WorldWideScience

Sample records for terbium tellurides

  1. Elastic properties of terbium

    DEFF Research Database (Denmark)

    Spichkin, Y.I.; Bohr, Jakob; Tishin, A.M.

    1996-01-01

    The temperature dependence of the Young modulus along the crystallographic axes b and c (E(b) and E(c)), and the internal friction of a terbium single crystal have been measured. At 4.2 K, E(b) and E(c) are equal to 38 and 84.5 GPa, respectively. The lattice part of the Young modulus and the Debye...... temperature has been calculated. The origin of the Young modulus anomalies arising at the transition to the magnetically ordered state is discussed....

  2. Hafnium germanium telluride

    Science.gov (United States)

    Jang, Gyung-Joo; Yun, Hoseop

    2008-01-01

    The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetra­hedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps. PMID:21202163

  3. Hafnium germanium telluride

    Directory of Open Access Journals (Sweden)

    Hoseop Yun

    2008-05-01

    Full Text Available The title hafnium germanium telluride, HfGeTe4, has been synthesized by the use of a halide flux and structurally characterized by X-ray diffraction. HfGeTe4 is isostructural with stoichiometric ZrGeTe4 and the Hf site in this compound is also fully occupied. The crystal structure of HfGeTe4 adopts a two-dimensional layered structure, each layer being composed of two unique one-dimensional chains of face-sharing Hf-centered bicapped trigonal prisms and corner-sharing Ge-centered tetrahedra. These layers stack on top of each other to complete the three-dimensional structure with undulating van der Waals gaps.

  4. Critical scattering of neutrons from terbium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Dietrich, O.W.; Marshall, W.

    1968-01-01

    The inelasticity of the critical scattering of neutrons in terbium has been measured above the Neél temperature at the (0, 0, 2−Q) satellite position. The results show that dynamic slowing down of the fluctuations does occur in a second‐order phase transition in agreement with the general theory...

  5. Semiconductor composition containing iron, dysprosium, and terbium

    Energy Technology Data Exchange (ETDEWEB)

    Pooser, Raphael C.; Lawrie, Benjamin J.; Baddorf, Arthur P.; Malasi, Abhinav; Taz, Humaira; Farah, Annettee E.; Kalyanaraman, Ramakrishnan; Duscher, Gerd Josef Mansfred; Patel, Maulik K.

    2017-09-26

    An amorphous semiconductor composition includes 1 to 70 atomic percent iron, 15 to 65 atomic percent dysprosium, 15 to 35 atomic percent terbium, balance X, wherein X is at least one of an oxidizing element and a reducing element. The composition has an essentially amorphous microstructure, an optical transmittance of at least 50% in at least the visible spectrum and semiconductor electrical properties.

  6. Cadmium telluride quantum dots advances and applications

    CERN Document Server

    Donegan, John

    2013-01-01

    Optical Properties of Bulk and Nanocrystalline Cadmium Telluride, Núñez Fernández and M.I. VasilevskiyAqueous Synthesis of Colloidal CdTe Nanocrystals, V. Lesnyak, N. Gaponik, and A. EychmüllerAssemblies of Thiol-Capped CdTe Nanocrystals, N. GaponikFörster Resonant Energy Transfer in CdTe Nanocrystal Quantum Dot Structures, M. Lunz and A.L. BradleyEmission of CdTe Nanocrystals Coupled to Microcavities, Y.P. Rakovich and J.F. DoneganBiological Applications of Cadmium Telluride Semiconductor Quantum Dots, A. Le Cign

  7. Raman spectroscopy study of the doping effect of the encapsulated terbium halogenides on single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamova, M.V.; Kramberger, C.; Mittelberger, A. [University of Vienna, Faculty of Physics, Vienna (Austria)

    2017-04-15

    In the present work, the doping effect of terbium chloride, terbium bromide, and terbium iodide on single-walled carbon nanotubes (SWCNTs) was compared by Raman spectroscopy. A precise investigation of the doping-induced alterations of the Raman modes of the filled SWCNTs was conducted. The shifts of the components of the Raman modes and modification of their profiles allowed concluding that the inserted terbium halogenides have acceptor doping effect on the SWCNTs, and the doping efficiency increases in the line with terbium iodide, terbium bromide, and terbium chloride. (orig.)

  8. Magnetocaloric effect of thin Terbium films

    Science.gov (United States)

    Mello, V. D.; Anselmo, D. H. A. L.; Vasconcelos, M. S.; Almeida, N. S.

    2017-12-01

    We report a theoretical study of the magnetocaloric effect of Terbium (Tb) thin films due to finite size and surface effects in the helimagnetic phase, corresponding to a temperature range from TC=219 K to TN=231 K, for external fields of the order of kOe. For a Tb thin film of 6 monolayers submitted to an applied field (ΔH =30 kOe, ΔH =50 kOe and ΔH = 70 kOe) we report a significative change in adiabatic temperature, ΔT / ΔH , near the Néel temperature, of the order ten times higher than that observed for Tb bulk. On the other hand, for small values of the magnetic field, large thickness effects are found. For external field strength around few kOe, we have found that the thermal caloric efficiency increases remarkably for ultrathin films. For an ultrathin film with 6 monolayers, we have found ΔT / ΔH = 43 K/T while for thicker films, with 20 monolayers, ΔT / ΔH = 22 K/T. Our results suggest that thin films of Tb are a promising material for magnetocaloric effect devices for applications at intermediate temperatures.

  9. Femtosecond XUV spectroscopy of gadolinium and terbium

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Robert; Frietsch, Bjoern; Doebrich, Kristian; Teichmann, Martin; Gahl, Cornelius; Noack, Frank [Max-Born-Institute, Berlin (Germany); Schwarzkopf, Olaf; Wernet, Philippe [Helmholtz-Zentrum fuer Materialien und Energie (BESSY II), Berlin (Germany); Weinelt, Martin [Max-Born-Institute, Berlin (Germany); Fachbereich Physik, Freie Universitaet, Berlin (Germany)

    2011-07-01

    We present recent results of time-resolved IR-pump-XUV-probe experiments on the ultrafast demagnetization of thin films of Gadolinium(0001) and Terbium(0001) on Tungsten(110). The experiments are the first to be done using a newly developed high-order harmonics (HHG) XUV beamline at the MBI. The beamline delivers monochromated XUV pulses of approximately 150 fs duration with a photon energy resolution of up to 150 meV. Following excitation by intense femtosecond infrared (IR) pulses, photoemission with 35 eV photons allows us to directly probe the 4f electrons and their interaction with the valence band, both in the bulk and at the surface, to follow the ultrafast magnetization dynamics in the Lanthanide metals. As signatures of ultrafast demagnetization of the metal by the IR pulse, we see for the first time, rapid strong reduction of the exchange splitting in the valence band. This is followed by a slower demagnetization due to the spin-lattice interaction.

  10. Green fluorescence of terbium ions in lithium fluoroborate glasses ...

    Indian Academy of Sciences (India)

    Glasses; terbium ion; oscillator strengths; fluorescence; lifetimes; fibre lasers. 1. Introduction. Today glasses are most favourable engineering materials for abundant applications due to the wide ability of property altering by compositional modifications. The considerable examination of glass science to achieve required ...

  11. Green fluorescence of terbium ions in lithium fluoroborate glasses ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Green fluorescence of terbium ions in lithium fluoroborate glasses for fibre lasers and display devices. G R DILLIP C MADHUKAR REDDY M RAJESH SHIVANAND CHAURASIA B DEVA PRASAD RAJU S W JOO. Volume 39 Issue 3 June 2016 pp 711-717 ...

  12. Neutronographic investigations of lattice dynamics of mercury telluride

    Energy Technology Data Exchange (ETDEWEB)

    Kepa, H.; Giebultowicz, T. (Warsaw Univ. (Poland). Inst. Fizyki Doswiadczalnej)

    1981-01-01

    The lattice dynamics of mercury telluride was investigated. The relation of acustics phonons dispersion was studied by neutron diffraction. The measurements of the relation were performed and the results are presented.

  13. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  14. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  15. Terahertz Cherenkov radiation from ultrafast magnetization in terbium gallium garnet

    Science.gov (United States)

    Gorelov, S. D.; Mashkovich, E. A.; Tsarev, M. V.; Bakunov, M. I.

    2013-12-01

    We report an experimental observation of terahertz Cherenkov radiation from a moving magnetic moment produced in terbium gallium garnet by a circularly polarized femtosecond laser pulse via the inverse Faraday effect. Contrary to some existing theoretical predictions, the polarity of the observed radiation unambiguously demonstrates the paramagnetic, rather than diamagnetic, nature of the ultrafast inverse Faraday effect. From measurements of the radiation field, the Verdet constant in the subpicosecond regime is ˜3-10 times smaller than its table quasistatic value.

  16. Studies of antimony telluride and copper telluride films electrodeposition from choline chloride containing ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Catrangiu, Adriana-Simona; Sin, Ion [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Prioteasa, Paula [INCDIE ICPE-Advanced Research, Splaiul Unirii 313, Bucharest (Romania); Cotarta, Adina [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Cojocaru, Anca, E-mail: a_cojocaru@chim.upb.ro [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania); Anicai, Liana [Center of Surface Science and Nanotechnology, University POLITEHNICA of Bucharest, Splaiul Independentei 313, Bucharest (Romania); Visan, Teodor [Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, POLITEHNICA University of Bucharest, Calea Grivitei 132, Bucharest (Romania)

    2016-07-29

    Cyclic voltammetry and electrochemical impedance spectroscopy were used to investigate the deposition of antimony telluride or copper telluride from ionic liquid consisting in mixture of choline chloride with oxalic acid. In addition, the cathodic process during copper telluride formation was studied in the mixture of choline chloride with ethylene glycol. The results indicate that the Pt electrode is first covered with a Te layer, and then the more negative polarisation leads to the deposition of Sb{sub x}Te{sub y} or Cu{sub x}Te{sub y} semiconductor compounds. Thin films were deposited on copper and carbon steel at 60–70 °C and were characterised by scanning electron microscopy, energy X-ray dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Their stoichiometry depends on the bath composition and applied potential. EDS and XRD patterns indicate the possible synthesis of stoichiometric Sb{sub 2}Te{sub 3} phase and Cu{sub 2}Te, Cu{sub 5}Te{sub 3}, and Cu{sub 2.8}Te{sub 2} phases, respectively, by controlling the ratio of ion concentrations in ionic liquid electrolytes and deposition potential. - Highlights: • Sb{sub x}Te{sub y} and Cu{sub x}Te{sub y} films electrodeposited from choline-chloride-based ionic liquids. • The stoichiometry of film depends on the bath composition and deposition potential. • Sb{sub 2}Te{sub 3}, Cu{sub 2}Te, Cu{sub 5}Te{sub 3}, Cu{sub 2.8}Te{sub 2} phases were identified in X-ray diffraction patterns.

  17. Synthesis and evaluation of lead telluride/bismuth antimony telluride nanocomposites for thermoelectric applications

    Science.gov (United States)

    Ganguly, Shreyashi; Zhou, Chen; Morelli, Donald; Sakamoto, Jeffrey; Uher, Ctirad; Brock, Stephanie L.

    2011-12-01

    Heterogeneous nanocomposites of p-type bismuth antimony telluride (Bi 2- xSb xTe 3) with lead telluride (PbTe) nanoinclusions have been prepared by an incipient wetness impregnation approach. The Seebeck coefficient, electrical resistivity, thermal conductivity and Hall coefficient were measured from 80 to 380 K in order to investigate the influence of PbTe nanoparticles on the thermoelectric performance of nanocomposites. The Seebeck coefficients and electrical resistivities of nanocomposites decrease with increasing PbTe nanoparticle concentration due to an increased hole concentration. The lattice thermal conductivity decreases with the addition of PbTe nanoparticles but the total thermal conductivity increases due to the increased electronic thermal conductivity. We conclude that the presence of nanosized PbTe in the bulk Bi 2- xSb xTe 3 matrix results in a collateral doping effect, which dominates transport properties. This study underscores the need for immiscible systems to achieve the decreased thermal transport properties possible from nanostructuring without compromising the electronic properties.

  18. Properties of Nitrogen-Doped Zinc Telluride Films for Back Contact to Cadmium Telluride Photovoltaics

    Science.gov (United States)

    Shimpi, Tushar M.; Drayton, Jennifer; Swanson, Drew E.; Sampath, Walajabad S.

    2017-08-01

    Zinc telluride (ZnTe) films have been deposited onto uncoated glass superstrates by reactive radiofrequency (RF) sputtering with different amounts of nitrogen introduced into the process gas, and the structural and electronic transport properties of the resulting nitrogen-doped ZnTe (ZnTe:N) films characterized. Based on transmission and x-ray diffraction measurements, it was observed that the crystalline quality of the ZnTe:N films decreased with increasing nitrogen in the deposition process. The bulk carrier concentration of the ZnTe:N films determined from Hall-effect measurements showed a slight decrease at 4% nitrogen flow rate. The effect of ZnTe:N films as back contact to cadmium telluride (CdTe) solar cells was also investigated. ZnTe:N films were deposited before or after CdCl2 passivation on CdTe/CdS samples. Small-area devices were characterized for their electronic properties. Glancing-angle x-ray diffraction measurements and energy-dispersive spectroscopy analysis confirmed substantial loss of zinc from the samples where CdCl2 passivation was carried out after ZnTe:N film deposition.

  19. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formation...

  20. Living with wildfire in Telluride Fire Protection District, Colorado

    Science.gov (United States)

    James R. Meldrum; Lilia C. Falk; Jamie Gomez; Christopher M. Barth; Hannah Brenkert-Smith; Travis Warziniack; Patricia A. Champ

    2017-01-01

    Residents in the wildland-urban interface can play an important role in reducing wildfires’ negative effects by performing wildfire risk mitigation on their properties. This report offers insight into the wildfire risk mitigation activities and related considerations such as attitudes, experiences, and concern about wildfire, for residents of the Telluride Fire...

  1. Recent developments in cadmium mercury telluride infrared detectors

    Science.gov (United States)

    Charlton, D. E.

    1982-09-01

    A II-VI compound, cadmium mercury telluride, has dominated recent advances in the detection of infrared radiation. Although the main application is in thermal imaging, other applications include instrumentation and guidance. In this paper we describe the history of the development of cadmium mercury telluride as a detector material, with emphasis on the importance of material parameters and the role of the material scientist. High purity material, free from defects and of good crystal quality, is needed in order to ensure good minority carrier lifetime. Because of the segregation of impurities during solidification, material produced by the Bridgman technique offers considerable advantages over material produced by cast recrystallize techniques. Detectors based on a principle established by C.T. Elliott of the RSRE, Malvern, have led to families of thermal imagers that produce near perfect imagery. These detectors incorporate signal processing in the element by providing the time delay and integration functions that are normally performed off the focal plane in conventional serial scanned systems. A particular requirement of these SPRITE detectors is for long minority carrier lifetime. This has called for improvements in both material and fabrication technology which have led to an advanced technology that has benefited all aspects of the manufacture of cadmium mercury telluride detectors. Near background limited performance will be described in both the 8-14 and the 3-5 μm atmospheric transmission bands. There is, however, more image blurring in the 3-5 μm band than occurs in the 8-14 μm band. The direction of present work is towards detectors combining cadmium mercury telluride elements with advanced integrated circuits to provide more complex signal processing in the focal plane. This has been driven by the need to improve the sensitivity of thermal imaging systems where the scan rates are too low to allow useful time delay and integration in SPRITE detectors

  2. Terbium luminescence in alumina xerogel fabricated in porous anodic alumina matrix under various excitation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gaponenko, N. V., E-mail: nik@nano.bsuir.edu.by [Belarusian State University of Informatics and Radioelectronics (Belarus); Kortov, V. S. [Yeltsin Ural Federal University (Russian Federation); Orekhovskaya, T. I.; Nikolaenko, I. A. [Belarusian State University of Informatics and Radioelectronics (Belarus); Pustovarov, V. A.; Zvonarev, S. V.; Slesarev, A. I. [Yeltsin Ural Federal University (Russian Federation); Prislopski, S. Ya. [National Academy of Sciences of Belarus, Stepanov Institute of Physics (Belarus)

    2011-07-15

    Terbium-doped alumina xerogel layers are synthesized by the sol-gel method in pores of a porous anodic alumina film 1 {mu}m thick with a pore diameter of 150-180 nm; the film is grown on a silicon substrate. The fabricated structures exhibit terbium photoluminescence with bands typical of trivalent terbium terms. Terbium X-ray luminescence with the most intense band at 542 nm is observed for the first time for such a structure. Morphological analysis of the structure by scanning electron microscopy shows the presence of xerogel clusters in pore channels, while the main pore volume remains unfilled and pore mouths remain open. The data obtained confirm the promising applications of fabricated structures for developing matrix converters of X-rays and other ionizing radiations into visible light. The possibilities of increasing luminescence intensity in the matrix converter are discussed.

  3. Optical Properties of Lithium Terbium Fluoride and Implications for Performance in High Power Lasers (Postprint)

    Science.gov (United States)

    2016-02-01

    AFRL-RX-WP-JA-2016-0323 OPTICAL PROPERTIES OF LITHIUM TERBIUM FLUORIDE AND IMPLICATIONS FOR PERFORMANCE IN HIGH POWER LASERS... AMERICA (STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR...OPTICAL PROPERTIES OF LITHIUM TERBIUM FLUORIDE AND IMPLICATIONS FOR PERFORMANCE IN HIGH POWER LASERS (POSTPRINT) 5a. CONTRACT NUMBER IN-HOUSE 5b

  4. Detection of biothiols in cells by a terbium chelate-Hg (II) system

    Science.gov (United States)

    Tan, Hongliang; Chen, Yang

    2012-01-01

    Great efforts have been devoted to the development of sensitive and specific analysis methods for biothiols because of their important roles in biological systems. We present a new detection system for biothiols that is based on the reversible quenching and restoration of fluorescence of terbium chelate caused by Hg2+ and thiol species. In the presence of biothiols, a restoration of fluorescence of terbium chelate after quenching by Hg2+ was observed due to the interaction of Hg2+ with thiol groups, and the restored fluorescence increased with the concentration of biothiols. This method was sensitive and selective for biothiols. The detection limit was 80 nM for glutathione, 100 nM for Hcy, and 400 nM for Cysteine, respectively. The terbium chelate-Hg (II) system was successfully applied to determine the levels of biothiols in cancer cells and urine samples. Further, it was also shown to be comparable to Ellman's assay. Compared to other fluorescence methods, the terbium chelate probe is advantageous because interference from short-lived nonspecific fluorescence can be efficiently eliminated due to the long fluorescence lifetime of terbium chelate, which allows for detection by time-resolved fluorescence. The terbium chelate probe can serve as a diagnostic tool for the detection of abnormal levels of biothiols in disease.

  5. Cryogenic temperature characteristics of Verdet constant of terbium sesquioxide ceramics

    Science.gov (United States)

    Snetkov, I. L.; Palashov, O. V.

    2016-12-01

    The dependence of the Verdet constant on temperature in the (80-300 K) range for a promising magneto-active material terbium sesquioxide Tb2O3 at the wavelengths of 405-1064 nm is considered. For each of the studied wavelengths, the Verdet constant of the material cooled down to the liquid nitrogen temperature increased by more than a factor of 3.2 as compared to the room temperature value. Similarly to the other paramagnetics, the increase follows the law ∼1/T. Approximations for the temperature dependence of the Verdet constant have been obtained and the value of 1/V·(dV/dT) has been estimated. This information is needed to determine the angle of rotation as well as the variation of the extinction ratio of a Faraday isolator with temperature and extremely important at creation a cryogenic Faraday devices.

  6. Biogenic terbium oxide nanoparticles as the vanguard against osteosarcoma

    Science.gov (United States)

    Iram, Sana; Khan, Salman; Ansary, Abu Ayoobul; Arshad, Mohd; Siddiqui, Sahabjada; Ahmad, Ejaz; Khan, Rizwan H.; Khan, Mohd Sajid

    2016-11-01

    The synthesis of inner transition metal nanoparticles via an ecofriendly route is quite difficult. This study, for the first time, reports synthesis of terbium oxide nanoparticles using fungus, Fusarium oxysporum. The biocompatible terbium oxide nanoparticles (Tb2O3 NPs) were synthesized by incubating Tb4O7 with the biomass of fungus F. oxysporum. Multiple physical characterization techniques, such as UV-visible and photoluminescence spectroscopy, TEM, SAED, and zeta-potential were used to confirm the synthesis, purity, optical and surface characteristics, crystallinity, size, shape, distribution, and stability of the nanoemulsion of Tb2O3 NPs. The Tb2O3 NPs were found to inhibit the propagation of MG-63 and Saos-2 cell-lines (IC50 value of 0.102 μg/mL) and remained non-toxic up to a concentration of 0.373 μg/mL toward primary osteoblasts. Cell viability decreased in a concentration-dependent manner upon exposure to 10 nm Tb2O3 NPs in the concentration range 0.023-0.373 μg/mL. Cell toxicity was evaluated by observing changes in cell morphology, cell viability, oxidative stress parameters, and FACS analysis. Morphological examinations of cells revealed cell shrinkage, nuclear condensation, and formation of apoptotic bodies. The level of ROS within the cells-an indicator of oxidative stress was significantly increased. The induction of apoptosis at concentrations ≤ IC50 was corroborated by 4‧,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining (DNA damage and nuclear fragmentation). Flow-cytometric studies indicated that the response was dose dependent with a threshold effect.

  7. Thin film cadmium telluride, zinc telluride, and mercury zinc telluride solar cells. Final subcontract report, 1 July 1988--31 December 1991

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.L. [University of South Florida, Tampa, FL (United States)

    1992-04-01

    This report describes research to demonstrate (1) thin film cadmium telluride solar cells with a quantum efficiency of 75% or higher at 0. 44 {mu}m and a photovoltaic efficiency of 11.5% or greater, and (2) thin film zinc telluride and mercury zinc telluride solar cells with a transparency to sub-band-gap radiation of 65% and a photovoltaic conversion efficiency of 5% and 8%, respectively. Work was directed at (1) depositing transparent conducting semiconductor films by solution growth and metal-organic chemical vapor deposition (MOCVD) technique, (2) depositing CdTe films by close-spaced sublimation (CSS) and MOCVD techniques, (3) preparing and evaluating thin film CdTe solar cells, and (4) preparing and characterizing thin film ZnTe, CD{sub 1-x}Zn{sub 1-x}Te, and Hg{sub 1-x}Zn{sub x}Te solar cells. The deposition of CdS films from aqueous solutions was investigated in detail, and their crystallographic, optical, and electrical properties were characterized. CdTe films were deposited from DMCd and DIPTe at 400{degrees}C using TEGa and AsH{sub 3} as dopants. CdTe films deposited by CSS had significantly better microstructures than those deposited by MOCVD. Deep energy states in CdTe films deposited by CSS and MOCVD were investigated. Thin films of ZnTe, Cd{sub 1- x}Zn{sub x}Te, and Hg{sub 1-x}Zn{sub x}Te were deposited by MOCVD, and their crystallographic, optical, and electrical properties were characterized. 67 refs.

  8. Transient Response of Cadmium Telluride Modules to Light Exposure: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Deline, C.; del Cueto, J.; Albin, D. S.; Petersen, C.; Tyler, L.; TamizhMani, G.

    2011-07-01

    Commercial cadmium telluride (CdTe) photovoltaic (PV) modules from three different manufacturers were monitored for performance changes during indoor and outdoor light-exposure. Short-term transients in Voc were recorded on some modules, with characteristic times of ~1.1 hours. Outdoor performance data shows a similar drop in Voc after early morning light exposure. Preliminary analysis of FF changes show light-induced changes on multiple time scales, including a long time scale.

  9. Thermoelectric Micro-Refrigerator Based on Bismuth/Antimony Telluride

    Science.gov (United States)

    Dang, Linh Tuan; Dang, Tung Huu; Nguyen, Thao Thi Thu; Nguyen, Thuat Tran; Nguyen, Hue Minh; Nguyen, Tuyen Viet; Nguyen, Hung Quoc

    2017-06-01

    Thermoelectric micro-coolers based on bismuth telluride (Bi2Te3) and antimony telluride (Sb2Te3) are important in many practical applications thanks to their compactness and fluid-free circulation. In this paper, we studied thermoelectric properties of bismuth/antimony telluride (Bi/SbTe) thin films prepared by the thermal co-evaporation method, which yielded among the best thermoelectric quality. Different co-evaporation conditions such as deposition flux ratio of materials and substrate temperature during deposition were investigated to optimize the thermoelectric figure␣of merit of these materials. Micron-size refrigerators were designed and fabricated using standard lithography and etching technique. A three-layer structure was introduced, including a p-type layer, an n-type layer and an aluminum layer. Next to the main cooler, a pair of smaller Bi/SbTe junctions was used as a thermocouple to directly measure electron temperature of the main device. Etching properties of the thermoelectric materials were investigated and optimized to support the fabrication process of the micro-refrigerator. We discuss our results and address possible applications.

  10. Method of Creating Micro-scale Silver Telluride Grains Covered with Bismuth Nanoparticles

    Science.gov (United States)

    Kim, Hyun-Jung (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Park, Yeonjoon (Inventor); Lee, Kunik (Inventor)

    2014-01-01

    Provided is a method of enhancing thermoelectric performance by surrounding crystalline semiconductors with nanoparticles by contacting a bismuth telluride material with a silver salt under a substantially inert atmosphere and a temperature approximately near the silver salt decomposition temperature; and recovering a metallic bismuth decorated material comprising silver telluride crystal grains.

  11. Autofluorescence-free Live-cell Imaging Using Terbium Nanoparticles.

    Science.gov (United States)

    Cardoso Dos Santos, Marcelina; Goetz, Joan; Bartenlian, Hortense; Wong, Ka-Leung; Charbonniere, Loïc Joanny; Hildebrandt, Niko

    2018-02-20

    Fluorescent nanoparticles (NPs) have become irreplaceable tools for advanced cellular and sub-cellular imaging. While very bright NPs require excitation with UV or visible light, which can create strong autofluorescence of biological components, NIR-excitable NPs without autofluorescence issues exhibit much lower brightness. Here, we show the application of a new type of surface-photosensitized terbium NPs (Tb-NPs) for autofluorescence-free intracellular imaging in live HeLa cells. Combination of exceptionally high brightness, high photostability, and long photoluminecence (PL) lifetimes for highly efficient suppression of the short-lived autofluorescence, allowed for time-gated PL imaging of intracellular vesicles over 72 h without toxicity and at extremely low Tb-NP concentrations down to 12 pM. Detection of highly resolved long-lifetime (ms) PL decay curves from small (~10 µm2) areas within single cells within a few seconds emphasized the unprecedented photophysical properties of Tb-NPs for live-cell imaging that extend well beyond currently available nanometric imaging agents.

  12. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-01-01

    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cycle (ηcycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  13. Folate Receptor Targeted Alpha-Therapy Using Terbium-149

    CERN Document Server

    Müller, Cristina; Haller, Stephanie; Dorrer, Holger; Köster, Ulli; Johnston, Karl; Zhernosekov, Konstantin; Türler, Andreas; Schibli, Roger

    2014-01-01

    Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range α-particles (Eα = 3.967 MeV) with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09) using folate receptor (FR)-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A) or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq). A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d) compared to untreated controls (A: 21 d). Analysis of blood parameters rev...

  14. Hardness and dielectric characteristics of flux grown terbium aluminate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.K.; Kotru, P.N. [Jammu Univ. (India). Dept. of Physics; Tandon, R.P. [National Physical Laboratory, New Delhi (India); Wanklyn, B.M. [Clarendon Laboratory, University of Oxford, Oxford (United Kingdom)

    1999-01-29

    Results of indentation induced Vickers hardness testing and dielectric studies conducted on flux-grown terbium aluminate crystals are presented. It is shown that the Vickers hardness value (H{sub v}) is independent of indentation time, but depends on the applied load. Applying the concept of Hays and Kendall, the load independent values are estimated for (110) and (001) planes. Differential behaviour in the crack formation of two different planes (110) and (001) is observed, while (001) plane develops Palmqvist cracks in the whole load range of 10-100 g, (110) plane shows a transition from Palmqvist to median cracks at 70 g. The fracture toughness, brittleness index and yield strength are determined for both the planes. The hardness anisotropy is reported. The dielectric constant, dielectric loss and conductivity are shown to be dependent on temperature and frequency of the applied a.c. field. The dielectric constant versus temperature shows a transition peak at 230 C, which remains independent of the frequency of the applied a.c. field in the range 1 kHz-13 MHz. (orig.) 36 refs.

  15. High Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys.

    Science.gov (United States)

    Poudel, B.; Hao, Q.; Ma, Y.; Minnich, A.; Muto, A.; Lan, Y. C.; Yu, B.; Yan, X.; Wang, D. Z.; Vashaee, D.; Chen, X. Y.; Dresselhaus, M. S.; Chen, G.; Ren, Z. F.

    2008-03-01

    Bismuth Telluride and its alloys are best thermoelectric materials for near room temperature applications like refrigeration and waste heat recovery. We have been pursuing an approach of random nanostructures in bulk to improve ZT of these materials. Here we report that ZT values of these random nanostructured materials were improved significantly over the state-of-the-art values. Experimental data coupled with microstructure studies and modeling shows that the ZT improvement mainly comes from a lower thermal conductivity because of the increased phonon scattering by defects and grain boundaries. Significantly improved power generation and cooling data produced from these samples confirmed the high ZT values.

  16. Thermoluminescence of cerium and terbium -doped calcium pyrophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Roman L, J.; Cruz Z, E. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Lozano R, I. B.; Diaz G, J. A. I., E-mail: jesus.roman@nucleares.unam.mx [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)

    2015-10-15

    The aim of this work is to report the thermoluminescence (Tl) response of Calcium Pyrophosphate phosphor doped with Cerium and Terbium impurities (Ca{sub 2}P{sub 2}O{sub 7}:Ce{sup 3+},Tb{sup 3+}). The phosphors were synthesized using the co-precipitation method and annealed at 900 degrees C by two hours for obtain the β phase. The intentional doping with Ce and Tb ions was 1 at.% and 0.1 at.%, whereas in the EDS results the concentration of impurities was 0.39 at.% and 0.05 at.%, respectively. The superficial morphology of phosphor is mainly composed by thin wafers of different size. All samples were exposed to gamma rays from {sup 60}Co in the Gammacell-200 irradiator. The Tl response of the phosphor was measured from Rt up to 350 degrees C and under nitrogen atmosphere in a Harshaw TLD 3500 reader. The glow curves of the Ca{sub 2}P{sub 2}O{sub 7}:Ce{sup 3+},Tb{sup 3+} powders showed a broad intense Tl peak centered at 165 degrees C and a shoulder at approximate 260 degrees C was observed. A linear Tl response in the range of absorbed dose of 0.2 to 10 Gy was obtained. Tl glow curves were analyzed using the initial rise (IR)and computerized glow curve deconvolution methods to evaluate the kinetics parameters such as activation energy (E), frequency factor (s) and kinetic order (b). (Author)

  17. Solvent polarity and oxygen sensitivity, rather than viscosity, determine lifetimes of biaryl-sensitised terbium luminescence.

    Science.gov (United States)

    Walter, Edward R H; Williams, J A Gareth; Parker, David

    2017-12-14

    In a macrocyclic terbium complex incorporating a biaryl sensitiser, the observed variation of emission lifetime is shown to be determined by the solubility of oxygen in the solvent system and the relative energy of the chromophore excited state, rather than any dependence on solvent viscosity.

  18. Megapixel mercury cadmium telluride focal plane arrays for infrared imaging out to 12 microns Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the fabrication of large format, long wave infrared (LWIR) mercury cadmium telluride (HgCdTe or MCT) detector arrays where the cutoff wavelength is...

  19. Electrochemical Studies of Lead Telluride Behavior in Acidic Nitrate Solutions

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2015-04-01

    Full Text Available Electrochemistry of lead telluride stationary electrode was studied in nitric acid solutions of pH 1.5-3.0. E-pH diagram for Pb-Te-H2O system was calculated. Results of cyclic voltammetry of Pb, Te and PbTe were discussed in correlation with thermodynamic predictions. Anodic dissolution of PbTe electrode at potential approx. -100÷50 mV (SCE resulted in tellurium formation, while above 300 mV TeO2 was mainly produced. The latter could dissolve to HTeO+2 under acidic electrolyte, but it was inhibited by increased pH of the bath.

  20. Surfactant-directed synthesis of branched bismuth telluride/sulfide core/shell nanorods.

    Science.gov (United States)

    Purkayastha, Arup; Yan, Qingyu; Raghuveer, Makala S; Gandhi, Darshan D; Li, Huafang; Liu, Zhong W; Ramanujan, Raju V; Borca-Tasciuc, Theodorian; Ramanath, Ganapathiraman

    2008-07-17

    Branched core/shell bismuth telluride/bismuth sulfide nanorod heterostructures are prepared by using a biomimetic surfactant, L-glutathionic acid. Trigonal nanocrystals of bismuth telluride are encapsulated by nanoscopic shells of orthorhombic bismuth sulfide. Crystallographic twinning causes shell branching. Such heteronanostructures are attractive for thermoelectric power generation and cooling applications. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Arginine-responsive terbium luminescent hybrid sensors triggered by two crown ether carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lasheng [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Tang, Ke; Ding, Xiaoping [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhou, Zhan; Xiao, Rui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2013-12-01

    Crown ether carboxylic acids constitute main building blocks for the synthesis of terbium containing covalent cross-linked luminescent materials. Both the complexes and the hybrid nanomaterials could exhibit remarkable green emissions in pure water. More importantly, they were found to have a profound effect on the luminescence responses to arginine compared with glutamic acid, histidine, tryptophan, threonine, tyrosine and phenylalanine in aqueous environment. The present study provided the possibility of using a host–guest mechanism as a way of signal transduction based on lanthanide supramolecular hybrid materials. - Highlights: • Crown ether carboxylic acids were found to sensitize terbium ions among a group of ethers. • The complexes and silica hybrid materials were both prepared and characterized. • They could exhibit remarkable green emissions in pure water.

  2. Comparative analysis of conjugated alkynyl chromophore-triazacyclononane ligands for sensitized emission of europium and terbium.

    Science.gov (United States)

    Soulié, Marine; Latzko, Frédéric; Bourrier, Emmanuel; Placide, Virginie; Butler, Stephen J; Pal, Robert; Walton, James W; Baldeck, Patrice L; Le Guennic, Boris; Andraud, Chantal; Zwier, Jurriaan M; Lamarque, Laurent; Parker, David; Maury, Olivier

    2014-07-07

    A series of europium and terbium complexes based on a functionalized triazacyclononane carboxylate or phosphinate macrocyclic ligand is described. The influence of the anionic group, that is, carboxylate, methylphosphinate, or phenylphosphinate, on the photophysical properties was studied and rationalized on the basis of DFT calculated structures. The nature, number, and position of electron-donating or electron-withdrawing aryl substituents were varied systematically within the same phenylethynyl scaffold in order to optimize the brightness of the corresponding europium complexes and investigate their two-photon absorption properties. Finally, the europium complexes were examined in cell-imaging applications, and selected terbium complexes were studied as potential oxygen sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Spectrofluorimetric Determination of Human Serum Albumin Using Terbium-Danofloxacin Probe

    OpenAIRE

    Ramezani, Amir M.; Manzoori, Jamshid L.; Amjadi, Mohammad; Jouyban, Abolghasem

    2012-01-01

    A spectrofluorimetric method is proposed for the determination of human serum albumin (HSA) and bovine serum albumin (BSA) using terbium-danofloxacin (Tb3+-Dano) as a fluorescent probe. These proteins remarkably enhance the fluorescence intensity of the Tb3+-Dano complex at 545 nm, and the enhanced fluorescence intensity of Tb3+-Dano is proportional to the concentration of proteins (HSA and BSA). Optimum conditions for the determination of HSA were investigated and found that the maximum resp...

  4. Mechanical properties of thermoelectric lanthanum telluride from quantum mechanics

    Science.gov (United States)

    Li, Guodong; Aydemir, Umut; Wood, Max; Goddard, William A., III; Zhai, Pengcheng; Zhang, Qingjie; Snyder, G. Jeffrey

    2017-07-01

    Lanthanum telluride (La3Te4) is an n-type high-performance thermoelectric material in the high temperature range, but its mechanical properties remain unknown. Since we want robust mechanical properties for their integration into industrial applications, we report here quantum mechanics (QM) simulations to determine the ideal strength and deformation mechanisms of La3Te4 under pure shear deformations. Among all plausible shear deformation paths, we find that shearing along the (0 0 1)/text{1} 0 0> slip system has the lowest ideal shear strength of 0.99 GPa, making it the most likely slip system to be activated under pressure. We find that the long range La-Te ionic interactions play the predominant role in resisting shear deformation. To enhance the mechanical strength, we suggest improving the long ionic La-Te bond stiffness to strengthen the ionic La-Te framework in La3Te4 by a defect-engineering strategy, such as partial substitution of La by Ce or Pr having isotypic crystal structures. This work provides the fundamental information to understand the intrinsic mechanics of La3Te4.

  5. Precision timing detectors with cadmium-telluride sensor

    Science.gov (United States)

    Bornheim, A.; Pena, C.; Spiropulu, M.; Xie, S.; Zhang, Z.

    2017-09-01

    Precision timing detectors for high energy physics experiments with temporal resolutions of a few 10 ps are of pivotal importance to master the challenges posed by the highest energy particle accelerators such as the LHC. Calorimetric timing measurements have been a focus of recent research, enabled by exploiting the temporal coherence of electromagnetic showers. Scintillating crystals with high light yield as well as silicon sensors are viable sensitive materials for sampling calorimeters. Silicon sensors have very high efficiency for charged particles. However, their sensitivity to photons, which comprise a large fraction of the electromagnetic shower, is limited. To enhance the efficiency of detecting photons, materials with higher atomic numbers than silicon are preferable. In this paper we present test beam measurements with a Cadmium-Telluride (CdTe) sensor as the active element of a secondary emission calorimeter with focus on the timing performance of the detector. A Schottky type CdTe sensor with an active area of 1cm2 and a thickness of 1 mm is used in an arrangement with tungsten and lead absorbers. Measurements are performed with electron beams in the energy range from 2 GeV to 200 GeV. A timing resolution of 20 ps is achieved under the best conditions.

  6. Chemical synthesis and supercapacitive properties of lanthanum telluride thin film.

    Science.gov (United States)

    Patil, S J; Lokhande, A C; Lee, D-W; Kim, J H; Lokhande, C D

    2017-03-15

    Lanthanum telluride (La2Te3) thin films are synthesized via a successive ionic layer adsorption and reaction (SILAR) method. The crystal structure, surface morphology and surface wettability properties are investigated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Field emission scanning electron microscopy (FE-SEM) and contact angle goniometer techniques, respectively. The La2Te3 material exhibits a specific surface area of 51m2g-1 determined by Brunauer-Emmett-Teller (BET) method. La2Te3 thin film electrode has a hydrophilic surface which consists of interconnected pine leaf-like flaky arrays that affect the performance of the supercapacitor. The supercapacitive performance of La2Te3 film electrode is evaluated in 1M LiClO4/PC electrolyte using cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy techniques. La2Te3 film electrode exhibits a specific capacitance of 194Fg-1 at a scan rate of 5mVs-1 and stored energy density of 60Whkg-1 with delivering power density of 7.22kWkg-1. La2Te3 film electrode showed capacitive retention of 82% over 1000cycles at a scan rate of 100mVs-1. Further, flexible La2Te3|LiClO4-PVA|La2Te3 supercapacitor cell is fabricated. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Theoretical study of bismuth-doped cadmium telluride

    Science.gov (United States)

    Menendez-Proupin, E.; Rios-Gonzalez, J. A.; Pena, J. L.

    Cadmium telluride heavily doped with bismuth has been proposed as an absorber with an intermediate band for solar cells. Increase in the photocurrent has been shown recently, although the overall cell efficiency has not improved. In this work, we study the electronic structure and the formation energies of the defects associated to bismuth impurities. We have performed electronic structure calculations within generalized density functional theory, using the exchange-correlation functional HSE(w) , where the range-separation parameter w has been tuned to reproduce the CdTe bandgap. Improving upon previous reports, we have included the spin-orbit interaction, which modifies the structure of the valence band and the energy levels of bismuth. We have found that interstitial Bi (Bii) tends to occupy Cd vacancies, cadmium substitution (BiCd) creates single donor level, while tellurium substitution (BiTe) is a shallow single acceptor. We investigate the interaction between these point defects and how can they be combined to create a partially filled intermediate band. Supported by FONDECYT Grant 1130437, CONACYT-SENER SUSTENTABILIDAD ENERGETICA/project CeMIE-Sol PY-207450/25 and PY-207450/26. JARG acknowledges CONACYT fellowship for research visit. Powered@NLHPC (ECM-02).

  8. Process dependent thermoelectric properties of EDTA assisted bismuth telluride

    Energy Technology Data Exchange (ETDEWEB)

    Kulsi, Chiranjit; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com [Department of Physics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal (India); Kargupta, Kajari [Chemical Engineering Department, Jadavpur University, Kolkata-700032, West Bengal (India)

    2016-04-13

    Comparison between the structure and thermoelectric properties of EDTA (Ethylene-diamine-tetra-acetic acid) assisted bismuth telluride prepared by electrochemical deposition and hydrothermal route is reported in the present work. The prepared samples have been structurally characterized by high resolution X-ray diffraction spectra (HRXRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopic images (HRTEM). Crystallite size and strain have been determined from Williamson-Hall plot of XRD which is in conformity with TEM images. Measurement of transport properties show sample in the pellet form (S{sub 1}) prepared via hydrothermal route has higher value of thermoelectric power (S) than the electrodeposited film (S{sub 2}). But due to a substantial increase in the electrical conductivity (σ) of the film (S{sub 2}) over the pellet (S{sub 1}), the power factor and the figure of merit is higher for sample S{sub 2} than the sample S{sub 1} at room temperature.

  9. Brief review of cadmium telluride-based photovoltaic technologies

    Science.gov (United States)

    Başol, Bülent M.; McCandless, Brian

    2014-01-01

    Cadmium telluride (CdTe) is the most commercially successful thin-film photovoltaic technology. Development of CdTe as a solar cell material dates back to the early 1980s when ˜10% efficient devices were demonstrated. Implementation of better quality glass, more transparent conductive oxides, introduction of a high-resistivity transparent film under the CdS junction-partner, higher deposition temperatures, and improved Cl-treatment, doping, and contacting approaches yielded >16% efficient cells in the early 2000s. Around the same time period, use of a photoresist plug monolithic integration process facilitated the demonstration of the first 11% efficient module. The most dramatic advancements in CdTe device efficiencies were made during the 2013 to 2014 time frame when small-area cell conversion efficiency was raised to 20% range and a champion module efficiency of 17% was reported. CdTe technology is attractive in terms of its limited life-cycle greenhouse gas and heavy metal emissions, small carbon footprint, and short energy payback times. Limited Te availability is a challenge for the growth of this technology unless Te utilization rates are greatly enhanced along with device efficiencies.

  10. Induced Positron Annihiliation Investigation of Cadmium Zinc Telluride Crystal Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Akers

    2005-06-01

    Cadmium-Zinc-Telluride (CZT) crystals are used in semiconductor radiation detectors for the detection of x-ray and gamma radiation. However, production of detector grade crystals is difficult as small variations in compositional uniformity and primarily the zinc content can significantly affect the ability of the CZT crystal to function as a radiation detector. Currently there are no known nondestructive methods that can be used to identify detector grade crystals. The current test method is to fabricate and test the detector to determine if the crystal is sufficiently uniform and of the correct composition to be considered a detector grade crystal. Consequently, nondestructive detection methods are needed to identify detector grade crystals prior to the fabrication process. The purpose of this feasibility study was to perform a preliminary assessment of the ability of several new, nondestructive technologies based on Induced Positron Annihilation (IPA) to determine if detector grade CZT crystals can be identified. Results of measurements performed on specimens from Fisk University and EV Products, Inc. indicate that both the near surface Distributed Source Positron Annihilation (up to 3 mm penetration) and the volumetric Photon Induced Positron Annihilation methods may be suitable for determining CZT crystal quality. Further work on CZT crystals with a broader range of compositions and detector characteristics is needed to provide a well defined, calibrated, method for assessing CZT crystal quality.

  11. Enhancement of the thermoelectric performance of oxygen substituted bismuth telluride

    Science.gov (United States)

    Van Quang, Tran; Kim, Miyoung

    2017-12-01

    We carried out first-principles calculations based on density functional theory and the semi-classical Boltzmann transport theory to study the effect of oxygen substitution on the electronic structure and thermoelectric properties of bismuth telluride. The newly formed compound, Bi2O2Te, is found to be a narrow bandgap semiconductor with the bandgap of Eg = 0.13 eV. The presence of a flat band close to the valence band maximum gives rise to a steep slope of density of states near Fermi energy, leading to a significant enhancement of the Seebeck coefficient. As a result, the thermoelectric power factor of Bi2O2Te is significantly improved by controlling the carrier concentration, and the maximum power factor increased with temperature. Assuming the experiment-thermal conductivity, Bi2O2Te exhibits a high figure of merit of ZT ˜1.27 around 600 K for the p-type doping, which matches or exceeds ZT of the state-of-the-art thermoelectric materials in this temperature range. This suggests that Bi2O2Te with p-type doping is a new promising material for use in the moderate-temperature thermoelectric energy conversion.

  12. Inverting polar domains via electrical pulsing in metallic germanium telluride

    Science.gov (United States)

    Nukala, Pavan; Ren, Mingliang; Agarwal, Rahul; Berger, Jacob; Liu, Gerui; Johnson, A. T. Charlie; Agarwal, Ritesh

    2017-04-01

    Germanium telluride (GeTe) is both polar and metallic, an unusual combination of properties in any material system. The large concentration of free-carriers in GeTe precludes the coupling of external electric field with internal polarization, rendering it ineffective for conventional ferroelectric applications and polarization switching. Here we investigate alternate ways of coupling the polar domains in GeTe to external electrical stimuli through optical second harmonic generation polarimetry and in situ TEM electrical testing on single-crystalline GeTe nanowires. We show that anti-phase boundaries, created from current pulses (heat shocks), invert the polarization of selective domains resulting in reorganization of certain 71o domain boundaries into 109o boundaries. These boundaries subsequently interact and evolve with the partial dislocations, which migrate from domain to domain with the carrier-wind force (electrical current). This work suggests that current pulses and carrier-wind force could be external stimuli for domain engineering in ferroelectrics with significant current leakage.

  13. Genetically Encoded FRET-Sensor Based on Terbium Chelate and Red Fluorescent Protein for Detection of Caspase-3 Activity

    Directory of Open Access Journals (Sweden)

    Alexander S. Goryashchenko

    2015-07-01

    Full Text Available This article describes the genetically encoded caspase-3 FRET-sensor based on the terbium-binding peptide, cleavable linker with caspase-3 recognition site, and red fluorescent protein TagRFP. The engineered construction performs two induction-resonance energy transfer processes: from tryptophan of the terbium-binding peptide to Tb3+ and from sensitized Tb3+ to acceptor—the chromophore of TagRFP. Long-lived terbium-sensitized emission (microseconds, pulse excitation source, and time-resolved detection were utilized to eliminate directly excited TagRFP fluorescence and background cellular autofluorescence, which lasts a fraction of nanosecond, and thus to improve sensitivity of analyses. Furthermore the technique facilitates selective detection of fluorescence, induced by uncleaved acceptor emission. For the first time it was shown that fluorescence resonance energy transfer between sensitized terbium and TagRFP in the engineered construction can be studied via detection of microsecond TagRFP fluorescence intensities. The lifetime and distance distribution between donor and acceptor were calculated using molecular dynamics simulation. Using this data, quantum yield of terbium ions with binding peptide was estimated.

  14. Near Infrared Quantum Cutting Luminescence of Er3+/Tm3+ Ion Pairs in a Telluride Glass.

    Science.gov (United States)

    Chen, Xiaobo; Li, Song; Hu, Lili; Wang, Kezhi; Zhao, Guoying; He, Lizhu; Liu, Jinying; Yu, Chunlei; Tao, Jingfu; Lin, Wei; Yang, Guojian; Salamo, Gregory J

    2017-05-16

    The multiphoton near-infrared, quantum cutting luminescence in Er3+/Tm3+ co-doped telluride glass was studied. We found that the near-infrared 1800-nm luminescence intensity of (A) Er3+(8%)Tm3+(0.5%):telluride glass was approximately 4.4 to 19.5 times larger than that of (B) Tm3+(0.5%):telluride glass, and approximately 5.0 times larger than that of (C) Er3+(0.5%):telluride glass. Additionally, the infrared excitation spectra of the 1800 nm luminescence, as well as the visible excitation spectra of the 522 nm and 652 nm luminescence, of (A) Er3+(8%)Tm3+(0.5%):telluride glass are very similar to those of Er3+ ions in (C) Er3+(0.5%):telluride glass, with respect to the shapes of their excitation spectral waveforms and peak wavelengths. Moreover, we found that there is a strong spectral overlap and energy transfer between the infrared luminescence of Er3+ donor ions and the infrared absorption of Tm3+ acceptor ions. The efficiency of this energy transfer {4I13/2(Er3+) → 4I15/2(Er3+), 3H6(Tm3+) → 3F4(Tm3+)} between the Er3+ and Tm3+ ions is approximately 69.8%. Therefore, we can conclude that the observed behaviour is an interesting multiphoton, near-infrared, quantum cutting luminescence phenomenon that occurs in novel Er3+-Tm3+ ion pairs. These findings are significant for the development of next-generation environmentally friendly germanium solar cells, and near-to-mid infrared (1.8-2.0 μm) lasers pumped by GaN light emitting diodes.

  15. Fabrication of Nanovoid-Imbedded Bismuth Telluride with Low Dimensional System

    Science.gov (United States)

    Chu, Sang-Hyon (Inventor); Choi, Sang H. (Inventor); Kim, Jae-Woo (Inventor); Park, Yeonjoon (Inventor); Elliott, James R. (Inventor); King, Glen C. (Inventor); Stoakley, Diane M. (Inventor)

    2013-01-01

    A new fabrication method for nanovoids-imbedded bismuth telluride (Bi--Te) material with low dimensional (quantum-dots, quantum-wires, or quantum-wells) structure was conceived during the development of advanced thermoelectric (TE) materials. Bismuth telluride is currently the best-known candidate material for solid-state TE cooling devices because it possesses the highest TE figure of merit at room temperature. The innovative process described here allows nanometer-scale voids to be incorporated in Bi--Te material. The final nanovoid structure such as void size, size distribution, void location, etc. can be also controlled under various process conditions.

  16. Telluride glasses with far-infrared transmission up to 35 μm

    Science.gov (United States)

    Le Coq, David; Cui, Shuo; Boussard-Plédel, Catherine; Masselin, Pascal; Bychkov, Eugène; Bureau, Bruno

    2017-10-01

    Telluride glasses are very attractive due to their unique infrared transparency window compared to other chalcogenide glasses. The extension of their infrared transmission by changing the composition appears to be very challenging. Glasses in the (GeTe4)100-x(AgI)x system, with 5 ≤ x ≤ 30 have been synthesized using the melt-quenching method. The effect of the addition of silver iodide is a widening of the infrared transparency range up to 35 μm that is much larger than for any other chalcogenide glass families. Moreover, the moulding of these telluride glasses is also achievable without affecting the optical properties.

  17. Current transport mechanisms in mercury cadmium telluride diode

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [Institute of Defence Scientists and Technologists, CFEES Complex, Brig. S. K. Majumdar Marg, Delhi 110054 (India); Li, Qing; He, Jiale; Hu, Weida, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn [National Lab for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); He, Kai; Lin, Chun [Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2016-08-28

    This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation, flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.

  18. Post-CMOS FinFET integration of bismuth telluride and antimony telluride thin-film-based thermoelectric devices on SoI substrate

    KAUST Repository

    Aktakka, Ethem Erkan

    2013-10-01

    This letter reports, for the first time, heterogeneous integration of bismuth telluride (Bi2Te3) and antimony telluride (Sb 2Te3) thin-film-based thermoelectric ffect transistors) via a characterized TE-film coevaporationand shadow-mask patterning process using predeposition surface treatment methods for reduced TE-metal contact resistance. As a demonstration vehicle, a 2 × 2 mm2-sized integrated planar thermoelectric generator (TEG) is shown to harvest 0.7 μ W from 21-K temperature gradient. Transistor performance showed no significant change upon post-CMOS TEG integration, indicating, for the first time, the CMOS compatibility of the Bi2Te3 and Sb2Te3 thin films, which could be leveraged for realization of high-performance integrated micro-TE harvesters and coolers. © 2013 IEEE.

  19. Green light emission in aluminum oxide powders doped with different terbium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Mariscal B, L; Falcony, C. [IPN, Centro de Investigacion y de Estudios Avanzados, 07360 Ciudad de Mexico (Mexico); Carmona T, S.; Murrieta, H.; Sanchez A, M. A. [UNAM, Instituto de Fisica, 04510 Ciudad de Mexico (Mexico); Vazquez A, R. [IPN, Escuela Superior de Computo, 07738 Ciudad de Mexico (Mexico); Garcia R, C. M., E-mail: mariscal2005@gmail.com [UNAM, Facultad de Ciencias, 04510 Ciudad de Mexico (Mexico)

    2016-11-01

    Different emission intensities presented in aluminum oxide phosphors corresponding to different concentrations of doping performed with terbium are analyzed. The phosphors were synthesized by the evaporation technique and were characterized by photo and cathodoluminescence, X-ray diffraction and EDS techniques for different incorporation percentages of terbium as dopant; they show characteristic transitions in 494, 543, 587 and 622 nm, corresponding to {sup 5}D{sub 4} → {sup 7}F{sub 6}, {sup 5}D{sub 4} → {sup 7}F{sub 5}, {sup 5}D{sub 4} → {sup 7}F{sub 4} and {sup 5}D{sub 4} → {sup 7}F{sub 3}, respectively when they are excited with λ{sub exc} = 380 nm wavelength at room temperature. The results of X-ray diffraction show the presence of α-Al{sub 2}O{sub 3} phases with peaks located at 2θ = 25.78, 35.34, 37.96, 43.56, 45.8, 52.74, 57.7, 61.5, 66.74, 68.44, 77.12 and 80.94, and the δ-Al{sub 2}O-3 phase 2θ = 32.82, 45.8, 61.36 and 66.74. These compounds were heat treated for two hours at 1100 degrees Celsius. EDS analyzes indicate that these compounds have close to 60% oxygen around of 40% aluminum in the presence of terbium as dopant which indicates a stoichiometry close to the expected one for alumina. (Author)

  20. Graphene quantum dots-terbium ions as novel sensitive and selective time-resolved luminescent probes.

    Science.gov (United States)

    Llorent-Martínez, Eulogio J; Durán, Gema M; Ríos, Ángel; Ruiz-Medina, Antonio

    2018-01-01

    We propose an alternative approach for the development of analytical methods based on terbium-sensitized luminescence (TSL). TSL is based on the complexation between Tb(III) ions and fluorescent organic compounds that have appropriate functional groups to complex with Tb(III). We report the use of graphene quantum dot (GQDs) nanoparticles to improve the sensitivity and selectivity of TSL detection. GQDs can react with terbium ions through the carboxylic groups present in their structure. These Tb(III)-GQD complexes, formed in situ in aqueous solution, can be used as time-resolved luminescent probes. Ascorbic acid was selected as a target analyte to demonstrate the suitability of the proposed method. The selectivity of the TSL method was highly improved for most of the interferences tested. Under the optimum conditions [Tb(III) concentration 5 × 10-4 mol L-1, GQD concentration 4 mg L-1], a minimum 100% increase in selectivity was observed for several vitamins and common cations that may be present in the samples to be analyzed. In addition, the analytical signal showed a 30% enhancement with the use of GQDs compared with the use of merely Tb(III) ions, with a detection limit of 0.12 μg mL-1. The repeatability and intermediate precision were lower than 3% and 5%, respectively. From the results obtained, the implementation of GQDs in TSL can lead to the development of novel time-resolved luminescent probes with high analytical potential. Graphical abstract Quenching of Tb(III)-graphene quantum dot (GQD) luminescence by ascorbic acid (AA). TBL terbium-sensitized luminescence.

  1. Fluorescence study of some terbium-oligopeptide complexes in methanolic solution.

    Science.gov (United States)

    Rabouan, S; Delage, J; Durand, W; Prognon, P; Barthes, D

    2000-04-03

    This study concerned the use of lanthanide chelates to detect glycyl-leucyl-phenylalanine (GLF) and its homologues. Spectroscopic analysis of peptides without or with terbium complexation revealed the formation of (LF)(3)(Tb)(2), (GF)(3)(Tb)(2), (GLF)(3)(Tb)(2) and (FL)(4)Tb, (FG)(4)Tb complexes with high stability constants in methanolic solutions (pK(d)>13). Lanthanide chelate emission displayed a large Stokes shift (>270 nm), which allowed Tb chelates of GLF and its derivatives to be used for detection purposes. However, this preliminary study indicated some important limitations associated with lanthanide chelation, such as high methanolic content.

  2. Electromagnetic properties of terbium gallium garnet at millikelvin temperatures and low photon energy

    Science.gov (United States)

    Kostylev, Nikita; Goryachev, Maxim; Bushev, Pavel; Tobar, Michael E.

    2017-07-01

    Electromagnetic properties of single crystal terbium gallium garnet are characterised from room down to millikelvin temperatures using the whispering gallery mode method. Microwave spectroscopy is performed at low powers equivalent to a few photons in energy and conducted as functions of the magnetic field and temperature. A phase transition is detected close to the temperature of 3.5 K. This is observed for multiple whispering gallery modes causing an abrupt negative frequency shift and a change in transmission due to extra losses in the new phase caused by a change in complex magnetic susceptibility.

  3. Nuclear excitation functions from 40 to 200 MeV proton irradiation of terbium

    Energy Technology Data Exchange (ETDEWEB)

    Engle, Jonathan W., E-mail: jwengle@lanl.gov; Mashnik, Stepan G.; Parker, Lauren A.; Jackman, Kevin R.; Bitteker, Leo J.; Ullmann, John L.; Gulley, Mark S.; Pillai, Chandra; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.

    2016-01-01

    Nuclear formation cross sections are reported for 26 radionuclides, measured with 40–200 MeV proton irradiations of terbium foils. These data provide the basis for the production of medically relevant radionuclides (e.g., {sup 152}Tb, {sup 155}Tb, {sup 155}Eu, and {sup 156}Eu) and {sup 153}Gd, a potential source used in ongoing efforts to characterize stellar nucleosynthesis routes. Computational predictions from the ALICE2011, CEM03.03, Bertini, and INCL + ABLA codes are compared with newly measured data to contribute to the ongoing process of code development, and yields are calculated for selected radionuclides using measured data.

  4. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol

    NARCIS (Netherlands)

    Nguyen, H.P.; Wu, M.; Su, J.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2012-01-01

    Ethylene glycol was studied as an electrolyte for the electrodeposition of thermoelectric bismuth telluride films by cyclic voltammetry, rotating ring disk electrode and electrochemical quartz crystal microbalance (EQCM). The reduction of both Bi3+ and Te4+ ions proceeds in one step without the

  5. Structural Engineering of Vacancy Defected Bismuth Tellurides for Thermo-electric Applications

    Directory of Open Access Journals (Sweden)

    Chumakov Y.

    2012-10-01

    Full Text Available Molecular Dynamics and ab-initio simulations are used to find the most stable stoichiometries of Bismuth Tellurides with vacancy defects. The interest is to decrease the thermal conductivity of these compounds a key point to achieve high figure of merits. A reduction of 70% of the thermal conductivity is observed with Te vacancies of only 5%.

  6. Seebeck and figure of merit enhancement in nanostructured antimony telluride by antisite defect suppression through sulfur doping.

    Science.gov (United States)

    Mehta, Rutvik J; Zhang, Yanliang; Zhu, Hong; Parker, David S; Belley, Matthew; Singh, David J; Ramprasad, Ramamurthy; Borca-Tasciuc, Theodorian; Ramanath, Ganpati

    2012-09-12

    Antimony telluride has a low thermoelectric figure of merit (ZT antimony antisite defects. Here, we mitigate this key problem by suppressing antisite defect formation using subatomic percent sulfur doping. The resultant 10-25% higher α in bulk nanocrystalline antimony telluride leads to ZT ∼ 0.95 at 423 K, which is superior to the best non-nanostructured antimony telluride alloys. Density functional theory calculations indicate that sulfur increases the antisite formation activation energy and presage further improvements leading to ZT ∼ 2 through optimized doping. Our findings are promising for designing novel thermoelectric materials for refrigeration, waste heat recovery, and solar thermal applications.

  7. Micelle-enhanced and terbium-sensitized spectrofluorimetric determination of gatifloxacin and its interaction mechanism

    Science.gov (United States)

    Guo, Changchuan; Wang, Lei; Hou, Zhun; Jiang, Wei; Sang, Lihong

    2009-05-01

    A terbium-sensitized spectrofluorimetric method using an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS), was developed for the determination of gatifloxacin (GFLX). A coordination complex system of GFLX-Tb 3+-SDBS was studied. It was found that SDBS significantly enhanced the fluorescence intensity of the complex (about 11-fold). Optimal experimental conditions were determined as follows: excitation and emission wavelengths of 331 and 547 nm, pH 7.0, 2.0 × 10 -4 mol l -1 terbium (III), and 2.0 × 10 -4 mol l -1 SDBS. The enhanced fluorescence intensity of the system (Δ If) showed a good linear relationship with the concentration of GFLX over the range of 5.0 × 10 -10 to 5.0 × 10 -8 mol l -1 with a correlation coefficient of 0.9996. The detection limit (3 σ) was determined as 6.0 × 10 -11 mol l -1. This method has been successfully applied to the determination of GFLX in pharmaceuticals and human urine/serum samples. Compared with most of other methods reported, the rapid and simple procedure proposed in the text offers higher sensitivity, wider linear range, and better stability. The interaction mechanism of the system is also studied by the research of ultraviolet absorption spectra, surface tension, solution polarity and fluorescence polarization.

  8. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    Science.gov (United States)

    Seitz, Michael; Do, King; Ingram, Andrew J.; Moore, Evan G.; Muller, Gilles; Raymond, Kenneth N.

    2009-01-01

    Abstract: Circulaly polarized luminescence from terbium(III) complexed and excited by chiral antenna ligands gives strong emission The modular synthesis of three new octadentate, enantiopure ligands are reported - one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields ΦEu = 0.05–0.08 and ΦTb = 0.30–0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08 – 0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments. PMID:19639983

  9. Indium telluride nanotubes: Solvothermal synthesis, growth mechanism, and properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Liyan [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yan, Shancheng, E-mail: yansc@njupt.edu.cn [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China); Lu, Tao; Shi, Yi; Wang, Jianyu [National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Yang, Fan [School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210046 (China)

    2014-03-15

    hydrogen storage, compared with the nanowires. The nanotube device also has a broad light detection range from 300 nm to 1100 nm, covering the UV–visible–NIR region. This good performance of In{sub 2}Te{sub 3} nanotubes may enable significant advancements of new photodetection and photosensing applications. Highlights: • The In{sub 2}Te{sub 3} nanotube device also has a broad light detection range from 300 nm to 1100 nm. • The nanotube is 137.85 m{sup 2} g{sup −1}, which makes it suitable for gas sensing and hydrogen storage. • A possible growth mechanism of the indium telluride nanotubes was proposed. • In addition, no In{sub 2}Te{sub 3} nanotubes have been reported until now.

  10. Luminescent method of determination of composition of europium and terbium complexes in solution by change of intensity ratio of luminescence bands

    Energy Technology Data Exchange (ETDEWEB)

    Bel' tyukova, S.V.; Nazarenko, N.A.; Poluehktov, N.S.

    1982-03-01

    The complexes of europium and terbium with phenanthroline, ethylenediaminetetraacetate, nitrilotriacetate, some acids-phenol derivatives and ..beta..-diketones series have been used as an example to demonstrate that the value of the ratio of intensities on the two bands of europium(terbium) luminescence spectra - the one corresponding to the hypersensitive'' transition and the other, to the magnetic dipole one - can be used for determination of the complexes composition in solutions.

  11. Characterization of large cadmium zinc telluride crystals grown by traveling heater method

    DEFF Research Database (Denmark)

    Chen, H.; Awadalla, S.A.; Iniewski, K.

    2008-01-01

    The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions/precipitates of these c......The focus of this paper is to evaluate thick, 20 X 20 X 10 and 10 X 10 X 10 mm(3), cadmium zinc telluride (CZT), Cd0.9Zn0.1Te, crystals grown using the traveling heater method (THIM). The phenomenal spectral performance and small size and low concentration of Te inclusions...

  12. Ab initio lattice dynamics and thermochemistry of layered bismuth telluride (Bi2Te3).

    Science.gov (United States)

    Zurhelle, Alexander F; Deringer, Volker L; Stoffel, Ralf P; Dronskowski, Richard

    2016-03-23

    We present density-functional theory calculations of the lattice dynamics of bismuth telluride, yielding force constants, mean-square displacements and partial densities of phonon states which corroborate and complement previous nuclear inelastic scattering experiments. From these data, we derive an element- and energy-resolved view of the vibrational anharmonicity, quantified by the macroscopic Grüneisen parameter γ which results in 1.56. Finally, we calculate thermochemical properties in the quasiharmonic approximation, especially the heat capacity at constant pressure and the enthalpy of formation for bismuth telluride; the latter arrives at ΔHf (Bi2Te3)  =  -102 kJ mol(-1) at 298 K.

  13. GEOLOGY OF THE FLORENCIA GOLD – TELLURIDE DEPOSIT (CAMAGÜEY, CUBA AND SOME METALLURGICAL CONSIDERATIONS

    Directory of Open Access Journals (Sweden)

    López K Jesús M.

    2006-12-01

    Full Text Available This paper describes the results from a study of the Florencia gold-telluride deposit in Central Cuba, including mineralogical, petrographical, microprobe and chemical analysis. Valuable information is provided for the exploration, mining and processing of gold ores from other nearby deposits with similar characteristics. Results highlight changes in the mineralogical composition of the ores between the north and south sectors of the deposit, as reflected in metallurgical concentrates after beneficiation and flotation of samples from these sectors.
    It is shown that gold deposits of the Cretaceous Volcanic Arc of Cuba largely consist of native gold, telluride and pyrite, where arsenopyrite is almost absent. Traces of lead, zinc and cadmium are present in the periphery of the main ore zones.

  14. Diagnostic Genesis Features of Au-Ag Selenide-Telluride Mineralization of Western Java Deposits

    Directory of Open Access Journals (Sweden)

    Euis Tintin Yuningsih

    2016-01-01

    Full Text Available DOI: 10.17014/ijog.3.1.67-76The ore mineralogy of the westernmost part of West Java such as Pongkor, Cibaliung, Cikidang, Cikotok, and Cirotan are characterized by the dominance of silver-arsenic-antimony sulfosalt with silver selenides and rarely tellurides over the argentite, whereas the eastern part of West Java including Arinem and Cineam deposits are dominated by silver-gold tellurides. Mineralogy of Se-type deposits at Pongkor, Cikidang, Cibaliung, Cisungsang, and Cirotan and Te-type deposits at Arinem and Cineam shows their different geochemical characteristics. Mineralogical and geochemical differences can be explained by variation of physico-chemical conditions that existed during gold-silver deposition by applying the phase relation among sulfide, telluride, and selenide mineral association in the deposits. The relative values of ƒSe2(g, ƒTe(g, and ƒS2(g control the actual presence of selenide or telluride minerals within the West Java deposits, which also depend on their concentrations in the hydrothermal fluid. Even though the concentration of selenium in the hydrothermal fluid of Te-type deposits might have been similar or even higher than that in the Se-type, early substitution of selenium in the sulfide minerals prevents its concentration in the hydrothermal fluid to the levels for precipitating selenide minerals. Therefore, early sulfide mineral deposition from reduction fluids will not increase the ƒSe2(g/ƒS2(g ratio to form selenide minerals in Te-type deposits of Arinem and Cineam, other than selenium-bearing sulfide mineral such as Se-bearing galena or Se-bearing pyrargyrite-proustite.

  15. Evaluation of Fully 3-D Emission Mammotomography With a Compact Cadmium Zinc Telluride Detector

    OpenAIRE

    Brzymialkiewicz, Caryl N.; Tornai, Martin P.; McKinley, Randolph L.; Bowsher, James E.

    2005-01-01

    A compact, dedicated cadmium zinc telluride (CZT) gamma camera coupled with a fully three-dimensional (3-D) acquisition system may serve as a secondary diagnostic tool for volumetric molecular imaging of breast cancers, particularly in cases when mammographic findings are inconclusive. The developed emission mammotomography system comprises a medium field-of-view, quantized CZT detector and 3-D positioning gantry. The intrinsic energy resolution, sensitivity and spatial resolution of the dete...

  16. Thermo-transferred thermoluminescence (TTTl) in potassium-yttrium double fluoride doped with terbium

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.; Rivera, T.; Diaz G, J. A. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Azorin, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Azorin, J. C. [Universidad de Guanajuato, Division de Ciencias e Ingenierias-Campus Leon, Lomas del Bosque No. 103, Col. Lomas del Campestre, 37000 Leon, Guanajuato (Mexico); Licona, R.; Rivas, F.; Hernandez C, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, 14 Sur y San Claudio, Ciudad Universitaria, Puebla de Zaragoza, Puebla (Mexico); Khaidukov, N. [Institute of General and Inorganic Chemistry, Lenin SK 11 Prospect 31, Moscow 117907 (Russian Federation)

    2011-02-15

    This paper presents results of studying the thermo-transferred thermoluminescence (TTTl) phenomenon in potassium-yttrium double fluoride doped with terbium (K{sub 2}YF{sub 5:}Tb) at different impurity concentrations (0.8%, 0.95% and 0.99%). Previously to study the TTTl phenomenon, structural characterization and chemical composition of the materials were determined. The structural studies were conducted using a scanning electron microscope; meanwhile, chemical composition was analyzed using energy dispersive X-ray spectroscopy. Thermoluminescence kinetics was studied irradiating the samples with {sup 137}Cs gamma rays as well as with {sup 90}Sr/{sup 90}Y beta rays, analyzing the glow curves by the deconvolution method for obtaining the kinetic parameters. (Author)

  17. The influence of pressure on the photoluminescence properties of a terbium-adipate framework

    Science.gov (United States)

    Spencer, Elinor C.; Zhao, Jing; Ross, Nancy L.; Andrews, Michael B.; Surbella, Robert G.; Cahill, Christopher L.

    2013-06-01

    The influence of pressure (over the 0-4.7 GPa range) on the photoluminescence emissions and crystal structure of the known 3D terbium-adipate metal-organic framework material Tb-GWMOF6 has been evaluated by high-pressure single-crystal X-ray diffraction and spectroscopic techniques. The results from this study show that this complex lanthanide framework structure undergoes three phase transitions within the 0-4 GPa pressure range that involve alterations in the number of symmetry independent Tb3+ ion sites within the crystal lattice. These pressure induced modifications to the structure of Tb-GWMOF6 lead to pronounced changes in the profiles of the 5D4→7F5 emission spectra of this complex.

  18. Terbium Radionuclides for Theranostics Applications: A Focus On MEDICIS-PROMED

    Science.gov (United States)

    Cavaier, R. Formento; Haddad, F.; Sounalet, T.; Stora, T.; Zahi, I.

    A new facility, named CERN-MEDICIS, is under construction at CERN to produce radionuclides for medical applications. In parallel, the MEDICIS-PROMED, a Marie Sklodowska-Curie innovative training network of the Horizon 2020 European Commission's program, is being coordinated by CERN to train young scientists on the production and use of innovative radionuclides and develop a network of experts within Europe. One program within MEDICIS-PROMED is to determine the feasibility of producing innovative radioisotopes for theranostics using a commercial middle-sized high-current cyclotron and the mass separation technology developed at CERN-MEDICIS. This will allow the production of high specific activity radioisotopes not achievable with the common post-processing by chemical separation. Radioisotopes of scandium, copper, arsenic and terbium have been identified. Preliminary studies of activation yield and irradiation parameters optimization for the production of Tb-149 will be described.

  19. Dielectric and conducting behavior of gadolinium-terbium fumarate heptahydrate crystals

    Science.gov (United States)

    Shah, M. D.; Want, B.

    2015-07-01

    Gadolinium-terbium fumarate heptahydrate crystals were grown in silica gel by using single gel diffusion technique. The crystals were characterized by different physico-chemical techniques of characterization. Powder X-ray diffraction results showed that the grown material is purely crystalline in nature. Elemental analyses suggested the chemical formula of the compound to be Gd Tb (C4H2O4)3ṡ7H2O. Energy dispersive X-ray analysis confirmed the presence of Gd and Tb in the title compound. The dielectric and conductivity studies of the grown compound were carried as function of frequency of applied field and the temperature. The grown material showed a dielectric anomaly which was correlated with its thermal behavior. The ac conductivity of the material showed Jonscher's power law behavior: σ(ω)=σo+Aωs, with a temperature-dependent power exponent s(<1). The conductivity was found to be a function of temperature and frequency.

  20. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework.

    Science.gov (United States)

    Bhardwaj, Neha; Bhardwaj, Sanjeev; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash

    2016-12-15

    The sensitive detection of dipicolinic acid (DPA) is strongly associated with the sensing of bacterial organisms in food and many types of environmental samples. To date, the demand for a sensitive detection method for bacterial toxicity has increased remarkably. Herein, we investigated the DPA detection potential of a water-dispersible terbium-metal organic framework (Tb-MOF) based on the fluorescence quenching mechanism. The Tb-MOF showed a highly sensitive ability to detect DPA at a limit of detection of 0.04nM (linear range of detection: 1nM to 5µM) and also offered enhanced selectivity from other commonly associated organic molecules. The present study provides a basis for the application of Tb-MOF for direct, convenient, highly sensitive, and specific detection of DPA in the actual samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. A New Bis(phthalocyaninato) Terbium Single-Ion Magnet with an Overall Excellent Magnetic Performance.

    Science.gov (United States)

    Chen, Yuxiang; Ma, Fang; Chen, Xiaoxiang; Dong, Bowei; Wang, Kang; Jiang, Shangda; Wang, Chiming; Chen, Xin; Qi, Dongdong; Sun, Haoling; Wang, Bingwu; Gao, Song; Jiang, Jianzhuang

    2017-11-20

    Bulky and strong electron-donating dibutylamino groups were incorporated onto the peripheral positions of one of the two phthalocyanine ligands in the bis(phthalocyaninato) terbium complex, resulting in the isolation of heteroleptic double-decker (Pc)Tb{Pc[N(C4H9)2]8} {Pc = phthalocyaninate; Pc[N(C4H9)2]8 = 2,3,9,10,16,17,23,24-octakis(dibutylamino)phthalocyaninate} with the nature of an unsymmetrical molecular structure, a square-antiprismatic coordination geometry, an intensified coordination field strength, and the presence of organic radical-f interaction. As a total result of all these factors, this sandwich-type tetrapyrrole lanthanide single-ion magnet (SIM) exhibits an overall enhanced magnetic performance including a high blocking temperature (TB) of 30 K and large effective spin-reversal energy barrier of Ueff = 939 K, rendering it the best sandwich-type tetrapyrrole lanthanide SIM reported thus far.

  2. Ultralarge magneto-optic rotations and rotary dispersion in terbium gallium garnet single crystal.

    Science.gov (United States)

    Shaheen, Amrozia; Majeed, Hassaan; Anwar, Muhammad Sabieh

    2015-06-10

    We report systematically acquired data on the Verdet constant of terbium gallium garnet for wavelengths ranging from visible to near-infrared (405-830 nm) regime. Our experimental method of Stokes polarimetry is based on the Fourier decomposition of the received light intensity and allows unambiguous determination of both the Faraday rotation and the ellipticity of the emergent light. Temperature-dependent investigations in the range of 8-300 K extend earlier reports and verify the Verdet's constant direct dependence on the magnetization, whose first-order approximation is simply a manifestation of the Curie's law. Further, a least-squares fitting of the experimental data correlates well with theoretical predictions. At a wavelength of 405 nm and temperature of 8 K, the rotation is approximately 500°.

  3. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals.

    Science.gov (United States)

    Teweldebrhan, Desalegne; Goyal, Vivek; Balandin, Alexander A

    2010-04-14

    Bismuth telluride (Bi(2)Te(3)) and its alloys are the best bulk thermoelectric materials known today. In addition, stacked quasi-two-dimensional (2D) layers of Bi(2)Te(3) were recently identified as promising topological insulators. In this Letter we describe a method for "graphene-inspired" exfoliation of crystalline bismuth telluride films with a thickness of a few atoms. The atomically thin films were suspended across trenches in Si/SiO(2) substrates, and subjected to detail material characterization, which included atomic force microscopy and micro-Raman spectroscopy. The presence of the van der Waals gaps allowed us to disassemble Bi(2)Te(3) crystal into its quintuple building blocks-five monatomic sheets-consisting of Te((1))-Bi-Te((2))-Bi-Te((1)). By altering the thickness and sequence of atomic planes, we were able to create "designer" nonstoichiometric quasi-2D crystalline films, change their composition and doping, the type of charge carriers as well as other properties. The exfoliated quintuples and ultrathin films have low thermal conductivity, high electrical conductivity, and enhanced thermoelectric properties. The obtained results pave the way for producing stacks of crystalline bismuth telluride quantum wells with the strong spatial confinement of charge carriers and acoustic phonons, beneficial for thermoelectric devices. The developed technology for producing free-standing quasi-2D layers of Te((1))-Bi-Te((2))-Bi-Te((1)) creates an impetus for investigation of the topological insulators and their possible practical applications.

  4. Synthesis and Characterization of Antimony Telluride for Thermoelectric and Optoelectronic Applications

    Directory of Open Access Journals (Sweden)

    Zybała R.

    2017-06-01

    Full Text Available Antimony telluride (Sb2Te3 is an intermetallic compound crystallizing in a hexagonal lattice with R-3m space group. It creates a c lose packed structure of an ABCABC type. As intrinsic semiconductor characterized by excellent electrical properties, Sb2Te3 is widely used as a low-temperature thermoelectric material. At the same time, due to unusual properties (strictly connected with the structure, antimony telluride exhibits nonlinear optical properties, including saturable absorption. Nanostructurization, elemental doping and possibilities of synthesis Sb2Te3 in various forms (polycrystalline, single crystal or thin film are the most promising methods for improving thermoelectric properties of Sb2Te3. Applications of Sb2Te3 in optical devices (e.g. nonlinear modulator, in particular saturable absorbers for ultrafast lasers are also interesting. The antimony telluride in form of bulk polycrystals and layers for thermoelectric and optoelectronic applications respectively were used. For optical applications thin layers of the material were formed and studied. Synthesis and structural characterization of Sb2Te3 were also presented here. The anisotropy (packed structure and its influence on thermoelectric properties have been performed. Furthermore, preparation and characterization of Sb2Te3 thin films for optical uses have been also made.

  5. Use of a Soluble Anode in Electrodeposition of Thick Bismuth Telluride Layers

    Science.gov (United States)

    Maas, M.; Diliberto, S.; de Vaulx, C.; Azzouz, K.; Boulanger, C.

    2014-10-01

    Integration of thermoelectric devices within an automotive heat exchanger could enable conversion of lost heat into electrical energy, contributing to improved total output from the engine. For this purpose, synthesis of thick bismuth telluride (Bi2Te3) films is required. Bismuth telluride has been produced by an electrochemical method in nitric acid with a sacrificial bismuth telluride anode as the source of cations. The binary layer grows on the working electrode while the counter-electrode, a Bi2Te3 disk obtained by high frequency melting, is oxidized to BiIII and TeIV. This process leads to auto-regeneration of the solution without modification of its composition. The thickness of films deposited by use of the Bi2Te3 anode was approximately 10 times that without. To demonstrate the utility of a soluble anode in electrochemical deposition, we report characterization of the composition and morphology of the films obtained under different experimental conditions. Perfectly dense and regular Bi2Te3 films (˜400 μm) with low internal stress and uniform composition across the cross-section were prepared. Their thermoelectric properties were assessed.

  6. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    El-Yazbi, Amira F.; Loppnow, Glen R., E-mail: glen.loppnow@ualberta.ca

    2013-07-05

    Graphical abstract: -- Highlights: •Simple, inexpensive, mix-and-read assay for positive detection of DNA damage. •Recognition of undamaged DNA via hybridization to a hairpin probe. •Terbium(III) fluorescence reports the amount of damage by binding to ssDNA. •Tb/hairpin is a highly selective and sensitive fluorescent probe for DNA damage. -- Abstract: Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb{sup 3+}). Single-stranded oligonucleotides greatly enhance the Tb{sup 3+} emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb{sup 3+}/hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb{sup 3+}, producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb{sup 3+}/hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb{sup 3+}/hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36 ± 1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage.

  7. Fine- and hyperfine structure investigations of even configuration system of atomic terbium

    Science.gov (United States)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.

    2017-03-01

    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  8. The effect of different annealing temperatures on tin and cadmium telluride phases obtained by a modified chemical route

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Anderson Fuzer [Departamento de Química, CCE, Universidade Federal do Espírito Santo, Campus Goiabeiras, 29075-910 Vitória, Espírito Santo (Brazil); Porto, Arilza de Oliveira, E-mail: arilzaporto@yahoo.com.br [Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Magela de Lima, Geraldo [Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Paniago, Roberto [Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais (Brazil); Ardisson, José Domingos [Centro de Desenvolvimento da Tecnologia Nuclear, CDTN/CNEN, Belo Horizonte, Minas Gerais (Brazil)

    2012-11-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of cadmium and tin telluride. ► Chemical route to obtain pure crystalline cadmium and tin telluride. ► Effect of the annealing temperature on the crystalline phases. ► Removal of tin oxide as side product through thermal treatment. -- Abstract: In this work tin and cadmium telluride were prepared by a modification of a chemical route reported in the literature to obtain metallacycles formed by oxidative addition of tin-tellurium bonds to platinum (II). Through this procedure it was possible to obtain tin and cadmium telluride. X-ray diffraction and X-ray photoelectron spectroscopy were used to identify the crystalline phases obtained as well as the presence of side products. In the case of tin telluride it was identified potassium chloride, metallic tellurium and tin oxide as contaminants. The tin oxidation states were also monitored by {sup 119}Sn Mössbauer spectroscopy. The annealing in hydrogen atmosphere was chosen as a strategy to reduce the tin oxide and promote its reaction with the excess of tellurium present in the medium. The evolution of this tin oxide phase was studied through the annealing of the sample at different temperatures. Cadmium telluride was obtained with high degree of purity (98.5% relative weight fraction) according to the Rietveld refinement of X-ray diffraction data. The modified procedure showed to be very effective to obtain amorphous tin and cadmium telluride and the annealing at 450 °C has proven to be useful to reduce the amount of oxide produced as side product.

  9. Structural and optical characterization of terbium doped ZnGa2O4 thin films deposited by RF magnetron sputtering

    Science.gov (United States)

    Somasundaram, K.; Girija, K. G.; Sudarsan, V.; Selvin, P. Christopher; Vatsa, R. K.

    2016-05-01

    Tb3+ doped ZnGa2O4 nanophosphor (21 nm) has been synthesized via low temperature polyol route and subsequently thin films of the same were deposited on glass and ITO substrates by RF magnetron sputtering. The films were characterized by X-ray Diffraction and luminescence measurements. The XRD pattern showed that Tb3+ doped ZnGa2O4 nanophosphor has a cubic spinel phase. Luminescence behavior of the nanophosphor and as deposited sputtered film was investigated. The PL emission spectra of nanophosphor gave a broad ZnGa2O4 host emission band along with a strong terbium emission and the thin films showed only broad host emission band and there was no terbium ion emission.

  10. Determination of fluoxetine in pharmaceutical and biological samples based on the silver nanoparticle enhanced fluorescence of fluoxetine-terbium complex.

    Science.gov (United States)

    Lotfi, Ali; Manzoori, Jamshid L

    2016-11-01

    In this study, a simple and sensitive spectrofluorimetric method is presented for the determination of fluoxetine based on the enhancing effect of silver nanoparticles (AgNPs) on the terbium-fluoxetine fluorescence emission. The AgNPs were prepared by a simple reduction method and characterized by UV-Vis spectroscopy and transmission electron microscopy. It was indicated that these AgNPs have a remarkable amplifying effect on the terbium-sensitized fluorescence of fluoxetine. The effects of various parameters such as AgNP and Tb(3+) concentration and the pH of the media were investigated. Under obtained optimal conditions, the fluorescence intensity of the terbium-fluoxetine-AgNP system was enhanced linearly by increasing the concentration of fluoxetine in the range of 0.008 to 19 mg/L. The limit of detection (b + 3s) was 8.3 × 10(-4) mg/L. The interference effects of common species found in real samples were also studied. The method had good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of fluoxetine in tablet formulations, human urine and plasma samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Neutron Diffraction and Electrical Transport Studies on Magnetic Transition in Terbium at High Pressures and Low Temperatures

    Science.gov (United States)

    Thomas, Sarah; Montgomery, Jeffrey; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel; Tulk, Christopher; Moreira Dos Santos, Antonio

    2013-06-01

    Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate its transition from a helical antiferromagnetic to a ferromagnetic ordered phase as a function of pressure. The electrical resistance measurements using designer diamonds show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of the ferromagnetic transition decreases at a rate of -16.7 K/GPa till 3.6 GPa, where terbium undergoes a structural transition from hexagonal close packed (hcp) to an α-Sm phase. Above this pressure, the electrical resistance measurements no longer exhibit a change in slope. In order to confirm the change in magnetic phase suggested by the electrical resistance measurements, neutron diffraction measurements were conducted at the SNAP beamline at the Oak Ridge National Laboratory. Measurements were made at pressures to 5.3 GPa and temperatures as low as 90 K. An abrupt increase in peak intensity in the neutron diffraction spectra signaled the onset of magnetic order below the Curie temperature. A magnetic phase diagram of rare earth metal terbium will be presented to 5.3 GPa and 90 K based on these studies.

  12. Study of Silver Nanoparticles Sensitized Fluorescence and Second-Order Scattering of Terbium(III-Pefloxacin Mesylate Complex and Determination of Pefloxacin Mesylate

    Directory of Open Access Journals (Sweden)

    Aiyun Li

    2014-01-01

    Full Text Available α-Keto acid of pefloxacin mesylate (PFLX can form the complex with Terbium(III. The intramolecular energy from PFLX to Terbium(III ion takes place when excited, and thus Terbium(III excited state is formed and then emits the characteristic fluorescence of Terbium(III, locating at 490, 545, 580, and 620 nm. The second-order scattering (SOS peak at 545 nm also appears for the complex with the exciting wavelength of 273 nm. When the silver nanoparticles are added to the system, the luminescence intensity at 545 nm greatly increased. So, with the adding of nanoparticles to the Terbium(III-PFLX complex, not only is the intramolecular energy promoted but also the SOS intensity is enhanced. The experimental results show that it is the silver nanoparticles with certain size and certain concentration which can greatly enhance the fluorescence-SOS intensity, and the relative intensity at 545 nm is proportional to the amount of PFLX. Based on this phenomenon, a novel method for the determination of PFLX has been developed and applied to the determination of PFLX in capsule and serum samples.

  13. Influence of crystalline structure on the luminescence properties of terbium orthotantalates

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Kisla P.F. [Departamento de Química, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Ouro Preto 35400-000, Minas Gerais (Brazil); Carmo, Alexandre P. [Instituto Federal Fluminense, Campus Cabo Frio, RJ 28909-971 (Brazil); Bell, Maria J.V. [Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-330, MG (Brazil); Dias, Anderson, E-mail: anderson_dias@iceb.ufop.br [Departamento de Química, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Ouro Preto 35400-000, Minas Gerais (Brazil)

    2013-06-15

    Terbium orthotantalate powders were produced with M-fergusonite type (I2/a) and M′-fergusonite type (P2/a) structures. The samples were studied by X-ray diffraction, Raman scattering, and photoluminescence measurements (emission and decay curves). The results showed that crystalline materials were obtained with all the 18 Raman-active modes predicted by group theory calculations. Also, it was observed through photoluminescence decay curves that the Tb{sup 3+} ions occupies only one-symmetry site in both crystallographic arrangements. Photoluminescence emission curves exhibited some variation in spectral shape, peak position, and relative intensity as a consequence of their different crystalline arrangements. The dominated emission of Tb{sup 3+} ({sup 5}D{sub 4}→{sup 7}F{sub 5}) is centered with a maximum intensity at 549.2 nm (M-type) and 543.0 nm (M′-type). Fluorescence lifetimes for M-TbTaO{sub 4} and M′-TbTaO{sub 4} were determined as 33.4 μs and 1.25 ms, respectively. M′-type materials seems to be the most suitable for luminescent devices and could be a potential green luminescent material due to the strongest emission if compared with the M-fergusonite type. -- Highlights: ► Terbium orthotantalates were prepared in two different crystalline structures: I2/a and P2/a. ► XRD and Raman scattering showed that the different space groups obtained were exhibited all the 18 Raman-active modes. ► PL decay curves that the Tb{sup 3+} ions occupies only one-symmetry site in both crystallographic arrangements. ► Dominated emission of Tb{sup 3+} ({sup 5}D{sub 4}→{sup 7}F{sub 5}) is centered with a maximum intensity at 549 nm (M-type) and 543 nm (M′-type). ► Fluorescence lifetimes for M-TbTaO{sub 4} and M′-TbTaO{sub 4} were determined as 33.4 μs and 1.25 ms, respectively.

  14. Feasibility of preparing patterned molybdenum coatings on bismuth telluride thermoelectric modules.

    Energy Technology Data Exchange (ETDEWEB)

    Sarobol, Pylin; Hall, Aaron Christopher; Miller, Stephen Samuel; Knight, Marlene E.; LePage, William S.; Sobczak, Catherine Elizabeth.; Wesolowski, Daniel Edward

    2013-09-01

    Molybdenum electrical interconnects for thermoelectric modules were produced by air plasma spraying a 30%CE%BCm size molybdenum powder through a laser-cut Kapton tape mask. Initial feasibility demonstrations showed that the molybdenum coating exhibited excellent feature and spacing retention (~170%CE%BCm), adhered to bismuth-telluride, and exhibited electrical conductivity appropriate for use as a thermoelectric module interconnect. A design of experiments approach was used to optimize air plasma spray process conditions to produce a molybdenum coating with low electrical resistivity. Finally, a molybdenum coating was successfully produced on a fullscale thermoelectric module. After the addition of a final titanium/gold layer deposited on top of the molybdenum coating, the full scale module exhibited an electrical resistivity of 128%CE%A9, approaching the theoretical resistivity value for the 6mm module leg of 112%CE%A9. Importantly, air plasma sprayed molybdenum did not show significant chemical reaction with bismuth-telluride substrate at the coating/substrate interface. The molybdenum coating microstructure consisted of lamellar splats containing columnar grains. Air plasma sprayed molybdenum embedded deeply (several microns) into the bismuth-telluride substrate, leading to good adhesion between the coating and the substrate. Clusters of round pores (and cracks radiating from the pores) were found immediately beneath the molybdenum coating. These pores are believed to result from tellurium vaporization during the spray process where the molten molybdenum droplets (2623%C2%B0C) transferred their heat of solidification to the substrate at the moment of impact. Substrate cooling during the molybdenum deposition process was recommended to mitigate tellurium vaporization in future studies.

  15. Lead telluride with increased mechanical stability for cylindrical thermoelectric generators; Bleitellurid mit erhoehter mechanischer Stabilitaet fuer zylindrische thermoelektrische Generatoren

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Andreas

    2013-04-30

    The aim of this work is to improve the mechanical stability of lead telluride (PbTe), trying to vary its mechanical properties independently from its thermoelectric properties. Thus the influence of material preparation as well as different dopants on the mechanical and thermoelectric properties of lead telluride is being analysed. When using appropriately set process parameters, milling and sintering of lead telluride increases the material's hardness. With sintering temperatures exceeding 300 C stable material of high relative density can be achieved. Milling lead telluride generates lattice defects leading to a reduction of the material's charge carrier density. These defects can be reduced by increased sintering temperatures. Contamination of the powder due to the milling process leads to bloating during thermal cycling and thus reduced density of the sintered material. In addition to that, evaporation of tellurium at elevated temperatures causes instability of the material's thermoelectric properties. Based on the experimental results obtained in this work, the best thermoelectric and mechanical properties can be obtained by sintering coarse powders at around 400 C. Within this work a concept was developed to vary the mechanical properties of lead telluride via synthesis of PbTe with electrically nondoping elements, which thus may keep the thermoelectric properties unchanged. Therefore, the mechanical and thermoelectric properties of Pb{sub 1-x}Ca{sub x}Te were investigated. Doping pure PbTe with calcium causes a significant increase of the material's hardness while only slightly decreasing the charge carrier density and thus keeping the thermoelectric properties apart from a slight reduction of the electrical conductivity nearly unchanged. The abovementioned concept is proven using sodium doped lead telluride, as it is used for thermoelectric generators: The additional doping with calcium again increases the material's hardness while

  16. Terahertz-field-induced second harmonic generation through Pockels effect in zinc telluride crystal.

    Science.gov (United States)

    Cornet, Marion; Degert, Jérôme; Abraham, Emmanuel; Freysz, Eric

    2014-10-15

    We report on the second harmonic generation (SHG) of a near-infrared pulse in a zinc telluride crystal through the Pockels effect induced by an intense terahertz pulse. The temporal and angular behaviors of the SHG have been measured and agree well with theoretical predictions. This phenomenon, so far overlooked, makes it possible to generate second harmonic through cascading of two second-order nonlinear phenomena in the near-infrared and terahertz ranges. We also show how this cascading process can be used to sample terahertz pulses.

  17. Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride

    DEFF Research Database (Denmark)

    Han, Li; Hegelund Spangsdorf, Steeven; Van Nong, Ngo

    2016-01-01

    Bismuth antimony telluride (BixSb2-xTe3, 0.4 semiconductor materials for near-room-temperature thermoelectric power generation. In this work, p-type Bi0.4Sb1.6Te3 samples were prepared under various conditions (temperature, holding time, and ramp......-rate) using spark plasma sintering (SPS). The effects of SPS conditions on the anisotropic thermoelectric properties and microstructure evolutions were systematically investigated. The change of sintering temperature showed stronger influence than other sintering parameters to the resulting thermoelectric...

  18. Synthesis and structure of undoped and indium-doped thermoelectric lead telluride nanoparticles

    OpenAIRE

    Kadel, Kamal; Kumari, Latha; Wang, Xuewen; Li, Wenzhi; Huang, Jian Yu; Provencio, Paula Polyak

    2014-01-01

    Undoped and indium (In)-doped lead telluride (PbTe) nanostructures were synthesized via solvothermal/hydrothermal route. The crystalline structure of the as-prepared undoped and In-doped PbTe samples was examined by X-ray diffraction (XRD) which indicated the formation of face-centered single-phase cubic crystal. A first principle calculation on indium doping shows that the indium atoms are more likely to replace lead (Pb) rather than to take the interstitial sites. Laser-induced breakdown sp...

  19. A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers

    OpenAIRE

    Zhenyu Zhang; Bo Wang; Ping Zhou; Renke Kang; Bi Zhang; Dongming Guo

    2016-01-01

    A novel approach of chemical mechanical polishing (CMP) is developed for cadmium zinc telluride (CdZnTe or CZT) wafers. The approach uses environment-friendly slurry that consists of mainly silica, hydrogen peroxide, and citric acid. This is different from the previously reported slurries that are usually composed of strong acid, alkali, and bromine methanol, and are detrimental to the environment and operators. Surface roughness 0.5?nm and 4.7?nm are achieved for Ra and peak-to-valley (PV) v...

  20. Laser control and temperature switching of luminescence intensity in photostable transparent film based on terbium(III) β-diketonate complex

    Science.gov (United States)

    Lapaev, Dmitry V.; Nikiforov, Victor G.; Safiullin, Georgy M.; Lobkov, Vladimir S.; Salikhov, Kev M.; Knyazev, Andrey A.; Galyametdinov, Yury G.

    2014-11-01

    The study of the terbium(III) and gadolinium(III) β-diketonate complexes by photoluminescence spectroscopy reveals considerable changes of the photophysical properties of the complexes under the UV laser irradiation. The measurements show the enhancement of the luminescence intensities in the vitrified transparent film of the terbium(III) complex as well as the gadolinium(III) complex under the 337 nm laser irradiation at room temperature. The irradiated film of the terbium(III) complex restores the initial photophysical properties after heating close to the melting temperature (∼353 K) and cooling. We observe no change of the luminescent properties of the irradiated film for months. These features can be used for the design of new lanthanide-based photostable systems with laser control of the luminescence intensity.

  1. Development of functionalized terbium fluorescent nanoparticles for antibody labeling and time-resolved fluoroimmunoassay application.

    Science.gov (United States)

    Ye, Zhiqiang; Tan, Mingqian; Wang, Guilan; Yuan, Jingli

    2005-01-15

    Silica-based functionalized terbium fluorescent nanoparticles were prepared, characterized and developed as a fluorescence probe for antibody labeling and time-resolved fluoroimmunoassay. The nanoparticles were prepared in a water-in-oil (W/O) microemulsion containing a strongly fluorescent Tb(3+) chelate, N,N,N(1),N(1)-[2,6-bis(3'-aminomethyl-1'-pyrazolyl)phenylpyridine] tetrakis(acetate)-Tb(3+) (BPTA-Tb(3+)), Triton X-100, octanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate (TEOS) and 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AEPS) with ammonia water. The characterizations by transmission electron microscopy and fluorometric methods show that the nanoparticles are spherical and uniform in size, 45 +/- 3nm in diameter, strongly fluorescent with fluorescence quantum yield of 10% and a long fluorescence lifetime of 2.0ms. The amino groups directly introduced to the nanoparticle's surface by using AEPS in the preparation made the surface modification and bioconjugation of the nanoparticles easier. The nanoparticle-labeled anti-human alpha-fetoprotein antibody was prepared and used for time-resolved fluoroimmunoassay of alpha-fetoprotein (AFP) in human serum samples. The assay response is linear from 0.10ngml(-1) to about 100ngml(-1) with the detection limit of 0.10ngml(-1). The coefficient variations (CVs) of the method are less than 9.0%, and the recoveries are in the range of 84-98% for human serum sample measurements.

  2. Highly efficient precipitation of phosphoproteins using trivalent europium, terbium, and erbium ions

    Energy Technology Data Exchange (ETDEWEB)

    Guezel, Yueksel; Rainer, Matthias; Mirza, Munazza Raza; Bonn, Guenther K. [Leopold-Franzens University, Institute of Analytical Chemistry and Radiochemistry, Innsbruck (Austria)

    2012-05-15

    This study describes a highly efficient method for the selective precipitation of phosphoproteins by trivalent europium, terbium, and erbium metal ions. These metal cations belong to the group of lanthanides and are known to be hard acceptors with an overwhelming preference for oxygen-containing anions such as phosphates to which they form very tight ionic bonds. The method could be successfully applied to specifically precipitate phosphoproteins from complex samples including milk and egg white by forming solid metal-protein complexes. Owing to the low solubility product of the investigated lanthanide salts, the produced metal-protein complexes showed high stability. The protein pellets were extensively washed to remove nonphosphorylated proteins and contaminants. For the analysis of proteins the pellets were first dissolved in 30 % formic acid and subjected to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS. For peptide mass-fingerprint analysis the precipitated phosphoproteins were enzymatically digested using microwave-assisted digestion. The method was found to be highly specific for the isolation and purification of phosphoproteins. Protein quantification was performed by colorimetric detection of total precipitated phosphoproteins and revealed more than 95 % protein recovery for each lanthanide salt. (orig.)

  3. A Terbium Sensitized Luminescence Method for the Assay of Flubiprofen in Pharmaceutical Formulations

    Directory of Open Access Journals (Sweden)

    Salma M.Z. Al-Kindy

    2014-12-01

    Full Text Available A sensitive time-resolved luminescence method for the determination of flubiprofen (FLP in methanol and in aqueous solution is described. The method is based on the luminescence sensitization of terbium (Tb3+ by the formation of a ternary complex with FLP in the presence of 4,7 diphenyl 1,10 phenanthroline (DPP as co-ligand, and Tween-20 as surfactant. The signal for Tb-FLP-DPP was monitored at λex  = 285 nm and λem  = 552 nm. Optimum conditions for the formation of the complex in an aqueous system were TRIS buffer, pH 8.0, DPP (2.5Å~10−7  M, Tween-20 (0.30% and 4Å~10-5  mol L-1  of Tb3+  which allowed the determination of 20–1000 ng mL-1  of FLP with a limit of detection (LOD of 10 ng mL-1 . The relative standard deviations of the method ranged between 0.6 and 1.4% indicating excellent reproducibility of the method. The proposed method was successfully applied for the assays of FLP in pharmaceutical formulations and spiked tap water samples with average recoveries of 87% – 95%.

  4. Sensitization effects of supramolecular assemblies on the luminescence of terbium-ion prulifloxacin complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Yi Chongyue; Li Xue; Fang Fang [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Yajiang, E-mail: yjyang@mail.hust.edu.c [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-04-15

    Luminescence enhancement of terbium-ion prulifloxacin complexes (Tb(III)-PUFX) in supramolecular hydrogels formed by assembly of 1,3:2,4-di-O-benzylidene-D-sorbitol (DBS) was investigated by steady-state fluorescence, varying temperature fluorescence and time-resolved fluorescence. The luminescence images show that Tb(III)-PUFX were dispersed in the DBS gels. The luminescence intensity of Tb(III)-PUFX in the DBS gels was significantly increased in comparison with that in corresponding aqueous solutions. The varying temperature fluorescent spectra show that the luminescence intensity of Tb(III)-PUFX decreased with an increase in the temperature. This implies that the luminescence enhancement of Tb(III)-PUFX is related to the dissociation and the formation of the DBS assemblies. Time-resolved fluorescence measurements show slower rotational motion in DBS gels in comparison with that in the corresponding aqueous solutions. This may be ascribed to a unique microstructure of three-dimensional network formed by DBC aggregates, resulting in deactivation of the nonradiative relaxation. The images of field emission scanning electron microscopy and polarized optical microscopy indicate that the morphology of the DBS assemblies was not influenced upon addition of Tb(III)-PUFX to the DBS gels.

  5. A Nanoscale Multiresponsive Luminescent Sensor Based on a Terbium(III) Metal-Organic Framework.

    Science.gov (United States)

    Dang, Song; Wang, Ting; Yi, Feiyan; Liu, Qinghui; Yang, Weiting; Sun, Zhong-Ming

    2015-08-01

    A nanoscale terbium-containing metal-organic framework (nTbL), with a layer-like structure and [H2 NMe2 ](+) cations located in the framework channels, was synthesized under hydrothermal conditions. The structure of the as-prepared sample was systematically confirmed by powder XRD and elemental analysis; the morphology was characterized by field-emission SEM and TEM. The photoluminescence studies revealed that rod-like nTbL exhibited bright-green emission, corresponding to (5)D4 →(7)FJ (J=6-3) transitions of the Tb(3+) ion under excitation. Further sensing measurements revealed that as-prepared nTbL could be utilized as a multiresponsive luminescent sensor, which showed significant and exclusive detection ability for Fe(3+) ions and phenylmethanol. These results highlight the practical applications of lanthanide-containing metal-organic frameworks as fluorescent probes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Terbium-Doped VO2 Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance.

    Science.gov (United States)

    Wang, Ning; Duchamp, Martial; Dunin-Borkowski, Rafal E; Liu, Shiyu; Zeng, XianTing; Cao, Xun; Long, Yi

    2016-01-26

    Vanadium dioxide (VO2) is a well-known thermochromic material with large IR modulating ability, promising for energy-saving smart windows. The main drawbacks of VO2 are its high phase transition temperature (τ(c) = 68°C), low luminous transmission (T(lum)), and weak solar modulating ability (ΔT(sol)). In this paper, the terbium cation (Tb(3+)) doping was first reported to reduce τ(c) and increase T(lum) of VO2 thin films. Compared with pristine VO2, 2 at. % doping level gives both enhanced T(lum) and ΔT(sol) from 45.8% to 54.0% and 7.7% to 8.3%, respectively. The T(lum) increases with continuous Tb(3+) doping and reaches 79.4% at 6 at. % doping level, representing ∼73.4% relative increment compared with pure VO2. This has surpassed the best reported doped VO2 thin films. The enhanced thermochromic properties is meaningful for smart window applications of VO2 materials.

  7. Luminescent investigations of terbium(III) biosorption as a surrogate for heavy metals and radionuclides.

    Science.gov (United States)

    Achyuthan, Komandoor E; Arango, Dulce C; Carles, Elizabeth L; Cutler, Christopher E; Meyer, Lauren A; Brozik, Susan M

    2009-07-01

    We describe a metal transport system for investigating the interfacial interactions between the anionic surface charge of a gram-negative bacterium (Escherichia coli) and a trivalent cationic metal, Tb3+. We believe this is the first description of the uptake kinetics, sub- and intracellular distribution, and temporal fate of Tb3+ ion in E. coli. We used the luminescence of the terbium-dipicolinic acid chelate to study metal ion transport. The bacteria had a high tolerance for the metal (IC(50) = 4 mM Tb3+). Metal ion transport was passive and metabolism independent. The uptake kinetics rapidly reached a maximum within 15 min, followed by a stasis for 60 min, and declining thereafter between 120 and 240 min, resulting in a biphasic curve. During this period, greater than one-third of the metal ion was sequestered within the cell. Our choice of a safe Biosafety Level I E. coli bacteria and the relatively non-toxic Tb3+ metal represents a model system for luminescent investigations of biosorption, for studying bacterial-water interfacial chemistry and for the bioremediation of heavy metals and radionuclides.

  8. Mineralogy of telluride-bearing epithermal ores in the Kassiteres-Sappes area, western Thrace, Greece

    Science.gov (United States)

    Voudouris, P.; Tarkian, M.; Arikas, K.

    2006-05-01

    The Kassiteres-Sappes district represents a multi-centered, porphyry-epithermal system developed during the Oligocene to Miocene at a composite calc-alkaline to high-K calc-alkaline volcanic edifice. Precious and base metal mineralization postdates the emplacement of dacite and rhyolite porphyries and is partly superimposed on earlier microdiorite-related porphyry-style mineralization exposed at the Koryfes Hill prospect. A second mineralized porphyry-type system genetically related to a dacite porphyry body developed near the St Demetrios deposit. Tellurides occur mainly at the St Barbara prospect and the St Demetrios deposit. Based on petrographic, electron microprobe, and scanning electron microscope analyses, hessite, petzite, sylvanite, altaite, stützite and native tellurium occur in the St Barbara prospect. These tellurium-bearing minerals are hosted in intermediate-sulfidation type veins and accompanied by pyrite, chalcopyrite, tetrahedrite-group minerals, galena and native gold/electrum. The St Demetrios mineralization includes hessite, altaite, stützite, and tetradymite in close spatial relation to a high-sulfidation assemblage composed of enargite, chalcopyrite, goldfieldite, and native gold. Tellurides were deposited at logfTe2 values of -8.5 to -7.1 and logfS2 values of -10.7 to -7.9 (275 °C). The ore systems are characterized by Au, Ag, Te, Bi, and Mo, which suggests a magmatic contribution to the mineralizing fluids. Ore-forming components were likely derived from both the dacite and rhyolite porphyries.

  9. Synthesis of ultra-long cadmium telluride nanotubes via combinational chemical transformation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kee-Ryung; Cho, Hong-Baek; Choa, Yong-Ho, E-mail: choa15@hanyang.ac.kr

    2017-03-01

    Synthesis of high-throughput cadmium telluride (CdTe) nanotubes with an ultra-long aspect ratio is presented via a combination process concept combined with electrospinning, electrodeposition, and cationic exchange reaction. Ultra-long sacrificial silver (Ag) nanofibers were synthesized by electrospinning involving two-step calcination, and were then electrodeposited to create silver telluride nanotubes. These nanotubes underwent cationic exchange reaction in cadmium nitrate tetrahydrate solution with the aid of a ligand, tributylphosphine (TBP). Analysis showed that ultra-long pure zinc blende CdTe nanotubes were obtained with controlled dimension and uniform morphology. The thermodynamic driving force induced by the coordination of methanol solvent and TBP attributed to overcome the kinetic barrier between Ag{sub 2}Te and CdTe nanotubes, facilitating the synthesis of CdTe nanotubes. This synthetic process involving a topotactic reaction route paves a way for high-throughput extended synthesis of new chalcogenide hollow nanotubes for application in photodetectors and solar cells. - Highlights: • High throughput synthetic route of hollow CdTe nanotubes with ultra-long aspect ratio. • Chemical combination of electrospinning, electrodeposition & cation exchange reaction. • Pure zinc blende CdTe by controlled dimension & structural variation of Ag nanofibers. • Potential for the high throughput synthesis of new exotic chalcogenide nanotubes.

  10. Effect of electronic contribution on temperature-dependent thermal transport of antimony telluride thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won-Yong; Park, No-Won [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Hong, Ji-Eun [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Yoon, Soon-Gil, E-mail: sgyoon@cnu.ac.kr [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of); Koh, Jung-Hyuk [School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Lee, Sang-Kwon, E-mail: sangkwonlee@cau.ac.kr [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2015-01-25

    Highlights: • We investigated thermal transport of the antimony telluride thin films. • The contribution of the electronic thermal conductivity increased up to ∼77% at 300 K. • We theoretically analyze and explain the high contribution of electronic component. - Abstract: We study the theoretical and experimental characteristics of thermal transport of 100 nm and 500 nm-thick antimony telluride (Sb{sub 2}Te{sub 3}) thin films prepared by radio frequency magnetron sputtering. The thermal conductivity was measured at temperatures ranging from 20 to 300 K, using four-point-probe 3-ω method. Out-of-plane thermal conductivity of the Sb{sub 2}Te{sub 3} thin film was much lesser in comparison to the bulk material in the entire temperature range, confirming that the phonon- and electron-boundary scattering are enhanced in thin films. Moreover, we found that the contribution of the electronic thermal conductivity (κ{sub e}) in total thermal conductivity (κ) linearly increased up to ∼77% at 300 K with increasing temperature. We theoretically analyze and explain the high contribution of electronic component of thermal conductivity towards the total thermal conductivity of the film by a modified Callaway model. Further, we find the theoretical model predictions to correspond well with the experimental results.

  11. Solvothermal synthesis and thermoelectric property of undoped and indium doped lead telluride nanoparticles

    Science.gov (United States)

    Kadel, Kamal; Li, Wenzhi

    2013-03-01

    Undoped and indium (In) doped lead telluride (PbTe) nanostructures were synthesized via solvothermal/hydrothermal route. The crystallinity of the as-prepared un-doped and In-doped PbTe sample were examined by X-ray diffraction (XRD) which indicated the formation of face centered single phase cubic PbTe. Lattice constant calculation from XRD pattern revealed the formation of un-doped and In-doped PbTe crystals with almost similar size. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) examinations indicated that undoped and In-doped PbTe nanostructures were mostly cubically shaped and highly crystalline. The effect of the synthesis temperature on the structure and morphology of undoped PbTe was also investigated; it was found that the particle size increased with the synthesis temperature. Thermoelectric property of as-synthesized lead telluride sample was also investigated. This work is supported by the National Science Foundation under the grant DMR- 0548061.

  12. Joining of Half-Heusler and Bismuth Tellurides for Segmented Thermoelectric Generators

    DEFF Research Database (Denmark)

    Ngan, Pham Hoang; Han, Li; Christensen, Dennis Valbjørn

    2018-01-01

    -Heusler alloys p-type Hf0.5Zr0.5CoSn0.2Sb0.8 and n-type Ti0.6Hf0.4NiSn. A two-step process was introduced to join the half-Heusler to the bismuth tellurides to form a segmented structure which was then characterized for its thermoelectric and structural properties. The output power generation was characterized......Segmented generators where the p- or n-type legs are formed by joining materials in series enables each material to operate in their most efficient temperature range. Here, we have fabricated and characterized segmented thermoelectric p- and n-type legs based on bismuth tellurides and half...... under various hot side temperatures up to 873 K with the cold side fixed at 323 K. The stability of the joints was also investigated under heat treatment and thermal cycling. Under working temperatures from 323 K to 873 K, the obtained p-type segmented legs could deliver a power density of 0.3 W cm−2...

  13. Physical properties of sublimated zinc telluride thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nazar Abbas, E-mail: nazar_abbas@comsats.edu.pk; Mahmood, Waqar

    2013-10-01

    Zinc telluride (ZnTe) thin films were fabricated by using closed space sublimation (CSS) technique on glass substrate under vacuum. Pre-fabricated ZnTe thin films were doped with silver (Ag) by ion exchange method. X-ray diffraction showed the preferred orientation (111) of ZnTe thin film with polycrystalline behavior. Scanning electron microscope images were taken to estimate the grain boundaries; energy dispersive X-ray results confirmed the Ag composition in doped-ZnTe samples. Electrical measurements were performed to determine the resistivity, mobility and carrier concentrations of un-doped thin films and Ag-doped samples. The electrical resistivity was of the order of 10{sup 6} Ω-cm before doping. Ag-doped ZnTe samples exhibits low resistivity of the order of 10{sup 3} Ω-cm along with a change in the carrier concentrations and mobility as well at room temperature. The angle resolved optical transmission data, taken by spectrophotometer, was used to find the optical properties before and after Ag doping. Energy band gap showed decreasing trend with increasing Ag doping time. - Highlights: • Zinc telluride thin films were grown by closed space sublimation technique. • Ag was doped, by ion exchange process. • Physical properties were investigated before and after doping.

  14. Dual-functional aniline-assisted wet-chemical synthesis of bismuth telluride nanoplatelets and their thermoelectric performance

    Science.gov (United States)

    Li, Changcun; Kong, Fangfang; Liu, Congcong; Liu, Huixuan; Hu, Yongjing; Wang, Tongzhou; Xu, Jingkun; Jiang, Fengxing

    2017-06-01

    The wet-chemical approach is of great significance for the synthesis of two-dimensional (2D) bismuth telluride nanoplatelets as a potential thermoelectric (TE) material. Herein, we proposed a simple and effective solution method with the assistance of aniline for the fabrication of bismuth telluride nanoplatelets at a low temperature of 100 °C. The choice of aniline with its dual function avoided the simultaneous use of a capping regent and a toxic reductant. The as-synthesized nanoplatelets have a large size of more than 900 × 500 nm2 and a small thickness of 15.4 nm. The growth of bismuth telluride nanoplatelets are related to the Bi/Te ratio of precursors indicating that a larger content of the Bi precursor is more conducive to the formation of 2D nanoplatelets. The bismuth telluride nanoplatelets pressed into a pellet show a smaller electrical resistivity (˜6.5 × 10-3 Ω · m) and a larger Seebeck coefficient (-135 μV K-1), as well as a lower thermal conductivity (0.27 W m-1 K-1) than those of nanoparticles. The next goal is to further reduce the electrical resistivity and optimize the TE performance by disposing of the residual reactant of aniline adsorbed on the surface of the nanoplatelets.

  15. Effect of Annealing on the Properties of Antimony Telluride Thin Films and Their Applications in CdTe Solar Cells

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Antimony telluride alloy thin films were deposited at room temperature by using the vacuum coevaporation method. The films were annealed at different temperatures in N2 ambient, and then the compositional, structural, and electrical properties of antimony telluride thin films were characterized by X-ray fluorescence, X-ray diffraction, differential thermal analysis, and Hall measurements. The results indicate that single phase antimony telluride existed when the annealing temperature was higher than 488 K. All thin films exhibited p-type conductivity with high carrier concentrations. Cell performance was greatly improved when the antimony telluride thin films were used as the back contact layer for CdTe thin film solar cells. The dark current voltage and capacitance voltage measurements were performed to investigate the formation of the back contacts for the cells with or without Sb2Te3 buffer layers. CdTe solar cells with the buffer layers can reduce the series resistance and eliminate the reverse junction between CdTe and metal electrodes.

  16. Facile preparation of carbon wrapped copper telluride nanowires as high performance anodes for sodium and lithium ion batteries

    Science.gov (United States)

    Yu, Hong; Yang, Jun; Geng, Hongbo; Chao Li, Cheng

    2017-04-01

    Uniform carbon wrapped copper telluride nanowires were successfully prepared by using an in situ conversion reaction. The length of these nanowires is up to several micrometers and the width is around 30-40 nm. The unique one dimensional structure and the presence of conformal carbon coating of copper telluride greatly accommodate the large volumetric changes during cycling, significantly increase the electrical conductivity and reduce charge transfer resistance. The copper telluride nanowires show promising performance in a lithium ion battery with a discharge capacity of 130.2 mA h g-1 at a high current density of 6.0 A g-1 (26.74 C) and a stable cycling performance of 673.3 mA h g-1 during the 60th cycle at 100 mA g-1. When evaluated as anode material for a sodium ion battery, the copper telluride nanowires deliver a reversible capacity of 68.1 mA h g-1 at 1.0 A g-1 (˜4.46 C) and have a high capacity retention of 177.5 mA h g-1 during the 500th cycle at 100 mA g-1.

  17. Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom

    Science.gov (United States)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy

    2017-11-01

    A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.

  18. Spectrofluorimetric determination of human serum albumin using terbium-danofloxacin probe.

    Science.gov (United States)

    Ramezani, Amir M; Manzoori, Jamshid L; Amjadi, Mohammad; Jouyban, Abolghasem

    2012-01-01

    A spectrofluorimetric method is proposed for the determination of human serum albumin (HSA) and bovine serum albumin (BSA) using terbium-danofloxacin (Tb(3+)-Dano) as a fluorescent probe. These proteins remarkably enhance the fluorescence intensity of the Tb(3+)-Dano complex at 545 nm, and the enhanced fluorescence intensity of Tb(3+)-Dano is proportional to the concentration of proteins (HSA and BSA). Optimum conditions for the determination of HSA were investigated and found that the maximum response was observed at: pH = 7.8, [Tb(3+)] = 8.5 × 10(-5) mol L(-1), [Dano] = 1.5 × 10(-4) mol L(-1). The calibration graphs for standard solutions of BSA, HSA, and plasma samples of HSA were linear in the range of 0.2 × 10(-6) - 1.3 × 10(-6) mol L(-1), 0.2 × 10(-6) - 1.4 × 10(-6) mol L(-1), and 0.2 × 10(-6) - 1 × 10(-6) mol L(-1), respectively. The detection limits (S/N = 3) for BSA, HSA, and plasma sample of HSA were 8.7 × 10(-8) mol L(-1), 6.2 × 10(-8) mol L(-1), and 8.1 × 10(-8) mol L(-1), respectively. The applicability of the method was checked using a number of real biological plasma samples and was compared with the UV spectrometric reference method. The results was showed that the method could be regarded as a simple, practical, and sensitive alternative method for determination of albumin in biological samples.

  19. Spectrofluorimetric Determination of Human Serum Albumin Using Terbium-Danofloxacin Probe

    Directory of Open Access Journals (Sweden)

    Amir M. Ramezani

    2012-01-01

    Full Text Available A spectrofluorimetric method is proposed for the determination of human serum albumin (HSA and bovine serum albumin (BSA using terbium-danofloxacin (Tb3+-Dano as a fluorescent probe. These proteins remarkably enhance the fluorescence intensity of the Tb3+-Dano complex at 545 nm, and the enhanced fluorescence intensity of Tb3+-Dano is proportional to the concentration of proteins (HSA and BSA. Optimum conditions for the determination of HSA were investigated and found that the maximum response was observed at: pH=7.8, [Tb3+] =8.5×10−5 mol L−1, [Dano] =1.5×10−4 mol L−1. The calibration graphs for standard solutions of BSA, HSA, and plasma samples of HSA were linear in the range of 0.2×10−6−1.3×10−6 mol L−1, 0.2×10−6−1.4×10−6 mol L−1, and 0.2×10−6−1×10−6 mol L−1, respectively. The detection limits (S/N = 3 for BSA, HSA, and plasma sample of HSA were 8.7×10−8 mol L−1, 6.2×10−8 mol L−1, and 8.1×10−8 mol L−1, respectively. The applicability of the method was checked using a number of real biological plasma samples and was compared with the UV spectrometric reference method. The results was showed that the method could be regarded as a simple, practical, and sensitive alternative method for determination of albumin in biological samples.

  20. Determination of flavonoids in pharmaceutical preparations using Terbium sensitized fluorescence method

    Directory of Open Access Journals (Sweden)

    M Shaghaghi

    2009-12-01

    Full Text Available "nBackground and the Purpose of the Study: The aim of this study was development and validation of a simple, rapid and sensitive spectrofluorimetric method for determination of total flavonoids in two topical formulations of Calendula officinalis, Ziziphus Spina-christi and an oral drop of Hypiran perforatum L. The proposed method is based on the formation of terbium (Tb3+ "n-flavonoids (quercetin as a reference standard complex at pH 7.0, which has fluorescence intensely with maximum emission at 545 nm when excited at 310 nm. "nMethod "n: For ointments masses of topical formulations were weighed and added to ethanol-aqueous buffer (pH 10.0 and the resulting mixtures were shaken and then two phases were separated by centrifugation. Aqueous phases were filtered and then diluted with water. For Hypiran drops an appropriate portion was diluted with ethanol and then aliquots of sample or standard solutions were determined according to the experimental procedure. "nResults "n: Under the optimum conditions, total concentrations of flavonoids (as quercetin equivalent in three tested formulations were found to be 0.204 mg/g (for Dermatin cream, 0.476 mg/g (for Calendula ointment and 13.50 μg/ml (for Hypiran drops. Analytical recoveries from samples spiked with different amounts of quercetin were 96.1-104.0 % with RSD % of less than 3.5. Conclusion : The proposed method which requires a simple dissolution step without any matrix interferences provided high sensitivity and selectivity and was easily applied to determine total flavonoids in real samples of three investigated formulations with excellent reproducibility.

  1. TOF SIMS analysis and generation of white photoluminescence from strontium silicate codoped with europium and terbium

    Energy Technology Data Exchange (ETDEWEB)

    Tshabalala, Modiehi A.; Swart, Hendrik C.; Ntwaeaborwa, Odireleng M., E-mail: ntwaeab@ufs.ac.za [Department of Physics, University of the Free State, P.O Box 339, Bloemfontein 9300 South Africa (South Africa)

    2014-03-15

    White light emitting terbium (Tb{sup 3+}) and europium (Eu{sup 3+}) codoped strontium silicate (Sr{sub 2}SiO{sub 4}) phosphors were prepared by a solid state reaction process. The structure, particle morphology, chemical composition, ion distribution, photoluminescence (PL), and decay characteristics of the phosphors were analyzed by x-ray diffraction (XRD), scanning electron microscopy (SEM), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and PL spectroscopy, respectively. The XRD data showed that our Sr{sub 2}SiO{sub 4} composed of two phases, namely, β-Sr{sub 2}SiO{sub 4} and α′-Sr{sub 2}SiO{sub 4}, and the α′-Sr{sub 2}SiO{sub 4} phase was more prominent than the β-Sr{sub 2}SiO{sub 4} phase. The SEM micrographs showed that the particles were agglomerated together and they did not have definite shapes. All ions (i.e., negative and positive) present in our materials were identified by TOF-SIMS. In addition, the chemical imaging performed with the TOF-SIMS demonstrated how the individual ions including the dopants (Eu{sup 3+} and Tb{sup 3+}) were distributed in the host lattice. White photoluminescence was observed when the Sr{sub 2}SiO{sub 4}:Tb{sup 3+}, Eu{sup 3+} phosphor was excited at 239 nm using a monochromatized xenon lamp as the excitation source. The phosphor exhibited fast decay lifetimes implying that it is not a good candidate for long afterglow applications.

  2. Pd-BISMUTHOTELLURIDES and Other Tellurides from Some Cu-Ni-PGE Deposits, Eastern Desert, Egypt

    Science.gov (United States)

    Helmy, H. M.

    2003-04-01

    Pd-bismuthotellurides and other tellurides are described from three Cu-Ni-PGE deposits in the Eastern Desert, Egypt: Abu Swayl, Genina Gharbia, Gabbro Akarem. The deposits are hosted in Late Precambrian mafic-ultramafic rocks and have different geologic histories. The Abu Swayel deposit occurs in conformable, lens-like mafic-ultramafic rocks in metasediments. Mineralization and host rocks are metamorphosed (amphibolite facies; 550-650ºC, 4-5 kbar) and syn-metamorphically sheared. Metamorphism and associated fluid regimes resulted in remobilization and transport of Cu-sulfides and PGE, and development of hydrosilicates. Michenerite, merenskyite, Pd-Bi-melonite, (NiPdBi)Te2, melonite, hessite, altaite and joséite-B occur as inclusions in mobilized sulfides and along cracks in garnet and plagioclase. The Genina Gharbia and Gabbro Akarem deposits are hosted in concentrically zoned, Alaskan-type, complexes; neither is metamorphosed. At Genina Gharbia, ore forms either disseminations in peridotite or massive patches in hornblende-pyroxenite in the vicinity of metasediments. Important petrographic features are a dominance of hornblende, biotite and chlorapatite and alteration of plagioclase to epidote. Disseminated and network sulfide ores are dominated by po, pn, cp and minor py; accessories are cobaltite, molybdenite and valleriite. Sulfide textures and host rock petrography suggest a prolonged late-magmatic hydrothermal event. Michenerite, merenskyite, Pd-Bi-melonite, altaite, hessite, tsumoite and native-Te are mainly present at sulfide-silicate contacts. The Gabbro Akarem deposit is hosted in dunite pipes where net-textured and massive sulfides are associated with spinel and Cr-magnetite. Michenerite, merenskyite, Pd-Bi-melonite and hessite occur mainly as inclusions in sulfides. Typical magmatic textures indicate the limited role of late- and post-magmatic hydrothermal processes. Different geological history of the different deposits enables examination of the

  3. Synthesis, crystal structure and photophysical properties of europium(III) and terbium(III) complexes with pyridine-2,6-dicarboxamide

    NARCIS (Netherlands)

    Tanase, S.; Gallego, P.M.; Gelder, R. de; Fu, W.T.

    2007-01-01

    The reactions of pyridine-2,6-dicarboxamide with europium(III) and terbium(III) triflates led to the formation of mononuclear complexes of formula [Ln(pcam)(3)](CF3SO3)(3) (Ln = Eu 1, Tb 2; pcam stands for pyridine-2,6-dicarboxamide). From single-crystal X-ray diffraction analysis, the complexes

  4. Zinc sulfide and terbium-doped zinc sulfide films grown by traveling wave reactor atomic layer epitaxy

    CERN Document Server

    Yun, S J; Nam, K S

    1998-01-01

    Zinc sulfide (ZnS) and terbium-doped ZnS (ZnS:Tb) thin films were grown by traveling wave reactor atomic layer epitaxy (ALE). In the present work, ZnCl sub 2 , H sub 2 S, and tris (2,2,6,6-tetramethyl-3,5-heptandionato) terbium (Tb(tmhd) sub 3) were used as the precursors. The dependence of crystallinity and Cl content of ZnS films was investigated on the growth temperature. ZnS and ZnS:Tb films grown at temperatures ranging from 400 to 500 .deg. C showed a hexagonal-2H crystalline structure. The crystallinity of ZnS film was greatly enhanced as the temperature increased. At growth temperatures higher than 450.deg.C, the films showed preferred orientation with mainly (002) diffraction peak. The Cl content decreased from approximately 9 to 1 at.% with the increase in growth temperature from 400 to 500 .deg. C. The segregation of Cl near the surface region and the incorporation of O from Tb(tmhd) sub 3 during ALE process were also observed using Auger electron spectroscopy. The ALE-grown ZnS and ZnS:Tb films re...

  5. Commercializing potassium terbium fluoride, KTF (KTb3F10) faraday crystals for high laser power optical isolator applications

    Science.gov (United States)

    Schlichting, Wolfgang; Stevens, Kevin; Foundos, Greg; Payne, Alexis

    2017-10-01

    Many scientific lasers and increasingly industrial laser systems operate in power regime, require high-performance optical isolators to prevent disruptive light feedback into the laser cavity. The optically active Faraday material is the key optical element inside the isolator. SYNOPTICS has been supplying the laser market with Terbium Gallium Garnet (TGG - Tb3Ga5O12) for many years. It is the most commonly used material for the 650-1100nm range and the key advantages for TGG include its cubic crystal structure for alignment free processing, little to no intrinsic birefringence, and ease of manufacture. However, for high-power laser applications TGG is limited by its absorption at 1064nm and its thermo-optic coefficient, dn/dT. Specifically, thermal lensing and depolarization effects become a limiting factor at high laser powers. While TGG absorption has improved significantly over the past few years, there is an intrinsic limit. Now, SYNOPTICS is commercializing the enhanced new crystal Potassium Terbium Fluoride KTF (KTb3F10) that exhibits much smaller nonlinear refractive index and thermo-optic coefficients, and still exhibits a Verdet constant near that of TGG. This cubic crystal has relatively low absorption and thermo-optic coefficients. It is now fully characterized and available for select production orders. At OPTIFAB in October 2017 we present recent results comparing the performance of KTF to TGG in optical isolators and show SYNOPTICS advances in large volume crystal growth and the production ramp up.

  6. Preparation and photoluminescence enhancement in terbium(III ternary complexes with β-diketone and monodentate auxiliary ligands

    Directory of Open Access Journals (Sweden)

    Devender Singh

    2016-12-01

    Full Text Available A series of new solid ternary complexes of terbium(III ion based on β-diketone ligand acetylacetone (acac and monodentate auxiliary ligands (aqua/urea/triphenylphosphineoxide/pyridine-N-oxide had been prepared. The structural characterizations of synthesized ternary compounds were studied by means of elemental analysis, infrared (IR, and proton nuclear magnetic resonance (NMR spectral techniques. The optical characteristics were investigated with absorption as well as photoluminescence spectroscopy. Thermal behavior of compounds was examined by TGA/DTA analysis and all metal complexes were found to have good thermal stability. The luminescence decay time of complexes were also calculated by monitoring at emission wavelength corresponding to 5D4 → 7F5 transition. A comparative inspection of the luminescent behavior of prepared ternary compounds was performed in order to determine the function of auxiliary ligands in the enhancement of luminescence intensity produced by central terbium(III ion. The color coordinates values suggested that compounds showed bright green emission in visible region in electromagnetic spectrum. Complexes producing green light could play a significant role in the fabrication of efficient light conversion molecular devices for display purposes and lightning systems.

  7. Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yunqing; Ye Chao; Zhu Zhenghui [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China); Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China); Hu Yuzhu [Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, Nanjing 210009 (China) and Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 210009 (China)], E-mail: njhuyuzu@126.com

    2008-03-03

    The pH-sensitive cadmium telluride (CdTe) quantum dots (QDs) were used as proton probes for tiopronin determination. Based on the fluorescence quenching of CdTe QDs caused by tiopronin, a simple, rapid and specific quantitative method was proposed. Under the optimal conditions, the calibration plot of ln(F{sub 0}/F) with concentration of tiopronin was linear in the range of 0.15-20 {mu}g mL{sup -1}(0.92-122.5 {mu}mol L{sup -1}) with correlation coefficient of 0.998. The limit of detection (LOD) (3{sigma}/k) was 0.15 {mu}g mL{sup -1}(0.92 {mu}mol mL{sup -1}). The content of tiopronin in pharmaceutical tablet was determined by the proposed method and the result agreed with that obtained from the oxidation-reduction titration method and the claimed value.

  8. Solvothermal synthesis and thermoelectric properties of indium telluride nanostring-cluster hierarchical structures

    Directory of Open Access Journals (Sweden)

    Zhang Haiqian

    2011-01-01

    Full Text Available Abstract A simple solvothermal approach has been developed to successfully synthesize n-type α-In2Te3 thermoelectric nanomaterials. The nanostring-cluster hierarchical structures were prepared using In(NO33 and Na2TeO3 as the reactants in a mixed solvent of ethylenediamine and ethylene glycol at 200°C for 24 h. A diffusion-limited reaction mechanism was proposed to explain the formation of the hierarchical structures. The Seebeck coefficient of the bulk pellet pressed by the obtained samples exhibits 43% enhancement over that of the corresponding thin film at room temperature. The electrical conductivity of the bulk pellet is one to four orders of magnitude higher than that of the corresponding thin film or p-type bulk sample. The synthetic route can be applied to obtain other low-dimensional semiconducting telluride nanostructures. PACS: 65.80.-g, 68.35.bg, 68.35.bt

  9. Solvothermal synthesis and thermoelectric properties of indium telluride nanostring-cluster hierarchical structures

    Science.gov (United States)

    Tai, Guo'an; Miao, Chunyang; Wang, Yubo; Bai, Yunrui; Zhang, Haiqian; Guo, Wanlin

    2011-12-01

    A simple solvothermal approach has been developed to successfully synthesize n-type α-In2Te3 thermoelectric nanomaterials. The nanostring-cluster hierarchical structures were prepared using In(NO3)3 and Na2TeO3 as the reactants in a mixed solvent of ethylenediamine and ethylene glycol at 200°C for 24 h. A diffusion-limited reaction mechanism was proposed to explain the formation of the hierarchical structures. The Seebeck coefficient of the bulk pellet pressed by the obtained samples exhibits 43% enhancement over that of the corresponding thin film at room temperature. The electrical conductivity of the bulk pellet is one to four orders of magnitude higher than that of the corresponding thin film or p-type bulk sample. The synthetic route can be applied to obtain other low-dimensional semiconducting telluride nanostructures. PACS: 65.80.-g, 68.35.bg, 68.35.bt

  10. Synthesis and structure of undoped and indium-doped thermoelectric lead telluride nanoparticles

    Science.gov (United States)

    Kadel, Kamal; Kumari, Latha; Wang, Xuewen; Li, Wenzhi; Huang, Jian Yu; Provencio, Paula Polyak

    2014-05-01

    Undoped and indium (In)-doped lead telluride (PbTe) nanostructures were synthesized via solvothermal/hydrothermal route. The crystalline structure of the as-prepared undoped and In-doped PbTe samples was examined by X-ray diffraction (XRD) which indicated the formation of face-centered single-phase cubic crystal. A first principle calculation on indium doping shows that the indium atoms are more likely to replace lead (Pb) rather than to take the interstitial sites. Laser-induced breakdown spectroscopy (LIBS) analysis confirms that indium is incorporated into the PbTe matrix of the indium-doped PbTe samples. The effects of surfactant and synthesis temperature on the structure and morphology of the undoped PbTe were also investigated; it was found that PbTe nanostructures synthesized with the addition of surfactants exhibited uniform shapes and their size increased with the synthesis temperature.

  11. Towards optimization of ACRT schedules applied to the gradient freeze growth of cadmium zinc telluride

    Science.gov (United States)

    Divecha, Mia S.; Derby, Jeffrey J.

    2017-12-01

    Historically, the melt growth of II-VI crystals has benefitted from the application of the accelerated crucible rotation technique (ACRT). Here, we employ a comprehensive numerical model to assess the impact of two ACRT schedules designed for a cadmium zinc telluride growth system per the classical recommendations of Capper and co-workers. The ;flow maximizing; ACRT schedule, with higher rotation, effectively mixes the solutal field in the melt but does not reduce supercooling adjacent to the growth interface. The ACRT schedule derived for stable Ekman flow, with lower rotation, proves more effective in reducing supercooling and promoting stable growth. These counterintuitive results highlight the need for more comprehensive studies on the optimization of ACRT schedules for specific growth systems and for desired growth outcomes.

  12. Atomic resolution on the (111 )B surface of mercury cadmium telluride by scanning tunneling microscopy

    Science.gov (United States)

    Zha, Fang-Xing; Hong, Feng; Pan, Bi-Cai; Wang, Yin; Shao, Jun; Shen, Xue-Chu

    2018-01-01

    The real-space atomic surface structure of mercury cadmium telluride was successfully achieved on the (111 )B surface of H g0.78C d0.22Te by ultrahigh-vacuum scanning tunneling microscopy (STM). The work casts light on the reconstructions of the (111 )B surface unraveling a (2 ×2 ) surface reconstruction induced by adatom adsorption of Cd. The other (2 ×2 ) surface reconstruction is clarified to be induced by the single Te vacancy, which is more stable than the reconstruction of multivacancies in contrast to the prevailing view. The simulated STM images are in good agreement with the experiments. We also observed an in situ morphology transition from the (1 ×1 ) structure to those (2 ×2 ) reconstructions, implying the stability of the reconstructions.

  13. A miniature cadmium telluride detector module for continuous monitoring of left-ventricular function.

    Science.gov (United States)

    Hoffer, P B; Berger, H J; Steidley, J; Brendel, A F; Gottschalk, A; Zaret, B L

    1981-02-01

    The authors describe a miniature cadmium telluride (CdTe) detector module for continuous monitoring of ventricular function using an equilibrium radionuclide blood-pool label. The detector and collimator are small, light, and suitable for direct attachment to the chest wall. Clinical studies in 18 patients using a prototype system demonstrated reasonably good correlation with left-ventricular ejection fractions (LVEF) determined by first-pass studies performed with a multicrystal scintillation camera (r = 0.74) and gated equilibrium studies performed with a computerized sodium iodide (Nal) probe (r = 0.76). The CdTe device may prove to be useful in patients in intensive and coronary care units as well as in ambulatory patients.

  14. Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Tanmoy, E-mail: pramanik.tanmoy@utexas.edu; Roy, Anupam, E-mail: anupam@austin.utexas.edu; Dey, Rik, E-mail: rikdey@utexas.edu; Rai, Amritesh; Guchhait, Samaresh; Movva, Hema C.P.; Hsieh, Cheng-Chih; Banerjee, Sanjay K.

    2017-09-01

    Highlights: • Perpendicular magnetic anisotropy in epitaxial Cr{sub 2}Te{sub 3} has been investigated. • Presence of a relatively strong second order anisotropy contribution is observed. • Magnetization reversal is explained quantitatively using a 1D defect model. • Relative roles of nucleation and pinning in magnetization reversal are discussed. • Domain structures and switching process are visualized by micromagnetic simulation. - Abstract: We investigate magnetic anisotropy and magnetization reversal mechanism in chromium telluride thin films grown by molecular beam epitaxy. We report existence of strong perpendicular magnetic anisotropy in these thin films, along with a relatively strong second order anisotropy contribution. The angular variation of the switching field observed from the magnetoresistance measurement is explained quantitatively using a one-dimensional defect model. The model reveals the relative roles of nucleation and pinning in the magnetization reversal, depending on the applied field orientation. Micromagnetic simulations are performed to visualize the domain structure and switching process.

  15. An additive approach to low temperature zero pressure sintering of bismuth antimony telluride thermoelectric materials

    Science.gov (United States)

    Catlin, Glenn C.; Tripathi, Rajesh; Nunes, Geoffrey; Lynch, Philip B.; Jones, Howard D.; Schmitt, Devin C.

    2017-03-01

    This paper presents an additive-based approach to the formulation of thermoelectric materials suitable for screen printing. Such printing processes are a likely route to such thermoelectric applications as micro-generators for wireless sensor networks and medical devices, but require the development of materials that can be sintered at ambient pressure and low temperatures. Using a rapid screening process, we identify the eutectic combination of antimony and tellurium as an additive for bismuth-antimony-telluride that enables good thermoelectric performance without a high pressure step. An optimized composite of 15 weight percent Sb7.5Te92.5 in Bi0.5Sb1.5Te3 is scaled up and formulated into a screen-printable paste. Samples fabricated from this paste achieve a thermoelectric figure of merit (ZT) of 0.74 using a maximum processing temperature of 748 K and a total thermal processing budget of 12 K-hours.

  16. Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology

    Energy Technology Data Exchange (ETDEWEB)

    Fazaeli, Yousef; Feizi, Shahzad [Nuclear Science and Technology Research Institute (NSTRI), Radiation Application Research School, Karaj (Iran, Islamic Republic of); Zare, Hakimeh; Karimi, Shokufeh [Yazd University, Department of Physics, Yazd (Iran, Islamic Republic of); Rahighi, Reza [Sharif University of Technology, Department of Physics, Tehran (Iran, Islamic Republic of)

    2017-08-15

    In the last two decades, quantum dots nanomaterials have garnered a great deal of scientific interest because of their unique properties. Quantum dots (QDs) are inorganic fluorescent nanocrystals in the size range between 1 and 20 nm. Due to their structural properties, they possess distinctive properties and behave in different way from crystals in macro scale, in many branches of human life. Cadmium telluride quantum dots (CdTe QDs) were labeled with {sup 68}Ga radio nuclide for fast in vivo targeting and coincidence imaging of tumors. Using instant paper chromatography, the physicochemical properties of the Cadmium telluride quantum dots labeled with {sup 68}Ga NPs ({sup 68}Ga rate at CdTe QDs) were found high enough stable in organic phases, e.g., a human serum, to be reliably used in bioapplications. In vivo biodistribution of the {sup 68}Ga rate at CdTe QDs nanoconposite was investigated in rats bearing fibro sarcoma tumor after various post-injection periods of time. The {sup 68}Ga NPs exhibited a rapid as well as high tumor uptake in a very short period of time (less than 10 min), resulting in an efficient tumor targeting/imaging agent. Meantime, the low lipophilicity of the {sup 68}Ga NPs caused to their fast excretion throughout the body by kidneys (as also confirmed by the urinary tract). Because of the short half-life of {sup 68}Ga radionuclide, the {sup 68}Ga rate at CdTe QDs with an excellent tumor targeting/imaging and fast washing out from the body can be suggested as one of the most effective and promising nanomaterials in nanotechnology-based cancer diagnosis and therapy. (orig.)

  17. Joining of Half-Heusler and Bismuth Tellurides for Segmented Thermoelectric Generators

    Science.gov (United States)

    Ngan, Pham Hoang; Han, Li; Christensen, Dennis Valbjørn

    2018-01-01

    Segmented generators where the p- or n-type legs are formed by joining materials in series enables each material to operate in their most efficient temperature range. Here, we have fabricated and characterized segmented thermoelectric p- and n-type legs based on bismuth tellurides and half-Heusler alloys p-type Hf0.5Zr0.5CoSn0.2Sb0.8 and n-type Ti0.6Hf0.4NiSn. A two-step process was introduced to join the half-Heusler to the bismuth tellurides to form a segmented structure which was then characterized for its thermoelectric and structural properties. The output power generation was characterized under various hot side temperatures up to 873 K with the cold side fixed at 323 K. The stability of the joints was also investigated under heat treatment and thermal cycling. Under working temperatures from 323 K to 873 K, the obtained p-type segmented legs could deliver a power density of 0.3 W cm-2 and maximum voltage of 115 mV. With the same condition, the power density and the maximum voltage generated by n-type segmented leg were 0.25 W cm-2 and 102 mV. The area-specific contact resistances of the p- and n-type legs were 50 μΩ cm2 and 35 μΩ cm2, respectively. The output performance of each leg was ˜ 95% after 6 cycles from 323 K to 873 K.

  18. A COMPARATIVE ANALYSIS OF SILICON AND CADMIUM TELLURIDE BASED SOLAR CELLS

    Directory of Open Access Journals (Sweden)

    Amjad Al QASSEM

    2016-12-01

    Full Text Available A compartive analzsis of silicon solar cells and of those containing a CdTe thin film which are widely used in solar energetics, particullarilly, in photovoltaic modules fabrication, is brought in this paper. The silicon is largely used in solar cells fabrication due to the low cost of solar cells production related to the low cost of the semiconductor fabrication and to the advanced material processing technology, when at the same time cadmium telluride has the wide use due to the fact that its fundamental parameters can provide theoretically a high value of efficiency of solar energy conversion into electrical one of 30%. The structure and photoelectrical parameters of silicon solar cells and of those cotaining a thin cadmium telluride layer are considered.ANALIZA COMPARATIVĂ A CELULELOR SOLARE DIN SILICIU ŞI TELURURA DE CADMIUÎn lucrarea de faţă este prezentată analiza comparativă a celulelor solare fabricate din siliciu şi a celor cu strat subţire de CdTe, care sunt pe larg utilizate în energetica solară, în particular la producerea modulelor fotovoltaice. Siliciul este intens folosit în fabricarea celulelor solare datorită costului redus al materialului semiconductor şi tehnologiei avansate de procesare, pe când telurura de cadmiu are o utilizare tot mai largă care, datorită parametrilor fundamentali, poate asigura teoretic o valoare înaltă a eficienţei conversiei energiei solare în cea electrică de (30%. Sunt considerate structura şi parametrii fotoelectrici ai celulelor solare din siliciu şi ai celor cu strat subţire de telurură de cadmiu.

  19. Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology

    Science.gov (United States)

    Fazaeli, Yousef; Zare, Hakimeh; Karimi, Shokufeh; Rahighi, Reza; Feizi, Shahzad

    2017-08-01

    In the last two decades, quantum dots nanomaterials have garnered a great deal of scientific interest because of their unique properties. Quantum dots (QDs) are inorganic fluorescent nanocrystals in the size range between 1 and 20 nm. Due to their structural properties, they possess distinctive properties and behave in different way from crystals in macro scale, in many branches of human life. Cadmium telluride quantum dots (CdTe QDs) were labeled with 68Ga radio nuclide for fast in vivo targeting and coincidence imaging of tumors. Using instant paper chromatography, the physicochemical properties of the Cadmium telluride quantum dots labeled with 68Ga NPs (68Ga@ CdTe QDs) were found high enough stable in organic phases, e.g., a human serum, to be reliably used in bioapplications. In vivo biodistribution of the 68Ga@ CdTe QDs nanoconposite was investigated in rats bearing fibro sarcoma tumor after various post-injection periods of time. The 68Ga NPs exhibited a rapid as well as high tumor uptake in a very short period of time (less than 10 min), resulting in an efficient tumor targeting/imaging agent. Meantime, the low lipophilicity of the 68Ga NPs caused to their fast excretion throughout the body by kidneys (as also confirmed by the urinary tract). Because of the short half-life of 68Ga radionuclide, the 68Ga@ CdTe QDs with an excellent tumor targeting/imaging and fast washing out from the body can be suggested as one of the most effective and promising nanomaterials in nanotechnology-based cancer diagnosis and therapy.

  20. Synthesis and luminescent study of Ce{sup 3+}-doped terbium-yttrium aluminum garnet

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, V.P., E-mail: ssclab@ukr.net [A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Lustdorfskaya doroga 86, 65080 Odessa (Ukraine); Berezovskaya, I.V.; Zubar, E.V.; Efryushina, N.P. [A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Lustdorfskaya doroga 86, 65080 Odessa (Ukraine); Poletaev, N.I.; Doroshenko, Yu.A. [Institute of Combustion and Advanced Technologies, Mechnikov Odessa National University, Dvoryanskaya 2, 65082 Odessa (Ukraine); Stryganyuk, G.B. [Ivan Franko National University of Lviv, Kirilo i Mefodii 8, 79005 Lviv (Ukraine); HASYLAB at DESY, Notkestrasse 85, 22607 Hamburg (Germany); Voloshinovskii, A.S. [Ivan Franko National University of Lviv, Kirilo i Mefodii 8, 79005 Lviv (Ukraine)

    2013-02-15

    Highlights: Black-Right-Pointing-Pointer Ce{sup 3+}-doped garnets (TYAG) were prepared using nanostructured reagents. Black-Right-Pointing-Pointer The Ce{sup 3+} ions cause a very efficient yellow emission of the samples. Black-Right-Pointing-Pointer The reasons for the long wavelength position of this emission are discussed. Black-Right-Pointing-Pointer Contribution from Al atoms to the conduction band of TYAG is quite essential. - Abstract: Terbium-yttrium aluminum garnets (TYAG) doped with Ce{sup 3+} ions have been prepared by solid state reactions between nanostructured oxides of aluminum and rare earths. The luminescent properties of Ce{sup 3+} ions in (Tb{sub 0.8}Y{sub 0.2}){sub 3(1-x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.03) have been studied upon excitation in the 2-20 eV region. The substitution of Tb{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f{sup n} {yields} 4f{sup n-1}5d excitation bands of Ce{sup 3+} and Tb{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain broad bands at 6.73 and {approx}9.5 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p {yields} Al 3s, 3p transitions, respectively. In contrast to the predictions based on the results of electronic structure calculations on Y{sub 3}Al{sub 5}O{sub 12} and Tb{sub 4}Al{sub 2}O{sub 9}, the threshold of interband transitions in TYAG is at high energies ( Greater-Than-Or-Slanted-Equal-To 7.3 eV), and contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.

  1. Structural variations in terbium(III) complexes with 1,3-adamantanedicarboxylate and diverse co-ligands

    Energy Technology Data Exchange (ETDEWEB)

    Thuéry, Pierre, E-mail: pierre.thuery@cea.fr

    2015-07-15

    Terbium nitrate was reacted with 1,3-adamantanedicarboxylic acid (LH{sub 2}) under solvo-hydrothermal conditions with either N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMA) as organic solvents. Hydrolysation of the latter co-solvents resulted in the formation of formate or acetate ions, which are present as co-ligands in the 1D coordination polymer [Tb(L)(HCOO)(H{sub 2}O){sub 2}] (1) and the 2D assembly [Tb(L)(CH{sub 3}COO)(H{sub 2}O)] (2). The increase in dimensionality in the latter arises from the higher connectivity provided by acetate versus formate, the L{sup 2−} ligand being bis-chelating in both cases. The complex [Tb{sub 2}(L){sub 3}(H{sub 2}O){sub 5}][Tb{sub 2}(L){sub 3}(H{sub 2}O){sub 4}]·3H{sub 2}O (3), another 1D species, crystallizes alongside crystals of 2. Further addition of cucurbit[6]uril (CB6), with DMF as co-solvent, gave the two complexes [Tb{sub 2}(L){sub 2}(CB6)(H{sub 2}O){sub 6}](NO{sub 3}){sub 2}·6H{sub 2}O (4) and [H{sub 2}NMe{sub 2}]{sub 2}[Tb(L)(HCOO){sub 2}]{sub 2}·CB6·3H{sub 2}O (5). Complex 4 crystallizes as a 3D framework in which Tb(L){sup +} chains are connected by tetradentate CB6 molecules, while 5 unites a carboxylate-bridged anionic 2D planar assembly and layers of CB6 molecules with counter-cations held at both portals. - Graphical abstract: One- to three-dimensional assemblies are formed in terbium(III) complexes with 1,3-adamantanedicarboxylate obtained under solvo-hydrothermal conditions, these species including formate or acetate co-ligands formed in situ, or additional cucurbit[6]uril molecules. - Highlights: • We report structures of terbium(III) complexes with 1,3-adamantanedicarboxylate. • Solvents able to generate co-ligands or counter-ions in situ have been used. • A 3D species including additional cucurbituril molecules is decribed. • One species displays an alternation of metal–organic and organic sheets.

  2. Bulk Dissolution Rates of Cadmium and Bismuth Tellurides As a Function of pH, Temperature and Dissolved Oxygen.

    Science.gov (United States)

    Biver, Marc; Filella, Montserrat

    2016-05-03

    The toxicity of Cd being well established and that of Te suspected, the bulk, surface-normalized steady-state dissolution rates of two industrially important binary tellurides-polycrystalline cadmium and bismuth tellurides- were studied over the pH range 3-11, at various temperatures (25-70 °C) and dissolved oxygen concentrations (0-100% O2 in the gas phase). The behavior of both tellurides is strikingly different. The dissolution rates of CdTe monotonically decreased with increasing pH, the trend becoming more pronounced with increasing temperature. Activation energies were of the order of magnitude associated with surface controlled processes; they decreased with decreasing acidity. At pH 7, the CdTe dissolution rate increased linearly with dissolved oxygen. In anoxic solution, CdTe dissolved at a finite rate. In contrast, the dissolution rate of Bi2Te3 passed through a minimum at pH 5.3. The activation energy had a maximum in the rate minimum at pH 5.3 and fell below the threshold for diffusion control at pH 11. No oxygen dependence was detected. Bi2Te3 dissolves much more slowly than CdTe; from one to more than 3.5 orders of magnitude in the Bi2Te3 rate minimum. Both will readily dissolve under long-term landfill deposition conditions but comparatively slowly.

  3. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp; Kurita, Kensuke [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi; Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan)

    2015-08-14

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N{sub 2} atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H{sub 2} (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K{sup 2}) that of the thin films treated with EB irradiation alone.

  4. Enhanced thermoelectric properties of phase-separating bismuth selenium telluride thin films via a two-step method

    Science.gov (United States)

    Takashiri, Masayuki; Kurita, Kensuke; Hagino, Harutoshi; Tanaka, Saburo; Miyazaki, Koji

    2015-08-01

    A two-step method that combines homogeneous electron beam (EB) irradiation and thermal annealing has been developed to enhance the thermoelectric properties of nanocrystalline bismuth selenium telluride thin films. The thin films, prepared using a flash evaporation method, were treated with EB irradiation in a N2 atmosphere at room temperature and an acceleration voltage of 0.17 MeV. Thermal annealing was performed under Ar/H2 (5%) at 300 °C for 60 min. X-ray diffraction was used to determine that compositional phase separation between bismuth telluride and bismuth selenium telluride developed in the thin films exposed to higher EB doses and thermal annealing. We propose that the phase separation was induced by fluctuations in the distribution of selenium atoms after EB irradiation, followed by the migration of selenium atoms to more stable sites during thermal annealing. As a result, thin film crystallinity improved and mobility was significantly enhanced. This indicates that the phase separation resulting from the two-step method enhanced, rather than disturbed, the electron transport. Both the electrical conductivity and the Seebeck coefficient were improved following the two-step method. Consequently, the power factor of thin films that underwent the two-step method was enhanced to 20 times (from 0.96 to 21.0 μW/(cm K2) that of the thin films treated with EB irradiation alone.

  5. Complete Stokes polarimetry of magneto-optical Faraday effect in a terbium gallium garnet crystal at cryogenic temperatures.

    Science.gov (United States)

    Majeed, Hassaan; Shaheen, Amrozia; Anwar, Muhammad Sabieh

    2013-10-21

    We report the complete determination of the polarization changes caused in linearly polarized incident light due to propagation in a magneto-optically active terbium gallium garnet (TGG) single crystal, at temperatures ranging from 6.3 to 300 K. A 28-fold increase in the Verdet constant of the TGG crystal is seen as its temperature decreases to 6.3 K. In contrast with polarimetry of light emerging from a Faraday material at room temperature, polarimetry at cryogenic temperatures cannot be carried out using the conventional fixed polarizer-analyzer technique because the assumption that ellipticity is negligible becomes increasingly invalid as temperature is lowered. It is shown that complete determination of light polarization in such a case requires the determination of its Stokes parameters, otherwise inaccurate measurements will result with negative implications for practical devices.

  6. Development of Optical Isolators for Visible Light Using Terbium Aluminum Garnet (Tb3Al5O12) Single Crystals

    Science.gov (United States)

    Geho, Mikio; Takagi, Takashi; Chiku, Shinichiro; Fujii, Takashi

    2005-07-01

    We have recently reported the successful growth of incongruently melting terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser FZ (floating zone) method. Optical property evaluations confirmed a high transmittance and a larger Verdet constant than conventional Tb3Ga5O12 (TGG) crystals and/or Faraday glasses. In this study, we attempted to design, fabricate, and evaluate optical isolators in visible light through near-infrared (NIR) regions using TAG crystals. A finite element method (FEM) simulation of possible models led us to the preferable one based on a radially magnetized magnet. To realize this, we employed a pseudo-radially magnetized magnet. The target wavelengths of the prototype device were 408, 808, and 1064 nm. The typical extinction ratio was more than 30 dB and the insertion loss was less than 0.3 dB for AR-coated devices.

  7. Synthesis and characterization of bismuth telluride based nanostructured thermoelectric composite materials

    Science.gov (United States)

    Keshavarz Khorasgani, Mohsen

    Thermoelectric (TE) materials and devices are attractive in solid-state energy conversion applications such as waste heat recovery, air-conditioning, and refrigeration. Since the 1950's lots of unremitting efforts have been made to enhance the efficiency of energy conversion in TE materials (i. e. improving the figure of merit (ZT)), however, most of commercial bulk TE materials still suffer from low efficiency with ZTs around unity. To enhance the performance of bismuth telluride based TE alloys, we have developed composite TE materials, based on the idea that introducing more engineered interfaces in the bulk TE materials may lead to thermal conductivity reduction due to increased phonon scattering by these interfaces. In this approach it is expected that the electronic transport properties of the material are not effectively affected. Consequently, ZT enhancement can be achieved. In this dissertation we will discuss synthesis and characterization of two types of bismuth telluride based bulk composite TE materials. The first type is engineered to contain the presence of coherent interfaces between phases in the material resulting from different mixtures of totally miscible compounds with similar composition. The second type includes the nanocomposites with embedded foreign nano-particles in which the matrix and the particles are delimited by incoherent interfaces. The synthesis procedure, micro- and nano-structures as well as thermoelectric properties of these composites will be presented. In our study on the composites with coherent interfaces, we produced a series of different composites of p-type bismuth antimony telluride alloys and studied their microstructure and thermoelectric properties. Each composite consists of two phases that were obtained in powder form by mechanical alloying. Mixed powders in various proportions of the two different phases were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as

  8. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Airul Azha Abd [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Technology Park Malaysia, Malaysia Institute of Microelectronics and System, Kuala Lumpur (Malaysia); Umar, Akrajas Ali; Salleh, Muhamad Mat [Universiti Kebangsaan Malaysia UKM, Institute of Microengineering and Nanoelectronics, Bangi, Selangor (Malaysia); Chen, Xiaomei [Jimei University, College of Food and Biological Engineering, Jimei, Xiamen (China); Oyama, Munetaka [Kyoto University, Graduate School of Engineering, Nishikyoku, Kyoto (Japan)

    2016-02-15

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m{sup -1} K{sup -2}) and 10 μV/K (and 19.5 μW m{sup -1} K{sup -2}), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output

  9. Study on the Low Temperature Photoluminescence Spectra of II-VI Group Telluride Bulk Crystals.

    Science.gov (United States)

    Xu, Ya-dong; Liu, Hang; He, Yi-hui; Zhou, Yan; Jie, Wan-qi

    2015-03-01

    The dominant point defects in II-VI group telluride bulk crystals grown from melt usually varied due to different growth conditions and cooling history, in turn affect the electrical and optical behaviors of corresponding single crystals and devices. Low temperature photoluminescence (PL) spectra acts as a contact-less and non-destructive technique, can be used to evaluate the behaviors of point defects and impurities in the as-grown telluride bulk crystals. With the purpose of comparing the defect structures in un-doped ZnTe and CdTe crystals grown under Te-rich condition, 8. 6 K PL spectra were obtained. The conductivity type and resistivity were investigated by Hall-effect measurements at room temperature (RT). For p-type low resistivity ZnTe crystal, the intensity of. free electron to neutral acceptor (e, A(0)) transition is higher than the donor-acceptor pair (DAP) transition, which predominates in the PL spectra. However, in the contrary, DAP peak dominates the PL emissions for n-type high resistivity CdTe. This difference is mainly attributed to the distinct properties of the grown-in point defects due to different growth. velocities and cooling processes. In terms of the un-doped CdZnTe crystal grown under stoichiometry, neutral donor bound exciton (D(0), X) emission is predominated in the 9.2 K PL spectra, with the intensity of (e, A(0)) peak is higher than DAP peak, which then overlaps to each other when the temperature higher then 15 K. In the case of In-doped CdZnTe crystal grown by Te-rich situation, A-center emission is clearly observed, which introduces an energy level approximately of 0.15 eV, with the intensity proportional to the concentration of indium dopant. This defect is seemingly related to the complex of [In(Cd)+V(Cd)2-]- formed by a shallow donor In(Cd) and Cd vacancy.

  10. Enhanced thermoelectric properties of bismuth telluride-organic hybrid films via graphene doping

    Science.gov (United States)

    Rahman, Airul Azha Abd; Umar, Akrajas Ali; Chen, Xiaomei; Salleh, Muhamad Mat; Oyama, Munetaka

    2016-02-01

    The thermoelectric properties of graphene-doped bismuth telluride-PEDOT:PSS-glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS-glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m-1 K-2) and 10 μV/K (and 19.5 μW m-1 K-2), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50

  11. Rajkonkoski gold-telluride ore occurrence: A new high prospective type of complex noble metal mineralization in the Karelian Proterozoic

    Science.gov (United States)

    Ivashchenko, V. I.; Sundblad, K.; Toritsin, A. N.; Golubev, A. I.; Lavrov, O. B.

    2008-11-01

    The Rajkonkoski ore occurrence is located within the region of the Karelian craton (AR2) and the Svecofennian folded belt (PR1) conjugation. It is presented by quartz-carbonate veins in metadoleriles and a zone of brecciation, crumple, and silification of carbonaceous shales within the volcanites of the Soanlakhtinsky suite (PR1). Ore mineralization in black shales and quartz veins has features of genetic similarity presenting different levels of the ore system controlled by different range strike-slip fault dislocations. At the Rajkonkoski ore occurrence, 41 ore minerals have been identified: 12 tellurides (native tellurium, hedleyite, pilsenite, tsumoite, tellurobismuthite, hessite, stuetzite, radclidzhite, joseite-B, altaite, volynskite, petzite); 4 bismuth-tellurides of the following compositions Bi3Te, Bi3Te2, BiTe4, PbBiTe; 3 selenides (clausthalite, tellurolaitakarite, native selenium); and 12 native metals (gold, silver, electrum, copper, iron, lead, tin, bismuth, osmiridium). The contents of the main ore minerals in places exceed 10%, and the concentrations of elements reach as follows: Cu and Pb, 5%; Zn, Bi, 1%; Se, 219 ppm; Te, 171 ppm; Sb, 3 ppm; As, 5 ppm; Ag, >0.1%; Au, 35.28 ppm. Ore mineralization is formed during the temperature interval from 550°C up to 300°C) complete miscibilities galenite-clausthalite and galenite-altaite are observed. In aggregate with a wide temperature interval (>400°C) of ore process evolution and mineral specia variety of telluride and native metal mineralizations, the original “torsion” of different temperature mineralizations makes it possible to determine the affiliation of the Rajkonkoski ore occurrence to the xenothermal type deposits or epithermal “alkaline,” gold-telluride A-type characterized by a close connection with magmatism of increased alkalinity and the original geochemical (Te-V-F) and mineral (tellurides of gold, silver and other metals, fluorite, roscoelite, vanadium-containing sulfides

  12. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis.

    Science.gov (United States)

    Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Medici, Franco; Vegliò, Francesco

    2016-12-15

    Terbium and rare earths recovery from fluorescent powders of exhausted lamps by acid leaching with hydrochloric acid was the objective of this study. In order to investigate the factors affecting leaching a series of experiments was performed in according to a full factorial plan with four variables and two levels (4 2 ). The factors studied were temperature, concentration of acid, pulp density and leaching time. Experimental conditions of terbium dissolution were optimized by statistical analysis. The results showed that temperature and pulp density were significant with a positive and negative effect, respectively. The empirical mathematical model deducted by experimental data demonstrated that terbium content was completely dissolved under the following conditions: 90 °C, 2 M hydrochloric acid and 5% of pulp density; while when the pulp density was 15% an extraction of 83% could be obtained at 90 °C and 5 M hydrochloric acid. Finally a flow sheet for the recovery of rare earth elements was proposed. The process was tested and simulated by commercial software for the chemical processes. The mass balance of the process was calculated: from 1 ton of initial powder it was possible to obtain around 160 kg of a concentrate of rare earths having a purity of 99%. The main rare earths elements in the final product was yttrium oxide (86.43%) following by cerium oxide (4.11%), lanthanum oxide (3.18%), europium oxide (3.08%) and terbium oxide (2.20%). The estimated total recovery of the rare earths elements was around 70% for yttrium and europium and 80% for the other rare earths. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. One-Dimensional Fast Transient Simulator for Modeling Cadmium Sulfide/Cadmium Telluride Solar Cells

    Science.gov (United States)

    Guo, Da

    Solar energy, including solar heating, solar architecture, solar thermal electricity and solar photovoltaics, is one of the primary alternative energy sources to fossil fuel. Being one of the most important techniques, significant research has been conducted in solar cell efficiency improvement. Simulation of various structures and materials of solar cells provides a deeper understanding of device operation and ways to improve their efficiency. Over the last two decades, polycrystalline thin-film Cadmium-Sulfide and Cadmium-Telluride (CdS/CdTe) solar cells fabricated on glass substrates have been considered as one of the most promising candidate in the photovoltaic technologies, for their similar efficiency and low costs when compared to traditional silicon-based solar cells. In this work a fast one dimensional time-dependent/steady-state drift-diffusion simulator, accelerated by adaptive non-uniform mesh and automatic time-step control, for modeling solar cells has been developed and has been used to simulate a CdS/CdTe solar cell. These models are used to reproduce transients of carrier transport in response to step-function signals of different bias and varied light intensity. The time-step control models are also used to help convergence in steady-state simulations where constrained material constants, such as carrier lifetimes in the order of nanosecond and carrier mobility in the order of 100 cm2/Vs, must be applied.

  14. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector

    Energy Technology Data Exchange (ETDEWEB)

    Sizov, F.; Zabudsky, V.; Petryakov, V.; Golenkov, A.; Andreyeva, K.; Tsybrii, Z. [Institute of Semiconductor Physics, 03028 Kiev (Ukraine); Dvoretskii, S. [Institute of Semiconductor Physics of SB RAS, 630090 Novosibirsk (Russian Federation)

    2015-02-23

    In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP{sub 300 K} ≈ 4.5 × 10{sup −10} W/Hz{sup 1/2} and NEP{sub 78 K} ≈ 5 × 10{sup −9} W/Hz{sup 1/2}. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noise ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source.

  15. Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Patrick R. [California Polytechnic State Univ. (CalPoly), San Luis Obispo, CA (United States)

    2010-01-07

    Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current or leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.

  16. Directional solidification of mercury cadmium telluride during the second United States Microgravity Payload Mission (USMP-2)

    Energy Technology Data Exchange (ETDEWEB)

    Gillies, D.C.; Lehoczky, S.L.; Szofran, F.R.; Watring, D.A.; Alexander, H.A.; Jerman, G.A. [NASA Marshall Space Flight Center, Huntsville, AL (United States)

    1996-12-31

    As a solid solution semiconductor having a large separation between liquidus and solidus, mercury cadmium telluride (MCT) presents a formidable challenge to crystal growers desiring an alloy of high compositional uniformity. To avoid constitutional supercooling during Bridgman crystal growth it is necessary to solidify slowly in a high temperature gradient region. The necessary translation rate of less than 1 mm/hr results in a situation where fluid flow induced by gravity on earth is a significant factor in material transport. The Advanced Automated Directional Solidification Furnace (AADSF) is equipped to provide the stable thermal environment with a high gradient, and the required slow translation rate needed. Ground based experiments in AADSF show clearly the dominance of flow driven transport. The first flight of AADSF in low gravity on USMP-2 provided an opportunity to test theories of fluid flow in MCT and showed several solidification regimes which are very different from those observed on earth. Residual acceleration vectors in the orbiter during the mission were measured by the Orbital Acceleration Research Experiment (OARE), and correlated well with observed compositional differences in the samples.

  17. Influence of the Ion Coordination Number on Cation Exchange Reactions with Copper Telluride Nanocrystals

    CERN Document Server

    Tu, Renyong; Bertoni, Giovanni; Lak, Aidin; Gaspari, Roberto; Rapallo, Arnaldo; Cavalli, Andrea; De Trizio, Luca; Manna, Liberato

    2016-01-01

    Cu2-xTe nanocubes were used as starting seeds to access metal telluride nanocrystals by cation exchanges at room temperature. The coordination number of the entering cations was found to play an important role in dictating the reaction pathways. The exchanges with tetrahedrally coordinated cations (i.e. with coordination number 4), such as Cd2+ or Hg2+, yielded monocrystalline CdTe or HgTe nanocrystals with Cu2-xTe/CdTe or Cu2-xTe/HgTe Janus-like heterostructures as intermediates. The formation of Janus-like architectures was attributed to the high diffusion rate of the relatively small tetrahedrally coordinated cations, which could rapidly diffuse in the Cu2-xTe NCs and nucleate the CdTe (or HgTe) phase in a preferred region of the host structure. Also, with both Cd2+ and Hg2+ ions the exchange led to wurtzite CdTe and HgTe phases rather than the more stable zinc-blende ones, indicating that the anion framework of the starting Cu2- xTe particles could be more easily deformed to match the anion framework of t...

  18. Fabrication of antimony telluride nanoparticles using a brief chemical synthetic process under atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cham [Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-623 Hosan-dong, Dalseo-gu, Daegu 704-230 (Korea, Republic of); Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong, Pohang 790-784 (Korea, Republic of); Kim, Dong Hwan; Han, Yoon Soo [Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-623 Hosan-dong, Dalseo-gu, Daegu 704-230 (Korea, Republic of); Chung, Jong Shik [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31 Hyoja-dong, Pohang 790-784 (Korea, Republic of); Kim, Hoyoung, E-mail: hoykim@dgist.ac.kr [Daegu Gyeongbuk Institute of Science and Technology (DGIST), 711-623 Hosan-dong, Dalseo-gu, Daegu 704-230 (Korea, Republic of)

    2011-01-21

    Graphical abstract: Display Omitted Research highlights: > A resulting sample exhibited the single Sb{sub 2}Te{sub 3} rhombohedral structure (JCPDS card No. 71-0393). > The sample was composed of nanoparticles under 100 nm with very narrow size distribution. > It was confirmed that the sample was generated with the desired atomic composition between Sb and Te. - Abstract: Antimony telluride (Sb{sub 2}Te{sub 3}) nanoparticles for thermoelectric applications were successfully prepared via a water-based chemical reaction under atmospheric conditions. In this process, we tried to prepare the nanostructured compound by employing both a complexing agent (L-tartaric acid) and a reducing agent (NaBH{sub 4}) to stabilize the Sb precursor (SbCl{sub 3}) in water and to favor the reaction with Te. It was observed that various products of Te, Sb{sub 2}O{sub 3}, and Sb{sub 2}Te{sub 3} were individually or simultaneously generated depending on the amount of the complexing and reducing agents used. In order to obtain solely a rhombohedral Sb{sub 2}Te{sub 3} compound, the aging time of the reaction needed to be adjusted.

  19. A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers

    Science.gov (United States)

    Zhang, Zhenyu; Wang, Bo; Zhou, Ping; Kang, Renke; Zhang, Bi; Guo, Dongming

    2016-01-01

    A novel approach of chemical mechanical polishing (CMP) is developed for cadmium zinc telluride (CdZnTe or CZT) wafers. The approach uses environment-friendly slurry that consists of mainly silica, hydrogen peroxide, and citric acid. This is different from the previously reported slurries that are usually composed of strong acid, alkali, and bromine methanol, and are detrimental to the environment and operators. Surface roughness 0.5 nm and 4.7 nm are achieved for Ra and peak-to-valley (PV) values respectively in a measurement area of 70 × 50 μm2, using the developed novel approach. Fundamental polishing mechanisms are also investigated in terms of X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Hydrogen peroxide dominates the passivating process during the CMP of CZT wafers, indicating by the lowest passivation current density among silica, citric acid and hydrogen peroxide solution. Chemical reaction equations are proposed during CMP according to the XPS and electrochemical measurements. PMID:27225310

  20. A novel approach of chemical mechanical polishing for cadmium zinc telluride wafers.

    Science.gov (United States)

    Zhang, Zhenyu; Wang, Bo; Zhou, Ping; Kang, Renke; Zhang, Bi; Guo, Dongming

    2016-05-26

    A novel approach of chemical mechanical polishing (CMP) is developed for cadmium zinc telluride (CdZnTe or CZT) wafers. The approach uses environment-friendly slurry that consists of mainly silica, hydrogen peroxide, and citric acid. This is different from the previously reported slurries that are usually composed of strong acid, alkali, and bromine methanol, and are detrimental to the environment and operators. Surface roughness 0.5 nm and 4.7 nm are achieved for Ra and peak-to-valley (PV) values respectively in a measurement area of 70 × 50 μm(2), using the developed novel approach. Fundamental polishing mechanisms are also investigated in terms of X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Hydrogen peroxide dominates the passivating process during the CMP of CZT wafers, indicating by the lowest passivation current density among silica, citric acid and hydrogen peroxide solution. Chemical reaction equations are proposed during CMP according to the XPS and electrochemical measurements.

  1. Heart imaging by cadmium telluride gamma camera European Program 'BIOMED' consortium

    CERN Document Server

    Scheiber, C; Chambron, J; Prat, V; Kazandjan, A; Jahnke, A; Matz, R; Thomas, S; Warren, S; Hage-Hali, M; Regal, R; Siffert, P; Karman, M

    1999-01-01

    Cadmium telluride semiconductor detectors (CdTe) operating at room temperature are attractive for medical imaging because of their good energy resolution providing excellent spatial and contrast resolution. The compactness of the detection system allows the building of small light camera heads which can be used for bedside imaging. A mobile pixellated gamma camera based on 2304 CdTe (pixel size: 3x3 mm, field of view: 15 cmx15 cm) has been designed for cardiac imaging. A dedicated 16-channel integrated circuit has also been designed. The acquisition hardware is fully programmable (DSP card, personal computer-based system). Analytical calculations have shown that a commercial parallel hole collimator will fit the efficiency/resolution requirements for cardiac applications. Monte-Carlo simulations predict that the Moire effect can be reduced by a 15 deg. tilt of the collimator with respect to the detector grid. A 16x16 CdTe module has been built for the preliminary physical tests. The energy resolution was 6.16...

  2. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    Science.gov (United States)

    Krupke, William F.; Page, Ralph H.; DeLoach, Laura D.; Payne, Stephen A.

    1996-01-01

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr.sup.2+ -doped ZnS and ZnSe generate laser action near 2.3 .mu.m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d.sup.4 and d.sup.6 electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers.

  3. Transition-metal doped sulfide, selenide, and telluride laser crystal and lasers

    Energy Technology Data Exchange (ETDEWEB)

    Krupke, W.F.; Page, R.H.; DeLoach, L.D.; Payne, S.A.

    1996-07-30

    A new class of solid state laser crystals and lasers are formed of transition metal doped sulfide, selenide, and telluride host crystals which have four fold coordinated substitutional sites. The host crystals include II-VI compounds. The host crystal is doped with a transition metal laser ion, e.g., chromium, cobalt or iron. In particular, Cr{sup 2+}-doped ZnS and ZnSe generate laser action near 2.3 {micro}m. Oxide, chloride, fluoride, bromide and iodide crystals with similar structures can also be used. Important aspects of these laser materials are the tetrahedral site symmetry of the host crystal, low excited state absorption losses and high luminescence efficiency, and the d{sup 4} and d{sup 6} electronic configurations of the transition metal ions. The same materials are also useful as saturable absorbers for passive Q-switching applications. The laser materials can be used as gain media in amplifiers and oscillators; these gain media can be incorporated into waveguides and semiconductor lasers. 18 figs.

  4. Phase diagram of germanium telluride encapsulated in carbon nanotubes from first-principles searches

    Science.gov (United States)

    Wynn, Jamie M.; Medeiros, Paulo V. C.; Vasylenko, Andrij; Sloan, Jeremy; Quigley, David; Morris, Andrew J.

    2017-12-01

    Germanium telluride has attracted great research interest, primarily because of its phase-change properties. We have developed a general scheme, based on the ab initio random structure searching (AIRSS) method, for predicting the structures of encapsulated nanowires, and using this we predict a number of thermodynamically stable structures of GeTe nanowires encapsulated inside carbon nanotubes of radii under 9 Å . We construct the phase diagram of encapsulated GeTe, which provides quantitative predictions about the energetic favorability of different filling structures as a function of the nanotube radius, such as the formation of a quasi-one-dimensional rock-salt-like phase inside nanotubes of radii between 5.4 and 7.9 Å . Simulated TEM images of our structures show excellent agreement between our results and experimental TEM imagery. We show that, for some nanotubes, the nanowires undergo temperature-induced phase transitions from one crystalline structure to another due to vibrational contributions to the free energy, which is a first step toward nano-phase-change memory devices.

  5. Imaging of the thyroid and parathyroid using a cardiac cadmium zinc telluride camera: Phantom studies.

    Science.gov (United States)

    Miyazaki, Yosuke; Kato, Yasuhiro; Imoto, Akira; Fukuchi, Kazuki

    2017-11-10

    Purpose: Cadmium zinc telluride (CZT) detectors have recently been introduced to the field of clinical nuclear cardiology. However, the feasibility of using them for organs other than the heart remains unclear. The aim of this study was to evaluate the potential of a cardiac CZT camera to acquire thyroid and parathyroid images. We used custom-made phantoms and the currently available standard protocols for CZT, instead of a sodium-iodine scintillation (NaI) camera. Materials and Methods: Thyroid phantoms with or without parathyroid adenomas were made from agar using radiopharmaceuticals (99mTc or 123I) and imaged using CZT and NaI cameras. Using the CZT camera data, we prepared maximum intensity projection (MIP) images and planar equivalent (PE) images. Image counts were compared to those from the NaI camera, and the radioactivity of the phantoms was measured. For parathyroid imaging, three different protocols with the NaI camera were tested using MIP images. Results: For thyroid imaging, MIP could provide images as clear as those obtained from the NaI camera. The radioactivity and image counts correlated better for the PE images than the MIP images, especially for 123I images. We succeeded in obtaining clear parathyroid adenoma images from MIP images using all three protocols. Conclusion: A cardiac CZT camera can effectively perform qualitative and quantitative assessments of the thyroid and parathyroid organs. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. Semiconductor nanocrystals functionalized with antimony telluride zintl ions for nanostructured thermoelectrics.

    Science.gov (United States)

    Kovalenko, Maksym V; Spokoyny, Boris; Lee, Jong-Soo; Scheele, Marcus; Weber, Andrew; Perera, Susanthri; Landry, Daniel; Talapin, Dmitri V

    2010-05-19

    The energy efficiency of heat engines could be improved by the partial recovery of waste heat using thermoelectric (TE) generators. We show the possibility of designing nanostructured TE materials using colloidal inorganic nanocrystals functionalized with molecular antimony telluride complexes belonging to the family of Zintl ions. The unique advantage of using Zintl ions as the nanocrystal surface ligands is the possibility to convert them into crystalline metal chalcogenides, thus linking individual nanobuilding blocks into a macroscopic assembly of electronically coupled functional modules. This approach allows preserving the benefits of nanostructuring and quantum confinement while enabling facile charge transport through the interparticle boundaries. A developed methodology was applied for solution-based fabrication of nanostructured n- and p-type Bi(2-x)Sb(x)Te(3) alloys with tunable composition and PbTe-Sb(2)Te(3) nanocomposites with controlled grain size. Characterization of the TE properties of these materials showed that their Seebeck coefficients, electrical and thermal conductivities, and ZT values compared favorably with those of previously reported solution-processed TE materials.

  7. Low energy Ar+ ion irradiation induced surface modification in cadmium zinc telluride (CdZnTe)

    Science.gov (United States)

    Tripathi, J. K.; Harilal, S. S.; Hassanein, A.

    2014-09-01

    In this paper, we report on modifications in structural, stoichiometry, and optical properties of cadmium zinc telluride (CdZnTe) crystals due to 1 keV Ar+ ion irradiation as a function of ion fluence, using ion flux of 1.7 × 1017 ions cm-2 s-1. The CdZnTe crystals were irradiated at normal incidence, using fluence range of 8 × 1017-3 × 1019 ions cm-2. Atomic force microscopy studies show sequential change in surface structure as a function of ion fluence, from homogeneously populated nano-hole to micron sized holes on the entire CZT crystal surface. These holes are well geometrically defined and most of them are rectangular in shape. X-ray photoelectron spectroscopy studies show a reduction in Zn at % while Raman and photoluminescence studies show almost complete depletion of Te inclusions and slight red shifts, respectively, due to ion irradiations. Schottky diode radiation detectors fabricated from such defect free CZT crystals will show significantly higher energy resolution.

  8. Cadmium telluride nanoparticles loaded on activated carbon as adsorbent for removal of sunset yellow

    Science.gov (United States)

    Ghaedi, M.; Hekmati Jah, A.; Khodadoust, S.; Sahraei, R.; Daneshfar, A.; Mihandoost, A.; Purkait, M. K.

    2012-05-01

    Adsorption is a promising technique for decolorization of effluents of textile dyeing industries but its application is limited due to requirement of high amounts of adsorbent required. The objective of this study was to assess the potential of cadmium telluride nanoparticles loaded onto activated carbon (CdTN-AC) for the removal of sunset yellow (SY) dye from aqueous solution. Adsorption studies were conducted in a batch mode varying solution pH, contact time, initial dye concentration, CdTN-AC dose, and temperature. In order to investigate the efficiency of SY adsorption on CdTN-AC, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion kinetic models were studied. It was observed that the pseudo-second-order kinetic model fits better than other kinetic models with good correlation coefficient. Equilibrium data were fitted to the Langmuir model. Thermodynamic parameters such as enthalpy, entropy, activation energy, and sticking probability were also calculated. It was found that the sorption of SY onto CdTN-AC was spontaneous and endothermic in nature. The proposed adsorbent is applicable for SY removal from waste of real effluents including pea-shooter, orange drink and jelly banana with efficiency more than 97%.

  9. A fumonisins immunosensor based on polyanilino-carbon nanotubes doped with palladium telluride quantum dots.

    Science.gov (United States)

    Masikini, Milua; Mailu, Stephen N; Tsegaye, Abebaw; Njomo, Njagi; Molapo, Kerileng M; Ikpo, Chinwe O; Sunday, Christopher Edozie; Rassie, Candice; Wilson, Lindsay; Baker, Priscilla G L; Iwuoha, Emmanuel I

    2014-12-30

    An impedimetric immunosensor for fumonisins was developed based on poly(2,5-dimethoxyaniline)-multi-wall carbon nanotubes doped with palladium telluride quantum dots onto a glassy carbon surface. The composite was assembled by a layer-by-layer method to form a multilayer film of quantum dots (QDs) and poly(2,5-dimethoxyaniline)-multi-wall carbon nanotubes (PDMA-MWCNT). Preparation of the electrochemical immunosensor for fumonisins involved drop-coating of fumonisins antibody onto the composite modified glassy carbon electrode. The electrochemical impedance spectroscopy response of the FB1 immunosensor (GCE/PT-PDMA-MWCNT/anti-Fms-BSA) gave a linear range of 7 to 49 ng L-1 and the corresponding sensitivity and detection limits were 0.0162 kΩ L ng-1 and 0.46 pg L-1, respectively, hence the limit of detection of the GCE/PT-PDMA-MWCNT immunosensor for fumonisins in corn certified material was calculated to be 0.014 and 0.011 ppm for FB1, and FB2 and FB3, respectively. These results are lower than those obtained by ELISA, a provisional maximum tolerable daily intake (PMTDI) for fumonisins (the sum of FB1, FB2, and FB3) established by the Joint FAO/WHO expert committee on food additives and contaminants of 2 μg kg-1 and the maximum level recommended by the U.S. Food and Drug Administration (FDA) for protection of human consumption (2-4 mg L-1).

  10. Reproductive toxicity and gender differences induced by cadmium telluride quantum dots in an invertebrate model organism

    Science.gov (United States)

    Yan, Si-Qi; Xing, Rui; Zhou, Yan-Feng; Li, Kai-Le; Su, Yuan-Yuan; Qiu, Jian-Feng; Zhang, Yun-Hu; Zhang, Ke-Qin; He, Yao; Lu, Xiao-Ping; Xu, Shi-Qing

    2016-09-01

    Sexual glands are key sites affected by nanotoxicity, but there is no sensitive assay for measuring reproductive toxicity in animals. The aim of this study was to investigate the toxic effects of cadmium telluride quantum dots (CdTe-QDs) on gonads in a model organism, Bombyx mori. After dorsal vein injection of 0.32 nmol of CdTe-QDs per individual, the QDs passed through the outer membranes of gonads via the generation of ROS in the membranes of spermatocysts and ovarioles, as well as internal germ cells, thereby inducing early germ cell death or malformations via complex mechanisms related to apoptosis and autophagy through mitochondrial and lysosomal pathways. Histological observations of the gonads and quantitative analyses of germ cell development showed that the reproductive toxicity was characterized by obvious male sensitivity. Exposure to QDs in the early stage of males had severe adverse effects on the quantity and quality of sperm, which was the main reason for the occurrence of unfertilized eggs. Ala- or Gly-conjugated QDs could reduce the nanotoxicity of CdTe-QDs during germ cell development and fertilization of their offspring. The results demonstrate that males are preferable models for evaluating the reproductive toxicity of QDs in combined in vivo/in vitro investigations.

  11. Investigation of the luminescent properties of terbium-anthranilate complexes and application to the determination of anthranilic acid derivatives in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, N.; Georges, J

    2003-01-10

    The luminescent properties of terbium complexes with furosemide (FR), flufenamic (FF) acid, tolfenamic (TF) acid and mefenamic (MF) acid have been investigated in aqueous solutions. For all four compounds, complexation occurs when the carboxylic acid of the aminobenzoic group is dissociated and is greatly favoured in the presence of trioctylphosphine oxide as co-ligand and Triton X-100 as surfactant. Under optimum conditions, luminescence of the lanthanide ion is efficiently sensitised and the lifetime of the {sup 5}D{sub 4} resonance level of terbium in the complex is ranging between 1 and 1.9 ms, against 0.4 ms for the aqua ion. The sensitivity of the method for the determination of anthranilic acid derivatives is improved by one to two orders of magnitude with respect to that achieved using native fluorescence or terbium-sensitised luminescence in methanol. The limits of detection are 2x10{sup -10}, 5x10{sup -10} and 2x10{sup -9} mol l{sup -1} for flufenamic acid, furosemide and tolfenamic acid, and mefenamic acid, respectively, with within-run RSD values of less than 1%. The method has been applied to the determination of flufenamic acid in spiked calf sera with and without sample pretreatment. Depending on the method and the analyte concentration, the recovery was ranging between 83 and 113% and the lowest concentration attainable in serum samples was close to 1x10{sup -7} mol l{sup -1}.

  12. Tellurides, selenides and Bi-mineral assemblages from the Río Narcea Gold Belt, Asturias, Spain: genetic implications in Cu-Au and Au skarns

    Science.gov (United States)

    Cepedal, A.; Fuertes-Fuente, M.; Martín-Izard, A.; González-Nistal, S.; Rodríguez-Pevida, L.

    2006-07-01

    Gold ores in skarns from the Río Narcea Gold Belt are associated with Bi-Te(-Se)-bearing minerals. These mineral assemblages have been used to compare two different skarns from this belt, a Cu-Au skarn (calcic and magnesian) from the El Valle deposit, and a Au-reduced calcic skarn from the Ortosa deposit. In the former, gold mineralization occurs associated with Cu-(Fe)-sulfides (chalcopyrite, bornite, chalcocite-digenite), commonly in the presence of magnetite. Gold occurs mainly as native gold and electrum. Au-tellurides (petzite, sylvanite, calaverite) are locally present; other tellurides are hessite, clausthalite and coloradoite. The Bi-bearing minerals related to gold are Bi-sulfosalts (wittichenite, emplectite, aikinite, bismuthinite), native bismuth, and Bi-tellurides and selenides (tetradymite, kawazulite, tsumoite). The speciation of Bi-tellurides with Bi/Te(Se + S) ≤ 1, the presence of magnetite and the abundance of precious metal tellurides and clausthalite indicate fO2 conditions within the magnetite stability field that locally overlap the magnetite-hematite buffer. In Ortosa deposit, gold essentially occurs as native gold and maldonite and is commonly related to pyrrhotite and to the replacement of löllingite by arsenopyrite, indicating lower fO2 conditions for gold mineralization than those for El Valle deposit. This fact is confirmed by the speciation of Bi-tellurides and selenides (hedleyite, joséite-B, joséite-A, ikunolite-laitakarite) with Bi/Te(+ Se + S) ≥ 1.

  13. Prospects of novel front and back contacts for high efficiency cadmium telluride thin film solar cells from numerical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Matin, M.A. [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Electrical and Electronics Engineering, Chittagong University of Engineering and Technology (CUET), Chittagong (Bangladesh); Mannir Aliyu, M.; Quadery, Abrar H. [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Amin, Nowshad [Department of Electrical, Electronic and System Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Center of Excellence for Research in Engineering Materials (CEREM), College of Engineering, King Saud University, Riyadh 11421 (Saudi Arabia)

    2010-09-15

    Cadmium telluride (CdTe) thin film solar cell has long been recognized as a leading photovoltaic candidate for its high efficiency and low cost. A numerical simulation has been performed using AMPS-1D simulator to explore the possibility of higher efficiency and stable CdS/CdTe cell among several cell structures with indium tin oxide (ITO) and cadmium stannate (Cd{sub 2}SnO{sub 4}) as front contact material, tin oxide (SnO{sub 2}), zinc oxide (ZnO) and zinc stannate (Zn{sub 2}SnO{sub 4}) as buffer layer, and silver (Ag) or antimony telluride (Sb{sub 2}Te{sub 3}) with molybdenum (Mo) or zinc telluride (ZnTe) with aluminium (Al) as back contact material. The cell structure ITO/i-ZnO/CdS/CdS{sub x}Te{sub 1-x}/CdTe/Ag has shown the best conversion efficiency of 16.9% (Voc=0.9 V, Jsc=26.35 mA/cm{sup 2}, FF=0.783). This analysis has shown that ITO as front contact material, ZnO as buffer layer and ZnTe or Sb{sub 2}Te{sub 3} back surface reflector (BSR) are suitable material system for high efficiency (>15%) and stable CdS/CdTe cells. The cell normalized efficiency linearly decreased at a temperature gradient of -0.25%/ C for ZnTe based cells, and at -0.40%/ C for other cells. (author)

  14. Preparation of bismuth telluride based thermoelectric nanomaterials via low-energy ball milling and their property characterizations

    Science.gov (United States)

    Robinson, Christopher A.

    Thermoelectric materials are able to convert energy between heat and electricity with no moving parts, making them very appealing for power generation purposes. This is particularly appealing since many forms of energy generation lose energy to waste heat. The Livermore National Laboratory estimates that up to 55% of the energy created in traditional power plants is lost through heat generation [1]. As greenhouse gas emissions become a more important issue, large sources of waste like this will need to be harnessed. Adoption of these materials has been limited due to the cost and efficiency of current technology. Bismuth telluride based alloys have a dimensionless figure of merit, a measure of efficiency, near one at room temperature, which makes it the best current material. In order to compete with other forms of energy generation, this needs to be increased to three or higher [2]. Recently, improvements in performance have come in the form of random nanostructured materials [3]. Bulk bismuth telluride is subjected to particle size reduction via high-energy ball milling in order to scatter phonons between grains. This reduces the lattice thermal conductivity which in turn increases the performance of the material. In this work, we investigate the use of low-energy ball milling as a method of creating nanoparticles of n-type and p-type Bi2Te3 alloys for thermoelectric applications. Optimization of parameters such as milling containers, milling media, contamination and milling time has resulted in creating 15nm particles of bismuth telluride alloys. After creating solid pellets of the resulting powders via hot pressing, the material's thermal and electrical conductivities as well as Seebeck coefficients were measured. The ZT of n-type Bi2Te2.7Se3 created using this method is 0.32, while the p-type Bi0.5Sb1.5Te3 exhibits a higher ZT of 1.24, both at room temperature.

  15. The Lattice Compatibility Theory: Arguments for Recorded I-III-O2 Ternary Oxide Ceramics Instability at Low Temperatures beside Ternary Telluride and Sulphide Ceramics

    Directory of Open Access Journals (Sweden)

    K. Boubaker

    2013-01-01

    Full Text Available Some recorded behaviours differences between chalcopyrite ternary oxide ceramics and telluride and sulphides are investigated in the framework of the recently proposed Lattice Compatibility Theory (LCT. Alterations have been evaluated in terms of Urbach tailing and atomic valence shell electrons orbital eigenvalues, which were calculated through several approximations. The aim of the study was mainly an attempt to explain the intriguing problem of difficulties of elaborating chalcopyrite ternary oxide ceramics (I-III-O2 at relatively low temperatures under conditions which allowed crystallization of ternary telluride and sulphides.

  16. A rapid and sensitive assay for determination of doxycycline using thioglycolic acid-capped cadmium telluride quantum dots

    Science.gov (United States)

    Tashkhourian, Javad; Absalan, Ghodratollah; Jafari, Marzieh; Zare, Saber

    2016-01-01

    A rapid, simple and inexpensive spectrofluorimetric sensor for determination of doxycycline based on its interaction with thioglycolic acid-capped cadmium telluride quantum dots (TGA/CdTe QDs) has been developed. Under the optimum experimental conditions, the sensor exhibited a fast response time of determination of doxycycline in a concentration range of 1.9 × 10-6-6.1 × 10-5 mol L-1 with a detection limit of 1.1 × 10-7 mol L-1. The sensor was applied for determination of doxycycline in honey and human serum samples.

  17. Combined effect of nanoscale grain size and porosity on lattice thermal conductivity of bismuth-telluride-based bulk alloys

    Science.gov (United States)

    Takashiri, Masayuki; Tanaka, Saburo; Hagino, Harutoshi; Miyazaki, Koji

    2012-10-01

    Here, we investigate the combined effect of the nanoscale crystal grains and porosity on the lattice thermal conductivity of bismuth-telluride-based bulk alloys using both experimental studies and modeling. The fabricated bulk alloys exhibit average grain sizes of 30 size effect in combination with the Maxwell-Garnett model for the porosity effect. The results of this combined model are consistent with the experimental results, and it shows that the grain size effect in the nanoscale regime accounts for a significant portion of the reduction in lattice thermal conductivity.

  18. Thermochemistry of metal-rich manganese telluride and its role in fuel-clad interactions

    Science.gov (United States)

    Baba, M. Sai; Narasimhan, T. S. Lakshmi; Balasubramanian, R.; Mathews, C. K.

    Vaporisation of Mn-Te alloys was studied by Knudsen-effusion mass spectrometry. The partial pressures of Te(g) over the two-phase field, Mn-MnTe, were determined in the temperature range 1120-1250 K. Two samples of initial composition of 29.1 and 40.1 at% Te were used in the experiments. The vapour phase consists of Mn(g) and Te(g). Partial pressure-temperature relations for Te(g) were found to follow the equation log( {(p)}/{Pa}) = - {(16099±285)}/{T(K)}+(10.525±0.240) . Mn-rich phase boundary of MnTe was determined from continuous vaporisation experiments starting with a sample from two-phase field Mn + MnTe. The boundary composition was found to be 44.3 ± 0.5 at% Te in the temperature range 1205-1280 K. Enthalpy of the following reactions was obtained: MnTe0.8( s) / aiMn( s) + 0.8 Te( g), MnTe0.8( s) / aiMn( g) + 0.8 Te( g) and Mn( s) / aiMn( g). The standard molar enthalpy and Gibbs energy of formation of MnTe 0.8 were arrived at. The tellurium potential which would be required for the formation of MnTe 0.8 in AISI 316 stainless steel was calculated and the possibility of such a telluride formation in the fuel-cladding gap of a mixed-oxide fuel pin is discussed.

  19. Mercury-Cadmium-Telluride Focal Plane Array Performance Under Non-Standard Operating Conditions

    Science.gov (United States)

    Richardson, Brandon S.; Eastwood, Michael L.; Bruce, Carl F.; Green, Robert O.; Coles, J. B.

    2011-01-01

    This paper highlights a new technique that allows the Teledyne Scientific & Imaging LLC TCM6604A Mercury-Cadmium-Telluride (MCT) Focal Plane Array (FPA) to operate at room temperature. The Teledyne MCT FPA has been a standard in Imaging Spectroscopy since its creation in the 1980's. This FPA has been used in applications ranging from space instruments such as CRISM, M3 and ARTEMIS to airborne instruments such as MaRS and the Next Generation AVIRIS Instruments1. Precise focal plane alignment is always a challenge for such instruments. The current FPA alignment process results in multiple cold cycles requiring week-long durations, thereby increasing the risk and cost of a project. These alignment cycles are necessary because optimal alignment is approached incrementally and can only be measured with the FPA and Optics at standard operating conditions, requiring a cold instrument. Instruments using this FPA are normally cooled to temperatures below 150K for the MCT FPA to properly function. When the FPA is run at higher temperatures the dark current increases saturating the output. This paper covers the prospect of warm MCT FPA operation from a theoretical and experimental perspective. We discuss the empirical models and physical laws that govern MCT material properties and predict the optimal settings that will result in the best MCT PA performance at 300K. Theoretical results are then calculated for the proposed settings. We finally present the images and data obtained using the actual system with the warm MCT FPA settings. The paper concludes by emphasizing the strong positive correlation between the measured values and the theoretical results.

  20. Cadmium zinc telluride based infrared interferometry for X-ray detection

    Energy Technology Data Exchange (ETDEWEB)

    Lohstroh, A., E-mail: A.Lohstroh@surrey.ac.uk; Della Rocca, I. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Parsons, S. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); AWE Aldermaston, Reading RG7 4PR (United Kingdom); Langley, A.; Shenton-Taylor, C.; Blackie, D. [AWE Aldermaston, Reading RG7 4PR (United Kingdom)

    2015-02-09

    Cadmium Zinc Telluride (CZT) is a wide band gap semiconductor for room temperature radiation detection. The electro-optic Pockels effect of the material has been exploited in the past to study electric field non-uniformities and their consequence on conventional detector signals in CZT, by imaging the intensity distribution of infrared (IR) light transmitted through a device placed between crossed polarizers. Recently, quantitative monitoring of extremely high intensity neutron pulses through the change of transmitted IR intensity was demonstrated, offering the advantage to place sensitive electronics outside the measured radiation field. In this work, we demonstrate that X-ray intensity can be deduced directly from measuring the change in phase of 1550 nm laser light transmitted through a 7 × 7 × 2 mm{sup 3} CZT based Pockels cell in a simple Mach Zehnder interferometer. X-rays produced by a 50 kVp Mo X-ray tube incident on the CZT cathode surface placed at 7 mm distance cause a linearly increasing phase shift above 0.3 mA tube current, with 1.58 ± 0.02 rad per mA for an applied bias of 500 V across the 2 mm thick device. Pockels images confirm that the sample properties are in agreement with the literature, exhibiting electric field enhancement near the cathode under irradiation, which may cause the non-linearity at low X-ray tube anode current settings. The laser used to probe the X-ray intensity causes itself some space charge, whose spatial distribution does not seem to be exclusively determined by the incident laser position, i.e., charge carrier generation location, with respect to the electrodes.

  1. Spark plasma sintered bismuth telluride-based thermoelectric materials incorporating dispersed boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Williams, H.R., E-mail: hugo.williams@leicester.ac.uk [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ambrosi, R.M. [Space Research Centre, Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Chen, K. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Friedman, U. [Department of Engineering, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Ning, H.; Reece, M.J. [School of Engineering and Materials Science, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Robbins, M.C.; Simpson, K. [European Thermodynamics Ltd., 8 Priory Business Park, Wistow Road, Kibworth LE8 0R (United Kingdom); Stephenson, K. [European Space Agency, ESTEC TEC-EP, Keplerlaan 1, 2201AZ Noordwijk (Netherlands)

    2015-03-25

    Highlights: • Nano-B{sub 4}C reinforced Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} p-type thermoelectric produced by SPS. • Addition of B{sub 4}C up to 0.2 vol% to SPS’d material has little effect on zT. • Vickers hardness improved by 27% by adding 0.2 vol% B{sub 4}C. • Fracture toughness of SPS material: K{sub IC} = 0.80 MPa m{sup 1/2} by SEVNB. • Mechanical properties much better than commercial directionally solidified material. - Abstract: The mechanical properties of bismuth telluride based thermoelectric materials have received much less attention in the literature than their thermoelectric properties. Polycrystalline p-type Bi{sub 0.5}Sb{sub 1.5}Te{sub 3} materials were produced from powder using spark plasma sintering (SPS). The effects of nano-B{sub 4}C addition on the thermoelectric performance, Vickers hardness and fracture toughness were measured. Addition of 0.2 vol% B{sub 4}C was found to have little effect on zT but increased hardness by approximately 27% when compared to polycrystalline material without B{sub 4}C. The K{sub IC} fracture toughness of these compositions was measured as 0.80 MPa m{sup 1/2} by Single-Edge V-Notched Beam (SEVNB). The machinability of polycrystalline materials produced by SPS was significantly better than commercially available directionally solidified materials because the latter is limited by cleavage along the crystallographic plane parallel to the direction of solidification.

  2. Evaluation of fully 3-D emission mammotomography with a compact cadmium zinc telluride detector.

    Science.gov (United States)

    Brzymialkiewicz, Caryl N; Tornai, Martin P; McKinley, Randolph L; Bowsher, James E

    2005-07-01

    A compact, dedicated cadmium zinc telluride (CZT) gamma camera coupled with a fully three-dimensional (3-D) acquisition system may serve as a secondary diagnostic tool for volumetric molecular imaging of breast cancers, particularly in cases when mammographic findings are inconclusive. The developed emission mammotomography system comprises a medium field-of-view, quantized CZT detector and 3-D positioning gantry. The intrinsic energy resolution, sensitivity and spatial resolution of the detector are evaluated with Tc-99m (140 keV) filled flood sources, capillary line sources, and a 3-D frequency-resolution phantom. To mimic realistic human pendant, uncompressed breast imaging, two different phantom shapes of an average sized breast, and three different lesion diameters are imaged to evaluate the system for 3-D mammotomography. Acquisition orbits not possible with conventional emission, or transmission, systems are designed to optimize the viewable breast volume while improving sampling of the breast and anterior chest wall. Complications in camera positioning about the patient necessitate a compromise in these two orbit design criteria. Image quality is evaluated with signal-to-noise ratios and contrasts of the lesions, both with and without additional torso phantom background. Reconstructed results indicate that 3-D mammotomography, incorporating a compact CZT detector, is a promising, dedicated breast imaging technique for visualization of tumors imaging parameters. Qualitatively, imaging breasts with realistic torso backgrounds (out-of-field activity) substantially alters image characteristics and breast morphology unless orbits which improve sampling are utilized. In practice, the sampling requirement may be less strict than initially anticipated.

  3. A Fumonisins Immunosensor Based on Polyanilino-Carbon Nanotubes Doped with Palladium Telluride Quantum Dots

    Directory of Open Access Journals (Sweden)

    Milua Masikini

    2014-12-01

    Full Text Available An impedimetric immunosensor for fumonisins was developed based on poly(2,5-dimethoxyaniline-multi-wall carbon nanotubes doped with palladium telluride quantum dots onto a glassy carbon surface. The composite was assembled by a layer-by-layer method to form a multilayer film of quantum dots (QDs and poly(2,5-dimethoxyaniline-multi-wall carbon nanotubes (PDMA-MWCNT. Preparation of the electrochemical immunosensor for fumonisins involved drop-coating of fumonisins antibody onto the composite modified glassy carbon electrode. The electrochemical impedance spectroscopy response of the FB1 immunosensor (GCE/PT-PDMA-MWCNT/anti-Fms-BSA gave a linear range of 7 to 49 ng L−1 and the corresponding sensitivity and detection limits were 0.0162 kΩ L ng−1 and 0.46 pg L−1, respectively, hence the limit of detection of the GCE/PT-PDMA-MWCNT immunosensor for fumonisins in corn certified material was calculated to be 0.014 and 0.011 ppm for FB1, and FB2 and FB3, respectively. These results are lower than those obtained by ELISA, a provisional maximum tolerable daily intake (PMTDI for fumonisins (the sum of FB1, FB2, and FB3 established by the Joint FAO/WHO expert committee on food additives and contaminants of 2 μg kg−1 and the maximum level recommended by the U.S. Food and Drug Administration (FDA for protection of human consumption (2–4 mg L−1.

  4. Effect of bismuth telluride concentration on the thermoelectric properties of PEDOT:PSS-glycerol organic films

    Science.gov (United States)

    Rahman, Airul Azha Abd; Ali Umar, Akrajas; Othman, Mohamad Habrul Ulum

    2015-02-01

    In this work, the effect of bismuth-telluride concentration on the thermoelectric properties of PEDOT:PSS-Glycerol thin films is investigated. A thermoelectric device was fabricated by depositing the n-type and the p-type Bi2Te3 (BT) doped-PEDOT:PSS-Glycerol on a glass substrate via a spin coating method at 500 rpm. Room-temperature electrical properties characterization shows that the electrical conductivity of both type thin film increases with increasing of BT doping concentration and optimum at concentration of 0.8 wt% for both p-type and n-type thin films, i.e. 17.9 S/cm and 7.78 S/cm, respectively. However, the study of the temperature effect on the thin films electrical conductivity suggested that the thermoelectric properties of both types' samples improved with increasing of BT concentration and optimum at 0.8 and 0.6 wt% for p-type and n-type thin films, respectively. It then decreased if the BT concentration further increased. The Sebeeck coefficient for these samples is as high as -11.9 and -15.7 uV/K, which is equivalent to a power factors of 0.26 and 0.19 μS V2/ (m K2), respectively. A thermoelectric device resembling a thermocouple system that was fabricated using the optimum p-type and n-type thin films can generate a voltage as high as 1.1 V at a temperature difference as low as 55 K, which is equivalent to a maximum power of 6.026 μW at Vmax.power of 0.5489 V (for an estimated matched-load of 50 Ω). The present materials system is potential for powering low power consumption electronic devices.

  5. Structural investigation and photoluminescent properties of gadolinium(III), europium(III) and terbium(III) 3-mercaptopropionate complexes.

    Science.gov (United States)

    Souza, E R; Mazali, I O; Sigoli, F A

    2014-01-01

    This work reports on the synthesis, crystallographic determination and spectroscopic characterization of gadolinium(III), terbium(III) and europium(III) 3-mercaptopropionate complexes, aqua-tris(3-mercaptopropionate)lanthanide(III)--[Ln(mpa)3(H2O)]. The Judd-Ofelt intensity parameters were experimentally determined from emission spectrum of the [Eu(mpa)3(H2O)]complex and they were also calculated from crystallographic data. The complexes are coordination polymers, where the units of each complex are linked together by carboxylate groups leading to an unidimensional and parallel chains that by chemical interactions form a tridimensional framework. The emission spectrum profile of the [Eu(mpa)3(H2O)] complex is discussed based on point symmetry of the europium(III) ion, that explains the bands splitting observed in its emission spectrum. Photoluminescent analysis of the [Gd(mpa)3(H2O)] complex show no efficient ligand excitation but an intense charge transfer band. The excitation spectra of the [Eu(mpa)3(H2O)] and [Tb(mpa)3(H2O)] complexes do not show evidence of energy transfer from the ligand to the excited levels of these trivalent ions. Therefore the emission bands are originated only by direct f-f intraconfigurational excitation of the lantanide(III) ions.

  6. Fluorometric determination of proteins using the terbium (III)-2-thenoyltrifluoroacetone-sodium dodecyl benzene sulfonate-protein system

    Energy Technology Data Exchange (ETDEWEB)

    Jia Zhen [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Department of Chemistry, Dezhou University, Dezhou 253023 (China); Yang Jinghe [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)]. E-mail: yjh@sdu.edu.cn; Wu Xia [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang Fei [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Guo Changying [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Liu Shufang [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2006-12-15

    It is found that in hexamethylene tetramine (HMTA)-HCl buffer of pH=8.00, proteins can enhance the fluorescence of terbium (III) (Tb{sup 3+})-2-thenoyltrifluoroacetone (TTA)-sodium dodecyl benzene sulfonate (SDBS) system. Based on this, a sensitive method for the determination of proteins is proposed. The experiments indicate that under the optimum conditions, the enhanced fluorescence intensity is in proportion to the concentration of proteins in the range of 4.0x10{sup -9}-7.5x10{sup -6}g/mL for bovine serum albumin (BSA), 5.0x10{sup -9}-1.5x10{sup -5}g/mL for human serum albumin (HSA), 1.0x10{sup -8}-7.5x10{sup -6}g/mL for egg albumin (EA). Their detection limits (S/N=3) are 0.5, 0.8 and 2.0ng/mL, respectively. The interaction mechanism is also studied.

  7. Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties

    Directory of Open Access Journals (Sweden)

    Niko Hildebrandt

    2011-10-01

    Full Text Available Förster resonance energy transfer (FRET from luminescent terbium complexes (LTC as donors to semiconductor quantum dots (QDs as acceptors allows extraordinary large FRET efficiencies due to the long Förster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma.

  8. Evidence of mass exchange between inside and outside of sonoluminescing bubble in aqueous solution of terbium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jinfu, E-mail: liang.shi2007@163.com [School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 (China); Chen, Weizhong, E-mail: wzchen@nju.edu.cn [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); Wang, Xun; Yang, Jing; Chen, Zhan [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China)

    2016-12-16

    Highlights: • Time-resolved spectra of SBSL were obtained for Tb{sup 3+} ions emission lines. • Mass exchange between inside and outside of SL bubble was probed via Tb{sup 3+} ions lines. • The argon rectification hypothesis was tested by time-resolved spectra of SBSL. • The rate of mass exchange inside an SBSL bubble increases with increasing sound pressure. - Abstract: Spectra of single-bubble sonoluminescence (SBSL) were obtained for Tb{sup 3+} ions emission lines from bubbles in an aqueous solution of terbium chloride (TbCl{sub 3}). The spectra provide experimental evidence to prove that an air bubble driven by strong ultrasound will not eventually become a rectified pure argon bubble, which is not as predicted by the argon rectification hypothesis. The time-resolved spectra of SBSL show a mass exchange of material such as Tb{sup 3+} ions between the inside and outside of the bubble. With increasing sound pressure, the rate of mass exchange and the SBSL intensity increases.

  9. Optical properties and electrical transport of thin films of terbium(III bis(phthalocyanine on cobalt

    Directory of Open Access Journals (Sweden)

    Peter Robaschik

    2014-11-01

    Full Text Available The optical and electrical properties of terbium(III bis(phthalocyanine (TbPc2 films on cobalt substrates were studied using variable angle spectroscopic ellipsometry (VASE and current sensing atomic force microscopy (cs-AFM. Thin films of TbPc2 with a thickness between 18 nm and 87 nm were prepared by organic molecular beam deposition onto a cobalt layer grown by electron beam evaporation. The molecular orientation of the molecules on the metallic film was estimated from the analysis of the spectroscopic ellipsometry data. A detailed analysis of the AFM topography shows that the TbPc2 films consist of islands which increase in size with the thickness of the organic film. Furthermore, the cs-AFM technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I–V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the microscale. The AFM-based electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution.

  10. Highly luminescent charge-neutral europium(iii) and terbium(iii) complexes with tridentate nitrogen ligands.

    Science.gov (United States)

    Senthil Kumar, Kuppusamy; Schäfer, Bernhard; Lebedkin, Sergei; Karmazin, Lydia; Kappes, Manfred M; Ruben, Mario

    2015-09-21

    We report on the synthesis of tridentate-nitrogen pyrazole-pyridine-tetrazole (L(1)H) and pyrazole-pyridine-triazole (L(2)H) ligands and their complexation with lanthanides (Ln = Gd(iii), Eu(iii) and Tb(iii)) resulting in stable, charge-neutral complexes Ln(L(1))3 and Ln(L(2))3, respectively. X-ray crystallographic analysis of the complexes with L(1) ligands revealed tricapped trigonal coordination geometry around the lanthanide ions. All complexes show bright photoluminescence (PL) in the solid state, indicating efficient sensitization of the lanthanide emission via the triplet states of the ligands. In particular, the terbium complexes show high PL quantum yields of 65 and 59% for L(1) and L(2), respectively. Lower PL efficiencies of the europium complexes (7.5 and 9%, respectively) are attributed to large energy gaps between the triplet states of the ligands and accepting levels of Eu(iii). The triplet state energy can be reduced by introducing an electron withdrawing (EW) group at the 4 position of the pyridine ring. Such substitution of L(1)H with a carboxylic ester (COOMe) EW group leads to a europium complex with increased PL quantum yield of 31%. A comparatively efficient PL of the complexes dissolved in ethanol indicates that the lanthanide ions are shielded against nonradiative deactivation via solvent molecules.

  11. Micelle enhanced and terbium sensitized spectrofluorimetric determination of danofloxacin in milk using molecularly imprinted solid phase extraction

    Science.gov (United States)

    Kaur, Kuldeep; Saini, Shivender Singh; Malik, Ashok Kumar; Singh, Baldev

    2012-10-01

    An efficient molecularly imprinted solid phase extraction (MISPE)-spectrofluorimetric method was developed to sensitively determine danofloxacin (DAN) in milk samples. Solid phase extraction procedure using MISPE cartridges was first performed on milk samples and then spectrofluorimetric determination was done at 546 nm using an excitation wavelength of 285 nm in presence of terbium and sodium dodecyl benzene sulfonate (SDBS). It was found that SDBS significantly enhanced the fluorescence intensity of the DAN-Tb3+ complex. Various factors affecting the fluorescence intensity of DAN-Tb3+-SDBS system were studied and conditions were optimized. The enhanced fluorescence intensity of the system (ΔF) showed a good linear relationship with the concentration of DAN over the range of 8.4 × 10-9-3.4 × 10-7 mol L-1 with a correlation coefficient of 0.9996. The detection limit was determined as 2.0 × 10-9 mol L-1 and the limit of quantification was determined as 6.5 × 10-9 mol L-1. The MISPE-spectrofluorimetric procedure was successfully applied to the determination of DAN in milk samples. The method is simple, rapid, sensitive and allows interference free determination of DAN in complex fluorescent matrices like milk. The method can be used to determine whether the DAN residues in milk exceed MRLs or not.

  12. Study of quantum dot based on tin/yttrium mixed oxide doped with terbium to be used as biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Kodaira, Claudia A., E-mail: paulapaganini@usp.b, E-mail: mfelinto@ipen.b, E-mail: claudiakodaira@yahoo.co [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f; Nunes, Luiz Antonio O., E-mail: luizant@ifsc.usp.b [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Fisica. Dept. de Fisica e Informatica

    2009-07-01

    Quantum dots (semiconductors nanocrystals) have brought a promising field to develop a new generation of luminescent biomarkers. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. These luminescent dots are functionalized with biomolecules. For the luminophore particle to be connect with biologicals molecules (for example covalent antibody) is necessary a previous chemical treatment to modify luminophore particle surface and this process is called functionalization. A prior chemical treatment with changes on the surface luminophore particle is necessary to couple the luminophore to biological molecules. This process can be used as coating which can protect these particles from being dissolved by acid as well as provide functional groups for biological conjugation. This work presents a photoluminescence study of nanoparticles based on tin/yttrium mixed oxides doped with terbium (SnO{sub 2}/Y{sub 2}O{sub 3}:Tb{sup 3+}), synthesized by coprecipitation method. The nanoparticles were submitted to thermal treatment and characterized by X-Ray Powder Diffraction (XRD) that showed cassiterite phase formation and the influence of thermal treatment on nanoparticles structures. These nanoparticles going to be functionalized with a natural polysaccharide (chitosan) in order to form microspheres. These microspheres going to be irradiated with gamma radiation to sterilization and it can be evaluated if the nanoparticles are resistant to irradiation and they do not lose functionality with this process. (author)

  13. A far-infrared broadband (8.5-37 mu m) autocorrelator with sub-picosecond time resolution based on cadmium telluride

    NARCIS (Netherlands)

    Xu, J.; Knippels, G.M.H.; Oepts, D.; van der Meer, A. F. G.

    2001-01-01

    A background-free autocorrelator has been developed for measuring the duration of far-infrared laser pulses in the spectral range from 8.5 to 37 mum by using an 840-mum-long wedged cadmium telluride crystal as the second-harmonic generator. Typical intensity second-harmonic autocorrelation traces

  14. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Masahiro, E-mail: goto.masahiro@nims.go.jp [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Sasaki, Michiko [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Xu, Yibin [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Materials Database Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Zhan, Tianzhuo [Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Isoda, Yukihiro [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Shinohara, Yoshikazu [Thermoelectric Materials Group, Center for Green Research on Energy and Environmental Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Thermal Management and Thermoelectric Materials Group, Center for Materials Research by Information Integration (CMI2), National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2017-06-15

    Highlights: • p- and n-type bismuth telluride thin films have been synthesized using a combinatorial sputter coating system (COSCOS) while changing only one of the experimental conditions, the RF power. • The dimensionless figure of merit (ZT) was optimized by the technique. • The fabrication of a Π-structured TE device was demonstrated. - Abstract: p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p–n modules of bismuth telluride without any doping process.

  15. Terbium-doped gadolinium oxysulfide (Gd2O2S:Tb) scintillation-based polymer optical fibre sensor for real time monitoring of radiation dose in oncology

    Science.gov (United States)

    Lewis, E.; O'Keeffe, S.; Grattan, M.; Hounsell, A.; McCarthy, D.; Woulfe, P.; Cronin, J.; Mihai, L.; Sporea, D.; Santhanam, A.; Agazaryan, N.

    2014-05-01

    A PMMA based plastic optical fibre sensor for use in real time radiotherapy dosimetry is presented. The optical fibre tip is coated with a scintillation material, terbium-doped gadolinium oxysulfide (Gd2O2S:Tb), which fluoresces when exposed to ionising radiation (X-Ray). The emitted visible light signal penetrates the sensor optical fibre and propagates along the transmitting fibre at the end of which it is remotely monitored using a fluorescence spectrometer. The results demonstrate good repeatability, with a maximum percentage error of 0.5% and the response is independent of dose rate.

  16. Discovery and Structure Determination of an Unusual Sulfide Telluride through an Effective Combination of TEM and Synchrotron Microdiffraction.

    Science.gov (United States)

    Fahrnbauer, Felix; Rosenthal, Tobias; Schmutzler, Tilo; Wagner, Gerald; Vaughan, Gavin B M; Wright, Jonathan P; Oeckler, Oliver

    2015-08-17

    The structure elucidation of the novel sulfide telluride Pb8Sb8S15Te5 demonstrates a new versatile procedure that exploits the synergism of electron microscopy and synchrotron diffraction methods for accurate structure analyses of side-phases in heterogeneous microcrystalline samples. Suitable crystallites of unknown compounds can be identified by transmission electron microscopy and relocated and centered in a microfocused synchrotron beam by means of X-ray fluorescence scans. The refined structure model is then confirmed by simulating HRTEM images of the same crystallite. Pb8Sb8S15Te5 consists of chains of heterocubane-like units. Cation coordination polyhedra form unusually entwined chains of edge- and face-sharing bicapped trigonal prisms. The structure data are precise enough for bond-valence calculations, which confirm the disordered atom distribution. On this basis, optimization of physical properties becomes feasible. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Monte Carlo and least-squares methods applied in unfolding of X-ray spectra measured with cadmium telluride detectors

    Energy Technology Data Exchange (ETDEWEB)

    Moralles, M. [Centro do Reator de Pesquisas, Instituto de Pesquisas Energeticas e Nucleares, Caixa Postal 11049, CEP 05422-970, Sao Paulo SP (Brazil)], E-mail: moralles@ipen.br; Bonifacio, D.A.B. [Centro do Reator de Pesquisas, Instituto de Pesquisas Energeticas e Nucleares, Caixa Postal 11049, CEP 05422-970, Sao Paulo SP (Brazil); Bottaro, M.; Pereira, M.A.G. [Instituto de Eletrotecnica e Energia, Universidade de Sao Paulo, Av. Prof. Luciano Gualberto, 1289, CEP 05508-010, Sao Paulo SP (Brazil)

    2007-09-21

    Spectra of calibration sources and X-ray beams were measured with a cadmium telluride (CdTe) detector. The response function of the detector was simulated using the GEANT4 Monte Carlo toolkit. Trapping of charge carriers were taken into account using the Hecht equation in the active zone of the CdTe crystal associated with a continuous function to produce drop of charge collection efficiency near the metallic contacts and borders. The rise time discrimination is approximated by a cut in the depth of the interaction relative to cathode and corrections that depend on the pulse amplitude. The least-squares method with truncation was employed to unfold X-ray spectra typically used in medical diagnostics and the results were compared with reference data.

  18. Monte Carlo and least-squares methods applied in unfolding of X-ray spectra measured with cadmium telluride detectors

    Science.gov (United States)

    Moralles, M.; Bonifácio, D. A. B.; Bottaro, M.; Pereira, M. A. G.

    2007-09-01

    Spectra of calibration sources and X-ray beams were measured with a cadmium telluride (CdTe) detector. The response function of the detector was simulated using the GEANT4 Monte Carlo toolkit. Trapping of charge carriers were taken into account using the Hecht equation in the active zone of the CdTe crystal associated with a continuous function to produce drop of charge collection efficiency near the metallic contacts and borders. The rise time discrimination is approximated by a cut in the depth of the interaction relative to cathode and corrections that depend on the pulse amplitude. The least-squares method with truncation was employed to unfold X-ray spectra typically used in medical diagnostics and the results were compared with reference data.

  19. Geology and geochemistry of telluride-bearing Au deposits in the Pingyi area, Western Shandong, China

    Science.gov (United States)

    Hu, H.-B.; Mao, J.-W.; Niu, S.-Y.; Li, Y.-F.; Li, M.-W.

    2006-07-01

    Telluride-bearing gold deposits of the Pingyi area, western Shandong, China, are located on the southeastern margin of the North China Craton. There are two main types of deposits: (i) mineralized cryptoexplosive breccia, e.g., Guilaizhuang; and (ii) stratified, finely-disseminated mineralization hosted in carbonate rocks, e.g., Lifanggou and Mofanggou deposits. In Guilaizhuang, the cryptoexplosive breccia is formed within rocks of the Tongshi complex and Ordovician dolomite. The mineralization is controlled by an E-W-trending listric fault. Stratified orebodies of the Lifanggou and Mofanggou deposits are placed along a NE-trending, secondary detachment zone. They are hosted within dolomitic limestone, micrite and dolomite of the Early-Middle Cambrian Changqing Group. The mineralization in the ore districts is considered to be related to the Early Jurassic Tongshi magmatic complex that formed in a continental arc setting on the margin of the North China Craton. The host rocks are porphyritic and consist predominantly of medium- to fine-grained diorite and pyroxene (hornblende)-bearing monzonite. SHRIMP U-Pb zircon dating of diorites give a 206Pb/238U weighted mean age of 175.7 ± 3.8 Ma. This is interpreted as representing the crystallization age of the Tongshi magmatic complex. Considering the contact relationships between the magmatic and host sedimentary rocks, as well as the genetic link with the deposits, we conclude that this age is relevant also for the formation of mineralization in the Pingyi area. We hence consider that the deposits formed in the Jurassic. The principal gold minerals are native gold, electrum and calaverite. Wall-rock alteration comprises pyritization, fluoritization, silicification, carbonatization and chloritization. Fluid inclusion studies indicate that all the analyzed inclusions are of two-phase vapor-liquid NaCl-H2O type. Homogenization temperatures of the fluid inclusions vary from 103 °C to 250 °C, and the ice melting

  20. Crystal Growth, Characterization and Fabrication of Cadmium Zinc Telluride-based Nuclear Detectors

    Science.gov (United States)

    Krishna, Ramesh M.

    In today's world, nuclear radiation is seeing more and more use by humanity as time goes on. Nuclear power plants are being built to supply humanity's energy needs, nuclear medical imaging is becoming more popular for diagnosing cancer and other diseases, and control of weapons-grade nuclear materials is becoming more and more important for national security. All of these needs require high-performance nuclear radiation detectors which can accurately measure the type and amount of radiation being used. However, most current radiation detection materials available commercially require extensive cooling, or simply do not function adequately for high-energy gamma-ray emitting nuclear materials such as uranium and plutonium. One of the most promising semiconductor materials being considered to create a convenient, field-deployable nuclear detector is cadmium zinc telluride (CdZnTe, or CZT). CZT is a ternary semiconductor compound which can detect high-energy gamma-rays at room temperature. It offers high resistivity (≥ 1010 O-cm), a high band gap (1.55 eV), and good electron transport properties, all of which are required for a nuclear radiation detector. However, one significant issue with CZT is that there is considerable difficulty in growing large, homogeneous, defect-free single crystals of CZT. This significantly increases the cost of producing CZT detectors, making CZT less than ideal for mass-production. Furthermore, CZT suffers from poor hole transport properties, which creates significant problems when using it as a high-energy gamma-ray detector. In this dissertation, a comprehensive investigation is undertaken using a successful growth method for CZT developed at the University of South Carolina. This method, called the solvent-growth technique, reduces the complexity required to grow detector-grade CZT single crystals. It utilizes a lower growth temperature than traditional growth methods by using Te as a solvent, while maintaining the advantages of

  1. Bulk growth and surface characterization of epitaxy ready cadmium zinc telluride substrates for use in IR imaging applications

    Science.gov (United States)

    Flint, J. P.; Martinez, B.; Betz, T. E. M.; Mackenzie, J.; Kumar, F. J.; Burgess, L.

    2017-02-01

    Cadmium Zinc Telluride (Cd1-xZnxTe or CZT) is a compound semiconductor substrate material that has been used for infrared detector (IR) applications for many years. CZT is a perfect substrate for the epitaxial growth of Mercury Cadmium Telluride (Hg1-xCdxTe or MCT) epitaxial layers and remains the material of choice for many high performance IR detectors and focal plane arrays that are used to detect across wide IR spectral bands. Critical to the fabrication of high performance MCT IR detectors is a high quality starting CZT substrate, this being a key determinant of epitaxial layer crystallinity, defectivity and ultimately device electro-optical performance. In this work we report on a new source of substrates suitable for IR detector applications, grown using the Travelling Heater Method (THM). This proven method of crystal growth has been used to manufacture high quality IR specification CZT substrates where industry requirements for IR transmission, dislocations, tellurium precipitates and copper impurity levels have been met. Results will be presented for the chemo-mechanical (CMP) polishing of CZT substrates using production tool sets that are identical to those that are used to produce epitaxy-ready surface finishes on related IR compound semiconductor materials such as GaSb and InSb. We will also discuss the requirements to scale CZT substrate manufacture and how with a new III-V like approach to both CZT crystal growth and substrate polishing, we can move towards a more standardized product and one that can ultimately deliver a standard round CZT substrate, as is the case for competing IR materials such as GaSb, InSb and InP.

  2. Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of -32 rad/(Tm).

    Science.gov (United States)

    Sun, L; Jiang, S; Marciante, J R

    2010-06-07

    A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4-cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27 x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystal used in bulk optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4 degrees .

  3. Picomolar Traces of Americium(III) Introduce Drastic Changes in the Structural Chemistry of Terbium(III): A Break in the "Gadolinium Break".

    Science.gov (United States)

    Welch, Jan M; Müller, Danny; Knoll, Christian; Wilkovitsch, Martin; Giester, Gerald; Ofner, Johannes; Lendl, Bernhard; Weinberger, Peter; Steinhauser, Georg

    2017-10-16

    The crystallization of terbium 5,5'-azobis[1H-tetrazol-1-ide] (ZT) in the presence of trace amounts (ca. 50 Bq, ca. 1.6 pmol) of americium results in 1) the accumulation of the americium tracer in the crystalline solid and 2) a material that adopts a different crystal structure to that formed in the absence of americium. Americium-doped [Tb(Am)(H 2 O) 7 ZT] 2 ZT⋅10 H 2 O is isostructural to light lanthanide (Ce-Gd) 5,5'-azobis[1H-tetrazol-1-ide] compounds, rather than to the heavy lanthanide (Tb-Lu) 5,5'-azobis[1H-tetrazol-1-ide] (e.g., [Tb(H 2 O) 8 ] 2 ZT 3 ⋅6 H 2 O) derivatives. Traces of Am seem to force the Tb compound into a structure normally preferred by the lighter lanthanides, despite a 10 8 -fold Tb excess. The americium-doped material was studied by single-crystal X-ray diffraction, vibrational spectroscopy, radiochemical neutron activation analysis, and scanning electron microcopy. In addition, the inclusion properties of terbium 5,5'-azobis[1H-tetrazol-1-ide] towards americium were quantified, and a model for the crystallization process is proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Control of p-type and n-type thermoelectric properties of bismuth telluride thin films by combinatorial sputter coating technology

    Science.gov (United States)

    Goto, Masahiro; Sasaki, Michiko; Xu, Yibin; Zhan, Tianzhuo; Isoda, Yukihiro; Shinohara, Yoshikazu

    2017-06-01

    p- and n-type bismuth telluride thin films have been synthesized by using a combinatorial sputter coating system (COSCOS). The crystal structure and crystal preferred orientation of the thin films were changed by controlling the coating condition of the radio frequency (RF) power during the sputter coating. As a result, the p- and n-type films and their dimensionless figure of merit (ZT) were optimized by the technique. The properties of the thin films such as the crystal structure, crystal preferred orientation, material composition and surface morphology were analyzed by X-ray diffraction, energy-dispersive X-ray spectroscopy and atomic force microscopy. Also, the thermoelectric properties of the Seebeck coefficient, electrical conductivity and thermal conductivity were measured. ZT for n- and p-type bismuth telluride thin films was found to be 0.27 and 0.40 at RF powers of 90 and 120 W, respectively. The proposed technology can be used to fabricate thermoelectric p-n modules of bismuth telluride without any doping process.

  5. Crystal structures of two mononuclear complexes of terbium(III) nitrate with the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane.

    Science.gov (United States)

    Gregório, Thaiane; Giese, Siddhartha O K; Nunes, Giovana G; Soares, Jaísa F; Hughes, David L

    2017-02-01

    Two new mononuclear cationic complexes in which the TbIII ion is bis-chelated by the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane (H3LEt, C6H14O3) were prepared from Tb(NO3)3·5H2O and had their crystal and mol-ecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) nitrate di-meth-oxy-ethane hemisolvate, [Tb(NO3)2(H3LEt)2]NO3·0.5C4H10O2, 1, in which the lanthanide ion is 10-coordinate and adopts an s-bicapped square-anti-prismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-mol-ecule of di-meth-oxy-ethane (completed by a crystallographic twofold rotation axis) is also present. In product aqua-nitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) dinitrate, [Tb(NO3)(H3LEt)2(H2O)](NO3)2, 2, one bidentate nitrate ion and one water mol-ecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water mol-ecule was found in either of the crystal structures and, only in the case of 1, di-meth-oxy-ethane acts as a crystallizing solvent. In both mol-ecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2, the methyl group of one of the H3LEt ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and inter-molecular, are found in the crystal structures due to the number of different donor and acceptor groups present.

  6. Synthesis of mercaptosuccinic acid/MercaptoPolyhedral oligomeric silsesquioxane coated cadmium telluride quantum dots in cell labeling applications.

    Science.gov (United States)

    Ghaderi, Shirin; Ramesh, Bala; Seifalian, Alexander M

    2012-06-01

    An aqueous synthesis method to obtain highly luminescent cadmium telluride nanocrystals is described. We have shown water-soluble semi-conductor quantum dots with high photoluminescence quantum yield have great potential for biological applications. The spectral properties of these nanocrystals can be easily tuned according to their particle size to yield multicolours simultaneously by a single excitation light source. A stable precursor material sodium tellurite is utilised instead of the traditional oxygen sensitive NaHTe or H2Te as Te source. We have introduced mercaptosuccinic acid and propylisobutyl polyhedral oligomeric silsesquioxane nanoparticles as novel capping agents to stabilize the nanocrystals, synthesized in borate-citrate buffering system. Inclusion of propylisobutyl polyhedral oligomeric silsesquioxane nanoparticles in the capping procedure showed enhanced stability and biocompatibility. The presence of mercaptosuccinic acid/propylisobutyl polyhedral oligomeric silsesquioxane coatings was confirmed by Fourier Transform Infrared spectroscopy and average sizes of 2-5 nm by transmission electron microscopy measurements. The functionalized and targeted quantum dots detected cancer cell death on exposure to some anticancer drugs. Studies have indicated that apoptotic cells can activate signaling pathways in dendritic cells via ligation of surface receptors. Cells treated with specific class of pro-apototic drug such as anthracyclines mount an anti-tumour immune response when introduced into mice. Apoptotic cells may be immunogenic or non-immunogenic depending on the presence of calreticulin on the plasma membrane of dying tumour cells. Here the confocal microscopy showed localization of conjugated mercaptosuccinic acid/propylisobutyl polyhedral oligomeric silsesquioxane cadmium telluride quantum dots on MCF-7 cells when exposed to cadmium ions at 50 microM, compared to coated quantum dots. We have used cadmium ions as a model drug as certain anticancer

  7. The response behavior of PPy-DB18C6 electrode to terbium(III in acetonitrile and its thermodynamic application

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Arbab Zavar

    2016-11-01

    Full Text Available Polypyrrole modified electrode prepared by electropolymerization of pyrrole in the presence of a complexing ligand, dibenzo-18-crown-6(DB18C6, was prepared and investigated as a Tb3+-selective electrode in acetonitrile. The potentiometric response of the electrode was linear within the Tb3+ concentration range 1 × 10−5–1 × 10−2 M with a Nernstian slope of 20.9 mVdecade−1 in AN. The electrode was applied to study the complexation of the terbium(III ion in acetonitrile with such other basic aprotic solvent molecules (D as dimethyl sulfoxide, N,N-dimethyl formamide, propylene carbonate and pyridine. The successive complex formation constant (βi and Gibbs energies of transfer (ΔGtr of Tb3+ in AN in relation to such D were obtained.

  8. Luminescence and Magnetic Properties of Two Three-Dimensional Terbium and Dysprosium MOFs Based on Azobenzene-4,4′-Dicarboxylic Linker

    Directory of Open Access Journals (Sweden)

    Belén Fernández

    2016-02-01

    Full Text Available We report the in situ formation of two novel metal-organic frameworks based on terbium and dysprosium ions using azobenzene-4,4′-dicarboxylic acid (H2abd as ligand, synthesized by soft hydrothermal routes. Both materials show isostructural three-dimensional networks with channels along a axis and display intense photoluminescence properties in the solid state at room temperature. Textural properties of the metal-organic frameworks (MOFs have been fully characterized although no appreciable porosity was obtained. Magnetic properties of these materials were studied, highlighting the dysprosium material displays slightly frequency-dependent out of phase signals when measured under zero external field and under an applied field of 1000 Oe.

  9. Ore-microscopic and geochemical characteristics of gold-tellurides-sulfide mineralization in the Macassa Gold Mine, Abitibi Belt, Canada

    Science.gov (United States)

    Tesfaye, G.

    1992-01-01

    The Macassa Gold Mine is the only operational mine (Lac-Minerals Ltd., Macassa Division) of seven original gold producers in the Kirkland Lake camp of northern Ontario, Canada. The gold deposit is in Archaean volcanic and sedimentary rocks which have been intruded by a composite syenite stock. The mineralization has taken place in two stages. The first stage is not gold bearing but involves pyritization and concomitant development of titanium phase minerals (leucoxene, rutile) and hematite. It is mainly associated with carbonatization, silicification and hematitization marked by Ba, Sr and Rb enrichment. In contrast to this, the quartz vein-type mineralization is associated mainly with later silicification and enrichment with tellurium, lead, silver, gold and copper. It is relatively depleted in Sr, Ba and Rb. The ore mineralogical assemblages in the second stage include pyrite, chalcopyrite, petzite, altaite and native gold. Geochemical and petrographic evidence indicate that the reddened wall rocks (hematitized) and reddened fragments are neither related with nor contain any gold. Therefore, hematitization and the presence of barium, in this case in K-feldspars, could not be considered as the sole evidence to suggest a magmatic oxidizing fluid model for the genesis of Macassa gold deposit. Regarding the metals transport, tellurides and thiocomplexes are considered as the important carriers of gold and silver. Hence, fugacity of tellurium and sulphur controlled the precipitation of gold in the Macassa gold deposit.

  10. A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors

    Science.gov (United States)

    Zhang, Zhenyu; Wang, Bo; Zhou, Ping; Guo, Dongming; Kang, Renke; Zhang, Bi

    2016-03-01

    A novel approach of chemical mechanical polishing (CMP) is developed for mercury cadmium telluride (HgCdTe or MCT) semiconductors. Firstly, fixed-abrasive lapping is used to machine the MCT wafers, and the lapping solution is deionized water. Secondly, the MCT wafers are polished using the developed CMP slurry. The CMP slurry consists of mainly SiO2 nanospheres, H2O2, and malic and citric acids, which are different from previous CMP slurries, in which corrosive and toxic chemical reagents are usually employed. Finally, the polished MCT wafers are cleaned and dried by deionized water and compressed air, respectively. The novel approach of CMP is environment-friendly. Surface roughness Ra, and peak-to-valley (PV) values of 0.45, and 4.74 nm are achieved, respectively on MCT wafers after CMP. The first and second passivating processes are observed in electrochemical measurements on MCT wafers. The fundamental mechanisms of CMP are proposed according to the X-ray photoelectron spectroscopy (XPS) and electrochemical measurements. Malic and citric acids dominate the first passivating process, and the CMP slurry governs the second process. Te4+3d peaks are absent after CMP induced by the developed CMP slurry, indicating the removing of oxidized films on MCT wafers, which is difficult to achieve using single H2O2 and malic and citric acids solutions.

  11. Effect of oxygen on structural stability of nitrogen-doped germanium telluride films with and without silicon nitride layer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki-Hong [AE group, Corporate Technology Operations SAIT, Samsung Electronics Co. Ltd. Yongin, 446-712 (Korea, Republic of); Choi, Sang-Jun, E-mail: sangjun5545.choi@samsung.com [System LSI, Samsung Electronics Co. Ltd., Yong-In, 446-712 (Korea, Republic of); Kyoung, Yong-Koo; Lee, Jun-Ho [AE group, Corporate Technology Operations SAIT, Samsung Electronics Co. Ltd. Yongin, 446-712 (Korea, Republic of)

    2012-03-30

    Nitrogen-doped germanium telluride (N-GeTe) films with and without silicon nitride (SiN) layer were thermally annealed in an air atmosphere. The SiN layer prevented the oxidation of GeTe films despite the massive in-diffusion of oxygen atoms. The phase transition from cubic to rhombohedral phase occurred only in the air-annealed samples, not in the samples annealed at 2.0 mPa. The in-diffused oxygen is probably the leading cause of this phase transition. N-GeTe films without SiN layer showed an increase in sheet resistance after 1000 min of air annealing; this could be attributable to a phase transition from the cubic GeTe phase to the amorphous germanium oxide and metallic tellurium phases. - Highlights: Black-Right-Pointing-Pointer SiN layer prevented oxidation of GeTe despite the massive in-diffusion of oxygen. Black-Right-Pointing-Pointer The in-diffused oxygen have a critical role in the changes of crystal structure. Black-Right-Pointing-Pointer N-GeTe exhibited phase transition into amorphous Ge oxide and metallic Te phase.

  12. Evaluation of Specific Heat, Sound Velocity and Lattice Thermal Conductivity of Strained Nanocrystalline Bismuth Antimony Telluride Thin Films

    Science.gov (United States)

    Zheng, D.; Tanaka, S.; Miyazaki, K.; Takashiri, M.

    2015-06-01

    To investigate the effect of strain on specific heat, sound velocity and lattice thermal conductivity of nanocrystalline bismuth antimony telluride thin films, we performed both experimental study and modeling. The nanocrystalline thin films had mostly preferred crystal orientation along c-axis, and strains in the both directions of c-axis and a- b-axis. It was found that the thermal conductivity of nanocrystalline thin films decreased greatly as compared with that of bulk alloys. To gain insight into the thermal transport in the strained nanocrystalline thin films, we estimated the lattice thermal conductivity based on the phonon transport model of full distribution of mean free paths accounting for the effects of grain size and strain which was influenced to both the sound velocity and the specific heat. As a result, the lattice thermal conductivity was increased when the strain was shifted from compressive to tensile direction. We also confirmed that the strain was influenced by the lattice thermal conductivity but the reduction of the lattice thermal conductivity of thin films can be mainly attributed to the nano-size effect rather than the strain effect. Finally, it was found that the measured lattice thermal conductivities were in good agreement with modeling.

  13. Improved Sensitization of Zinc Oxide Nanorods by Cadmium Telluride Quantum Dots through Charge Induced Hydrophilic Surface Generation

    Directory of Open Access Journals (Sweden)

    Karthik Laxman

    2014-01-01

    Full Text Available This paper reports on UV-mediated enhancement in the sensitization of semiconductor quantum dots (QDs on zinc oxide (ZnO nanorods, improving the charge transfer efficiency across the QD-ZnO interface. The improvement was primarily due to the reduction in the interfacial resistance achieved via the incorporation of UV light induced surface defects on zinc oxide nanorods. The photoinduced defects were characterized by XPS, FTIR, and water contact angle measurements, which demonstrated an increase in the surface defects (oxygen vacancies in the ZnO crystal, leading to an increase in the active sites available for the QD attachment. As a proof of concept, a model cadmium telluride (CdTe QD solar cell was fabricated using the defect engineered ZnO photoelectrodes, which showed ∼10% increase in photovoltage and ∼66% improvement in the photocurrent compared to the defect-free photoelectrodes. The improvement in the photocurrent was mainly attributed to the enhancement in the charge transfer efficiency across the defect rich QD-ZnO interface, which was indicated by the higher quenching of the CdTe QD photoluminescence upon sensitization.

  14. Experimental Evaluation And Simulation Of Multi-pixel Cadmium-zinc-telluride Hard-x-ray Detectors

    CERN Document Server

    Gaskin, J A

    2004-01-01

    This dissertation describes the evaluation of many-pixel Cadmium-Zinc-Telluride (CdZnTe) hard-X-ray detectors for future use with the High Energy Replicated Optics (HERO) telescope being developed at Marshall Space Flight Center. The detector requirements for the HERO application are good energy resolution (sufficient to resolve cyclotron features and nuclear lines), spatial resolution of ∼200 μm, minimal charge loss of absorbed X rays, and minimal sensitivity to the background environment. This research concentrates on assessing the suitability of these detectors for the focus of HERO, and includes the development of a simulation of the physics involved in an X-ray-detector interaction, a study of the intrinsic material properties, measurements with prototype detectors such as the energy and spatial resolution, charge loss, and X-ray background reduction through 3-dimensional depth sensing. Two types of detectors were available for evaluation. The first type includes 1-mm and 2-mm thick 4 x 4 ...

  15. Derived reference doses for three compounds used in the photovoltaics industry: Copper indium diselenide, copper gallium diselenide, and cadmium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Moskowitz, P.D.; Bernholc, N.; DePhillips, M.P.; Viren, J.

    1995-07-06

    Polycrystalline thin-film photovoltaic modules made from copper indium diselenide (CIS), copper gallium diselenide (CGS), and cadmium telluride (CdTe) arc nearing commercial development. A wide range of issues are being examined as these materials move from the laboratory to large-scale production facilities to ensure their commercial success. Issues of traditional interest include module efficiency, stability and cost. More recently, there is increased focus given to environmental, health and safety issues surrounding the commercialization of these same devices. An examination of the toxicological properties of these materials, and their chemical parents is fundamental to this discussion. Chemicals that can present large hazards to human health or the environment are regulated often more strictly than those that are less hazardous. Stricter control over how these materials are handled and disposed can increase the costs associated with the production and use of these modules dramatically. Similarly, public perception can be strongly influenced by the inherent biological hazard that these materials possess. Thus, this report: presents a brief background tutorial on how toxicological data are developed and used; overviews the toxicological data available for CIS, CGS and CdTe; develops ``reference doses`` for each of these compounds; compares the reference doses for these compounds with those of their parents; discusses the implications of these findings to photovoltaics industry.

  16. Luminescent europium and terbium complexes of dipyridoquinoxaline and dipyridophenazine ligands as photosensitizing antennae: structures and biological perspectives.

    Science.gov (United States)

    Dasari, Srikanth; Patra, Ashis K

    2015-12-14

    The europium(III) and terbium(III) complexes, namely [Eu(dpq)(DMF)2(NO3)3] (1), [Eu(dppz)2(NO3)3] (2), [Tb(dpq)(DMF)2Cl3] (3), and [Tb(dppz)(DMF)2Cl3] (4), where dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 1 and 3), dipyrido[3,2-a:2',3'-c]phenazine (dppz in 2 and 4) and N,N'-dimethylformamide (DMF) have been isolated, characterized from their physicochemical data, luminescence studies and their interaction with DNA, serum albumin protein and photo-induced DNA cleavage activity are studied. The X-ray crystal structures of complexes 1-4 show discrete mononuclear Ln(3+)-based structures. The Eu(3+) in [Eu(dpq)(DMF)2(NO3)3] (1) and [Eu(dppz)2(NO3)3] (2) as [Eu(dppz)2(NO3)3]·dppz (2a) adopts a ten-coordinated bicapped dodecahedron structure with a bidentate N,N-donor dpq ligand, two DMF and three NO3(-) anions in 1 and two bidentate N,N-donor dppz ligands and three NO3(-) anions in 2. Complexes 3 and 4 show a seven-coordinated mono-capped octahedron structure where Tb(3+) contains bidentate dpq/dppz ligands, two DMF and three Cl(-) anions. The complexes are highly luminescent in nature indicating efficient photo-excited energy transfer from the dpq/dppz antenna to Ln(3+) to generate long-lived emissive excited states for characteristic f → f transitions. The time-resolved luminescence spectra of complexes 1-4 show typical narrow emission bands attributed to the (5)D0 → (7)F(J) and (5)D4 → (7)F(J) f-f transitions of Eu(3+) and Tb(3+) ions respectively. The number of inner-sphere water molecules (q) was determined from luminescence lifetime measurements in H2O and D2O confirming ligand-exchange reactions with water in solution. The complexes display significant binding propensity to the CT-DNA giving binding constant values in the range of 1.0 × 10(4)-6.1 × 10(4) M(-1) in the order 2, 4 (dppz) > 1, 3 (dpq). DNA binding data suggest DNA groove binding with the partial intercalation nature of the complexes. All the complexes also show binding propensity (K(BSA)

  17. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden

    1975-01-01

    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been expl...... by Liu. The coupled magnon—transverse-phonon system for the c direction of Tb is analyzed in detail, and the strengths of the couplings are deduced as a function of wave vector by combining the experimental studies with the theory....

  18. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans

    1975-01-01

    The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...

  19. Acetic acid-confined synthesis of uniform three-dimensional (3D) bismuth telluride nanocrystals consisting of few-quintuple-layer nanoplatelets

    KAUST Repository

    Yuan, Qiang

    2011-01-01

    High-selectivity, uniform three-dimensional (3D) flower-like bismuth telluride (Bi2Te3) nanocrystals consisting of few-quintuple-layer nanoplatelets with a thickness down to 4.5 nm were synthesized for the first time by a facile, one-pot polyol method with acetic acid as the structure-director. Micrometre-sized 2D films and honeycomb-like spheres can be obtained using the uniform 3D Bi2Te3 nanocrystals as building blocks. © The Royal Society of Chemistry 2011.

  20. Nuclear myocardial perfusion imaging with a cadmium-telluride semiconductor detector gamma camera in patients with acute myocardial infarction.

    Science.gov (United States)

    Fukushima, Yoshimitsu; Kumita, Shin-ichiro; Kawaguchi, Tsuneaki; Maruyama, Takatoshi; Kawasaki, Yoshiyuki; Shinkai, Yasuhiro

    2014-08-01

    Since myocardial perfusion imaging (MPI) with conventional sodium iodine (NaI) device has low spatial resolution, there have been some cases in which small structures such as non-transmural myocardial infarction could not be properly detected. The purpose of this study was to evaluate potential usefulness of cadmium-telluride (CdTe) semiconductor detector-based high spatial resolution gamma cameras in detecting myocardial infarction sites, especially non-transmural infarction. A total of 38 patients (mean age ± SD: 64 ± 21 year) who were clinically diagnosed with acute myocardial infarction were included. Twenty-eight cases of them were with ST segment elevation myocardial infarction (STEMI) and 10 cases with non-ST segment elevation myocardial infarction (NSTEMI). In all patients, myocardial perfusion single photon emission computed tomography images were acquired with Infinia (NaI device) and R1-M (CdTe device), and the images were compared concerning the detectability of acute myocardial infarction sites. The detection rates of the myocardial infarction site in cases with STEMI were 100% both by NaI and CdTe images. In cases with NSTEMI, detection rate by NaI images was 50%, while that of CdTe images was 100% (p = 0.033). The summed rest score (SRS) value derived from CdTe images was significantly higher than that from NaI images in cases with STEMI [NaI images: 12 (7-18) versus CdTe images: 14 (9-20)] (p cases with NSTEMI [NaI images: 2 (0-5) versus CdTe images: 6 (6-8)] (p = 0.006). These results indicate that MPI using CdTe-semiconductor device will provide a much more accurate assessment of acute myocardial infarction in comparison to current methods.

  1. Influence of a front buffer layer on the performance of flexible Cadmium sulfide/Cadmium telluride solar cells

    Science.gov (United States)

    Mahabaduge, Hasitha Padmika

    Cadmium telluride (CdTe) solar cells have been developing as a promising candidate for large-scale application of photovoltaic energy conversion and have become the most commercially successful polycrystalline thin-film solar module material. In scaling up from small cells to large-area modules, inevitably non-uniformities across the large area will limit the performance of the large cell or module. The effects of these non-uniformities can be reduced by introducing a thin, high-resistivity transparent buffer layer between the conductive electrodes and the semiconductor diode. ZnO is explored in this dissertation as a high-resistivity transparent buffer layer for sputtered CdTe solar cells and efficiencies over 15% have been achieved on commercially available Pilkington TEC15M glass substrates. The highest open-circuit voltage of 0.858V achieved using the optimized ZnO buffer layer is among the best reported in the literature. The properties of ZnO:Al as a buffer are also investigated. We have shown that ZnO:Al can serve both as a transparent conducting oxide layer as well as a high-resistivity transparent layer for CdTe solar cells. ZnO:Al reactively sputtered with oxygen can give the necessary resistivities that allow it to be used as a high-resistivity transparent layer. Glass is the most common choice as the substrate for solar cells fabricated in the superstrate configuration due to its transparency and mechanical rigidity. However flexible substrates offer the advantages of light weight, high flexibility, ease of integrability and higher throughput through roll-to-roll processing over glass. This dissertation presents significant improvements made to flexible CdTe solar cells reporting an efficiency of 14% on clear KaptonRTM flexible polyimide substrates. Our efficiency of 14% is, to our knowledge, the best for any flexible CdTe cell reported in literature.

  2. Effects of homogeneous irradiation of electron beam on crystal growth and thermoelectric properties of nanocrystalline bismuth selenium telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Imai, Kazuo; Uyama, Masato [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Hagino, Harutoshi [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Tanaka, Saburo [Department of Mechanical Engineering, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 (Japan); Miyazaki, Koji [Department of Mechanical and Control Engineering, Kyushu Institute of Technology, 1-1 Sensui, Tobata-ku, Kitakyushu 804-8550 (Japan); Nishi, Yoshitake [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2014-11-05

    Highlights: • Effects of EB irradiation on the properties of Bi–Se–Te thin films were examined. • The crystallinity and the crystal orientation were enhanced by the EB treatment. • The crystal grain size did not grow as the EB irradiation dose was increased. • A number of nanodots were formed on the surface of the rice-like nanostructures. • The mobility was enhanced but the carrier concentration was not greatly changed. - Abstract: The effects of homogeneous irradiation of electron beam (EB) on the crystal growth and thermoelectric properties of nanocrystalline bismuth selenium telluride thin films were investigated. The thin films were prepared using a flash evaporation method, after which EB irradiation was performed under N{sub 2} at room temperature at an accelerated voltage of 0.17 MeV. SEM revealed that the untreated thin film was composed of a large quantity of rice-like nanostructures. With increasing the EB irradiation dose, a number of nanodots with diameters of less than 10 nm became visible on the surface of the rice-like nanostructures. The crystallinity and the crystal orientation were enhanced with increasing EB irradiation dose while the average crystal grain size remained almost the same size as that of the untreated thin film. In terms of thermoelectric properties, the mobility of the thin films was enhanced as the EB irradiation dose was increased while the carrier concentration was not greatly changed. As a result, both the electrical conductivity and the Seebeck coefficient were improved with increasing EB irradiation dose. Consequently, even though there is still room for further improvement, the power factor was enhanced around sevenfold (from 0.14 to 0.96 μW/cm/K{sup 2}) by the EB irradiation treatment.

  3. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols

    Energy Technology Data Exchange (ETDEWEB)

    Verger, Antoine; Karcher, Gilles [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Djaballah, Wassila [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); INSERM U947, Nancy (France); Fourquet, Nicolas [Clinique Pasteur, Toulouse (France); Rouzet, Francois; Le Guludec, Dominique [AP-HP, Hopital Bichat, Department of Nuclear Medicine, Paris (France); INSERM U 773 Inserm and Denis Diderot University, Paris (France); Koehl, Gregoire; Roch, Veronique [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Imbert, Laetitia [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Centre Alexis Vautrin, Department of Radiotherapy, Vandoeuvre (France); Poussier, Sylvain [INSERM U947, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); Fay, Renaud [INSERM, Centre d' Investigation Clinique CIC-P 9501, Nancy (France); Marie, Pierre-Yves [CHU-Nancy, Department of Nuclear Medicine, Nancy (France); Nancyclotep Experimental Imaging Platform, Nancy (France); INSERM U961, Nancy (France); Hopital de Brabois, CHU-Nancy, Medecine Nucleaire, Vandoeuvre-les-Nancy (France)

    2013-03-15

    The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving {sup 201}Tl (n = 120) or {sup 99m}Tc-sestamibi injected at low dose at stress ({sup 99m}Tc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress ({sup 99m}Tc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, {sup 201}Tl 92 %, {sup 99m}Tc-Low 86 %, {sup 99m}Tc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p < 0.001). This larger extent was mainly observed in 50 obese patients who were in the {sup 201}Tl or {sup 99m}Tc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 {+-} 101 kcounts) and dramatically enhanced with CZT SPECT (+279 {+-} 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT. (orig.)

  4. Numerical Simulation of Performance and Thermomechanical Behavior of Thermoelectric Modules with Segmented Bismuth-Telluride-Based Legs

    Science.gov (United States)

    Picard, M.; Turenne, S.; Vasilevskiy, D.; Masut, R. A.

    2013-07-01

    The approach of using segmented legs to build thermoelectric (TE) modules can enhance the performance of TE generators. This approach is based on the selection of materials for different segments that are optimized in terms of their TE properties with respect to the temperature range to which they are exposed during module operation. For this purpose, by carefully controlling the chemical composition of ternary and quaternary bismuth-telluride-based alloys, we have optimized the figure of merit ZT of p-type and n-type alloys implemented by a powder technology approach. The alloys were prepared by mechanical alloying followed by hot extrusion, and their mechanical and TE properties were fully characterized as a function of temperature, which gave us a solid database for simulation of modules containing these materials. Finite-element numerical simulation was applied to evaluate the impact of TE materials properties on the level of mechanical stresses generated by thermal gradients in modules made of segmented legs. Keeping the same total length of two-segment p- and n-type legs, the relative length of each segment was varied to obtain an 8% relative increase of generated electrical power compared with homogeneous legs of the same total length. Under these conditions, the presence of solder interface between the two segments and between the segments and the copper conductors of the module concentrates plastic strain, leading to a significant reduction of the stress level in the TE materials compared with that resulting from using nonsegmented legs. Leg segmentation not only leads to improved TE performance but could also significantly modify the maximum values and distribution of thermomechanical stresses in the modules, depending on how it is realized. The study presents how this numerical simulation tool can be used to optimize the design of segmented modules.

  5. Synthesis and crystal structure of terbium(III) meta-oxoborate Tb(BO{sub 2}){sub 3} ({identical_to} TbB{sub 3}O{sub 6}); Synthese und Kristallstruktur von Terbium(III)-meta-Oxoborat Tb(BO{sub 2}){sub 3} ({identical_to} TbB{sub 3}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Nikelski, Tanja; Schleid, Thomas [Institut fuer Anorganische Chemie der Universitaet Stuttgart (Germany)

    2003-06-01

    The terbium meta-oxoborate Tb(BO{sub 2}){sub 3} ({identical_to} TbB{sub 3}O{sub 6}) is obtained as single crystals by the reaction of terbium, Tb{sub 4}O{sub 7} and TbCl{sub 3} with an excess of B{sub 2}O{sub 3} in gastight sealed platinum ampoules at 950 C after three weeks. The compound appears to be air- and water-resistant and crystallizes as long, thin, colourless needles which tend to growth-twinning due to their marked fibrous habit. The crystal structure of Tb(BO{sub 2}){sub 3} (orthorhombic, Pnma; a = 1598.97(9), b = 741.39(4), c = 1229.58(7) pm; Z = 16) contains strongly corrugated oxoborate layers {sub {infinity}}{sup 2}{l_brace}(BO{sub 2}){sup -}{r_brace} built of vertex-linked [BO{sub 4}]{sup 5-} tetrahedra (d(B-O) = 143 - 154 pm, and angsph;(O-B-O) = 102-115 ) which spread out parallel (100). The four crystallographically different Tb{sup 3+} cations all exhibit coordination numbers of eight towards the oxygen atoms (d(Tb-O) = 228-287 pm). The corresponding metal cation polyhedra [TbO{sub 8}]{sup 13+} too convene to layers (composition: {sub {infinity}}{sup 2}{l_brace}(Tb{sub 2}O{sub 11}){sup 16-}{r_brace}) which are likewise oriented parallel to the (100) plane. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Das Terbium-meta-Oxoborat Tb(BO{sub 2}){sub 3} ({identical_to} TbB{sub 3}O{sub 6}) entsteht einkristallin bei der Reaktion von Terbium, Tb{sub 4}O{sub 7} und TbCl{sub 3} mit einem Ueberschuss von B{sub 2}O{sub 3} in gasdicht verschlossenen Platinampullen nach drei Wochen bei 950 C. Die Verbindung ist luft- und wasserstabil und faellt in langen, duennen, farblosen Nadeln an, die aufgrund ihres ausgepraegt faserigen Habitus zur Wachstumsverzwillingung neigen. Die Kristallstruktur von Tb(BO{sub 2}){sub 3} (orthorhombisch, Pnma; a = 1598, 97(9), b = 741, 39(4), c = 1229, 58(7) pm; Z = 16) enthaelt parallel (100) verlaufende, stark gewellte Oxoborat-Schichten {sub {infinity}}{sup 2}{l_brace}(BO{sub 2}){sup -}{r_brace} aus

  6. Growth rates and interface shapes in germanium and lead tin telluride observed in-situ, real-time in vertical Bridgman furnaces

    Science.gov (United States)

    Barber, P. G.; Berry, R. F.; Debnam, W. J.; Fripp, A. L.; Woodell, G.; Simchick, R. T.

    1995-01-01

    Using the advanced technology developed to visualize the melt-solid interface in low Prandtl number materials, crystal growth rates and interface shapes have been measured in germanium and lead tin telluride semiconductors grown in vertical Bridgman furnaces. The experimental importance of using in-situ, real time observations to determine interface shapes, to measure crystal growth rates, and to improve furnace and ampoule designs is demonstrated. The interface shapes observed in-situ, in real-time were verified by quenching and mechanically induced interface demarcation, and they were also confirmed using machined models to ascertain the absence of geometric distortions. Interface shapes depended upon the interface position in the furnace insulation zone, varied with the nature of the crystal being grown, and were dependent on the extent of transition zones at the ends of the ampoule. Actual growth rates varied significantly from the constant translation rate in response to the thermophysical properties of the crystal and its melt and the thermal conditions existing in the furnace at the interface. In the elemental semiconductor germanium the observed rates of crystal growth exceeded the imposed translation rate, but in the compound semiconductor lead tin telluride the observed rates of growth were less than the translation rate. Finally, the extent of ampoule thermal loading influenced the interface positions, the shapes, and the growth rates.

  7. Influence of proton-pump inhibitors on stomach wall uptake of 99mTc-tetrofosmin in cadmium-zinc-telluride SPECT myocardial perfusion imaging.

    Science.gov (United States)

    Mouden, Mohamed; Rijkee, Karlijn S; Schreuder, Nanno; Timmer, Jorik R; Jager, Pieter L

    2015-02-01

    Proton-pump inhibitors (PPIs) induce potentially interfering stomach wall activity in single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI) with technetium-99m ((99m)Tc)-sestamibi. However, no data are available for (99m)Tc-tetrofosmin. We assessed the influence of prolonged (>2 weeks) PPI use on the stomach wall uptake of (99m)Tc-tetrofosmin in patients referred for stress MPI with a cadmium-zinc-telluride-based SPECT camera and its relation with dyspepsia symptoms. Consecutive patients (n=127) underwent a 1-day adenosine stress-first SPECT-MPI with (99m)Tc-tetrofosmin, of whom 54 (43%) patients had been on PPIs for more than 2 weeks. Stomach wall activity was identified on stress SPECT using computed tomographic attenuation maps and was scored using a four-point grading scale into clinically relevant (scores 2 or 3) or nonrelevant (scores 0 or 1).Patients on PPIs had stomach wall uptake more frequently as compared with patients not using PPIs (22 vs. 7%, P=0.017). Dyspepsia was similar in both groups. Prolonged use of PPIs is associated with stomach wall uptake of (99m)Tc-tetrofosmin in stress cadmium-zinc-telluride-SPECT images. Gastric symptoms were not associated with stomach wall uptake.

  8. An integrated logic system for time-resolved fluorescent "turn-on" detection of cysteine and histidine base on terbium (III) coordination polymer-copper (II) ensemble.

    Science.gov (United States)

    Xue, Shi-Fan; Lu, Ling-Fei; Wang, Qi-Xian; Zhang, Shengqiang; Zhang, Min; Shi, Guoyue

    2016-09-01

    Cysteine (Cys) and histidine (His) both play indispensable roles in many important biological activities. An enhanced Cys level can result in Alzheimer's and cardiovascular diseases. Likewise, His plays a significant role in the growth and repair of tissues as well as in controlling the transmission of metal elements in biological bases. Therefore, it is meaningful to detect Cys and His simultaneously. In this work, a novel terbium (III) coordination polymer-Cu (II) ensemble (Tb(3+)/GMP-Cu(2+)) was proposed. Guanosine monophosphate (GMP) can self-assemble with Tb(3+) to form a supramolecular Tb(3+) coordination polymer (Tb(3+)/GMP), which can be suited as a time-resolved probe. The fluorescence of Tb(3+)/GMP would be quenched upon the addition of Cu(2+), and then the fluorescence of the as-prepared Tb(3+)/GMP-Cu(2+) ensemble would be restored again in the presence of Cys or His. By incorporating N-Ethylmaleimide and Ni(2+) as masking agents, Tb(3+)/GMP-Cu(2+) was further exploited as an integrated logic system and a specific time-resolved fluorescent "turn-on" assay for simultaneously sensing His and Cys was designed. Meanwhile it can also be used in plasma samples, showing great potential to meet the need of practical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Synthesis and photoluminescence properties of cerium-doped terbium-yttrium aluminum garnet phosphor for white light-emitting diodes applications

    Science.gov (United States)

    Wang, Jun; Han, Tao; Lang, Tianchun; Tu, Mingjing; Peng, Lingling

    2015-11-01

    Cerium-doped terbium-yttrium aluminum garnet phosphors were synthesized using the solid-state reaction method. The crystalline phase, morphology, and photoluminescence properties were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), and fluorescence spectrophotometer, respectively. The XRD results indicate that with an increase of the amount of x (Tb3+), all of the samples have a pure garnet crystal structure without secondary phases. The SEM images reveal that the samples are composed of sphere-like crystallites, which exhibit different degrees of agglomeration. The luminescent properties of Ce ions in )Al5O12∶Ce0.1 have been studied, and it was found that the emission band shifted toward a longer wavelength. The redshift is attributed to the lowering of the 5d energy level centroid of Ce, which can be explained by the nephelauxetic effect and compression effect. These phosphors were coated on blue light-emitting diode (LED) chips to fabricate white light-emitting diodes (WLEDs), and their color-rendering indices, color temperatures, and luminous efficiencies were measured. As a consequence of the addition of Tb, the blue LED pumped )Al5O12∶Ce0.1 phosphors WLEDs showed good optical properties.

  10. Study on the fluorescent enhancement effect in terbium-gadolinium-protein-sodium dodecyl benzene sulfonate system and its application on sensitive detection of protein at nanogram level.

    Science.gov (United States)

    Sun, Changxia; Yang, Jinghe; Wu, Xia; Liu, Shufang; Su, Benyu

    2004-08-01

    The co-luminescence effect in a terbium-gadolinium-protein-sodium dodecyl benzene sulfonate (SDBS) system is reported here. Based on it, the sensitive quantitative analysis of protein at nanogram levels is established. The co-luminescence mechanism is studied using fluorescence, resonance light scattering (RLS), absorption spectroscopy and NMR measurement. It is considered that protein could be unfolded by SDBS, then a efficacious intramolecular fluorescent energy transfer occurs from unfolded protein to rare earth ions through SDBS acting as a "transfer bridge" to enhance the emission fluorescence of Tb3+ in this ternary complex of Tb-SDBS-BSA, where energy transfer from protein to SDBS by aromatic ring stacking is the most important step. Cooperating with the intramolecular energy transfer above is the intermolecular energy transfer between the simultaneous existing complexes of both Tb3+ and Gd3+. The fluorescence quantum yield is increased by an energy-insulating sheath, which is considered to be another reason for the resulting enhancement of the fluorescence. Förster theory is used to calculate the distribution of enhancing factors and has led to a greater understanding of the mechanisms of energy transfer.

  11. [Studies on luminescence properties of seven ternary complexes of terbium with 1,10-phenanthroline and benzoic acid and its derivatives].

    Science.gov (United States)

    Gao, Zhi-hua; Wang, Shu-ping; Liu, Cui-ge; Ma, Rui-xia; Wang, Rui-fen

    2006-04-01

    Seven ternary complexes of Tb(III) were synthesized with benzoic acid (BA), o-, m-, p-methylbenzoic acid (o-MBA, m-MBA, p-MBA), and o-, m-, p-methoxybenzoic acid (o-MOBA, m-MOBA, p-MOBA) as the first ligand, and 1,10-phenanthroline (phen) as the second ligand. The content of C, H and N were measured by using a Flash-EA model 1112 elemental analyzer. Excitation and luminescence spectra of the title solid complexes were recorded by using a Hitachi F-4500 fluorescence spectrophotometer at room temperature. The effects of different varieties and different positions of replacing benzoic acid as the first ligand on fluorescence properties of the ternary complexes of terbium were discussed. The results indicated that the intensity of 5D4-->7F6 (489 nm) and 5D4-->7F5 (545 nm) of substituting benzoic acid complexes was stronger than benzoic acid. Three ternary complexes of Tb(III) with o-, m-, p-methylbenzoic acid showed emission intensity in the consecution: Tb(o-MBA)3 phenMOBA)3phen x H2O>Tb(m-MOBA)3phen x H2O>Tb(p-MOBA)3 phen.

  12. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions.

    Science.gov (United States)

    Glick, Stephen J; Didier, Clay

    2013-10-14

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5-3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing distortion

  13. Comparison between stress myocardial perfusion SPECT recorded with cadmium-zinc-telluride and Anger cameras in various study protocols.

    Science.gov (United States)

    Verger, Antoine; Djaballah, Wassila; Fourquet, Nicolas; Rouzet, François; Koehl, Grégoire; Imbert, Laetitia; Poussier, Sylvain; Fay, Renaud; Roch, Véronique; Le Guludec, Dominique; Karcher, Gilles; Marie, Pierre-Yves

    2013-02-01

    The results of stress myocardial perfusion SPECT could be enhanced by new cadmium-zinc-telluride (CZT) cameras, although differences compared to the results with conventional Anger cameras remain poorly known for most study protocols. This study was aimed at comparing the results of CZT and Anger SPECT according to various study protocols while taking into account the influence of obesity. The study population, which was from three different institutions equipped with identical CZT cameras, comprised 276 patients referred for study using protocols involving (201)Tl (n = 120) or (99m)Tc-sestamibi injected at low dose at stress ((99m)Tc-Low; stress/rest 1-day protocol; n = 110) or at high dose at stress ((99m)Tc-High; rest/stress 1-day or 2-day protocol; n = 46). Each Anger SPECT scan was followed by a high-speed CZT SPECT scan (2 to 4 min). Agreement rates between CZT and Anger SPECT were good irrespective of the study protocol (for abnormal SPECT, (201)Tl 92 %, (99m)Tc-Low 86 %, (99m)Tc-High 98 %), although quality scores were much higher for CZT SPECT with all study protocols. Overall correlations were high for the extent of myocardial infarction (r = 0.80) and a little lower for ischaemic areas (r = 0.72), the latter being larger on Anger SPECT (p < 0.001). This larger extent was mainly observed in 50 obese patients who were in the (201)Tl or (99m)Tc-Low group and in whom stress myocardial counts were particularly low with Anger SPECT (228 ± 101 kcounts) and dramatically enhanced with CZT SPECT (+279 ± 251 %). Concordance between the results of CZT and Anger SPECT is good regardless of study protocol and especially when excluding obese patients who have low-count Anger SPECT and for whom myocardial counts are dramatically enhanced on CZT SPECT.

  14. Improvement of the Thermoelectric Figure-of-Merit of a Doped Telluride Nanocomposite by Combining Phonon Scattering with Grain Boundary-Modifying Zn-Containing Nanostructures

    Science.gov (United States)

    Rowe, Michael P.; Zhou, Li Qin; Banerjee, Debasish; Zhang, Minjuan

    2015-01-01

    Recovery of waste heat from internal combustion engines is one strategy for meeting the ever increasing demand for more fuel efficient-automobiles. Thermoelectric materials are capable of this, by solid-state conversion of thermal to electrical energy, but the efficiency of this energy conversion requires improvement. In this work the thermoelectric figure of merit ( ZT) was improved by combining phonon scattering with grain boundary modification in a bismuth antimony telluride nanocomposite material with zinc antimony grain boundaries and zinc oxide nanoparticle inclusions. The advantage of including these zinc nanostructures is discussed. By reducing thermal conductivity while increasing the power factor, ZT was been increased from 0.6 to 1.1.

  15. Investigation of the Internal Electric Field in Cadmium Zinc Telluride Detectors Using the Pockels Effect and the Analysis of Charge Transients

    Science.gov (United States)

    Groza, Michael; Krawczynski, Henic; Garson, Alfred, III; Martin, Jerrad W.; Lee, Kuen; Li, Qiang; Beilicke, Matthias; Cui, Yunlong; Buliga, Vladimir; Guo, Mingsheng; hide

    2010-01-01

    The Pockels electro-optic effect can be used to investigate the internal electric field in cadmium zinc telluride (CZT) single crystals that are used to fabricate room temperature x and gamma radiation detectors. An agreement is found between the electric field mapping obtained from Pockels effect images and the measurements of charge transients generated by alpha particles. The Pockels effect images of a CZT detector along two mutually perpendicular directions are used to optimize the detector response in a dual anode configuration, a device in which the symmetry of the internal electric field with respect to the anode strips is of critical importance. The Pockels effect is also used to map the electric field in a CZT detector with dual anodes and an attempt is made to find a correlation with the simulated electric potential in such detectors. Finally, the stress-induced birefringence effects seen in the Pockels images are presented and discussed.

  16. Thermochemical properties of silver tellurides including empressite (AgTe) and phase diagrams for Ag-Te and Ag-Te-O

    Science.gov (United States)

    Voronin, Mikhail V.; Osadchii, Evgeniy G.; Brichkina, Ekaterina A.

    2017-10-01

    This study compiles original experimental and literature data on the thermodynamic properties (ΔfG°, S°, ΔfH°) of silver tellurides (α-Ag2Te, β-Ag2Te, Ag1.9Te, Ag5Te3, AgTe) obtained by the method of solid-state galvanic cell with the RbAg4I5 and AgI solid electrolytes. The thermodynamic data for empressite (AgTe, pure fraction from Empress Josephine Mine, Colorado USA) have been obtained for the first time by the electrochemical experiment with the virtual reaction Ag + Te = AgTe. The Ag-Te phase diagrams in the T - x and log fTe2 (gas) - 1/ T coordinates have been refined, and the ternary Ag-Te-O diagrams with Ag-Te-TeO2 (paratellurite) composition range have been calculated.

  17. Pre-chemotherapy values for left and right ventricular volumes and ejection fraction by gated tomographic radionuclide angiography using a cadmium-zinc-telluride detector gamma camera

    DEFF Research Database (Denmark)

    Haarmark, Christian; Haase, Christine; Jensen, Maria Maj

    2016-01-01

    age and both left and right ventricular volumes in women (r = -0.4, P right end systolic ventricular volume in men (r = -0.3, P = .001). CONCLUSION: A set of reference values for cardiac evaluation prior to chemotherapy in cancer patients without other known cardiopulmonary......BACKGROUND: Estimation of left ventricular ejection fraction (LVEF) using equilibrium radionuclide angiography is an established method for assessment of left ventricular function. The purpose of this study was to establish normative data on left and right ventricular volumes and ejection fraction......, using cadmium-zinc-telluride SPECT camera. METHODS AND RESULTS: From routine assessments of left ventricular function in 1172 patients, we included 463 subjects (194 men and 269 women) without diabetes, previous potentially cardiotoxic chemotherapy, known cardiovascular or pulmonary disease. The lower...

  18. Molecular precursors for the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST)

    Energy Technology Data Exchange (ETDEWEB)

    Harmgarth, Nicole; Zoerner, Florian; Engelhardt, Felix; Edelmann, Frank T. [Chemisches Institut, Otto-von-Guericke-Universitaet Magdeburg (Germany); Liebing, Phil [Laboratorium fuer Anorganische Chemie, ETH Zuerich (Switzerland); Burte, Edmund P.; Silinskas, Mindaugas [Institut fuer Mikro- und Sensorsysteme, Otto-von-Guericke-Universitaet Magdeburg (Germany)

    2017-10-04

    This review provides an overview of the precursor chemistry that has been developed around the phase-change material germanium-antimony-telluride, Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Thin films of GST can be deposited by employing either chemical vapor deposition (CVD) or atomic layer deposition (ALD) techniques. In both cases, the success of the layer deposition crucially depends on the proper choice of suitable molecular precursors. Previously reported processes mainly relied on simple alkoxides, alkyls, amides and halides of germanium, antimony, and tellurium. More sophisticated precursor design provided a number of promising new aziridinides and guanidinates. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Self-diffusion coefficients of the trivalent f-element ion series in dilute and moderately dilute aqueous solutions: A comparative study between europium, gadolinium, terbium and berkelium

    Science.gov (United States)

    Rafik, Besbes; Noureddine, Ouerfelli; Abderabbou, Abdelmanef; Habib, Latrous

    2010-03-01

    We have continued the studies on the trivalent ions of the 4f and 5f elements. In this paper, we compare the transport properties (self-diffusion coefficient) of the trivalent aquo ions over two ranges of concentrations (0 — 2×10-3M) and (2×10-3 — 1.5M). Self-diffusion coefficients, D, of the trivalent f-element aquo ion series have been determined in aqueous background electrolytes of Gd(NO3)3 and Nd(ClO4)3, at pH=2.5 (HNO3, HClO4) and at 25°C using the open-end capillary method (O.E.C.M.). This method measures the transportation time of ions across a fixed distance. In this paper, we complete a measurement of self-diffusion coefficient for terbium. We optimized the pH to avoid hydrolysis, ion-pairing and complexation of the trivalent 4f and 5f ions. The variation of D versus √C is not linear for dilute solutions (0 — 2×10-3M) and quasi-linear in moderate concentrations (C<=1.5 M). Similar behavior was observed for Tb, as compared with those for Bk, Eu and Gd. We complete the comparison variation of D/D° versus √C for all studied 4f and 5f elements from concentration 0 to 1.5M and we obtained the same variation with √C for all studied elements. All 4f and 5f elements studied follow the Nernst-Hartley expression.

  20. Terbium-based time-gated Förster resonance energy transfer imaging for evaluating protein-protein interactions on cell membranes.

    Science.gov (United States)

    Lindén, Stina; Singh, Manish Kumar; Wegner, K David; Regairaz, Marie; Dautry, François; Treussart, François; Hildebrandt, Niko

    2015-03-21

    Fluorescence imaging of cells and subcellular compartments is an essential tool to investigate biological processes and to evaluate the development and progression of diseases. In particular, protein-protein interactions can be monitored by Förster resonance energy transfer (FRET) between two proximal fluorophores that are attached to specific recognition biomolecules such as antibodies. We investigated the membrane expression of E- and N-cadherins in three different cell lines used as model systems to study epithelial to mesenchymal transition (EMT) and a possible detection of circulating tumour cells (CTCs). EMT is a key process in cancer metastasis, during which epithelial markers (such as E-cadherin) are down-regulated in the primary tumour whereas mesenchymal markers (such as N-cadherin) are up-regulated, leading to enhanced cell motility, intravasation, and appearance of CTCs. Various FRET donor-acceptor pairs and protein recognition strategies were utilized, in which Lumi4-Tb terbium complexes (Tb) and different organic dyes were conjugated to several distinct E- and N-cadherin-specific antibodies. Pulsed excitation of Tb at low repetition rates (100 Hz) and time-gated (TG) imaging of both the Tb-donor and the dye-acceptor photoluminescence (PL) allowed efficient detection of the EMT markers as well as FRET in the case of sufficient donor-acceptor proximity. Efficient FRET was observed only between two E-cadherin-specific antibodies and further experiments indicated that these antibodies recognized the same E-cadherin molecule, suggesting a limited accessibility of cadherins when they are clustered at adherens junctions. The investigated Tb-to-dye FRET systems provided reduced photobleaching compared to the AlexaFluor 488-568 donor-acceptor pair. Our results demonstrate the applicability and advantages of Tb-based TG FRET for efficient and stable imaging of antibody-antibody interactions on different cell lines. They also reveal the limitations of

  1. A broad G protein-coupled receptor internalization assay that combines SNAP-tag labeling, diffusion-enhanced resonance energy transfer, and a highly emissive terbium cryptate acceptor

    Directory of Open Access Journals (Sweden)

    Angélique eLEVOYE

    2015-11-01

    Full Text Available Although G protein-coupled receptor (GPCR internalization has long been considered a major aspect of the desensitization process that tunes ligand responsiveness, internalization is also involved in receptor resensitization and signaling, as well as the ligand scavenging function of some atypical receptors. Internalization thus contributes to the diversity of GPCR-dependent signaling, and its dynamics and quantification in living cells has generated considerable interest. We developed a robust and sensitive assay to follow and quantify ligand-induced and constitutive GPCR internalization but also receptor recycling in living cells. This assay is based on diffusion-enhanced resonance energy transfer (DERET between cell surface GPCRs labeled with a luminescent terbium cryptate donor and a fluorescein acceptor present in the culture medium. GPCR internalization results in a quantifiable reduction of energy transfer. This method yields a high signal-to-noise ratio due to time-resolved measurements. For various GPCRs belonging to different classes, we demonstrated that constitutive and ligand-induced internalization could be monitored as a function of time and ligand concentration, thus allowing accurate quantitative determination of kinetics of receptor internalization but also half-maximal effective or inhibitory concentrations of compounds. In addition to its selectivity and sensitivity, we provided evidence that DERET-based internalization assay is particularly suitable for characterizing biased ligands. Furthermore, the determination of a Z’-factor value of 0.45 indicates the quality and suitability of DERET-based internalization assay for high-throughput screening (HTS of compounds that may modulate GPCRs internalization.

  2. Crystal structure of an eight-coordinate terbium(III ion chelated by N,N′-bis(2-hydroxybenzyl-N,N′-bis(pyridin-2-ylmethylethylenediamine (bbpen2− and nitrate

    Directory of Open Access Journals (Sweden)

    Thaiane Gregório

    2015-01-01

    Full Text Available The reaction of terbium(III nitrate pentahydrate in acetonitrile with N,N′-bis(2-hydroxybenzyl-N,N′-bis(pyridin-2-ylmethylethylenediamine (H2bbpen, previously deprotonated with triethylamine, produced the mononuclear compound [N,N′-bis(2-oxidobenzyl-κO-N,N′-bis(pyridin-2-ylmethyl-κNethylenediamine-κ2N,N′](nitrato-κ2O,O′terbium(III, [Tb(C28H28N4O2(NO3]. The molecule lies on a twofold rotation axis and the TbIII ion is eight-coordinate with a slightly distorted dodecahedral coordination geometry. In the symmetry-unique part of the molecule, the pyridine and benzene rings are both essentially planar and form a dihedral angle of 61.42 (7°. In the molecular structure, the N4O4 coordination environment is defined by the hexadentate bbpen ligand and the bidentate nitrate anion. In the crystal, a weak C—H...O hydrogen bond links molecules into a two-dimensional network parallel to (001.

  3. Synthesis and characterization of low-valence actinide phosphide tellurides and ternary selenium-halide iridium complexes; Synthese und Charakterisierung niedervalenter Actinoidphosphidtelluride und ternaerer Selen-Halogenid-Komplexe des Iridiums

    Energy Technology Data Exchange (ETDEWEB)

    Stolze, Karoline

    2016-04-07

    The thesis on the synthesis and characterization of low-valence actinide phosphide tellurides and ternary selenium-halide iridium complexes includes two parts: a description of the experimental synthesis of UPTe and U2PTe2O and ThPTe and the synthesis of selenium-chloride iridium complexes and selenium-bromide iridium complexes. The characterization included X-ray diffraction and phase studies.

  4. High conductivity composite flip-chip joints and silver-indium bonding to bismuth telluride for high temperature applications

    Science.gov (United States)

    Lin, Wen P.

    Two projects are reported. First, the barrier layer and silver (Ag)-indium (In) transient liquid phase (TLP) bonding for thermoelectric (TE) modules at high temperature were studied, and followed with a survey of Ag microstructure and grain growth kinetics. Second, the high electrical conductivity joint materials bonded by both Ag-AgIn TLP and solid-state bonding processes for small size flip-chip applications were designed. In the first project, barrier and Ag-In TLP bonding layer for TE module at high temperature application were studied. Bismuth telluride (Bi2 Te3) and its alloys are used as materials for a TE module. A barrier/bonding composite was developed to satisfy the TE module for high temperature operation. Titanium (Ti)/ gold (Au) was chosen as the barrier layers and an Ag-rich Ag-In joint was chosen as the bonding layer. An electron-beam evaporated Ti layer was selected as the barrier layer. An Ag-In fluxless TLP bonding process was developed to bond the Bi 2Te3 chips to the alumina substrates for high temperature applications. To prepare for bonding, the Bi2Te3 chips were coated with a Ti/Au barrier layer followed by a Ag layer. The alumina substrates with titanium-tungsten (TiW)/Au were then electroplated with the Ag/In/Ag structure. These Bi2Te3 chips were bonded to alumina substrates at a bonding temperature of 180ºC with a static pressure as low as 100psi. The resulting void-free joint consists of five regions: Ag, (Ag), Ag2In, (Ag), and Ag, where (Ag) is Ag-rich solid solution with In atoms in it and Ag is pure Ag. This joint has a melting temperature higher than 660ºC, and it manages the coefficient of thermal expansion (CTE) mismatch between the Bi2Te3 and alumina substrate. The whole Ti/Au barrier layer and Ag-In bonding composite between Bi 2Te3 and alumina survived after an aging test at 250°C for 200 hours. The Ag-In joint transformed from Ag/(Ag)/Ag2In/(Ag)/Ag to a more reliable (Ag) rich layer after the aging test. Ag thin films were

  5. Selective Sensing of Fe(3+) and Al(3+) Ions and Detection of 2,4,6-Trinitrophenol by a Water-Stable Terbium-Based Metal-Organic Framework.

    Science.gov (United States)

    Cao, Li-Hui; Shi, Fang; Zhang, Wen-Min; Zang, Shuang-Quan; Mak, Thomas C W

    2015-10-26

    A water-stable luminescent terbium-based metal-organic framework (MOF), {[Tb(L1 )1.5 (H2 O)]⋅3 H2 O}n (Tb-MOF), with rod-shaped secondary building units (SBUs) and honeycomb-type tubular channels has been synthesized and structurally characterized by single-crystal X-ray diffraction. The high green emission intensity and the microporous nature of the Tb-MOF indicate that it can potentially be used as a luminescent sensor. In this work, we show that Tb-MOF can selectively sense Fe(3+) and Al(3+) ions from mixed metal ions in water through different detection mechanisms. In addition, it also exhibits high sensitivity for 2,4,6-trinitrophenol (TNP) in the presence of other nitro aromatic compounds in aqueous solution by luminescence quenching experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Investigation of quad-energy high-rate photon counting for X-ray computed tomography using a cadmium telluride detector.

    Science.gov (United States)

    Matsukiyo, Hiroshi; Sato, Eiichi; Oda, Yasuyuki; Yamaguchi, Satoshi; Sato, Yuichi; Hagiwara, Osahiko; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya

    2017-12-01

    To obtain four kinds of tomograms at four different X-ray energy ranges simultaneously, we have constructed a quad-energy (QE) X-ray photon counter with a cadmium telluride (CdTe) detector and four sets of comparators and microcomputers (MCs). X-ray photons are detected using the CdTe detector, and the event pulses produced using amplifiers are sent to four comparators simultaneously to regulate four threshold energies of 20, 33, 50 and 65keV. Using this counter, the energy ranges are 20-33, 33-50, 50-65 and 65-100keV; the maximum energy corresponds to the tube voltage. We performed QE computed tomography (QE-CT) at a tube voltage of 100kV. Using a 0.5-mm-diam lead pinhole, four tomograms were obtained simultaneously at four energy ranges. K-edge CT using iodine and gadolinium media was carried out utilizing two energy ranges of 33-50 and 50-65keV, respectively. At a tube voltage of 100kV and a current of 60 μA, the count rate was 15.2 kilocounts per second (kcps), and the minimum count rates after penetrating objects in QE-CT were regulated to approximately 2 kcps by the tube current. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Rapid long-wave infrared laser-induced breakdown spectroscopy measurements using a mercury-cadmium-telluride linear array detection system.

    Science.gov (United States)

    Yang, Clayton S-C; Brown, Eiei; Kumi-Barimah, Eric; Hommerich, Uwe; Jin, Feng; Jia, Yingqing; Trivedi, Sudhir; D'souza, Arvind I; Decuir, Eric A; Wijewarnasuriya, Priyalal S; Samuels, Alan C

    2015-11-20

    In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.6-10 μm region can be acquired from just a single laser-induced microplasma or averaging a few single laser-induced microplasmas. Atomic and molecular signature emission spectra of solid inorganic and organic tablets and thin liquid films deposited on a rough asphalt surface are observed. This setup is capable of rapidly probing samples "as is" without the need of elaborate sample preparation and also offers the possibility of a simultaneous UV-Vis and LWIR LIBS measurement.

  8. Q-switched erbium doped fiber laser using antimony telluride-polyvinyl alcohol (Sb2Te3-PVA) as saturable absorber

    Science.gov (United States)

    Quisar Lokman, Muhammad; Ahmad, Fauzan; Wadi Harun, Sulaiman

    2017-11-01

    Q-switched erbium doped fiber laser was demonstrated using antimony telluride (Sb2Te3) as saturable absorber (SA). The SA was fabricated by adding Sb3Te2 powder into PVA suspension and left dry in room temperature for two days. Then, the SA was sandwiched in between two FC/PC fiber ferrules, which can provide easy integration and flexibility into the laser cavity. Stable and self-started Q-switched laser operates at 1531 nm center wavelength. The laser repetition rate increased from 54.5 kHz to 88.4 kHz and pulse duration decreased from 6.84 μs to 4.58 μs as the pump power increased. A signal to noise ratio value of 55 dB was achieved at pump power 130 mW. At the maximum pump power, the average output power and pulse energy are 0.26 mW and 2.78 nJ.

  9. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM)

    Energy Technology Data Exchange (ETDEWEB)

    Agostini, Denis [CHU Caen and Normandy University, Department of Nuclear Medicine, Caen (France); Normandy University, Caen (France); Marie, Pierre-Yves [University of Lorraine, Faculty of Medicine, Nancyclotep Experimental Imaging Platform, Nancy (France); University of Lorraine, Faculty of Medicine, CHU Nancy, Department of Nuclear Medicine, Nancy (France); University of Lorraine, Faculty of Medicine, Nancy (France); Ben-Haim, Simona [University College London, University College Hospital, Institute of Nuclear Medicine, London (United Kingdom); Chaim Sheba Medical Center, Department of Nuclear Medicine, Ramat Gan (Israel); Rouzet, Francois [University Hospital of Paris-Bichat, UMR 1148, Inserm et Paris Diderot-Paris 7 University Paris, Department of Nuclear Medicine, Paris (France); UMR 1148, Inserm and Paris Diderot-Paris 7 University Paris, Paris (France); Songy, Bernard [Centre Cardiologique du Nord, Saint-Denis (France); Giordano, Alessandro [Institute of Nuclear Medicine, Catholic University of Sacred Heart, Largo A. Gemelli, Department of Bioimages and Radiological Sciences, Rome (Italy); Gimelli, Alessia [Fondazione Toscana Gabriele Monasterio, Pisa (Italy); Hyafil, Fabien [Bichat University Hospital, Assistance Publique - Hopitaux de Paris, UMR 1148, Inserm and Paris Diderot-Paris 7 University, Department of Nuclear Medicine, Paris (France); Sciagra, Roberto [University of Florence, Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences, Florence (Italy); Bucerius, Jan [Maastricht University Medical Center, Maastricht University Medical Center, Department of Nuclear Medicine, Maastricht (Netherlands); Maastricht University Medical Center, Cardiovascular Research Institute Maastricht (CARIM), Maastricht (Netherlands); University Hospital RWTH Aachen, Department of Nuclear Medicine, Aachen (Germany); Verberne, Hein J. [Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Slart, Riemer H.J.A. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University of Twente, Faculty of Science and Technology, Department of Biomedical Photonic Imaging, Enschede (Netherlands); Lindner, Oliver [Institute of Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center NRW, Bad Oeynhausen (Germany); Collaboration: Cardiovascular Committee of the European Association of Nuclear Medicine (EANM)

    2016-12-15

    The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims (1) to identify the main acquisitions protocols; (2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally (3) to determine the impact of CZT on radiation exposure. (orig.)

  10. Microstructure and Electrical Properties of Antimony Telluride Thin Films Deposited by RF Magnetron Sputtering on Flexible Substrate Using Different Sputtering Pressures

    Science.gov (United States)

    Khumtong, T.; Sukwisute, P.; Sakulkalavek, A.; Sakdanuphab, R.

    2017-05-01

    The microstructural, electrical, and thermoelectric properties of antimony telluride (Sb2Te3) thin films have been investigated for thermoelectric applications. Sb2Te3 thin films were deposited on flexible substrate (polyimide) by radiofrequency (RF) magnetron sputtering from a Sb2Te3 target using different sputtering pressures in the range from 4 × 10-3 mbar to 1.2 × 10-2 mbar. The crystal structure, [Sb]:[Te] ratio, and electrical and thermoelectric properties of the films were analyzed by grazing-incidence x-ray diffraction (XRD) analysis, energy-dispersive x-ray spectroscopy (EDS), and Hall effect and Seebeck measurements, respectively. The XRD spectra of the films demonstrated polycrystalline structure with preferred orientation of (015), (110), and (1010). A high-intensity spectrum was found for the film deposited at lower sputtering pressure. EDS analysis of the films revealed the effects of the sputtering pressure on the [Sb]:[Te] atomic ratio, with nearly stoichiometric films being obtained at higher sputtering pressure. The stoichiometric Sb2Te3 films showed p-type characteristics with electrical conductivity, carrier concentration, and mobility of 35.7 S cm-1, 6.38 × 1019 cm-3, and 3.67 cm2 V-1 s-1, respectively. The maximum power factor of 1.07 × 10-4 W m-1 K-2 was achieved for the film deposited at sputtering pressure of 1.0 × 10-2 mbar.

  11. Picomolar traces of americium(III) introduce drastic changes in the structural chemistry of terbium(III). A break in the ''gadolinium break''

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Jan M. [TU Wien, Atominstitut, Vienna (Austria); Mueller, Danny; Knoll, Christian; Wilkovitsch, Martin; Weinberger, Peter [TU Wien, Institute of Applied Synthetic Chemistry, Vienna (Austria); Giester, Gerald [University of Vienna, Institute of Mineralogy and Crystallography, Vienna (Austria); Ofner, Johannes; Lendl, Bernhard [TU Wien, Institute of Chemical Technologies and Analytics, Vienna (Austria); Steinhauser, Georg [Leibniz Universitaet Hannover, Institute of Radioecology and Radiation Protection (Germany)

    2017-10-16

    The crystallization of terbium 5,5{sup '}-azobis[1H-tetrazol-1-ide] (ZT) in the presence of trace amounts (ca. 50 Bq, ca. 1.6 pmol) of americium results in 1) the accumulation of the americium tracer in the crystalline solid and 2) a material that adopts a different crystal structure to that formed in the absence of americium. Americium-doped [Tb(Am)(H{sub 2}O){sub 7}ZT]{sub 2} ZT.10 H{sub 2}O is isostructural to light lanthanide (Ce-Gd) 5,5{sup '}-azobis[1H-tetrazol-1-ide] compounds, rather than to the heavy lanthanide (Tb-Lu) 5,5{sup '}-azobis[1H-tetrazol-1-ide] (e.g., [Tb(H{sub 2}O){sub 8}]{sub 2}ZT{sub 3}.6 H{sub 2}O) derivatives. Traces of Am seem to force the Tb compound into a structure normally preferred by the lighter lanthanides, despite a 10{sup 8}-fold Tb excess. The americium-doped material was studied by single-crystal X-ray diffraction, vibrational spectroscopy, radiochemical neutron activation analysis, and scanning electron microscopy. In addition, the inclusion properties of terbium 5,5{sup '}-azobis[1H-tetrazol-1-ide] towards americium were quantified, and a model for the crystallization process is proposed. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Solution synthesis of telluride-based nano-barbell structures coated with PEDOT:PSS for spray-printed thermoelectric generators

    Science.gov (United States)

    Bae, Eun Jin; Kang, Young Hun; Jang, Kwang-Suk; Lee, Changjin; Cho, Song Yun

    2016-05-01

    Solution-processable telluride-based heterostructures coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Te-Bi2Te3/PEDOT:PSS) were synthesized through a solution-phase reaction at low temperatures. The water-based synthesis yielded PEDOT:PSS-coated Te-Bi2Te3 nano-barbell structures with a high Seebeck coefficient that can be stably dispersed in water. These hybrid solutions were deposited onto a substrate by the spray-printing method to prepare thermoelectric generators. The thermoelectric properties of the Te-Bi2Te3/PEDOT:PSS hybrid films were significantly enhanced by a simple acid treatment due to the increased electrical conductivity, and the power factor of those materials can be effectively tuned over a wide range depending on the acid concentration of the treatment. The power factors of the synthesized Te-Bi2Te3/PEDOT:PSS hybrids were optimized to 60.05 μW m-1 K-2 with a Seebeck coefficient of 93.63 μV K-1 and an electrical conductivity of 69.99 S cm-1. The flexible thermoelectric generator fabricated by spray-printing Te-Bi2Te3/PEDOT:PSS hybrid solutions showed an open-circuit voltage of 1.54 mV with six legs at ΔT = 10 °C. This approach presents the potential for realizing printing-processable hybrid thermoelectric materials for application in flexible thermoelectric generators.Solution-processable telluride-based heterostructures coated with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (Te-Bi2Te3/PEDOT:PSS) were synthesized through a solution-phase reaction at low temperatures. The water-based synthesis yielded PEDOT:PSS-coated Te-Bi2Te3 nano-barbell structures with a high Seebeck coefficient that can be stably dispersed in water. These hybrid solutions were deposited onto a substrate by the spray-printing method to prepare thermoelectric generators. The thermoelectric properties of the Te-Bi2Te3/PEDOT:PSS hybrid films were significantly enhanced by a simple acid treatment due to the increased electrical conductivity, and

  13. Sodium terbium(III polyphosphate

    Directory of Open Access Journals (Sweden)

    Abdelghani Oudahmane

    2010-04-01

    Full Text Available Single crystals of the title compound, NaTb(PO34, were obtained by solid-state reaction. This compound belongs to type II of long-chain polyphosphates with the general formula AIBIII(PO34. It is isotypic with the NaNd(PO34 and NaEr(PO34 homologues. The crystal structure is built up of infinite crenelated chains of corner-sharing PO4 tetrahedra with a repeating unit of four tetrahedra. These chains, extending parallel to [100], are linked by isolated TbO8 square antiprisms, forming a three-dimensional framework. The Na+ ions are located in channels running along [010] and are surrounded by six oxygen atoms in a distorted octahedral environment within a cut-off distance <2.9 Å.

  14. Diagnostic accuracy of cadmium-zinc-telluride-based myocardial perfusion SPECT: impact of attenuation correction using a co-registered external computed tomography.

    Science.gov (United States)

    Caobelli, Federico; Akin, Muharrem; Thackeray, James T; Brunkhorst, Thomas; Widder, Julian; Berding, Georg; Burchert, Ina; Bauersachs, Johann; Bengel, Frank M

    2016-09-01

    Computed tomography (CT)-based attenuation correction (AC) improves the accuracy of standard myocardial perfusion SPECT. Most dedicated cadmium-zinc-telluride (CZT) SPECT cameras are not equipped with an integrated CT component. We aimed to determine the impact of AC on diagnostic performance of CZT SPECT using co-registration with an external low-dose CT. Sixty patients underwent CZT SPECT (GE Discovery 530c) with (99m)Tc-sestamibi at rest and following regadenoson stress. Using commercial software, SPECT images were co-registered with a low-dose CT acquired on a separate system (GE Discovery 670NMCT). Attenuation corrected and non-corrected (NC) images were reconstructed using an iterative algorithm. Accuracy was measured in 44 patients who had undergone invasive angiography within 6 months. Normalcy was compared in the remaining 16 patients who had a low pre-test likelihood (<5%) of coronary artery disease (CAD). Summed stress and rest scores were significantly lower in AC images (9 ± 8 vs. 13 ± 9 and 6 ± 7 vs. 10 ± 9, P = 0.01), while summed difference score did not differ. According to angiography, 38 patients had significant CAD in 71 vascular territories. Attenuation correction improved accuracy globally (P = 0.03) and in RCA territory (P = 0.008). Specificity improved both globally (100 vs. 40%, P < 0.05) and in each individual territory (LAD: 63 vs. 36%, LCX: 70 vs. 33%, RCA: 81 vs. 19%, P < 0.01). Normalcy was 100% for AC and 62.5% for NC images (P < 0.05). Attenuation correction with a co-registered external CT is feasible using CZT cameras and improves diagnostic accuracy mostly by improving specificity over uncorrected images. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  15. Spectral analysis of the effects of 1.7 MeV electron irradiation on the current transfer characteristic of cadmium telluride solar cells.

    Science.gov (United States)

    Tian, Jin-Xiu; Zeng, Guang-Gen; He, Xu-Lin; Zhang, Jing-Quan; Wu, Li-Li; Li, Wei; Li, Bing; Wang, Wen-Wu; Feng, Liang-Huan

    2014-04-01

    The effects of device performance of 1.7 MeV electron irradiation on cadmium telluride polycrystalline thin film solar cells with the structure of anti-radiation glass/ITO/ZnO/CdS/CdTe/ZnTe/ZnTe : Cu/Ni have been studied. Light and dark I-V characteristics, dark C-V characteristics, quantum efficiency (QE), admittance spectrum (AS) and other testing methods were used to analyze cells performance such as the open-circuit voltage (Voc), short-circuit current (Isc), fill factor (FF) and conversion efficiency (eta). It was explored to find out the effects of irradiation on the current transfer characteristic of solar cells combined with the dark current density (Jo), diode ideal factor (A), quantum efficiency, carrier concentration and the depletion layer width. The decline in short-circuit current was very large and the efficiency of solar cells decreased obviously after irradiation. Reverse saturation current density increased, which indicates that p-n junction characteristics of solar cells were damaged, and diode ideal factor was almost the same, so current transport mechanism of solar cells has not changed. Quantum efficiency curves proved that the damage of solar cells' p-n junction influenced the collection of photo-generated carriers. Irradiation made carrier concentration reduce to 40.6%. The analyses have shown that. A new defect was induced by electron irradiation, whose position is close to 0.58 eV above the valence band in the forbidden band, and capture cross section is 1.78 x 10(-16) cm2. These results indicate that irradiation influences the generation of photo-generated carriers, increases the risk of the carrier recombination and the reverse dark current, and eventually makes the short-circuit current of solar cells decay.

  16. Effect of preparation procedure and nanostructuring on the thermoelectric properties of the lead telluride-based material system AgPb{sub m}BiTe{sub 2+m} (BLST-m)

    Energy Technology Data Exchange (ETDEWEB)

    Falkenbach, Oliver; Koch, Guenter; Schlecht, Sabine [Institute for Inorganic and Analytical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, D-35392 Giessen (Germany); Schmitz, Andreas [Institute of Materials Research, German Aerospace Center (DLR), D-51170 Cologne (Germany); Hartung, David; Klar, Peter J. [Institute of Experimental Physics I, Justus-Liebig-University, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Dankwort, Torben; Kienle, Lorenz [Institute for Material Science, Christian-Albrechts-University, Kaiserstrasse 2, D-24143 Kiel (Germany); Mueller, Eckhard, E-mail: Eckhard.Mueller@dlr.de [Institute for Inorganic and Analytical Chemistry, Justus-Liebig-University, Heinrich-Buff-Ring 17, D-35392 Giessen (Germany); Institute of Materials Research, German Aerospace Center (DLR), D-51170 Cologne (Germany)

    2016-06-07

    We report on the preparation and thermoelectric properties of the quaternary system AgPb{sub m}BiTe{sub 2+m} (Bismuth-Lead-Silver-Tellurium, BLST-m) that were nanostructured by mechanical alloying. Nanopowders of various compositions were compacted by three different methods: cold pressing/annealing, hot pressing, and short term sintering. The products are compared with respect to microstructure and sample density. The thermoelectric properties were measured: thermal conductivity in the temperature range from 300 K to 800 K and electrical conductivity and Seebeck coefficient between 100 K and 800 K. The compacting method and the composition had a substantial impact on carrier concentration and mobility as well as on the thermoelectric parameters. Room temperature Hall measurements yielded carrier concentrations in the order of 10{sup 19 }cm{sup −3}, slightly increasing with increasing content of the additive silver bismuth telluride to the lead telluride base. ZT values close to the ones of bulk samples were achieved. X-ray diffraction and transmission electron microscopy (TEM) showed macroscopically homogeneous distributions of the constituting elements inside the nanopowders ensembles, indicating a solid solution. However, high resolution transmission electron microscopy (HRTEM) revealed disorder on the nanoscale inside individual nanopowders grains.

  17. Transport phenomena in the close-spaced sublimation deposition process for manufacture of large-area cadmium telluride photovoltaic panels: Modeling and optimization

    Science.gov (United States)

    Malhotra, C. P.

    With increasing national and global demand for energy and concerns about the effect of fossil fuels on global climate change, there is an increasing emphasis on the development and use of renewable sources of energy. Solar cells or photovoltaics constitute an important renewable energy technology but the major impediment to their widespread adoption has been their high initial cost. Although thin-film photovoltaic semiconductors such as cadmium sulfide-cadmium telluride (CdS/CdTe) can potentially be inexpensively manufactured using large area deposition techniques such as close-spaced sublimation (CSS), their low stability has prevented them from becoming an alternative to traditional polycrystalline silicon solar cells. A key factor affecting the stability of CdS/CdTe cells is the uniformity of deposition of the thin films. Currently no models exist that can relate the processing parameters in a CSS setup with the film deposition uniformity. Central to the development of these models is a fundamental understanding of the complex transport phenomena which constitute the deposition process which include coupled conduction and radiation as well as transition regime rarefied gas flow. This thesis is aimed at filling these knowledge gaps and thereby leading to the development of the relevant models. The specific process under consideration is the CSS setup developed by the Materials Engineering Group at the Colorado State University (CSU). Initially, a 3-D radiation-conduction model of a single processing station was developed using the commercial finite-element software ABAQUS and validated against data from steady-state experiments carried out at CSU. A simplified model was then optimized for maximizing the steady-state thermal uniformity within the substrate. It was inferred that contrary to traditional top and bottom infrared lamp heating, a lamp configuration that directs heat from the periphery of the sources towards the center results in the minimum temperature

  18. Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells.

    Science.gov (United States)

    Nguyen, Kathy C; Willmore, William G; Tayabali, Azam F

    2013-04-05

    The mechanisms of toxicity related to human hepatocellular carcinoma HepG2 cell exposures to cadmium telluride quantum dots (CdTe-QDs) were investigated. CdTe-QDs caused cytotoxicity in HepG2 cells in a dose- and time-dependent manner. Treated cells showed an increase in reactive oxygen species (ROS). Altered antioxidant levels were demonstrated by depletion of reduced glutathione (GSH), a decreased ratio of reduced glutathione to oxidized glutathione (GSH/GSSG) and an increased NF-E2-related Factor 2 (Nrf2) activation. Enzyme assays showed that superoxide dismutase (SOD) activity was elevated whereas catalase (CAT) and glutathione-S-transferase (GST) activities were depressed. Further analyses revealed that CdTe-QD exposure resulted in apoptosis, indicated by changes in levels of caspase-3 activity, poly ADP-ribose polymerase (PARP) cleavage and phosphatidylserine externalization. Extrinsic apoptotic pathway markers such as Fas levels and caspase-8 activity increased as a result of CdTe-QD exposure. Involvement of the intrinsic/mitochondrial apoptotic pathway was indicated by decreased levels of B-cell lymphoma 2 (Bcl2) protein and mitochondrial cytochrome c, and by increased levels of mitochondrial Bcl-2-associated X protein (Bax) and cytosolic cytochrome c. Further, mitogen-activated protein kinases (MAPKs) such as c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinases (Erk1/2), and p38 were all activated. Our findings reveal that CdTe-QDs cause oxidative stress, interfere with antioxidant defenses and activate protein kinases, leading to apoptosis via both extrinsic and intrinsic pathways. Since the effects of CdTe-QDs on selected biomarkers were similar or greater compared to those of CdCl2 at equivalent concentrations of cadmium, the study suggests that the toxicity of CdTe-QDs arises from a combination of the effects of cadmium and ROS generated from the NPs. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Prognostic Value of Myocardial Perfusion Imaging with a Cadmium-Zinc-Telluride SPECT Camera in Patients Suspected of Having Coronary Artery Disease.

    Science.gov (United States)

    Engbers, Elsemiek M; Timmer, Jorik R; Mouden, Mohamed; Knollema, Siert; Jager, Pieter L; Ottervanger, Jan Paul

    2017-09-01

    The prognostic value of myocardial perfusion imaging (MPI) with the cadmium-zinc-telluride (CZT) SPECT camera is not well established. Therefore, the aim of the current study was to evaluate the prognostic value of MPI performed with a CZT SPECT camera in a large cohort of patients suspected of having coronary artery disease. Methods: Consecutive symptomatic stable patients (n = 4,057) without a history of coronary artery disease underwent CZT SPECT MPI. During a median follow-up of 2.4 y (25th-75th percentile, 1.7-3.4), patients were monitored for primary (nonfatal myocardial infarction and cardiac mortality) and secondary outcomes (late revascularization [>90 d after scanning] and primary outcome). Results: Patients with normal perfusion demonstrated low annual event rates (primary outcome, 0.2%; secondary outcome, 0.6%). Annual event rates increased with the extent of abnormality of myocardial perfusion. In patients with small ischemic perfusion defects, annual event rates were 0.7% and 2.8% for the primary and secondary outcome, respectively. In patients with moderate or large ischemic perfusion defects, these event rates were 1.2% and 4.3%, respectively. After multivariate analysis, the risk for events was significantly associated with the extent of ischemia (hazard ratio for small ischemic defects: 2.2, 95% confidence interval [CI], 0.9-5.9 and 4.6, 95% CI, 2.8-7.6, for primary and secondary outcomes, respectively; hazard ratio for moderate or large ischemic defects: 4.0, 95% CI, 1.5-10.5 and 12.1, 95% CI, 7.2-20.2, for primary and secondary outcomes, respectively). Conclusion: Our findings show that MPI acquired with a CZT SPECT camera provides excellent prognostic information, with low event rates in patients with normal myocardial perfusion. In patients with abnormal SPECT MPI, the extent of abnormality is independently associated with an increased risk of events. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  20. Polycrystalline Cadmium Telluride Photovoltaic Devices

    Science.gov (United States)

    Gessert, Timothy A.; Bonnet, Dieter

    2015-10-01

    The following sections are included: * Introduction * Brief history of CdTe PV devices * Initial attempts towards commercial modules * Review of present commercial industry/device designs * General CdTe material properties * Layer-specific process description for superstrate CdTe devices * Where is the junction? * Considerations for large-scale deployment * Conclusions * Acknowledgements * References

  1. A europium- and terbium-coated magnetic nanocomposite as sorbent in dispersive solid phase extraction coupled with ultra-high performance liquid chromatography for antibiotic determination in meat samples.

    Science.gov (United States)

    Castillo-García, M L; Aguilar-Caballos, M P; Gómez-Hens, A

    2015-12-18

    A new magnetic dispersive solid-phase extraction approach based on Eu- and Tb-coated magnetic nanocomposites, combined with ultra-high performance liquid chromatography with fluorometric detection, is reported for the extraction and simultaneous determination of veterinary antibiotics. The method is aimed at monitoring of potential residues of three tetracyclines, namely oxytetracycline, tetracycline, chlortetracycline and three acidic quinolones, such as oxolinic acid, nalidixic acid and flumequine, chosen as model analytes, in animal muscle samples. The nanocomposites were obtained by synthesizing magnetic nanoparticles by a co-precipitation method and their coating with terbium and europium ions. The limits of detection obtained using standard solutions were: 1.0, 1.5, 3.8, 0.25, 0.7 and 1.2ngmL(-1), which corresponds to 3.3, 5.0, 12.7, 0.8, 2.3 and 4.0μgkg(-1) for oxytetracycline, tetracycline, chlortetracycline, oxolinic acid, nalidixic acid and flumequine, respectively, in meat samples. The precision values, obtained in the presence of the sample matrix, were in the ranges 0.12-2.0% and 2.6-15.4% for retention times and areas, respectively. The selectivity of the method was checked by assaying different veterinary drugs, finding that most of them did not interfere at the same concentration levels as that of analytes. A recovery study was performed in the presence of chicken and pork muscle samples, which provided values in the range of 61.5-102.6%. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Detecting Triple-Vessel Disease with Cadmium Zinc Telluride-Based Single-Photon Emission Computed Tomography Using the Intensity Signal-to-Noise Ratio between Rest and Stress Studies

    Directory of Open Access Journals (Sweden)

    Yu-Hua Dean Fang

    2017-01-01

    Full Text Available The purpose of this study was to investigate if a novel parameter, the stress-to-rest ratio of the signal-to-noise ratio (RSNR obtained with a cadmium zinc telluride (CZT SPECT scanner, could be used to distinguish triple-vessel disease (TVD patients. Methods. One hundred and two patients with suspected coronary artery disease were retrospectively involved. Each subject underwent a Tl-201 SPECT scan and subsequent coronary angiography. Subjects were separated into TVD (n=41 and control (n=61 groups based on coronary angiography results using 50% as the stenosis cutoff. The RSNR was calculated by dividing the stress signal-to-noise ratio (SNR by the rest SNR. Summed scores were calculated using quantitative perfusion SPECT (QPS for all subjects. Results. The RSNR in the TVD group was found to be significantly lower than that in the control group (0.83 ± 0.15 and 1.06 ± 0.17, resp.; P<0.01. Receiver-operating characteristic (ROC analysis showed that RSNR can detect TVD more accurately than the summed difference score with higher sensitivity (85% versus 68%, higher specificity (90% versus 72%, and higher accuracy (88% versus 71%. Conclusion. The RSNR may serve as a useful index to assist the diagnosis of TVD when a fully automatic quantification method is used in CZT-based SPECT studies.

  3. Mixed nickel-gallium tellurides Ni{sub 3−x}GaTe{sub 2} as a matrix for incorporating magnetic cations: A Ni{sub 3−x}Fe{sub x}GaTe{sub 2} series

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, Alexey N., E-mail: alexei@inorg.chem.msu.ru [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, GSP-1, 119991 Moscow (Russian Federation); N.S. Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninsky pr. 31, GSP-1, 119991 Moscow (Russian Federation); Stroganova, Ekaterina A.; Zakharova, Elena Yu; Solopchenko, Alexander V.; Sobolev, Alexey V.; Presniakov, Igor A. [Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, GSP-1, 119991 Moscow (Russian Federation); Kirdyankin, Denis I.; Novotortsev, Vladimir M. [N.S. Kurnakov Institute of General and Inorganic Chemistry, RAS, Leninsky pr. 31, GSP-1, 119991 Moscow (Russian Federation)

    2017-06-15

    Using a high-temperature ampoule technique, a series of mixed nickel-iron-gallium metal-rich tellurides with layered structures, Ni{sub 3-x}Fe{sub x}GaTe{sub 2}, were prepared and characterized based on X-ray powder diffraction, energy-dispersive spectroscopy, and {sup 57}Fe Mössbauer spectroscopy data. These compounds may be regarded as a result of partial substitution of nickel by iron in the recently reported ternary Ni{sub 3-x}GaTe{sub 2} series, which are based on NiAs/Ni{sub 2}In type of structure. The compositional boundary for the substitution was found to be at x~1. According to the Mössbauer spectroscopy data, the substitution is not statistical, and iron atoms with the increase in x tend to preferentially occupy those nickel positions that are partially vacant in the initial ternary compound. Magnetic measurements data for the Ni{sub 3-x}Fe{sub x}GaTe{sub 2} series show dramatic change in behavior from temperature-independent paramagnetic properties of the initial matrix to a low-temperature (~75 K) ferromagnetic ordering in the Ni{sub 2}FeGaTe{sub 2}. - Graphical abstract: Ordered substitution of nickel by iron in the Ni{sub 3−x}GaTe{sub 2} series leading to ferromagnetic ordering. - Highlights: • A series of Ni{sub 3−x}Fe{sub x}GaTe{sub 2} compounds were synthesized. • They adopt the NiAs/Ni{sub 2}In type of structure with ordered iron distribution. • The distribution of iron was studied using {sup 57}Fe Mössbauer spectroscopy. • An increase in iron content leads to the strong ferromagnetic coupling.

  4. Structural setting of Fimiston- and Oroya-style pyrite-telluride-gold lodes, Paringa South mine, Golden Mile, Kalgoorlie: 1. Shear zone systems, porphyry dykes and deposit-scale alteration zones

    Science.gov (United States)

    Mueller, Andreas G.

    2017-07-01

    The Golden Mile in the 2.7 Ga Eastern Goldfields Province of the Yilgarn Craton, Western Australia, has produced 385 million tonnes of ore at a head grade of 5.23 g/t gold (1893-2016). Gold-pyrite ore bodies (Fimiston Lodes) trace kilometre-scale shear zone systems centred on the D2 Golden Mile Fault, one of three northwest striking sinistral strike-slip faults segmenting upright D1 folds. The Fimiston shear zones formed as D2a Riedel systems in greenschist-facies (actinolite-albite) tholeiitic rocks, the 700-m-thick Golden Mile Dolerite (GMD) sill and the Paringa Basalt (PB), during left-lateral displacement of up to 12 km on the D2 master faults. Pre-mineralisation granodiorite dykes were emplaced into the D2 shear zones at 2674 ± 6 Ma, and syn-mineralisation diorite porphyries at 2663 ± 11 Ma. The widespread infiltration of hydrothermal fluid generated chlorite-calcite and muscovite-ankerite alteration in the Golden Mile, and paragonite-ankerite-chloritoid alteration southeast of the deposit. Fluid infiltration reactivated the D2 shear zones causing post-porphyry displacement of up to 30 m at principal Fimiston Lodes moving the southwest block down and southeast along lines pitching 20°SE. D3 reverse faulting at the southwest dipping GMD-PB contact of the D1 Kalgoorlie Anticline formed the 1.3-km-long Oroya Shoot during late gold-telluride mineralisation. Syn-mineralisation D3a reverse faulting alternated with periods of sinistral strike-slip (D2c) until ENE-WSW shortening prevailed and was accommodated by barren D3b thrusts. North-striking D4 strike-slip faults of up to 2 km dextral displacement crosscut the Fimiston Lodes and the barren thrusts, and control gold-pyrite quartz vein ore at Mt. Charlotte (2651 ± 9 Ma).

  5. Spectroscopic analysis of lithium terbium tetrafluoride

    DEFF Research Database (Denmark)

    Christensen, H.P.

    1978-01-01

    . The rare-earth site in LiTbF4 possesses S4 symmetry, which allows six crystal-field parameters. ζ and the six Bim were varied to obtain the best agreement with the experimentally observed levels. Keeping F2=434 cm-1 fixed, a fit with a standard deviation of 12 cm-1 was obtained at 10 K with the following...... were calculated by diagonalizing an effective spin-orbit and crystal-field Hamiltonian in an LS basis. H=Σλi(L→·S→)i+ΣαiΣBimOim, where the parameters λi are functions of the spin-orbit parameter ζ and the Slater parameter F2. The Oim and αi are Racah operators and reduced matrix elements, respectively...

  6. Inelastic critical scattering of neutrons from terbium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Dietrich, O.W.; Marshall, W.

    1967-01-01

    We have measured the inelasticity of the critical neutron scattering in Tb above the Néel temperature. The results show that dynamical slowing down of fluctuations does occur at a second order phase transition.......We have measured the inelasticity of the critical neutron scattering in Tb above the Néel temperature. The results show that dynamical slowing down of fluctuations does occur at a second order phase transition....

  7. Effect of increasing tellurium content on the electronic and optical properties of cadmium selenide telluride alloys CdSe{sub 1-x}Te{sub x}: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, Ali Hussain, E-mail: maalidph@yahoo.co.uk [Institute of Physical Biology-South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia); Kityk, I.V. [Electrical Engineering Department, Technical University of Czestochowa, Al. Armii Krajowej 17/19, Czestochowa (Poland); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique de la Matiere (LPQ3 M), universite de Mascara, Mascara 29000 (Algeria); Department of Physics and Astronomy, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Auluck, S. [National Physical Laboratory Dr. K S Krishnan Marg, New Delhi 110012 (India)

    2011-06-16

    Highlights: > Theoretical study of effect of vary Te content on band structure, density of states, linear and nonlinear optical susceptibilities of CdSe{sub 1-x}Te{sub x}. > Increasing Te content leads to a decrease in the energy band gap. > Significant enhancement of the electronic properties as a function of tellurium concentration - Abstract: An all electron full potential linearized augmented plane wave method, within a framework of GGA (EV-GGA) approach, has been used for an ab initio theoretical study of the effect of increasing tellurium content on the band structure, density of states, and the spectral features of the linear and nonlinear optical susceptibilities of the cadmium-selenide-telluride ternary alloys CdSe{sub 1-x}Te{sub x} (x = 0.0, 0.25, 0.5, 0.75 and 1.0). Our calculations show that increasing Te content leads to a decrease in the energy band gap. We find that the band gaps are 0.95 (1.76), 0.89 (1.65), 0.83 (1.56), 0.79 (1.44) and 0.76 (1.31) eV for x = 0.0, 0.25, 0.5, 0.75 and 1.0 in the cubic structure. As these alloys are known to have a wurtzite structure for x less than 0.25, the energy gaps are 0.8 (1.6) eV and 0.7 (1.55) eV for the wurtzite structure (x = 0.0, 0.25) for the GGA (EV-GGA) exchange correlation potentials. This reduction in the energy gaps enhances the functionality of the CdSe{sub 1-x}Te{sub x} alloys, at least for these concentrations, leading to an increase in the effective second-order susceptibility coefficients from 16.75 pm/V (CdSe) to 18.85 pm/V (CdSe{sub 0.75}Te{sub 0.25}), 27.23 pm/V (CdSe{sub 0.5}Te{sub 0.5}), 32.25 pm/V (CdSe{sub 0.25}Te{sub 0.75}), and 37.70 pm/V (CdTe) for the cubic structure and from 12.65 pm/V (CdSe) to 21.11 pm/V (CdSe{sub 0.75}Te{sub 0.25}) in the wurtzite structure. We find a nonlinear relationship between the absorption/emission energies and composition, and a significant enhancement of the electronic properties as a function of tellurium concentration. This variation will help in

  8. Growth and characterization of bismuth telluride nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Picht, Oliver

    2010-05-26

    Polycrystalline Bi{sub 2}Te{sub 3} nanowires are electrochemically grown in ion track-etched polycarbonate membranes. Potentiostatic growth is demonstrated in templates of various thicknesses ranging from 10 to 100 {mu}m. The smallest observed nanowire diameters are 20 nm in thin membranes and approx. 140-180 nm in thicker membranes. The influence of the various deposition parameters on the nanowire growth rate is presented. Slower growth rates are attained by selective change of deposition potentials and lower temperatures. Nanowires synthesized at slower growth rates have shown to possess a higher degree of crystalline order and smoother surface contours. With respect to structural properties, X-ray diffraction and transmission electron microscopy verified the growth of Bi{sub 2}Te{sub 3} and evidenced the stability of specific properties, e.g. grain size or preferential orientation, with regard to variations in the deposition conditions. The interdependency of the fabrication parameters, i.e. temperature, deposition potential and nanochannel diameters, is demonstrated for wires grown in 30 {mu}m thick membranes. It is visible from diffraction analysis that texture is tunable by the growth conditions but depends also on the size of the nanochannels in the template. Both (015) and (110) reflexes are observed for the nanowire arrays. Energy dispersive X-ray analysis further points out that variation of nanochannel size could lead to a change in elemental composition of the nanowires. (orig.)

  9. (CdnTen) and Cadmium Zinc Telluride

    African Journals Online (AJOL)

    Bheema

    solar cells, integrated optics and electro-optics devices. Hence, there are different experimental and theoretical studies on this group using various techniques or methods. A number of theoretical and experimental attempts (Jianguang, 2009) have been made to determine the structure and properties of small CdnTen and ...

  10. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, cadmium ... By conducting several trials optimization of the adsorption, reaction and rinsing time duration for CdTe thin film deposition was ... 3.1 Reaction mechanism. CdTe thin films were grown on micro ...

  11. High efficiency cadmium telluride and zinc telluride based thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Rohatgi, A.; Sudharsanan, R.; Ringel, S.A.; Chou, H.C. (Georgia Inst. of Tech., Atlanta, GA (United States))

    1992-10-01

    This report describes work to improve the basic understanding of CdTe and ZnTe alloys by growing and characterizing these films along with cell fabrication. The major objective was to develop wide-band-gap (1.6--1.8 eV) material for the top cell, along with compatible window material and transparent ohmic contacts, so that a cascade cell design can be optimized. Front-wall solar cells were fabricated with a glass/SnO{sub 2}/CdS window, where the CdS film is thin to maximize transmission and current. Wide-band-gap absorber films (E{sub g} = 1.75 eV) were grown by molecular beam epitaxy (MBE) and metal-organic chemical vapor deposition (MOCVD) techniques, which provided excellent control for tailoring the film composition and properties. CdZnTe films were grown by both MBE and MOCVD. All the as-grown films were characterized by several techniques (surface photovoltage spectroscopy, Auger electron spectroscopy (AES), and x-ray photoelectron spectroscopy (XPS)) for composition, bulk uniformity, thickness, and film and interface quality. Front-wall-type solar cells were fabricated in collaboration with Ametek Materials Research Laboratory using CdTe and CdZnTe polycrystalline absorber films. The effects of processing on ternary film were studied by AES and XPS coupled with capacitance voltage and current voltage measurements as a function of temperature. Bias-dependent spectral response and electrical measurements were used to test some models in order to identify and quantify dominant loss mechanisms.

  12. Inelastic scattering of neutrons by spin waves in terbium

    DEFF Research Database (Denmark)

    Bjerrum Møller, Hans; Houmann, Jens Christian Gylden

    1966-01-01

    Measurements of spin-wave dispersion relations for magnons propagating in symmetry directions in ferromagnetic Tb; it is first experiment to give detailed information on magnetic excitations in heavy rare earths; Tb was chosen for these measurements because it is one of few rare-earth metals whic...... does not have very high thermal-neutron capture cross section, so that inelastic neutron scattering experiments can give satisfactory information on magnon dispersion relations....

  13. Coherent magnetic structures in terbium/holmium superlattices

    DEFF Research Database (Denmark)

    Bryn-Jacobsen, C.; Cowley, R.A.; McMorrow, D.F.

    1997-01-01

    Neutron-scattering techniques have been used to investigate the magnetic properties of three Tb/Ho superlattices grown by molecular-beam epitaxy. It is revealed that for temperatures in the range T = 10 to T-N(Ho)approximate to 130 K, there is a basal-plane ferromagnetic alignment of Tb moments w...

  14. Synthesis of copper telluride nanowires using template-based ...

    Indian Academy of Sciences (India)

    2007; Pan et al 2008; Zhang and Johnson 2009). Several me- thods are reported to have been used for the fabrication of nanosensors (Suzuoki et al 1987; Caillaud et al 1993; Jin and Ying 1994; Inukai et al 1995; Mahmood et al 1995;. Peulon and Lincot 1996; Hussain et al 2010). However, capacitive (chemical) sensors ...

  15. Telluride glass step index fiber for the far infrared

    NARCIS (Netherlands)

    Maurugeon, S.; Boussard-Plédel, C.; Troles, J.; Faber, A.J.; Lucas, P.; Zhang, X.H.; Lucas, J.; Bureau, B.

    2010-01-01

    Nulling interferometry is an important technique under development for the DARWIN planet finding mission which enables the detection of the weak infrared emission lines of an orbiting planet. This technique requires the use of single mode optical fibers transmitting light as far as possible in the

  16. Mechanisms of antimony interstitial penetration into cadmium telluride crystals

    CERN Document Server

    Nikonyuk, E S; Zakharuk, Z I; Fochuk, P M; Rarenko, A I

    2001-01-01

    The results of electrophysical investigations of CdTe crystals, grown by Bridgman method and doped with Sb impurity in concentrations for 10 sup 1 sup 7 -3 x 10 sup 1 sup 9 cm sup - sup 3 are presented. The analysis of the temperature dependence of Hall coefficient, current carrier mobility and photoconductivity at intrinsic excitation for samples taken from different parts of ingots allows to conclude, that Sb sub T sub e , Sb sub C sub d centers and (Sb sub T sub e Sb sub C sub d) associated appear in CdTe crystal during its doping by antimony impurity. The hole conductivity in doped crystals is controlled by A sub 3 (Sb sub T sub e) acceptors, their density not exceeding 5 x 10 sup 1 sup 6 cm sup - sup 3 , and is essentially less than the real impurity content. The ionization energy of A sub 3 acceptors is (0.28 +- 0.01) eV. In non-equilibrium conditions these acceptors play the role of adhesion centers for holes (at high temperatures) and the slow recombination centers for electrons (at low temperatures)

  17. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    Usefulness of a material in thermoelectric devices is temperature specific. The central problem in thermoelectric material research is the selection of materials with high figure-of-merit in the given temperature range of operation. It is of considerable interest to know the utility range of the material, which is decided by the ...

  18. Property elucidation of vacuum-evaporated zinc telluride thin film ...

    Indian Academy of Sciences (India)

    Author Affiliations. J U AHAMED1 N P BEGUM1 M N I KHAN2. Department of Applied Physics, Electronics and Communication Engineering, University of Chittagong, Chittagong 4331, Bangladesh; Materials Science Division, Atomic Energy Center, Dhaka, Bangladesh ...

  19. Cadmium telluride nanocrystals as luminescent sensitizers in flow analysis.

    Science.gov (United States)

    Fortes, Paula R; Frigerio, Christian; Silvestre, Cristina I C; Santos, João L M; Lima, José L F C; Zagatto, Elias A G

    2011-06-15

    A fully automated multipumping flow system (MPFS) using water-soluble CdTe quantum dots (QD) as sensitizers is proposed for the chemiluminometric determination of the anti-diabetic drugs gliclazide and glipizide in pharmaceutical formulations. The nanocrystals acted as enhancers of the weak CL emission produced upon oxidation of sulphite by Ce(IV) in acidic medium, thus improving sensitivity and expanding the dynamical analytical concentration range. By interacting with the QD, the two analytes prevented their sensitizing effect yielding a chemiluminescence quenching of the Ce(IV)-SO(3)(2-)CdTe QD system. The pulsed flow inherent to MPFS assured a fast and efficient mixing of all solutions inside the flow cell, circumventing the need for a reaction coil and facilitating the monitoring of the short-lived generated chemiluminescent species. QD crystal size, concentration and spectral region for measurement were investigated. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Photoluminescence Excitation Spectroscopy Characterization of Cadmium Telluride Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Moore, James E.; Wang, Xufeng; Grubbs, Elizabeth K.; Drayton, Jennifer; Johnston, Steve; Levi, Dean; Lundstrom, Mark S.; Bermel, Peter

    2016-11-21

    The use of steady-state photoluminescence spectroscopy as a contactless characterization tool, suitable for inline optical characterization, has been previously demonstrated for high efficiency solar cells such as GaAs. In this paper, we demonstrate the use of PLE characterization on a thin film CdS/CdTe np heterojunction solar cell, and compare the results to measured EQE and I-V data. In contrast to previous work on high-quality GaAs, the PLE and EQE spectra do not match closely here. We still find, however, that reliable material parameters can be extracted from the PLE measurements. We also provide a physical explanation of the limits defining the cases when the PLE and EQE spectra may be expected to match.

  1. Property elucidation of vacuum-evaporated zinc telluride thin film ...

    Indian Academy of Sciences (India)

    J U Ahamed

    2017-08-31

    Aug 31, 2017 ... J U AHAMED1,*, N P BEGUM1 and M N I KHAN2. 1 Department of Applied Physics, Electronics and Communication Engineering, University of Chittagong,. Chittagong 4331, Bangladesh ..... between 0 (disorder) and 1 (fully ordered), the subscript s refers to the super lattice peak and the subscript f refers to.

  2. Back contact formation in thin cadmium telluride solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Haedrich, M., E-mail: mathias.haedrich@uni-jena.de; Heisler, C.; Reisloehner, U.; Kraft, C.; Metzner, H.

    2011-08-31

    We present a model describing the undesired roll-over which is a well-known phenomenon in the current-voltage characteristics of CdTe solar cells. Therein, the roll-over is ascribed to a Schottky barrier at the back contact which is effective as a reverse diode. The formation of this barrier is investigated depending on the CdTe absorber thickness as well as on the employed back contact metal. Computer simulations of the energy band diagram reveal that the back contact barrier can be reduced and even eliminated for sufficiently thin absorbers. The reason is the spatial overlap between the space-charge regions of the p-n heterojunction with the one of the back contact. This behaviour correlates with experimental current-voltage data of solar cells with a simple gold back contact. In the latter, the roll-over is considerable for absorbers with 3 to 5 {mu}m thickness, diminishes when the absorber thickness is reduced and finally vanishes when the absorber thickness is approximately 1 {mu}m. The investigations show that thickness reduction can be employed in order to suppress the roll-over phenomenon in CdTe solar cells.

  3. High-temperature thermoelectric behavior of lead telluride

    Indian Academy of Sciences (India)

    Applicability of a thermoelectric device (generator or refrigerator) is temperature specific. ... A parabolic band model usually provides a good description of electron (hole) energy bands. This simplification arises from the inclusion of only first term of a ... pends upon the mean free path lengths between successive collisions.

  4. Theoretical Investigation of Point Defects of Mercury Cadmium Telluride.

    Science.gov (United States)

    1985-11-01

    Mitonneau, and A. Mircea, Electron ’Lett. 13, 192(1977). v 26. D. E. Holmes, R. T. Chen, K. R. Elliott, C. G. Kirkpatrick , and P. W. Yu, IEEE Trans. MMT-30...alloys," Phys. Rev. 156, 809(1967). 19.B. Velicky, S. Kirkpatrick , and H. Ehrenreich, "Single-site approximations in the electronic theory of simple...Solid State Phys. 5, p.258, 1957, edited by F. Sietz and D. Turnbull. 20. H. A. Bethe and E.E. Salpeter, ’Quantum Mechanics of one and two- electron

  5. A portable cadmium telluride multidetector probe for cardiac function monitoring

    CERN Document Server

    Arntz, Y; Dumitresco, B; Eclancher, B; Prat, V

    1999-01-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) wh...

  6. Solvothermal Synthesis of Indium Telluride Nanowires and Its Photoelectrical Property.

    Science.gov (United States)

    Yan, Shancheng; Zhou, Liyan; Shi, Yi; Wang, Bojun; Wang, Junzhuan; Xu, Xin

    2015-05-01

    In this paper, 1D In2Te3 nanowires were synthesizes through a simple solvothermal approach. The morphology was first studied by scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). From the results, the nanowires have a diameter from 100 to 200 nm and a length of dozens of microns. X-ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Raman spectrum were used to study the composition, crystal structures, and optical property. Based on the typical nanowire sample, experiment factors were changed to synthsize other samples in order to study the influence factors. A possible growth mechanism of the nanowires was proposed based on a series of experimental results. This material has a broad light detection range covering the UV-visible-NIR region from the photoelectrical test, which makes it potential for applications in photodetectors and solar cells.

  7. Synthesis of copper telluride nanowires using template-based ...

    Indian Academy of Sciences (India)

    Structural characteristics were examined using X-ray diffraction and scanning electron microscope which confirm the formation of CuTe nanowires. Investigation for chemical sensing was carried out using air and chloroform, acetone, ethanol, glycerol, distilled water as liquids having dielectric constants 1, 4.81, 8.93, 21, ...

  8. Modeling Mercury Cadmium Telluride (HgCdTe) Photodiodes

    Science.gov (United States)

    2009-11-01

    composition for Hg1–xCdxTe and CdZnTe substrates, with the lattice constant for a variety of III-V compounds (5). Cd0.96Zn0.04Te is a good match for a wide...composition for Hg1–xCdxTe and CdZnTe substrates, with the lattice constant for a variety of III-V compounds (5). Cd0.96Zn0.04Te is a good match for a

  9. Blocking contacts for N-type cadmium zinc telluride

    Science.gov (United States)

    Stahle, Carl M. (Inventor); Parker, Bradford H. (Inventor); Babu, Sachidananda R. (Inventor)

    2012-01-01

    A process for applying blocking contacts on an n-type CdZnTe specimen includes cleaning the CdZnTe specimen; etching the CdZnTe specimen; chemically surface treating the CdZnTe specimen; and depositing blocking metal on at least one of a cathode surface and an anode surface of the CdZnTe specimen.

  10. Influence of hydrogen on hydrogenated cadmium telluride optical spectra

    Energy Technology Data Exchange (ETDEWEB)

    Pociask, M.; Polit, J.; Sheregii, E.; Cebulski, J. [Institute of Physics, University of Rzeszow (Poland); Kisiel, A. [Institute of Physics, Jagiellonian University, Krakow (Poland); Mycielski, A. [Institute of Physics, PAS, Warszawa (Poland); Morgiel, J. [Polish Academy of Sciences, Institute of Metallurgy and Materials Sciences, Krakow (Poland); Piccinini, M. [INFN-Laboratori Nazionali di Frascati (Italy); Dipartimento Scienze Geologiche, Universita Roma Tre, Rome (Italy); Marcelli, A.; Robouch, B.; Guidi, M.C. [INFN-Laboratori Nazionali di Frascati (Italy); Savchyn, V. [Ivan Franko Lviv National University (Ukraine); Izhnin, I.I. [Institute for Materials SRC ' ' Carat' ' , Lviv (Ukraine); Zajdel, P. [Institute of Fizyki, University of Silesia, 4 Uniwersytecka Str., 40-007 Katowice (Poland); Nucara, A. [Universita' di Roma La Sapienza, P. le Aldo Moro 1, Rome (Italy)

    2009-09-15

    The presence of oxygen impurity in semiconducting materials affects the electrical properties of crystals and significantly limits their application. To remove oxygen impurity, ultra-pure hydrogen is used while growing Te-containing crystals such as CdTe, CdZnTe, and ZnTe. The hydrogenation of CdTe crystals is a technological process that purifies the basic material from oxygen, mainly cadmium and tellurium oxide compounds incorporated in CdTe crystalline lattice. In the present work we analyses the deformations induced by hydrogen and oxygen atoms in CdTe crystals looking at their influence on the near fundamental band (NFB), middle infrared (MIR) and far infrared (FIR) reflectivity spectra as well as on cathodoluminescence (CL) spectra. Comparison of the hydrogenated CdTe phonon structure profiles confirms the presence of hydrogen atoms bounded inside the lattice. The possible localization of hydrogen and oxygen ions within the tetrahedron coordinated lattice is discussed in the framework of a model that shows a good agreement with recent NFB, MIR and FIR experiments carried out on hydrogenated CdTe crystals. Measured reflection spectra in the wavelength range 190-1400 nm (NFB) indicate the appearance in CdTe(H{sub M}) and CdTe(H{sub L}) of additional maxima at 966 nm related to the electron transitions from level about 0.2 eV above the valence band. The CL spectra confirmed existence of this electron level. We present a possible H{sub 2} alignment similar to the single H model i.e., over the face (at about 0.38 Aa). For this model the angle from the central atom to the H atoms is equal to 64 which is also close to the bonding angle of CdH{sub 2} (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Handbook of Phase Transition Sulfides, Selenides and Tellurides,

    Science.gov (United States)

    1984-07-01

    Venema, J. Wiersma , and G.A. Wieglas, J. Solid State Chem., Vol. 2, 309 (1970). 4. W. Andreoni, Solid State Commun., Vol. 38, 837 (1981). 5. M.H. Hebb, J...the power supply circuit open . The cell EMF was found to be variable from zero millivolts to 0.02 millivolts and to be repetitively reversible by...along b axis. Hafnium atoms are indicated by hatched circles and . sulfur by open circles. Atoms with heavy contours are at y = 1/4 and those with

  12. Cadmium-zinc telluride detector arrays for synchrotron radiation applications

    Science.gov (United States)

    Kakuno, Edson M.; Camarda, Giuseppe S.; Siddons, D. P.

    2004-01-01

    We have begun a program to develop CZT-based detectors optimized for Synchrotron Radiation (SR) applications. SR provides high brightness beams of hard x-rays, typically in the range 5-100keV. Below 10keV, Peltier-cooled silicon detector arrays can provide high throughput with good spectroscopic resolution. At higher energies, only cryo-cooled germanium detectors or scintillation counters are available. Neither are easily available in large arrays, and scintillation counters lack energy resolution. CZT offers a solution to both these problems. Our development has focused on surface preparation and contact definition technologies which minimize device leakage currents while allowing high-definition contact patterns suitable for SR applications. We have used SR also for diagnostic purposes in these developments, both for detector testing and material characterization. X-ray diffraction, Infrared microscopy and photoemission are all relevant SR-based tools which we are using in our work. As an example, we have observed that bromine remains attached to the CZT surface after chemical etching, and is remarkably persistent in the face of surface cleaning and argon ion sputtering, as revealed by photoemission spectroscopy and x-ray absorption spectroscopy.

  13. Induced superconductivity in the topological insulator mercury telluride

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Luis

    2015-07-01

    The combination of a topological insulator (TI) and a superconductor (S), which together form a TI/S interface, is expected to influence the possible surface states in the TI. It is of special interest, if the theoretical prediction of zero energy Majorana states in this system is verifiable. This thesis presents the experimental realization of such an interface between the TI strained bulk HgTe and the S Nb and studies if the afore mentioned expectations are met. As these types of interfaces were produced for the first time the initial step was to develop a new lithographic process. Optimization of the S deposition technique as well as the application of cleaning processes allowed for reproducible fabrication of structures. In parallel the measurement setup was upgraded to be able to execute the sensitive measurements at low energy. Furthermore several filters have been implemented into the system to reduce high frequency noise and the magnetic field control unit was additionally replaced to achieve the needed resolution in the μT range. Two kinds of basic geometries have been studied: Josephson junctions (JJs) and superconducting quantum interference devices (SQUIDs). A JJ consists of two Nb contacts with a small separation on a HgTe layer. These S/TI/S junctions are one of the most basic structures possible and are studied via transport measurements. The transport through this geometry is strongly influenced by the behavior at the two S/TI interfaces. In voltage dependent differential resistance measurements it was possible to detect multiple Andreev reflections in the JJ, indicating that electrons and holes are able to traverse the HgTe gap between both interfaces multiple times while keeping phase coherence. Additionally using BTK theory it was possible to extract the interface transparency of several junctions. This allowed iterative optimization for the highest transparency via lithographic improvements at these interfaces. The increased transparency and thus the increased coupling of the Nb's superconductivity to the HgTe results in a deeper penetration of the induced superconductivity into the HgTe. Due to this strong coupling it was possible to enter the regime, where a supercurrent is carried through the complete HgTe layer. For the first time the passing of an induced supercurrent through strained bulk HgTe was achieved and thus opened the area for detailed studies. The magnetic dependence of the supercurrent in the JJ was recorded, which is also known as a Fraunhofer pattern. The periodicity of this pattern in magnetic field compared to the JJ geometry allowed to conclude how the junction depends on the phase difference between both superconducting contacts. Theoretical calculations predicted a phase periodicity of 4π instead of 2π, if a TI is used as weak link material between the contacts, due to the presence of Majorana modes. It could clearly be shown that despite the usage of a TI the phase still was 2π periodic. By varying further influencing factors, like number of modes and phase coherence length in the junction, it might still be possible to reach the 4π regime with bound Majorana states in the future. A good candidate for further experiments was found in capped HgTe samples, but here the fabrication process still has to be developed to the same quality as for the uncapped HgTe samples. The second type of geometry studied in this thesis was a DC-SQUID, which consists of two parallel JJs and can also be described as an interference device between two JJs. The DC-SQUID devices were produced in two configurations: The symmetric SQUID, where both JJs were identical, and the asymmetric SQUID, where one JJ was not linear, but instead has a 90 bent. These configurations allow to test, if the predicted uniformity of the superconducting band gap for induced superconductivity in a TI is valid. While the phase of the symmetric SQUID is not influenced by the shape of the band gap, the asymmetric SQUID would be in phase with the symmetric SQUID in case of an uniform band gap and out of phase if p- or d-wave superconductivity is dominating the transport, due to the 90° junction. As both devices are measured one after another, the problem of drift in the coil used to create the magnetic field has to be overcome in order to decide if the oscillations of both types of SQUIDs are in phase. With an oscillation period of 0.5 mT and a drift rate in the range of 5.5 μT/h the measurements on both configurations have to be conducted in a few hours. Only then the total shift is small enough to compare them with each other. For this to be possible a novel measurement system based on a real time micro controller was programmed, which allows a much faster extraction of the critical current of a device. The measurement times were reduced from days to hours, circumventing the drift problems and enabling the wanted comparison. After the final system optimizations it has been shown that the comparison should now be possible. Initial measurements with the old system hinted that both types of SQUIDs are in phase and thus the expected uniform band gap is more likely. With all needed optimizations in place it is now up to the successors of this project to conclusively prove this last point. This thesis has proven that it is possible to induce superconductivity in strained bulk HgTe. It has thus realized the most basic sample geometry proposed by Fu and Kane in 2008 for the appearance of Majorana bound states. Based on this work it is now possible to further explore induced superconductivity in strained bulk HgTe to finally reach a regime, where the Majorana states are both stable and detectable.

  14. Enhanced superconducting pairing interaction in indium-doped tin telluride

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, A.S.

    2010-05-03

    The ferroelectric degenerate semiconductor Sn{sub 1-{delta}}Te exhibits superconductivity with critical temperatures, T{sub c}, of up to 0.3 K for hole densities of order 10{sup 21} cm{sup -3}. When doped on the tin site with greater than x{sub c} = 1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for x > x{sub c} than for x < x{sub c}. By examining the effect of In dopant atoms on both T{sub c} and the temperature of the ferroelectric structural phase transition, T{sub SPT}, we show that phonon modes related to this transition are not responsible for this T{sub c} enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.

  15. Enhanced superconducting pairing interaction in indium-doped tin telluride

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, A.S.; Chu, J.-H.; /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab.; Toney, M.F.; Geballe, T.H.; Fisher, I.R.; /SLAC, SSRL /Stanford U., Appl. Phys. Dept. /Stanford U., Geballe Lab.

    2010-02-15

    The ferroelectric degenerate semiconductor Sn{sub 1-{delta}}Te exhibits superconductivity with critical temperatures, T{sub c}, of up to 0.3 K for hole densities of order 10{sup 21} cm{sup -3}. When doped on the tin site with greater than x{sub c} = 1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for x > x{sub c} than for x < x{sub c}. By examining the effect of In dopant atoms on both T{sub c} and the temperature of the ferroelectric structural phase transition, T{sub SPT}, we show that phonon modes related to this transition are not responsible for this T{sub c} enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.

  16. A portable cadmium telluride multidetector probe for cardiac function monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Arntz, Y.; Chambron, J.; Dumitresco, B.; Eclancher, B. E-mail: eclan@alsace.u-strasbg.fr; Prat, V

    1999-06-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) which well depicted the filling and ejection of the cardiac beats, allowing to compare the clinically relevant parameters of the cardiac performance, proportional variables of the stroke volume (SV), ejection fraction (EF) and ventricular flow-rate with the known absolute values programmed on the model. The portable system is now in operation for clinical assessment of cardiac patients.

  17. The Cadmium Zinc Telluride Imager on AstroSat

    Indian Academy of Sciences (India)

    V. Bhalerao

    2017-06-19

    Jun 19, 2017 ... Instrument data, processing pipelines and default products are discussed in section. 4. We conclude by giving brief information about in– orbit performance of the instrument in section 5. 2. Instrument configuration. The instrument consists of four identical independent quadrants A–D, to give design safety ...

  18. The Cadmium Zinc Telluride Imager on AstroSat

    Indian Academy of Sciences (India)

    Inter University Centre for Astronomy and Astrophysics, Pune 411 007, India. S. R. T. M. University, Nanded, 431 606, India. Tata Institute of Fundamental Research, Homi Babha Road, Mumbai 400 005, India. Vikram Sarabhai Space Centre, Thiruvananthapuram 695 022, India. Physical Research Laboratory, Ahmedabad ...

  19. Photoluminescence studies of a Terbium(III) complex as a fluorescent probe for DNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Khorasani-Motlagh, Mozhgan, E-mail: mkhorasani@chem.usb.ac.ir; Noroozifar, Meissam; Niroomand, Sona; Moodi, Asieh

    2013-11-15

    The photoluminescence properties of a Tb(III) complex of the form [Tb(phen){sub 2}Cl{sub 3}·OH{sub 2}] (phen=1,10-phenanthroline) in different solvents are presented. It shows the characteristic luminescence of the corresponding Ln{sup 3+} ion in the visible region. The emission intensity of this complex in coordinating solvent is higher than non-coordinating one. The suggested mechanism for the energy transfer between the ligand and Tb{sup 3+} ion is the intramolecular energy transfer mechanism. The interactions of the Tb(III) complex with fish salmon DNA are studied by fluorescence spectroscopy, circular dichroism study and viscosity measurements. The results of fluorescence titration reveal that DNA strongly quenches the intrinsic fluorescence of the complex through a static quenching procedure. The binding constant (K{sub b}) of the above metal complex at 25 °C is determined by the fluorescence titration method and it is found to be (8.06±0.01)×10{sup 3} M{sup −1}. The thermodynamic parameters (ΔH{sup 0}>0, ΔS{sup 0}>0 and ΔG{sup 0}<0) indicate that the hydrophobic interactions play a major role in DNA–Tb complex association. The results support the claim that the title complex bonds to FS-DNA by a groove mode. -- Highlights: • Photoluminescence of [Tb(phen){sub 2}Cl{sub 3}·OH{sub 2}] in different solvents are studied. • Tb(III) complex shows good binding affinity to FS DNA with K{sub b}=(8.06±0.01)×10{sup 3} M{sup −1}. • Viscosity of DNA almost unchanged by increasing amount of Tb complex. • CD spectrum of DNA has a little change with increasing amount of Tb complex. • Thermodynamic parameters indicate that the binding reaction is entropically driven.

  20. Lanthanides in Nuclear Medicine. The Production of Terbium-149 by Heavy Ion Beams

    CERN Document Server

    Dmitriev, S N; Zaitseva, N G; Maslov, O D; Molokanova, L G; Starodub, G Ya; Shishkin, S V; Shishkina, T V

    2001-01-01

    Among radioactive isotopes of lanthanide series elements, finding the increasing using in nuclear medicine, alpha-emitter {149}Tb (T_{1/2} = 4.118 h; EC 76.2 %; beta^+ 7.1 %; alpha 16.7 %) is considered as a perspective radionuclide for radioimmunotherapy. The aim of the present work is to study experimental conditions of the {149}Tb production in reactions Nd({12}C, xn){149}Dy (4.23 min; beta^+, EC)\\to {149}Tb when the Nd targets have been irradiated by heavy ions of carbon. On the basis of results of formation and decay of {149}Dy\\to{149}Tb evaluation of the {149}Tb activity, is made which can be received under optimum conditions (enriched {142}Nd target, {12}C ions with the energy 120 MeV and up to current 100 mu A, time of irradiating 8-10 hours). Under these conditions {149}Tb can be obtained up to 30 GBq (up to 0.8 Ci).

  1. Poly[[aqua-?3-picolinato-?2-picolinato-dipicolinatopotassium(I)terbium(III)] 2.5-hydrate

    OpenAIRE

    Filipe A. Almeida Paz; João Rocha; Jacek Klinowski; Tito Trindade; Nogueira,Helena I. S.; Soares-Santos, Paula C. R.; Cunha-Silva, Lu?s

    2008-01-01

    In the title compound, [KTb(C6H4NO2)4(H2O)]·2.5H2O, each Tb3+ centre is coordinated by four N and five O atoms from five distinct picolinate ligands in a geometry resembling a highly distorted tricapped trigonal prism. One of the ligands establishes a skew bridge between neighbouring Tb3+ centres, leading to the formation of one-dimensional anionic polymeric chains, {[(C6H4NO2)4Tb]−}n, running along the direction [010]. Each K+ cation is seven-coordinated by six O atoms from one an...

  2. Spin waves in terbium. III. Magnetic anisotropy at zero wave vector

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Jensen, J.; Touborg, P.

    1975-01-01

    The energy gap at zero wave vector in the spin-wave dispersion relation of ferromagnetic. Tb has been studied by inelastic neutron scattering. The energy was measured as a function of temperature and applied magnetic field, and the dynamic anisotropy parameters were deduced from the results....... The axial anisotropy is found to depend sensitively on the orientation of the magnetic moments in the basal plane. This behavior is shown to be a convincing indication of considerable two-ion contributions to the magnetic anisotropy at zero wave vector. With the exception of the sixfold basal...... the effects of zero-point deviations from the fully aligned ground state, and we tentatively propose polarization-dependent two-ion couplings as their origin....

  3. Structural and Magnetic Anisotropy in Amorphous Terbium-Iron Thin Films

    Science.gov (United States)

    Hufnagel, Todd Clayton

    1995-01-01

    High density, removable media magnetooptic disk drives have recently begun to make significant gains in the information mass storage market. The media in these disks are amorphous rare-earth/transition-metal (RE-TM) alloys. One vital property of these materials is a large perpendicular magnetic anisotropy; that is, an easy axis of magnetization which is perpendicular to the plane of the film. A variety of theories, sometimes contradictory, have been proposed to account for this surprising presence of an anisotropic property in an amorphous material. Recent research indicates that there is an underlying atomic-scale structural anisotropy which is responsible for the observed magnetic anisotropy. Several different types of structural anisotropy have been proposed to account for the observed magnetic anisotropy, including pair-ordering anisotropy (anisotropic chemical short-range order) and bond orientation anisotropy (an anisotropy in coordination number or distances independent of chemical ordering). We have studied the structural origins of perpendicular magnetic anisotropy in amorphous Tb-Fe thin films by employing high-energy and anomalous dispersion x-ray scattering. The as-deposited films show a clear structural anisotropy, with a preference for Tb-Fe near neighbors to align in the out-of-plane direction. These films also have a large perpendicular magnetic anisotropy. Upon annealing, the magnetic anisotropy energy drops significantly, and we see a corresponding reduction in the structural anisotropy. The radial distribution functions indicate that the number of Tb-Fe near-neighbors increases in the in-plane direction, but does not change in the out-of-plane direction. Therefore, the distribution of Tb-Fe near-neighbors becomes more uniform upon annealing. We propose that the observed reduction in perpendicular magnetic anisotropy energy is a result of this change in structure. Our results support the pair -ordering anisotropy model of the structural anisotropy in amorphous Tb-Fe thin films. We see no evidence to support the bond orientation anisotropy model.

  4. Luminescence properties of terbium-doped Li3PO4 phosphor for ...

    Indian Academy of Sciences (India)

    Antonov-Romanovskii et al [2] firstly suggested applications of OSL for personal dosime- try. This technique got momentum for personnel dosime- try after the development of α-Al2O3:C. OSL properties of α-Al2O3:C have been investigated for personnel dosimetry, environmental dosimetry, medical dosimetry and space.

  5. Luminescence properties of terbium-doped Li3PO4 phosphor for ...

    Indian Academy of Sciences (India)

    The powder X-ray diffraction (PXRD), photoluminescence (PL) emission and excitation spectra, thermoluminescence (TL) and optically stimulated luminescence (OSL) were measured. The particle size was calculated using the Debye Scherrer formula and found to be 79.42 nm. PL emission spectra of Li 3 PO 4 :Tb 3 + ...

  6. Charge-transfer-based terbium MOF nanoparticles as fluorescent pH sensor for extreme acidity.

    Science.gov (United States)

    Qi, Zewan; Chen, Yang

    2017-01-15

    Newly emerged metal organic frameworks (MOFs) have aroused the great interest in designing functional materials by means of its flexible structure and component. In this study, we used lanthanide Tb 3+ ions and small molecular ligands to design and assemble a kind of pH-sensitive MOF nanoparticle based on intramolecular-charge-transfer effect. This kind of made-to-order MOF nanoparticle for H + is highly specific and sensitive and could be used to fluorescently indicate pH value of strong acidic solution via preset mechanism through luminescence of Tb 3+ . The long luminescence lifetime of Tb 3+ allows eliminating concomitant non-specific fluorescence by time-revised fluorescence techniques, processing an advantage in sensing H + in biological media with strong autofluorescence. Our method showed a great potential of MOF structures in designing and constructing sensitive sensing materials for specific analytes directly via the assembly of functional ions/ligands. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Assessment of terbium (III) as a luminescent probe for the detection of tuberculosis biomarkers

    Energy Technology Data Exchange (ETDEWEB)

    Bamogo, W. [CNRS, IRAMIS, UMR 3685 NIMBE/LEDNA, F-91191 Gif-sur-Yvette (France); Mugherli, L. [CEA, IRAMIS, UMR 3685 NIMBE/LEDNA, F-91191 Gif-sur-Yvette (France); Banyasz, A. [CNRS, IRAMIS, LIDyL/Laboratoire Francis Perrin, URA 2453, F-91191 Gif-sur-Yvette (France); Novelli-Rousseau, A.; Mallard, F. [BioMérieux SA, F-38000 Grenoble (France); Tran-Thi, T.-H., E-mail: thu-hoa.tran-thi@cea.fr [CNRS, IRAMIS, UMR 3685 NIMBE/LEDNA, F-91191 Gif-sur-Yvette (France)

    2015-10-08

    A detection method for nicotinic acid, a specific metabolite marker of Mycobacterium tuberculosis present in cultures and patients' breath, is studied in complex solutions containing other metabolites and in biological media such as urine, saliva and breath condensate. The method is based on the analysis of the luminescence increase of Tb{sup 3+} complexes in the presence of nicotinic acid due to the energy transfer from the excited ligand to the lanthanide ion. It is shown that other potential markers found in M. tuberculosis culture supernatant, such as methyl phenylacetate, p-methyl anisate, methyl nicotinate and 2-methoxy biphenyl, can interfere with nicotinic acid via a competitive absorption of the excitation photons. A new strategy to circumvent these interferences is proposed with an upstream trapping of volatile markers preceding the detection of nicotinic acid in the liquid phase via the luminescence of Tb{sup 3+} complexes. The cost of the method is evaluated and compared with the Xpert MTB/RIF test endorsed by the World Health Organization. - Highlights: • Nicotinic acid, a specific marker of M. tuberculosis, can be detected via luminescence. • The detection limit with a commercial phosphorimeter is 0.4 µmol·L{sup -1}. • Other metabolites of M. tuberculosis can interfere via absorbed excitation light. • The interference can be removed via trapping of the most volatile metabolites. • A breath analysis procedure's cost is compared with the Xpert TBM/RIF test.

  8. A highly porous luminescent terbium-organic framework for reversible anion sensing

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K.L.; Law, G.L.; Wong, W.T. [Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Yang, Y.Y. [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2006-04-18

    Unique tailored porous frameworks incorporating a lanthanide metal center have been designed to function as chemical detectors. A flexible multidentate ligand, mucic acid, is used to differentiate between several anions, thus creating an organic framework that is ideally suited for applications in gas separation, sensors, and chemical switches. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  9. Synthesis and characterization of wide bandgap semiconductors doped with terbium for electroluminescent devices

    OpenAIRE

    Montañez Huamán, Liz Margarita

    2016-01-01

    En el presente trabajo de investigación se ha estudiado propiedades estequiometrias, estructurales y de emisión de luz de semiconductor de amplio ancho de banda dopados con terbio. La difracción de rayos-X en ángulo rasante confirma el estado amorfo de las películas. Los espectros de absorción infrarroja muestran la formación de óxidos en las películas y la espectroscopia de foto-electrones de rayos-X revela la formación de oxinitruro de aluminio y oxicarburo de silicio. Las pe...

  10. Synthesis and characterization of terbium-doped SrSnO3 pigments

    Czech Academy of Sciences Publication Activity Database

    Dohnalová, Ž.; Gorodylova, N.; Šulcová, P.; Vlček, Milan

    2014-01-01

    Roč. 40, č. 8 (2014), s. 12637-12645 ISSN 0272-8842 Institutional support: RVO:61389013 Keywords : pigments * solid state reaction * perovskites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.605, year: 2014

  11. An optical material for the detection of β-hydroxybutyrate based on a terbium complex

    Science.gov (United States)

    Wang, Xiaomiao; Chen, Huili; Li, Hua

    2014-02-01

    A novel Tb3+ complex (Tb(C14H10O4)ṡCl, TbL2) based on benzoic acid (L+H) was successfully synthesized, and gave a weak green emission in methanol-water (V:V, 4:1, pH 4.49). With the addition of β-hydroxybutyrate (β-HB) to a semi-aqueous solution of TbL2, an increment of the luminescent intensity at 545 nm assigned to 5D4 → 7F5 transition of Tb3+ was measured, which was evident to the naked eye. The response showed high selectivity for β-HB compared with other common anions including Cl-, NO3-, CO32-, PO43-, HPO42-, HPO4-, CO42-, PO74-, SO42-, lactate, AcO-, citrate, malate therefore it has the potential to be applied as a luminescent sensor for β-HB.

  12. Thermoelectric Transport in Surface- and Antimony-Doped Bismuth Telluride Nanoplates

    Science.gov (United States)

    2016-07-25

    insulator materials such as Bi2Te3 remain elusive. Here we report measurements of the three in-plane transport properties— thermal conductivity (κ...from 0.07 to 0.95 and thicknesses ranging from 9 to 42 nm. The results presented here reveal a trend of increasing p- type behavior with increasing...surface using a tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) coating. The lattice thermal conductivity is found to be below that for undoped ultrathin

  13. Ultralow-power switching via defect engineering in germanium telluride phase-change memory devices

    Science.gov (United States)

    Nukala, Pavan; Lin, Chia-Chun; Composto, Russell; Agarwal, Ritesh

    2016-01-01

    Crystal-amorphous transformation achieved via the melt-quench pathway in phase-change memory involves fundamentally inefficient energy conversion events; and this translates to large switching current densities, responsible for chemical segregation and device degradation. Alternatively, introducing defects in the crystalline phase can engineer carrier localization effects enhancing carrier-lattice coupling; and this can efficiently extract work required to introduce bond distortions necessary for amorphization from input electrical energy. Here, by pre-inducing extended defects and thus carrier localization effects in crystalline GeTe via high-energy ion irradiation, we show tremendous improvement in amorphization current densities (0.13-0.6 MA cm-2) compared with the melt-quench strategy (~50 MA cm-2). We show scaling behaviour and good reversibility on these devices, and explore several intermediate resistance states that are accessible during both amorphization and recrystallization pathways. Existence of multiple resistance states, along with ultralow-power switching and scaling capabilities, makes this approach promising in context of low-power memory and neuromorphic computation.

  14. Interface Characterization of Cobalt Contacts on Bismuth Selenium Telluride for Thermoelectric Devices

    KAUST Repository

    Gupta, R. P.

    2009-08-13

    Sputtered Co is investigated as a suitable contact metal for bulk Bi2 (Te,Se) 3, and the results are compared to sputtered Ni. The coefficient of thermal expansion of Co matches that of bulk Bi 2 (Te,Se) 3 used in our study, and the compatible interface favors the selection of Co as a contact metal. Significant Ni diffusion into Bi2 (Te,Se) 3 was observed. In contrast, Co on Bi2 (Te,Se) 3 shows significantly less diffusion, even at anneal temperatures as high as 200°C. CoTe2 is the preferred phase that is formed. First principles calculations for Bi2 Te 3 support the experimental observation. © 2009 The Electrochemical Society.

  15. Biaxial-stress-driven full spin polarization in ferromagnetic hexagonal chromium telluride

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Xiang-Bo; Li, Jun [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, Bang-Gui, E-mail: bgliu@iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 (China)

    2017-03-15

    It is important to spintronics to achieve fully-spin-polarized magnetic materials that are stable and can be easily fabricated. Here, through systematical density-functional-theory investigations, we achieve high and even full spin polarization for carriers in the ground-state phase of CrTe by applying tensile biaxial stress. The resulting strain is tensile in the xy plane and compressive in the z axis. With the in-plane tensile strain increasing, the ferromagnetic order is stable against antiferromagnetic fluctuations, and a half-metallic ferromagnetism is achieved at an in-plane strain of 4.8%. With the spin-orbit coupling taken into account, the spin polarization is equivalent to 97% at the electronic transition point, and then becomes 100.0% at the in-plane strain of 6.0%. These make us believe that the full-spin-polarized ferromagnetism in this stable and easily-realizable hexagonal phase could be realized soon, and applied in spintronics. - Highlights: • Full spin polarization in the hexagonal ground-state phase of CrTe by biaxial stress. • The stress produces in-plane tensile strain and perpendicular compressive strain. • Reliable electronic structure is calculated with improved exchange functional. • Spin polarization is calculated with spin-orbit coupling taken into account.

  16. Graphene Substrate for van der Waals Epitaxy of Layer-Structured Bismuth Antimony Telluride Thermoelectric Film.

    Science.gov (United States)

    Kim, Eun Sung; Hwang, Jae-Yeol; Lee, Kyu Hyoung; Ohta, Hiromichi; Lee, Young Hee; Kim, Sung Wng

    2017-02-01

    Graphene as a substrate for the van der Waals epitaxy of 2D layered materials is utilized for the epitaxial growth of a layer-structured thermoelectric film. Van der Waals epitaxial Bi 0.5 Sb 1.5 Te 3 film on graphene synthesized via a simple and scalable fabrication method exhibits good crystallinity and high thermoelectric transport properties comparable to single crystals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Characterization of metal contacts on and surfaces of cadmium zinc telluride

    CERN Document Server

    Bürger, A; Chattopadhyay, K; Shi, D; Morgan, S H; Collins, W E; James, R B

    1999-01-01

    In the past several years significant progress has been made in building a database of physical properties for detector quality Cd sub x Zn sub 1 sub - sub x Te (CZT) (x=0.1-0.2) crystal material. CZT's high efficiency combined with its room temperature operation make the material an excellent choice for imaging and spectroscopy in the 10-200 keV energy range. For detector grade material, superior crystallinity and high bulk resistivity are required. The surface preparation during the detector fabrication plays a vital role in determining the contact characteristics and the surface leakage current, which are often the dominant factors influencing its performance. This paper presents a surface and contact characterization study aimed at establishing the effects of the surface preparation steps prior to contacting (polishing and chemical etching), the choice of the metal and contact deposition technique, and the surface oxidation process. A photoconductivity mapping technique is used for studying the effects of...

  18. Moessbauer spectroscopy evidence of intrinsic non-stoichiometry in iron telluride single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kiiamov, Airat G.; Tayurskii, Dmitrii A. [Institute of Physics, Kazan Federal University (Russian Federation); Centre for Quantum Technologies, Kazan Federal University (Russian Federation); Lysogorskiy, Yury V.; Vagizov, Farit G. [Institute of Physics, Kazan Federal University (Russian Federation); Tagirov, Lenar R. [Institute of Physics, Kazan Federal University (Russian Federation); E.K. Zavoisky Physical-Technical Institute, Russian Academy of Sciences, Kazan (Russian Federation); Croitori, Dorina [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Tsurkan, Vladimir [Institute of Applied Physics, Academy of Sciences of Moldova, Chisinau (Moldova, Republic of); Experimental Physics V, University of Augsburg (Germany); Loidl, Alois [Experimental Physics V, University of Augsburg (Germany)

    2017-04-15

    The FeTe parent compound for iron-superconductor chalcogenides was studied applying Moessbauer spectroscopy accompanied by ab initio calculations of electric field gradients at the iron nuclei. Room-temperature (RT) Moessbauer spectra of single crystals have shown asymmetric doublet structure commonly ascribed to contributions of over-stoichiometric iron or impurity phases. Low-temperature Moessbauer spectra of the magnetically ordered compound could be well described by four hyperfine-split sextets, although no other foreign phases different from Fe{sub 1.05}Te were detected by XRD and microanalysis within the sensitivity limits of the equipment. Density functional ab initio calculations have shown that over-stoichiometric iron atoms significantly affect electron charge and spin density up to the second coordination sphere of the iron sub-lattice, and, as a result, four non-equivalent groups of iron atoms are formed by their local environment. The resulting four-group model consistently describes the angular dependence of the single crystals Moessbauer spectra as well as intensity asymmetry of the doublet absorption lines in powdered samples at RT. We suppose that our approach could be extended to the entire class of Fe{sub 1+y}Se{sub 1-x}Te{sub x} compounds, which contain excess iron atoms. (copyright 2016 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Next Generation Semiconductor-Based Radiation Detectors Using Cadmium Magnesium Telluride

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Kutcher, Susan W [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Palsoz, Witold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States); Berding, Martha [SRI International, Menlo Park, CA (United States); Burger, Arnold [Brimrose Technology Corporation, Sparks Glencoe, MD (United States)

    2014-11-17

    The primary objective of Phase I was to perform extensive studies on the purification, crystal growth and annealing procedures of CdMgTe to gain a clear understanding of the basic material properties to enable production of detector material with performance comparable to that of CdZnTe. Brimrose utilized prior experience in the growth and processing of II-VI crystals and produced high purity material and good quality single crystals of CdMgTe. Processing techniques for these crystals including annealing, mechanical and chemical polishing, surface passivation and electrode fabrication were developed. Techniques to characterize pertinent electronic characteristics were developed and gamma ray detectors were fabricated. Feasibility of the development of comprehensive defect modeling in this new class of material was demonstrated by our partner research institute SRI International, to compliment the experimental work. We successfully produced a CdMgTe detector that showed 662 keV gamma response with energy resolution of 3.4% (FWHM) at room temperature, without any additional signal correction. These results are comparable to existing CdZnTe (CZT) technology using the same detector size and testing conditions. We have successfully demonstrated detection of gamma-radiation from various isotopes/sources, using CdMgTe thus clearly proving the feasibility that CdMgTe is an excellent, low-cost alternative to CdZnTe.

  20. Fabrication of Thermoelectric Sensor and Cooling Devices Based on Elaborated Bismuth-Telluride Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Abdellah Boulouz

    2014-01-01

    Full Text Available The principal motivation of this work is the development and realization of smart cooling and sensors devices based on the elaborated and characterized semiconducting thermoelectric thin film materials. For the first time, the details design of our sensor and the principal results are published. Fabrication and characterization of Bi/Sb/Te (BST semiconducting thin films have been successfully investigated. The best values of Seebeck coefficient (α(T at room temperature for Bi2Te3, and (Bi1−xSbx2Te3 with x = 0.77 are found to be −220 µV/K and +240 µV/K, respectively. Fabrication and evaluation of performance devices are reported. 2.60°C of cooling of only one Peltier module device for an optimal current of Iopt=2.50 mA is obtained. The values of temperature measured by infrared camera, by simulation, and those measured by the integrated and external thermocouple are reported. A sensitivity of the sensors of 5 mV Torr−1 mW−1 for the pressure sensor has been found with a response time of about 600 ms.

  1. Thermal Conductivity Reduction in Fullerene-Enriched p-Type Bismuth Telluride-Based Composites (Preprint)

    Science.gov (United States)

    2009-04-01

    with further grinding of the matrix powders was accomplished. In an attempt to minimize oxidation and surface contamination, the ball mill was placed...concentration, with little or no carbon being found in other areas of the sample. When ball milling is used for grinding and mixing, the effects...Tritt, Rev. Sci. Instr. 72, 3129 (2001). [19] A.L. Pope, B. Zawilski, and T.M. Tritt, Cryogenics 41, 725 (2001). [20] J.W. Orton and M.J. Powell

  2. Density Functional Study of Electronic and Structural Properties of Gold-Cadmium Selenide/Telluride Nanoclusters

    Directory of Open Access Journals (Sweden)

    Shimeles T. Bulbula

    2015-01-01

    gold electrodes decrease as cluster size increases, whereas the binding energy shows a reverse relationship with the cluster size. However, a few clusters show special properties like AuCd2Se3 and AuCd2Te3 clusters.

  3. Lead Telluride Doped with Au as a Very Promising Material for Thermoelectric Applications

    Directory of Open Access Journals (Sweden)

    Pantelija M. Nikolic

    2015-01-01

    Full Text Available PbTe single crystals doped with monovalent Au or Cu were grown using the Bridgman method. Far infrared reflectivity spectra were measured at room temperature for all samples and plasma minima were registered. These experimental spectra were numerically analyzed and optical parameters were calculated. All the samples of PbTe doped with Au or Cu were of the “n” type. The properties of these compositions were analyzed and compared with PbTe containing other dopants. The samples of PbTe doped with only 3.3 at% Au were the best among the PbTe + Au samples having the lowest plasma frequency and the highest mobility of free carriers-electrons, while PbTe doped with Cu was the opposite. Samples with the lowest Cu concentration of 0.23 at% Cu had the best properties. Thermal diffusivity and electronic transport properties of the same PbTe doped samples were also investigated using a photoacoustic (PA method with the transmission detection configuration. The results obtained with the far infrared and photoacoustic characterization of PbTe doped samples were compared and discussed. Both methods confirmed that when PbTe was doped with 3.3 at% Au, thermoelectric and electrical properties of this doped semiconductor were both significantly improved, so Au as a dopant in PbTe could be used as a new high quality thermoelectric material.

  4. Thermochemistry of metal-rich chromium telluride and its role in fuel-clad chemical interactions

    Science.gov (United States)

    Viswanathan, R.; Sai Baba, M.; Albert Raj, D. Darwin; Balasubramanian, R.; Saha, B.; Mathews, C. K.

    1989-09-01

    Vaporisation of Cr-Te alloys was studied by Knudsen-effusion mass spectrometry. The partial pressures of Te 2(g) and Te(g) over the two-phase field, Cr + CrTex, were determined in the temperature ranges 1015 to 1138 K and 1180 to 1285 K, respectively. The temperature dependencies of the partial pressures have indicated that nearly equimolar proportions of Te and Te 2 are present in the vapor phase and that there is a phase transformation in CrTe x at 1160 ± 20 K. The Cr-rich phase boundaries of the nonstoichiometric CrTe x were delineated at 1075 K (50.72 ± 0.7 at% Te) as well as at 1235 K (48.25 ± 0.9 at% Te) by a continuous monitoring of the intensities of Te + and Te +2 as a function of time, starting with samples having 55.63 and 57.22 at% Te. Enthalpies and Gibbs energy changes were derived for the equilibria. CrTe x(s) ai Cr(s) + ( {x}/{i})Te i(g) [ x = 1.029 and 0.932; i = 1 and 2] and Te2( g) ai 2 Te( g). Enthalpies and Gibbs energies of formation of CrTe 1.0.29 and CrTe 0.932 were arrived at. The tellurium potentials which would be required for the formation of MTe x ( M = Fe, Cr, andNi) in Type 316 stainless steel and those likely to exist in the fuel-cladding gap of a mixed-oxide fuel pin were computed.

  5. Pb–Te–O phase equilibrium diagram and the lead telluride thermal oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Berchenko, Nicolas, E-mail: nberchen@univ.rzeszow.pl [Centre of Microelectronics and Nanotechnology, Rzeszow University, Rejtana 16A, Rzeszow 35-959 Poland (Poland); Fadeev, Sergey, E-mail: savchyn.lviv@mail.ru [Lviv Ivan Franko National University, Dragomanov st., 50, Lviv 79005 (Ukraine); Savchyn, Volodymyr, E-mail: fadeyev.serzh@ukr.net [Lviv Polytechnic State University, Bandera st., 12, Lviv 79646 (Ukraine); Kurbanov, Kurban, E-mail: baron_02@mail.ru [Kremenchuk Flight College of National Aviation University, 17/6 Peremogy Street, Kremenchuk, Poltava region 39600 (Ukraine); Trzyna, Malgorzata, E-mail: malgorzata.trzyna@gmail.com [Centre of Microelectronics and Nanotechnology, Rzeszow University, Rejtana 16A, Rzeszow 35-959 Poland (Poland); Cebulski, Jozef, E-mail: cebulski@univ.rzeszow.pl [Center for Innovation and Transfer of Natural Sciences and Engineering Knowledge, Rzeszow University, Rejtana 16A, Rzeszow 35-959 Poland (Poland)

    2014-03-01

    Highlights: • Pb–Te–O diagram can correctly predict oxidation products in a wide range of temperatures. • Account for temperature change of Gibbs energies is necessary for correct evaluation of oxidation. • The main product of PbTe oxidation at temperatures < 673 K is PbTeO{sub 3}. • TOF SIMS detects the presence of ternary oxides at PbTe surface at 293 K. • Products of PbTe oxidation are significantly changed at temperatures above 673 K. - Abstract: To clarify the behavior of thermally oxidized PbTe the phase equilibrium diagram was calculated taking into account the change of the standard Gibbs energies of formation with the temperature up to 873 K. The X-ray diffractometry (XRD) studies of thermally oxidized PbTe are, summarized. In good agreement with XRD studies the Pb–Te–O diagram predicts the formation of the lead tellurite PbTeO{sub 3} at the relatively low temperatures (<673 K). At higher temperatures (>673 K) it predicts the formation of other ternary PbTe oxides (Pb{sub 3}TeO{sub 5}, Pb{sub 5}TeO{sub 7}, and Pb{sub 2}TeO{sub 4}) detected in PbTe sintered material at high-temperature oxidation. This must be considered when choosing a method of preparing the nanostructured PbTe composites and when analyzing their properties. This should be considered when choosing processing techniques structured material.

  6. Thin film cadmium telluride charged particle sensors for large area neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. W.; Smith, L.; Calkins, J.; Mejia, I.; Cantley, K. D.; Chapman, R. A.; Quevedo-Lopez, M.; Gnade, B., E-mail: gnade@utdallas.edu [Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Kunnen, G. R.; Allee, D. R. [Flexible Display Center, Arizona State University, Phoenix, Arizona 85284 (United States); Sastré-Hernández, J.; Contreras-Puente, G. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Mexico City 07738 (Mexico); Mendoza-Pérez, R. [Universidad Autónoma de la Ciudad de México, Mexico City 09790 (Mexico)

    2014-09-15

    Thin film semiconductor neutron detectors are an attractive candidate to replace {sup 3}He neutron detectors, due to the possibility of low cost manufacturing and the potential for large areas. Polycrystalline CdTe is found to be an excellent material for thin film charged particle detectors—an integral component of a thin film neutron detector. The devices presented here are characterized in terms of their response to alpha and gamma radiation. Individual alpha particles are detected with an intrinsic efficiency of >80%, while the devices are largely insensitive to gamma rays, which is desirable so that the detector does not give false positive counts from gamma rays. The capacitance-voltage behavior of the devices is studied and correlated to the response due to alpha radiation. When coupled with a boron-based neutron converting material, the CdTe detectors are capable of detecting thermal neutrons.

  7. Impurity-induced photoconductivity of narrow-gap Cadmium–Mercury–Telluride structures

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, D. V., E-mail: dvkoz@impras.ru; Rumyantsev, V. V.; Morozov, S. V.; Kadykov, A. M. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Varavin, V. S.; Mikhailov, N. N.; Dvorestky, S. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Teppe, F. [Universite Montpellier II, Laboratoire Charles Coulomb (L2C) (France)

    2015-12-15

    The photoconductivity (PC) spectra of CdHgTe (MCT) solid solutions with a Cd fraction of 17 and 19% are measured. A simple model for calculating the states of doubly charged acceptors in MCT solid solutions, which makes it possible to describe satisfactorily the observed photoconductivity spectra, is proposed. The found lines in the photoconductivity spectra of narrow-gap MCT structures are associated with transitions between the states of both charged and neutral acceptor centers.

  8. Non-Uniformities in Thin-Film Cadmium Telluride Solar Cells Using Electroluminescence and Photoluminescence: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zaunbrecher, K.; Johnston, S.; Yan, F.; Sites, J.

    2011-07-01

    It is the purpose of this research to develop specific imaging techniques that have the potential to be fast, in-line tools for quality control in thin-film CdTe solar cells. Electroluminescence (EL) and photoluminescence (PL) are two techniques that are currently under investigation on CdTe small area devices made at Colorado State University. It is our hope to significantly advance the understanding of EL and PL measurements as applied to CdTe. Qualitative analysis of defects and non-uniformities is underway on CdTe using EL, PL, and other imaging techniques.

  9. Superstrate and substrate type cadmium telluride solar cells and monolithic integration of photovoltaic modules

    Science.gov (United States)

    Matulionis, Ilvydas

    This dissertation describes the fabrication of polycrystalline CdTe-based solar cells and monolithic integration of photovoltaic devices into modules using laser scribing. We have improved the efficiency of sputtered superstrate type CdTe solar cells, including devices with unconventionally thin absorber, built world-record efficiency substrate type CdTe solar cells, observed effects related to interfacial layers, and investigated the use of 7 different types of lasers for scribing of materials used for CdTe and CuInGaSe2 solar cells. We have fabricated CdTe/CdS solar cells using magnetron sputtering with conversion efficiencies of 12.5%. As the thickness of CdTe is reduced to less than 1 mum, devices still maintain efficiencies near 10%. Thinning of the CdTe layer would make manufacturing of solar modules more economical. We have built inverted (substrate) configuration CdTe solar cells with state-of-the-art efficiencies of 7.8%. We find that tellurium and sulfur interdiffusion is strongly inhibited in substrate type cells due to the fact that the CdS is grown on fully formed CdTe grains. We have optimized a sputtering process for aluminum-doped ZnO, achieved a resistivity of 5 x 10-4 O-cm, and fabricated 5.8% efficient substrate type CdTe solar cells with the ZnO:Al top contact. We have researched the effect of a high resistivity (HR) layer between the CdS and a transparent conducting oxide. Cells with the HR layer maintain higher efficiencies as the thickness of the CdS is reduced to 60 nm and less. We have investigated the use of 7 different types of lasers for scribing of the polycrystalline materials used for CdTe and CuIn(Ga)Se2 (CIGS) thin-film solar cells. The lasers included four different Nd:YAG (532 and 1064 nm), a Cu vapor (511 and 578 nm) and two excimers (308 and 248 nm). Pulse durations ranged from 0.1 to 250 ns. We find that most wavelength and pulse duration combinations work well for the thin-film materials. ZnO should be scribed with an ultraviolet wavelength laser. We have achieved best results for CIGS on Mo with longer pulse durations (250 ns). Ridges along the edges of scribe lines can be eliminated by adjustment of focus conditions.

  10. Pressure Dependence of the Charge-Density-Wave Gap in Rare-Earth Tri-Tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Sacchetti, A.; /Zurich, ETH; Arcangeletti, E.; Perucchi, A.; Baldassarre, L.; Postorino, P.; Lupi, S.; /Rome U.; Ru, N.; Fisher, I.R.; /Stanford U., Geballe Lab.; Degiorgi, L.; /Zurich, ETH

    2009-12-14

    We investigate the pressure dependence of the optical properties of CeTe{sub 3}, which exhibits an incommensurate charge-density-wave (CDW) state already at 300 K. Our data are collected in the mid-infrared spectral range at room temperature and at pressures between 0 and 9 GPa. The energy for the single particle excitation across the CDW gap decreases upon increasing the applied pressure, similarly to the chemical pressure by rare-earth substitution. The broadening of the bands upon lattice compression removes the perfect nesting condition of the Fermi surface and therefore diminishes the impact of the CDW transition on the electronic properties of RTe{sub 3}.

  11. Synthesis, thermal behavior and thermoelectric properties of disordered tellurides with structures derived from the rocksalt type

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Thorsten

    2014-06-17

    GeBi{sub 2}Te{sub 4} is proposed as phase-change material. Nanostructures in metastable GeBi{sub 2}Te{sub 4} were obtained by high-pressure synthesis and thermal quenching, - depending on temperature and pressure different modifications were found. The differences in the electrical characteristics can be attributed to the variation of grain boundary concentration and the grain size distribution. Two synthesis approaches were used to prepare Ag{sub 3.4}In{sub 3.7}Sb{sub 76.4}Te{sub 16.5} bulk samples and studied with respect to their transport and thermal properties. A high pressure route to prepare thermoelectrics with low thermal conductivity was developed for AgIn{sub x}Sb{sub 1-x}Te{sub 2}. Disorder and and transport studies on In{sub 3}SbTe{sub 2} were performed using X-ray, neutron and electron diffraction measurements. Nanostructures in Te/Sb/Ge/Ag (TAGS) thermoelectric materials were induced by phase transitions associated with vacancy ordering. Further studies concerned solid solution series (GeTe){sub x}(LiSbTe{sub 2}){sub 2} (1 smaller or equal x smaller or equal 11) and their thermoelectric properties.

  12. Optical Properties and Surface Morphology of Zinc Telluride Thin Films Prepared by Stacked Elemental Layer Method

    Directory of Open Access Journals (Sweden)

    Subramani SHANMUGAN

    2012-06-01

    Full Text Available ZnTe thin films were prepared by Stacking of elemental (Zn and Te layers (SEL followed by inert gas annealing. The optical parameters were calculated from the transmission spectra. The bandgap of the annealed samples was found between 1.95 eV and 2.06 eV. The change in film thickness after annealing was observed using cross sectional SEM image of the annealed samples. The surface morphology of the annealed Te/Zn stack was also analyzed and observed as very smooth, compact and dense surface. The prepared film was Zn rich evidenced by EDAX. The observed result encourages in pursuing the SEL method for the preparation of compound semiconductor from II-VI group materials.DOI: http://dx.doi.org/10.5755/j01.ms.18.2.1908

  13. Processing, Fabrication and Characterization of Advanced Target Sensors Using Mercury Cadmium Telluride (MCT)

    Science.gov (United States)

    2010-09-01

    from the Si lattice parameter to the HgCdTe lattice parameter while still maintaining high quality crystalline material. In summary, a thin ZnTe ...MCT film had to be removed, standard PR such as AZ5214 cannot be used because of the selectivity issues. There will be substantial erosion of the

  14. Boundary Engineering for the Thermoelectric Performance of Bulk Alloys Based on Bismuth Telluride.

    Science.gov (United States)

    Mun, Hyeona; Choi, Soon-Mok; Lee, Kyu Hyoung; Kim, Sung Wng

    2015-07-20

    Thermoelectrics, which transports heat for refrigeration or converts heat into electricity directly, is a key technology for renewable energy harvesting and solid-state refrigeration. Despite its importance, the widespread use of thermoelectric devices is constrained because of the low efficiency of thermoelectric bulk alloys. However, boundary engineering has been demonstrated as one of the most effective ways to enhance the thermoelectric performance of conventional thermoelectric materials such as Bi2 Te3 , PbTe, and SiGe alloys because their thermal and electronic transport properties can be manipulated separately by this approach. We review our recent progress on the enhancement of the thermoelectric figure of merit through boundary engineering together with the processing technologies for boundary engineering developed most recently using Bi2 Te3 -based bulk alloys. A brief discussion of the principles and current status of boundary-engineered bulk alloys for the enhancement of the thermoelectric figure of merit is presented. We focus mainly on (1) the reduction of the thermal conductivity by grain boundary engineering and (2) the reduction of thermal conductivity without deterioration of the electrical conductivity by phase boundary engineering. We also discuss the next potential approach using two boundary engineering strategies for a breakthrough in the area of bulk thermoelectric alloys. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide

    CERN Document Server

    Mishra, S K; Jepsen, O

    1997-01-01

    The electronic structures of the two thermoelectric materials Bi sub 2 Te sub 3 and Bi sub 2 Se sub 3 are studied using density-functional theory with the spin - orbit interaction included. The electron states in the gap region and the chemical bonding can be described in terms of pp sigma interaction between the atomic p orbitals within the 'quintuple' layer. For Bi sub 2 Se sub 3 , we find both the valence-band maximum as well as the conduction-band minimum, each with a nearly isotropic effective mass, to occur at the zone centre in agreement with experimental results. For Bi sub 2 Te sub 3 , we find that the six valleys for the valence-band maximum are located in the mirror planes of the Brillouin zone and they have a highly anisotropic effective mass, leading to an agreement between the de Haas-van Alphen data for the p-doped samples and the calculated Fermi surface. The calculated conduction band, however, has only two minima, instead of the six minima indicated from earlier experiments. The calculated S...

  16. Feasibility of a Hand-Held Integrating Dosimeter Using a Cadmium Telluride Detector

    Science.gov (United States)

    1986-09-26

    and photons (in the X-ray and gamma ray energy span). Electronic dosimeters developed for nuclear reactor appli- cations are not satisfactory for...also be added the man-made component due to any nuclear reactors or thermoelectric generators on board the spacecraft. In all cases found in the open...no [with flat (with linear (ft) (R/hr) extrap .] extrap .] extrap .] 19 0.0012 0.00338 0.00451 0.00585 13 0.0026 0.00698 0.00924 0.0121 9 0.0055 0.0148

  17. Role of Nanostructuring and Microstructuring in Silver Antimony Telluride Compounds for Thermoelectric Applications.

    Science.gov (United States)

    Cojocaru-Mirédin, Oana; Abdellaoui, Lamya; Nagli, Michael; Zhang, Siyuan; Yu, Yuan; Scheu, Christina; Raabe, Dierk; Wuttig, Matthias; Amouyal, Yaron

    2017-05-03

    Thermoelectric (TE) materials are of utmost significance for conversion of heat flux into electrical power in the low-power regime. Their conversion efficiency depends strongly on the microstructure. AgSbTe 2 -based compounds are high-efficiency TE materials suitable for the mid-temperature range. Herein, we explore an Ag 16.7 Sb 30 Te 53.3 alloy (at %) subjected to heat treatments at 380 °C for different durations aimed at nucleation and coarsening of Sb 2 Te 3 -precipitates. To characterize the Sb 2 Te 3 -precipitation, we use a set of methods combining thermal and electrical measurements in concert with transmission electron microscopy and atom probe tomography. We find correlations between the measured TE transport coefficients and the applied heat treatments. Specifically, the lowest electrical and thermal conductivity values are obtained for the as-quenched state, whereas the highest values are observed for alloys aged for 8 h. In turn, long-term heat treatments result in intermediate values of transport coefficients. We explain these findings in terms of interplay between precipitate formation and variations in the matrix composition, highlighting the importance of thermal stability of the material under service conditions.

  18. Crystal quality of two-dimensional gallium telluride and gallium selenide using Raman fingerprint

    Directory of Open Access Journals (Sweden)

    Jannatul Susoma

    2017-01-01

    Full Text Available We have established Raman fingerprint of GaTe and GaSe to investigate their crystal quality. As unencapsulated, they both oxidise in ambient conditions which can be detected in their Raman analysis. X-ray photoelectron spectroscopy (XPS analysis shows a good agreement with Raman analysis. 50-nm-thick Al2O3 encapsulation layer deposited by atomic layer deposition (ALD inhibits degradation in ambient conditions.

  19. An ultrasensitive method for the determination of melamine using cadmium telluride quantum dots as fluorescence probes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiafei; Li, Jin; Kuang, Huiyan; Feng, Lei; Yi, Shoujun; Xia, Xiaodong; Huang, Haowen [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, Hunan University of Science and Technology, Xiangtan 411201 (China); Chen, Yong; Tang, Chunran [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Zeng, Yunlong, E-mail: yunlongzeng1955@126.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education of China, Hunan University of Science and Technology, Xiangtan 411201 (China); State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China)

    2013-11-13

    Graphical abstract: Melamine takes place of the TGA on the surface of TGA-CdTe QDs with negative charge to form melamine coated QDs changing the surface charge of the QDs, resulting the fluorescence quenched as the QDs aggregation occurred by electrostatic attraction of the two opposite charged nanocrystals. -- Highlights: •An ultrasensitive and selective method for the determination of melamine was developed at pH 11.0. •The selectivity of the method was improved. •The sensitivity of the method enhanced obviously as the CdTe QDs have higher QYs at pH 11. •The sensitivity and linear range for the analysis are size dependent using QDs PL probes. •Melamine takes the place of TGA resulting fluorescence quenched of QDs. -- Abstract: An ultrasensitive and simple method for the determination of melamine was developed based on the fluorescence quenching of thioglycolic acid (TGA) capped CdTe quantum dots (QDs) at pH 11.0. In strong alkaline aqueous solution, the selectivity of the method has been greatly improved due to most heavy metal ions show no interference as they are in the precipitation form or in their anion form. Furthermore, CdTe quantum dots have higher quantum yields at higher pH. The method has a wider concentration range and lower detection limit. The influence factors on the determination of melamine were investigated and the optimum conditions were determined. Under optimum conditions, the fluorescence intensity change of TGA coated CdTe quantum dots was linearly proportional to melamine over a concentration range from 1.0 × 10{sup −11} to 1.0 × 10{sup −5} mol L{sup −1} with a correlation coefficient of 0.9943 and a detection limit of 5 × 10{sup −12} mol L{sup −1}. The mechanism of fluorescence quenching of the QDs has been proposed based on the infrared spectroscopy information and electrophoresis experiments in presence of melamine under alkaline condition. The proposed method was employed to detect trace melamine in milk powder and pet feeds with satisfactory results.

  20. Effect of Gallium Doping on the Characteristic Properties of Polycrystalline Cadmium Telluride Thin Film

    Science.gov (United States)

    Ojo, A. A.; Dharmadasa, I. M.

    2017-08-01

    Ga-doped CdTe polycrystalline thin films were successfully electrodeposited on glass/fluorine doped tin oxide substrates from aqueous electrolytes containing cadmium nitrate (Cd(NO3)2·4H2O) and tellurium oxide (TeO2). The effects of different Ga-doping concentrations on the CdTe:Ga coupled with different post-growth treatments were studied by analysing the structural, optical, morphological and electronic properties of the deposited layers using x-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, photoelectrochemical cell measurement and direct-current conductivity test respectively. XRD results show diminishing (111)C CdTe peak above 20 ppm Ga-doping and the appearance of (301)M GaTe diffraction above 50 ppm Ga-doping indicating the formation of two phases; CdTe and GaTe. Although, reductions in the absorption edge slopes were observed above 20 ppm Ga-doping for the as-deposited CdTe:Ga layer, no obvious influence on the energy gap of CdTe films with Ga-doping were detected. Morphologically, reductions in grain size were observed at 50 ppm Ga-doping and above with high pinhole density within the layer. For the as-deposited CdTe:Ga layers, conduction type change from n- to p- were observed at 50 ppm, while the n-type conductivity were retained after post-growth treatment. Highest conductivity was observed at 20 ppm Ga-doping of CdTe. These results are systematically reported in this paper.

  1. Analytical bond-order potential for the cadmium telluride binary system

    Science.gov (United States)

    Ward, D. K.; Zhou, X. W.; Wong, B. M.; Doty, F. P.; Zimmerman, J. A.

    2012-03-01

    CdTe and Cd1-xZnxTe are the leading semiconductor compounds for both photovoltaic and radiation detection applications. The performance of these materials is sensitive to the presence of atomic-scale defects in the structures. To enable accurate studies of these defects using modern atomistic simulation technologies, we have developed a high-fidelity analytical bond-order potential for the CdTe system. This potential incorporates primary (σ) and secondary (π) bonding and the valence dependence of the heteroatom interactions. The functional forms of the potential are directly derived from quantum-mechanical tight-binding theory under the condition that the first two and first four levels of the expanded Green's function for the σ- and π-bond orders, respectively, are retained. The potential parameters are optimized using iteration cycles that include first-fitting properties of a variety of elemental and compound configurations (with coordination varying from 1 to 12) including small clusters, bulk lattices, defects, and surfaces, and then checking crystalline growth through vapor deposition simulations. It is demonstrated that this CdTe bond-order potential gives structural and property trends close to those seen in experiments and quantum-mechanical calculations and provides a good description of melting temperature, defect characteristics, and surface reconstructions of the CdTe compound. Most importantly, this potential captures the crystalline growth of the ground-state structures for Cd, Te, and CdTe phases in vapor deposition simulations.

  2. pH dependent photophysical studies of new europium and terbium complexes of tripodal ligand: Experimental and semiempirical approach

    Energy Technology Data Exchange (ETDEWEB)

    Akbar, Rifat [Department of Chemistry, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab 148106 (India); Baral, Minati [Department of Chemistry, National Institute of Technology Kurukshetra, Haryana 136119 (India); Kanungo, B K, E-mail: b.kanungo@gmail.com [Department of Chemistry, Sant Longowal Institute of Engineering & Technology, Longowal, Punjab 148106 (India)

    2015-11-15

    The photophysical properties of adduct of a novel nonadentate tripodal ligand, 5,5′-(2-(((8-hydroxyquinolin-5-yl)methylamino)methyl)-2-methylpropane-1, 3-diyl)bis(azanediyl)bis(methylene diquinolin-8-ol, (TAME5OX), with Eu{sup 3+} and Tb{sup 3+} metal ions have been probed for photonics applications. The absorption spectroscopy of these complexes show remarkable spectral changes due to characteristic lanthanide transitions, which support the use of TAME5OX as a sensitive optical pH based sensor to detect Ln{sup 3+} metal ions in biological systems. In addition, these complexes have also been shown to exhibit strong green fluorescence allowing simultaneous sensing within the visible region under physiological pH in competitive medium for both Eu{sup 3+} and Tb{sup 3+} ions. The intense fluorescence from these compounds were revealed to intermittently get quenched under acidic as well as basic conditions due to the photoinduced intramolecular electron transfer from excited 8-hydroxyquinoline (8-HQ) moiety to metal ion, just an opposite process. This renders these compounds the OFF–ON–OFF type of pH-dependent fluorescent sensor. The thermodynamic stability and aqueous coordination chemistry of the chelator with the said lanthanide ions have also been probed by potentiometric, UV–visible and fluorescence spectrophotometric method. TAME5OX has been found to form two protonated complexes [Ln(H{sub 5}L)]{sup 5+} and [Ln(H{sub 4}L)]{sup 4+} below pH 2.5 with both metal ions, which consecutively deprotonates through one proton process with rise of pH. The formation constants (log β{sub 11n}) of neutral complexes have been determined to be 33.51 and 32.16 with pLn (pLn=−log[Ln{sup 3+}]) values of 16.14 and 19.48 for Eu{sup 3+} and Tb{sup 3+} ions, respectively, calculated at pH 7.4, indicating TAME5OX is a good lanthanide synthetic chelator. The emission lifetimes of the Eu{sup 3+} and Tb{sup 3+} complexes recorded in D{sub 2}O and H{sub 2}O suggest the presence of water molecules in the first coordination sphere of the metal ions. NMR titrations were carried out to determine the stoichiometry of chelates. The complexe's coordination geometries were optimized by using PM7 as sparkle/PM7 model. The theoretical electronic behavior was evaluated to support the experimental findings, based on ZINDO/S methodology at configuration interaction with single excitations (CIS) level. These results emphasize the capability of the use of the theoretical models in prediction of geometries and all other calculations of compounds containing lanthanide ions and create new interesting possibilities for the design in-silico of novel and highly efficient lanthanide–organic edifice. - Highlights: • Photophysical behavior of Eu{sup 3+} and Tb{sup 3+} complexes of TAME5OX has been investigated. • This tripodal ligand forms thermodynamically stable Ln{sup 3+} complexes. • These compounds exhibit strong green fluorescence under physiological pH. • Green fluorescence gets quenched under acidic and basic conditions, due to PET process. • This renders these compounds the OFF–ON–OFF type of pH-dependent fluorescent sensors.

  3. Visible photoluminescence in polycrystalline terbium doped aluminum nitride (Tb:AlN) ceramics with high thermal conductivity

    Science.gov (United States)

    Wieg, A. T.; Kodera, Y.; Wang, Z.; Imai, T.; Dames, C.; Garay, J. E.

    2012-09-01

    Thermal management continues to be one of the major challenges in the development of high powered light sources such as solid state lasers. In particular, the relatively low thermal conductivity of standard photoluminescent (PL) materials limits the overall power output and/or duty cycle. We present a method based on current activated pressure assisted densification for the fabrication of high thermal conductivity PL materials: rare earth doped polycrystalline bulk aluminum nitride. Specifically, the ceramics are translucent and are doped with Tb3+, allowing for emission in the visible. Remarkably, the ceramics have a room temperature thermal conductivity of 94 W/(m K) which is almost seven times higher than that of the state of the art host material, Nd-doped yttrium aluminum garnet. These light emitting properties coupled with very high thermal conductivity should enable the development of a wide variety of more powerful light sources.

  4. Preparation of extractive resins for producing terbium-161; Preparacion de resinas extractivas para produccion de terbio-161

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz B, C. C.; Monroy G, F. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: fabiola.monroy@inin.gob.mx

    2009-10-15

    This paper presents the development of a methodology for extractive resins preparation to base of HDEHP, which allows to separation of Tb from Gd generating an own technology of preparation of these resins. The study included the extractive resins preparation from 6 different supports: kieselguhr Dg, alumina, red volcanic rock, chiluca, quarry and fluorite; two treatment types of of supports and varied concentrations of HDEHP extractant (di(2-etil hexyl) orthophosphoric acid), in order to determine which resin has improved efficiency of Gd and Tb separation, and radionuclide purity of {sup 161}Tb. Resins were prepared to base of kieselguhr to determine the most appropriate silicon deposition process. Two silicon deposition treatments were realized: treatment I , by contact with silicon deposition solution (dimethyldichlorosilane / heptane 1:30) and treatment II by contact with vapors of dimethyldichlorosilane in vacuum. The extractant retention was carried out to different concentrations of HDEHP / acetone: 1:4, 1:8, 1:15, 1:20, 1:30 and 1:40. According to the results, there is not direct relation of HDEHP concentration used in extractive resins preparation to base of kieselguhr over the efficiency of Gd and Tb separation and of radionuclide purity of {sup 161}Tb. The effect of support in the efficiency of Gd and Tb separation was studied to prepare resins with the supports kieselguhr, alumina, quarry, chiluca, volcanic rock and fluorite, using the silicon deposition treatment II for the supports and a concentration of HDEHP / acetone 1:20, for extractant retention. Only resins based on kieselguhr could separate to Gd from Tb quantitatively, the resin at a concentration of HDEHP / Acetone 1:20 was the best results obtained in Gd and Tb separation, achieving a separation efficiency greater than 90% and a radionuclide purity higher than 99%. (Author)

  5. Synthesis and Characterization of Europium(III) and Terbium(III) Complexes: An Advanced Undergraduate Inorganic Chemistry Experiment

    Science.gov (United States)

    Swavey, Shawn

    2010-01-01

    Undergraduate laboratories rarely involve lanthanide coordination chemistry. This is unfortunate in light of the ease with which many of these complexes are made and the interesting and instructive photophysical properties they entail. The forbidden nature of the 4f transitions associated with the lanthanides is overcome by incorporation of…

  6. Sensitized green emission of terbium with dibenzoylmethane and 1, 10 phenanthroline in polyvinyl alcohol and polyvinyl pyrrolidone blends

    Science.gov (United States)

    Kumar, Brijesh; Kaur, Gagandeep; Rai, S. B.

    2017-12-01

    Tb doped polyvinyl alcohol: polyvinyl pyrrolidone blends with dibenzoylmethane (DBM) and 1, 10 Phenanthroline (Phen) have been prepared by solution cast technique. Bond formation amongst the ligands and Tb3 + ions in the doped polymer has been confirmed employing Fourier Transform Infrared (FTIR) techniques. Optical properties of the Tb3 + ions have been investigated using UV-Vis absorption, excitation and fluorescence studies excited by different radiations. Addition of dimethylbenzoate and 1, 10 Phenanthroline to the polymer blend increases the luminescence from Tb3 + ions along with energy transfer from the polymer blend itself. Luminescence decay curve analysis affirms the non-radiative energy transfer from DBM and Phen to Tb3 + ions, which is identified as the reason behind this enhancement. The fluorescence decay time of PVA-PVP host decreases from 6.02 ns to 2.31 ns showing an evidence of energy transfer from the host blend to the complexed Tb ions. Similarly the lifetime of DBM and Phen and both in the blend reduces in the complexed system showing the feasibility of energy transfer from these excited DBM and Phen to Tb3 + and is proposed as the cause of the above observations. These entire phenomena have been explained by the energy level diagram.

  7. A Terbium Metal-Organic Framework for Highly Selective and Sensitive Luminescence Sensing of Hg2+Ions in Aqueous Solution.

    Science.gov (United States)

    Xia, Tifeng; Song, Tao; Zhang, Gege; Cui, Yuanjing; Yang, Yu; Wang, Zhiyu; Qian, Guodong

    2016-12-19

    A series of isomorphic lanthanide metal-organic frameworks (MOFs) Ln(TATAB)⋅(DMF) 4 (H 2 O)(MeOH) 0.5 (LnTATAB, Ln=Eu, Tb, Sm, Dy, Gd; H 3 TATAB=4,4',4''-s-triazine-1,3,5-triyltri-p-aminobenzoic acid) have been solvothermally synthesized and structurally characterized. Among these MOFs, TbTATAB exhibits good water stability and a high fluorescence quantum yield. Because mercury ions (Hg 2+ ) have a high affinity to nitrogen atoms, and the space between multiple nitrogen atoms from triazine and imino groups is suitable for interacting with Hg 2+ ions, TbTATAB shows highly selective and sensitive detection of Hg 2+ in aqueous solution with a detection limit of 4.4 nm. Furthermore, it was successfully applied to detect Hg 2+ ions in natural water samples. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Fluorescence Properties of Fe2+- and Co2+-doped Hosts of CdMnTe Compositions as Potential Mid-Infrared Laser Materials

    Science.gov (United States)

    2011-09-01

    manganese telluride (CdMnTe or CMT), cadmium zinc telluride ( CdZnTe ), and zinc sulfur selenide (ZnSSe) chalcogenide crystals (1). Among the TM ions, Cr2...cadmium magnesium telluride CdS cadmium sulfide CdSe cadmium selenide CdTe cadmium telluride CdZnTe cadmium zinc telluride Co2+ divalent

  9. Powder processing and mechanical properties of Silver0.86Lead19Antimony telluride20 (LAST) and Lead0.95Tin0.05Tellurium - Lead sulfide 8% (Lead telluride -Lead sulfide) thermoelectric materials

    Science.gov (United States)

    Ni, Jennifer Elisabeth

    Thermoelectric (TE) materials convert between thermal and electrical energy and when used with existing processes will increase the efficiency via waste heat recovery. Ag0.86Pb19SbTe20 (LAST) and Pb0.95Sn0.05Te - PbS 8% (PbTe-PbS) materials exhibit good thermoelectric (TE) properties and have potential applications as thermoelectric generators in waste heat recovery. However, to fully characterize the thermo-mechanical behavior of LAST and PbTe-PbS materials under in-service conditions, knowledge is needed of the mechanical and thermal properties at room and high temperature. As fracture strength is inversely proportional to the square root of grain size, cast ingots were powder processed to reduce powder particle size. Three different powder processing methods were used (1) dry milling only, (2) wet milling only, or (3) dry milling and wet milling The specimens were fabricated using hot pressing or pulsed electric current sintering (PECS) from planetary ball milled powders. In this study, elastic moduli, including Young's modulus, shear modulus, and Poisson's ratio, were measured dynamically using resonant ultrasound spectroscopy (RUS) at room temperature and as a function of temperature up to 663 K. The room temperature porosity dependence for Young's modulus followed the empirical exponential relationships common for brittle materials, with a material dependent constant bPE of 3.5 and 1.3 for LAST and PbTe-PbS, respectively. The room temperature Young's modulus for a theoretically dense specimen was 58.4 +/- 0.6 GPa and 56.2 +/- 0.4 GPa for for LAST and PbTe-PbS, respectively. For hot pressed PbTe-PbS specimens, the Vickers indentations mean hardness and fracture toughness was 1.18 + 0.09 GPa and 0.35 +/- 0.04 MPa·m 1/2. The coefficient of thermal expansion is important for understanding the mechanical response of a material to a thermal gradient or a thermal transient. For PbTe-PbS the coefficient of thermal expansion measured using dilatometry and high temperature x-ray diffraction was 21.5 x 10-6 K -1. Bloating during post-densification annealing was measured indirectly using resonant ultrasound spectroscopy and dilatometry and directly using scanning electron microscopy. Dry milled only PECS-processed PbTe-PbS specimens did not bloat during post-densification anneals up to 936 K. Hot pressed and PECS-processed specimens processed from wet milled and dry and wet milled powder bloated during densification anneals at temperatures over 603 K.

  10. Off-stoichiometric silver antimony telluride: An experimental study of transport properties with intrinsic and extrinsic doping

    Directory of Open Access Journals (Sweden)

    Michele D. Nielsen

    2015-05-01

    Full Text Available AgSbTe2 is a thermoelectric semiconductor with an intrinsically low thermal conductivity and a valence band structure that is favorable to obtaining a high thermoelectric figure of merit zT. It also has a very small energy gap Eg ∼ 7.6 ± 3 meV. As this gap is less than the thermal excitation energy at room temperature, near-intrinsic AgSbTe2 is a two carrier system having both holes (concentration p and electrons (n. Good thermoelectric performance requires heavy p-type doping (p > > n. This can be achieved with native defects or with extrinsic doping, e.g. with transition metal element. The use of defect doping is complicated by the fact that many of the ternary Ag-Sb-Te and pseudo-binary Sb2Te3-Ag2Te phase diagrams are contradictory. This paper determines the compositional region most favorable to creating a single phase material. Through a combination of intrinsic and extrinsic doping, values of zT > 1 are achieved, though not on single-phased material. Additionally, we show that thermal conductivity is not affected by defects, further demonstrating that the low lattice thermal conductivity of I-V-VI2 materials is due to an intrinsic mechanism, insensitive to changes in defect structure.

  11. Micro-Raman and UV-VIS Studies of 100 MeV Ni4+ Irradiated Cadmium Telluride Thin Films

    OpenAIRE

    Neelam Pahwa; A.D. Yadav; Dubey, S.K.; Patel, A. P.

    2011-01-01

    CdTe thin films grown by thermal evaporation on quartz substrates were irradiated with Swift (100 MeV) Ni 4 + ions for fluences in the range 1.0 × 1011 - 1.0 × 1013 cm – 2. The modification in the structure and optical properties has been studied as a function of ion fluence using Micro-Raman spectroscopy and UV-VIS spectroscopy. In Micro Raman spectrum, weak LO and TO modes of CdTe and A1 & E modes of Te were observed with blue shift which was found to increase with increase in fluence. Inte...

  12. A low-temperature study of manganese-induced ferromagnetism and valence band convergence in tin telluride

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hang, E-mail: chihang@bnl.gov [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States); Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Tan, Gangjian; Kanatzidis, Mercouri G. [Department of Chemistry, Northwestern University, Evanston, Illinois 60208 (United States); Li, Qiang [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973 (United States); Uher, Ctirad [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2016-05-02

    SnTe is renowned for its promise in advancing energy-related technologies based on thermoelectricity and for its topological crystalline insulator character. Here, we demonstrate that each Mn atom introduces ∼4 μ{sub B} (Bohr magneton) of magnetic moment to Sn{sub 1−x}Mn{sub x}Te. The Curie temperature T{sub C} reaches ∼14 K for x = 0.12, as observed in the field dependent hysteresis of magnetization and the anomalous Hall effect. In accordance with a modified two-band electronic Kane model, the light L-valence-band and the heavy Σ-valence-band gradually converge in energy with increasing Mn concentration, leading to a decreasing ordinary Hall coefficient R{sub H} and a favorably enhanced Seebeck coefficient S at the same time. With the thermal conductivity κ lowered chiefly via point defects associated with the incorporation of Mn, the strategy of Mn doping also bodes well for efficient thermoelectric applications at elevated temperatures.

  13. 76 FR 46288 - Adequacy Determination for Colorado Springs, Cañon City, Greeley, Pagosa Springs, and Telluride...

    Science.gov (United States)

    2011-08-02

    ... particulate matter less than or equal to 10 microns in size.) Once this finding becomes effective, the Pikes Peak Area Council of Governments (PPACG), the North Front Range Metropolitan Planning Organization... determinations. DATES: This finding is effective August 17, 2011. FOR FURTHER INFORMATION CONTACT: Tim Russ, Air...

  14. Detection of mercury ions using silver telluride nanoparticles as a substrate and recognition element through surface-enhanced Raman scattering

    Directory of Open Access Journals (Sweden)

    Chia-Wei eWang

    2013-10-01

    Full Text Available In this paper we unveil a new sensing strategy for sensitive and selective detection of Hg2+ through surface-enhanced Raman scattering (SERS using Ag2Te nanoparticles (NPs as a substrate and recognition element and rhodamine 6G (R6G as a reporter. Ag2Te NPs prepared from tellurium dioxide and silver nitrate and hydrazine in aqueous solution containing sodium dodecyl sulfate at 90ºC with an average size of 26.8 ± 4.1 nm (100 counts have strong SERS activity. The Ag2Te substrate provides strong SERS signals of R6G with an enhancement factor of 3.6 × 105 at 1360 cm-1, which is comparable to Ag NPs. After interaction of Ag2Te NPs with Hg2+, some HgTe NPs are formed, leading to decreases in the SERS signal of R6G, mainly because HgTe NPs relative to Ag2Te NPs have weaker SERS activity. Under optimum conditions, this SERS approach using Ag2Te as substrates is selective for the detection of Hg2+, with a limit of detection of 3 nM and linearity over 10-150 nM. The practicality of this approach has been validated for the determination of the concentrations of spiked Hg2+ in a pond water sample.

  15. Critical behavior of the quasi-two-dimensional weak itinerant ferromagnet trigonal chromium telluride Cr0.62Te

    Science.gov (United States)

    Liu, Yu; Petrovic, C.

    2017-10-01

    The critical properties of flux-grown single-crystalline quasi-two-dimensional weak itinerant ferromagnet Cr0.62Te were investigated by bulk dc magnetization around the paramagnetic to ferromagnetic phase transition. Critical exponents β =0.315 (7 ) with a critical temperature Tc=230.6 (3 ) K and γ =1.81 (2 ) with Tc=229.1 (1 ) K are obtained by the Kouvel-Fisher method whereas δ =6.35 (4 ) is obtained by a critical isotherm analysis at Tc=230 K. With these obtained exponents, the magnetization-field-temperature curves collapse into two independent curves following a single scaling equation M | T/-Tc Tc|-β=f±(H | T/-Tc Tc|-βδ) around Tc, suggesting the reliability of the obtained exponents. Additionally, the determined exponents of Cr0.62Te exhibit an Ising-like behavior with a change from short-range order to long-range order in the nature of magnetic interaction and with an extension from two to three dimensions on cooling through Tc.

  16. Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Michael David [Iowa State Univ., Ames, IA (United States)

    2001-05-01

    Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn,Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.

  17. Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, Michael David [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn, Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.

  18. Spatial Mapping of the Mobility-Lifetime (microtau) Production in Cadmium Zinc Telluride Nuclear Radiation Detectors Using Transport Imaging

    Science.gov (United States)

    2013-06-01

    its good electron transport. However, CdZnTe crystals are susceptible to growth defects such as grain boundaries, twin boundaries, and tellurium (Te...good electron transport. However, CdZnTe crystals are susceptible to growth defects such as grain boundaries, twin boundaries, and tellurium (Te...lifetime (left) or non-radiative lifetime (right). ..............63 Figure 49. Gettering of excess tellurium towards a point defect within the CdZnTe

  19. Development Of Position-sensitive Cadmium Zinc Telluride Detectors For High-energy X-ray Astrophysics

    CERN Document Server

    Slavis, K R

    2001-01-01

    This dissertation reports on the studies of an orthogonal cross-strip CdZnTe detector for high-energy X-ray (20–250 keV) astrophysics applications. The intrinsic three-dimensional detector response and the effectiveness of using various shielding techniques at balloon altitudes are investigated. This detector has great promise for use as the imaging detector of a large- area, coded-mask instrument in an all-sky high-energy X- ray survey or as the focal-plane detector for an X-ray focusing telescope (Constellation-X) for high throughput, high resolution X-ray spectroscopy (6–40 keV). The most recent hard X-ray all-sky survey was conducted by HEAO-1/A4 in 1978, and one has not been conducted since then due to performance limitations of available X-ray detector technology. The next generation instruments need to have sub-degree angular resolution, good sensitivity in the hard X-ray band (3σ sensitivity to sub- mCrab), and few keV energy resolution. This performance is demonstrated u...

  20. An XPS study of bromine in methanol etching and hydrogen peroxide passivation treatments for cadmium zinc telluride radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Babar, S.; Sellin, P.J.; Watts, J.F. [Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Baker, M.A., E-mail: M.Baker@surrey.ac.uk [Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer CdZnTe single crystal etched in bromine-in-methanol and passivated in H{sub 2}O{sub 2}. Black-Right-Pointing-Pointer XPS depth used to accurately determine enriched Te layer and TeO{sub 2} thickness. Black-Right-Pointing-Pointer For 0.2 and 2.0 (v/v) % bromine-in-methanol treatments, enriched Te layer thickness determined to be 1.3 and 1.8 nm, respectively. Black-Right-Pointing-Pointer After passivation in 30 wt.% H{sub 2}O{sub 2}, the oxide thickness varies between 1.0 and 1.25 nm depending on the calculation method. - Abstract: The performance of single crystal CdZnTe radiation detectors is dependent on both the bulk and the surface properties of the material. After single crystal fabrication and mechanical polishing, modification of the surface to remove damage and reduce the surface leakage current is generally achieved through chemical etching followed by a passivation treatment. In this work, CdZnTe single crystals have been chemically etched using a bromine in methanol (BM) treatment. The BM concentrations employed were 0.2 and 2.0 (v/v) % and exposure times varied between 5 and 120 s. Angle resolved XPS and sputter depth profiling has been employed to characterize the surfaces for the different exposure conditions. A Te rich surface layer was formed for all exposures and the layer thickness was found to be independent of exposure time. The enriched Te layer thickness was accurately determined by calibrating the sputter rate against a CdTe layer of known thickness. For BM concentrations of 0.2 (v/v) % and 2 (v/v) %, the Te layer thickness was determined to be 1.3 {+-} 0.2 and 1.8 {+-} 0.2 nm, respectively. The BM etched surfaces have subsequently been passivated in a 30 wt.% H{sub 2}O{sub 2} solution employing exposure time of 15 s. The oxide layer thickness has been calculated using two standard XPS methodologies, based on the Beer-Lambert expression. The TeO{sub 2} thickness calculated from ARXPS data are slightly higher than the thickness obtained by the simplified Beer-Lambert expression. For BM exposures of 30-120 s followed by a passivation treatment of 30 wt. % H{sub 2}O{sub 2} solution employing an exposure time 15 s, the ARXPS method gave an average TeO{sub 2} thickness value of 1.20 nm and the simplified Beer-Lambert expression gave an average thickness value of 0.99 nm.

  1. An XPS study of bromine in methanol etching and hydrogen peroxide passivation treatments for cadmium zinc telluride radiation detectors

    OpenAIRE

    Babar, S.; Sellin, PJ; Watts, JF; Baker, MA

    2013-01-01

    The performance of single crystal CdZnTe radiation detectors is dependent on both the bulk and the surface properties of the material. After single crystal fabrication and mechanical polishing, modification of the surface to remove damage and reduce the surface leakage current is generally achieved through chemical etching followed by a passivation treatment. In this work, CdZnTe single crystals have been chemically etched using a bromine in methanol (BM) treatment. The BM concentrations empl...

  2. Structural, electronic transport and magnetoresistance of a 142nm lead telluride nanowire synthesized using stress-induced growth

    Directory of Open Access Journals (Sweden)

    Dedi

    2014-05-01

    Full Text Available In this study, structurally uniform single crystalline PbTe nanowires (NWs were synthesized using a stress-induced growth. Selected-area electron diffraction patterns show that the PbTe NWs were grown along the [100] direction. The electrical conductivity σ of a NW with 142 nm in diameter exhibited a semiconducting behavior at 50–300 K. An enhancement of electrical conductivity σ up to 2383 S m−1 at 300 K is much higher than σ [0.44–1526 S m−1, Chen et al., Appl. Phys. Lett. 103, p023115, (2013] in previous studies. The room temperature magnetoresistance of the 142 nm NW was ∼0.8% at B = 2 T, which is considerably higher than that [0.2% at B = 2 T, Ovsyannikov et al., Sol. State Comm. 126, 373, (2003] of the PbTe bulk reported.

  3. Time-dependent changes in copper indium gallium (di)selenide and cadmium telluride photovoltaic modules due to outdoor exposure

    Science.gov (United States)

    Choi, Sungwoo; Sato, Ritsuko; Ishii, Tetsuyuki; Chiba, Yasuo; Masuda, Atsushi

    2017-08-01

    The performance of photovoltaic (PV) modules deteriorates with time due to outdoor exposure. We investigated the time-dependent changes in PV modules and evaluated the amount of power generated during their lifetime. Once a year, the exposed modules were removed and measured under standard test conditions using a solar simulator. Their outputs were measured indoors and normalized to nominal values. In addition, the relationship between the indoor measurement and the energy yield for thin-film PV modules will be reported. In CIGS PV modules, the normalized maximum power (P MAX) and performance ratio (PR) differ with the type of module. The P MAX and PR of CdTe PV modules significantly decrease after outdoor exposure for three years. These results help to determine the characteristics of the time-dependent changes in the P MAX of PV modules due to outdoor exposure.

  4. Polycrystalline thin film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report, 20 March 1995--19 March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Trefny, J U; Mao, D [Colorado School of Mines, Golden, CO (United States)

    1997-04-01

    The objective of this project is to develop improved processes for fabricating CdTe/CdS polycrystalline thin-film solar cells. Researchers used electrodeposition to form CdTe; electrodeposition is a non-vacuum, low-cost technique that is attractive for economic, large-scale production. During the past year, research and development efforts focused on several steps that are most critical to the fabricating high-efficiency CdTe solar cells. These include the optimization of the CdTe electrodeposition process, the effect of pretreatment of CdS substrates, the post-deposition annealing of CdTe, and back-contact formation using Cu-doped ZnTe. Systematic investigations of these processing steps have led to a better understanding and improved performance of the CdTe-based cells. Researchers studied the structural properties of chemical-bath-deposited CdS thin films and their growth mechanisms by investigating CdS samples prepared at different deposition times; investigated the effect of CdCl{sub 2} treatment of CdS films on the photovoltaic performance of CdTe solar cells; studied Cu-doped ZnTe as a promising material for forming stable, low-resistance contacts to the p-type CdTe; and investigated the effect of CdTe and CdS thickness on the photovoltaic performance of the resulting cells. As a result of their systematic investigation and optimization of the processing conditions, researchers improved the efficiency of CdTe/CdS cells using ZnTe back-contact and electrodeposited CdTe. The best CdTe/CdS cell exhibited a V{sub oc} of 0.778 V, a J{sub sc} of 22.4 mA/cm{sup 2}, a FF of 74%, and an efficiency of 12.9% (verified at NREL). In terms of individual parameters, researchers obtained a V{sub oc} over 0.8 V and a FF of 76% on other cells.

  5. Leaching of cadmium and tellurium from cadmium telluride (CdTe) thin-film solar panels under simulated landfill conditions.

    Science.gov (United States)

    Ramos-Ruiz, Adriana; Wilkening, Jean V; Field, James A; Sierra-Alvarez, Reyes

    2017-08-15

    A crushed non-encapsulated CdTe thin-film solar cell was subjected to two standardized batch leaching tests (i.e., Toxicity Characteristic Leaching Procedure (TCLP) and California Waste Extraction Test (WET)) and to a continuous-flow column test to assess cadmium (Cd) and tellurium (Te) dissolution under conditions simulating the acidic- and the methanogenic phases of municipal solid waste landfills. Low levels of Cd and Te were solubilized in both batch leaching tests (<8.2% and <3.6% of added Cd and Te, respectively). On the other hand, over the course of 30days, 73% of the Cd and 21% of the Te were released to the synthetic leachate of a continuous-flow column simulating the acidic landfill phase. The dissolved Cd concentration was 3.24-fold higher than the TCLP limit (1mgL-1), and 650-fold higher than the maximum contaminant level established by the US-EPA for this metal in drinking water (0.005mgL-1). In contrast, the release of Cd and Te to the effluent of the continuous-flow column simulating the methanogenic phase of a landfill was negligible. The remarkable difference in the leaching behavior of CdTe in the columns is related to different aqueous pH and redox conditions promoted by the microbial communities in the columns, and is in agreement with thermodynamic predictions. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effect of Annealing On Thin Film Fabrication of Cadmium Zinc Telluride by Single-R.F. Magnetron Sputtering Unit

    OpenAIRE

    Dr. Monisha Chakraborty A,; Sugata Bhattacharyya

    2014-01-01

    In this work, formation of Cd1-xZnxTe thin films under various annealing-environments, created by layer by layer deposition of individual CdTe and ZnTe targets from a Single-R.F. Magnetron Sputtering unit is investigated. Structural and optical characterization results show that Vacuum Annealing is the best suitable for the formation of better Cd1-xZnxTe XRD peaks of higher intensities in comparison to Argon or Nitrogen-Annealing, for a bi-layered deposited CdTe and ZnTe film on glass substra...

  7. Gated tomographic radionuclide angiography using cadmium-zinc-telluride detector gamma camera; comparison to traditional gamma cameras

    DEFF Research Database (Denmark)

    Jensen, Maria Maj; Schmidt, Ulla; Huang, Chenxi

    2014-01-01

    PURPOSE: Estimation of left ventricular ejection fraction (LVEF) with equilibrium 99MTc-HSA equilibrium radionuclide angiography (MUGA) is frequently used for assessing cardiac function. The purpose of this study was to compare intra- and interobserver variation between three different gamma...

  8. Anti-L1CAM radioimmunotherapy is more effective with the radiolanthanide terbium-161 compared to lutetium-177 in an ovarian cancer model

    Energy Technology Data Exchange (ETDEWEB)

    Gruenberg, Juergen; Lindenblatt, Dennis; Cohrs, Susan; Fischer, Eliane [Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); Dorrer, Holger [Paul Scherrer Institute, Laboratory of Radiochemistry and Environmental Chemistry, Villigen (Switzerland); Zhernosekov, Konstantin [ITG Isotope Technologies Garching GmbH, Garching (Germany); Koester, Ulli [Institut Laue-Langevin, Grenoble (France); Tuerler, Andreas [Paul Scherrer Institute, Laboratory of Radiochemistry and Environmental Chemistry, Villigen (Switzerland); University of Bern, Department of Chemistry and Biochemistry, Berne (Switzerland); Schibli, Roger [Paul Scherrer Institute, Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Villigen (Switzerland); ETH Zurich, Department of Chemistry and Applied Biosciences, Zurich (Switzerland)

    2014-10-15

    The L1 cell adhesion molecule (L1CAM) is considered a valuable target for therapeutic intervention in different types of cancer. Recent studies have shown that anti-L1CAM radioimmunotherapy (RIT) with {sup 67}Cu- and {sup 177}Lu-labelled internalising monoclonal antibody (mAb) chCE7 was effective in the treatment of human ovarian cancer xenografts. In this study, we directly compared the therapeutic efficacy of anti-L1CAM RIT against human ovarian cancer under equitoxic conditions with the radiolanthanide {sup 177}Lu and the potential alternative {sup 161}Tb in an ovarian cancer therapy model. Tb was produced by neutron bombardment of enriched {sup 160}Gd targets. {sup 161}Tb and {sup 177}Lu were used for radiolabelling of DOTA-conjugated antibodies. The in vivo behaviour of the radioimmunoconjugates (RICs) was assessed in IGROV1 tumour-bearing nude mice using biodistribution experiments and SPECT/CT imaging. After ascertaining the maximal tolerated doses (MTD) the therapeutic impact of 50 % MTD of {sup 177}Lu- and {sup 161}Tb-DOTA-chCE7 was evaluated in groups of ten mice by monitoring the tumour size of subcutaneous IGROV1 tumours. The average number of DOTA ligands per antibody was 2.5 and maximum specific activities of 600 MBq/mg were achieved under identical radiolabelling conditions. RICs were stable in human plasma for at least 48 h. {sup 177}Lu- and {sup 161}Tb-DOTA-chCE7 showed high tumour uptake (37.8-39.0 %IA/g, 144 h p.i.) with low levels in off-target organs. SPECT/CT images confirmed the biodistribution data. {sup 161}Tb-labelled chCE7 revealed a higher radiotoxicity in nude mice (MTD: 10 MBq) than the {sup 177}Lu-labelled counterpart (MTD: 12 MBq). In a comparative therapy study with equitoxic doses, tumour growth inhibition was better by 82.6 % for the {sup 161}Tb-DOTA-chCE7 than the {sup 177}Lu-DOTA-chCE7 RIT. Our study is the first to show that anti-L1CAM {sup 161}Tb RIT is more effective compared to {sup 177}Lu RIT in ovarian cancer xenografts. These results suggest that {sup 161}Tb is a promising candidate for future clinical applications in combination with internalising antibodies. (orig.)

  9. CCDC 954774: Experimental Crystal Structure Determination : Dimethylammonium tri-terbium tris(4'-(tetrazol-2-id-5-yl)biphenyl-4-carboxylate) tetrahydroxide trihydrate unknown solvate

    KAUST Repository

    Xue, Dongxu

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  10. CCDC 959634: Experimental Crystal Structure Determination : octakis(mu~3~-Hydroxo)-undecakis(mu~2~-2-fluorobenzoato)-(N,N-dimethylformamide)-nitrato-hexa-aqua-hexa-terbium

    KAUST Repository

    Guillerm, Vincent

    2014-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  11. CCDC 954773: Experimental Crystal Structure Determination : Dimethylammonium tri-terbium tris(4-(tetrazol-2-id-5-yl)benzoate) tetrahydroxide trihydrate unknown solvate

    KAUST Repository

    Xue, Dongxu

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  12. CCDC 954775: Experimental Crystal Structure Determination : Dimethylammonium tri-terbium tris(2-fluoro-4-(1H-tetrazol-5-yl)benzoate) tetrahydroxide tetradecahydrate

    KAUST Repository

    Xue, Dongxu

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  13. CCDC 1411423: Experimental Crystal Structure Determination : catena-[dimethylammonium hexakis(mu-fumarato)-octakis(mu-hydroxo)-hexa-terbium N,N-dimethylformamide solvate hexahydrate

    KAUST Repository

    Assen, Ayalew H.

    2016-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  14. CCDC 1410946: Experimental Crystal Structure Determination : catena-[dimethylammonium tris(mu-naphthalene-1,4-dicarboxylato)-tetrakis(mu-hydroxo)-triaqua-tri-terbium(iii) unknown solvate

    KAUST Repository

    Xue, Dongxu

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  15. Phthalimides: Supramolecular Interactions in Crystals, Hypersensitive Solution 1H-NMR Dynamics and Energy Transfer to Europium(III and Terbium(III States

    Directory of Open Access Journals (Sweden)

    David J. Williams

    2003-07-01

    Full Text Available Detailed crystal structures and 1H-NMR characteristics of some alkylaminephthalimides, including dendritic polyphthalimides, are reported. These investigations were undertaken in order to obtain a better understanding of the relationship between solid-state supramolecular interactions, their persistence in solution and associated dynamics of magnetically hypersensitive phthalimide aromatic AA'BB'-AA'XX' proton NMR resonances. Some alkylamine phthalimides feature folded molecular geometries, which we attribute to n-π interactions among proximal amine-phthalimide sites; those alkylamine-phthalimides that have no possibility for such interactions feature fully extended phthalimide functionalities. Accordingly, alkylamine phthalimide compounds with folded solid-state geometries feature solvent and temperature dependent hypersensitive AA'BB'-AA'XX' 1H-NMR line profiles, which we attribute to the n-π interactions. Luminescence of Eu3+(5D0 and Tb3+(5D4 states show well defined metal ion environments in their complexes with dendritic phthalimides, as well as relatively weak phthalimide-lanthanide(III interactions.

  16. Analysis of tryptophan at nmoll(-1) level based on the fluorescence enhancement of terbium-gadolinium-tryptophan-sodium dodecyl benzene sulfonate system.

    Science.gov (United States)

    Liu, Shufang; Yang, Jinghe; Wu, Xia; Su, Benyu; Sun, Changxia; Wang, Feng

    2004-10-08

    It is found that Tb(3+) can react with tryptophan (Trp) and sodium dodecyl benzene sulfonate (SDBS), and emits the intrinsic fluoresence of Tb(3+). The fluorescence intensity can be enhanced by La(3+), Gd(3+), Lu(3+), Sc(3+) and Y(3+), among which Gd(3+) has the greatest enhancement. This is a new co-luminescence system. The studies indicate that in the Tb-Gd-Trp-SDBS system, there is both Tb-Trp-SDBS and Gd-Trp-SDBS complexes, and they aggregate together and form a large congeries. The fluorescence enhancement of the Tb-Gd-Trp-SDBS system is considered to originate from intramolecular and intermolecular energy transfers, and the energy-insulating sheath effect of Gd-Trp-SDBS complex. Under the optimum conditions, the enhanced intensity of fluorescence is in proportion to the concentration of Trp in the range from 4x10(-8) to 4x10(-5)moll(-1). The detection limit is 10(-9)moll(-1). The proposed method is one of the most sensitive fluoremetries of Trp.

  17. Preparation, characterization, and properties of PMMA-doped polymer film materials: a study on the effect of terbium ions on luminescence and lifetime enhancement.

    Science.gov (United States)

    Zhang, Hui-Jie; Fan, Rui-Qing; Wang, Xin-Ming; Wang, Ping; Wang, Yu-Lei; Yang, Yu-Lin

    2015-02-14

    Poly(methylmethacrylate) (PMMA) doped with Tb-based imidazole derivative coordination polymer {[Tb(3)(L)(μ(3)-OH)(7)]·H(2)O}(n) (1) (L = N,N'-bis(acetoxy)biimidazole) was synthesized and its photophysical properties were studied. The L'(L' = N,N'-bis(ethylacetate)biimidazole) ligand was synthesized by an N-alkylation reaction process followed by ester hydrolysis to produce ligand L. Polymer 1 and ligand L' have been characterized by (1)H NMR and IR spectroscopy, elemental analysis, PXRD and X-ray single-crystal diffraction. Coordination polymer 1 is the first observation of a CdCl(2) structure constructed with hydroxy groups and decorated by ligand L in lanthanide N-heterocyclic coordination polymers. In the 2D layered structure of 1, each Tb3 metal center is connected with three Tb1 and three Tb2 metal centers by seven hydroxyl groups in different directions, resulting in a six-membered ring. After doping, not only the luminescence intensity and lifetime enhanced, but also their thermal stability was increased in comparison with 1. When 1 was doped into poly(methylmethacrylate) (1@PMMA), polymer film materials were formed with the PMMA polymer matrix (w/w = 2.5%-12.5%) acting as a co-sensitizer for Tb(3+) ions. The luminescence intensity of the Tb(3+) emission at 544 nm increases when the content of Tb(3+) was 10%. The lifetime of 1@PMMA (914.88 μs) is more than four times longer than that of 1 (196.24 μs). All τ values for the doped polymer systems are higher than coordination polymer 1, indicating that radiative processes are operative in all the doped polymer films. This is because PMMA coupling with the O-H oscillators from {[Tb(3)(L)(μ(3)-OH)(7)]·H(2)O}(n) can suppress multiphonon relaxation. According to the variable-temperature luminescence (VT-luminescence) investigation, 1@PMMA was confirmed to be a stable green luminescent polymer film material.

  18. Changing Single-Molecule Magnet Properties of a Windmill-Like Distorted Terbium(III) α-Butoxy-Substituted Phthalocyaninato Double-Decker Complex by Protonation/Deprotonation.

    Science.gov (United States)

    Horii, Yoji; Horie, Yusuke; Katoh, Keiichi; Breedlove, Brian K; Yamashita, Masahiro

    2018-01-16

    Synthesis, structures, and magnetic properties of α-butoxy-substituted phthalocyaninato double-decker complexes Tb(α-obPc)2 (1-) (α-obPc: dianion of 1,4,8,11,15,18,22,25-octa(n-butoxy)phthalocyaninato) with protonated (1H), deprotonated (1[HDBU]), and diprotonated forms (1H2+) are discussed. X-ray analysis was used to confirm the position of the proton in 1H, and it was revealed that the protonation induced asymmetric distortion in 1H. In contrast, 1[HDBU] was distorted in a highly symmetric windmill-like fashion. 1H is arranged in a slipped column array in the crystal packing, whereas 1[HDBU] is arranged in a one-dimensional fashion, in which the magnetic easy axes of 1[HDBU] lie along the same line. From direct-current (dc) magnetic measurements, ferromagnetic Tb-Tb interactions occur in both 1H and 1[HDBU], and magnetic hysteresis was observed. However, the area of the magnetic hysteresis in 1[HDBU] is larger than that in 1H, meaning that magnetic relaxation time (τ) is longer in 1[HDBU]. In addition, the results of alternating-current magnetic measurements in a zero dc magnetic field indicate that τ of 1[HDBU] is longer as compared to 1H. In other words, protonation/deprotonation affects not only the molecular structures and crystal packing but also the single-molecule magnet properties.

  19. A Water-Stable Dual-Channel Luminescence Sensor for UO22+Ions Based on an Anionic Terbium(III) Metal-Organic Framework.

    Science.gov (United States)

    Ye, Junwei; Bogale, Raji F; Shi, Yangwei; Chen, Yanzhen; Liu, Xigang; Zhang, Siqi; Yang, Yaoyao; Zhao, Jianzhang; Ning, Guiling

    2017-06-07

    A stable 3D Tb III -based metal-organic framework [Tb(BPDC) 2 ]⋅(CH 3 ) 2 NH 2 (DUT-101) was synthesized, and it is the first efficient dual-channel luminescence sensor for aqueous UO 2 2+ ions. DUT-101 contains an anionic three-dimensional framework and protonated dimethylamine molecules embedded within the channels. The intense green emission of DUT-101 could be highly selectively and sensitively quenched by UO 2 2+ ions even in the presence of other competing metal ions. A possible sensing mechanism was proposed based on both suppression of luminescence resonance energy transfer and enhancement of intermolecular electron transfer. Furthermore, visual green fluorescent test papers based on DUT-101 were fabricated and could be used to discriminate UO 2 2+ ions among various metal ions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [?-N,N?-Bis(3-meth?oxy-2-oxidobenzyl?idene)propane-1,3-diamine]trinitratocopper(II)terbium(III) acetone solvate

    OpenAIRE

    Zhang Fang; Liu Fei

    2008-01-01

    In the title complex, [CuTb(C19H20N2O4)(NO3)3]·CH3COCH3, the CuII atom is four-coordinated by two O atoms and two N atoms from the deprotonated Schiff base in a square-planar geometry, while the TbIII atom is ten-coordinated by four O atoms from the deprotonated Schiff base and six O atoms from three bidentate nitrate anions. The compound is isostructural with the previously reported GdIII analogue [Elmali & Elerman (2004). Z. Naturforsch. Teil B, 59, 535–540], which was described ...

  1. Crystal structure of a mixed-ligand terbium(III coordination polymer containing oxalate and formate ligands, having a three-dimensional fcu topology

    Directory of Open Access Journals (Sweden)

    Chainok Kittipong

    2016-01-01

    Full Text Available The title compound, poly[(μ3-formato(μ4-oxalatoterbium(III], [Tb(CHO2(C2O4]n, is a three-dimensional coordination polymer, and is isotypic with the LaIII, CeIII and SmIII analogues. The asymmetric unit contains one TbIII ion, one formate anion (CHO2− and half of an oxalate anion (C2O42−, the latter being completed by application of inversion symmetry. The TbIII ion is nine-coordinated in a distorted tricapped trigonal–prismatic manner by two chelating carboxylate groups from two C2O42− ligands, two carboxylate oxygen atoms from another two C2O42− ligands and three oxygen atoms from three CHO2− ligands, with the Tb—O bond lengths and the O—Tb—O bond angles ranging from 2.4165 (19 to 2.478 (3 Å and 64.53 (6 to 144.49 (4°, respectively. The CHO2− and C2O42− anions adopt μ3-bridging and μ4-chelating-bridging coordination modes, respectively, linking adjacent TbIII ions into a three-dimensional 12-connected fcu topology with point symbol (324.436.56. The title compound exhibits thermal stability up to 623 K, and also displays strong green photoluminescence in the solid state at room temperature.

  2. Polycrystalline thin-film cadmium telluride solar cells fabricated by electrodeposition. Annual subcontract report, 20 March 1992--19 March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Trefny, J.U.; Furtak, T.E.; Wada, N.; Williamson, D.L.; Kim, D. [Colorado School of Mines, Golden, CO (US)

    1993-08-01

    This report describes progress during the first year of a 3-year program at Colorado School of Mines, based upon earlier studies performed by Ametek Corporation, to develop specific layers of the Ametek n-i-p structure as well as additional studies of several transparent conducting oxides. Thin films of ZnO and ZnO:Al were deposited under various conditions. For the n-layer of the Ametek structure, a dip-coating method was developed for the deposition of CdS films. The authors also present data on the characterization of these films by X-ray diffraction, Raman spectroscopy, scanning tunneling microscopy, small-angle X-ray scattering, and other techniques. They made progress in the electrodeposition of the CdTe i-layer of the Ametek structure. They developed appropriate electrochemical baths and are beginning to understand the role of the many experimental parameters that must be controlled to obtain high-quality films of this material. They explored the possibility of using an electrochemical process for fabricating the ZnTe p-layer. Some preliminary success was achieved, and this step will be pursued in the next phase. Finally, they fabricated a number of ``dot`` solar cells with the structure glass/SnO{sub 2}/CdS/CdTe/Au. Several cells with efficiencies in the range of 5%-6% were obtained, and they are confident, given recent progress, that cells with efficiencies in excess of 10% will be achieved in the near future.

  3. Band-structure calculations, and magnetic and transport properties of ferromagnetic chromium tellurides (CrTe, Cr3Te4, Cr2Te3)

    NARCIS (Netherlands)

    Dijkstra, J.; Weitering, H.H.; Haas, C.; Groot, R.A. de

    1989-01-01

    Electronic band-structure calculations are presented for the ferromagnetic compounds CrTe, Cr3Te4 and Cr2Te3. In these compounds the Cr 3d-Te 5p covalency and the Cr 3dz2-Cr 3dz2 overlap along the c axis are the most important interactions. The magnetic polarisation of Te is parallel to the Cr local

  4. New CZT cardiac cameras and myocardial perfusion imaging with thallium 201; Nouvelles cameras cardiaques a semi-conducteur cadmium -zinc- telluride (CZT) et scintigraphies myocardiques au thallium 201

    Energy Technology Data Exchange (ETDEWEB)

    Songy, B. [Service de medecine et imagerie nucleaire, centre cardiologique du Nord (CCN), 93 - Saint-Denis (France)

    2010-08-15

    Myocardial perfusion imaging is widely used for management of coronary artery disease. However, it suffers from technical limitations. New cardiac cameras using CZT detectors are now available and increase spatial (x2) and energy (x2) resolutions and photons sensitivity (x5). We describe here the General Electric Discovery NM 530c new camera and summarize the validation studies with technetium agents and with thallium 201, protocols to reduce doses, ultrafast protocols and perspectives offered with this new technology. (author)

  5. Effects of Long-term exposure of Gelatinated and Non-gelatinated Cadmium Telluride Quantum Dots on Differentiated PC12 cells

    LENUS (Irish Health Repository)

    Prasad, Babu R

    2012-01-20

    Abstract Background The inherent toxicity of unmodified Quantum Dots (QDs) is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA) capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12) cells. The QD - cell interactions were investigated after incubation periods of up to 17 days by MTT and APOTOX-Glo Triplex assays along with using confocal microscopy. Results Long term exposure (up to 17 days) to gelatinated TGA-capped CdTe QDs of PC12 cells in the course of differentiation and after neurites were grown resulted in dramatically reduced cytotoxicity compared to non-gelatinated TGA-capped CdTe QDs. Conclusion The toxicity mechanism of QDs was identified as caspase-mediated apoptosis as a result of cadmium leaking from the core of QDs. It was therefore concluded that the gelatine capping on the surface of QDs acts as a barrier towards the leaking of toxic ions from the core QDs in the long term (up to 17 days).

  6. Removal of CdTe in acidic media by magnetic ion-exchange resin: A potential recycling methodology for cadmium telluride photovoltaic waste

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Teng, E-mail: zhangteng@mail.iee.ac.cn; Dong, Zebin; Qu, Fei; Ding, Fazhu; Peng, Xingyu; Wang, Hongyan; Gu, Hongwei

    2014-08-30

    Highlights: • Sulfonated magnetic microsphere was prepared as one strong acid cation-exchange resin. • Cd and Te can be removed directly from the highly acidic leaching solution of CdTe. • Good chemical stability, fast adsorbing rate and quick magnetic separation in strong acidic media. • A potential path for recycling CdTe photovoltaic waste. - Abstract: Sulfonated magnetic microspheres (PSt-DVB-SNa MPs) have been successfully prepared as adsorbents via an aqueous suspension polymerization of styrene-divinylbenzene and a sulfonation reaction successively. The resulting adsorbents were confirmed by means of Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope equipped with an energy dispersive spectrometer (SEM-EDS) and vibrating sample magnetometer (VSM). The leaching process of CdTe was optimized, and the removal efficiency of Cd and Te from the leaching solution was investigated. The adsorbents could directly remove all cations of Cd and Te from a highly acidic leaching solution of CdTe. The adsorption process for Cd and Te reached equilibrium in a few minutes and this process highly depended on the dosage of adsorbents and the affinity of sulfonate groups with cations. Because of its good adsorption capacity in strong acidic media, high adsorbing rate, and efficient magnetic separation from the solution, PSt-DVB-SNa MPs is expected to be an ideal material for the recycling of CdTe photovoltaic waste.

  7. Embedded vertically aligned cadmium telluride nanorod arrays grown by one-step electrodeposition for enhanced energy conversion efficiency in three-dimensional nanostructured solar cells.

    Science.gov (United States)

    Wang, Jun; Liu, Shurong; Mu, Yannan; Liu, Li; A, Runa; Yang, Jiandong; Zhu, Guijie; Meng, Xianwei; Fu, Wuyou; Yang, Haibin

    2017-11-01

    Vertically aligned CdTe nanorods (NRs) arrays are successfully grown by a simple one-step and template-free electrodeposition method, and then embedded in the CdS window layer to form a novel three-dimensional (3D) heterostructure on flexible substrates. The parameters of electrodeposition such as deposition potential and pH of the solution are varied to analyze their important role in the formation of high quality CdTe NRs arrays. The photovoltaic conversion efficiency of the solar cell based on the 3D heterojunction structure is studied in detail. In comparison with the standard planar heterojunction solar cell, the 3D heterojunction solar cell exhibits better photovoltaic performance, which can be attributed to its enhanced optical absorption ability, increased heterojunction area and improved charge carrier transport. The better photoelectric property of the 3D heterojunction solar cell suggests great application potential in thin film solar cells, and the simple electrodeposition process represents a promising technique for large-scale fabrication of other nanostructured solar energy conversion devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Bis(3-methyl-2-pyridyl)ditelluride and pyridyl tellurolate complexes of zinc, cadmium, mercury: Synthesis, characterization and their conversion to metal telluride nanoparticles.

    Science.gov (United States)

    Kedarnath, G; Jain, Vimal K; Wadawale, Amey; Dey, Gautam K

    2009-10-21

    Treatment of an acetonitrile solution of metal chloride with bis(3-methyl-2-pyridyl)ditelluride, [Te(2)(pyMe)(2)], in the same solvent yielded complexes of composition [MCl(2){Te(2)(pyMe)(2)}] (M = Zn or Cd) whereas reactions of [MCl(2)(tmeda)] with NaTepyR (R = H or Me) gave tellurolate complexes of the general formula [M(TepyR)(2)] (M = Cd or Hg). When the cadmium complex [Cd(Tepy)(2)] was crystallized in the presence of excess tmeda, [Cd(Tepy)(2)(tmeda)] was formed exclusively. These complexes were characterized by elemental analyses, uv-vis, (1)H NMR data. The crystal structures of [ZnCl(2){Te(2)(pyMe)(2)}] and [Cd(Tepy)(2)(tmeda)] were established by single crystal X-ray diffraction. In the former zinc is coordinated to nitrogen atoms of the pyridyl group, while in the latter the coordination environment around tetrahedral cadmium is defined by the two neutral nitrogen atoms of tmeda, and two pyridyl tellurolate ligands. Thermal behavior of some of these complexes was studied by thermogravimetric analysis. Pyrolysis of [M(Tepy)(2)] in a furnace or in coordinating solvents such as hexadecylamine/tri-n-octylphosphine oxide (HDA/TOPO) at 350 and 160 degrees C, respectively gave MTe nanoparticles, which were characterized by uv-vis, photoluminiscence, XRD, EDAX and TEM.

  9. High-Efficiency Thin-Film Cadmium Telluride Photovoltaic Cells; Final Subcontract Report, Final Technical Report, 21 January 1994-31 March 1998

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A. D.; Bohn, R. G.

    1998-12-09

    This report describes work performed during the past year by The University of Toledo photovoltaics group. Researchers continued to develop rf sputtering for CdS/CdTe thin-film solar cells and to optimize the post-deposition process steps to match the characteristics of the sputtering process. During the fourth phase of the present contract, we focused on determining factors that limit the efficiency in our ''all-sputtered'' thin-film CdTe solar cells on soda-lime glass. These issues include controlling CdS/CdTe interdiffusion, understanding the properties of the CdS{sub x}Te{sub 1-x} alloy, optimizing process conditions for CdCl{sub 2} treatments, manipulating the influence of ion bombardment during rf sputtering, and understanding the role of copper in quenching photoluminescence and carrier lifetimes in CdTe. To better understand the important CdS/CdTe interdiffusion process, we have continued our collaboration with the University at Buffalo and Brookhaven National Synchrotron Light Source in measurements using grazing-incidence X-rays. Interdiffusion results in the formation of the ternary alloy material CdS{sub x}Te{sub 1-x} at or near the heterojunction, where its properties are critical to the operation of the solar cell. We have placed significant effort on characterizing this alloy, an effort begun in the last phase. A complete set of films spanning the alloy range, prepared by pulsed-laser deposition, has now been characterized by wavelength dispersive X-ray spectroscopy and optical absorption at NREL; by Raman scattering, X-ray diffraction, and electrical measurements in our lab; and by spectroscopic ellipsometry at Brooklyn College. We continued to participate in cooperative activity with the CdTe National Team. We prepared a series of depositions on borosilicate glass substrates having doped SnO{sub 2} layers coated with TiO{sub 2} (prepared by the University of South Florida and Harvard) and similar substrates having a resistive SnO{sub 2} layer on the doped tin oxide (fabricated by Golden Photon). The Golden Photon high-resistivity SnO{sub 2} structure yielded excellent cell performance.

  10. Effects of long-term exposure of gelatinated and non-gelatinated cadmium telluride quantum dots on differentiated PC12 cells

    Directory of Open Access Journals (Sweden)

    Prasad Babu R

    2012-01-01

    Full Text Available Abstract Background The inherent toxicity of unmodified Quantum Dots (QDs is a major hindrance to their use in biological applications. To make them more potent as neuroprosthetic and neurotherapeutic agents, thioglycolic acid (TGA capped CdTe QDs, were coated with a gelatine layer and investigated in this study with differentiated pheochromocytoma 12 (PC12 cells. The QD - cell interactions were investigated after incubation periods of up to 17 days by MTT and APOTOX-Glo Triplex assays along with using confocal microscopy. Results Long term exposure (up to 17 days to gelatinated TGA-capped CdTe QDs of PC12 cells in the course of differentiation and after neurites were grown resulted in dramatically reduced cytotoxicity compared to non-gelatinated TGA-capped CdTe QDs. Conclusion The toxicity mechanism of QDs was identified as caspase-mediated apoptosis as a result of cadmium leaking from the core of QDs. It was therefore concluded that the gelatine capping on the surface of QDs acts as a barrier towards the leaking of toxic ions from the core QDs in the long term (up to 17 days.

  11. Preliminary Final Environmental Assessment: Proposed Upgrades at the 6th Avenue, Mississippi, and Telluride Entry Control Facilities Buckley Air Force Base, Colorado

    Science.gov (United States)

    2008-05-01

    Twelve of the reptile species are snakes , including the bullsnake (Pituophis melanoleucus), plains hognose snake (Heterodon nasicus nasicus), and the...Wildlife Researcher ATTN: Mr. Brent Bibles Wildlife Research Center 317 W. Prospect Road Fort Collins, CO 80526 Colorado Department of...Street Buckley AFB, CO 80011-9551 Mr. Brent Bibles Wildlife Researcher Colorado Division of Wildlife Wildlife Research Center 317 W. Prospect

  12. Proceedings of U. S. Workshop on the Physics and Chemistry of Mercury Cadmium Telluride and Other IR Materials, Held in Danvers, Massachusetts on October 13 - 15, 1992

    Science.gov (United States)

    1992-10-15

    C. Smith, higher after the 350’C anneal, but the overall quantum Quinn Montague and Larry Presley for help with film efficiency of this sample...Masson and A. Yariv, J. Quantum Electron 19, 1335 (1983). 7. P. Capper, P.A.C. Whiffin, B.C. Easton, C.D. Maxey and 1. 12. P.J. Anthony and N.E...wafer lI-Vl 5971-8C, before and after annealing. tion, as was well demonstrated by Anthony and Cline4 ,5 strates once a few monolayers of( Hg,Cd )Te are

  13. Time-dependent toxicity of cadmium telluride quantum dots on liver and kidneys in mice: histopathological changes with elevated free cadmium ions and hydroxyl radicals.

    Science.gov (United States)

    Wang, Mengmeng; Wang, Jilong; Sun, Hubo; Han, Sihai; Feng, Shuai; Shi, Lu; Meng, Peijun; Li, Jiayi; Huang, Peili; Sun, Zhiwei

    2016-01-01

    A complete understanding of the toxicological behavior of quantum dots (QDs) in vivo is of great importance and a prerequisite for their application in humans. In contrast with the numerous cytotoxicity studies investigating QDs, only a few in vivo studies of QDs have been reported, and the issue remains controversial. Our study aimed to understand QD-mediated toxicity across different time points and to explore the roles of free cadmium ions (Cd(2+)) and hydroxyl radicals (·OH) in tissue damage. Male ICR mice were administered a single intravenous dose (1.5 µmol/kg) of CdTe QDs, and liver and kidney function and morphology were subsequently examined at 1, 7, 14, and 28 days. Furthermore, ·OH production in the tissue was quantified by trapping · OH with salicylic acid (SA) as 2,3-dihydroxybenzoic acid (DHBA) and detecting it using a high-performance liquid chromatography fluorescence method. We used the induction of tissue metallothionein levels and 2,3-DHBA:SA ratios as markers for elevated Cd(2+) from the degradation of QDs and ·OH generation in the tissue, respectively. Our experimental results revealed that the QD-induced histopathological changes were time-dependent with elevated Cd(2+) and ·OH, and could recover after a period of time. The Cd(2+) and ·OH exhibited delayed effects in terms of histopathological abnormalities. Histological assessments performed at multiple time points might facilitate the evaluation of the biological safety of QDs.

  14. CCDC 1410822: Experimental Crystal Structure Determination : heptakis(dimethylammonium) dodecakis(mu-hydroxo)-bis(mu-oxo)-nonaaqua-nona-terbium tris(octakis(mu-hydroxo)-triaqua-bis(2-fluorobenzoato)-bis(formato)-hexa-terbium) dodecakis(5-[(4-carboxylatophenyl)methoxy]benzene-1,3-dicarboxylate) unknown solvate

    KAUST Repository

    Alezi, Dalal

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  15. Hydrotelluration of alkynes: a unique route to Z-vinyl organometallics

    Directory of Open Access Journals (Sweden)

    Vieira Maurício L.

    2001-01-01

    Full Text Available The hydrotelluration reaction of alkynes is reviewed. The transformation of vinylic tellurides into reactive vinyl organometallics and the coupling reactions of vinylic tellurides with alkynes and organometallics are presented.

  16. BASIC RESEARCH ON THE SEPARATION OF SCANDIUM YTTRIUM, AND THE RARE EARTHS BY SOLVENT EXTRACTION.

    Science.gov (United States)

    RARE EARTH ELEMENTS, * SOLVENT EXTRACTION ), (*CHELATE COMPOUNDS, RARE EARTH ELEMENTS), PURIFICATION, ATOMIC SPECTROSCOPY, SCANDIUM, YTTRIUM, PRASEODYMIUM, SAMARIUM, EUROPIUM, GADOLINIUM, TERBIUM, FLUORINE COMPOUNDS, KETONES

  17. A validated spectrofluorimetric method for the determination of citalopram in bulk and pharmaceutical preparations based on the measurement of the silver nanoparticles-enhanced fluorescence of citalopram/terbium complexes.

    Science.gov (United States)

    Khan, Muhammad Naeem; Shah, Jasmin; Jan, Muhammad Rasul; Lee, Sang Hak

    2013-01-01

    A simple, sensitive, and accurate spectrofluorimetric method was developed for the determination of citalopram in bulk and pharmaceutical preparations. The method is based on the enhancement of the weak fluorescence signal (FL) of the Tb (III)-citalopram system in the presence of silver nanoparticles. Fluorescence intensities were measured at 555 nm after excitation at 281 nm. Prepared silver nanoparticles (AgNPs) were characterized by UV-Visible spectra and transmission electron microscopy (TEM). Various factors affecting the formation of citalopram-Tb (III)-AgNPs complexes were studied and optimized. The fluorescence intensity versus concentration plot was linear over the range 0.02-14 μg mL(-1), with an excellent correlation coefficient of 0.9978. The limit of detection (LOD) and limit of quantification (LOQ) were found to be 7.15 × 10(-6) μg mL(-1) and 2.38 × 10(-5) μg mL(-1) respectively. The proposed method was found to have good reproducibility with a relative standard deviation of 3.66% (n = 6). The interference effects of common excipients found in pharmaceutical preparations were studied. The developed method was validated statistically by performing recoveries studies and successfully applied for the assay of citalopram in bulk powder and pharmaceutical preparations. Percent recoveries were found to range from 98.98% to 100.97% for bulk powder and from 96.57% to 101.77% for pharmaceutical preparations.

  18. A "plug-and-play" approach to the preparation of transparent luminescent hybrid materials based on poly(methyl methacrylate), a calix[4]arene cross-linking agent, and terbium ions.

    Science.gov (United States)

    Driscoll, Christopher R; Reid, Brodie L; McIldowie, Matthew J; Muzzioli, Sara; Nealon, Gareth L; Skelton, Brian W; Stagni, Stefano; Brown, David H; Massi, Massimiliano; Ogden, Mark I

    2011-04-07

    A novel methodology to prepare transparent luminescent hybrid materials is reported. Using a calixarene ionophore as a PMMA cross-linker avoids problems, such as phase segregation, and produces a polymer monolith that can be loaded with the metal ion required for luminescence post-synthesis. This approach is versatile and will simplify the production of such materials.

  19. CCDC 954772: Experimental Crystal Structure Determination : catena-(Dimethylammonium tris(mu~4~-3-fluorobiphenyl-4,4'-dicarboxylato)-tetrakis(mu~3~-hydroxo)-triaqua-tri-terbium unknown solvate)

    KAUST Repository

    Xue, Dongxu

    2013-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  20. CCDC 1410820: Experimental Crystal Structure Determination : heptakis(dimethylammonium) heptacosa-terbium dodecakis((1,1'-biphenyl)-3,4',5-tricarboxylate) hexakis(2-fluorobenzoate) hexakis(formate) hexatriacontakis(hydroxide) bis(oxide) unknown solvate hydrate

    KAUST Repository

    Alezi, Dalal

    2015-01-01

    An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.

  1. Terbium doped SnO2 nanoparticles as white emitters and SnO2:5Tb/Fe3O4 magnetic luminescent nanohybrids for hyperthermia application and biocompatibility with HeLa cancer cells.

    Science.gov (United States)

    Singh, Laishram Priyobarta; Singh, Ningthoujam Premananda; Srivastava, Sri Krishna

    2015-04-14

    SnO2:5Tb (SnO2 doped with 5 at% Tb(3+)) nanoparticles were synthesised by a polyol method and their luminescence properties at different annealing temperatures were studied. Characterization of nanomaterials was done by X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). XRD studies indicate that the prepared nanoparticles were of tetragonal structures. Upon Tb(3+) ion incorporation into SnO2, Sn(4+) changes to Sn(2+) and, on annealing again at higher temperature, Sn(2+) changes to Sn(4+). The prepared nanoparticles were spherical in shape. Sn-O vibrations were found from the FTIR studies. In photoluminescence studies, the intensity of the emission peaks of Tb(3+) ions increases with the increase of annealing temperature, and emission spectra lie in the region of white emission in the CIE diagram. CCT calculations show that the SnO2:5Tb emission lies in cold white emission. Quantum yields up to 38% can be obtained for 900 °C annealed samples. SnO2:5Tb nanoparticles were well incorporated into the PVA polymer and such a material incorporated into the polymer can be used for display devices. The SnO2:5Tb/Fe3O4 nanohybrid was prepared and investigated for hyperthermia applications at different concentrations of the nanohybrid. This achieves a hyperthermia temperature (42 °C) under an AC magnetic field. The hybrid nanomaterial SnO2:5Tb/Fe3O4 was found to exhibit biocompatibility with HeLa cells (human cervical cancer cells) at concentrations up to 74% for 100 μg L(-1). Also, this nanohybrid shows green emission and thus it will be helpful in tracing magnetic nanoparticles through optical imaging in vivo and in vitro application.

  2. Filmes delgados luminescentes obtidos a partir de hidroxicarbonatos de ítrio ativados por európio ou térbio Luminescent thin films obtained from ytrium hydroxycarbonates activated by terbium or europium

    Directory of Open Access Journals (Sweden)

    Emy Niyama

    2004-04-01

    Full Text Available These films were obtained by dip coating. Parameters like dislocation velocity; number of deposits, suspension concentration, and number of deposits followed or not by heat treatment between each deposit and calcination temperature were evaluated for establishing the best homogeneity. The obtained films were characterized in terms of their morphology, optical quality and photoluminescence by scanning electron microscopy (SEM, UV-vis absorption spectrophotometry and luminescence spectroscopy, respectively. The morphologic and luminescent characteristics showed dip coating as good laboratory technique for development of thin films for optical applications.

  3. Synthesis and characterization of spherical Tb-MCM-41

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Luiza H.O., E-mail: lulenapires@hotmail.co [Universidade Federal do Para, Instituto de Ciencias Exatas e Naturais, Laboratorio de Catalise e Oleoquimica, CP 479, CEP 66075-110, Belem, PA (Brazil); Queiroz, Renan M.; Souza, Ruth P.; Costa, Carlos E.F. da; Zamian, Jose R. [Universidade Federal do Para, Instituto de Ciencias Exatas e Naturais, Laboratorio de Catalise e Oleoquimica, CP 479, CEP 66075-110, Belem, PA (Brazil); Weber, Ingrid T. [Universidade Federal de Pernambuco, Centro de Ciencias Exatas e da Natureza, Av. Prof. Luis Barros Freire, s/n, Cidade Universitaria, 50670-901 Recife, PE (Brazil); Filho, Geraldo N. da Rocha [Universidade Federal do Para, Instituto de Ciencias Exatas e Naturais, Laboratorio de Catalise e Oleoquimica, CP 479, CEP 66075-110, Belem, PA (Brazil)

    2010-02-04

    Spherical MCM-41 was synthesized at room temperature and functionalized by means of direct synthesis method. Evidence for the terbium presence in the silica matrix was obtained by means of EDX. Scanning electron microscopy (SEM) micrographs showed that terbium incorporation did not change significantly MCM-41 morphology. The maintenance of the hexagonal structure was confirmed by X-ray diffraction (XRD) pattern analysis. The cell parameter increase and the surface area decrease, observed by N{sub 2} adsorption-desorption technique, were taken as evidence of terbium introduction inside the MCM-41 framework. By FT-IR spectra it was found that the main features of the silica framework were maintained. The presence of a strong absorption band centered at ca. 220 nm in the diffuse reflectance UV-vis spectra could indicate the presence of tetra-coordinated terbium in the silica network of Tb-MCM-41 samples.

  4. Therapeutic use of radioactive isotopes

    CERN Multimedia

    Caroline Duc

    2013-01-01

    In December, researchers from ISOLDE-CERN, the Paul Scherrer Institute (PSI) and the Institut Laue-Langevin (ILL) published the results of an in vivo study which successfully proved the effectiveness of four terbium isotopes for diagnosing and treating cancerous tumours.   Four terbium isotopes suitable for clinical purposes. “ISOLDE is the only installation capable of supplying terbium isotopes of such purity and intensity in the case of three out of the four types used in this study,” explains Karl Johnson, a physicist at ISOLDE.  “Producing over a thousand different isotopes, our equipment offers the widest choice of isotopes in the world!” Initially intended for fundamental physics research, ISOLDE has diversified its activities over time to invest in various projects in the materials science, biochemistry and nuclear medicine fields. The proof-of-concept study has confirmed that the four terbium isotopes 149Tb, 152Tb, 155Tb produ...

  5. Thermal History Using Microparticle Trap Luminescence

    Science.gov (United States)

    2012-06-01

    and thermoluminescence of terbium-activated silicates and aluminates " . Radiat. Meas. 43, 323-326 (2008). HDTRA1-07-1-0016 University of...of terbium-activated silicates and aluminates " . 15th Solid State Dosimetry Conference, Delft, The Netherlands, July 8-13 (2007). 2 INTRODUCTION...increased to 500°C until combustion occurred (- 7 min). The remaining powder was collected, crushed in a agate mortar, and annealed (typically at 900

  6. Nanostructured Composite Materials for High Temperature Thermoelectric Energy Conversion

    Science.gov (United States)

    2012-08-29

    classes of materials, half-Heusler intermetallic bulk nanocomposites and bismuth -telluride based nanocomposites; • Complete structural and...measurements K. Stokes Physics/AMRI Bismuth telluride/metallic nanoparticle composites, transport measurements J. Wiley Chemistry/AMRI Chemical...as inclusions for nanocomposites. Here, the nanoparticles are synthesized by sol-gel chemistry using hafnium(IV) tert-butoxide and ammonium hydroxide

  7. Materials technologies for IR detectors

    Energy Technology Data Exchange (ETDEWEB)

    Besson, J.

    1986-01-01

    This book presents the papers given at a conference which examined crystal growth methods for semiconductor materials used in infrared detectors. Topics considered at the conference included materials research, cadmium tellurides, electrochemistry, mercury tellurides, pressure effects, liquid phase epitaxy, annealing, germanium photoconductor materials, fundamental studies, materials characterization, magnetic fields, and basic properties of infrared materials.

  8. On the quenching of trivalent terbium luminescence by ligand low lying triplet state energy and the role of the {sup 7}F{sub 5} level: The [Tb(tta){sub 3} (H{sub 2}O){sub 2}] case

    Energy Technology Data Exchange (ETDEWEB)

    Souza, A.S., E-mail: adelmosaturnino@hotmail.com [Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Nunes, L.A. [Instituto de Física de São Carlos, Universidade de São Paulo, 13560-970 São Carlos, SP (Brazil); Felinto, M.C.F.C. [Instituto de Pesquisas Energéticas e Nucleares-IPEN, 05505-800 São Paulo, SP (Brazil); Brito, H.F. [Instituto de Química, Universidade de São Paulo, 05508-900 São Paulo, SP (Brazil); Malta, O.L. [Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil)

    2015-11-15

    In this work we discuss the observed Tb{sup 3+} ion luminescence quenching, due to the relative ligand low lying triplet state energy, in the [Tb(tta){sub 3} (H{sub 2}O){sub 2}] compound at low and room temperature (tta=thenoyltrifluoroacetonate). Theoretical energy transfer rates, for both multipolar and exchange mechanisms, were calculated and discussed on the basis of selection rules and energy mismatch conditions from the [Tb(tta){sub 3} (H{sub 2}O){sub 2}] emission spectra. We have concluded that the exchange mechanism by far dominates, in the present case, and that the long first excited state {sup 7}F{sub 5} lifetime (in the millisecond scale) plays a crucial role in the Tb{sup 3+} luminescence quenching. - Highlights: • The energy exchange between the ligand T{sub 1} and Tb{sup 3+5}D{sub 4} levels occur by the exchange interaction. • The Tb{sup 3+} first excited {sup 7}F{sub 5} level plays a crucial role in this process due to its long lifetime. • At room temperature the energy exchanged between the {sup 5}D{sub 4} level of the Tb{sup 3+} ion and the T{sub 1} of the ligand is lost via the intersystem crossing T{sub 1} → S{sub 0} channel.

  9. Synthesis, structure, and magnetic properties of a new family of tetra-nuclear {Mn2(III)Ln2}(Ln = Dy, Gd, Tb, Ho) clusters with an arch-type topology: single-molecule magnetism behavior in the dysprosium and terbium analogues.

    Science.gov (United States)

    Chandrasekhar, Vadapalli; Bag, Prasenjit; Speldrich, Manfred; van Leusen, Jan; Kögerler, Paul

    2013-05-06

    Sequential reaction of Mn(II) and lanthanide(III) salts with a new multidentate ligand, 2,2'-(2-hydroxy-3-methoxy-5-methylbenzylazanediyl)diethanol (LH3), containing two flexible ethanolic arms, one phenolic oxygen, and a methoxy group afforded heterometallic tetranuclear complexes [Mn2Dy2(LH)4(μ-OAc)2](NO3)2·2CH3OH·3H2O (1), [Mn2Gd2(LH)4(μ-OAc)2](NO3)2·2CH3OH·3H2O (2), [Mn2Tb2(LH)4(μ-OAc)2](NO3)2·2H2O·2CH3OH·Et2O (3), and [Mn2Ho2(LH)4(μ-OAc)2]Cl2·5CH3OH (4). All of these dicationic complexes possess an arch-like structural topology containing a central Mn(III)-Ln-Ln-Mn(III) core. The two central lanthanide ions are connected via two phenolate oxygen atoms. The remaining ligand manifold assists in linking the central lanthanide ions with the peripheral Mn(III) ions. Four doubly deprotonated LH(2-) chelating ligands are involved in stabilizing the tetranuclear assembly. A magnetochemical analysis reveals that single-ion effects dominate the observed susceptibility data for all compounds, with comparably weak Ln···Ln and very weak Ln···Mn(III) couplings. The axial, approximately square-antiprismatic coordination environment of the Ln(3+) ions in 1-4 causes pronounced zero-field splitting for Tb(3+), Dy(3+), and Ho(3+). For 1 and 3, the onset of a slowing down of the magnetic relaxation was observed at temperatures below approximately 5 K (1) and 13 K (3) in frequency-dependent alternating current (AC) susceptibility measurements, yielding effective relaxation energy barriers of ΔE = 16.8 cm(-1) (1) and 33.8 cm(-1) (3).

  10. Reactive Chemical Vapor Deposition Method as New Approach for Obtaining Electroluminescent Thin Film Materials

    Directory of Open Access Journals (Sweden)

    Valentina V. Utochnikova

    2012-01-01

    Full Text Available The new reactive chemical vapor deposition (RCVD method has been proposed for thin film deposition of luminescent nonvolatile lanthanide aromatic carboxylates. This method is based on metathesis reaction between the vapors of volatile lanthanide dipivaloylmethanate (Ln(dpm3 and carboxylic acid (HCarb orH2Carb′ and was successfully used in case of HCarb. Advantages of the method were demonstrated on example of terbium benzoate (Tb(bz3 and o-phenoxybenzoate thin films, and Tb(bz3 thin films were successfully examined in the OLED with the following structure glass/ITO/PEDOT:PSS/TPD/Tb(bz3/Ca/Al. Electroluminescence spectra of Tb(bz3 showed only typical luminescent bands, originated from transitions of the terbium ion. Method peculiarities for deposition of compounds of dibasic acids H2Carb′ are established on example of terbium and europium terephtalates and europium 2,6-naphtalenedicarboxylate.

  11. NREL preprints for the 23rd IEEE Photovoltaic Specialists Conference

    Energy Technology Data Exchange (ETDEWEB)

    Fitzgerald, M. [ed.

    1993-05-01

    Topics covered include various aspects of solar cell fabrication and performance. Aluminium-gallium arsenides, cadmium telluride, amorphous silicon, and copper-indium-gallium selenides are all characterized in their applicability in solar cells.

  12. Optimization of CZT Detectors with Sub-mm Pixel Pitches Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and optimize 0.5 cm thick Cadmium Zinc Telluride (CZT) detectors with very small pixel pitches, i.e. 350 micron and 600 micron. The proposed...

  13. Tellurite glasses handbook physical properties and data

    CERN Document Server

    El-Mallawany, Raouf AH

    2011-01-01

    This is a useful reference book summarizing all of the published data about the telluride glass system with an emphasis on their optical, thermal and electrical properties.-- Carlo Pantano, Pennsylvania State University

  14. Hydrothermal Synthesis and Mechanism of Unusual Zigzag Ag 2 Te and Ag 2 Te/C Core-Shell Nanostructures

    National Research Council Canada - National Science Library

    Saima Manzoor; Yumin Liu; Zhongyuan Yu; Xiuli Fu; Guijun Ban

    2014-01-01

      A single step surfactant-assisted hydrothermal route has been developed for the synthesis of zigzag silver telluride nanowires with diameter of 50-60 nm and length of several tens of micrometers. Silver nitrate (AgNO3...

  15. A Neutron Study for Phonon Dispersion Relations in HgTe

    DEFF Research Database (Denmark)

    Kepa, H.; Gebicki, W.; Giebultowicz, T.

    1980-01-01

    Dispersion relations for acoustic phonons in mercury telluride in three high symmetry directions [111], [110] and [001] are presented. The eleven-parameter rigid-ion model is fitted to the experimental data....

  16. Nanomaterials: Earthworms lit with quantum dots

    Science.gov (United States)

    Tilley, Richard D.; Cheong, Soshan

    2013-01-01

    Yeast, bacteria and fungi have been used to synthesize a variety of nanocrystals. Now, the metal detoxification process in the gut of an earthworm is exploited to produce biocompatible cadmium telluride quantum dots.

  17. Information on real-structure phenomena in metastable GeTe-rich germanium antimony tellurides (GeTe){sub n}Sb{sub 2}Te{sub 3} (n ≥ 3) by semi-quantitative analysis of diffuse X-ray scattering

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Philipp; Oeckler, Oliver [Leipzig Univ. (Germany). Faculty of Chemistry and Mineralogy; Schneider, Matthias N.; Seemann, Marten [Munich Univ. (Germany). Dept. of Chemistry; Wright, Jonathan P. [ESRF - The European Synchrotron, Grenoble (France)

    2015-07-01

    Quenching cubic high-temperature polymorphs of (GeTe){sub n}Sb{sub 2}Te{sub 3} (n ≥ 3) yields metastable phases whose average structures can be approximated by the rocksalt type with 1/(n + 3) cation vacancies per anion. Corresponding diffraction patterns are a superposition of intensities from individual twin domains with trigonal average structure but pseudo-cubic metrics. Their four orientations are mirrored in structured diffuse streaks that interconnect Bragg reflections along the [001] directions of individual disordered trigonal domains. These streaks exhibit a ''comet-like'' shape with a maximum located at the low-angle side of Bragg positions (''comet head'') accompanied by a diffuse ''comet tail''. 2D extended cation defect ordering leads to parallel but not equidistantly spaced planar faults. Based on a stacking fault approach, the diffuse scattering was simulated with parameters that describe the overall metrics, the concentration and distribution of cation defect layers, atom displacements in their vicinity and the stacking sequence of Te atom layers around the planar defects. These parameters were varied in order to derive simple rules for the interpretation of the diffuse scattering. The distance between Bragg positions and ''comet heads'' increases with the frequency of planar faults. A sharp distance distribution of the planar faults leads to an intensity modulation along the ''comet tail'' which for low values of n approximates superstructure reflections. The displacement of atom layers towards the planar defects yields ''comets'' on the low-angle side of Bragg positions. A rocksalt-type average structure is only present if the planar defects correspond to missing cation layers in the ''cubic'' ABC stacking sequence of the Te atom layers. An increasing amount of hexagonal ABA transitions around the defect layers leads to increasing broadening and splitting of the Bragg reflections which then overlap with the diffuse scattering. Based on these rules, the diffuse scattering of (GeTe){sub n}Sb{sub 2}Te{sub 3} (n = 2, 4, 5, 12) crystals was analyzed by comparing simulated and experimental reciprocal space sections as well as selected streaks extracted from synchrotron data. With decreasing n, both the average distance between faults and thus the slab thickness decrease, whereas the probability of hexagonal ABA transitions increases. The quenched metastable phases can be understood as intermediates between the stable high-temperature phases, which exhibit a rocksalt-type structure with randomly disordered cations and vacancies on the cation position, and the trigonal layered structures, which are stable at room temperature and consist of distorted rocksalt-type slabs separated by equidistant defect layers.

  18. The process mineralogy of gold: The classification of ore types

    Science.gov (United States)

    Vaughan, J. P.

    2004-07-01

    The principal gold minerals that affect the processing of gold ores are native gold, electrum, Au-Ag tellurides, aurostibite, maldonite, and auricupride. In addition, submicroscopic (solid solution) gold, principally in arsenopyrite and pyrite, is also important. The main causes of refractory gold ores are submicroscopic gold, the Au-Ag tellurides, and very fine-grained gold (<10 µm) locked in sulfides. Other types of problem gold ores include copper-gold ores and preg-robbing carbonaceous ores.

  19. A comparative mineralogical study of Te-rich magmatic-hydrothermal systems in northeastern Greece

    Science.gov (United States)

    Voudouris, P.

    2006-07-01

    Several magmatic-hydrothermal systems in northeastern Greece (western Thrace and Limnos Island) are highly enriched in tellurides which, in addition to native gold and electrum, represent major carriers of precious metals in the ore. Deposition near the porphyry-epithermal transition for several systems is indicated by field relations and by the presence of key minerals (Pb- and Ag-rich tellurides, Bi-sulfosalts and Bi-tellurides/tellurosulfides). Hessite, stützite, sylvanite, petzite, coloradoite, altaite, unnamed Ag-sulfotelluride, native tellurium and electrum are abundant in intermediate sulfidation quartz-carbonate veins together with zincian tetrahedrite-group minerals, chalcopyrite and galena. The presence of hessite, goldfieldite, native gold and enargite or famatinite suggests deposition at a high sulfidation state. The main stage of telluride deposition took place at ˜275 °C at log fTe2 values of -8.5 to -7.1 and log fS2 values of -10.8 to -9.0, based on the Fe-content in sphalerite and the sulfide-telluride mineralogy. The close spatial association of telluride mineralization with intrusive centers of intermediate composition, the base metal enrichment and the trace element signature involving Au, Ag, Te, Bi, Sn and Mo suggest that ore-forming components were introduced at the porphyry-epithermal transition. Potential sources of tellurium are the high-K calc-alkaline (western Thrace) to shoshonitic (Limnos) intrusive rocks.

  20. Spatial resolution in X-ray imaging with scintillating glass optical fiber plates

    Science.gov (United States)

    Pavan, P.; Zanella, G.; Zannoni, R.; Marigo, A.

    1993-04-01

    Some scintillating optical fiber plates, fabricated with terbium glasses are tested for their intrinsic spatial resolution under X-ray irradiation and the result is compared with a typical phosphor screen. The spatial resolution (CTF and MTF) is measured as a function of spatial frequency and the standard deviation of the corresponding Gaussian PSF is derived.

  1. PROCESS FOR THE PREPARATION OF ALLOY NANOPARTICLES COMPRISING A NOBLE AND A NON-NOBLE METAL

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention concerns a chemical process for preparing nanoparticles of an alloy comprising both a noble metal, such as platinum, and a non-noble transition or lanthanide metal, such as yttrium, gadolinium or terbium. The process is carried out by reduction with hydrogen and removal...

  2. Multiplet effects in the electronic structure of heavy rare-earth metals

    NARCIS (Netherlands)

    Lebegue, S.; Svane, A.; Katsnelson, M.I.; Lichtenstein, A.I.; Eriksson, O.

    2006-01-01

    The spectroscopic properties of elemental terbium, dysprosium, holmium, and erbium are investigated using first-principles calculations taking into account intra-atomic correlation effects. In order to describe the strongly localized f electrons together with the conduction bands, we have used the

  3. Performance of 20 Ci 137Cs γ-ray Compton spectrometer for the ...

    Indian Academy of Sciences (India)

    The in-house 137Cs spectrometer is very useful for the measurement of momentum densities of heavy materials. The performance of the machine is assessed using aluminum, terbium and mercury samples and the exper- imental data from comparable apparatus. Keywords. Compton scattering; electron momentum density; ...

  4. Author Details

    African Journals Online (AJOL)

    Pengkiliya, P. Vol 67 (2014) - Articles Interaction of 3-Hydroxypicolinamide with TbIII and its Sensitizing Effect on Terbium Luminescence as a Function of pH and Medium Abstract PDF. ISSN: 0379-4350. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about ...

  5. Author Details

    African Journals Online (AJOL)

    Devi, TP. Vol 67 (2014) - Articles Interaction of 3-Hydroxypicolinamide with TbIII and its Sensitizing Effect on Terbium Luminescence as a Function of pH and Medium Abstract PDF. ISSN: 0379-4350. AJOL African Journals Online. HOW TO USE AJOL... for Researchers · for Librarians · for Authors · FAQ's · More about AJOL ...

  6. THz near-field Faraday imaging in hybrid metamaterials

    NARCIS (Netherlands)

    Kumar, N.; Strikwerda, A.C.; Fan, K.; Zhang, X.; Averitt, R.D.; Planken, P.C.M.; Adam, A.J.L.

    2012-01-01

    We report on direct measurements of the magnetic near-field of metamaterial split ring resonators at terahertz frequencies using a magnetic field sensitive material. Specifically, planar split ring resonators are fabricated on a single magneto-optically active terbium gallium garnet crystal.

  7. Synthesis and photoluminescence properties of CaSixOy:Tb3+ phosphors prepared using solution-combustion method

    CSIR Research Space (South Africa)

    Dejene, FB

    2011-07-01

    Full Text Available to Ca3Si2O7 as the terbium concentration increase. Broad band excitations peaking between 280 - 360 nm derived from excited states of Tb3+ ions were observed for all powders grown from various Tb compositions. The green emission peak at 545 nm due...

  8. Scanning Electron Microscope-Cathodoluminescence Analysis of Rare-Earth Elements in Magnets.

    Science.gov (United States)

    Imashuku, Susumu; Wagatsuma, Kazuaki; Kawai, Jun

    2016-02-01

    Scanning electron microscope-cathodoluminescence (SEM-CL) analysis was performed for neodymium-iron-boron (NdFeB) and samarium-cobalt (Sm-Co) magnets to analyze the rare-earth elements present in the magnets. We examined the advantages of SEM-CL analysis over conventional analytical methods such as SEM-energy-dispersive X-ray (EDX) spectroscopy and SEM-wavelength-dispersive X-ray (WDX) spectroscopy for elemental analysis of rare-earth elements in NdFeB magnets. Luminescence spectra of chloride compounds of elements in the magnets were measured by the SEM-CL method. Chloride compounds were obtained by the dropwise addition of hydrochloric acid on the magnets followed by drying in vacuum. Neodymium, praseodymium, terbium, and dysprosium were separately detected in the NdFeB magnets, and samarium was detected in the Sm-Co magnet by the SEM-CL method. In contrast, it was difficult to distinguish terbium and dysprosium in the NdFeB magnet with a dysprosium concentration of 1.05 wt% by conventional SEM-EDX analysis. Terbium with a concentration of 0.02 wt% in an NdFeB magnet was detected by SEM-CL analysis, but not by conventional SEM-WDX analysis. SEM-CL analysis is advantageous over conventional SEM-EDX and SEM-WDX analyses for detecting trace rare-earth elements in NdFeB magnets, particularly dysprosium and terbium.

  9. Performance of 20 Ci 137Cs γ-ray Compton spectrometer for the ...

    Indian Academy of Sciences (India)

    ... than the conventional 241Am Compton spectrometers. The in-house 137Cs spectrometer is very useful for the measurement of momentum densities of heavy materials. The performance of the machine is assessed using aluminum, terbium and mercury samples and the experimental data from comparable apparatus.

  10. Faraday isolator based on TSAG crystal for high power lasers.

    Science.gov (United States)

    Mironov, E A; Palashov, O V

    2014-09-22

    A Faraday isolator based on a new magneto-optical medium, TSAG (terbium scandium aluminum garnet) crystal, has been constructed and investigated experimentally. The device provides an isolation ratio of more than 30 dB at 500 W laser power. It is shown that this medium can be used in Faraday isolators for kilowatt-level laser powers.

  11. 1. Novel Dopants in Silica Based Fibers. 2. Applications of Embedded Optical Fiber Sensors in Reinforced Concrete Buildings and Structures

    Science.gov (United States)

    1990-05-20

    effects in fibers, and nonlinear phenomena in fibers. We also use NMR, ESR and Raman techniques to study incorporation of novel as well as...neodymium, erbium, holmium or terbium. These products can be vacuum dried at elevated temperature. The acac-compound is less expensive since the hfa

  12. Time-gated FRET nanoassemblies for rapid and sensitive intra- and extracellular fluorescence imaging

    NARCIS (Netherlands)

    Afsari, Hamid Samareh; Cardoso Dos Santos, Marcelina; Lindén, Stina; Chen, Ting; Qiu, Xue; van Bergen En Henegouwen, Paul M P|info:eu-repo/dai/nl/071919481; Jennings, Travis L; Susumu, Kimihiro; Medintz, Igor L; Hildebrandt, Niko; Miller, Lawrence W

    Time-gated Förster resonance energy transfer (FRET) using the unique material combination of long-lifetime terbium complexes (Tb) and semiconductor quantum dots (QDs) provides many advantages for highly sensitive and multiplexed biosensing. Although time-gated detection can efficiently suppress

  13. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 7. Issue front cover thumbnail. Volume 39, Issue 7. December 2016, pages 1619-1889. pp 1619-1623. Luminescence properties of terbium-doped Li 3 PO 4 phosphor for radiation dosimetry · C B PALAN N S BAJAJ S K OMANWAR · More Details Abstract ...

  14. Interaction of 3-Hydroxypicolinamide with Tb III and its Sensitizing ...

    African Journals Online (AJOL)

    Interaction of 3-Hydroxypicolinamide with Tb III and its Sensitizing Effect on Terbium Luminescence as a Function of pH and Medium. ... The complex formed exists asML2 species in which HPA behaves as anO,O,N,N-chelating ligand. The solid complex is isolated from aqueous medium and characterized employing ...

  15. Lanthanide Enhanced Luminescence (LEL) with One and Two Photon Excitation of Quantum Dyes(copyright) Lanthanide(III)-Macrocycles

    National Research Council Canada - National Science Library

    Leif, Robert C; Becker, Margie C; Bromm Jr., Al; Chen, Nanguang; Cowan, Ann E; Vallarino, Lidia M; Yang, Sean; Zucker, Robert M

    2004-01-01

    .... Preliminary studies indicate that cells stained with the europium Quantum Dye can be observed both by conventional UV laser excitation and by infrared two-photon confocal microscopy. An enhancer has been found that enables the observation of simultaneous emissions from both the europium and terbium Quantum Dyes.

  16. Kinetically inert lanthanide complexes as reporter groups for binding of potassium by 18-crown-6

    DEFF Research Database (Denmark)

    Junker, Anne Kathrine Ravnsborg; Tropiano, Manuel; Faulkner, Stephen

    2016-01-01

    in a copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction with azide-functionalized crown ethers. The resulting complexes were investigated using NMR and optical methods. Titrations with potassium chloride in methanol observing the sensititzed europium- and terbium-centered emissions were...

  17. Synthesis and characterization of semiconductor nanomaterials for thermoelectric applications

    Science.gov (United States)

    Dirmyer, Matthew R.

    In this dissertation, I explore simple chemical means to produce various nanomaterials. In Chapter 2, the synthesis of size-tuned bismuth telluride nanoparticles is discussed. The solution phase synthesis of bismuth telluride nanoparticles has been accomplished in the presence of a library of thiols as the capping ligand. These crystalline nanostructures range in size from ˜20 to ˜100nm with a relatively narrow size dispersity. Size and shape of the resulting nanostructures has been investigated as a function of chain length of the thiol and temperature. An investigation into the thermoelectric properties of the nanostructures shows promising electrical conductivity, thermopower, and thermal conductivity for undoped bismuth telluride. In Chapter 3, a soluble precursor for antimony telluride is described. This precursor was used to fabricate semiconductor nanowires of varying diameter and thin films through simple templating methods. Electrical conductivity and thermoelectric power measurements of these films are only slightly lower than for antimony telluride films fabricated by vacuum deposition. In Chapter 4, the polytetrafluoroethylene (PTFE)/metal nanocomposites are discussed. Palladium and nickel PTFE nanocomposites were made by impregnation of the polymer with metal acetates. Annealing and jet blowing of these materials form PTFE nanofiber/metal nanoparticle composites.

  18. International Conference on Spin Observables of Nuclear Probes

    CERN Document Server

    Goodman, Charles; Walker, George; Spin Observables of Nuclear Probes

    1988-01-01

    The proceedings of the "International Conference on Spin Observables of Nuclear Probes" are presented in this volume. This conference was held in Telluride, Colorado, March 14 -17, 1988, and was the fourth in the Telluride series of nuclear physics conferences. A continuing theme in the Telluride conference series has been the complementarity of various intermediate-energy projectiles for elucidating the nucleon-nucleon interaction and nuclear structure. Earlier conferences have contributed significantly to an understanding of spin currents in nuclei, in particular the distribution of Gamow-Teller strength using charge-exchange reactions. The previous conference on "Antinucleon and Nucleon Nucleus Interactions" compared nuclear information from tra­ tional probes to recent results from antinucleon reactions. The 1988 conference on Spin Observables of Nuclear Probes, put special emphasis on spin observables and brought together experts using spin information to probe nuclear structure. Spin observabl...

  19. Theoretical and Experimental Study on the Permittivity of CdTe in the Terahertz Band

    Directory of Open Access Journals (Sweden)

    Sun Wang

    2018-02-01

    Full Text Available The phonon dispersion spectrum, eigenvector, and lattice vibration frequency of cadmium telluride with a zinc blende structure have been investigated using the density functional theory, and the permittivity of cadmium telluride crystal is numerically calculated. The permittivity of the crystal is measured using the terahertz time-domain spectroscopy system. The experimental results are consistent with the theoretical calculations on the modified local density approximation, the general gradient approximation, and the modified general gradient approximation. Finally, the differences among the three approximate exchange correlation potentials indicate that in the terahertz region, the permittivity of cadmium telluride is dominantly contributed by the coupling between electron and phonon; however, the phonon frequencies of transverse wave and longitudinal wave were sensitive to electron density distribution.

  20. Laser space communication experiment: Modulator technology

    Science.gov (United States)

    Goodwin, F. E.

    1973-01-01

    Results are presented of a contractual program to develop the modulator technology necessary for a 10.6 micron laser communication system using cadmium telluride as the modulator material. The program consisted of the following tasks: (1) The growth of cadmium telluride crystals of sufficient size and purity and with the necessary optical properties for use as laser modulator rods. (2) Develop a low loss antireflection coating for the cadmium telluride rods. (3) Design and build a modulator capable of 300 MHz modulation. (4) Develop a modulator driver capable of a data rate of 300 MBits/sec, 12 W rms output power, and 40 percent efficiency. (5) Assemble and test the modulator system. All design goals were met and the system was built and tested.

  1. Nanocrystalline CdTe thin films by electrochemical synthesis

    Directory of Open Access Journals (Sweden)

    Ramesh S. Kapadnis

    2013-03-01

    Full Text Available Cadmium telluride thin films were deposited onto different substrates as copper, Fluorine-doped tin oxide (FTO, Indium tin oxide (ITO, Aluminum and zinc at room temperature via electrochemical route. The morphology of the film shows the nanostructures on the deposited surface of the films and their growth in vertical direction. Different nanostructures developed on different substrates. The X-ray diffraction study reveals that the deposited films are nanocrystalline in nature. UV-Visible absorption spectrum shows the wide range of absorption in the visible region. Energy-dispersive spectroscopy confirms the formation of cadmium telluride.

  2. Radiation resistance of thin-film solar cells for space photovoltaic power

    Science.gov (United States)

    Woodyard, James R.; Landis, Geoffrey A.

    1991-01-01

    Copper indium diselenide, cadmium telluride, and amorphous silicon alloy solar cells have achieved noteworthy performance and are currently being studied for space power applications. Cadmium sulfide cells had been the subject of much effort but are no longer considered for space applications. A review is presented of what is known about the radiation degradation of thin film solar cells in space. Experimental cadmium telluride and amorphous silicon alloy cells are reviewed. Damage mechanisms and radiation induced defect generation and passivation in the amorphous silicon alloy cell are discussed in detail due to the greater amount of experimental data available.

  3. .sup.123m Te-Labeled biochemicals and method of preparation

    Science.gov (United States)

    Knapp, Jr., Furn F.

    1980-01-01

    A novel class of .sup.123m Te-labeled steroids and amino acids is provided by the method of reacting a .sup.123m Te symmetric diorgano ditelluride with a hydride reducing agent and a source of alkali metal ions to form an alkali metal organo telluride. The alkali metal organo telluride is reacted with a primary halogenated steroidal side chain, amino acid, or amino acid precursor such as hydantoin. The novel compounds are useful as biological tracers and as organal imaging agents.

  4. Preliminary Results from Small-Pixel CdZnTe and CdTe Arrays

    Science.gov (United States)

    Ramsey, B. D.; Sharma, D. P.; Meisner, J.; Austin, R. A.

    1999-01-01

    We have evaluated 2 small-pixel (0.75 mm) Cadmium-Zinc-Telluride arrays, and one Cadmium-Telluride array, all fabricated for MSFC by Metorex (Finland) and Baltic Science Institute (Riga, Latvia). Each array was optimized for operating temperature and collection bias. It was then exposed to Cadmium-109 and Iron-55 laboratory isotopes, to measure the energy resolution for each pixel and was then scanned with a finely-collimated x-ray beam, of width 50 micron, to examine pixel to pixel and inter-pixel charge collections efficiency. Preliminary results from these array tests will be presented.

  5. Generation of Mid-Wave Infrared Signature Using Microradiating Devices for Vehicle Mounted Identification Friend or Foe Applications

    Science.gov (United States)

    2009-06-01

    devices must be modulated to create a blinking signature. This means the transient response of the blackbody source, affected primarily by device mass...InAs 0.36 Cadmium telluride CdTe 1.49 Lead(II) sulfide PbS 0.37 Lead(II) selenide PbSe 0.27 Lead(II) telluride PbTe 0.29 Table 2. Band Gap...selection included cost, maximum irradiance, and modulation speed. This section contains general information regarding the cost, physical design

  6. Optical properties of the Ce and La ditelluride charge density wave compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lavagnini, M.; Sacchetti, A.; Degiorgi, L.; /Zurich, ETH; Shin, K.Y.; Fisher, I.R.; /Stanford U., Geballe Lab. /Stanford U., Appl. Phys. Dept.

    2010-02-15

    The La and Ce di-tellurides LaTe{sub 2} and CeTe{sub 2} are deep in the charge-density-wave (CDW) ground state even at 300 K. We have collected their electrodynamic response over a broad spectral range from the far infrared up to the ultraviolet. We establish the energy scale of the single particle excitation across the CDW gap. Moreover, we find that the CDW collective state gaps a very large portion of the Fermi surface. Similarly to the related rare earth tri-tellurides, we envisage that interactions and Umklapp processes play a role in the onset of the CDW broken symmetry ground state.

  7. Luminescent properties of Al{sub 2}O{sub 3}: Tb powders; Propiedades luminiscentes de polvos de Al{sub 2}O{sub 3}: Tb

    Energy Technology Data Exchange (ETDEWEB)

    Esparza G, A.E.; Garcia, M.; Falcony, C.; Azorin N, J. [CICATA-IPN, Legaria 694, Col. Irrigacion, 11500 Mexico D.F. (Mexico)

    2000-07-01

    In this work the photo luminescent and cathode luminescent characteristics of aluminium oxide (Al{sub 2}O{sub 3}) powders impurified with terbium (Tb) were studied for their use in dosimetry. The optical, structural, morphological characteristics of the powders as function of variation in the impurity concentration and the annealing temperature will be presented. As regards the optical properties of powders (photoluminescence and cathode luminescence) it was observed a characteristic emission associated with radiative transitions between electron energy levels of terbium, the spectra associated with this emission consists of several peaks associated with such transitions. In the structural and morphological characterization (X-ray diffraction and scanning electron microscopy) it was appreciated that in accordance the annealing temperature of powders is augmented it is evident the apparition of certain crystalline phases. The results show that this is a promissory material for radiation dosimetry. (Author)

  8. Plastic optical fibre sensor for in-vivo radiation monitoring during brachytherapy

    Science.gov (United States)

    Woulfe, P.; Sullivan, F. J.; Lewis, E.; O'Keeffe, S.

    2015-09-01

    An optical fibre sensor is presented for applications in real-time in-vivo monitoring of the radiation dose a cancer patient receives during seed implantation in Brachytherapy. The sensor is based on radioluminescence whereby radiation sensitive scintillation material is embedded in the core of a 1mm plastic optical fibre. Three scintillation materials are investigated: thallium-doped caesium iodide (CsI:Tl), terbium-doped gadolinium oxysulphide (Gd2O2S:Tb) and europium-doped lanthanum oxysulphide (La2O2S:Eu). Terbium-doped gadolinium oxysulphide was identified as being the most suitable scintillator and further testing demonstrates its measureable response to different activities of Iodine-125, the radio-active source commonly used in Brachytherapy for treating prostate cancer.

  9. [Luminescent cytochemical methods of detecting microorganisms].

    Science.gov (United States)

    Ivanovskaia, N P; Osin, N S; Khramov, E N; Zlobin, V N

    1999-01-01

    The paper shows that the luminescence cytochemical technique can be used for identification of microorganisms and microbiological synthesis products. The method is based on the interaction of specific fluorescence probes (ANS, terbium ions, and beta-diketonate complexes of europium, as well as metal-containing porphyrines) with major microbial intracellular components and toxins. Unlike classical microbiological, immunochemical or biochemical methods of detection, the proposed method has a reasonable versatility, specificity, sensitivity, rapid action, and possible automation.

  10. Radiotherapy dosimetry based on plastic optical fibre sensors

    Science.gov (United States)

    O'Keeffe, S.; Grattan, M.; Hounsell, A.; McCarthy, D.; Woulfe, P.; Cronin, J.; Lewis, E.

    2013-05-01

    The use of a PMMA based plastic optical fibre in radiotherapy dosimetry is presented. The optical fibre tip is coated with a scintillation material, terbium-doped gadolinium oxysulfide (Gd2O2S:Tb), which fluoresces under ionising radiation. The emitted signal penetrates the fibre and propagates along the fibre where it is remotely monitored using a fluorescence spectrometer. The results demonstrate good repeatability, with a maximum percentage error of 0.59% and the response is independent of dose rate.

  11. Luminescent Lanthanide Metal Organic Frameworks for cis-Selective Isoprene Polymerization Catalysis

    OpenAIRE

    Samantha Russell; Thierry Loiseau; Christophe Volkringer; Marc Visseaux

    2015-01-01

    In this study, we are combining two areas of chemistry; solid-state coordination polymers (or Metal-Organic Framework—MOF) and polymerization catalysis. MOF compounds combining two sets of different lanthanide elements (Nd3+, Eu3+/Tb3+) were used for that purpose: the use of neodymium was required due to its well-known catalytic properties in dienes polymerization. A second lanthanide, europium or terbium, was included in the MOF structure with the aim to provide luminescent properties. Sev...

  12. Modeled Neutron Induced Nuclear Reaction Cross Sections for Radiochemsitry in the region of Thulium, Lutetium, and Tantalum I. Results of Built in Spherical Symmetry in a Deformed Region

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, R. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-09-06

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron induced nuclear reaction cross sections for targets ranging from Terbium (Z = 65) to Rhenium (Z = 75). Of particular interest are the cross sections on Tm, Lu, and Ta including reactions on isomeric targets.

  13. Factors Affecting the Efficiency of Excited-States Interactions of Complexes between Some Visible Light-Emitting Lanthanide Ions and Cyclophanes Containing Spirobiindanol Phosphonates

    Directory of Open Access Journals (Sweden)

    M. S. Attia

    2007-01-01

    Full Text Available The efficiency of excited-states interactions between lanthanide ions Tb3+ and Eu3+ and some new cyclophanes (I, II, and III has been studied in different media. High luminescence quantum yield values for terbium and europium complexes in DMSO and PMMA were obtained. The photophysical properties of the green and red emissive Tb3+ and Eu3+ complexes have been elucidated, respectively.

  14. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    Science.gov (United States)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-02-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of leukocytes and respiratory burst of cells was observed for limited number of samples.

  15. The effect of metal distribution on the luminescence properties of mixed-lanthanide metal-organic frameworks.

    Science.gov (United States)

    Cadman, Laura K; Mahon, Mary F; Burrows, Andrew D

    2018-02-13

    A series of lanthanide metal-organic frameworks (MOFs) of the general formula [Ln(Hodip)(H 2 O)]·nH 2 O (Sm, 1; Eu, 2; Gd, 3; Tb, 4; Dy, 5; Er, 6; H 4 odip = 5,5'-oxydiisophthalic acid) have been prepared and shown crystallographically to have isostructural three-dimensional frameworks. The fluorescence emission spectra of the europium compound 2, which is red, and the terbium compound 4, which is green, show characteristic peaks for transitions involving the metal centres, whereas that for the gadolinium compound 3 is dominated by transitions involving Hodip. Using a 1 : 1 : 1 mixture of europium, gadolinium and terbium nitrates in the synthesis resulted in the mixed-metal MOF [Gd 0.17 Tb 0.19 Eu 0.64 (Hodip)(H 2 O)]·nH 2 O 7, for which the ratio of the metal ions was determined using EDX spectroscopy. The fluorescence emission spectrum of 7 is dominated by europium emission bands reflecting the higher proportion of Eu 3+ centres and quenching of the terbium fluorescence by metal-to-metal energy transfer. A series of core-shell MOF materials based on the Ln(Hodip)(H 2 O) framework have been prepared in order to isolate the lanthanides in different domains within the crystals. The emission spectra for materials with Gd@Tb@Eu (8) and Tb@Eu@Gd (9) are dominated by terbium emissions, suggesting that physical separation from europium suppresses quenching. In contrast, the material with Eu@Gd@Tb (10) shows only broad ligand bands and europium emissions. This confirms that core-shell MOFs have different fluorescence properties to simple mixed-metal MOFs, demonstrating that the spatial distribution of the metals within a mixed-lanthanide MOF affects the fluorescence behaviour.

  16. Synthesis and stimulated luminescence property of Zn(BO2)2:Tb(3).

    Science.gov (United States)

    Del Rosario, G Cedillo; Cruz-Zaragoza, E; Hipólito, M García; Marcazzó, J; Hernández A, J M; Murrieta S, H

    2017-09-01

    Zinc borate, Zn(BO2)2, doped with different concentrations of terbium (0.5-8mol%) was synthesized and polycrystalline samples were characterized by Scanning Electron Microscopy and X-Ray Diffraction. The Zn(BO2)2 was formed in the pure samples sintered at 750 and 800°C which has the body centered cubic structure, and a ZnB4O7 primitive orthorhombic phase was present. The thermoluminescent intensity was dependents on the thermal treatment (250-500°C) and also on the impurity concentration. The linear dose-response was obtained between 0.022-27.7Gy and 0.5-50Gy when the samples were exposed to beta and gamma radiation, respectively. The complex structure of the glow curves was analyzed by the Computerized Glow Curve Deconvolution method. The kinetics parameters were calculated assuming the general order kinetics model describing accurately the TL process. The glow curves of Tb(3+)-doped zinc borate phosphor were well deconvolved by six glow peaks. Zinc borate with 8mol% of impurity concentration exhibited an intense radioluminescent emission. The radioluminescent spectra show their maximum bands at 370, 490, 545 and 700nm related to the terbium ion in the zinc borate. These obtained results suggest that the terbium doped zinc borate is a promising phosphor for use in radiation dosimetry because of its high TL sensitivity to the ionizing radiation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Effect of Ising-type Tb3+ ions on the low-temperature magnetism of La, Ca cobaltite.

    Science.gov (United States)

    Knížek, K; Jirák, Z; Hejtmánek, J; Veverka, M; Kaman, O; Maryško, M; Santavá, E; André, G

    2014-03-19

    Crystal and magnetic structures of the x = 0.2 member of the La0.8-xTbxCa0.2CoO3 perovskite series have been determined from powder neutron diffraction. Enhancement of the diffraction peaks due to ferromagnetic or cluster glass ordering is observed below TC = 55 K. The moments first evolve on Co sites, and ordering of Ising-type Tb(3+) moments is induced at lower temperatures by a molecular field due to Co ions. The final magnetic configuration is collinear Fx for the cobalt subsystem, while it is canted FxCy for terbium ions. The rare-earth moments align along local Ising axes within the ab-plane of the orthorhombic Pbnm structure. The behavior in external fields up to 70-90 kOe has been probed by magnetization and heat capacity measurements. The dilute terbium ions contribute to significant coercivity and remanence that both steeply increase with decreasing temperature. A remarkable manifestation of the Tb(3+) Ising character is the observation of a low-temperature region with an anomalously large linear term of heat capacity and its field dependence. Similar behaviors are detected also for other terbium dopings x = 0.1 and 0.3.

  18. Luminescence enhancement by energy transfer in melamine-Y{sub 2}O{sub 3}:Tb{sup 3+} nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Stagi, Luigi, E-mail: luigi.stagi@dsf.unica.it; Chiriu, Daniele; Carbonaro, Carlo M.; Ricci, Pier Carlo [Dipartimento di Fisica, Università degli Studi di Cagliari, S.P. Monserrato-Sestu Km 0,700, 09042 Monserrato (Italy); Ardu, Andrea; Cannas, Carla [Departimento di Scienze Chimiche e Geologiche and INSTM, Università d Cagliari, SS 554 bivio Sestu, I-09042 Monserrato (Italy)

    2015-09-28

    The phenomenon of luminescence enhancement was studied in melamine-Y{sub 2}O{sub 3}:Tb hybrids. Terbium doped Y{sub 2}O{sub 3} mesoporous nanowires were synthesized by hydrothermal method. X-ray diffraction patterns and Raman scattering spectra testified the realization of a cubic crystal phase. Organic-inorganic melamine-Y{sub 2}O{sub 3}:Tb{sup 3+} hybrid system was successfully obtained by vapour deposition method. Vibration Raman active modes of the organic counterpart were investigated in order to verify the achievement of hybrid system. Photoluminescence excitation and photoluminescence spectra, preformed in the region between 250 and 350 nm, suggest a strong interaction among melamine and Terbium ions. In particular, a remarkable improvement of {sup 5}D{sub 4}→ F{sub J} Rare Earth emission (at about 542 nm) of about 10{sup 2} fold was observed and attributed to an efficient organic-Tb energy transfer. The energy transfer mechanism was studied by the use of time resolved photoluminescence measurements. The melamine lifetime undergoes to a significant decrease when adsorbed to oxide surfaces and it was connected to a sensitization mechanism. The detailed analysis of time decay profile of Terbium radiative recombination shows a variation of double exponential law toward a single exponential one. Its correlation with surface defects and non-radiative recombination was thus discussed.

  19. Morphological evolution in single-crystalline Bi2Te3 nanoparticles ...

    Indian Academy of Sciences (India)

    A general surfactant-assisted wet chemical route has been developed for the synthesis of a variety of bismuth telluride (Bi2Te3) single-crystalline nanostructures with varied morphologies at different temperatures in which hydrazine hydrate plays as an important solvent. Bi2Te3 sheet grown nanoparticles, nanosheets and ...

  20. Reactivity of [Cp*Mo(CO)3Me] with chalcogenated borohydrides Li ...

    Indian Academy of Sciences (India)

    with oxidizers and electrophiles. Apart from this, the transition metal-selenide and telluride complexes repre- sent a wide range of structural varieties11a−b and recent investigations focus on their cluster growth reactions.11. Thus, in search of alternative mono metal precursors for the synthesis of chalcogenide complexes, ...

  1. A confocal laser scanning microscopic study on thermoresponsive ...

    Indian Academy of Sciences (India)

    Monodisperse poly(N -isopropylacrylamide) (PNIPAM) particles loaded with cadmium telluride (CdTe) quantum dots (QDs) of two different sizes (4.7 nm and 5.6 nm) were synthesized in aqueous medium by bonding the capping agent on the quantum dots to the amide groups of PNIPAM and incubating the samples at 45° ...

  2. Upconversion imager measures single mid-IR photons

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    The most sensitive IR detectors today are based on exotic semicoductor technology such as indium antimonide or mercury cadmium telluride. High quality detectors of these sorts are expensive and suffer from high dark currents. Dark current can be somewhat alleviated by extreme cooling. Comparing t...

  3. Infrared Evanescent-Absorption Spectroscopy with Chalcogenide Glass-Fibers

    OpenAIRE

    Sanghera, J S; Kung, F H; Pureza, P. C.; Nguyen, V Q; Miklos, R. E.; Aggarwal, I D

    1994-01-01

    We have used telluride glass fibers fabricated in house to measure the evanescent-absorption spectra of water, methanol, ethanol, isopropanol, acetone, ethanoic acid, hexane, and chloroform. Furthermore, detection limits of less than 2 vol. % solute were obtained for mixtures of water and methanol, ethanol, isopropanol, acetone, and ethanoic acid. Techniques to reduce the detection limits are discussed.

  4. Utilizing Interfaces for Nano- and Micro-scale Control of Thermal Conductivity

    Science.gov (United States)

    2015-08-17

    which structure is like [B]- graphene sheets sandwiching Al, shows higher thermal conductivity perpendicular to the planes compared to the in-plane...modifying the balance of thermal conductivity and electrical conductivity , since bismuth telluride-type materials are the champion thermoelectric...substantially reduce thermal conductivity by ~30% in crystals examined. (2) A striking contrast with thermal transport in carbon/ graphene materials was

  5. Moving Beyond 3D Hetero-Integration and Towards Monolithic Integration of Phase-Change RF Switches with SiGe BiCMOS

    Science.gov (United States)

    2016-03-31

    remaining features on the chiplet ( transmission lines , bumps, alignment structures) serve only the purpose of ensuring mechanical and electrical...Corporation, Linthicum, Maryland *Corresponding author: Pavel.Borodulin@ngc.com Abstract: A chip-scale, highly- reconfigurable transmitter and...Change Switch (PCS); germanium telluride (GeTe); Low Loss RF switch; reconfigurable system; non-volatile switch; heterogeneous integration Introduction

  6. Methods for Estimating Physicochemical Properties of Inorganic Chemicals of Environmental Concern.

    Science.gov (United States)

    1984-06-01

    Hypochlorite Hydrogen Selenide Lithium Hydride 16. PEROXIDES 17. BINARY COMPOUNDS Hydrogen Peroxide Bismuth Telluride Bromine Pentafluoride Chlorine...AND RODENTICIDES Aluminum tris-o-ethyl phosphonate Ammonium Methanearsonates (t-octyl or t-dodecyl) Ammonium Sulfamate Cadmium Succinate Copper salts

  7. Self-Powered Functional Device Using On-Chip Power Generation

    KAUST Repository

    Hussain, Muhammad Mustafa

    2012-01-26

    An apparatus, system, and method for a self-powered device using on-chip power generation. In some embodiments, the apparatus includes a substrate, a power generation module on the substrate, and a power storage module on the substrate. The power generation module may include a thermoelectric generator made of bismuth telluride.

  8. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Parveen Lehana. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 535-539. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor · Sandeep Arya Saleem Khan Suresh Kumar Rajnikant ...

  9. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Rajnikant Verma. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 535-539. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor · Sandeep Arya Saleem Khan Suresh Kumar Rajnikant ...

  10. Microbolometer spectrometer opens hoist of new applications

    NARCIS (Netherlands)

    Leijtens, J.A.P.; Smorenburg, C.; Escudero, I.; Boslooper, E.C.; Visser, H.; Helden, W.A. van; Breussin, F.N.

    2004-01-01

    Current Thermal infra red ( 7..14μm) multispectral imager instruments use cryogenically cooled Mercury Cadmium Telluride (MCT or HgCdTe) detectors. This causes the instruments to be bulky, power hungry and expensive. For systems that have medium NETD (Noise Equivalent Temperature Difference)

  11. Microbolometer spectrometer: applications and technology

    NARCIS (Netherlands)

    Leijtens, J.A.P.; Court, A.J.; Hoegee, J.

    2004-01-01

    Current Thermal Infra Red (7.14μm) multispectral imager instruments use cryogenically cooled Mercury Cadmium Telluride (MCT or HgCdTe) detectors. Now due to the increased performance of uncooled microbolometer arrays, the next generation of instruments can be designed without cryogenic cooling. TNO

  12. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2015-01-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have...

  13. Manhattan Project Technical Series: The Chemistry of Uranium (I)

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitch, E. I. [Argonne National Lab. (ANL), Argonne, IL (United States); Katz, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    1947-03-10

    This constitutes Chapters 11 through 16, inclusive, of the Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Uranium Oxides, Sulfides, Selenides, and Tellurides; The Non-Volatile Fluorides of Uranium; Uranium Hexafluoride; Uranium-Chlorine Compounds; Bromides, Iodides, and Pseudo-Halides of Uranium; and Oxyhalides of Uranium.

  14. The influence of series resistance on the I-V characteristics of CdTe ...

    African Journals Online (AJOL)

    The influence of series resistance (Rs) on the current (I) – voltage(V) characteristics of evaporated cadmium telluride(CdTe) thin films has been investigated. CdTe films of thickness 1000Å were deposited by thermal evaporation in a vacuum of about 10-5torr. For the I – V measurements, the two point probe configuration ...

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. R J Dhokne. Articles written in Bulletin of Materials Science. Volume 29 Issue 2 April 2006 pp 165-168 Thin Films. Characterization of nanocrystalline cadmium telluride thin films grown by successive ionic layer adsorption and reaction (SILAR) method · A U Ubale R J Dhokne ...

  16. Development of III-Nitride Based THz Inter-Subband Lasers

    Science.gov (United States)

    2009-09-30

    using a Bruker IFS 66V vacuum Fourier Transform Infrared spectrometer, with an internal blackbody source, and a cryogenic mercury-cadmium-telluride...has been studied in order to achieve higher absorption. Samples were polished in a holder using grinding , lapping and polishing disk with diamond

  17. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Saleem Khan. Articles written in Bulletin of Materials Science. Volume 36 Issue 4 August 2013 pp 535-539. Synthesis of copper telluride nanowires using template-based electrodeposition method as chemical sensor · Sandeep Arya Saleem Khan Suresh Kumar Rajnikant ...

  18. Modeling the Growth of Aluminum Gallium Nitride ((Al)GaN) Films Grown on Aluminum Nitride (AlN) Substrates

    Science.gov (United States)

    2011-03-01

    cadmium zinc telluride ( CdZnTe or CZT) on Si using a superlattice (SL) in which the SL layers had different compositions (10). We found that the...Abbreviations, and Acronyms (Al)GaN aluminum gallium arsenide AlN aluminum nitride ARL U.S. Army Research Laboratory CdZnTe or CZT cadmium zinc

  19. 77 FR 35425 - Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of...

    Science.gov (United States)

    2012-06-13

    ... amorphous silicon (a-Si), cadmium telluride (CdTe), or copper indium gallium selenide (CIGS). Also excluded... COMMISSION Crystalline Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of... crystalline silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00, 8507...

  20. 77 FR 31309 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-05-25

    ... telluride (CdTe), or copper indium gallium selenide (CIGS). Also excluded from the scope of this... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... crystalline silicon photovoltaic cells, whether or not assembled into modules (``solar cells''), from the...

  1. 77 FR 17439 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-03-26

    ... products produced from amorphous silicon (a-Si), cadmium telluride (CdTe), or copper indium gallium... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... into modules (solar cells) from the People's Republic of China (PRC). For information on the estimated...

  2. Application of Copper Indium Gallium Diselenide Photovoltaic Cells to Extend the Endurance and Capabilities of Unmanned Aerial Vehicles

    Science.gov (United States)

    2009-09-01

    Challenger (From [10]).............................................................................7 Figure 5. World Average Photovoltaic Module Cost per...Typical Configuration for a CdTe Cell (From [71]). .......................................51 Figure 55. Roll-to-Roll Manufacture of CIGS Solar Cells...Vehicle BDA Battle Damage Assessment BIPV Building Integrated Photovoltaics CdTe Cadmium Telluride CIGS Copper Indium Gallium Diselenide

  3. 77 FR 73018 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-12-07

    ... telluride (CdTe), or copper indium gallium selenide (CIGS). Also excluded from the scope of this order are... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... assembled into modules (``solar cells''), from the People's Republic of China (``PRC''). In addition, the...

  4. 77 FR 63791 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled into Modules, from the People's...

    Science.gov (United States)

    2012-10-17

    ...-Si), cadmium telluride (CdTe), or copper indium gallium selenide (CIGS). ] Also excluded from the... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled into Modules... photovoltaic cells, whether or not assembled into modules (``solar cells''), from the People's Republic of...

  5. 77 FR 73017 - Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's...

    Science.gov (United States)

    2012-12-07

    ... thin film photovoltaic products produced from amorphous silicon (a-Si), cadmium telluride (CdTe), or... International Trade Administration Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules... into modules (solar cells), from the People's Republic of China (PRC). On November 30, 2012, the ITC...

  6. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Y. K. Arora. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 31 Review Article. The Cadmium Zinc Telluride Imager on AstroSat · V. Bhalerao D. Bhattacharya A. Vibhute P. Pawar A. R. Rao M. K. Hingar Rakesh Khanna ...

  7. Electronic band-structure calculations of some magnetic chromium compounds

    NARCIS (Netherlands)

    VANBRUGGEN, CF; HAAS, C; DEGROOT, RA

    1989-01-01

    In this paper band-structure calculations of CrS, CrSe, Cr3Se4 and CrSb are presented. Together with our accompanying results for the chromium tellurides, these calculations give a coherent picture of the changes in the electronic structure caused by anion substitution and by introduction of cation

  8. solution growth and characterization of copper oxide thin films ...

    African Journals Online (AJOL)

    Thin films of copper oxide (CuO) were grown on glass slides by using the solution growth technique. Copper cloride (CuCl ) and potassium telluride (K T O ) were used. Buffer 2 2e 3 solution was used as complexing agent. The solid state properties and optical properties were obtained from characterization done using PYE ...

  9. Synthesis and X-ray structures of dilithium complexes of the phosphonate anions [PhP(E)(N(t)Bu)(2)](2-) (E = O, S, Se, Te) and dimethylaluminum derivatives of [PhP(E)(N(t)Bu)(NH(t)Bu)](-) (E = S, Se).

    Science.gov (United States)

    Briand, Glen G; Chivers, Tristram; Krahn, Mark; Parvez, Masood

    2002-12-16

    The dilithium salts of the phosphonate dianions [PhP(E)(N(t)Bu)(2)](2-) (E = O, S, Se) are generated by the lithiation of [PhP(E)(NH(t)Bu)(2)] with n-butyllithium. The formation of the corresponding telluride (E = Te) is achieved by oxidation of [Li(2)[PhP(N(t)Bu)(2)

  10. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy. Essy Samuel. Articles written in Journal of Astrophysics and Astronomy. Volume 38 Issue 2 June 2017 pp 31 Review Article. The Cadmium Zinc Telluride Imager on AstroSat · V. Bhalerao D. Bhattacharya A. Vibhute P. Pawar A. R. Rao M. K. Hingar Rakesh Khanna ...

  11. Synthesis of novel E-2-chlorovinyltellurium compounds based on the stereospecific anti-addition of tellurium tetrachloride to acetylene.

    Science.gov (United States)

    Musalova, Maria V; Potapov, Vladimir A; Amosova, Svetlana V

    2012-05-15

    The reaction of tellurium tetrachloride with acetylene proceeds in a stereospecific anti-addition manner to afford the novel products E-2-chlorovinyltellurium trichloride and E,E-bis(2-chlorovinyl)tellurium dichloride. Reaction conditions for the selective preparation of each of these products were found. The latter was obtained in 90% yield in CHCl(3) under a pressure of acetylene of 10-15 atm, whereas the former product was formed in up to 72% yield in CCl(4) under a pressure of acetylene of 1-3 atm. Synthesis of the previously unknown E,E-bis(2-chlorovinyl) telluride, E,E-bis(2-chlorovinyl) ditelluride, E-2-chlorovinyl 1,2,2-trichloroethyl telluride and E,E-bis(2-chlorovinyl)-tellurium dibromide is described.

  12. Resonant Thermoelectric Nanophotonics

    CERN Document Server

    Mauser, Kelly W; Kim, Seyoon; Fleischman, Dagny; Atwater, Harry A

    2016-01-01

    Photodetectors are typically based on photocurrent generation from electron-hole pairs in semiconductor structures and on bolometry for wavelengths that are below bandgap absorption. In both cases, resonant plasmonic and nanophotonic structures have been successfully used to enhance performance. In this work, we demonstrate subwavelength thermoelectric nanostructures designed for resonant spectrally selective absorption, which creates large enough localized temperature gradients to generate easily measureable thermoelectric voltages. We show that such structures are tunable and are capable of highly wavelength specific detection, with an input power responsivity of up to 119 V/W (referenced to incident illumination), and response times of nearly 3 kHz, by combining resonant absorption and thermoelectric junctions within a single structure, yielding a bandgap-independent photodetection mechanism. We report results for both resonant nanophotonic bismuth telluride-antimony telluride structures and chromel-alumel...

  13. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    Science.gov (United States)

    Wu, Xuanzhi; Sheldon, Peter

    2000-01-01

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  14. Studies of crystalline CdZnTe radiation detectors and polycrystalline thin film CdTe for X-ray imaging applications

    CERN Document Server

    Ede, A

    2001-01-01

    The development of a replacement to the conventional film based X-ray imaging technique is required for many reasons. One possible route for this is the use of a large area film of a suitable semiconductor overlaid on an amorphous silicon readout array. A suitable semiconductor exists in cadmium telluride and its tertiary alloy cadmium zinc telluride. In this thesis the spectroscopic characteristics of commercially available CZT X- and gamma-radiation detectors are established. The electronic, optical, electro-optic, structural and compositional properties of these detectors are then investigated. The attained data is used to infer a greater understanding for the carrier transport in a CZT radiation detector following the interaction of a high energy photon. Following this a method used to fabricate large area films of CdTe on a commercial scale is described. This is cathodic electrodeposition from an aqueous electrolyte. The theory and experimental arrangement for this technique are described in detail with ...

  15. Internal structure of cesium-bearing radioactive microparticles released from Fukushima nuclear power plant

    Science.gov (United States)

    Yamaguchi, Noriko; Mitome, Masanori; Kotone, Akiyama-Hasegawa; Asano, Maki; Adachi, Kouji; Kogure, Toshihiro

    2016-02-01

    Microparticles containing substantial amounts of radiocesium collected from the ground in Fukushima were investigated mainly by transmission electron microscopy (TEM) and X-ray microanalysis with scanning TEM (STEM). Particles of around 2 μm in diameter are basically silicate glass containing Fe and Zn as transition metals, Cs, Rb and K as alkali ions, and Sn as substantial elements. These elements are homogeneously distributed in the glass except Cs which has a concentration gradient, increasing from center to surface. Nano-sized crystallites such as copper- zinc- and molybdenum sulfide, and silver telluride were found inside the microparticles, which probably resulted from the segregation of the silicate and sulfide (telluride) during molten-stage. An alkali-depleted layer of ca. 0.2 μm thick exists at the outer side of the particle collected from cedar leaves 8 months after the nuclear accident, suggesting gradual leaching of radiocesium from the microparticles in the natural environment.

  16. Bulk Growth of 2-6 Crystals in the Microgravity Environment of USML-1

    Science.gov (United States)

    Gillies, Donald C.; Lehoczky, Sandor L.; Szofran, Frank R.; Larson, David J.; Su, Ching-Hua; Sha, Yi-Gao; Alexander, Helga A.

    1993-01-01

    The first United States Microgravity Laboratory Mission (USML- 1) flew in June 1992 on the Space Shuttle Columbia. An important part of this SpaceLab mission was the debut of the Crystal Growth Furnace (CGF). Of the seven samples grown in the furnace, three were bulk grown 2-6 compounds, two of a cadmium zinc telluride alloy, and one of a mercury zinc telluride alloy. Ground based results are presented, together with the results of computer simulated growths of these experimental conditions. Preliminary characterization results for the three USML-1 growth runs are also presented and the flight sample characteristics are compared to the equivalent ground truth samples. Of particular interest are the effect of the containment vessel on surface features, and especially on the nucleation, and the effect of the gravity vector on radial and axial compositional variations and stress and defect levels.

  17. Power generation from thermoelectric system-embedded Plexiglas for green building technology

    KAUST Repository

    Inayat, Salman Bin

    2012-06-09

    Thermoelectric materials embedded through or inside exterior glass windows can act as a viable source of supplemental power in geographic locations where hot weather dominates. This thermoelectricity is generated because of the thermal difference between the high temperature outside and the relatively cold temperature inside. Using physical vapor deposition process, we experimentally verify this concept by embedding bismuth telluride and antimony telluride through the 5 mm Plexiglas to demonstrate 10 nW of thermopower generation with a temperature gradient of 21 °C. Albeit tiny at this point with non-optimized design and development, this concept can be extended for relatively large-scale power generation as an additional power supply for green building technology.

  18. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications.

    Science.gov (United States)

    Sordo, Stefano Del; Abbene, Leonardo; Caroli, Ezio; Mancini, Anna Maria; Zappettini, Andrea; Ubertini, Pietro

    2009-01-01

    Over the last decade, cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si) and germanium (Ge), CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors.

  19. Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy.

    Science.gov (United States)

    Winkler, Alexander; Koivunoro, Hanna; Savolainen, Sauli

    2017-06-01

    The next step in the boron neutron capture therapy (BNCT) is the real time imaging of the boron concentration in healthy and tumor tissue. Monte Carlo simulations are employed to predict the detector response required to realize single-photon emission computed tomography in BNCT, but have failed to correctly resemble measured data for cadmium telluride detectors. In this study we have tested the gamma production cross-section data tables of commonly used libraries in the Monte Carlo code MCNP in comparison to measurements. The cross section data table TENDL-2008-ACE is reproducing measured data best, whilst the commonly used ENDL92 and other studied libraries do not include correct tables for the gamma production from the cadmium neutron capture reaction that is occurring inside the detector. Furthermore, we have discussed the size of the annihilation peaks of spectra obtained by cadmium telluride and germanium detectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Progress in the Development of CdTe and CdZnTe Semiconductor Radiation Detectors for Astrophysical and Medical Applications

    Directory of Open Access Journals (Sweden)

    Anna Maria Mancini

    2009-05-01

    Full Text Available Over the last decade, cadmium telluride (CdTe and cadmium zinc telluride (CdZnTe wide band gap semiconductors have attracted increasing interest as X-ray and gamma ray detectors. Among the traditional high performance spectrometers based on silicon (Si and germanium (Ge, CdTe and CdZnTe detectors show high detection efficiency and good room temperature performance and are well suited for the development of compact and reliable detection systems. In this paper, we review the current status of research in the development of CdTe and CdZnTe detectors by a comprehensive survey on the material properties, the device characteristics, the different techniques for improving the overall detector performance and some major applications. Astrophysical and medical applications are discussed, pointing out the ongoing Italian research activities on the development of these detectors.