Sample records for terbium sulfides

  1. Zinc sulfide and terbium-doped zinc sulfide films grown by traveling wave reactor atomic layer epitaxy

    CERN Document Server

    Yun, S J; Nam, K S


    Zinc sulfide (ZnS) and terbium-doped ZnS (ZnS:Tb) thin films were grown by traveling wave reactor atomic layer epitaxy (ALE). In the present work, ZnCl sub 2 , H sub 2 S, and tris (2,2,6,6-tetramethyl-3,5-heptandionato) terbium (Tb(tmhd) sub 3) were used as the precursors. The dependence of crystallinity and Cl content of ZnS films was investigated on the growth temperature. ZnS and ZnS:Tb films grown at temperatures ranging from 400 to 500 .deg. C showed a hexagonal-2H crystalline structure. The crystallinity of ZnS film was greatly enhanced as the temperature increased. At growth temperatures higher than 450.deg.C, the films showed preferred orientation with mainly (002) diffraction peak. The Cl content decreased from approximately 9 to 1 at.% with the increase in growth temperature from 400 to 500 .deg. C. The segregation of Cl near the surface region and the incorporation of O from Tb(tmhd) sub 3 during ALE process were also observed using Auger electron spectroscopy. The ALE-grown ZnS and ZnS:Tb films re...

  2. Elastic properties of terbium

    DEFF Research Database (Denmark)

    Spichkin, Y.I.; Bohr, Jakob; Tishin, A.M.


    The temperature dependence of the Young modulus along the crystallographic axes b and c (E(b) and E(c)), and the internal friction of a terbium single crystal have been measured. At 4.2 K, E(b) and E(c) are equal to 38 and 84.5 GPa, respectively. The lattice part of the Young modulus and the Debye...... temperature has been calculated. The origin of the Young modulus anomalies arising at the transition to the magnetically ordered state is discussed....

  3. Critical scattering of neutrons from terbium

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Dietrich, O.W.; Marshall, W.


    The inelasticity of the critical scattering of neutrons in terbium has been measured above the Neél temperature at the (0, 0, 2−Q) satellite position. The results show that dynamic slowing down of the fluctuations does occur in a second‐order phase transition in agreement with the general theory...

  4. Semiconductor composition containing iron, dysprosium, and terbium

    Energy Technology Data Exchange (ETDEWEB)

    Pooser, Raphael C.; Lawrie, Benjamin J.; Baddorf, Arthur P.; Malasi, Abhinav; Taz, Humaira; Farah, Annettee E.; Kalyanaraman, Ramakrishnan; Duscher, Gerd Josef Mansfred; Patel, Maulik K.


    An amorphous semiconductor composition includes 1 to 70 atomic percent iron, 15 to 65 atomic percent dysprosium, 15 to 35 atomic percent terbium, balance X, wherein X is at least one of an oxidizing element and a reducing element. The composition has an essentially amorphous microstructure, an optical transmittance of at least 50% in at least the visible spectrum and semiconductor electrical properties.

  5. Selenium Sulfide (United States)

    Selenium sulfide, an anti-infective agent, relieves itching and flaking of the scalp and removes the dry, ... Selenium sulfide comes in a lotion and is usually applied as a shampoo. As a shampoo, selenium ...

  6. Raman spectroscopy study of the doping effect of the encapsulated terbium halogenides on single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamova, M.V.; Kramberger, C.; Mittelberger, A. [University of Vienna, Faculty of Physics, Vienna (Austria)


    In the present work, the doping effect of terbium chloride, terbium bromide, and terbium iodide on single-walled carbon nanotubes (SWCNTs) was compared by Raman spectroscopy. A precise investigation of the doping-induced alterations of the Raman modes of the filled SWCNTs was conducted. The shifts of the components of the Raman modes and modification of their profiles allowed concluding that the inserted terbium halogenides have acceptor doping effect on the SWCNTs, and the doping efficiency increases in the line with terbium iodide, terbium bromide, and terbium chloride. (orig.)

  7. Magnetocaloric effect of thin Terbium films (United States)

    Mello, V. D.; Anselmo, D. H. A. L.; Vasconcelos, M. S.; Almeida, N. S.


    We report a theoretical study of the magnetocaloric effect of Terbium (Tb) thin films due to finite size and surface effects in the helimagnetic phase, corresponding to a temperature range from TC=219 K to TN=231 K, for external fields of the order of kOe. For a Tb thin film of 6 monolayers submitted to an applied field (ΔH =30 kOe, ΔH =50 kOe and ΔH = 70 kOe) we report a significative change in adiabatic temperature, ΔT / ΔH , near the Néel temperature, of the order ten times higher than that observed for Tb bulk. On the other hand, for small values of the magnetic field, large thickness effects are found. For external field strength around few kOe, we have found that the thermal caloric efficiency increases remarkably for ultrathin films. For an ultrathin film with 6 monolayers, we have found ΔT / ΔH = 43 K/T while for thicker films, with 20 monolayers, ΔT / ΔH = 22 K/T. Our results suggest that thin films of Tb are a promising material for magnetocaloric effect devices for applications at intermediate temperatures.

  8. Femtosecond XUV spectroscopy of gadolinium and terbium

    Energy Technology Data Exchange (ETDEWEB)

    Carley, Robert; Frietsch, Bjoern; Doebrich, Kristian; Teichmann, Martin; Gahl, Cornelius; Noack, Frank [Max-Born-Institute, Berlin (Germany); Schwarzkopf, Olaf; Wernet, Philippe [Helmholtz-Zentrum fuer Materialien und Energie (BESSY II), Berlin (Germany); Weinelt, Martin [Max-Born-Institute, Berlin (Germany); Fachbereich Physik, Freie Universitaet, Berlin (Germany)


    We present recent results of time-resolved IR-pump-XUV-probe experiments on the ultrafast demagnetization of thin films of Gadolinium(0001) and Terbium(0001) on Tungsten(110). The experiments are the first to be done using a newly developed high-order harmonics (HHG) XUV beamline at the MBI. The beamline delivers monochromated XUV pulses of approximately 150 fs duration with a photon energy resolution of up to 150 meV. Following excitation by intense femtosecond infrared (IR) pulses, photoemission with 35 eV photons allows us to directly probe the 4f electrons and their interaction with the valence band, both in the bulk and at the surface, to follow the ultrafast magnetization dynamics in the Lanthanide metals. As signatures of ultrafast demagnetization of the metal by the IR pulse, we see for the first time, rapid strong reduction of the exchange splitting in the valence band. This is followed by a slower demagnetization due to the spin-lattice interaction.

  9. Green fluorescence of terbium ions in lithium fluoroborate glasses ...

    Indian Academy of Sciences (India)

    Glasses; terbium ion; oscillator strengths; fluorescence; lifetimes; fibre lasers. 1. Introduction. Today glasses are most favourable engineering materials for abundant applications due to the wide ability of property altering by compositional modifications. The considerable examination of glass science to achieve required ...

  10. Green fluorescence of terbium ions in lithium fluoroborate glasses ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 39; Issue 3. Green fluorescence of terbium ions in lithium fluoroborate glasses for fibre lasers and display devices. G R DILLIP C MADHUKAR REDDY M RAJESH SHIVANAND CHAURASIA B DEVA PRASAD RAJU S W JOO. Volume 39 Issue 3 June 2016 pp 711-717 ...

  11. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples

    Energy Technology Data Exchange (ETDEWEB)

    Thorson, Megan K. [Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84108 (United States); Ung, Phuc [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Leaver, Franklin M. [Water & Energy Systems Technology, Inc., Kaysville, UT 84037 (United States); Corbin, Teresa S. [Quality Services Laboratory, Tesoro Refining and Marketing, Salt Lake City, UT 84103 (United States); Tuck, Kellie L., E-mail: [School of Chemistry, Monash University, Victoria 3800 (Australia); Graham, Bim, E-mail: [Monash Institute of Pharmaceutical Sciences, Monash University, Victoria 3052 (Australia); Barrios, Amy M., E-mail: [Department of Medicinal Chemistry, University of Utah College of Pharmacy, Salt Lake City, UT 84108 (United States)


    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. - Highlights: • Lanthanide–azide based sulfide sensors were synthesized and characterized. • The probes have excitation and emission profiles compatible with sulfide-contaminated samples from the petrochemical industry. • A terbium-based probe was used to measure the sulfide concentration in oil refinery wastewater. • A europium-based probe had compatibility with partially refined crude oil samples.

  12. Terahertz Cherenkov radiation from ultrafast magnetization in terbium gallium garnet (United States)

    Gorelov, S. D.; Mashkovich, E. A.; Tsarev, M. V.; Bakunov, M. I.


    We report an experimental observation of terahertz Cherenkov radiation from a moving magnetic moment produced in terbium gallium garnet by a circularly polarized femtosecond laser pulse via the inverse Faraday effect. Contrary to some existing theoretical predictions, the polarity of the observed radiation unambiguously demonstrates the paramagnetic, rather than diamagnetic, nature of the ultrafast inverse Faraday effect. From measurements of the radiation field, the Verdet constant in the subpicosecond regime is ˜3-10 times smaller than its table quasistatic value.

  13. Cadmium sulfide membranes (United States)

    Spanhel, Lubomir; Anderson, Marc A.


    A method is described for the creation of novel q-effect cadmium sulfide membranes. The membranes are made by first creating a dilute cadmium sulfide colloid in aqueous suspension and then removing the water and excess salts therefrom. The cadmium sulfide membrane thus produced is luminescent at room temperature and may have application in laser fabrication.

  14. Terbium luminescence in alumina xerogel fabricated in porous anodic alumina matrix under various excitation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gaponenko, N. V., E-mail: [Belarusian State University of Informatics and Radioelectronics (Belarus); Kortov, V. S. [Yeltsin Ural Federal University (Russian Federation); Orekhovskaya, T. I.; Nikolaenko, I. A. [Belarusian State University of Informatics and Radioelectronics (Belarus); Pustovarov, V. A.; Zvonarev, S. V.; Slesarev, A. I. [Yeltsin Ural Federal University (Russian Federation); Prislopski, S. Ya. [National Academy of Sciences of Belarus, Stepanov Institute of Physics (Belarus)


    Terbium-doped alumina xerogel layers are synthesized by the sol-gel method in pores of a porous anodic alumina film 1 {mu}m thick with a pore diameter of 150-180 nm; the film is grown on a silicon substrate. The fabricated structures exhibit terbium photoluminescence with bands typical of trivalent terbium terms. Terbium X-ray luminescence with the most intense band at 542 nm is observed for the first time for such a structure. Morphological analysis of the structure by scanning electron microscopy shows the presence of xerogel clusters in pore channels, while the main pore volume remains unfilled and pore mouths remain open. The data obtained confirm the promising applications of fabricated structures for developing matrix converters of X-rays and other ionizing radiations into visible light. The possibilities of increasing luminescence intensity in the matrix converter are discussed.

  15. Optical Properties of Lithium Terbium Fluoride and Implications for Performance in High Power Lasers (Postprint) (United States)



  16. Detection of biothiols in cells by a terbium chelate-Hg (II) system (United States)

    Tan, Hongliang; Chen, Yang


    Great efforts have been devoted to the development of sensitive and specific analysis methods for biothiols because of their important roles in biological systems. We present a new detection system for biothiols that is based on the reversible quenching and restoration of fluorescence of terbium chelate caused by Hg2+ and thiol species. In the presence of biothiols, a restoration of fluorescence of terbium chelate after quenching by Hg2+ was observed due to the interaction of Hg2+ with thiol groups, and the restored fluorescence increased with the concentration of biothiols. This method was sensitive and selective for biothiols. The detection limit was 80 nM for glutathione, 100 nM for Hcy, and 400 nM for Cysteine, respectively. The terbium chelate-Hg (II) system was successfully applied to determine the levels of biothiols in cancer cells and urine samples. Further, it was also shown to be comparable to Ellman's assay. Compared to other fluorescence methods, the terbium chelate probe is advantageous because interference from short-lived nonspecific fluorescence can be efficiently eliminated due to the long fluorescence lifetime of terbium chelate, which allows for detection by time-resolved fluorescence. The terbium chelate probe can serve as a diagnostic tool for the detection of abnormal levels of biothiols in disease.

  17. Cryogenic temperature characteristics of Verdet constant of terbium sesquioxide ceramics (United States)

    Snetkov, I. L.; Palashov, O. V.


    The dependence of the Verdet constant on temperature in the (80-300 K) range for a promising magneto-active material terbium sesquioxide Tb2O3 at the wavelengths of 405-1064 nm is considered. For each of the studied wavelengths, the Verdet constant of the material cooled down to the liquid nitrogen temperature increased by more than a factor of 3.2 as compared to the room temperature value. Similarly to the other paramagnetics, the increase follows the law ∼1/T. Approximations for the temperature dependence of the Verdet constant have been obtained and the value of 1/V·(dV/dT) has been estimated. This information is needed to determine the angle of rotation as well as the variation of the extinction ratio of a Faraday isolator with temperature and extremely important at creation a cryogenic Faraday devices.

  18. Biogenic terbium oxide nanoparticles as the vanguard against osteosarcoma (United States)

    Iram, Sana; Khan, Salman; Ansary, Abu Ayoobul; Arshad, Mohd; Siddiqui, Sahabjada; Ahmad, Ejaz; Khan, Rizwan H.; Khan, Mohd Sajid


    The synthesis of inner transition metal nanoparticles via an ecofriendly route is quite difficult. This study, for the first time, reports synthesis of terbium oxide nanoparticles using fungus, Fusarium oxysporum. The biocompatible terbium oxide nanoparticles (Tb2O3 NPs) were synthesized by incubating Tb4O7 with the biomass of fungus F. oxysporum. Multiple physical characterization techniques, such as UV-visible and photoluminescence spectroscopy, TEM, SAED, and zeta-potential were used to confirm the synthesis, purity, optical and surface characteristics, crystallinity, size, shape, distribution, and stability of the nanoemulsion of Tb2O3 NPs. The Tb2O3 NPs were found to inhibit the propagation of MG-63 and Saos-2 cell-lines (IC50 value of 0.102 μg/mL) and remained non-toxic up to a concentration of 0.373 μg/mL toward primary osteoblasts. Cell viability decreased in a concentration-dependent manner upon exposure to 10 nm Tb2O3 NPs in the concentration range 0.023-0.373 μg/mL. Cell toxicity was evaluated by observing changes in cell morphology, cell viability, oxidative stress parameters, and FACS analysis. Morphological examinations of cells revealed cell shrinkage, nuclear condensation, and formation of apoptotic bodies. The level of ROS within the cells-an indicator of oxidative stress was significantly increased. The induction of apoptosis at concentrations ≤ IC50 was corroborated by 4‧,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining (DNA damage and nuclear fragmentation). Flow-cytometric studies indicated that the response was dose dependent with a threshold effect.

  19. Autofluorescence-free Live-cell Imaging Using Terbium Nanoparticles. (United States)

    Cardoso Dos Santos, Marcelina; Goetz, Joan; Bartenlian, Hortense; Wong, Ka-Leung; Charbonniere, Loïc Joanny; Hildebrandt, Niko


    Fluorescent nanoparticles (NPs) have become irreplaceable tools for advanced cellular and sub-cellular imaging. While very bright NPs require excitation with UV or visible light, which can create strong autofluorescence of biological components, NIR-excitable NPs without autofluorescence issues exhibit much lower brightness. Here, we show the application of a new type of surface-photosensitized terbium NPs (Tb-NPs) for autofluorescence-free intracellular imaging in live HeLa cells. Combination of exceptionally high brightness, high photostability, and long photoluminecence (PL) lifetimes for highly efficient suppression of the short-lived autofluorescence, allowed for time-gated PL imaging of intracellular vesicles over 72 h without toxicity and at extremely low Tb-NP concentrations down to 12 pM. Detection of highly resolved long-lifetime (ms) PL decay curves from small (~10 µm2) areas within single cells within a few seconds emphasized the unprecedented photophysical properties of Tb-NPs for live-cell imaging that extend well beyond currently available nanometric imaging agents.

  20. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale


    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cycle (ηcycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  1. Folate Receptor Targeted Alpha-Therapy Using Terbium-149

    CERN Document Server

    Müller, Cristina; Haller, Stephanie; Dorrer, Holger; Köster, Ulli; Johnston, Karl; Zhernosekov, Konstantin; Türler, Andreas; Schibli, Roger


    Terbium-149 is among the most interesting therapeutic nuclides for medical applications. It decays by emission of short-range α-particles (Eα = 3.967 MeV) with a half-life of 4.12 h. The goal of this study was to investigate the anticancer efficacy of a 149Tb-labeled DOTA-folate conjugate (cm09) using folate receptor (FR)-positive cancer cells in vitro and in tumor-bearing mice. 149Tb was produced at the ISOLDE facility at CERN. Radiolabeling of cm09 with purified 149Tb resulted in a specific activity of ~1.2 MBq/nmol. In vitro assays performed with 149Tb-cm09 revealed a reduced KB cell viability in a FR-specific and activity concentration-dependent manner. Tumor-bearing mice were injected with saline only (group A) or with 149Tb-cm09 (group B: 2.2 MBq; group C: 3.0 MBq). A significant tumor growth delay was found in treated animals resulting in an increased average survival time of mice which received 149Tb-cm09 (B: 30.5 d; C: 43 d) compared to untreated controls (A: 21 d). Analysis of blood parameters rev...

  2. Hardness and dielectric characteristics of flux grown terbium aluminate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, K.K.; Kotru, P.N. [Jammu Univ. (India). Dept. of Physics; Tandon, R.P. [National Physical Laboratory, New Delhi (India); Wanklyn, B.M. [Clarendon Laboratory, University of Oxford, Oxford (United Kingdom)


    Results of indentation induced Vickers hardness testing and dielectric studies conducted on flux-grown terbium aluminate crystals are presented. It is shown that the Vickers hardness value (H{sub v}) is independent of indentation time, but depends on the applied load. Applying the concept of Hays and Kendall, the load independent values are estimated for (110) and (001) planes. Differential behaviour in the crack formation of two different planes (110) and (001) is observed, while (001) plane develops Palmqvist cracks in the whole load range of 10-100 g, (110) plane shows a transition from Palmqvist to median cracks at 70 g. The fracture toughness, brittleness index and yield strength are determined for both the planes. The hardness anisotropy is reported. The dielectric constant, dielectric loss and conductivity are shown to be dependent on temperature and frequency of the applied a.c. field. The dielectric constant versus temperature shows a transition peak at 230 C, which remains independent of the frequency of the applied a.c. field in the range 1 kHz-13 MHz. (orig.) 36 refs.

  3. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides. (United States)

    Thalmann, Basilius; Voegelin, Andreas; Sinnet, Brian; Morgenroth, Eberhard; Kaegi, Ralf


    Recent studies have documented that the sulfidation of silver nanoparticles (Ag-NP), possibly released to the environment from consumer products, occurs in anoxic zones of urban wastewater systems and that sulfidized Ag-NP exhibit dramatically reduced toxic effects. However, whether Ag-NP sulfidation also occurs under oxic conditions in the absence of bisulfide has not been addressed, yet. In this study we, therefore, investigated whether metal sulfides that are more resistant toward oxidation than free sulfide, could enable the sulfidation of Ag-NP under oxic conditions. We reacted citrate-stabilized Ag-NP of different sizes (10-100 nm) with freshly precipitated and crystalline CuS and ZnS in oxygenated aqueous suspensions at pH 7.5. The extent of Ag-NP sulfidation was derived from the increase in dissolved Cu(2+) or Zn(2+) over time and linked with results from X-ray absorption spectroscopy (XAS) analysis of selected samples. The sulfidation of Ag-NP followed pseudo first-order kinetics, with rate coefficients increasing with decreasing Ag-NP diameter and increasing metal sulfide concentration and depending on the type (CuS and ZnS) and crystallinity of the reacting metal sulfide. Results from analytical electron microscopy revealed the formation of complex sulfidation patterns that seemed to follow preexisting subgrain boundaries in the pristine Ag-NP. The kinetics of Ag-NP sulfidation observed in this study in combination with reported ZnS and CuS concentrations and predicted Ag-NP concentrations in wastewater and urban surface waters indicate that even under oxic conditions and in the absence of free sulfide, Ag-NP can be transformed into Ag2S within a few hours to days by reaction with metal sulfides.

  4. Thermoluminescence of cerium and terbium -doped calcium pyrophosphate

    Energy Technology Data Exchange (ETDEWEB)

    Roman L, J.; Cruz Z, E. [UNAM, Instituto de Ciencias Nucleares, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Lozano R, I. B.; Diaz G, J. A. I., E-mail: [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Av. Legaria No. 694, 11500 Mexico D. F. (Mexico)


    The aim of this work is to report the thermoluminescence (Tl) response of Calcium Pyrophosphate phosphor doped with Cerium and Terbium impurities (Ca{sub 2}P{sub 2}O{sub 7}:Ce{sup 3+},Tb{sup 3+}). The phosphors were synthesized using the co-precipitation method and annealed at 900 degrees C by two hours for obtain the β phase. The intentional doping with Ce and Tb ions was 1 at.% and 0.1 at.%, whereas in the EDS results the concentration of impurities was 0.39 at.% and 0.05 at.%, respectively. The superficial morphology of phosphor is mainly composed by thin wafers of different size. All samples were exposed to gamma rays from {sup 60}Co in the Gammacell-200 irradiator. The Tl response of the phosphor was measured from Rt up to 350 degrees C and under nitrogen atmosphere in a Harshaw TLD 3500 reader. The glow curves of the Ca{sub 2}P{sub 2}O{sub 7}:Ce{sup 3+},Tb{sup 3+} powders showed a broad intense Tl peak centered at 165 degrees C and a shoulder at approximate 260 degrees C was observed. A linear Tl response in the range of absorbed dose of 0.2 to 10 Gy was obtained. Tl glow curves were analyzed using the initial rise (IR)and computerized glow curve deconvolution methods to evaluate the kinetics parameters such as activation energy (E), frequency factor (s) and kinetic order (b). (Author)

  5. Solvent polarity and oxygen sensitivity, rather than viscosity, determine lifetimes of biaryl-sensitised terbium luminescence. (United States)

    Walter, Edward R H; Williams, J A Gareth; Parker, David


    In a macrocyclic terbium complex incorporating a biaryl sensitiser, the observed variation of emission lifetime is shown to be determined by the solubility of oxygen in the solvent system and the relative energy of the chromophore excited state, rather than any dependence on solvent viscosity.

  6. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Liu, Dezhao; Hansen, Michael Jørgen


    oxidizing bacteria but several fungal families including Trichocomaceae. A positive correlation was found between the presence of mold and sulfide uptake. However there have been no reports on fungi metabolizing hydrogen sulfide. We hypothesize that the mold increases the air exposed surface, enabling...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  7. Sulfide oxidation in a biofilter

    DEFF Research Database (Denmark)

    Pedersen, Claus Lunde; Dezhao, Liu; Hansen, Michael Jørgen

    oxidizing bacteria but several fungal families including Trichocomaceae. A positive correlation was found between the presence of mold and sulfide uptake. However there have been no reports on fungi metabolizing hydrogen sulfide. We hypothesize that the mold increases the air exposed surface, enabling...... higher hydrogen sulfide uptake followed by oxidation catalyzed by iron-containing enzymes such as cytochrome c oxidase in a process uncoupled from energy conservation....

  8. Hydrogen sulfide intoxication. (United States)

    Guidotti, Tee L


    Hydrogen sulfide (H2S) is a hazard primarily in the oil and gas industry, agriculture, sewage and animal waste handling, construction (asphalt operations and disturbing marshy terrain), and other settings where organic material decomposes under reducing conditions, and in geothermal operations. It is an insoluble gas, heavier than air, with a very low odor threshold and high toxicity, driven by concentration more than duration of exposure. Toxicity presents in a unique, reliable, and characteristic toxidrome consisting, in ascending order of exposure, of mucosal irritation, especially of the eye ("gas eye"), olfactory paralysis (not to be confused with olfactory fatigue), sudden but reversible loss of consciousness ("knockdown"), pulmonary edema (with an unusually favorable prognosis), and death (probably with apnea contributing). The risk of chronic neurcognitive changes is controversial, with the best evidence at high exposure levels and after knockdowns, which are frequently accompanied by head injury or oxygen deprivation. Treatment cannot be initiated promptly in the prehospital phase, and currently rests primarily on supportive care, hyperbaric oxygen, and nitrite administration. The mechanism of action for sublethal neurotoxicity and knockdown is clearly not inhibition of cytochrome oxidase c, as generally assumed, although this may play a role in overwhelming exposures. High levels of endogenous sulfide are found in the brain, presumably relating to the function of hydrogen sulfide as a gaseous neurotransmitter and immunomodulator. Prevention requires control of exposure and rigorous training to stop doomed rescue attempts attempted without self-contained breathing apparatus, especially in confined spaces, and in sudden release in the oil and gas sector, which result in multiple avoidable deaths. © 2015 Elsevier B.V. All rights reserved.

  9. Arginine-responsive terbium luminescent hybrid sensors triggered by two crown ether carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lasheng [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Tang, Ke; Ding, Xiaoping [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhou, Zhan; Xiao, Rui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)


    Crown ether carboxylic acids constitute main building blocks for the synthesis of terbium containing covalent cross-linked luminescent materials. Both the complexes and the hybrid nanomaterials could exhibit remarkable green emissions in pure water. More importantly, they were found to have a profound effect on the luminescence responses to arginine compared with glutamic acid, histidine, tryptophan, threonine, tyrosine and phenylalanine in aqueous environment. The present study provided the possibility of using a host–guest mechanism as a way of signal transduction based on lanthanide supramolecular hybrid materials. - Highlights: • Crown ether carboxylic acids were found to sensitize terbium ions among a group of ethers. • The complexes and silica hybrid materials were both prepared and characterized. • They could exhibit remarkable green emissions in pure water.

  10. Comparative analysis of conjugated alkynyl chromophore-triazacyclononane ligands for sensitized emission of europium and terbium. (United States)

    Soulié, Marine; Latzko, Frédéric; Bourrier, Emmanuel; Placide, Virginie; Butler, Stephen J; Pal, Robert; Walton, James W; Baldeck, Patrice L; Le Guennic, Boris; Andraud, Chantal; Zwier, Jurriaan M; Lamarque, Laurent; Parker, David; Maury, Olivier


    A series of europium and terbium complexes based on a functionalized triazacyclononane carboxylate or phosphinate macrocyclic ligand is described. The influence of the anionic group, that is, carboxylate, methylphosphinate, or phenylphosphinate, on the photophysical properties was studied and rationalized on the basis of DFT calculated structures. The nature, number, and position of electron-donating or electron-withdrawing aryl substituents were varied systematically within the same phenylethynyl scaffold in order to optimize the brightness of the corresponding europium complexes and investigate their two-photon absorption properties. Finally, the europium complexes were examined in cell-imaging applications, and selected terbium complexes were studied as potential oxygen sensors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Spectrofluorimetric Determination of Human Serum Albumin Using Terbium-Danofloxacin Probe


    Ramezani, Amir M.; Manzoori, Jamshid L.; Amjadi, Mohammad; Jouyban, Abolghasem


    A spectrofluorimetric method is proposed for the determination of human serum albumin (HSA) and bovine serum albumin (BSA) using terbium-danofloxacin (Tb3+-Dano) as a fluorescent probe. These proteins remarkably enhance the fluorescence intensity of the Tb3+-Dano complex at 545 nm, and the enhanced fluorescence intensity of Tb3+-Dano is proportional to the concentration of proteins (HSA and BSA). Optimum conditions for the determination of HSA were investigated and found that the maximum resp...

  12. Sulfide Mineral Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rosso, Kevin M.; Vaughan, David J.


    The past twenty years or so have seen dramatic development of the experimental and theoretical tools available to study the surfaces of solids at the molecular (?atomic resolution?) scale. On the experimental side, two areas of development well illustrate these advances. The first concerns the high intensity photon sources associated with synchrotron radiation; these have both greatly improved the surface sensitivity and spatial resolution of already established surface spectroscopic and diffraction methods, and enabled the development of new methods for studying surfaces. The second centers on the scanning probe microscopy (SPM) techniques initially developed in the 1980's with the first scanning tunneling microscope (STM) and atomic force microscope (AFM) experiments. The direct 'observation' of individual atoms at surfaces made possible with these methods has truly revolutionized surface science. On the theoretical side, the availability of high performance computers coupled with advances in computational modeling has provided powerful new tools to complement the advances in experiment. Particularly important have been the quantum mechanics based computational approaches such as density functional theory (DFT), which can now be easily used to calculate the equilibrium crystal structures of solids and surfaces from first principles, and to provide insights into their electronic structure. In this chapter, we review current knowledge of sulfide mineral surfaces, beginning with an overview of the principles relevant to the study of the surfaces of all crystalline solids. This includes the thermodynamics of surfaces, the atomic structure of surfaces (surface crystallography and structural stability, adjustments of atoms at the surface through relaxation or reconstruction, surface defects) and the electronic structure of surfaces. We then discuss examples where specific crystal surfaces have been studied, with the main sulfide minerals organized by

  13. Genetically Encoded FRET-Sensor Based on Terbium Chelate and Red Fluorescent Protein for Detection of Caspase-3 Activity

    Directory of Open Access Journals (Sweden)

    Alexander S. Goryashchenko


    Full Text Available This article describes the genetically encoded caspase-3 FRET-sensor based on the terbium-binding peptide, cleavable linker with caspase-3 recognition site, and red fluorescent protein TagRFP. The engineered construction performs two induction-resonance energy transfer processes: from tryptophan of the terbium-binding peptide to Tb3+ and from sensitized Tb3+ to acceptor—the chromophore of TagRFP. Long-lived terbium-sensitized emission (microseconds, pulse excitation source, and time-resolved detection were utilized to eliminate directly excited TagRFP fluorescence and background cellular autofluorescence, which lasts a fraction of nanosecond, and thus to improve sensitivity of analyses. Furthermore the technique facilitates selective detection of fluorescence, induced by uncleaved acceptor emission. For the first time it was shown that fluorescence resonance energy transfer between sensitized terbium and TagRFP in the engineered construction can be studied via detection of microsecond TagRFP fluorescence intensities. The lifetime and distance distribution between donor and acceptor were calculated using molecular dynamics simulation. Using this data, quantum yield of terbium ions with binding peptide was estimated.

  14. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong


    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....



    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov


    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  16. Green light emission in aluminum oxide powders doped with different terbium concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Mariscal B, L; Falcony, C. [IPN, Centro de Investigacion y de Estudios Avanzados, 07360 Ciudad de Mexico (Mexico); Carmona T, S.; Murrieta, H.; Sanchez A, M. A. [UNAM, Instituto de Fisica, 04510 Ciudad de Mexico (Mexico); Vazquez A, R. [IPN, Escuela Superior de Computo, 07738 Ciudad de Mexico (Mexico); Garcia R, C. M., E-mail: [UNAM, Facultad de Ciencias, 04510 Ciudad de Mexico (Mexico)


    Different emission intensities presented in aluminum oxide phosphors corresponding to different concentrations of doping performed with terbium are analyzed. The phosphors were synthesized by the evaporation technique and were characterized by photo and cathodoluminescence, X-ray diffraction and EDS techniques for different incorporation percentages of terbium as dopant; they show characteristic transitions in 494, 543, 587 and 622 nm, corresponding to {sup 5}D{sub 4} → {sup 7}F{sub 6}, {sup 5}D{sub 4} → {sup 7}F{sub 5}, {sup 5}D{sub 4} → {sup 7}F{sub 4} and {sup 5}D{sub 4} → {sup 7}F{sub 3}, respectively when they are excited with λ{sub exc} = 380 nm wavelength at room temperature. The results of X-ray diffraction show the presence of α-Al{sub 2}O{sub 3} phases with peaks located at 2θ = 25.78, 35.34, 37.96, 43.56, 45.8, 52.74, 57.7, 61.5, 66.74, 68.44, 77.12 and 80.94, and the δ-Al{sub 2}O-3 phase 2θ = 32.82, 45.8, 61.36 and 66.74. These compounds were heat treated for two hours at 1100 degrees Celsius. EDS analyzes indicate that these compounds have close to 60% oxygen around of 40% aluminum in the presence of terbium as dopant which indicates a stoichiometry close to the expected one for alumina. (Author)

  17. Graphene quantum dots-terbium ions as novel sensitive and selective time-resolved luminescent probes. (United States)

    Llorent-Martínez, Eulogio J; Durán, Gema M; Ríos, Ángel; Ruiz-Medina, Antonio


    We propose an alternative approach for the development of analytical methods based on terbium-sensitized luminescence (TSL). TSL is based on the complexation between Tb(III) ions and fluorescent organic compounds that have appropriate functional groups to complex with Tb(III). We report the use of graphene quantum dot (GQDs) nanoparticles to improve the sensitivity and selectivity of TSL detection. GQDs can react with terbium ions through the carboxylic groups present in their structure. These Tb(III)-GQD complexes, formed in situ in aqueous solution, can be used as time-resolved luminescent probes. Ascorbic acid was selected as a target analyte to demonstrate the suitability of the proposed method. The selectivity of the TSL method was highly improved for most of the interferences tested. Under the optimum conditions [Tb(III) concentration 5 × 10-4 mol L-1, GQD concentration 4 mg L-1], a minimum 100% increase in selectivity was observed for several vitamins and common cations that may be present in the samples to be analyzed. In addition, the analytical signal showed a 30% enhancement with the use of GQDs compared with the use of merely Tb(III) ions, with a detection limit of 0.12 μg mL-1. The repeatability and intermediate precision were lower than 3% and 5%, respectively. From the results obtained, the implementation of GQDs in TSL can lead to the development of novel time-resolved luminescent probes with high analytical potential. Graphical abstract Quenching of Tb(III)-graphene quantum dot (GQD) luminescence by ascorbic acid (AA). TBL terbium-sensitized luminescence.

  18. Fluorescence study of some terbium-oligopeptide complexes in methanolic solution. (United States)

    Rabouan, S; Delage, J; Durand, W; Prognon, P; Barthes, D


    This study concerned the use of lanthanide chelates to detect glycyl-leucyl-phenylalanine (GLF) and its homologues. Spectroscopic analysis of peptides without or with terbium complexation revealed the formation of (LF)(3)(Tb)(2), (GF)(3)(Tb)(2), (GLF)(3)(Tb)(2) and (FL)(4)Tb, (FG)(4)Tb complexes with high stability constants in methanolic solutions (pK(d)>13). Lanthanide chelate emission displayed a large Stokes shift (>270 nm), which allowed Tb chelates of GLF and its derivatives to be used for detection purposes. However, this preliminary study indicated some important limitations associated with lanthanide chelation, such as high methanolic content.

  19. Electromagnetic properties of terbium gallium garnet at millikelvin temperatures and low photon energy (United States)

    Kostylev, Nikita; Goryachev, Maxim; Bushev, Pavel; Tobar, Michael E.


    Electromagnetic properties of single crystal terbium gallium garnet are characterised from room down to millikelvin temperatures using the whispering gallery mode method. Microwave spectroscopy is performed at low powers equivalent to a few photons in energy and conducted as functions of the magnetic field and temperature. A phase transition is detected close to the temperature of 3.5 K. This is observed for multiple whispering gallery modes causing an abrupt negative frequency shift and a change in transmission due to extra losses in the new phase caused by a change in complex magnetic susceptibility.

  20. Nuclear excitation functions from 40 to 200 MeV proton irradiation of terbium

    Energy Technology Data Exchange (ETDEWEB)

    Engle, Jonathan W., E-mail:; Mashnik, Stepan G.; Parker, Lauren A.; Jackman, Kevin R.; Bitteker, Leo J.; Ullmann, John L.; Gulley, Mark S.; Pillai, Chandra; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.


    Nuclear formation cross sections are reported for 26 radionuclides, measured with 40–200 MeV proton irradiations of terbium foils. These data provide the basis for the production of medically relevant radionuclides (e.g., {sup 152}Tb, {sup 155}Tb, {sup 155}Eu, and {sup 156}Eu) and {sup 153}Gd, a potential source used in ongoing efforts to characterize stellar nucleosynthesis routes. Computational predictions from the ALICE2011, CEM03.03, Bertini, and INCL + ABLA codes are compared with newly measured data to contribute to the ongoing process of code development, and yields are calculated for selected radionuclides using measured data.

  1. Micelle-enhanced and terbium-sensitized spectrofluorimetric determination of gatifloxacin and its interaction mechanism (United States)

    Guo, Changchuan; Wang, Lei; Hou, Zhun; Jiang, Wei; Sang, Lihong


    A terbium-sensitized spectrofluorimetric method using an anionic surfactant, sodium dodecyl benzene sulfonate (SDBS), was developed for the determination of gatifloxacin (GFLX). A coordination complex system of GFLX-Tb 3+-SDBS was studied. It was found that SDBS significantly enhanced the fluorescence intensity of the complex (about 11-fold). Optimal experimental conditions were determined as follows: excitation and emission wavelengths of 331 and 547 nm, pH 7.0, 2.0 × 10 -4 mol l -1 terbium (III), and 2.0 × 10 -4 mol l -1 SDBS. The enhanced fluorescence intensity of the system (Δ If) showed a good linear relationship with the concentration of GFLX over the range of 5.0 × 10 -10 to 5.0 × 10 -8 mol l -1 with a correlation coefficient of 0.9996. The detection limit (3 σ) was determined as 6.0 × 10 -11 mol l -1. This method has been successfully applied to the determination of GFLX in pharmaceuticals and human urine/serum samples. Compared with most of other methods reported, the rapid and simple procedure proposed in the text offers higher sensitivity, wider linear range, and better stability. The interaction mechanism of the system is also studied by the research of ultraviolet absorption spectra, surface tension, solution polarity and fluorescence polarization.

  2. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands (United States)

    Seitz, Michael; Do, King; Ingram, Andrew J.; Moore, Evan G.; Muller, Gilles; Raymond, Kenneth N.


    Abstract: Circulaly polarized luminescence from terbium(III) complexed and excited by chiral antenna ligands gives strong emission The modular synthesis of three new octadentate, enantiopure ligands are reported - one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields ΦEu = 0.05–0.08 and ΦTb = 0.30–0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08 – 0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments. PMID:19639983



    T. Lupascu; M. Ciobanu; V. Botan; T. Gromovoy; S. Cibotaru


    The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground ...

  4. 30 CFR 250.604 - Hydrogen sulfide. (United States)


    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.604 Section 250.604... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.604 Hydrogen sulfide. When a well-workover operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  5. 30 CFR 250.504 - Hydrogen sulfide. (United States)


    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.504 Section 250.504... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Completion Operations § 250.504 Hydrogen sulfide. When a well-completion operation is conducted in zones known to contain hydrogen sulfide (H2S) or in...

  6. 30 CFR 250.808 - Hydrogen sulfide. (United States)


    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Hydrogen sulfide. 250.808 Section 250.808... OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems § 250.808 Hydrogen sulfide. Production operations in zones known to contain hydrogen sulfide (H2S) or in zones where the presence of H2S...

  7. Sulfide intrusion and detoxification in Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne


    Sulfide intrusion in seagrasses represents a global threat to seagrasses. In contrast seegrasses grow in hostile sediments, where they are constantly exposed to sulfide intrusion. Little is known about the strategies to survive sulfide intrusion, if there are detoxification mechanisms and sulfur ...

  8. Luminescent method of determination of composition of europium and terbium complexes in solution by change of intensity ratio of luminescence bands

    Energy Technology Data Exchange (ETDEWEB)

    Bel' tyukova, S.V.; Nazarenko, N.A.; Poluehktov, N.S.


    The complexes of europium and terbium with phenanthroline, ethylenediaminetetraacetate, nitrilotriacetate, some acids-phenol derivatives and ..beta..-diketones series have been used as an example to demonstrate that the value of the ratio of intensities on the two bands of europium(terbium) luminescence spectra - the one corresponding to the hypersensitive'' transition and the other, to the magnetic dipole one - can be used for determination of the complexes composition in solutions.


    Directory of Open Access Journals (Sweden)

    T. Lupascu


    Full Text Available The process of the hydrogen sulfide removal from the underground water of the Hancesti town has been investigated. By oxygen bubbling through the water containing hydrogen sulfide, from the Hancesti well tube, sulfur is deposited in the porous structure of studied catalysts, which decreases their catalytic activity. Concomitantly, the process of adsorption / oxidation of hydrogen sulfide to sulfate take place. The kinetic research of the hydrogen sulfide removal from the Hancesti underground water, after its treatment by hydrogen peroxide, proves greater efficiency than in the case of modified carbonic adsorbents. As a result of used treatment, hydrogen sulfide is completely oxidized to sulfates

  10. Thermo-transferred thermoluminescence (TTTl) in potassium-yttrium double fluoride doped with terbium

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, A.; Rivera, T.; Diaz G, J. A. [IPN, Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Legaria 694, Col. Irrigacion, 11500 Mexico D. F. (Mexico); Azorin, J. [Universidad Autonoma Metropolitana, Unidad Iztapalapa, San Rafael Atlixco No. 186, Col. Vicentina, 09340 Mexico D. F. (Mexico); Azorin, J. C. [Universidad de Guanajuato, Division de Ciencias e Ingenierias-Campus Leon, Lomas del Bosque No. 103, Col. Lomas del Campestre, 37000 Leon, Guanajuato (Mexico); Licona, R.; Rivas, F.; Hernandez C, G. [Benemerita Universidad Autonoma de Puebla, Facultad de Ciencias Quimicas, 14 Sur y San Claudio, Ciudad Universitaria, Puebla de Zaragoza, Puebla (Mexico); Khaidukov, N. [Institute of General and Inorganic Chemistry, Lenin SK 11 Prospect 31, Moscow 117907 (Russian Federation)


    This paper presents results of studying the thermo-transferred thermoluminescence (TTTl) phenomenon in potassium-yttrium double fluoride doped with terbium (K{sub 2}YF{sub 5:}Tb) at different impurity concentrations (0.8%, 0.95% and 0.99%). Previously to study the TTTl phenomenon, structural characterization and chemical composition of the materials were determined. The structural studies were conducted using a scanning electron microscope; meanwhile, chemical composition was analyzed using energy dispersive X-ray spectroscopy. Thermoluminescence kinetics was studied irradiating the samples with {sup 137}Cs gamma rays as well as with {sup 90}Sr/{sup 90}Y beta rays, analyzing the glow curves by the deconvolution method for obtaining the kinetic parameters. (Author)

  11. The influence of pressure on the photoluminescence properties of a terbium-adipate framework (United States)

    Spencer, Elinor C.; Zhao, Jing; Ross, Nancy L.; Andrews, Michael B.; Surbella, Robert G.; Cahill, Christopher L.


    The influence of pressure (over the 0-4.7 GPa range) on the photoluminescence emissions and crystal structure of the known 3D terbium-adipate metal-organic framework material Tb-GWMOF6 has been evaluated by high-pressure single-crystal X-ray diffraction and spectroscopic techniques. The results from this study show that this complex lanthanide framework structure undergoes three phase transitions within the 0-4 GPa pressure range that involve alterations in the number of symmetry independent Tb3+ ion sites within the crystal lattice. These pressure induced modifications to the structure of Tb-GWMOF6 lead to pronounced changes in the profiles of the 5D4→7F5 emission spectra of this complex.

  12. Terbium Radionuclides for Theranostics Applications: A Focus On MEDICIS-PROMED (United States)

    Cavaier, R. Formento; Haddad, F.; Sounalet, T.; Stora, T.; Zahi, I.

    A new facility, named CERN-MEDICIS, is under construction at CERN to produce radionuclides for medical applications. In parallel, the MEDICIS-PROMED, a Marie Sklodowska-Curie innovative training network of the Horizon 2020 European Commission's program, is being coordinated by CERN to train young scientists on the production and use of innovative radionuclides and develop a network of experts within Europe. One program within MEDICIS-PROMED is to determine the feasibility of producing innovative radioisotopes for theranostics using a commercial middle-sized high-current cyclotron and the mass separation technology developed at CERN-MEDICIS. This will allow the production of high specific activity radioisotopes not achievable with the common post-processing by chemical separation. Radioisotopes of scandium, copper, arsenic and terbium have been identified. Preliminary studies of activation yield and irradiation parameters optimization for the production of Tb-149 will be described.

  13. Dielectric and conducting behavior of gadolinium-terbium fumarate heptahydrate crystals (United States)

    Shah, M. D.; Want, B.


    Gadolinium-terbium fumarate heptahydrate crystals were grown in silica gel by using single gel diffusion technique. The crystals were characterized by different physico-chemical techniques of characterization. Powder X-ray diffraction results showed that the grown material is purely crystalline in nature. Elemental analyses suggested the chemical formula of the compound to be Gd Tb (C4H2O4)3ṡ7H2O. Energy dispersive X-ray analysis confirmed the presence of Gd and Tb in the title compound. The dielectric and conductivity studies of the grown compound were carried as function of frequency of applied field and the temperature. The grown material showed a dielectric anomaly which was correlated with its thermal behavior. The ac conductivity of the material showed Jonscher's power law behavior: σ(ω)=σo+Aωs, with a temperature-dependent power exponent s(<1). The conductivity was found to be a function of temperature and frequency.

  14. Highly sensitive detection of dipicolinic acid with a water-dispersible terbium-metal organic framework. (United States)

    Bhardwaj, Neha; Bhardwaj, Sanjeev; Mehta, Jyotsana; Kim, Ki-Hyun; Deep, Akash


    The sensitive detection of dipicolinic acid (DPA) is strongly associated with the sensing of bacterial organisms in food and many types of environmental samples. To date, the demand for a sensitive detection method for bacterial toxicity has increased remarkably. Herein, we investigated the DPA detection potential of a water-dispersible terbium-metal organic framework (Tb-MOF) based on the fluorescence quenching mechanism. The Tb-MOF showed a highly sensitive ability to detect DPA at a limit of detection of 0.04nM (linear range of detection: 1nM to 5µM) and also offered enhanced selectivity from other commonly associated organic molecules. The present study provides a basis for the application of Tb-MOF for direct, convenient, highly sensitive, and specific detection of DPA in the actual samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A New Bis(phthalocyaninato) Terbium Single-Ion Magnet with an Overall Excellent Magnetic Performance. (United States)

    Chen, Yuxiang; Ma, Fang; Chen, Xiaoxiang; Dong, Bowei; Wang, Kang; Jiang, Shangda; Wang, Chiming; Chen, Xin; Qi, Dongdong; Sun, Haoling; Wang, Bingwu; Gao, Song; Jiang, Jianzhuang


    Bulky and strong electron-donating dibutylamino groups were incorporated onto the peripheral positions of one of the two phthalocyanine ligands in the bis(phthalocyaninato) terbium complex, resulting in the isolation of heteroleptic double-decker (Pc)Tb{Pc[N(C4H9)2]8} {Pc = phthalocyaninate; Pc[N(C4H9)2]8 = 2,3,9,10,16,17,23,24-octakis(dibutylamino)phthalocyaninate} with the nature of an unsymmetrical molecular structure, a square-antiprismatic coordination geometry, an intensified coordination field strength, and the presence of organic radical-f interaction. As a total result of all these factors, this sandwich-type tetrapyrrole lanthanide single-ion magnet (SIM) exhibits an overall enhanced magnetic performance including a high blocking temperature (TB) of 30 K and large effective spin-reversal energy barrier of Ueff = 939 K, rendering it the best sandwich-type tetrapyrrole lanthanide SIM reported thus far.

  16. Ultralarge magneto-optic rotations and rotary dispersion in terbium gallium garnet single crystal. (United States)

    Shaheen, Amrozia; Majeed, Hassaan; Anwar, Muhammad Sabieh


    We report systematically acquired data on the Verdet constant of terbium gallium garnet for wavelengths ranging from visible to near-infrared (405-830 nm) regime. Our experimental method of Stokes polarimetry is based on the Fourier decomposition of the received light intensity and allows unambiguous determination of both the Faraday rotation and the ellipticity of the emergent light. Temperature-dependent investigations in the range of 8-300 K extend earlier reports and verify the Verdet's constant direct dependence on the magnetization, whose first-order approximation is simply a manifestation of the Curie's law. Further, a least-squares fitting of the experimental data correlates well with theoretical predictions. At a wavelength of 405 nm and temperature of 8 K, the rotation is approximately 500°.

  17. Terbium fluorescence as a sensitive, inexpensive probe for UV-induced damage in nucleic acids

    Energy Technology Data Exchange (ETDEWEB)

    El-Yazbi, Amira F.; Loppnow, Glen R., E-mail:


    Graphical abstract: -- Highlights: •Simple, inexpensive, mix-and-read assay for positive detection of DNA damage. •Recognition of undamaged DNA via hybridization to a hairpin probe. •Terbium(III) fluorescence reports the amount of damage by binding to ssDNA. •Tb/hairpin is a highly selective and sensitive fluorescent probe for DNA damage. -- Abstract: Much effort has been focused on developing methods for detecting damaged nucleic acids. However, almost all of the proposed methods consist of multi-step procedures, are limited, require expensive instruments, or suffer from a high level of interferences. In this paper, we present a novel simple, inexpensive, mix-and-read assay that is generally applicable to nucleic acid damage and uses the enhanced luminescence due to energy transfer from nucleic acids to terbium(III) (Tb{sup 3+}). Single-stranded oligonucleotides greatly enhance the Tb{sup 3+} emission, but duplex DNA does not. With the use of a DNA hairpin probe complementary to the oligonucleotide of interest, the Tb{sup 3+}/hairpin probe is applied to detect ultraviolet (UV)-induced DNA damage. The hairpin probe hybridizes only with the undamaged DNA. However, the damaged DNA remains single-stranded and enhances the intrinsic fluorescence of Tb{sup 3+}, producing a detectable signal directly proportional to the amount of DNA damage. This allows the Tb{sup 3+}/hairpin probe to be used for sensitive quantification of UV-induced DNA damage. The Tb{sup 3+}/hairpin probe showed superior selectivity to DNA damage compared to conventional molecular beacons probes (MBs) and its sensitivity is more than 2.5 times higher than MBs with a limit of detection of 4.36 ± 1.2 nM. In addition, this probe is easier to synthesize and more than eight times cheaper than MBs, which makes its use recommended for high-throughput, quantitative analysis of DNA damage.

  18. Fine- and hyperfine structure investigations of even configuration system of atomic terbium (United States)

    Stefanska, D.; Elantkowska, M.; Ruczkowski, J.; Furmann, B.


    In this work a parametric study of the fine structure (fs) and the hyperfine structure (hfs) for the even-parity configurations of atomic terbium (Tb I) is presented, based in considerable part on the new experimental results. Measurements on 134 spectral lines were performed by laser induced fluorescence (LIF) in a hollow cathode discharge lamp; on this basis, the hyperfine structure constants A and B were determined for 52 even-parity levels belonging to the configurations 4f85d6s2, 4f85d26s or 4f96s6p; in all the cases those levels were involved in the transitions investigated as the lower levels. For 40 levels the hfs was examined for the first time, and for the remaining 12 levels the new measurements supplement our earlier results. As a by-product, also preliminary values of the hfs constants for 84 odd-parity levels were determined (the investigations of the odd-parity levels system in the terbium atom are still in progress). This huge amount of new experimental data, supplemented by our earlier published results, were considered for the fine and hyperfine structure analysis. A multi-configuration fit of 7 configurations was performed, taking into account second-order of perturbation theory, including the effects of closed shell-open shell excitations. Predicted values of the level energies, as well as of magnetic dipole and electric quadrupole hyperfine structure constants A and B, are quoted in cases when no experimental values are available. By combining our experimental data with our own semi-empirical procedure it was possible to identify correctly the lower and upper level of the line 544.1440 nm measured by Childs with the use of the atomic-beam laser-rf double-resonance technique (Childs, J Opt Soc Am B 9;1992:191-6).

  19. Structural and optical characterization of terbium doped ZnGa2O4 thin films deposited by RF magnetron sputtering (United States)

    Somasundaram, K.; Girija, K. G.; Sudarsan, V.; Selvin, P. Christopher; Vatsa, R. K.


    Tb3+ doped ZnGa2O4 nanophosphor (21 nm) has been synthesized via low temperature polyol route and subsequently thin films of the same were deposited on glass and ITO substrates by RF magnetron sputtering. The films were characterized by X-ray Diffraction and luminescence measurements. The XRD pattern showed that Tb3+ doped ZnGa2O4 nanophosphor has a cubic spinel phase. Luminescence behavior of the nanophosphor and as deposited sputtered film was investigated. The PL emission spectra of nanophosphor gave a broad ZnGa2O4 host emission band along with a strong terbium emission and the thin films showed only broad host emission band and there was no terbium ion emission.

  20. Sulfide intrusion and detoxification in seagrasses ecosystems

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne

    Sulfide intrusion in seagrasses represents a global threat to seagrasses and thereby an important parameter in resilience of seagrass ecosystems. In contrast seegrasses colonize and grow in hostile sediments, where they are constantly exposed to invasion of toxic gaseous sulfide. Remarkably little...... strategies of seagrasses to sustain sulfide intrusion. Using stable isotope tracing, scanning electron microscopy with x-ray analysis, tracing sulfur compounds combined with ecosystem parameters we found different spatial, intraspecific and interspecific strategies to cope with sulfidic sediments. 1...... not present in terrestrial plants at that level. Sulfide is not necessarily toxic but used as sulfur nutrition, presupposing healthy seagrass ecosystems that can support detoxification mechanisms. Presence or absence of those mechanisms determines susceptibility of seagrass ecosystems to sediment sulfide...

  1. Determination of fluoxetine in pharmaceutical and biological samples based on the silver nanoparticle enhanced fluorescence of fluoxetine-terbium complex. (United States)

    Lotfi, Ali; Manzoori, Jamshid L


    In this study, a simple and sensitive spectrofluorimetric method is presented for the determination of fluoxetine based on the enhancing effect of silver nanoparticles (AgNPs) on the terbium-fluoxetine fluorescence emission. The AgNPs were prepared by a simple reduction method and characterized by UV-Vis spectroscopy and transmission electron microscopy. It was indicated that these AgNPs have a remarkable amplifying effect on the terbium-sensitized fluorescence of fluoxetine. The effects of various parameters such as AgNP and Tb(3+) concentration and the pH of the media were investigated. Under obtained optimal conditions, the fluorescence intensity of the terbium-fluoxetine-AgNP system was enhanced linearly by increasing the concentration of fluoxetine in the range of 0.008 to 19 mg/L. The limit of detection (b + 3s) was 8.3 × 10(-4) mg/L. The interference effects of common species found in real samples were also studied. The method had good linearity, recovery, reproducibility and sensitivity, and was satisfactorily applied for the determination of fluoxetine in tablet formulations, human urine and plasma samples. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Neutron Diffraction and Electrical Transport Studies on Magnetic Transition in Terbium at High Pressures and Low Temperatures (United States)

    Thomas, Sarah; Montgomery, Jeffrey; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel; Tulk, Christopher; Moreira Dos Santos, Antonio


    Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate its transition from a helical antiferromagnetic to a ferromagnetic ordered phase as a function of pressure. The electrical resistance measurements using designer diamonds show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of the ferromagnetic transition decreases at a rate of -16.7 K/GPa till 3.6 GPa, where terbium undergoes a structural transition from hexagonal close packed (hcp) to an α-Sm phase. Above this pressure, the electrical resistance measurements no longer exhibit a change in slope. In order to confirm the change in magnetic phase suggested by the electrical resistance measurements, neutron diffraction measurements were conducted at the SNAP beamline at the Oak Ridge National Laboratory. Measurements were made at pressures to 5.3 GPa and temperatures as low as 90 K. An abrupt increase in peak intensity in the neutron diffraction spectra signaled the onset of magnetic order below the Curie temperature. A magnetic phase diagram of rare earth metal terbium will be presented to 5.3 GPa and 90 K based on these studies.

  3. Sulfidation mechanism for zinc oxide nanoparticles and the effect of sulfidation on their solubility. (United States)

    Ma, Rui; Levard, Clément; Michel, F Marc; Brown, Gordon E; Lowry, Gregory V


    Environmental transformations of nanoparticles (NPs) affect their properties and toxicity potential. Sulfidation is an important transformation process affecting the fate of NPs containing metal cations with an affinity for sulfide. Here, the extent and mechanism of sulfidation of ZnO NPs were investigated, and the properties of resulting products were carefully characterized. Synchrotron X-ray absorption spectroscopy and X-ray diffraction analysis reveal that transformation of ZnO to ZnS occurs readily at ambient temperature in the presence of inorganic sulfide. The extent of sulfidation depends on sulfide concentration, and close to 100% conversion can be obtained in 5 days given sufficient addition of sulfide. X-ray diffraction and transmission electron microscopy showed formation of primarily ZnS NPs smaller than 5 nm, indicating that sulfidation of ZnO NPs occurs by a dissolution and reprecipitation mechanism. The solubility of partially sulfidized ZnO NPs is controlled by the remaining ZnO core and not quenched by a ZnS shell formed as was observed for partially sulfidized Ag NPs. Sulfidation also led to NP aggregation and a decrease of surface charge. These changes suggest that sulfidation of ZnO NPs alters the behavior, fate, and toxicity of ZnO NPs in the environment. The reactivity and fate of the resulting ZnS particles remains to be determined.

  4. Study of Silver Nanoparticles Sensitized Fluorescence and Second-Order Scattering of Terbium(III-Pefloxacin Mesylate Complex and Determination of Pefloxacin Mesylate

    Directory of Open Access Journals (Sweden)

    Aiyun Li


    Full Text Available α-Keto acid of pefloxacin mesylate (PFLX can form the complex with Terbium(III. The intramolecular energy from PFLX to Terbium(III ion takes place when excited, and thus Terbium(III excited state is formed and then emits the characteristic fluorescence of Terbium(III, locating at 490, 545, 580, and 620 nm. The second-order scattering (SOS peak at 545 nm also appears for the complex with the exciting wavelength of 273 nm. When the silver nanoparticles are added to the system, the luminescence intensity at 545 nm greatly increased. So, with the adding of nanoparticles to the Terbium(III-PFLX complex, not only is the intramolecular energy promoted but also the SOS intensity is enhanced. The experimental results show that it is the silver nanoparticles with certain size and certain concentration which can greatly enhance the fluorescence-SOS intensity, and the relative intensity at 545 nm is proportional to the amount of PFLX. Based on this phenomenon, a novel method for the determination of PFLX has been developed and applied to the determination of PFLX in capsule and serum samples.

  5. Micro and nano sulfide solid lubrication

    CERN Document Server

    Wang, Haidou; Liu, Jiajun


    Sulfide solid lubrication is a vital field of tribology with the potential to save both energy and materials. This book examines the low-temperature sulfuration technology developed in China, as well as two-step methods for preparing sulfide lubrication films.

  6. Influence of crystalline structure on the luminescence properties of terbium orthotantalates

    Energy Technology Data Exchange (ETDEWEB)

    Siqueira, Kisla P.F. [Departamento de Química, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Ouro Preto 35400-000, Minas Gerais (Brazil); Carmo, Alexandre P. [Instituto Federal Fluminense, Campus Cabo Frio, RJ 28909-971 (Brazil); Bell, Maria J.V. [Departamento de Física, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-330, MG (Brazil); Dias, Anderson, E-mail: [Departamento de Química, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, ICEB II, Ouro Preto 35400-000, Minas Gerais (Brazil)


    Terbium orthotantalate powders were produced with M-fergusonite type (I2/a) and M′-fergusonite type (P2/a) structures. The samples were studied by X-ray diffraction, Raman scattering, and photoluminescence measurements (emission and decay curves). The results showed that crystalline materials were obtained with all the 18 Raman-active modes predicted by group theory calculations. Also, it was observed through photoluminescence decay curves that the Tb{sup 3+} ions occupies only one-symmetry site in both crystallographic arrangements. Photoluminescence emission curves exhibited some variation in spectral shape, peak position, and relative intensity as a consequence of their different crystalline arrangements. The dominated emission of Tb{sup 3+} ({sup 5}D{sub 4}→{sup 7}F{sub 5}) is centered with a maximum intensity at 549.2 nm (M-type) and 543.0 nm (M′-type). Fluorescence lifetimes for M-TbTaO{sub 4} and M′-TbTaO{sub 4} were determined as 33.4 μs and 1.25 ms, respectively. M′-type materials seems to be the most suitable for luminescent devices and could be a potential green luminescent material due to the strongest emission if compared with the M-fergusonite type. -- Highlights: ► Terbium orthotantalates were prepared in two different crystalline structures: I2/a and P2/a. ► XRD and Raman scattering showed that the different space groups obtained were exhibited all the 18 Raman-active modes. ► PL decay curves that the Tb{sup 3+} ions occupies only one-symmetry site in both crystallographic arrangements. ► Dominated emission of Tb{sup 3+} ({sup 5}D{sub 4}→{sup 7}F{sub 5}) is centered with a maximum intensity at 549 nm (M-type) and 543 nm (M′-type). ► Fluorescence lifetimes for M-TbTaO{sub 4} and M′-TbTaO{sub 4} were determined as 33.4 μs and 1.25 ms, respectively.

  7. Laser control and temperature switching of luminescence intensity in photostable transparent film based on terbium(III) β-diketonate complex (United States)

    Lapaev, Dmitry V.; Nikiforov, Victor G.; Safiullin, Georgy M.; Lobkov, Vladimir S.; Salikhov, Kev M.; Knyazev, Andrey A.; Galyametdinov, Yury G.


    The study of the terbium(III) and gadolinium(III) β-diketonate complexes by photoluminescence spectroscopy reveals considerable changes of the photophysical properties of the complexes under the UV laser irradiation. The measurements show the enhancement of the luminescence intensities in the vitrified transparent film of the terbium(III) complex as well as the gadolinium(III) complex under the 337 nm laser irradiation at room temperature. The irradiated film of the terbium(III) complex restores the initial photophysical properties after heating close to the melting temperature (∼353 K) and cooling. We observe no change of the luminescent properties of the irradiated film for months. These features can be used for the design of new lanthanide-based photostable systems with laser control of the luminescence intensity.

  8. Development of functionalized terbium fluorescent nanoparticles for antibody labeling and time-resolved fluoroimmunoassay application. (United States)

    Ye, Zhiqiang; Tan, Mingqian; Wang, Guilan; Yuan, Jingli


    Silica-based functionalized terbium fluorescent nanoparticles were prepared, characterized and developed as a fluorescence probe for antibody labeling and time-resolved fluoroimmunoassay. The nanoparticles were prepared in a water-in-oil (W/O) microemulsion containing a strongly fluorescent Tb(3+) chelate, N,N,N(1),N(1)-[2,6-bis(3'-aminomethyl-1'-pyrazolyl)phenylpyridine] tetrakis(acetate)-Tb(3+) (BPTA-Tb(3+)), Triton X-100, octanol, and cyclohexane by controlling copolymerization of tetraethyl orthosilicate (TEOS) and 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane (AEPS) with ammonia water. The characterizations by transmission electron microscopy and fluorometric methods show that the nanoparticles are spherical and uniform in size, 45 +/- 3nm in diameter, strongly fluorescent with fluorescence quantum yield of 10% and a long fluorescence lifetime of 2.0ms. The amino groups directly introduced to the nanoparticle's surface by using AEPS in the preparation made the surface modification and bioconjugation of the nanoparticles easier. The nanoparticle-labeled anti-human alpha-fetoprotein antibody was prepared and used for time-resolved fluoroimmunoassay of alpha-fetoprotein (AFP) in human serum samples. The assay response is linear from 0.10ngml(-1) to about 100ngml(-1) with the detection limit of 0.10ngml(-1). The coefficient variations (CVs) of the method are less than 9.0%, and the recoveries are in the range of 84-98% for human serum sample measurements.

  9. Highly efficient precipitation of phosphoproteins using trivalent europium, terbium, and erbium ions

    Energy Technology Data Exchange (ETDEWEB)

    Guezel, Yueksel; Rainer, Matthias; Mirza, Munazza Raza; Bonn, Guenther K. [Leopold-Franzens University, Institute of Analytical Chemistry and Radiochemistry, Innsbruck (Austria)


    This study describes a highly efficient method for the selective precipitation of phosphoproteins by trivalent europium, terbium, and erbium metal ions. These metal cations belong to the group of lanthanides and are known to be hard acceptors with an overwhelming preference for oxygen-containing anions such as phosphates to which they form very tight ionic bonds. The method could be successfully applied to specifically precipitate phosphoproteins from complex samples including milk and egg white by forming solid metal-protein complexes. Owing to the low solubility product of the investigated lanthanide salts, the produced metal-protein complexes showed high stability. The protein pellets were extensively washed to remove nonphosphorylated proteins and contaminants. For the analysis of proteins the pellets were first dissolved in 30 % formic acid and subjected to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS. For peptide mass-fingerprint analysis the precipitated phosphoproteins were enzymatically digested using microwave-assisted digestion. The method was found to be highly specific for the isolation and purification of phosphoproteins. Protein quantification was performed by colorimetric detection of total precipitated phosphoproteins and revealed more than 95 % protein recovery for each lanthanide salt. (orig.)

  10. A Terbium Sensitized Luminescence Method for the Assay of Flubiprofen in Pharmaceutical Formulations

    Directory of Open Access Journals (Sweden)

    Salma M.Z. Al-Kindy


    Full Text Available A sensitive time-resolved luminescence method for the determination of flubiprofen (FLP in methanol and in aqueous solution is described. The method is based on the luminescence sensitization of terbium (Tb3+ by the formation of a ternary complex with FLP in the presence of 4,7 diphenyl 1,10 phenanthroline (DPP as co-ligand, and Tween-20 as surfactant. The signal for Tb-FLP-DPP was monitored at λex  = 285 nm and λem  = 552 nm. Optimum conditions for the formation of the complex in an aqueous system were TRIS buffer, pH 8.0, DPP (2.5Å~10−7  M, Tween-20 (0.30% and 4Å~10-5  mol L-1  of Tb3+  which allowed the determination of 20–1000 ng mL-1  of FLP with a limit of detection (LOD of 10 ng mL-1 . The relative standard deviations of the method ranged between 0.6 and 1.4% indicating excellent reproducibility of the method. The proposed method was successfully applied for the assays of FLP in pharmaceutical formulations and spiked tap water samples with average recoveries of 87% – 95%.

  11. Sensitization effects of supramolecular assemblies on the luminescence of terbium-ion prulifloxacin complexes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hong; Yi Chongyue; Li Xue; Fang Fang [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang Yajiang, E-mail: [School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)


    Luminescence enhancement of terbium-ion prulifloxacin complexes (Tb(III)-PUFX) in supramolecular hydrogels formed by assembly of 1,3:2,4-di-O-benzylidene-D-sorbitol (DBS) was investigated by steady-state fluorescence, varying temperature fluorescence and time-resolved fluorescence. The luminescence images show that Tb(III)-PUFX were dispersed in the DBS gels. The luminescence intensity of Tb(III)-PUFX in the DBS gels was significantly increased in comparison with that in corresponding aqueous solutions. The varying temperature fluorescent spectra show that the luminescence intensity of Tb(III)-PUFX decreased with an increase in the temperature. This implies that the luminescence enhancement of Tb(III)-PUFX is related to the dissociation and the formation of the DBS assemblies. Time-resolved fluorescence measurements show slower rotational motion in DBS gels in comparison with that in the corresponding aqueous solutions. This may be ascribed to a unique microstructure of three-dimensional network formed by DBC aggregates, resulting in deactivation of the nonradiative relaxation. The images of field emission scanning electron microscopy and polarized optical microscopy indicate that the morphology of the DBS assemblies was not influenced upon addition of Tb(III)-PUFX to the DBS gels.

  12. A Nanoscale Multiresponsive Luminescent Sensor Based on a Terbium(III) Metal-Organic Framework. (United States)

    Dang, Song; Wang, Ting; Yi, Feiyan; Liu, Qinghui; Yang, Weiting; Sun, Zhong-Ming


    A nanoscale terbium-containing metal-organic framework (nTbL), with a layer-like structure and [H2 NMe2 ](+) cations located in the framework channels, was synthesized under hydrothermal conditions. The structure of the as-prepared sample was systematically confirmed by powder XRD and elemental analysis; the morphology was characterized by field-emission SEM and TEM. The photoluminescence studies revealed that rod-like nTbL exhibited bright-green emission, corresponding to (5)D4 →(7)FJ (J=6-3) transitions of the Tb(3+) ion under excitation. Further sensing measurements revealed that as-prepared nTbL could be utilized as a multiresponsive luminescent sensor, which showed significant and exclusive detection ability for Fe(3+) ions and phenylmethanol. These results highlight the practical applications of lanthanide-containing metal-organic frameworks as fluorescent probes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Terbium-Doped VO2 Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance. (United States)

    Wang, Ning; Duchamp, Martial; Dunin-Borkowski, Rafal E; Liu, Shiyu; Zeng, XianTing; Cao, Xun; Long, Yi


    Vanadium dioxide (VO2) is a well-known thermochromic material with large IR modulating ability, promising for energy-saving smart windows. The main drawbacks of VO2 are its high phase transition temperature (τ(c) = 68°C), low luminous transmission (T(lum)), and weak solar modulating ability (ΔT(sol)). In this paper, the terbium cation (Tb(3+)) doping was first reported to reduce τ(c) and increase T(lum) of VO2 thin films. Compared with pristine VO2, 2 at. % doping level gives both enhanced T(lum) and ΔT(sol) from 45.8% to 54.0% and 7.7% to 8.3%, respectively. The T(lum) increases with continuous Tb(3+) doping and reaches 79.4% at 6 at. % doping level, representing ∼73.4% relative increment compared with pure VO2. This has surpassed the best reported doped VO2 thin films. The enhanced thermochromic properties is meaningful for smart window applications of VO2 materials.

  14. Luminescent investigations of terbium(III) biosorption as a surrogate for heavy metals and radionuclides. (United States)

    Achyuthan, Komandoor E; Arango, Dulce C; Carles, Elizabeth L; Cutler, Christopher E; Meyer, Lauren A; Brozik, Susan M


    We describe a metal transport system for investigating the interfacial interactions between the anionic surface charge of a gram-negative bacterium (Escherichia coli) and a trivalent cationic metal, Tb3+. We believe this is the first description of the uptake kinetics, sub- and intracellular distribution, and temporal fate of Tb3+ ion in E. coli. We used the luminescence of the terbium-dipicolinic acid chelate to study metal ion transport. The bacteria had a high tolerance for the metal (IC(50) = 4 mM Tb3+). Metal ion transport was passive and metabolism independent. The uptake kinetics rapidly reached a maximum within 15 min, followed by a stasis for 60 min, and declining thereafter between 120 and 240 min, resulting in a biphasic curve. During this period, greater than one-third of the metal ion was sequestered within the cell. Our choice of a safe Biosafety Level I E. coli bacteria and the relatively non-toxic Tb3+ metal represents a model system for luminescent investigations of biosorption, for studying bacterial-water interfacial chemistry and for the bioremediation of heavy metals and radionuclides.

  15. Hydrogen Sulfide and Polysulfide Signaling. (United States)

    Kimura, Hideo


    Hydrogen sulfide (H2S) has been demonstrated to have physiological roles such as neuromodulation, vascular tone regulation, cytoprotection, oxygen sensing, inflammatory regulation, and cell growth. Recently, hydrogen polysulfides (H2Sn) have been found to be produced by 3-mercaptopyruvate sulfurtransferase and to regulate the activity of ion channels, tumor suppressers, and protein kinases. Furthermore, some of the effects previously reported to be mediated by H2S are now ascribed to H2Sn. Cysteine persulfide and cysteine polysulfide may also be involved in cellular redox regulation. The chemical interaction between H2S and nitric oxide (NO) can also produce H2Sn, nitroxyl, and nitrosopersulfide, suggesting their involvement in the reactions previously thought to be mediated by NO alone. This Forum focuses on and critically discusses the recent progress in the study of H2Sn, H2S, and NO as well as other per- or polysulfide species. Antioxid. Redox Signal. 00, 000-000.

  16. Structural studies in limestone sulfidation

    Energy Technology Data Exchange (ETDEWEB)

    Fenouil, Laurent A. [Univ. of California, Berkeley, CA (United States)


    This study investigates the sulfidation of limestone at high temperatures (700--900°C) as the first step in the design of a High-Temperature Coal-Gas Clean-Up system using millimeter-size limestone particles. Several workers have found that the rate of this reaction significantly decreases after an initial 10 to 15% conversion of CaCO3 to CaS. The present work attempts to explain this feature. It is first established that millimeter-size limestone particles do not sinter at temperatures up to the CaCO3 calcination point (899°C at 1.03 bar CO2} partial pressure). It is then shown that CaS sinters rapidly at 750 to 900°C if CO2 is present in the gas phase. Scanning Electron Microscope (SEM) photographs and Electron Dispersive Spectroscopy (EDS) data reveal that the CaS product layer sinters and forms a quasi-impermeable coating around the CaCO3 grains that greatly hinders more H2S from reaching the still unreacted parts of the stone. Moreover, most of the pores initially present within the limestone structure begin to disappear or, at least, are significantly reduced in size. From then on, subsequent conversion is limited by diffusion of H2S through the CaS layer, possibly by S2- ionic diffusion. The kinetics is then adequately described by a shrinking-core model, in which a sharp front of completely converted limestone is assumed to progress toward the center of the pellet. Finally, experimental evidence and computer simulations using simple sintering models suggest that the CaS sintering, responsible for the sharp decrease in the sulfidation rate, is surface-diffusion controlled.

  17. Iron-sulfide crystals in probe deposits

    DEFF Research Database (Denmark)

    Laursen, Karin; Frandsen, Flemming


    : (1) impact of low viscous droplets of iron sulfide; and (2) sulfur diffusion. Previous research on the influence of pyrite on slagging focused on the decomposition of pyrite into pyrrhotite and especially on the oxidation stage of this product during impact on the heat transfer surfaces......Iron-sulfides were observed in deposits collected on a probe inserted at the top of the furnace of a coal-fired power station in Denmark. The chemical composition of the iron-sulfides is equivalent to pyrrhotite (FeS). The pyrrhotites are present as crystals and, based on the shape of the crystals...

  18. Copper-catalyzed asymmetric oxidation of sulfides. (United States)

    O'Mahony, Graham E; Ford, Alan; Maguire, Anita R


    Copper-catalyzed asymmetric sulfoxidation of aryl benzyl and aryl alkyl sulfides, using aqueous hydrogen peroxide as the oxidant, has been investigated. A relationship between the steric effects of the sulfide substituents and the enantioselectivity of the oxidation has been observed, with up to 93% ee for 2-naphthylmethyl phenyl sulfoxide, in modest yield in this instance (up to 30%). The influence of variation of solvent and ligand structure was examined, and the optimized conditions were then used to oxidize a number of aryl alkyl and aryl benzyl sulfides, producing sulfoxides in excellent yields in most cases (up to 92%), and good enantiopurities in certain cases (up to 84% ee).

  19. Microbial control of hydrogen sulfide production

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, A.D.; Bhupathiraju, V.K.; Wofford, N.; McInerney, M.J. [Univ. of Oklahoma, Tulsa, OK (United States)] [and others


    A sulfide-resistant strain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. The ability of a strain F to control sulfide production in an experimental system of cores and formation water from the Redfield, Iowa, natural gas storage facility was also investigated. A stable, sulfide-producing biofilm was established in two separate core systems, one of which was inoculated with strain F while the other core system (control) was treated in an identical manner, but was not inoculated with strain F. When formation water with 10 mM acetate and 5 mM nitrate was injected into both core systems, the effluent sulfide concentrations in the control core system ranged from 200 to 460 {mu}M. In the test core system inoculated with strain F, the effluent sulfide concentrations were lower, ranging from 70 to 110 {mu}M. In order to determine whether strain F could control sulfide production under optimal conditions for sulfate-reducing bacteria, the electron donor was changed to lactate and inorganic nutrients (nitrogen and phosphate sources) were added to the formation water. When nutrient-supplemented formation water with 3.1 mM lactate and 10 mM nitrate was used, the effluent sulfide concentrations of the control core system initially increased to about 3,800 {mu}M, and then decreased to about 1,100 {mu}M after 5 weeks. However, in the test core system inoculated with strain F, the effluent sulfide concentrations were much lower, 160 to 330 {mu}M.

  20. Construction of the energy matrix for complex atoms. Part VIII: Hyperfine structure HPC calculations for terbium atom (United States)

    Elantkowska, Magdalena; Ruczkowski, Jarosław; Sikorski, Andrzej; Dembczyński, Jerzy


    A parametric analysis of the hyperfine structure (hfs) for the even parity configurations of atomic terbium (Tb I) is presented in this work. We introduce the complete set of 4fN-core states in our high-performance computing (HPC) calculations. For calculations of the huge hyperfine structure matrix, requiring approximately 5000 hours when run on a single CPU, we propose the methods utilizing a personal computer cluster or, alternatively a cluster of Microsoft Azure virtual machines (VM). These methods give a factor 12 performance boost, enabling the calculations to complete in an acceptable time.

  1. Platinum Metals in Magmatic Sulfide Ores (United States)

    Naldrett, A. J.; Duke, J. M.


    Platinum-group elements (PGE) are mined predominantly from deposits that have formed by the segregation of molten iron-nickel-copper sulfides from silicate magmas. The absolute concentrations of PGE in sulfides from different deposits vary over a range of five orders of magnitude, whereas those of other chalcophile elements vary by factors of only 2 to 100. However, the relative proportions of the different PGE in a given deposit are systematically related to the nature of the parent magma. The absolute and relative concentrations of PGE in magmatic sulfides are explained in terms of the degree of partial melting of mantle peridotite required to produce the parent magma and the processes of batch equilibration and fractional segregation of sulfides. The Republic of South Africa and the U.S.S.R. together possess more than 97 percent of the world PGE reserves, but significant undeveloped resources occur in North America. The Stillwater complex in Montana is perhaps the most important example.

  2. Crossett Hydrogen Sulfide Air Sampling Report (United States)

    This report summarizes the results of the EPA’s hydrogen sulfide air monitoring conducted along Georgia Pacific’s wastewater treatment system and in surrounding Crossett, AR, neighborhoods in 2017.

  3. Spectrofluorimetric determination of human serum albumin using terbium-danofloxacin probe. (United States)

    Ramezani, Amir M; Manzoori, Jamshid L; Amjadi, Mohammad; Jouyban, Abolghasem


    A spectrofluorimetric method is proposed for the determination of human serum albumin (HSA) and bovine serum albumin (BSA) using terbium-danofloxacin (Tb(3+)-Dano) as a fluorescent probe. These proteins remarkably enhance the fluorescence intensity of the Tb(3+)-Dano complex at 545 nm, and the enhanced fluorescence intensity of Tb(3+)-Dano is proportional to the concentration of proteins (HSA and BSA). Optimum conditions for the determination of HSA were investigated and found that the maximum response was observed at: pH = 7.8, [Tb(3+)] = 8.5 × 10(-5) mol L(-1), [Dano] = 1.5 × 10(-4) mol L(-1). The calibration graphs for standard solutions of BSA, HSA, and plasma samples of HSA were linear in the range of 0.2 × 10(-6) - 1.3 × 10(-6) mol L(-1), 0.2 × 10(-6) - 1.4 × 10(-6) mol L(-1), and 0.2 × 10(-6) - 1 × 10(-6) mol L(-1), respectively. The detection limits (S/N = 3) for BSA, HSA, and plasma sample of HSA were 8.7 × 10(-8) mol L(-1), 6.2 × 10(-8) mol L(-1), and 8.1 × 10(-8) mol L(-1), respectively. The applicability of the method was checked using a number of real biological plasma samples and was compared with the UV spectrometric reference method. The results was showed that the method could be regarded as a simple, practical, and sensitive alternative method for determination of albumin in biological samples.

  4. Spectrofluorimetric Determination of Human Serum Albumin Using Terbium-Danofloxacin Probe

    Directory of Open Access Journals (Sweden)

    Amir M. Ramezani


    Full Text Available A spectrofluorimetric method is proposed for the determination of human serum albumin (HSA and bovine serum albumin (BSA using terbium-danofloxacin (Tb3+-Dano as a fluorescent probe. These proteins remarkably enhance the fluorescence intensity of the Tb3+-Dano complex at 545 nm, and the enhanced fluorescence intensity of Tb3+-Dano is proportional to the concentration of proteins (HSA and BSA. Optimum conditions for the determination of HSA were investigated and found that the maximum response was observed at: pH=7.8, [Tb3+] =8.5×10−5 mol L−1, [Dano] =1.5×10−4 mol L−1. The calibration graphs for standard solutions of BSA, HSA, and plasma samples of HSA were linear in the range of 0.2×10−6−1.3×10−6 mol L−1, 0.2×10−6−1.4×10−6 mol L−1, and 0.2×10−6−1×10−6 mol L−1, respectively. The detection limits (S/N = 3 for BSA, HSA, and plasma sample of HSA were 8.7×10−8 mol L−1, 6.2×10−8 mol L−1, and 8.1×10−8 mol L−1, respectively. The applicability of the method was checked using a number of real biological plasma samples and was compared with the UV spectrometric reference method. The results was showed that the method could be regarded as a simple, practical, and sensitive alternative method for determination of albumin in biological samples.

  5. Determination of flavonoids in pharmaceutical preparations using Terbium sensitized fluorescence method

    Directory of Open Access Journals (Sweden)

    M Shaghaghi


    Full Text Available "nBackground and the Purpose of the Study: The aim of this study was development and validation of a simple, rapid and sensitive spectrofluorimetric method for determination of total flavonoids in two topical formulations of Calendula officinalis, Ziziphus Spina-christi and an oral drop of Hypiran perforatum L. The proposed method is based on the formation of terbium (Tb3+ "n-flavonoids (quercetin as a reference standard complex at pH 7.0, which has fluorescence intensely with maximum emission at 545 nm when excited at 310 nm. "nMethod "n: For ointments masses of topical formulations were weighed and added to ethanol-aqueous buffer (pH 10.0 and the resulting mixtures were shaken and then two phases were separated by centrifugation. Aqueous phases were filtered and then diluted with water. For Hypiran drops an appropriate portion was diluted with ethanol and then aliquots of sample or standard solutions were determined according to the experimental procedure. "nResults "n: Under the optimum conditions, total concentrations of flavonoids (as quercetin equivalent in three tested formulations were found to be 0.204 mg/g (for Dermatin cream, 0.476 mg/g (for Calendula ointment and 13.50 μg/ml (for Hypiran drops. Analytical recoveries from samples spiked with different amounts of quercetin were 96.1-104.0 % with RSD % of less than 3.5. Conclusion : The proposed method which requires a simple dissolution step without any matrix interferences provided high sensitivity and selectivity and was easily applied to determine total flavonoids in real samples of three investigated formulations with excellent reproducibility.

  6. TOF SIMS analysis and generation of white photoluminescence from strontium silicate codoped with europium and terbium

    Energy Technology Data Exchange (ETDEWEB)

    Tshabalala, Modiehi A.; Swart, Hendrik C.; Ntwaeaborwa, Odireleng M., E-mail: [Department of Physics, University of the Free State, P.O Box 339, Bloemfontein 9300 South Africa (South Africa)


    White light emitting terbium (Tb{sup 3+}) and europium (Eu{sup 3+}) codoped strontium silicate (Sr{sub 2}SiO{sub 4}) phosphors were prepared by a solid state reaction process. The structure, particle morphology, chemical composition, ion distribution, photoluminescence (PL), and decay characteristics of the phosphors were analyzed by x-ray diffraction (XRD), scanning electron microscopy (SEM), time-of-flight secondary ion mass spectrometry (TOF-SIMS), and PL spectroscopy, respectively. The XRD data showed that our Sr{sub 2}SiO{sub 4} composed of two phases, namely, β-Sr{sub 2}SiO{sub 4} and α′-Sr{sub 2}SiO{sub 4}, and the α′-Sr{sub 2}SiO{sub 4} phase was more prominent than the β-Sr{sub 2}SiO{sub 4} phase. The SEM micrographs showed that the particles were agglomerated together and they did not have definite shapes. All ions (i.e., negative and positive) present in our materials were identified by TOF-SIMS. In addition, the chemical imaging performed with the TOF-SIMS demonstrated how the individual ions including the dopants (Eu{sup 3+} and Tb{sup 3+}) were distributed in the host lattice. White photoluminescence was observed when the Sr{sub 2}SiO{sub 4}:Tb{sup 3+}, Eu{sup 3+} phosphor was excited at 239 nm using a monochromatized xenon lamp as the excitation source. The phosphor exhibited fast decay lifetimes implying that it is not a good candidate for long afterglow applications.

  7. Sulfide as a soil phytotoxin - A review

    Directory of Open Access Journals (Sweden)

    Leon P M Lamers


    Full Text Available In wetland soils and underwater sediments of marine, brackish and freshwater systems, the strong phytotoxin sulfide may accumulate as a result of microbial reduction of sulfate during anaerobiosis, its level depending on prevailing edaphic conditions. In this review, we compare an extensive body of literature on phytotoxic effects of this reduced sulfur compound in different ecosystem types, and review the effects of sulfide at multiple ecosystem levels: the ecophysiological functioning of individual plants, plant-microbe associations, and community effects including competition and facilitation interactions. Recent publications on multi-species interactions in the rhizosphere show even more complex mechanisms explaining sulfide resistance. It is concluded that sulfide is a potent phytotoxin, profoundly affecting plant fitness and ecosystem functioning in the full range of wetland types including coastal systems, and at several levels. Traditional toxicity testing including hydroponic approaches generally neglect rhizospheric effects, which makes it difficult to extrapolate results to real ecosystem processes. To explain the differential effects of sulfide at the different organizational levels, profound knowledge about the biogeochemical, plant physiological and ecological rhizosphere processes is vital. This information is even more important, as anthropogenic inputs of sulfur into freshwater ecosystems and organic loads into freshwater and marine systems are still much higher than natural levels, and are steeply increasing in Asia. In addition, higher temperatures as a result of global climate change may lead to higher sulfide production rates in shallow waters.

  8. Air-water transfer of hydrogen sulfide

    DEFF Research Database (Denmark)

    Yongsiri, C.; Vollertsen, J.; Rasmussen, M. R.


    The emissions process of hydrogen sulfide was studied to quantify air–water transfer of hydrogen sulfide in sewer networks. Hydrogen sulfide transfer across the air–water interface was investigated at different turbulence levels (expressed in terms of the Froude number) and pH using batch...... experiments. By means of the overall mass–transfer coefficient (KLa), the transfer coefficient of hydrogen sulfide (KLaH2S), referring to total sulfide, was correlated to that of oxygen (KLaO2) (i.e., the reaeration coefficient). Results demonstrate that both turbulence and pH in the water phase play...... a significant role for KLaH2S. An exponential expression is a suitable representation for the relationship between KLaH2S and the Froude number at all pH values studied (4.5 to 8.0). Because of the dissociation of hydrogen sulfide, KLaH2S increased with decreasing pH at a constant turbulence level. Relative...

  9. Synthesis, crystal structure and photophysical properties of europium(III) and terbium(III) complexes with pyridine-2,6-dicarboxamide

    NARCIS (Netherlands)

    Tanase, S.; Gallego, P.M.; Gelder, R. de; Fu, W.T.


    The reactions of pyridine-2,6-dicarboxamide with europium(III) and terbium(III) triflates led to the formation of mononuclear complexes of formula [Ln(pcam)(3)](CF3SO3)(3) (Ln = Eu 1, Tb 2; pcam stands for pyridine-2,6-dicarboxamide). From single-crystal X-ray diffraction analysis, the complexes

  10. Commercializing potassium terbium fluoride, KTF (KTb3F10) faraday crystals for high laser power optical isolator applications (United States)

    Schlichting, Wolfgang; Stevens, Kevin; Foundos, Greg; Payne, Alexis


    Many scientific lasers and increasingly industrial laser systems operate in power regime, require high-performance optical isolators to prevent disruptive light feedback into the laser cavity. The optically active Faraday material is the key optical element inside the isolator. SYNOPTICS has been supplying the laser market with Terbium Gallium Garnet (TGG - Tb3Ga5O12) for many years. It is the most commonly used material for the 650-1100nm range and the key advantages for TGG include its cubic crystal structure for alignment free processing, little to no intrinsic birefringence, and ease of manufacture. However, for high-power laser applications TGG is limited by its absorption at 1064nm and its thermo-optic coefficient, dn/dT. Specifically, thermal lensing and depolarization effects become a limiting factor at high laser powers. While TGG absorption has improved significantly over the past few years, there is an intrinsic limit. Now, SYNOPTICS is commercializing the enhanced new crystal Potassium Terbium Fluoride KTF (KTb3F10) that exhibits much smaller nonlinear refractive index and thermo-optic coefficients, and still exhibits a Verdet constant near that of TGG. This cubic crystal has relatively low absorption and thermo-optic coefficients. It is now fully characterized and available for select production orders. At OPTIFAB in October 2017 we present recent results comparing the performance of KTF to TGG in optical isolators and show SYNOPTICS advances in large volume crystal growth and the production ramp up.

  11. Preparation and photoluminescence enhancement in terbium(III ternary complexes with β-diketone and monodentate auxiliary ligands

    Directory of Open Access Journals (Sweden)

    Devender Singh


    Full Text Available A series of new solid ternary complexes of terbium(III ion based on β-diketone ligand acetylacetone (acac and monodentate auxiliary ligands (aqua/urea/triphenylphosphineoxide/pyridine-N-oxide had been prepared. The structural characterizations of synthesized ternary compounds were studied by means of elemental analysis, infrared (IR, and proton nuclear magnetic resonance (NMR spectral techniques. The optical characteristics were investigated with absorption as well as photoluminescence spectroscopy. Thermal behavior of compounds was examined by TGA/DTA analysis and all metal complexes were found to have good thermal stability. The luminescence decay time of complexes were also calculated by monitoring at emission wavelength corresponding to 5D4 → 7F5 transition. A comparative inspection of the luminescent behavior of prepared ternary compounds was performed in order to determine the function of auxiliary ligands in the enhancement of luminescence intensity produced by central terbium(III ion. The color coordinates values suggested that compounds showed bright green emission in visible region in electromagnetic spectrum. Complexes producing green light could play a significant role in the fabrication of efficient light conversion molecular devices for display purposes and lightning systems.

  12. sulfide – reality or fantasy?

    Directory of Open Access Journals (Sweden)

    Paulina Brodek


    Full Text Available Hydrogen sulfide (H2S is a signaling gasotransmitter, involved in different physiological and pathological processes. H2S regulates apoptosis, the cell cycle and oxidative stress. H2S exerts powerful effects on smooth muscle cells, endothelial cells, inflammatory cells, endoplasmic reticulum, mitochondria and nuclear transcription factors. H2S is known to be produced from L-cysteine, D-cysteine and L-homocysteine in the body. Four enzymes – cystathionine-b synthase (CBS, mercaptopyruvate sulfurtransferase (3-MST, cystathionine-γ lyase (CSE and cysteine aminotransferase (CAT – are involved in H2S synthesis. The biosynthetic pathway for the production of H2S from D-cysteine involves 3-MST and D-amino acid oxidase (DAO. The therapeutic potential of H2S is not clear. However, recently results have demonstrated that H2S has protective action for ischemic heart disease or hypertension, and protects against ischemia of the brain. This review summarizes the negative and the positive roles of H2S in various biological systems, for example the cardiovascular system and nervous system. We also discuss the function of classical, therapeutic and natural (for example garlic donors of H2S in pre-clinical and clinical studies.

  13. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors

    NARCIS (Netherlands)

    Villa Gomez, D.K.; Cassidy, J.; Keesman, K.J.; Sampaio, R.M.; Lens, P.N.L.


    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4 2- ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing

  14. Sulfide response analysis for sulfide control using a pS electrode in sulfate reducing bioreactors. (United States)

    Villa-Gomez, D K; Cassidy, J; Keesman, K J; Sampaio, R; Lens, P N L


    Step changes in the organic loading rate (OLR) through variations in the influent chemical oxygen demand (CODin) concentration or in the hydraulic retention time (HRT) at constant COD/SO4(2-) ratio (0.67) were applied to create sulfide responses for the design of a sulfide control in sulfate reducing bioreactors. The sulfide was measured using a sulfide ion selective electrode (pS) and the values obtained were used to calculate proportional-integral-derivative (PID) controller parameters. The experiments were performed in an inverse fluidized bed bioreactor with automated operation using the LabVIEW software version 2009(®). A rapid response and high sulfide increment was obtained through a stepwise increase in the CODin concentration, while a stepwise decrease to the HRT exhibited a slower response with smaller sulfide increment. Irrespective of the way the OLR was decreased, the pS response showed a time-varying behavior due to sulfide accumulation (HRT change) or utilization of substrate sources that were not accounted for (CODin change). The pS electrode response, however, showed to be informative for applications in sulfate reducing bioreactors. Nevertheless, the recorded pS values need to be corrected for pH variations and high sulfide concentrations (>200 mg/L). Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Experimental simulations of sulfide formation in the solar nebula. (United States)

    Lauretta, D S; Lodders, K; Fegley, B


    Sulfurization of meteoritic metal in H2S-H2 gas produced three different sulfides: monosulfide solid solution [(Fe,Ni)1-xS], pentlandite [(Fe,Ni)9-xS8], and a phosphorus-rich sulfide. The composition of the remnant metal was unchanged. These results are contrary to theoretical predictions that sulfide formation in the solar nebula produced troilite (FeS) and enriched the remaining metal in nickel. The experimental sulfides are chemically and morphologically similar to sulfide grains in the matrix of the Alais (class CI) carbonaceous chondrite, suggesting that these meteoritic sulfides may be condensates from the solar nebula.

  16. Early and Late Stage Metals and Sulfides in Diogenites (United States)

    Sideras, L. C.; Domanik, K. J.; Lauretta, D. S.


    Diogenites are typically highly brecciated orthopyroxenites that contain 84-100 vol.% orthopyroxene. Common accessory minerals include olivine, chromite, Ca-pyroxene, plagioclase, silica, troilite and Fe-Ni metal. Metal and sulfides are minor phases in diogenites with an average abundance of copper and copper sulfide minerals; ii) Textural evidence that at least some of the metal and sulfide occurring interstitially between, and as inclusions within, orthopyroxene formed from an early immiscible sulfide-oxide liquid; iii) That this sulfide- oxide liquid subsequently fractionated into assemblages containing either Fe-Ni metal, troilite, and chromite or pentlandite, troilite, and copper-bearing sulfide.

  17. Synthesis and luminescent study of Ce{sup 3+}-doped terbium-yttrium aluminum garnet

    Energy Technology Data Exchange (ETDEWEB)

    Dotsenko, V.P., E-mail: [A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Lustdorfskaya doroga 86, 65080 Odessa (Ukraine); Berezovskaya, I.V.; Zubar, E.V.; Efryushina, N.P. [A.V. Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, Lustdorfskaya doroga 86, 65080 Odessa (Ukraine); Poletaev, N.I.; Doroshenko, Yu.A. [Institute of Combustion and Advanced Technologies, Mechnikov Odessa National University, Dvoryanskaya 2, 65082 Odessa (Ukraine); Stryganyuk, G.B. [Ivan Franko National University of Lviv, Kirilo i Mefodii 8, 79005 Lviv (Ukraine); HASYLAB at DESY, Notkestrasse 85, 22607 Hamburg (Germany); Voloshinovskii, A.S. [Ivan Franko National University of Lviv, Kirilo i Mefodii 8, 79005 Lviv (Ukraine)


    Highlights: Black-Right-Pointing-Pointer Ce{sup 3+}-doped garnets (TYAG) were prepared using nanostructured reagents. Black-Right-Pointing-Pointer The Ce{sup 3+} ions cause a very efficient yellow emission of the samples. Black-Right-Pointing-Pointer The reasons for the long wavelength position of this emission are discussed. Black-Right-Pointing-Pointer Contribution from Al atoms to the conduction band of TYAG is quite essential. - Abstract: Terbium-yttrium aluminum garnets (TYAG) doped with Ce{sup 3+} ions have been prepared by solid state reactions between nanostructured oxides of aluminum and rare earths. The luminescent properties of Ce{sup 3+} ions in (Tb{sub 0.8}Y{sub 0.2}){sub 3(1-x)}Ce{sub 3x}Al{sub 5}O{sub 12} (x = 0.03) have been studied upon excitation in the 2-20 eV region. The substitution of Tb{sup 3+} for Y{sup 3+} in the garnet structure results in broadening the emission band and shifting its maximum towards the longer wavelengths. It was found that in addition to the 4f{sup n} {yields} 4f{sup n-1}5d excitation bands of Ce{sup 3+} and Tb{sup 3+} ions, the excitation spectra for the Ce{sup 3+} emission contain broad bands at 6.73 and {approx}9.5 eV. These bands are attributed to the Ce{sup 3+}-bound exciton formation and O 2p {yields} Al 3s, 3p transitions, respectively. In contrast to the predictions based on the results of electronic structure calculations on Y{sub 3}Al{sub 5}O{sub 12} and Tb{sub 4}Al{sub 2}O{sub 9}, the threshold of interband transitions in TYAG is at high energies ( Greater-Than-Or-Slanted-Equal-To 7.3 eV), and contributions from Al{sub tetr} and Al{sub oct} atoms to the conduction-band density of states are evaluated as quite essential.

  18. Structural variations in terbium(III) complexes with 1,3-adamantanedicarboxylate and diverse co-ligands

    Energy Technology Data Exchange (ETDEWEB)

    Thuéry, Pierre, E-mail:


    Terbium nitrate was reacted with 1,3-adamantanedicarboxylic acid (LH{sub 2}) under solvo-hydrothermal conditions with either N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMA) as organic solvents. Hydrolysation of the latter co-solvents resulted in the formation of formate or acetate ions, which are present as co-ligands in the 1D coordination polymer [Tb(L)(HCOO)(H{sub 2}O){sub 2}] (1) and the 2D assembly [Tb(L)(CH{sub 3}COO)(H{sub 2}O)] (2). The increase in dimensionality in the latter arises from the higher connectivity provided by acetate versus formate, the L{sup 2−} ligand being bis-chelating in both cases. The complex [Tb{sub 2}(L){sub 3}(H{sub 2}O){sub 5}][Tb{sub 2}(L){sub 3}(H{sub 2}O){sub 4}]·3H{sub 2}O (3), another 1D species, crystallizes alongside crystals of 2. Further addition of cucurbit[6]uril (CB6), with DMF as co-solvent, gave the two complexes [Tb{sub 2}(L){sub 2}(CB6)(H{sub 2}O){sub 6}](NO{sub 3}){sub 2}·6H{sub 2}O (4) and [H{sub 2}NMe{sub 2}]{sub 2}[Tb(L)(HCOO){sub 2}]{sub 2}·CB6·3H{sub 2}O (5). Complex 4 crystallizes as a 3D framework in which Tb(L){sup +} chains are connected by tetradentate CB6 molecules, while 5 unites a carboxylate-bridged anionic 2D planar assembly and layers of CB6 molecules with counter-cations held at both portals. - Graphical abstract: One- to three-dimensional assemblies are formed in terbium(III) complexes with 1,3-adamantanedicarboxylate obtained under solvo-hydrothermal conditions, these species including formate or acetate co-ligands formed in situ, or additional cucurbit[6]uril molecules. - Highlights: • We report structures of terbium(III) complexes with 1,3-adamantanedicarboxylate. • Solvents able to generate co-ligands or counter-ions in situ have been used. • A 3D species including additional cucurbituril molecules is decribed. • One species displays an alternation of metal–organic and organic sheets.

  19. 21 CFR 872.1870 - Sulfide detection device. (United States)


    ...) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1870 Sulfide detection device. (a) Identification... presence of sulfides in periodontal pockets, as an adjunct in the diagnosis of periodontal diseases in...

  20. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Holmer, Marianne


    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field with sca......Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field...... of the detoxification occurred in underground tissues, where sulfide intrusion was greatest. Elemental sulfur was a major detoxification compound, precipitating on the inner wall of the aerenchyma of underground tissues. Sulfide was metabolized into thiols and entered the plant sulfur metabolism as well as being stored...

  1. Sulfide-induced sulfide-quinone reductase activity in thylakoids of Oscillatoria limnetica. (United States)

    Arieli, B; Padan, E; Shahak, Y


    Sulfide-dependent partial electron-transport reactions were studied in thylakoids isolated from cells of the cyanobacterium Oscillatoria limnetica, which had been induced to perform sulfide-driven anoxygenic photosynthesis. It was found that these thylakoids have the capacity to catalyze electron transfer, from sulfide to externally added quinones, in the dark. Assay conditions were developed to measure the reaction either as quinone-dependent sulfide oxidation (colorimetrically) or as sulfide-dependent quinone reduction (by UV dual-wavelength spectrophotometry). The main features of this reaction are as follows. (i) It is exclusively catalyzed by thylakoids of sulfide-induced cells. Noninduced thylakoids lack this reaction. (ii) Plastoquinone-1 or -2 are equally good substrates. Ubiquinone-1 and duroquinone yield somewhat slower rates. (iii) The apparent Km for plastoquinone-1 was 32 microM and for sulfide about 4 microM. Maximal rates (at 25 degrees C) were about 75 mumol of quinone reduced per mg of chlorophyll.h. (iv) The reaction was not affected by extensive washes of the membranes. (v) Unlike sulfide-dependent NADP photoreduction activity of these thylakoids, which is sensitive to all the specific inhibitors of the cytochrome b6f complex, the new dark reaction exhibited differential sensitivity to these inhibitors. 2-n-Nonyl-4-hydroxyquinoline-N-oxide was the most potent inhibitor of both light and dark reactions, working at submicromolar concentrations. 5-n-Undecyl-6-hydroxy-4,7-dioxobenzothiazole also inhibited the two reactions to a similar extent, but at 10 times higher concentrations than 2-n-nonyl-4-hydroxyquinoline-N-oxide. 2,5-Dibromo-3-methyl-6-isopropyl-p-benzoquinone, 2-iodo-6-isopropyl-3-methyl-2',4,4'-trinitrodiphenyl ether, and stigmatellin had no effect on the dark reaction at concentrations sufficient to fully inhibit the light reaction from sulfide. We propose that the sulfide-induced factor which enables the use of sulfide as the electron

  2. Acute inhalation toxicity of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Benson, J.M.; Hahn, F.F.; Barr, E.B. [and others


    Carbonyl sulfide (COS), a colorless gas, is a side product of industrial procedures sure as coal hydrogenation and gasification. It is structurally related to and is a metabolite of carbon disulfide. COS is metabolized in the body by carbonic anhydrase to hydrogen sulfide (H{sub 2}S), which is thought to be responsible for COS toxicity. No threshold limit value for COS has been established. Results of these studies indicate COS (with an LC{sub 50} of 590 ppm) is slightly less acutely toxic than H{sub 2}S (LC{sub 50} of 440 ppm).

  3. Complete Stokes polarimetry of magneto-optical Faraday effect in a terbium gallium garnet crystal at cryogenic temperatures. (United States)

    Majeed, Hassaan; Shaheen, Amrozia; Anwar, Muhammad Sabieh


    We report the complete determination of the polarization changes caused in linearly polarized incident light due to propagation in a magneto-optically active terbium gallium garnet (TGG) single crystal, at temperatures ranging from 6.3 to 300 K. A 28-fold increase in the Verdet constant of the TGG crystal is seen as its temperature decreases to 6.3 K. In contrast with polarimetry of light emerging from a Faraday material at room temperature, polarimetry at cryogenic temperatures cannot be carried out using the conventional fixed polarizer-analyzer technique because the assumption that ellipticity is negligible becomes increasingly invalid as temperature is lowered. It is shown that complete determination of light polarization in such a case requires the determination of its Stokes parameters, otherwise inaccurate measurements will result with negative implications for practical devices.

  4. Development of Optical Isolators for Visible Light Using Terbium Aluminum Garnet (Tb3Al5O12) Single Crystals (United States)

    Geho, Mikio; Takagi, Takashi; Chiku, Shinichiro; Fujii, Takashi


    We have recently reported the successful growth of incongruently melting terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser FZ (floating zone) method. Optical property evaluations confirmed a high transmittance and a larger Verdet constant than conventional Tb3Ga5O12 (TGG) crystals and/or Faraday glasses. In this study, we attempted to design, fabricate, and evaluate optical isolators in visible light through near-infrared (NIR) regions using TAG crystals. A finite element method (FEM) simulation of possible models led us to the preferable one based on a radially magnetized magnet. To realize this, we employed a pseudo-radially magnetized magnet. The target wavelengths of the prototype device were 408, 808, and 1064 nm. The typical extinction ratio was more than 30 dB and the insertion loss was less than 0.3 dB for AR-coated devices.

  5. An intercomparison of aircraft instrumentation for tropospheric measurements of carbonyl sulfide, hydrogen sulfide, and carbon disulfide


    Gregory, Gerald L; Douglas D. Davis; Thornton, Donald C; James E. Johnson; Bandy, Alan R.; Saltzman, Eric S.; Andreae, Meinrat O.; Barrick, John D


    This paper reports results of NASA's Chemical Instrumentation and Test Evaluation (CITE 3) during which airborne measurements for carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were intercompared. Instrumentation included a gas chromatograph using flame photometric detection (COS, H2S, and CS2), a gas chromatograph using mass spectrometric detection (COS and CS2), a gas chromatograph using fluorination and subsequent SF6 detection via electron capture (COS and CS2)...

  6. Audio magnetotelluric Investigation of Sulfide Mineralization in ...

    Indian Academy of Sciences (India)


    Dhanjori Volcanics along with high geothermal gradient and rifted margin gives rise to metallogeny in form of rifted phase greenstone belts with gold enriched sulfide mineralization. The conductivity model indicated the presence of shallow conductors but could not be resolved due to lack of high frequency data. However ...

  7. Microbial Fuel Cells for Sulfide Removal

    NARCIS (Netherlands)

    Rabaey, K.; Sompel, van de S.; Maignien, L.; Boon, N.; Aelterman, P.; Clauwaert, P.; Schamphelaire, de L.; The Pham, H.; Vermeulen, J.; Verhaege, M.; Lens, P.N.L.; Verstraete, W.


    Thus far, microbial fuel cells (MFCs) have been used to convert carbon-based substrates to electricity. However, sulfur compounds are ubiquitously present in organic waste and wastewater. In this study, a MFC with a hexacyanoferrate cathodic electrolyte was used to convert dissolved sulfide to

  8. 30 CFR 250.490 - Hydrogen sulfide. (United States)


    ... indicate a different classification is needed. (d) What do I do if conditions change? If you encounter H2S..., how these positions fit into your organization, and what the functions, duties, and responsibilities... done in a manner that ensures resistance to sulfide stress cracking. (q) General requirements when...

  9. Microaeration reduces hydrogen sulfide in biogas (United States)

    Although there are a variety of biological and chemical treatments for removal of hydrogen sulfide (H2S) from biogas, all require some level of chemical or water inputs and maintenance. In practice, managing biogas H2S remains a significant challenge for agricultural digesters where labor and opera...

  10. Hydrogen Sulfide in Preeclampsia : Potential Therapeutic Implications

    NARCIS (Netherlands)

    Holwerda, Kim


    The thesis provide insights into the production and possible therapeutic effect of the gaseous molecule hydrogen sulfide (H2S) in preeclampsia (PE). H2S is an important molecule in the (human) body. It is among others involved in blood pressure regulation, stimulation of vascular growth and

  11. Comparison of Hydrogen Sulfide Analysis Techniques (United States)

    Bethea, Robert M.


    A summary and critique of common methods of hydrogen sulfide analysis is presented. Procedures described are: reflectance from silver plates and lead acetate-coated tiles, lead acetate and mercuric chloride paper tapes, sodium nitroprusside and methylene blue wet chemical methods, infrared spectrophotometry, and gas chromatography. (BL)

  12. Monitoring sulfide and sulfate-reducing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R.S.


    Simple yet precise and accurate methods for monitoring sulfate-reducing bacteria (SRB) and sulfide remain useful for the study of bacterial souring and corrosion. Test kits are available to measure sulfide in field samples. A more precise methylene blue sulfide assay for both field and laboratory studies is described here. Improved media, compared to that in API RP-38, for enumeration of SRB have been formulated. One of these, API-RST, contained cysteine (1.1 mM) as a reducing agent, which may be a confounding source of sulfide. While cysteine was required for rapid enumeration of SRB from environmental samples, the concentration of cysteine in medium could be reduced to 0.4 mM. It was also determined that elevated levels of yeast extract (>1 g/liter) could interfere with enumeration of SRB from environmental samples. The API-RST medium was modified to a RST-11 medium. Other changes in medium composition, in addition to reduction of cysteine, included reduction of the concentration of phosphate from 3.4 mM to 2.2 mM, reduction of the concentration of ferrous iron from 0.8 mM to 0.5 mM and preparation of a stock mineral solution to ease medium preparation. SRB from environmental samples could be enumerated in a week in this medium.

  13. Recent findings on sinks for sulfide in gravity sewer networks

    DEFF Research Database (Denmark)

    Nielsen, Asbjørn Haaning; Hvitved-Jacobsen, Thorkild; Vollertsen, Jes


    , sulfide emission and thereby potential hydrogen sulfide buildup in the sewer atmosphere is of particular importance in sewers constructed with large diameter pipes, in sewers constructed with steep slopes and in sewers conveying low pH wastewater. Precipitation of metal sulfides is only important when......Sulfide buildup in sewer networks is associated with several problems, including health impacts, corrosion of sewer structures and odor nuisance. In recent years, significant advances in the knowledge of the major processes governing sulfide buildup in sewer networks have been made. This paper...

  14. A hydrometallurgical process for the recovery of terbium from fluorescent lamps: Experimental design, optimization of acid leaching process and process analysis. (United States)

    Innocenzi, Valentina; Ippolito, Nicolò Maria; De Michelis, Ida; Medici, Franco; Vegliò, Francesco


    Terbium and rare earths recovery from fluorescent powders of exhausted lamps by acid leaching with hydrochloric acid was the objective of this study. In order to investigate the factors affecting leaching a series of experiments was performed in according to a full factorial plan with four variables and two levels (4 2 ). The factors studied were temperature, concentration of acid, pulp density and leaching time. Experimental conditions of terbium dissolution were optimized by statistical analysis. The results showed that temperature and pulp density were significant with a positive and negative effect, respectively. The empirical mathematical model deducted by experimental data demonstrated that terbium content was completely dissolved under the following conditions: 90 °C, 2 M hydrochloric acid and 5% of pulp density; while when the pulp density was 15% an extraction of 83% could be obtained at 90 °C and 5 M hydrochloric acid. Finally a flow sheet for the recovery of rare earth elements was proposed. The process was tested and simulated by commercial software for the chemical processes. The mass balance of the process was calculated: from 1 ton of initial powder it was possible to obtain around 160 kg of a concentrate of rare earths having a purity of 99%. The main rare earths elements in the final product was yttrium oxide (86.43%) following by cerium oxide (4.11%), lanthanum oxide (3.18%), europium oxide (3.08%) and terbium oxide (2.20%). The estimated total recovery of the rare earths elements was around 70% for yttrium and europium and 80% for the other rare earths. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Electrochemical Synthesis and Characterization of Zinc Sulfide Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Rahimi-Nasarabadi


    Full Text Available Electrosynthesis process has been used for preparation of zinc sulfide nanoparticles. Zinc sulfide nanoparticles in different size and shapes were electrodeposited by electrolysis of zinc plate as anode in sodium sulfide solution. Effects of several reaction variables, such as electrolysis voltage, sulfide ion concentration as reactant, stirring rate of electrolyte solution and temperature on particle size of prepared zinc sulfide were investigated. The significance of these parameters in tuning the size of zinc sulfide particles was quantitatively evaluated by analysis of variance (ANOVA. Also, optimum conditions for synthesis of zinc sulfide nanoparticles via electrosynthesis reaction were proposed. The structure and composition of prepared nanoparticles under optimum condition was characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, and UV-Vis spectrophotometry techniques.

  16. Sulfide removal by moderate oxygenation of anaerobic sludge environments

    Energy Technology Data Exchange (ETDEWEB)

    Van der Zee, F.P.; Villaverde, S.; Polanco, F. [Valladolid Univ., Valladolid (Spain). Dept. of Chemical Engineering; Garcia, P.A.


    Treating wastewater through anaerobic bioreactors results in the formation of hydrogen sulfide. The sulfide can be removed from the biogas by introducing air directly into the anaerobic bioreactor system. This study presents the results of batch experiments that provided a better insight into the fate of sulfur compounds and oxygen during microaerobic sulfide oxidation in granular sludge. It was shown that sulfide could be removed rapidly upon introduction of low amounts of oxygen to the sulfide-amended batch vials with granular sludge treating vinasse. Initially, the sulfide was oxidized to elemental sulfur, thiosulfate and polysulfide. Significant production of sulfate did not occur. The introduction of oxygen, however, could result in the growth of aerobic organic-chemical oxygen demand-oxidizing bacteria that compete with sulfide oxidation for oxygen. 6 refs., 1 tab., 1 fig.

  17. Investigation of the luminescent properties of terbium-anthranilate complexes and application to the determination of anthranilic acid derivatives in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, N.; Georges, J


    The luminescent properties of terbium complexes with furosemide (FR), flufenamic (FF) acid, tolfenamic (TF) acid and mefenamic (MF) acid have been investigated in aqueous solutions. For all four compounds, complexation occurs when the carboxylic acid of the aminobenzoic group is dissociated and is greatly favoured in the presence of trioctylphosphine oxide as co-ligand and Triton X-100 as surfactant. Under optimum conditions, luminescence of the lanthanide ion is efficiently sensitised and the lifetime of the {sup 5}D{sub 4} resonance level of terbium in the complex is ranging between 1 and 1.9 ms, against 0.4 ms for the aqua ion. The sensitivity of the method for the determination of anthranilic acid derivatives is improved by one to two orders of magnitude with respect to that achieved using native fluorescence or terbium-sensitised luminescence in methanol. The limits of detection are 2x10{sup -10}, 5x10{sup -10} and 2x10{sup -9} mol l{sup -1} for flufenamic acid, furosemide and tolfenamic acid, and mefenamic acid, respectively, with within-run RSD values of less than 1%. The method has been applied to the determination of flufenamic acid in spiked calf sera with and without sample pretreatment. Depending on the method and the analyte concentration, the recovery was ranging between 83 and 113% and the lowest concentration attainable in serum samples was close to 1x10{sup -7} mol l{sup -1}.

  18. Sulfide Intrusion and Detoxification in the Seagrass Zostera marina (United States)

    Hasler-Sheetal, Harald; Holmer, Marianne


    Gaseous sulfide intrusion into seagrasses growing in sulfidic sediments causes little or no harm to the plant, indicating the presence of an unknown sulfide tolerance or detoxification mechanism. We assessed such mechanism in the seagrass Zostera marina in the laboratory and in the field with scanning electron microscopy coupled to energy dispersive X-ray spectroscopy, chromatographic and spectrophotometric methods, and stable isotope tracing coupled with a mass balance of sulfur compounds. We found that Z. marina detoxified gaseous sediment-derived sulfide through incorporation and that most of the detoxification occurred in underground tissues, where sulfide intrusion was greatest. Elemental sulfur was a major detoxification compound, precipitating on the inner wall of the aerenchyma of underground tissues. Sulfide was metabolized into thiols and entered the plant sulfur metabolism as well as being stored as sulfate throughout the plant. We conclude that avoidance of sulfide exposure by reoxidation of sulfide in the rhizosphere or aerenchyma and tolerance of sulfide intrusion by incorporation of sulfur in the plant are likely major survival strategies of seagrasses in sulfidic sediments. PMID:26030258

  19. Iron-sulfide redox flow batteries (United States)

    Xia, Guan-Guang; Yang, Zhenguo; Li, Liyu; Kim, Soowhan; Liu, Jun; Graff, Gordon L


    Iron-sulfide redox flow battery (RFB) systems can be advantageous for energy storage, particularly when the electrolytes have pH values greater than 6. Such systems can exhibit excellent energy conversion efficiency and stability and can utilize low-cost materials that are relatively safer and more environmentally friendly. One example of an iron-sulfide RFB is characterized by a positive electrolyte that comprises Fe(III) and/or Fe(II) in a positive electrolyte supporting solution, a negative electrolyte that comprises S.sup.2- and/or S in a negative electrolyte supporting solution, and a membrane, or a separator, that separates the positive electrolyte and electrode from the negative electrolyte and electrode.

  20. Oxidation of Reduced Sulfur Species: Carbonyl Sulfide

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul


    A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts satisfact...... by the competition between chain‐branching and ‐propagating steps; modeling predictions are particularly sensitive to the branching fraction for the OCS + O reaction to form CO + SO or CO2 + S.......A detailed chemical kinetic model for oxidation of carbonyl sulfide (OCS) has been developed, based on a critical evaluation of data from the literature. The mechanism has been validated against experimental results from batch reactors, flow reactors, and shock tubes. The model predicts...

  1. Removal of hydrogen sulfide from drilling fluids

    Energy Technology Data Exchange (ETDEWEB)

    Gilligan Jr., T. J.


    The present invention relates to a process for scavenging hydrogen sulfide which frequently becomes entrained in drilling fluid during the course of drilling operations through subterranean formations. The process consists of introducing a solid oxidant in powdered form into the circulating drilling fluid when hydrogen sulfide is encountered. The solid oxidants are selected from the group consisting of calcium hypochlorite (Ca-(OCl)/sub 2/), sodium perborate (NaBO/sub 3/), potassium permanganate (KMnO/sub 4/), and potassium peroxydisulfate (K/sub 2/S/sub 2/O/sub 8/). The solid oxidants are soluble in the drilling fluid, promoting fast and complete scavenging reactions without adversely altering the drilling fluid rheology.

  2. Subsurface heaters with low sulfidation rates

    Energy Technology Data Exchange (ETDEWEB)

    John, Randy Carl; Vinegar, Harold J


    A system for heating a hydrocarbon containing formation includes a heater having an elongated ferromagnetic metal heater section. The heater is located in an opening in a formation. The heater section is configured to heat the hydrocarbon containing formation. The exposed ferromagnetic metal has a sulfidation rate that goes down with increasing temperature of the heater, when the heater is in a selected temperature range.

  3. Various communications concerning sulfigran (sodium sulfide)

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, H.; Montfort, F.; Wickert; Horn; Junkermann; Wissel, K.; Pier, M.


    Most of these communications concerned the problems experienced by Poelitz when its regular supplier of Sulfigran (sodium sulfide), the I.G. Farbenindustrie plant at Luverkusen, had to shut down for repairs and Poelitz had to get an impure form of Sulfigran mixture (a crude melt of ore) from other suppliers, including the I.G. Farbenindustrie plant at Wolfen (Bitterfeld). Various problems arose in the transition, including the fact that the mixture supplied was not ground finely enough for the coal-paste-preparing machinery at Poelitz to handle without damage. An analysis of one sample of the raw melt mixture gave 68.8% sodium sulfide, 12.0% carbon, 1.5% hydrogen, 1.6% silicon dioxide, 1.8% iron, 1.0% aluminum, 0.6% calcium, traces of magnesium and sulfate, and 15.4% water-insoluble. An analysis for another sample showed about 1.8% less sodium sulfide, 1.5% more silicon dioxide, 0.7% less iron, 0.5% less aluminum, 0.6% more calcium, etc., than the previous analysis. Finally one of the communications was a letter in which Ludwigshafen responded favorably to Poelitz's question about whether it would be advantageous to add Sulfigran directly to the first oven of a hydrogenation chamber instead of grinding it with the coal paste. Ludwigshafen said that in some experiments it had observed deposits at places where Sulfigran and coal paste encountered each other in preheater tubes. The deposits consisted of sodium sulfide and iron compounds. 3 tables.

  4. Metal sulfide initiators for metal oxide sorbent regeneration (United States)

    Turk, B.S.; Gupta, R.P.


    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  5. A sulfide-saturated lunar mantle? (United States)

    Brenan, James M.; Mungall, James E.


    Although much work has been done to understand the controls on the sulfur content at sulfide saturation (SCSS) for terrestrial melt compositions, little information exists to evaluate the SCSS for the high FeO compositions typical of lunar magmas, and at the reduced conditions of the Moon's interior. Experiments were done to measure the SCSS for a model low Ti mare basalt with 20 wt% FeO at 1400oC as a function of fO2 and pressure. Synthetic lunar basalt was encapsulated along with stoichiometric FeS in capsules made from Fe-Ir alloy. The fO2 of the experiment can be estimated by the heterogeneous equilibrium: Femetal + 1 /2 O2 = FeOsilicate Variation in the metal composition, by addition of Ir, serves to change the fO2 of the experiment. Capsule compositions spanning the range Fe25Ir75 to Fe96Ir4 (at%) were synthesized by sintering of pressed powders under reducing conditions. Fe100 capsules were fabricated from pure Fe rod. For a melt with 20 wt% FeO, this range in capsule composition spans the fO2 interval of ˜IW-1 (Fe100, Fe96Ir4) to IW+2.2 (Fe25Ir75). Experiments were done over the pressure interval of 0.1 MPa to 2 GPa. Results for experiments involving Fe100capsules indicate that the SCSS decreases from ˜2000 ppm (0.1 MPa) to 700 ppm (2 GPa). Experiments done thus far at 1 GPa, involving the range of capsule compositions indicated, show a marked decrease in SCSS as the Fe content of the capsule increases (fO2 decreases). Complementary to the decrease in SCSS is a drop in the sulfur content of the coexisting sulfide melt, from ˜50 at% at ΔIW = +2.2 to ˜20 at% at ΔIW-1. In fact, both the composition of the sulfide melt and the SCSS are essentially indistinguishable for Fe96Ir4 and Fe100 compositions. Results thus far indicate that at reduced conditions and high pressure, the SCSS for high FeO lunar compositions is low, and overlaps with Apollo 11 melt inclusion data. Importantly, such low SCSS does not require Fe metal saturation, and suggests that some

  6. Immature Flavor of Beer by Hydrogen Sulfide and its Exclusion


    高橋, 俊明; タカハシ, トシアキ; TOSHIAKI, TAKAHASHI


    In the brewing industry, bottom fermeting brewer's yeast has produced hydrogen sulfide during the primary fermentation process. Hydrogen sulfide has given the unpleasant immature flavor such as rotten egg into the primary or secondary fermenting liquor. However, in the normaly produced final beer the immature flavor has disappeared in general. In spite of the above mentioned fact, sometimes the immature flavor based on the hydrogen sulfide have found in final beer during the imperfect control...

  7. Remediation of sulfidic wastewater by catalytic oxidation with hydrogen peroxide. (United States)

    Ahmad, Naveed; Maitra, Saikat; Dutta, Binay Kanti; Ahmad, Farooq


    Oxidation of sulfide in aqueous solution by hydrogen peroxide was investigated in the presence of hydrated ferric oxide catalyst. The ferric oxide catalyst was synthesized by sol gel technique from ferric chloride and ammonia. The synthesized catalyst was characterized by Fourier transform infrared spectroscopy, X-Ray diffraction analysis, scanning electrom microscope and energy dispersive X-ray analysis. The catalyst was quite effective in oxidizing the sulfide by hydrogen peroxide. The effects of sulfide concentration, catalyst loading, H2O2 dosing and temperature on the kinetics of sulfide oxidation were investigated. Kinetic equations and activation energies for the catalytic oxidation reaction were calculated based on the experimental results.

  8. Structural investigation and photoluminescent properties of gadolinium(III), europium(III) and terbium(III) 3-mercaptopropionate complexes. (United States)

    Souza, E R; Mazali, I O; Sigoli, F A


    This work reports on the synthesis, crystallographic determination and spectroscopic characterization of gadolinium(III), terbium(III) and europium(III) 3-mercaptopropionate complexes, aqua-tris(3-mercaptopropionate)lanthanide(III)--[Ln(mpa)3(H2O)]. The Judd-Ofelt intensity parameters were experimentally determined from emission spectrum of the [Eu(mpa)3(H2O)]complex and they were also calculated from crystallographic data. The complexes are coordination polymers, where the units of each complex are linked together by carboxylate groups leading to an unidimensional and parallel chains that by chemical interactions form a tridimensional framework. The emission spectrum profile of the [Eu(mpa)3(H2O)] complex is discussed based on point symmetry of the europium(III) ion, that explains the bands splitting observed in its emission spectrum. Photoluminescent analysis of the [Gd(mpa)3(H2O)] complex show no efficient ligand excitation but an intense charge transfer band. The excitation spectra of the [Eu(mpa)3(H2O)] and [Tb(mpa)3(H2O)] complexes do not show evidence of energy transfer from the ligand to the excited levels of these trivalent ions. Therefore the emission bands are originated only by direct f-f intraconfigurational excitation of the lantanide(III) ions.

  9. Fluorometric determination of proteins using the terbium (III)-2-thenoyltrifluoroacetone-sodium dodecyl benzene sulfonate-protein system

    Energy Technology Data Exchange (ETDEWEB)

    Jia Zhen [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Department of Chemistry, Dezhou University, Dezhou 253023 (China); Yang Jinghe [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)]. E-mail:; Wu Xia [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang Fei [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Guo Changying [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Liu Shufang [Key Laboratory of Colloid and Interface Chemistry of Education Ministry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)


    It is found that in hexamethylene tetramine (HMTA)-HCl buffer of pH=8.00, proteins can enhance the fluorescence of terbium (III) (Tb{sup 3+})-2-thenoyltrifluoroacetone (TTA)-sodium dodecyl benzene sulfonate (SDBS) system. Based on this, a sensitive method for the determination of proteins is proposed. The experiments indicate that under the optimum conditions, the enhanced fluorescence intensity is in proportion to the concentration of proteins in the range of 4.0x10{sup -9}-7.5x10{sup -6}g/mL for bovine serum albumin (BSA), 5.0x10{sup -9}-1.5x10{sup -5}g/mL for human serum albumin (HSA), 1.0x10{sup -8}-7.5x10{sup -6}g/mL for egg albumin (EA). Their detection limits (S/N=3) are 0.5, 0.8 and 2.0ng/mL, respectively. The interaction mechanism is also studied.

  10. Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties

    Directory of Open Access Journals (Sweden)

    Niko Hildebrandt


    Full Text Available Förster resonance energy transfer (FRET from luminescent terbium complexes (LTC as donors to semiconductor quantum dots (QDs as acceptors allows extraordinary large FRET efficiencies due to the long Förster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma.

  11. Evidence of mass exchange between inside and outside of sonoluminescing bubble in aqueous solution of terbium chloride

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Jinfu, E-mail: [School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550001 (China); Chen, Weizhong, E-mail: [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China); Wang, Xun; Yang, Jing; Chen, Zhan [The Key Laboratory of Modern Acoustics, Ministry of Education, Institution of Acoustics, Nanjing University, Nanjing 210093 (China)


    Highlights: • Time-resolved spectra of SBSL were obtained for Tb{sup 3+} ions emission lines. • Mass exchange between inside and outside of SL bubble was probed via Tb{sup 3+} ions lines. • The argon rectification hypothesis was tested by time-resolved spectra of SBSL. • The rate of mass exchange inside an SBSL bubble increases with increasing sound pressure. - Abstract: Spectra of single-bubble sonoluminescence (SBSL) were obtained for Tb{sup 3+} ions emission lines from bubbles in an aqueous solution of terbium chloride (TbCl{sub 3}). The spectra provide experimental evidence to prove that an air bubble driven by strong ultrasound will not eventually become a rectified pure argon bubble, which is not as predicted by the argon rectification hypothesis. The time-resolved spectra of SBSL show a mass exchange of material such as Tb{sup 3+} ions between the inside and outside of the bubble. With increasing sound pressure, the rate of mass exchange and the SBSL intensity increases.

  12. Optical properties and electrical transport of thin films of terbium(III bis(phthalocyanine on cobalt

    Directory of Open Access Journals (Sweden)

    Peter Robaschik


    Full Text Available The optical and electrical properties of terbium(III bis(phthalocyanine (TbPc2 films on cobalt substrates were studied using variable angle spectroscopic ellipsometry (VASE and current sensing atomic force microscopy (cs-AFM. Thin films of TbPc2 with a thickness between 18 nm and 87 nm were prepared by organic molecular beam deposition onto a cobalt layer grown by electron beam evaporation. The molecular orientation of the molecules on the metallic film was estimated from the analysis of the spectroscopic ellipsometry data. A detailed analysis of the AFM topography shows that the TbPc2 films consist of islands which increase in size with the thickness of the organic film. Furthermore, the cs-AFM technique allows local variations of the organic film topography to be correlated with electrical transport properties. Local current mapping as well as local I–V spectroscopy shows that despite the granular structure of the films, the electrical transport is uniform through the organic films on the microscale. The AFM-based electrical measurements allow the local charge carrier mobility of the TbPc2 thin films to be quantified with nanoscale resolution.

  13. Highly luminescent charge-neutral europium(iii) and terbium(iii) complexes with tridentate nitrogen ligands. (United States)

    Senthil Kumar, Kuppusamy; Schäfer, Bernhard; Lebedkin, Sergei; Karmazin, Lydia; Kappes, Manfred M; Ruben, Mario


    We report on the synthesis of tridentate-nitrogen pyrazole-pyridine-tetrazole (L(1)H) and pyrazole-pyridine-triazole (L(2)H) ligands and their complexation with lanthanides (Ln = Gd(iii), Eu(iii) and Tb(iii)) resulting in stable, charge-neutral complexes Ln(L(1))3 and Ln(L(2))3, respectively. X-ray crystallographic analysis of the complexes with L(1) ligands revealed tricapped trigonal coordination geometry around the lanthanide ions. All complexes show bright photoluminescence (PL) in the solid state, indicating efficient sensitization of the lanthanide emission via the triplet states of the ligands. In particular, the terbium complexes show high PL quantum yields of 65 and 59% for L(1) and L(2), respectively. Lower PL efficiencies of the europium complexes (7.5 and 9%, respectively) are attributed to large energy gaps between the triplet states of the ligands and accepting levels of Eu(iii). The triplet state energy can be reduced by introducing an electron withdrawing (EW) group at the 4 position of the pyridine ring. Such substitution of L(1)H with a carboxylic ester (COOMe) EW group leads to a europium complex with increased PL quantum yield of 31%. A comparatively efficient PL of the complexes dissolved in ethanol indicates that the lanthanide ions are shielded against nonradiative deactivation via solvent molecules.

  14. Micelle enhanced and terbium sensitized spectrofluorimetric determination of danofloxacin in milk using molecularly imprinted solid phase extraction (United States)

    Kaur, Kuldeep; Saini, Shivender Singh; Malik, Ashok Kumar; Singh, Baldev


    An efficient molecularly imprinted solid phase extraction (MISPE)-spectrofluorimetric method was developed to sensitively determine danofloxacin (DAN) in milk samples. Solid phase extraction procedure using MISPE cartridges was first performed on milk samples and then spectrofluorimetric determination was done at 546 nm using an excitation wavelength of 285 nm in presence of terbium and sodium dodecyl benzene sulfonate (SDBS). It was found that SDBS significantly enhanced the fluorescence intensity of the DAN-Tb3+ complex. Various factors affecting the fluorescence intensity of DAN-Tb3+-SDBS system were studied and conditions were optimized. The enhanced fluorescence intensity of the system (ΔF) showed a good linear relationship with the concentration of DAN over the range of 8.4 × 10-9-3.4 × 10-7 mol L-1 with a correlation coefficient of 0.9996. The detection limit was determined as 2.0 × 10-9 mol L-1 and the limit of quantification was determined as 6.5 × 10-9 mol L-1. The MISPE-spectrofluorimetric procedure was successfully applied to the determination of DAN in milk samples. The method is simple, rapid, sensitive and allows interference free determination of DAN in complex fluorescent matrices like milk. The method can be used to determine whether the DAN residues in milk exceed MRLs or not.

  15. Study of quantum dot based on tin/yttrium mixed oxide doped with terbium to be used as biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Paganini, Paula P.; Felinto, Maria Claudia F.C.; Kodaira, Claudia A., E-mail: paulapaganini@usp.b, E-mail: mfelinto@ipen.b, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Brito, Hermi F., E-mail: hefbrito@iq.usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Lab. de Elementos do Bloco f; Nunes, Luiz Antonio O., E-mail: luizant@ifsc.usp.b [Universidade de Sao Paulo (USP), Sao Carlos, SP (Brazil). Inst. de Fisica. Dept. de Fisica e Informatica


    Quantum dots (semiconductors nanocrystals) have brought a promising field to develop a new generation of luminescent biomarkers. The use of lanthanides ions as luminescent markers has many advantages, for example a security method, low cost, high specificity and also the luminescence can be promptly measured with high sensibility and accuracy. These luminescent dots are functionalized with biomolecules. For the luminophore particle to be connect with biologicals molecules (for example covalent antibody) is necessary a previous chemical treatment to modify luminophore particle surface and this process is called functionalization. A prior chemical treatment with changes on the surface luminophore particle is necessary to couple the luminophore to biological molecules. This process can be used as coating which can protect these particles from being dissolved by acid as well as provide functional groups for biological conjugation. This work presents a photoluminescence study of nanoparticles based on tin/yttrium mixed oxides doped with terbium (SnO{sub 2}/Y{sub 2}O{sub 3}:Tb{sup 3+}), synthesized by coprecipitation method. The nanoparticles were submitted to thermal treatment and characterized by X-Ray Powder Diffraction (XRD) that showed cassiterite phase formation and the influence of thermal treatment on nanoparticles structures. These nanoparticles going to be functionalized with a natural polysaccharide (chitosan) in order to form microspheres. These microspheres going to be irradiated with gamma radiation to sterilization and it can be evaluated if the nanoparticles are resistant to irradiation and they do not lose functionality with this process. (author)

  16. Modeling Sulfides, pH and Hydrogen Sulfide Gas in the Sewers of San Francisco

    DEFF Research Database (Denmark)

    Vollertsen, Jes; Revilla, Nohemy; Hvitved-Jacobsen, Thorkild


    An extensive measuring campaign targeted on sewer odor problems was undertaken in San Francisco. It was assessed whether a conceptual sewer process model could reproduce the measured concentrations of total sulfide in the wastewater and H2S gas in the sewer atmosphere, and to which degree such si...

  17. Hydrogen sulfide generation and detection system. (United States)

    Ackley, M W


    A test system has been devised for generation and measurement of hydrogen sulfide/air mixtures. Such a system has numerous applications, including toxicology studies, detector badge and tube evaluation, sorbent capacity measurements, and respirator cartridge or canister breakthrough testing. The system in this study utilizes an HNU photoionization analyzer for detection of H2S concentrations of 1.0 ppm to 26.0 ppm. Generation techniques for these low concentration levels, and also for much higher H2S concentrations, have been described. Special consideration has been given to H2S permeation of transfer tubing, and to the effects of water vapor interference upon the analyzer.

  18. Effect of Soluble Sulfide on the Activity of Luminescent Bacteria

    Directory of Open Access Journals (Sweden)

    Feng Wang


    Full Text Available Sulfide is an important water pollutant widely found in industrial waste water that has attracted much attention. S2−, as a weak acidic anion, is easy hydrolyzed to HS and H2S in aqueous solution. In this study, biological tests were performed to establish the toxicity of sulfide solutions on luminescent bacteria. Considering the sulfide solution was contained three substances—S2−, HS and H2S—the toxicity test was performed at different pH values to investigate which form of sulfide increased light emission and which reduced light emission. It was shown that the EC50 values were close at pH 7.4, 8.0 and 9.0 which were higher than pH 5 and 10. The light emission and sulfide concentrations displayed an inverse exponential dose-response relationship within a certain concentration range at pH 5, 6.5 and 10. The same phenomenon occurred for the high concentration of sulfide at pH 7.4, 8 and 9, in which the concentration of sulfide was HS >> H2S > S2−. An opposite hormesis-effect appeared at the low concentrations of sulfide.

  19. Microbial selenium sulfide reduction for selenium recovery from wastewater

    NARCIS (Netherlands)

    Hageman, S.P.W.; Weijden, van der R.D.; Stams, A.J.M.; Cappellen, van P.; Buisman, C.J.N.


    Microbial reduction of selenium sulfide (SeS2) is a key step in a new treatment process to recover selenium from selenate and selenite streams. In this process, selenate is first reduced to selenite, and subsequently selenite is reduced by sulfide and precipitates from the solution as SeS2. The

  20. Sulfide Concentration and Redox Potential Patterns in Mangrove ...

    African Journals Online (AJOL)

    The mangrove species Avicennia marina and Rhizophora mucronata occur in coastal areas with reducing sediment that contain high sulfide concentrations. However, in this study a glasshouse experiment demonstrated that the establishment of seedlings from these species did not occur in sediment with high sulfide ...

  1. 21 CFR 73.2995 - Luminescent zinc sulfide. (United States)


    ... zinc sulfide in facial makeup preparations shall not exceed 10 percent by weight of the final product... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2995 Luminescent zinc sulfide. (a) Identity... coloring externally applied facial makeup preparations and nail polish included under § 720.4(c)(7)(ix) and...

  2. Terbium-doped gadolinium oxysulfide (Gd2O2S:Tb) scintillation-based polymer optical fibre sensor for real time monitoring of radiation dose in oncology (United States)

    Lewis, E.; O'Keeffe, S.; Grattan, M.; Hounsell, A.; McCarthy, D.; Woulfe, P.; Cronin, J.; Mihai, L.; Sporea, D.; Santhanam, A.; Agazaryan, N.


    A PMMA based plastic optical fibre sensor for use in real time radiotherapy dosimetry is presented. The optical fibre tip is coated with a scintillation material, terbium-doped gadolinium oxysulfide (Gd2O2S:Tb), which fluoresces when exposed to ionising radiation (X-Ray). The emitted visible light signal penetrates the sensor optical fibre and propagates along the transmitting fibre at the end of which it is remotely monitored using a fluorescence spectrometer. The results demonstrate good repeatability, with a maximum percentage error of 0.5% and the response is independent of dose rate.

  3. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides

    Directory of Open Access Journals (Sweden)

    Priyanka Jood


    Full Text Available Sulfides are promising candidates for environment-friendly and cost-effective thermoelectric materials. In this article, we review the recent progress in all-length-scale hierarchical architecturing for sulfides and chalcogenides, highlighting the key strategies used to enhance their thermoelectric performance. We primarily focus on TiS2-based layered sulfides, misfit layered sulfides, homologous chalcogenides, accordion-like layered Sn chalcogenides, and thermoelectric minerals. CS2 sulfurization is an appropriate method for preparing sulfide thermoelectric materials. At the atomic scale, the intercalation of guest atoms/layers into host crystal layers, crystal-structural evolution enabled by the homologous series, and low-energy atomic vibration effectively scatter phonons, resulting in a reduced lattice thermal conductivity. At the nanoscale, stacking faults further reduce the lattice thermal conductivity. At the microscale, the highly oriented microtexture allows high carrier mobility in the in-plane direction, leading to a high thermoelectric power factor.

  4. Influence of Water Salinity on Air Purification from Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Leybovych L.I.


    Full Text Available Mathematical modeling of «sliding» water drop motion in the air flow was performed in software package FlowVision. The result of mathematical modeling of water motion in a droplet with diameter 100 microns at the «sliding» velocity of 15 m/s is shown. It is established that hydrogen sulfide oxidation occurs at the surface of phases contact. The schematic diagram of the experimental setup for studying air purification from hydrogen sulfide is shown. The results of the experimental research of hydrogen sulfide oxidation by tap and distilled water are presented. The dependence determining the share of hydrogen sulfide oxidized at the surface of phases contact from the dimensionless initial concentration of hydrogen sulfide in the air has been obtained.

  5. The Hydrolysis of Carbonyl Sulfide at Low Temperature: A Review (United States)

    Zhao, Shunzheng; Yi, Honghong; Tang, Xiaolong; Jiang, Shanxue; Gao, Fengyu; Zhang, Bowen; Zuo, Yanran; Wang, Zhixiang


    Catalytic hydrolysis technology of carbonyl sulfide (COS) at low temperature was reviewed, including the development of catalysts, reaction kinetics, and reaction mechanism of COS hydrolysis. It was indicated that the catalysts are mainly involved metal oxide and activated carbon. The active ingredients which can load on COS hydrolysis catalyst include alkali metal, alkaline earth metal, transition metal oxides, rare earth metal oxides, mixed metal oxides, and nanometal oxides. The catalytic hydrolysis of COS is a first-order reaction with respect to carbonyl sulfide, while the reaction order of water changes as the reaction conditions change. The controlling steps are also different because the reaction conditions such as concentration of carbonyl sulfide, reaction temperature, water-air ratio, and reaction atmosphere are different. The hydrolysis of carbonyl sulfide is base-catalyzed reaction, and the force of the base site has an important effect on the hydrolysis of carbonyl sulfide. PMID:23956697

  6. Compact all-fiber optical Faraday components using 65-wt%-terbium-doped fiber with a record Verdet constant of -32 rad/(Tm). (United States)

    Sun, L; Jiang, S; Marciante, J R


    A compact all-fiber Faraday isolator and a Faraday mirror are demonstrated. At the core of each of these components is an all-fiber Faraday rotator made of a 4-cm-long, 65-wt%-terbium-doped silicate fiber. The effective Verdet constant of the terbium-doped fiber is measured to be -32 rad/(Tm), which is 27 x larger than that of silica fiber. This effective Verdet constant is the largest value measured to date in any fiber and is 83% of the Verdet constant of commercially available crystal used in bulk optics-based isolators. Combining the all-fiber Faraday rotator with fiber polarizers results in a fully fusion spliced all-fiber isolator whose isolation is measured to be 19 dB. Combining the all-fiber Faraday rotator with a fiber Bragg grating results in an all-fiber Faraday mirror that rotates the polarization state of the reflected light by 88 +/- 4 degrees .

  7. Picomolar Traces of Americium(III) Introduce Drastic Changes in the Structural Chemistry of Terbium(III): A Break in the "Gadolinium Break". (United States)

    Welch, Jan M; Müller, Danny; Knoll, Christian; Wilkovitsch, Martin; Giester, Gerald; Ofner, Johannes; Lendl, Bernhard; Weinberger, Peter; Steinhauser, Georg


    The crystallization of terbium 5,5'-azobis[1H-tetrazol-1-ide] (ZT) in the presence of trace amounts (ca. 50 Bq, ca. 1.6 pmol) of americium results in 1) the accumulation of the americium tracer in the crystalline solid and 2) a material that adopts a different crystal structure to that formed in the absence of americium. Americium-doped [Tb(Am)(H 2 O) 7 ZT] 2 ZT⋅10 H 2 O is isostructural to light lanthanide (Ce-Gd) 5,5'-azobis[1H-tetrazol-1-ide] compounds, rather than to the heavy lanthanide (Tb-Lu) 5,5'-azobis[1H-tetrazol-1-ide] (e.g., [Tb(H 2 O) 8 ] 2 ZT 3 ⋅6 H 2 O) derivatives. Traces of Am seem to force the Tb compound into a structure normally preferred by the lighter lanthanides, despite a 10 8 -fold Tb excess. The americium-doped material was studied by single-crystal X-ray diffraction, vibrational spectroscopy, radiochemical neutron activation analysis, and scanning electron microcopy. In addition, the inclusion properties of terbium 5,5'-azobis[1H-tetrazol-1-ide] towards americium were quantified, and a model for the crystallization process is proposed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Solubility of hydrogen sulfide in n-methylpyrrolidone

    Energy Technology Data Exchange (ETDEWEB)

    Yarym-Agaev, N.L.; Matvienko, V.G.; Povalyaeva, N.V.


    The solubility of hydrogen sulfide in N-methylpyrrolidone was investigated over wide ranges of temperature and pressure. The dynamic variant of the gravimetric method was used at hydrogen sulfide pressures equal to or below atmospheric, and the static variant at higher pressures. In the dynamic variant of the gravimetric method hydrogen sulfide is passed through a known amount of solvent until saturation is reached, and the amount of gas dissolved is found from the weight increase. This method is particularly convenient in studies of highly soluble gases when the solvent has a low vapor pressure. If the vapor pressure of the solvent exceeded this value a correction for entrainment of solvent vapor by undissolved gas was applied. The study showed that the solubility of hydrogen sulfide in N-methylpyrrolidone rose steeply with increase of pressure and decrease of temperature and that it can be used as an effective absorbent of hydrogen sulfide in highly sulfurous natural gas. Since the solubility of hydrogen sulfide under atmospheric pressure is fairly high even at elevated temperatures, effective regeneration of N-methylpyrrolidone is possible by a combination of heating and blowing with an inert gas or by application of vacuum for removal of the hydrogen sulfide.

  9. Gasotransmitter Hydrogen Sulfide Signaling in Neuronal Health and Disease. (United States)

    Paul, Bindu D; Snyder, Solomon H


    Hydrogen sulfide is a gaseous signaling molecule or gasotransmitter which plays important roles in a wide spectrum of physiologic processes in the brain and peripheral tissues. Unlike nitric oxide and carbon monoxide, the other major gasotransmitters, research on hydrogen sulfide is still in its infancy. One of the modes by which hydrogen sulfide signals is via a posttranslational modification termed sulfhydration/persulfidation, which occurs on reactive cysteine residues on target proteins, where the reactive -SH group is converted to an -SSH group. Sulfhydration is a substantially prevalent modification, which modulates the structure or function of proteins being modified. Thus, precise control of endogenous hydrogen sulfide production and metabolism is critical for maintenance of optimal cellular function, with excess generation and paucity, both contributing to pathology. Dysregulation of the reverse transsulfuration pathway which generates hydrogen sulfide occurs in several neurodegenerative diseases such as Parkinson's disease, Huntington's disease and Alzheimer's disease. Accordingly, treatment with donors of hydrogen sulfide or stimulation of the reverse transsulfuration have proved beneficial in several neurodegenerative states. In this review we focus on hydrogen sulfide mediated neuronal signaling processes that contribute to neuroprotection. Copyright © 2017. Published by Elsevier Inc.

  10. Sulfidation behavior and mechanism of zinc silicate roasted with pyrite (United States)

    Ke, Yong; Peng, Ning; Xue, Ke; Min, Xiaobo; Chai, Liyuan; Pan, Qinglin; Liang, Yanjie; Xiao, Ruiyang; Wang, Yunyan; Tang, Chongjian; Liu, Hui


    Sulfidation roasting followed by flotation is widely known as a possible generic technology for enriching valuable metals in low-grade Zn-Pb oxide ores. Zn2SiO4 is the primary Zn phase in willemite. Zn4Si2O7(OH)2(H2O), the main Zn phase in hemimorphite, transforms into Zn2SiO4 at temperatures above 600 °C. To enrich the Zn in willemite and hemimorphite, the Zn species should first be converted to ZnS. Therefore, a thorough understanding of the sulfidation reaction of Zn2SiO4 during roasting with pyrite is of vital important. In this study, the sulfidation behavior and reaction mechanisms of a Zn2SiO4-pyrite roasting system were determined using HSC 5.0 software, TG-FTIR spectroscopy, XRD, XPS and SEM-EDS. The results indicate that the sulfidation process can be divided into three steps: the decomposition of pyrite and formation of a sulfur-rich environment, the sulfur-induced migration of O2- and transformation of sulfur vapor, and the sulfidation reaction via oxygen-sulfur exchange. During the sulfidation roasting process, pyrite was converted to loose and porous Fe3O4, whereas Zn2SiO4 was transformed into ZnS and SiO2 in situ. These findings provide theoretical support for controlling the sulfidation roasting process of willemite and hemimorphite.

  11. Azo dye decolorization assisted by chemical and biogenic sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Prato-Garcia, Dorian [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico); Cervantes, Francisco J. [División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa de San José 2055, San Luis Potosí 78216 (Mexico); Buitrón, Germán, E-mail: [Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro 76230 (Mexico)


    Highlights: ► Azo dyes were reduced efficiently by chemical and biogenic sulfide. ► Biogenic sulfide was more efficient than chemical sulfide. ► There was no competition between dyes and sulfate for reducing equivalents. ► Aromatic amines barely affected the sulfate-reducing process. -- Abstract: The effectiveness of chemical and biogenic sulfide in decolorizing three sulfonated azo dyes and the robustness of a sulfate-reducing process for simultaneous decolorization and sulfate removal were evaluated. The results demonstrated that decolorization of azo dyes assisted by chemical sulfide and anthraquinone-2,6-disulfonate (AQDS) was effective. In the absence of AQDS, biogenic sulfide was more efficient than chemical sulfide for decolorizing the azo dyes. The performance of sulfate-reducing bacteria in attached-growth sequencing batch reactors suggested the absence of competition between the studied azo dyes and the sulfate-reducing process for the reducing equivalents. Additionally, the presence of chemical reduction by-products had an almost negligible effect on the sulfate removal rate, which was nearly constant (94%) after azo dye injection.

  12. Equilibrium nickel isotope fractionation in nickel sulfide minerals (United States)

    Liu, Shanqi; Li, Yongbing; Ju, Yiwen; Liu, Jie; Liu, Jianming; Shi, Yaolin


    Nickel is an important element on Earth, and a major element in the Earth's core, and plays important roles in many geological and biological systems. As an important sink of Ni, Ni sulfides are closely concerned with Ni migration in magma systems and the genesis and evolution of magmatic sulfide deposits. Ni isotopes of Ni sulfides may be a powerful geochemical tracer in magmatic processes and evolution of magmatic sulfide deposits. However Ni isotope fractionation factors of sulfides remain poorly known, which makes the applications of Ni isotopes to geological problems associated with sulfides difficult. In this study, the first-principles methods are used to compute Ni isotope fractionation parameters of polydymite (Ni3S4), heazlewoodite (Ni3S2), millerite (NiS), godlevskite (Ni9S8) and vaesite (NiS2). The reduced partition function ratios of 60Ni/58Ni (103 lnβ60-58) for these minerals decrease in the order of polydymite > heazlewoodite > millerite > godlevskite > vaesite. Ni isotope fractionations in these Ni sulfides show an approximately linear dependence on the average Nisbnd S bond lengths, and have a significant negative correlation with the average Nisbnd Ni bond lengths. Furthermore, a change in Fe/Ni ratio can also lead to Ni isotope fractionation, and with substitution Fe for Ni, the reduced partition function ratios of 60Ni/58Ni decrease.

  13. Sulfidic vapor phase catalysts, especially tungsten sulfide, in industrial coal hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Pier, M.


    The historical development of high-pressure processes of the I. G. Farbenindustrie, from ammonia through methanol and gasoline, and the special case of gasoline production with a fixed-bed catalyst (tungsten sulfide) were discussed. The preparation, properties, and uses of this versatile catalyst were discussed, but it was emphasized that with the sotrmy development of the process, a condition which still existed at the time of this report, and with a great number of practical problems to solve, no extensive study of basic facts had ben possible. This tungsten sulfide catalyst was an especially active vapor-phase catalyst which operated at lower temperatures than the molybdenum catalysts formerly used. It also permitted higher thruputs, even with the oils from bituminous coal that were difficult to split. For certain uses, such as the improvement of the antiknock properties or the saving in tungsten, it was strongly diluted. Studies on using up sulfur in the tungsten sulfide catalyst were in progress at this time and showed there was practically no reduction of it under the conditions of hydrogenation under pressure as long as the raw material contained sulfur.

  14. Signaling of Hydrogen Sulfide and Polysulfides (United States)


    Abstract It has been almost two decades since the first demonstration of hydrogen sulfide (H2S) as a physiological mediator of cognitive function and vascular tone. H2S is physiologically important because it protects various organs from ischemia–reperfusion injury besides regulating inflammation, oxygen sensing, cell growth, and senescence. The production, metabolism, and regulation of H2S have been studied extensively. H2S modulates target proteins through sulfhydration (or sulfuration) or by the reduction of cysteine disulfide bonds. A large number of novel H2S-donating compounds are being developed owing to the therapeutic potential of H2S. Recently, polysulfides, rather than H2S, have been identified as molecules that sulfhydrate (or sulfurate) their target proteins. Antioxid. Redox Signal. 22, 347–349. PMID:25178405

  15. Hydrogen sulfide and polysulfides as signaling molecules (United States)

    KIMURA, Hideo


    Hydrogen sulfide (H2S) is a familiar toxic gas that smells of rotten eggs. After the identification of endogenous H2S in the mammalian brain two decades ago, studies of this molecule uncovered physiological roles in processes such as neuromodulation, vascular tone regulation, cytoprotection against oxidative stress, angiogenesis, anti-inflammation, and oxygen sensing. Enzymes that produce H2S, such as cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase have been studied intensively and well characterized. Polysulfides, which have a higher number of inner sulfur atoms than that in H2S, were recently identified as potential signaling molecules that can activate ion channels, transcription factors, and tumor suppressors with greater potency than that of H2S. This article focuses on our contribution to the discovery of these molecules and their metabolic pathways and mechanisms of action. PMID:25864468

  16. Modulated structure calculated for superconducting hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, Arnab; Tse, John S.; Yao, Yansun [Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK (Canada)


    Compression of hydrogen sulfide using first principles metadynamics and molecular dynamics calculations revealed a modulated structure with high proton mobility which exhibits a diffraction pattern matching well with experiment. The structure consists of a sublattice of rectangular meandering SH{sup -} chains and molecular-like H{sub 3}S{sup +} stacked alternately in tetragonal and cubic slabs forming a long-period modulation. The novel structure offers a new perspective on the possible origin of the superconductivity at very high temperatures in which the conducting electrons in the SH chains are perturbed by the fluxional motions of the H{sub 3}S resulting in strong electron-phonon coupling. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Chemical Foundations of Hydrogen Sulfide Biology (United States)

    Li, Qian; Lancaster, Jack R.


    Following nitric oxide (nitrogen monoxide) and carbon monoxide, hydrogen sulfide (or its newer systematic name sulfane, H2S) became the third small molecule that can be both toxic and beneficial depending on the concentration. In spite of its impressive therapeutic potential, the underlying mechanisms for its beneficial effects remain unclear. Any novel mechanism has to obey fundamental chemical principles. H2S chemistry was studied long before its biological relevance was discovered, however, with a few exceptions, these past works have received relatively little attention in the path of exploring the mechanistic conundrum of H2S biological functions. This review calls attention to the basic physical and chemical properties of H2S, focuses on the chemistry between H2S and its three potential biological targets: oxidants, metals and thiol derivatives, discusses the applications of these basics into H2S biology and methodology, and introduces the standard terminology to this youthful field. PMID:23850631

  18. New cyclic sulfides, garlicnins I2, M, N, and O, from Allium sativum. (United States)

    Nohara, Toshihiro; Ono, Masateru; Nishioka, Naho; Masuda, Fuka; Fujiwara, Yukio; Ikeda, Tsuyoshi; Nakano, Daisuke; Kinjo, Junei


    One atypical thiolane-type sulfide, garlicnin I2 (1), two 3,4-dimethylthiolane-type sulfides, garlicnins M (2) and N (3), and one thiabicyclic-type sulfide, garlicnin O (4), were isolated from the acetone extracts of Chinese garlic bulbs, Allium sativum and their structures were characterized. Hypothetical pathways for the production of the respective sulfides were discussed.

  19. Nanomaterials for the Selective Detection of Hydrogen Sulfide in Air

    Directory of Open Access Journals (Sweden)

    Eduard Llobet


    Full Text Available This paper presents a focused review on the nanomaterials and associated transduction schemes that have been developed for the selective detection of hydrogen sulfide. It presents a quite comprehensive overview of the latest developments, briefly discusses the hydrogen sulfide detection mechanisms, identifying the reasons for the selectivity (or lack of observed experimentally. It critically reviews performance, shortcomings, and identifies missing or overlooked important aspects. It identifies the most mature/promising materials and approaches for achieving inexpensive hydrogen sulfide sensors that could be employed in widespread, miniaturized, and inexpensive detectors and, suggests what research should be undertaken for ensuring that requirements are met.

  20. Iron sulfide corrosion in the 700 atm. liquid phase preheater

    Energy Technology Data Exchange (ETDEWEB)

    Donath, E.; Nonnenmacher, H.


    Equilibrium calculations gave lower bounds on partial pressure of hydrogen sulfide within a 500 atm. hydrogen gas stream, below which no corrosion of the steel tube walls would occur. AT 450/sup 0/C the lower bound was 0.5 atm., whereas at 500/sup 0/C the lower bound was 0.8 atm. However, in most plants, the hydrogen sulfide partial pressure exceeded values, so corrosion by formation of iron sulfide did usually occur. It was estimated that the corrosion reaction rate at 500/sup 0/C was about twice what it was at 450/sup 0/C.

  1. Micro-aeration for hydrogen sulfide removal from biogas (United States)

    Duangmanee, Thanapong

    The presence of sulfur compounds (e.g. protein, sulfate, thiosulfate, sulfite, etc.) in the feed stream generates highly corrosive and odorous hydrogen sulfide during anaerobic digestion. The high sulfide level in the biogas stream is not only poisonous to many novel metal catalysts employed in thermo-catalytic processes but also reduces the quality of methane to produce renewable energy. This study used an innovative, low-maintenance, low-cost biological sulfide removal technology to remove sulfides simultaneously from both gas and liquid phase. ORP (Oxidation-Reduction-Potential) was used as the controlling parameter to precisely regulate air injection to the sulfide oxidizing unit (SOU). The microaeration technique provided just enough oxygen to partially oxidize sulfides to elemental sulfur without inhibiting methanogenesis. The SOU was equipped with a diffuser at the bottom for the dispersion of sulfide-laden biogas and injected air throughout the column. The SOU can be operated as a standalone unit or coupled with an anaerobic digester to simultaneously remove sulfide from the biogas and effluent. The integrated system was capable of reducing hydrogen sulfide in biogas from 2,450 to less than 2 ppmV with minimal sulfate production at the highest available sulfide loading rate of 0.24 kg/m3-day. More than 98% of sulfide removed was recovered as elemental sulfur. However, the standalone SOU was able to operate at high hydrogen sulfide loading of 1.46 kg/m 3-day at inlet sulfide concentration of 3000 ppmV and reduce the off-gas hydrogen sulfide concentrations to less than 10 ppmV. The experiment also revealed that the ORP controlled aeration was sensitive enough to prevent oxygen overdosing (dampening effect) during unexpected surges of aeration. Using generalized linear regression, a model predicting output H2S concentration based on input H2S concentrations, SOU medium heights, and biogas flow rates, was derived. With 95% confidence, output H2S concentration

  2. Sulfide oxidizing activity as a survival strategy in mangrove clam Polymesoda erosa (Solander, 1786)

    Digital Repository Service at National Institute of Oceanography (India)

    Clemente, S.; Ingole, B.S.; Sumati, M.; Goltekar, R.

    to thrive, symbionts must have access to an electron donor, used as an energy source (sulfide), and an electron acceptor (oxygen or nitrate). Chemo (thio) autotrophic associations depend upon the productivity of their symbiotic bacteria, which require... sufficient sulfide availability. For this reason, both the supply of sulfide and sulfide-related physiological processes may limit production by the symbionts or host or both. However, hydrogen sulfide (H S) occurs naturally in a number of marine aquatic...

  3. Adaptation to Hydrogen Sulfide of Oxygenic and Anoxygenic Photosynthesis among Cyanobacteria


    Cohen, Yehuda; Jørgensen, Bo Barker; Revsbech, Niels Peter; Poplawski, Ricardo


    Four different types of adaptation to sulfide among cyanobacteria are described based on the differential toxicity to sulfide of photosystems I and II and the capacity for the induction of anoxygenic photosynthesis. Most cyanobacteria are highly sensitive to sulfide toxicity, and brief exposures to low concentrations cause complete and irreversible cessation of CO2 photoassimilation. Resistance of photosystem II to sulfide toxicity, allowing for oxygenic photosynthesis under sulfide, is found...

  4. Nanostructured Metal Oxides and Sulfides for Lithium-Sulfur Batteries. (United States)

    Liu, Xue; Huang, Jia-Qi; Zhang, Qiang; Mai, Liqiang


    Lithium-sulfur (Li-S) batteries with high energy density and long cycle life are considered to be one of the most promising next-generation energy-storage systems beyond routine lithium-ion batteries. Various approaches have been proposed to break down technical barriers in Li-S battery systems. The use of nanostructured metal oxides and sulfides for high sulfur utilization and long life span of Li-S batteries is reviewed here. The relationships between the intrinsic properties of metal oxide/sulfide hosts and electrochemical performances of Li-S batteries are discussed. Nanostructured metal oxides/sulfides hosts used in solid sulfur cathodes, separators/interlayers, lithium-metal-anode protection, and lithium polysulfides batteries are discussed respectively. Prospects for the future developments of Li-S batteries with nanostructured metal oxides/sulfides are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Delineation and management of sulfidic materials in Virginia highway corridors. (United States)


    Excavation through sulfidic geologic materials during road construction has resulted in acid drainage related problems at numerous discrete locations across Virginia. Barren acidic roadbanks, and acidic runoff and fill seepage clearly cause local env...

  6. Hydrogen Sulfide Micro-Sensor for Biomass Fouling Detection Project (United States)

    National Aeronautics and Space Administration — Hydrogen Sulfide (H2S)is the leading chemical agent causing human fatalities following inhalation exposures. The overall aim of this project is to develop and...

  7. Volatile sulfides and their toxicity in freshwater sediments

    Energy Technology Data Exchange (ETDEWEB)

    Brouwer, H. (Redeemer Coll., Ancaster, Ontario (Canada)); Murphy, T. (National Water Research Inst., Burlington, Ontario (Canada))


    Three forms of volatile sulfides (free hydrogen sulfide, acid-volatile sulfides [AVS] and a new form, heat-volatile sulfides [HVS]), were measured and their relationships discussed. Purging of some contaminated sediments with nitrogen at 22 C failed to remove all of the free H[sub 2]S, even after 6 h. With freshly H[sub 2]S-spiked uncontaminated sediment, purging of H[sub 2]S was complete after 2 h; however, if the spiked sediment was allowed to stand for 53 d, H[sub 2]S continued to be purged, even after 43 h. The H[sub 2]S likely originates from equilibrium reactions involving reduced sulfur species in the sediment. Uncontaminated sediment spiked with H[sub 2]S was found to be highly toxic using a sediment-contact bioassay employing Photobacterium phosphoreum. Addition of Fe[sup 3+], which sequesters the S[sup 2[minus

  8. Chemical modification of InN surface with sulfide solution (United States)

    Dementev, Peter A.; Lvova, Tatiana V.; Davydov, Valery Yu.; Smirnov, Alexander N.; Shnitov, Vladimir V.; Lebedev, Mikhail V.; Gwo, Shangjr


    Surface electronic properties of the native-oxide-covered and sulfide-passivated InN grown on the Si(111) substrate were studied by photoemission spectroscopy induced by synchrotron radiation, as well as by photoluminescence and atomic-force microscopy. It was found that the treatment of the native-oxide-covered InN surface with the solution of ammonium sulfide in 2-propanol results in the increase of the surface band bending by 0.7-0.8 eV. Sulfide passivation causes increase in the photoluminescence intensity of InN, as well as the appearance of the photovoltage induced by illumination with red light, which is the evidence of the reduction of the surface recombination velocity due to sulfide passivation. These improved electronic properties remain stable for at least 20 months of the exposure in air.

  9. Influence of iron on sulfide inhibition in dark biohydrogen fermentation. (United States)

    Dhar, Bipro Ranjan; Elbeshbishy, Elsayed; Nakhla, George


    Sulfide impact on biohydrogen production using dark fermentation of glucose at 37 °C was investigated. Dissolved sulfide (S(2-)) at a low concentration (25mg/L) increased biohydrogen production by 54% relative to the control (without iron addition). Whereas on initial dissolved S(2-) concentration of 500 mg/L significantly inhibited the biohydrogen production with total cumulative biohydrogen decreasing by 90% compared to the control (without iron addition). At sulfide concentrations of 500 mg S(2-)/L, addition of Fe(2+) at 3-4 times the theoretical requirement to precipitate 100% of the dissolved S(2-) entirely eliminated the inhibitory effect of sulfide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Technetium sulfide - formation kinetics, structure and particle speciation

    Energy Technology Data Exchange (ETDEWEB)

    German, Konstantin E.; Safonov, Alexey V.; Ilin, Viktor A.; Tregubova, Varvara E. [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Moscow Medical Institute REAVIZ, Moscow (Russian Federation); Shiryaev, Andrey A. [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Obruchnikova, Yana A. [Russian Academy of Sciences, Moscow (Russian Federation). Frumkin Institute of Physical Chemistry and Electrochemistry; Mendeleev Russian Chemical Technology Univ., Moscow (Russian Federation); Moscow Medical Institute REAVIZ, Moscow (Russian Federation)


    Technetium sulfide formation kinetics was studied in the pH range 8 - 12 in presence of Na{sub 2}S and phosphate buffer solution. The conditions for separation of Tc sulfide micro and nanoparticles were found with ultra-microcentrifugation and the values of Tc sulfide solubility were demonstrated to be dependent on the Na{sub 2}S concentration as C(Tc{sub 3}S{sub 10+x}) = -9 x 10{sup -5} ln [Na{sub 2}S] - 2 x 10{sup -5} M. The composition of Tc sulfide precipitate was elucidated with EXAFS, RBS and chemical analyses as Tc{sub 3}S{sub 10+x} or [Tc{sub 3}(μ{sup 3} - S)(S{sub 2}){sub 3}(S{sub 2}){sub 3/3}]{sub n} in agreement with recent Lukens data.


    Directory of Open Access Journals (Sweden)

    Yu. P. Sedlukho


    Full Text Available The paper considers problems and features of biochemical removal of hydrogen sulfide from ground water. The analysis of existing methods for purification of ground water from hydrogen sulfide has been given in the paper. The paper has established shortcomings of physical and chemical purification of ground water. While using aeration methods for removal of hydrogen sulfide formation of colloidal sulfur that gives muddiness and opalescence to water occurs due to partial chemical air oxidation. In addition to this violation of sulfide-carbonate equilibrium taking place in the process of aeration due to desorption of H2S and CO2, often leads to clogging of degasifier nozzles with formed CaCO3 that causes serious operational problems. Chemical methods require relatively large flow of complex reagent facilities, storage facilities and transportation costs.In terms of hydrogen sulfide ground water purification the greatest interest is given to the biochemical method. Factors deterring widespread application of the biochemical method is its insufficient previous investigation and necessity to execute special research in order to determine optimal process parameters while purifying groundwater of a particular water supply source. Biochemical methods for oxidation of sulfur compounds are based on natural biological processes that ensure natural sulfur cycle. S. Vinogradsky has established a two-stage mechanism for oxidation of hydrogen sulfide with sulfur bacteria (Beggiatoa. The first stage presupposes oxidation of hydrogen sulphide to elemental sulfur which is accumulating in the cytoplasm in the form of globules. During the second stage sulfur bacteria begin to oxidize intracellular sulfur to sulfuric acid due to shortage of hydrogen sulfide.The paper provides the results of technological tests of large-scale pilot plants for biochemical purification of groundwater from hydrogen sulfide in semi-industrial conditions. Dependences of water quality

  12. Electrochemical Behavior Of Copper Electrode In Potassium Sulfide Solutions


    Zaafarany, I.; Boller, H.


    The electro chemical behavior of copper electrode in 2M potassium sulfide solution was studied using cyclic voltammograms and potentiostatic polarization techniques. The morphology studies were applied using scanning electron microscope (SEM) and energy dispersive analysis of X-rays (EDAX) and X-ray powder diffraction. Three anodic peaks were observed in the anodic scan of cyclic voltammograms. SEM and EDAX analysis show the formation of an anodic copper sulfide layer on the surface of copper...

  13. Laser cleaning of sulfide scale on compressor impeller blade

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Q.H., E-mail: [School of Mechanical and Automotive Engineering, Hefei University of Technology, Heifei 230009 (China); Institute of Green Design and Manufacturing Engineering, Hefei University of Technology, Heifei 230009 (China); Zhou, D. [School of Mechanical and Automotive Engineering, Hefei University of Technology, Heifei 230009 (China); Institute of Green Design and Manufacturing Engineering, Hefei University of Technology, Heifei 230009 (China); Wang, Y.L.; Liu, G.F. [Institute of Green Design and Manufacturing Engineering, Hefei University of Technology, Heifei 230009 (China)


    Highlights: • The effects of sulfide layers and fluence values on the mechanism of laser cleaning were experimentally established. • The specimen surface with sulfide scale becomes slightly smoother than that before laser cleaning. • The mechanism of laser cleaning the sulfide scale of stainless steel is spallation without oxidization. • It would avoid chemical waste and dust pollution using a fiber laser instead of using nitric acids or sandblasting. - Abstract: Sulfide scale on the surface of a compressor impeller blade can considerably reduce the impeller performance and its service life. To prepare for subsequent remanufacturing, such as plasma spraying, it needs to be removed completely. In the corrosion process on an FV(520)B stainless steel, sulfide scale is divided into two layers because of different outward diffusion rates of Cr, Ni and Fe. In this paper, the cleaning threshold values of the upper and inner layers and the damage threshold value of the substrate were investigated using a pulsed fiber laser. To obtain experimental evidence, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and 3D surface profilometry were employed to investigate the two kinds of sulfide layers on specimens before, during, and after laser cleaning.

  14. Sulfide oxidation in fluidized bed bioreactor using nylon support material. (United States)

    Midha, Varsha; Jha, M K; Dey, Apurba


    A continuous fluidized bed bioreactor (FBBR) with nylon support particles was used to treat synthetic sulfide wastewater at different hydraulic retention time of 25, 50 and 75 min and upflow velocity of 14, 17 and 20 m/hr. The effects of upflow velocity, hydraulic retention time and reactor operation time on sulfide oxidation rate were studied using statistical model. Mixed culture obtained from the activated sludge, taken from tannery effluent treatment plant, was used as a source for microorganisms. The diameter and density of the nylon particles were 2-3 mm and 1140 kg/m3, respectively. Experiments were carried out in the reactor at a temperature of (30 +/- 2) degrees C, at a fixed bed height of 16 cm after the formation of biofilm on the surface of support particles. Biofilm thickness reached (42 +/- 3) microm after 15 days from reactor start-up. The sulfide oxidation, sulfate and sulfur formation is examined at all hydraulic retention times and upflow velocities. The results indicated that almost 90%-92% sulfide oxidation was achieved at all hydraulic retention times. Statistical model could explain 94% of the variability and analysis of variance showed that upflow velocity and hydraulic retention time slightly affected the sulfide oxidation rate. The highest sulfide oxidation of 92% with 70% sulfur was obtained at hydraulic retention time of 75 min and upflow velocity of 14 m/hr.

  15. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry (United States)

    Bandy, Alan R.; Thornton, Donald C.; Driedger, Arthur R., III


    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  16. Crystal structures of two mononuclear complexes of terbium(III) nitrate with the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane. (United States)

    Gregório, Thaiane; Giese, Siddhartha O K; Nunes, Giovana G; Soares, Jaísa F; Hughes, David L


    Two new mononuclear cationic complexes in which the TbIII ion is bis-chelated by the tripodal alcohol 1,1,1-tris-(hy-droxy-meth-yl)propane (H3LEt, C6H14O3) were prepared from Tb(NO3)3·5H2O and had their crystal and mol-ecular structures solved by single-crystal X-ray diffraction analysis after data collection at 100 K. Both products were isolated in reasonable yields from the same reaction mixture by using different crystallization conditions. The higher-symmetry complex dinitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) nitrate di-meth-oxy-ethane hemisolvate, [Tb(NO3)2(H3LEt)2]NO3·0.5C4H10O2, 1, in which the lanthanide ion is 10-coordinate and adopts an s-bicapped square-anti-prismatic coordination geometry, contains two bidentate nitrate ions bound to the metal atom; another nitrate ion functions as a counter-ion and a half-mol-ecule of di-meth-oxy-ethane (completed by a crystallographic twofold rotation axis) is also present. In product aqua-nitratobis[1,1,1-tris-(hy-droxy-meth-yl)propane]-terbium(III) dinitrate, [Tb(NO3)(H3LEt)2(H2O)](NO3)2, 2, one bidentate nitrate ion and one water mol-ecule are bound to the nine-coordinate terbium(III) centre, while two free nitrate ions contribute to charge balance outside the tricapped trigonal-prismatic coordination polyhedron. No free water mol-ecule was found in either of the crystal structures and, only in the case of 1, di-meth-oxy-ethane acts as a crystallizing solvent. In both mol-ecular structures, the two tripodal ligands are bent to one side of the coordination sphere, leaving room for the anionic and water ligands. In complex 2, the methyl group of one of the H3LEt ligands is disordered over two alternative orientations. Strong hydrogen bonds, both intra- and inter-molecular, are found in the crystal structures due to the number of different donor and acceptor groups present.

  17. An intercomparison of aircraft instrumentation for tropospheric measurements of carbonyl sulfide, hydrogen sulfide, and carbon disulfide (United States)

    Gregory, Gerald L.; Davis, Douglas D.; Thornton, Donald C.; Johnson, James E.; Bandy, Alan R.; Saltzman, Eric S.; Andreae, Meinrat O.; Barrick, John D.


    This paper reports results of NASA's Chemical Instrumentation and Test Evaluation (CITE 3) during which airborne measurements for carbonyl sulfide (COS), hydrogen sulfide (H2S), and carbon disulfide (CS2) were intercompared. Instrumentation included a gas chromatograph using flame photometric detection (COS, H2S, and CS2), a gas chromatograph using mass spectrometric detection (COS) and CS2), a gas chromatograph using fluorination and subsequent SF6 detection via electron capture (COS and CS2), and the Natusch technique (H2S). The measurements were made over the Atlantic Ocean east of North and South America during flights from NASA's Wallops Flight Center, Virginia, and Natal, Brazil, in August/September 1989. Most of the intercomparisons for H2S and CS2 were at mixing ratios less than 25 pptv and less than 10 pptv, respectively, with a maximum mixing ratio of about 100 pptv and 50 pptv, respectively. Carbonyl sulfide intercomparisons were at mixing ratios between 400 and 600 pptv. Measurements were intercompared from data bases constructed from time periods of simultaneous or overlapping measurements. Agreement among the COS techniques averaged about 5%, and individual measurements were generally within 10%. For H2S and at mixing ratio greater than 25 pptv, the instruments agreed on average to about 15%. At mixing ratios less than 25 pptv the agreement was about 5 pptv. For CS2 (mixing ratios less than 50 pptv), two techniques agreed on average to about 4 pptv, and the third exhibited a bias (relative to the other two) that varied in the range of 3-7 pptv. CS2 mixing ratios over the ocean east of Natal as measured by the gas chromatograph-mass spectrometer technique were only a few pptv and were below the detection limits of the other two techniques. The CITE 3 data are used to estimate the current uncertainty associated with aircraft measurements of COS, H2S, and CS2 in the remote troposphere.

  18. Signaling molecules: hydrogen sulfide and polysulfide. (United States)

    Kimura, Hideo


    Hydrogen sulfide (H2S) has been recognized as a signaling molecule as well as a cytoprotectant. It modulates neurotransmission, regulates vascular tone, and protects various tissues and organs, including neurons, the heart, and kidneys, from oxidative stress and ischemia-reperfusion injury. H2S is produced from l-cysteine by cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3MST) along with cysteine aminotransferase. In addition to these enzymes, we recently identified a novel pathway to produce H2S from d-cysteine, which involves d-amino acid oxidase (DAO) along with 3MST. These enzymes are localized in the cytoplasm, mitochondria, and peroxisomes. However, some enzymes translocate to organelles under specific conditions. Moreover, H2S-derived potential signaling molecules such as polysulfides and HSNO have been identified. The physiological stimulations, which trigger the production of H2S and its derivatives and maintain their local levels, remain unclear. Understanding the regulation of the H2S production and H2S-derived signaling molecules and the specific stimuli that induce their release will provide new insights into the biology of H2S and therapeutic development in diseases involving these substances.

  19. Anisotropic Optical Properties of Layered Germanium Sulfide

    CERN Document Server

    Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari


    Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...

  20. Hydrogen Sulfide and Endothelium-Dependent Vasorelaxation

    Directory of Open Access Journals (Sweden)

    Jerzy Bełtowski


    Full Text Available In addition to nitric oxide and carbon monoxide, hydrogen sulfide (H2S, synthesized enzymatically from l-cysteine or l-homocysteine, is the third gasotransmitter in mammals. Endogenous H2S is involved in the regulation of many physiological processes, including vascular tone. Although initially it was suggested that in the vascular wall H2S is synthesized only by smooth muscle cells and relaxes them by activating ATP-sensitive potassium channels, more recent studies indicate that H2S is synthesized in endothelial cells as well. Endothelial H2S production is stimulated by many factors, including acetylcholine, shear stress, adipose tissue hormone leptin, estrogens and plant flavonoids. In some vascular preparations H2S plays a role of endothelium-derived hyperpolarizing factor by activating small and intermediate-conductance calcium-activated potassium channels. Endothelial H2S signaling is up-regulated in some pathologies, such as obesity and cerebral ischemia-reperfusion. In addition, H2S activates endothelial NO synthase and inhibits cGMP degradation by phosphodiesterase 5 thus potentiating the effect of NO-cGMP pathway. Moreover, H2S-derived polysulfides directly activate protein kinase G. Finally, H2S interacts with NO to form nitroxyl (HNO—a potent vasorelaxant. H2S appears to play an important and multidimensional role in endothelium-dependent vasorelaxation.

  1. Adsorption of sulfide ions on cerussite surfaces and implications for flotation

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Qicheng [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Wen, Shuming, E-mail: [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhao, Wenjuan [Kunming Metallurgical Research Institute, Kunming 650031 (China); Deng, Jiushuai; Xian, Yongjun [State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093 (China); Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093 (China)


    Highlights: • A new discussion on the lead sulfide species is introduced. • The Na{sub 2}S concentration determines cerussite sulfidization. • The activity of lead sulfide species also determines cerussite sulfidization. • Disulfide and polysulfide in lead sulfide species affect its activity. - Abstract: The adsorption of sulfide ions on cerussite surfaces and implications for flotation were studied by X-ray photoelectron spectroscopy (XPS) analysis, micro-flotation tests, and surface adsorption experiments. The XPS analysis results indicated that lead sulfide species formed on the mineral surface after treatment by Na{sub 2}S, and the increase in the Na{sub 2}S concentration was beneficial for sulfidization. In addition to the content of lead sulfide species, its activity, which was determined by the proportion of sulfide, disulfide and polysulfide, also played an important role in cerussite sulfidization. Micro-flotation tests results demonstrated that insufficient or excessive addition of Na{sub 2}S in pulp solutions has detrimental effects on flotation performance, which was attributed to the dosage of Na{sub 2}S and the activity of lead sulfide species formed on the mineral surface. Surface adsorption experiments of sulfide ions determined the residual S concentrations in pulp solutions and provided a quantitative illustration for the inhibition of cerussite flotation by excessive sulfide ions. Moreover, it also revealed that sulfide ions in the pulp solution were transformed onto the mineral surface and formed lead sulfide species. These results showed that both of lead sulfide species and its activity acted as an important role in sulfidization flotation process of cerussite.

  2. The response behavior of PPy-DB18C6 electrode to terbium(III in acetonitrile and its thermodynamic application

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Arbab Zavar


    Full Text Available Polypyrrole modified electrode prepared by electropolymerization of pyrrole in the presence of a complexing ligand, dibenzo-18-crown-6(DB18C6, was prepared and investigated as a Tb3+-selective electrode in acetonitrile. The potentiometric response of the electrode was linear within the Tb3+ concentration range 1 × 10−5–1 × 10−2 M with a Nernstian slope of 20.9 mVdecade−1 in AN. The electrode was applied to study the complexation of the terbium(III ion in acetonitrile with such other basic aprotic solvent molecules (D as dimethyl sulfoxide, N,N-dimethyl formamide, propylene carbonate and pyridine. The successive complex formation constant (βi and Gibbs energies of transfer (ΔGtr of Tb3+ in AN in relation to such D were obtained.

  3. Luminescence and Magnetic Properties of Two Three-Dimensional Terbium and Dysprosium MOFs Based on Azobenzene-4,4′-Dicarboxylic Linker

    Directory of Open Access Journals (Sweden)

    Belén Fernández


    Full Text Available We report the in situ formation of two novel metal-organic frameworks based on terbium and dysprosium ions using azobenzene-4,4′-dicarboxylic acid (H2abd as ligand, synthesized by soft hydrothermal routes. Both materials show isostructural three-dimensional networks with channels along a axis and display intense photoluminescence properties in the solid state at room temperature. Textural properties of the metal-organic frameworks (MOFs have been fully characterized although no appreciable porosity was obtained. Magnetic properties of these materials were studied, highlighting the dysprosium material displays slightly frequency-dependent out of phase signals when measured under zero external field and under an applied field of 1000 Oe.

  4. Carbonyl sulfide removal with compost and wood chip biofilters, and in the presence of hydrogen sulfide. (United States)

    Sattler, Melanie L; Garrepalli, Divya R; Nawal, Chandraprakash S


    Carbonyl sulfide (COS) is an odor-causing compound and hazardous air pollutant emitted frequently from wastewater treatment facilities and chemical and primary metals industries. This study examined the effectiveness of biofiltration in removing COS. Specific objectives were to compare COS removal efficiency for various biofilter media; to determine whether hydrogen sulfide (H2S), which is frequently produced along with COS under anaerobic conditions, adversely impacts COS removal; and to determine the maximum elimination capacity of COS for use in biofilter design. Three laboratory-scale polyvinyl chloride biofilter columns were filled with up to 28 in. of biofilter media (aged compost, fresh compost, wood chips, or a compost/wood chip mixture). Inlet COS ranged from 5 to 46 parts per million (ppm) (0.10-9.0 g/m3 hr). Compost and the compost/wood chip mixture produced higher COS removal efficiencies than wood chips alone. The compost and compost/wood chip mixture had a shorter stabilization times compared with wood chips alone. Fresh versus aged compost did not impact COS removal efficiency. The presence of H2S did not adversely impact COS removal for the concentration ratios tested. The maximum elimination capacity is at least 9 g/m3 hr for COS with compost media.

  5. Atmospheric measurements of carbonyl sulfide, dimethyl sulfide, and carbon disulfide using the electron capture sulfur detector (United States)

    Johnson, James E.; Bates, Timothy S.


    Measurements of atmospheric dimethyl sulfide (DMS), carbonyl sulfide (COS), and carbon disulfide (CS2) were conducted over the Atlantic Ocean on board the NASA Electra aircraft during the Chemical Instrumentation Test and Evaluation (CITE 3) project using the electron capture sulfur detector (ECD-S). The system employed cryogenic preconcentration of air samples, gas chromatographic separation, catalytic fluorination, and electron capture detection. Samples collected for DMS analysis were scrubbed of oxidants with NaOH impregnated glass fiber filters to preconcentration. The detection limits (DL) of the system for COS, DMS, and CS2 were 5, 5, and 2 ppt, respectively. COS concentrations ranged from 404 to 603 ppt with a mean of 489 ppt for measurements over the North Atlantic Ocean (31 deg N to 41 deg N), and from 395 to 437 ppt with a mean of 419 ppt for measurements over the Tropical Atlantic Ocean (11 deg S to 2 deg N). DMS concentrations in the lower marine boundary layer, below 600-m altitude, ranged from below DL to 150 ppt from flights over the North Atlantic, and from 9 to 104 ppt over the Tropical Atlantic. CS2 concentrations ranged from below DL to 29 ppt over the North Atlantic. Almost all CS2 measurements over the Tropical Atlantic were below DL.

  6. Hydrogen sulfide can inhibit and enhance oxygenic photosynthesis in a cyanobacterium from sulfidic springs. (United States)

    Klatt, Judith M; Haas, Sebastian; Yilmaz, Pelin; de Beer, Dirk; Polerecky, Lubos


    We used microsensors to investigate the combinatory effect of hydrogen sulfide (H2 S) and light on oxygenic photosynthesis in biofilms formed by a cyanobacterium from sulfidic springs. We found that photosynthesis was both positively and negatively affected by H2 S: (i) H2 S accelerated the recovery of photosynthesis after prolonged exposure to darkness and anoxia. We suggest that this is possibly due to regulatory effects of H2 S on photosystem I components and/or on the Calvin cycle. (ii) H2 S concentrations of up to 210 μM temporarily enhanced the photosynthetic rates at low irradiance. Modelling showed that this enhancement is plausibly based on changes in the light-harvesting efficiency. (iii) Above a certain light-dependent concentration threshold H2 S also acted as an inhibitor. Intriguingly, this inhibition was not instant but occurred only after a specific time interval that decreased with increasing light intensity. That photosynthesis is most sensitive to inhibition at high light intensities suggests that H2 S inactivates an intermediate of the oxygen evolving complex that accumulates with increasing light intensity. We discuss the implications of these three effects of H2 S in the context of cyanobacterial photosynthesis under conditions with diurnally fluctuating light and H2 S concentrations, such as those occurring in microbial mats and biofilms. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Aerobic sulfide production and cadmium precipitation by Escherichia coli expressing the Treponema denticola cysteine desulfhydrase gene. (United States)

    Wang, C L; Lum, A M; Ozuna, S C; Clark, D S; Keasling, J D


    The cysteine desulfhydrase gene of Treponema denticola was over-expressed in Escherichia coli to produce sulfide under aerobic conditions and to precipitate metal sulfide complexes on the cell wall. When grown in a defined salts medium supplemented with cadmium and cysteine, E. coli producing cysteine desulfhydrase secreted sulfide and removed nearly all of the cadmium from solution after 48 h. A control strain produced significantly less sulfide and removed significantly less cadmium. Measurement of acid-labile sulfide and energy dispersive X-ray spectroscopy indicated that cadmium was precipitated as cadmium sulfide. Without supplemental cysteine, both the E. coli producing cysteine desulfhydrase and the control E. coli demonstrated minimal cadmium removal.

  8. Dimethyl sulfide in the Amazon rain forest (United States)

    Jardine, K.; Yañez-Serrano, A. M.; Williams, J.; Kunert, N.; Jardine, A.; Taylor, T.; Abrell, L.; Artaxo, P.; Guenther, A.; Hewitt, C. N.; House, E.; Florentino, A. P.; Manzi, A.; Higuchi, N.; Kesselmeier, J.; Behrendt, T.; Veres, P. R.; Derstroff, B.; Fuentes, J. D.; Martin, S. T.; Andreae, M. O.


    Surface-to-atmosphere emissions of dimethyl sulfide (DMS) may impact global climate through the formation of gaseous sulfuric acid, which can yield secondary sulfate aerosols and contribute to new particle formation. While oceans are generally considered the dominant sources of DMS, a shortage of ecosystem observations prevents an accurate analysis of terrestrial DMS sources. Using mass spectrometry, we quantified ambient DMS mixing ratios within and above a primary rainforest ecosystem in the central Amazon Basin in real-time (2010-2011) and at high vertical resolution (2013-2014). Elevated but highly variable DMS mixing ratios were observed within the canopy, showing clear evidence of a net ecosystem source to the atmosphere during both day and night in both the dry and wet seasons. Periods of high DMS mixing ratios lasting up to 8 h (up to 160 parts per trillion (ppt)) often occurred within the canopy and near the surface during many evenings and nights. Daytime gradients showed mixing ratios (up to 80 ppt) peaking near the top of the canopy as well as near the ground following a rain event. The spatial and temporal distribution of DMS suggests that ambient levels and their potential climatic impacts are dominated by local soil and plant emissions. A soil source was confirmed by measurements of DMS emission fluxes from Amazon soils as a function of temperature and soil moisture. Furthermore, light- and temperature-dependent DMS emissions were measured from seven tropical tree species. Our study has important implications for understanding terrestrial DMS sources and their role in coupled land-atmosphere climate feedbacks.

  9. Vertebrate phylogeny of hydrogen sulfide vasoactivity. (United States)

    Dombkowski, Ryan A; Russell, Michael J; Schulman, Alexis A; Doellman, Meredith M; Olson, Kenneth R


    Hydrogen sulfide (H(2)S) is a recently identified endogenous vasodilator in mammals. In steelhead/rainbow trout (Oncorhynchus mykiss, Osteichthyes), H(2)S produces both dose-dependent dilation and a unique dose-dependent constriction. In this study, we examined H(2)S vasoactivity in all vertebrate classes to determine whether H(2)S is universally vasoactive and to identify phylogenetic and/or environmental trends. H(2)S was generated from NaHS and examined in unstimulated and precontracted systemic and, when applicable, pulmonary arteries (PA) from Pacific hagfish (Eptatretus stouti, Agnatha), sea lamprey (Petromyzon marinus, Agnatha), sandbar shark (Carcharhinus milberti, Chondrichthyes), marine toad (Bufo marinus, Amphibia), American alligator (Alligator mississippiensis, Reptilia), Pekin duck (Anas platyrhynchos domesticus, Aves), and white rat (Rattus rattus, Mammalia). In otherwise unstimulated vessels, NaHS produced 1) a dose-dependent relaxation in Pacific hagfish dorsal aorta; 2) a dose-dependent contraction in sea lamprey dorsal aorta, marine toad aorta, alligator aorta and PA, duck aorta, and rat thoracic aorta; 3) a threshold relaxation in shark ventral aorta, dorsal aorta, and afferent branchial artery; and 4) a multiphasic contraction-relaxation-contraction in the marine toad PA, duck PA, and rat PA. Precontraction of these vessels with another agonist did not affect the general pattern of NaHS vasoactivity with the exception of the rat aorta, where relaxation was now dominant. These results show that H(2)S is a phylogenetically ancient and versatile vasoregulatory molecule that appears to have been opportunistically engaged to suit both organ-specific and species-specific homeostatic requirements.

  10. Luminescent europium and terbium complexes of dipyridoquinoxaline and dipyridophenazine ligands as photosensitizing antennae: structures and biological perspectives. (United States)

    Dasari, Srikanth; Patra, Ashis K


    The europium(III) and terbium(III) complexes, namely [Eu(dpq)(DMF)2(NO3)3] (1), [Eu(dppz)2(NO3)3] (2), [Tb(dpq)(DMF)2Cl3] (3), and [Tb(dppz)(DMF)2Cl3] (4), where dipyrido[3,2-d:2',3'-f]quinoxaline (dpq in 1 and 3), dipyrido[3,2-a:2',3'-c]phenazine (dppz in 2 and 4) and N,N'-dimethylformamide (DMF) have been isolated, characterized from their physicochemical data, luminescence studies and their interaction with DNA, serum albumin protein and photo-induced DNA cleavage activity are studied. The X-ray crystal structures of complexes 1-4 show discrete mononuclear Ln(3+)-based structures. The Eu(3+) in [Eu(dpq)(DMF)2(NO3)3] (1) and [Eu(dppz)2(NO3)3] (2) as [Eu(dppz)2(NO3)3]·dppz (2a) adopts a ten-coordinated bicapped dodecahedron structure with a bidentate N,N-donor dpq ligand, two DMF and three NO3(-) anions in 1 and two bidentate N,N-donor dppz ligands and three NO3(-) anions in 2. Complexes 3 and 4 show a seven-coordinated mono-capped octahedron structure where Tb(3+) contains bidentate dpq/dppz ligands, two DMF and three Cl(-) anions. The complexes are highly luminescent in nature indicating efficient photo-excited energy transfer from the dpq/dppz antenna to Ln(3+) to generate long-lived emissive excited states for characteristic f → f transitions. The time-resolved luminescence spectra of complexes 1-4 show typical narrow emission bands attributed to the (5)D0 → (7)F(J) and (5)D4 → (7)F(J) f-f transitions of Eu(3+) and Tb(3+) ions respectively. The number of inner-sphere water molecules (q) was determined from luminescence lifetime measurements in H2O and D2O confirming ligand-exchange reactions with water in solution. The complexes display significant binding propensity to the CT-DNA giving binding constant values in the range of 1.0 × 10(4)-6.1 × 10(4) M(-1) in the order 2, 4 (dppz) > 1, 3 (dpq). DNA binding data suggest DNA groove binding with the partial intercalation nature of the complexes. All the complexes also show binding propensity (K(BSA)

  11. Sulfide Oxidation in the Anoxic Black-Sea Chemocline

    DEFF Research Database (Denmark)



    The depth distributions of O2 and H2S and of the activity of chemical or bacterial sulfide oxidation were studied in the chemocline of the central Black Sea. Relative to measurements from earlier studies, the sulfide zone had moved upwards by 20-50 m and was now (May 1988) situated at a depth of 81...... that the measured H2S oxidation rates were 4-fold higher than could be explained by the downward flux of organic carbon and too high to balance the availability of electron acceptors such as oxidized iron or manganese. A nitrate maximum at the lower boundary of the O2 zone did not extend down to the sulfide zone....

  12. Froth flotation of oil-bearing metal sulfide wastes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Atwood, R.L.; Ye, Yi [Advanced Processing Technologies, Inc., Salt Lake City, UT (United States)


    An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

  13. Froth flotation of oil-bearing metal sulfide wastes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L. (Idaho National Engineering Lab., Idaho Falls, ID (United States)); Atwood, R.L.; Ye, Yi (Advanced Processing Technologies, Inc., Salt Lake City, UT (United States))


    An industrial wastewater, including plating wastes, is treated with sodium sulfide and ferrous sulfate to form a sulfide-oxide precipitate containing chromium and other toxic metals. Hydrocarbons, in the water, coat the sulfide-oxide particles, impeding metal recovery. Froth flotation, without reagent addition, was found to recover 93.9% of the solids from the sludge with simultaneous rejection of 89% of the water. Methyl isobutyl carbinol (MIBC) improved recovery and potassium amyl xanthate improved both recovery and grade. The process design has wastewater feed (without MIBC) to the rougher circuit. The rougher concentrate is conditioned with MIBC and fed to a cleaner circuit to achieve a high grade concentrate. About 95% of the water is recirculated to the waste treatment plant. 3 refs., 3 figs., 4 tabs.

  14. Metal sulfide electrodes and energy storage devices thereof (United States)

    Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig


    The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.

  15. Extraction of Nanosized Cobalt Sulfide from Spent Hydrocracking Catalyst

    Directory of Open Access Journals (Sweden)

    Samia A. Kosa


    Full Text Available The processes used for the extraction of metals (Co, Mo, and Al from spent hydrotreating catalysts were investigated in this study. A detailed mechanism of the metal extraction process is described. Additionally, a simulation study was performed to understand the sulfidizing mechanism. The suggested separation procedure was effective and achieved an extraction of approximately 80–90%. In addition, the sulfidization mechanism was identified. This sulfidizing process for Co was found to involve an intermediate, the structure of which was proposed. This proposed intermediate was confirmed through simulations. Moreover, the activities of the spent and the regenerated catalyst were examined in the cracking of toluene. The modification of the spent catalyst through the use of different iron oxide loadings improved the catalytic activity.

  16. Thermodynamics of Complex Sulfide Inclusion Formation in Ca-Treated Al-Killed Structural Steel (United States)

    Guo, Yin-tao; He, Sheng-ping; Chen, Gu-jun; Wang, Qian


    Controlling the morphology of the sulfide inclusion is of vital importance in enhancing the properties of structural steel. Long strip-shaped sulfides in hot-rolled steel can spherize when, instead of the inclusion of pure single-phase MnS, the guest is a complex sulfide, such as an oxide-sulfide duplex and a solid-solution sulfide particle. In this study, the inclusions in a commercial rolled structural steel were investigated. Spherical and elongated oxide-sulfide duplex as well as single-phase (Mn,Ca)S solid solution inclusions were observed in the steel. A thermodynamic equilibrium between the oxide and sulfide inclusions was proposed to understand the oxide-sulfide duplex inclusion formation. Based on the equilibrium solidification principle, thermodynamic discussions on inclusion precipitation during the solidification process were performed for both general and resulfurized structural steel. The predicted results of the present study agreed well with the experimental ones.

  17. Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment

    DEFF Research Database (Denmark)

    Preisler, André; de Beer, Dirk; Lichtschlag, Anna


    The ecological niche of nitrate-storing Beggiatoa, and their contribution to the removal of sulfide were investigated in coastal sediment. With microsensors a clear suboxic zone of 2-10 cm thick was identified, where neither oxygen nor free sulfide was detectable. In this zone most of the Beggiatoa...... were found, where they oxidize sulfide with internally stored nitrate. The sulfide input into the suboxic zone was dominated by an upward sulfide flux from deeper sediment, whereas the local production in the suboxic zone was much smaller. Despite their abundance, the calculated sulfide......-oxidizing capacity of the Beggiatoa could account for only a small fraction of the total sulfide removal in the sediment. Consequently, most of the sulfide flux into the suboxic layer must have been removed by chemical processes, mainly by precipitation with Fe2+ and oxidation by Fe(III), which was coupled with a p...

  18. Morphology and thermal studies of zinc sulfide and cadmium sulfide nanoparticles in polyvinyl alcohol matrix

    Energy Technology Data Exchange (ETDEWEB)

    Osuntokun, Jejenija; Ajibade, Peter A., E-mail:


    Zn(II) and Cd(II) metal complexes of 1-cyano-1-carboethoxyethylene-2,2-dithiolato–κS,S’–bis (N,N-dimethylthiourea–κS) have been synthesized and characterized with analytical and spectroscopic techniques. The complexes were thermolysed in hexadecylamine at 200 °C to prepare ZnS and CdS nanoparticles. The nanoparticles were characterized with scanning electron microscope (SEM), transmission electron microscope (TEM), and powder X-ray diffraction (p-XRD). TEM images showed spherically shaped nanoparticles, whose sizes are in the range 4.33–7.21 nm for ZnS and 4.95–7.7 nm CdS respectively and XRD confirmed cubic crystalline phases for the nanoparticles. The optical band gap energy evaluated from the absorption spectra are 2.88 eV (430 nm) and 2.81 eV (440 nm) for the ZnS and CdS nanoparticles respectively. The as-prepared metal sulfide nanoparticles were further incorporated into polyvinyl alcohol (PVA) to give ZnS/PVA and CdS/PVA composites. The polymer nanocomposites were studied to investigate their morphology and thermal properties relative to the pure PVA. XRD diffractions indicated that the crystalline phases of the nanoparticles and the sizes in PVA matrices remained unaltered. Infra-red spectra studies revealed interactions between the PVA and the metal sulfide nanoparticles and TGA studies show that the ZnS/PVA and CdS/PVA nanocomposites exhibit better thermal stability than the pure PVA.

  19. High conducting oxide--sulfide composite lithium superionic conductor (United States)

    Liang, Chengdu; Rangasamy, Ezhiylmurugan; Dudney, Nancy J.; Keum, Jong Kahk; Rondinone, Adam Justin


    A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li.sub.7La.sub.3Zr.sub.2O.sub.12 (LLZO). The lithium ion conducting sulfide composition can be .beta.-Li.sub.3PS.sub.4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.

  20. Lipopolysaccharide enhances the cytotoxicity of 2-chloroethyl ethyl sulfide


    Stone, William L; Qui, Min; Smith, Milton


    Abstract Background The bacterial endotoxin, lipopolysaccharide (LPS), is a well-characterized inflammatory factor found in the cell wall of Gram-negative bacteria. In this investigation, we studied the cytotoxic interaction between 2-chloroethyl ethyl sulfide (CEES or ClCH2CH2SCH2CH3) and LPS using murine RAW264.7 macrophages. CEES is a sulfur vesicating agent and is an analog of 2,2'-dichlorodiethyl sulfide (sulfur mustard). LPS is a ubiquitous natural agent found in the environment. The ab...

  1. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden


    The selection rules for the linear couplings between magnons and phonons propagating in the c direction of a simple basal-plane hcp ferromagnet are determined by general symmetry considerations. The acoustic-optical magnon-phonon interactions observed in the heavy-rare-earth metals have been expl...... by Liu. The coupled magnon—transverse-phonon system for the c direction of Tb is analyzed in detail, and the strengths of the couplings are deduced as a function of wave vector by combining the experimental studies with the theory....

  2. Spin Waves in Terbium

    DEFF Research Database (Denmark)

    Jensen, J.; Houmann, Jens Christian Gylden; Bjerrum Møller, Hans


    The energies of spin waves propagating in the c direction of Tb have been studied by inelastic neutron scattering, as a function of a magnetic field applied along the easy and hard directions in the basal plane, and as a function of temperature. From a general spin Hamiltonian, consistent...... with the symmetry, we deduce the dispersion relation for the spin waves in a basal-plane ferromagnet. This phenomenological spin-wave theory accounts for the observed behavior of the magnon energies in Tb. The two q⃗-dependent Bogoliubov components of the magnon energies are derived from the experimental results...

  3. Experimentally Determined Phase Diagram for the Barium Sulfide-Copper(I) Sulfide System Above 873 K (600 °C) (United States)

    Stinn, Caspar; Nose, Katsuhiro; Okabe, Toru; Allanore, Antoine


    The phase diagram of the barium sulfide-copper(I) sulfide system was investigated above 873 K (600 °C) using a custom-built differential thermal analysis (DTA) apparatus. The melting point of barium sulfide was determined utilizing a floating zone furnace. Four new compounds, Ba2Cu14S9, Ba2Cu2S3, Ba5Cu4S7, and Ba9Cu2S10, were identified through quench experiments analyzed with wavelength dispersive X-ray spectroscopy (WDS) and energy dispersive X-ray analysis (EDS). A miscibility gap was observed between 72 and 92 mol pct BaS using both DTA experiments and in situ melts observation in a floating zone furnace. A monotectic was observed at 94.5 mol pct BaS and 1288 K (1015 °C).

  4. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water (United States)

    Ota, K.; Conger, W. L.


    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.


    NARCIS (Netherlands)



    The colorless sulfur bacterium Thiobacillus thioparus T5, isolated from a marine microbial mat, was grown in continuous culture under conditions ranging from sulfide limitation to oxygen limitation. Under sulfide-limiting conditions, sulfide was virtually completely oxidized to sulfate. Under

  6. 76 FR 64022 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting (United States)


    ... AGENCY 40 CFR Part 372 RIN 2025-AA27 Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting AGENCY: Environmental Protection Agency (EPA). ACTION: Lifting of Administrative Stay for Hydrogen... hydrogen sulfide (Chemical Abstracts Service Number (CAS No.) 7783-06-4). Hydrogen sulfide was added to the...

  7. 75 FR 8889 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting (United States)


    ... AGENCY 40 CFR Part 372 RIN 2025-AA27 Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release... toxic chemical release reporting requirements for hydrogen sulfide (Chemical Abstracts Service Number (CAS No.) 7783-06-4). Hydrogen sulfide was added to the EPCRA section 313 list of toxic chemicals in a...

  8. ATP production from the oxidation of sulfide in gill mitochondria of the ribbed mussel Geukensia demissa. (United States)

    Parrino, V; Kraus, D W; Doeller, J E


    The ribbed mussel Geukensia demissa inhabits intertidal Spartina grass marshes characterized by sulfide-rich sediments. Sulfide poisons aerobic respiration, and G. demissa may cope in this seemingly inhospitable environment by oxidizing sulfide in gill mitochondria. Well-coupled mitochondria isolated from G. demissa gills were used to investigate sulfide oxidation and ATP synthesis. State 3 respiration, maximally stimulated by 5 micromol l(-)(1) sulfide with a P/O ratio of 0.89 and a respiratory control ratio (RCR) of 1.40, remained refractory to sulfide at higher concentrations except in the presence of salicylhydroxamic acid (SHAM), an inhibitor of alternative oxidases. Sulfide-stimulated ATP production was 3-5 times greater than that stimulated by malate and succinate, respectively, giving an ATP/sulfide ratio of 0.63. The inhibition of sulfide-stimulated respiration and ATP production by the complex III inhibitors myxothiazol and antimycin A, respectively, suggests that electrons enter the electron transport chain before complex III. Combined with in vivo evidence for electron entry at cytochrome c, these data suggest that more than one type of sulfide-oxidizing enzyme may function in G. demissa gills. The SHAM-sensitive pathway of electron flux may be a critical component of a physiological strategy to tolerate sulfide. We conclude that G. demissa exploits the energy available from its reduced environment by using sulfide as a respiratory substrate for cellular ATP production.

  9. Sulfide-iron interactions in domestic wastewater from a gravity sewer

    NARCIS (Netherlands)

    Nielsen, A.H.; Lens, P.N.L.; Vollertsen, J.; Hvitved-Jacobsen, Th.


    Interactions between iron and sulfide in domestic wastewater from a gravity sewer were investigated with particular emphasis on redox cycling of iron and iron sulfide formation. The concentration ranges of iron and total sulfide in the experiments were 0.4-5.4 mg Fe L-1 and 0-5.1 mg S L-1,

  10. Identifying the Prospective Area of Sulfide Groundwater within the Area of Palvantash Oil and Gas Deposit

    Directory of Open Access Journals (Sweden)

    M. R. Zhurayev


    Full Text Available This paper describes the methodology of prospecting for sulfide groundwater in the area of Palvantash oil fields. In result of study allowed determining the favorable conditions for the sulfide waters formation, and mapping the areas of different sulfide water concentration. The relatively permeable areas were established and the water borehole positions were recommended.

  11. Is succession in wet calcareous dune slacks affected by free sulfide?

    NARCIS (Netherlands)

    Adema, EB; van Gemerden, H; Grootjans, AP; Adema, Erwin B.; Grootjans, Ab P.; Rapson, G.

    Consequences of sulfide toxicity on succession in wet calcareous dune slacks were investigated. Sulfide may exert an inhibitory effect on dune slack plants, but several pioneer species exhibit ROL (Radial Oxygen Loss) and thereby protect themselves against free sulfide. Under oxic conditions free

  12. Trace hydrogen sulfide gas sensor based on tungsten sulfide membrane-coated thin-core fiber modal interferometer (United States)

    Deng, Dashen; Feng, Wenlin; Wei, Jianwei; Qin, Xiang; Chen, Rong


    A novel fiber-optic hydrogen sulfide sensor based on a thin-core Mach-Zehnder fiber modal interferometer (TMZFI) is demonstrated and fabricated. This in-line interferometer is composed of a short section of thin-core fiber sandwiched between two standard single mode fibers, and the fast response to hydrogen sulfide is achieved via the construction of tungsten sulfide film on the outside surface of the TMZFI using the dip-coating and calcination technique. The fabricated sensing nanofilm is characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) spectrometer, Fourier transform infrared (FTIR) and spectroscopic analysis technology, etc. Experimental results showed that the WS2 sensing film has a hexagonal structure with a compact and porous morphology. The XPS and FTIR indicate that the existence of two elements (W and S) is demonstrated. With the increasing concentration of hydrogen sulfide, the interference spectra appear blue shift. In addition, a high sensitivity of 18.37 pm/ppm and a good linear relationship are obtained within a measurement range from 0 to 80 ppm. In addition, there is an excellent selectivity for H2S, which has also been proved by the surface adsorption energy results of tungsten sulfide with four gases (H2S, N2, O2 and CO2) by using the density functional theory calculations. This interferometer has the advantages of simple structure, high sensitivity and easy manufacture, and could be used in the safety monitoring field of hydrogen sulfide gas.

  13. Colonic hydrogen sulfide produces portal hypertension and systemic hypotension in rats. (United States)

    Huc, Tomasz; Jurkowska, Halina; Wróbel, Maria; Jaworska, Kinga; Onyszkiewicz, Maksymilian; Ufnal, Marcin


    Hydrogen sulfide, a toxic gas, at low concentrations is also a biological mediator in animals. In the colon, hydrogen sulfide is produced by intestinal tissues and gut sulfur bacteria. Gut-derived molecules undergo liver metabolism. Portal hypertension is one of the most common complications contributing to the high mortality in liver cirrhosis. We hypothesized that the colon-derived hydrogen sulfide may affect portal blood pressure. Sprague-Dawley rats were maintained either on tap water (controls) or on water solution of thioacetamide to produce liver cirrhosis (CRH-R). Hemodynamics were measured after administration of either saline or Na2S, a hydrogen sulfide donor, into (1) the colon, (2) the portal vein, or (3) the femoral vein. Expression of enzymes involved in hydrogen sulfide metabolism was measured by RT-PCR. CRH-R showed a significantly higher portal blood pressure but a lower arterial blood pressure than controls. Saline did not affect hemodynamic parameters. In controls, intracolonic hydrogen sulfide decreased arterial blood pressure and portal blood flow but increased portal blood pressure. Similarly, hydrogen sulfide administered into the portal vein decreased arterial blood pressure but increased portal blood pressure. In contrast, hydrogen sulfide administered into the systemic vein decreased both arterial and portal blood pressures. CRH-R showed significantly greater responses to hydrogen sulfide than controls. CRH-R had a significantly higher liver concentration of hydrogen sulfide but lower expression of rhodanese, an enzyme converting hydrogen sulfide to sulfate. In conclusion, colon-administered hydrogen sulfide increases portal blood pressure while decreasing the systemic arterial blood pressure. The response to hydrogen sulfide is more pronounced in cirrhotic rats which show reduced hydrogen sulfide liver metabolism. Therefore, colon-derived hydrogen sulfide may be involved in the regulation of portal blood pressure, and may contribute to

  14. Electrochemical Behavior of Sulfide at the Silver Rotating Disc Electrode. I. Polarization Behavior of Silver Sulfide Films. (United States)


    current can be represented by the Levich equation as Id = 6.2 x 10- 4 n FAD -2/3 c0 -1/ 6 1/2 (5) where 0 is the mean diffusion coefficient for S2- and HS...AO-A099 214 STATE UNIV OF NEW YORK AT BUFFALO DEPT OF CHEMISTRY F/6 7/4 ELECTROCHEMICAL BEHAVIOR OF SULFIDE AT THE SILVER ROTATING DISC-ETC(Lfl MAY...COVERED I~~ . .......- - SC RIY Electrchemical Behavior of Sulfide at the ,, Silver Rotating Disc Electrode. I. Polariza- . tion Behavior of Silver

  15. Luminescence in Sulfides: A Rich History and a Bright Future (United States)

    Smet, Philippe F.; Moreels, Iwan; Hens, Zeger; Poelman, Dirk


    Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials) to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs). The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.

  16. Sulfide assimilation by ectosymbionts of the sessile ciliate, Zoothamnium niveum

    DEFF Research Database (Denmark)

    Røy, Hans; Vopel, Kay; Huettel, Marcus


    was the free-flowing water although the size of the colonies suggests that they live partly submerged in the diffusive boundary layer. We showed that the filtered volume allows Z. niveum to assimilate sufficient sulfide to sustain the symbiosis at a few micromoles per liter in ambient concentration. Numerical...

  17. Carbonyl Sulfide Isotopologues: Ultraviolet Absorption Cross Sections and Stratospheric Photolysis

    DEFF Research Database (Denmark)

    Danielache, Sebastian Oscar; Nanbu, Shinkoh; Eskebjerg, Carsten


    Ultraviolet absorption cross sections of the main and substituted carbonyl sulfide isotopologues were calculated using wavepacket dynamics. The calculated absorption cross section of 16O12C32S is in very good agreement with the accepted experimental spectrum between 190 and 250 nm. Relative to 16O...

  18. Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals

    NARCIS (Netherlands)

    van der Stam, W.; Gudjónsdóttir, S.; Evers, W.H.; Houtepen, A.J.


    Control over the doping density in copper sulfide nanocrystals is of great importance and determines its use in optoelectronic applications such as NIR optical switches and photovoltaic devices. Here, we demonstrate that we can reversibly control the hole carrier density (varying from

  19. Rapid biosynthesis of cadmium sulfide (CdS) nanoparticles using ...

    African Journals Online (AJOL)

    Cell-associated biosynthesis of cadmium sulfide (CdS) nanoparticles has been reported to be rather slow and costly. In this study, we report on a rapid and low cost biosynthesis of CdS using culture supernatants of Escherichia coli ATCC 8739, Bacillus subtilis ATCC 6633 and Lactobacillus acidophilus DSMZ 20079T.

  20. Geology of volcanogenic massive sulfide deposit near Meli ...

    African Journals Online (AJOL)


    ABSTRACT. Results of a preliminary study conducted on the volcanogenic massive sulfide (VMS) deposit near Meli/Rahwa, northern Ethiopia are presented in the paper. The study area forms part of. Neoproterozoic basement of northern Ethiopia and southern part of the Arabian Nubian Shield. (ANS). Selected surface rock ...

  1. Nitrite production from urine for sulfide control in sewers. (United States)

    Zheng, Min; Zuo, Zhiqiang; Zhang, Yizhen; Cui, Yujia; Dong, Qian; Liu, Yanchen; Huang, Xia; Yuan, Zhiguo


    Most commonly used methods for sewer sulfide control involves dosing chemical agents to wastewater, which incurs high operational costs. Here, we propose and demonstrate a cost-effective and environmentally attractive approach to sewer sulfide control through urine separation and its subsequent conversion to nitrite prior to intermittent dosage to sewers. Urine collected from a male toilet urinal was fed to laboratory-scale sequencing batch reactors. The reactors stably converted roughly 50% of the nitrogen in urine to nitrite, with high abundance (at 17.46%) of known ammonia-oxidizing bacteria (AOB) of the genus Nitrosomonas, and absence (below detection level) of typical nitrite-oxidizing bacteria of the genus Nitrospira, according to 454 pyrosequencing analysis. The stable nitrite production was achieved at both relatively high (1.0-2.0 mg/L) and low (0.2-0.3 mg/L) dissolved oxygen concentrations. Dosing tests in laboratory-scale sewer systems confirmed the sulfide control effectiveness of free nitrous acid generated from urine. Life cycle assessment indicated that, compared with commodity chemicals, nitrite/free nitrous acid (FNA) production from urine for sulfide control in sewers would lower the operational costs by approximately 2/3 and greenhouse gas (GHG) emissions by 1/3 in 20 years. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Luminescence in Sulfides: A Rich History and a Bright Future

    Directory of Open Access Journals (Sweden)

    Philippe F. Smet


    Full Text Available Sulfide-based luminescent materials have attracted a lot of attention for a wide range of photo-, cathodo- and electroluminescent applications. Upon doping with Ce3+ and Eu2+, the luminescence can be varied over the entire visible region by appropriately choosing the composition of the sulfide host. Main application areas are flat panel displays based on thin film electroluminescence, field emission displays and ZnS-based powder electroluminescence for backlights. For these applications, special attention is given to BaAl2S4:Eu, ZnS:Mn and ZnS:Cu. Recently, sulfide materials have regained interest due to their ability (in contrast to oxide materials to provide a broad band, Eu2+-based red emission for use as a color conversion material in white-light emitting diodes (LEDs. The potential application of rare-earth doped binary alkaline-earth sulfides, like CaS and SrS, thiogallates, thioaluminates and thiosilicates as conversion phosphors is discussed. Finally, this review concludes with the size-dependent luminescence in intrinsic colloidal quantum dots like PbS and CdS, and with the luminescence in doped nanoparticles.

  3. Estimation of bacterial hydrogen sulfide production in vitro

    Directory of Open Access Journals (Sweden)

    Amina Basic


    Full Text Available Oral bacterial hydrogen sulfide (H2S production was estimated comparing two different colorimetric methods in microtiter plate format. High H2S production was seen for Fusobacterium spp., Treponema denticola, and Prevotella tannerae, associated with periodontal disease. The production differed between the methods indicating that H2S production may follow different pathways.

  4. Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment (United States)

    Shanks, W.C. Pat; Koski, Randolph A.; Mosier, Dan L.; Schulz, Klaus J.; Morgan, Lisa A.; Slack, John F.; Ridley, W. Ian; Dusel-Bacon, Cynthia; Seal, Robert R.; Piatak, Nadine M.; Shanks, W.C. Pat; Thurston, Roland


    Volcanogenic massive sulfide deposits, also known as volcanic-hosted massive sulfide, volcanic-associated massive sulfide, or seafloor massive sulfide deposits, are important sources of copper, zinc, lead, gold, and silver (Cu, Zn, Pb, Au, and Ag). These deposits form at or near the seafloor where circulating hydrothermal fluids driven by magmatic heat are quenched through mixing with bottom waters or porewaters in near-seafloor lithologies. Massive sulfide lenses vary widely in shape and size and may be podlike or sheetlike. They are generally stratiform and may occur as multiple lenses.

  5. Biogeographic Congruency among Bacterial Communities from Terrestrial Sulfidic Springs

    Directory of Open Access Journals (Sweden)

    Brendan eHeadd


    Full Text Available Terrestrial sulfidic springs support diverse microbial communities by serving as stable conduits for geochemically diverse and nutrient-rich subsurface waters. Microorganisms that colonize terrestrial springs likely originate from groundwater, but may also be sourced from the surface. As such, the biogeographic distribution of microbial communities inhabiting sulfidic springs should be controlled by a combination of spring geochemistry and surface and subsurface transport mechanisms, and not necessarily geographic proximity to other springs. We examined the bacterial diversity of seven springs to test the hypothesis that occurrence of taxonomically similar microbes, important to the sulfur cycle, at each spring is controlled by geochemistry. Complementary Sanger sequencing and 454 pyrosequencing of 16S rRNA genes retrieved five proteobacterial classes, and Bacteroidetes, Chlorobi, Chloroflexi, and Firmicutes phyla from all springs, which suggested the potential for a core sulfidic spring microbiome. Among the putative sulfide-oxidizing groups (Epsilonproteobacteria and Gammaproteobacteria, up to 83% of the sequences from geochemically similar springs clustered together. Abundant populations of Hydrogenimonas-like or Sulfurovum-like spp. (Epsilonproteobacteria occurred with abundant Thiothrix and Thiofaba spp. (Gammaproteobacteria, but Arcobacter-like and Sulfurimonas spp. (Epsilonproteobacteria occurred with less abundant gammaproteobacterial populations. These distribution patterns confirmed that geochemistry rather than biogeography regulates bacterial dominance at each spring. Potential biogeographic controls were related to paleogeologic sedimentation patterns that could control long-term microbial transport mechanisms that link surface and subsurface environments. Knowing the composition of a core sulfidic spring microbial community could provide a way to monitor diversity changes if a system is threatened by anthropogenic processes or

  6. Electrochemical properties of bare nickel sulfide and nickel sulfide-carbon composites prepared by one-pot spray pyrolysis as anode materials for lithium secondary batteries (United States)

    Son, Mun Yeong; Choi, Jeong Hoo; Kang, Yun Chan


    Spherical bare nickel sulfide and nickel sulfide-carbon composite powders are prepared by a one-step spray pyrolysis. Submicron bare nickel sulfide particles with a dense structure have mixed crystal phases of NiS, Ni7S6, and NixS6. The nickel sulfide-carbon composite powders prepared from a spray solution containing 0.1 M sucrose have a main crystal structure of Ni7S6 phase with small impurity peaks of NixS6 phase. A nickel oxide-carbon composite powder is first formed as an intermediate product in the front part of the reactor at 800 °C. Fast decomposition of thiourea at this high temperature results in the evolution of hydrogen sulfide gas, which then forms the nickel sulfide-carbon composite powders by direct sulfidation of nickel oxide under the reducing atmosphere. Nickel sulfide nanocrystals with a size of a few nanometers are uniformly distributed inside the spherical carbon matrix. The nickel sulfide-carbon composite powders prepared with 0.1 M sucrose have an excellent discharge capacity of 472 mA h g-1 at a high current density of 1000 mA g-1, even after 500 cycles, with the corresponding capacity retention measured after the first cycle being 86%.

  7. Synthesis and crystal structure of terbium(III) meta-oxoborate Tb(BO{sub 2}){sub 3} ({identical_to} TbB{sub 3}O{sub 6}); Synthese und Kristallstruktur von Terbium(III)-meta-Oxoborat Tb(BO{sub 2}){sub 3} ({identical_to} TbB{sub 3}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Nikelski, Tanja; Schleid, Thomas [Institut fuer Anorganische Chemie der Universitaet Stuttgart (Germany)


    The terbium meta-oxoborate Tb(BO{sub 2}){sub 3} ({identical_to} TbB{sub 3}O{sub 6}) is obtained as single crystals by the reaction of terbium, Tb{sub 4}O{sub 7} and TbCl{sub 3} with an excess of B{sub 2}O{sub 3} in gastight sealed platinum ampoules at 950 C after three weeks. The compound appears to be air- and water-resistant and crystallizes as long, thin, colourless needles which tend to growth-twinning due to their marked fibrous habit. The crystal structure of Tb(BO{sub 2}){sub 3} (orthorhombic, Pnma; a = 1598.97(9), b = 741.39(4), c = 1229.58(7) pm; Z = 16) contains strongly corrugated oxoborate layers {sub {infinity}}{sup 2}{l_brace}(BO{sub 2}){sup -}{r_brace} built of vertex-linked [BO{sub 4}]{sup 5-} tetrahedra (d(B-O) = 143 - 154 pm, and angsph;(O-B-O) = 102-115 ) which spread out parallel (100). The four crystallographically different Tb{sup 3+} cations all exhibit coordination numbers of eight towards the oxygen atoms (d(Tb-O) = 228-287 pm). The corresponding metal cation polyhedra [TbO{sub 8}]{sup 13+} too convene to layers (composition: {sub {infinity}}{sup 2}{l_brace}(Tb{sub 2}O{sub 11}){sup 16-}{r_brace}) which are likewise oriented parallel to the (100) plane. (Abstract Copyright [2003], Wiley Periodicals, Inc.) [German] Das Terbium-meta-Oxoborat Tb(BO{sub 2}){sub 3} ({identical_to} TbB{sub 3}O{sub 6}) entsteht einkristallin bei der Reaktion von Terbium, Tb{sub 4}O{sub 7} und TbCl{sub 3} mit einem Ueberschuss von B{sub 2}O{sub 3} in gasdicht verschlossenen Platinampullen nach drei Wochen bei 950 C. Die Verbindung ist luft- und wasserstabil und faellt in langen, duennen, farblosen Nadeln an, die aufgrund ihres ausgepraegt faserigen Habitus zur Wachstumsverzwillingung neigen. Die Kristallstruktur von Tb(BO{sub 2}){sub 3} (orthorhombisch, Pnma; a = 1598, 97(9), b = 741, 39(4), c = 1229, 58(7) pm; Z = 16) enthaelt parallel (100) verlaufende, stark gewellte Oxoborat-Schichten {sub {infinity}}{sup 2}{l_brace}(BO{sub 2}){sup -}{r_brace} aus

  8. Nanomaterials made of non-toxic metallic sulfides: A systematic review of their potential biomedical applications. (United States)

    Argueta-Figueroa, Liliana; Martínez-Alvarez, O; Santos-Cruz, J; Garcia-Contreras, R; Acosta-Torres, L S; de la Fuente-Hernández, J; Arenas-Arrocena, M C


    Metallic sulfides involve the chemical bonding of one or more sulfur atoms to a metal. Metallic sulfides are cheap, abundant semiconductor materials that can be used for several applications. However, an important and emerging use for non-toxic metallic sulfides in biomedical applications has arisen quickly in the medical field. In this systematic review, the available data from electronic databases were collected according to PRISMA alignments for systematic reviews. This review shows that these metallic sulfides could be promising for biomedical uses and applications. This systematic review is focused primarily on the following compounds: silver sulfide, copper sulfide, and iron sulfide. The aim of this review was to provide a quick reference on synthesis methods, biocompatibility, recent advances and perspectives, with remarks on future improvements. The toxicity of metallic sulfides depends directly on the cytotoxicity of their interactions with cells and tissues. Metallic sulfides have potential biomedical applications due to their antibacterial properties, uses in imaging and diagnostics, therapies such as photothermal therapy and chemotherapy in tumors and cancer cells, drug delivery and the fabrication of biosensors for the sensitive and selective detection of moieties, among others. Although current evidence about metallic sulfide NPs is promising, there are still several issues to be addressed before these NPs can be used in biomedicine. The current review is a brief but significant guide to metallic sulfides and their potential uses in the biomedical field. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Adaptation of cyanobacteria to the sulfide-rich microenvironment of black band disease of coral. (United States)

    Myers, Jamie L; Richardson, Laurie L


    Black band disease (BBD) is a cyanobacteria-dominated microbial mat that migrates across living coral colonies lysing coral tissue and leaving behind exposed coral skeleton. The mat is sulfide-rich due to the presence of sulfate-reducing bacteria, integral members of the BBD microbial community, and the sulfide they produce is lethal to corals. The effect of sulfide, normally toxic to cyanobacteria, on the photosynthetic capabilities of five BBD cyanobacterial isolates of the genera Geitlerinema (3), Leptolyngbya (1), and Oscillatoria (1) and six non-BBD cyanobacteria of the genera Leptolyngbya (3), Pseudanabaena (2), and Phormidium (1) was examined. Photosynthetic experiments were performed by measuring the photoincorporation of [(14)C] NaHCO(3) under the following conditions: (1) aerobic (no sulfide), (2) anaerobic with 0.5 mM sulfide, and (3) anaerobic with 0.5 mM sulfide and 10 microM 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU). All five BBD cyanobacterial isolates tolerated sulfide by conducting sulfide-resistant oxygenic photosynthesis. Five of the non-BBD cyanobacterial isolates did not tolerate sulfide, although one Pseudanabaena isolate continued to photosynthesize in the presence of sulfide at a considerably reduced rate. None of the isolates conducted anoxygenic photosynthesis with sulfide as an electron donor. This is the first report on the physiology of a culture of Oscillatoria sp. found globally in BBD.

  10. Hydrogen sulfide production from cysteine and homocysteine by periodontal and oral bacteria. (United States)

    Yoshida, Akihiro; Yoshimura, Mamiko; Ohara, Naoya; Yoshimura, Shigeru; Nagashima, Shiori; Takehara, Tadamichi; Nakayama, Koji


    Hydrogen sulfide is one of the predominant volatile sulfur compounds (VSCs) produced by oral bacteria. This study developed and evaluated a system for detecting hydrogen sulfide production by oral bacteria. L-methionine-alpha-deamino-gamma-mercaptomethane-lyase (METase) and beta carbon-sulfur (beta C-S) lyase were used to degrade homocysteine and cysteine, respectively, to produce hydrogen sulfide. Enzymatic reactions resulting in hydrogen sulfide production were assayed by reaction with bismuth trichloride, which forms a black precipitate when mixed with hydrogen sulfide. The enzymatic activities of various oral bacteria that result in hydrogen sulfide production and the capacity of bacteria from periodontal sites to form hydrogen sulfide in reaction mixtures containing L-cysteine or DL-homocysteine were assayed. With L-cysteine as the substrate, Streptococcus anginosus FW73 produced the most hydrogen sulfide, whereas Porphyromonas gingivalis American Type Culture Collection (ATCC) 33277 and W83 and Fusobacterium nucleatum ATCC 10953 produced approximately 35% of the amount produced by the P. gingivalis strains. Finally, the hydrogen sulfide found in subgingival plaque was analyzed. Using bismuth trichloride, the hydrogen sulfide produced by oral bacteria was visually detectable as a black precipitate. Hydrogen sulfide production by oral bacteria was easily analyzed using bismuth trichloride. However, further innovation is required for practical use.

  11. An integrated logic system for time-resolved fluorescent "turn-on" detection of cysteine and histidine base on terbium (III) coordination polymer-copper (II) ensemble. (United States)

    Xue, Shi-Fan; Lu, Ling-Fei; Wang, Qi-Xian; Zhang, Shengqiang; Zhang, Min; Shi, Guoyue


    Cysteine (Cys) and histidine (His) both play indispensable roles in many important biological activities. An enhanced Cys level can result in Alzheimer's and cardiovascular diseases. Likewise, His plays a significant role in the growth and repair of tissues as well as in controlling the transmission of metal elements in biological bases. Therefore, it is meaningful to detect Cys and His simultaneously. In this work, a novel terbium (III) coordination polymer-Cu (II) ensemble (Tb(3+)/GMP-Cu(2+)) was proposed. Guanosine monophosphate (GMP) can self-assemble with Tb(3+) to form a supramolecular Tb(3+) coordination polymer (Tb(3+)/GMP), which can be suited as a time-resolved probe. The fluorescence of Tb(3+)/GMP would be quenched upon the addition of Cu(2+), and then the fluorescence of the as-prepared Tb(3+)/GMP-Cu(2+) ensemble would be restored again in the presence of Cys or His. By incorporating N-Ethylmaleimide and Ni(2+) as masking agents, Tb(3+)/GMP-Cu(2+) was further exploited as an integrated logic system and a specific time-resolved fluorescent "turn-on" assay for simultaneously sensing His and Cys was designed. Meanwhile it can also be used in plasma samples, showing great potential to meet the need of practical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Synthesis and photoluminescence properties of cerium-doped terbium-yttrium aluminum garnet phosphor for white light-emitting diodes applications (United States)

    Wang, Jun; Han, Tao; Lang, Tianchun; Tu, Mingjing; Peng, Lingling


    Cerium-doped terbium-yttrium aluminum garnet phosphors were synthesized using the solid-state reaction method. The crystalline phase, morphology, and photoluminescence properties were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), and fluorescence spectrophotometer, respectively. The XRD results indicate that with an increase of the amount of x (Tb3+), all of the samples have a pure garnet crystal structure without secondary phases. The SEM images reveal that the samples are composed of sphere-like crystallites, which exhibit different degrees of agglomeration. The luminescent properties of Ce ions in )Al5O12∶Ce0.1 have been studied, and it was found that the emission band shifted toward a longer wavelength. The redshift is attributed to the lowering of the 5d energy level centroid of Ce, which can be explained by the nephelauxetic effect and compression effect. These phosphors were coated on blue light-emitting diode (LED) chips to fabricate white light-emitting diodes (WLEDs), and their color-rendering indices, color temperatures, and luminous efficiencies were measured. As a consequence of the addition of Tb, the blue LED pumped )Al5O12∶Ce0.1 phosphors WLEDs showed good optical properties.

  13. Study on the fluorescent enhancement effect in terbium-gadolinium-protein-sodium dodecyl benzene sulfonate system and its application on sensitive detection of protein at nanogram level. (United States)

    Sun, Changxia; Yang, Jinghe; Wu, Xia; Liu, Shufang; Su, Benyu


    The co-luminescence effect in a terbium-gadolinium-protein-sodium dodecyl benzene sulfonate (SDBS) system is reported here. Based on it, the sensitive quantitative analysis of protein at nanogram levels is established. The co-luminescence mechanism is studied using fluorescence, resonance light scattering (RLS), absorption spectroscopy and NMR measurement. It is considered that protein could be unfolded by SDBS, then a efficacious intramolecular fluorescent energy transfer occurs from unfolded protein to rare earth ions through SDBS acting as a "transfer bridge" to enhance the emission fluorescence of Tb3+ in this ternary complex of Tb-SDBS-BSA, where energy transfer from protein to SDBS by aromatic ring stacking is the most important step. Cooperating with the intramolecular energy transfer above is the intermolecular energy transfer between the simultaneous existing complexes of both Tb3+ and Gd3+. The fluorescence quantum yield is increased by an energy-insulating sheath, which is considered to be another reason for the resulting enhancement of the fluorescence. Förster theory is used to calculate the distribution of enhancing factors and has led to a greater understanding of the mechanisms of energy transfer.

  14. [Studies on luminescence properties of seven ternary complexes of terbium with 1,10-phenanthroline and benzoic acid and its derivatives]. (United States)

    Gao, Zhi-hua; Wang, Shu-ping; Liu, Cui-ge; Ma, Rui-xia; Wang, Rui-fen


    Seven ternary complexes of Tb(III) were synthesized with benzoic acid (BA), o-, m-, p-methylbenzoic acid (o-MBA, m-MBA, p-MBA), and o-, m-, p-methoxybenzoic acid (o-MOBA, m-MOBA, p-MOBA) as the first ligand, and 1,10-phenanthroline (phen) as the second ligand. The content of C, H and N were measured by using a Flash-EA model 1112 elemental analyzer. Excitation and luminescence spectra of the title solid complexes were recorded by using a Hitachi F-4500 fluorescence spectrophotometer at room temperature. The effects of different varieties and different positions of replacing benzoic acid as the first ligand on fluorescence properties of the ternary complexes of terbium were discussed. The results indicated that the intensity of 5D4-->7F6 (489 nm) and 5D4-->7F5 (545 nm) of substituting benzoic acid complexes was stronger than benzoic acid. Three ternary complexes of Tb(III) with o-, m-, p-methylbenzoic acid showed emission intensity in the consecution: Tb(o-MBA)3 phenMOBA)3phen x H2O>Tb(m-MOBA)3phen x H2O>Tb(p-MOBA)3 phen.

  15. High infrared photoconductivity in films of arsenic-sulfide-encapsulated lead-sulfide nanocrystals. (United States)

    Yakunin, Sergii; Dirin, Dmitry N; Protesescu, Loredana; Sytnyk, Mykhailo; Tollabimazraehno, Sajjad; Humer, Markus; Hackl, Florian; Fromherz, Thomas; Bodnarchuk, Maryna I; Kovalenko, Maksym V; Heiss, Wolfgang


    Highly photoconductive thin films of inorganic-capped PbS nanocrystal quantum dots (QDs) are reported. Stable colloidal dispersions of (NH4)3AsS3-capped PbS QDs were processed by a conventional dip-coating technique into a thin homogeneous film of electronically coupled PbS QDs. Upon drying at 130 °C, (NH4)3AsS3 capping ligands were converted into a thin layer of As2S3, acting as an infrared-transparent semiconducting glue. Photodetectors obtained by depositing such films onto glass substrates with interdigitate electrode structures feature extremely high light responsivity and detectivity with values of more than 200 A/W and 1.2×10(13) Jones, respectively, at infrared wavelengths up to 1400 nm. Importantly, these devices were fabricated and tested under ambient atmosphere. Using a set of time-resolved optoelectronic experiments, the important role played by the carrier trap states, presumably localized on the arsenic-sulfide surface coating, has been elucidated. Foremost, these traps enable a very high photoconductive gain of at least 200. The trap state density as a function of energy has been plotted from the frequency dependence of the photoinduced absorption (PIA), whereas the distribution of lifetimes of these traps was recovered from PIA and photoconductivity (PC) phase spectra. These trap states also have an important impact on carrier dynamics, which led us to propose a kinetic model for trap state filling that consistently describes the experimental photoconductivity transients at various intensities of excitation light. This model also provides realistic values for the photoconductive gain and thus may serve as a useful tool to describe photoconductivity in nanocrystal-based solids.

  16. Sulfide intrusion in the tropical seagrasses Thalassia testudinum and Syringodium filiforme (United States)

    Holmer, Marianne; Pedersen, Ole; Krause-Jensen, Dorte; Olesen, Birgit; Hedegård Petersen, Malene; Schopmeyer, Stephanie; Koch, Marguerite; Lomstein, Bente Aa.; Jensen, Henning S.


    Sulfur and oxygen dynamics in the seagrasses Thalassia testudinum and Syringodium filiforme and their sediments were studied in the US Virgin Islands (USVI) in order to explore sulfide intrusion into tropical seagrasses. Four study sites were selected based on the iron concentration in sediments and on proximity to anthropogenic nutrient sources. Meadow characteristics (shoot density, above- and below-ground biomass, nutrient content) were sampled along with sediment biogeochemistry. Sulfide intrusion was high in T. testudinum, as up to 96% of total sulfur in the plant was derived from sediment-derived sulfides. The sulfide intrusion was negatively correlated to the turnover of sulfides in the sediments regulated by both plant parameters and sediment sulfur pools. Sediment iron content played an indirect role by affecting sulfide turnover rates. Leaf production was negatively correlated with sulfide intrusion suggesting that active growth reduced sulfide intrusion. Sulfide intrusion was lower in S. filiforme (up to 44%) compared to T. testudinum consistent with a higher internal nighttime oxygen concentrations found for S. filiforme. When S. filiforme can take advantage of its ability to maintain high internal oxygen concentrations, as was the case on the USVI, it could increase its success in colonizing unvegetated disturbed sediments with potentially high sulfide concentrations.

  17. Poly(arylene sulfide sulfone) polymer containing ether groups

    Energy Technology Data Exchange (ETDEWEB)

    Edmonds, J.T. Jr.; Geibel, J.; Bobsein, R.L.; Straw, J.J.


    This patent describes a process comprising: (a) reacting in an organic solvent a dihalo aromatic sulfone with an aromatic diphenol at a mole ratio of about 8/1 to about 20/1 in the presence of an alkali metal base to form a mixture comprising dihalo-terminated oligomers, and subsequently (b) adding a sulfur source selected from the group consisting of hydrogen sulfide, alkali metal hydrosulfides, alkali metal sulfides, acyclic and cyclic thioamides and mixtures, thereof, to the mixture resulting from (a) and continuing the reaction at a temperature and for a sufficient time to form a recoverable polymeric solid, characterized as having a polymer melt temperature in excess of 250/sup 0/C.

  18. Health assessment document for hydrogen sulfide: review draft

    Energy Technology Data Exchange (ETDEWEB)

    Ammann, H.M.; Bradow, F.; Fennell, D.; Griffin, R.; Kearney, B.


    Hydrogen sulfide is a highly toxic gas which is immediately lethal in concentrations greater than 2000 ppm. The toxic end-point is due to anoxia to brain and heart tissues which results from its interaction with the celluar enzyme cytochrome oxidase. Inhibition of the enzyme halts oxidative metabolism which is the primary energy source for cells. A second toxic end-point is the irritative effect of hydrogen sulfide on mucous membranes, particularly edema at sublethal doses (250 to 500 ppm) in which sufficient exposure occurs before conciousness is lost. Recovered victims of exposure report neurologic symptoms such as headache, fatigue, irritability, vertigo, and loss of libido. Long-term effects are similar to those caused by anoxia due to other toxic agents like CO, and probably are not due to specific H/sub 2/S effects. H/sub 2/S is not a cumulative poison. No mutagenic, carcinogenic, reproductive, or teratogenic effects have been reported in the literature.

  19. On the photoconductivity of copper sulfide polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, L.; Leon, M.; Arjona, F.; Garcia Camarero, E.

    The spectral response of the photoconductivity of copper sulfide polycrystalline films obtained by thermal evaporation has been studied. The phase content of the samples was determined by electron diffraction and the stoichiometry by potentiostatic methods. The electrical properties, resistivity and Hall effect, were determined by the Van der Pauw method. The photoconductivity quantum efficiency spectra show structures clearly characteristic of the phase chalcocite and djurleite. Chalcocite shows peaks at 900, 720 and 500 nm and djurleite at 620 and 500 nm. Samples with less copper always show the 500 nm peak. This work shows that a peak at 500 nm appears in the photoconductivity spectral response of all copper sulfides studied. (A.V.)

  20. Oxygen-free atomic layer deposition of indium sulfide (United States)

    Martinson, Alex B.; Hock, Adam S.; McCarthy, Robert; Weimer, Matthew S.


    A method for synthesizing an In(III) N,N'-diisopropylacetamidinate precursor including cooling a mixture comprised of diisopropylcarbodiimide and diethyl ether to approximately C., adding methyllithium drop-wise into the mixture, allowing the mixture to warm to room temperature, adding indium(III) chloride as a solid to the mixture to produce a white solid, dissolving the white solid in pentane to form a clear and colorless solution, filtering the mixture over a celite plug, and evaporating the solution under reduced pressure to obtain a solid In(III) N,N'-diisopropylacetamidinate precursor. This precursor has been further used to develop a novel atomic layer deposition technique for indium sulfide by dosing a reactor with the precursor, purging with nitrogen, dosing with dilute hydrogen sulfide, purging again with nitrogen, and repeating these steps to increase growth.

  1. Photovoltaic effect in individual asymmetrically contacted lead sulfide nanosheets. (United States)

    Dogan, Sedat; Bielewicz, Thomas; Lebedeva, Vera; Klinke, Christian


    Solution-processable, two-dimensional semiconductors are promising optoelectronic materials which could find application in low-cost solar cells. Lead sulfide nanocrystals raised attention since the effective band gap can be adapted over a wide range by electronic confinement and observed multi-exciton generation promises higher efficiencies. We report on the influence of the contact metal work function on the properties of transistors based on individual two-dimensional lead sulfide nanosheets. Using palladium we observed mobilities of up to 31 cm(2) V(-1) s(-1). Furthermore, we demonstrate that asymmetrically contacted nanosheets show photovoltaic effect and that the nanosheets' height has a decisive impact on the device performance. Nanosheets with a thickness of 5.4 nm contacted with platinum and titanium show a power conversion efficiency of up to 0.94% (EQE 75.70%). The results underline the high hopes put on such materials.

  2. 'Low-acid' sulfide oxidation using nitrate-enriched groundwater (United States)

    Donn, Michael; Boxall, Naomi; Reid, Nathan; Meakin, Rebecca; Gray, David; Kaksonen, Anna; Robson, Thomas; Shiers, Denis


    Acid drainage (AMD/ARD) is undoubtedly one of the largest environmental, legislative and economic challenges facing the mining industry. In Australia alone, at least 60m is spent on AMD related issues annually, and the global cost is estimated to be in the order of tens of billions US. Furthermore, the challenge of safely and economically storing or treating sulfidic wastes will likely intensify because of the trend towards larger mines that process increasingly higher volumes of lower grade ores and the associated sulfidic wastes and lower profit margins. While the challenge of managing potentially acid forming (PAF) wastes will likely intensify, the industrial approaches to preventing acid production or ameliorating the effects has stagnated for decades. Conventionally, PAF waste is segregated and encapsulated in non-PAF tips to limit access to atmospheric oxygen. Two key limitations of the 'cap and cover' approach are: 1) the hazard (PAF) is not actually removed; only the pollutant linkage is severed; and, 2) these engineered structures are susceptible to physical failure in short-to-medium term, potentially re-establishing that pollutant linkage. In an effort to address these concerns, CSIRO is investigating a passive, 'low-acid' oxidation mechanism for sulfide treatment, which can potentially produce one quarter as much acidity compared with pyrite oxidation under atmospheric oxygen. This 'low-acid' mechanism relies on nitrate, rather than oxygen, as the primary electron accepter and the activity of specifically cultured chemolithoautotrophic bacteria and archaea communities. This research was prompted by the observation that, in deeply weathered terrains of Australia, shallow (oxic to sub-oxic) groundwater contacting weathering sulfides are commonly inconsistent with the geochemical conditions produced by ARD. One key characteristic of these aquifers is the natural abundance of nitrate on a regional scale, which becomes depleted around the sulfide bodies, and

  3. Oxidation and Precipitation of Sulfide in Sewer Networks

    DEFF Research Database (Denmark)

    Nielsen, A. H.

    Whenever wastewater is transported in sewer networks, it is likely that anaerobic conditions in the wastewater arise as a result of physical, microbial and chemical reactions. Anaerobic conditions in wastewater of sewer networks are often associated with a number of problems like malodors, health...... risks and corrosion of concrete and metals. Most of the problems relate to the buildup of hydrogen sulfide in the atmosphere of sewer networks. In this respect, the processes of the sulfur cycle are of fundamental importance in ultimately determining the extent of such problems. This study focused...... wastewater and biofilms of sewer networks was studied in detail with emphasis on determination of process kinetics and stoichiometry. In the water phase, sulfide oxidation may be both chemical and biological and the investigations showed that both processes were of significant importance in the sulfur cycle...

  4. Crustal contamination and sulfide immiscibility history of the Permian Huangshannan magmatic Ni-Cu sulfide deposit, East Tianshan, NW China (United States)

    Mao, Ya-Jing; Qin, Ke-Zhang; Tang, Dong-Mei; Feng, Hong-Ye; Xue, Sheng-Chao


    The Huangshannan mafic-ultramafic intrusion is a Permian Ni-Cu sulfide-bearing intrusion in the southern margin of the Central Asian Orogenic Belt. The intrusion consists of an ultramafic unit, which is composed of lherzolite and olivine websterite, and a mafic unit, which is composed of olivine gabbronorite, gabbronorite and leuco-gabbronorite. This intrusion was formed by two separate pulses of magma: a more primitive magma for the early ultramafic unit and a more evolved magma for the late mafic unit. U-Pb isotope geochronology of zircon from the mafic unit yields an age of 278 ± 2 Ma. According to its olivine and Cr-rich spinel compositions, the estimated parental magma of lherzolite for the Huangshannan intrusion has 12.4 wt.% MgO, indicating picritic affinity. Fractional crystallization modeling results and the presence of rounded sulfide inclusions in an olivine crystal (Fo 86.7) indicate that sulfide immiscibility was achieved at the beginning of olivine fractionation. Co-magmatic zircon crystals from gabbronorite have a δ18O value close to 6.5‰, which is 1.2‰ higher than the typical mantle value and suggests significant crustal contamination (∼20%). The positive εHf(t) values of co-magmatic zircon (which vary from +9.2 to +15.3) and positive whole rock εNd(t) values (which vary from +4.7 to +7.8) also indicate that the parental magma was derived from a depleted mantle source and contaminated by 5-20% juvenile arc crust and then by ∼5% upper crustal materials. However, modeling results of sulfur content at sulfide saturation reveal that such a large amount of crustal contamination is not sufficient to trigger sulfide saturation in the parental magma, which strongly suggests that external sulfur addition, probably during contamination, has played a critical role in causing sulfide immiscibility. Furthermore, the arc magmatism geochemical signatures of the Huangshannan intrusion, such as significant Nb and Ta depletion relative to La and low Ca

  5. Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite (United States)

    Kocar, Benjamin D.; Borch, Thomas; Fendorf, Scott


    Iron (hydr)oxides are strong sorbents of arsenic (As) that undergo reductive dissolution and transformation upon reaction with dissolved sulfide. Here we examine the transformation and dissolution of As-bearing ferrihydrite and subsequent As repartitioning amongst secondary phases during biotic sulfate reduction. Columns initially containing As(V)-ferrihydrite coated sand, inoculated with the sulfate reducing bacteria Desulfovibrio vulgaris (Hildenborough), were eluted with artificial groundwater containing sulfate and lactate. Rapid and consistent sulfate reduction coupled with lactate oxidation is observed at low As(V) loading (10% of the adsorption maximum). The dominant Fe solid phase transformation products at low As loading include amorphous FeS within the zone of sulfate reduction (near the inlet of the column) and magnetite downstream where Fe(II) (aq) concentrations increase; As is displaced from the zone of sulfidogenesis and Fe(III) (s) depletion. At high As(V) loading (50% of the adsorption maximum), sulfate reduction and lactate oxidation are initially slow but gradually increase over time, and all As(V) is reduced to As(III) by the end of experimentation. With the higher As loading, green rust(s), as opposed to magnetite, is a dominant Fe solid phase product. Independent of loading, As is strongly associated with magnetite and residual ferrihydrite, while being excluded from green rust and iron sulfide. Our observations illustrate that sulfidogenesis occurring in proximity with Fe (hydr)oxides induce Fe solid phase transformation and changes in As partitioning; formation of As sulfide minerals, in particular, is inhibited by reactive Fe(III) or Fe(II) either through sulfide oxidation or complexation.

  6. Spurious hydrogen sulfide production by Providencia and Escherichia coli species.


    Treleaven, B E; Diallo, A A; Renshaw, E C


    Hydrogen sulfide production was noted in two Escherichia coli strands and one Provaidenica alcalifaciens (Proteus inconstans A) strain isolated from clinical stool specimens durin the summer of 1979. An investigation into this phenomenon revealed the predence of Eubacterium lentum, an anaerobe, growing in synergism with the Enterobacteriaceae and producing H2s. The implications of this association are discssed with reference to clinical microbiology laboratory practice.

  7. Cyanobacterial sulfide-quinone reductase: cloning and heterologous expression. (United States)

    Bronstein, M; Schütz, M; Hauska, G; Padan, E; Shahak, Y


    The gene encoding sulfide-quinone reductase (SQR; E.C.1.8.5.'), the enzyme catalyzing the first step of anoxygenic photosynthesis in the filamentous cyanobacterium Oscillatoria limnetica, was cloned by use of amino acid sequences of tryptic peptides as well as sequences conserved in the Rhodobacter capsulatus SQR and in an open reading frame found in the genome of Aquifex aeolicus. SQR activity was also detected in the unicellular cyanobacterium Aphanothece halophytica following sulfide induction, with a V(max) of 180 micromol of plastoquinone-1 (PQ-1) reduced/mg of chlorophyll/h and apparent K(m) values of 20 and 40 microM for sulfide and quinone, respectively. Based on the conserved sequences, the gene encoding A. halophytica SQR was also cloned. The SQR polypeptides deduced from the two cyanobacterial genes consist of 436 amino acids for O. limnetica SQR and 437 amino acids for A. halophytica SQR and show 58% identity and 74% similarity. The calculated molecular mass is about 48 kDa for both proteins; the theoretical isoelectric points are 7.7 and 5.6 and the net charges at a neutral pH are 0 and -14 for O. limnetica SQR and A. halophytica SQR, respectively. A search of databases showed SQR homologs in the genomes of the cyanobacterium Anabaena PCC7120 as well as the chemolithotrophic bacteria Shewanella putrefaciens and Thiobacillus ferrooxidans. All SQR enzymes contain characteristic flavin adenine dinucleotide binding fingerprints. The cyanobacterial proteins were expressed in Escherichia coli under the control of the T7 promoter. Membranes isolated from E. coli cells expressing A. halophytica SQR performed sulfide-dependent PQ-1 reduction that was sensitive to the quinone analog inhibitor 2n-nonyl-4-hydroxyquinoline-N-oxide. The wide distribution of SQR genes emphasizes the important role of SQR in the sulfur cycle in nature.

  8. Depolarizing Actions of Hydrogen Sulfide on Hypothalamic Paraventricular Nucleus Neurons


    C Sahara Khademullah; Ferguson, Alastair V.


    Hydrogen sulfide (H2S) is a novel neurotransmitter that has been shown to influence cardiovascular functions as well and corticotrophin hormone (CRH) secretion. Since the paraventricular nucleus of the hypothalamus (PVN) is a central relay center for autonomic and endocrine functions, we sought to investigate the effects of H2S on the neuronal population of the PVN. Whole cell current clamp recordings were acquired from the PVN neurons and sodium hydrosulfide hydrate (NaHS) was bath applied a...

  9. Hydrogen sulfide metabolism regulates endothelial solute barrier function

    Directory of Open Access Journals (Sweden)

    Shuai Yuan


    Full Text Available Hydrogen sulfide (H2S is an important gaseous signaling molecule in the cardiovascular system. In addition to free H2S, H2S can be oxidized to polysulfide which can be biologically active. Since the impact of H2S on endothelial solute barrier function is not known, we sought to determine whether H2S and its various metabolites affect endothelial permeability. In vitro permeability was evaluated using albumin flux and transendothelial electrical resistance. Different H2S donors were used to examine the effects of exogenous H2S. To evaluate the role of endogenous H2S, mouse aortic endothelial cells (MAECs were isolated from wild type mice and mice lacking cystathionine γ-lyase (CSE, a predominant source of H2S in endothelial cells. In vivo permeability was evaluated using the Miles assay. We observed that polysulfide donors induced rapid albumin flux across endothelium. Comparatively, free sulfide donors increased permeability only with higher concentrations and at later time points. Increased solute permeability was associated with disruption of endothelial junction proteins claudin 5 and VE-cadherin, along with enhanced actin stress fiber formation. Importantly, sulfide donors that increase permeability elicited a preferential increase in polysulfide levels within endothelium. Similarly, CSE deficient MAECs showed enhanced solute barrier function along with reduced endogenous bound sulfane sulfur. CSE siRNA knockdown also enhanced endothelial junction structures with increased claudin 5 protein expression. In vivo, CSE genetic deficiency significantly blunted VEGF induced hyperpermeability revealing an important role of the enzyme for barrier function. In summary, endothelial solute permeability is critically regulated via exogenous and endogenous sulfide bioavailability with a prominent role of polysulfides.

  10. Chemical Precipitation Synthesis and Thermoelectric Properties of Copper Sulfide (United States)

    Wu, Sixin; Jiang, Jing; Liang, Yinglin; Yang, Ping; Niu, Yi; Chen, Yide; Xia, Junfeng; Wang, Chao


    Earth-abundant copper sulfide compounds have been intensively studied as potential thermoelectric materials due to their high dimensionless figure of merit ZT values. They have a unique phonon-liquid electron-crystal model that helps to achieve high thermoelectric performance. Many methods, such as melting and ball-milling, have been adopted to synthesize this copper sulfide compound, but they both use expensive starting materials with high purity. Here, we develop a simple chemical precipitation approach to synthesize copper sulfide materials through low-cost analytically pure compounds as the starting materials. A high ZT value of 0.93 at 800 K was obtained from the samples annealed at 1273 K. Its power factor is around 8.0 μW cm-1 K-2 that is comparable to the highest record reported by traditional methods. But, the synthesis here has been greatly simplified with reduced cost, which will be of great benefit to the potential mass production of thermoelectric devices. Furthermore, this method can be applied to the synthesis of other sulfur compound thermoelectric materials.

  11. Control of malodorous hydrogen sulfide compounds using microbial fuel cell. (United States)

    Eaktasang, Numfon; Min, Hyeong-Sik; Kang, Christina; Kim, Han S


    In this study, a microbial fuel cell (MFC) was used to control malodorous hydrogen sulfide compounds generated from domestic wastewaters. The electricity production demonstrated a distinct pattern of a two-step increase during 170 h of system run: the first maximum current density was 118.6 ± 7.2 mA m⁻² followed by a rebound of current density increase, reaching the second maximum of 176.8 ± 9.4 mA m⁻². The behaviors of the redox potential and the sulfate level in the anode compartment indicated that the microbial production of hydrogen sulfide compounds was suppressed in the first stage, and the hydrogen sulfide compounds generated from the system were removed effectively as a result of their electrochemical oxidation, which contributed to the additional electricity production in the second stage. This was also directly supported by sulfur deposits formed on the anode surface, which was confirmed by analyses on those solids using a scanning electron microscope equipped with energy dispersive X-ray spectroscopy as well as an elemental analyzer. To this end, the overall reduction efficiencies for HS⁻ and H₂S(g) were as high as 67.5 and 96.4 %, respectively. The correlations among current density, redox potential, and sulfate level supported the idea that the electricity signal generated in the MFC can be utilized as a potential indicator of malodor control for the domestic wastewater system.

  12. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks. (United States)

    Torres, Mark A; Moosdorf, Nils; Hartmann, Jens; Adkins, Jess F; West, A Joshua


    Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO2, we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean-atmosphere CO2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O2 Future work on glaciation-weathering-carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals.

  13. Magnetite-sulfide-metal complexes in the Allende meteorite (United States)

    Haggerty, S. E.; Mcmahon, B. M.


    A model of liquid immiscibility is presented that seemingly accounts for the sulfide-oxide-metal complexes that are present in olivine-rich chondrules in the Allende meteorite. The four major assemblages that are identified are: (1) magnetite + Ni-Fe metal; (2) magnetite + troilite + Ni-Fe metal; (3) magnetite + troilite + pentlandite + Ni-Fe metal; and (4) troilite + or - pentlandite. Specific attention is focused on oxide-metal associations and experimental data confirm earlier suggestions that magnetite results from the oxidation of an initially high-Fe-content metal alloy. Oxidation decreases the modal abundance of the Fe metal and this is accompanied by substantial increases in Ni contents which reach a maximum of approximately 70 wt % Ni. The proposed oxidation mechanism is entirely consistent with condensation of Fe-metal + olivine (Fa5) that subsequently reequilibrated at lower temperatures. Although the sulfide constituents could also have formed by the reaction of Fe-Ni metal + gaseous H2S, sulfide immiscibility under increased conditions of partial O2 pressure is the preferred process.

  14. Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks (United States)

    Torres, Mark A.; Moosdorf, Nils; Hartmann, Jens; Adkins, Jess F.; West, A. Joshua


    Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO2, we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean-atmosphere CO2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O2. Future work on glaciation-weathering-carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals.

  15. Environmental, health, safety, and regulatory review of selected photovoltaic options: Copper sulfide/cadmium sulfide and polycrystalline silicon (United States)

    Lawrence, K.; Morgan, S.; Schaller, D.; Wilczak, T.


    Emissions, effluents and solid wastes from the fabrication of both polycrystalline silicon and front-wall copper sulfide/cadmium sulfide photovoltaic cells are summarized. Environmental, health, and safety characteristics of cell fabrication material inputs and by products are listed. Candidate waste stream treatment methods and resultant effluents are reviewed. Environmental, health, and safety effects of photovoltaic cell/module/array installation, operation, maintenance, and decommission are summarized. Federal legislation is addressed and future regulatory trends under these laws as they may affect each cell process are discussed. Water quality, solid waste disposal, and occupational health and safety regulations will likely be those most applicable to commercial scale PV production. Currently available control technology appears sufficient to treat cell fabrication wastes.

  16. When can Electrochemical Techniques give Reliable Corrosion Rates on Carbon Steel in Sulfide Media?

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, Tor; Nielsen, Lars Vendelbo


    Effects of film formation on carbon steel in hydrogen sulfide media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from hydrogen sulfide solutions, biological sulfide media and natural sulfide containing geothermal water have been collected and the process...... of film formation in sulfide solutions was followed by video. It can be shown that capacitative and diffusional effects due to porous reactive deposits tend to dominate the data resulting in unreliable corrosion rates measured by electrochemical techniques. The effect is strongly increased if biofilm...... in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS). Oxygen entering the system accelerates...

  17. Induced Polarization Responses of the Specimen with Sulfide Ore Minerals (United States)

    Park, S.; Sung, N. H.


    Basic data of the physical properties of the rocks is required to effectively interpret geologic structures and mineralized zones in study areas from the geophysical data in the field of subsurface investigations and mineral resources explorations. In this study, the spectral induced polarization (SIP) measurement system in the laboratory was constructed to obtain the IP characteristics of the specimen with sulfide ore minerals. The SIP measurement system consists of lab transmitter for electrical current transmission, and GDP-32 for current receiver. The SIP system employs 14 steps of frequencies from 0.123 to 1,024 Hz, and uses copper sulfate solution as an electrolyte. The SIP data for system verification was acquired using a measurement system of parallel circuit with fixed resistance and condenser. This measured data was in good agreement with Cole-Cole model data. First of all, the experiment on the SIP response was conducted in the laboratory with the mixture of glass beads and pyrite powders for ore grade assessment using characteristics of IP response of the rocks. The results show that the phase difference of IP response to the frequency is nearly proportional to the weight content of pyrite, and that the dominant frequency of the IP response varies with the size of the pyrite powder. Subsequently, the specimens used for SIP measurement are slate and limestone which were taken from drilling cores and outcrops of skarn ore deposits. All specimens are cylindrical in shape, with a diameter of 5 cm and a length of 10 cm. When measuring SIP of water-saturated specimens, the specimen surface is kept dry, tap water is put into the bottom of sample holder and a lid is closed. It is drawn that the SIP characteristics of the rocks show the phase difference depends on the amount of the sulfide minerals. The phase difference did not occur with frequencies applied in the absence of sulfide minerals in the rock specimens. On the contrary, the rock specimens containing

  18. Inhibition of Sulfide Mineral Oxidation by Surface Coating Agents: Batch (United States)

    Choi, J.; Ji, M. K.; Yun, H. S.; Park, Y. T.; Gee, E. D.; Lee, W. R.; Jeon, B.-H.


    Mining activities and mineral industries have impacted on rapid oxidation of sulfide minerals such as pyrite (FeS2) which leads to Acid Mine Drainage (AMD) formation. Some of the abandoned mines discharge polluted water without proper environmental remediation treatments, largely because of financial constraints in treating AMD. Magnitude of the problem is considerable, especially in countries with a long history of mining. As metal sulfides become oxidized during mining activities, the aqueous environment becomes acid and rich in many metals, including iron, lead, mercury, arsenic and many others. The toxic heavy metals are responsible for the environmental deterioration of stream, groundwater and soils. Several strategies to remediate AMD contaminated sites have been proposed. Among the source inhibition and prevention technologies, microencapsulation (coating) has been considered as a promising technology. The encapsulation is based on inhibition of O2 diffusion by surface coating agent and is expected to control the oxidation of pyrite for a long time. Potential of several surface coating agents for preventing oxidation of metal sulfide minerals from both Young-Dong coal mine and Il-Gwang gold mine were examined by conducting batch experiments and field tests. Powdered pyrite as a standard sulfide mineral and rock samples from two mine outcrops were mixed with six coating agents (KH2PO4, MgO and KMnO4 as chemical agents, and apatite, cement and manganite as mineral agents) and incubated with oxidizing agents (H2O2 or NaClO). Batch experiments with Young-Dong coal mine samples showed least SO42- production in presence of KMnO4 (16% sulfate production compared to no surface coating agents) or cement (4%) within 8 days. In the case of Il-Gwang mine samples, least SO42- production was observed in presence of KH2PO4 (8%) or cement (2%) within 8 days. Field-scale pilot tests at Il-Gwang site also showed that addition of KH2PO4 decreased sulfate production from 200 to

  19. Synthesis, characterization, and reactivity of sulfided hexanuclear molybdenum cluster compounds

    Energy Technology Data Exchange (ETDEWEB)

    Spink, D.


    Hexanuclear molybdenum clusters with mixed chloride and sulfide bridging ligands were prepared by reacting {alpha}-MoCl{sub 2} with sodium hydrosulfide in the presence of sodium butoxide. The resulting species, Mo{sub 6}Cl{sub (8-x)}S{sub x}{center dot}npy(x {congruent} 3.6, n {congruent} 4, py = pyridine), was pyrophoric and insoluble. The mixed sulfide chloride cluster species Mo{sub 6}S{sub 4}Cl{sub 4}{center dot}6OPEt{sub 3} and Mo{sub 6}S{sub {approximately}5}Cl{sub {approximately}3}{center dot}6PEt{sub 3} and Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} were isolated and characterized. Phosphorus-31 nuclear magnetic resonance, electron paramagnetic resonance, and UV/visible spectra were obtained for each fraction. The completely sulfided cluster, Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3}, was prepared similarly and used in various experiments as a possible precursor to Chevrel phase materials of the type Mo{sub 6}S{sub 8}or M{sub n}Mo{sub 6}S{sub 8}. With the goal of removing all of the triethylphosphine ligands, Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} was reacted with the transition metal carbonyls molybdenum hexacarbonyl and dicobalt octacarbonyl. Reaction on the molecular sulfide cluster with copper(I) chloride in toluene gave a completely insoluble product. The reaction of Mo{sub 6}S{sub 8}{center dot}6PEt{sub 3} with propylene sulfide gave a product whose infrared spectra showed only very weak peaks associated with coordinated triethylphosphine. The elemental analysis of this product fit the formula Mo{sub 6}S{sub 8}{center dot}5SPEt{sub 3}. Reactivity of the outer ligands of the Mo{sub 6}S{sub 8}{center dot}npy and Mo{sub 6}S{sub 8}{center dot}(6{minus}x)PrNH{sub x} clusters were investigated. Crystalline Mo{sub 6}S{sub 8}{center dot}6THT was recovered from the reaction of the n-propylamine derivative with THT. A crystal structure determination was done. 87 refs., 12 fig., 15 tabs.

  20. The quinone-binding site of Acidithiobacillus ferrooxidans sulfide: quinone oxidoreductase controls both sulfide oxidation and quinone reduction. (United States)

    Zhang, Yanfei; Qadri, Ali; Weiner, Joel H


    Sulfide:quinone oxidoreductase (SQR) is a peripheral membrane enzyme that catalyzes the oxidation of sulfide and the reduction of ubiquinone. Ubiquinone binds to a conserved hydrophobic domain and shuttles electrons from a noncovalent flavin adenine dinucleotide cofactor to the membrane-bound quinone pool. Utilizing the structure of decylubiquinone bound to Acidithiobacillus ferrooxidans SQR, we combined site-directed mutagenesis and kinetic approaches to analyze quinone binding. SQR can reduce both benzoquinones and naphthoquinones. The alkyl side-chain of ubiquinone derivatives enhances binding to SQR but limits the enzyme turnover. Pentachlorophenol and 2-n-heptyl-4-hydroxyquinoline-N-oxide are potent inhibitors of SQR with apparent inhibition constants (Ki) of 0.46 μmol·L(-1) and 0.58 μmol·L(-1), respectively. The highly conserved amino acids surrounding the quinone binding site play an important role in quinone reduction. The phenyl side-chains of Phe357 and Phe391 sandwich the benzoquinone head group and are critical for quinone binding. Importantly, conserved amino acids that define the ubiquinone-binding site also play an important role in sulfide oxidation/flavin reduction.

  1. Anodic Oxidation of Sulfide to Sulfate: Effect of the Current Density on the Process Kinetics


    Caliari, Paulo C.; MARIA J PACHECO; Ciríaco, Lurdes F.; Lopes, Ana M. C.


    The kinetics of the conversion of sulfide to sulfate by electro-oxidation, using a boron-doped diamond (BDD) electrode was studied. Different applied current densities were tested, from 10 to 60 mA cm-2. The results showed that the electrochemical conversion of sulfide to sulfate occurs in steps, via intermediate production of other sulfur species. The oxidation rate of the sulfide ion is dependent on its concentration and current density. The reaction order varies with the current intensity,...

  2. Potential Biological Chemistry of Hydrogen Sulfide (H2S) with the Nitrogen Oxides


    King, S. Bruce


    Hydrogen sulfide, an important gaseous signaling agent generated in numerous biological tissues, influences many physiological processes. This biological profile appears reminiscent of nitric oxide, another important endogenously synthesized gaseous signaling molecule. Hydrogen sulfide reacts with nitric oxide or oxidized forms of nitric oxide and nitric oxide donors in vitro to form species that display distinct biology compared to both hydrogen sulfide and NO. The products of these interest...

  3. Spectral induced polarization and electrodic potential monitoring of microbially mediated iron sulfide transformations

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Susan; Personna, Y.R.; Ntarlagiannis, D.; Slater, L.; Yee, N.; O' Brien, M.; Hubbard, S.


    Stimulated sulfate-reduction is a bioremediation technique utilized for the sequestration of heavy metals in the subsurface.We performed laboratory column experiments to investigate the geoelectrical response of iron sulfide transformations by Desulfo vibriovulgaris. Two geoelectrical methods, (1) spectral induced polarization (SIP), and (2) electrodic potential measurements, were investigated. Aqueous geochemistry (sulfate, lactate, sulfide, and acetate), observations of precipitates (identified from electron microscopy as iron sulfide), and electrodic potentials on bisulfide ion (HS) sensitive silver-silver chloride (Ag-AgCl) electrodes (630 mV) were diagnostic of induced transitions between an aerobic iron sulfide forming conditions and aerobic conditions promoting iron sulfide dissolution. The SIP data showed 10m rad anomalies during iron sulfide mineralization accompanying microbial activity under an anaerobic transition. These anomalies disappeared during iron sulfide dissolution under the subsequent aerobic transition. SIP model parameters based on a Cole-Cole relaxation model of the polarization at the mineral-fluid interface were converted to (1) estimated biomineral surface area to pore volume (Sp), and (2) an equivalent polarizable sphere diameter (d) controlling the relaxation time. The temporal variation in these model parameters is consistent with filling and emptying of pores by iron sulfide biofilms, as the system transitions between anaerobic (pore filling) and aerobic (pore emptying) conditions. The results suggest that combined SIP and electrodic potential measurements might be used to monitor spatiotemporal variability in microbial iron sulfide transformations in the field.

  4. Reliability of Electrochemical Techniques for Determining Corrosion Rates on Carbon Steel in Sulfide Media

    DEFF Research Database (Denmark)

    Hilbert, Lisbeth Rischel; Hemmingsen, T.; Nielsen, Lars Vendelbo


    if the biofilm in combination with ferrous sulfide corrosion products cover the steel surface. Corrosion rates can be overestimated by a factor of 10 to 100 with electrochemical techniques - both by linear polarization resistance (LPR) and electrochemicel impedance spectroscopy (EIS). Oxygen entering the system......Effects of film formation on carbon steel in hydrogen sulfide (H2S) media may corrupt corrosion rate monitoring by electrochemical techniques. Electrochemical data from H2S solutions, biological sulfide media, and natural sulfide containing geothermal water have been collected, and the process...

  5. Microbial oxidation of soluble sulfide in produced water from the Bakkeen Sands

    Energy Technology Data Exchange (ETDEWEB)

    Gevertz, D.; Zimmerman, S. [Agouron Institute, La Jolla, CA (United States); Jenneman, G.E. [Phillips Petroleum Company, Bartlesville, OK (United States)] [and others


    The presence of soluble sulfide in produced water results in problems for the petroleum industry due to its toxicity, odor, corrosive nature, and potential for wellbore plugging. Sulfide oxidation by indigenous nitrate-reducing bacteria (NRB) present in brine collected from wells at the Coleville Unit (CVU) in Saskatchewan, Canada, was investigated. Sulfide oxidation took place readily when nitrate and phosphate were added to brine enrichment cultures, resulting in a decrease in sulfide levels of 99-165 ppm to nondetectable levels (< 3.3 ppm). Produced water collected from a number of producing wells was screened to determine the time required for complete sulfide oxidation, in order to select candidate wells for treatment. Three wells were chosen, based on sulfide removal in 48 hours or less. These wells were treated down the backside of the annulus with a solution containing 10 mM KNO{sub 3} and 100 {mu}M NaH{sub 2}PO{sub 4}. Following a 24- to 72-hour shut-in, reductions in pretreatment sulfide levels of greater than 90% were observed for two of the wells, as well as sustained sulfide reductions of 50% for at least two days following startup. NRB populations in the produced brine were observed to increase significantly following treatment, but no significant increases in sulfate-reducing bacteria were observed. These results demonstrate the technical feasibility of stimulating indigenous populations of NRB to remediate and control sulfide in produced brine.

  6. Sulfide intrusion in seagrasses assessed by stable sulfur isotopes – A synthesis of current results

    Directory of Open Access Journals (Sweden)

    Marianne eHolmer


    Full Text Available Sulfide intrusion in seagrasses, as assessed by stable sulfur isotope signals, is widespread in all climate zones, where seagrasses are growing. Seagrasses can incorporate substantial amounts of 34S-depleted sulfide into their tissues with up to 87% of the total sulfur in leaves derived from sedimentary sulfide. Correlations between δ34S in leaves, rhizomes and roots show that sedimentary sulfide is entering through the roots, either in the form of sulfide or sulfate, and translocated to the rhizomes and the leaves. The total sulfur content of the seagrasses increases as the proportion of sedimentary sulfide in the plant increases, and accumulation of elemental sulfur (S0 inside the plant with δ34S values similar to the sedimentary sulfide suggests that S0 is an important reoxidation product of the sedimentary sulfide. The accumulation of S0 can, however, not account for the increase in sulfur in the tissue, and other sulfur containing compounds such as thiols, organic sulfur and sulfate contribute to the accumulated sulfur pool. Experimental studies with seagrasses exposed to environmental and biological stressors show decreasing δ34S in the tissues along with reduction in growth parameters, suggesting that sulfide intrusion can affect seagrass performance.

  7. Self-diffusion coefficients of the trivalent f-element ion series in dilute and moderately dilute aqueous solutions: A comparative study between europium, gadolinium, terbium and berkelium (United States)

    Rafik, Besbes; Noureddine, Ouerfelli; Abderabbou, Abdelmanef; Habib, Latrous


    We have continued the studies on the trivalent ions of the 4f and 5f elements. In this paper, we compare the transport properties (self-diffusion coefficient) of the trivalent aquo ions over two ranges of concentrations (0 — 2×10-3M) and (2×10-3 — 1.5M). Self-diffusion coefficients, D, of the trivalent f-element aquo ion series have been determined in aqueous background electrolytes of Gd(NO3)3 and Nd(ClO4)3, at pH=2.5 (HNO3, HClO4) and at 25°C using the open-end capillary method (O.E.C.M.). This method measures the transportation time of ions across a fixed distance. In this paper, we complete a measurement of self-diffusion coefficient for terbium. We optimized the pH to avoid hydrolysis, ion-pairing and complexation of the trivalent 4f and 5f ions. The variation of D versus √C is not linear for dilute solutions (0 — 2×10-3M) and quasi-linear in moderate concentrations (C<=1.5 M). Similar behavior was observed for Tb, as compared with those for Bk, Eu and Gd. We complete the comparison variation of D/D° versus √C for all studied 4f and 5f elements from concentration 0 to 1.5M and we obtained the same variation with √C for all studied elements. All 4f and 5f elements studied follow the Nernst-Hartley expression.

  8. Terbium-based time-gated Förster resonance energy transfer imaging for evaluating protein-protein interactions on cell membranes. (United States)

    Lindén, Stina; Singh, Manish Kumar; Wegner, K David; Regairaz, Marie; Dautry, François; Treussart, François; Hildebrandt, Niko


    Fluorescence imaging of cells and subcellular compartments is an essential tool to investigate biological processes and to evaluate the development and progression of diseases. In particular, protein-protein interactions can be monitored by Förster resonance energy transfer (FRET) between two proximal fluorophores that are attached to specific recognition biomolecules such as antibodies. We investigated the membrane expression of E- and N-cadherins in three different cell lines used as model systems to study epithelial to mesenchymal transition (EMT) and a possible detection of circulating tumour cells (CTCs). EMT is a key process in cancer metastasis, during which epithelial markers (such as E-cadherin) are down-regulated in the primary tumour whereas mesenchymal markers (such as N-cadherin) are up-regulated, leading to enhanced cell motility, intravasation, and appearance of CTCs. Various FRET donor-acceptor pairs and protein recognition strategies were utilized, in which Lumi4-Tb terbium complexes (Tb) and different organic dyes were conjugated to several distinct E- and N-cadherin-specific antibodies. Pulsed excitation of Tb at low repetition rates (100 Hz) and time-gated (TG) imaging of both the Tb-donor and the dye-acceptor photoluminescence (PL) allowed efficient detection of the EMT markers as well as FRET in the case of sufficient donor-acceptor proximity. Efficient FRET was observed only between two E-cadherin-specific antibodies and further experiments indicated that these antibodies recognized the same E-cadherin molecule, suggesting a limited accessibility of cadherins when they are clustered at adherens junctions. The investigated Tb-to-dye FRET systems provided reduced photobleaching compared to the AlexaFluor 488-568 donor-acceptor pair. Our results demonstrate the applicability and advantages of Tb-based TG FRET for efficient and stable imaging of antibody-antibody interactions on different cell lines. They also reveal the limitations of

  9. A broad G protein-coupled receptor internalization assay that combines SNAP-tag labeling, diffusion-enhanced resonance energy transfer, and a highly emissive terbium cryptate acceptor

    Directory of Open Access Journals (Sweden)

    Angélique eLEVOYE


    Full Text Available Although G protein-coupled receptor (GPCR internalization has long been considered a major aspect of the desensitization process that tunes ligand responsiveness, internalization is also involved in receptor resensitization and signaling, as well as the ligand scavenging function of some atypical receptors. Internalization thus contributes to the diversity of GPCR-dependent signaling, and its dynamics and quantification in living cells has generated considerable interest. We developed a robust and sensitive assay to follow and quantify ligand-induced and constitutive GPCR internalization but also receptor recycling in living cells. This assay is based on diffusion-enhanced resonance energy transfer (DERET between cell surface GPCRs labeled with a luminescent terbium cryptate donor and a fluorescein acceptor present in the culture medium. GPCR internalization results in a quantifiable reduction of energy transfer. This method yields a high signal-to-noise ratio due to time-resolved measurements. For various GPCRs belonging to different classes, we demonstrated that constitutive and ligand-induced internalization could be monitored as a function of time and ligand concentration, thus allowing accurate quantitative determination of kinetics of receptor internalization but also half-maximal effective or inhibitory concentrations of compounds. In addition to its selectivity and sensitivity, we provided evidence that DERET-based internalization assay is particularly suitable for characterizing biased ligands. Furthermore, the determination of a Z’-factor value of 0.45 indicates the quality and suitability of DERET-based internalization assay for high-throughput screening (HTS of compounds that may modulate GPCRs internalization.

  10. Crystal structure of an eight-coordinate terbium(III ion chelated by N,N′-bis(2-hydroxybenzyl-N,N′-bis(pyridin-2-ylmethylethylenediamine (bbpen2− and nitrate

    Directory of Open Access Journals (Sweden)

    Thaiane Gregório


    Full Text Available The reaction of terbium(III nitrate pentahydrate in acetonitrile with N,N′-bis(2-hydroxybenzyl-N,N′-bis(pyridin-2-ylmethylethylenediamine (H2bbpen, previously deprotonated with triethylamine, produced the mononuclear compound [N,N′-bis(2-oxidobenzyl-κO-N,N′-bis(pyridin-2-ylmethyl-κNethylenediamine-κ2N,N′](nitrato-κ2O,O′terbium(III, [Tb(C28H28N4O2(NO3]. The molecule lies on a twofold rotation axis and the TbIII ion is eight-coordinate with a slightly distorted dodecahedral coordination geometry. In the symmetry-unique part of the molecule, the pyridine and benzene rings are both essentially planar and form a dihedral angle of 61.42 (7°. In the molecular structure, the N4O4 coordination environment is defined by the hexadentate bbpen ligand and the bidentate nitrate anion. In the crystal, a weak C—H...O hydrogen bond links molecules into a two-dimensional network parallel to (001.

  11. Catalytic oxidation of sulfide ions over nickel hydroxides

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, A.; Khristov, P. [Institute of Catalysis, Bulgarian Academy of Sciences, Sofia (Bulgaria); Losev, A. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia (Bulgaria)


    The catalytic sulfide ion oxidation by oxygen to elemental sulfur over {beta}-Ni(OH){sub 2} and LiNiO{sub 2} has been studied. As a result of experimental investigation performed, a reaction mechanism is suggested which involves heterogeneous and homogeneous processes. Dioxygen activation in the heterogeneous process proceeds via a redox Ni{sup 2+} <-> Ni{sup 3+} transition and participation of OH{sup -} groups. The active HO{sup -}{sub 2} species thus formed carries on the reaction in homogeneous phase. Nickel hydroxides are promising catalysts for practical application

  12. Thermal neutron scintillators using unenriched boron nitride and zinc sulfide (United States)

    McMillan, J. E.; Cole, A. J.; Kirby, A.; Marsden, E.


    Thermal neutron detectors based on powdered zinc sulfide intimately mixed with a neutron capture compound have a history as long as scintillation technique itself. We show that using unenriched boron nitride powder, rather than the more commonly used enriched lithium fluoride, results in detection screens which produce less light but which are very considerably cheaper. Methods of fabricating large areas of this material are presented. The screens are intended for the production of large area low cost neutron detectors as a replacement for helium-3 proportional tubes.

  13. Crystal growth of sulfide materials from alkali polysulfide liquids (United States)

    White, W. B.


    The fluids experiment system was designed for low temperature solution growth, nominally aqueous solution growth. The alkali polysulfides, compositions in the systems Na2S-S and K2S-S form liquids in the temperature range of 190 C to 400 C. These can be used as solvents for other important classes of materials such as transition metal and other sulfides which are not soluble in aqueous media. Among these materials are luminescent and electroluminescent crystals whose physical properties are sensitive functions of crystal perfection and which could, therefore, serve as test materials for perfection improvement under microgravity conditions.

  14. Facile aqueous-phase synthesis of copper sulfide nanofibers (United States)

    Tang, Zengmin; Im, Sang Hyuk; Kim, Woo-Sik; Yu, Taekyung


    We report a facile aqueous-phase synthetic route to vine-like copper sulfide (CuS) nanofibers prepared by reacting elemental sulfur with Cu+-branched polyethyleneimine (BPEI) complex obtained by the reaction of Cu2+ with ascorbic acid in the presence of BPEI. By controlling the concentration of BPEI, we could easily control the morphology of CuS from nanofibers to hollow nanoparticles. We also found that concentration of BPEI and the presence of halide anion would play important roles in the formation of vine-like CuS nanofibers.

  15. Conspicuous veils formed by vibrioid bacteria on sulfidic marine sediment

    DEFF Research Database (Denmark)

    Thar, Roland Matthias; Kühl, Michael


    -ß-hydroxybutyric acid. The cells have bipolar polytrichous flagella and exhibit a unique swimming pattern, rotating and translating along their short axis. Free-swimming cells showed aerotaxis and aggregated at ca. 2 µM oxygen within opposing oxygen-sulfide gradients, where they were able to attach via a mucous stalk......, forming a cohesive whitish veil at the oxic-anoxic interface. Bacteria attached to the veil kept rotating and adapted their stalk lengths dynamically to changing oxygen concentrations. The joint action of rotating bacteria on the veil induced a homogeneous water flow from the oxic water region toward...

  16. Bioavailability and Methylation Potential of Mercury Sulfides in Sediments (United States)


    D.; Wedborg, M., The sulfure-mercury(II) system in natural waters . Water Air and Soil Pollution 1991, 56, 507-519. 275. Haitzer, M.; Aiken, G. R...phosphate-free soap , overnight soak in 1 M HCl, and rinsed three times with ultrapure water . HgS nanoparticles were synthesized as in our previous...neutral mercury-sulfides bioavailability model ………………………………...13 Figure 1.3. Equilibrium speciation of dissolved Hg(II) in filtered anaerobic water

  17. Effects of Wood Pollution on Pore-Water Sulfide Levels and Eelgrass Germination (United States)

    Ekelem, C.


    Historically, sawmills released wood waste onto coastal shorelines throughout the Pacific Northwest of the USA, enriching marine sediments with organic material. The increase in organic carbon boosts the bacterial reduction of sulfate and results in the production of a toxic metabolite, hydrogen sulfide. Hydrogen sulfide is a phytotoxin and can decrease the growth and survival of eelgrass. This is a critical issue since eelgrass, Zostera marina, forms habitat for many species, stabilizes sediment, and plays a role in nutrient cycling and sediment chemistry. The objective of our study was to determine the effects of wood debris on sediment pore-water hydrogen sulfide concentrations and eelgrass germination. To test the impact of wood inputs on sulfide production and seed germination, we conducted a laboratory mesocosm experiment, adding sawdust to marine sediments and measuring the sulfide levels weekly. We subsequently planted seeds in the mesocosms and measured germination rates. Higher concentrations of sawdust led to higher levels of pore-water hydrogen sulfide and drastically slower eelgrass germination rates. Treatments with greater than 10% wood enrichment developed free sulfide concentrations of 0.815 (± 0.427) mM after 118 days, suggesting sediments with greater than 10% wood pollution may have threateningly high pore-water hydrogen sulfide levels. These results can be used to set thresholds for remediation efforts and guide seed distribution in wood polluted areas.

  18. The Determination of Hydrogen Sulfide in Stack Gases, Iodometric Titration After Sulfite Removal. (United States)

    Robles, E. G.

    The determination of hydrogen sulfide in effluents from coal-fired furnaces and incinerators is complicated by the presence of sulfur oxides (which form acids). Organic compounds also may interfere with or prevent the formation of the cadmium sulfide precipitate or give false positive results because of reaction with iodine. The report presents a…

  19. Inhibition of a biological sulfide oxidation under haloalkaline conditions by thiols and diorgano polysulfanes

    NARCIS (Netherlands)

    Roman, Pawel; Lipińska, Joanna; Bijmans, Martijn F.M.; Sorokin, Dimitry Y.; Keesman, Karel J.; Janssen, Albert J.H.


    A novel approach has been developed for the simultaneous description of reaction kinetics to describe the formation of polysulfide and sulfate anions from the biological oxidation of hydrogen sulfide (H2S) using a quick, sulfide-dependent respiration test. Next to H2S,

  20. Release of hydrogen sulfide under intermittent flow conditions – the potential of simulation models

    DEFF Research Database (Denmark)

    Matias, Natércia; Matos, Rita Ventura; Ferreira, Filipa


    that are capable of assessing variations of dissolved oxygen, dissolved sulfide and hydrogen sulfide gas concentrations for a wide range of environmental scenarios. Two such models were assessed: AEROSEPT, an empirical formulation, and WATS, a conceptual and more complex approach. The models were applied...


    Novel organic sulfide modified bimetallic iron-copper nanoparticle aggregate sorbent materials have been synthesized for removing elemental mercury from vapor streams at elevated temperatures (120-140 °C). Silane based (disulfide silane and tetrasulfide silane) and alkyl sulfide ...

  2. Modeling Spatio-vertical Distribution of Sulfate and Total Sulfide along the Mangrove Intertidal Zone

    Directory of Open Access Journals (Sweden)

    Pasicha Chaikaew,


    Full Text Available Given the complexity and heterogeneity of mangrove conservation landscape, research gaps still exists to quantify sulfate and total sulfide and their relationships with sediment properties and environmental covariates. Thirty-two sediment samples in the top layers (0-10 cm were analyzed to assess biochemical properties, sulfate and total sulfide contents. With an average±SD value of 0.62±0.36 mg/g, the total sulfide content from the study site was high compared to the southern part of Thailand. The distribution of sulfate content exhibited high values in nearby land area which gradually reduced in seaward discharges/runoff, whereas high concentrations of total sulfide were highlighted around the center of the study site and vertically accumulated in the top few centimeters of soil and decreased with depth. The most pronounced factor affecting the amount of sulfate and total sulfide content was organic matter, while pH, organic carbon, potassium, salinity, and sediment-mangrove conditions correlated with sulfate and sulfide at different levels. Total sulfides concentration can be considered as indicator of over nutrient-rich sediments for assessing environmental quality perhaps the die-back of mangroves. Concerns about high total sulfide concentrations across mangrove conservation areas should receive more attention, in particular the reduction of OM from the anthropogenic source.

  3. Electrochemical sulfide removal from synthetic and real domestic wastewater at high current densities. (United States)

    Pikaar, Ilje; Rozendal, René A; Yuan, Zhiguo; Keller, Jürg; Rabaey, Korneel


    Hydrogen sulfide generation is the key cause of sewer pipe corrosion, one of the major issues in water infrastructure. Current abatement strategies typically involve addition of various types of chemicals to the wastewater, which incurs large operational costs. The transport, storage and application of these chemicals also constitute occupational and safety hazards. In this study, we investigated high rate electrochemical oxidation of sulfide at Ir/Ta mixed metal oxide (MMO) coated titanium electrodes as a means to remove sulfide from wastewater. Both synthetic and real wastewaters were used in the experiments. Electrochemical sulfide oxidation by means of indirect oxidation with in-situ produced oxygen appeared to be the main reaction mechanism at Ir/Ta MMO coated titanium electrodes. The maximum obtained sulfide removal rate was 11.8 ± 1.7 g S m(-2) projected anode surface h(-1) using domestic wastewater at sulfide concentrations of ≥ 30 mg L(-1) or higher. The final products of the oxidation were sulfate, thiosulfate and elemental sulfur. Chloride and acetate concentrations did not entail differences in sulfide removal, nor were the latter two components affected by the electrochemical oxidation. Hence, the use of electrodes to generate oxygen in sewer systems may constitute a promising method for reagent-free removal of sulfide from wastewater. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Inhibition of microbiological sulfide oxidation at natronophilic conditions by methanethiol and methylated polysulfides

    NARCIS (Netherlands)

    Bosch, van den P.L.F.; Graaff, de C.M.; Fortuny-Picornell, M.; Leerdam, van R.C.; Janssen, A.J.H.


    To avoid problems related to the discharge of sulfidic spent caustics, a biotechnological process is developed for the treatment of gases containing both hydrogen sulfide and methanethiol. The process operates at natron-alkaline conditions (>1 mol L-1 of sodium- and potassium carbonates and a pH

  5. Equilibrium of the reaction between dissolved sodium sulfide and biologically produced sulfur

    NARCIS (Netherlands)

    Kleinjan, W.E.; Keizer, de A.; Janssen, A.J.H.


    The equilibrium of the heterogeneous reaction between dissolved sodium sulfide and biologically produced sulfur particles has been studied. Biologically produced sulfur was obtained from a bioreactor of a hydrogen sulfide removal process in which the dominating organism is Thiobacillus sp. W5.

  6. Adaptation to Hydrogen Sulfide of Oxygenic and Anoxygenic Photosynthesis among Cyanobacteria. (United States)

    Cohen, Y; Jørgensen, B B; Revsbech, N P; Poplawski, R


    Four different types of adaptation to sulfide among cyanobacteria are described based on the differential toxicity to sulfide of photosystems I and II and the capacity for the induction of anoxygenic photosynthesis. Most cyanobacteria are highly sensitive to sulfide toxicity, and brief exposures to low concentrations cause complete and irreversible cessation of CO(2) photoassimilation. Resistance of photosystem II to sulfide toxicity, allowing for oxygenic photosynthesis under sulfide, is found in cyanobacteria exposed to low H(2)S concentrations in various hot springs. When H(2)S levels exceed 200 muM another type of adaptation involving partial induction of anoxygenic photosynthesis, operating in concert with partially inhibited oxygenic photosynthesis, is found in cyanobacterial strains isolated from both hot springs and hypersaline cyanobacterial mats. The fourth type of adaptation to sulfide is found at H(2)S concentrations higher than 1 mM and involves a complete replacement of oxygenic photosynthesis by an effective sulfide-dependent, photosystem II-independent anoxygenic photosynthesis. The ecophysiology of the various sulfide-adapted cyanobacteria may point to their uniqueness within the division of cyanobacteria.

  7. The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    NARCIS (Netherlands)

    Rao, A.M.F.; Malkin, S.Y.; Hidalgo-Martinez, S.; Meysman, Filip


    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly

  8. New cyclic sulfides extracted from Allium sativum: garlicnins P, J2, and Q. (United States)

    Nohara, Toshihiro; Ono, Masateru; Nishioka, Naho; Masuda, Fuka; Fujiwara, Yukio; Ikeda, Tsuyoshi; Nakano, Daisuke; Kinjo, Junei


    Two atypical cyclic-type sulfides, garlicnin P (1) and garlicnin J2 (2), and one thiabicyclic-type sulfide, garlicnin Q (3), were isolated from the acetone extracts of garlic, Allium sativum, bulbs cultivated in the Kumamoto city area, and their structures characterized. Their production pathways are also discussed.

  9. Band offset in zinc oxy-sulfide/cubic-tin sulfide interface from X-ray photoelectron spectroscopy (United States)

    K. C., Sanal; Nair, P. K.; Nair, M. T. S.


    Zinc oxy-sulfide, ZnOxS1-x, has been found to provide better band alignment in thin film solar cells of tin sulfide of orthorhombic crystalline structure. Here we examine ZnOxS1-x/SnS-CUB interface, in which the ZnOxS1-x thin film was deposited by radio frequency (rf) magnetron sputtering on SnS thin film of cubic (CUB) crystalline structure with a band gap (Eg) of 1.72 eV, obtained via chemical deposition. X-ray photoelectron spectroscopy provides the valence band maxima of the materials and hence places the conduction band offset of 0.41 eV for SnS-CUB/ZnO0.27S0.73 and -0.28 eV for SnS-CUB/ZnO0.88S0.12 interfaces. Thin films of ZnOxS1-x with 175-240 nm in thickness were deposited from targets prepared with different ZnO to ZnS molar ratios. With the target of molar ratio of 1:13.4, the thin films are of composition ZnO0.27S0.73 with hexagonal crystalline structure and with that of 1:1.7 ratio, it is ZnO0.88S0.12. The optical band gap of the ZnOxS1-x thin films varies from 2.90 eV to 3.21 eV as the sulfur to zinc ratio in the film increases from 0.12:1 to 0.73:1 as determined from X-ray diffraction patterns. Thus, band offsets sought for absorber materials and zinc oxy-sulfide in solar cells may be achieved through a choice of ZnO:ZnS ratio in the sputtering target.

  10. Human sulfide:quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. (United States)

    Jackson, Michael R; Melideo, Scott L; Jorns, Marilyn Schuman


    Sulfide:quinone oxidoreductase (SQOR) is a membrane-bound enzyme that catalyzes the first step in the mitochondrial metabolism of H(2)S. Human SQOR is successfully expressed at low temperature in Escherichia coli by using an optimized synthetic gene and cold-adapted chaperonins. Recombinant SQOR contains noncovalently bound FAD and catalyzes the two-electron oxidation of H(2)S to S(0) (sulfane sulfur) using CoQ(1) as an electron acceptor. The prosthetic group is reduced upon anaerobic addition of H(2)S in a reaction that proceeds via a long-wavelength-absorbing intermediate (λ(max) = 673 nm). Cyanide, sulfite, or sulfide can act as the sulfane sulfur acceptor in reactions that (i) exhibit pH optima at 8.5, 7.5, or 7.0, respectively, and (ii) produce thiocyanate, thiosulfate, or a putative sulfur analogue of hydrogen peroxide (H(2)S(2)), respectively. Importantly, thiosulfate is a known intermediate in the oxidation of H(2)S by intact animals and the major product formed in glutathione-depleted cells or mitochondria. Oxidation of H(2)S by SQOR with sulfite as the sulfane sulfur acceptor is rapid and highly efficient at physiological pH (k(cat)/K(m,H(2)S) = 2.9 × 10(7) M(-1) s(-1)). A similar efficiency is observed with cyanide, a clearly artificial acceptor, at pH 8.5, whereas a 100-fold lower value is seen with sulfide as the acceptor at pH 7.0. The latter reaction is unlikely to occur in healthy individuals but may become significant under certain pathological conditions. We propose that sulfite is the physiological acceptor of the sulfane sulfur and that the SQOR reaction is the predominant source of the thiosulfate produced during H(2)S oxidation by mammalian tissues.

  11. Atmospheric Sulfur Cycle Effects of Carbonyl Sulfide (OCS) (United States)

    McBee, Joshua


    Carbonyl Sulfide(OCS) is considered to be one of the major sources of sulfur appearing in the stratosphere due to its relative inertness, about I to 10 yearsl. However, the roles of OCS as well as other reduced sulfur compounds such as carbon disulfide (CS2), hydrogen sulfide (H2S), and dimethyl disulfide(CH3)2S2, are not completely understood in the atmosphenc sulfur cycle. Consequently vely little information is available about the effect of sulfur compounds in the stratosphere. The ability of OCS to penetrate into the stratosphere makes it an excellent tracer for study of the role of the sulfi r cycle in stratospheric chemistry. Previously techniques such as gas chromatography and whole air sampling have been used to measure OCS analytically. Each technique had its drawbacks however, with both being quite slow, and whole air sampling being somewhat unreliable. With molecular spectroscopy, however, it has been found in recent years that the tunable diode laser absorption spectrometer (TDL) provides a very rapid and accurate method of measuring OCS and other trace gases

  12. Synthesis and structural studies of copper sulfide nanocrystals

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade


    Full Text Available We report the synthesis and structural studies of copper sulfide nanocrystals from copper(II dithiocarbamate single molecule precursors. The optical studies of the as-prepared copper sulfide nanoparticles were carried out using UV–Visible and photoluminescence spectroscopy. The absorption spectra show absorption band edges at 287 nm and exhibit considerable blue shift that could be ascribed to the quantum confinement effects as a result of the small crystallite sizes of the nanoparticles and the photoluminescence spectra show emission curves that are red shifted with respect to the absorption band edges. The structural studies were carried out using powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The XRD patterns revealed the formation of hexagonal structure of covellite CuS with estimated crystallite sizes of 17.3–18.6 nm. The TEM images showed particles with almost spherical or rod shapes with average crystallite sizes of 3–9.8 nm. SEM images showed morphology with ball-like microsphere on the surfaces and EDS spectra confirmed the presence of CuS nanoparticles.

  13. Hydrogen sulfide toxicity in a thermal spring: a fatal outcome. (United States)

    Daldal, Hale; Beder, Bayram; Serin, Simay; Sungurtekin, Hulya


    Hydrogen sulfide (H(2)S) is a toxic gas with the smells of "rotten egg"; its toxic effects are due to the blocking of cellular respiratory enzymes leading to cell anoxia and cell damage. We report two cases with acute H(2)S intoxication caused by inhalation of H(2)S evaporated from the water of a thermal spring. Two victims were found in a hotel room were they could take a thermal bath. A 26-year-old male was found unconscious; he was resuscitated, received supportive treatment and survived. A 25-year-old female was found dead. Autopsy showed diffuse edema and pulmonary congestion. Toxicological blood analysis of the female revealed the following concentrations: 0.68 mg/L sulfide and 0.21 mmol/L thiosulfate. The urine thiosulfate concentration was normal. Forensic investigation established that the thermal water was coming from the hotel's own illegal well. The hotel was closed. This report highlights the danger of H(2)S toxicity not only for reservoir and sewer cleaners, but also for individuals bathing in thermal springs.

  14. Chemical precursors to zinc sulfide: ZnS whisker synthesis (United States)

    Guiton, T. A.; Czekaj, C. L.; Rau, M. S.; Geoffroy, G. L.; Pantano, C. G.


    Currently, Chemical Vapor Deposition (CVD) derived zinc sulfide is one of the most widely used infrared optical window materials. Unfortunately, for numerous applications it does not possess optimum mechanical properties. To fabricate infrared transmitting ZnS/ZnS composites requires the development of high aspect ratio, micron sized ZnS whiskers. Although larger ZnS single crystals and whiskers have been made by a variety of high temperature routes, alternative routes have been sought for greater ZnS whisker morphology control. Low temperature organometallic routes are attractive for this purpose. The precursor compound used in this study is the known pentameric species (EtZn(SBut))5. One of the most successful routes involves the reaction of (EtZn(SBU sup t))5 with hydrogen sulfide at ambient or sub-ambient temperature to yield a precipitate which is subsequently heated under flowing H2S at 500 C to yield a mixture of sub-micron particles and single-crystal ZnS whiskers. Transmission electron micrographs of the (EtZn(SBU sup t))5 products indicate that the ZnS morphology is critically dependent on the rate of H2S reaction. Corresponding X-ray/electron diffraction, electron microscopy, elemental analysis, NMR and infrared spectroscopies have been conducted. A summary of the chemical methods, product characterization results, and proposed synthesis mechanisms are presented.


    Directory of Open Access Journals (Sweden)

    Elena V. Ushakova


    Full Text Available The method of X-ray structural analysis (X-ray scattering at small angles is used to show that the structures obtained by self-organization on a substrate of lead sulfide (PbS quantum dots are ordered arrays. Self-organization of quantum dots occurs at slow evaporation of solvent from a cuvette. The cuvette is a thin layer of mica with teflon ring on it. The positions of peaks in SAXS pattern are used to calculate crystal lattice of obtained ordered structures. Such structures have a primitive orthorhombic crystal lattice. Calculated lattice parameters are: a = 21,1 (nm; b = 36,2 (nm; c = 62,5 (nm. Dimensions of structures are tens of micrometers. The spectral properties of PbS QDs superstructures and kinetic parameters of their luminescence are investigated. Absorption band of superstructures is broadened as compared to the absorption band of the quantum dots in solution; the luminescence band is slightly shifted to the red region of the spectrum, while its bandwidth is not changed much. Luminescence lifetime of obtained structures has been significantly decreased in comparison with the isolated quantum dots in solution, but remained the same for the lead sulfide quantum dots close-packed ensembles. Such superstructures can be used to produce solar cells with improved characteristics.

  16. Hydrogen attack - Influence of hydrogen sulfide. [on carbon steel (United States)

    Eliezer, D.; Nelson, H. G.


    An experimental study is conducted on 12.5-mm-thick SAE 1020 steel (plain carbon steel) plate to assess hydrogen attack at room temperature after specimen exposure at 525 C to hydrogen and a blend of hydrogen sulfide and hydrogen at a pressure of 3.5 MN/sq m for exposure times up to 240 hr. The results are discussed in terms of tensile properties, fissure formation, and surface scales. It is shown that hydrogen attack from a high-purity hydrogen environment is severe, with the formation of numerous methane fissures and bubbles along with a significant reduction in the room-temperature tensile yield and ultimate strengths. However, no hydrogen attack is observed in the hydrogen/hydrogen sulfide blend environment, i.e. no fissure or bubble formation occurred and the room-temperature tensile properties remained unchanged. It is suggested that the observed porous discontinuous scale of FeS acts as a barrier to hydrogen entry, thus reducing its effective equilibrium solubility in the iron lattice. Therefore, hydrogen attack should not occur in pressure-vessel steels used in many coal gasification processes.

  17. Control of microbially generated hydrogen sulfide in produced waters

    Energy Technology Data Exchange (ETDEWEB)

    Burger, E.D.; Vance, I.; Gammack, G.F.; Duncan, S.E.


    Production of hydrogen sulfide in produced waters due to the activity of sulfate-reducing bacteria (SRB) is a potentially serious problem. The hydrogen sulfide is not only a safety and environmental concern, it also contributes to corrosion, solids formation, a reduction in produced oil and gas values, and limitations on water discharge. Waters produced from seawater-flooded reservoirs typically contain all of the nutrients required to support SRB metabolism. Surface processing facilities provide a favorable environment in which SRB flourish, converting water-borne nutrients into biomass and H{sub 2}S. This paper will present results from a field trial in which a new technology for the biochemical control of SRB metabolism was successfully applied. A slip stream of water downstream of separators on a produced water handling facility was routed through a bioreactor in a side-steam device where microbial growth was allowed to develop fully. This slip stream was then treated with slug doses of two forms of a proprietary, nonbiocidal metabolic modifier. Results indicated that H{sub 2}S production was halted almost immediately and that the residual effect of the treatment lasted for well over one week.

  18. Anoxic Transformations of Radiolabeled Hydrogen-Sulfide in Marine and Fresh-Water Sediments

    DEFF Research Database (Denmark)



    oxidation to sulfate. Thiosulfate was partly turned over by oxidation or disproportionation and was found to be an intermediate in the (SO4=)-S-35 formation. The results demonstrate that oxidative and reductive sulfur cycling may occur simultaneously in marine and freshwater sediments. When added......Radiolabeled hydrogen sulfide (HS-)-S-35 was used to trace the anoxic sulfur transformations in marine and freshwater sediment slurries. Time course studies consistently showed a rapid (S2O3=)-S-35 formation and a progressive accumulation of (SO4=)-S-35 and thus indicated an anoxic sulfide...... as exogenous oxidant, nitrate (NO3-) stimulated the anoxic sulfide oxidation to sulfate. Ferric iron, added in the form of lepidocrocite (gamma-FeOOH), caused the precipitation of iron sulfides and only partial sulfide oxidation to pyrite and elemental sulfur....

  19. Lanthanide complexes as luminogenic probes to measure sulfide levels in industrial samples. (United States)

    Thorson, Megan K; Ung, Phuc; Leaver, Franklin M; Corbin, Teresa S; Tuck, Kellie L; Graham, Bim; Barrios, Amy M


    A series of lanthanide-based, azide-appended complexes were investigated as hydrogen sulfide-sensitive probes. Europium complex 1 and Tb complex 3 both displayed a sulfide-dependent increase in luminescence, while Tb complex 2 displayed a decrease in luminescence upon exposure to NaHS. The utility of the complexes for monitoring sulfide levels in industrial oil and water samples was investigated. Complex 3 provided a sensitive measure of sulfide levels in petrochemical water samples (detection limit ∼ 250 nM), while complex 1 was capable of monitoring μM levels of sulfide in partially refined crude oil. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Influence of sulfides on the tribological properties of composites produced by pulse electric current sintering (United States)

    Kim, Seung Ho


    Self-lubricating Al2O3-15wt% ZrO2 composites with sulfides, such as molybdenum disulfide (MoS2) and tungsten disulfide (WS2) serving as solid lubricants, were fabricated by using the pulse electric current sintering (PECS) technique. The coefficient of friction (COF) of the Al2O3-15wt% ZrO2 composite without/with sulfides was in the range of 0.37-0.48 and 0.27-0.49, respectively. As the amount of sulfides increased, the COF and the wear rate decreased. The reduction in COF and wear rate of the sulfide-containing composite is caused by a reduction in shear stresses between the specimen and the tribological medium due to the formation of a lubricating film resulting from the lamellar structure of sulfides located on the worn surface.

  1. Repulsive Interaction of Sulfide Layers on Compressor Impeller Blades Remanufactured Through Plasma Spray Welding (United States)

    Chang, Y.; Zhou, D.; Wang, Y. L.; Huang, H. H.


    This study investigated the repulsive interaction of sulfide layers on compressor impeller blades remanufactured through plasma spray welding (PSW). Sulfide layers on the blades made of FV(520)B steel were prepared through multifarious corrosion experiments, and PSW was utilized to remanufacture blade specimens. The specimens were evaluated through optical microscopy, scanning electron microscopy, energy-dispersive spectroscopy, 3D surface topography, x-ray diffraction, ImageJ software analysis, Vicker's micro-hardness test and tensile tests. Results showed a large number of sulfide inclusions in the fusion zone generated by sulfide layers embodied into the molten pool during PSW. These sulfide inclusions seriously degraded the mechanical performance of the blades remanufactured through PSW.

  2. Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats

    Directory of Open Access Journals (Sweden)

    Xin-juan Li


    Full Text Available The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X 7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X 7 receptors.

  3. Sulfide intrusion in seagrasses assessed by stable sulfur isotopes—a synthesis of current results

    DEFF Research Database (Denmark)

    Holmer, Marianne; Hasler-Sheetal, Harald


    Sulfide intrusion in seagrasses, as assessed by stable sulfur isotope signals, is widespread in all climate zones, where seagrasses are growing. Seagrasses can incorporate substantial amounts of 34S-depleted sulfide into their tissues with up to 87% of the total sulfur in leaves derived from...... sedimentary sulfide. Correlations between δ34S in leaves, rhizomes, and roots show that sedimentary sulfide is entering through the roots, either in the form of sulfide or sulfate, and translocated to the rhizomes and the leaves. The total sulfur content of the seagrasses increases as the proportion...... in sulfur in the tissue, and other sulfur containing compounds such as thiols, organic sulfur, and sulfate contribute to the accumulated sulfur pool. Experimental studies with seagrasses exposed to environmental and biological stressors show decreasing δ34S in the tissues along with reduction in growth...

  4. Finding Massive Sulfides at Mid-Ocean Ridges (United States)

    Barckhausen, Udo; Dressel, Ingo; Ehrhardt, Axel; Heyde, Ingo; Schwarz-Schampera, Ulrich; Schreckenberger, Bernd; Schwalenberg, Katrin


    The formation of Polymetallic Massive Sulfides is connected to hydrothermal activity concentrated in small areas close to mid-ocean ridges. Other geological settings of hydrothermal activity exist of course (like backarcs), but these are typically not located in The Area and therefore not under the regime of the International Seabed Authority (ISA). The ISA grants license areas for mineral exploration of up to 100 blocks of 10 km x 10 km size. The areas in which Polymetallic Massive Sulfides are exposed on the seafloor are tiny compared to the size of the license areas (typically in the order of 100-200m in diameter), and until recently were in most cases detected only be chance. For localizing and investigating Polymetallic Massive Sulfide deposits, geophysical methods are used at a wide range of scales. Ship-mounted overview surveys include multibeam bathymetry, magnetic and gravity measurements and are supplemented with high density sea surface investigations, and deep tow surveys close to the seafloor. Once a Massive Sulfide deposit has been surmised, ROV based video observations and measurements directly at the seafloor are used to confirm the deposit. It turns out that hydrothermal vent sites ("Black Smokers") near mid-ocean ridges are far more common than previously thought, however, due to their small size and location in rugged terrain in the deep sea they are not easy to find. Even though we have no full understanding yet of the geologic and tectonic settings in which long lasting hydrothermal systems can develop, the hydrothermal vent fields known so far seem to have some characteristics in common which can be used to define promising areas on the basis of the bathymetric overview maps. At a dense line spacing of 2.5 km, distinct magnetic anomalies can be observed in surface towed data which are connected to known hydrothermal vent fields. This means that similar magnetic anomalies observed in other places are potential sites of recent or former

  5. 75 FR 19319 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting; Extension of Comment... (United States)


    ... AGENCY 40 CFR Part 372 RIN 2025-AA27 Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release...) section 313 toxic chemical release reporting requirements for hydrogen sulfide (Chemical Abstracts Service... otherwise use hydrogen sulfide. Potentially affected categories and entities may include, but are not...

  6. Magmatic Cu-Ni sulfide mineralization of the Huangshannan mafic-untramafic intrusion, Eastern Tianshan, China (United States)

    Zhao, Yun; Xue, Chunji; Zhao, Xiaobo; Yang, YongQiang; Ke, Junjun


    The Huangshannan Ni-Cu (-PGE) sulfide deposit, a new discovery from geological prospecting in Eastern Tianshan, is in a belt of magmatic Ni-Cu (-PGE) sulfide deposits along the southern margin of the Central Asian Orogenic Belt. The host intrusion of the Huangshannan deposit is composed of a layered ultramafic sequence and a massive gabbro-diorite unit. The major sulfide orebodies occur mainly within websterite and lherzolite in the layered ultramafic sequence. In-situ zircon U-Pb dating analyses yielded a crystallization age of 282.5 ± 1.4 Ma, similar to the ages of the Permian Tarim mantle plume. Samples from the Huangshannan intrusion are characterized by nearly flat rare earth elements patterns, negative Zr, Ti and Nb anomalies, arc-like Th/Yb and Nb/Yb ratios, and significantly lower rare earth element and immobile trace element contents than the Tarim basalts. These characteristics suggest that the Huangshannan intrusion was not generated from the Tarim mantle plume. The primary magma for the Huangshannan intrusion and its associated sulfide mineralization were formed from different pulses of picritic magma with different degrees of crustal contamination. The first pulse underwent an initial removal of 0.016% sulfide in the deep magma chamber. The evolved magma reached sulfide saturation again in the shallow magma chamber and formed sulfide ores in lherzolite. The second pulse of magma reached a level of 0.022% sulfide segregation at staging chamber before ascending up to the shallow magma chamber. In the shallow conduit system, this sulfide-unsaturated magma mixed with the first pulse of magma and with contamination from the country rocks, leading to the formation of sulfide ores in websterite. The third magma pulse from the deep chamber formed the unmineralized massive gabbro-diorite unit of the Huangshannan intrusion.

  7. Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity. (United States)

    Li, Tongyu; Li, Erchao; Suo, Yantong; Xu, Zhixin; Jia, Yongyi; Qin, Jian G; Chen, Liqiao; Gu, Zhimin


    The toxicity and poisoning mechanisms of sulfide were studied in Litopenaeus vannamei from the perspective of energy metabolism and metabolomics. The lethal concentrations of sulfide in L. vannamei (LC50) at 24h, 48h, 72h, and 96h were determined. Sulfide at a concentration of 0, 1/10 (425.5μg/L), and 1/5 (851μg/L) of the LC50 at 96h was used to test the metabolic responses of L. vannamei for 21days. The chronic exposure of shrimp to a higher sulfide concentration of 851μg/L decreased shrimp survival but did not affect weight gain or the hepatopancreas index. The glycogen content in the hepatopancreas and muscle and the activity of hepatopancreas cytochrome C oxidase of the shrimp exposed to all sulfide concentrations were significantly lower, and the serum glucose and lactic acid levels and lactic acid dehydrogenase activity were significantly lower than those in the control. Metabolomics assays showed that shrimp exposed to sulfide had lower amounts of serum pyruvic acid, succinic acid, glycine, alanine, and proline in the 425.5μg/L group and phosphate, succinic acid, beta-alanine, serine, and l-histidine in the 851μg/L group than in the control. Chronic sulfide exposure could disturb protein synthesis in shrimp but enhance gluconeogenesis and substrate absorption for ATP synthesis and tricarboxylic acid cycles to provide extra energy to cope with sulfide stress. Chronic sulfide exposure could adversely affect the health status of L. vannamei, as indicated by the high amounts of serum n-ethylmaleamic acid, pyroglutamic acid, aspartic acid and phenylalanine relative to the control. This study indicates that chronic exposure of shrimp to sulfide can decrease health and lower survival through functional changes in gluconeogenesis, protein synthesis and energy metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Transition of Blast Furnace Slag from Silicate Based to Aluminate Based: Sulfide Capacity (United States)

    Yan, Zhiming; Lv, Xuewei; Pang, Zhengde; He, Wenchao; Liang, Dong; Bai, Chenguang


    The effect of Al2O3 and Al2O3/SiO2 ratio on the sulfide capacity of the molten aluminosilicate CaO-SiO2-Al2O3-MgO-TiO2 slag system with high Al2O3 content was measured at 1773 K (1500 °C) using a metal-slag equilibration method. The sulfide capacity between silicate-based and aluminate-based slag was also compared based on the thermodynamic analysis and structural characteristics of melts. At a fixed CaO/SiO2 ratio of 1.20, the sulfide capacity decreases with increasing Al2O3 content primarily due to the decrease of free oxygen (FO) and the activity of O2-. Increasing the Al2O3/SiO2 ratio from 0.47 to 0.79 causes a significant increase in the sulfide capacity of the slags, and a slight increase is found when the Al2O3/SiO2 ratio is more than 0.79. The effect of the substitution of silica by alumina on the sulfide capacity of the slags was not only due to an increase in the activity of basic oxides ( a_{{{O}^{2 - } }} ) but also to a decrease in the stability of sulfide ( γ_{{{S}^{2 - } }} ). Moreover, a_{{{O}^{2 - } }} and γ_{{{S}^{2 - } }} increase in a similar degree, and the weaker binding electronegativity of Al3+ with oxygen atoms results in a slight increase in the final sulfide capacity in the aluminate-based slag system with Al2O3 ↔ SiO2 substitution. Five different sulfide capacity models were employed to predict the sulfide capacity, and the iso-sulfide capacity distribution diagram based on the Young's model was obtained in the high Al2O3 corner of the diagram.

  9. Nitrosopersulfide (SSNO− accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide

    Directory of Open Access Journals (Sweden)

    Miriam M. Cortese-Krott


    Full Text Available Sulfide salts are known to promote the release of nitric oxide (NO from S-nitrosothiols and potentiate their vasorelaxant activity, but much of the cross-talk between hydrogen sulfide and NO is believed to occur via functional interactions of cell regulatory elements such as phosphodiesterases. Using RFL-6 cells as an NO reporter system we sought to investigate whether sulfide can also modulate nitrosothiol-mediated soluble guanylyl cyclase (sGC activation following direct chemical interaction. We find a U-shaped dose response relationship where low sulfide concentrations attenuate sGC stimulation by S-nitrosopenicillamine (SNAP and cyclic GMP levels are restored at equimolar ratios. Similar results are observed when intracellular sulfide levels are raised by pre-incubation with the sulfide donor, GYY4137. The outcome of direct sulfide/nitrosothiol interactions also critically depends on molar reactant ratios and is accompanied by oxygen consumption. With sulfide in excess, a ‘yellow compound’ accumulates that is indistinguishable from the product of solid-phase transnitrosation of either hydrosulfide or hydrodisulfide and assigned to be nitrosopersulfide (perthionitrite, SSNO−; λmax 412 nm in aqueous buffers, pH 7.4; 448 nm in DMF. Time-resolved chemiluminescence and UV–visible spectroscopy analyses suggest that its generation is preceded by formation of the short-lived NO-donor, thionitrite (SNO−. In contrast to the latter, SSNO− is rather stable at physiological pH and generates both NO and polysulfides on decomposition, resulting in sustained potentiation of SNAP-induced sGC stimulation. Thus, sulfide reacts with nitrosothiols to form multiple bioactive products; SSNO− rather than SNO− may account for some of the longer-lived effects of nitrosothiols and contribute to sulfide and NO signaling.

  10. Formation of arsenic sulfide on GaAs surface under illumination in acidified thiourea electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Khader, Mahmoud M., E-mail: [Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. 2713, Doha (Qatar); AlJaber, Amina S. [Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, P.O. 2713, Doha (Qatar)


    The present article reports the formation of arsenic sulfide films on GaAs by the potentiodynamic polarization in acidified thiourea (TU) electrolytes under photo-illumination. Oxidation of TU competes with the oxidation of GaAs itself and leads to the formation of surface arsenic-sulfide films. Surface chemical composition is investigated by X-ray photoelectron spectroscopy (XPS), demonstrating the formation of As-sulfide as the XPS peaks at binding energies of 42.6 and 162.5 eV for As 3d and S 2p, respectively, are observed. XPS results also show diminishing of Ga species from the surface while As-sulfide is forming. Though, As-sulfide is predominantly formed on the surface, but the inductive coupling plasma-mass spectroscopy (ICP-MS) analysis still shows a preferential dissolution of As ions into electrolytes. These results indicate that Ga ions diffuse into the bulk of the electrode material. The formation of As-sulfide, initially, enhances the photocurrent generation; presumably, due to suppressing electron-hole recombination processes. Further deposition of As-sulfide deteriorates GaAs photoactivity due to retarding light absorptivity because of depositing a thick As-sulfide film. The morphology of the As-sulfide film is characterized by scanning electron microscopy (SEM) that shows the formation of smooth and nonporous films in TU electrolytes acidified by H{sub 2}SO{sub 4} of concentration {>=}0.2 M. Electrochemical impedance measurements show that GaAs corrosion is limited by the growth and oxidation of the sulfide layer.

  11. Reactive Precipitation of Anhydrous Alkali Sulfide Nanocrystals with Concomitant Abatement of Hydrogen Sulfide and Cogeneration of Hydrogen. (United States)

    Li, Xuemin; Zhao, Yangzhi; Brennan, Alice; McCeig, Miranda; Wolden, Colin A; Yang, Yongan


    Anhydrous alkali sulfide (M 2 S, M=Li or Na) nanocrystals (NCs) are important materials central to the development of next generation cathodes and solid-state electrolytes for advanced batteries, but not commercially available at present. This work reports an innovative method to directly synthesize M 2 S NCs through alcohol-mediated reactions between alkali metals and hydrogen sulfide (H 2 S). In the first step, the alkali metal is complexed with alcohol in solution, forming metal alkoxide (ROM) and releasing hydrogen (H 2 ). Next, H 2 S is bubbled through the ROM solution, where both chemicals are completely consumed to produce phase-pure M 2 S NC precipitates and regenerate alcohol that can be recycled. The M 2 S NCs morphology may be tuned through the choice of the alcohol and solvent. Both synthetic steps are thermodynamically favorable (ΔG m o <-100 kJ mol -1 ), proceeding rapidly to completion at ambient temperature with almost 100 % atom efficiency. The net result, H 2 S+2 m→M 2 S+H 2 , makes good use of a hazardous chemical (H 2 S) and delivers two value-added products that naturally phase separate for easy recovery. This scalable approach provides an energy-efficient and environmentally benign solution to the production of nanostructured materials required in emerging battery technologies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Response of gut health and microbiota to sulfide exposure in Pacific white shrimp Litopenaeus vannamei. (United States)

    Suo, Yantong; Li, Erchao; Li, Tongyu; Jia, Yongyi; Qin, Jian G; Gu, Zhimin; Chen, Liqiao


    Sulfide is a natural and widely distributed toxicant. It can be commonly found on the interface between water and sediment in the aquatic environment. The Pacific white shrimp Litopenaeus vannamei starts life in the benthic zone soon after the mysis stage, an early stage of post larvae. Therefore, L. vannamei is inevitably affected by exposure to sulfide released from pond sediment. This study explored the toxicant effect of different concentrations of sulfide on the intestinal health and microbiota of Pacific white shrimp by monitoring the change of expression of inflammatory, immune related cytokines, and the structure of the intestinal microbiota. The gut histology, expressions of inflammatory and immune related cytokines (tumor necrosis factor-alpha, C-type lectin 3, myostatin and heat shock transcription factor 1), and the microbiota were determined in L. vannamei after exposure to 0 (control), 425.5 (1/10 LC 50-96 h), and 851 μg/L (1/5 LC 50-96 h) of sulfide for 21 days. With the increase of sulfide concentration, intestinal injury was aggravated and the inflammatory and immune related cytokines generated a range of reactions. The expression of myostatin (MSTN) was significantly down-regulated by the concentration of sulfide exposure. No difference in the expression of heat shock transcription factor 1 (HSF1) was found between the control and shrimp exposed to 425.5 μg/L, but significantly higher HSF1 expression was found in shrimp exposed to 851 μg/L of sulfide. Significantly higher values of tumor necrosis factor-alpha (TNF-α) and C-type lectin 3 (CTL3) were found in the shrimp exposed to 425.5 μg/L of sulfide compared to the control, but a lower value was found in the shrimp exposed to 851 μg/L (P Sulfide also changed the intestinal microbial communities. The abundance of pathogenic bacteria, such as Cyanobacteria, Vibrio and Photobacterium, increased significantly with exposure to the increasing concentration of sulfide. The abundance of

  13. Remediation of Cd-contaminated soil around metal sulfide mines (United States)

    Lu, Xinzhe; Hu, Xuefeng; Kang, Zhanjun; Luo, Fan


    The mines of metal sulfides are widely distributed in the southwestern part of Zhejiang Province, Southeast China. The activities of mining, however, often lead to the severe pollution of heavy metals in soils, especially Cd contamination. According to our field investigations, the spatial distribution of Cd-contaminated soils is highly consistent with the presence of metal sulfide mines in the areas, further proving that the mining activities are responsible for Cd accumulation in the soils. To study the remediation of Cd-contaminated soils, a paddy field nearby large sulfide mines, with soil pH 6 and Cd more than 1.56 mg kg-1, five times higher than the national recommended threshold, was selected. Plastic boards were deeply inserted into soil to separate the field and make experimental plots, with each plot being 4 m×4 m. Six treatments, TK01˜TK06, were designed to study the effects of different experimental materials on remediating Cd-contaminated soils. The treatment of TK01 was the addition of 100 kg zeolites to the plot; TK02, 100 kg apatites; TK03, 100 kg humid manure; TK04, 50 kg zeolites + 50 kg apatites; TK05, 50 kg zeolites + 50 kg humid manure; TK06 was blank control (CK). One month after the treatments, soil samples at the plots were collected to study the possible change of chemical forms of Cd in the soils. The results indicated that these treatments reduced the content of available Cd in the soils effectively, by a decreasing sequence of TK04 (33%) > TK02 (25%) > TK01 (23%) > TK05 (22%) > TK03 (15%), on the basis of CK. Correspondingly, the treatments also reduced the content of Cd in rice grains significantly, by a similar decreasing sequence of TK04 (83%) > TK02 (77%) > TK05 (63%) > TK01 (47%) > TK03 (27%). The content of Cd in the rice grains was 0.071 mg kg-1, 0.094 mg kg-1, 0.159 mg kg-1, 0.22 mg kg-1 and 0.306 mg kg-1, respectively, compared with CK, 0.418 mg kg-1. This experiment suggested that the reduction of available Cd in the soils is

  14. Nitrogen release from forest soils containing sulfide-bearing sediments (United States)

    Maileena Nieminen, Tiina; Merilä, Päivi; Ukonmaanaho, Liisa


    Soils containing sediments dominated by metal sulfides cause high acidity and release of heavy metals, when excavated or drained, as the aeration of these sediments causes formation of sulfuric acid. Consequent leaching of acidity and heavy metals can kill tree seedlings and animals such as fish, contaminate water, and corrode concrete and steel. These types of soils are called acid sulfate soils. Their metamorphic equivalents, such as sulfide rich black shales, pose a very similar risk of acidity and metal release to the environment. Until today the main focus in treatment of the acid sulfate soils has been to prevent acidification and metal toxicity to agricultural crop plants, and only limited attention has been paid to the environmental threat caused by the release of acidity and heavy metals to the surrounding water courses. Even less attention is paid on release of major nutrients, such as nitrogen, although these sediments are extremely rich in carbon and nitrogen and present a potentially high microbiological activity. In Europe, the largest cover of acid sulfate soils is found in coastal lowlands of Finland. Estimates of acid sulfate soils in agricultural use range from 1 300 to 3 000 km2, but the area in other land use classes, such as managed peatland forests, is presumably larger. In Finland, 49 500 km2 of peatlands have been drained for forestry, and most of these peatland forests will be at the regeneration stage within 10 to 30 years. As ditch network maintenance is often a prerequisite for a successful establishment of the following tree generation, the effects of maintenance operations on the quality of drainage water should be under special control in peatlands underlain by sulfide-bearing sediments. Therefore, identification of risk areas and effective prevention of acidity and metal release during drain maintenance related soil excavating are great challenges for forestry on coastal lowlands of Finland. The organic and inorganic nitrogen

  15. Apparatus and method for purging hydrogen sulfide gases from well water

    Energy Technology Data Exchange (ETDEWEB)

    Schwall, J.A.


    An apparatus and method of ridding objectionable hydrogen sulfide gases from well water before pumping the water from the well is provided, wherein the water at the water table level in the well is aerated, causing turbulence in the well water, and facilitating the escape of hydrogen sulfide gases to the atmosphere. The apparatus (10) for ridding hydrogen sulfide gases from well water comprises means (16) for pumping well water (19) under pressure to a water delivery system of an edifice (30, 33), additional means (38) associated with the pumping means (16) for delivering a relatively small portion of the well water under pressure to the well water (19) in the well (12) to cause turbulence in the water to facilitate the escape of hydrogen sulfide gases from the well water, and further means (13) to vent the freed hydrogen sulfide gases to the atmosphere. The process for carrying out the invention comprises the steps of: pumping water under pressure from a well to a water delivery system, delivering a relatively small portion of water under pressure to the surface of the water in the well, causing turbulence in the well water to facilitate release of hydrogen sulfide gases from the well water, and venting the released hydrogen sulfide gases to the atmosphere.

  16. Effects of Sulfide Concentration and Dissolved Organic Matter Characteristics on the Structure of Nanocolloidal Metacinnabar. (United States)

    Poulin, Brett A; Gerbig, Chase A; Kim, Christopher; Stegemeier, John P; Ryan, Joseph N; Aiken, George R


    Understanding the speciation of divalent mercury (Hg(II)) in aquatic systems containing dissolved organic matter (DOM) and sulfide is necessary to predict the conversion of Hg(II) to bioavailable methylmercury. We used X-ray absorption spectroscopy to characterize the structural order of mercury in Hg(II)-DOM-sulfide systems for a range of sulfide concentration (1-100 µM), DOM aromaticity (specific ultraviolet absorbance (SUVA254)), and Hg(II)-DOM and Hg(II)-DOM-sulfide equilibration times (4-142 h). In all systems, Hg(II) was present as structurally-disordered nanocolloidal metacinnabar (β-HgS). β-HgS nanocolloids were significantly smaller or less ordered at lower sulfide concentration, as indicated by under-coordination of Hg(II) in β-HgS. The size or structural order of β-HgS nanocolloids increased with increasing sulfide abundance and decreased with increasing SUVA254 of the DOM. The Hg(II)-DOM or Hg(II)-DOM-sulfide equilibration times did not significantly influence the extent of structural order in nanocolloidal β-HgS. Geochemical factors that control the structural order of nanocolloidal β-HgS, which are expected to influence nanocolloid surface reactivity and solubility, should be considered in the context of mercury bioavailability.

  17. A novel biological approach on extracellular synthesis and characterization of semiconductor zinc sulfide nanoparticles (United States)

    Malarkodi, Chelladurai; Annadurai, Gurusamy


    The expansion of reliable and eco-friendly process for synthesis of semiconductor nanoparticle is an important step in the emerging field of biomedical nanotechnology. In this communication, the zinc sulfide nanoparticles were biologically synthesized by using Serratia nematodiphila which was isolated from chemical company effluent. The surface plasmon resonance centered at 390 nm on the UV spectrum indicates the presence of zinc sulfide nanoparticles in the reaction mixture ( S. nematodiphila and zinc sulfate); EDAX analysis also confirmed the presence of zinc sulfide nanoparticles. Scanning electron microscope image showed that the synthesized zinc sulfide nanoparticles were spherical in nature and nanoparticles of about 80 nm in size were obtained from transmission electron microscope images. The peaks in the XRD spectrum corresponding to (111), (220) and (311) show that the zinc sulfide nanoparticles are crystalline in nature. Fourier transforms infrared spectroscopy shows the functional groups of the nanoparticle in the range of 4,000-400 cm-1. Further, the antibacterial activity of zinc sulfide nanoparticles was examined against Bacillus subtilis and Klebsiella planticola. The maximum zone of inhibition occurred at 200 μl of silver nanoparticles. Due to potent antimicrobial and intrinsic properties of zinc sulfide, it is actively used for biomedical and food packaging applications.

  18. Oxygenic and anoxygenic photosynthesis in a microbial mat from an anoxic and sulfidic spring. (United States)

    de Beer, Dirk; Weber, Miriam; Chennu, Arjun; Hamilton, Trinity; Lott, Christian; Macalady, Jennifer; M Klatt, Judith


    Oxygenic and anoxygenic photosynthesis were studied with microsensors in microbial mats found at 9-10 m depth in anoxic and sulfidic water in Little Salt Spring (Florida, USA). The lake sediments were covered with a 1-2 mm thick red mat dominated by filamentous Cyanobacteria, below which Green Sulfur Bacteria (GSB, Chlorobiaceae) were highly abundant. Within 4 mm inside the mats, the incident radiation was attenuated to undetectable levels. In situ microsensor data showed both oxygenic photosynthesis in the red surface layer and light-induced sulfide dynamics up to 1 cm depth. Anoxygenic photosynthesis occurred during all daylight hours, with complete sulfide depletion around midday. Oxygenic photosynthesis was limited to 4 h per day, due to sulfide inhibition in the early morning and late afternoon. Laboratory measurements on retrieved samples showed that oxygenic photosynthesis was fully but reversibly inhibited by sulfide. In patches Fe(III) alleviated the inhibition of oxygenic photosynthesis by sulfide. GSB were resistant to oxygen and showed a low affinity to sulfide. Their light response showed saturation at very low intensities. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Fulvic acid-sulfide ion competition for mercury ion binding in the Florida everglades (United States)

    Reddy, M.M.; Aiken, G.R.


    Negatively charged functional groups of fulvic acid compete with inorganic sulfide ion for mercury ion binding. This competition is evaluated here by using a discrete site-electrostatic model to calculate mercury solution speciation in the presence of fulvic acid. Model calculated species distributions are used to estimate a mercury-fulvic acid apparent binding constant to quantify fulvic acid and sulfide ion competition for dissolved inorganic mercury (Hg(II)) ion binding. Speciation calculations done with PHREEQC, modified to use the estimated mercury-fulvic acid apparent binding constant, suggest that mercury-fulvic acid and mercury-sulfide complex concentrations are equivalent for very low sulfide ion concentrations (about 10-11 M) in Everglades' surface water. Where measurable total sulfide concentration (about 10-7 M or greater) is present in Everglades' surface water, mercury-sulfide complexes should dominate dissolved inorganic mercury solution speciation. In the absence of sulfide ion (for example, in oxygenated Everglades' surface water), fulvic acid binding should dominate Everglades' dissolved inorganic mercury speciation.

  20. In Vitro Antiparasitic and Apoptotic Effects of Antimony Sulfide Nanoparticles on Leishmania infantum

    Directory of Open Access Journals (Sweden)

    Saied Soflaei


    Full Text Available Visceral leishmaniasis is one of the most important sever diseases in tropical and subtropical countries. In the present study the effects of antimony sulfide nanoparticles on Leishmania infantum in vitro were evaluated. Antimony sulfide NPs (Sb2S5 were synthesized by biological method from Serratia marcescens bacteria. Then the cytotoxicity effects of different concentrations (5, 10, 25, 50, and 100 μg/mL of this nanoparticle were assessed on promastigote and amastigote stages of L. infantum. MTT method was used for verification results of promastigote assay. Finally, the percentages of apoptotic, necrotic, and viable cells were determined by flow cytometry. The results indicated the positive effectiveness of antimony sulfide NPs on proliferation of promastigote form. The IC50 (50% inhibitory concentration of antimony sulfide NPs on promastigotes was calculated 50 μg/mL. The cytotoxicity effect was dose-dependent means by increasing the concentration of antimony sulfide NPs, the cytotoxicity curve was raised and the viability curve of the parasite dropped simultaneously. Moreover, the IC50 of antimony sulfide NPs on amastigote stage was calculated 25 μg/mL. On the other hand, however, antimony sulfide NPs have a low cytotoxicity effect on uninfected macrophages but it can induce apoptosis in promastigote stage at 3 of 4 concentrations.

  1. Reduction of bromate by biogenic sulfide produced during microbial sulfur disproportionation. (United States)

    Chairez, Monserrat; Luna-Velasco, Antonia; Field, Jim A; Ju, Xiumin; Sierra-Alvarez, Reyes


    Bromate (BrO(3) (-)) is a carcinogenic contaminant formed during ozonation of waters that contain trace amounts of bromide. Previous research shows that bromate can be microbially reduced to bromide using organic (i.e. acetate, glucose, ethanol) and inorganic (H(2)) electron-donating substrates. In this study, the reduction of bromate by a mixed microbial culture was investigated using elemental sulfur (S(0)) as an electron donor. In batch bioassays performed at 30 degrees C, bromate (0.30 mM) was completely converted to bromide after 10 days and no accumulation of intermediates occurred. Bromate was also reduced in cultures supplemented with thiosulfate and hydrogen sulfide as electron donor. Our results demonstrated that S(0)-disproportionating microorganisms were responsible for the reduction of bromate in cultures spiked with S(0) through an indirect mechanism involving microbial formation of sulfide and subsequent abiotic reduction of bromate by the biogenic sulfide. Confirmation of this mechanism is the fact that bromate was shown to undergo rapid chemical reduction by sulfide (but not S(0) or thiosulfate) in abiotic experiments. Bromate concentrations above 0.30 mM inhibited sulfide formation by S(0)-disproportionating bacteria, leading to a decrease in the rate of bromate reduction. The results suggest that biological formation of sulfide from by S(0) disproportionation could support the chemical removal of bromate without having to directly use sulfide as a reagent.

  2. Kinetics of the conversion of copper sulfide to blister copper

    Directory of Open Access Journals (Sweden)

    Carrillo, F.


    Full Text Available The desulfurization of copper sulfide by air and oxygen has been studied in two laboratory reactors where the gas is blown onto the melt surface. Rates of oxidation in a vertical resistance furnace may be explained by the mass transfer control in the gas phase. However, results for a horizontal tube suggest that the chemical resistance is controlling.

    La desulfuración del sulfuro cuproso con aire y oxígeno se ha estudiado en dos reactores de laboratorio, en los cuales el gas se sopla sobre la superficie del fundido. La velocidad de reacción en un horno de resistencias verticales se puede explicar considerando como controlante la resistencia a la transferencia de materia de la fase gas. Sin embargo, los resultados del horno horizontal indican que la resistencia química es la controlante.

  3. Removal of hydrogen sulfide from gaseous emissions of viscose factories

    Energy Technology Data Exchange (ETDEWEB)

    Grebennikov, S.F.; Novinyuk, L.V.; Vol' f, L.A.; Emets, L.V.


    This study was devoted to absorption of H/sub 2/S present in concentrations from 0.1 to 1.2 g/m/sup 3/ in the gas phase. It was shown in this investigation of mass transfer that in a coflow absorber with packing of needle-perforated fibrous material, a 100% removal of hydrogen sulfide from the gas is achieved by such treatment. The optimal operating parameters are: alkali concentration approx. 1, liquid rate 0.2 m/sup 3//(m/sup 2/.h), gas velocity 0.15-0.20 m/sec. Further increase of these parameters is accompanied by increased spray entrainment and unproductive consumption of absorbent.

  4. Characterizing the distribution of gold in pyritic sulfide ore (United States)

    Pratt, Allen; Duke, Norm


    Auriferous pyrite is an important ore in the Green’s Creek polymetallic-sulfide deposit. Pyritic ores have textural and crystal forms that range from primitive framboidal spherules to euhedral crystals. The gold associated with the pyrite at Green’s Creek is found in concentrations at the ppmw level and necessitates the use of secondary ion mass spectrometry. The results presented in this article show gold is distributed in two ways: finely dispersed throughout a pyrite matrix and concentrated as native gold or as electrum at grain edges or along fractures. Finely dispersed gold is found in pyrite spherules and porous masses, whereas the gold “nuggets” are found in association with the crystalline pyrite. An association between gold and arsenic is observed, but the association is complex and is not necessarily congruent. The results suggest that during the maturation of pyrite containing finely dispersed gold, gold is mobilized and ultimately concentrated at grain edges as nuggets.

  5. Spectrophotometric flow injection monitoring of sulfide during sugar fermentation. (United States)

    Silva, Claudineia R; Barros, Valdemir A F; Basso, Luiz C; Zagatto, Elias A G


    A spectrophotometric flow injection procedure involving N,N-dimethyl-p-phenylenediamine (DMPD) is applied to the sulfide monitoring of a sugar fermentation by Saccharomyces cerevisiae under laboratory conditions. The gaseous chemical species evolving from the fermentative process, mainly CO(2), are trapped allowing a cleaned sample aliquot to be collected and introduced into the flow injection analyzer. Measurement rate, signal repeatability, detection limit and reagent consumption per measurement were estimated as 150 h(-1), 0.36% (n=20), 0.014 mg L(-1) S and 120 μg DMPD, respectively. The main characteristics of the monitoring record are discussed. The strategy is worthwhile for selecting yeast strain, increasing the industrial ethanol production and improving the quality of wines. Copyright © 2011. Published by Elsevier B.V.

  6. Changes in Dimethyl Sulfide Oceanic Distribution due to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Cameron-Smith, P; Elliott, S; Maltrud, M; Erickson, D; Wingenter, O


    Dimethyl sulfide (DMS) is one of the major precursors for aerosols and cloud condensation nuclei in the marine boundary layer over much of the remote ocean. Here they report on coupled climate simulations with a state-of-the-art global ocean biogeochemical model for DMS distribution and fluxes using present-day and future atmospheric CO{sub 2} concentrations. They find changes in zonal averaged DMS flux to the atmosphere of over 150% in the Southern Ocean. This is due to concurrent sea ice changes and ocean ecosystem composition shifts caused by changes in temperature, mixing, nutrient, and light regimes. The largest changes occur in a region already sensitive to climate change, so any resultant local CLAW/Gaia feedback of DMS on clouds, and thus radiative forcing, will be particularly important. A comparison of these results to prior studies shows that increasing model complexity is associted with reduced DMS emissions at the equator and increased emissions at high latitudes.

  7. Chrysanthemum-like bismuth sulfide microcrystals: Synthesis, characterization, and properties (United States)

    Jiang, Jinghui; Gao, Guanhua; Yu, Runnan; Qiu, Guanzhou; Liu, Xiaohe


    Uniform chrysanthemum-like bismuth sulfide (Bi 2S 3) microcrystals assembled from nanosheet building blocks were successfully synthesized via a convenient hydrothermal synthetic route under mild conditions in which hydrated bismuth nitrate and L-cysteine were employed to supply Bi and S source and ethylenediaminetetraacetic acid disodium salt (EDTA-Na 2) was employed as chelating agent. The influences of reaction temperatures and time on the morphologies of final products were investigated. The phase structures, morphologies, and properties of as-prepared products were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscope, and photoluminescence spectra. The possible growth mechanism for the formation of chrysanthemum-like Bi 2S 3 microcrystals was discussed on the basis of the experimental results.

  8. Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Wang [Department of Pediatrics, Peking University First Hospital, Beijing 100034 (China); Chaoshu, Tang [Department of Physiology and Pathophysiology, Health Sciences Center, Peking University, Beijing 100034 (China); Key Laboratory of Molecular Cardiovascular Medicine, Ministry of Education (China); Hongfang, Jin, E-mail: [Department of Pediatrics, Peking University First Hospital, Beijing 100034 (China); Junbao, Du, E-mail: [Department of Pediatrics, Peking University First Hospital, Beijing 100034 (China)


    Atherosclerosis is a chronic, complex, and progressive pathological process in large and medium sized arteries. The exact mechanism of this process remains unclear. Hydrogen sulfide (H{sub 2}S), a novel gasotransmitter, was confirmed as playing a major role in the pathogenesis of many cardiovascular diseases. It plays a role in vascular smooth muscle cell (VSMC) proliferation and apoptosis, participates in the progress of hyperhomocysteinemia (HHCY), inhibits atherogenic modification of LDL, interferes with vascular calcification, intervenes with platelet function, and there are interactions between H{sub 2}S and inflammatory processes. The role of H{sub 2}S in atherosclerotic pathogenesis highlights the mysteries of atherosclerosis and inspires the search for innovative therapeutic strategies. Here, we review the studies to date that have considered the role of H{sub 2}S in atherosclerosis.

  9. Microbial Oxidation of Iron Sulfides in Anaerobic Environments

    DEFF Research Database (Denmark)

    Vaclavkova, Sarka

    Abstract (shortened): Iron sulfides (FeSx), representing 0.04-10 % of Danish dry soil weight, oxidize in a presence of oxygen, releasing sulfuric acid and free iron. Environmental impact of FeSx oxidation is commonly seen on agricultural sites cultivated by drainage as acid sulfate soil formation....... MISON was found to count for about 1/3 of the net NO3- reduction in MISON active environments, despite the presence of alternative electron donor, organic carbon. The rate of MISON was found to be dependent on the available reactive surface area of FeSx and on the microorganism involved. The findings...... environments including sandy aquifer, freshwater peatland and moderately brackish muddy marine sediment. An apparent salinity limitation of MISON was shown in heavily brackish sediment, where FeSx oxidation was inhibited while other NO3-reduction processes did not appear to be affected by the salinity levels...

  10. [Determination of Henry's law constants for dimethyl sulfide in seawater]. (United States)

    Wang, Y H; Wong, P K


    The article presents the method of determination of Henry's Law Constant(K) for dimethyl sulfide (DMS) in seawater using multiple phase equilibration/headspace gas chromatography. The method is based on the demonstration that analysis of only one phase after multiple phase equilibration give all necessary data. The values of K of DMS in seawater determined by this method was 0.089 with relative standard deviation(RSD) of 5.50% at 22 degrees C. The linear relationship between log K and w (NaCl) was log K = 0.0688.w (NaCl) - 1.3568 with correlation coefficient(r) of 0.997. The regression equation of log K against reciprocal of absolute temperature(T) was log K = -1,544.8/T + 4.2112 with r of 0.996.

  11. Cadmium sulfide nanotubes thin films: Characterization and photoelectrochemical behavior

    Energy Technology Data Exchange (ETDEWEB)

    Li Chenhuan, E-mail: [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yang Suolong, E-mail: [China Academy of Engineering Physics, Mianyang 621900 (China); Zheng Baozhan, E-mail: [Key laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065 (China); Zhou Ting, E-mail: [Key laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry , Sichuan University, Chengdu 610065 (China); Yuan Hongyan, E-mail: [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Xiao Dan, E-mail: [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Key laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry , Sichuan University, Chengdu 610065 (China)


    Monodisperse cadmium sulfide nanotubes (CdS NTs) with a diameter of 100 nm were synthesized on indium-doped tin oxide glass substrates using chemical bath deposition and self-sacrificial template technique. This CdS thin film was characterized by transmission electron microscope, scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy and UV-vis spectrophotometer. This film gave a short circuit photocurrent of 4.4 mA/cm{sup 2}, an open circuit photovoltage of 0.75 V, a fill factor of 0.49, and an overall conversion efficiency of 1.29% under a simulated solar illumination of 100 mW/cm{sup 2}. All these photoelectrochemical properties of the films were dependent on the microstructure of the nanotubes and the thickness of the film. A facile and efficient way to prepare CdS-based photoelectrodes for photoelectrochemical cells was provided in this report.

  12. Abiotic sulfide oxidation via manganese reduction fuels the deep biosphere (United States)

    Bottrell, S.; Böttcher, M. E.; Schippers, A.; Parkes, R.; Raiswell, R.


    The deep biosphere in marine sediments consists of large populations of metabolically active Bacteria and Archaea [1, 2]. Buried organic carbon is the main energy source for the deep biosphere and is anaerobically oxidized via nitrate-, Mn(IV)-, Fe(III)-, sulfate or carbonate-reduction. Sulfate reduction has been identified as the most important of these processes [3, 4] yet sulfate is typically quantitatively removed from pore waters in the upper few meters of marine sediments. A key question remains: “How is continued metabolic activity maintained in the deep biosphere?”. Buried organic carbon remains as an electron donor but the source of electron acceptors is less clear. Stable isotope compositions of sulfur and oxygen in sulfate are particularly useful in the study of biogeochemical processes and sediment-pore fluid interactions e.g. [5, 6]. Here we use stable sulfur and oxygen isotope compositions to show that the oxidant sulfate is generated by anoxic sulfide oxidation in deeply buried sediments of the Cascadia margin and Blake Ridge and controlled anoxic experiments to constrain the mechanisms involved on this reaction. Pore fluid sulfate in deep Cascadia margin and Blake Ridge sediments contained sulfur with similar isotopic composition to diagenetic sulfide in the sediment and oxygen that was depleted in 18O (in some cases depleted in 18O relative to pore water). Experiments with Mn(IV)-containing oxides confirmed that these can abiotically oxidize iron sulfides and also produce sulfate depleted in 18O relative to water. In another set of anoxic experiments, pyrite was mixed with different Fe(III) minerals. Crucially, experiments with synthesized pure Fe(III) minerals produced no sulfate but identical experiments with natural Fe(III) minerals containing trace Mn did. Sulfate concentrations in solution were stoichiometrically balanced by Mn concentrations, showing trace Mn(IV) in the natural minerals to be the oxidizing agent generating sulfate

  13. Lithium sulfide compositions for battery electrolyte and battery electrode coatings (United States)

    Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J


    Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

  14. Can Hydrogen Sulfide Gas Be a Biosignature in a Habitable Exoplanet? (United States)

    Hu, Renyu; Seager, S.; Bains, W.


    A group of microorganisms can disproportionate sulfite and elemental sulfur into sulfide and sulfate to obtain energy for a living. We explore if the sulfide produced by microorganisms can alter the atmospheric composition to manifest in the spectrum of a habitable exoplanet. We consider a dry (i.e., limited ocean cover) habitable planet of Earth size and mass, orbiting a Sun-like star. As on Earth, volcanoes release sulfur as sulfur dioxide and hydrogen sulfide, but the volcanic production of hydrogen sulfide is limited by the scarcity of water. In the meantime, in our scenario, microbes can flourish in the ocean and effectively make use of the energy gained from the sulfur disproportion and release sulfide as the metabolic byproduct. The metabolic sulfur disproportion can enhance the overall outgassing rate of hydrogen sulfide by nearly one order of magnitude over the non-biological emission. To study the atmospheric response to this enhancement, we build a one-dimensional chemical transport model that treats all O, H and S bearing species and the relevant photochemical and chemical reactions. The vertical transport is approximated with the eddy diffusion. We also consider the formation and the sedimentation of elemental sulfur aerosols and sulfate aerosols in the atmosphere and explore the effect of aerosol particle size on the chemistry and the radiative transfer. To establish hydrogen sulfide as a biosignature, we need to understand the atmospheric response to the sulfide outgassing, the spectral features of hydrogen sulfide and its photochemical products, and the volcanic release of H2S. The current work will address the first two problems, and the main uncertainty will remain at the possible false positives due to the volcanism.

  15. Speciation and Distribution of Trace Metals Associated with Iron Sulfides in the Marcellus Shale (United States)

    Singer, D. M.; Cahill, M.


    Black shales underlying the areas from Eastern Ohio, through Pennsylvania, and into Central New York State have become of economic interest lately due to the recent economic viability of shale gas extraction. Sulfide minerals such as pyrite and marcasite occurring in these shales are often the primary phases that trace metals are associated with. Trace metals can be incorporated into these sulfides via various pathways during initial shale deposition and secondary diagenesis including substitution for Fe (Co and Ni), substitution for S (As and Se), and excluded to form other sulfide phases (Cu and Zn). The manner in which these trace metals are incorporated directly influences how they are released into the environment during sulfide oxidation following shale weathering or hydraulic fracturing. The aim of this research is to examine the distribution of trace metals in iron sulfides from black shales using Synchrotron-based X-ray microprobe techniques including micro-X-ray fluorescence and micro-X-ray diffraction of shale thin sections. Marcellus Shale samples were collected from: (1) outcrops from the Oatka member in Leroy, NY and Jersey Shore, PA and the Union Springs member in Lewiston, PA, and (2) drilling core sample from Beaver Meadow, NY and Hancock Co, TN (Chattanooga shale). Analyses have shown that the sulfide grains are a combination of pyrite and marcasite. As and Se are spatially correlated with each other and within the pyrite grains. Ni is spatially correlated with larger euhedral pyrite, as well as smaller non-iron sulfide grains. Cu and Zn are not spatially correlated with the pyrite and form separate Cu- and Zn- sulfides. During iron sulfide oxidative dissolution, these differences in distribution of trace metals will affect the order and rate in which they are released into the environment.

  16. Low-level hydrogen sulfide and central nervous system dysfunction. (United States)

    Kilburn, Kaye H; Thrasher, Jack D; Gray, Michael R


    Forty-nine adults living in Lovington, Tatum, and Artesia, the sour gas/oil sector of Southeastern New Mexico, were tested for neurobehavioral impairment. Contributing hydrogen sulfide were (1) an anaerobic sewage plant; (2) two oil refineries; (3) natural gas/oil wells and (4) a cheese-manufacturing plant and its waste lagoons. Comparisons were to unexposed Wickenburg, Arizona, adults. Neurobehavioral functions were measured in 26 Lovington adults including 23 people from Tatum and Artesia, New Mexico, and 42 unexposed Arizona people. Participants completed questionnaires including chemical exposures, symptom frequencies and the Profile of Mood States. Measurements included balance, reaction time, color discrimination, blink reflex, visual fields, grip strength, hearing, vibration, problem solving, verbal recall, long-term memory, peg placement, trail making and fingertip number writing errors (FTNWE). Average numbers of abnormalities and test scores were adjusted for age, gender, educational level, height and weight, expressed as percent predicted (% pred) and compared by analysis of variance (ANOVA). Ages and educational attainment of the three groups were not statistically significantly different (ssd). Mean values of Lovington residents were ssd from the unexposed Arizona people for simple and choice reaction times, balance with eyes open and closed, visual field score, hearing and grip strength. Culture Fair, digit symbol substitution, vocabulary, verbal recall, peg placement, trail making A and B, FTNWE, information, picture completion and similarities were also ssd. The Lovington adults who averaged 11.8 abnormalities were ssd from, Tatum-Artesia adults who had 3.6 and from unexposed subjects with 2.0. Multiple source community hydrogen sulfide exposures impaired neurobehavioral functions.

  17. Productivity-Diversity Relationships from Chemolithoautotrophically Based Sulfidic Karst Systems

    Directory of Open Access Journals (Sweden)

    Porter Megan L.


    Full Text Available Although ecosystems thriving in the absence of photosynthetic processes are no longer considered unique phenomena, we haveyet to understand how these ecosystems are energetically sustained via chemosynthesis. Ecosystem energetics were measuredin microbial mats from active sulfidic caves (Movile Cave, Romania; Frasassi Caves, Italy; Lower Kane Cave, Wyoming, USA; andCesspool Cave, Virginia, USA using radiotracer techniques. We also estimated bacterial diversity using 16S rRNA sequences torelate the productivity measurements to the composition of the microbial communities. All of the microbial communities investigatedwere dominated by chemolithoautotrophic productivity, with the highest rates from Movile Cave at 281 g C/m2/yr. Heterotrophicproductivities were at least one order of magnitude less than autotrophy from all of the caves. We generated 414 new 16S rRNAgene sequences that represented 173 operational taxonomic units (OTUs with 99% sequence similarity. Although 13% of theseOTUs were found in more than one cave, the compositions of each community were significantly different from each other (P≤0.001.Autotrophic productivity was positively correlated with overall species richness and with the number of bacterial OTUs affiliated withthe Epsilonproteobacteria, a group known for sulfur cycling and chemolithoautotrophy. Higher rates of autotrophy were also stronglypositively correlated to available metabolic energy sources, and specifically to dissolved sulfide concentrations. The relationship ofautotrophic productivity and heterotrophic cycling rates to bacterial species richness can significantly impact the diversity of highertrophic levels in chemolithoautotrophically-based cave ecosystems, with the systems possessing the highest productivity supportingabundant and diverse macro-invertebrate communities.

  18. Purity and crystallinity of microwave synthesized antimony sulfide microrods

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-Alonso, Claudia, E-mail: [Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76010 (Mexico); Olivos-Peralta, Eliot U. [Instituto de Energías Renovables, Universidad NacionalAutónoma de México, Temixco, Morelos, 62580 (Mexico); Sotelo-Lerma, Mérida [Universidad de Sonora, Hermosillo, Sonora, 83000 (Mexico); Sato-Berrú, Roberto Y. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, MéxicoD.F., 04510 (Mexico); Mayén-Hernández, S.A. [Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Querétaro, 76010 (Mexico); Hu, Hailin, E-mail: [Instituto de Energías Renovables, Universidad NacionalAutónoma de México, Temixco, Morelos, 62580 (Mexico)


    Antimony sulfide (Sb{sub 2}S{sub 3}) is a promising semiconductor material for solar cell applications. In this work, microrods of Sb{sub 2}S{sub 3} were synthesized by microwave heating with different sulfur sources, solvents, temperature, heating rate, power, and solution concentration. It was found that 90% of stoichiometric Sb{sub 2}S{sub 3} can be obtained with thiourea (TU) or thioacetamide (TA) as sulfur sources and that their optical band gap values were within the range of 1.59–1.60 eV. The most crystalline Sb{sub 2}S{sub 3} were obtained by using TU. The morphology of the Sb{sub 2}S{sub 3} with TU the individual rods were exhibited, whereas rods bundles appeared in TA-based products. The solvents were ethylene glycol (EG) and dimethylformamide (DMF). EG generates more heat than DMF during the microwave synthesis. As a result, the Sb{sub 2}S{sub 3} obtained with EG contained a larger percentage of oxygen and smaller crystal sizes compared to those from DMF. On the other hand, the length and diameter of Sb{sub 2}S{sub 3} microrods can be increased by applying higher heating power although the crystal size did not change at all. In summary, pure and highly crystalline Sb{sub 2}S{sub 3} microrods of 6–10 μm long and 330–850 nm in diameter can be obtained by the microwave method with a careful selection of chemical and thermodynamic parameters of the synthesis. - Highlights: • Purity up to 90% of crystalline Sb{sub 2}S{sub 3} nanorods can be obtained by microwave heating. • The combination of solvent and sulfide type affects crystallinity & purity of Sb2S3. • The high pressure generated in microwave heating helps to form Sb{sub 2}S{sub 3} nanorods.

  19. Lipopolysaccharide enhances the cytotoxicity of 2-chloroethyl ethyl sulfide

    Directory of Open Access Journals (Sweden)

    Qui Min


    Full Text Available Abstract Background The bacterial endotoxin, lipopolysaccharide (LPS, is a well-characterized inflammatory factor found in the cell wall of Gram-negative bacteria. In this investigation, we studied the cytotoxic interaction between 2-chloroethyl ethyl sulfide (CEES or ClCH2CH2SCH2CH3 and LPS using murine RAW264.7 macrophages. CEES is a sulfur vesicating agent and is an analog of 2,2'-dichlorodiethyl sulfide (sulfur mustard. LPS is a ubiquitous natural agent found in the environment. The ability of LPS and other inflammatory agents (such as TNF-alpha and IL-1beta to modulate the toxicity of CEES is likely to be an important factor in the design of effective treatments. Results RAW 264.7 macrophages stimulated with LPS were found to be more susceptible to the cytotoxic effect of CEES than unstimulated macrophages. Very low levels of LPS (20 ng/ml dramatically enhanced the toxicity of CEES at concentrations greater than 400 μM. The cytotoxic interaction between LPS and CEES reached a maximum 12 hours after exposure. In addition, we found that tumor necrosis factor-alpha (TNF-alpha and interleukin-1-beta (IL-1-beta as well as phorbol myristate acetate (PMA also enhanced the cytotoxic effects of CEES but to a lesser extent than LPS. Conclusion Our in vitro results suggest the possibility that LPS and inflammatory cytokines could enhance the toxicity of sulfur mustard. Since LPS is a ubiquitous agent in the natural environment, its presence is likely to be an important variable influencing the cytotoxicity of sulfur mustard toxicity. We have initiated further experiments to determine the molecular mechanism whereby the inflammatory process influences sulfur mustard cytotoxicity.

  20. Lipopolysaccharide enhances the cytotoxicity of 2-chloroethyl ethyl sulfide. (United States)

    Stone, William L; Qui, Min; Smith, Milton


    The bacterial endotoxin, lipopolysaccharide (LPS), is a well-characterized inflammatory factor found in the cell wall of Gram-negative bacteria. In this investigation, we studied the cytotoxic interaction between 2-chloroethyl ethyl sulfide (CEES or ClCH2CH2SCH2CH3) and LPS using murine RAW264.7 macrophages. CEES is a sulfur vesicating agent and is an analog of 2,2'-dichlorodiethyl sulfide (sulfur mustard). LPS is a ubiquitous natural agent found in the environment. The ability of LPS and other inflammatory agents (such as TNF-alpha and IL-1beta) to modulate the toxicity of CEES is likely to be an important factor in the design of effective treatments. RAW 264.7 macrophages stimulated with LPS were found to be more susceptible to the cytotoxic effect of CEES than unstimulated macrophages. Very low levels of LPS (20 ng/ml) dramatically enhanced the toxicity of CEES at concentrations greater than 400 microM. The cytotoxic interaction between LPS and CEES reached a maximum 12 hours after exposure. In addition, we found that tumor necrosis factor-alpha (TNF-alpha) and interleukin-1-beta (IL-1-beta) as well as phorbol myristate acetate (PMA) also enhanced the cytotoxic effects of CEES but to a lesser extent than LPS. Our in vitro results suggest the possibility that LPS and inflammatory cytokines could enhance the toxicity of sulfur mustard. Since LPS is a ubiquitous agent in the natural environment, its presence is likely to be an important variable influencing the cytotoxicity of sulfur mustard toxicity. We have initiated further experiments to determine the molecular mechanism whereby the inflammatory process influences sulfur mustard cytotoxicity.

  1. Microbial lipids reveal carbon assimilation patterns on hydrothermal sulfide chimneys. (United States)

    Reeves, Eoghan P; Yoshinaga, Marcos Y; Pjevac, Petra; Goldenstein, Nadine I; Peplies, Jörg; Meyerdierks, Anke; Amann, Rudolf; Bach, Wolfgang; Hinrichs, Kai-Uwe


    Sulfide 'chimneys' characteristic of seafloor hydrothermal venting are diverse microbial habitats. ¹³C/¹²C ratios of microbial lipids have rarely been used to assess carbon assimilation pathways on these structures, despite complementing gene- and culture-based approaches. Here, we integrate analyses of the diversity of intact polar lipids (IPL) and their side-chain δ¹³C values (δ¹³ C(lipid)) with 16S rRNA gene-based phylogeny to examine microbial carbon flow on active and inactive sulfide structures from the Manus Basin. Surficial crusts of active structures, dominated by Epsilonproteobacteria, yield bacterial δ¹³C(lipid) values higher than biomass δ¹³C (total organic carbon), implicating autotrophy via the reverse tricarboxylic acid cycle. Our data also suggest δ¹³C(lipid) values vary on individual active structures without accompanying microbial diversity changes. Temperature and/or dissolved substrate effects - likely relating to variable advective-diffusive fluxes to chimney exteriors - may be responsible for differing ¹³C fractionation during assimilation. In an inactive structure, δ¹³C(lipid) values lower than biomass δ¹³C and a distinctive IPL and 16S rRNA gene diversity suggest a shift to a more diverse community and an alternate carbon assimilation pathway after venting ceases. We discuss here the potential of IPL and δ¹³C(lipid) analyses to elucidate carbon flow in hydrothermal structures when combined with other molecular tools. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Arsenic mobilization from sulfidic materials from gold mines in Minas Gerais State

    Directory of Open Access Journals (Sweden)

    Renato Pereira de Andrade


    Full Text Available Acid drainage results from exposition of sulfides to the atmosphere. Arsenopyrite is a sulfide that releases arsenic (As to the environment when oxidized. This work evaluated the As mobility in six sulfidic geomaterials from gold mining areas in Minas Gerais State, Brazil. Grained samples (<2 mm were periodically leached with distilled water, during 70 days. Results suggested As sorption onto (hydroxides formed by oxidation of arsenopyrite. Low pH accelerated the acid generation, dissolving Fe oxihydroxides and releasing As. Presence of carbonates decreased oxidation rates and As release. On the other hand, lime added to a partially oxidized sample increased As mobilization.

  3. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms (United States)

    Villahermosa, Desirée; Corzo, Alfonso; Garcia-Robledo, Emilio; González, Juan M.; Papaspyrou, Sokratis


    Nitrate decreases sulfide release in wastewater treatment plants (WWTP), but little is known on how it affects the microzonation and kinetics of related microbial processes within the biofilm. The effect of nitrate addition on these properties for sulfate reduction, sulfide oxidation, and oxygen respiration were studied with the use of microelectrodes in microaerophilic wastewater biofilms. Mass balance calaculations and community composition analysis were also performed. At basal WWTP conditions, the biofilm presented a double-layer system. The upper microaerophilic layer (~300 μm) showed low sulfide production (0.31 μmol cm-3 h-1) and oxygen consumption rates (0.01 μmol cm-3 h-1). The anoxic lower layer showed high sulfide production (2.7 μmol cm-3 h-1). Nitrate addition decreased net sulfide production rates, caused by an increase in sulfide oxidation rates (SOR) in the upper layer, rather than an inhibition of sulfate reducing bacteria (SRB). This suggests that the indigenous nitrate reducing-sulfide oxidizing bacteria (NR-SOB) were immediately activated by nitrate. The functional vertical structure of the biofilm changed to a triple-layer system, where the previously upper sulfide-producing layer in the absence of nitrate split into two new layers: 1) an upper sulfide-consuming layer, whose thickness is probably determined by the nitrate penetration depth within the biofilm, and 2) a middle layer producing sulfide at an even higher rate than in the absence of nitrate in some cases. Below these layers, the lower net sulfide-producing layer remained unaffected. Net SOR varied from 0.05 to 0.72 μmol cm-3 h-1 depending on nitrate and sulfate availability. Addition of low nitrate concentrations likely increased sulfate availability within the biofilm and resulted in an increase of both net sulfate reduction and net sulfide oxidation by overcoming sulfate diffusional limitation from the water phase and the strong coupling between SRB and NR-SOB syntrophic

  4. Metal-organic frameworks for the storage and delivery of biologically active hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Allan, Phoebe K; Wheatley, Paul S; Aldous, David; Mohideen, M Infas; Tang, Chiu; Hriljac, Joseph A; Megson, Ian L; Chapman, Karena W; De Weireld, Guy; Vaesen, Sebastian; Morris, Russell E [St Andrews


    Hydrogen sulfide is an extremely toxic gas that is also of great interest for biological applications when delivered in the correct amount and at the desired rate. Here we show that the highly porous metal-organic frameworks with the CPO-27 structure can bind the hydrogen sulfide relatively strongly, allowing the storage of the gas for at least several months. Delivered gas is biologically active in preliminary vasodilation studies of porcine arteries, and the structure of the hydrogen sulfide molecules inside the framework has been elucidated using a combination of powder X-ray diffraction and pair distribution function analysis.

  5. Selective Sensing of Fe(3+) and Al(3+) Ions and Detection of 2,4,6-Trinitrophenol by a Water-Stable Terbium-Based Metal-Organic Framework. (United States)

    Cao, Li-Hui; Shi, Fang; Zhang, Wen-Min; Zang, Shuang-Quan; Mak, Thomas C W


    A water-stable luminescent terbium-based metal-organic framework (MOF), {[Tb(L1 )1.5 (H2 O)]⋅3 H2 O}n (Tb-MOF), with rod-shaped secondary building units (SBUs) and honeycomb-type tubular channels has been synthesized and structurally characterized by single-crystal X-ray diffraction. The high green emission intensity and the microporous nature of the Tb-MOF indicate that it can potentially be used as a luminescent sensor. In this work, we show that Tb-MOF can selectively sense Fe(3+) and Al(3+) ions from mixed metal ions in water through different detection mechanisms. In addition, it also exhibits high sensitivity for 2,4,6-trinitrophenol (TNP) in the presence of other nitro aromatic compounds in aqueous solution by luminescence quenching experiments. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effect of inoculum and sulfide type on simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry and microbial mechanism. (United States)

    Wang, Lan; Wei, Benping; Chen, Ziai; Deng, Liangwei; Song, Li; Wang, Shuang; Zheng, Dan; Liu, Yi; Pu, Xiaodong; Zhang, Yunhong


    Four reactors were initiated to study the effect of inoculum and sulfide type on the simultaneous hydrogen sulfide removal from biogas and nitrogen removal from swine slurry (Ssu-Nir) process. Anaerobic sludge, aerobic sludge, and water were used as inocula, and Na2S and biogas were used as a sulfide substrate, respectively. Additionally, 454 pyrosequencing of the 16S rRNA gene was used to explore the bacterial diversity. The results showed that sulfur-oxidizing bacteria (Thiobacillus, 42.2-84.4 %) were dominant in Ssu-Nir process and led to the excellent performance. Aerobic sludge was more suitable for inoculation of the Ssu-Nir process because it is better for rapidly enriching dominant sulfur-oxidizing bacteria (Thiobacillus, 54.4 %), denitrifying sulfur-oxidizing bacteria (40.0 %) and denitrifiers (23.9 %). Lower S(2-) removal efficiency (72.6 %) and NO3 (-) removal efficiency (biogas as a sulfide substrate than when Na2S was used. For the Ssu-Nir process with biogas as the sulfide substrate, limiting H2S absorption caused a high relative abundance of sulfur-oxidizing bacteria, Thiobacillus (84.8 %) and Thiobacillus sayanicus (39.6 %), which in turn led to low relative abundance of denitrifiers (1.6 %) and denitrifying sulfur-oxidizing bacteria (24.4 %), low NO3 (-) removal efficiency, and eventually poor performance.

  7. Band offset in zinc oxy-sulfide/cubic-tin sulfide interface from X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sanal, K.C.; Nair, P.K.; Nair, M.T.S., E-mail:


    Highlights: • Zinc oxy-sulfide thin films, 175–240 nm, deposited by rf-sputtering from targets of ZnO + ZnS. • Oxygen content in thin films is enhanced 3–4 times compared with that in ZnO:ZnS targets. • Thin film ZnO{sub x}S{sub 1−x} with x = 0.88–0.27 and optical band gap 2.8–3.2 eV is suitable for solar cells. • The conduction band offset with SnS of cubic structure studied by XPS are +0.41 to −0.28 eV. - Abstract: Zinc oxy-sulfide, ZnO{sub x}S{sub 1−x}, has been found to provide better band alignment in thin film solar cells of tin sulfide of orthorhombic crystalline structure. Here we examine ZnO{sub x}S{sub 1−x}/SnS-CUB interface, in which the ZnO{sub x}S{sub 1−x} thin film was deposited by radio frequency (rf) magnetron sputtering on SnS thin film of cubic (CUB) crystalline structure with a band gap (E{sub g}) of 1.72 eV, obtained via chemical deposition. X-ray photoelectron spectroscopy provides the valence band maxima of the materials and hence places the conduction band offset of 0.41 eV for SnS-CUB/ZnO{sub 0.27}S{sub 0.73} and −0.28 eV for SnS-CUB/ZnO{sub 0.88}S{sub 0.12} interfaces. Thin films of ZnO{sub x}S{sub 1−x} with 175–240 nm in thickness were deposited from targets prepared with different ZnO to ZnS molar ratios. With the target of molar ratio of 1:13.4, the thin films are of composition ZnO{sub 0.27}S{sub 0.73} with hexagonal crystalline structure and with that of 1:1.7 ratio, it is ZnO{sub 0.88}S{sub 0.12}. The optical band gap of the ZnO{sub x}S{sub 1−x} thin films varies from 2.90 eV to 3.21 eV as the sulfur to zinc ratio in the film increases from 0.12:1 to 0.73:1 as determined from X-ray diffraction patterns. Thus, band offsets sought for absorber materials and zinc oxy-sulfide in solar cells may be achieved through a choice of ZnO:ZnS ratio in the sputtering target.

  8. Picomolar traces of americium(III) introduce drastic changes in the structural chemistry of terbium(III). A break in the ''gadolinium break''

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Jan M. [TU Wien, Atominstitut, Vienna (Austria); Mueller, Danny; Knoll, Christian; Wilkovitsch, Martin; Weinberger, Peter [TU Wien, Institute of Applied Synthetic Chemistry, Vienna (Austria); Giester, Gerald [University of Vienna, Institute of Mineralogy and Crystallography, Vienna (Austria); Ofner, Johannes; Lendl, Bernhard [TU Wien, Institute of Chemical Technologies and Analytics, Vienna (Austria); Steinhauser, Georg [Leibniz Universitaet Hannover, Institute of Radioecology and Radiation Protection (Germany)


    The crystallization of terbium 5,5{sup '}-azobis[1H-tetrazol-1-ide] (ZT) in the presence of trace amounts (ca. 50 Bq, ca. 1.6 pmol) of americium results in 1) the accumulation of the americium tracer in the crystalline solid and 2) a material that adopts a different crystal structure to that formed in the absence of americium. Americium-doped [Tb(Am)(H{sub 2}O){sub 7}ZT]{sub 2} ZT.10 H{sub 2}O is isostructural to light lanthanide (Ce-Gd) 5,5{sup '}-azobis[1H-tetrazol-1-ide] compounds, rather than to the heavy lanthanide (Tb-Lu) 5,5{sup '}-azobis[1H-tetrazol-1-ide] (e.g., [Tb(H{sub 2}O){sub 8}]{sub 2}ZT{sub 3}.6 H{sub 2}O) derivatives. Traces of Am seem to force the Tb compound into a structure normally preferred by the lighter lanthanides, despite a 10{sup 8}-fold Tb excess. The americium-doped material was studied by single-crystal X-ray diffraction, vibrational spectroscopy, radiochemical neutron activation analysis, and scanning electron microscopy. In addition, the inclusion properties of terbium 5,5{sup '}-azobis[1H-tetrazol-1-ide] towards americium were quantified, and a model for the crystallization process is proposed. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Sulfide mineralization in ultramafic rocks of the Faryab ophiolite complex, southern Kerman

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Rajabzadeh


    Full Text Available Introduction Worldwide, Ni-Cu and PGE magmatic sulfide deposits are confined to the lower parts of stratiform mafic and ultramafic complexes. However, ophiolite mafic and ultramafic complexes have been rarely explored for sulfide deposits despite the fact that they have been extensively explored and exploited for chromite. Sulfide saturation during magmatic evolution is necessary for sulfide mineralization, in which sulfide melts scavenge chalcophile metals from the parent magma and concentrate them in specific lithological zones. The lack of exploration for sulfides in this environment suggests that sulfide saturation is rarely attained in ophiolite-related magmas. Some ophiolites, however, contain sulfide deposits, such as at Acoje in Philippines, and Cliffs in Shetland, U.K. (Evans, 2000; Naldrett, 2004. The Faryab ophiolite complex in southern Kerman Province, the most important mining area for chromite deposits in Iran, is located in the southwest part of the Makran Zone. Evidence of sulfide mineralization has been reported there by some authors (e.g. Rajabzadeh and Moosavinasab, 2013. This paper discusses the genesis of sulfides in the Faryab ophiolite using mineral chemistry of the major mineral phases in different rocks of the ophiolite column in order to determine the possible lithological location of sulfide deposits. Materials and methods Seventy three rock samples from cumulate units were collected from surficial occurrences and drill core. The samples were studied using conventional microscopic methods and the mineralogy confirmed by x-ray diffraction. Electron microprobe analysis was carried out on different mineral phases in order to determine the chemistry of the minerals used in the interpretation of magma evolution in the Faryab ophiolite. Lithologically, the Faryab ophiolite complex is divided into two major parts: the northern part includes magmatic rocks and the southern part is comprised of rocks residual after partial

  10. Synthesis, Internal Structure, and Formation Mechanism of Monodisperse Tin Sulfide Nanoplatelets

    NARCIS (Netherlands)

    de Kergommeaux, Antoine; Lopez-Haro, Miguel; Pouget, Stéphanie; Zuo, Jian-Min; Lebrun, Colette; Chandezon, Frédéric; Aldakov, Dmitry; Reiss, Peter


    Tin sulfide nanoparticles have a great potential for use in a broad range of applications related to solar energy conversion (photovoltaics, photocatalysis), electrochemical energy storage, and thermoelectrics. The development of chemical synthesis methods allowing for the precise control of size,

  11. Biological Synthesis of Size-Controlled Cadmium Sulfide Nanoparticles Using ImmobilizedRhodobacter sphaeroides

    Directory of Open Access Journals (Sweden)

    Zhang Zhaoming


    Full Text Available Abstract Size-controlled cadmium sulfide nanoparticles were successfully synthesized by immobilizedRhodobacter sphaeroidesin the study. The dynamic process that Cd2+was transported from solution into cell by livingR. sphaeroideswas characterized by transmission electron microscopy (TEM. Culture time, as an important physiological parameter forR. sphaeroidesgrowth, could significantly control the size of cadmium sulfide nanoparticles. TEM demonstrated that the average sizes of spherical cadmium sulfide nanoparticles were 2.3 ± 0.15, 6.8 ± 0.22, and 36.8 ± 0.25 nm at culture times of 36, 42, and 48 h, respectively. Also, the UV–vis and photoluminescence spectral analysis of cadmium sulfide nanoparticles were performed.

  12. [An investigation of an accident of occupational acute hydrogen sulfide poisoning]. (United States)

    Zhang, Z C; Liu, J L; Jian, X D; Wang, K


    Objective: To investigate an accident of occupational acute hydrogen sulfide poisoning, and to analyze related clinical data. Methods: An investigation was performed for an accident of occupational acute hydrogen sulfide poisoning in a place in Shandong, China, in July 2016, and related clinical data were summarized. Results: This was a typical accident of occupational acute hydrogen sulfide poisoning, and a lack of occupational protection and illegal operation were the major causes of this accident. Of all five patients, four experienced coma, toxic encephalopathy, and respiratory failure and were cured at last, and one had cortical syndrome after long-term treatment and died of pulmonary infection seven months later. Conclusions: In case of occupational acute hydrogen sulfide poisoning, rescuers should help the persons who are poisoned reasonably and meanwhile ensure their own safety.

  13. Human health cost of hydrogen sulfide air pollution from an oil and gas Field

    National Research Council Canada - National Science Library

    Dinara Kenessary; Almas Kenessary; Ussen Ismailovich Kenessariyev; Konrad Juszkiewicz; Meiram Kazievich Amrin; Aya Eralovna Erzhanova


    ...) in Central Asia, is surrounded by 10 settlements with a total population of 9,000 people. Approximately73% of this population constantly mention a specific odour of rotten eggs in the air, typical for hydrogen sulfide...

  14. Development of novel and sensitive methods for the determination of sulfide in aqueous samples by hydrogen sulfide generation-inductively coupled plasma-atomic emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Colon, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Todoli, J.L. [Departamento de Quimica Analitica, Nutricion y Bromatologia, University of Alicante, 03080 Alicante (Spain); Hidalgo, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain); Iglesias, M. [Department of Chemistry, University of Girona, Campus Montilivi, 17071 Girona (Spain)], E-mail:


    Two new, simple and accurate methods for the determination of sulfide (S{sup 2-}) at low levels ({mu}g L{sup -1}) in aqueous samples were developed. The generation of hydrogen sulfide (H{sub 2}S) took place in a coil where sulfide reacted with hydrochloric acid. The resulting H{sub 2}S was then introduced as a vapor into an inductively coupled plasma-atomic emission spectrometer (ICP-AES) and sulfur emission intensity was measured at 180.669 nm. In comparison to when aqueous sulfide was introduced, the introduction of sulfur as H{sub 2}S enhanced the sulfur signal emission. By setting a gas separator at the end of the reaction coil, reduced sulfur species in the form of H{sub 2}S were removed from the water matrix, thus, interferences could be avoided. Alternatively, the gas separator was replaced by a nebulizer/spray chamber combination to introduce the sample matrix and reagents into the plasma. This methodology allowed the determination of both sulfide and sulfate in aqueous samples. For both methods the linear response was found to range from 5 {mu}g L{sup -1} to 25 mg L{sup -1} of sulfide. Detection limits of 5 {mu}g L{sup -1} and 6 {mu}g L{sup -1} were obtained with and without the gas separator, respectively. These new methods were evaluated by comparison to the standard potentiometric method and were successfully applied to the analysis of reduced sulfur species in environmental waters.

  15. Polysulfides as Intermediates in the Oxidation of Sulfide to Sulfate by Beggiatoa spp. (United States)

    Schwedt, Anne; Kreutzmann, Anne-Christin; Kuypers, Marcel M. M.; Milucka, Jana


    Zero-valent sulfur is a key intermediate in the microbial oxidation of sulfide to sulfate. Many sulfide-oxidizing bacteria produce and store large amounts of sulfur intra- or extracellularly. It is still not understood how the stored sulfur is metabolized, as the most stable form of S0 under standard biological conditions, orthorhombic α-sulfur, is most likely inaccessible to bacterial enzymes. Here we analyzed the speciation of sulfur in single cells of living sulfide-oxidizing bacteria via Raman spectroscopy. Our results showed that under various ecological and physiological conditions, all three investigated Beggiatoa strains stored sulfur as a combination of cyclooctasulfur (S8) and inorganic polysulfides (Sn2−). Linear sulfur chains were detected during both the oxidation and reduction of stored sulfur, suggesting that Sn2− species represent a universal pool of bioavailable sulfur. Formation of polysulfides due to the cleavage of sulfur rings could occur biologically by thiol-containing enzymes or chemically by the strong nucleophile HS− as Beggiatoa migrates vertically between oxic and sulfidic zones in the environment. Most Beggiatoa spp. thus far studied can oxidize sulfur further to sulfate. Our results suggest that the ratio of produced sulfur and sulfate varies depending on the sulfide flux. Almost all of the sulfide was oxidized directly to sulfate under low-sulfide-flux conditions, whereas only 50% was oxidized to sulfate under high-sulfide-flux conditions leading to S0 deposition. With Raman spectroscopy we could show that sulfate accumulated in Beggiatoa filaments, reaching intracellular concentrations of 0.72 to 1.73 M. PMID:24212585

  16. Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers. (United States)

    Lin, Hui-Wen; Kustermans, Caroline; Vaiopoulou, Eleni; Prévoteau, Antonin; Rabaey, Korneel; Yuan, Zhiguo; Pikaar, Ilje


    The addition of iron salts is one of the most commonly used dosing strategies for sulfide control in sewers. However, iron salts decrease the sewage pH which not only reduces the effectiveness of sulfide precipitation but also enhances the release of residual sulfide to the sewer atmosphere. Equally important, concentrated iron salt solutions are corrosive and their frequent transport, handling, and on-site storage often come with Occupational Health and Safety (OH&S) concerns. Here, we experimentally demonstrated a novel sulfide control approach using electrochemical systems with parallel placed iron electrodes. This enabled combining anodic dissolved iron species release with cathodic hydroxyl anion production, which alleviates all the aforementioned concerns. A long-term experiment was successfully carried out achieving an average sulfide removal efficiency of 95.4 ± 4.4% at low voltage input of 2.90 ± 0.54 V over the course of 8 weeks. This electrochemical method was demonstrated to successfully achieve efficient sulfide control. In addition, it increases the sewage pH, thereby overcoming the drawbacks associated with the pH decrease in the case of conventional iron salt dosing. Ferrous ions were produced at an overall coulombic efficiency (CE) of 98.2 ± 1.2%, whereas oxygen evolution and direct sulfide oxidation were not observed. Short-term experiments showed that increasing either inter-electrode gap or current density increased the cell voltage associated with the increase in the ohmic drop of the system. Overall, this study highlights the practical potential of in-situ generation of dissolved iron species and simultaneous hydroxyl anion generation for efficient sulfide control in sewers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Surfactant-directed synthesis of branched bismuth telluride/sulfide core/shell nanorods. (United States)

    Purkayastha, Arup; Yan, Qingyu; Raghuveer, Makala S; Gandhi, Darshan D; Li, Huafang; Liu, Zhong W; Ramanujan, Raju V; Borca-Tasciuc, Theodorian; Ramanath, Ganapathiraman


    Branched core/shell bismuth telluride/bismuth sulfide nanorod heterostructures are prepared by using a biomimetic surfactant, L-glutathionic acid. Trigonal nanocrystals of bismuth telluride are encapsulated by nanoscopic shells of orthorhombic bismuth sulfide. Crystallographic twinning causes shell branching. Such heteronanostructures are attractive for thermoelectric power generation and cooling applications. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Corrosion Protection of Steel and Bond Durability at Polyphenylene Sulfide-to-Anhydrous Zinc Phosphate Interfaces (United States)


    Corrosion Protection of Steel and Bond Durability at Polyphenylene Sulfide-to-Anhydrous Zinc Phosphate Interfaces 12 PERSONAL AUTHOR(S) T. Sugana. and...anhydrous zinc phosphate I Zn -Ph )conversion coatings containing poly (acid) inhvdride as an inter- facial tailoring material. The factors contributing to...Sulfide-to-Anhydrous Zinc Phosphate Interfaces T. SUGAMA* and N. R. CARCIELLO Energy Efficiency and Conservation Division, Department of Applied Science

  19. Metal sulfide and rare-earth phosphate nanostructures and methods of making same (United States)

    Wong, Stanislaus; Zhang, Fen


    The present invention provides a method of producing a crystalline metal sulfide nanostructure. The metal is a transitional metal or a Group IV metal. In the method, a porous membrane is placed between a metal precursor solution and a sulfur precursor solution. The metal cations of the metal precursor solution and sulfur ions of the sulfur precursor solution react, thereby producing a crystalline metal sulfide nanostructure.

  20. Temporal variability of Oscillatoria sp. in extreme environment: a sulfide-rich spring outflow


    Reul, Andreas; Martín-Clemente, Elena; Melero Jiménez, Ignacio José; Hernández-López, Miguel; Toro, Francisco Javier; Bañares-España, Elena; Flores-Moya, Antonio; García-Sánchez, María Jesús


    Backgrounds The Hedionda Spa (Andalucía, southern Spain) is a sulfide-rich spring outflow, but despite the inhibitory effect of sulfide on photosynthesis, a phytoplankton community inhabits this extreme environment. Objectives To analize the phytoplanktonic groups present in La Hedionda Spa along an annual cycle, and to study the possible correlation between sulphide concentration and the presence of different groups. Methods A monthly and weekly sampling was started on Marc...

  1. Sulfide induction of synthesis of a periplasmic protein in the cyanobacterium Oscillatoria limnetica.


    Arieli, B; Binder, B; Shahak, Y; Padan, E


    Two proteins which may play a role in the induction of anoxygenic photosynthesis in Oscillatoria limnetica have been demonstrated by comparing the pattern of labeling during pulses of [35S]methionine of cells incubated under inducing conditions [anaerobic conditions plus 3-(3,4-dichlorophenyl)-1,1-dimethylurea, light, and sulfide) with that of cells incubated under noninducing conditions (without sulfide). The major inducible protein has an apparent molecular mass of 11.5 kilodaltons and is a...

  2. Total plasma sulfide as a marker of shock severity in nonsurgical adult patients. (United States)

    Goslar, Tomaž; Marš, Tomaž; Podbregar, Matej


    Previous animal and human studies have suggested that total plasma sulfide plays a role in the pathophysiology of shock. This study's aim was to determine the value of total plasma sulfide as a marker of shock severity in nonsurgical adult patients admitted to the ICU. Forty-one patients, with various types of shock (septic, cardiogenic, obstructive, and hypovolemic), were included in the study, with an average total plasma sulfide concentration of 23.2 ± 26.3 µM. Survivors (of shock) had lower total plasma sulfide concentrations than nonsurvivors (13.0 ± 26.3 vs. 31.9 ± 31.5 µM; P = 0.02). Total plasma sulfide correlated with dose of administered norepinephrine (R linear = 0.829; P = 0.001) and with Acute Physiology and Chronic Health Evaluation II (APACHE II) score (R cubic = 0.767; P = 0.001). Area under the receiver operating characteristic for total plasma sulfide as a predictor of ICU mortality was 0.739 (confidence interval, 0.587-0.892; P = 0.009). Even after correcting for APACHE II score and lactate values, total plasma sulfide correlated with mortality (odds ratio, 1.058; 95% confidence interval, 1.001-1.118; P = 0.045). The study provides evidence that, in nonsurgical adult ICU patients admitted because of any type of shock, total plasma sulfide correlates with administered norepinephrine dose at admission, severity of disease (APACHE II score ≥30 points), and survival outcome.

  3. Nanoscale Zero-Valent Iron for Sulfide Removal from Digested Piggery Wastewater

    Directory of Open Access Journals (Sweden)

    Sheng-Hsun Chaung


    Full Text Available The removal of dissolved sulfides in water and wastewater by nanoscale zero-valent iron (nZVI was examined in the study. Both laboratory batch studies and a pilot test in a 50,000-pig farm were conducted. Laboratory studies indicated that the sulfide removal with nZVI was a function of pH where an increase in pH decreased removal rates. The pH effect on the sulfide removal with nZVI is attributed to the formation of FeS through the precipitation of Fe(II and sulfide. The saturated adsorption capacities determined by the Langmuir model were 821.2, 486.3, and 359.7 mg/g at pH values 4, 7, and 12, respectively, for nZVI, largely higher than conventional adsorbents such as activated carbon and impregnated activated carbon. The surface characterization of sulfide-laden nZVI using XPS and TGA indicated the formation of iron sulfide, disulfide, and polysulfide that may account for the high adsorption capacity of nZVI towards sulfide. The pilot study showed the effectiveness of nZVI for sulfide removal; however, the adsorption capacity is almost 50 times less than that determined in the laboratory studies during the testing period of 30 d. The complexity of digested wastewater constituents may limit the effectiveness of nZVI. Microbial analysis suggested that the impact of nZVI on the change of microbial species distribution was relatively noticeable after the addition of nZVI.

  4. Biosynthesis and urinary excretion of methyl sulfonium derivatives of the sulfur mustard analog, 2-chloroethyl ethyl sulfide, and other thioethers. (United States)

    Mozier, N M; Hoffman, J L


    Thioether methyltransferase was previously shown to catalyze the S-adenosylmethionine-dependent methylation of dimethyl selenide, dimethyl telluride, and various thioethers to produce the corresponding methyl onium ions. In this paper we show that the following thioethers are also substrates for this enzyme in vitro: 2-hydroxyethyl ethyl sulfide, 2-chloroethyl ethyl sulfide, thiodiglycol, t-butyl sulfide, and isopropyl sulfide. To demonstrate thioether methylation in vivo, mice were injected with [methyl-3H]methionine plus different thioethers, and extracts of lungs, livers, kidneys, and urine were analyzed by high-performance liquid chromatography for the presence of [3H]methyl sulfonium ions. The following thioethers were tested, and all were found to be methylated in vivo: dimethyl sulfide, diethyl sulfide, methyl n-propyl sulfide, tetrahydrothiophene, 2-(methylthio)ethylamine, 2-hydroxyethyl ethyl sulfide, and 2-chloroethyl ethyl sulfide. This supports our hypothesis that the physiological role of thioether methyltransferase is to methylate seleno-, telluro-, and thioethers to more water-soluble onium ions suitable for urinary excretion. Conversion of the mustard gas analog, 2-chloroethyl ethyl sulfide, to the methyl sulfonium derivative represents a newly discovered mechanism for biochemical detoxification of sulfur mustards, as this conversion blocks formation of the reactive episulfonium ion that is the ultimate alkylating agent for this class of compounds.

  5. Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device

    Directory of Open Access Journals (Sweden)

    Peter Fremerey


    Full Text Available In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H2S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions.

  6. Why does the Conductivity of a Nickel Catalyst Increase during Sulfidation? An Exemplary Study Using an In Operando Sensor Device. (United States)

    Fremerey, Peter; Jess, Andreas; Moos, Ralf


    In order to study the sulfidation of a catalyst fixed bed, an in operando single pellet sensor was designed. A catalyst pellet from the fixed bed was electrically contacted and its electrical response was correlated with the catalyst behavior. For the sulfidation tests, a nickel catalyst was used and was sulfidized with H₂S. This catalyst had a very low conductivity in the reduced state. During sulfidation, the conductivity of the catalyst increased by decades. A reaction from nickel to nickel sulfide occurred. This conductivity increase by decades during sulfidation had not been expected since both nickel and nickel sulfides behave metallic. Only by assuming a percolation phenomenon that originates from a volume increase of the nickel contacts when reacting to nickel sulfides, this effect can be explained. This assumption was supported by sulfidation tests with differently nickel loaded catalysts and it was quantitatively estimated by a general effective media theory. The single pellet sensor device for in operando investigation of sulfidation can be considered as a valuable tool to get further insights into catalysts under reaction conditions.

  7. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell. (United States)

    Sun, Min; Tong, Zhong-Hua; Sheng, Guo-Ping; Chen, Yong-Zhen; Zhang, Feng; Mu, Zhe-Xuan; Wang, Hua-Lin; Zeng, Raymond J; Liu, Xian-Wei; Yu, Han-Qing; Wei, Li; Ma, Fang


    Simultaneous electricity generation and sulfide removal can be achieved in a microbial fuel cell (MFC). In electricity harvesting from sulfide oxidation in such an MFC, various microbial communities are involved. It is essential to elucidate the microbial communities and their roles in the sulfide conversion and electricity generation. In this work, an MFC was constructed to enrich a microbial consortium, which could harvest electricity from sulfide oxidation. Electrochemical analysis demonstrated that microbial catalysis was involved in electricity output in the sulfide-fed MFC. The anode-attached and planktonic communities could perform catalysis independently, and synergistic interactions occurred when the two communities worked together. A 16S rRNA clone library analysis was employed to characterize the microbial communities in the MFC. The anode-attached and planktonic communities shared similar richness and diversity, while the LIBSHUFF analysis revealed that the two community structures were significantly different. The exoelectrogenic, sulfur-oxidizing and sulfate-reducing bacteria were found in the MFC anodic chamber. The discovery of these bacteria was consistent with the community characteristics for electricity generation from sulfide oxidation. The exoelectrogenic bacteria were found both on the anode and in the solution. The sulfur-oxidizing bacteria were present in greater abundance on the anode than in the solution, while the sulfate-reducing bacteria preferably lived in the solution. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Monitoring bacterial community shifts in bioleaching of Ni-Cu sulfide. (United States)

    He, Zhiguo; Zhao, Jiancun; Gao, Fengling; Hu, Yuehua; Qiu, Guanzhou


    The microbial ecology of the bioleaching of Ni-Cu sulfide is poorly understood and little effort has been made to handle the microbiological components of these processes. In this study, denaturing gradient gel electrophoresis (DGGE) analysis of PCR-amplified 16S rRNA genes fragments from bacteria was used to evaluate the changes of the bacterial community in the process of Ni-Cu sulfide bioleaching in a shaken flask system. The results revealed that the bacterial community was disturbed after the addition of Ni-Cu sulfide. Phylogenetic analyses of 16S rRNA fragments revealed that the retrieved sequences clustered together with the genera Acidithiobacillus and Leptospirillum. Multidimensional scaling (MDS) and cluster analysis of DGGE-banding patterns revealed that the process of Ni-Cu sulfide bioleaching in 46days was divided into three stages. During the bioleaching process of Ni-Cu sulfide, Leptospirillum was always dominant. The genera Acidithiobacillus was only detected at early and later stages of the bioleaching process. These results extend our knowledge on microbial dynamics in Ni-Cu sulfide bioleaching, a key issue required to improve commercial applications. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Spectrophotometric method for determination of sulfide with iron(III) and nitrilotriacetic acid by flow injection. (United States)

    Kester, M D; Shiundu, P M; Wade, A P


    A manual colorimetric method for determination of sulfide has been adapted to flow injection, systematically optimized, and more fully characterized. Its intended application is for measurement of sodium sulfide reagent strength in pulp process streams, and sulfide contamination in effluent from Kraft pulp mills. In the flow-injection method developed, a sample solution containing sulfide is reacted with a mixture of iron(III) and nitrilotriacetic acid under ammoniacal conditions. The absorbance of the intensely-colored green product of this reaction is measured at 636 nm. Excess sulfite is present as a color stabilizer. A linear dynamic range of 20-100 ppm sulfide is readily achieved; the relative standard deviation is less than 1.2% (n = 10) throughout this range, and 0.37% (n = 10) midrange at 60 ppm. The usable dynamic range is 8-250 ppm sulfide. Long-term stability of the method is ensured by periodically performing an automatic cleaning cycle using a hydrochloric acid wash solution. This prevents tube discoloration and removes any precipitates which are formed under strongly alkaline conditions. The sample throuhput rate is at least 30/hr, given alternate acid wash cycles.

  10. Potential biological chemistry of hydrogen sulfide (H2S) with the nitrogen oxides. (United States)

    Bruce King, S


    Hydrogen sulfide, an important gaseous signaling agent generated in numerous biological tissues, influences many physiological processes. This biological profile seems reminiscent of nitric oxide, another important endogenously synthesized gaseous signaling molecule. Hydrogen sulfide reacts with nitric oxide or oxidized forms of nitric oxide and nitric oxide donors in vitro to form species that display distinct biology compared to both hydrogen sulfide and NO. The products of these interesting reactions may include small-molecule S-nitrosothiols or nitroxyl, the one-electron-reduced form of nitric oxide. In addition, thionitrous acid or thionitrite, compounds structurally analogous to nitrous acid and nitrite, may constitute a portion of the reaction products. Both the chemistry and the biology of thionitrous acid and thionitrite, compared to nitric oxide or hydrogen sulfide, remain poorly defined. General mechanisms for the formation of S-nitrosothiols, nitroxyl, and thionitrous acid based upon the ability of hydrogen sulfide to act as a nucleophile and a reducing agent with reactive nitric oxide-based intermediates are proposed. Hydrogen sulfide reactivity seems extensive and could have an impact on numerous areas of redox-controlled biology and chemistry, warranting more work in this exciting and developing area. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Reaction mechanism and kinetics of sulfide copper concentrate oxidation at elevated temperatures

    Directory of Open Access Journals (Sweden)

    Aleksandra Mitovski


    Full Text Available Sulfide copper concentrate from domestic ore deposit (Bor, Serbia was subjected to oxidation in the air atmosphere due to a better understanding of reaction mechanism and oxidation of various sulfides present in the copper concentrate at elevated temperatures. Results of the initial sample characterization showed that concentrate is chalcopyrite–enargite-tennantite type, with an increased arsenic content. Characterization of the oxidation products showed the presence of sulfates, oxysulfates, and oxides. Based on predominance area diagrams for Me-S-O systems (Me = Cu, Fe, As combined with thermal analysis results, the reaction mechanism of the oxidation process was proposed. The reactions which occur in the temperature range 25 – 1000 °C indicate that sulfides are unstable in the oxidative conditions. Sulfides from the initial sample decomposed into binary copper and iron sulfides and volatile arsenic oxides at lower temperatures. Further heating led to oxidation of sulfides into iron oxides and copper sulfates and oxysulfates. At higher temperatures sulfates and oxysulfates decomposed into oxides. Kinetic analysis of the oxidation process was done using Ozawa’s method in the non-isothermal conditions. The values for activation energies showed that the reactions are chemically controlled and the temperature is the most influential parameter on the reaction rates.

  12. Potential for biogeochemical cycling of sulfur, iron and carbon within massive sulfide deposits below the seafloor. (United States)

    Kato, Shingo; Ikehata, Kei; Shibuya, Takazo; Urabe, Tetsuro; Ohkuma, Moriya; Yamagishi, Akihiko


    Seafloor massive sulfides are a potential energy source for the support of chemosynthetic ecosystems in dark, deep-sea environments; however, little is known about microbial communities in these ecosystems, especially below the seafloor. In the present study, we performed culture-independent molecular analyses of sub-seafloor sulfide samples collected in the Southern Mariana Trough by drilling. The depth for the samples ranged from 0.52 m to 2.67 m below the seafloor. A combination of 16S rRNA and functional gene analyses suggested the presence of chemoautotrophs, sulfur-oxidizers, sulfate-reducers, iron-oxidizers and iron-reducers. In addition, mineralogical and thermodynamic analyses are consistent with chemosynthetic microbial communities sustained by sulfide minerals below the seafloor. Although distinct bacterial community compositions were found among the sub-seafloor sulfide samples and hydrothermally inactive sulfide chimneys on the seafloor collected from various areas, we also found common bacterial members at species level including the sulfur-oxidizers and sulfate-reducers, suggesting that the common members are widely distributed within massive sulfide deposits on and below the seafloor and play a key role in the ecosystem function. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment. (United States)

    Marzocchi, Ugo; Trojan, Daniela; Larsen, Steffen; Meyer, Rikke Louise; Revsbech, Niels Peter; Schramm, Andreas; Nielsen, Lars Peter; Risgaard-Petersen, Nils


    Filamentous bacteria of the Desulfobulbaceae family can conduct electrons over centimeter-long distances thereby coupling oxygen reduction at the surface of marine sediment to sulfide oxidation in deeper anoxic layers. The ability of these cable bacteria to use alternative electron acceptors is currently unknown. Here we show that these organisms can use also nitrate or nitrite as an electron acceptor thereby coupling the reduction of nitrate to distant oxidation of sulfide. Sulfidic marine sediment was incubated with overlying nitrate-amended anoxic seawater. Within 2 months, electric coupling of spatially segregated nitrate reduction and sulfide oxidation was evident from: (1) the formation of a 4-6-mm-deep zone separating sulfide oxidation from the associated nitrate reduction, and (2) the presence of pH signatures consistent with proton consumption by cathodic nitrate reduction, and proton production by anodic sulfide oxidation. Filamentous Desulfobulbaceae with the longitudinal structures characteristic of cable bacteria were detected in anoxic, nitrate-amended incubations but not in anoxic, nitrate-free controls. Nitrate reduction by cable bacteria using long-distance electron transport to get privileged access to distant electron donors is a hitherto unknown mechanism in nitrogen and sulfur transformations, and the quantitative importance for elements cycling remains to be addressed.

  14. Reduced ternary molybdenum and tungsten sulfides and hydroprocessing catalysis therewith (United States)

    Hilsenbeck, S.J.; McCarley, R.E.; Schrader, G.L.; Xie, X.B.


    New amorphous molybdenum/tungsten sulfides with the general formula M{sup n+}{sub 2x/n}(L{sub 6}S{sub 8})S{sub x}, where L is molybdenum or tungsten and M is a ternary metal, has been developed. Characterization of these amorphous materials by chemical and spectroscopic methods (IR, Raman, PES) shows that the (M{sub 6}S{sub 8}){sup 0} cluster units are present. Vacuum thermolysis of the amorphous Na{sub 2x}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH first produces poorly crystalline NaMo{sub 6}S{sub 8} by disproportionation at 800 C and well-crystallized NaMo{sub 6}S{sub 8} at {>=} 900 C. Ion-exchange of the sodium material in methanol with soluble M{sup 2+} and M{sup 3+} salts (M=Sn, Co, Ni, Pb, La, Ho) produces the M{sup n+}{sub 2x/n}(Mo{sub 6}S{sub 8})S{sub x}{hor_ellipsis}yMeOH compounds. Additionally, the new reduced ternary molybdenum sulfides with the general formula M{sup n+}{sub 2x/n}Mo{sub 6}S{sub 8+x}(MeOH){sub y}[MMOS] (M=Sn, Co, Ni) is an effective hydrodesulfurization (HDS) catalyst both as-prepared and after a variety of pretreatment conditions. Under specified pretreatment conditions with flowing hydrogen gas, the SnMoS type catalyst can be stabilized, and while still amorphous, can be considered as ``Chevrel phase-like`` in that both contain Mo{sub 6}S{sub 8} cluster units. Furthermore, the small cation NiMoS and CoMoS type pretreated catalyst is shown to be very active HDS catalysts with rates that exceeded the model unpromoted and cobalt-promoted MoS{sub 2} catalysts. 9 figs.

  15. Fractional crystallization-induced variations in sulfides from the Noril’sk-Talnakh mining district (polar Siberia, Russia) (United States)

    Duran, C.J.; Barnes, S-J.; Pleše, P.; Prašek, M. Kudrna; Zientek, Michael L.; Pagé, P.


    The distribution of platinum-group elements (PGE) within zoned magmatic ore bodies has been extensively studied and appears to be controlled by the partitioning behavior of the PGE during fractional crystallization of magmatic sulfide liquids. However, other chalcophile elements, especially TABS (Te, As, Bi, Sb, and Sn) have been neglected despite their critical role in forming platinum-group minerals (PGM). TABS are volatile trace elements that are considered to be mobile so investigating their primary distribution may be challenging in magmatic ore bodies that have been somewhat altered. Magmatic sulfide ore bodies from the Noril’sk-Talnakh mining district (polar Siberia, Russia) offer an exceptional opportunity to investigate the behavior of TABS during fractional crystallization of sulfide liquids and PGM formation as the primary features of the ore bodies have been relatively well preserved. In this study, new petrographic (2D and 3D) and whole-rock geochemical data from Cu-poor to Cu-rich sulfide ores of the Noril’sk-Talnakh mining district are integrated with published data to consider the role of fractional crystallization in generating mineralogical and geochemical variations across the different ore types (disseminated to massive). Despite textural variations in Cu-rich massive sulfides (lenses, veins, and breccias), these sulfides have similar chemical compositions, which suggests that Cu-rich veins and breccias formed from fractionated sulfide liquids that were injected into the surrounding rocks. Numerical modeling using the median disseminated sulfide composition as the initial sulfide liquid composition and recent DMSS/liq and DISS/liq predicts the compositional variations observed in the massive sulfides, especially in terms of Pt, Pd, and TABS. Therefore, distribution of these elements in the massive sulfides was likely controlled by their partitioning behavior during sulfide liquid fractional crystallization, prior to PGM formation. Our

  16. Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni-Cu deposit, NW China (United States)

    Zhao, Yun; Xue, Chunji; Liu, Sheng-Ao; Symons, David T. A.; Zhao, Xiaobo; Yang, Yongqiang; Ke, Junjun


    Although it has been recently demonstrated that Cu isotope fractionation during mantle melting and basaltic magma differentiation is limited, the behavior of Cu isotopes during magmatic differentiation involving significant sulfide segregation remains unclear. Magmatic Ni-Cu deposits, which formed via sulfide segregation from basaltic or picritic magmas, are appropriate targets to address this issue. Here we report Cu isotope data for sulfides (chalcopyrite) from the Tulaergen Ni-Cu sulfide deposit in Xinjiang, NW China. Sulfides, including sparsely disseminated (hosted by hornblende gabbro), moderately disseminated (hosted by hornblende olivine websterite), densely disseminated (hosted by hornblende lherzolite) and massive sulfides (sandwiched between country rocks and mafic-ultramafic rocks), were collected from adits at 1050 m, 1100 m and 1150 m levels. The sparsely and moderately disseminated sulfides on 1150 m and 1050 m levels have a restricted range of δ65Cu values from - 0.38‰ to 0.15‰, whereas disseminated and massive sulfides on 1100 m level have δ65Cu values ranging widely from - 1.98‰ to - 0.04‰ and from - 1.08‰ to - 0.52‰, respectively. The δ65Cu values of disseminated sulfides are negatively correlated with whole-rock S and Cu concentrations, and sulfides formed at later stages have heavier δ65Cu values. These observations suggest significant Cu isotope fractionation during sulfide-magma differentiation above 600 °C. During the formation of the Tulaergen magmatic Ni-Cu deposit, sulfide segregation and crystallization of olivine and pyroxene caused the increase of Fe3 + contents in the residual magmas, which would move the redox reaction Cu+ + Fe3 + = Fe2 + + Cu2 + toward larger amounts of Cu2 + in the melt. The presence of Cu2 + in melt allowed redox transformation to happen during sulfide segregation. The residual magmas are enriched in heavy Cu isotopes due to the removal of 65Cu-depleted sulfides, and sulfides formed at later

  17. Epithelial Electrolyte Transport Physiology and the Gasotransmitter Hydrogen Sulfide

    Directory of Open Access Journals (Sweden)

    Ervice Pouokam


    Full Text Available Hydrogen sulfide (H2S is a well-known environmental chemical threat with an unpleasant smell of rotten eggs. Aside from the established toxic effects of high-dose H2S, research over the past decade revealed that cells endogenously produce small amounts of H2S with physiological functions. H2S has therefore been classified as a “gasotransmitter.” A major challenge for cells and tissues is the maintenance of low physiological concentrations of H2S in order to prevent potential toxicity. Epithelia of the respiratory and gastrointestinal tract are especially faced with this problem, since these barriers are predominantly exposed to exogenous H2S from environmental sources or sulfur-metabolising microbiota. In this paper, we review the cellular mechanisms by which epithelial cells maintain physiological, endogenous H2S concentrations. Furthermore, we suggest a concept by which epithelia use their electrolyte and liquid transport machinery as defence mechanisms in order to eliminate exogenous sources for potentially harmful H2S concentrations.

  18. Alleviation of chromium toxicity by hydrogen sulfide in barley. (United States)

    Ali, Shafaqat; Farooq, Muhammad Ahsan; Hussain, Sabir; Yasmeen, Tahira; Abbasi, G H; Zhang, Guoping


    A hydroponic experiment was carried out to examine the effect of hydrogen sulfide (H2 S) in alleviating chromium (Cr) stress in barley. A 2-factorial design with 6 replications was selected, including 3 levels of NaHS (0 μM, 100 μM, and 200 μM) and 2 levels of Cr (0 μM and 100 μM) as treatments. The results showed that NaHS addition enhances plant growth and photosynthesis slightly compared with the control. Moreover, NaHS alleviated the inhibition in plant growth and photosynthesis by Cr stress. Higher levels of NaHS exhibited more pronounced effects in reducing Cr concentrations in roots, shoots, and leaves. Ultrastructural examination of plant cells supported the facts by indication of visible alleviation of cell disorders in both root and leaf with exogenous application of NaHS. An increased number of plastoglobuli, disintegration, and disappearance of thylakoid membranes and starch granules were visualized inside the chloroplast of Cr-stressed plants. Starch accumulation in the chloroplasts was also noticed in the Cr-treated cells, with the effect being much less in Cr + NaHS-treated plants. Hence, it is concluded that H2 S produced from NaHS can improve plant tolerance under Cr stress. © 2013 SETAC.

  19. Dimethyl sulfide as a source of cloud condensation nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Warren, S. [Univ. of Washington, Seattle, WA (United States)


    Cloud condensation nuclei (CCN) are predominantly sulfate particles, and over the oceans the major source of sulfur for these particles appears to be dimethyl sulfide, a gas produced by marine biota. The reflection of sunlight by marine stratiform clouds is a major feature of the Earth`s radiation budget, and these clouds will reflect more sunlight if their liquid water is distributed among more CCN, thus forming more (and smaller) droplets. These facts form the basis of a proposal that marine biogenic sulfur may be an important factor in determining the Earth`s climate. Key implications of this proposal are (1) the possibility of a biota-climate feedback loop if the production of biogenic sulfur is sensitive to changes in climate, (2) the possibility that anthropogenic sulfur emissions may be altering the global climate through this cloud-mediated mechanism, and (3) the possibility that anthropogenic pollution could alter climate by perturbing the sulfur-producing marine organisms. 3 refs., 1 fig.

  20. Hydrogen Sulfide in Physiology and Diseases of the Digestive Tract

    Directory of Open Access Journals (Sweden)

    Sudha B. Singh


    Full Text Available Hydrogen sulfide (H2S is a Janus-faced molecule. On one hand, several toxic functions have been attributed to H2S and exposure to high levels of this gas is extremely hazardous to health. On the other hand, H2S delivery based clinical therapies are being developed to combat inflammation, visceral pain, oxidative stress related tissue injury, thrombosis and cancer. Since its discovery, H2S has been found to have pleiotropic effects on physiology and health. H2S is a gasotransmitter that exerts its effect on different systems, such as gastrointestinal, neuronal, cardiovascular, respiratory, renal, and hepatic systems. In the gastrointestinal tract, in addition to H2S production by mammalian cystathionine-β-synthase (CBS, cystathionine-γ-lyase (CSE, H2S is also generated by the metabolic activity of resident gut microbes, mainly by colonic Sulfate-Reducing Bacteria (SRB via a dissimilatory sulfate reduction (DSR pathway. In the gut, H2S regulates functions such as inflammation, ischemia/ reperfusion injury and motility. H2S derived from gut microbes has been found to be associated with gastrointestinal disorders such as ulcerative colitis, Crohn’s disease and irritable bowel syndrome. This underscores the importance of gut microbes and their production of H2S on host physiology and pathophysiology.

  1. A Drude polarizable model for liquid hydrogen sulfide. (United States)

    Riahi, Saleh; Rowley, Christopher N


    A polarizable force field for liquid hydrogen sulfide (H2S) has been developed based on the Drude oscillator model. This force field has been designed to be analogous to the SWM4-NDP water model; the model is rigid with point charges assigned to the H and S atoms and a lone pair on the bisector of ∠HSH in the molecular plane. Positions of the lone pair and the charges have been defined such that the model has a static dipole moment of 0.98 D, equal to the experimental value. Polarizability is incorporated by a charged (Drude) particle attached to the S atom through a harmonic potential. Intermolecular nonbonded forces are included by use of a Lennard-Jones potential between S atoms. The model was parametrized to reproduce the density, enthalpy of vaporization, and dielectric constant of pure H2S at 212 K and 1 atm. The calculated density, enthalpy of vaporization, shear viscosity coefficient, and self-diffusion coefficient are in good agreement with experiment over the temperature range 212-298 K along the liquid-vapor coexistence curve of liquid H2S. The radial distribution function calculated from this model is in good agreement with experimental diffraction data and ab initio molecular dynamics simulations.

  2. Role of Hydrogen Sulfide in the Physiology of Penile Erection (United States)

    Qiu, Xuefeng; Villalta, Jackie; Lin, Guiting; Lue, Tom F.


    Hydrogen sulfide (H2S), which is a well known toxic gas, has recently been recognized as a biological messenger, which plays an important role in physiological and pathophysiological conditions. Relatively high levels of H2S have been discovered in mammalian tissues. It is mainly synthesized by two enzymes including cystathionine β-synthase and cystathionine γ-lysase, which utilize L-cysteine as substrate to produce H2S. H2S has been demonstrated to exhibit potent vasodilator activity both in vitro and in vivo by relaxing vascular smooth muscle. Recently, H2S has been discovered in penile tissue with smooth muscle relaxant effects. Furthermore, other effects of H2S may play a role in the physiology of erection. Understanding of H2S in the physiology of erection might provide alternative erectile dysfunction (ED) strategies for those patients with poor or no response to type 5 phosphodiesterase inhibitors (PDE5i). This review intends to present the H2S pathway in penile tissue and the potential role of H2S in the physiology of erections. PMID:22016355

  3. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, P.S.


    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  4. An Update on AMPK in Hydrogen Sulfide Pharmacology

    Directory of Open Access Journals (Sweden)

    Minjun Wang


    Full Text Available Hydrogen sulfide (H2S, the third bio-active gasotransmitter, is produced endogenously and tightly involved in the pathogenesis and treatment for various diseases. Adenosine 5′-monophosphate-activated protein kinase (AMPK plays a paramount role in maintaining cellular energetic balance. Increasing evidences have also suggested AMPK as a novel modulator in multiple pathological conditions. In this paper, we will review the biological principles of H2S and AMPK, and most importantly, the recent discoveries regarding AMPK-mediated pharmacological actions of H2S. Emphasis will be laid on AMPK/H2S interactions in the cardiovascular system, autophagy, diabetic complications, and inflammation. In most cases described in this article, by promoting AMPK activation, H2S exerts cytoprotective effects or therapeutic potentials, though there remain some controversies before we can fully understand the involved mechanisms. Further researches are in need to investigate more closely any relationship between H2S and AMPK, and to put forward the development of H2S donors for clinical application.

  5. Tropical sources and sinks of carbonyl sulfide observed from space (United States)

    Glatthor, Norbert; Höpfner, Michael; Baker, Ian T.; Berry, Joe; Campbell, Elliott; Kawa, Stephan R.; Krysztofiak, Gisele; Sinnhuber, Björn-Martin; Stiller, Gabriele; Stinecipher, Jim; von Clarmann, Thomas


    According to current budget estimations the seasonal variation of carbonyl sulfide (COS) is governed by oceanic release and vegetation uptake. Its assimilation by plants is assumed to be similar to the photosynthetic uptake of CO2 but, contrary to the latter process, to be irreversible. Therefore COS has been suggested as co-tracer of the carbon cycle. Observations of COS, however, are sparse, especially in tropical regions. We use the comprehensive data set of spaceborne measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) to analyze its global distribution. Two major features are observed in the tropical upper troposphere around 250 hPa: enhanced amounts over the western Pacific and the Maritime Continent, peaking around 550 pptv in boreal summer, and a seasonally varying depletion of COS extending from tropical South America to Africa. The large-scale COS depletion, which in austral summer amounts up to -40 pptv as compared to the rest of the respective latitude band, has not been observed before and reveals the seasonality of COS uptake through tropical vegetation. The observations can only be reproduced by global models, when a large vegetation uptake and a corresponding increase in oceanic emissions as proposed in several recent publications is assumed.

  6. Depolarizing actions of hydrogen sulfide on hypothalamic paraventricular nucleus neurons.

    Directory of Open Access Journals (Sweden)

    C Sahara Khademullah

    Full Text Available Hydrogen sulfide (H2S is a novel neurotransmitter that has been shown to influence cardiovascular functions as well and corticotrophin hormone (CRH secretion. Since the paraventricular nucleus of the hypothalamus (PVN is a central relay center for autonomic and endocrine functions, we sought to investigate the effects of H2S on the neuronal population of the PVN. Whole cell current clamp recordings were acquired from the PVN neurons and sodium hydrosulfide hydrate (NaHS was bath applied at various concentrations (0.1, 1, 10, and 50 mM. NaHS (1, 10, and 50 mM elicited a concentration-response relationship from the majority of recorded neurons, with almost exclusively depolarizing effects following administration. Cells responded and recovered from NaHS administration quickly and the effects were repeatable. Input differences from baseline and during the NaHS-induced depolarization uncovered a biphasic response, implicating both a potassium and non-selective cation conductance. The results from the neuronal population of the PVN shed light on the possible physiological role that H2S has in autonomic and endocrine function.

  7. Carbonyl Sulfide for Tracing Carbon Fluxes Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. Elliott [Univ. of California, Merced, CA (United States); Berry, Joseph A. [Carnegie Inst. of Science, Stanford, CA (United States); Billesbach, Dave [Univ. of Nebraska, Lincoln, NE (United States); Torn, Margaret S [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Zahniser, Mark [Aerodyne Research, Inc., Billerica, MA (United States); Seibt, Ulrike [Univ. of California, Los Angeles, CA (United States); Maseyk, Kadmiel [Pierre and Marie Curie Univ., Paris (France)


    The April-June 2012 campaign was located at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site Central Facility and had three purposes. One goal was to demonstrate the ability of current instrumentation to correctly measure fluxes of atmospheric carbonyl sulfide (COS). The approach has been describe previously as a critical approach to advancing carbon cycle science1,2, but requires further investigation at the canopy scale to resolve ecosystem processes. Previous canopy-scale efforts were limited to data rates of 1Hz. While 1 Hz measurements may work in a few ecosystems, it is widely accepted that data rates of 10 to 20 Hz are needed to fully capture the exchange of traces gases between the atmosphere and vegetative canopy. A second goal of this campaign was to determine if canopy observations could provide information to help interpret the seasonal double peak in airborne observations at SGP of CO2 and COS mixing ratios. A third goal was to detect potential sources and sinks of COS that must be resolved before using COS as a tracer of gross primary productivity (GPP).

  8. Trichosporon jirovecii-mediated synthesis of cadmium sulfide nanoparticles. (United States)

    El-Baz, Ashraf Farag; Sorour, Noha Mohamed; Shetaia, Youssria Mohamed


    Cadmium sulphide is one of the most promising materials for solar cells and of great interest due to its useful applications in photonics and electronics, thus the development of bio-mediated synthesis of cadmium sulphide nanoparticles (CdS NPs) is one of the essential areas in nanoparticles. The present study demonstrates for the first time the eco-friendly biosynthesis of CdS NPs using the yeast Trichosporon jirovecii. The biosynthesis of CdS NPs were confirmed by UV-Vis spectrum and characterized by X-ray diffraction assay and electron microscopy. Scanning and transmission electron microscope analyses shows the formation of spherical CdS NPs with a size range of about 6-15 nm with a mean Cd:S molar ratio of 1.0:0.98. T. jirovecii produced hydrogen sulfide on cysteine containing medium confirmed by positive cysteine-desulfhydrase activity and the colony color turned yellow on 0.1 mM cadmium containing medium. T. jirovecii tolerance to cadmium was increased by the UV treatment and three 0.6 mM cadmium tolerant mutants were generated upon the UV radiation treatment. The overall results indicated that T. jirovecii could tolerate cadmium toxicity by its conversion into CdS NPs on cysteine containing medium using cysteine-desulfhydrase as a defense response mechanism. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hydrogen sulfide and cell signaling: team player or referee? (United States)

    Hancock, J T; Whiteman, M


    Hydrogen sulfide (H2S) has been postulated to be the third gasotransmitter, and along with other reactive compounds such as reactive oxygen species (ROS) and nitric oxide (NO) it is thought to be a key signalling molecule. Enzymes which generate H2S, and remove it, have been characterised in both plants and animals and although it is inherently toxic to cells - inhibiting cytochrome oxidase for example - H2S is now being thought of as part of signal transduction pathways. But is it working as a signal in the sense usually seen for small signalling molecules, that is, produced when needed, perceived and leading to dedicated responses in cells? A look through the literature shows that H2S is involved in many stress responses, and in animals is implicated in the onset of many diseases, in both cases where ROS and NO are often involved. It is suggested here that H2S is not acting as a true signal, but through its interaction with NO and ROS metabolism is modulating such activity, keeping it in check unless strictly needed, and that H2S is acting as a referee to ensure NO and ROS metabolism is working properly. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Prevention of sulfide mineral leaching through covalent coating

    Energy Technology Data Exchange (ETDEWEB)

    K.M. Zaman; C. Chusuei; L.Y. Blue; D.A. Atwood [University of Kentucky, Lexington, KY (United States). Department of Chemistry


    The use of benzene-1,3-diamidoethanethiol as a covalent surface coating for the prevention of metal leaching was demonstrated with several sulfide minerals including cinnabar (HgS), pyrite (FeS{sub 2}), chalcopyrite (CuFeS{sub 2}), covellite (CuS), galena (PbS), realgar (As{sub 4}S{sub 4}) and sphalerite (ZnS). The minerals were coated with sufficient H2BDT to bind the surface metals in a 1:1 ratio. Leaching at pH 1, 3 and 7 was then conducted on both treated and untreated minerals. ICP and CVAFS (for mercury) analyses revealed that the coated minerals showed a dramatic reduction in metal leaching as compared to uncoated control samples. X-ray photoelectron spectroscopy indicated the formation of covalent bonds between the sulphur of the ligand and the metals from the minerals. Results indicate that it would be possible to prevent acid mine drainage through the binding of the metals in coal. 51 refs., 4 figs., 8 tabs.

  11. Biochemistry and therapeutic potential of hydrogen sulfide - reality or fantasy? (United States)

    Brodek, Paulina; Olas, Beata


    Hydrogen sulfide (H2S) is a signaling gasotransmitter, involved in different physiological and pathological processes. H2S regulates apoptosis, the cell cycle and oxidative stress. H2S exerts powerful effects on smooth muscle cells, endothelial cells, inflammatory cells, endoplasmic reticulum, mitochondria and nuclear transcription factors. H2S is known to be produced from L-cysteine, D-cysteine and L-homocysteine in the body. Four enzymes - cystathionine-b synthase (CBS), mercaptopyruvate sulfurtransferase (3-MST), cystathionine-γ lyase (CSE) and cysteine aminotransferase (CAT) - are involved in H2S synthesis. The biosynthetic pathway for the production of H2S from D-cysteine involves 3-MST and D-amino acid oxidase (DAO). The therapeutic potential of H2S is not clear. However, recently results have demonstrated that H2S has protective action for ischemic heart disease or hypertension, and protects against ischemia of the brain. This review summarizes the negative and the positive roles of H2S in various biological systems, for example the cardiovascular system and nervous system. We also discuss the function of classical, therapeutic and natural (for example garlic) donors of H2S in pre-clinical and clinical studies.

  12. Hydrogen sulfide and nitric oxide interactions in inflammation. (United States)

    Lo Faro, Maria Letizia; Fox, Bridget; Whatmore, Jacqueline L; Winyard, Paul G; Whiteman, Matthew


    Together with carbon monoxide (CO), nitric oxide (NO) and hydrogen sulfide (H2S) form a group of physiologically important gaseous transmitters, sometimes referred to as the "gaseous triumvirate". The three molecules share a wide range of physical and physiological properties: they are small gaseous molecules, able to freely penetrate cellular membranes; they are all produced endogenously in the body and they seem to exert similar biological functions. In the cardiovascular system, for example, they are all vasodilators, promote angiogenesis and protect tissues against damage (e.g. ischemia-reperfusion injury). In addition, they have complex roles in inflammation, with both pro- and anti-inflammatory effects reported. Researchers have focused their efforts in understanding and describing the roles of each of these molecules in different physiological systems, and in the past years attention has also been given to the gases interaction or "cross-talk". This review will focus on the role of NO and H2S in inflammation and will give an overview of the evidence collected so far suggesting the importance of their cross-talk in inflammatory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Hydrogen sulfide and cardioprotection--Mechanistic insights and clinical translatability. (United States)

    Salloum, Fadi N


    Hydrogen sulfide (H2S) has been long recognized as a highly poisonous gas that is rapidly lethal in intoxicating dosage. However, discoveries during the last decade on the endogenous synthesis of H2S in the mammalian system and its protective role in combating cellular necrosis, apoptosis, oxidative stress, inflammation as well as promoting angiogenesis and modulation of mitochondrial respiration in the setting of myocardial ischemia and reperfusion injury have prompted vast interest in the possibility of developing new therapies based around mimicry or facilitation of endogenous H2S for cardioprotection. These observations have inspired rapid development of H2S-releasing drugs in hopes of swift clinical translation in patients with cardiovascular disease. This review will discuss our current understanding of the protective signaling pathways elicited by H2S in the heart with an emphasis on the versatile benefits of this gasotransmitter and its potential for clinical translation in patients with cardiovascular disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Hydrogen Sulfide Donor GYY4137 Protects against Myocardial Fibrosis

    Directory of Open Access Journals (Sweden)

    Guoliang Meng


    Full Text Available Hydrogen sulfide (H2S is a gasotransmitter which regulates multiple cardiovascular functions. However, the precise roles of H2S in modulating myocardial fibrosis in vivo and cardiac fibroblast proliferation in vitro remain unclear. We investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial fibrosis. Spontaneously hypertensive rats (SHR were administrated with GYY4137 by intraperitoneal injection daily for 4 weeks. GYY4137 decreased systolic blood pressure and inhibited myocardial fibrosis in SHR as evidenced by improved cardiac collagen volume fraction (CVF in the left ventricle (LV, ratio of perivascular collagen area (PVCA to lumen area (LA in perivascular regions, reduced hydroxyproline concentration, collagen I and III mRNA expression, and cross-linked collagen. GYY4137 also inhibited angiotensin II- (Ang II- induced neonatal rat cardiac fibroblast proliferation, reduced the number of fibroblasts in S phase, decreased collagen I and III mRNA expression and protein synthesis, attenuated oxidative stress, and suppressed α-smooth muscle actin (α-SMA, transforming growth factor-β1 (TGF-β1 expression as well as Smad2 phosphorylation. These results indicate that GYY4137 improves myocardial fibrosis perhaps by a mechanism involving inhibition of oxidative stress, blockade of the TGF-β1/Smad2 signaling pathway, and decrease in α-SMA expression in cardiac fibroblasts.

  15. Toxicity of sulfide to early life stages of wild rice (Zizania palustris). (United States)

    Fort, Douglas J; Todhunter, Kevin; Fort, Troy D; Mathis, Michael B; Walker, Rachel; Hansel, Mike; Hall, Scott; Richards, Robin; Anderson, Kurt


    The sensitivity of wild rice (Zizania palustris) to sulfide is not well understood. Because sulfate in surface waters is reduced to sulfide by anaerobic bacteria in sediments and historical information indicated that 10 mg/L sulfate in Minnesota (USA) surface water reduced Z. palustris abundance, the Minnesota Pollution Control Agency established 10 mg/L sulfate as a water quality criterion in 1973. A 21-d daily-renewal hydroponic study was conducted to evaluate sulfide toxicity to wild rice and the potential mitigation of sulfide toxicity by iron (Fe). The hydroponic design used hypoxic test media for seed and root exposure and aerobic headspace for the vegetative portion of the plant. Test concentrations were 0.3, 1.6, 3.1, 7.8, and 12.5 mg/L sulfide in test media with 0.8, 2.8, and 10.8 mg/L total Fe used to evaluate the impact of iron on sulfide toxicity. Visual assessments (i.e., no plants harvested) of seed activation, mesocotyl emergence, seedling survival, and phytoxicity were conducted 10 d after dark-phase exposure. Each treatment was also evaluated for time to 30% emergence (ET30), total plant biomass, root and shoot lengths, and signs of phytotoxicity at study conclusion (21 d). The results indicate that exposure of developing wild rice to sulfide at ≥3.1 mg sulfide/L in the presence of 0.8 mg/L Fe reduced mesocotyl emergence. Sulfide toxicity was mitigated by the addition of Fe at 2.8 mg/L and 10.8 mg/L relative to the control value of 0.8 mg Fe/L, demonstrating the importance of iron in mitigating sulfide toxicity to wild rice. Ultimately, determination of site-specific sulfate criteria taking into account factors that alter toxicity, including sediment Fe and organic carbon, are necessary. Environ Toxicol Chem 2017;36:2217-2226. © 2017 SETAC. © 2017 SETAC.

  16. Probing Upper Mantle Heterogeneity: Os and Pb Isotopic Compositions of Individual Sulfide Grains in Abyssal Peridotites (United States)

    Warren, J. M.; Shirey, S. B.


    Abyssal peridotites from mid-ocean ridges are unique samples of the depleted upper mantle that can be used to understand a variety of processes from melting and melt extraction to the compositional evolution of the interior of the earth. Traditional work on abyssal peridotites has focused on either bulk rock compositions or on the compositions of clinopyroxenes, which are the main repository of trace elements in these rocks. However, recent (e.g., Alard et al., 2000; Luguet et al., 2003; Harvey et al., 2006) and previous (Meijer, 1980; Morgan, 1985) works on peridotites have indicated that Fe-Ni-Cu sulfides, present at trace levels in abyssal peridotites, may contain a significant proportion of both the Pb and Os budget of the upper mantle. As the isotopic compositions of Pb and Os provide important information about the long term evolution of the mantle, analysis of single sulfide grains can provide unique information not available from basalt or whole-rock peridotite studies: the spatial scale is small compared to basaltic melt sampling, adjacent silicate mineralogy can be evaluated, and secondary sulfide and alteration minerals can be avoided. Thus, while sulfides represent chalcopyrite. We have adapted single grain sulfide techniques from studies of sulfide inclusions in diamonds, to allow us to extract Os, Pb and transition metals from sulfides down to 5 μg. Os concentrations in pentlandites are ~0.4-5 ppm, 2-3 orders of magnitude higher than bulk rock abyssal peridotite concentrations. In contrast, chalcopyrites, associated with veins in the peridotites, do not contain measurable quantities of Os. Preliminary Pb data indicates that pentlanditic sulfides have Pb concentrations close to ~9 ppm. 187Os/188Os isotopic compositions range from 0.1209 to 0.1278 in sulfides away from hotspots, typical of depleted mantle and in agreement with the depleted Sr and Nd isotopic composition of clinopyroxenes from the same samples. To date, we have not found any anomalously

  17. Regioselective C-H hydroxylation of omeprazole sulfide by Bacillus megaterium CYP102A1 to produce a human metabolite. (United States)

    Jang, Hyun-Hee; Ryu, Sang-Hoon; Le, Thien-Kim; Doan, Tiep Thi My; Nguyen, Thi Huong Ha; Park, Ki Deok; Yim, Da-Eun; Kim, Dong-Hyun; Kang, Choong-Kyung; Ahn, Taeho; Kang, Hyung-Sik; Yun, Chul-Ho


    To find a simple enzymatic strategy for the efficient synthesis of the expensive 5'-hydroxyomeprazole sulfide, a recently identified minor human metabolite, from omeprazole sulfide, which is an inexpensive substrate. The practical synthetic strategy for the 5'-OH omeprazole sulfide was accomplished with a set of highly active CYP102A1 mutants, which were obtained by blue colony screening from CYP102A1 libraries with a high conversion yield. The mutant and even the wild-type enzyme of CYP102A1 catalyzed the high regioselective (98 %) C-H hydroxylation of omeprazole sulfide to 5'-OH omeprazole sulfide with a high conversion yield (85-90 %). A highly efficient synthesis of 5'-OH omeprazole sulfide was developed using CYP102A1 from Bacillus megaterium as a biocatalyst.

  18. Sodium terbium(III polyphosphate

    Directory of Open Access Journals (Sweden)

    Abdelghani Oudahmane


    Full Text Available Single crystals of the title compound, NaTb(PO34, were obtained by solid-state reaction. This compound belongs to type II of long-chain polyphosphates with the general formula AIBIII(PO34. It is isotypic with the NaNd(PO34 and NaEr(PO34 homologues. The crystal structure is built up of infinite crenelated chains of corner-sharing PO4 tetrahedra with a repeating unit of four tetrahedra. These chains, extending parallel to [100], are linked by isolated TbO8 square antiprisms, forming a three-dimensional framework. The Na+ ions are located in channels running along [010] and are surrounded by six oxygen atoms in a distorted octahedral environment within a cut-off distance <2.9 Å.

  19. Sulfide as a confounding factor in toxicity tests with the sea urchin Paracentrotus lividus: comparisons with chemical analysis data. (United States)

    Losso, Chiara; Arizzi Novelli, Alessandra; Picone, Marco; Volpi Ghirardini, Annamaria; Ghetti, Pier Francesco; Rudello, Danilo; Ugo, Paolo


    Sperm cell and embryo toxicity tests with the sea urchin Paracentrotus lividus were performed to assess the toxicity of sulfide, which is considered a confounding factor in toxicity tests. For improved information on the sensitivity of these methods to sulfide, experiments were performed in the same aerobic conditions used for testing environmental samples, with sulfide concentrations being monitored at the same time by cathodic stripping voltammetry. New toxicity data for sulfide expressed as median effective concentration (EC50) and no-observed-effect concentration (NOEC) are reported. The EC50 value for the embryo toxicity test (total sulfide at 0.43 mg/L) was three times lower than for the sperm cell test (total sulfide at 1.20 mg/L), and the NOEC values were similar (on the order of total sulfide at 10(-1) mg/L) for both tests. The decrease in sulfide concentration during the bioassay as a consequence of possible oxidation of sulfide by dissolved oxygen was determined by voltammetric analysis, indicating a half-life of about 50 min in the presence of gametes. To check the influence of sulfide concentrations on toxicity effects in real samples, toxicity (with the sperm cell toxicity test) and chemical analyses also were performed in pore-water samples collected with an in situ sampler in sediments of the Lagoon of Venice (Italy). A highly positive correlation between increased acute toxicity and increased sulfide concentration was found. Examination of data revealed that sulfide is a real confounding factor in toxicity testing in anoxic environmental samples containing concentrations above the sensitivity limit of the method.

  20. Acute Effects of Peripheral Injection of Bis-2-Chloro-ethyl sulfide on the Serum Proteins Content in Rat




    Bis-2-chloroethyl sulfide or sulfur mustard an alkylating agent after absorption through skin may enter the blood circulation and interacts with different molecules in the body. Pulmonary complication, ocular lesions, enzyme disorders and other toxic effects of sulfur mustard in the body has already been reported. Rats were injected with sub-lethal doses of Bis-2-chloroethyl sulfide intraperitoneally and at different intervals serum was collected. The effect of Bis-2-chloroethyl sulfide on th...

  1. Simultaneous sulfide removal, nitrification, and electricity generation in a microbial fuel cell equipped with an oxic cathode. (United States)

    Bao, Renbing; Zhang, Shaohui; Zhao, Li; Zhong, Liuxiang


    With sulfide as an anodic electron donor and ammonium as a cathodic substrate, the feasibility of simultaneous sulfide removal, nitrification, and electricity generation was investigated in a microbial fuel cell (MFC) equipped with an oxic cathode. Successful simultaneous sulfide removal, nitrification, and electricity generation in this MFC were achieved in 35 days, with the sulfide and ammonium removal percent of 92.7 ± 1.4 and 96.4 ± 0.3%, respectively. The maximum power density increased, but the internal resistance decreased with the increase of feeding sulfide concentration from 62.9 ± 0.3 to 238.5 ± 0.2 mg S/L. Stable ammonium removal with complete nitrification, preparing for future denitrification, was obtained throughout the current study. Sulfide removal loading significantly increased with the increase of feeding sulfide concentration at each external resistance, but no significant correlation between sulfide removal loading and external resistance was found at each feeding sulfide concentration. The charge recovery and anodic coulombic efficiency (CE) significantly decreased with the increase of external resistance. High feeding sulfide concentration led to low anodic CE. Granular sulfur deposition was found on the anode graphite fiber. The appropriate feeding sulfide concentration for sulfide removal and sulfur deposition was deemed to be 178.0 ± 1.7 mg S/L, achieving a sulfur deposition percent of 69.7 ± 0.6%.

  2. The mechanism of the catalytic oxidation of hydrogen sulfide *1: III. An electron spin resonance study of the sulfur catalyzed oxidation of hydrogen sulfide

    NARCIS (Netherlands)

    Steijns, M.; Koopman, P.; Nieuwenhuijse, B.; Mars, P.


    ESR experiments on the oxidation of hydrogen sulfide were performed in the temperature range 20–150 °C. Alumina, active carbon and molecular sieve zeolite 13X were investigated as catalysts. For zeolite 13X it was demonstrated that the reaction is autocatalytic and that sulfur radicals are the

  3. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part I. the absorption of hydrogen sulfide in metal sulfate solutions

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.


    The desulfurization of gas streams using aqueous iron(II)sulfate (Fe(II)SO4), zinc sulfate (ZnSO4) and copper sulfate (CuSO4) solutions as washing liquor is studied theoretically and experimentally. The desulfurization is accomplished by a precipitation reaction that occurs when sulfide ions and

  4. Sulfide Oxidation by a Noncanonical Pathway in Red Blood Cells Generates Thiosulfate and Polysulfides* (United States)

    Vitvitsky, Victor; Yadav, Pramod K.; Kurthen, Angelika; Banerjee, Ruma


    A cardioprotectant at low concentrations, H2S is a toxin at high concentrations and inhibits cytochrome c oxidase. A conundrum in H2S homeostasis is its fate in red blood cells (RBCs), which produce H2S but lack the canonical mitochondrial sulfide oxidation pathway for its clearance. The sheer abundance of RBCs in circulation enhances the metabolic significance of their clearance strategy for H2S, necessary to avoid systemic toxicity. In this study, we demonstrate that H2S generation by RBCs is catalyzed by mercaptopyruvate sulfurtransferase. Furthermore, we have discovered the locus of sulfide oxidation in RBCs and describe a new role for an old protein, hemoglobin, which in the ferric or methemoglobin state binds H2S and oxidizes it to a mixture of thiosulfate and hydropolysulfides. Our study reveals a previously undescribed route for the biogenesis of hydropolysulfides, which are increasingly considered important for H2S-based signaling, but their origin in mammalian cells is unknown. An NADPH/flavoprotein oxidoreductase system restores polysulfide-carrying hemoglobin derivatives to ferrous hemoglobin, thus completing the methemoglobin-dependent sulfide oxidation cycle. Methemoglobin-dependent sulfide oxidation in mammals is complex and has similarities to chemistry reported for the dissolution of iron oxides in sulfidic waters and during bioleaching of metal sulfides. The catalytic oxidation of H2S by hemoglobin explains how RBCs maintain low steady-state H2S levels in circulation, and suggests that additional hemeproteins might be involved in sulfide homeostasis in other tissues. PMID:25688092

  5. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria. (United States)

    Lin, Shiping; Krause, Federico; Voordouw, Gerrit


    Nitrate, injected into oil fields, can oxidize sulfide formed by sulfate-reducing bacteria (SRB) through the action of nitrate-reducing sulfide-oxidizing bacteria (NR-SOB). When reservoir rock contains siderite (FeCO(3)), the sulfide formed is immobilized as iron sulfide minerals, e.g. mackinawite (FeS). The aim of our study was to determine the extent to which oil field NR-SOB can oxidize or transform FeS. Because no NR-SOB capable of growth with FeS were isolated, the well-characterized oil field isolate Sulfurimonas sp. strain CVO was used. When strain CVO was presented with a mixture of chemically formed FeS and dissolved sulfide (HS(-)), it only oxidized the HS(-). The FeS remained acid soluble and non-magnetic indicating that it was not transformed. In contrast, when the FeS was formed by adding FeCl(2) to a culture of SRB which gradually produced sulfide, precipitating FeS, and to which strain CVO and nitrate were subsequently added, transformation of the FeS to a magnetic, less acid-soluble form was observed. X-ray diffraction and energy-dispersive spectrometry indicated the transformed mineral to be greigite (Fe(3)S(4)). Addition of nitrite to cultures of SRB, containing microbially formed FeS, was similarly effective. Nitrite reacts chemically with HS(-) to form polysulfide and sulfur (S(0)), which then transforms SRB-formed FeS to greigite, possibly via a sulfur addition pathway (3FeS + S(0) --> Fe(3)S(4)). Further chemical transformation to pyrite (FeS(2)) is expected at higher temperatures (>60 degrees C). Hence, nitrate injection into oil fields may lead to NR-SOB-mediated and chemical mineral transformations, increasing the sulfide-binding capacity of reservoir rock. Because of mineral volume decreases, these transformations may also increase reservoir injectivity.

  6. Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. (United States)

    Calderwood, Alexander; Kopriva, Stanislav


    Sulfur is essential in all organisms for the synthesis of amino acids cysteine and methionine and as an active component of numerous co-factors and prosthetic groups. However, only plants, algae, fungi, and some prokaryotes are capable of using the abundant inorganic source of sulfur, sulfate. Plants take sulfate up, reduce it, and assimilate into organic compounds with cysteine being the first product of the pathway and a donor of reduced sulfur for synthesis of other S-containing compounds. Cysteine is formed in a reaction between sulfide, derived from reduction of sulfite and an activated amino acid acceptor, O-acetylserine. Sulfide is thus an important intermediate in sulfur metabolism, but numerous other functions in plants has been revealed. Hydrogen sulfide can serve as an alternative source of sulfur for plants, which may be significant in anaerobic conditions of waterlogged soils. On the other hand, emissions of hydrogen sulfide have been detected from many plant species. Since the amount of H2S discharged correlated with sulfate supply to the plants, the emissions were considered a mechanism for dissipation of excess sulfur. Significant hydrogen sulfide emissions were also observed in plants infected with pathogens, particularly with fungi. H2S thus seems to be part of the widely discussed sulfur-induced-resistance/sulfur-enhanced-defense. Recently, however, more evidence has emerged for a role for H2S in regulation and signaling. Sulfide stabilizes the cysteine synthase complex, increasing so the synthesis of its acceptor O-acetylserine. H2S has been implicating in regulation of plant stress response, particularly draught stress. There are more and more examples of processes regulated by H2S in plants being discovered, and hydrogen sulfide is emerging as an important signaling molecule, similar to its role in the animal and human world. How similar the functions, and homeostasis of H2S are in these diverse organisms, however, remains to be elucidated

  7. Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. (United States)

    Carballal, Sebastián; Trujillo, Madia; Cuevasanta, Ernesto; Bartesaghi, Silvina; Möller, Matías N; Folkes, Lisa K; García-Bereguiaín, Miguel A; Gutiérrez-Merino, Carlos; Wardman, Peter; Denicola, Ana; Radi, Rafael; Alvarez, Beatriz


    Hydrogen sulfide (H(2)S) is an endogenously generated gas that can also be administered exogenously. It modulates physiological functions and has reported cytoprotective effects. To evaluate a possible antioxidant role, we investigated the reactivity of hydrogen sulfide with several one- and two-electron oxidants. The rate constant of the direct reaction with peroxynitrite was (4.8±1.4)×10(3)M(-1) s(-1) (pH 7.4, 37°C). At low hydrogen sulfide concentrations, oxidation by peroxynitrite led to oxygen consumption, consistent with a one-electron oxidation that initiated a radical chain reaction. Accordingly, pulse radiolysis studies indicated that hydrogen sulfide reacted with nitrogen dioxide at (3.0±0.3)×10(6)M(-1) s(-1) at pH 6 and (1.2±0.1)×10(7)M(-1) s(-1) at pH 7.5 (25°C). The reactions of hydrogen sulfide with hydrogen peroxide, hypochlorite, and taurine chloramine had rate constants of 0.73±0.03, (8±3)×10(7), and 303±27M(-1) s(-1), respectively (pH 7.4, 37°C). The reactivity of hydrogen sulfide was compared to that of low-molecular-weight thiols such as cysteine and glutathione. Considering the low tissue concentrations of endogenous hydrogen sulfide, direct reactions with oxidants probably cannot completely account for its protective effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Adsorption of dimethyl sulfide from aqueous solution by a cost-effective bamboo charcoal. (United States)

    Wang, Ming; Huang, Zheng-Hong; Liu, Guangjia; Kang, Feiyu


    The adsorption of dimethyl sulfide from an aqueous solution by a cost-effective bamboo charcoal from Dendrocalamus was studied in comparison with other carbon adsorbents. The bamboo charcoal exhibited superior adsorption on dimethyl sulfide compared with powdered activated carbons at different adsorbent dosages. The adsorption characteristics of dimethyl sulfide onto bamboo charcoal were investigated under varying experimental conditions such as particle size, contact time, initial concentration and adsorbent dosage. The dimethyl sulfide removal was enhanced from 31 to 63% as the particle size was decreased from 24-40 to >300 mesh for the bamboo charcoal. The removal efficiency increased with increasing the adsorbent dosage from 0.5 to 10mg, and reached 70% removal efficiency at 10mg adsorbed. The adsorption capacity (μg/g) increased with increasing concentration of dimethyl sulfide while the removal efficiency decreased. The adsorption process conforms well to a pseudo-second-order kinetics model. The adsorption of dimethyl sulfide is more appropriately described by the Freundlich isotherm (R(2), 0.9926) than by the Langmuir isotherm (R(2), 0.8685). Bamboo charcoal was characterized by various analytical methods to understand the adsorption mechanism. Bamboo charcoal is abundant in acidic and alcohol functional groups normally not observed in PAC. A distinct difference is that the superior mineral composition of Fe (0.4 wt%) and Mn (0.6 wt%) was detected in bamboo charcoal-elements not found in PAC. Acidic functional group and specific adsorption sites would be responsible for the strong adsorption of dimethyl sulfide onto bamboo charcoal of Dendrocalamus origin. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn massive sulfide deposits of the Urals, Russia (United States)

    Maslennikov, V. V.; Maslennikova, S. P.; Large, R. R.; Danyushevsky, L. V.; Herrington, R. J.; Stanley, C. J.


    Tellurium-bearing minerals are generally rare in chimney material from mafic and bimodal felsic volcanic hosted massive sulfide (VMS) deposits, but are abundant in chimneys of the Urals VMS deposits located within Silurian and Devonian bimodal mafic sequences. High physicochemical gradients during chimney growth result in a wide range of telluride and sulfoarsenide assemblages including a variety of Cu-Ag-Te-S and Ag-Pb-Bi-Te solid solution series and tellurium sulfosalts. A change in chimney types from Fe-Cu to Cu-Zn-Fe to Zn-Cu is accompanied by gradual replacement of abundant Fe-, Co, Bi-, and Pb- tellurides by Hg, Ag, Au-Ag telluride and galena-fahlore with native gold assemblages. Decreasing amounts of pyrite, both colloform and pseudomorphic after pyrrhotite, isocubanite ISS and chalcopyrite in the chimneys is coupled with increasing amounts of sphalerite, quatz, barite or talc contents. This trend represents a transition from low- to high sulphidation conditions, and it is observed across a range of the Urals deposits from bimodal mafic- to bimodal felsic-hosted types: Yaman-Kasy → Molodezhnoye → Uzelga → Valentorskoye → Oktyabrskoye → Alexandrinskoye → Tash-Tau → Jusa.

  10. Characterization of upgraded fast pyrolysis oak oil distillate fractions from sulfided and non-sulfided catalytic hydrotreating

    Energy Technology Data Exchange (ETDEWEB)

    Olarte, Mariefel V.; Padmaperuma, Asanga B.; Ferrell, Jack R.; Christensen, Earl D.; Hallen, Richard T.; Lucke, Richard B.; Burton, Sarah D.; Lemmon, Teresa L.; Swita, Marie S.; Fioroni, Gina; Elliott, Douglas C.; Drennan, Corinne


    Catalytic hydroprocessing of pyrolysis oils from biomass produces hydrocarbons that can be considered for liquid fuel production. This process requires removal of oxygen and cracking of the heavier molecular weight bio-oil constituents into smaller fragments at high temperatures and pressures under hydrogen. A comprehensive understanding of product oils is useful to optimize cost versus degree of deoxygenation. Additionally, a better understanding of the chemical composition of the distillate fractions can open up other uses of upgraded oils for potentially higher-value chemical streams. We present in this paper the characterization data for five well-defined distillate fractions of two hydroprocessed oils with different oxygen levels: a low oxygen content (LOC, 1.8% O, wet basis) oil and a medium oxygen content (MOC, 6.4% O, wet basis) oil. Elemental analysis and 13C NMR results suggest that the distillate fractions become more aromatic/unsaturated as they become heavier. Our results also show that the use of sulfided catalysts directly affects the S content of the lightest distillate fraction. Carbonyl and carboxylic groups were found in the MOC light fractions, while phenols were present in the heavier fractions for both MOC and LOC. PIONA analysis of the light LOC fraction shows a predominance of paraffins with a minor amount of olefins. These results can be used to direct future research on refinery integration and production of value-added product from specific upgraded oil streams.

  11. Variable mineralization processes during the formation of the Permian Hulu Ni-Cu sulfide deposit, Xinjiang, Northwestern China (United States)

    Zhao, Yun; Xue, Chunji; Zhao, Xiaobo; Yang, Yongqiang; Ke, Junjun; Zu, Bo


    The Permian Hulu Ni-Cu sulfide deposit is located at the southern margin of the Central Asian Orogenic Belt (CAOB) in Northern Xinjiang, Northwestern China. The host intrusion of the Hulu deposit is composed of a layered mafic-ultramafic sequence and a dike-like unit. The layered sequence is composed of harzburgite, lherzolite, pyroxenite, gabbro, gabbrodiorite and diorite. The dike-like body comprises lherzolite and gabbro. Sulfide orebodies occur mainly within the harzburgite, pyroxenite and lherzolite at the base of the layered sequence and within the lherzolite in the dike-like body. Sulfide mineralization from the Hulu deposit shows significant depletion of PGE relative to Cu and Ni. These elements show good positive correlations with S in the sulfide mineralization from the dike-like unit but relatively weak correlations in the sulfide mineralization from the layered sequence. The sulfide mineralization from the layered unit shows excellent positive correlations between Ir and Os, Ru or Rh, and poor relationships between Ir and Pt or Pd. On the contrary, sulfide mineralization from the dike-like unit shows good correlations in the diagrams of Os, Ru, Rh, Pt and Pd against Ir. Both high Cu/Pd ratios (8855-481,398) and our modeling indicate that PGE depletion resulted from sulfide removal in a deep staging magma chamber. The evolved PGE-depleted magmas then ascended to the shallower magma chamber and became sulfide saturation due to crustal contamination. Both low Se/S ratios (33.5 × 10-6-487.5 × 10-6) and a negative correlation between Se/S and Cu/Pd ratios are consistent with the addition of crustal S. A large number of sulfide liquids segregated with minor crystallization of monosulfide solid solution (MSS) in the shallower magma chamber. When new magma pulses with unfractionated sulfide droplets entered the shallower magma chamber, the sulfide slurry containing crystallized MSS may be disrupted and mixed with the unfractionated sulfide droplets. The

  12. Sulfide and pH effects on variable fluorescence of photosystem II in two strains of the cyanobacterium Oscillatoria amphigranulata. (United States)

    Dodds, W K; Castenholz, R W


    Changes in fluorescence of photosystem II (PS II) chlorophyll were used to monitor the in vivo effects of sulfide and pH on photosynthesis by the cyanobacterium Oscillatoria amphigranulata. O. amphigranulata is capable of both oxygenic photosynthesis and sulfide dependent anoxygenic photosynthesis. A genetic variant of O. amphigranulata which photosynthesizes oxygenically at normal rates, but is incapable of anoxygenic photosynthesis and cannot tolerate sulfide, was also used to explore the mode of action of sulfide. In vivo fluorescence responses of PS II chlorophyll in the first few seconds of exposure to light (Kautsky transients) reflected the electrochemical states of PS II and associated electron donors and acceptors. Kautsky transients showed a distinct difference between PS II of the wild type and the variant, but sulfide lowered fluorescence in both. Kautsky transients with sulfide were similar to transients with addition of NH2OH, NH4 (+) or HCN, indicating sulfide interacts with a protein on the donor side of PS II. The fluorescence steady-state (after 2 min) was measured in the presence of sulfide, cyanide and ammonium with pH ranging from 7.2-8.7. Sulfide and cyanide had the most impact at pH 7.2, ammonium at pH 8.7. This suggests that the uncharged forms (HCN, NH3 and H2S) had the strongest effect on PS II, possibly because of increased membrane permeability.

  13. Use of bauxite residue (red mud) as a low cost sorbent for sulfide removal in polluted water remediation. (United States)

    Sheng, Yanqing; Sun, Qiyao; Sun, Ruichuan; Burke, Ian T; Mortimer, Robert J G

    Sulfide is an important pollutant in aqueous systems. Sulfide removal from polluted waters is required prior to discharge. Red mud (RM) is a solid waste of bauxite processing that is rich in reactive iron oxides and consequently has the potential to be used to remove sulfide from aqueous systems. A series of experiments was undertaken using raw and sintered RM to remove sulfide from waters. RM was highly efficient at sulfide removal (average 75% sulfide removal at initial concentration of ∼5 mg L(-1), with 500 mg L(-1) RM addition) due to both physical adsorption (high specific area) and chemical reaction (with amorphous Fe). Sintered RM, which has a lower surface area and lower mineral reactivity, was much less efficient at removing sulfide (∼20% removal under equivalent experimental conditions). Furthermore, concomitant metal release from raw RM was lower than for sintered RM during the sulfide removal process. The results showed that raw RM is a potentially suitable material for sulfide removal from polluted waters and consequently could be used as a low cost alternative treatment in certain engineering applications.

  14. Hydrogen peroxide oxidation of mustard-model sulfides catalyzed by iron and manganese tetraarylporphyrines. Oxygen transfer to sulfides versus H(2)O(2) dismutation and catalyst breakdown. (United States)

    Marques, A; Marin, M; Ruasse, M F


    Fe(III)- and Mn(III)-meso-tetraarylporphyrin catalysis of H(2)O(2) oxidation of dibenzyl and phenyl-2-chloroethyl sulfides, 1, is investigated in ethanol with the aim of designing catalytic systems for mustard decontamination. The sulfide conversion, the sulfoxide and sulfone yields, the oxygen transfer from H(2)O(2) to the sulfide, and the catalyst stability depend markedly on the metal, on the substituents of its ligand, and on the presence or the absence of a cocatalyst, imidazole or ammonium acetate. With Fe, sulfones, the only oxidation products, are readily obtained whatever the ligand (TPP, F(20)TPP, or TDCPP) and the cocatalyst; the oxygen transfer is fairly good, up to 95% when the catalyst concentration is small ([1]/[Cat] = 420); the catalyst breakdown is insignificant only in the absence of any cocatalyst. With Mn, the sulfide conversion is achieved completely when the ligand is TDCPP or TSO(3)PP, but not F(20)TPP or TPP; a mixture of sulfoxide, 2, and sulfone, 3, is always obtained with [2]/[3] = 3.5-0.85 depending on the ligand and the cocatalyst (electron withdrawing substituents favor 3 and NH(4)OAc, 2). The catalyst stability is very good, but the oxygen transfer is poor whatever the ligand and the cocatalyst. These results are discussed in terms of a scheme in which sulfide oxygenation, H(2)O(2) dismutation, and oxidative ligand breaking compete. It is shown that the efficiency of the oxygen transfer is related not only to the rate constant of the dismutation route but also to the concentration of the active metal-oxo intermediate, most likely a perferryl or permanganyl species, i.e., to the rate of its formation.

  15. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. (United States)

    Meng, Guoliang; Zhao, Shuang; Xie, Liping; Han, Yi; Ji, Yong


    Hydrogen sulfide (H2 S), independently of any specific transporters, has a number of biological effects on the cardiovascular system. However, until now, the detailed mechanism of H2 S was not clear. Recently, a novel post-translational modification induced by H2 S, named S-sulfhydration, has been proposed. S-sulfhydration is the chemical modification of specific cysteine residues of target proteins by H2 S. There are several methods for detecting S-sulfhydration, such as the modified biotin switch assay, maleimide assay with fluorescent thiol modifying regents, tag-switch method and mass spectrometry. H2 S induces S-sulfhydration on enzymes or receptors (such as p66Shc, phospholamban, protein tyrosine phosphatase 1B, mitogen-activated extracellular signal-regulated kinase 1 and ATP synthase subunit α), transcription factors (such as specific protein-1, kelch-like ECH-associating protein 1, NF-κB and interferon regulatory factor-1), and ion channels (such as voltage-activated Ca2+ channels, transient receptor potential channels and ATP-sensitive K+ channels) in the cardiovascular system. Although significant progress has been achieved in delineating the role of protein S-sulfhydration by H2 S in the cardiovascular system, more proteins with detailed cysteine sites of S-sulfhydration as well as physiological function need to be investigated in further studies. This review mainly summarizes the role and possible mechanism of S-sulfhydration in the cardiovascular system. The S-sulfhydrated proteins may be potential novel targets for therapeutic intervention and drug design in the cardiovascular system, which may accelerate the development and application of H2 S-related drugs in the future. © 2017 The British Pharmacological Society.

  16. Multicomponent sulfides as narrow gap hydrogen evolution photocatalysts. (United States)

    Ikeda, Shigeru; Nakamura, Takayuki; Harada, Takashi; Matsumura, Michio


    A series of mixed crystals composed of Cu(2)ZnSnS(4), Ag(2)ZnSnS(4) and ZnS was prepared by co-precipitation of the corresponding metal ions in aqueous sodium sulfide followed by annealing in a sulfur atmosphere. Ideal solid solutions of Cu(2)ZnSnS(4) and Ag(2)ZnSnS(4) with a kesterite structure ((Cu(x)Ag(1-x))(2)ZnSnS(4) (0 ≤x≤ 1)) were successfully obtained by this procedure, as confirmed by their X-ray diffraction (XRD) patterns and energy-diffuse X-ray (EDX) analyses. On the other hand, the solubility of ZnS in these kesterite compounds was found to be limited: the upper limit of the ratio of ZnS to (Cu(x)Ag(1-x))(2)ZnSnS(4) was less than 0.1, regardless of the Cu-Ag ratio in (Cu(x)Ag(1-x))(2)ZnSnS(4). Based on the results for dependence of their photoabsorption properties on atomic compositions, a plausible band structure is discussed. Evaluation of the photocatalytic activity for H(2) evolution of these mixed crystals from an aqueous solution containing S(2-) and SO(3)(2-) ions upon loading Ru catalysts under simulated solar radiation (AM 1.5) revealed that active compounds for this reaction should contain both dissolved ZnS and Ag components. The dissolved ZnS in (Cu(x)Ag(1-x))(2)ZnSnS(4) gave upward shifts of their conduction band edges. Moreover, the presence of Ag in the solid solution provided n-type conductivity, leading to efficient migration of photogenerated electrons to the surface to induce water reduction into H(2).

  17. The role of hydrogen sulfide in renal system

    Directory of Open Access Journals (Sweden)

    Xu Cao


    Full Text Available Hydrogen sulfide (H2S has gained recognition as the third gaseous signaling molecule after nitric oxide (NO and carbon monoxide (CO. This review surveys the emerging role of H2S in mammalian renal system, with emphasis on both renal physiology and diseases. H2S is produced redundantly by four pathways in kidney, indicating the abundance of this gaseous molecule in the organ. In physiological conditions, H2S was found to regulate the excretory function of the kidney possibly by the inhibitory effect on sodium transporters on renal tubular cells. Likewise, it also influences the release of renin from juxtaglomerular (JG cells and thereby modulates blood pressure. A possible role of H2S as an oxygen sensor has also been discussed, especially at renal medulla. Alternation of H2S level has been implicated in various pathological conditions such as renal ischemia/reperfusion, obstructive nephropathy, diabetic nephropathy and hypertensive nephropathy. Moreover, H2S donors exhibit broad beneficial effects in renal diseases although a few conflicts need to be resolved. Further research reveals that multiple mechanisms are underlying the protective effects of H2S, including anti-inflammation, anti-oxidation and anti-apoptosis. In the review, several research directions are also proposed including the role of mitochondrial H2S in renal diseases, H2S delivery to kidney by targeting D-amino acid oxidase/3-mercaptopyruvate sulfurtransferase (DAO/3-MST pathway, effect of drug-like H2S donors in kidney diseases and understanding the molecular mechanism of H2S. The completion of the studies in these directions will not only improves our understanding of renal H2S functions but may also be critical to translate H2S to be a new therapy for renal diseases.

  18. Decontamination of 2-Chloroethyl Ethyl Sulfide by Pulsed Corona Plasma (United States)

    Li, Zhanguo; Hu, Zhen; Cao, Peng; Zhao, Hongjie


    Decontamination of 2-chloroethyl ethyl sulfide (2-CEES, CH3CH2SCH2CH2Cl) by pulsed corona plasma was investigated. The results show that 212.6 mg/m3 of 2-CEES, with the gas flow rate of 2 m3/h, can be decontaminated to 0.09 mg/m3. According to the variation of the inlet and outlet concentration of 2-CEES vapor with retention time, it is found that the reaction of 2-CEES in a pulsed corona plasma system follows the first order reaction, with the reaction rate constant of 0.463 s-1. The decontamination mechanism is discussed based on an analysis of the dissociation energy of chemical bonds and decontamination products. The C-S bond adjacent to the Cl atom will be destroyed firstly to form CH3CH2S· and ·CH2CH2Cl radicals. CH3CH2S· can be decomposed to ·C2H5 and ·S. ·S can be oxidized to SO2, while ·C2H5 can be finally oxidized to CO2 and H2O. The C-Cl bond in the ·CH2CH2Cl radical can be destroyed to form ·CH2CH2. and ·Cl, which can be mineralized to CO2, H2O and HCl. The H atom in the ·CH2CH2Cl radical can also be substituted by ·Cl to form CHCl2-CHCl2.

  19. Microplate-based colorimetric detection of free hydrogen sulfide. (United States)

    Jarosz, Artur P; Yep, Terence; Mutus, Bulent


    Hydrogen sulfide (H2S) has recently been recognized as an important physiologically relevant gasotransmitter. Produced by the enzymes involved in the transsulfuration pathway, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), H2S has been implicated to control biological activity in virtually every organ system. In recent years it is being recognized that many commonly used H2S assays do not measure free H2S specifically and may be prone to artifacts. This has led to large variations in the reported H2S biological concentrations. In order to accurately study H2S's functions in biological systems accurate assays which measure free H2S specifically are required. In this work we present a simple microplate-based colorimetric assay for H2S gas. The underside of a 96-well microplate cover was coated with Nafion polymer doped with Ag(+) ions. H2S is a highly volatile gas, and as it is volatilized in the microplate well it reacts with Ag(+) to produce Ag2S nanoparticles, which have a strong absorbance in the low-UV range. By monitoring the absorbance change from formation of Ag2S nanoparticles, H2S production can be monitored in real time. The assay has a limit of detection (LOD) of 2.61 nmol (8.70 μM) and a liner range up to 30 nmol (100 μM). Using the assay, the KM and Vmax of recombinant CSE enzyme were determined to be 11.13 ± 0.57 mM and 0.45 ± 0.01 nmol min(-1), respectively. H2S production from mouse liver homogenate under aerobic conditions in the presence of cysteine was measured and determined to be 4.89 ± 0.19 nmol min(-1) mL(-1) homogenate. The assay is simple, low cost, and specific to free H2S gas.


    Directory of Open Access Journals (Sweden)



    Full Text Available Biogas is one type of renewable energy which can be burnt to produce heat and electricity. However, it cannot be burnt directly due to the presence of hydrogen sulfide (H2S which is highly corrosive to gas engine. In this study, coconut shell activated carbon (CSAC was applied as a porous adsorbent for H2S removal. The effect of amount of activated carbon and flow rate of gas stream toward adsorption capacity were investigated. Then, the activated carbons were impregnated by three types of alkaline (NaOH, KOH and K2CO3 with various ratios. The effects of various types of alkaline and their impregnation ratio towards adsorption capacity were analysed. In addition, H2S influent concentration and the reaction temperature on H2S adsorption were also investigated. The result indicated that adsorption capacity increases with the amount of activated carbon and decreases with flow rate of gas stream. Alkaline impregnated activated carbons had better performance than unimpregnated activated carbon. Among all impregnated activated carbons, activated carbon impregnated by K2CO3 with ratio 2.0 gave the highest adsorption capacity. Its adsorption capacity was 25 times higher than unimpregnated activated carbon. The result also indicated that the adsorption capacity of impregnated activated carbon decreased with the increment of H2S influent concentration. Optimum temperature for H2S adsorption was found to be 50˚C. In this study, the adsorption of H2S on K2CO3 impregnated activated carbon was fitted to the Langmuir isotherm. The fresh and spent K2CO3 impregnated activated carbon were characterized to study the adsorption process.

  1. Arsenic sulfide as a potential anti-cancer drug (United States)



    Arsenic sulfide (As4S4) is the main component of realgar, which is widely used in traditional Chinese medicine. Previous studies have shown the beneficial effects of As4S4 in the treatment of hematological malignant diseases, however, its effects on solid tumors have yet to be fully elucidated. The current study aimed to explore the anti-cancer effect and the mechanism of As4S4 on solid tumors in vitro and in vivo. Cells from four human solid tumor cell lines, including the MKN45 gastric cancer cell line, the A375 malignant melanoma cell line, the 8898 pancreatic carcinoma cell line and the HepG2 hepatocellular carcinoma cell line, were treated with As4S4 in vitro, using the L02 embryonic liver cells as a control. The efficacy of As4S4 was assessed in vivo using mice implanted with Lewis lung carcinoma cells. The results of the current study demonstrated that As4S4 significantly inhibited the proliferation of solid tumor cells in a dose- and time-dependent manner, but produced a less pronounced effect on L02 cells. Additionally, As4S4 was observed to induce apoptosis (including morphological changes and an enhanced sub-G1 population), which was accompanied by the activation of caspase-3 and −9. Furthermore, treatment with As4S4 significantly inhibited the growth of implanted tumors in mice. These results suggest that As4S4 possesses potent in vitro and in vivo antitumor activity via the induction of cell apoptosis. PMID:25371265

  2. Arsenic Sulfide Nanowire Formation on Fused Quartz Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Olmstead, J.; Riley, B.J.; Johnson, B.R.; Sundaram, S.K.


    Arsenic sulfide (AsxSy) nanowires were synthesized by an evaporation-condensation process in evacuated fused quartz ampoules. During the deposition process, a thin, colored film of AsxSy was deposited along the upper, cooler portion of the ampoule. The ampoule was sectioned and the deposited film analyzed using scanning electron microscopy (SEM) to characterize and semi-quantitatively evaluate the microstructural features of the deposited film. A variety of microstructures were observed that ranged from a continuous thin film (warmer portion of the ampoule), to isolated micron- and nano-scale droplets (in the intermediate portion), as well as nanowires (colder portion of the ampoule). Experiments were conducted to evaluate the effects of ampoule cleaning methods (e.g. modify surface chemistry) and quantity of source material on nanowire formation. The evolution of these microstructures in the thin film was determined to be a function of initial pressure, substrate temperature, substrate surface treatment, and initial volume of As2S3 glass. In a set of two experiments where the initial pressure, substrate thermal gradient, and surface treatment were the same, the initial quantity of As2S3 glass per internal ampoule volume was doubled from one test to the other. The results showed that AsxSy nanowires were only formed in the test with the greater initial quantity of As2S3 per internal ampoule volume. The growth data for variation in diameter (e.g. nanowire or droplet) as a function of substrate temperature was fit to an exponential trendline with the form y = Aekx, where y is the structure diameter, A = 1.25×10-3, k = 3.96×10-2, and x is the temperature with correlation coefficient, R2 = 0.979, indicating a thermally-activated process.

  3. MET2 affects production of hydrogen sulfide during wine fermentation. (United States)

    Huang, Chien; Roncoroni, Miguel; Gardner, Richard C


    The production of hydrogen sulfide (H2S) during yeast fermentation contributes negatively to wine aroma. We have mapped naturally occurring mutations in commercial wine strains that affect production of H2S. A dominant R310G mutant allele of MET2, which encodes homoserine O-acetyltransferase, is present in several wine yeast strains as well as in the main lab strain S288c. Reciprocal hemizygosity and allele swap experiments demonstrated that the MET2 R310G allele confers reduced H2S production. Mutations were also identified in genes encoding the two subunits of sulfite reductase, MET5 and MET10, which were associated with reduced H2S production. The most severe of these, an allele of MET10, showed five additional phenotypes: reduced growth rate on sulfate, elevated secretion of sulfite, and reduced production in wine of three volatile sulfur compounds: methionol, carbon disulfide and methylthioacetate. Alleles of MET5 and MET10, but not MET2, affected H2S production measured by colour assays on BiGGY indicator agar, but MET2 effects were seen when bismuth was added to agar plates made with Sauvignon blanc grape juice. Collectively, the data are consistent with the hypothesis that H2S production during wine fermentation results predominantly from enzyme activity in the sulfur assimilation pathway. Lower H2S production results from mutations that reduce the activity of sulfite reductase, the enzyme that produces H2S, or that increase the activity of L-homoserine-O-acetyltransferase, which produces substrate for the next step in the sulfur assimilation pathway.

  4. Intracolonic hydrogen sulfide lowers blood pressure in rats. (United States)

    Tomasova, Lenka; Dobrowolski, Leszek; Jurkowska, Halina; Wróbel, Maria; Huc, Tomasz; Ondrias, Karol; Ostaszewski, Ryszard; Ufnal, Marcin


    Research suggests that hydrogen sulfide (H2S) is an important biological mediator involved in various physiological processes including the regulation of arterial blood pressure (BP). Although H2S is abundant in the colon, the effects of gut-derived H2S on the circulatory system have not yet been investigated. We studied the effects of intracolonic administration of Na2S, a H2S donor, on systemic hemodynamics. Hemodynamics were recorded in anesthetized, normotensive Wistar Kyoto and spontaneously hypertensive rats at baseline and after intracolonic injection of either saline (controls) or Na2S·9H2O saline solution at a dose range of 10-300 mg/kg of BW. The H2S donor produced a significant, dose-dependent decrease in mean arterial blood pressure (MABP), which lasted several times longer than previously reported after parenteral infusions (>90 min). The effect was more pronounced in hypertensive than in normotensive rats. The Na2S-induced decrease in MABP was reduced by pretreatment with glibenclamide, an inhibitor of ATP-sensitive potassium-channels. Na2S did not affect mesenteric vein blood flow. Rats treated with Na2S showed increased portal blood levels of thiosulfate and sulfane sulfur, products of H2S oxidation. In contrast, rats treated with neomycin, an antibiotic, showed significantly decreased levels of thiosulfate and sulfane sulfur, and a tendency for greater hypotensive response to Na2S. The H2S donor decreased heart rate but did not affect ECG morphology and QTc interval. In conclusion the gut-derived H2S may contribute to the control of BP and may be one of the links between gut microbiota and hypertension. Furthermore, gut-derived H2S may be a therapeutic target in hypertension. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Ambient geothermal hydrogen sulfide exposure and peripheral neuropathy. (United States)

    Pope, Karl; So, Yuen T; Crane, Julian; Bates, Michael N


    The mechanism of toxicity of hydrogen sulfide (H2S) gas is thought mainly to operate through effects on the nervous system. The gas has high acute toxicity, but whether chronic exposure causes effects, including peripheral neuropathy, is yet unclear. The city of Rotorua, New Zealand, sits on an active geothermal field and the population has some of the highest measured ambient H2S exposures. A previous study in Rotorua provided evidence that H2S is associated with peripheral neuropathy. Using clinical methods, the present study sought to investigate and possibly confirm this association in the Rotorua population. The study population comprised 1635 adult residents of Rotorua, aged 18-65. Collected data relevant to the peripheral neuropathy investigation included symptoms, ankle stretch reflex, vibration sensitivity, as measured by the timed-tuning fork test and a Bio-Thesiometer (Bio-Medical Instrument Co., Ohio), and light touch sensitivity measured by monofilaments. An exposure metric, estimating time-weighted H2S exposure across the last 30 years was used. Principal components analysis was used to combine data across the various indicators of possible peripheral neuropathy. The main data analysis used linear regression to examine associations between the peripheral nerve function indicators and H2S exposure. None of the peripheral nerve function indicators were associated with H2S exposure, providing no evidence that H2S exposure at levels found in Rotorua is a cause of peripheral neuropathy. The earlier association between H2S exposure and peripheral neuropathy diagnoses may be attributable to the ecological study design used. The possibility that H2S exposure misclassification could account for the lack of association found cannot be entirely excluded. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge. (United States)

    Sun, Jing; Pikaar, Ilje; Sharma, Keshab Raj; Keller, Jürg; Yuan, Zhiguo


    Dosage of iron salt is the most commonly used method for sulfide control in sewer networks but incurs high chemical costs. In this study, we experimentally investigate the feasibility of using iron rich drinking water treatment sludge for sulfide control in sewers. A lab-scale rising main sewer biofilm reactor was used. The sulfide concentration in the effluent decreased from 15.5 to 19.8 mgS/L (without dosing) to below 0.7-2.3 mgS/L at a sludge dosing rate achieving an iron to total dissolved inorganic sulfur molar ratio (Fe:S) of 1:1, with further removal of sulfide possible by prolonging the reaction time. In fact, batch tests revealed an Fe consumption to sulfide removal ratio of 0.5 ± 0.02 (mole:mole), suggesting the possible occurrence of other reactions involving the removal of sulfide. Modelling revealed that the reaction between iron in sludge and sulfide has reaction orders of 0.65 ± 0.01 and 0.77 ± 0.02 with respect to the Fe and sulfide concentrations, respectively. The addition of sludge slightly increased the total chemical oxidation demand (tCOD) concentration (by approximately 12%) as expected, but decreased the soluble chemical oxidation demand (sCOD) concentration and methane formation by 7% and 20%, respectively. Some phosphate removal (13%) was also observed at the sludge dosing rate of 1:1 (Fe:S), which is beneficial to nutrient removal from the wastewater. Overall, this study suggests that dosing iron-rich drinking water sludge to sewers could be an effective strategy for sulfide removal in sewer systems, which would also reduce the sludge disposal costs for drinking water treatment works. However, its potential side-effects on sewer sedimentation and on the wastewater treatment plant effluent remain to be investigated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Sulfide in the core and the Nd isotopic composition of the silicate Earth (United States)

    McCoy-West, A.; Millet, M. A.; Nowell, G. M.; Wohlers, A.; Wood, B. J.; Burton, K. W.


    The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive chondritic meteorites. It now appears, however, that the silicate Earth is not chondritic, but depleted in incompatible elements and a resovable 20 ppm excess is observed in 142Nd relative to chondirtes [1, 2]. This anomaly requires a process that occurred within 30 Myr of solar system formation and has been variably ascribed to: a complementary enriched reservoir in the deep Earth [1]; loss to space through collisional erosion [3]; or the inhertence of nucleosynthetic anomalies [4]. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [5]. The drawback of the short-lived 146Sm-142Nd radiogenic isotope system is that it is not possible to distinguish between fractionations of Sm/Nd that occurs during silicate melting or segregation of a sulfide-melt. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites by 0.3 ‰, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavier values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd stable isotope data for

  8. Spectroscopy of sulfides in the simulated environment of Mercury and their detection from the orbit (United States)

    Varatharajan, I.; Maturilli, A.; Helbert, J.; Hiesinger, H.


    In order to detect the mineral diversity on the planet's surface, it is essential to study the spectral variations along broad wavelength range in their respective simulated laboratory conditions. MESSENGER (Mercury Surface, Space Environment, Geochemistry, and Ranging) mission to Mercury discovered that irrespective of its formation closest to the sun, Mercury in rich in volatiles than previously expected especially S (4 wt%). S in the Mercury interior can be brought to the surface through volcanic activity as slag deposits in Mercury hollows and pyroclasts. However, the complete spectral library of sulfide minerals in vacuum conditions at Mercury's daytime temperature in the wide spectral range (0.2-100 µm) is still missing. This affects our detectability and understanding of distribution, abundance, and type of sulfides on Mercury using spectral datasets in the past missions to Mercury. In the case of Mercury, the effect of thermal weathering in the spectral behavior of these sulfides must be studied carefully for their effective detection. In the study, we thermally processed the fresh synthetic sulfides by heating them slowly upto 500 ºC in vacuum and during the process, we measured the thermal radiance/emissivity of these sulfides in the thermal infrared spectral region (TIR: 7-14 µm) at the interval of every 100 ºC. After this, we collectively measured the spectral reflectance of fresh and heated synthetic sulfides at wide spectral range (0.2-100 µm) at four different phase angles, 26º, 40º, 60º, 80º. Therefore, this study facilitates the detection of sulfides by past and future missions to Mercury by any spectrometer of any spectral range. The synthetic sulfides used in the study includes MgS, FeS, CaS, CrS, TiS, NaS, and MnS. Thus, the emissivity measurements in the study will support the The Mercury Radiometer and Thermal Imaging Spectrometer (MERTIS) payload of ESA/JAXA BepiColombo mission to Mercury which will study the surface mineralogy at

  9. Acidic Microenvironments in Waste Rock Characterized by Neutral Drainage: Bacteria–Mineral Interactions at Sulfide Surfaces

    Directory of Open Access Journals (Sweden)

    John W. Dockrey


    Full Text Available Microbial populations and microbe-mineral interactions were examined in waste rock characterized by neutral rock drainage (NRD. Samples of three primary sulfide-bearing waste rock types (i.e., marble-hornfels, intrusive, exoskarn were collected from field-scale experiments at the Antamina Cu–Zn–Mo mine, Peru. Microbial communities within all samples were dominated by neutrophilic thiosulfate oxidizing bacteria. However, acidophilic iron and sulfur oxidizers were present within intrusive waste rock characterized by bulk circumneutral pH drainage. The extensive development of microbially colonized porous Fe(III (oxyhydroxide and Fe(III (oxyhydroxysulfate precipitates was observed at sulfide-mineral surfaces during examination by field emission-scanning electron microscopy-energy dispersive X-ray spectroscopy (FE-SEM-EDS. Linear combination fitting of bulk extended X-ray absorption fine structure (EXAFS spectra for these precipitates indicated they were composed of schwertmannite [Fe8O8(OH6–4.5(SO41–1.75], lepidocrocite [γ-FeO(OH] and K-jarosite [KFe3(OH6(SO42]. The presence of schwertmannite and K-jarosite is indicative of the development of localized acidic microenvironments at sulfide-mineral surfaces. Extensive bacterial colonization of this porous layer and pitting of underlying sulfide-mineral surfaces suggests that acidic microenvironments can play an important role in sulfide-mineral oxidation under bulk circumneutral pH conditions. These findings have important implications for water quality management in NRD settings.

  10. Modification of iodometric determination of total and reactive sulfide in environmental samples. (United States)

    Pawlak, Z; Pawlak, A S


    In iodometric determination of sulfide two reactions are taking place when alkaline solution is added to HCl acid-iodine. The main oxidation reaction (1), H(2)S+I(2)=2HI+S; and side reaction of sulfide (2), S(-2)+4I(2)+8OH(-)=SO(4)(2-)+8I(-)+4H(2)O. Preference of reaction (2) over (1) is dependent on pH increasing to >7. When sulfide solution of pH 9 was mixed with HCl acid-iodine, the recovery exceeded 120%, but the recovery of a solution with a pH of 13 exceeded 200%. To eliminate the side reaction in iodometric titration, the sulfide solution must be acidic when it is mixed with HCl-iodine. To avoid the side reaction (2), the pH of sulfide solutions were adjusted with acetic acid to pH 5.5, mixed with HCl-iodine solution and then titrated with standard thiosulfate with precision and accuracy <+/-3%.

  11. Beyond a Gasotransmitter: Hydrogen Sulfide and Polysulfide in Cardiovascular Health and Immune Response. (United States)

    Yuan, Shuai; Shen, Xinggui; Kevil, Christopher G


    Hydrogen sulfide (H2S) metabolism leads to the formation of oxidized sulfide species, including polysulfide, persulfide, and others. Evidence is emerging that many biological effects of H2S may indeed be due to polysulfide and persulfide activation of signaling pathways and reactivity with discrete small molecules. Recent Advances: Exogenous oxidized sulfide species, including polysulfides, are more reactive than H2S with a wide range of molecules. Importantly, endogenous polysulfide and persulfide formation has been reported to occur via transsulfuration enzymes, cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS). In light of the recent understanding of oxidized sulfide metabolite formation and reactivity, comparatively few studies have been reported comparing cellular biological and in vivo effects of H2S donors versus polysulfide and persulfide donors. Likewise, it is equally unclear when, how, and to what extent persulfide and polysulfide formation occurs in vivo under pathophysiological conditions. Additional studies regarding persulfide and polysulfide formation and molecular reactions are needed in nearly all aspects of biology to better understand how sulfide metabolites contribute to key chemical biology reactions involved in cardiovascular health and immune responses. Antioxid. Redox Signal. 27, 634-653.

  12. Synthesis and Mechanism of Formation of Hydride-Sulfide Complexes of Iron. (United States)

    Arnet, Nicholas A; McWilliams, Sean F; DeRosha, Daniel E; Mercado, Brandon Q; Holland, Patrick L


    Iron-sulfide complexes with hydride ligands provide an experimental precedent for spectroscopically detected hydride species on the iron-sulfur MoFe 7 S 9 C cofactor of nitrogenase. In this contribution, we expand upon our recent synthesis of the first iron sulfide hydride complex from an iron hydride and a sodium thiolate ( Arnet, N. A.; Dugan, T. R.; Menges, F. S.; Mercado, B. Q.; Brennessel, W. W.; Bill, E.; Johnson, M. A.; Holland, P. L., J. Am. Chem. Soc. 2015 , 137 , 13220 - 13223 ). First, we describe the isolation of an analogous iron sulfide hydride with a smaller diketiminate supporting ligand, which benefits from easier preparation of the hydride precursor and easier isolation of the product. Second, we describe mechanistic studies on the C-S bond cleavage through which the iron sulfide hydride product is formed. In a key experiment, use of cyclopropylmethanethiolate as the sulfur precursor leads to products from cyclopropane ring opening, implicating an alkyl radical as an intermediate. Combined with the results of isotopic labeling studies, the data are consistent with a mechanism in which homolytic C-S bond cleavage is followed by rebound of the alkyl radical to abstract a hydrogen atom from iron to give the observed alkane and iron-sulfide products.

  13. Circulating levels of hydrogen sulfide and substance P in patients with sepsis. (United States)

    Gaddam, Ravinder Reddy; Chambers, Stephen; Murdoch, David; Shaw, Geoffrey; Bhatia, Madhav


    To determine alterations of circulating levels of hydrogen sulfide and substance P in patients with sepsis compared to non-sepsis patients with similar disease severity and organ dysfunction. This study included 23 septic and 14 non-septic patients during 2015-16 study period at the Christchurch Hospital Intensive Care Unit, Christchurch, New Zealand. Blood samples were collected from the time of admission to 96 h, with collection at different time points (0 h, 12 h, 24 h, 48 h, 72 h and 96 h) and subjected to measurement of hydrogen sulfide, substance P, procalcitonin, C-reactive protein, interleukin-6 and lactate levels. Patients with sepsis showed higher circulating hydrogen sulfide and substance P levels compared to patients without sepsis. Hydrogen sulfide levels were significantly higher at 12 h (1.45 vs 0.75 μM; p p P levels were higher at 48 h (0.55 vs 0.31 ng/mL; p P levels in septic patients were associated with increased levels of inflammatory mediators - procalcitonin, C-reactive protein and interleukin-6. These results provide evidence that higher circulating levels of hydrogen sulfide and substance P are associated with increased inflammatory response in patients with sepsis. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  14. Bioconversion of high concentrations of hydrogen sulfide to elemental sulfur in airlift bioreactor. (United States)

    Zytoon, Mohamed Abdel-Monaem; AlZahrani, Abdulraheem Ahmad; Noweir, Madbuli Hamed; El-Marakby, Fadia Ahmed


    Several bioreactor systems are used for biological treatment of hydrogen sulfide. Among these, airlift bioreactors are promising for the bioconversion of hydrogen sulfide into elemental sulfur. The performance of airlift bioreactors is not adequately understood, particularly when directly fed with hydrogen sulfide gas. The objective of this paper is to investigate the performance of an airlift bioreactor fed with high concentrations of H2S with special emphasis on the effect of pH in combination with other factors such as H2S loading rate, oxygen availability, and sulfide accumulation. H2S inlet concentrations between 1,008 ppm and 31,215 ppm were applied and elimination capacities up to 113 g H2S m(-3) h(-1) were achieved in the airlift bioreactor under investigation at a pH range 6.5-8.5. Acidic pH values reduced the elimination capacity. Elemental sulfur recovery up to 95% was achieved under oxygen limited conditions (DO bioreactor tolerated accumulated dissolved sulfide concentrations >500 mg/L at pH values 8.0-8.5, and near 100% removal efficiency was achieved. Overall, the resident microorganisms in the studied airlift bioreactor favored pH values in the alkaline range. The bioreactor performance in terms of elimination capacity and sulfur recovery was better at pH range 8-8.5.

  15. Energetic spectrum and some properties of lead sulfide implanted with oxygen

    Directory of Open Access Journals (Sweden)

    A.N. Veis


    Full Text Available Spectral dependencies of optical reflection and absorption coefficients in lead sulfide implanted with oxygen ions and annealed in vacuum have been investigated at T = 300 K. It was found that the average value of hole concentration within the sample space area where properties were modified by ion implantation and vacuum annealing was equal to (3.25 ± 0.30 × 1018 cm–3. The depth of the space in question was estimated and its quantity was shown to make the tenths of micrometers. It was demonstrated that because of annealing process oxygen ions occupied places in the chalcogen sublattice healing anion vacancies. It was also found that vacuum annealing of lead sulfide with implanted oxygen did not cause elimination of all anion vacancies. Moreover, the concentration of sulfur vacancies increased considerably in comparison with its value in the initial samples non-subjected to ion implantation. This fact testifies that oxygen in lead sulfide possesses acceptor action which is compensated by chalcogen vacancies. It was established that in the lead sulfide, the only quasi-local energy level, being located in the valence band at the energy distance of 0.16 eV from its top, was connected with oxygen impurity. No other energy level which one could connect with oxygen or with the complexes containing oxygen in lead sulfide was revealed. The storage stability of properties of investigated material was demonstrated.

  16. Disguised as a Sulfate Reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    Directory of Open Access Journals (Sweden)

    Casper Thorup


    Full Text Available This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D. alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR. Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction genes during growth by sulfide oxidation, while inhibition experiments with molybdate pointed to elemental sulfur/polysulfides as intermediates. Consequently, we propose that D. alkaliphilus initially oxidizes sulfide to elemental sulfur, which is then either disproportionated, or oxidized by a reversal of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane-anchored nitrite reductase.

  17. Simulation for estimation of hydrogen sulfide scavenger injection dose rate for treatment of crude oil

    Directory of Open Access Journals (Sweden)

    T.M. Elshiekh


    Full Text Available The presence of hydrogen sulfide in the hydrocarbon fluids is a well known problem in many oil and gas fields. Hydrogen sulfide is an undesirable contaminant which presents many environmental and safety hazards. It is corrosive, malodorous, and toxic. Accordingly, a need has been long left in the industry to develop a process which can successfully remove hydrogen sulfide from the hydrocarbons or at least reduce its level during the production, storage or processing to a level that satisfies safety and product specification requirements. The common method used to remove or reduce the concentration of hydrogen sulfide in the hydrocarbon production fluids is to inject the hydrogen sulfide scavenger into the hydrocarbon stream. One of the chemicals produced by the Egyptian Petroleum Research Institute (EPRI is EPRI H2S scavenger. It is used in some of the Egyptian petroleum producing companies. The injection dose rate of H2S scavenger is usually determined by experimental lab tests and field trials. In this work, this injection dose rate is mathematically estimated by modeling and simulation of an oil producing field belonging to Petrobel Company in Egypt which uses EPRI H2S scavenger. Comparison between the calculated and practical values of injection dose rate emphasizes the real ability of the proposed equation.

  18. Species-specific response to sulfide intrusion in native and exotic Mediterranean seagrasses under stress. (United States)

    Apostolaki, Eugenia T; Holmer, Marianne; Santinelli, Veronica; Karakassis, Ioannis


    We explored the sulfur dynamics and the relationships between sediment sulfur and nutrient pools, seagrass structural and physiological variables and sulfide intrusion in native (Posidonia oceanica, Cymodocea nodosa) and exotic (Halophila stipulacea) Mediterranean seagrasses at six sites affected by cumulative anthropogenic pressures to understand the factors controlling sulfide intrusion in seagrass. Sensitive indicators of seagrass stress (leaf TN, δ15N, TS, Fsulfide) were increased at several sites, implying that seagrasses are under pressure. Sulfide intrusion was not related to sediment TOC but it was negatively related to shoot size and below-ground biomass. Sulfide intrusion in seagrass tissue was high in P. oceanica (12-17%) and considerably higher in C. nodosa (27-35%). Intrusion was particularly high in H. stipulacea (30-50%), suggesting that its possible biogeographical expansion due to warming of the Mediterranean may result in accumulation of sulfides in the sediments and hypoxia/anoxia with further implications in ecosystem function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The effect of tin sulfide quantum dots size on photocatalytic and photovoltaic performance

    Energy Technology Data Exchange (ETDEWEB)

    Cheraghizade, Mohsen [Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Jamali-Sheini, Farid, E-mail: [Advanced Surface Engineering and Nano Materials Research Center, Department of Physics, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Yousefi, Ramin [Department of Physics, Masjed-Soleiman Branch, Islamic Azad University (I.A.U), Masjed-Soleiman (Iran, Islamic Republic of); Niknia, Farhad [Young Researchers and Elite Club, Ahvaz Branch, Islamic Azad University, Ahvaz (Iran, Islamic Republic of); Mahmoudian, Mohammad Reza [Department of Chemistry, Shahid Sherafat, University of Farhangian, 15916, Tehran (Iran, Islamic Republic of); Sookhakian, Mehran [Centre for Ionic Liquids, Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603 (Malaysia)


    In the current study, tin sulfide Quantum Dots (QDs) was successfully synthesized through sonochemical synthesis method by applying sonication times of 10, 15, and 20 min. Structural studies showed an orthorhombic phase of SnS and Sn{sub 2}S{sub 3}, and hexagonal phase of SnS{sub 2}. The particle size of tin sulfide QDs prepared through sonication time of 20 min was smaller than other QDs. According to TEM images, an increase in sonication time resulted in smaller spherical shaped particles. According to the results of Raman studies, five Raman bands and a shift towards the lower frequencies were observed by enhancing the sonication time. Based on the outcomes of photocatalytic activity, higher this property was observed for tin sulfide QDs, which are prepared through longer sonication time. Solar cell devices manufactured using tin sulfide QDs have a greater performance for the samples with more sonication time. Considering the obtained outcomes, the sonication time seems probable to be a factor affecting synthesis process of SnS QDs as well as its optical and electrical, photocatalytic, and photovoltaic conversion features. - Highlights: • Tin sulfide quantum dots (QDs) synthesized using a sonication method. • The sonication time was selected as a synthesis parameter. • The photocatalytic and photovoltaic performance were depended on synthesis parameter.

  20. Laccase-catalyzed C-S and C-C coupling for a one-pot synthesis of 1,4-naphthoquinone sulfides and 1,4-naphthoquinone sulfide dimers

    CSIR Research Space (South Africa)

    Wellington, Kevin W


    Full Text Available ChemCatChem June 2013/ Vol 5 Issue 6 Laccase-catalyzed C-S and C-C coupling for a one-pot synthesis of 1,4-naphthoquinone sulfides and 1,4-naphthoquinone sulfide dimers Dr. Kevin W. Wellington1,*, Dr. Gregory E. R. Gordon1, Lindelani A. Ndlovu1...

  1. Synthesis, Deposition, and Microstructure Development of Thin Films Formed by Sulfidation and Selenization of Copper Zinc Tin Sulfide Nanocrystals (United States)

    Chernomordik, Boris David

    Significant reduction in greenhouse gas emission and pollution associated with the global power demand can be accomplished by supplying tens-of-terawatts of power with solar cell technologies. No one solar cell material currently on the market is poised to meet this challenge due to issues such as manufacturing cost, material shortage, or material toxicity. For this reason, there is increasing interest in efficient light-absorbing materials that are comprised of abundant and non-toxic elements for thin film solar cell. Among these materials are copper zinc tin sulfide (Cu2ZnSnS4, or CZTS), copper zinc tin selenide (Cu2ZnSnSe4, or CZTSe), and copper zinc tin sulfoselenide alloys [Cu2ZnSn(SxSe1-x )4, or CZTSSe]. Laboratory power conversion efficiencies of CZTSSe-based solar cells have risen to almost 13% in less than three decades of research. Meeting the terawatt challenge will also require low cost fabrication. CZTSSe thin films from annealed colloidal nanocrystal coatings is an example of solution-based methods that can reduce manufacturing costs through advantages such as high throughput, high material utilization, and low capital expenses. The film microstructure and grain size affects the solar cell performance. To realize low cost commercial production and high efficiencies of CZTSSe-based solar cells, it is necessary to understand the fundamental factors that affect crystal growth and microstructure evolution during CZTSSe annealing. Cu2ZnSnS4 (CZTS) nanocrystals were synthesized via thermolysis of single-source cation and sulfur precursors copper, zinc and tin diethyldithiocarbamates. The average nanocrystal size could be tuned between 2 nm and 40 nm, by varying the synthesis temperature between 150 °C and 340 °C. The synthesis is rapid and is completed in less than 10 minutes. Characterization by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy confirm that the nanocrystals are nominally

  2. Formation of Zn- and Fe-sulfides near hydrothermal vents at the Eastern Lau Spreading Center: implications for sulfide bioavailability to chemoautotrophs

    Directory of Open Access Journals (Sweden)

    Yucel Mustafa


    Full Text Available Abstract Background The speciation of dissolved sulfide in the water immediately surrounding deep-ocean hydrothermal vents is critical to chemoautotrophic organisms that are the primary producers of these ecosystems. The objective of this research was to identify the role of Zn and Fe for controlling the speciation of sulfide in the hydrothermal vent fields at the Eastern Lau Spreading Center (ELSC in the southern Pacific Ocean. Compared to other well-studied hydrothermal systems in the Pacific, the ELSC is notable for unique ridge characteristics and gradients over short distances along the north-south ridge axis. Results In June 2005, diffuse-flow ( 250°C vent fluids were collected from four field sites along the ELSC ridge axis. Total and filtered Zn and Fe concentrations were quantified in the vent fluid samples using voltammetric and spectrometric analyses. The results indicated north-to-south variability in vent fluid composition. In the high temperature vent fluids, the ratio of total Fe to total Zn varied from 39 at Kilo Moana, the most northern site, to less than 7 at the other three sites. The concentrations of total Zn, Fe, and acid-volatile sulfide indicated that oversaturation and precipitation of sphalerite (ZnS(s and pyrite (FeS2(s were possible during cooling of the vent fluids as they mixed with the surrounding seawater. In contrast, most samples were undersaturated with respect to mackinawite (FeS(s. The reactivity of Zn(II in the filtered samples was tested by adding Cu(II to the samples to induce metal-exchange reactions. In a portion of the samples, the concentration of labile Zn2+ increased after the addition of Cu(II, indicating the presence of strongly-bound Zn(II species such as ZnS clusters and nanoparticles. Conclusion Results of this study suggest that Zn is important to sulfide speciation at ELSC vent habitats, particularly at the southern sites where Zn concentrations increase relative to Fe. As the hydrothermal

  3. Improving the sensitivity of the ZnO gas sensor to dimethyl sulfide (United States)

    Suchorska-Woźniak, P.; Nawrot, W.; Rac, O.; Fiedot, M.; Teterycz, H.


    This study was focused on how to improve the gas sensing properties of resistive gas sensors based on zinc oxide to dimethyl sulfide (DMS). The aim of this research was to investigate possible ways of improvement detection of dimethyl sulfide, such as volume doping with synthesized gold nanoparticles or applying sepiolite passive filter. The addition of noble metal into the gas sensing layer is a widely known method of increasing gas sensor response. Sepiolite is a clay mineral with highly porous structure consisting of nanotubes few micrometers long and water absorption abilities. In this work thick-film resistive gas sensors based on zinc oxide were made (pure ZnO, modified by gold nanoparticles, with the addition of filter) and tested for low concentration (2 ppm) of dimethyl sulfide. The sensitivities to DMS of developed sensors were compared. Attention was paid to the analysis of the impact of high humidity (90% RH) on the sensor time response.

  4. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.


    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction stage. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. Because of the higher cost of chemicals and the restricted markets in Hawaii, the economic viability of this process in Hawaii is questionable.

  5. Direct chlorination process for geothermal power plant off-gas - hydrogen sulfide abatement

    Energy Technology Data Exchange (ETDEWEB)

    Sims, A.V.


    The Direct Chlorination Process removes hydrogen sulfide from geothermal off-gases by reacting hydrogen sulfide with chlorine in the gas phase. Hydrogen chloride and elemental sulfur are formed by this reaction. The Direct Chlorination Process has been successfully demonstrated by an on-site operation of a pilot plant at the 3 M We HPG-A geothermal power plant in the Puna District on the island of Hawaii. Over 99.5 percent hydrogen sulfide removal was achieved in a single reaction state. Chlorine gas did not escape the pilot plant, even when 90 percent excess chlorine gas was used. A preliminary economic evaluation of the Direct Chlorination Process indicates that it is very competitive with the Stretford Process. Compared to the Stretford Process, the Direct Chlorination Process requires about one-third the initial capital investment and about one-fourth the net daily expenditure.

  6. Simulation of the sulfide phase formation in a KhN60VT alloy (United States)

    Kabanov, I. V.; Butskii, E. V.; Grigorovich, K. V.; Arsenkin, A. M.


    The conditions of the existence of sulfide phases in Fe-Ni-S alloys and four-component Fe-50 wt % Ni-0.001 wt % S- R ( R is an alloying or impurity element from the TCFE7 database) systems are studied using the Thermo-Calc software package and the TCFE7 database. The modification of nickel superalloys by calcium or magnesium is shown to increase their ductility due to partial desulfurization, the suppression of the formation of harmful sulfide phases, and the uniform formation of strong sulfides in the entire temperature range of metal solidification. The manufacturability of superalloys can decrease at a too high calcium or magnesium content because of the formation of intermetallics with a low melting temperature along grain boundaries.

  7. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. (United States)

    Sun, Jing; Todd, Jonathan D; Thrash, J Cameron; Qian, Yanping; Qian, Michael C; Temperton, Ben; Guo, Jiazhen; Fowler, Emily K; Aldrich, Joshua T; Nicora, Carrie D; Lipton, Mary S; Smith, Richard D; De Leenheer, Patrick; Payne, Samuel H; Johnston, Andrew W B; Davie-Martin, Cleo L; Halsey, Kimberly H; Giovannoni, Stephen J


    Marine phytoplankton produce ∼10(9) tonnes of dimethylsulfoniopropionate (DMSP) per year(1,2), an estimated 10% of which is catabolized by bacteria through the DMSP cleavage pathway to the climatically active gas dimethyl sulfide(3,4). SAR11 Alphaproteobacteria (order Pelagibacterales), the most abundant chemo-organotrophic bacteria in the oceans, have been shown to assimilate DMSP into biomass, thereby supplying this cell's unusual requirement for reduced sulfur(5,6). Here, we report that Pelagibacter HTCC1062 produces the gas methanethiol, and that a second DMSP catabolic pathway, mediated by a cupin-like DMSP lyase, DddK, simultaneously shunts as much as 59% of DMSP uptake to dimethyl sulfide production. We propose a model in which the allocation of DMSP between these pathways is kinetically controlled to release increasing amounts of dimethyl sulfide as the supply of DMSP exceeds cellular sulfur demands for biosynthesis.

  8. Evidence of molybdenum association with particulate organic matter under sulfidic conditions

    DEFF Research Database (Denmark)

    Dahl, T. W.; Chappaz, Anthony; Hoek, J.B.


    The geochemical behavior of molybdenum (Mo) in the oceans is closely linked to the presence of sulfide species in anoxic environments, where Fe availability may play a key role in the Mo scavenging. Here, we show that Mo(VI) is reduced in the presence of particulate organic matter (represented...... by sulfate-reducing bacteria). Molybdenum was immobilized at the surface of both living cells and dead/lysed cells, but not in cell-free control experiments. Experiments were carried out at four different Mo concentrations (0.1 to 2 mm) to yield cell-associated Mo precipitates with little or no Fe......, consisting of mainly Mo(IV)-sulfide compounds with molecular structures similar to Mo enzymes and to those found in natural euxinic sediments. Therefore, we propose that Mo removal in natural sulfidic waters can proceed via a non-Fe-assisted pathway that requires particulate organic matter (dead or living...

  9. Nanocomposites Based on Metal and Metal Sulfide Clusters Embedded in Polystyrene

    Directory of Open Access Journals (Sweden)

    Gianfranco Carotenuto


    Full Text Available Transition-metal alkane-thiolates (i.e., organic salts with formula Me(SRx, where R is a linear aliphatic hydrocarbon group, –CnH2n+1 undergo a thermolysis reaction at moderately low temperatures (close to 200 °C, which produces metal atoms or metal sulfide species and an organic by-product, disulfide (RSSR or thioether (RSR molecules, respectively. Alkane-thiolates are non-polar chemical compounds that dissolve in most techno-polymers and the resulting solid solutions can be annealed to generate polymer-embedded metal or metal sulfide clusters. Here, the preparation of silver and gold clusters embedded into amorphous polystyrene by thermolysis of a dodecyl-thiolate precursor is described in detail. However, this chemical approach is quite universal and a large variety of polymer-embedded metals or metal sulfides could be similarly prepared.

  10. Iron sulfide precipitation sequence in Albian coals from the Maestrazgo Basin, southeastern Iberian Range, Northeastern Spain

    Energy Technology Data Exchange (ETDEWEB)

    Querol, X.; Chinchon, S.; Lopez-Soler, A.


    Deposition of important coal accumulations in the proximal areas of a delta-estuary, occurred in the Maestrazgo Basin during the middle Albian (late Lower Cretaceous). These coals are characterized by high sulfur contents: 4.18% in coal from the Castellote subbasin, and 7.16% in coal from the Calanda subbasin (dry basis). A petrographic study of iron sulfide was carried out on the subject coals, to deduce an iron sulfide precipitation sequence for five principal stages: (a) early syngenetic stage; (b) late syngenetic stage; (c) syngenetic-diagenetic stage; (d) early epigenetic stage; and (e) late epigenetic stage. A sulfide precipitation control during the syngenetic stage, carried out by different compounds liberated from organic matter during its coalification stages, is deduced from the confrontation with other studies on coal differing in rank, depositional environment and geographical location. 16 refs., 19 figs.

  11. Green synthesis of metal sulfide nanocrystals through a general composite-surfactants-aided-solvothermal process (United States)

    Zhang, Xiaoyun; An, Changhua; Wang, Shutao; Wang, Zongxian; Xia, Daohong


    In this paper, we developed a generalized and greener composite-surfactants-assisted-solvothermal process (CSSP) to produce colloidal nanoparticles of metal sulfides. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectra (XPS) revealed that single-molecular-layer type of MoS 2 nanoparticles with diameter 6-10 nm were successfully synthesized. The molecular structure model of the capped MoS 2 nanoparticles was suggested through further examination by infrared spectra. Hexagonal CdS nanocrystals with spherical, triangle, and hollow sphere shapes were controllably synthesized by varying the experimental conditions. A possible in-situ reduction-sulfidation mechanism was proposed for the formation of Ag 2S nanocrystals, where the metal ions were reduced to metallic nanoparticles before the generation of sulfides. The obtained nanocrystals through this CSSP approach could provide the building blocks for the bottom-up approach to nanoscale fabrication in nanoscience and nanotechnology.

  12. Determination of kinetics and stoichiometry of chemical sulfide oxidation in wastewater of sewer networks

    DEFF Research Database (Denmark)

    Nielsen, A.H.; Vollertsen, Jes; Hvitved-jacobsen, Thorkild


    A method for determination of kinetics and stoichiometry of chemical sulfide oxidation by dissolved oxygen (DO) in wastewater is presented. The method was particularly developed to investigate chemical sulfide oxidation in wastewater of sewer networks at low DO concentrations. The method is based...... parameters determined in a triplicate experiment. The kinetic parameters determined in 25 experiments on wastewater samples from a single site exhibited good constancy with a variation of the same order of magnitude as the precision of the method. It was found that the stoichiometry of the reaction could...... be considered constant during the course of the experiments although intermediates accumulated. This was explained by an apparent slow oxidation rate of the intermediates. The method was capable of determining kinetics and stoichiometry of chemical sulfide oxidation at DO concentrations lower than 1 g of O2 m...

  13. Copper Sulfide Nanocrystal Level Structure and Electrochemical Functionality towards Sensing Applications. (United States)

    Vinokurov, Kathy; Elimelech, Orian; Millo, Oded; Banin, Uri


    The level structure of copper sulfide nanocrystals of different sizes was investigated by correlating scanning tunneling spectroscopy and cyclic voltammetry data in relation to sensing applications. Upon oxidation of Cu2 S nanocrystals in the low-chalcocite phase, correlated changes are detected by both methods. The cyclic voltammetry oxidation peak of Cu(1+) down shifts, while in-gap states, adjacent to the valence-band edge, appeared in the tunneling spectra. These changes are attributed to Cu vacancy formation leading to a Cu depleted phase of the nanocrystals. The relevance of the oxidation to the use of copper sulfide nanocrystals in hydrogen peroxide sensing was also addressed, showing that upon oxidation the sensitivity vanishes. These findings bare significance to the use of copper sulfide nanocrystals in glucose sensing applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Large-scale synthesis of copper sulfide by using elemental sources via simple chemical route. (United States)

    Mulla, Rafiq; Rabinal, M K


    Copper sulfide is a low-cost and non-toxic material which is very attractive and promising for various applications. There is a need of a large-scale production of this material by simple methods. Here, a simple and ambient method is proposed for a large-scale preparation of copper sulfide. The synthesis is carried out at room temperature by using ultrasonication method where the elemental precursors, copper and sulfur are directly used. The present method gives gram scale synthesis with high yield in a short period of time. The materials are characterized by different techniques, their electrical conductivity and Seebeck coefficient are also measured and analyzed. The present method is one of the simple ways of producing copper sulfide just at room temperature. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Pyrrhotite mineralization as a search criterion for sulfide deposits at sediment-covered spreading centers (United States)

    Bogdanova, O. Yu.; Lein, A. Yu.; Dara, O. M.; Ozhogina, E. G.; Lisitzin, A. P.


    Pyrrhotite ores forming the hydrothermal vents of the Hydrothermal Hills in the Southern Trough of the Guaymas depression were studied. A series of features pointing to the occurrence of surface and buried sulfide deposits of pyrrhotite mineralization was revealed: the presence of pyrrhotite associations to hydrocarbons of oil series; low concentrations of Cu, Zn, and Pb; the enrichment of sulfur of pyrrhotite and hydrogen sulfide of hydrothermal solutions in heavy 34S isotope by 5-7%; and the heavy isotope composition of carbon in naphthoid compounds. The results obtained allow one to suggest searching for large sulfide deposits at active rifts of high spreading and sedimentation rates, i.e., at near-continental rifts of the humid zone of avalanche sedimentation.

  16. Particle Geochemistry of Hydrothermal Systems and Implications for Mining Seafloor Massive Sulfides (United States)

    Gartman, A.; Hein, J. R.


    Seafloor massive sulfide deposits form due to high-temperature hydrothermal venting that occurs globally, in every ocean basin, along plate boundaries and intra-plate hotspots. At these sites, the rapid mixing of hot, metal- and sulfur-rich reduced fluids into cold, oxygenated ocean water results in abundant mineral precipitation. The mining of seafloor massive sulfides is likely to occur in the near future and will generate a new class of mainly inorganic particulates, different from those formed in hydrothermal `black smoke.' While the major components of both black smoke & SMS tailings are Cu, Fe and Zn sulfides, many other minerals, including those containing technology critical elements, especially tellurium, are present. A comparison of these two classes of particulates will be presented, including chemical composition and reactivity to oxidative dissolution.

  17. Disguised as a sulfate reducer: Growth of the Deltaproteobacterium Desulfurivibrio alkaliphilus by Sulfide Oxidation with Nitrate

    DEFF Research Database (Denmark)

    Thorup, Casper; Schramm, Andreas; Findlay, Alyssa Jean Lehsau


    This study demonstrates that the deltaproteobacterium Desulfurivibrio alkaliphilus can grow chemolithotrophically by coupling sulfide oxidation to the dissimilatory reduction of nitrate and nitrite to ammonium. Key genes of known sulfide oxidation pathways are absent from the genome of D...... of the sulfate reduction pathway. This is the first study providing evidence that a reductive-type DSR is involved in a sulfide oxidation pathway. Transcriptome sequencing further suggests that nitrate reduction to ammonium is performed by a novel type of periplasmic nitrate reductase and an unusual membrane....... alkaliphilus. Instead, the genome contains all of the genes necessary for sulfate reduction, including a gene for a reductive-type dissimilatory bisulfite reductase (DSR). Despite this, growth by sulfate reduction was not observed. Transcriptomic analysis revealed a very high expression level of sulfate-reduction...

  18. Method of removing hydrogen sulfide from gases utilizing a zinc oxide sorbent and regenerating the sorbent (United States)

    Jalan, Vinod M.; Frost, David G.


    A spent solid sorbent resulting from the removal of hydrogen sulfide from a fuel gas flow is regenerated with a steam-air mixture. The mixture of steam and air may also include additional nitrogen or carbon dioxide. The gas mixture contacts the spent sorbent containing metal sulfide at a temperature above C. to regenerate the sulfide to metal oxide or carbonate. Various metal species including the period four transition metals and the lanthanides are suitable sorbents that may be regenerated by this method. In addition, the introduction of carbon dioxide gas permits carbonates such as those of strontium, barium and calcium to be regenerated. The steam permits regeneration of spent sorbent without formation of metal sulfate. Moreover, the regeneration will proceed with low oxygen concentrations and will occur without the increase in temperature to minimize the risk of sintering and densification of the sorbent.

  19. Decrease of dissolved sulfide in sewage by powdered natural magnetite and hematite. (United States)

    Zhang, Lehua; Verstraete, Willy; de Lourdes Mendoza, María; Lu, Zhihao; Liu, Yongdi; Huang, Guangtuan; Cai, Lankun


    Natural magnetite and hematite were explored to decrease sulfide in sewage, compared with iron salts (FeCl3 and FeSO4). A particle size of magnetite and hematite ranging from 45 to 60μm was used. The results showed that 40mgL-1 of powdered magnetite and hematite addition decreased the sulfide in sewage by 79%and 70%, respectively. The achieved decrease of sulfide production capacities were 197.3, 210.6, 317.6 and 283.3mgSg-1Fe for magnetite, hematite, FeCl3 and FeSO4 at the optimal dosage of 40mgL-1, respectively. Magnetite and hematite provided a higher decrease of sulfide production since more iron ions are capable of being released from the solid phase, not because of adsorption capacity of per gram iron. Besides, the impact on pH and oxidation-reduction potential (ORP) of hematite addition was negligible; while magnetite addition resulted in slight increase of 0.3-0.5 on pH and 10-40mV on ORP. Powdered magnetite and hematite thus appear to be suitable for sulfide decrease in sewage, for their sparing solubility, sustained-release, long reactive time in sewage as well as cost-effectiveness, compared with iron salts. Further investigation over long time periods under practical conditions are needed to evaluate the possible settlement in sewers and unwanted (toxic) metal elements presenting as impurities. Powdered magnetite and hematite were more cost-effective at only 30% costs of iron salts, such as FeCl3 and FeSO4 for decreasing sulfide production in sewage. Copyright © 2016. Published by Elsevier B.V.

  20. Black carbon-mediated destruction of nitroglycerin and RDX by hydrogen sulfide. (United States)

    Xu, Wenqing; Dana, Kathryn E; Mitch, William A


    The in situ remediation of sediments contaminated with explosives, including nitroglycerin and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), is desirable, particularly at bombing ranges where unexploded ordnance (UXO) renders excavation dangerous. Sulfides generated by biological sulfate reduction in sediments are potent nucleophiles and reductants that may contribute to the destruction of explosives. However, moderately hydrophobic explosives are likely to sorb to black carbons, which can constitute 10-30% of sediment organic carbon. In this study, we evaluated whether the black carbons accelerate these reactions or simply sequester explosives from aqueous phase reactions. Using environmentally-relevant sulfide and black carbon concentrations, our results indicated that black carbons accelerated the destruction of both compounds, yielding relatively harmless products on the time scale of hours. For both compounds, destruction increased with sulfide and graphite concentrations. Using sheet graphite as a model for graphene regions in black carbons, we evaluated whether graphene regions mediated the reduction of explosives by promoting electron transfer from sulfides. Our results demonstrated that the process was more complex. Using an electrochemical cell that enabled electron transfer from sulfides to explosives through graphite, but prevented nucleophilic substitution reactions, we found that nitroglycerin destruction, but not RDX destruction, could be explained by an electron transfer mechanism. Furthermore, surface area-normalized destruction rates for the same explosive varied for different black carbons. While black carbon-mediated destruction of explosives by sulfides is likely to be a significant contributor to their natural attenuation in sediments, a fundamental characterization of the reaction mechanisms is needed to better understand the process.

  1. Giant hydrogen sulfide plume in the oxygen minimum zone off Peru supports chemolithoautotrophy.

    Directory of Open Access Journals (Sweden)

    Harald Schunck

    Full Text Available In Eastern Boundary Upwelling Systems nutrient-rich waters are transported to the ocean surface, fuelling high photoautotrophic primary production. Subsequent heterotrophic decomposition of the produced biomass increases the oxygen-depletion at intermediate water depths, which can result in the formation of oxygen minimum zones (OMZ. OMZs can sporadically accumulate hydrogen sulfide (H2S, which is toxic to most multicellular organisms and has been implicated in massive fish kills. During a cruise to the OMZ off Peru in January 2009 we found a sulfidic plume in continental shelf waters, covering an area >5500 km(2, which contained ∼2.2×10(4 tons of H2S. This was the first time that H2S was measured in the Peruvian OMZ and with ∼440 km(3 the largest plume ever reported for oceanic waters. We assessed the phylogenetic and functional diversity of the inhabiting microbial community by high-throughput sequencing of DNA and RNA, while its metabolic activity was determined with rate measurements of carbon fixation and nitrogen transformation processes. The waters were dominated by several distinct γ-, δ- and ε-proteobacterial taxa associated with either sulfur oxidation or sulfate reduction. Our results suggest that these chemolithoautotrophic bacteria utilized several oxidants (oxygen, nitrate, nitrite, nitric oxide and nitrous oxide to detoxify the sulfidic waters well below the oxic surface. The chemolithoautotrophic activity at our sampling site led to high rates of dark carbon fixation. Assuming that these chemolithoautotrophic rates were maintained throughout the sulfidic waters, they could be representing as much as ∼30% of the photoautotrophic carbon fixation. Postulated changes such as eutrophication and global warming, which lead to an expansion and intensification of OMZs, might also increase the frequency of sulfidic waters. We suggest that the chemolithoautotrophically fixed carbon may be involved in a negative feedback loop that

  2. Kinetic Constants for Biological Ammonium and Nitrite Oxidation Processes Under Sulfide Inhibition. (United States)

    Bejarano-Ortiz, Diego Iván; Huerta-Ochoa, Sergio; Thalasso, Frédéric; Cuervo-López, Flor de María; Texier, Anne-Claire


    Inhibition of nitrification by sulfide was assessed using sludge obtained from a steady-state nitrifying reactor. Independent batch activity assays were performed with ammonium and nitrite as substrate, in order to discriminate the effect of sulfide on ammonium and nitrite oxidation. In the absence of sulfide, substrate affinity constants (K S,NH4  = 2.41 ± 0.11 mg N/L; K s, NO2  = 0.74 ± 0.03 mg N/L) and maximum specific rates (q max,NH4  = 0.086 ± 0.008 mg N/mg microbial protein h; q max,NO2  = 0.124 ± 0.001 mg N/mg microbial protein h) were determined. Inhibition of ammonium oxidation was no-competitive (inhibition constant (K i , NH4 ) of 2.54 ± 0.12 mg HS(-)-S/L) while inhibition of nitrite oxidation was mixed (competitive inhibition constant (K' i , NO2 ) of 0.22 ± 0.03 mg HS(-)-S/L and no-competitive inhibition constant (K i , NO2 ) of 1.03 ± 0.06 mg HS(-)-S/L). Sulfide has greater inhibitory effect on nitrite oxidation than ammonium oxidation, and its presence in nitrification systems should be avoided to prevent accumulation of nitrite. By simulating the effect of sulfide addition in a continuous nitrifying reactor under steady-state operation, it was shown that the maximum sulfide concentration that the sludge can tolerate without affecting the ammonium consumption efficiency and nitrate yield is 1 mg HS(-)-S/L.

  3. Growth and activity of ANME clades with different sulfate and sulfide concentrations in presence of methane

    Directory of Open Access Journals (Sweden)

    Peer H.A. Timmers


    Full Text Available Extensive geochemical data showed that significant methane oxidation activity exists in marine sediments. The organisms responsible for this activity are anaerobic methane-oxidizing archaea (ANME that occur in consortia with sulfate-reducing bacteria. A distinct zonation of different clades of ANME (ANME-1, ANME-2a/b and ANME-2c exists in marine sediments, which could be related to the localized concentrations of methane, sulfate and sulfide. In order to test this hypothesis we performed long-term incubation of marine sediments under defined conditions with methane as a headspace gas: low or high sulfate (4 and 21 mM, respectively in combination with low or high sulfide (0.1 and 4 mM, respectively concentrations. Control incubations were also performed, with only methane, high sulfate or high sulfide. Methane oxidation was monitored and growth of subtypes ANME-1, ANME-2a/b, and ANME-2c assessed using qPCR analysis. A preliminary archaeal community analysis was performed to gain insight into the ecological and taxonomic diversity. Almost all of the incubations with methane had methane oxidation activity, with the exception of the incubations with combined low sulfate and high sulfide concentrations. Sulfide inhibition occurred only with low sulfate concentrations, which could be due to the lower Gibbs free energy available as well as sulfide toxicity. ANME-2a/b appear to mainly grow in incubations which had high sulfate levels and methane oxidation activity, whereas ANME-1 did not show this distinction. ANME-2c only grew in incubations with only sulfate addition. These findings are consistent with previously published in situ profiling analysis of ANME subclusters in different marine sediments. Interestingly, since all ANME subtypes also grew in incubations with only methane or sulfate addition, ANME may also be able to perform anaerobic methane oxidation under substrate limited conditions or alternatively perform additional metabolic

  4. Magnetic properties and phase transformations of iron sulfides synthesized under the hydrothermal method (United States)

    Li, S. H.; Chen, Y. H.


    The iron sulfide nano-minerals possess advantages of high abundance, low cost, and low toxicity. These advantages make them be competitive in the magnetic, electronic, and photoelectric applications. Mackinawite can be used in soil or water remediations. Greigite is very important for paleomagnetic and geochemical environment studies and the anode materials for lithium ion batteries. Besides, greigite is also utilized for hyperthermia and biomedicine. Pyrrhotite can be applied as geothermometry. Due to the above-mentioned reasons, iron sulfide minerals have specific significances and they must be further investigated, like their phase transformations, magnetic properties, and etc. In this study, the iron sulfide minerals were synthesized by using a hydrothermal method. The ex-situ and in-situ X-ray diffraction (XRD) was used to examine the crystal structure and phase transformation of iron sulfide minerals. The Transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) were carried out to investigate their morphology and magnetic properties, respectively. The results suggested that the phase transformation sequence was followed the order: mackinawite → greigite → (smythite) → pyrrhotite. Two pure mineral phases of greigite and pyrrhotite were obtained under the hydrothermal conditions. The morphology of the pure greigite is granular aggregates with a particle size of approximately 30 nm and pyrrhotite presented a hexagonal sheet stacking with a particle size of thousands nanometers. The greigite had a ferri-magnetic behavior and pyrrhotite was weak ferro-magnetic. Both of them had a pseudo-single magnetic domain (PSD) based on the Day's plot from SQUID data. The complete phase-transformation pathways and high magnetization of iron sulfide minerals are observed in this study and these kind of iron sulfide minerals are worthy to further study.

  5. Nitric oxide effect on colonocyte metabolism: co-action of sulfides and peroxide. (United States)

    Roediger, W E; Babidge, W J


    Luminal levels of nitric oxide/nitrite are high in colitis. Whether nitric oxide is injurious or protective to human colonocytes is unknown and the role of nitric oxide in the genesis of colitis unclear. The aims were to establish whether nitric oxide was injurious to oxidation of substrates (n-butyrate and D-glucose) in isolated human and rat colonocytes both alone and in the presence of hydrogen sulfide and hydrogen peroxide, agents implicated in cell damage of colitis. Nitric oxide generation from S-nitrosoglutathione was measured by nitrite appearance. Colonocytes were isolated and incubated with [1-14C] butyrate or [6-14C] glucose and 2.6 microM nitric oxide, 1.5 mM sodium hydrogen sulfide or 2.5 mM hydrogen peroxide. Acyl-CoA esters were measured by high performance liquid chromatography, 14CO2 radiochemically and lactate/ketones by enzymic methods. Results indicate that nitric oxide very significantly (p Peroxide and sulfide with nitric oxide resulted in significant reduction (p oxidation to CO2. Sulfide significantly stimulated release of nitric oxide from S-nitrosoglutathione. The principal conclusion is that nitric oxide diminishes CoA metabolism in colonocytes. CoA depletion has been observed in chronic human colitis for which a biochemical explanation has been lacking. For acute injurious action in human colonocytes nitric oxide requires co-action of peroxide and sulfide to impair oxidation of substrates in cells. From current observations treatment of colitis should aim to reduce simultaneously nitric oxide, peroxide and sulfide generation in the colon.

  6. A field investigation of the relationship between zinc and acid volatile sulfide concentrations in freshwater sediments (United States)

    Ankley, Gerald T.; Liber, Karsten; Call, Daniel J.; Markee, Thomas P.; Canfield, Timothy J.; Ingersoll, Christopher G.


    Understanding relationships between cationic metals such as cadmium, copper, nickel, lead and zinc, and amorphous iron sulfides, measured as acid volatile sulfide (AVS), is key to predicting metal bioavailability and toxicity insediments. The objective of the present study was to assess seasonal and spatial variations of AVS in freshwater sediments contaminated with zinc. Sediments were sampled from three streams with varying levels of zinc contamination at two different times, March and June of 1995, representing cold- and warm-weather situations. Interstitial (pore) water concentrations of zinc, and solid phase concentrations of AVS and zinc were measured in surficial and deep sediment horizons. Toxicity tests (10-d) with the amphipodHyalella azteca were conducted using intact cores. Sediment zinc concentrations from six sites within the primary test stream differed by about five-fold, and also varied seasonally. Acid volatile sulfide concentrations were generally lower than those of zinc, and pore water zinc concentrations typically were elevated. There was a positive correlation between solid-phase AVS and zinc concentrations, suggesting that the system was dominated by zinc, as opposed to iron sulfides. In contrast to expectations arising from some studies of seasonal variations of AVS in iron-dominated systems, AVS concentrations were smaller in June than in March. However, this was likely due to a major storm event and associated sediment scouring before the June sampling, rather than to seasonal processes related to variations in temperature and dissolved oxygen. Based upon an indirect analysis of depth variations in AVS, there was some indication that zinc sulfide might be less prone to oxidation than iron sulfide. There was a strong correlation between toxicity of the sediment samples toH. azteca and interstitial water concentrations of zinc; however, the possible contribution of other contaminants to sediment toxicity cannot be dismissed.

  7. Tracking the transformation and transport of arsenic sulfide pigments in paints : synchrotron-based X-ray micro-analyses

    NARCIS (Netherlands)

    Keune, Katrien; Mass, Jennifer; Meirer, Florian; Pottasch, Carol; van Loon, Annelies; Hull, Alyssa; Church, Jonathan; Pouyet, Emeline; Cotte, Marine; Mehta, Apurva


    Realgar and orpiment, arsenic sulfide pigments used in historic paints, degrade under the influence of light, resulting in transparent, whitish, friable and/or crumbling paints. So far, para-realgar and arsenic trioxide have been identified as the main oxidation products of arsenic sulfide pigments.

  8. Mechanism study on the sulfidation of ZnO with sulfur and iron oxide at high temperature (United States)

    Han, Junwei; Liu, Wei; Zhang, Tianfu; Xue, Kai; Li, Wenhua; Jiao, Fen; Qin, Wenqing


    The mechanism of ZnO sulfidation with sulfur and iron oxide at high temperatures was studied. The thermodynamic analysis, sulfidation behavior of zinc, phase transformations, morphology changes, and surface properties were investigated by HSC 5.0 combined with FactSage 7.0, ICP, XRD, optical microscopy coupled with SEM-EDS, and XPS. The results indicate that increasing temperature and adding iron oxide can not only improve the sulfidation of ZnO but also promote the formation and growth of ZnS crystals. Fe2O3 captured the sulfur in the initial sulfidation process as iron sulfides, which then acted as the sulfurizing agent in the late period, thus reducing sulfur escape at high temperatures. The addition of carbon can not only enhance the sulfidation but increase sulfur utilization rate and eliminate the generation of SO2. The surfaces of marmatite and synthetic zinc sulfides contain high oxygen due to oxidation and oxygen adsorption. Hydroxyl easily absorbs on the surface of iron-bearing zinc sulfide (Zn1-xFexS). The oxidation of synthetic Zn1-xFexS is easier than marmatite in air.

  9. Effect of pre-oxidation on high temperature sulfidation behavior of FeCr and FeCrAl alloys

    Directory of Open Access Journals (Sweden)

    Pillis Marina Fuser


    Full Text Available High temperature corrosion of structural alloys in sulfur bearing environments is many orders of magnitude higher than in oxidizing environments. Efforts to increase sulfidation resistance of these alloys include addition of alloying elements. Aluminum additions to iron-chromium alloys bring about increase in sulfidation resistance. This paper reports the effect of pre-oxidation on the sulfidation behavior of Fe-20Cr and Fe-20Cr-5Al alloys in H2-2% H2S environment at 800 °C. The surfaces of sulfidized specimens were also examined. Pre-oxidation of the two alloys results in an incubation period during subsequent sulfidation. After this incubation period, the Fe-20Cr alloy showed sulfidation behavior similar to that when the alloy was not pre-oxidized. The incubation period during sulfidation of the Fe-20Cr-5Al alloy was significantly longer, over 45 h, compared to 2 h for the Al free alloy. Based on the microscopic and gravimetric data a mechanism for sulfidation of these alloys with pre-oxidation has been proposed.

  10. Sensitive detection of sulfide based on the self-assembly of fluorescent silver nanoclusters on the surface of silica nanospheres. (United States)

    Yan, Yehan; Zhang, Kui; Yu, Huan; Zhu, Houjuan; Sun, Mingtai; Hayat, Tasawar; Alsaedi, Ahmed; Wang, Suhua


    Hydrogen sulfide is a toxic and flammable gaseous pollutant often emitted to air as a by-product of water supply, chemical, petroleum and coal industries. It can be transferred into sulfur dioxide in the air under some meteorologic conditions. Herein, we report a novel ratiometric fluorescence method for hydrogen sulfide based on silver nanoclusters and quantum dots. The silver nanoclusters have been self-assemblied onto the surface of silica spheres, which are embedded with red fluorescent quantum dots, to form a dual-emissive nanohybrid. Such dual-emissive nanohybrid has been applied for hydrogen sulfide detection on the basis of the interfacial interaction between silver nanoclusters and sulfide ions. The blue-emission of Ag NCs is specifically prone to hydrogen sulfide due to surface binding and etching, but the red-emission of QDs within the silica nanospheres is inert against hydrogen sulfide. The different response of the two components to hydrogen sulfide results in fluorescence color variation from violet to red when the blue fluorescence is gradually quenched. This nanohybrid has been successfully demonstrated for the application in sensitive and selective detection of hydrogen sulfide in aqueous solution and gaseous state. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Tracking the transformation and transport of arsenic sulfide pigments in paints: synchrotron-based X-ray micro-analyses

    NARCIS (Netherlands)

    Keune, K.; Mass, J.; Meirer, F.; Pottasch, C.; van Loon, A.; Hull, A.; Church, J.; Pouyet, E.; Cotte, M.; Mehta, A.


    Realgar and orpiment, arsenic sulfide pigments used in historic paints, degrade under the influence of light, resulting in transparent, whitish, friable and/or crumbling paints. So far, para-realgar and arsenic trioxide have been identified as the main oxidation products of arsenic sulfide pigments.

  12. Cyanobacteria in sulfidic spring microbial mats can perform oxygenic and anoxygenic photosynthesis simultaneously during an entire diurnal period

    NARCIS (Netherlands)

    Klatt, Judith M.; de Beer, Dirk; Häusler, Stefan; Polerecky, Lubos|info:eu-repo/dai/nl/370827929


    We used microsensors to study the regulation of anoxygenic and oxygenic photosynthesis (AP and OP, respectively) by light and sulfide in a cyanobacterium dominating microbial mats from cold sulfidic springs. Both photosynthetic modes were performed simultaneously over all H2S concentrations (1–2200

  13. Colorimetric detection of endogenous hydrogen sulfide production in living cells (United States)

    Ahn, Yong Jin; Lee, Young Ju; Lee, Jaemyeon; Lee, Doyeon; Park, Hun-Kuk; Lee, Gi-Ja


    Hydrogen sulfide (H2S) has received great attention as a third gaseous signal transmitter, following nitric oxide and carbon monoxide. In particular, H2S plays an important role in the regulation of cancer cell biology. Therefore, the detection of endogenous H2S concentrations within biological systems can be helpful to understand the role of gasotransmitters in pathophysiology. Although a simple and inexpensive method for the detection of H2S has been developed, its direct and precise measurement in living cells remains a challenge. In this study, we introduced a simple, facile, and inexpensive colorimetric system for selective H2S detection in living cells using a silver-embedded Nafion/polyvinylpyrrolidone (PVP) membrane. This membrane could be easily applied onto a polystyrene microplate cover. First, we optimized the composition of the coating membrane, such as the PVP/Nafion mixing ratio and AgNO3 concentration, as well as the pH of the Na2S (H2S donor) solution and the reaction time. Next, the in vitro performance of a colorimetric detection assay utilizing the silver/Nafion/PVP membrane was evaluated utilizing a known concentration of Na2S standard solution both at room temperature and at 37 °C in a 5% CO2 incubator. As a result, the sensitivity of the colorimetric assay for H2S at 37 °C in the incubator (0.0056 Abs./μM Na2S, R2 = 0.9948) was similar to that at room temperature (0.0055 Abs./μM Na2S, R2 = 0.9967). Moreover, these assays were less sensitive to interference from compounds such as glutathione, L-cysteine (Cys), and dithiothreitol than to the H2S from Na2S. This assay based on the silver/Nafion/PVP membrane also showed excellent reproducibility (2.8% RSD). Finally, we successfully measured the endogenous H2S concentrations in live C6 glioma cells by s-(5‧-adenosyl)-L-methionine stimulation with and without Cys and L-homocysteine, utilizing the silver/Nafion/PVP membrane. In summary, colorimetric assays using silver

  14. Pyrolytically grown indium sulfide sensitized zinc oxide nanowires for solar water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Komurcu, Pelin; Can, Emre Kaan; Aydin, Erkan; Semiz, Levent [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Gurol, Alp Eren; Alkan, Fatma Merve [Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Sankir, Mehmet; Sankir, Nurdan Demirci [Micro and Nanotechnology Graduate Program, TOBB University of Economics and Technology, 06560 Ankara (Turkey); Department of Materials Science and Nanotechnology Engineering, TOBB University of Economics and Technology, 06560 Ankara (Turkey)


    Zinc oxide (ZnO) nanowires, sensitized with spray pyrolyzed indium sulfide, were obtained by chemical bath deposition. The XRD analysis indicated dominant evolution of hexagonal ZnO phase. Significant gain in photoelectrochemical current using ZnO nanowires is largely accountable to enhancement of the visible light absorption and the formation of heterostructure. The maximum photoconversion efficiency of 2.77% was calculated for the indium sulfide sensitized ZnO nanowire photoelectrodes. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Sulfide Generation by DominantHalanaerobiumMicroorganisms in Hydraulically Fractured Shales. (United States)

    Booker, Anne E; Borton, Mikayla A; Daly, Rebecca A; Welch, Susan A; Nicora, Carrie D; Hoyt, David W; Wilson, Travis; Purvine, Samuel O; Wolfe, Richard A; Sharma, Shikha; Mouser, Paula J; Cole, David R; Lipton, Mary S; Wrighton, Kelly C; Wilkins, Michael J


    Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of

  16. Compact autonomous voltammetric sensor for sulfide monitoring in deep sea vent habitats (United States)

    Contreira-Pereira, Leonardo; Yücel, Mustafa; Omanovic, Dario; Brulport, Jean-Pierre; Le Bris, Nadine


    In situ chemical monitoring at deep-sea hydrothermal vents remains a challenge. Particularly, tools are still scarce for assessing the ranges and temporal variability of sulfide in these harsh environmental conditions. There is a particular need for compact and relatively simple devices to enlarge the capacity of in situ measurements of this major energy source in chemosynthetic ecosystems. With this objective, a voltammetric sensor based on a bare-silver working electrode was developed and tested in real conditions. In the laboratory, the sensor presented a linear response from 10 to 1000 μM sulfide, together with a low pH sensitivity and moderate temperature dependence. The device was operated at 850 and 2500 m depth during 3 cruises over two different vent fields. The autonomous potentiostat (290 mm length, ∅ 35 mm) equipped with laboratory-made electrodes was mounted on a wand, for manipulation from a submersible, or on a holder for unattended deployments. The system was applied in mussel, tubeworm and annelid worm habitats, characterized by different ranges of sulfide concentration, pH and temperature. Calibrations performed before and after each deployment confirmed the stability of the sensor response over a few hours to 11 days, with a maximum drift of 11.4% during this period. Short-term measurements in the vicinity of Riftia pachyptila and Alvinella pompejana were consistent with previous results on these habitats, with concentrations ranging from 20 to 140 μM and 100 to 450 μM and sulfide versus temperature ratio of 14 μM °C-1 and 20 μM °C-1, respectively. A continuous 4-day record on a bed of Bathymodiolus Thermophilus mussels furthermore illustrated the capacity of the sensor to capture fluctuating sulfide concentration between 0 and 70 μM, in combination to temperature, and to investigate the changes in the sulfide versus temperature ratio over time. The method has a higher detection limit (<10 μM) than previous in situ sulfide measurement

  17. Aqueous Phase Synthesis and Enhanced Field Emission Properties of ZnO-Sulfide Heterojunction Nanowires


    Guojing Wang; Zhengcao Li; Mingyang Li; Chienhua Chen; Shasha Lv; Jiecui Liao


    ZnO-CdS, ZnO-ZnS, and ZnO-Ag2S core-shell heterojunction structures were fabricated using low-temperature, facile and simple aqueous solution approaches. The polycrystalline sulfide shells effectively enhance the field emission (FE) properties of ZnO nanowires arrays (NWAs). This results from the formation of the staggered gap heterointerface (ZnO-sulfide) which could lead to an energy well at the interfaces. Hence, electrons can be collected when an electric field is applied. It is observed ...

  18. BINOL Macrocycle Derivatives: Synthesis of New Dinaphthyl Sulfide Aza Oxa Thia Crowns (Lariats

    Directory of Open Access Journals (Sweden)

    Abbas Shockravi


    Full Text Available In this research work, dinaphthyl sulfide diester was prepared from the reaction of 1,1′-thiobis (2-hydroxy naphthalene and methylchloroacetate. Its aza-macrocyclic derivative was synthesized from the reaction of dinaphthyl sulfide diester and diethylenetriamine. Lariats were prepared from the reaction of chloroamides (four derivatives and initial macrocycle. Chloroamides were synthesized from the reaction of amines (aniline, benzylamine, 8-amino quinoline and 4-amino azobenzene and chloroacetyl chloride. All the materials were identified by IR, 1H NMR, 13C NMR, and mass spectroscopies, and elemental analysis.

  19. Detection of 2.6-millimeter radiation probably due to nitrogen sulfide (United States)

    Kuiper, T. B. H.; Kakar, R. K.; Rodriguez Kuiper, E. N.; Zuckerman, B.


    Results are reported for observations of millimeter-wavelength radiation in Sgr B2 at two frequencies corresponding to the transitions between the J = 5/2 and J = 3/2 Lambda-doublet sublevels in the 2 Pi(1/2) state of nitrogen sulfide. Difficulties in making a positive identification of the source of this radiation are discussed which result from the apparently anomalous ratio of the hyperfine components. However, it is noted that observations of the d-state by Gottlieb et al. (1975) showing the hyperfine components more exactly in their optically thin ratio confirm that the observed radiation is due to nitrogen sulfide.

  20. Electrochemical gas chromatographic detection of hydrogen sulfide at PPM and PPB levels. (United States)

    Stetter, J R; Sedlak, J M; Blurton, K F


    An electrochemical detector for gas chromatographic analysis of hydrogen sulfide is described and its operating characteristics are discussed. The detector operation is based upon the measurement of the current when hydrogen sulfide is electrochemically oxidized at a diffusion electrode. The lower detectable limit was 3 X 10(-12) grams H2S, the precision was 0.5% and analysis was achieved within 2 minutes. Accuracy was limited principally by the preparation of calibration samples and the availability of standard reference gas mixtures.

  1. Coupling of Alcohols over Alkali-Promoted Cobalt-Molybdenum Sulfide

    DEFF Research Database (Denmark)

    Christensen, Jakob Munkholt; Jensen, Peter Arendt; Schiødt, N.C.


    Double or nothing: Higher alcohols are produced by the hydrogenation of CO with a K-promoted Co-MoS2/C catalyst. Ethanol, which is passed over the sulfide catalyst along with CO and H2, is mainly converted into 1-butanol, which indicates that alcohol condensation contributes to the build-up of hi......-up of higher alcohols over the sulfide catalyst. In a nitrogen atmosphere, ethanol is also in part converted into 1-butanol, although ethyl acetate is the major product....

  2. Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales

    Energy Technology Data Exchange (ETDEWEB)

    Booker, Anne E.; Borton, Mikayla A.; Daly, Rebecca A.; Welch, Susan A.; Nicora, Carrie D.; Hoyt, David W.; Wilson, Travis; Purvine, Samuel O.; Wolfe, Richard A.; Sharma, Shikha; Mouser, Paula J.; Cole, David R.; Lipton, Mary S.; Wrighton, Kelly C.; Wilkins, Michael J.; McMahon, Katherine



    Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance ofHalanaerobiumstrains within thein situmicrobial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by aHalanaerobiumstrain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis ofHalanaerobiumisolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using aHalanaerobiumisolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentativeHalanaerobiumuses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics.

    IMPORTANCEAlthough thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our

  3. Massive sulfide ores of the northern equatorial Mid-Atlantic Ridge (United States)

    Cherkashev, G. A.; Ivanov, V. N.; Bel'tenev, V. I.; Lazareva, L. I.; Rozhdestvenskaya, I. I.; Samovarov, M. L.; Poroshina, I. M.; Sergeev, M. B.; Stepanova, T. V.; Dobretsova, I. G.; Kuznetsov, V. Yu.


    The optimal set of prospecting methods, including geophysical (geoelectrical), geological (mineralogical-geochemical), and hydrological observations, was developed during the long-term investigations of the sulfide mineralization in the northern equatorial zone of the Mid-Atlantic Ridge. The application of these methods made it possible to discover six massive sulfide deposits and considerably extend the boundaries of another two ore objects. The ores associated with ultramafic rocks are characterized by elevated Cu, Au, and Co concentrations. It is established that the ore formation was a multistage process that resulted in the accumulation of large deposits (over 10 million tons).

  4. Biotechnological reduction of sulfide in an industrial primary wastewater treatment system: A sustainable and successful case study

    Energy Technology Data Exchange (ETDEWEB)

    Rajamani, S. [Central Leather Research Institute, Madras (India)


    The leather industry is an important export-oriented industry in India, with more than 3,000 tanneries located in different clusters. Sodium sulfide, a toxic chemical, is used in large quantities to remove hair and excess flesh from hides and skins. Most of the sodium sulfide used in the process is discharged as waste in the effluent, which causes serious environmental problems. Reduction of sulfide in the effluent is generally achieved by means of chemicals in the pretreatment system, which involves aerobic mixing using large amounts of chemicals and high energy, and generating large volumes of sludge. A simple biotechnological system that uses the residual biosludge from the secondary settling tank was developed, and the commercial-scale application established that more than 90% of the sulfide could be reduced in the primary treatment system. In addition to the reduction of sulfide, foul smells, BOD and COD are reduced to a considerable level. 3 refs., 2 figs., 1 tab.

  5. Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark)

    DEFF Research Database (Denmark)

    Zopfi, J.; Ferdelman, TG; Jørgensen, BB


    steady-stare conditions, the upward fluxes of reductants and downward fluxes of oxidants in the water column were balanced. However, changes in the hydrographical conditions caused a transient nonsteady-state at the chemocline and had a great impact on process rates and the distribution of chemical...... species. Maxima of S-0 (17.8 mu mol l(-1)), thiosulfate (5.2 mu mol l(-1)) and sulfite (1.1 mu mol l(-1)) occurred at the chemocline, but were hardly detectable in the sulfidic deep water. The distribution of S-0 suggested that the high concentration of S-0 was (a) more likely due to a low turnover than...... oxidation may account for more than 88% of the total sulfide oxidation. Under nonsteady-state conditions, where oxic and sulfidic water masses were recently mixed, resulting in an expanded chemocline, the proportion of chemical sulfide oxidation increased. The sulfide oxidation rate determined by incubation...

  6. Drivers of sulfide intrusion in Zostera muelleri in a moderately affected estuary in south-eastern Australia

    DEFF Research Database (Denmark)

    Holmer, Marianne; Bennett, William W.; Ferguson, Angus J. P.


    The seagrass Zostera muelleri Irmisch ex Asch. is abundant in estuaries in Australia and is under pressure from coastal developments. We studied sulfide intrusion in Z. muelleri along a gradient of anthropogenic impact at five stations in the Wallis Lake estuary, Australia. Results showed...... biogeochemistry and was modified by the exposure to wind and wave action. The sediments in the lower estuary had high contributions from phytoplanktonic detritus, whereas the organic pools in the lagoon were dominated by seagrass detritus. Despite high concentrations of organic matter, sulfide intrusion was lower...... at stations dominated by seagrass detritus, probably because of lower sulfide pressure from the less labile nature of organic matter. Porewater diffusive gradients in thin-film (DGT) sulfide samplers showed efficient sulfide reoxidation in the rhizosphere, with high sulfur incorporation in the plants from...

  7. Whole-rock and sulfide-mineral geochemical data for samples from volcanogenic massive sulfide deposits of the Bonnifield district, east-central Alaska (United States)

    Dusel-Bacon, Cynthia; Slack, John F.; Koenig, Alan E.; Foley, Nora K.; Oscarson, Robert L.; Gans, Kathleen D.


    This Open-File Report presents geochemical data for outcrop and drill-core samples from volcanogenic massive sulfide deposits and associated metaigneous and metasedimentary rocks in the Wood River area of the Bonnifield mining district, northern Alaska Range, east-central Alaska. The data consist of major- and trace-element whole-rock geochemical analyses, and major- and trace-element analyses of sulfide minerals determined by electron microprobe and laser ablation—inductively coupled plasma—mass spectrometry (LA-ICP-MS) techniques. The PDF consists of text, appendix explaining the analytical methods used for the analyses presented in the data tables, a sample location map, and seven data tables. The seven tables are also available as spreadsheets in several file formats. Descriptions and discussions of the Bonnifield deposits are given in Dusel-Bacon and others (2004, 2005, 2006, 2007, 2010).

  8. Metal oxide and mercuric sulfide nanoparticles synthesis and characterization (United States)

    Xu, Xin

    Commercially available and laboratory-synthesized metal based nanoparticles (NPs), iron oxide (Fe2O3), copper oxide (CuO), titanium dioxide (TiO2), zinc oxide (ZnO) and mercuric sulfide (HgS) were studied by comprehensive characterizations methods. The general synthesis process was modified sol-gel method. The size and morphology of NPs could be influenced by temperature, sonication, calcination, precursor concentration, pH and types of reaction media. All types of the laboratory-synthesized or commercially available NPs were characterized by physical and chemical processes. One characteristic of NP that can lead to ambiguous toxicity test results was the effect of agglomeration of primary nano-sized particles. Laser light scattering was used to measure the aggregated and particle size distribution. Aggregation effects were apparent and often extensive in some synthesis approaches. Electron microscopy (SEM and TEM) gave the images of those laboratory-synthesized particles and aggregation. The average single particle was about 5-20 nm of ZnO; 20-40 nm of CuO; 10-20 nm of TiO2; 20-35 nm of Fe2O3; 10-15 nm of HgS, while the aggregate size was in the range of a hundred nanometers or more. These five types of NPs were obtained with spherical and oblong formation and the agglomeration of ZnO, CuO, HgS and TiO2 was random, but Fe2O3 has web-like aggregation. Other measurements performed on the particles and aggregates include bandgap energies, surface composition, surface area, hydrodynamic radius, and particle surface charge. In aqueous environment, NPs are subject to processes such as solubilization and aggregation. These processes can be controlling factors in the fate of nanomaterials in environmental settings, including bioavailability to organisms. This study has focused primarily on measurement of the solubility in aqueous media of varying composition (pH, ionic strength, and organic carbon), sedimentation and stability. The aggregate size distribution was

  9. 2,6-Dithiopurine blocks toxicity and mutagenesis in human skin cells exposed to sulfur mustard analogs, 2-chloroethyl ethyl sulfide and 2-chloroethyl methyl sulfide


    Powell, K. Leslie; Boulware, Stephen; Thames, Howard; Vasquez, Karen M.; MacLeod, Michael C.


    Sulfur mustard (bis-(2-chloroethyl)sulfide) is a well known chemical warfare agent that induces debilitating cutaneous toxicity in exposed individuals. It is also known to be carcinogenic and mutagenic due to its ability to damage DNA via electrophilic attack. We previously showed that a nucleophilic scavenger, 2,6-dithiopurine (DTP), reacts chemically with several electrophilic carcinogens, blocking DNA damage in vitro and in vivo and abolishing tumor formation in a two-stage mouse skin carc...

  10. Structural and Mechanistic Insights into Hemoglobin-catalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products

    Energy Technology Data Exchange (ETDEWEB)

    Vitvitsky, Victor; Yadav, Pramod K.; An, Sojin; Seravalli, Javier; Cho, Uhn-Soo; Banerjee, Ruma (Michigan-Med); (UNL)


    Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal.

  11. Structural and Mechanistic Insights into Hemoglobin-catalyzed Hydrogen Sulfide Oxidation and the Fate of Polysulfide Products. (United States)

    Vitvitsky, Victor; Yadav, Pramod K; An, Sojin; Seravalli, Javier; Cho, Uhn-Soo; Banerjee, Ruma


    Hydrogen sulfide is a cardioprotective signaling molecule but is toxic at elevated concentrations. Red blood cells can synthesize H2S but, lacking organelles, cannot dispose of H2S via the mitochondrial sulfide oxidation pathway. We have recently shown that at high sulfide concentrations, ferric hemoglobin oxidizes H2S to a mixture of thiosulfate and iron-bound polysulfides in which the latter species predominates. Here, we report the crystal structure of human hemoglobin containing low spin ferric sulfide, the first intermediate in heme-catalyzed sulfide oxidation. The structure provides molecular insights into why sulfide is susceptible to oxidation in human hemoglobin but is stabilized against it in HbI, a specialized sulfide-carrying hemoglobin from a mollusk adapted to life in a sulfide-rich environment. We have also captured a second sulfide bound at a postulated ligand entry/exit site in the α-subunit of hemoglobin, which, to the best of our knowledge, represents the first direct evidence for this site being used to access the heme iron. Hydrodisulfide, a postulated intermediate at the junction between thiosulfate and polysulfide formation, coordinates ferric hemoglobin and, in the presence of air, generated thiosulfate. At low sulfide/heme iron ratios, the product distribution between thiosulfate and iron-bound polysulfides was approximately equal. The iron-bound polysulfides were unstable at physiological glutathione concentrations and were reduced with concomitant formation of glutathione persulfide, glutathione disulfide, and H2S. Hence, although polysulfides are unlikely to be stable in the reducing intracellular milieu, glutathione persulfide could serve as a persulfide donor for protein persulfidation, a posttranslational modification by which H2S is postulated to signal. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment (United States)

    Lengke, Maggy F.; Tempel, Regina N.


    Arsenic sulfide (AsS (am), As 2S 3 (am), orpiment, and realgar) oxidation rates increase with increasing pH values. The rates of arsenic sulfide oxidation at higher pH values relative to those at pH˜2 are in the range of 26-4478, 3-17, 8-182, and 4-10 times for As 2S 3 (am), orpiment, AsS (am), and realgar, respectively. Numerical simulations of orpiment and realgar oxidation kinetics were conducted using the geochemical reaction path code EQ3/6 to evaluate the effects of variable DO concentrations and mineral reactivity factors on water chemistry evolution during orpiment and realgar oxidation. The results show that total As concentrations increase by ˜1.14 to 13 times and that pH values decrease by ˜0.6 to 4.2 U over a range of mineral reactivity factors from 1% to 50% after 2000 days (5.5 yr). The As release from orpiment and realgar oxidation exceeds the current U.S. National Drinking Water Standard (0.05 ppm) approximately in 200-300 days at the lowest initial dissolved oxygen concentration (3 ppm) and a reactivity factor of 1%. The results of simulations of orpiment oxidation in the presence of albite and calcite show that calcite can act as an effective buffer to the acid water produced from orpiment oxidation within relatively short periods (days/months), but the release of As continues to increase. Pyrite oxidation rates are faster than orpiment and realgar from pH 2.3 to 8; however, pyrite oxidation rates are slower than As 2S 3 (am) and AsS (am) at pH 8. The activation energies of arsenic sulfide oxidation range from 16 to 124 kJ/mol at pH˜8 and temperature 25 to 40°C, and pyrite activation energies are ˜52 to 88 kJ/mol, depending on pH and temperature range. The magnitude of activation energies for both pyrite and arsenic sulfide solids indicates that the oxidation of these minerals is dominated by surface reactions, except for As 2S 3 (am). Low activation energies of As 2S 3 (am) indicate that diffusion may be rate controlling. Limestone is

  13. Sulfide stress corrosion study of a super martensitic stainless steel in H2S sour environments: Metallic sulfides formation and hydrogen embrittlement (United States)

    Monnot, Martin; Nogueira, Ricardo P.; Roche, Virginie; Berthomé, Grégory; Chauveau, Eric; Estevez, Rafael; Mantel, Marc


    Thanks to their high corrosion resistance, super martensitic stainless steels are commonly used in the oil and gas industry, particularly in sour environments. Some grades are however susceptible to undergo hydrogen and mechanically-assisted corrosion processes in the presence of H2S, depending on the pH. The martensitic stainless steel EN 1.4418 grade exhibits a clear protective passive behavior with no sulfide stress corrosion cracking when exposed to sour environments of pH ≥ 4, but undergoes a steep decrease in its corrosion resistance at lower pH conditions. The present paper investigated this abrupt loss of corrosion resistance with electrochemical measurements as well as different physicochemical characterization techniques. Results indicated that below pH 4.0 the metal surface is covered by a thick (ca 40 μm) porous and defect-full sulfide-rich corrosion products layer shown to be straightforwardly related to the onset of hydrogen and sulfide mechanically-assisted corrosion phenomena.

  14. 2,6-Dithiopurine blocks toxicity and mutagenesis in human skin cells exposed to sulfur mustard analogs, 2-chloroethyl ethyl sulfide and 2-chloroethyl methyl sulfide (United States)

    Powell, K. Leslie; Boulware, Stephen; Thames, Howard; Vasquez, Karen M.; MacLeod, Michael C.


    Sulfur mustard (bis-(2-chloroethyl)sulfide) is a well known chemical warfare agent that induces debilitating cutaneous toxicity in exposed individuals. It is also known to be carcinogenic and mutagenic due to its ability to damage DNA via electrophilic attack. We previously showed that a nucleophilic scavenger, 2,6-dithiopurine (DTP), reacts chemically with several electrophilic carcinogens, blocking DNA damage in vitro and in vivo and abolishing tumor formation in a two-stage mouse skin carcinogenesis model. To assess the potential of DTP as an antagonist of sulfur mustard, we have utilized monofunctional chemical analogs of sulfur mustard, 2-chloroethyl ethyl sulfide (CEES) and 2-chloroethyl methyl sulfide (CEMS), to induce toxicity and mutagenesis in a cell line, NCTC2544, derived from a human skin tumor. We show that DTP blocks cytotoxicity in CEMS- and CEES-treated cells when present at approximately equimolar concentration. A related thiopurine, 9-methyl-6-mercaptopurine, is similarly effective. Correlated with this, we find that DTP is transported into these cells, and that adducts between DTP and CEES are found intracellularly. Using a shuttle vector-based mutagenesis system, which allows enumeration of mutations induced in the skin cells by a blue/white colony screen, we find that DTP completely abolishes mutagenesis induced by CEMS and CEES in the human cells. PMID:20050631

  15. 2,6-Dithiopurine blocks toxicity and mutagenesis in human skin cells exposed to sulfur mustard analogues, 2-chloroethyl ethyl sulfide and 2-chloroethyl methyl sulfide. (United States)

    Powell, K Leslie; Boulware, Stephen; Thames, Howard; Vasquez, Karen M; MacLeod, Michael C


    Sulfur mustard (bis-(2-chloroethyl)sulfide) is a well-known chemical warfare agent that induces debilitating cutaneous toxicity in exposed individuals. It is also known to be carcinogenic and mutagenic because of its ability to damage DNA via electrophilic attack. We previously showed that a nucleophilic scavenger, 2,6-dithiopurine (DTP), reacts chemically with several electrophilic carcinogens, blocking DNA damage in vitro and in vivo and abolishing tumor formation in a two-stage mouse skin carcinogenesis model. To assess the potential of DTP as an antagonist of sulfur mustard, we have utilized monofunctional chemical analogues of sulfur mustard, 2-chloroethyl ethyl sulfide (CEES) and 2-chloroethyl methyl sulfide (CEMS), to induce toxicity and mutagenesis in a cell line, NCTC2544, derived from a human skin tumor. We show that DTP blocks cytotoxicity in CEMS- and CEES-treated cells when present at approximately equimolar concentration. A related thiopurine, 9-methyl-6-mercaptopurine, is similarly effective. Correlated with this, we find that DTP is transported into these cells and that adducts between DTP and CEES are found intracellularly. Using a shuttle vector-based mutagenesis system, which allows enumeration of mutations induced in the skin cells by a blue/white colony screen, we find that DTP completely abolishes the mutagenesis induced by CEMS and CEES in human cells.

  16. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals (United States)

    Deng, Jiu-shuai; Mao, Ying-bo; Wen, Shu-ming; Liu, Jian; Xian, Yong-jun; Feng, Qi-cheng


    Selective flotation separation of Cu-Zn mixed sulfides has been proven to be difficult. Thus far, researchers have found no satisfactory way to separate Cu-Zn mixed sulfides by selective flotation, mainly because of the complex surface and interface interaction mechanisms in the flotation solution. Undesired activation occurs between copper ions and the sphalerite surfaces. In addition to recycled water and mineral dissolution, ancient fluids in the minerals are observed to be a new source of metal ions. In this study, significant amounts of ancient fluids were found to exist in Cu-Zn sulfide and gangue minerals, mostly as gas-liquid fluid inclusions. The concentration of copper ions released from the ancient fluids reached 1.02 × 10-6 mol/L, whereas, in the cases of sphalerite and quartz, this concentration was 0.62 × 10-6 mol/L and 0.44 × 10-6 mol/L, respectively. As a result, the ancient fluid is a significant source of copper ions compared to mineral dissolution under the same experimental conditions, which promotes the unwanted activation of sphalerite. Therefore, the ancient fluid is considered to be a new factor that affects the selective flotation separation of Cu-Zn mixed sulfide ores.

  17. Effect of copper dosing on sulfide inhibited reduction of nitric and nitrous oxide

    NARCIS (Netherlands)

    Manconi, I.; Maas, van der P.M.F.; Lens, P.N.L.


    The stimulating effect of copper addition on the reduction rate of nitrous oxide (N2O) to dinitrogen (N2) in the presence of sulfide was investigated in batch experiments (pH 7.0; 55 °C). N2O was dosed either directly as a gas to the headspace of the bottles or formed as intermediate during the

  18. Assessment of Hydrogen Sulfide Minimum Detection Limits of an Open Path Tunable Diode Laser (United States)

    During June 2007, U.S. EPA conducted a feasibility study to determine whether the EPA OTM 10 measurement approach, also known as radial plume mapping (RPM), was feasible. A Boreal open-path tunable diode laser (OP-TDL) to collect path-integrated hydrogen sulfide measurements alon...

  19. Bioconversion of High Concentrations of Hydrogen Sulfide to Elemental Sulfur in Airlift Bioreactor

    Directory of Open Access Journals (Sweden)

    Mohamed Abdel-Monaem Zytoon


    Full Text Available Several bioreactor systems are used for biological treatment of hydrogen sulfide. Among these, airlift bioreactors are promising for the bioconversion of hydrogen sulfide into elemental sulfur. The performance of airlift bioreactors is not adequately understood, particularly when directly fed with hydrogen sulfide gas. The objective of this paper is to investigate the performance of an airlift bioreactor fed with high concentrations of H2S with special emphasis on the effect of pH in combination with other factors such as H2S loading rate, oxygen availability, and sulfide accumulation. H2S inlet concentrations between 1,008 ppm and 31,215 ppm were applied and elimination capacities up to 113 g H2S m−3 h−1 were achieved in the airlift bioreactor under investigation at a pH range 6.5–8.5. Acidic pH values reduced the elimination capacity. Elemental sulfur recovery up to 95% was achieved under oxygen limited conditions (DO 500 mg/L at pH values 8.0–8.5, and near 100% removal efficiency was achieved. Overall, the resident microorganisms in the studied airlift bioreactor favored pH values in the alkaline range. The bioreactor performance in terms of elimination capacity and sulfur recovery was better at pH range 8–8.5.

  20. High-Sulfur-Vacancy Amorphous Molybdenum Sulfide as a High Current Electrocatalyst in Hydrogen Evolution

    KAUST Repository

    Lu, Ang-Yu


    The remote hydrogen plasma is able to create abundant S-vacancies on amorphous molybdenum sulfide (a-MoSx) as active sites for hydrogen evolution. The results demonstrate that the plasma-treated a-MoSx exhibits superior performance and higher stability than Pt in a proton exchange membrane based electrolyzers measurement as a proof-of-concept of industrial application.