnetic field. The values of the effective magnetization were calculated from orientation dependencies. Thin ferromagnetic films (TFF) have been shown to form for samples with both implanted ions. For samples implanted with Co + ions, the appearance of FMR lines occurs at doses markedly greater

  17. Synthesis, Structures and Luminescence Properties of Metal-Organic Frameworks Based on Lithium-Lanthanide and Terephthalate

    Directory of Open Access Journals (Sweden)

    Mohammed S. M. Abdelbaky

    2016-03-01

    Full Text Available Metal-organic frameworks assembled from Ln(III, Li(I and rigid dicarboxylate ligand, formulated as [LiLn(BDC2(H2O·2(H2O] (MS1-6,7a and [LiTb(BDC2] (MS7b (Ln = Tb, Dy, Ho, Er, Yb, Y0.96Eu0.04, Y0.93Tb0.07, and H2BDC = terephthalic acid, were obtained under hydrothermal conditions. The isostructural MS1-6 crystallize in monoclinic P21/c space group. While, in the case of Tb3+ a mixture of at least two phases was obtained, the former one (MS7a and a new monoclinic C2/c phase (MS7b. All compounds have been studied by single-crystal and powder X-ray diffraction, thermal analyses (TGA, vibrational spectroscopy (FTIR, and scanning electron microscopy (SEM-EDX. The structures of MS1-6 and MS7a are built up of inorganic-organic hybrid chains. These chains constructed from unusual four-membered rings, are formed by edge- and vertex-shared {LnO8} and {LiO4} polyhedra through oxygen atoms O3 (vertex and O6-O7 (edge. Each chain is cross-linked to six neighboring chains through six terephthalate bridges. While, the structure of MS7b is constructed from double inorganic chains, and each chain is, in turn, related symmetrically to the adjacent one through the c glide plane. These chains are formed by infinitely alternating {LiO4} and {TbO8} polyhedra through (O2-O3 edges to create Tb–O–Li connectivity along the c-axis. Both MS1-6,7a and MS7b structures possess a 3D framework with 1D trigonal channels running along the a and c axes, containing water molecules and anhydrous, respectively. Topological studies revealed that MS1-6 and MS7a have a new 2-nodal 3,10-c net, while MS7b generates a 3D net with unusual β-Sn topology. The photoluminescence properties Eu- and Tb-doped compounds (MS5-6 are also investigated, exhibiting strong red and green light emissions, respectively, which are attributed to the efficient energy transfer process from the BDC ligand to Eu3+ and Tb3+.

  18. Radiation-induced conduction under high electric field (1 x 106 to 1 x 108 V/m) in polyethylene-terephthalate

    International Nuclear Information System (INIS)

    Maeda, H.; Kurashige, M.; Ito, D.; Nakakita, T.

    1978-01-01

    Radiation-induced conduction in polyethylene-terephthalate (PET) has been measured under high electric field (1.0 x 10 6 to 1.6 x 10 8 V/m). In a 6-μm-thick PET film, saturation of the radiation-induced current occurs at field strengths above 1.2 x 10 8 V/m. This has been demonstrated by the thickness and dose rate dependence of the induced current. Radiation-induced conductivity increases monotonically with field strength, then shows a saturation tendency. This may be explained by geminate recombination. Above 1 x 10 8 V/m, slowly increasing radiation-induced current appears. This may be caused by electron injection from the cathode, enhanced by the accumulation of the hetero space charges near it

  19. Impact of temperature and storage duration on the chemical and odor quality of military packaged water in polyethylene terephthalate bottles

    International Nuclear Information System (INIS)

    Greifenstein, Michael; White, Duvel W.; Stubner, Alex; Hout, Joseph; Whelton, Andrew J.

    2013-01-01

    The impact of temperature and storage time on military packaged water (MPW) quality was examined at four temperatures (23.0 °C to 60.0 °C) for 120 days. Polyethylene terephthalate (PET) bottles were filled in California and Afghanistan with unbuffered water treated by reverse osmosis. The US military's water pH long-term potability standard was exceeded, and US Food and Drug Administration (USFDA) and US Environmental Protection Agency (USEPA) drinking water pH and odor intensity limits were also exceeded. During a 70 day exposure period, Port Hueneme MPW total organic carbon and total trihalomethane levels increased from 37.7 °C, consume bottled water within 14 days of packaging

  20. Research note: the performance of spring- and summer-reared broilers as affected by precision beak trimming at seven days of age.

    Science.gov (United States)

    Christmas, R B

    1993-12-01

    In each of two duplicate trials approximately 2,500 day-old Peterson x Arbor Acres straight-run broiler chicks were equally divided between two treatments of three pens each. Treatment 1 was maintained as controls (C), and Treatment 2 birds were precision beak-trimmed (PBT) at 7 days of age. Feed and water were supplied for ad libitum consumption to both groups. Trials 1 and 2 were initiated in March and June, respectively. Performance of spring-reared broilers were comparable regardless of beak trimming procedure, except that PBT broilers experienced slightly higher mortality after PBT. Final body weights of the summer-reared broilers were 15% lower than those reared in the spring. Additionally, PBT resulted in significantly reduced final body weights and feed intake. There were no significant differences in mortality or feed conversion due to PBT.

  1. Photocatalytic ozonation of terephthalic acid: a by-product-oriented decomposition study.

    Science.gov (United States)

    Fuentes, Iliana; Rodríguez, Julia L; Poznyak, Tatyana; Chairez, Isaac

    2014-11-01

    Terephthalic acid (TA) is considered as a refractory model compound. For this reason, the TA degradation usually requires a prolonged reaction time to achieve mineralization. In this study, vanadium oxide (VxOy) supported on titanium oxide (TiO2) served as a photocatalyst in the ozonation of the TA with light-emitting diodes (LEDs), having a bandwidth centered at 452 nm. The modified catalyst (VxOy/TiO2) in combination with ozone and LEDs improved the TA degradation and its by-products. The results obtained by this system were compared with photolysis, single ozonation, catalytic ozonation, and photocatalytic ozonation of VxOy/TiO2 with UV lamp. The LED-based photocatalytic ozonation showed almost the same decomposition efficiency of the TA, but it was better in comparison with the use of UV lamp. The oxalic acid accumulation, as the final product of the TA decomposition, was directly influenced by either the presence of VxOy or/and the LED irradiation. Several by-products formed during the TA degradation, such as muconic, fumaric, and oxalic acids, were identified. Besides, two unidentified by-products were completely removed during the observed time (60 min). It was proposed that the TA elimination in the presence of VxOy/TiO2 as catalyst was carried out by the combination of different mechanisms: molecular ozone reaction, indirect mechanism conducted by ·OH, and the surface complex formation.

  2. Fabrication of nano-sized metal patterns on flexible polyethylene-terephthalate substrate using bi-layer nanoimprint lithography

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Seon Yong; Jung, Ho Yong [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of); Jeong, Jun-Ho [Nano-Mechanical Systems Research Center, Korea Institute of Machinery and Materials, Yuseong-gu Daejeon, 305-343 (Korea, Republic of); Lee, Heon, E-mail: heonlee@korea.ac.k [Department of Materials Science and Engineering, Korea University, Seoul, 136-701 (Korea, Republic of)

    2009-05-29

    Polymer films are widely used as a substrate for displays and for solar cells since they are cheap, transparent and flexible, and their material properties are easy to design. Polyethylene-terephthalate (PET) is especially useful for various applications requiring transparency, flexibility and good thermal and chemical resistance. In this study, nano-sized metal patterns were fabricated on flexible PET film by using nanoimprint lithography (NIL). Water-soluble poly-vinyl alcohol (PVA) resin was used as a planarization and sacrificial layer for the lift-off process, as it does not damage the PET films and can easily be etched off by using oxygen plasma. NIL was used to fabricate the nano-sized patterns on the non-planar or flexible substrate. Finally, a nano-sized metal pattern was successfully formed by depositing the metal layer over the imprinted resist patterns and applying the lift-off process, which is economic and environmentally friendly, to the PET films.

  3. Surface characterization and free thyroid hormones response of chemically modified poly(ethylene terephthalate) blood collection tubes

    Science.gov (United States)

    Jalali Dil, Ebrahim; Kim, Samuel C.; Saffar, Amir; Ajji, Abdellah; Zare, Richard N.; Sattayapiwat, Annie; Esguerra, Vanessa; Bowen, Raffick A. R.

    2018-06-01

    The surface chemistry and surface energy of chemically modified polyethylene terephthalate (PET) blood collection tubes (BCTs) were studied and the results showed a significant increase in hydrophilicity and polarity of modified PET surface. The surface modification created nanometer-sized, needle-like asperities through molecular segregation at the surface. The surface dynamics of the modified PET was examined by tracking its surface properties over a 280-day period. The results showed surface rearrangement toward a surface with lower surface energy and fewer nanometer-sized asperities. Thromboelastography (TEG) was used to evaluate and compare the thrombogenicity of the inner walls of various types of BCTs. The TEG tracings and data from various types of BCTs demonstrated differences in the reactionand coagulation times but not in clot strength. The performance of the modified tubes in free triiodothyronine (FT3) and free thyroxine (FT4) hormone tests was examined, and it was found that the interference of modified PET tubes was negligible compared to that of commercially available PET BCTs.

  4. Mechanical and Morphological Properties of Poly-3-hydroxybutyrate/Poly(butyleneadipate-co-terephthalate/Layered Double Hydroxide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Yen Leng Pak

    2013-01-01

    Full Text Available Nanocomposites of poly-3-hydroxybutyrate/poly(butyleneadipate-co-terephthalate/layered double hydroxide (PHB/PBAT/LDH were prepared from a binary blend of PHB/PBAT and stearate-Zn3Al LDH via a solution casting method using chloroform as solvent in this study. The pristine Zn3Al LDH was synthesized from nitrate salts solution at pH 7 by using coprecipitation technique and then was modified by stearate anions surfactant via ion exchange reaction. As a result, the basal spacing of the LDH was increased from 8.77 to 24.94 Å after the modification. Intercalated nanocomposites were formed due to the presence of diffraction peak in XRD diffractograms. The infrared spectrum of stearate-Zn3Al LDH exhibited the existence of stearate anions in the synthesized Zn3Al LDH. Mechanical properties with 2 wt% stearate-Zn3Al LDH loading nanocomposites showed 56 wt% improvements in elongation at break compared to those of the blend.

  5. The effect of oxygen ion beam bombardment on the properties of tin indium oxide/polyethylene terephthalate complex

    International Nuclear Information System (INIS)

    Li, Li; Liu, Honglin; Zou, Lin; Ding, Wanyu; Ju, Dongying; Chai, Weiping

    2013-01-01

    The tin indium oxide (ITO) films were deposited onto the polyethylene terephthalate (PET) surface that has been bombarded by an O ion beam. The variation of the O bombardment time resulted in the production of ITO/PET complex with different properties. Characterization by four-point probe measurement after the bending fatigue test showed that the adhesion property of the ITO/PET complex could be improved by the increase of O bombardment time while little change of electrical resistivity was observed. Scanning electron microscopy results showed that after the bending fatigue test, the nano scale seams and micro scale trenches appeared at the surface of the ITO/PET complex. The former was only the cracks of ITO film, which has little influence on the continuity and electrical resistivity of ITO film. On the contrary, the micro scale trenches were caused by the peeling off of ITO chips at the cracks, which mainly influenced the continuity and electrical resistivity of ITO film. With the increase of O bombardment time, the number and length of the micro scale trenches decreased. X-ray photoelectron spectrometry characterization showed that with the increase of O bombardment time, parts of the methylene C bonds were transformed into C=O bonds, which could be broken to form C-O-In(Sn) bonds at the initial stage of ITO film growth. By these C-O-In(Sn) crosslink bonds, the ITO film could adhere well onto the PET and the ITO/PET complex display better anti-bending fatigue property. Finally, in the context of the application of the ITO/PET complex as a flexible electrode substrate, the present work reveals a simple way to crosslink them, as well as the physicochemical mechanism happening at the interface of complex. - Highlights: • Polyethylene terephthalate (PET) surface was bombarded by N ions. • Tin indium oxide (ITO) film was deposited on bombarded PET surface. • By bombardment, methylene C bond on PET surface was broken and replaced by C=O bond. • C=O bond was

  6. Production and characterization of novel starch and poly(butylene adipate-co-terephthalate)-based materials and their applications

    Science.gov (United States)

    Stagner, Jacqueline Ann

    This work focuses on the production and characterization of blends of maleated thermoplastic starch (MTPS) and poly(butylenes adipate-co-terephthalate) and their application for use as thermoformed objects, films, and foams. First, by the production and characterization of maleated thermoplastic starch (MTPS) synthesized by reactive extrusion in a twin-screw extruder, a better understanding of MTPS was gained. This reactive thermoplastic starch was prepared with glycerol as the plasticizer, maleic anhydride (MA), and free-radical initiator, 2,5-bis(tert-butylperoxy)-2,5-dimethylhexane (Luperox 101). Dynamic light scattering (DLS), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), soxhlet extraction in acetone, and environmental scanning electron microscopy (ESEM) were performed to determine the effect of maleation, extrusion temperature, initiator concentration, and maleic anhydride concentration on the resulting MTPS. Next, maleated thermoplastic starch (MTPS) and thermoplastic starch (TPS) were reactively blended in a twin-screw extruder with a biodegradable polyester, poly(butylene adipate-co-terephthalate) (PBAT). The blends were extruded to produce thermoformable sheets. The mechanical properties of the sheets were characterized by tensile and puncture tests. Proof of grafting was determined by soxhlet extraction in dichloromethane and FTIR analysis. Observations of the thermal properties were made using DSC, while the surface of the sheets was imaged using ESEM. Blends of MTPS and PBAT were also extruded to produce films. Mechanical testing (tensile and puncture tests) and barrier performance testing (carbon dioxide, oxygen, and water vapor permeability) were performed on the films. Transmission electron microscopy (TEM) was used to image the blends and to view the dispersion of the various phases. Finally, blends of MTPS and PBAT were extruded with an endothermic chemical blowing agent to produce foams. The foams were

  7. The effect of oxygen ion beam bombardment on the properties of tin indium oxide/polyethylene terephthalate complex

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li; Liu, Honglin; Zou, Lin [School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Ding, Wanyu, E-mail: dwysd_2000@163.com [School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116028 (China); Ju, Dongying [Department of Material Science and Engineering, Saitama Institute of Technology, Fukaya 369-0293 (Japan); Chai, Weiping [School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China)

    2013-10-31

    The tin indium oxide (ITO) films were deposited onto the polyethylene terephthalate (PET) surface that has been bombarded by an O ion beam. The variation of the O bombardment time resulted in the production of ITO/PET complex with different properties. Characterization by four-point probe measurement after the bending fatigue test showed that the adhesion property of the ITO/PET complex could be improved by the increase of O bombardment time while little change of electrical resistivity was observed. Scanning electron microscopy results showed that after the bending fatigue test, the nano scale seams and micro scale trenches appeared at the surface of the ITO/PET complex. The former was only the cracks of ITO film, which has little influence on the continuity and electrical resistivity of ITO film. On the contrary, the micro scale trenches were caused by the peeling off of ITO chips at the cracks, which mainly influenced the continuity and electrical resistivity of ITO film. With the increase of O bombardment time, the number and length of the micro scale trenches decreased. X-ray photoelectron spectrometry characterization showed that with the increase of O bombardment time, parts of the methylene C bonds were transformed into C=O bonds, which could be broken to form C-O-In(Sn) bonds at the initial stage of ITO film growth. By these C-O-In(Sn) crosslink bonds, the ITO film could adhere well onto the PET and the ITO/PET complex display better anti-bending fatigue property. Finally, in the context of the application of the ITO/PET complex as a flexible electrode substrate, the present work reveals a simple way to crosslink them, as well as the physicochemical mechanism happening at the interface of complex. - Highlights: • Polyethylene terephthalate (PET) surface was bombarded by N ions. • Tin indium oxide (ITO) film was deposited on bombarded PET surface. • By bombardment, methylene C bond on PET surface was broken and replaced by C=O bond. • C=O bond was

  8. Electrochemical pulsed deposition of platinum nanoparticles on indium tin oxide/polyethylene terephthalate as a flexible counter electrode for dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Wei, Yu-Hsuan; Chen, Chih-Sheng; Ma, Chen-Chi M.; Tsai, Chuen-Horng; Hsieh, Chien-Kuo

    2014-01-01

    In this study, a pulsed-mode electrochemical deposition (Pulse-ECD) technique was employed to deposit platinum nanoparticles (PtNPs) on the indium tin oxide/polyethylene terephthalate (ITO/PET) substrate as a flexible counter electrode for dye-sensitized solar cells (DSSCs). The characteristic properties of the Pulse-ECD PtNPs were prepared and compared to the traditional (electron beam) Pt film. The surface morphologies of the PtNPs were examined by field emission scanning electron microscopy (FE-SEM) and the atomic force microscope (AFM). The FE-SEM results showed that our PtNPs were deposited uniformly on the ITO/PET flexible substrates via the Pulse-ECD technique. The AFM results indicated that the surface roughness of the pulsed PtNPs influenced the power conversion efficiency (PCE) of DSSCs, due to the high specific surface area of PtNPs which enhanced the catalytic activities for the reduction (I 3 − to I − ) of redox electrolyte. In combination with a N719 dye-sensitized TiO 2 working electrode and an iodine-based electrolyte, the DSSCs with the PtNPs flexible counter electrode showed a PCE of 4.3% under the illumination of AM 1.5 (100 mW cm −2 ). The results demonstrated that the Pulse-ECD PtNPs are good candidate for flexible DSSCs. - Highlights: • We used indium tin oxide/polyethylene terephthalate as a flexible substrate. • We utilized pulse electrochemical deposition to deposit platinum nanoparticles. • We synthesized a flexible counter electrode for dye-sensitized solar cell (DSSC). • The power conversion efficiency of DSSC was measured to be 4.3%

  9. Brain tissue partial pressure of oxygen predicts the outcome of severe traumatic brain injury under mild hypothermia treatment

    Directory of Open Access Journals (Sweden)

    Sun H

    2016-08-01

    Full Text Available Hongtao Sun,1,* Maohua Zheng,2,* Yanmin Wang,1 Yunfeng Diao,1 Wanyong Zhao,1 Zhengjun Wei1 1Sixth Department of Neurosurgery, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, 2Department of Neurosurgery, The First Hospital of Lanzhou University, Lanzhou, People’s Republic of China *These authors contributed equally to this work Objective: The aim of this study was to investigate the clinical significance and changes of brain tissue partial pressure of oxygen (PbtO2 in the course of mild hypothermia treatment (MHT for treating severe traumatic brain injury (sTBI. Methods: There were 68 cases with sTBI undergoing MHT. PbtO2, intracranial pressure (ICP, jugular venous oxygen saturation (SjvO2, and cerebral perfusion pressure (CPP were continuously monitored, and clinical outcomes were evaluated using the Glasgow Outcome Scale score. Results: Of 68 patients with sTBI, PbtO2, SjvO2, and CPP were obviously increased, but decreased ICP level was observed throughout the MHT. PbtO2 and ICP were negatively linearly correlated, while there was a positive linear correlation between PbtO2 and SjvO2. Monitoring CPP and SjvO2 was performed under normal circumstances, and a large proportion of patients were detected with low PbtO2. Decreased PbtO2 was also found after MHT. Conclusion: Continuous PbtO2 monitoring could be introduced to evaluate the condition of regional cerebral oxygen metabolism, thereby guiding the clinical treatment and predicting the outcome. Keywords: severe traumatic brain injury, hypothermia, brain tissue partial pressure of oxygen, therapy

  10. Electrokinetic remediation of heavy metals contaminated kaolin by a CNT-covered polyethylene terephthalate yarn cathode

    International Nuclear Information System (INIS)

    Yuan, Lizhu; Li, Haiyan; Xu, Xingjian; Zhang, Jing; Wang, Nana; Yu, Hongwen

    2016-01-01

    In the current study, carbon nanotube (CNT) covered polyethylene terephthalate yarns (PET-CNT) electrode has been investigated as a novel cathode material for the electrokinetic (EK) remediation of multi-metals (Cd, Cu, Ni, Pb, Zn) contaminated kaolin. The results of scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) showed that CNT was successfully covered on the surface of PET. The results obtained from EK process showed that PET-CNT as a cathode obviously elevated electric current and electro-osmotic flow (EOF), significantly decreased kaolin pH, and enhanced heavy metals removal efficiencies. The removal efficiencies of Cd, Cu, Ni, Pb, and Zn in PET-CNT treatment were 89.7%, 63.6%, 90.7%, 19.2%, and 88.7%, respectively. In comparison with the Pt/Ti and graphite treatments, the removal efficiencies of Cd, Ni, and Zn were improved at least about 30%, Cu and Pb were improved at least 16.6% and 6.9%, respectively. Our results demonstrated the PET-CNT was a good alternative cathode material for enhancing efficiency of EK remediation.

  11. Dimethyl terephthalate (DMT) as a candidate phase change material for high temperature thermal energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Kuecuekaltun, Engin [Advansa Sasa Polyester San, A.S., Adana (Turkey); Paksoy, Halime; Bilgin, Ramazan; Yuecebilgic, Guezide [Cukurova Univ., Adana (Turkey). Chemistry Dept.; Evliya, Hunay [Cukurova Univ., Adana (Turkey). Center for Environmental Research

    2010-07-01

    Thermal energy storage at elevated temperatures, particularly in the range of 120-250 C is of interest with a significant potential for industrial applications that use process steam at low or intermediate pressures. At given temperature range there are few studies on thermal energy storage materials and most of them are dedicated to sensible heat. In this study, Dimethyl Terephthalate - DMT (CAS No: 120-61-6) is investigated as a candidate phase change material (PCM) for high temperature thermal energy storage. DMT is a monomer commonly used in Polyethylene terephtalate industry and has reasonable cost and availability. The Differential Scanning Calorimetry (DSC) analysis and heating cooling curves show that DMT melts at 140-146 C within a narrow window. Supercooling that was detected in DSC results was not observed in the cooling curve measurements made with a larger sample. With a latent heat of 193 J/g, DMT is a candidate PCM for high temperature storage. Potential limitations such as, low thermal conductivity and sublimation needs further investigation. (orig.)

  12. The Effect of Sodium Hyaluronate on Ligamentation and Biomechanical Property of Tendon in Repair of Achilles Tendon Defect with Polyethylene Terephthalate Artificial Ligament: A Rabbit Tendon Repair Model

    OpenAIRE

    Li, Shengkun; Ma, Kui; Li, Hong; Jiang, Jia; Chen, Shiyi

    2016-01-01

    The Achilles tendon is the most common ruptured tendon of human body. Reconstruction with polyethylene terephthalate (PET) artificial ligament is recommended in some serious cases. Sodium hyaluronate (HA) is beneficial for the healing of tendon injuries. We aimed to determine the effect of sodium hyaluronate in repair of Achilles tendon defect with PET artificial ligament in an animal tendon repair model. Sixteen New Zealand White rabbits were divided into two groups. Eight rabbits repaired w...

  13. 工业PTA氧化过程的多目标优化%Multi-objective Optimization of Industrial Purified Terephthalic Acid Oxidation Process

    Institute of Scientific and Technical Information of China (English)

    牟盛静; 苏宏业; 古勇; 褚健

    2003-01-01

    Multi-objective optimization of a purified terephthalic acid (PTA) oxidation unit is carried out in this paper by using a process model that has been proved to describe industrial process quite well. The model is a semiempirical structured into two series ideal continuously stirred tank reactor (CSTR) models. The optimal objectives include maximizing the yield or inlet rate and minimizing the concentration of 4-carboxy-benzaldhyde, which is the main undesirable intermediate product in the reaction process. The multi-objective optimization algorithm applied in this study is non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ). The performance of NSGA-Ⅱ is further illustrated by application to the title process.

  14. Thermal Properties, Structure and Morphology of Graphene Reinforced Polyethylene Terephthalate/ Polypropylene Nano composites

    International Nuclear Information System (INIS)

    Inuwa, I.M.; Hassan, A.; Shamsudin, S.A.

    2014-01-01

    In this work the thermal properties, structure and morphology of a blend of polyethylene terephthalate (PET) and polypropylene (PP) reinforced with graphene nano platelets (GNP) were investigated. A blend of PET/ PP (70/ 30 weight percent) compatibilized with styrene-ethylene-butylene-styrene grafted maleic anhydride triblock copolymer (10 phr) were fabricated by melt extrusion process in a twin screw extruder. The effective thermal conductivity of the nano composites increased as a function of the GNP concentration. More than 80 % increase in effective thermal conductivity was observed for the 7 phr reinforced sample compared to the neat blend. This observation was attributed to the development interconnected GNP sheets which formed heat conductive bridges that are suitable for maximum heat transfer. However, in the case of thermal stability which is a function of dispersibility of GNP in polymer matrix, the maximum increase was observed at 3 phr GNP loading which could be attributed to the uniform dispersion of GNPs in the matrix. It is explained that the GNP nano fillers migrated to the surface of matrix forming an effective oxygen barrier due to char formation. Morphological studies revealed uniform dispersion graphene in the polymer matrix at 3 phr GNP loading along with isolated instances of exfoliation of the graphene layers. (author)

  15. Screen-Printed Flexible Bandstop Filter on Polyethylene Terephthalate Substrate Based on Ag Nanoparticles

    Directory of Open Access Journals (Sweden)

    Rajendra Dhakal

    2015-01-01

    Full Text Available We present a low-power, cost-effective, highly reproducible, and disposable bandstop filter by employing high-throughput screen-printing technology. We apply large-scale printing strategies using silver-nanoparticle-based ink for the metallization of conductive wires to fabricate a bandstop filter on a polyethylene terephthalate (PET substrate. The filter exhibits an attenuation pole at 4.35 GHz with excellent in-and-out band characteristics. These characteristics reflect a rejection depth that is better than −25 dB with a return loss of −0.75 dB at the normal orientation of the PET substrate. In addition, the filter characteristics are observed at various bending angles (0°, 10°, and 20° of the PET substrate with an excellent relative standard deviation of less than 0.5%. These results confirm the accuracy, reproducibility, and independence of the resonance frequency. This screen-printing technology for well-defined nanostructures is more favorable than other complex photolithographic processes because it overcomes signal losses due to uneven surface distributions and thereby reveals a homogeneous distribution. Moreover, the proposed methodology enables incremental steps in the process of producing highly flexible and cost-effective printed-electronic radio devices.

  16. Utilization of polyethylene terephthalate (PET) in bituminous mixture for improved performance of roads

    Science.gov (United States)

    Ahmad, A. F.; Razali, A. R.; Razelan, I. S. M.; Jalil, S. S. A.; Noh, M. S. M.; Idris, A. A.

    2017-05-01

    Plastic bottle for recycling can be found from the household waste stream, and most of them are made from Polyethylene Terephthalate. In this research, PET is utilized to explore the potential prospects to upgrade asphalt mixture properties. The objectives include deciding the best measure of PET to be used. For experimental, Marshall mix design was utilized to determine the ideal bitumen binder content and to test the modified mixture properties. The samples were created per the requirement for aggregate course wearing (ACW14) using the Standard Specification of Road Work (SSRW) in Malaysia. 20 samples were utilized to determine the binder content, and 30 samples were used to research the impact of modifying asphalt mixtures. 2%, 5%, 10%, 15% and 20% of PET by weight of the optimum binder content (4.8%) were tested. Optimum PET content is 10%, and the result shows a good stability with 16.824kN, 2.32g/cm3 bulk density, void filled with bitumen (VFB) with 71.35%, flow with 3.2248mm, air void (AV) with 4.53%, and void of mineral aggregate (VMA) with 15.15%. The outcomes showed that PET modifier gives better engineering properties. Therefore, 10% of PET by the weight of binder content was suggested as the best amount of the modifier.

  17. Fog Collection on Polyethylene Terephthalate (PET) Fibers: Influence of Cross Section and Surface Structure.

    Science.gov (United States)

    Azad, M A K; Krause, Tobias; Danter, Leon; Baars, Albert; Koch, Kerstin; Barthlott, Wilhelm

    2017-06-06

    Fog-collecting meshes show a great potential in ensuring the availability of a supply of sustainable freshwater in certain arid regions. In most cases, the meshes are made of hydrophilic smooth fibers. Based on the study of plant surfaces, we analyzed the fog collection using various polyethylene terephthalate (PET) fibers with different cross sections and surface structures with the aim of developing optimized biomimetic fog collectors. Water droplet movement and the onset of dripping from fiber samples were compared. Fibers with round, oval, and rectangular cross sections with round edges showed higher fog-collection performance than those with other cross sections. However, other parameters, for example, width, surface structure, wettability, and so forth, also influenced the performance. The directional delivery of the collected fog droplets by wavy/v-shaped microgrooves on the surface of the fibers enhances the formation of a water film and their fog collection. A numerical simulation of the water droplet spreading behavior strongly supports these findings. Therefore, our study suggests the use of fibers with a round cross section, a microgrooved surface, and an optimized width for an efficient fog collection.

  18. The tensile strength test of thermoplastic materials based on poly(butylene terephtalate

    Directory of Open Access Journals (Sweden)

    Rzepecka Anna

    2017-01-01

    Full Text Available Thermoplastic composites go toward making an increasingly greater percentage of all manufacturing polymer composites. They have a lot of beneficial properties and their manufacturing using injecting and extrusion methods is a very easy and cheap process. Their properties significantly overtake the properties of traditional materials and it is the reason for their use. Scientists are continuously carrying out research to find new applications of composites materials in new industries, not only in the automotive or aircraft industry. When thermoplastic composites are manufactured a very important factor is the appropriate accommodation of tensile strength to their predestination. Scientists need to know the behaviour of these materials during the impact of different forces, and the factors of working in normal conditions too. The main aim of this article was macroscopic and microscopic analysis of the structure of thermoplastic composites after static tensile strength test. Materials which were analysed were thermoplastic materials which have poly(butylene terephthalatePBT matrix reinforced with different content glass fibres – from 10% for 30%. In addition, research showed the necessary force to receive fracture and set their distinguishing characteristic down.

  19. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    Science.gov (United States)

    Li, Jing; Tian, Xiubo; Gong, Chunzhi; Yang, Shiqin; Fu, Ricky K. Y.; Chu, Paul K.

    2009-12-01

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  20. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    International Nuclear Information System (INIS)

    Li Jing; Gong Chunzhi; Yang Shiqin; Tian Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2009-01-01

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  1. Hybrid radio-frequency/direct-current plasma-enhanced chemical vapor deposition system for deposition on inner surfaces of polyethylene terephthalate bottles

    Energy Technology Data Exchange (ETDEWEB)

    Li Jing; Gong Chunzhi; Yang Shiqin [Institute of Plasma Surface Engineering and Equipment, State Key Laboratory of Advanced Welding Production and Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Tian Xiubo [Institute of Plasma Surface Engineering and Equipment, State Key Laboratory of Advanced Welding Production and Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Fu, Ricky K. Y.; Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

    2009-12-15

    A hybrid radio-frequency (rf)/direct-current (dc) system has been developed to control the biasing effects during deposition of diamondlike carbon (DLC) films onto the inner wall of polyethylene terephthalate (PET) bottles. An additional dc bias is coupled to the rf electrode to produce the effect of equivalent rf self-biasing. This allows more flexible control of the deposition of the DLC films which are intended to improve the gas barrier characteristics. The experimental results demonstrate that the additional dc bias improves the adhesion strength between the DLC film and PET, although the enhancement in the gas barrier properties is not significantly larger compared to the one without dc bias. The apparatus and methodology have practical importance in the food and beverage industry.

  2. Research advances in proton beam therapy for hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    DAI Shuyang

    2013-10-01

    Full Text Available Hepatocellular carcinoma (HCC, one of the most common malignancies with high prevalence and mortality rate, usually results in poor prognosis and limited survival. A comprehensive analysis on the number and location of tumors, Child-Pugh grade, and Barcelona Clinic Liver Cancer stage will help the development of suitable treatment programs and improve prediction of prognosis. A majority of patients are complicated by cirrhosis, enlarged tumor, multiple lesions, vascular invasion, and even cancer embolus in the portal vein. With the growth of knowledge about the radiation tolerance of normal tissue and the advances in radiotherapy techniques, radiotherapy has become an important tool for step-down therapy and adjuvant therapy for liver cancer. Proton beam therapy (PBT is emerging as a novel radiotherapy for the management of HCC, which, benefiting from the effect of Bragg Peak from PBT, effectively decreases the toxicity of traditional radiotherapies to the liver and does little harm to the uninvolved liver tissue or the surrounding structures while intensifying the destruction in targeted malignant lesions. Furthermore, several previous studies on the treatment of HCC with PBT revealed excellent local control. The distinctive biophysical attributes of PBT in the treatment of HCC, as well as the available literature regarding clinical outcomes and toxicity of using PBT for HCC, are reviewed. Current evidence provides limited indications for PBT, which suggests that further study on the relationship between liver function and PBT is required to gain further insight into its indication and standardization.

  3. A full lifecycle bioenergetic model for bluefin tuna.

    Directory of Open Access Journals (Sweden)

    Marko Jusup

    Full Text Available We formulated a full lifecycle bioenergetic model for bluefin tuna relying on the principles of Dynamic Energy Budget theory. Traditional bioenergetic models in fish research deduce energy input and utilization from observed growth and reproduction. In contrast, our model predicts growth and reproduction from food availability and temperature in the environment. We calibrated the model to emulate physiological characteristics of Pacific bluefin tuna (Thunnus orientalis, hereafter PBT, a species which has received considerable scientific attention due to its high economic value. Computer simulations suggest that (i the main cause of different growth rates between cultivated and wild PBT is the difference in average body temperature of approximately 6.5°C, (ii a well-fed PBT individual can spawn an average number of 9 batches per spawning season, (iii food abundance experienced by wild PBT is rather constant and sufficiently high to provide energy for yearly reproductive cycle, (iv energy in reserve is exceptionally small, causing the weight-length relationship of cultivated and wild PBT to be practically indistinguishable and suggesting that these fish are poorly equipped to deal with starvation, (v accelerated growth rate of PBT larvae is connected to morphological changes prior to metamorphosis, while (vi deceleration of growth rate in the early juvenile stage is related to efficiency of internal heat production. Based on these results, we discuss a number of physiological and ecological traits of PBT, including the reasons for high Feed Conversion Ratio recorded in bluefin tuna aquaculture.

  4. Synthesis of thermoplastic poly(ester-olefin elastomers

    Directory of Open Access Journals (Sweden)

    Tanasijević Branka

    2004-01-01

    Full Text Available A series of thermoplastic poly(ester-olefin elastomers, based on poly(ethylene-stat-butylene, HO-PEB-OH, as the soft segment and poly (butylene terephthalate, PBT, as the hard segment, were synthesized by a catalyzed transesterification reaction in solution. The incorporation of soft hydrogenated poly(butadiene segments into the copolyester backbone was accomplished by the polycondensation of α, ω-dihydroxyl telechelic HO-PEB-OH, (PEB Mn = 3092 g/mol with 1,4-butanediol (BD and dimethyl terephthalate (DMT in the presence of a 50 wt-% high boiling solvent i.e., 1,2,4-trichlorobenzene. The molar ratio of the starting comonomers was selected to result in a constant hard to soft weight ratio of 60:40. The synthesis was optimized in terms of both the concentration of catalyst, tetra-n-butyl-titanate (Ti(OBu4, and stabilizer, N,N'-diphenyl-p-phenylenediamine (DPPD, as well as the reaction time. It was found that the optimal catalyst concentration (Ti(OBu4 for the synthesis of these thermoplastic elastomers was 1.0 mmol/mol ester and the optimal DPPD concentration was 1.0 wt-%. The extent of the reaction was followed by measuring the inherent viscosity of the reaction mixture. The effectiveness of the incorporation of the soft segments into the copolymer chains was proved by Soxhlet extraction with chloroform. The molecular structures, composition and the size of the synthesized poly(ester-butylenes were verified by 1H NMR spectroscopy, viscometry of dilute solutions and the complex dynamic melt viscosity. The thermal properties of poly(ester-olefins were investigated by differential scanning calorimetry (DSC. The degree of crystallinity was also determined by DSC. The thermal and thermo-oxidative stability were investigated by thermogravimetric analysis (TGA. The rheological properties of poly(ester-olefins were investigated by dynamic mechanical spectroscopy in the melt and solid state.

  5. Combining technologies to create bioactive hybrid scaffolds for bone tissue engineering.

    Science.gov (United States)

    Nandakumar, Anandkumar; Barradas, Ana; de Boer, Jan; Moroni, Lorenzo; van Blitterswijk, Clemens; Habibovic, Pamela

    2013-01-01

    Combining technologies to engineer scaffolds that can offer physical and chemical cues to cells is an attractive approach in tissue engineering and regenerative medicine. In this study, we have fabricated polymer-ceramic hybrid scaffolds for bone regeneration by combining rapid prototyping (RP), electrospinning (ESP) and a biomimetic coating method in order to provide mechanical support and a physico-chemical environment mimicking both the organic and inorganic phases of bone extracellular matrix (ECM). Poly(ethylene oxide terephthalate)-poly(buthylene terephthalate) (PEOT/PBT) block copolymer was used to produce three dimensional scaffolds by combining 3D fiber (3DF) deposition, and ESP, and these constructs were then coated with a Ca-P layer in a simulated physiological solution. Scaffold morphology and composition were studied using scanning electron microscopy (SEM) coupled to energy dispersive X-ray analyzer (EDX) and Fourier Tranform Infrared Spectroscopy (FTIR). Bone marrow derived human mesenchymal stromal cells (hMSCs) were cultured on coated and uncoated 3DF and 3DF + ESP scaffolds for up to 21 d in basic and mineralization medium and cell attachment, proliferation, and expression of genes related to osteogenesis were assessed. Cells attached, proliferated and secreted ECM on all the scaffolds. There were no significant differences in metabolic activity among the different groups on days 7 and 21. Coated 3DF scaffolds showed a significantly higher DNA amount in basic medium at 21 d compared with the coated 3DF + ESP scaffolds, whereas in mineralization medium, the presence of coating in 3DF+ESP scaffolds led to a significant decrease in the amount of DNA. An effect of combining different scaffolding technologies and material types on expression of a number of osteogenic markers (cbfa1, BMP-2, OP, OC and ON) was observed, suggesting the potential use of this approach in bone tissue engineering.

  6. Proton Therapy Expansion Under Current United States Reimbursement Models

    Energy Technology Data Exchange (ETDEWEB)

    Kerstiens, John [Indiana University Health Proton Therapy Center, Bloomington, Indiana (United States); Johnstone, Peter A.S., E-mail: pajohnst@iupui.edu [Indiana University Health Proton Therapy Center, Bloomington, Indiana (United States); Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana (United States)

    2014-06-01

    Purpose: To determine whether all the existing and planned proton beam therapy (PBT) centers in the United States can survive on a local patient mix that is dictated by insurers, not by number of patients. Methods and Materials: We determined current and projected cancer rates for 10 major US metropolitan areas. Using published utilization rates, we calculated patient percentages who are candidates for PBT. Then, on the basis of current published insurer coverage policies, we applied our experience of what would be covered to determine the net number of patients for whom reimbursement is expected. Having determined the net number of covered patients, we applied our average beam delivery times to determine the total number of minutes needed to treat that patient over the course of their treatment. We then calculated our expected annual patient capacity per treatment room to determine the appropriate number of treatment rooms for the area. Results: The population of patients who will be both PBT candidates and will have treatments reimbursed by insurance is significantly smaller than the population who should receive PBT. Coverage decisions made by insurers reduce the number of PBT rooms that are economically viable. Conclusions: The expansion of PBT centers in the US is not sustainable under the current reimbursement model. Viability of new centers will be limited to those operating in larger regional metropolitan areas, and few metropolitan areas in the US can support multiple centers. In general, 1-room centers require captive (non–PBT-served) populations of approximately 1,000,000 lives to be economically viable, and a large center will require a population of >4,000,000 lives. In areas with smaller populations or where or a PBT center already exists, new centers require subsidy.

  7. Evaluation of Focal Liver Reaction after Proton Beam Therapy for Hepatocellular Carcinoma Examined Using Gd-EOB-DTPA Enhanced Hepatic Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Shigeyuki Takamatsu

    Full Text Available Proton beam therapy (PBT achieves good local control for hepatocellular carcinoma (HCC, and toxicity tends to be lower than for photon radiotherapy. Focal liver parenchymal damage in radiotherapy is described as the focal liver reaction (FLR; the threshold doses (TDs for FLR in the background liver have been analyzed in stereotactic ablative body radiotherapy and brachytherapy. To develop a safer approach for PBT, both TD and liver volume changes are considered clinically important in predicting the extent of damage before treatment, and subsequently in reducing background liver damage. We investigated appearance time, TDs and volume changes regarding FLR after PBT for HCC.Patients who were treated using PBT and were followed up using gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging (Gd-EOB-DTPA MRI after PBT were enrolled. Sixty-eight lesions in 58 patients were eligible for analysis. MRI was acquired at the end of treatment, and at 1, 2, 3 and 6 months after PBT. We defined the FLR as a clearly depicted hypointense area on the hepatobiliary phase of Gd-EOB-DTPA MRI, and we monitored TDs and volume changes in the FLR area and the residual liver outside of the FLR area.FLR was depicted in all lesions at 3 months after PBT. In FLR expressed as the 2-Gy equivalent dose (α/β = 3 Gy, TDs did not differ significantly (27.0±6.4 CGE [10 fractions [Fr] vs. 30.5±7.3 CGE [20 Fr]. There were also no correlations between the TDs and clinical factors, and no significant differences between Child-Pugh A and B scores. The volume of the FLR area decreased and the residual liver volume increased, particularly during the initial 3 months.This study established the FLR dose for liver with HCC, which might be useful in the prediction of remnant liver volume for PBT.

  8. Bubble column and CFD simulation for chemical recycling of polyethylene terephthalate

    Science.gov (United States)

    Alzuhairi, Mohammed

    2018-05-01

    Computational Fluid Dynamics (CFD) is an important simulation tool, which uses powerful computer to get optimal design in industrial processes. New approach technique of bubble column for three phases has been used with respect to chemical recycling of Polyethylene Terephthalate (PET). The porous ceramic has been used in thin plate (5 mm) with a narrow pore size distribution. Excellent agreement between CFD has been predicted and experimental profiles of hold-up and velocity close to wall have been observed for a column diameter 0.08 m, column height 0.15 m (HD), and superficial gas velocity (VG) 0.05 m/s. The main purpose of the current study is to highlight depolymerization of PET chemically by using the close system of Ethylene Glycol, PET-Catalyzed, and Nitrogen glycolysis process in bubble column of three phases technique by using Nano catalyst, SiO2 with various weight percent (0.01, 0.02, 0.05, 0.1, 0.2, and 0.5) based on PET weight and preheated Nitrogen up to 100° C by extra heater in bubble column reactor. The depolymerization time could be reduced in order to improve heat and mass transfer in comparison with the traditional methods. Little amount not exceeding 0.01% of Nano SiO2 is enough for completing depolymerization. The final product of PET depolymerization has full characterization by FTIR, AFM, CHN tests and has been used as a vital additive for Bitumen, it has been investigated as a moisture-proof, water seepage-proof material, and as a tough resistant to environmental conditions.

  9. Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate).

    Science.gov (United States)

    Wei, Dafu; Wang, Hao; Xiao, Huining; Zheng, Anna; Yang, Yang

    2015-06-05

    The biodegradable poly(butylene adipate-co-terephthalate)(PBAT)/thermoplastic starch (TPS) composite has received considerable attention because of the environmental concerns raised by solid waste disposal. However, the application of PBAT/TPS blends was limited due to the poor mechanical properties originating from the incompatibility between PBAT and TPS. In this work, two approaches were developed to improve the mechanical properties of PBAT/TPS blends. One approach is to use compatibilizers, including the synthesized reactive compatibilizer - a styrene-maleic anhydride-glycidyl methacrylate (SMG) terpolymer, and the commercial compatibilizer (Joncryl-ADR-4368). The chemical structures of SMG were analyzed with (1)H NMR and FT-IR. The other approach is to use the modified PBAT (M-PBAT) to replace part of PBAT in the PBAT/TPS blends. M-PBATs with higher molecular weight were obtained via reactive extrusion of PBAT in the presence of a chain extender. The better dispersion of TPS in PBAT was observed in SEM images when using M-PBAT, leading to the higher tensile strength and elongation at break of PBAT/TPS blends. However, the elongation at break decreased in the presence of compatibilizer (SMG or 4368), though the tensile strength remained in a similar level or slightly higher. Overall, the tensile strength and the elongation at break of the resulting biodegradable PBAT/M-PBAT/TPS blends (TPS=40wt%) were above 27.0MPa and 500%, respectively, which is promising for various applications, including packaging and agricultural mulching films. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Comparisons of dose-volume histograms for proton-beam versus 3-D conformal X-ray therapy in patients with stage I non-small cell lung cancer

    International Nuclear Information System (INIS)

    Wang, Changlu; Nakayama, Hidetsugu; Sugahara, Shinji; Sakae, Takeji; Tokuuye, Koichi

    2009-01-01

    Dose-volume histograms (DVHs) were reviewed to determine if there is an advantage of the two modalities when treating patients with non-small cell lung cancer (NSCLC). 24 stage I NSCLC patients who underwent proton-beam therapy (PBT) from June 2003 to May 2007 were included in this study. Based on the same clinical target volumes (CTVs), treatment planning was made to cover CTV within 90% isodose lines. Each patient was evaluated by two sets of DVHs, one for PBT and the other for three-dimensional conformal X-ray therapy (3D-CRT). For all patients, the 95% isodose line covered 86.4% of the CTV for PBT, and 43.2% for 3D-CRT. PBT was associated with significantly lower mean doses to the ipsilateral lung, total lung, heart, esophagus, and spinal cord than 3D-CRT. PBT offered reduced radiation doses to the lung when evaluated in terms of percentage lung volumes receiving ≥ 5 Gy (V 5 ), ≥ 10 Gy (V 10 ), and ≥ 20 Gy (V 20 ) when compared to 3D-CRT. PBT is advantageous over 3D-CRT in reducing doses to the lung, heart, esophagus, and spinal cord in treating stage I NSCLC. (orig.)

  11. Robust Identification of Polyethylene Terephthalate (PET) Plastics through Bayesian Decision

    Science.gov (United States)

    Zulkifley, Mohd Asyraf; Mustafa, Mohd Marzuki; Hussain, Aini; Mustapha, Aouache; Ramli, Suzaimah

    2014-01-01

    Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed. PMID

  12. Robust identification of polyethylene terephthalate (PET) plastics through Bayesian decision.

    Science.gov (United States)

    Zulkifley, Mohd Asyraf; Mustafa, Mohd Marzuki; Hussain, Aini; Mustapha, Aouache; Ramli, Suzaimah

    2014-01-01

    Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET) is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster processing speed.

  13. Robust identification of polyethylene terephthalate (PET plastics through Bayesian decision.

    Directory of Open Access Journals (Sweden)

    Mohd Asyraf Zulkifley

    Full Text Available Recycling is one of the most efficient methods for environmental friendly waste management. Among municipal wastes, plastics are the most common material that can be easily recycled and polyethylene terephthalate (PET is one of its major types. PET material is used in consumer goods packaging such as drinking bottles, toiletry containers, food packaging and many more. Usually, a recycling process is tailored to a specific material for optimal purification and decontamination to obtain high grade recyclable material. The quantity and quality of the sorting process are limited by the capacity of human workers that suffer from fatigue and boredom. Several automated sorting systems have been proposed in the literature that include using chemical, proximity and vision sensors. The main advantages of vision based sensors are its environmentally friendly approach, non-intrusive detection and capability of high throughput. However, the existing methods rely heavily on deterministic approaches that make them less accurate as the variations in PET plastic waste appearance are too high. We proposed a probabilistic approach of modeling the PET material by analyzing the reflection region and its surrounding. Three parameters are modeled by Gaussian and exponential distributions: color, size and distance of the reflection region. The final classification is made through a supervised training method of likelihood ratio test. The main novelty of the proposed method is the probabilistic approach in integrating various PET material signatures that are contaminated by stains under constant lighting changes. The system is evaluated by using four performance metrics: precision, recall, accuracy and error. Our system performed the best in all evaluation metrics compared to the benchmark methods. The system can be further improved by fusing all neighborhood information in decision making and by implementing the system in a graphics processing unit for faster

  14. Dosimetric comparison to the heart and cardiac substructure in a large cohort of esophageal cancer patients treated with proton beam therapy or Intensity-modulated radiation therapy.

    Science.gov (United States)

    Shiraishi, Yutaka; Xu, Cai; Yang, Jinzhong; Komaki, Ritsuko; Lin, Steven H

    2017-10-01

    To compare heart and cardiac substructure radiation exposure using intensity-modulated radiotherapy (IMRT) vs. proton beam therapy (PBT) for patients with mid- to distal esophageal cancer who received chemoradiation therapy. We identified 727 esophageal cancer patients who received IMRT (n=477) or PBT (n=250) from March 2004 to December 2015. All patients were treated to 50.4Gy with IMRT or to 50.4 cobalt Gray equivalents with PBT. IMRT and PBT dose-volume histograms (DVHs) of the whole heart, atria, ventricles, and four coronary arteries were compared. For PBT patients, passive scattering proton therapy (PSPT; n=237) and intensity-modulated proton therapy (IMPT; n=13) DVHs were compared. Compared with IMRT, PBT resulted in significantly lower mean heart dose (MHD) and heart V5, V10, V20, V30, and V40as well as lower radiation exposure to the four chambers and four coronary arteries. Compared with PSPT, IMPT resulted in significantly lower heart V20, V30, and V40 but not MHD or heart V5 or V10. IMPT also resulted in significantly lower radiation doses to the left atrium, right atrium, left main coronary artery, and left circumflex artery, but not the left ventricle, right ventricle, left anterior descending artery, or right coronary artery. Factors associated with lower MHD included PBT (Pheart and cardiac substructures than IMRT. Long-term studies are necessary to determine how this cardiac sparing effect impacts the development of coronary artery disease and other cardiac complications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of L-arginine immobilization on the anticoagulant activity and hemolytic property of polyethylene terephthalate films

    International Nuclear Information System (INIS)

    Liu Yun; Yang Yun; Wu Feng

    2010-01-01

    Surface modification of polyethylene terephthalate (PET) films was performed with L-arginine (L-Arg) to gain an improved anticoagulant surface. The surface chemistry changes of modified films were characterized by X-ray photoelectron spectroscopy (XPS) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. The in vitro anticoagulant activities of the surface-modified PET films were evaluated by blood clotting test, hemolytic test, and the measurement of clotting time including plasma recalcification time (PRT), activated partial thromboplastin time (APTT), and prothrombin time (PT). The data of blood coagulation index (BCI) for L-arginine modified PET films (PET-Arg) was larger than that for PET at the same blood-sample contact time. The hemolysis ratio for PET-Arg was less than that for PET and within the accepted standard for biomaterials. The PRT and APTT for PET-Arg were significantly prolonged by 189 s and 25 s, respectively, compared to those for the unmodified PET. All results suggested that the currently described modification method could be a possible candidate to create antithrombogenic PET surfaces which would be useful for further medical applications.

  16. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature.

    Science.gov (United States)

    Halász, István Zoltán; Bárány, Tamás

    2016-08-24

    In this work, the effect of mixing temperature (T mix ) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM). CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state), which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5-10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.

  17. Co-pyrolysis of rice straw and Polyethylene Terephthalate (PET) using a fixed bed drop type pyrolyzer

    Science.gov (United States)

    Izzatie, N. I.; Basha, M. H.; Uemura, Y.; Hashim, M. S. M.; Amin, N. A. M.; Hamid, M. F.

    2017-10-01

    In this work, co-pyrolysis of rice straw and polyethylene terephthalate (PET) was carried out at different temperatures (450,500,550, and 600°C) at ratio 1:1 by using fixed bed drop-type pyrolyzer. The purpose of this work is to determine the effect of pyrolysis temperature on the product yield. As the temperature increased, the pyrolysis oil increased until it reaches certain high temperature (600°C), the pyrolysis oil decreased as of more NCG were produced. The temperature 550°C is considered as the optimum pyrolysis temperature since it produced the highest amount of pyrolysis oil with 36 wt.%. In pyrolysis oil, the calorific value (13.98kJ/g) was low because of the presence of high water content (52.46 wt.%). Main chemicals group from pyrolysis oil were an aldehyde, ketones, acids, aromatics, and phenol and all compound have abundant of hydrogen and carbon were identified. Co-pyrolysis of rice straw and PET produced a higher amount of carbon oxides and recycling back the NCG could increase liquid and char yields.

  18. Effect of annealing and biaxial deformation on the dielectric properties of composites of multiwall carbon nanotubes and poly(ethylene terephthalate)

    Science.gov (United States)

    Urvakis, Marius; Kupreviciute, Auste; Banys, Juras; Macutkevic, Jan; Mayoral, Beatriz; McNally, Tony

    2012-01-01

    The dielectric properties of composites of poly(ethylene terephthalate) (PET) with MWCNTs were investigated over a wide frequency and temperature range below and close to the electrical percolation threshold. In composites with 1 wt.% multiwall carbon nanotubes (MWCNT) inclusions, the dielectric properties below room temperature are mostly determined by β relaxation, as a consequence of the rotation of PET molecules. In stretched samples, the CNTs are oriented at about 45 deg to the stretch direction. Such deformation increased the potential for molecular rotation. However, annealing after stretching increased homogeneity of the composite and decreased the potential barrier for polymer chain rotation. Electrical conductivity effects and Maxwell-Wagner polarization mostly cause the dielectric properties of the samples with 2% MWCNT inclusions. The potential barrier for carrier tunneling is lowest in the annealed sample.

  19. Synthesis and characterization of bright green terbium coordination complex derived from 1,4-bis(carbonylmethyl)terephthalate: Structure and luminescence properties

    Science.gov (United States)

    Ma, Mengjiao; Li, Congcong; Shu, Dengkun; Wang, Chaohua; Xi, Peng

    2018-02-01

    A photoluminescent terbium (Tb) complex involving a novel benzoic-acid compound with a unique coordinated structure, namely 1,4-bis(carbonylmethyl)terephthalate (BCMT), has been designed and synthesized. The new coordinate structure and energy-transfer mechanism between the ligand and Tb(III) ions were investigated in detail. The results demonstrated that the BCMT-Tb(III) complex shows strong fluorescence intensity (4 × 106 a.u.) and long fluorescence lifetime (1.302 ms), owing to the favorable degree of energy matching between the triplet excited level of the ligand and the resonant level of Tb(III) ions. Based on the analysis of three-dimensional luminescence spectra, the as-prepared Tb(III) complex can be effectively excited in the range of 250-310 nm, and it shows high color purity, with a bright green appearance.

  20. Effects of thermal history in the ring opening polymerization of CBT and its mixtures with montmorillonite on the crystallization of the resulting poly(butylene terephthalate)

    Energy Technology Data Exchange (ETDEWEB)

    Lanciano, Giuseppina [Department of Innovation Engineering, University of Salento, Via per Arnesano, 73100 Lecce (Italy); Greco, Antonio, E-mail: antonio.greco@unile.it [Department of Innovation Engineering, University of Salento, Via per Arnesano, 73100 Lecce (Italy); Maffezzoli, Alfonso [Department of Innovation Engineering, University of Salento, Via per Arnesano, 73100 Lecce (Italy); Mascia, Leno [Department of Materials, Loughborough University, Loughborough, LE 11 3TU (United Kingdom)

    2009-09-10

    Differential scanning calorimetry was used to study the thermal characteristics and morphological structure of species produced during the ring opening polymerization of cyclic butylene terephthalate (CBT). Thermal programs consisting of a first ramp heating scan and an isothermal step, followed by cooling and a second ramp heating step, were used to study the effects of thermal history, catalyst (butyl chlorotin dihydroxide) at concentrations between 0.1 and 1.3% (w/w), and the presence of a layered silicate nanofiller (montmorillonite at 4.0%, w/w) on the structure of the resulting polymer (poly(butylene terephthalate), pCBT). Wide angle X-ray diffraction was used to monitor the degree of exfoliation of the nanocomposites. It was found that pCBT is formed in the amorphous state, and crystallizes during the heating step or during the isothermal step at temperatures lower than the equilibrium melting temperature of the polymer (T{sub m}{sup 0}). When premixed with the nanofiller, irrespective of whether this was previously intercalated with a tallow surfactant or used in its pristine form, polymerization took place at higher temperatures and most of the crystallization was found to occur during the cooling stage. In those cases where crystallization took place during either the first heating scan, or during a prolonged isothermal step below the T{sub m}{sup 0} of the polymer, the resulting crystals were found to have a higher lamellar thickness, as compared with the same polymer crystallized from the melt during the cooling step from temperatures above the polymer T{sub m}{sup 0}.

  1. Effects of thermal history in the ring opening polymerization of CBT and its mixtures with montmorillonite on the crystallization of the resulting poly(butylene terephthalate)

    International Nuclear Information System (INIS)

    Lanciano, Giuseppina; Greco, Antonio; Maffezzoli, Alfonso; Mascia, Leno

    2009-01-01

    Differential scanning calorimetry was used to study the thermal characteristics and morphological structure of species produced during the ring opening polymerization of cyclic butylene terephthalate (CBT). Thermal programs consisting of a first ramp heating scan and an isothermal step, followed by cooling and a second ramp heating step, were used to study the effects of thermal history, catalyst (butyl chlorotin dihydroxide) at concentrations between 0.1 and 1.3% (w/w), and the presence of a layered silicate nanofiller (montmorillonite at 4.0%, w/w) on the structure of the resulting polymer (poly(butylene terephthalate), pCBT). Wide angle X-ray diffraction was used to monitor the degree of exfoliation of the nanocomposites. It was found that pCBT is formed in the amorphous state, and crystallizes during the heating step or during the isothermal step at temperatures lower than the equilibrium melting temperature of the polymer (T m 0 ). When premixed with the nanofiller, irrespective of whether this was previously intercalated with a tallow surfactant or used in its pristine form, polymerization took place at higher temperatures and most of the crystallization was found to occur during the cooling stage. In those cases where crystallization took place during either the first heating scan, or during a prolonged isothermal step below the T m 0 of the polymer, the resulting crystals were found to have a higher lamellar thickness, as compared with the same polymer crystallized from the melt during the cooling step from temperatures above the polymer T m 0 .

  2. Pyrolysis of polyethylene terephthalate containing real waste plastics using Ni loaded zeolite catalysts

    Science.gov (United States)

    Al-asadi, M.; Miskolczi, N.

    2018-05-01

    In this work the pyrolysis of polyethylene terephthalate (PET) containing real waste plastic was investigated using different Ni loaded catalysts: Ni/ZSM-5, Ni/y-zeolite, Ni/β-zeolite and Ni/natural zeolite (clinoptilolite). Raw materials were pyrolyzed in a horizontal tubular reactor between 600 and 900°C using 10% of catalysts. It was found, that both temperature increasing and catalysts presence can increase the gas yields, however owing to gasification reactions, the pyrolysis oil yield decreased with increasing temperature. Ni/y-zeolite catalyst had the most benefit in gas yield increasing at low temperature; however Ni/ZSM-5 showed advanced property in gas yield increasing at high temperature. Gases contained hydrogen, carbon oxides and hydrocarbons, which composition was significantly affected by catalysts. Ni loaded zeolites favoured to the formation of hydrogen and branched hydrocarbons; furthermore the concentrations of both CO and CO2 were also increased as function of elevated temperature. That phenomenon was attributed to the further decomposition of PET, especially to the side chain scission reactions. Owing to the Boudouard reaction, the ratio of CO2/CO can increased with temperature. Pyrolysis oils were the mixtures of n-saturated, n-unsaturated, branched, oxygen free aromatics and oxygenated hydrocarbons. Temperature increasing has a significant effect to the aromatization and isomerization reactions, while the catalysts can efficiently decreased the concentration of oxygen containing compounds.

  3. Direct Silver Micro Circuit Patterning on Transparent Polyethylene Terephthalate Film Using Laser-Induced Photothermochemical Synthesis

    Directory of Open Access Journals (Sweden)

    Chen-Jui Lan

    2017-02-01

    Full Text Available This study presents a new and improved approach to the rapid and green fabrication of highly conductive microscale silver structures on low-cost transparent polyethylene terephthalate (PET flexible substrate. In this new laser direct synthesis and pattering (LDSP process, silver microstructures are simultaneously synthesized and laid down in a predetermined pattern using a low power continuous wave (CW laser. The silver ion processing solution, which is transparent and reactive, contains a red azo dye as the absorbing material. The silver pattern is formed by photothermochemical reduction of the silver ions induced by the focused CW laser beam. In this improved LDSP process, the non-toxic additive in the transparent ionic solution absorbs energy from a low cost CW visible laser without the need for the introduction of any hazardous chemical process. Tests were carried out to determine the durability of the conductive patterns, and numerical analyses of the thermal and fluid transport were performed to investigate the morphology of the deposited patterns. This technology is an advanced method for preparing micro-scale circuitry on an inexpensive, flexible, and transparent polymer substrate that is fast, environmentally benign, and shows potential for Roll-to-Roll manufacture.

  4. Systems approach used in the Gas Centrifuge Enrichment Plant

    International Nuclear Information System (INIS)

    Rooks, W.A. Jr.

    1982-01-01

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT

  5. Systems approach used in the Gas Centrifuge Enrichment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rooks, W.A. Jr.

    1982-01-01

    A requirement exists for effective and efficient transfer of technical knowledge from the design engineering team to the production work force. Performance-Based Training (PBT) is a systematic approach to the design, development, and implementation of technical training. This approach has been successfully used by the US Armed Forces, industry, and other organizations. The advantages of the PBT approach are: cost-effectiveness (lowest life-cycle training cost), learning effectiveness, reduced implementation time, and ease of administration. The PBT process comprises five distinctive and rigorous phases: Analysis of Job Performance, Design of Instructional Strategy, Development of Training Materials and Instructional Media, Validation of Materials and Media, and Implementation of the Instructional Program. Examples from the Gas Centrifuge Enrichment Plant (GCEP) are used to illustrate the application of PBT.

  6. Proton Beam Therapy and Concurrent Chemotherapy for Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Steven H., E-mail: shlin@mdanderson.org [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Komaki, Ritsuko; Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wei, Caimiao [Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Myles, Bevan [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Guo Xiaomao [Department of Radiation Oncology, Fudan University Cancer Hospital, Shanghai (China); Palmer, Matthew [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Swisher, Stephen G.; Hofstetter, Wayne L. [Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ajani, Jaffer A. [Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Cox, James D. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2012-07-01

    Purpose: Proton beam therapy (PBT) is a promising modality for the management of thoracic malignancies. We report our preliminary experience of treating esophageal cancer patients with concurrent chemotherapy (CChT) and PBT (CChT/PBT) at MD Anderson Cancer Center. Methods and Materials: This is an analysis of 62 esophageal cancer patients enrolled on a prospective study evaluating normal tissue toxicity from CChT/PBT from 2006 to 2010. Patients were treated with passive scattering PBT with two- or three-field beam arrangement using 180 to 250 MV protons. We used the Kaplan-Meier method to assess time-to-event outcomes and compared the distributions between groups using the log-rank test. Results: The median follow-up time was 20.1 months for survivors. The median age was 68 years (range, 38-86). Most patients were males (82%) who had adenocarcinomas (76%) and Stage II-III disease (84%). The median radiation dose was 50.4 Gy (RBE [relative biologic equivalence]) (range, 36-57.6). The most common grade 2 to 3 acute toxicities from CChT/PBT were esophagitis (46.8%), fatigue (43.6%), nausea (33.9%), anorexia (30.1%), and radiation dermatitis (16.1%). There were two cases of grade 2 and 3 radiation pneumonitis and two cases of grade 5 toxicities. A total of 29 patients (46.8%) received preoperative CChT/PBT, with one postoperative death. The pathologic complete response (pCR) rate for the surgical cohort was 28%, and the pCR and near CR rates (0%-1% residual cells) were 50%. While there were significantly fewer local-regional recurrences in the preoperative group (3/29) than in the definitive CChT/PBT group (16/33) (log-rank test, p = 0.005), there were no differences in distant metastatic (DM)-free interval or overall survival (OS) between the two groups. Conclusions: This is the first report of patients treated with PBT/CChT for esophageal cancer. Our data suggest that this modality is associated with a few severe toxicities, but the pathologic response and clinical

  7. Proton Beam Therapy and Concurrent Chemotherapy for Esophageal Cancer

    International Nuclear Information System (INIS)

    Lin, Steven H.; Komaki, Ritsuko; Liao Zhongxing; Wei, Caimiao; Myles, Bevan; Guo Xiaomao; Palmer, Matthew; Mohan, Radhe; Swisher, Stephen G.; Hofstetter, Wayne L.; Ajani, Jaffer A.; Cox, James D.

    2012-01-01

    Purpose: Proton beam therapy (PBT) is a promising modality for the management of thoracic malignancies. We report our preliminary experience of treating esophageal cancer patients with concurrent chemotherapy (CChT) and PBT (CChT/PBT) at MD Anderson Cancer Center. Methods and Materials: This is an analysis of 62 esophageal cancer patients enrolled on a prospective study evaluating normal tissue toxicity from CChT/PBT from 2006 to 2010. Patients were treated with passive scattering PBT with two- or three-field beam arrangement using 180 to 250 MV protons. We used the Kaplan-Meier method to assess time-to-event outcomes and compared the distributions between groups using the log–rank test. Results: The median follow-up time was 20.1 months for survivors. The median age was 68 years (range, 38–86). Most patients were males (82%) who had adenocarcinomas (76%) and Stage II-III disease (84%). The median radiation dose was 50.4 Gy (RBE [relative biologic equivalence]) (range, 36–57.6). The most common grade 2 to 3 acute toxicities from CChT/PBT were esophagitis (46.8%), fatigue (43.6%), nausea (33.9%), anorexia (30.1%), and radiation dermatitis (16.1%). There were two cases of grade 2 and 3 radiation pneumonitis and two cases of grade 5 toxicities. A total of 29 patients (46.8%) received preoperative CChT/PBT, with one postoperative death. The pathologic complete response (pCR) rate for the surgical cohort was 28%, and the pCR and near CR rates (0%–1% residual cells) were 50%. While there were significantly fewer local-regional recurrences in the preoperative group (3/29) than in the definitive CChT/PBT group (16/33) (log–rank test, p = 0.005), there were no differences in distant metastatic (DM)-free interval or overall survival (OS) between the two groups. Conclusions: This is the first report of patients treated with PBT/CChT for esophageal cancer. Our data suggest that this modality is associated with a few severe toxicities, but the pathologic response and

  8. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material.

    Science.gov (United States)

    Gürü, Metin; Çubuk, M Kürşat; Arslan, Deniz; Farzanian, S Ali; Bilici, İbrahim

    2014-08-30

    This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Stress-corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices

    International Nuclear Information System (INIS)

    Sierros, Konstantinos A.; Morris, Nicholas J.; Ramji, Karpagavalli; Cairns, Darran R.

    2009-01-01

    Stress corrosion cracking of transparent conductive layers of indium tin oxide (ITO), sputtered on polyethylene terephthalate (PET) substrates, is an issue of paramount importance in flexible optoelectronic devices. These components, when used in flexible device stacks, can be in contact with acid containing pressure-sensitive adhesives or with conductive polymers doped in acids. Acids can corrode the brittle ITO layer, stress can cause cracking and delamination, and stress-corrosion cracking can cause more rapid failure than corrosion alone. The combined effect of an externally-applied mechanical stress to bend the device and the corrosive environment provided by the acid is investigated in this work. We show that acrylic acid which is contained in many pressure-sensitive adhesives can cause corrosion of ITO coatings on PET. We also investigate and report on the combined effect of external mechanical stress and corrosion on ITO-coated PET composite films. Also, it is shown that the combination of stress and corrosion by acrylic acid can cause ITO cracking to occur at stresses less than a quarter of those needed for failure with no corrosion. In addition, the time to failure, under ∼ 1% tensile strain can reduce the total time to failure by as much as a third

  10. Molecular dynamics simulation of three plastic additives' diffusion in polyethylene terephthalate.

    Science.gov (United States)

    Li, Bo; Wang, Zhi-Wei; Lin, Qin-Bao; Hu, Chang-Ying

    2017-06-01

    Accurate diffusion coefficient data of additives in a polymer are of paramount importance for estimating the migration of the additives over time. This paper shows how this diffusion coefficient can be estimated for three plastic additives [2-(2'-hydroxy-5'-methylphenyl) (UV-P), 2,6-di-tert-butyl-4-methylphenol (BHT) and di-(2-ethylhexyl) phthalate (DEHP)] in polyethylene terephthalate (PET) using the molecular dynamics (MD) simulation method. MD simulations were performed at temperatures of 293-433 K. The diffusion coefficient was calculated through the Einstein relationship connecting the data of mean-square displacement at different times. Comparison of the diffusion coefficients simulated by the MD simulation technique, predicted by the Piringer model and experiments, showed that, except for a few samples, the MD-simulated values were in agreement with the experimental values within one order of magnitude. Furthermore, the diffusion process for additives is discussed in detail, and four factors - the interaction energy between additive molecules and PET, fractional free volume, molecular shape and size, and self-diffusion of the polymer - are proposed to illustrate the microscopic diffusion mechanism. The movement trajectories of additives in PET cell models suggested that the additive molecules oscillate slowly rather than hopping for a long time. Occasionally, when a sufficiently large hole was created adjacently, the molecule could undergo spatial motion by jumping into the free-volume hole and consequently start a continuous oscillation and hop. The results indicate that MD simulation is a useful approach for predicting the microstructure and diffusion coefficient of plastic additives, and help to estimate the migration level of additives from PET packaging.

  11. A Rapid Method for Deposition of Sn-Doped GaN Thin Films on Glass and Polyethylene Terephthalate Substrates

    Science.gov (United States)

    Pat, Suat; Özen, Soner; Korkmaz, Şadan

    2018-01-01

    We report the influence of Sn doping on microstructure, surface, and optical properties of GaN thin films deposited on glass and polyethylene terephthalate (PET) substrate. Sn-doped GaN thin films have been deposited by thermionic vacuum arc (TVA) at low temperature. TVA is a rapid deposition technology for thin film growth. Surface and optical properties of the thin films were presented. Grain size, height distribution, roughness values were determined. Grain sizes were calculated as 20 nm and 13 nm for glass and PET substrates, respectively. Nano crystalline forms were shown by field emission scanning electron microscopy. Optical band gap values were determined by optical methods and photoluminescence measurement. The optical band gap values of Sn doped GaN on glass and PET were determined to be approximately ˜3.40 eV and ˜3.47 eV, respectively. As a result, TVA is a rapid and low temperature deposition technology for the Sn doped GaN deposited on glass and PET substrate.

  12. Investigation on Polylactide (PLA)/Poly(butylene adipate-co-terephthalate) (PBAT)/Bark Flour of Plane Tree (PF) Eco-Composites

    Science.gov (United States)

    Dou, Qiang; Cai, Jun

    2016-01-01

    Polylactide (PLA)/poly(butylene adipate-co-terephthalate) (PBAT)/bark flour of plane tree (PF) eco-composites were prepared via melt blending. The morphologies, mechanical properties, crystal structures and melting and crystallization behaviors of the eco-composites were investigated by means of scanning electron microscopy (SEM), mechanical tests, polarized light microscopy (PLM), wide angle X-ray diffraction (WAXD) and differential scanning calorimetry (DSC), respectively. It is shown that the interfacial adhesion between PLA matrix and PF is weak and the mechanical properties of PLA/PF eco-composites are poor. The titanate treatment improves the adhesion between the matrix and the filler and enhances the stiffness of the eco-composites. The toughness is improved by PBAT and ductile fractured surfaces can be found. The spherulitic size of PLA is decreased by the addition of PF. The α crystalline form of PLA remains in the composites. Compared with PF, T-PF (PF treated by a titanate coupling agent) and PBAT have negative effects on the crystallization of PLA. PMID:28773515

  13. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    International Nuclear Information System (INIS)

    Elabid, Amel E.A.; Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke; Zhang, Jing

    2016-01-01

    Graphical abstract: - Highlights: • Atmospheric pressure glow-like plasma with fine and uniform filament discharge has been successfully applied to the low temperature dyeing (95 °C) of PET fabric. • Simultaneously the dye uptake was increased as twice as much and the color strength rate was increased by about 20% for less than 3 min plasma treated PET. • Dyeing mechanism research showed the significance of surface roughing and functional group introduction by this kind of discharge. • Results highlight a novel environmentally friendly dyeing process for one of the largest commodity in polymer fabric. - Abstract: Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as C=O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine

  14. Long-term Cosmetic Outcomes and Toxicities of Proton Beam Therapy Compared With Photon-Based 3-Dimensional Conformal Accelerated Partial-Breast Irradiation: A Phase 1 Trial

    International Nuclear Information System (INIS)

    Galland-Girodet, Sigolène; Pashtan, Itai; MacDonald, Shannon M.; Ancukiewicz, Marek; Hirsch, Ariel E.; Kachnic, Lisa A.; Specht, Michelle; Gadd, Michele; Smith, Barbara L.; Powell, Simon N.; Recht, Abram; Taghian, Alphonse G.

    2014-01-01

    Purpose: To present long-term outcomes of a prospective feasibility trial using either protons or 3-dimensional conformal photon-based (accelerated partial-breast irradiation [APBI]) techniques. Methods and Materials: From October 2003 to April 2006, 98 evaluable patients with stage I breast cancer were treated with APBI (32 Gy in 8 fractions given twice daily) on a prospective clinical trial: 19 with proton beam therapy (PBT) and 79 with photons or mixed photons/electrons. Median follow-up was 82.5 months (range, 2-104 months). Toxicity and patient satisfaction evaluations were performed at each visit. Results: At 7 years, the physician rating of overall cosmesis was good or excellent for 62% of PBT patients, compared with 94% for photon patients (P=.03). Skin toxicities were more common for the PBT group: telangiectasia, 69% and 16% (P=.0013); pigmentation changes, 54% and 22% (P=.02); and other late skin toxicities, 62% and 18% (P=.029) for PBT and photons, respectively. There were no significant differences between the groups in the incidences of breast pain, edema, fibrosis, fat necrosis, skin desquamation, and rib pain or fracture. Patient-reported cosmetic outcomes at 7 years were good or excellent for 92% and 96% of PBT and photon patients, respectively (P=.95). Overall patient satisfaction was 93% for the entire cohort. The 7-year local failure rate for all patients was 6%, with 3 local recurrences in the PBT group (7-year rate, 11%) and 2 in photon-treated patients (4%) (P=.22). Conclusions: Local failure rates of 3-dimensional APBI and PBT were similar in this study. However, PBT, as delivered in this study, led to higher rates of long-term telangiectasia, skin color changes, and skin toxicities. We recommend the use of multiple fields and treatment of all fields per treatment session or the use of scanning techniques to minimize skin toxicity

  15. Long-term Cosmetic Outcomes and Toxicities of Proton Beam Therapy Compared With Photon-Based 3-Dimensional Conformal Accelerated Partial-Breast Irradiation: A Phase 1 Trial

    Energy Technology Data Exchange (ETDEWEB)

    Galland-Girodet, Sigolène; Pashtan, Itai; MacDonald, Shannon M.; Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Hirsch, Ariel E.; Kachnic, Lisa A. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Department of Radiation Oncology, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts (United States); Specht, Michelle; Gadd, Michele; Smith, Barbara L. [Department of Surgical Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Powell, Simon N. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Recht, Abram [Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts (United States); Taghian, Alphonse G., E-mail: ataghian@partners.org [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States)

    2014-11-01

    Purpose: To present long-term outcomes of a prospective feasibility trial using either protons or 3-dimensional conformal photon-based (accelerated partial-breast irradiation [APBI]) techniques. Methods and Materials: From October 2003 to April 2006, 98 evaluable patients with stage I breast cancer were treated with APBI (32 Gy in 8 fractions given twice daily) on a prospective clinical trial: 19 with proton beam therapy (PBT) and 79 with photons or mixed photons/electrons. Median follow-up was 82.5 months (range, 2-104 months). Toxicity and patient satisfaction evaluations were performed at each visit. Results: At 7 years, the physician rating of overall cosmesis was good or excellent for 62% of PBT patients, compared with 94% for photon patients (P=.03). Skin toxicities were more common for the PBT group: telangiectasia, 69% and 16% (P=.0013); pigmentation changes, 54% and 22% (P=.02); and other late skin toxicities, 62% and 18% (P=.029) for PBT and photons, respectively. There were no significant differences between the groups in the incidences of breast pain, edema, fibrosis, fat necrosis, skin desquamation, and rib pain or fracture. Patient-reported cosmetic outcomes at 7 years were good or excellent for 92% and 96% of PBT and photon patients, respectively (P=.95). Overall patient satisfaction was 93% for the entire cohort. The 7-year local failure rate for all patients was 6%, with 3 local recurrences in the PBT group (7-year rate, 11%) and 2 in photon-treated patients (4%) (P=.22). Conclusions: Local failure rates of 3-dimensional APBI and PBT were similar in this study. However, PBT, as delivered in this study, led to higher rates of long-term telangiectasia, skin color changes, and skin toxicities. We recommend the use of multiple fields and treatment of all fields per treatment session or the use of scanning techniques to minimize skin toxicity.

  16. Chemical recycling of post-consumer PET: structural characterization of terephthalic acid and the effect of Alkaline Hydrolysis at low temperature

    International Nuclear Information System (INIS)

    Fonseca, Talitha Granja; Almeida, Yeda Medeiros Bastos de; Vinhas, Gloria Maria

    2014-01-01

    Due to the environmental impact caused by PET packaging disposal, this material recycling has been thoroughly discussed and evaluated. In particular, chemical recycling enables achievement of the monomers that are used in PET resin manufacture: ethylene glycol (EG) and terephthalic acid (PTA). Therefore, studies for this process optimization are important from environmental and economic points of view. The present study investigated certain parameters that influence the depolymerization reaction of PET post-consumer via alkaline hydrolysis in order to obtain PTA. Assays were performed at 70 °C by varying the concentration of sodium hydroxide and the reaction time. The best results were obtained at 10.82 mol L -1 NaOH and 9 h reaction time. Consequently, it was possible to prove this process viability, once analyses by infrared and nuclear magnetic resonance confirmed that PTA was obtained in all reactions performed. (author)

  17. Scanning-probe-microscopy of polyethylene terephthalate surface treatment by argon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Beltran, Francisco [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Sanchez, Isaac C. [Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); España-Sánchez, Beatriz L.; Mota-Morales, Josué D.; Carrillo, Salvador; Enríquez-Flores, C.I. [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico); Poncin-Epaillard, Fabienne, E-mail: epaill@univ-lemans.fr [Institute for Molecules and Materials, UMR CNRS 6283, Av. O. Messiaen, Universitè du Maine, Le Mans 72085 (France); Luna-Barcenas, Gabriel, E-mail: gluna@qro.cinvestav.mx [Polymer & Biopolymer Group, Libramiento Norponiente no. 2000, Cinvestav Queretaro, Queretaro 76230 (Mexico)

    2015-11-01

    Highlights: • Kelvin-probe-force microscopy helps study of PET surface treated by Ar ion beam. • Ar ion beam surface treatment promotes chain scission and N insertion. • Surface roughness and work function increases as intensity of ion energy increases. • Adhesive force of PET decrease due to the surface changes by ion bombardment. - Abstract: The effect of argon (Ar{sup +}) ion beam treatment on the surface of polyethylene terephthalate (PET) samples was studied by scanning probe microscopy (SPM) and the changes in surface topography were assessed by atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) sheds light of adhesion force between treated polymer films and a Pt/Cr probe under dry conditions, obtaining the contact potential difference of material. As a result of Ar{sup +} ion bombardment, important surface chemical changes were detected by X-ray photoelectron spectroscopy (XPS) measurements such as chains scission and incorporation of nitrogen species. Ion beam treatment increases the surface roughness from 0.49 ± 0.1 nm to 7.2 ± 0.1 nm and modify the surface potential of PET samples, decreasing the adhesive forces from 12.041 ± 2.1 nN to 5.782 ± 0.06 nN, and producing a slight increase in the electronic work function (Φ{sub e}) from 5.1 V (untreated) to 5.2 V (treated). Ar{sup +} ion beam treatment allows to potentially changing the surface properties of PET, modifying surface adhesion, improving surface chemical changes, wetting properties and surface potential of polymers.

  18. Effects of UV Aging on the Cracking of Titanium Oxide Layer on Poly(ethylene terephthalate) Substrate: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chao; Gray, Matthew H.; Tirawat, Robert; Larsen, Ross E.; Chen, Fangliang

    2016-04-18

    Thin oxide and metal films deposited on polymer substrates is an emerging technology for advanced reflectors for concentrated solar power applications, due to their unique combination of light weight, flexibility and inexpensive manufacture. Thus far, there is little knowledge on the mechanical integrity or structural persistence of such multi-layer thin film systems under long-term environmental aging. In this paper, the cracking of a brittle titanium dioxide layer deposited onto elasto-plastic poly(ethylene terephthalate) (PET) substrate is studied through a combination of experiment and modeling. In-situ fragmentation tests have been conducted to monitor the onset and evolution of cracks both on pristine and on samples aged with ultraviolet (UV) light. An analytical model is presented to simulate the cracking behavior and to predict the effects of UV aging. Based on preliminary experimental observation, the effect of aging is divided into three aspects and analyzed independently: mechanical property degradation of the polymer substrate; degradation of the interlayer between substrate and oxide coating; and internal stress-induced cracks on the oxide coating.

  19. Design of the FRESH study: A randomized controlled trial of a parent-only and parent-child family-based treatment for childhood obesity.

    Science.gov (United States)

    Boutelle, Kerri N; Braden, Abby; Douglas, Jennifer M; Rhee, Kyung E; Strong, David; Rock, Cheryl L; Wilfley, Denise E; Epstein, Leonard; Crow, Scott

    2015-11-01

    Approximately 1 out of 3 children in the United States is overweight or obese. Family-based treatment (FBT) is considered the gold-standard treatment for childhood obesity, but FBT is both staff and cost intensive. Therefore, we developed the FRESH (Family, Responsibility, Education, Support, & Health) study to evaluate the effectiveness of intervening with parents, without child involvement, to facilitate and improve the child's weight status. Targeting parents directly in the treatment of childhood obesity could be a promising approach that is developmentally appropriate for grade-school age children, highly scalable, and may be more cost effective to administer. The current paper describes the FRESH study which was designed to compare the effectiveness of parent-based therapy for pediatric obesity (PBT) to a parent and child (FBT) program for childhood obesity. We assessed weight, diet, physical activity, and parenting, as well as cost-effectiveness, at baseline, post-treatment, and at 6- and 18-month follow-ups. Currently, all participants have been recruited and completed assessment visits, and the initial stages of data analysis are underway. Ultimately, by evaluating a PBT model, we hope to optimize available child obesity treatments and improve their translation into clinical settings. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Three-dimensional culture of human mesenchymal stem cells in a polyethylene terephthalate matrix

    International Nuclear Information System (INIS)

    Cao Yanfen; Li Ding; Shang Chunhua; Wang Jufang; Wang Xiaoning; Yang Shangtian

    2010-01-01

    Polyethylene terephthalate (PET) was used as the scaffold material to support the proliferation of human mesenchymal stem cells (hMSCs). The cells were cultured either statically in multi-wells or in a spinner flask agitated at 80 rpm for up to 20 days. To optimize the cell expansion condition, effects of the initial cell density and basic fibroblast growth factor (bFGF) were examined. During culture, cell growth and metabolism were tested. After 20 days, cells were harvested and surface markers were identified and quantified with flow cytometry. The results showed that hMSCs seeded at the lowest density gave the highest expansion fold. hMSCs grown in porous three-dimensional (3D) matrices displayed significantly different characteristics in terms of their proliferation and metabolism. PET matrices with 3D space could sustain cell proliferation for a long time. In addition, a low concentration (5 ng mL -1 ) of bFGF significantly enhanced the expansion of hMSCs in PET. Cell attachment and distribution in PET matrices were studied with confocal laser microscopy and scanning electron microscopy, which also confirmed cell proliferation. Furthermore, most of the cells in PET matrices were CD29, CD44 and CD105 positive, and CD34, CD45 and CD14 negative, confirming that hMSCs cultured in 3D PET matrices can be expanded and maintained in their undifferentiated state for at least 20 days without subculturing.

  1. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature

    Directory of Open Access Journals (Sweden)

    István Zoltán Halász

    2016-08-01

    Full Text Available In this work, the effect of mixing temperature (Tmix on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR and polar (acrylonitrile butadiene rubber, NBR rubbers were modified by CBT (20 phr for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM. CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state, which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5–10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.

  2. Electron beam induced modifications in flexible biaxially oriented polyethylene terephthalate sheets: Improved mechanical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, N. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Koiry, S.P. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Singh, A., E-mail: asb_barc@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Tillu, A.R. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Jha, P.; Samanta, S.; Debnath, A.K. [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Aswal, D.K., E-mail: dkaswal@yahoo.com [Technical Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Mondal, R.K. [Radiation Technology Development Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Acharya, S.; Mittal, K.C. [Accelerator & Pulse Power Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India)

    2017-03-01

    In the present work, we have studied the effects of electron beam irradiation (with dose ranging from 2 to 32 kGy) on mechanical and electrical properties of biaxially oriented polyethylene terephthalate (BOPET) sheets. The sol-gel analysis, Fourier transformation infra-red (FTIR), X-ray photoelectron spectroscopy (XPS) characterizations of the irradiated BOPET sheets suggest partial cross-linking of PET chains through the diethylene glycol (DEG). The mechanical properties of BOPET, such as, tensile strength, Young's modulus and electrical resistivity shows improvement with increasing dose and saturate for doses >10 kGy. The improved mechanical properties and high electrical resistivity of electron beam modified BOPET sheets may have additional advantages in applications, such as, packaging materials for food irradiation, medical product sterilization and electronic industries. - Graphical abstract: Irradiation of BOPET by electron beam leads to the formation of diethylene glycol that crosslink's the PET chains, resulting in improved mechanical properties and enhanced electrical resistivity. - Highlights: • BOPET exhibit improved tensile strength/Young's modulus after e-beam exposure. • Electrical resistivity of BOPET increases after e-beam exposure. • Cross-linking of PET chains through diethylene glycol was observed after e-beam exposure.

  3. Stiffness modulus of Polyethylene Terephthalate modified asphalt mixture: A statistical analysis of the laboratory testing results

    International Nuclear Information System (INIS)

    Baghaee Moghaddam, Taher; Soltani, Mehrtash; Karim, Mohamed Rehan

    2015-01-01

    Highlights: • Effect of PET modification on stiffness property of asphalt mixture was examined. • Different temperatures and loading amounts were designated. • Statistical analysis was used to find interactions between selected variables. • A good agreement between experimental results and predicted values was obtained. • Optimal amount of PET was calculated to achieve the highest mixture performance. - Abstract: Stiffness of asphalt mixture is a fundamental design parameter of flexible pavement. According to literature, stiffness value is very susceptible to environmental and loading conditions. In this paper, effects of applied stress and temperature on the stiffness modulus of unmodified and Polyethylene Terephthalate (PET) modified asphalt mixtures were evaluated using Response Surface Methodology (RSM). A quadratic model was successfully fitted to the experimental data. Based on the results achieved in this study, the temperature variation had the highest impact on the mixture’s stiffness. Besides, PET content and amount of stress showed to have almost the same effect on the stiffness of mixtures. The optimal amount of PET was found to be 0.41% by weight of aggregate particles to reach the highest stiffness value

  4. Proton Beam Therapy and Accountable Care: The Challenges Ahead

    Energy Technology Data Exchange (ETDEWEB)

    Elnahal, Shereef M., E-mail: selnahal@partners.org [Department of Medicine, Brigham and Women' s Hospital, Boston, MA (United States); Kerstiens, John [Proton Therapy Center, Indiana University, Bloomington, IN (United States); Helsper, Richard S. [Genesis HealthCare System, Zanesville, OH (United States); Zietman, Anthony L. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA (United States); Johnstone, Peter A.S. [Proton Therapy Center, Indiana University, Bloomington, IN (United States); Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, IN (United States)

    2013-03-15

    Purpose: Proton beam therapy (PBT) centers have drawn increasing public scrutiny for their high cost. The behavior of such facilities is likely to change under the Affordable Care Act. We modeled how accountable care reform may affect the financial standing of PBT centers and their incentives to treat complex patient cases. Methods and Materials: We used operational data and publicly listed Medicare rates to model the relationship between financial metrics for PBT center performance and case mix (defined as the percentage of complex cases, such as pediatric central nervous system tumors). Financial metrics included total daily revenues and debt coverage (daily revenues − daily debt payments). Fee-for-service (FFS) and accountable care (ACO) reimbursement scenarios were modeled. Sensitivity analyses were performed around the room time required to treat noncomplex cases: simple (30 minutes), prostate (24 minutes), and short prostate (15 minutes). Sensitivity analyses were also performed for total machine operating time (14, 16, and 18 h/d). Results: Reimbursement under ACOs could reduce daily revenues in PBT centers by up to 32%. The incremental revenue gained by replacing 1 complex case with noncomplex cases was lowest for simple cases and highest for short prostate cases. ACO rates reduced this incremental incentive by 53.2% for simple cases and 41.7% for short prostate cases. To cover daily debt payments after ACO rates were imposed, 26% fewer complex patients were allowable at varying capital costs and interest rates. Only facilities with total machine operating times of 18 hours per day would cover debt payments in all scenarios. Conclusions: Debt-financed PBT centers will face steep challenges to remain financially viable after ACO implementation. Paradoxically, reduced reimbursement for noncomplex cases will require PBT centers to treat more such cases over cases for which PBT has demonstrated superior outcomes. Relative losses will be highest for those

  5. [Common benign breast tumors including fibroadenoma, phyllodes tumors, and papillary lesions: Guidelines].

    Science.gov (United States)

    Bendifallah, S; Canlorbe, G

    2015-12-01

    To provide guidelines for clinical practice from the French College of Obstetrics and Gynecology (CNGOF), based on the best evidence available, concerning common benign breast tumors: fibroadenoma (FA), phyllodes breast tumors (PBT), and papillary lesions (BPL). Bibliographical search in French and English languages by consultation of PubMed, Cochrane and international databases. In case of percutaneous biopsy diagnosis of FA, clinico-radiologic and pathologic discordance or complex FA or proliferative lesions or atypia with FA, a family history of cancer, it seems legitimate to discuss management in a multidisciplinary meeting. When surgery is proposed for FA, periareolar compared to direct incision is associated with more insensitive nipple but better aesthetic results (LE4). When surgery is proposed for FA, indirect incision is preferable for better cosmetic results (Grade C). Techniques of percutaneous destruction or resection can be used (Grade C). The WHO classification distinguishes three categories of phyllodes tumors (PBT): benign (grade 1), borderline (grade 2) and malignant (grade 3). For grade 1 PBT, the risk of local recurrence after surgical excision increases when PBT lesion is in contact with surgical limits (not in sano). After in sano resection, there is no correlation between margin size and the risk of recurrence (LE4). For grade 2 PBT, local recurrence after surgical excision increases for margins under 10mm margins (LE4). For grade 1-2 PBT, in sano excision is recommended. For grade 2 PBT, 10-mm margins are recommended (Grade C). No lymph node evaluation or neither systematic mastectomy is recommended (Grade C). Breast papillary lesion (BPL) without atypia, complete resection of radiologic signal is recommended (Grade C). For BPL with atypia, complete excisional surgery is recommended (Grade C). Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Dosimetric comparison of intensity modulated radiation, Proton beam therapy and proton arc therapy for para-aortic lymph node tumor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Hoon [Dept. of Radiation Oncology, Konyang University Hospital. Daejeon (Korea, Republic of)

    2014-12-15

    To test feasibility of proton arc therapy (PAT) in the treatment of para-aortic lymph node tumor and compare its dosimetric properties with advanced radiotherapy techniques such as intensity modulated radiation therapy (IMRT) and conventional 3D conformal proton beam therapy (PBT). The treatment plans for para-aortic lymph node tumor were planned for 9 patients treated at our institution using IMRT, PBT, and PAT. Feasibility test and dosimetric evaluation were based on comparisons of dose volume histograms (DVHs) which reveal mean dose, D{sub 30%}, D{sub 60%}, D{sub 90%}, V{sub 30%}, V{sub 60%}, V{sub 90}%, organ equivalent doses (OEDs), normal tissue complication probability (NTCP), homogeneity index (HI) and conformity index (CI). The average doses delivered by PAT to the liver, kidney, small bowel, duodenum, stomach were 7.6%, 3%, 17.3%, 26.7%, and 14.4%, of the prescription dose (PD), respectively, which is higher than the doses delivered by IMRT (0.4%, 7.2%, 14.2%, 15.9%, and 12.8%, respectively) and PBT (4.9%, 0.5%, 14.12%, 16.1% 9.9%, respectively). The average homogeneity index and conformity index of tumor using PAT were 12.1 and 1.21, respectively which were much better than IMRT (21.5 and 1.47, respectively) and comparable to PBT (13.1 and 1.23, respectively). The result shows that both NTCP and OED of PAT are generally lower than IMRT and PBT. This study demonstrates that PAT is better in target conformity and homogeneity than IMRT and PBT but worse than IMRT and PBT for most of dosimetric factor which indicate that PAT is not recommended for the treatment of para-aortic lymph node tumor.

  7. Proton Beam Therapy and Accountable Care: The Challenges Ahead

    International Nuclear Information System (INIS)

    Elnahal, Shereef M.; Kerstiens, John; Helsper, Richard S.; Zietman, Anthony L.; Johnstone, Peter A.S.

    2013-01-01

    Purpose: Proton beam therapy (PBT) centers have drawn increasing public scrutiny for their high cost. The behavior of such facilities is likely to change under the Affordable Care Act. We modeled how accountable care reform may affect the financial standing of PBT centers and their incentives to treat complex patient cases. Methods and Materials: We used operational data and publicly listed Medicare rates to model the relationship between financial metrics for PBT center performance and case mix (defined as the percentage of complex cases, such as pediatric central nervous system tumors). Financial metrics included total daily revenues and debt coverage (daily revenues − daily debt payments). Fee-for-service (FFS) and accountable care (ACO) reimbursement scenarios were modeled. Sensitivity analyses were performed around the room time required to treat noncomplex cases: simple (30 minutes), prostate (24 minutes), and short prostate (15 minutes). Sensitivity analyses were also performed for total machine operating time (14, 16, and 18 h/d). Results: Reimbursement under ACOs could reduce daily revenues in PBT centers by up to 32%. The incremental revenue gained by replacing 1 complex case with noncomplex cases was lowest for simple cases and highest for short prostate cases. ACO rates reduced this incremental incentive by 53.2% for simple cases and 41.7% for short prostate cases. To cover daily debt payments after ACO rates were imposed, 26% fewer complex patients were allowable at varying capital costs and interest rates. Only facilities with total machine operating times of 18 hours per day would cover debt payments in all scenarios. Conclusions: Debt-financed PBT centers will face steep challenges to remain financially viable after ACO implementation. Paradoxically, reduced reimbursement for noncomplex cases will require PBT centers to treat more such cases over cases for which PBT has demonstrated superior outcomes. Relative losses will be highest for those

  8. In-situ Polymerization-modification Process and Foaming of Poly(ethylene terephthalate)

    Institute of Scientific and Technical Information of China (English)

    仲华; 奚桢浩; 刘涛; 赵玲

    2013-01-01

    Most of traditional linear poly(ethylene terephthalate) (PET) resins of relatively low molecular mass and narrow molecular mass distribution have low melt strength at foaming temperatures, which are not enough to support and keep cells. An in-situ polymerization-modification process with esterification and polycondensation stages was performed in a 2 L batch stirred reactor using pyromellitic dianhydride (PMDA) or pentaerythritol (PENTA) as modifying monomers to obtain PETs with high melt strength. The influence of amounts of modifying monomers on the properties of modified PET was investigated. It was found that the selected modifying monomers could effectively introduce branched structures into the modified PETs and improve their melt strength. With in-creasing the amount of the modifying monomer, the melt strength of the modified PET increased. But when the amount of PENTA reached 0.35%or PMDA reached 0.9%, crosslinking phenomenon was observed in the modified PET. Supercritical carbon dioxide (ScCO2) was employed as physical foaming agent to evaluate the foaming ability of modified PETs. The modified PETs had good foaming properties at 14 MPa of CO2 pressure with foaming tem-perature ranging from 265 °C to 280 °C. SEM micrographs demonstrated that both modified PET foams had ho-mogeneous cellular structures, with cell diameter ranging from 35 μm to 49 μm for PENTA modified PETs and 38μm to 57μm for PMDA modified ones. Correspondingly, the cell density had a range of 3.5×107 cells·cm-3 to 7×106 cells·cm-3 for the former and 2.8×107 cells·cm-3 to 5.8×106 cells·cm-3 for the latter.

  9. Exposure to antimony from polyethylene terephthalate (PET) trays used in ready-to-eat meals.

    Science.gov (United States)

    Haldimann, M; Blanc, A; Dudler, V

    2007-08-01

    Antimony residues, a result of the use of a polycondensation catalyst in the production of polyethylene terephthalate (PET) oven-proof trays, were analysed in ready-to-eat meals. The toxicity of antimony has raised concerns about consumer safety; therefore, the migration of small fractions of these residues into ready meals and foods as a result of cooking directly in the PET trays was studied. A straightforward approach of measuring real samples was selected to obtain accurate exposure data. Background antimony concentration was determined separately from a series of lunch meals, which ranged from not detectable to 3.4 microg kg(-1). Microwave and conventional oven-cooking caused a distinct increase in the concentration of antimony in food and ready meals of 0-17 and 8-38 microg kg(-1), respectively, depending, to a certain extent, on the industrial preparations. The migrated quantities of antimony corresponded to 3-13 microg. For comparison, PET roasting bags and ready-made dough products in PET baking dishes were also evaluated. About half of the products prepared at a temperature of 180 degrees C exceeded the specific migration limit set for food contact material by the European Commission. However, the migrated amounts of antimony relative to the accepted tolerable daily intake (TDI) show that exposure from this type of food is currently not of toxicological concern.

  10. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry

    International Nuclear Information System (INIS)

    Wang, Chong-Qing; Wang, Hui; Liu, You-Nian

    2015-01-01

    Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L 9 (3 4 ) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics

  11. Separation of polyethylene terephthalate from municipal waste plastics by froth flotation for recycling industry

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chong-Qing; Wang, Hui, E-mail: huiwang1968@163.com; Liu, You-Nian

    2015-01-15

    Highlights: • Factors of NaOH treatment were studied by orthogonal and single factor experiments. • Mechanism of alkaline treatment for facilitating flotation was manifested. • Flotation separation of PET was achieved with high purity and efficiency. • A flow sheet of purification PET from MWP was designed. - Abstract: Recycling is an effective way to manage plastic wastes and receives considerable attention. Since plastic mixtures are difficult to recycle because of their intrinsic characteristics, separation of mixed plastics is the key problem for recycling. Separation of polyethylene terephthalate (PET) from municipal waste plastics (MWP) by froth flotation combined with alkaline pretreatment was investigated for recycling industry. The effect of process variables was estimated by L{sub 9} (3{sup 4}) orthogonal array of experiments and single factor experiments. The optimum conditions of alkaline pretreatment are 10 wt% sodium hydroxide, 20 min and 70 °C. After alkaline pretreatment under optimum conditions, flotation separation PET from acrylonitrile–butadiene–styrene, polystyrene, polycarbonate or polyvinyl chloride was achieved with high purity and efficiency. The purity of PET is up to 98.46% and the recovery is above 92.47%. A flow sheet of separation PET from MWP by a combination of froth flotation and sink float separation was designed. This study facilitates industrial application of plastics flotation and provides technical insights into recycling of waste plastics.

  12. Comparison of Self-Expanding Polyethylene Terephthalate and Metallic Stents Implanted in Porcine Iliac Arteries

    International Nuclear Information System (INIS)

    Wilczek, Krzysztof; Scheerder, Ivan de; Wang Kai; Verbeken, Eric; Piessens, Jan

    1996-01-01

    Purpose: Comparison of the biocompatibility of self-expanding polyethylene terephthalate (PET) stents with self-expanding metallic stents (Wallstents). Methods: Diameter- and length-matched PET stents and Wallstents were symmetrically implanted in the paired iliac arteries of 13 crossbred domestic swine. Stent deployment was studied angiographically and with intravascular ultrasound immediately after stent implantation. The angiographic stented lumen diameter was measured using quantitative vessel analysis before, immediately after stenting, and at 6-week follow-up. Cross-section histopathology and area morphometry were performed. Results: Immediately poststenting, intravascular ultrasound revealed proximal dislocation of 5 of the 13 PET stents, whereas all metal stents were firmly embedded at the implantation site. At 6-week follow-up, three of the remaining PET stents were totally or subtotally occluded by organized thrombus, whereas all metal stents were patent. Compared with immediately poststenting, the angiographic lumen diameter within the five remaining PET stents was reduced by 30%, and that of the metallic stents was virtually unaltered (p < 0.02). This observation was confirmed by postmortem morphometry, wherein the PET-stented vessel segments a diameter stenosis of 40% was measured vs only 9% in the metallic stents (p < 0.0001). Conclusion: PET-stent deployment is difficult to control due to the lack of radiopacity of this stent. PET stents seem to be more thrombogenic and lead to significantly more neointimal proliferation than metallic stents

  13. Transient behaviors of ZnO thin films on a transparent, flexible polyethylene terephthalate substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong Jun [Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of); Lee, Ho Seok [Department of Materials Science and Engineering, Korea University, 5-1 Anam-dong, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Noh, Jin-Seo, E-mail: jinseonoh@gachon.ac.kr [Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 461-701 (Korea, Republic of)

    2016-03-31

    Thickness-dependent electrical, structural, and optical properties of zinc oxide (ZnO) thin films on polyethylene terephthalate (PET) substrates have been investigated in the very thin thickness range of 20 to 120 nm. In this thickness range, the electrical resistance of ZnO film increased with an increase in film thickness. This unusual transition behavior was explained in terms of structural evolution from Zn-phase-incorporating non-crystalline ZnO to hexagonal-structured ZnO. A critical thickness for the full development of hexagonal ZnO crystal was estimated at approximately 80 nm in this study. ZnO thin films on PET substrates exhibit a high optical transmittance of > 70% and good endurance to bending cycles over the measured thickness range. The results of this study indicate that a trade-off should be sought between structural, electrical, optical, and mechanical properties for practical applications of very thin ZnO films on organic substrates. - Highlights: • Very thin ZnO films were sputter-deposited on the PET substrate. • The ZnO film resistance increases with an increase in film thickness until saturation. • Hexagonal crystal structures gradually develop with increasing film thickness. • A Zn phase appears in a 20-nm-thick ZnO film. • ZnO films show high optical transmittance of > 80% and good endurance to bending.

  14. Transient behaviors of ZnO thin films on a transparent, flexible polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Kim, Yong Jun; Lee, Ho Seok; Noh, Jin-Seo

    2016-01-01

    Thickness-dependent electrical, structural, and optical properties of zinc oxide (ZnO) thin films on polyethylene terephthalate (PET) substrates have been investigated in the very thin thickness range of 20 to 120 nm. In this thickness range, the electrical resistance of ZnO film increased with an increase in film thickness. This unusual transition behavior was explained in terms of structural evolution from Zn-phase-incorporating non-crystalline ZnO to hexagonal-structured ZnO. A critical thickness for the full development of hexagonal ZnO crystal was estimated at approximately 80 nm in this study. ZnO thin films on PET substrates exhibit a high optical transmittance of > 70% and good endurance to bending cycles over the measured thickness range. The results of this study indicate that a trade-off should be sought between structural, electrical, optical, and mechanical properties for practical applications of very thin ZnO films on organic substrates. - Highlights: • Very thin ZnO films were sputter-deposited on the PET substrate. • The ZnO film resistance increases with an increase in film thickness until saturation. • Hexagonal crystal structures gradually develop with increasing film thickness. • A Zn phase appears in a 20-nm-thick ZnO film. • ZnO films show high optical transmittance of > 80% and good endurance to bending.

  15. Flotation separation of polyvinyl chloride and polyethylene terephthalate plastics combined with surface modification for recycling.

    Science.gov (United States)

    Wang, Chongqing; Wang, Hui; Fu, Jiangang; Zhang, Lingling; Luo, Chengcheng; Liu, Younian

    2015-11-01

    Surface modification with potassium permanganate (KMnO4) solution was developed for separation of polyvinyl chloride (PVC) and polyethylene terephthalate (PET) waste plastics. The floatability of PVC decreases with increasing of KMnO4 concentration, treatment time, temperature and stirring rate, while that of PET is unaffected. Fourier transform infrared (FT-IR) analysis confirms that mechanism of surface modification may be due to oxidization reactions occurred on PVC surface. The optimum conditions are KMnO4 concentration 1.25 mM/L, treatment time 50 min, temperature 60°C, stirring rate 300 r/min, frother concentration 17.5 g/L and flotation time 1 min. PVC and PET with different particle sizes were separated efficiently through two-stage flotation. Additionally, after ultrasonic assisted surface modification, separation of PVC and PET with different mass ratios was obtained efficiently through one-stage flotation. The purity and the recovery of the obtained products after flotation separation are up to 99.30% and 99.73%, respectively. A flotation process was designed for flotation separation of PVC and PET plastics combined with surface modification. This study provides technical insights into physical separation of plastic wastes for recycling industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Preparation of High Modulus Poly(Ethylene Terephthalate: Influence of Molecular Weight, Extrusion, and Drawing Parameters

    Directory of Open Access Journals (Sweden)

    Jian Min Zhang

    2017-01-01

    Full Text Available Poly(ethylene terephthalate (PET which is one of the most commercially important polymers, has for many years been an interesting candidate for the production of high performance fibres and tapes. In current study, we focus on investigating the effects of the various processing variables on the mechanical properties of PET produced by a distinctive process of melt spinning and uniaxial two-stage solid-state drawing (SSD. These processing variables include screw rotation speed during extrusion, fibre take-up speed, molecular weight, draw-ratio, and drawing temperature. As-spun PET production using a single-screw extrusion process was first optimized to induce an optimal polymer microstructure for subsequent drawing processes. It was found that less crystallization which occurred during this process would lead to better drawability, higher draw-ratio, and mechanical properties in the subsequent SSD process. Then the effect of drawing temperature (DT in uniaxial two-stage SSD process was studied to understand how DT (

  17. A study of commercially-available polyethylene terephthalate (PET) and polycarbonate as nuclear track detector materials

    Science.gov (United States)

    Espinosa, G.; Golzarri, J. I.; Vazquez-Lopez, C.; Trejo, R.; Lopez, K.; Rickards, J.

    2014-07-01

    In the study of the sensitivity of materials to be used as nuclear track detectors, it was found that commercial polyethylene terephthalate (PET) from Ciel® water bottles, commercial roof cover polycarbonate, and recycled packaging strips (recycled PET), can be used as nuclear track detectors. These three commercial materials present nuclear tracks when bombarded by 2.27 MeV nitrogen ions produced in a Pelletron particle accelerator, and by fission fragments from a 252Cf source (79.4 and 103.8 MeV), after a chemical etching with a 6.25M KOH solution, or with a 6.25M KOH solution with 20% methanol, both solutions at 60±1°C. As an example, the nitrogen ions deposit approximately 1 keV/nm in the form of ionization and excitation at the surface of PET, as calculated using the SRIM code. The fission fragments deposit up to 9 keV/nm at the surface, in both cases generating sufficient free radicals to initiate the track formation process. However, 5 MeV alpha particles, typical of radon (222Rn) emissions, deposit only 0.12 keV/nm, do not present tracks after the chemical etching process. This valuable information could be very useful for further studies of new materials in nuclear track methodology.

  18. Structure and gas-barrier properties of amorphous hydrogenated carbon films deposited on inner walls of cylindrical polyethylene terephthalate by plasma-enhanced chemical vapor deposition

    International Nuclear Information System (INIS)

    Li Jing; Gong Chunzhi; Tian Xiubo; Yang Shiqin; Fu, Ricky K.Y.; Chu, Paul K.

    2009-01-01

    The influence of radio-frequency (RF) power on the structure and gas permeation through amorphous hydrogenated carbon films deposited on cylindrical polyethylene terephthalate (PET) samples is investigated. The results show that a higher radio-frequency power leads to a smaller sp 3 /sp 2 value but produces fewer defects with smaller size. The permeability of PET samples decreases significantly after a-C:H deposition and the RF only exerts a small influence. However, the coating uniformity, color, and wettability of the surface are affected by the RF power. A higher RF power results in to better uniformity and it may be attributed to the combination of the high-density plasma and sample heating.

  19. Synthesis and characterization of chromium(III), manganese(II), iron(III), cobalt(II), nickel(II), copper(II), cadmium(II) and dioxouranium(VI) complexes of 4(2-pyridyl)-1-(2,4-dihydroxybenzaldehyde)-3-thiosemicarbazone

    International Nuclear Information System (INIS)

    Abu El-Reash, G.M.; Ibrahim, M.M.; Kenawy; El-Ayaan, Usama; Khattab, M.A.

    1994-01-01

    A few complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and dioxouranium(VI) with 4(2-pyridyl)-1-(2,4-dihydroxybenzaldehyde)-3-thiosemicarbazone have been synthesised and characterized on the basis of elemental analysis, IR, electronic NMR, and magnetic moment data. An octahedral structure is proposed for the Cr(III), Fe(III), Co(II) and Ni(H 3 PBT) 2 Cl 2 .2H 2 O complexes; a tetrahedral structure for the Mn(II) and Ni 2 (PBT)OAc.H 2 0 complexes and a square planar structure for the Cu(II) complexes. The antimicrobial and antifungal activities of H 3 PBT and of its metal(II) complexes are investigated. The results reveal that H 3 PBT exhibits greater antimicrobial activities than its complexes. (author). 34 refs., 4 figs., 2 tabs

  20. Electroless plating Cu-Co-P polyalloy on UV/ozonolysis irradiated polyethylene terephthalate film and its corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Lei; Bi, Siyi; Zhao, Hang; Xu, Yumeng; Mu, Yuhang; Lu, Yinxiang, E-mail: yxlu@fudan.edu.cn

    2017-05-01

    Highlights: • Electroless plating Cu-Co-P polyalloy was firstly fabricated onto polyethylene terephthalate (PET) substrate. • An etchant-free and amine-free UV/ozonolysis irradiation method UV/ozonolysis was effective for the transition from hydrophilic to hydrophobic of PET sheet. • A time-saving and cost-effective orthogonal experiment (L{sub 9}(3){sup 4}) was utilized to optimize the plating conditions. • The optimized copper polyalloy possessed high corrosion resistance in three aggressive mediums including NaCl, NaOH and HCl, respectively. • The Cu-Co-P coated PET composite showed excellent electromagnetic interference shielding effectiveness (EMI SE > 99.999% at frequency ranging from 30 MHz to 1000 MHz). - Abstract: High corrosion resistant Cu-Co-P coatings were firstly prepared on polyethylene terephthalate (PET) substrate by electroless plating in combination with UV/ozonolysis irradiation under optimized cobalt sulfate heptahydrate concentration, pH value, plating temperature and time. The copper polyalloy/PET composite can be obtained in three steps, namely: (i) the generation of oxygen-containing functionalities (carboxylic groups) onto PET surface through UV irradiation combined with ozone, (ii) Cu seeding catalysts were obtained after being immersed into cupric citrate and NaBH{sub 4} solutions subsequently, and (iii) Cu-Co-P polyalloy metallization using electroless plating bath. Attenuated total reflection fourier transformation infrared spectrometer (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), water contact angle measurement and energy dispersive X-ray analysis (EDAX) were utilized to track the surface changes during the whole process. The electroless plating conditions were optimized by an orthogonal experiment (L{sub 9}(3){sup 4}) for Cu-Co-P coating as follows: CoSO{sub 4}·7H{sub 2}O addition of 0.08 M, pH value, plating temperature and time were set on 10.0, 35 °C and 25 min, respectively. Under the optimal conditions, copper

  1. Alpha particle response for a prototype radiation survey meter based on poly(ethylene terephthalate) with un-doping fluorescent guest molecules

    International Nuclear Information System (INIS)

    Nguyen, Philip; Nakamura, Hidehito; Sato, Nobuhiro; Takahashi, Tomoyuki; Maki, Daisuke; Kanayama, Masaya; Takahashi, Sentaro; Kitamura, Hisashi; Shirakawa, Yoshiyuki

    2016-01-01

    There is no radiation survey meter that can discriminate among alpha particles, beta particles, and gamma-rays with one material. Previously, undoped poly(ethylene terephthalate) (PET) has been shown to be an effective material for beta particle and gamma-ray detection. Here, we demonstrate a prototype survey meter for alpha particles based on undoped PET. A 140 × 72 × 1-mm PET substrate was fabricated with mirrored surfaces. It was incorporated in a unique detection section of the survey meter that directly detects alpha particles. The prototype exhibited an unambiguous response to alpha particles from a 241 Am radioactive source. These results demonstrate that undoped PET can perform well in survey meters for alpha particle detection. Overall, the PET-based survey meter has the potential to detect multiple types of radiation, and will spawn an unprecedented type of radiation survey meter based on undoped aromatic ring polymers. (author)

  2. Physicochemical modifications accompanying UV laser induced surface structures on poly(ethylene terephthalate) and their effect on adhesion of mesenchymal cells.

    Science.gov (United States)

    Rebollar, Esther; Pérez, Susana; Hernández, Margarita; Domingo, Concepción; Martín, Margarita; Ezquerra, Tiberio A; García-Ruiz, Josefa P; Castillejo, Marta

    2014-09-07

    This work reports on the formation of different types of structures on the surface of polymer films upon UV laser irradiation. Poly(ethylene terephthalate) was irradiated with nanosecond UV pulses at 193 and 266 nm. The polarization of the laser beam and the irradiation angle of incidence were varied, giving rise to laser induced surface structures with different shapes and periodicities. The irradiated surfaces were topographically characterized by atomic force microscopy and the chemical modifications induced by laser irradiation were inspected via micro-Raman and fluorescence spectroscopies. Contact angle measurements were performed with different liquids, and the results evaluated in terms of surface free energy components. Finally, in order to test the influence of surface properties for a potential application, the modified surfaces were used for mesenchymal stem cell culture assays and the effect of nanostructure and surface chemistry on cell adhesion was evaluated.

  3. Research in Water Permeability of Poly(ethylene) Terephthalate Track Membranes Modified by Polymerization of Dimethylaniline under the Action of Direct Current Discharge

    CERN Document Server

    Kravets, L I; Drachev, A I

    2004-01-01

    The properties of poly(ethylene) terephthalate track membranes modified by polymerization of dimethylaniline in a discharge of direct current are investigated. The influence of conditions of plasma treatment on the basic characteristics of the membranes (pore size, wettability, surface charge, water permeability) is studied. It is shown that under the action of discharge, a polymeric layer is formed on the membrane surface that can swell in solutions with low pH values. It has been found that the degree of the swelling stipulated by the conformation transfer of macromolecules of the deposited polymeric layer depends upon the size of relative magnification of the mass of the membrane during its plasma treatment. It is also shown that the obtained membranes can reversibly react to changing the pH of solution and applied pressure.

  4. Gas barrier properties of hydrogenated amorphous carbon films coated on polyethylene terephthalate by plasma polymerization in argon/n-hexane gas mixture

    Energy Technology Data Exchange (ETDEWEB)

    Polonskyi, Oleksandr; Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com; Petr, Martin; Choukourov, Andrei; Hanuš, Jan; Biederman, Hynek

    2013-07-01

    Hydrogenated amorphous carbon thin films were deposited by RF plasma polymerization in argon/n-hexane gas mixture on polyethylene terephthalate (PET) foils. It was found that such deposited films may significantly improve the barrier properties of PET. It was demonstrated that the principal parameter that influences barrier properties of such deposited films towards oxygen and water vapor is the density of the coatings. Moreover, it was shown that for achieving good barrier properties it is advantageous to deposit coatings with very low thickness. According to the presented results, optimal thickness of the coating should not be higher than several tens of nm. - Highlights: • a-C:H films were prepared by plasma polymerization in Ar/n-hexane atmosphere. • Barrier properties of coatings are dependent on their density and thickness. • Highest barrier properties were observed for films with thickness 15 nm.

  5. Flexible IZO/Ag/IZO/Ag multilayer electrode grown on a polyethylene terephthalate substrate using roll-to-roll sputtering

    Science.gov (United States)

    2012-01-01

    We investigated the optical, electrical, structural, and surface properties of roll-to-roll [R2R] sputter-grown flexible IZO/Ag/IZO/Ag [IAIA] multilayer films on polyethylene terephthalate substrates as a function of the top indium zinc oxide [IZO] thickness. It was found that the optical transmittance of the IAIA multilayer was significantly influenced by the top IZO layer thickness, which was grown on identical AIA multilayers. However, the sheet resistance of the IAIA multilayer was maintained between the range 5.01 to 5.1 Ω/square regardless of the top IZO thickness because the sheet resistance of the IAIA multilayer was mainly dependent on the thickness of the Ag layers. Notably, the optimized IAIA multilayer had a constant resistance change (ΔR/R0) under repeated outer bending tests with a radius of 10 mm. The mechanical integrity of the R2R-sputtered IAIA multilayer indicated that hybridization of an IZO and Ag metal layer is a promising flexible electrode scheme for the next-generation flexible optoelectronics. PMID:22222144

  6. Synthesis of carbon nanostructures from high density polyethylene (HDPE) and polyethylene terephthalate (PET) waste by chemical vapour deposition

    Science.gov (United States)

    Hatta, M. N. M.; Hashim, M. S.; Hussin, R.; Aida, S.; Kamdi, Z.; Ainuddin, AR; Yunos, MZ

    2017-10-01

    In this study, carbon nanostructures were synthesized from High Density Polyethylene (HDPE) and Polyethylene terephthalate (PET) waste by single-stage chemical vapour deposition (CVD) method. In CVD, iron was used as catalyst and pyrolitic of carbon source was conducted at temperature 700, 800 and 900°C for 30 minutes. Argon gas was used as carrier gas with flow at 90 sccm. The synthesized carbon nanostructures were characterized by FESEM, EDS and calculation of carbon yield (%). FESEM micrograph shows that the carbon nanostructures were only grown as nanofilament when synthesized from PET waste. The synthesization of carbon nanostructure at 700°C was produced smooth and the smallest diameter nanofilament compared to others. The carbon yield of synthesized carbon nanostructures from PET was lower from HDPE. Furthermore, the carbon yield is recorded to increase with increasing of reaction temperature for all samples. Elemental study by EDS analysis were carried out and the formation of carbon nanostructures was confirmed after CVD process. Utilization of polymer waste to produce carbon nanostructures is beneficial to ensure that the carbon nanotechnology will be sustained in future.

  7. Improving Outcomes for Esophageal Cancer using Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Chuong, Michael D. [Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States); Hallemeier, Christopher L. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Jabbour, Salma K. [Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey (United States); Yu, Jen; Badiyan, Shahed [Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States); Merrell, Kenneth W. [Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (United States); Mishra, Mark V. [Department of Radiation Oncology, University of Maryland Medical Center, Baltimore, Maryland (United States); Li, Heng [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Verma, Vivek [Department of Radiation Oncology, University of Nebraska Medical Center, Omaha, Nebraska (United States); Lin, Steven H., E-mail: shlin@mdanderson.org [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States)

    2016-05-01

    Radiation therapy (RT) plays an essential role in the management of esophageal cancer. Because the esophagus is a centrally located thoracic structure there is a need to balance the delivery of appropriately high dose to the target while minimizing dose to nearby critical structures. Radiation dose received by these critical structures, especially the heart and lungs, may lead to clinically significant toxicities, including pneumonitis, pericarditis, and myocardial infarction. Although technological advancements in photon RT delivery like intensity modulated RT have decreased the risk of such toxicities, a growing body of evidence indicates that further risk reductions are achieved with proton beam therapy (PBT). Herein we review the published dosimetric and clinical PBT literature for esophageal cancer, including motion management considerations, the potential for reirradiation, radiation dose escalation, and ongoing esophageal PBT clinical trials. We also consider the potential cost-effectiveness of PBT relative to photon RT.

  8. Optimization of copper electroplating process applied for microfabrication on flexible polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Le, Nguyen Ngan; Hue Phan, Thi Cam; Le, Anh Duy; Dung Dang, Thi My; Dang, Mau Chien

    2015-01-01

    Electroplating is an important step in microfabrication in order to increase thickness of undersized parts up to a few micrometers with a low-cost, fast method that is easy to carry out, especially for metals such as copper, nickel, and silver. This important step promotes the development of the fabrication technology of electronic devices on a flexible substrate, also known as flexible electronic devices. Nevertheless, this technology has some disadvantages such as low surface uniformity and high resistivity. In this paper, parameters of copper electroplating were studied, such as the ratio of copper (II) sulfate (CuSO_4) concentration to sulfuric acid (H_2SO_4) concentration and electroplating current density, in order to obtain low resistivity and high surface uniformity of the copper layer. Samples were characterized by scanning electron microscopy (SEM), four-point probe, and surface profiler. The results showed that the sample resistivity could be controlled from about 2.0 to about 3.5 μΩ · cm, and the lowest obtained resistivity was 1.899 μΩ · cm. In addition, surface uniformity of the electroplated copper layer was also acceptable. The thickness of the copper layer was about 10 μm with an error of about 0.5 μm. The most suitable conditions for the electroplating process were CuSO_4 concentration of 0.4 mol l"−"1, H_2SO_4 concentration of 1.0 mol l"−"1, and low electroplating current density of 10–20 mA cm"−"2. All experiments were performed on a flexible polyethylene terephthalate (PET) substrate. (paper)

  9. METHOD EVALUATION TO MEASURE PERSISTENT BIOACCUMULATIVE TOXIC POLLUTANTS IN COW MILK

    Science.gov (United States)

    It is important to understand the persistent and bioaccumulative toxic (PBT) levels in milk, as milk fat may be one of the highest dietary sources of PBT exposure. Analysis of milk also allows the opportunity to investigate geographic variability, as milk is produced and distrib...

  10. EVALUATION OF DIOXIN IN U.S. COW'S MILK

    Science.gov (United States)

    Milk fat is likely to be among the highest dietary sources of exposure to persistent, bioaccumulative, and toxic (PBT) contaminants, thus it is important to understand PBT levels in milk. Schaum had previously reported on concentrations of 21 PBTs in the United States milk suppl...

  11. Utilization of waste polyethylene terephthalate as a reducing agent in the reduction of iron ore composite pellets

    Science.gov (United States)

    Polat, Gökhan; Birol, Burak; Sarıdede, Muhlis Nezihi

    2014-08-01

    The increasing consumption of plastics inevitably results in increasing amounts of waste plastics. Because of their long degradation periods, these wastes negatively affect the natural environment. Numerous studies have been conducted to recycle and eliminate waste plastics. The potential for recycling waste plastics in the iron and steel industry has been underestimated; the high C and H contents of plastics may make them suitable as alternative reductants in the reduction process of iron ore. This study aims to substitute plastic wastes for coal in reduction melting process and to investigate their performance during reduction at high temperature. We used a common type of waste plastic, polyethylene terephthalate (PET), because of its high carbon and hydrogen contents. Composite pellets containing PET wastes, coke, and magnetite iron ore were reduced at selected temperatures of 1400 and 1450°C for reduction time from 2 to 10 min to investigate the reduction melting behavior of these pellets. The results showed that an increased temperature and reduction time increased the reduction ratio of the pellets. The optimum experimental conditions for obtaining metallic iron (iron nuggets) were reduction at 1450°C for 10 min using composite pellets containing 60% PET and 40% coke.

  12. Rod like attapulgite/poly(ethylene terephthalate nanocomposites with chemical bonding between the polymer chain and the filler

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2012-08-01

    Full Text Available Poly(ethylene terephthalate (PET nanocomposites containing rod-like silicate attapulgite (AT were prepared via in situ polymerization. It is presented that PET chains identical to the matrix have been successfully grafted onto simple organically pre-modified AT nanorods (MAT surface during the in situ polymerization process. The covalent bonding at the interface was confirmed by Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (TGA. The content of grafted PET polymer on the surface of MAT was about 26 wt%. This high grafting density greatly improved the dispersion of fillers, interfacial adhesion as well as the significant confinement of the segmental motion of PET, as compared to the nanocomposites of PET/pristine AT (PET/AT. Owing to the unique interfacial structure in PET/MAT composites, their thermal and mechanical properties have been greatly improved. Compared with neat PET, the elastic modulus and the yield strength of PET/MAT were significantly improved by about 39.5 and 36.8%, respectively, by incorporating only 2 wt % MAT. Our work provides a novel route to fabricate advanced PET nanocomposites using rod-like attapulgite as fillers, which has great potential for industrial applications.

  13. Physician Evaluation of Internet Health Information on Proton Therapy for Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Anand, E-mail: as4351@columbia.edu [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Department of Radiation Oncology, Columbia University Medical Center, New York, New York (United States); Paly, Jonathan J.; Efstathiou, Jason A. [Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Bekelman, Justin E. [Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (United States); Leonard Davis Institute of Health Economics, University of Pennsylvania, Philadelphia, Pennsylvania (United States)

    2013-03-15

    Purpose: Many patients considering prostate cancer (PCa) treatment options report seeking proton beam therapy (PBT) based in part on information readily available on the Internet. There is, however, potential for considerable variation in Internet health information (IHI). We thus evaluated the characteristics, quality, and accuracy of IHI on PBT for PCa. Methods and Materials: We undertook a qualitative research study using snowball-purposive sampling in which we evaluated the top 50 Google search results for “proton prostate cancer.” Quality was evaluated on a 5-point scale using the validated 15-question DISCERN instrument. Accuracy was evaluated by comparing IHI with the best available evidence. Results: Thirty-seven IHI websites were included in the final sample. These websites most frequently were patient information/support resources (46%), were focused exclusively on PBT (51%), and had a commercial affiliation (38%). There was a significant difference in quality according to the type of IHI. Substantial inaccuracies were noted in the study sample compared with best available or contextual evidence. Conclusions: There are shortcomings in quality and accuracy in consumer-oriented IHI on PBT for PCa. Providers must be prepared to educate patients how to critically evaluate IHI related to PBT for PCa to best inform their treatment decisions.

  14. Physician Evaluation of Internet Health Information on Proton Therapy for Prostate Cancer

    International Nuclear Information System (INIS)

    Shah, Anand; Paly, Jonathan J.; Efstathiou, Jason A.; Bekelman, Justin E.

    2013-01-01

    Purpose: Many patients considering prostate cancer (PCa) treatment options report seeking proton beam therapy (PBT) based in part on information readily available on the Internet. There is, however, potential for considerable variation in Internet health information (IHI). We thus evaluated the characteristics, quality, and accuracy of IHI on PBT for PCa. Methods and Materials: We undertook a qualitative research study using snowball-purposive sampling in which we evaluated the top 50 Google search results for “proton prostate cancer.” Quality was evaluated on a 5-point scale using the validated 15-question DISCERN instrument. Accuracy was evaluated by comparing IHI with the best available evidence. Results: Thirty-seven IHI websites were included in the final sample. These websites most frequently were patient information/support resources (46%), were focused exclusively on PBT (51%), and had a commercial affiliation (38%). There was a significant difference in quality according to the type of IHI. Substantial inaccuracies were noted in the study sample compared with best available or contextual evidence. Conclusions: There are shortcomings in quality and accuracy in consumer-oriented IHI on PBT for PCa. Providers must be prepared to educate patients how to critically evaluate IHI related to PBT for PCa to best inform their treatment decisions

  15. Nonisothermal melt-crystallization kinetics for in situ prepared poly(ethylene terephthalate)/monmorilonite (PET/OMMT)

    International Nuclear Information System (INIS)

    Antoniadis, G.; Paraskevopoulos, K.M.; Vassiliou, A.A.; Papageorgiou, G.Z.; Bikiaris, D.; Chrissafis, K.

    2011-01-01

    Highlights: → The melting temperature of the nanocomposites was shifted slightly to higher temperatures. → OMMT can act as nucleating agent. → The samples present lower activation energy compared to that of neat PET. → They crystallized by mechanisms with different activation energies. - Abstract: Poly(ethylene terephthalate) (PET) montmorillonite nanocomposites were prepared by in situ polymerization containing 0.5, 1, 2 and 5 wt% of organically modified montmorillonite (OMMT). In order to prepare exfoliated nanocomposites a new thermally stable modifier for montmorillonite nanoparticles like chlorohexadecane triphenylphosphine (CHDTPP) was synthesized. The preparation of nanocomposites was carried out using the two-stage melt polycondensation method. As verified by TEM micrographs, the dispersion of OMMT nanoparticles into the PET matrix was homogeneous while these were dispersed in the exfoliated form, proving the effectiveness of the modifier. The influence of OMMT nanomaterials on the thermal behaviour of PET and its non-isothermal crystallization was studied. Furthermore, the crystallization kinetics of PET and its nanocomposites were investigated by DSC. The activation energy was calculated using the Friedman's method. The Avrami exponent was calculated and analyzed. The effect of OMMT nanoparticles on spherulite growth rate of PET in all nanocomposites was also evaluated using the modified Lauritzen-Hoffman equation. From all these results it was found that OMMT nanoparticles can act as nucleating agents enhancing the crystallization rate of PET. The dispersion of OMMT nanoparticles in exfoliate form plays also an important role.

  16. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material

    Energy Technology Data Exchange (ETDEWEB)

    Gürü, Metin, E-mail: mguru@gazi.edu.tr [Gazi University, Eng. Fac., Chem. Eng. Depart., 06570 Maltepe-Ankara (Turkey); Çubuk, M. Kürşat; Arslan, Deniz; Farzanian, S. Ali [Gazi University, Eng. Fac., Civil Eng. Depart., 06570 Maltepe-Ankara (Turkey); Bilici, İbrahim [Hitit University, Eng. Fac., Chem. Eng. Depart., 19100 Çorum (Turkey)

    2014-08-30

    Graphical abstract: - Highlights: • We derived two novel additive materials from PET bottle waste: TLPP and VPP. • We used them to modify the base asphalt separately. • The additives improved both the asphalt and the asphalt mixture performance. • TLPP, VPP offer a beneficial way about disposal of ecologically hazardous PET waste. - Abstract: This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material.

  17. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material

    International Nuclear Information System (INIS)

    Gürü, Metin; Çubuk, M. Kürşat; Arslan, Deniz; Farzanian, S. Ali; Bilici, İbrahim

    2014-01-01

    Graphical abstract: - Highlights: • We derived two novel additive materials from PET bottle waste: TLPP and VPP. • We used them to modify the base asphalt separately. • The additives improved both the asphalt and the asphalt mixture performance. • TLPP, VPP offer a beneficial way about disposal of ecologically hazardous PET waste. - Abstract: This study investigates an application area for Polyethylene Terephthalate (PET) bottle waste which has become an environmental problem in recent decades as being a considerable part of the total plastic waste bulk. Two novel additive materials, namely Thin Liquid Polyol PET (TLPP) and Viscous Polyol PET (VPP), were chemically derived from waste PET bottles and used to modify the base asphalt separately for this aim. The effects of TLPP and VPP on the asphalt and hot mix asphalt (HMA) mixture properties were detected through conventional tests (Penetration, Softening Point, Ductility, Marshall Stability, Nicholson Stripping) and Superpave methods (Rotational Viscosity, Dynamic Shear Rheometer (DSR), Bending Beam Rheometer (BBR)). Also, chemical structures were described by Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS) and Fourier Transform Infrared (FTIR) techniques. Since TLPP and VPP were determined to improve the low temperature performance and fatigue resistance of the asphalt as well as the Marshall Stability and stripping resistance of the HMA mixtures based on the results of the applied tests, the usage of PET waste as an asphalt roadway pavement material offers an alternative and a beneficial way of disposal of this ecologically hazardous material

  18. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    Science.gov (United States)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-05-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al2O3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σAC) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher's universal power law of solids. It revealed that σAC of PET/alumina nanocomposites can be well characterized by the DC conductivity (σDC), critical frequency (ωc), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σDC) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  19. Phase Separation and Elastic Properties of Poly(Trimethylene Terephthalate-block-poly(Ethylene Oxide Copolymers

    Directory of Open Access Journals (Sweden)

    Elżbieta Piesowicz

    2016-06-01

    Full Text Available A series of poly(trimethylene terephthalate-block-poly(ethylene oxide (PTT-b-PEOT copolymers with different compositions of rigid PTT and flexible PEOT segments were synthesized via condensation in the melt. The influence of the block length and the block ratio on the micro-separated phase structure and elastic properties of the synthesized multiblock copolymers was studied. The PEOT segments in these copolymers were kept constant at 1130, 2130 or 3130 g/mol, whereas the PTT content varied from 30 up to 50 wt %. The phase separation was assessed using differential scanning calorimetry (DSC and dynamic mechanical thermal analysis (DMTA. The crystal structure of the synthesised block copolymers and their microstructure on the manometer scale was evaluated by using WAXS and SAXS analysis. Depending on the PTT/PEOT ratio, but also on the rigid and flexible segment length in PTT-b-PEO copolymers, four different domains were observed i.e.,: a crystalline PTT phase, a crystalline PEO phase (which exists for the whole series based on three types of PEOT segments, an amorphous PTT phase (only at 50 wt % content of PTT rigid segments and an amorphous PEO phase. Moreover, the elastic deformability and reversibility of PTT-b-PEOT block copolymers were studied during a cyclic tensile test. Determined values of permanent set resultant from maximum attained stain (100% and 200% for copolymers were used to evaluate their elastic properties.

  20. Experimental study on tensile bifurcation of nanoscale Cu film bonded to polyethylene terephthalate substrate

    International Nuclear Information System (INIS)

    Men, Yutao; Wang, Shibin; Jia, Haikun; Wu, Zhiliang; Li, Linan; Zhang, Chunqiu

    2013-01-01

    Cu films are widely used in flexible electronic products. Tensile mechanical properties of the film determine product performance. In this paper, tensile experiments of sputtered Cu films on a polyethylene terephthalate (PET) substrate were carried out under an optical microscope. In the experiments, three changes took place under tension: uniform deformation, microcrack initiation and propagation, and microcrack saturation. The elastic modulus of the Cu film is 120 GPa and is independent of film thickness since the film is formed to be continuous in the nanoscale range. Film thickness is an important parameter to decide the tensile properties. The critical fracture strain, the interfacial bonding strength, and the crack spacing after saturation are related to film thickness. The critical strain and the interfacial bonding strength of the nanoscale Cu film tend to ascend then to descend as film thickness increases. The microcrack spacing is in direct proportion to film thickness after the microcrack saturates. The optimum thickness of the sputtered Cu films on the PET substrate is about 500 nm. - Highlights: • The elastic modulus of the Cu films is 120 GPa and does not change with thickness. • The optimal thickness of the Cu films is about 500 nm. • The critical strain tends to ascend then to descend as film thickness increases. • The interfacial strength changes in accordance with the critical strain. • Microcrack spacing is proportional to film thickness after the microcrack saturates

  1. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Biao, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com [Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-06-21

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

  2. Hemocompatibility improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterions

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Xianmei; Yuan, Jiang, E-mail: bioalchem@yahoo.com; Chen, Shuangchun; Li, Pengfei; Li, Li, E-mail: lili3@njnu.edu.cn; Shen, Jian

    2014-03-01

    Poly (ethylene terephthalate) (PET) has been widely adopted as a scaffold biomaterial, but further hemocompatibility improvement is still needed for wide biomedical applications. Inspired by the composition of adhesive proteins in mussels, we propose to use self-polymerized dopamine to form a surface-adherent polydopamine layer onto PET sheet, followed by Michael addition with N,N-dimethylethylenediamine (DMDA) to build tertiary amine, and final zwitterions(sulfobetaine and carboxybetaine) construction through ring-opening reaction. Physicochemical properties of substrates were demonstrated by water contact angle measurement, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The hemocompatibility was evaluated by platelet adhesion, hemolytic, and protein adsorption. The results showed that the zwitterions immobilized PET endowed with improved resistance to nonspecific protein adsorption and platelet adhesion as well as nonhemolytic. The zwitterions with desirable hemocompatibility can be readily tailored to catheter for various biomedical applications. - Highlights: • We first used self-polymerized dopamine to form a thin and surface-adherent polydopamine layer onto PET film. • Then, DMDA was attached to the PET surface by Michael addition. • Sulfobetaine and carboxybetaine were finally constructed through ring-opening reaction. • The modify PET endowed with improved resistance to nonspecific protein adsorption and platelet adhesion.

  3. Surface and interior views on origins of two types of banded spherulites in poly(nonamethylene terephthalate).

    Science.gov (United States)

    Woo, Eamor M; Nurkhamidah, Siti; Chen, Yu-Fan

    2011-10-21

    Top-surface and three-dimensional views of Type-1 and Type-2 of ring-banded spherulites in poly(nonamethylene terephthalate) (PNT) in thicker bulk crystallized on a nucleating potassium bromide (KBr) substrate were examined using various microscopy techniques: scanning electron microscopy (SEM), polarized-optical microscopy (POM), and atomic-force microscopy (AFM). In PNT crystallized at higher crystallization temperature (T(c)) with heterogeneous nucleating substrate, typically two types of ring-banded spherulites are present that differ significantly in patterns and ring spacings: Type-1 Type-2 (single- and double-ring-banded spherulites). Three-dimensional view on fractured spherulites in bulk PNT samples reveals that the single-ring-banded spherulite (Type-1) tends to be well-rounded spheres as they are nucleated homogeneously from bulk; the double-ring-banded spherulite (Type-2) is concentric hemisphere or truncated sphere shells owing to be nucleated from bottom. With confined thickness of films, the 3-D hemispheres in PNT may become truncated into multi-shell annular cones or arcs when thickness or growth is restricted. Based on the top-surface vs. interior views of banded lamellar assembly, origins and inner structures of dual types of ring bands in PNT were examined in greater details. This journal is © the Owner Societies 2011

  4. Disodium terephthalate (Na{sub 2}C{sub 8}H{sub 4}O{sub 4}) as high performance anode material for low-cost room-temperature sodium-ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Liang; Hu, Yong-Sheng; Li, Hong; Armand, Michel; Chen, Liquan [Key Laboratory for Renewable Energy, Beijing Key Laboratory for New, Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing (China); Zhao, Junmei [Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China); Zhou, Zhibin [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan (China)

    2012-08-15

    In this contribution, a cheap organic material, disodium terephthalate, Na{sub 2}C{sub 8}H{sub 4}O{sub 4}, has been firstly evaluated as a novel anode for room-temperature Na-ion batteries. The material exhibits a high reversible capacity of 250 mAh/g with excellent cycleability. The average Na storage voltage is approximately 0.43 V vs. Na{sup +}/Na. A thin layer of Al{sub 2}O{sub 3} coating on the electrode surface derived from the atomic layer deposition technique is effective in further enhancing Na storage performance. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Low-cost flexible supercapacitors based on laser reduced graphene oxide supported on polyethylene terephthalate substrate

    Science.gov (United States)

    Ghoniem, Engy; Mori, Shinsuke; Abdel-Moniem, Ahmed

    2016-08-01

    A controlled high powered CO2 laser system is used to reduce and pattern graphene oxide (GO) film supported onto a flexible polyethylene terephthalate (PET) substrate. The laser reduced graphene oxide (rGO) film is characterized and evaluated electrochemically in the absence and presence of an overlying anodicaly deposited thin film of pseuodcapactive MnO2 as electrodes for supercapacitor applications using aqueous electrolyte. The laser treatment of the GO film leads to an overlapped structure of defective multi-layer rGO sheets with an electrical conductivity of 273 S m-1. The rGO and MnO2/rGO electrodes exhibit specific capacitance in the range of 82-107 and 172-368 Fg-1 at applied current range of 0.1-1.0 mA cm-2 and retain 98 and 95% of their initial capacitances after 2000 cycles at a current density of 1.0 mA cm-2, respectively. Also, the rGO is assigned as an electrode material for flexible conventionally stacked and interdigitated in-plane supercapacitor structures using gel electrolyte. Three electrode architectures of 2, 4, and 6 sub-electrodes are studied for the interdigital in-plane design. The device with interdigital 6 sub-electrodes architecture I-PS(6) delivers power density of 537.1 Wcm-3 and an energy density of 0.45 mWh cm-3.

  6. Antimicrobial brass coatings prepared on poly(ethylene terephthalate) textile by high power impulse magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying-Hung, E-mail: tieamo2002@gmail.com; Wu, Guo-Wei; He, Ju-Liang

    2015-03-01

    The goal of this work is to prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on poly(ethylene terephthalate) (PET) fabric by high-power impulse magnetron sputtering (HIPIMS), which is known to provide high-density plasma, so as to generate a strongly adherent film at a reduced substrate temperature. The results reveal that the brass film grows in a layer-plus-island mode. Independent of their deposition time, the obtained films retain a Cu/Zn elemental composition ratio of 1.86 and exhibit primarily an α copper phase structure. Oxygen plasma pre-treatment for 1 min before coating can significantly increase film adhesion such that the brass-coated fabric of Grade 5 or Grade 4–5 can ultimately be obtained under dry and wet rubbing tests, respectively. However, a deposition time of 1 min suffices to provide effective antimicrobial properties for both Staphylococcus aureus and Escherichia coli. As a whole, the feasibility of using such advanced HIPIMS coating technique to develop durable antimicrobial textile was demonstrated. - Highlights: • Prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on PET fabric by HIPIMS • Brass-coated fabric with excellent durability, even undergone rubbing and washing tests • Brass-coated fabric provides effective antimicrobial properties for E. coli and S. aureus. • After brass coating, PET fabric still retained its mechanical property.

  7. Determination of carbonyl compounds (acetaldehyde and formaldehyde in polyethylene terephthalate containers designated for water conservation

    Directory of Open Access Journals (Sweden)

    Redžepović Azra S.

    2012-01-01

    Full Text Available Polyethylene terephthalate (PET has in the last several years become the main packaging material for many food products, particularly carbonated beverages and bottled water, as well as for products of chemical industry (packaging of various hygiene maintenance agents, pesticides, solvents, etc.. The strength and permeability properties of PET are very good for packaging of beverages, its resistance to chemicals is high and it has a high degree of transparency. Acetaldehyde and formaldehyde are formed during the thermoforming of PET containers. After cooling, acetaldehyde and formaldehyde remain trapped in the walls of a PET bottle and may migrate into the water after filling and storage. Since there are no migration tests in Serbia prescribed for the determination of acetaldehyde and formaldehyde, the purpose of the paper is to test the quantitative contents of carbonyl compounds (acetaldehyde and formaldehyde in PET containers of different volumes, made by various manufacturers of bottled mineral carbonated and noncarbonated water, and exposed to different temperatures. In this study, the migration of acetaldehyde and formaldehyde from PET bottles into mineral carbonated and noncarbonated water was determined by high performance liquid chromatography. Taking into consideration that formaldehyde and acetaldehyde have no UV active or fluorescent group, the chromatography shall be preceded by derivatization in a closed system (due to a low boiling point of acetaldehyde and formaldehyde, which shall transform carbonyl compounds into UV active compounds.

  8. Antimicrobial brass coatings prepared on poly(ethylene terephthalate) textile by high power impulse magnetron sputtering

    International Nuclear Information System (INIS)

    Chen, Ying-Hung; Wu, Guo-Wei; He, Ju-Liang

    2015-01-01

    The goal of this work is to prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on poly(ethylene terephthalate) (PET) fabric by high-power impulse magnetron sputtering (HIPIMS), which is known to provide high-density plasma, so as to generate a strongly adherent film at a reduced substrate temperature. The results reveal that the brass film grows in a layer-plus-island mode. Independent of their deposition time, the obtained films retain a Cu/Zn elemental composition ratio of 1.86 and exhibit primarily an α copper phase structure. Oxygen plasma pre-treatment for 1 min before coating can significantly increase film adhesion such that the brass-coated fabric of Grade 5 or Grade 4–5 can ultimately be obtained under dry and wet rubbing tests, respectively. However, a deposition time of 1 min suffices to provide effective antimicrobial properties for both Staphylococcus aureus and Escherichia coli. As a whole, the feasibility of using such advanced HIPIMS coating technique to develop durable antimicrobial textile was demonstrated. - Highlights: • Prepare antimicrobial, corrosion-resistant and low-cost Cu65Zn35 brass film on PET fabric by HIPIMS • Brass-coated fabric with excellent durability, even undergone rubbing and washing tests • Brass-coated fabric provides effective antimicrobial properties for E. coli and S. aureus. • After brass coating, PET fabric still retained its mechanical property

  9. High-dose proton beam therapy for sinonasal mucosal malignant melanoma

    International Nuclear Information System (INIS)

    Fuji, Hiroshi; Yoshikawa, Shusuke; Kasami, Masako; Murayama, Shigeyuki; Onitsuka, Tetsuro; Kashiwagi, Hiroya; Kiyohara, Yoshio

    2014-01-01

    The significance of definitive radiotherapy for sinonasal mucosal melanoma (SMM) is sill controvertial. This study was to evaluate the role of high-dose proton beam therapy (PBT) in patients with SMM. The cases of 20 patients with SMM localized to the primary site who were treated by PBT between 2006 and 2012 were retrospectively analyzed. The patterns of overall survival and morbidity were assessed. The median follow-up time was 35 months (range, 6–77 months). The 5-year overall and disease-free survival rates were 51% and 38%, respectively. Four patients showed local failure, 2 showed regrowth of the primary tumor, and 2 showed new sinonasal tumors beyond the primary site. The 5-year local control rate after PBT was 62%. Nodal and distant failure was seen in 7 patients. Three grade 4 late toxicities were observed in tumor-involved optic nerve. Our findings suggested that high-dose PBT is an effective local treatment that is less invasive than surgery but with comparable outcomes

  10. Prospective study of proton-beam radiation therapy for limited-stage small cell lung cancer.

    Science.gov (United States)

    Rwigema, Jean-Claude M; Verma, Vivek; Lin, Liyong; Berman, Abigail T; Levin, William P; Evans, Tracey L; Aggarwal, Charu; Rengan, Ramesh; Langer, Corey; Cohen, Roger B; Simone, Charles B

    2017-11-01

    Existing data supporting the use of proton-beam therapy (PBT) for limited-stage small cell lung cancer (LS-SCLC) are limited to a single 6-patient case series. This is the first prospective study to evaluate clinical outcomes and toxicities of PBT for LS-SCLC. This study prospectively analyzed patients with primary, nonrecurrent LS-SCLC definitively treated with PBT and concurrent chemotherapy from 2011 to 2016. Clinical backup intensity-modulated radiotherapy (IMRT) plans were generated for each patient and were compared with PBT plans. Outcome measures included local control (LC), recurrence-free survival (RFS), and overall survival (OS) rates and toxicities. Thirty consecutive patients were enrolled and evaluated. The median dose was 63.9 cobalt gray equivalents (range, 45-66.6 cobalt gray equivalents) in 33 to 37 fractions delivered daily (n = 18 [60.0%]) or twice daily (n = 12 [40.0%]). The concurrent chemotherapy was cisplatin/etoposide (n = 21 [70.0%]) or carboplatin/etoposide (n = 9 [30.0%]). In comparison with the backup IMRT plans, PBT allowed statistically significant reductions in the cord, heart, and lung mean doses and the volume receiving at least 5 Gy but not in the esophagus mean dose or the lung volume receiving at least 20 Gy. At a median follow-up of 14 months, the 1-/2-year LC and RFS rates were 85%/69% and 63%/42%, respectively. The median OS was 28.2 months, and the 1-/2-year OS rates were 72%/58%. There was 1 case each (3.3%) of grade 3 or higher esophagitis, pneumonitis, anorexia, and pericardial effusion. Grade 2 pneumonitis and esophagitis were seen in 10.0% and 43.3% of patients, respectively. In the first prospective registry study and largest analysis to date of PBT for LS-SCLC, PBT was found to be safe with a limited incidence of high-grade toxicities. Cancer 2017;123:4244-4251. © 2017 American Cancer Society. © 2017 American Cancer Society.

  11. Proton beam therapy and accountable care: the challenges ahead.

    Science.gov (United States)

    Elnahal, Shereef M; Kerstiens, John; Helsper, Richard S; Zietman, Anthony L; Johnstone, Peter A S

    2013-03-15

    Proton beam therapy (PBT) centers have drawn increasing public scrutiny for their high cost. The behavior of such facilities is likely to change under the Affordable Care Act. We modeled how accountable care reform may affect the financial standing of PBT centers and their incentives to treat complex patient cases. We used operational data and publicly listed Medicare rates to model the relationship between financial metrics for PBT center performance and case mix (defined as the percentage of complex cases, such as pediatric central nervous system tumors). Financial metrics included total daily revenues and debt coverage (daily revenues - daily debt payments). Fee-for-service (FFS) and accountable care (ACO) reimbursement scenarios were modeled. Sensitivity analyses were performed around the room time required to treat noncomplex cases: simple (30 minutes), prostate (24 minutes), and short prostate (15 minutes). Sensitivity analyses were also performed for total machine operating time (14, 16, and 18 h/d). Reimbursement under ACOs could reduce daily revenues in PBT centers by up to 32%. The incremental revenue gained by replacing 1 complex case with noncomplex cases was lowest for simple cases and highest for short prostate cases. ACO rates reduced this incremental incentive by 53.2% for simple cases and 41.7% for short prostate cases. To cover daily debt payments after ACO rates were imposed, 26% fewer complex patients were allowable at varying capital costs and interest rates. Only facilities with total machine operating times of 18 hours per day would cover debt payments in all scenarios. Debt-financed PBT centers will face steep challenges to remain financially viable after ACO implementation. Paradoxically, reduced reimbursement for noncomplex cases will require PBT centers to treat more such cases over cases for which PBT has demonstrated superior outcomes. Relative losses will be highest for those facilities focused primarily on treating noncomplex cases

  12. Malfunctions of Implantable Cardiac Devices in Patients Receiving Proton Beam Therapy: Incidence and Predictors

    International Nuclear Information System (INIS)

    Gomez, Daniel R.; Poenisch, Falk; Pinnix, Chelsea C.; Sheu, Tommy; Chang, Joe Y.; Memon, Nada; Mohan, Radhe; Rozner, Marc A.; Dougherty, Anne H.

    2013-01-01

    Purpose: Photon therapy has been reported to induce resets of implanted cardiac devices, but the clinical sequelae of treating patients with such devices with proton beam therapy (PBT) are not well known. We reviewed the incidence of device malfunctions among patients undergoing PBT. Methods and Materials: From March 2009 through July 2012, 42 patients with implanted cardiac implantable electronic devices (CIED; 28 pacemakers and 14 cardioverter-defibrillators) underwent 42 courses of PBT for thoracic (23, 55%), prostate (15, 36%), liver (3, 7%), or base of skull (1, 2%) tumors at a single institution. The median prescribed dose was 74 Gy (relative biological effectiveness; range 46.8-87.5 Gy), and the median distance from the treatment field to the CIED was 10 cm (range 0.8-40 cm). Maximum proton and neutron doses were estimated for each treatment course. All CIEDs were checked before radiation delivery and monitored throughout treatment. Results: Median estimated peak proton and neutron doses to the CIED in all patients were 0.8 Gy (range 0.13-21 Gy) and 346 Sv (range 11-1100 mSv). Six CIED malfunctions occurred in 5 patients (2 pacemakers and 3 defibrillators). Five of these malfunctions were CIED resets, and 1 patient with a defibrillator (in a patient with a liver tumor) had an elective replacement indicator after therapy that was not influenced by radiation. The mean distance from the proton beam to the CIED among devices that reset was 7.0 cm (range 0.9-8 cm), and the mean maximum neutron dose was 655 mSv (range 330-1100 mSv). All resets occurred in patients receiving thoracic PBT and were corrected without clinical incident. The generator for the defibrillator with the elective replacement indicator message was replaced uneventfully after treatment. Conclusions: The incidence of CIED resets was about 20% among patients receiving PBT to the thorax. We recommend that PBT be avoided in pacing-dependent patients and that patients with any type of CIED receiving

  13. Treatment of poly(ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Kuzminova, Anna [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic); Vandrovcová, Marta [Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4 (Czech Republic); Shelemin, Artem [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic); Kylián, Ondřej, E-mail: ondrej.kylian@gmail.com [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic); Choukourov, Andrei; Hanuš, Jan [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic); Bačáková, Lucie [Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4 (Czech Republic); Slavínská, Danka; Biederman, Hynek [Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, V Holešovickách 2, 180 00 Praha 8 (Czech Republic)

    2015-12-01

    Highlights: • Effect of atmospheric pressure DBD plasma on PET foils was investigated. • DBD treatment causes increase in surface density of O-containing functional groups. • DBD plasma causes increase of wettability, roughness and complex modulus of PET. • DBD treatment positively influences cells growth on PET. • Enhancement of cell growth on treated PET depends on the cell type. - Abstract: In this contribution an effect of dielectric barrier discharge (DBD) sustained in air at atmospheric pressure on surface properties of poly(ethylene terephthalate) (PET) foils is studied. It is found that exposure of PET to DBD plasma leads to rapid changes of surface chemical composition, wettability, surface morphology as well as mechanical properties of PET surface. In addition, based on biological tests that were performed using two cell types (Saos-2 human osteoblast-like cells and HUVEC human umbilical vein endothelial cells), it may be concluded that DBD plasma treatment positively influences cell growth on PET. This effect was found to be connected predominantly with increased surface energy and oxygen content of the surface of treated PET foils.

  14. Preparation of pediatric patients for treatment with proton beam therapy

    International Nuclear Information System (INIS)

    Mizumoto, Masashi; Oshiro, Yoshiko; Ayuzawa, Kaoru; Miyamoto, Toshio; Okumura, Toshiyuki; Fukushima, Takashi; Fukushima, Hiroko; Ishikawa, Hitoshi; Tsuboi, Koji; Sakurai, Hideyuki

    2015-01-01

    Purpose: Anesthesia is often used in proton beam therapy (PBT) for pediatric patients and this may prolong the treatment time. The aim of the study was to examine preparation of pediatric patients to allow smooth performance of PBT. Material and methods: Preparation was initiated 1–2 days before treatment planning CT and continued for 10 days. The patient first visited the facility to become familiar with the treatment room and staff. As the second step, the patient stayed in the treatment bed for a certain time with their mother, and then stayed on the treatment bed alone. Special fixtures painted with characters, music, and gifts were also prepared. Results: From 2010 to 2014, 111 pediatric patients underwent PBT. These patients were divided into 3 groups: 40 who could follow instructions well (group A, median age: 13.6 years old), 60 who could communicate, but found it difficult to stay alone for a long time (group B, median age: 4.6 years old), and 11 who could not follow instructions (group C, median age: 1.6 years old). Preparation was used for patients in group B. The mean treatment times in groups A, B and C were 13.6, 17.1, and 15.6 min, respectively, on PBT treatment days 2–6, and 11.8, 13.0, and 16.9 min, respectively, for the last 5 days of PBT treatment. The time reduction was significant in group B (p = 0.003). Conclusion: Preparation is useful for pediatric patients who can communicate. This approach allows PBT to be conducted more smoothly over a shorter treatment time

  15. Effect of Film Dressing on Acute Radiation Dermatitis Secondary to Proton Beam Therapy

    International Nuclear Information System (INIS)

    Arimura, Takeshi; Ogino, Takashi; Yoshiura, Takashi; Toi, Yuya; Kawabata, Michiko; Chuman, Ikuko; Wada, Kiyotaka; Kondo, Naoaki; Nagayama, Shinichi; Hishikawa, Yoshio

    2016-01-01

    Purpose: Acute radiation dermatitis (ARD) is one of the most common adverse events of proton beam therapy (PBT), and there is currently no effective method to manage ARD. The purpose of this study was to examine the prophylactic effect of a film dressing using Airwall on PBT-induced ARD compared with standard skin managements. Methods and Materials: A total of 271 patients with prostate cancer who were scheduled for PBT at our center were divided into 2 groups based on their own requests: 145 patients (53%) chose Airwall (group A) and 126 patients (47%) received standard treatments (group B). We evaluated irradiated skin every other day during PBT and followed up once a week for a month after completion of PBT. Results: Grade 0, 1, 2, and 3 dermatitis were seen in 2, 122, 21, and 0 and 0, 65, 57, and 4 patients in groups A and B, respectively (P<.001). Numbers of days to grades 1 and 2 ARD development were 34.9 ± 14.3 and 54.7 ± 10.3 and 31.8 ± 11.3 and 54.4 ± 11.6 in groups A and B, respectively. There were no significant differences between the 2 groups. Eighteen patients (12%) in group A who experienced problems in the region covered with Airwall switched to standard skin care after peeling the film off. Conclusions: Film dressing using Airwall reduced the severity of ARD without delaying the response time of the skin to proton beam irradiation compared with standard skin management. Hence, film dressing is considered a promising measure for preventing ARD secondary to PBT.

  16. Effect of Film Dressing on Acute Radiation Dermatitis Secondary to Proton Beam Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Arimura, Takeshi, E-mail: arimura-takeshi@medipolis.org [Medipolis Proton Therapy and Research Center, Ibusuki (Japan); Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Ogino, Takashi [Medipolis Proton Therapy and Research Center, Ibusuki (Japan); Yoshiura, Takashi [Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Toi, Yuya; Kawabata, Michiko; Chuman, Ikuko; Wada, Kiyotaka; Kondo, Naoaki; Nagayama, Shinichi; Hishikawa, Yoshio [Medipolis Proton Therapy and Research Center, Ibusuki (Japan)

    2016-05-01

    Purpose: Acute radiation dermatitis (ARD) is one of the most common adverse events of proton beam therapy (PBT), and there is currently no effective method to manage ARD. The purpose of this study was to examine the prophylactic effect of a film dressing using Airwall on PBT-induced ARD compared with standard skin managements. Methods and Materials: A total of 271 patients with prostate cancer who were scheduled for PBT at our center were divided into 2 groups based on their own requests: 145 patients (53%) chose Airwall (group A) and 126 patients (47%) received standard treatments (group B). We evaluated irradiated skin every other day during PBT and followed up once a week for a month after completion of PBT. Results: Grade 0, 1, 2, and 3 dermatitis were seen in 2, 122, 21, and 0 and 0, 65, 57, and 4 patients in groups A and B, respectively (P<.001). Numbers of days to grades 1 and 2 ARD development were 34.9 ± 14.3 and 54.7 ± 10.3 and 31.8 ± 11.3 and 54.4 ± 11.6 in groups A and B, respectively. There were no significant differences between the 2 groups. Eighteen patients (12%) in group A who experienced problems in the region covered with Airwall switched to standard skin care after peeling the film off. Conclusions: Film dressing using Airwall reduced the severity of ARD without delaying the response time of the skin to proton beam irradiation compared with standard skin management. Hence, film dressing is considered a promising measure for preventing ARD secondary to PBT.

  17. Proton Beam Therapy Versus Conformal Photon Radiation Therapy for Childhood Craniopharyngioma: Multi-institutional Analysis of Outcomes, Cyst Dynamics, and Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, Andrew J. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Greenfield, Brad [Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas (United States); Mahajan, Anita [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Paulino, Arnold C. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Department of Radiation Oncology, Baylor College of Medicine, Houston, Texas (United States); Okcu, M. Fatih [Department of Pediatrics, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); Allen, Pamela K. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Chintagumpala, Murali [Department of Pediatrics, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); Kahalley, Lisa S. [Section of Psychology, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); McAleer, Mary F.; McGovern, Susan L. [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States); Whitehead, William E. [Department of Neurosurgery, Texas Children' s Cancer and Hematology Center, Baylor College of Medicine, Houston, Texas (United States); Grosshans, David R., E-mail: dgrossha@mdanderson.org [Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas (United States)

    2014-10-01

    Purpose: We compared proton beam therapy (PBT) with intensity modulated radiation therapy (IMRT) for pediatric craniopharyngioma in terms of disease control, cyst dynamics, and toxicity. Methods and Materials: We reviewed records from 52 children treated with PBT (n=21) or IMRT (n=31) at 2 institutions from 1996-2012. Endpoints were overall survival (OS), disease control, cyst dynamics, and toxicity. Results: At 59.6 months' median follow-up (PBT 33 mo vs IMRT 106 mo; P<.001), the 3-year outcomes were 96% for OS, 95% for nodular failure-free survival and 76% for cystic failure-free survival. Neither OS nor disease control differed between treatment groups (OS P=.742; nodular failure-free survival P=.546; cystic failure-free survival P=.994). During therapy, 40% of patients had cyst growth (20% requiring intervention); immediately after therapy, 17 patients (33%) had cyst growth (transient in 14), more commonly in the IMRT group (42% vs 19% PBT; P=.082); and 27% experienced late cyst growth (32% IMRT, 19% PBT; P=.353), with intervention required in 40%. Toxicity did not differ between groups. On multivariate analysis, cyst growth was related to visual and hypothalamic toxicity (P=.009 and .04, respectively). Patients given radiation as salvage therapy (for recurrence) rather than adjuvant therapy had higher rates of visual and endocrine (P=.017 and .024, respectively) dysfunction. Conclusions: Survival and disease-control outcomes were equivalent for PBT and IMRT. Cyst growth is common, unpredictable, and should be followed during and after therapy, because it contributes to late toxicity. Delaying radiation therapy until recurrence may result in worse visual and endocrine function.

  18. Late toxicity of proton beam therapy for patients with the nasal cavity, para-nasal sinuses, or involving the skull base malignancy: importance of long-term follow-up

    International Nuclear Information System (INIS)

    Zenda, Sadamoto; Kawashima, Mitsuhiko; Arahira, Satoko; Kohno, Ryosuke; Nishio, Teiji; Akimoto, Tetsuo; Tahara, Makoto; Hayashi, Ryuichi

    2015-01-01

    Although several reports have shown that proton beam therapy (PBT) offers promise for patients with skull base cancer, little is known about the frequency of late toxicity in clinical practice when PBT is used for these patients. Here, we conducted a retrospective analysis to clarify the late toxicity profile of PBT in patients with malignancies of the nasal cavity, para-nasal sinuses, or involving the skull base. Entry to this retrospective study was restricted to patients with (1) malignant tumors of the nasal cavity, para-nasal sinuses, or involving the skull base; (2) definitive or postoperative PBT (>50 GyE) from January 1999 through December 2008; and (3) more than 1 year of follow-up. Late toxicities were graded according to the common terminology criteria for adverse events v4.0 (CTCAE v4.0). From January 1999 through December 2008, 90 patients satisfied all criteria. Median observation period was 57.5 months (range, 12.4-162.7 months), median time to onset of grade 2 or greater late toxicity except cataract was 39.2 months (range, 2.7-99.8 months), and 3 patients had toxicities that occurred more than 5 years after PBT. Grade 3 late toxicities occurred in 17 patients (19%), with 19 events, and grade 4 late toxicities in 6 patients (7%), with 6 events (encephalomyelitis infection 2, optic nerve disorder 4). In conclusion, the late toxicity profile of PBT in patients with malignancy involving the nasal cavity, para-nasal sinuses, or skull base malignancy was partly clarified. Because late toxicity can still occur at 5 years after treatment, long-term follow-up is necessary. (author)

  19. Designed-seamless irradiation technique for extended whole mediastinal proton-beam irradiation for esophageal cancer

    Directory of Open Access Journals (Sweden)

    Okonogi Noriyuki

    2012-10-01

    Full Text Available Abstract Background Proton-beam therapy (PBT provides therapeutic advantages over conformal x-ray therapy in sparing organs at risk when treating esophageal cancer because of the fundamental physical dose distribution of the proton-beam. However, cases with extended esophageal lesions are difficult to treat with conventional PBT with a single isocentric field, as the length of the planning target volume (PTV is longer than the available PBT field size in many facilities. In this study, the feasibility of a practical technique to effectively match PBT fields for esophageal cancer with a larger regional field beyond the available PBT field size was investigated. Methods Twenty esophageal cancer patients with a larger regional field than the available PBT single-field size (15 cm in our facility were analyzed. The PTV was divided into two sections to be covered by a single PBT field. Subsequently, each PTV isocenter was aligned in a cranial-caudal (CC axis to rule out any influence by the movement of the treatment couch in anterior-posterior and left-right directions. To obtain the appropriate dose distributions, a designed-seamless irradiation technique (D-SLIT was proposed. This technique requires the following two adjustments: (A blocking a part of the PTV by multi-leaf collimator(s (MLCs; and (B fine-tuning the isocenter distance by the half-width of the MLC leaf (2.5 mm in our facility. After these steps, the inferior border of the cranial field was designed to match the superior border of the caudal field. Dose distributions along the CC axis around the field junction were evaluated by the treatment-planning system. Dose profiles were validated with imaging plates in all cases. Results The average and standard deviation of minimum dose, maximum dose, and dose range between maximum and minimum doses around the field junction by the treatment-planning system were 95.9 ± 3.2%, 105.3 ± 4.1%, and 9.4 ± 5.2%. The dose profile validated by the

  20. Surface hydrophilic modification of acrylonitrile-butadiene-styrene terpolymer by poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate): Preparation, characterization, and properties studies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tingting; Zhang, Jun, E-mail: zhangjun@njtech.edu.cn

    2016-12-01

    Highlights: • Surface hydrophilic modified ABS was prepared by melt blending with PETG. • O= C−O groups were enriched on the surface with increasing PETG content. • Hydrophilic property of the blends was enhanced with increasing PETG content. • Phase inversion behavior of the blends occurred around intermediate composition. • Tensile and flexural strength were enhanced with increasing PETG content. - Abstract: Surface hydrophilic modified acrylonitrile-butadiene-styrene (ABS) terpolymer was prepared by melt blending with poly(ethylene glycol-co-1,4-cyclohexanedimethanol terephthalate) (PETG) random copolymer as the modifier. Attenuated total reflectance-Fourier transform-infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) were used for surface analysis. Through the contact angle measurement, the relationship between surface properties of the ABS/PETG blends and PETG content was investigated. Scanning electron microscope (SEM) and dynamical mechanical thermal analysis (DMTA) were used to characterize interface morphology and compatibility of the blends. The effect of PETG content on the mechanical and rheological properties was examined. The ATR-FTIR and XPS analysis suggested that the hydrophilic groups were enriched on the surface with increasing PETG content in the blend. The decrease of the water contact angle and the increase of the polarity for the blends with increasing PETG content indicated that the hydrophilic property of the blends was enhanced with increasing PETG content. The ABS/PETG blends were partially miscible. And the blends with ≤50 wt% PETG had better compatibility than the blends with above 50 wt% PETG. It was clear that below 50 wt% PETG, the PETG phase was dispersed in spherical form and the ABS phase was continuous. Above 50 wt% PETG, the PETG phase became continuous and the ABS phase was dispersed in irregular form. Moreover, the tensile strength and flexural strength of the blends were enhanced with

  1. Comparison Between Cerebral Tissue Oxygen Tension and Energy Metabolism in Experimental Subdural Hematoma

    DEFF Research Database (Denmark)

    Nielsen, Troels Halfeld; Engell, Susanne I; Johnsen, Rikke Aagaard

    2011-01-01

    BACKGROUND: An experimental swine model (n = 7) simulating an acute subdural hematoma (ASDH) was employed (1) to explore the relation between the brain tissue oxygenation (PbtO(2)) and the regional cerebral energy metabolism as obtained by microdialysis, and (2) to define the lowest level of PbtO(2...

  2. Sustainable carbothermal reduction and nitridation of Malaysian ilmenite by polyethylene terephthalate and coal

    Science.gov (United States)

    Ahmadi, Eltefat; Hamid, Sheikh Abdul Rezan Sheikh Abdul; Hussin, Hashim; Baharun, Norlia; Ariffin, Kamar Shah; Ramakrishnan, Sivakumar; Fauzi, M. N. Ahmad; Ismail, Hanafi

    2017-07-01

    In this paper, the carbothermal reduction and nitridation (CTRN) of Malaysian ilmenite has been studied as a part of crucial steps involved in reduction and subsequent chlorination processes for synthesizing titanium tetrachloride (TiCl4) from nitrided Malaysian ilmenite concentrates. In CTRN, waste plastics such as polyethylene terephthalate (PET) could be utilized as an alternative source of carbon reductant. In this study, titanium oxycarbonitride (TiOxCyNz) separated from iron (Fe) phase was synthesized by non-isothermal CTRN of Malaysian ilmenite under H2-N2 atmosphere by utilizing a mixture of Sarawak Mukah-Balingan coal and PET as reducing agents in a horizontal tube furnace. Experiments have been carried out in the temperature range of 1150-1250°C for 3 hours with various ratios of PET to coal (25 wt.% PET, 50 wt.% PET, and 75 wt.% PET). X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) methods of analysis were conducted to assess the microstructures and chemical compositions of the unreduced and reduced samples. The results indicated that utilizing PET had a significant effect on iron separation from titanium oxycarbonitride (TiO0.02C0.13N0.85) at 1250°C with a mixture of 75 wt.% PET. Furthermore, XRD and SEM studies demonstrated that with increasing PET weight ratio in the mixtures, the rate of conversion increased and a low-carbon TiOxCyNz with minimal intermediate titanium sub-oxides was synthesized. The method of applying PET as potential reductant for CTRN of ilmenite has beneficial side effects in sustainable recycling of waste PET.

  3. Effects of plasma polymerized para-xylene intermediate layers on characteristics of flexible organic light emitting diodes fabricated on polyethylene terephthalate substrates

    International Nuclear Information System (INIS)

    Sohn, Sunyoung; Kim, Kyuhyung; Kho, Samil; Jung, Donggeun; Boo, Jin-hyo

    2008-01-01

    Characteristics of flexible organic light emitting diodes (FOLEDs) with the plasma polymerized para-xylene (PPpX) intermediate layer were investigated. For the purpose of reducing moisture permeation through plastic substrates, a PPpX intermediate layer was inserted between FOLEDs and the plastic substrates. As the concentration of C-H bonding in the PPpX film deposited at 25 deg. C was increased, PPpX films showed increased transmittance. Surface morphologies of polyethylene terephthalate (PET) covered with the PPpX intermediate layer were improved compared to PET without PPpX on it. Due to the highly cross-linked network structure in the plasma polymer film, water vapor permeability of PET substrates with the PPpX intermediate layer of 75 nm was decreased compared to PET substrates without PPpX on it. FOLEDs with the PPpX intermediate layer showed improved optical and electrical characteristics as well as lifetimes than FOLEDs without the PPpX intermediate layer

  4. Influence of temperature on radiation-induced graft polymerization of styrene onto poly(ethylene terephthalate) nuclear membranes and films

    International Nuclear Information System (INIS)

    Zhitaryuk, N.I.; Shtan'ko, N.I.

    1989-01-01

    Temperature effect on kinetics of radiation-induced graft polymerization of styrene onto poly(ethylene terephthalate) (PETP) nuclear membranes with various parameters (pore diameter, the average distance between the pores) as well as onto PETP films with different thickness has been studied. Graft polymerization has been carried out by the methods of preirradiation in air and in vacuum. The overall activation energy of grafting as well as the activation energy of swelling of PETP in toluene has been obtained. It was found that in the method of preirradiation in vacuum the initial grafting rate in Arrhenius plot has two linear ranges. Activation energy in low temperature range correlates with activation energy of PETP swelling. Activation energy in high temperature range is determined by kinetics of graft polymerization in the method of preirradiation in air. Arrhenius plot of the initial grafting rate gives the activation energy that approximately corresponds to the initiation of grafting with oxyradicals. Dependence of PETP matrix critical thickness on temperature has also been obtained. The form of this dependence is identical to the one of the rate of graft polymerization. 33 refs.; 6 figs.; 2 tabs

  5. Pros and cons of analytical methods to quantify surrogate contaminants from the challenge test in recycled polyethylene terephthalate

    Energy Technology Data Exchange (ETDEWEB)

    Felix, Juliana S., E-mail: jfelix@unizar.es [Department of Analytical Chemistry, Aragon Institute of Engineering Research (I3A), CPS, University of Zaragoza, Torres Quevedo Bldg., Maria de Luna St. 3, E-50018 Zaragoza (Spain); Alfaro, Pilar, E-mail: palfarot@unizar.es [Department of Analytical Chemistry, Aragon Institute of Engineering Research (I3A), CPS, University of Zaragoza, Torres Quevedo Bldg., Maria de Luna St. 3, E-50018 Zaragoza (Spain); Nerin, Cristina, E-mail: cnerin@unizar.es [Department of Analytical Chemistry, Aragon Institute of Engineering Research (I3A), CPS, University of Zaragoza, Torres Quevedo Bldg., Maria de Luna St. 3, E-50018 Zaragoza (Spain)

    2011-02-14

    Different analytical methods were optimized and applied to quantify certain surrogate contaminants (toluene, chlorobenzene, phenol, limonene and benzophenone) in samples of contaminated and recycled flakes and virgin pellets of polyethylene terephthalate (PET) coming from the industrial challenge test. A screening analysis of the PET samples was carried out by direct solid-phase microextraction (SPME) in headspace mode (HS). The methods developed and used for quantitative analysis were a) total dissolution of PET samples in dichloroacetic acid and analysis by HS-SPME coupled to gas chromatography-mass spectrometry (GC-MS) and, b) dichloromethane extraction and analysis by GC-MS. The concentration of all surrogates in the contaminated PET flakes analyzed by HS-SPME method was lower than expected according to information provided by the supplier. Dichloroacetic acid interacted with the surrogates, resulting in a tremendous decrease of limonene concentration. The degradation compounds from limonene were identified. Dichloromethane extraction and GC-MS analysis evidenced the highest values of analytes in these PET samples. Based on the foregoing data, the efficiency of the recycling process was evaluated, whereby the removal of 99.9% of the surrogates proceeding from the contaminated flakes was confirmed.

  6. Pros and cons of analytical methods to quantify surrogate contaminants from the challenge test in recycled polyethylene terephthalate

    International Nuclear Information System (INIS)

    Felix, Juliana S.; Alfaro, Pilar; Nerin, Cristina

    2011-01-01

    Different analytical methods were optimized and applied to quantify certain surrogate contaminants (toluene, chlorobenzene, phenol, limonene and benzophenone) in samples of contaminated and recycled flakes and virgin pellets of polyethylene terephthalate (PET) coming from the industrial challenge test. A screening analysis of the PET samples was carried out by direct solid-phase microextraction (SPME) in headspace mode (HS). The methods developed and used for quantitative analysis were a) total dissolution of PET samples in dichloroacetic acid and analysis by HS-SPME coupled to gas chromatography-mass spectrometry (GC-MS) and, b) dichloromethane extraction and analysis by GC-MS. The concentration of all surrogates in the contaminated PET flakes analyzed by HS-SPME method was lower than expected according to information provided by the supplier. Dichloroacetic acid interacted with the surrogates, resulting in a tremendous decrease of limonene concentration. The degradation compounds from limonene were identified. Dichloromethane extraction and GC-MS analysis evidenced the highest values of analytes in these PET samples. Based on the foregoing data, the efficiency of the recycling process was evaluated, whereby the removal of 99.9% of the surrogates proceeding from the contaminated flakes was confirmed.

  7. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Nikam, Pravin N., E-mail: pravinya26@gmail.com; Deshpande, Vineeta D., E-mail: drdeshpandevd@gmail.com [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400019, Maharashtra (India)

    2016-05-06

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al{sub 2}O{sub 3}) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σ{sub AC}) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher’s universal power law of solids. It revealed that σ{sub AC} of PET/alumina nanocomposites can be well characterized by the DC conductivity (σ{sub DC}), critical frequency (ω{sub c}), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σ{sub DC}) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  8. Multi-functional carbon microspheres with double shell layers for flame retardant poly (ethylene terephthalate)

    Science.gov (United States)

    Xue, Baoxia; Niu, Mei; Yang, Yongzhen; Bai, Jie; Song, Yinghao; Peng, Yun; Liu, Xuguang

    2018-03-01

    Carbon microspheres (CMSs) as a core material had been coated by two capsule walls: an inorganic material of magnesium hydroxide (MH) as inner shell layer and an organic material of poly (ethylene terephthalate) (PET) as outer shell layer. MH coating CMSs (MCMSs) were fabricated by liquid phase deposition method, then grafted 3-Aminopropyltriethoxysilane (APTS) to obtain the Si-MCMSs. Microencapsulated Si-MCMSs (PMCMSs) was prepared by in situ polymerization method. Morphology structure, dispersion, flame retardant and other properties of PMCMSs have been investigated. A series of PET blends were prepared by melt compounding. The results showed that MH and PET as two layers were coated on CMSs surface with the optimal thickness of about 70 nm. The PMCMSs owned better dispersion in PET matrix. Compared with MCMSs/PET composites, the mechanical property of PMCMSs/PET composites had significantly increased because of the strong interface binding force between PMCMSs and PET matrix. Moreover, PMCMSs was proved to be an effective flame retardant. For PMCMSs/PET with 2 wt% PMCMSs, the limiting oxygen index (LOI) value increased from 21.0% (pristine PET) to 27.2%, and the peak heat release rate (pk-HRR) decreased from 513.22 kW/m2 to 352.14 kW/m2. The decreased smoke production rate (SPR) and total smoke production (TSP) values demonstrated PMCMSs suppressed the smoke production. The increased Fire performance index (FPI) value illustrated PMCMSs significantly reduced the fire risk of PET. Overall, the two capsular walls endowed the PMCMSs/PET composites with good mechanical and flame-retardant properties.

  9. Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers

    International Nuclear Information System (INIS)

    Tan, Chiachun; Ahmad, Ishak; Heng, Muichin

    2011-01-01

    Highlights: → Unsaturated polyester resin (UPR) was synthesized from recycled PET. → Effect of surface treatment on EFB/UPR was studied. → Treatment on EFB improved the mechanical and thermal properties. → Treatment on EFB also improved fiber-matrix interaction. -- Abstract: Unsaturated polyester resin (UPR) was synthesized from recycled polyethylene terephthalate (PET) which acted as a matrix for the preparation of UPR/empty fruit bunch fibers (EFB) composite. Chemical recycling on fine pieces of PET bottles were conducted through glycolysis process using ethylene glycol. The unsaturated polyester resin (UPR) was then prepared by reacting the glycolysed product with maleic anhydride. FTIR analysis of glycolyzed product and prepared UPR showed that cross-links between unsaturated polyester chain and styrene monomer occurred at the unsaturated sites which resulted in the forming of cross-linking network. The preparation of UPR/EFB composite was carried out by adding EFB into prepared UPR matrix. The effects of surface treatment on EFB with sodium hydroxide solution (NaOH), silane coupling agent and maleic anhydride (MA) were then studied. The experimental results showed that treated EFB have higher values of tensile and impact strength compared with untreated EFB. The best results were obtained for silane treatment followed by MA and NaOH treatments where the tensile strength was increased by about 21%, 18% and 13% respectively. SEM micrographs of the tensile fracture surfaces of UPR/EFB composite also proved that treatment on EFB has increased the interfacial adhesion between the fiber and UPR matrix compared to the untreated UPR/EFB composite.

  10. DC bias effect on alternating current electrical conductivity of poly(ethylene terephthalate)/alumina nanocomposites

    International Nuclear Information System (INIS)

    Nikam, Pravin N.; Deshpande, Vineeta D.

    2016-01-01

    Polymer nanocomposites based on metal oxide (ceramic) nanoparticles are a new class of materials with unique properties and designed for various applications such as electronic device packaging, insulation, fabrication and automotive industries. Poly(ethylene terephthalate) (PET)/alumina (Al_2O_3) nanocomposites with filler content between 1 wt% and 5 wt% were prepared by melt compounding method using co-rotating twin screw extruder and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and precision LCR meter techniques. The results revealed that proper uniform dispersion at lower content up to 2 wt% of nano-alumina observed by using TEM. Aggregation of nanoparticles was observed at higher content of alumina examined by using SEM and TEM. The frequency dependences of the alternating current (AC) conductivity (σ_A_C) of PET/alumina nanocomposites on the filler content and DC bias were investigated in the frequency range of 20Hz - 1MHz. The results showed that the AC and direct current (DC) conductivity increases with increasing DC bias and nano-alumina content upto 3 wt%. It follows the Jonscher’s universal power law of solids. It revealed that σ_A_C of PET/alumina nanocomposites can be well characterized by the DC conductivity (σ_D_C), critical frequency (ω_c), critical exponent of the power law (s). Roll of DC bias potential led to an increase of DC conductivity (σ_D_C) due to the creation of additional conducting paths with the polymer nanocomposites and percolation behavior achieved through co-continuous morphology.

  11. Improved adhesion of Ag NPs to the polyethylene terephthalate surface via atmospheric plasma treatment and surface functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tao [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Liu, Yong [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Solmont Technology Wuxi Co., Ltd. 228 Linghu Blvd. Tianan Tech Park, A1-602, Xinwu District, Wuxi, Jiangsu 214135 (China); Zhu, Yan, E-mail: zhuyan@kmust.edu.cn [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Yang, De-Quan, E-mail: dequan.yang@gmail.com [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 253 Xuefu Rd, Kunming, Yunnan, 650093 (China); Solmont Technology Wuxi Co., Ltd. 228 Linghu Blvd. Tianan Tech Park, A1-602, Xinwu District, Wuxi, Jiangsu 214135 (China); Sacher, Edward [Regroupement Québécois de Matériaux de Pointe, Department of Engineering Physics, École Polytechnique de Montréal, Case Postale 6079, succursale Centre-Ville, Montréal, Québec H3C 3A7 (Canada)

    2017-07-31

    Highlights: • A two-step process has been developed to enhance the adhesion of immobilized Ag NPs to the PET surface. • The method is simple, easy to use and low-cost for mass production. • The increased density of active sites (−OH, −CH=O and COOH) at the PET surface, after plasma treatment, permits increased reaction with 3-aminopropyltriethoxysilane (APTES). • The presence of APTES with high surface density permits −NH{sub 2}-Ag complex formation, increasing the adhesion of the Ag NPs. - Abstract: Ag nanoparticles (NPs) have been widely applied, as important antibacterial materials, on textile and polymer surfaces. However, their adhesion to nonreactive polymer surfaces is generally too weak for many applications. Here, we propose a two-step process, atmospheric plasma treatment followed by a surface chemical modification process, which enhances their adhesion to polyethylene terephthalate (PET) surfaces. We found that, compared to either plasma treatments or surface chemical functionalizations, alone, this combination greatly enhanced their adhesion. The plasma treatment resulted in an increase of active sites (−OH, −CH=O and COOH) at the PET surface, permitting increased bonding to 3-aminopropyltriethoxysilane (APTES), whose −NH{sub 2} groups were then able to form a bonding complex with the Ag NPs.

  12. Effect of Nanodisperse Carbon Fillers and Isocyanate Chain Extender on Structure and Properties of Poly(ethylene terephthalate

    Directory of Open Access Journals (Sweden)

    Vladimir Agabekov

    2012-01-01

    Full Text Available The effect of diisocyanate chain extender (CE on the mechanical, rheological, and relaxation properties, as well as on molecular weight and crystallizability, of starting poly(ethylene terephthalate (PET and its composites containing carbon nanomaterials (CNM such as carbon nanotubes (CNTs and commercial carbon (CC has been studied. The composites were compounded in molten PET using twin-screw extruder (screw diameter 35 mm; L/D=40. To improve the distribution of CNM in the polymeric matrix (before introduction into the melt, they were blended with PET powder and subjected to an ultrasonic treatment in methylene chloride. The salient features of the materials structure were estimated based on DSC and relaxation spectrometry (dynamic mechanical analysis data. It has been found that CNM additives partly suppress the PET-chain extension reactions which take place during interaction between macromolecular end groups and CE. Besides, both CNT and CC favour crystallizability of the modified PET owing to nucleation of the crystallization process. The influence of CNT appears to be more effective than that of CC. Enhancements in true mechanical strength and deformability of PET/CE/CNM composites, as against PET/CE materials, were found to be most clearly exhibited by the CNT-containing composites.

  13. Effect of short fiber reinforcement on the properties of recycled poly(ethylene terephthalate)/poly(ethylene naphthalate) blends

    International Nuclear Information System (INIS)

    Karsli, Nevin Gamze; Yesil, Sertan; Aytac, Ayse

    2013-01-01

    Highlights: ► Short fiber reinforcement to the r-PET/PEN blend improved to the tensile strength. ► Fiber reinforcement increased the storage modulus of r-PET/PEN blend. ► CF reinforced composite has the highest storage modulus value. - Abstract: In this study, short carbon (CF), glass (GF) and hybrid carbon/glass fiber reinforced recycled poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) (r-PET/PEN) blends were prepared by melt mixing method. The mechanical, thermal and morphological properties of composites were investigated by using tensile tests, differential scanning calorimeter, dynamic mechanical analyzer and scanning electron microscopy. The microscopic analysis showed that there is a better interfacial interaction between fiber and polymer matrix for CF reinforced composite. It was found that addition of short fiber reinforcement to the r-PET/PEN blend improved the tensile strength and Young’s modulus values more than the addition of PEN into r-PET. According to DMA analysis, fiber reinforcement increased the storage modulus of composites when compared with r-PET/PEN blend and among them storage modulus of CF reinforced composite was the highest. It was concluded that mechanical properties of r-PET can be enhanced with addition of PEN and more efficiently with short fiber reinforcement

  14. Superior toughness obtained via tuning the compatibility of poly(ethylene terephthalate)/poly(ethylene–octene) blends

    International Nuclear Information System (INIS)

    Su, Juan-juan; Peng, Fang; Gao, Xiang; Yang, Guang-hui; Fu, Qiang; Wang, Ke

    2014-01-01

    Highlights: • Develop a new elastomer-toughened plastic system based on PET. • Superior toughness was achieved by adding POE into PET. • The best toughness correlated with a moderate level of interfacial adhesion. • The mechanism of toughening was attributed to matrix shear yielding. - Abstract: As a partial of the systematic investigation of the preparation and characterization of poly(ethylene terephthalate) (PET) blending/compounding materials with excellent comprehensive mechanics in the authors’ group, this study deals with the compatibilization modification of PET/elastomer blends to obtain superior toughness. Poly(ethylene–octene) (POE) was employed as elastomer toughener, while maleic anhydride grafted POE (mPOE) was selected as compatibilizer. To highlight the effect of compatibility on toughening, the sum amount of elastomer component, POE and mPOE, was fixed at 20 wt%, but the mass ratio of mPOE/POE was changeable. It is interesting to find that an optimization of toughening can be attained at 3 wt% mPOE, at which the notched impact strength is about 15 folds for that of neat PET. The toughening behavior observed is due to a combination of good dispersion of elastomer phase particles and, particularly, appropriate interfacial adhesion condition. Microscopic fractured morphology reveals that a moderate level of interfacial adhesion is important for good dispersion of elastomer phase and debonding between PET matrix and elastomer particles, which initiate matrix shear yielding to dissipate more energy than other interfacial adhesion conditions

  15. Structural colors of the SiO2/polyethyleneimine thin films on poly(ethylene terephthalate) substrates

    International Nuclear Information System (INIS)

    Jia, Yanrong; Zhang, Yun; Zhou, Qiubao; Fan, Qinguo; Shao, Jianzhong

    2014-01-01

    The SiO 2 /polyethyleneimine (PEI) films with structural colors on poly(ethylene terephthalate) (PET) substrates were fabricated by an electrostatic self-assembly method. The morphology of the films was characterized by Scanning Electron Microscopy. The results showed that there was no distinguishable multilayered structure found of SiO 2 /PEI films. The optical behaviors of the films were investigated through the color photos captured by a digital camera and the color measurement by a multi-angle spectrophotometer. Different hue and brightness were observed at various viewing angles. The structural colors were dependent on the SiO 2 particle size and the number of assembly cycles. The mechanism of the structural colors generated from the assembled films was elucidated. The morphological structures and the optical properties proved that the SiO 2 /PEI film fabricated on PET substrate formed a homogeneous inorganic/organic SiO 2 /PEI composite layer, and the structural colors were originated from single thin film interference. - Highlights: • SiO 2 /PEI thin films were electrostatic self-assembled on PET substrates. • The surface morphology and optical behavior of the film were investigated. • The structural colors varied with various SiO 2 particle sizes and assembly cycles. • Different hue and lightness of SiO 2 /PEI film were observed at various viewing angles. • Structural color of the SiO 2 /PEI film originated from single thin film interference

  16. Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): physical and mechanical properties.

    Science.gov (United States)

    Rahman, Khandkar-Siddikur; Islam, Md Nazrul; Rahman, Md Mushfiqur; Hannan, Md Obaidullah; Dungani, Rudi; Khalil, Hps Abdul

    2013-01-01

    This study deals with the fabrication of composite matrix from saw dust (SD) and recycled polyethylene terephthalate (PET) at different ratio (w/w) by flat-pressed method. The wood plastic composites (WPCs) were made with a thickness of 6 mm after mixing the saw dust and PET in a rotary type blender followed by flat press process. Physical i.e., density, moisture content (MC), water absorption (WA) and thickness swelling (TS), and mechanical properties i.e., Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) were assessed as a function of mixing ratios according to the ASTM D-1037 standard. WA and TS were measured after 24 hours of immersion in water at 25, 50 and 75°C temperature. It was found that density decreased 18.3% when SD content increased from 40% to 70% into the matix. WA and TS increased when the PET content decreased in the matrix and the testing water temperature increased. MOE and MOR were reached to maximum for the fabricated composites (2008.34 and 27.08 N/mm(2), respectively) when the SD content were only 40%. The results indicated that the fabrication of WPCs from sawdust and PET would technically feasible; however, the use of additives like coupling agents could further enhance the properties of WPCs.

  17. Molecular Weight and Crystallization Temperature Effects on Poly(ethylene terephthalate (PET Homopolymers, an Isothermal Crystallization Analysis

    Directory of Open Access Journals (Sweden)

    Leonardo A. Baldenegro-Perez

    2014-02-01

    Full Text Available The isothermal crystallization of poly(ethylene terephthalate (PET homopolymers with different molecular weight was studied in a wide temperature range (140–230 °C using different experimental techniques. Three different morphological regions, labeled r1, r2 and r3, were distinguished as a function of crystallization temperature (Tc. In r1 (low Tc crystallized samples were characterized by a low crystalline degree with a small spherulite texture containing thin crystals. In r2 (intermediate Tc samples showed medium size spherulites composed of two distinct crystalline families (thin and thick crystals. In this temperature range, the crystallization exhibited a maximum value and it was associated with a high content of secondary crystals. In r3 (high Tc, samples presented considerable amorphous zones and regions consisting of oversized spherulites containing only thick crystals. Time-resolved wide-angle X-ray diffraction measurements, using synchrotron radiation, indicated a rapid evolution of the crystalline degree within the second region, in contrast with the quite slow evolution observed in the third region. On the other hand, by small-angle X-ray scattering (SAXS and time-resolved SAXS experiment, it was found that the long period (L as well as the lamellar thickness (lc increase as a function of Tc, corroborating the formation of the thickest crystals in the third region. From all these observations, a morphological model was proposed for each region.

  18. Assessment of organ dose reduction and secondary cancer risk associated with the use of proton beam therapy and intensity modulated radiation therapy in treatment of neuroblastomas

    International Nuclear Information System (INIS)

    Fuji, Hiroshi; Harada, Hideyuki; Asakura, Hirofumi; Nishimura, Tetsuo; Schneider, Uwe; Ishida, Yuji; Konno, Masahiro; Yamashita, Haruo; Kase, Yuki; Murayama, Shigeyuki; Onoe, Tsuyoshi; Ogawa, Hirofumi

    2013-01-01

    To compare proton beam therapy (PBT) and intensity-modulated radiation therapy (IMRT) with conformal radiation therapy (CRT) in terms of their organ doses and ability to cause secondary cancer in normal organs. Five patients (median age, 4 years; range, 2–11 years) who underwent PBT for retroperitoneal neuroblastoma were selected for treatment planning simulation. Four patients had stage 4 tumors and one had stage 2A tumor, according to the International Neuroblastoma Staging System. Two patients received 36 Gy, two received 21.6 Gy, and one received 41.4 Gy of radiation. The volume structures of these patients were used for simulations of CRT and IMRT treatment. Dose–volume analyses of liver, stomach, colon, small intestine, pancreas, and bone were performed for the simulations. Secondary cancer risks in these organs were calculated using the organ equivalent dose (OED) model, which took into account the rates of cell killing, repopulation, and the neutron dose from the treatment machine. In all evaluated organs, the mean dose in PBT was 20–80% of that in CRT. IMRT also showed lower mean doses than CRT for two organs (20% and 65%), but higher mean doses for the other four organs (110–120%). The risk of secondary cancer in PBT was 24–83% of that in CRT for five organs, but 121% of that in CRT for pancreas. The risk of secondary cancer in IMRT was equal to or higher than CRT for four organs (range 100–124%). Low radiation doses in normal organs are more frequently observed in PBT than in IMRT. Assessments of secondary cancer risk showed that PBT reduces the risk of secondary cancer in most organs, whereas IMRT is associated with a higher risk than CRT

  19. Defining the value framework for prostate brachytherapy using patient-centered outcome metrics and time-driven activity-based costing.

    Science.gov (United States)

    Thaker, Nikhil G; Pugh, Thomas J; Mahmood, Usama; Choi, Seungtaek; Spinks, Tracy E; Martin, Neil E; Sio, Terence T; Kudchadker, Rajat J; Kaplan, Robert S; Kuban, Deborah A; Swanson, David A; Orio, Peter F; Zelefsky, Michael J; Cox, Brett W; Potters, Louis; Buchholz, Thomas A; Feeley, Thomas W; Frank, Steven J

    2016-01-01

    Value, defined as outcomes over costs, has been proposed as a measure to evaluate prostate cancer (PCa) treatments. We analyzed standardized outcomes and time-driven activity-based costing (TDABC) for prostate brachytherapy (PBT) to define a value framework. Patients with low-risk PCa treated with low-dose-rate PBT between 1998 and 2009 were included. Outcomes were recorded according to the International Consortium for Health Outcomes Measurement standard set, which includes acute toxicity, patient-reported outcomes, and recurrence and survival outcomes. Patient-level costs to 1 year after PBT were collected using TDABC. Process mapping and radar chart analyses were conducted to visualize this value framework. A total of 238 men were eligible for analysis. Median age was 64 (range, 46-81). Median followup was 5 years (0.5-12.1). There were no acute Grade 3-5 complications. Expanded Prostate Cancer Index Composite 50 scores were favorable, with no clinically significant changes from baseline to last followup at 48 months for urinary incontinence/bother, bowel bother, sexual function, and vitality. Ten-year outcomes were favorable, including biochemical failure-free survival of 84.1%, metastasis-free survival 99.6%, PCa-specific survival 100%, and overall survival 88.6%. TDABC analysis demonstrated low resource utilization for PBT, with 41% and 10% of costs occurring in the operating room and with the MRI scan, respectively. The radar chart allowed direct visualization of outcomes and costs. We successfully created a visual framework to define the value of PBT using the International Consortium for Health Outcomes Measurement standard set and TDABC costs. PBT is associated with excellent outcomes and low costs. Widespread adoption of this methodology will enable value comparisons across providers, institutions, and treatment modalities. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. Defining the Value Framework for Prostate Brachytherapy using Patient-Centered Outcome Metrics and Time-Driven Activity-Based Costing

    Science.gov (United States)

    Thaker, Nikhil G.; Pugh, Thomas J.; Mahmood, Usama; Choi, Seungtaek; Spinks, Tracy E.; Martin, Neil E.; Sio, Terence T.; Kudchadker, Rajat J.; Kaplan, Robert S.; Kuban, Deborah A.; Swanson, David A.; Orio, Peter F.; Zelefsky, Michael J.; Cox, Brett W.; Potters, Louis; Buchholz, Thomas A.; Feeley, Thomas W.; Frank, Steven J.

    2017-01-01

    PURPOSE Value, defined as outcomes over costs, has been proposed as a measure to evaluate prostate cancer (PCa) treatments. We analyzed standardized outcomes and time-driven activity-based costing (TDABC) for prostate brachytherapy (PBT) to define a value framework. METHODS AND MATERIALS Patients with low-risk PCa treated with low-dose rate PBT between 1998 and 2009 were included. Outcomes were recorded according to the International Consortium for Health Outcomes Measurement (ICHOM) standard set, which includes acute toxicity, patient-reported outcomes, and recurrence and survival outcomes. Patient-level costs to one year after PBT were collected using TDABC. Process mapping and radar chart analyses were conducted to visualize this value framework. RESULTS A total of 238 men were eligible for analysis. Median age was 64 (range, 46–81). Median follow-up was 5 years (0.5–12.1). There were no acute grade 3–5 complications. EPIC-50 scores were favorable, with no clinically significant changes from baseline to last follow-up at 48 months for urinary incontinence/bother, bowel bother, sexual function, and vitality. Ten-year outcomes were favorable, including biochemical failure-free survival of 84.1%, metastasis-free survival 99.6%, PCa-specific survival 100%, and overall survival 88.6%. TDABC analysis demonstrated low resource utilization for PBT, with 41% and 10% of costs occurring in the operating room and with the MRI scan, respectively. The radar chart allowed direct visualization of outcomes and costs. CONCLUSIONS We successfully created a visual framework to define the value of PBT using the ICHOM standard set and TDABC costs. PBT is associated with excellent outcomes and low costs. Widespread adoption of this methodology will enable value comparisons across providers, institutions, and treatment modalities. PMID:26916105

  1. A Methodology for Assessing Parental Perception of Infant Temperament.

    Science.gov (United States)

    Pedersen, Frank A.; And Others

    The Perception of Baby Temperament Scales (PBT) were used to elicit parental perceptions of infant temperament, with the results rated for internal consistency and congruence between parents. Data was obtained from 26 families, with both father and mother describing their first-born infants at five months of age. The PBT Scales deal with a range…

  2. The rule of radiation therapy in the treatment of childhood cancer

    International Nuclear Information System (INIS)

    Suzuki, Gen; Yamazaki, Hideya; Yamada, Kei

    2016-01-01

    The ultimate goal in pediatric radiation oncology is to improve survival and quality of life. In particular, a sound balance is needed between tumor elimination and minimization of the late effects of radiation therapy on growth and development, cognition, neuroendocrine function, and the induction of secondary malignancies. It is well documented that radiation causes damage to normal tissues and organs in a dose-dependent and volume-dependent way. Reducing the exposure of normal tissues to therapeutic radiation would presumably decrease the risk of late effects. Thanks to its physical properties, proton beam therapy (PBT) is a possible candidate to achieve this goal. PBT would be widely used in pediatric patients to reduce toxicities in Japan in the near future. But the treatment time for PBT can be longer than that for photon radiotherapy and similar sedatives or anesthesia are required. The preparation process which is to become familiar with the treatment room and staff before treatment may be useful for reducing the need for anesthesia, allowing PBT to be performed in less time. (author)

  3. Surface functionalization of copper via oxidative graft polymerization of 2,2'-bithiophene and immobilization of silver nanoparticles for combating biocorrosion.

    Science.gov (United States)

    Wan, Dong; Yuan, Shaojun; Neoh, K G; Kang, E T

    2010-06-01

    An environmentally benign approach to surface modification was developed to impart copper surface with enhanced resistance to corrosion, bacterial adhesion and biocorrosion. Oxidative graft polymerization of 2,2'-bithiophene from the copper surface with self-assembled 2,2'-bithiophene monolayer, and subsequent reduction of silver ions to silver nanoparticles (Ag NPs) on the surface, give rise to a homogeneous bithiophene polymer (PBT) film with densely coupled Ag NPs on the copper surface (Cu-g-PBT-Ag NP surface). The immobilized Ag NPs were found to significantly inhibit bacterial adhesion and enhance the antibacterial properties of the PBT modified copper surface. The corrosion inhibition performance of the functionalized copper substrates was evaluated by Tafel polarization curves and electrochemical impedance spectroscopy. Arising from the chemical affinity of thiols for the noble and coinage metals, the copper surface functionalized with both PBT brushes and Ag NPs also exhibits long-term stability, and is thus potentially useful for combating the combined problems of corrosion and biocorrosion in harsh marine and aquatic environments.

  4. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    Science.gov (United States)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  5. Preparation of polymer blends from glycerol, fumaric acid and of poly(ethylene terephthalate) (PET) recycled; Preparacao de blendas polimericas a partir do glicerol, acido fumarico e do politereftalato de etileno (PET) pos consumo

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Marina A.O.; Guimaraes, Danilo H.; Brioude, Michel M.; Jose, Nadia M. [Instituto de Quimica, Universidade Federal da Bahia, Salvador, BA (Brazil); Prado, Luis A.S. de A. [Institut fuer Kunststoffe und Verbundwerkstoffe - Technische Universitaet Hamburg-Harburg, Hamburg (Germany)

    2011-07-01

    Polymer blends based on recycled poly(ethylene terephthalate) (PET) and poly(glycerol fumarate) polyesters were prepared in different PET concentrations. The PET powder was dispersed during the poly(glycerol fumarate) synthesis at 260 deg C. The resulting blends were characterized by X-ray diffraction. The thermal stability of the materials was evaluated by thermogravimetric analysis and differential scanning calorimetry. The morphology was studies by scanning electron microscopy. The blends were clearly immiscible. The possibility of (interfacial) compatibilization of the PET domains, caused by transesterification reactions between PET and glycerol were discussed. (author)

  6. The effect of layer-by-layer chitosan-hyaluronic acid coating on graft-to-bone healing of a poly(ethylene terephthalate) artificial ligament.

    Science.gov (United States)

    Li, Hong; Ge, Yunsheng; Zhang, Pengyun; Wu, Lingxiang; Chen, Shiyi

    2012-01-01

    Surface coating with an organic layer-by-layer self-assembled template of chitosan and hyaluronic acid on a poly(ethylene terephthalate) (PET) artificial ligament was designed for the promotion and enhancement of graft-to-bone healing after artificial ligament implantation in a bone tunnel. The results of in vitro culturing of MC3T3-E1 mouse osteoblastic cells supported the hypothesis that the layer-by-layer coating of chitosan and hyaluronic acid could promote the cell compatibility of grafts and could promote osteoblast proliferation. A rabbit extra-articular tendon-to-bone healing model was used to evaluate the effect of this kind of surface-modified stainless artificial ligament in vivo. The final results proved that this organic compound coating could significantly promote and enhance new bone formation at the graft-bone interface histologically and, correspondingly, the experimental group with coating had significantly higher biomechanical properties compared with controls at 8 weeks (P < 0.05).

  7. Durable grafting of silkworm pupa protein onto the surface of polyethylene terephthalate fibers

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianfeng, E-mail: 584884673@qq.com [College of Textiles & Garments, Southwest University, Chongqing 400716 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716 (China); Zheng, Dandan, E-mail: 183737543@qq.com [College of Textiles & Garments, Southwest University, Chongqing 400716 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716 (China); Zhang, Fengxiu, E-mail: zhangfx656472@sina.com.cn [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zhang, Guangxian, E-mail: zgx656472@sina.com [College of Textiles & Garments, Southwest University, Chongqing 400716 (China); Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, 400716 (China)

    2016-12-01

    In this paper, reactive –NH{sub 2} groups (8.36 × 10{sup −6} mol/g fabric) were introduced to the surface of polyethylene terephthalate (PET) fabrics by a nitration and reduction method, and epoxy groups were introduced to silkworm pupa protein (SPP) by reaction with epoxy chloropropane. PET-SPP composite fabrics were then prepared by reaction of these two precursors. The results showed that the SPP was firmly grafted onto the PET fabric surface and that the hydrophilicity of the fabric was markedly improved by the grafting of SPP. SEM images revealed a layer of substance covering the surface of the PET fibers, and XPS investigation showed that the nitrogen content of the PET-SPP fabric was higher than that of the original PET fabric (2.32% vs 0%). ATR-FTIR adsorption bands at 1653 and 1543 cm{sup −1} suggested the successful grafting of SPP onto the PET fabric surface. The DSC and TG of the PET fibers demonstrated that the thermal stability of the original PET fibers was maintained well by the SPP-grafted PET fibers. The breaking strength, bending rigidity, air permeability, and crease recovery angle of the original PET fabric were also retained by the SPP-grafted PET fabric. - Highlights: • Reactive –NH{sub 2} groups were introduced to PET fibers by nitration and reduction method. • Reactive epoxy groups were introduced to silkworm pupa protein by reacting with epoxy chloropropane. • The silkworm pupa protein could be grafted firmly on the PET fabric surface through covalent bond. • The skin-friendly property and hydrophilicity of PET-SPP fabric were improved greatly. • The wearability of PET-SPP composite fabric kept well.

  8. Effect of phenolic oligomer on adhesion of poly (ethylene terephthalate) film laminated steel sheets by Electron Beam Curing method

    International Nuclear Information System (INIS)

    Masuhara, Kenichi; Mori, Koji; Koshiishi, Kenji; Sasaki, Takashi.

    1995-01-01

    Adhesion of poly (ethylene terephthalate) film by Electron Beam Curing (EBC) method which can be thought as an energy-saving process was studied for the purpose of bestowing economically design and distinctness of image on thermosetting high molecular weight polyester precoated steel sheets. Adhesion of EB curable resins onto metal is generally poor. In this report, addition of EB curable phenolic resole oligomer with bifunctional acrylates to the top coat used for precoated steel was studied in order to increase the adhesion of an EB curable adhesive, and it was found that the phenolic oligomer is tremendously effective for the improvement of adhesion. The reasons why the phenolic oligomer provides excellent adhesion were 1) elongation at break of the top coat to which the phenolic oligomer is added is little decreased by EB irradiation, and the formability does not reduce. 2) As the phenolic oligomer is unevenly distributed to the surface layer of the top coat, it is suggested that the contact frequency of the phenolic oligomer to the EB curable adhesive is so high that graft polymerization between them is liable to occur. (author)

  9. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection

    International Nuclear Information System (INIS)

    Zuo, Zewen; Zhu, Kai; Gu, Chuan; Wen, Yibing; Cui, Guanglei; Qu, Jun

    2016-01-01

    Highlights: • Transparent, flexible SERS substrates were prepared using techniques compatible with well-established silicon device technologies. • The SERS substrates exhibit high sensitivity and good reproducibility. • The high performance is related with the quasi-three-dimensional structure of the PET. • In-situ detection of analyte on irregular objects was achieved by this SERS substrate. - Abstract: Transparent, flexible surface-enhanced Raman scattering (SERS) substrates were fabricated by metalization of structured polyethylene terephthalate (PET) sheets. The resultant Ag-coated structured PET SERS substrates were revealed to be highly sensitive with good reproducibility and stability, an enhancement factor of 3 × 10 6 was acquired, which can be attributed mainly to the presence of plentiful multiple-type hot spots within the quasi-three-dimensional surface of the structured PET obtained by oxygen plasma etching. In addition, detections of model molecules on fruit skin were also carried out, demonstrating the great potential of the Ag-coated structured PET in in-situ detection of analyte on irregular objects. Importantly, the technique used for the preparation of such substrate is completely compatible with well-established silicon device technologies, and large-area fabrication with low cost can be readily realized.

  10. Transparent, flexible surface enhanced Raman scattering substrates based on Ag-coated structured PET (polyethylene terephthalate) for in-situ detection

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Zewen, E-mail: zuozewen@mail.ahnu.edu.cn; Zhu, Kai; Gu, Chuan; Wen, Yibing; Cui, Guanglei; Qu, Jun

    2016-08-30

    Highlights: • Transparent, flexible SERS substrates were prepared using techniques compatible with well-established silicon device technologies. • The SERS substrates exhibit high sensitivity and good reproducibility. • The high performance is related with the quasi-three-dimensional structure of the PET. • In-situ detection of analyte on irregular objects was achieved by this SERS substrate. - Abstract: Transparent, flexible surface-enhanced Raman scattering (SERS) substrates were fabricated by metalization of structured polyethylene terephthalate (PET) sheets. The resultant Ag-coated structured PET SERS substrates were revealed to be highly sensitive with good reproducibility and stability, an enhancement factor of 3 × 10{sup 6} was acquired, which can be attributed mainly to the presence of plentiful multiple-type hot spots within the quasi-three-dimensional surface of the structured PET obtained by oxygen plasma etching. In addition, detections of model molecules on fruit skin were also carried out, demonstrating the great potential of the Ag-coated structured PET in in-situ detection of analyte on irregular objects. Importantly, the technique used for the preparation of such substrate is completely compatible with well-established silicon device technologies, and large-area fabrication with low cost can be readily realized.

  11. Effects of ph ON Ni Coating on Poly(ethylene Terephthalate) Substrate by Printing Prime in Combination with Palladium Activating

    Science.gov (United States)

    Huang, Junjun; Sun, Zhiping; Huang, Hongzhi; Liu, Qi; Gao, Min; Li, Mengyu; Zhao, Feng; Chen, Zhenming

    2016-04-01

    In this work, the primer-printed and then self-assembled poly(ethylene terephthalate) (PET) sheets were plated when the bath pH increased from 7 to 11. The effects of bath pH on the structural and electrical properties of electroless nickel plating were investigated systematically using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that the crystallographic structures of Ni-plated PET (NPP) sheets were face centered cubic, the preferential orientation of the coatings changes from (200) plane to (111) plane, the growth rate of plated nickel coating increased from 3.71μm/min to 8.13μm/min, the average Ni crystal size was increased from 0.23μm to 0.92μm, the average EMI-SE of NPP sheets was increased from 37.2dB to 38.6dB and the surface electrical resistivity of NPP sheets was decreased from 6235ohm ṡ cm to 0.03ohm ṡ cm with the increase of bath pH. The changes in structural and electrical properties were most possibly due to the fact that the thickness of coating increased.

  12. Ideonella sakaiensis sp. nov., isolated from a microbial consortium that degrades poly(ethylene terephthalate).

    Science.gov (United States)

    Tanasupawat, Somboon; Takehana, Toshihiko; Yoshida, Shosuke; Hiraga, Kazumi; Oda, Kohei

    2016-08-01

    A Gram-stain-negative, aerobic, non-spore-forming, rod-shaped bacterium, designed strain 201-F6T, was isolated from a microbial consortium that degrades poly(ethylene terephthalate) (PET) collected in Sakai city, Japan, and was characterized on the basis of a polyphasic taxonomic study. The cells were motile with a polar flagellum. The strain contained cytochrome oxidase and catalase. It grew within the pH range 5.5-9.0 (optimally at pH 7-7.5) and at 15-42 ºC (optimally at 30-37 ºC). The major isoprenoid quinone was ubiquinone with eight isoprene units (Q-8). C16 : 0, C17 : 0 cyclo, C18 :1ω7c and C12 : 0 2-OH were the predominant cellular fatty acids. The major polar lipids were phosphatidylethanolamine, lyso-phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The G+C content of genomic DNA was 70.4 mol%. Phylogenetic analysis using the 16S rRNA gene sequences showed that strain 201-F6T was affiliated to the genus Ideonella, and was closely related to Ideonella dechloratans LMG 28178T (97.7 %) and Ideonella azotifigens JCM 15503T (96.6 %). Strain 201-F6T could be clearly distinguished from the related species of the genus Ideonella by its physiological and biochemical characteristics as well as by its phylogenetic position and DNA-DNA relatedness. Therefore, the strain represents a novel species of the genus Ideonella, for which the name Ideonella sakaiensis sp. nov. (type strain 201-F6T=NBRC 110686T=TISTR 2288T) is proposed.

  13. A study of elemental migration from poly(ethylene terephthalate) of food packagings to simulated solutions by radiometric method

    International Nuclear Information System (INIS)

    Soares, Eufemia Paez; Saki, Mitiko; Silva, Leonardo G.A.

    2007-01-01

    Brazilian plastic production for food packagings, in recent years, has grown in the same proportion as food consumption. Considering that the plastic manufacturing involves catalytic processes and the use of additives, when the foods are in direct contact with these materials, the components present in plastics may migrate to the food. The Brazilian Health Surveillance Agency (ANVISA) has established boundary-values of migrants as well as procedures to evaluate migration of elements and substances from plastic packaging to food. In this study elemental composition of poly (ethylene terephthalate) - PET - packaging and results of elemental migration were obtained. Instrumental Neutron Activation Analysis (INAA) was used to determine elemental concentrations in PET packagings and the radiometric method was applied for elemental migration determination. This radiometric method consisted of irradiating the PET samples with neutrons, followed by migration exposition and radioactivity measurement in food-simulated solution. Experimental conditions used for migration were 10 days exposure period at 40 deg C. Migration was evaluated for soft drink, juice and water PET packaging. The analytical results indicated that PET packagings contain Co and Sb and those elements are transferred to the simulated solutions. However, these migration results were lower than the maximum tolerance values established by ANVISA. The migration detection limits also indicated high sensitivity of the radiometric method. (author)

  14. Rheological, mechanical and morphological properties of poly(methyl methacrylate/poly(ethylene terephthalate blend with dual reactive interfacial compatibilization

    Directory of Open Access Journals (Sweden)

    Juciklécia da Silva Reinaldo

    2015-10-01

    Full Text Available Abstract In this work, the rheological, mechanical and morphological behavior of immiscible blend poly (methyl methacrylate with elastomeric particles (PMMAelast and post-consumer poly (ethylene terephthalate (PET with and without the use of the interfacial compatibilizer poly (methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate (MGE was studied. The significant increase in torque presented in rheological analyses has shown a indication of chemical reactions between the epoxy group of MGE with end groups of PET chains and also with the elastomeric phase of PMMAelast. The increased concentration of PET yielded an increase in maximum strength and elasticity modulus and a decrease in elongation at break. The PMMAelast/PET binary blend (50/50 wt% and PMMAelast/PET/MGE compatibilized blend (65/30/5 wt% showed pronounced results in elongation at break compared to PMMAelast, whereas, in the first results were due to the evidence of a co-continuous morphological structure and in the second, due to the efficiency of the dual reactive interfacial compatibilization of PMMAelast/PET blends. Scanning electron microscopy (SEM and transmission electron microscopy (TEM analyses showed that PMMAelast/PET/MGE blends exhibit complex phase morphology due to the presence of elastomeric particles in the PMMAelast copolymer and in the use of MGE terpolymer.

  15. Broad-band conductivity and dielectric spectroscopy of composites of multiwalled carbon nanotubes and poly(ethylene terephthalate) around their low percolation threshold

    Science.gov (United States)

    Nuzhnyy, D.; Savinov, M.; Bovtun, V.; Kempa, M.; Petzelt, J.; Mayoral, B.; McNally, T.

    2013-02-01

    Composites of multiwalled carbon nanotubes with poly(ethylene terephthalate) (PET-MWCNT) with up to 3 vol% MWCNTs were prepared and characterized by broad-band AC conductivity and dielectric spectroscopy up to the infrared range using several techniques. A very low electrical percolation threshold of 0.07 vol% MWCNTs was revealed from the low-frequency conductivity plateau as well as from DC conductivity, whose values show the same critical power dependence on MWCNT concentration with the exponent t = 4.3. Above the plateau, the AC conductivity increases with frequency up to the THz range, where it becomes overlapped with the absorption of vibrational modes. The temperature dependence down to ˜5 K has shown semiconductor behaviour with a concentration-independent but weakly temperature-dependent small activation energy of ˜3 meV. The behaviour is compatible with the previously suggested fluctuation-induced tunnelling conductivity model through a thin (˜1 nm) polymer contact layer among the adjacent MWCNTs within percolated clusters. At higher frequencies, deviations from the simple universal conductivity behaviour are observed, indicating some distribution of energy barriers for an electron hopping mechanism.

  16. Mechanical properties of composites based on unsaturated polyester resins obtained by chemical recycling of poly(ethylene terephthalate

    Directory of Open Access Journals (Sweden)

    Marinković Aleksandar D.

    2013-01-01

    Full Text Available Composites based on unsaturated polyester (UPe resins and fumed silica AEROSIL® RY 50, NY 50, RX 50 and NAX 50, as well as graphite, TiO2 or organically modified clay CLOISITE 30B were prepared in order to investigate the influence of reinforcing agents on the mechanical properties of composites. Unsaturated polyester resins were synthesized from maleic anhydride and products of glycolysis, obtained by depolymerization of poly(ethylene terephthalate with dipropylene glycol (UPe1 resin and triethylene glycol (UPe2 resin in the presence of tetrabutyl titanate catalyst. The obtained unsaturated polyesters were characterized by FTIR spectroscopy, acid and hydroxyl values, and their mechanical properties were also examined. Significant increase of the tensile modulus, tensile strength and decrease of the elongation at break was observed for composites prepared after addition of 10 wt.% of graphite or 10 wt.% of TiO2 to the UPe resins, indicating strong interaction between matrix and filler particles. On the other hand, nanocomposites prepared using UPe2 and hydrophobically modified silica nanoparticles showed lower tensile strength and tensile modulus than polymer matrix. The presence of CLOISITE 30B had no significant influence on the mechanical properties of UPe1, while tensile strength and tensile modulus of UPe2 increased after adding 10 wt.% of clay. [Projekat Ministarstva nauke Republike Srbije, br. 172013

  17. Toxic effects of polyethylene terephthalate microparticles and Di(2-ethylhexyl)phthalate on the calanoid copepod, Parvocalanus crassirostris.

    Science.gov (United States)

    Heindler, Franz M; Alajmi, Fahad; Huerlimann, Roger; Zeng, Chaoshu; Newman, Stephen J; Vamvounis, George; van Herwerden, Lynne

    2017-07-01

    Large amounts of plastic end up in the oceans every year where they fragment into microplastics over time. During this process, microplastics and their associated plasticizers become available for ingestion by different organisms. This study assessed the effects of microplastics (Polyethylene terephthalate; PET) and one plasticizer (Di(2-ethylhexyl)phthalate; DEHP) on mortality, productivity, population sizes and gene expression of the calanoid copepod Parvocalanus crassirostris. Copepods were exposed to DEHP for 48h to assess toxicity. Adults were very healthy following chemical exposure (up to 5120µg L -1 ), whereas nauplii were severely affected at very low concentrations (48h LC 50 value of 1.04 ng L -1 ). Adults exposed to sub-lethal concentrations of DEHP (0.1-0.3µg L -1 ) or microplastics (10,000-80,000 particles mL -1 ) exhibited substantial reductions in egg production. Populations were exposed to either microplastics or DEHP for 6 days with 18 days of recovery or for 24 days. Populations exposed to microplastics for 24 days significantly depleted in population size (60±4.1%, pplastic and DEHP treatments after 6 days of exposure, but not after 18 days of recovery. Hsp70-like expression showed to be unresponsive to either DEHP or microplastic exposure. Clearly, microplastics and plasticizers pose a serious threat to zooplankton and potentially to higher trophic levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. PROJECT BASED TASK TO IMPROVE THE ENGLISH DEPARTMENT STUDENTS‘ MASTERY IN CRITICAL WRITING

    Directory of Open Access Journals (Sweden)

    Ribut Surjowati

    2017-12-01

    Full Text Available The paper is aimed at describing the students‘ writing improvement in the EFL classroom after the implementation of Project Based Task (PBT was done in writing class of the fourth semester students in FBS-UWKS. For them, writing is difficult and complicated subject, they almost had no idea of what and how to write, which were caused by their lack of motivation and information of how and what they are writing. This research is classroom action research (CAR and the fourth semester students of UWKS were the subjects. Before PBT was implemented, 25% students got 70. It was due to their lack of motivation and anthusiam so that they had no idea of how to write the essay correctly. However, after PBT was implemented, the students‘ anthusiatic was increasing in writing. It is because they were involved in the learning process and designing their own challenging task. There were two cycles implemented and the students‘ writing score was improving significantly in the first cycle and in the second cycle, 81% students‘s passed success indicator. In conclusion, this PBT is a teaching technique which can improve the students‘ writing mastery

  19. Ionic responses rapidly elicited by activation of protein kinase C in quiescent Swiss 3T3 cells

    International Nuclear Information System (INIS)

    Vara, F.; Schneider, J.A.; Rozengurt, E.

    1985-01-01

    Diacylglycerol and phorbol esters activate protein kinase C in intact cells. The authors report here that addition of the synthetic diacylglycerol 1-oleoyl-2-acetylglycerol (OAG) to quiescent cultures of Swiss 3T3 cells caused a marked increase in the rate of ouabain-sensitive 86 Rb + uptake, a measure of the activity of the Na + /K + pump. The effect was dose-dependent and could be detected after 1 min of exposure to the diacylglycerol. OAG stimulated Na + influx via an amiloride-sensitive pathway and increased intracellular pH by 0.15 pH unit. Phorbol 12,13-dibutyrate (PBt 2 ) also enhanced ouabain sensitive 86 Rb + uptake and amiloride-sensitive 22 Na + influx. Prolonged treatment (40 hr) of 3T3 cells with PBt 2 at a saturating dose, which reduces the number of PBt 2 binding sites and protein kinase C activity, abolished the ionic response of the cells to a subsequent addition of either OAG or PBt 2 . They suggest that activation of protein kinase C elicits, either directly or indirectly, enhanced Na + /H + antiport activity, which, in turn, leads to Na + influx, intracellular pH modulation, and stimulation of the Na + /K + pump

  20. Predictive factors for perioperative blood transfusion in neck dissection.

    Science.gov (United States)

    Abu-Ghanem, Sara; Warshavsky, Anton; Carmel, Narin-Nard; Abu-Ghanem, Yasmin; Abergel, Avraham; Fliss, Dan M; Yehuda, Moshe

    2016-04-01

    There is growing interest in reducing the exposure of patients to allogeneic blood transfusions by lowering preoperative cross-matched blood ordering and adopting alternative practices, such as autologous blood donations. Our aim was to investigate the predictors for perioperative blood transfusion (PBT) in head and neck cancer patients undergoing neck dissection (ND). Retrospective cohort study. Retrospective observational study. All patients who underwent ND between January 2011 and August 2014. The primary outcome measure was PBT. Predictors tested included: gender, age, American Society of Anesthesiologists comorbidity score, Charlson comorbidity index, preoperative hemoglobin level, head and neck primary tumor location, tumor and nodal staging, side and laterality of ND, central versus lateral ND, elective ND, preoperative chemotherapy/radiotherapy/I(131) therapy, history of previous ND, other surgical procedures in addition to the ND, bone resection, use and type of reconstruction, and the use of bony free flap reconstruction. Twenty-one preoperative and operative variables were tested for an association with PBT using univariate and multivariate analyses. Multivariate analysis found only the following three predictors to be significantly associated with PBT in patients undergoing ND: low preoperative hemoglobin level, advanced N stage, and concurrent reconstructive surgery. Evaluation of specific risk factors for predicting the need for PBT prior to neck dissection may be helpful in identifying the head and neck cancer patients in whom preoperative ordering of cross-matched blood is required or who could benefit from alternative means, such as preoperative autologous blood donation. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  1. Textured surface boron-doped ZnO transparent conductive oxides on polyethylene terephthalate substrates for Si-based thin film solar cells

    International Nuclear Information System (INIS)

    Chen Xinliang; Lin Quan; Ni Jian; Zhang Dekun; Sun Jian; Zhao Ying; Geng Xinhua

    2011-01-01

    Textured surface boron-doped zinc oxide (ZnO:B) thin films were directly grown via low pressure metal organic chemical vapor deposition (LP-MOCVD) on polyethylene terephthalate (PET) flexible substrates at low temperatures and high-efficiency flexible polymer silicon (Si) based thin film solar cells were obtained. High purity diethylzinc and water vapors were used as source materials, and diborane was used as an n-type dopant gas. P-i-n silicon layers were fabricated at ∼ 398 K by plasma enhanced chemical vapor deposition. These textured surface ZnO:B thin films on PET substrates (PET/ZnO:B) exhibit rough pyramid-like morphology with high transparencies (T ∼ 80%) and excellent electrical properties (Rs ∼ 10 Ω at d ∼ 1500 nm). Finally, the PET/ZnO:B thin films were applied in flexible p-i-n type silicon thin film solar cells (device structure: PET/ZnO:B/p-i-n a-Si:H/Al) with a high conversion efficiency of 6.32% (short-circuit current density J SC = 10.62 mA/cm 2 , open-circuit voltage V OC = 0.93 V and fill factor = 64%).

  2. A Dosimetric Comparison of Breast Radiotherapy Techniques to Treat Locoregional Lymph Nodes Including the Internal Mammary Chain.

    Science.gov (United States)

    Ranger, A; Dunlop, A; Hutchinson, K; Convery, H; Maclennan, M K; Chantler, H; Twyman, N; Rose, C; McQuaid, D; Amos, R A; Griffin, C; deSouza, N M; Donovan, E; Harris, E; Coles, C E; Kirby, A

    2018-06-01

    Radiotherapy target volumes in early breast cancer treatment increasingly include the internal mammary chain (IMC). In order to maximise survival benefits of IMC radiotherapy, doses to the heart and lung should be minimised. This dosimetry study compared the ability of three-dimensional conformal radiotherapy, arc therapy and proton beam therapy (PBT) techniques with and without breath-hold to achieve target volume constraints while minimising dose to organs at risk (OARs). In 14 patients' datasets, seven IMC radiotherapy techniques were compared: wide tangent (WT) three-dimensional conformal radiotherapy, volumetric-modulated arc therapy (VMAT) and PBT, each in voluntary deep inspiratory breath-hold (vDIBH) and free breathing (FB), and tomotherapy in FB only. Target volume coverage and OAR doses were measured for each technique. These were compared using a one-way ANOVA with all pairwise comparisons tested using Bonferroni's multiple comparisons test, with adjusted P-values ≤ 0.05 indicating statistical significance. One hundred per cent of WT(vDIBH), 43% of WT(FB), 100% of VMAT(vDIBH), 86% of VMAT(FB), 100% of tomotherapy FB and 100% of PBT plans in vDIBH and FB passed all mandatory constraints. However, coverage of the IMC with 90% of the prescribed dose was significantly better than all other techniques using VMAT(vDIBH), PBT(vDIBH) and PBT(FB) (mean IMC coverage ± 1 standard deviation = 96.0% ± 4.3, 99.8% ± 0.3 and 99.0% ± 0.2, respectively). The mean heart dose was significantly reduced in vDIBH compared with FB for both the WT (P FB). Simple WT radiotherapy delivered in vDIBH achieves satisfactory coverage of the IMC while meeting heart and lung dose constraints. However, where higher isodose coverage is required, VMAT(vDIBH) is the optimal photon technique. The lowest OAR doses are achieved by PBT, in which the use of vDIBH does not improve dose statistics. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.

  3. Clinical outcomes and toxicity of proton beam therapy for advanced cholangiocarcinoma

    International Nuclear Information System (INIS)

    Makita, Chiyoko; Kikuchi, Yasuhiro; Hareyama, Masato; Murakami, Masao; Fuwa, Nobukazu; Hata, Masaharu; Inoue, Tomio; Nakamura, Tatsuya; Takada, Akinori; Takayama, Kanako; Suzuki, Motohisa; Ishikawa, Yojiro; Azami, Yusuke; Kato, Takahiro; Tsukiyama, Iwao

    2014-01-01

    We examined the efficacy and toxicity of proton beam therapy (PBT) for treating advanced cholangiocarcinoma. The clinical data and outcomes of 28 cholangiocarcinoma patients treated with PBT between January 2009 and August 2011 were retrospectively examined. The Kaplan–Meier method was used to estimate overall survival (OS), progression-free survival (PFS), and local control (LC) rates, and the log-rank test to analyze the effects of different clinical and treatment variables on survival. Acute and late toxicities were assessed using the National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0. The median age of the 17 male and 11 female patients was 71 years (range, 41 to 84 years; intrahepatic/peripheral cholangiocarcinoma, n = 6; hilar cholangiocarcinoma/Klatskin tumor, n = 6; distal extrahepatic cholangiocarcinoma, n = 3; gallbladder cancer, n = 3; local or lymph node recurrence, n = 10; size, 20–175 mm; median 52 mm). The median radiation dose was 68.2 Gy (relative biological effectiveness [RBE]) (range, 50.6 to 80 Gy (RBE)), with delivery of fractions of 2.0 to 3.2 Gy (RBE) daily. The median follow-up duration was 12 months (range, 3 to 29 months). Fifteen patients underwent chemotherapy and 8 patients, palliative biliary stent placement prior to PBT. OS, PFS, and LC rates at 1 year were 49.0%, 29.5%, and 67.7%, respectively. LC was achieved in 6 patients, and was better in patients administered a biologically equivalent dose of 10 (BED10) > 70 Gy compared to those administered < 70 Gy (83.1% vs. 22.2%, respectively, at 1 year). The variables of tumor size and performance status were associated with survival. Late gastrointestinal toxicities grade 2 or greater were observed in 7 patients <12 months after PBT. Cholangitis was observed in 11 patients and 3 patients required stent replacement. Relatively high LC rates after PBT for advanced cholangiocarcinoma can be achieved by delivery of a BED10 > 70 Gy. Gastrointestinal

  4. Predicting Patient-specific Dosimetric Benefits of Proton Therapy for Skull-base Tumors Using a Geometric Knowledge-based Method

    Energy Technology Data Exchange (ETDEWEB)

    Hall, David C.; Trofimov, Alexei V.; Winey, Brian A.; Liebsch, Norbert J.; Paganetti, Harald, E-mail: hpaganetti@mgh.harvard.edu

    2017-04-01

    Purpose: To predict the organ at risk (OAR) dose levels achievable with proton beam therapy (PBT), solely based on the geometric arrangement of the target volume in relation to the OARs. A comparison with an alternative therapy yields a prediction of the patient-specific benefits offered by PBT. This could enable physicians at hospitals without proton capabilities to make a better-informed referral decision or aid patient selection in model-based clinical trials. Methods and Materials: Skull-base tumors were chosen to test the method, owing to their geometric complexity and multitude of nearby OARs. By exploiting the correlations between the dose and distance-to-target in existing PBT plans, the models were independently trained for 6 types of OARs: brainstem, cochlea, optic chiasm, optic nerve, parotid gland, and spinal cord. Once trained, the models could estimate the feasible dose–volume histogram and generalized equivalent uniform dose (gEUD) for OAR structures of new patients. The models were trained using 20 patients and validated using an additional 21 patients. Validation was achieved by comparing the predicted gEUD to that of the actual PBT plan. Results: The predicted and planned gEUD were in good agreement. Considering all OARs, the prediction error was +1.4 ± 5.1 Gy (mean ± standard deviation), and Pearson's correlation coefficient was 93%. By comparing with an intensity modulated photon treatment plan, the model could classify whether an OAR structure would experience a gain, with a sensitivity of 93% (95% confidence interval: 87%-97%) and specificity of 63% (95% confidence interval: 38%-84%). Conclusions: We trained and validated models that could quickly and accurately predict the patient-specific benefits of PBT for skull-base tumors. Similar models could be developed for other tumor sites. Such models will be useful when an estimation of the feasible benefits of PBT is desired but the experience and/or resources required for treatment

  5. Gamma ray induced electrical conductivity in bisphenol-A type epoxy resin and polyethylene terephthalate

    International Nuclear Information System (INIS)

    Maeda, Hideaki; Nakakita, Tsuneo

    1978-01-01

    The insulation materials to support magnets for nuclear fusion reactors are exposed to high energy neutron beam and the gamma ray due to the accompanying induced radio activity through blankets or radiation shields. In such materials, radiation-induced conduction (RIC) is a problem, which occurs due to the charged particles generated in the insulation materials during irradiation. As one of such materials, use of epoxy composite material is expected, but its RIC has been scarcely measured. An approach to measure the wave form of transient current (or electric charge) caused by irradiating the radiation pulses of nano-second order to the materials has been developed. This paper reports the results of having measured RIC in bisphenol-A type epoxy resin at the electric field from 1 x 10 4 to 3 x 10 5 V/cm and γ dose rate from 9 x 10 3 to 9 x 10 5 R/h over the temperature range of -170 deg. C to +110 deg. C. The RIC of polyethylene terephthalate (PET) was also measured in the same regions, whose molecular structure is comparatively similar to the bisphenol-A type epoxy resin, and of which the fundamental processes for RIC have been clarified pretty well. The radiation sources of 4.3 kCi 60 Co of NAIG and 45 kCi 60 Co of JAERI were used. The experimental circuits and the cryostat are described, then as for the results, explanation and discussion are given to the characteristics of induced current, dependence on dose rate and dependence on temperature of RIC conductivity. The process of capturing carrier in deep traps seems to be dominant in the bisphenol-A type epoxy resin, similarly to that of PET. (Wakatsuki, Y.)

  6. Use of plastic waste (poly-ethylene terephthalate) in asphalt concrete mixture as aggregate replacement.

    Science.gov (United States)

    Hassani, Abolfazl; Ganjidoust, Hossein; Maghanaki, Amir Abedin

    2005-08-01

    One of the environmental issues in most regions of Iran is the large number of bottles made from poly-ethylene terephthalate (PET) deposited in domestic wastes and landfills. Due to the high volume of these bottles, more than 1 million m3 landfill space is needed for disposal every year. The purpose of this experimental study was to investigate the possibility of using PET waste in asphalt concrete mixes as aggregate replacement (Plastiphalt) to reduce the environmental effects of PET disposal. For this purpose the mechanical properties of plastiphalt mixes were compared with control samples. This study focused on the parameters of Marshall stability, flow, Marshall quotient (stability-to-flow ratio) and density. The waste PET used in this study was in the form of granules of about 3 mm diameter which would replace (by volume) a portion of the mineral coarse aggregates of an equal size (2.36-4.75 mm). In all prepared mixes the determined 6.6% optimum bitumen content was used. In this investigation, five different percentages of coarse aggregate replacement were used. The results showed that the aggregate replacement of 20% by volume with PET granules would result in a reduction of 2.8% in bulk compacted mix density. The value of flow in the plastiphalt mix was lower than that of the control samples. The results also showed that when PET was used as partial aggregate replacement, the corresponding Marshall stability and Marshall quotient were almost the same as for the control samples. According to most of specification requirement, these results introduce an asphalt mix that has properties that makes it suitable for practical use and furthermore, the recycling of PET for asphalt concrete roads helps alleviate an environmental problem and saves energy.

  7. Wii Fit balance training or progressive balance training in patients with chronic stroke: a randomised controlled trial

    Science.gov (United States)

    Yatar, Gozde Iyigun; Yildirim, Sibel Aksu

    2015-01-01

    [Purpose] The aim of this study was to compare the effects of Wii Fit balance training (WBT) and progressive balance training (PBT) approaches on balance functions, balance confidence, and activities of daily living in chronic stroke patients. [Subjects] A total of 30 patients were randomized into the WBT (n=15) and PBT (n=15) groups. [Methods] All of the subjects received exercise training based on a neurodevelopemental approach in addition to either Wii Fit or progressive balance training for total of 1 hour a day, 3 days per week for 4 weeks. Primary measurements were static balance function measured with a Wii Balance Board and dynamic balance function assessed with the Berg Balance Scale, Timed Up and Go test, Dynamic Gait Index, and Functional Reach Test. Secondary measures were balance confidence assessed with the Activities-specific Balance Confidence scale and activities of daily living evaluated with the Frenchay Activity Index. [Results] There was not remarkable difference between the two treatments in dynamic balance functions, balance confidence, and activities of daily living. [Conclusion] Although both of the approaches were found to be effective in improving the balance functions, balance confidence, and activities of daily living, neither of them were more preferable than the other for the treatment of balance in patients with chronic stroke. PMID:25995576

  8. Wii Fit balance training or progressive balance training in patients with chronic stroke: a randomised controlled trial.

    Science.gov (United States)

    Yatar, Gozde Iyigun; Yildirim, Sibel Aksu

    2015-04-01

    [Purpose] The aim of this study was to compare the effects of Wii Fit balance training (WBT) and progressive balance training (PBT) approaches on balance functions, balance confidence, and activities of daily living in chronic stroke patients. [Subjects] A total of 30 patients were randomized into the WBT (n=15) and PBT (n=15) groups. [Methods] All of the subjects received exercise training based on a neurodevelopemental approach in addition to either Wii Fit or progressive balance training for total of 1 hour a day, 3 days per week for 4 weeks. Primary measurements were static balance function measured with a Wii Balance Board and dynamic balance function assessed with the Berg Balance Scale, Timed Up and Go test, Dynamic Gait Index, and Functional Reach Test. Secondary measures were balance confidence assessed with the Activities-specific Balance Confidence scale and activities of daily living evaluated with the Frenchay Activity Index. [Results] There was not remarkable difference between the two treatments in dynamic balance functions, balance confidence, and activities of daily living. [Conclusion] Although both of the approaches were found to be effective in improving the balance functions, balance confidence, and activities of daily living, neither of them were more preferable than the other for the treatment of balance in patients with chronic stroke.

  9. Deformation Behaviour During Cold Drawing of Nanocomposites Based on Single Wall Carbon Nanotubes and Poly(ether ester) Copolymers

    International Nuclear Information System (INIS)

    Hernandez, J.; Garcia-Gutierrez, M.; Nogales, A.; Rueda, D.; Sanz, A.; Sics, I.; Hsiao, B.; Roslaniec, Z.; Broza, G.; Ezquerra, T.

    2007-01-01

    Relationships between the macroscopic deformation behaviour and microstructure of a pure (PBT-b-PTMO) block copolymer and a polymer nanocomposite (PBT-b-PTMO + 0.2 wt% SWCNT) were investigated by simultaneous small- and wide-angle X-ray scattering (SAXS and WAXS) during tensile deformation using synchrotron radiation. The Young's modulus was found to be 15% higher for the nanocomposite than for the pure block copolymer as well as the yield strength, while the elongation-to-break was less than a half. This different behaviour can be explained by taking into account the different structural features revealed by SAXS and WAXS and thus considering that SWCNT act as anchors in the nanocomposite, sharing the applied stress with the PBT crystals and partially preventing the flexible, non-crystallisable PTMO chains to elongate

  10. Radiation induced graft copolymerization of n-butyl acrylate onto poly(ethylene terephthalate) (PET) films and thermal properties of the obtained graft copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Ping Xiang [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Wang Mozhen, E-mail: pstwmz@ustc.edu.c [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Ge Xuewu, E-mail: xwge@ustc.edu.c [CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2011-05-15

    n-Butyl acrylate (BA) was successfully grafted onto poly(ethylene terephthalate) (PET) film using simultaneous radiation induced graft copolymerization with gamma rays. When BA concentration ranges from 20% to 30%, the Degree of Grafting (DG), measured by gravimetry and {sup 1}H NMR, increases with the monomer concentration and absorbed dose, but decreases with dose rate from 0.83 to 2.53 kGy/h. The maximum DG can reach up to 22.1%. The thermal transition temperatures such as glass-transition temperature (T{sub g}) and cold-crystallization temperature (T{sub cc}) of PET in grafted films were little different from those in original PET film, indicating that microphase separation occurred between PBA side chains and PET backbone. This work implied that if PET/elastomers (e.g., acrylate rubber) blends are radiated by high energy gamma rays under a certain condition, PET-g-polyacrylate copolymer may be produced in-situ, which will improve the compatibility between PET and the elastomers so as to improve the integral mechanical properties of PET based engineering plastic.

  11. Beyond Survival - Cognition after Pediatric Brain Tumor

    OpenAIRE

    Tonning Olsson, Ingrid

    2015-01-01

    Background: Pediatric Brain Tumor (PBT) survivors suffer from cognitive sequelae, especially within the areas of cognitive tempo, attention, executive function and memory. The cognitive difficulties are often accentuated over the years, but knowledge about the long term trajectory is still scarce. Aim: The aim of this thesis was to examine cognitive sequelae after Pediatric Brain Tumor (PBT); risk factors, common difficulties, development and neuroimaging correlates. Methods: In study...

  12. Study on the leaching of phthalates from polyethylene terephthalate bottles into mineral water

    International Nuclear Information System (INIS)

    Keresztes, Szilvia; Tatár, Enikő; Czégény, Zsuzsanna; Záray, Gyula; Mihucz, Victor G.

    2013-01-01

    Carbonated and non-carbonated mineral water samples bottled in 0.5-L, 1.5-L and 2.0-L polyethylene terephthalate (PET) containers belonging to three different water brands commercialized in Hungary were studied in order to determine their phthalate content by gas chromatography–mass spectrometry. Among the six investigated phthalates, diisobutyl phthalate, di-n-butyl-phthalate, benzyl-butyl phthalate and di(2-ethyl-hexyl) phthalate (DEHP) were determined in non-carbonated samples as follows: −1 –0.2 μg L −1 , −1 –0.8 μg L −1 , −1 –0.1 μg L −1 and −1 –1.7 μg L −1 , respectively. Any of the above-mentioned phthalate esters could be detected in carbonated mineral water samples. DEHP was the most abundant phthalate in the investigated samples. It could be detected after 44 days of storage at 22 °C and its leaching was the most pronounced when samples were stored over 1200 days. Mineral water purchased in PET bottles of 0.5 L had the highest phthalate concentrations compared to those obtained for waters of the identical brand bottled in 1.5-L or 2.0-L PET containers due to the higher surface/volume ratio. No clear trend could be established for phthalate leaching when water samples were kept at higher temperatures (max. 60 °C) showing improper storage conditions. Phthalate determination by pyrolysis–gas chromatography/mass spectrometric measurements in the plastic material as well as in the aqueous phase proved the importance of the quality of PET raw material used for the production of the pre-form (virgin vs. polymer containing recycled PET). - Highlights: • DEHP — most abundant phthalate in bottled mineral water • Temperature and contact surface area influence phthalate leaching. • Phthalate occurrence depends on virgin vs. polymer containing recycled PET. • pH (carbonated vs. non-carbonated samples) affects hydrolysis of phthalate esters

  13. Antimicrobial coatings on polyethylene terephthalate based on curcumin/cyclodextrin complex embedded in a multilayer polyelectrolyte architecture.

    Science.gov (United States)

    Shlar, Ilya; Droby, Samir; Rodov, Victor

    2018-04-01

    Bacterial contamination is a growing concern worldwide. The aim of this work was to develop an antimicrobial coating based on curcumin-cyclodextrin inclusion complex and using polyethylene terephthalate (PET) film as a support matrix. After a pre-treatment aimed to provide sufficient electric charge to the PET surface, it was electrostatically coated with repeated multilayers comprising alternately deposited positively-charged poly-l-lysine (PLL) and negatively-charged poly-l-glutamic acid (PLGA) and carboxymethyl-β-cyclodextrin (CMBCD). The coatings had an architecture (PLL-PLGA) 6 -(PLL-PLGA-PLL-CMBCD) n , with the number of repeated multilayers n varying from 5 to 20. The CMBCD molecules were either covalently cross-linked using carbodiimide crosslinker chemistry or left unbound. The surface morphology, structure and elemental composition of the coatings were analysed by scanning electron microscopy and energy dispersive x-ray spectroscopy. To impart antimicrobial properties to the coatings they were loaded with a natural phenolic compound curcumin forming inclusion complexes with β-cyclodextrin. The non-cross-linked coatings showed bactericidal activity towards Escherichia coli in the dark, and this activity was further enhanced upon illumination with white light. Curcumin was released from the non-cross-linked coatings into an aqueous medium in the form of cyclodextrin inclusion complex. After the cross-linking, the coating lost its dark antimicrobial activity but retained the photodynamic properties. Stabilized cross-linked curcumin-loaded coatings can serve a basis for developing photoactivated antimicrobial surfaces controlling bacterial contamination and spread. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Gas barrier properties of titanium oxynitride films deposited on polyethylene terephthalate substrates by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lin, M.-C. [Department of Materials Science and Engineering, National ChungHsin University, 250, Kuo-Kung Road, 40227 Taichung, Taiwan (China); Chang, L.-S. [Department of Materials Science and Engineering, National ChungHsin University, 250, Kuo-Kung Road, 40227 Taichung, Taiwan (China)], E-mail: lschang@dragon.nchu.edu.tw; Lin, H.C. [Department of Materials Science and Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, 106 Taipei, Taiwan (China)

    2008-03-30

    Titanium oxynitride (TiN{sub x}O{sub y}) films were deposited on polyethylene terephthalate (PET) substrates by means of a reactive radio frequency (RF) magnetron sputtering system in which the power density and substrate bias were the varied parameters. Experimental results show that the deposited TiN{sub x}O{sub y} films exhibited an amorphous or a columnar structure with fine crystalline dependent on power density. The deposition rate increases significantly in conjunction as the power density increases from 2 W/cm{sup 2} to 7 W/cm{sup 2}. The maximum deposition rate occurs, as the substrate bias is -40 V at a certain power densities chosen in this study. The film's roughness slightly decreases with increasing substrate bias. The TiN{sub x}O{sub y} films deposited at power densities above 4 W/cm{sup 2} show a steady Ti:N:O ratio of about 1:1:0.8. The water vapor and oxygen transmission rates of the TiN{sub x}O{sub y} films reach values as low as 0.98 g/m{sup 2}-day-atm and 0.60 cm{sup 3}/m{sup 2}-day-atm which are about 6 and 47 times lower than those of the uncoated PET substrate, respectively. These transmission rates are comparable to those of DLC, carbon-based and Al{sub 2}O{sub 3} barrier films. Therefore, TiN{sub x}O{sub y} films are potential candidates to be used as a gas permeation barrier for PET substrate.

  15. Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite

    Science.gov (United States)

    Jiang, Jia; Wan, Fang; Yang, Jianjun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Zhang, Peng; Chen, Jun; Zhou, Liang; Chen, Shiyi

    2014-01-01

    Background Application of artificial ligament in anterior cruciate ligament reconstruction is one of the research focuses of sports medicine but the biological tendon–bone healing still remains a problem. The preliminary study of hydroxyapatite (HAP) coating on the polyethylene terephthalate (PET) surface could effectively induce the osteoblast differentiation, but the tendon–bone healing was still not stable. As a green synthesis process, the biomimetic mineralization can simulate the natural bone growth in vitro and in vivo. Methods HAP crystals were grown under the guide of silk fibroin (SF) PET surface by biomimetic route. Several techniques including scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy were utilized for proving the introduction of both SF and HAP. The viability and osseointegration of bone marrow stromal cells on the surface of three kinds of ligament, including PET group (non-coating group), PET+SF group (SF-coating group), and PET+SF+HAP group (combined HAP- and SF-coating group), were analyzed by CCK-8 assays and alkaline phosphatase (ALP) detection. Seventy-two mature male New Zealand rabbits were randomly divided into three groups. Among them, 36 rabbits were sacrificed for mechanical testing, and histological examination for the others. Results The SF and SF+HAP were successfully coated on the surface of PET fiber. The CCK-8 assay showed that the cell proliferation on PET+SF+HAP group was better than the other two groups from 24 to 120 hours. After 14 days of culture, the cells in the PET+SF+HAP group delivered higher levels of ALP than the other two groups. After 3 days of culture, the expression level of integrin β1 in the PET+SF+HAP group and PET+SF group were higher than in the PET group. The mean load to failure and the stiffness value of the PET+SF+HAP group were both higher than the other two groups. Hematoxylin and

  16. Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite.

    Science.gov (United States)

    Jiang, Jia; Wan, Fang; Yang, Jianjun; Hao, Wei; Wang, Yaxian; Yao, Jinrong; Shao, Zhengzhong; Zhang, Peng; Chen, Jun; Zhou, Liang; Chen, Shiyi

    2014-01-01

    Application of artificial ligament in anterior cruciate ligament reconstruction is one of the research focuses of sports medicine but the biological tendon-bone healing still remains a problem. The preliminary study of hydroxyapatite (HAP) coating on the polyethylene terephthalate (PET) surface could effectively induce the osteoblast differentiation, but the tendon-bone healing was still not stable. As a green synthesis process, the biomimetic mineralization can simulate the natural bone growth in vitro and in vivo. HAP crystals were grown under the guide of silk fibroin (SF) PET surface by biomimetic route. Several techniques including scanning electron microscopy, attenuated total reflectance Fourier transform infrared spectroscopy, X-ray diffraction, and energy-dispersive X-ray spectroscopy were utilized for proving the introduction of both SF and HAP. The viability and osseointegration of bone marrow stromal cells on the surface of three kinds of ligament, including PET group (non-coating group), PET+SF group (SF-coating group), and PET+SF+HAP group (combined HAP- and SF-coating group), were analyzed by CCK-8 assays and alkaline phosphatase (ALP) detection. Seventy-two mature male New Zealand rabbits were randomly divided into three groups. Among them, 36 rabbits were sacrificed for mechanical testing, and histological examination for the others. The SF and SF+HAP were successfully coated on the surface of PET fiber. The CCK-8 assay showed that the cell proliferation on PET+SF+HAP group was better than the other two groups from 24 to 120 hours. After 14 days of culture, the cells in the PET+SF+HAP group delivered higher levels of ALP than the other two groups. After 3 days of culture, the expression level of integrin β1 in the PET+SF+HAP group and PET+SF group were higher than in the PET group. The mean load to failure and the stiffness value of the PET+SF+HAP group were both higher than the other two groups. Hematoxylin and eosin staining showed that new bone

  17. Development of Iron-Chelating Poly(ethylene terephthalate) Packaging for Inhibiting Lipid Oxidation in Oil-in-Water Emulsions.

    Science.gov (United States)

    Johnson, David R; Tian, Fang; Roman, Maxine J; Decker, Eric A; Goddard, Julie M

    2015-05-27

    Foods such as bulk oils, salad dressings, and nutritionally fortified beverages that are susceptible to oxidative degradation are often packaged in poly(ethylene terephthalate) (PET) bottles with metal chelators added to the food to maintain product quality. In the present work, a metal-chelating active packaging material is designed and characterized, in which poly(hydroxamic acid) (PHA) metal-chelating moieties were grafted from the surface of PET. Biomimetic PHA groups were grafted in a two-step UV-initiated process without the use of a photoinitiator. Surface characterization of the films by attenuated total reflective Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM) suggested successful grafting and conversion of poly(hydroxyethyl acrylate) (PHEA) to PHA chelating moieties from the surface of PET. Colorimetric (ferrozine) and inductively coupled plasma mass spectroscopy (ICP-MS) assays demonstrated the ability of PET-g-PHA to chelate iron in a low-pH (3.0) environment containing a competitive metal chelator (citric acid). Lipid oxidation studies demonstrated the antioxidant activity of PET-g-PHA films in inhibiting iron-promoted oxidation in an acidified oil-in-water (O/W) emulsion model system (pH 3.0). Particle size and ζ-potential analysis indicated that the addition of PET-g-PHA films did not affect the physical stability of the emulsion system. This work suggests that biomimetic chelating moieties can be grafted from PET and effectively inhibit iron-promoted degradation reactions, enabling removal of metal-chelating additives from product formulations.

  18. Changes in Cerebral Partial Oxygen Pressure and Cerebrovascular Reactivity During Intracranial Pressure Plateau Waves.

    Science.gov (United States)

    Lang, Erhard W; Kasprowicz, Magdalena; Smielewski, Peter; Pickard, John; Czosnyka, Marek

    2015-08-01

    Plateau waves in intracranial pressure (ICP) are frequently recorded in neuro intensive care and are not yet fully understood. To further investigate this phenomenon, we analyzed partial pressure of cerebral oxygen (pbtO2) and a moving correlation coefficient between ICP and mean arterial blood pressure (ABP), called PRx, along with the cerebral oxygen reactivity index (ORx), which is a moving correlation coefficient between cerebral perfusion pressure (CPP) and pbtO2 in an observational study. We analyzed 55 plateau waves in 20 patients after severe traumatic brain injury. We calculated ABP, ABP pulse amplitude (ampABP), ICP, CPP, pbtO2, heart rate (HR), ICP pulse amplitude (ampICP), PRx, and ORx, before, during, and after each plateau wave. The analysis of variance with Bonferroni post hoc test was used to compare the differences in the variables before, during, and after the plateau wave. We considered all plateau waves, even in the same patient, independent because they are separated by long intervals. We found increases for ICP and ampICP according to our operational definitions for plateau waves. PRx increased significantly (p = 0.00026), CPP (p pressure remains stable in ICP plateau waves, while cerebral autoregulatory indices show distinct changes, which indicate cerebrovascular reactivity impairment at the top of the wave. PbtO2 decreases during the waves and may show a slight overshoot after normalization. We assume that this might be due to different latencies of the cerebral blood flow and oxygen level control mechanisms. Other factors may include baseline conditions, such as pre-plateau wave cerebrovascular reactivity or pbtO2 levels, which differ between studies.

  19. A phase I study on combined therapy with proton-beam radiotherapy and in situ tumor vaccination for locally advanced recurrent hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Abei, Masato; Mizumoto, Masashi; Sakae, Takeji; Sakurai, Hideyuki; Zenkoh, Junko; Ariungerel, Gerelchuluun; Sogo, Yu; Ito, Atsuo; Ohno, Tadao; Tsuboi, Koji; Okumura, Toshiyuki; Fukuda, Kuniaki; Hashimoto, Takayuki; Araki, Masahiro; Ishige, Kazunori; Hyodo, Ichinosuke; Kanemoto, Ayae; Numajiri, Haruko

    2013-01-01

    Proton-beam radiotherapy (PBT) has been shown to be effective to hepatocellular carcinoma (HCC) as a nonsurgical local treatment option. However, HCC still remains as one of the most difficult cancers to be cured because of frequent recurrences. Thus, methods to inhibit the recurrence need to be explored. To prevent the HCC recurrence, we here report on a prospective phase I study of ‘in situ’ tumor vaccination using CalTUMP, a newly developed immunoadjuvant consisting of BCG extract bound to hydroxyapatite and microparticulated tuberculin, following local PBT for HCC. Patients with locally advanced recurrent HCC, which had been heavily pretreated with various treatments, were enrolled. PBT was performed with the conventional method to the target HCC. Subsequently, CalTUMP was injected into the same irradiated-tumor three times at one-week intervals. Three dose-levels of CalTUMP (1/10, 1/3, and 1/1) were administered to 3 patients each. Vital signs, blood samples, ultrasound, and computed tomographic scans were monitored to evaluate the safety. Three intratumoral injections of CalTUMP following PBT (median dose: 72.6 GyE) were accomplished in 9 patients. Transient low-grade fever and minor laboratory changes were observed in 7 patients after CalTUMP injections. No other treatment-related adverse events were observed. Median progression-free survival was 6.0 months (range: 2.1-14.2) and 4 patients were progression-free for more than 1 year. Intratumoral injection of CalTUMP following PBT was feasible and safe in patients with heavily pre-treated HCC. Further clinical studies to evaluate the efficacy of this in situ tumor vaccination are warranted

  20. Proton beam radiotherapy as part of comprehensive regional nodal irradiation for locally advanced breast cancer.

    Science.gov (United States)

    Verma, Vivek; Iftekaruddin, Zaid; Badar, Nida; Hartsell, William; Han-Chih Chang, John; Gondi, Vinai; Pankuch, Mark; Gao, Ming; Schmidt, Stacey; Kaplan, Darren; McGee, Lisa

    2017-05-01

    This study evaluates acute toxicity outcomes in breast cancer patients treated with adjuvant proton beam therapy (PBT). From 2011 to 2016, 91 patients (93 cancers) were treated with adjuvant PBT targeting the intact breast/chest wall and comprehensive regional nodes including the axilla, supraclavicular fossa, and internal mammary lymph nodes. Toxicity was recorded weekly during treatment, one month following treatment, and then every 6months according to the Common Terminology Criteria for Adverse Events (CTCAE) v4.0. Charts were retrospectively reviewed to verify toxicities, patient parameters, disease and treatment characteristics, and disease-related outcomes. Median follow-up was 15.5months. Median PBT dose was 50.4 Gray relative biological effectiveness (GyRBE), with subsequent boost as clinically indicated (N=61, median 10 GyRBE). Chemotherapy, when administered, was given adjuvantly (N=42) or neoadjuvantly (N=46). Grades 1, 2, and 3 dermatitis occurred in 23%, 72%, and 5%, respectively. Eight percent required treatment breaks owing to dermatitis. Median time to resolution of dermatitis was 32days. Grades 1, 2, and 3 esophagitis developed in 31%, 33%, and 0%, respectively. PBT displays acceptable toxicity in the setting of comprehensive regional nodal irradiation. Copyright © 2017. Published by Elsevier B.V.