WorldWideScience

Sample records for teras fault southern

  1. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling

    Science.gov (United States)

    Ye, Jiyang; Liu, Mian

    2017-08-01

    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (faults and their impact on strain partitioning and fault slip rates are important for understanding the evolution of this plate boundary zone and assessing earthquake hazard in Southern California. Using a three-dimensional viscoelastoplastic finite element model, we have investigated how this plate boundary fault system has evolved to accommodate the relative plate motion in Southern California. Our results show that when the plate boundary faults are not optimally configured to accommodate the relative plate motion, strain is localized in places where new faults would initiate to improve the mechanical efficiency of the fault system. In particular, the Eastern California Shear Zone, the San Jacinto Fault, the Elsinore Fault, and the offshore dextral faults all developed in places of highly localized strain. These younger faults compensate for the reduced fault slip on the San Andreas Fault proper because of the Big Bend, a major restraining bend. The evolution of the fault system changes the apportionment of fault slip rates over time, which may explain some of the slip rate discrepancy between geological and geodetic measurements in Southern California. For the present fault configuration, our model predicts localized strain in western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  2. Rupture of the Pitáycachi Fault in the 1887 Mw 7.5 Sonora, Mexico earthquake (southern Basin-and-Range Province): Rupture kinematics and epicenter inferred from rupture branching patterns

    Science.gov (United States)

    Suter, Max

    2015-01-01

    During the 3 May 1887 Mw 7.5 Sonora earthquake (surface rupture end-to-end length: 101.8 km), an array of three north-south striking Basin-and-Range Province faults (from north to south Pitáycachi, Teras, and Otates) slipped sequentially along the western margin of the Sierra Madre Occidental Plateau. This detailed field survey of the 1887 earthquake rupture zone along the Pitáycachi fault includes mapping the rupture scarp and measurements of surface deformation. The surface rupture has an endpoint-to-endpoint length of ≥41.0 km, dips 70°W, and is characterized by normal left-lateral extension. The maximum surface offset is 487 cm and the mean offset 260 cm. The rupture trace shows a complex pattern of second-order segmentation. However, this segmentation is not expressed in the 1887 along-rupture surface offset profile, which indicates that the secondary segments are linked at depth into a single coherent fault surface. The Pitáycachi surface rupture shows a well-developed bipolar branching pattern suggesting that the rupture originated in its central part, where the polarity of the rupture bifurcations changes. Most likely the rupture first propagated bilaterally along the Pitáycachi fault. The southern rupture front likely jumped across a step over to the Teras fault and from there across a major relay zone to the Otates fault. Branching probably resulted from the lateral propagation of the rupture after breaching the seismogenic part of the crust, given that the much shorter ruptures of the Otates and Teras segments did not develop branches.

  3. Quaternay faulting along the southern Lemhi fault near the Idaho National Engineering Laboratory Southeastern Idaho

    International Nuclear Information System (INIS)

    Hemphill-Haley, M.A.; Sawyer, T.L.; Wong, I.G.; Kneupfer, P.L.K.; Forman, S.L.; Smith, R.P.

    1991-01-01

    Four exploratory trenches excavated across the Howe and Fallen Springs segments of the southern Lemhi fault in southeastern Idaho provide data to characterize these potential seismic sources. Evidence for up to three surface faulting events is exposed in each trench. Thermoluminescence (TL) and radiocarbon analyses were performed to provide estimates of the timing of each faulting event. The most recent event (MRE) occurred at: (1) about 15,000 to 19,000 years B.P. at the East Canyon trench (southern Howe segment); (2) approximately 17,000 to 24,000 years. B.P. at the Black Canyon site (northern Howe segment); and (3) about 19,000 to 24,000 years B.P. at the Camp Creek trench (southern Fallen Springs segment). A Holocene event is estimated for the Coyote Springs trench (central Fallert Springs segment) based on degree of soil development and correlation of faulted and unfaulted deposits. The oldest Black Canyon event is constrained by a buried soil (Av) horizons with a TL age of 24,700 +/- 3,100 years B.P. Possibly three events occurred at this site between about 17,000 and 24,000 years ago followed by quiescence. Stratigraphic and soil relationships, and TL and 14 C dates are consistent with the following preliminary interpretations: (1) the MRE's for the southern segments are older than those for the central Lemhi fault; (2) the Black Canyon site may share rupture events with sites to the north and south as a result of a open-quotes leakyclose quotes segment boundary; (3) temporal clustering of seismic events separated by a long period of quiescence may be evident along the southern Lemhi fault; and (4) Holocene surface rupture is evident along the central part of the Fallert Springs segment but not at its southern end; and (5) the present segmentation model may need to be revised

  4. Mapping PetaSHA Applications to TeraGrid Architectures

    Science.gov (United States)

    Cui, Y.; Moore, R.; Olsen, K.; Zhu, J.; Dalguer, L. A.; Day, S.; Cruz-Atienza, V.; Maechling, P.; Jordan, T.

    2007-12-01

    accomplishments using the optimized code include the M7.8 ShakeOut rupture scenario, as part of the southern San Andreas Fault evaluation SoSAFE. The ShakeOut simulation domain is the same as used for the SCEC TeraShake simulations (600 km by 300 km by 80 km). However, the higher resolution of 100 m with frequency content up to 1 Hz required 14.4 billion grid points, eight times more than the TeraShake scenarios. The simulation used 2000 TACC Dell linux Lonestar processors and took 56 hours to compute 240 seconds of wave propagation. The pre-processing input partition, as well as post-processing analysis has been performed on the SDSC IBM Datastar p655 and p690. In addition, as part of the SCEC DynaShake computational platform, the SGSN capability was used to model dynamic rupture propagation for the ShakeOut scenario that match the proposed surface slip and size of the event. Mapping applications to different architectures require coordination of many areas of expertise in hardware and application level, an outstanding challenge faced on the current petascale computing effort. We believe our techniques as well as distributed data management through data grids have provided a practical example of how to effectively use multiple compute resources, and our results will benefit other geoscience disciplines as well.

  5. Earthquakes and faults in southern California (1970-2010)

    Science.gov (United States)

    Sleeter, Benjamin M.; Calzia, James P.; Walter, Stephen R.

    2012-01-01

    The map depicts both active and inactive faults and earthquakes magnitude 1.5 to 7.3 in southern California (1970–2010). The bathymetry was generated from digital files from the California Department of Fish And Game, Marine Region, Coastal Bathymetry Project. Elevation data are from the U.S. Geological Survey National Elevation Database. Landsat satellite image is from fourteen Landsat 5 Thematic Mapper scenes collected between 2009 and 2010. Fault data are reproduced with permission from 2006 California Geological Survey and U.S. Geological Survey data. The earthquake data are from the U.S. Geological Survey National Earthquake Information Center.

  6. Soil-gas monitoring: A tool for fault delineation studies along Hsinhua Fault (Tainan), Southern Taiwan

    International Nuclear Information System (INIS)

    Walia, Vivek; Lin, Shih Jung; Fu, Ching Chou; Yang, Tsanyao Frank; Hong, Wei-Li; Wen, Kuo-Liang; Chen, Cheng-Hong

    2010-01-01

    Many studies have shown the soil gas method to be one of the most reliable investigation tools in the research of earthquake precursory signals and fault delineation. The present research is aimed finding the relationship between soil gas distribution and tectonic systems in the vicinity of the Hsinhua Fault zone in the Tainan area of Southern Taiwan. More than 110 samples were collected along 13 traverses to find the spatial distribution of Rn, He, CO 2 and N 2 . The spatial congruence of all the gases shows that N 2 is the most probable carrier gas of He, whereas CO 2 seems to be a good carrier gas of Rn in this area. From the spatial distribution of Rn, He, CO 2 and N 2 the trace of Hsinhua Fault and neotectonic features can be identified. The spatial distribution of studied gases shows a clear anomalous trend ENE-SWS along the Hsinhua Fault.

  7. Frictional strength and heat flow of southern San Andreas Fault

    Science.gov (United States)

    Zhu, P. P.

    2016-01-01

    Frictional strength and heat flow of faults are two related subjects in geophysics and seismology. To date, the investigation on regional frictional strength and heat flow still stays at the stage of qualitative estimation. This paper is concentrated on the regional frictional strength and heat flow of the southern San Andreas Fault (SAF). Based on the in situ borehole measured stress data, using the method of 3D dynamic faulting analysis, we quantitatively determine the regional normal stress, shear stress, and friction coefficient at various seismogenic depths. These new data indicate that the southern SAF is a weak fault within the depth of 15 km. As depth increases, all the regional normal and shear stresses and friction coefficient increase. The former two increase faster than the latter. Regional shear stress increment per kilometer equals 5.75 ± 0.05 MPa/km for depth ≤15 km; regional normal stress increment per kilometer is equal to 25.3 ± 0.1 MPa/km for depth ≤15 km. As depth increases, regional friction coefficient increment per kilometer decreases rapidly from 0.08 to 0.01/km at depths less than ~3 km. As depth increases from ~3 to ~5 km, it is 0.01/km and then from ~5 to 15 km, and it is 0.002/km. Previously, frictional strength could be qualitatively determined by heat flow measurements. It is difficult to obtain the quantitative heat flow data for the SAF because the measured heat flow data exhibit large scatter. However, our quantitative results of frictional strength can be employed to investigate the heat flow in the southern SAF. We use a physical quantity P f to describe heat flow. It represents the dissipative friction heat power per unit area generated by the relative motion of two tectonic plates accommodated by off-fault deformation. P f is called "fault friction heat." On the basis of our determined frictional strength data, utilizing the method of 3D dynamic faulting analysis, we quantitatively determine the regional long-term fault

  8. Holocene geologic slip rate for the Banning strand of the southern San Andreas Fault, southern California

    Science.gov (United States)

    Gold, Peter O.; Behr, Whitney M.; Rood, Dylan; Sharp, Warren D.; Rockwell, Thomas; Kendrick, Katherine J.; Salin, Aaron

    2015-01-01

    Northwest directed slip from the southern San Andreas Fault is transferred to the Mission Creek, Banning, and Garnet Hill fault strands in the northwestern Coachella Valley. How slip is partitioned between these three faults is critical to southern California seismic hazard estimates but is poorly understood. In this paper, we report the first slip rate measured for the Banning fault strand. We constrain the depositional age of an alluvial fan offset 25 ± 5 m from its source by the Banning strand to between 5.1 ± 0.4 ka (95% confidence interval (CI)) and 6.4 + 3.7/−2.1 ka (95% CI) using U-series dating of pedogenic carbonate clast coatings and 10Be cosmogenic nuclide exposure dating of surface clasts. We calculate a Holocene geologic slip rate for the Banning strand of 3.9 + 2.3/−1.6 mm/yr (median, 95% CI) to 4.9 + 1.0/−0.9 mm/yr (median, 95% CI). This rate represents only 25–35% of the total slip accommodated by this section of the southern San Andreas Fault, suggesting a model in which slip is less concentrated on the Banning strand than previously thought. In rejecting the possibility that the Banning strand is the dominant structure, our results highlight an even greater need for slip rate and paleoseismic measurements along faults in the northwestern Coachella Valley in order to test the validity of current earthquake hazard models. In addition, our comparison of ages measured with U-series and 10Be exposure dating demonstrates the importance of using multiple geochronometers when estimating the depositional age of alluvial landforms.

  9. Soil-gas monitoring: A tool for fault delineation studies along Hsinhua Fault (Tainan), Southern Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Vivek, E-mail: vivekwalia@rediffmail.com [National Center for Research on Earthquake Engineering, National Applied Research Laboratories, Taipei 106, Taiwan (China); Lin, Shih Jung [National Center for Research on Earthquake Engineering, National Applied Research Laboratories, Taipei 106, Taiwan (China); Fu, Ching Chou; Yang, Tsanyao Frank; Hong, Wei-Li [Department of Geosciences, National Taiwan University, Taipei 106, Taiwan (China); Wen, Kuo-Liang [National Center for Research on Earthquake Engineering, National Applied Research Laboratories, Taipei 106, Taiwan (China)] [Department of Earth Sciences and Institute of Geophysics, National Central University, Jhongli 32054, Taiwan (China); Chen, Cheng-Hong [Department of Geosciences, National Taiwan University, Taipei 106, Taiwan (China)

    2010-04-15

    Many studies have shown the soil gas method to be one of the most reliable investigation tools in the research of earthquake precursory signals and fault delineation. The present research is aimed finding the relationship between soil gas distribution and tectonic systems in the vicinity of the Hsinhua Fault zone in the Tainan area of Southern Taiwan. More than 110 samples were collected along 13 traverses to find the spatial distribution of Rn, He, CO{sub 2} and N{sub 2}. The spatial congruence of all the gases shows that N{sub 2} is the most probable carrier gas of He, whereas CO{sub 2} seems to be a good carrier gas of Rn in this area. From the spatial distribution of Rn, He, CO{sub 2} and N{sub 2} the trace of Hsinhua Fault and neotectonic features can be identified. The spatial distribution of studied gases shows a clear anomalous trend ENE-SWS along the Hsinhua Fault.

  10. Post-Pennsylvanian reactivation along the Washita Valley fault, southern Oklahoma

    International Nuclear Information System (INIS)

    VanArsdale, R.; Ward, C.; Cox, R.

    1989-06-01

    Surface exposures of faults of the Washita Valley fault (WVF) system in Garvin, Murray, Carter, and Johnston counties of southern Oklahoma were studied to determine if there has been post-Pennsylvanian fault reactivation and to determine if there has been any Quaternary fault movement. This was undertaken through field mapping, by dating alluvium which overlies the faults, and by logging trenches excavated across the WVF. In northern Murray County and southern Garvin County (site A), the WVF displaces Late-Pennsylvanian Oscar Group showing post-Pennsylvanian movement; however, no faulting was observed in 2000 year old alluvium of Wildhorse Creek along strike of the WVF. Three sites (B, C, and D) are located within the Arbuckle Mountains. Faulting of Virgilian age Vanoss Conglomerate and Vanoss Shale reveal post-Virgilian (Late Pennsylvanian) activity along a subsidiary fault in northern Murray County (site B). A 12000 to 15000 year old terrace at this site is unfaulted. Absence of any fault related features in paleosols which overly the WVF along the Washita River (site C) show that the fault has not been active during the last 1570 /+-/ 190 years in southern Murray County. Similarly, absence of any fault related features along Oil Creek (site D) indicates that the WVF has not been active during the last 1810 /+-/ 80 years in northern Carter and Johnston Counties. Faults in the Antlers Sandstone in southern Johnston County (site E) reveal post-Lower Cretaceous reactivation of the WVF. 49 refs., 28 figs., 1 tab

  11. Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system.

    Science.gov (United States)

    Fialko, Yuri

    2006-06-22

    The San Andreas fault in California is a mature continental transform fault that accommodates a significant fraction of motion between the North American and Pacific plates. The two most recent great earthquakes on this fault ruptured its northern and central sections in 1906 and 1857, respectively. The southern section of the fault, however, has not produced a great earthquake in historic times (for at least 250 years). Assuming the average slip rate of a few centimetres per year, typical of the rest of the San Andreas fault, the minimum amount of slip deficit accrued on the southern section is of the order of 7-10 metres, comparable to the maximum co-seismic offset ever documented on the fault. Here I present high-resolution measurements of interseismic deformation across the southern San Andreas fault system using a well-populated catalogue of space-borne synthetic aperture radar data. The data reveal a nearly equal partitioning of deformation between the southern San Andreas and San Jacinto faults, with a pronounced asymmetry in strain accumulation with respect to the geologically mapped fault traces. The observed strain rates confirm that the southern section of the San Andreas fault may be approaching the end of the interseismic phase of the earthquake cycle.

  12. Holocene and latest Pleistocene oblique dextral faulting on the southern Inyo Mountains fault, Owens Lake basin, California

    Science.gov (United States)

    Bacon, S.N.; Jayko, A.S.; McGeehin, J.P.

    2005-01-01

    The Inyo Mountains fault (IMF) is a more or less continuous range-front fault system, with discontinuous late Quaternary activity, at the western base of the Inyo Mountains in Owens Valley, California. The southern section of the IMF trends ???N20??-40?? W for at least 12 km at the base of and within the range front near Keeler in Owens Lake basin. The southern IMF cuts across a relict early Pliocene alluvial fan complex, which has formed shutter ridges and northeast-facing scarps, and which has dextrally offset, well-developed drainages indicating long-term activity. Numerous fault scarps along the mapped trace are northeast-facing, mountain-side down, and developed in both bedrock and younger alluvium, indicating latest Quaternary activity. Latest Quaternary multiple- and single-event scarps that cut alluvium range in height from 0.5 to 3.0 m. The penultimate event on the southern IMF is bracketed between 13,310 and 10,590 cal years B.P., based on radiocarbon dates from faulted alluvium and fissure-fill stratigraphy exposed in a natural wash cut. Evidence of the most recent event is found at many sites along the mapped fault, and, in particular, is seen in an ???0.5-m northeast-facing scarp and several right-stepping en echelon ???0.5-m-deep depressions that pond fine sediment on a younger than 13,310 cal years B.P. alluvial fan. A channel that crosses transverse to this scarp is dextrally offset 2.3 ?? 0.8 m, providing a poorly constrained oblique slip rate of 0.1-0. 3 m/ k.y. The identified tectonic geomorphology and sense of displacement demonstrate that the southern IMF accommodates predominately dextral slip and should be integrated into kinematic fault models of strain distribution in Owens Valley.

  13. Re-evaluating fault zone evolution, geometry, and slip rate along the restraining bend of the southern San Andreas Fault Zone

    Science.gov (United States)

    Blisniuk, K.; Fosdick, J. C.; Balco, G.; Stone, J. O.

    2017-12-01

    This study presents new multi-proxy data to provide an alternative interpretation of the late -to-mid Quaternary evolution, geometry, and slip rate of the southern San Andreas fault zone, comprising of the Garnet Hill, Banning, and Mission Creek fault strands, along its restraining bend near the San Bernardino Mountains and San Gorgonio Pass. Present geologic and geomorphic studies in the region indicate that as the Mission Creek and Banning faults diverge from one another in the southern Indio Hills, the Banning Fault Strand accommodates the majority of lateral displacement across the San Andreas Fault Zone. In this currently favored kinematic model of the southern San Andreas Fault Zone, slip along the Mission Creek Fault Strand decreases significantly northwestward toward the San Gorgonio Pass. Along this restraining bend, the Mission Creek Fault Strand is considered to be inactive since the late -to-mid Quaternary ( 500-150 kya) due to the transfer of plate boundary strain westward to the Banning and Garnet Hills Fault Strands, the Jacinto Fault Zone, and northeastward, to the Eastern California Shear Zone. Here, we present a revised geomorphic interpretation of fault displacement, initial 36Cl/10Be burial ages, sediment provenance data, and detrital geochronology from modern catchments and displaced Quaternary deposits that improve across-fault correlations. We hypothesize that continuous large-scale translation of this structure has occurred throughout its history into the present. Accordingly, the Mission Creek Fault Strand is active and likely a primary plate boundary fault at this latitude.

  14. Verification of SORD, and Application to the TeraShake Scenario

    Science.gov (United States)

    Ely, G. P.; Day, S.; Minster, J.

    2007-12-01

    The Support Operator Rupture Dynamics (SORD) code provides a highly scalable (up to billions of nodes) computational tool for modeling spontaneous rupture on a non-planar fault surface embedded in a heterogeneous medium with surface topography. SORD successfully performs the SCEC Rupture Dynamics Code Validation Project tests, and we have undertaken further dynamic rupture tests assessing the effects of distorted hexahedral meshes on code accuracy. We generate a family of distorted meshes by simple shearing (applied both parallel and normal to the fault plane) of an initially Cartesian mesh. For shearing normal to the fault, shearing angle was varied, up to a maximum of 73-degrees. For SCEC Validation Problem 3, grid-induced errors increase with mesh-shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73-degrees, RMS misfits are about 10% for peak slip rate, and 0.5% for both rupture time and total slip, indicating that the method--which up to now we have applied mainly to near-vertical strike-slip faulting-- also is capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. The SORD code was used to reexamine the TeraShake 2 dynamics simulations of a M7.7 earthquake on the southern San Andreas Fault. Relative to the original (Olsen et al, 2007) TeraShake 2 simulations, our spontaneous rupture models find decreased peak ground velocities in the Los Angles basin, principally due to a shallower eastward connecting basin chain in the SCEC Velocity Model Version 4 (used in our simulations) compared to Version 3 (used by Olsen et al.). This is partially offset by including the effects of surface topography (which was not included in the Olsen et al. models) in the simulation, which increases PGV at some basin sites by as much as a factor of two. Some non-basin sites showed comparable decreases in PGV. These predicted topographic effects are quite large, so it is important to quantify

  15. Seismic Evidence for Conjugate Slip and Block Rotation Within the San Andreas Fault System, Southern California

    Science.gov (United States)

    Nicholson, Craig; Seeber, Leonardo; Williams, Patrick; Sykes, Lynn R.

    1986-08-01

    The pattern of seismicity in southern California indicates that much of the activity is presently occurring on secondary structures, several of which are oriented nearly orthogonal to the strikes of the major through-going faults. Slip along these secondary transverse features is predominantly left-lateral and is consistent with the reactivation of conjugate faults by the current regional stress field. Near the intersection of the San Jacinto and San Andreas faults, however, these active left-lateral faults appear to define a set of small crustal blocks, which in conjunction with both normal and reverse faulting earthquakes, suggests contemporary clockwise rotation as a result of regional right-lateral shear. Other left-lateral faults representing additional rotating block systems are identified in adjacent areas from geologic and seismologic data. Many of these structures predate the modern San Andreas system and may control the pattern of strain accumulation in southern California. Geodetic and paleomagnetic evidence confirm that block rotation by strike-slip faulting is nearly ubiquitous, particularly in areas where shear is distributed, and that it accommodates both short-term elastic and long-term nonelastic strain. A rotating block model accounts for a number of structural styles characteristic of strike-slip deformation in California, including: variable slip rates and alternating transtensional and transpressional features observed along strike of major wrench faults; domains of evenly-spaced antithetic faults that terminate against major fault boundaries; continued development of bends in faults with large lateral displacements; anomalous focal mechanisms; and differential uplift in areas otherwise expected to experience extension and subsidence. Since block rotation requires a detachment surface at depth to permit rotational movement, low-angle structures like detachments, of either local or regional extent, may be involved in the contemporary strike

  16. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy)

    Science.gov (United States)

    Vho, Alice; Bistacchi, Andrea

    2015-04-01

    A quantitative analysis of fault-rock distribution is of paramount importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation along faults at depth. Here we present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM). This workflow has been developed on a real case of study: the strike-slip Gole Larghe Fault Zone (GLFZ). It consists of a fault zone exhumed from ca. 10 km depth, hosted in granitoid rocks of Adamello batholith (Italian Southern Alps). Individual seismogenic slip surfaces generally show green cataclasites (cemented by the precipitation of epidote and K-feldspar from hydrothermal fluids) and more or less well preserved pseudotachylytes (black when well preserved, greenish to white when altered). First of all, a digital model for the outcrop is reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs, processed with VisualSFM software. By using high resolution photographs the DOM can have a much higher resolution than with LIDAR surveys, up to 0.2 mm/pixel. Then, image processing is performed to map the fault-rock distribution with the ImageJ-Fiji package. Green cataclasites and epidote/K-feldspar veins can be quite easily separated from the host rock (tonalite) using spectral analysis. Particularly, band ratio and principal component analysis have been tested successfully. The mapping of black pseudotachylyte veins is more tricky because the differences between the pseudotachylyte and biotite spectral signature are not appreciable. For this reason we have tested different morphological processing tools aimed at identifying (and subtracting) the tiny biotite grains. We propose a solution based on binary images involving a combination of size and circularity thresholds. Comparing the results with manually segmented images, we noticed that major problems occur only when pseudotachylyte veins are very thin and discontinuous. After

  17. Newport-Inglewood-Carlsbad-Coronado Bank Fault System Nearshore Southern California: Testing models for Quaternary deformation

    Science.gov (United States)

    Bennett, J. T.; Sorlien, C. C.; Cormier, M.; Bauer, R. L.

    2011-12-01

    The San Andreas fault system is distributed across hundreds of kilometers in southern California. This transform system includes offshore faults along the shelf, slope and basin- comprising part of the Inner California Continental Borderland. Previously, offshore faults have been interpreted as being discontinuous and striking parallel to the coast between Long Beach and San Diego. Our recent work, based on several thousand kilometers of deep-penetration industry multi-channel seismic reflection data (MCS) as well as high resolution U.S. Geological Survey MCS, indicates that many of the offshore faults are more geometrically continuous than previously reported. Stratigraphic interpretations of MCS profiles included the ca. 1.8 Ma Top Lower Pico, which was correlated from wells located offshore Long Beach (Sorlien et. al. 2010). Based on this age constraint, four younger (Late) Quaternary unconformities are interpreted through the slope and basin. The right-lateral Newport-Inglewood fault continues offshore near Newport Beach. We map a single fault for 25 kilometers that continues to the southeast along the base of the slope. There, the Newport-Inglewood fault splits into the San Mateo-Carlsbad fault, which is mapped for 55 kilometers along the base of the slope to a sharp bend. This bend is the northern end of a right step-over of 10 kilometers to the Descanso fault and about 17 km to the Coronado Bank fault. We map these faults for 50 kilometers as they continue over the Mexican border. Both the San Mateo - Carlsbad with the Newport-Inglewood fault and the Coronado Bank with the Descanso fault are paired faults that form flower structures (positive and negative, respectively) in cross section. Preliminary kinematic models indicate ~1km of right-lateral slip since ~1.8 Ma at the north end of the step-over. We are modeling the slip on the southern segment to test our hypothesis for a kinematically continuous right-lateral fault system. We are correlating four

  18. Strike-slip faults offshore southern Taiwan: implications for the oblique arc-continent collision processes

    Science.gov (United States)

    Fuh, Shi-Chie; Liu, Char-Shine; Lundberg, Neil; Reed, Donald L.

    1997-06-01

    Taiwan is the site of present-day oblique arc-continent collision between the Luzon arc of the Philippine Sea plate and the Chinese continental margin. The major structural pattern revealed from marine geophysical studies in the area offshore southern Taiwan is that of a doubly-vergent orogenic belt, bounded by significant zones of thrusting on the west and east of the submarine accretionary wedge. Due to the oblique collision process, strike-slip faults could play an important role in this convergent domain. Topographic lineaments revealed from new digital bathymetry data and seismic reflection profiles confirm the existence of three sets of strike-slip faults in the collision-subduction zone offshore southern Taiwan: the N-S-trending left-lateral strike-slip faults within the Luzon volcanic arc, the NE-SW-trending right-lateral strike-slip faults across the accretionary wedge, and the NNE-SSW-trending left-lateral strike-slip faults lie in the frontal portion of the accretionary wedge. These strike-slip faults overprint pre-existing folds and thrusts and may convert into oblique thrusts or thrusts as the forearc blocks accrete to the mountain belt. A bookshelf rotation model is used to explain the observed geometrical relationships of these strike-slip fault systems. Based on this model, the counter-clockwise rotation of the forearc blocks in the area offshore southern Taiwan could have caused extrusion of the accretionary wedge material into the forearc basin. The originally continuous forearc basin is thus deformed into several closed and separate proto-collisional basins such as the Southern Longitudinal Trough and Taitung Trough. A tectonic evolution model which emphasizes on the development of various structures at different stages of the oblique arc-continent collision for the Taiwan mountain belt is proposed.

  19. Large-scale hydraulic structure of a seismogenic fault at 10 km depth (Gole Larghe Fault Zone, Italian Southern Alps)

    Science.gov (United States)

    Bistacchi, Andrea; Di Toro, Giulio; Smith, Steve; Mittempergher, Silvia; Garofalo, Paolo

    2014-05-01

    The definition of hydraulic properties of fault zones is a major issue in structural geology, seismology, and in several applications (hydrocarbons, hydrogeology, CO2 sequestration, etc.). The permeability of fault rocks can be measured in laboratory experiments, but its upscaling to large-scale structures is not straightforward. For instance, typical permeability of fine-grained fault rock samples is in the 10-18-10-20 m2 range, but, according to seismological estimates, the large-scale permeability of active fault zones can be as high as 10-10 m2. Solving this issue is difficult because in-situ measurements of large-scale permeability have been carried out just at relatively shallow depths - mainly in oil wells and exceptionally in active tectonic settings (e.g. SAFOD at 3 km), whilst deeper experiments have been performed only in the stable continental crust (e.g. KTB at 9 km). In this study, we apply discrete fracture-network (DFN) modelling techniques developed for shallow aquifers (mainly in nuclear waste storage projects like Yucca Mountain) and in the oil industry, in order to model the hydraulic structure of the Gole Larghe Fault Zone (GLFZ, Italian Southern Alps). This fault, now exposed in world-class glacier-polished outcrops, has been exhumed from ca. 8 km, where it was characterized by a well-documented seismic activity, but also by hydrous fluid flow evidenced by alteration halos and precipitation of hydrothermal minerals in veins and along cataclasites. The GLFZ does not show a classical seal structure that in other fault zones corresponds to a core zone characterized by fine-grained fault rocks. However, permeability is heterogeneous and the permeability tensor is strongly anisotropic due to fracture preferential orientation. We will show with numerical experiments that this hydraulic structure results in a channelized fluid flow (which is consistent with the observed hydrothermal alteration pattern). This results in a counterintuitive situation

  20. Characteristics of newly found Quaternary fault, southern Korea, and its tectonic implication

    Science.gov (United States)

    Lee, Y.; Kim, M. C.; Cheon, Y.; Ha, S.; Kang, H. C.; Choi, J. H.; Son, M.

    2017-12-01

    This study introduces the detailed geometry and kinematics of recently found Quaternary fault in southern Korea, named Seooe Fault, and discusses its tectonic implication through a synthetic analysis with previous studies. The N-S striking Seooe Fault shows a top-to-the-east thrust geometry and cuts the Cretaceous Goseong Formation and overlying Quaternary deposits, and its slip senses and associated minor folds in the hanging wall indicate an E-W compressional stress. The age of the lower part of the Quaternary deposits obtained by OSL dating indicates that the last movement of the fault occurred after 61 60 ka. Arcuate geometry of the main fault showing an upward decreasing dip-angle, reverse offset of the fault breccias, and reverse-sense indicators observed on neighboring N-S striking high-angle fractures indicate that this Quaternary fault was produced by the reactivation of pre-existing fault under E-W compressional stress field. Using the apparent vertical displacement of the fault and the attitudes of cutting slope and main fault surface, its minimum net displacement is calculated as 2.17 m. When the value is applied to the empirical equation of maximum displacement - moment earthquake magnitude (Mw), the magnitude is estimated to reach about 6.7, assuming that this displacement was due to one seismic event. Most of the Quaternary faults in southern Korea are observed along major inherited fault zones, and their geometry and kinematics indicate that they were reactivated under ENE-WSW or E-W compressional stress field, which is concordant with the characteristics of the Seooe Fault. In addition, focal mechanism solutions and geotechnical in-situ stress data in and around the Korean peninsula also support the current ENE-WSW or E-W regional compression. On the basis of the regional stress trajectories in and around East Asia, the current stress field in Korean peninsula is interpreted to have resulted from the cooperation of westward shallow subduction of

  1. Paleoseismology of the Southern Section of the Black Mountains and Southern Death Valley Fault Zones, Death Valley, United States

    Science.gov (United States)

    Sohn, Marsha S.; Knott, Jeffrey R.; Mahan, Shannon

    2014-01-01

    The Death Valley Fault System (DVFS) is part of the southern Walker Lane–eastern California shear zone. The normal Black Mountains Fault Zone (BMFZ) and the right-lateral Southern Death Valley Fault Zone (SDVFZ) are two components of the DVFS. Estimates of late Pleistocene-Holocene slip rates and recurrence intervals for these two fault zones are uncertain owing to poor relative age control. The BMFZ southernmost section (Section 1W) steps basinward and preserves multiple scarps in the Quaternary alluvial fans. We present optically stimulated luminescence (OSL) dates ranging from 27 to 4 ka of fluvial and eolian sand lenses interbedded with alluvial-fan deposits offset by the BMFZ. By cross-cutting relations, we infer that there were three separate ground-rupturing earthquakes on BMFZ Section 1W with vertical displacement between 5.5 m and 2.75 m. The slip-rate estimate is ∼0.2 to 1.8 mm/yr, with an earthquake recurrence interval of 4,500 to 2,000 years. Slip-per-event measurements indicate Mw 7.0 to 7.2 earthquakes. The 27–4-ka OSL-dated alluvial fans also overlie the putative Cinder Hill tephra layer. Cinder Hill is offset ∼213 m by SDVFZ, which yields a tentative slip rate of 1 to 8 mm/yr for the SDVFZ.

  2. Architecture of a low-angle normal fault zone, southern Basin and Range (SE California)

    Science.gov (United States)

    Goyette, J. A.; John, B. E.; Campbell-Stone, E.; Stunitz, H.; Heilbronner, R.; Pec, M.

    2009-12-01

    Exposures of the denuded Cenozoic detachment fault system in the southern Sacramento Mountains (SE California) delimit the architecture of a regional low-angle normal fault, and highlight the evolution of these enigmatic faults. The fault was initiated ~23 Ma in quartzo-feldspathic basement gneiss and granitoids at a low-angle (2km, and amplitudes up to 100m. These corrugations are continuous along their hinges for up to 3.6 km. Damage zone fracture intensity varies both laterally, and perpendicular to the fault plane (over an area of 25km2), decreasing with depth in the footwall, and varies as a function of lithology and proximity to corrugation walls. Deformation is concentrated into narrow damage zones (100m) are found in areas where low-fracture intensity horses are corralled by sub-horizontal zones of cataclasite (up to 8m) and thick zones of epidote (up to 20cm) and silica-rich alteration (up to 1m). Sub-vertical shear and extension fractures, and sub-horizontal shear fractures/zones dominate the NE side of the core complex. In all cases, sub-vertical fractures verge into or are truncated by low-angle fractures that dominate the top of the damage zone. These low-angle fractures have an antithetic dip to the detachment fault plane. Some sub-vertical fractures become curviplanar close to the fault, where they are folded into parallelism with the sub-horizontal fault surface in the direction of transport. These field data, corroborated by ongoing microstructural analyses, indicate fault activity at a low angle accommodated by a variety of deformation mechanisms dependent on lithology, timing, fluid flow, and fault morphology.

  3. Late Quaternary faulting in the Vallo di Diano basin (southern Apennines, Italy)

    Science.gov (United States)

    Villani, F.; Pierdominici, S.; Cinti, F. R.

    2009-12-01

    The Vallo di Diano is the largest Quaternary extensional basin in the southern Apennines thrust-belt axis (Italy). This portion of the chain is highly seismic and is currently subject to NE-extension, which triggers large (M> 6) normal-faulting earthquakes along NW-trending faults. The eastern edge of the Vallo di Diano basin is bounded by an extensional fault system featuring three main NW-trending, SW-dipping, right-stepping, ~15-17 km long segments (from north to south: Polla, Atena Lucana-Sala Consilina and Padula faults). Holocene activity has been documented so far only for the Polla segment. We have therefore focused our geomorphological and paleoseismological study on the southern portion of the system, particularly along the ~ 4 km long Atena Lucana-Sala Consilina and Padula faults overlap zone. The latter is characterized by a complex system of coalescent alluvial fans, Middle Pleistocene to Holocene in age. Here we recognized a > 4 km long and 0.5-1.4 km wide set of scarps (ranging in height between 1 m and 2.5 m) affecting Late Pleistocene - Holocene alluvial fans. In the same area, two Late Pleistocene volcanoclastic layers at the top of an alluvial fan exposed in a quarry are affected by ~ 1 m normal displacements. Moreover, a trench excavated across a 2 m high scarp affecting a Holocene fan revealed warping of Late Holocene debris flow deposits, with a total vertical throw of about 0.3 m. We therefore infer the overlap zone of the Atena Lucana-Sala Consilina and Padula faults is a breached relay ramp, generated by hard-linkage of the two fault segments since Late Pleistocene. This ~ 32 km long fault system is active and is capable of generating Mw ≥6.5 earthquakes.

  4. Low Velocity Zones along the San Jacinto Fault, Southern California, inferred from Local Earthquakes

    Science.gov (United States)

    Li, Z.; Yang, H.; Peng, Z.; Ben-Zion, Y.; Vernon, F.

    2013-12-01

    Natural fault zones have regions of brittle damage leading to a low-velocity zone (LVZ) in the immediate vicinity of the main fault interface. The LVZ may amplify ground motion, modify rupture propagation, and impact derivation of earthquke properties. Here we image low-velocity fault zone structures along the San Jacinto Fault (SJF), southern California, using waveforms of local earthquakes that are recorded at several dense arrays across the SJFZ. We use generalized ray theory to compute synthetic travel times to track the direct and FZ-reflected waves bouncing from the FZ boundaries. This method can effectively reduce the trade-off between FZ width and velocity reduction relative to the host rock. Our preliminary results from travel time modeling show the clear signature of LVZs along the SJF, including the segment of the Anza seismic gap. At the southern part near the trifrication area, the LVZ of the Clark Valley branch (array JF) has a width of ~200 m with ~55% reduction in Vp and Vs. This is consistent with what have been suggested from previous studies. In comparison, we find that the velocity reduction relative to the host rock across the Anza seismic gap (array RA) is ~50% for both Vp and Vs, nearly as prominent as that on the southern branches. The width of the LVZ is ~230 m. In addition, the LVZ across the Anza gap appears to locate in the northeast side of the RA array, implying potential preferred propagation direction of past ruptures.

  5. The Eastern California Shear Zone as the northward extension of the southern San Andreas Fault

    Science.gov (United States)

    Thatcher, Wayne R.; Savage, James C.; Simpson, Robert W.

    2016-01-01

    Cluster analysis offers an agnostic way to organize and explore features of the current GPS velocity field without reference to geologic information or physical models using information only contained in the velocity field itself. We have used cluster analysis of the Southern California Global Positioning System (GPS) velocity field to determine the partitioning of Pacific-North America relative motion onto major regional faults. Our results indicate the large-scale kinematics of the region is best described with two boundaries of high velocity gradient, one centered on the Coachella section of the San Andreas Fault and the Eastern California Shear Zone and the other defined by the San Jacinto Fault south of Cajon Pass and the San Andreas Fault farther north. The ~120 km long strand of the San Andreas between Cajon Pass and Coachella Valley (often termed the San Bernardino and San Gorgonio sections) is thus currently of secondary importance and carries lesser amounts of slip over most or all of its length. We show these first order results are present in maps of the smoothed GPS velocity field itself. They are also generally consistent with currently available, loosely bounded geologic and geodetic fault slip rate estimates that alone do not provide useful constraints on the large-scale partitioning we show here. Our analysis does not preclude the existence of smaller blocks and more block boundaries in Southern California. However, attempts to identify smaller blocks along and adjacent to the San Gorgonio section were not successful.

  6. Magnetic anomalies across the southern Central Indian Ridge: evidence for a new transform fault

    Digital Repository Service at National Institute of Oceanography (India)

    Chaubey, A.K.; Krishna, K.S.; SubbaRaju, L.V.; Rao, D.G.

    , Vol. 37. No. 4. pp. MT-~a56, 1990. 0198-.0149/90 $3.(gl + 0.00 Pnnled in Great Britain. (~ 1990 Pergartma Ptes6 pie Magnetic anomalies across the southern Central Indian Ridge: evidence for a new transform fault A. K. CHAUBEY,* K. S. KRISHNA,* L. V... to the ridge are identified as sea-floor spreading lineations 2.2A,3.3A and 4. A half spreading rate of 2.2 cm y- t is estimated for the last I0 Ma. The ridge jump between the anomalies 2-2A (approx. 2.5 Ma) and a new left lateral transform fault offsetting...

  7. A rheologically layered three-dimensional model of the San Andreas fault in central and southern California

    Science.gov (United States)

    Williams, Charles A.; Richardson, Randall M.

    1991-01-01

    The effects of rheological parameters and the fault slip distribution on the horizontal and vertical deformation in the vicinity of the fault are investigated using 3D kinematic finite element models of the San Andreas fault in central and southern California. It is shown that fault models with different rheological stratification schemes and slip distributions predict characteristic deformation patterns. Models that do not include aseismic slip below the fault locking depth predict deformation patterns that are strongly dependent on time since the last earthquake, while models that incorporate the aseismic slip below the locking depth depend on time to a significantly lesser degree.

  8. Identifying Fault Connections of the Southern Pacific-North American Plate Boundary Using Triggered Slip and Crustal Velocities

    Science.gov (United States)

    Donnellan, A.; Grant Ludwig, L.; Rundle, J. B.; Parker, J. W.; Granat, R.; Heflin, M. B.; Pierce, M. E.; Wang, J.; Gunson, M.; Lyzenga, G. A.

    2017-12-01

    The 2010 M7.2 El Mayor - Cucapah earthquake caused extensive triggering of slip on faults proximal to the Salton Trough in southern California. Triggered slip and postseismic motions that have continued for over five years following the earthquake highlight connections between the El Mayor - Cucapah rupture and the network of faults that branch out along the southern Pacific - North American Plate Boundary. Coseismic triggering follows a network of conjugate faults from the northern end of the rupture to the Coachella segment of the southernmost San Andreas fault. Larger aftershocks and postseismic motions favor connections to the San Jacinto and Elsinore faults further west. The 2012 Brawley Swarm can be considered part of the branching on the Imperial Valley or east side of the plate boundary. Cluster analysis of long-term GPS velocities using Lloyds Algorithm, identifies bifurcation of the Pacific - North American plate boundary; The San Jacinto fault joins with the southern San Andreas fault, and the Salton Trough and Coachella segment of the San Andreas fault join with the Eastern California Shear Zone. The clustering analysis does not identify throughgoing deformation connecting the Coachella segment of the San Andreas fault with the rest of the San Andreas fault system through the San Gorgonio Pass. This observation is consistent with triggered slip from both the 1992 Landers and 2010 El Mayor - Cucapah earthquakes that follows the plate boundary bifurcation and with paleoseismic evidence of smaller earthquakes in the San Gorgonio Pass.

  9. Late Quaternary offset of alluvial fan surfaces along the Central Sierra Madre Fault, southern California

    Science.gov (United States)

    Burgette, Reed J.; Hanson, Austin; Scharer, Katherine M.; Midttun, Nikolas

    2016-01-01

    The Sierra Madre Fault is a reverse fault system along the southern flank of the San Gabriel Mountains near Los Angeles, California. This study focuses on the Central Sierra Madre Fault (CSMF) in an effort to provide numeric dating on surfaces with ages previously estimated from soil development alone. We have refined previous geomorphic mapping conducted in the western portion of the CSMF near Pasadena, CA, with the aid of new lidar data. This progress report focuses on our geochronology strategy employed in collecting samples and interpreting data to determine a robust suite of terrace surface ages. Sample sites for terrestrial cosmogenic nuclide and luminescence dating techniques were selected to be redundant and to be validated through relative geomorphic relationships between inset terrace levels. Additional sample sites were selected to evaluate the post-abandonment histories of terrace surfaces. We will combine lidar-derived displacement data with surface ages to estimate slip rates for the CSMF.

  10. Vertical slip rates of active faults of southern Albania inferred from river terraces

    Directory of Open Access Journals (Sweden)

    Oswaldo Guzmán

    2014-02-01

    Full Text Available Fluvial terraces of Shkumbin, Devoll, Osum and Vjosa rivers (southern Albania and northwestern Greece are studied in order to quantify the vertical slip rates of the large active faults of the Dinaric-Albanic-Hellenic Alpine fold belt. The spatial and temporal variations of the incision rates along these rivers were estimated from the geomorphological mapping of the Quaternary sediments, the geometry and the dating of the terraces. Eleven terraces levels were identified in Albania from 68 geochronological ages already published or acquired for this work. The five lower terraces of the four studied rivers are well dated (10 new and 23 already published ages. These terraces are younger than 30 ka and their remnants are numerous. Their restoration allows estimating the regional trend of incision rate and the identification of local shifts. We argue that these shifts are linked to the active tectonics when they coincide with the faults already mapped by previous authors. Vertical slip rates for eight active faults in southern Albania are thus estimated for the last 19 ka and vary from ~0.1 to ~2 mm/a. The Lushnje Tepelene Thrust, that extends more than 120 kilometers, has a throw rate that varies from 0.2 to 0.8 mm/a, whereas the active faults of the extensional domain are segmented but are very active, with throw rates reaching locally 2 mm/a.

  11. Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault

    Science.gov (United States)

    Scharer, Katherine M.; Biasi, Glenn P.; Weldon, Ray J.; Fumal, Tom E.

    2010-01-01

    It has been 153 yr since the last large earthquake on the southern San Andreas fault (California, United States), but the average interseismic interval is only ~100 yr. If the recurrence of large earthquakes is periodic, rather than random or clustered, the length of this period is notable and would generally increase the risk estimated in probabilistic seismic hazard analyses. Unfortunately, robust characterization of a distribution describing earthquake recurrence on a single fault is limited by the brevity of most earthquake records. Here we use statistical tests on a 3000 yr combined record of 29 ground-rupturing earthquakes from Wrightwood, California. We show that earthquake recurrence there is more regular than expected from a Poisson distribution and is not clustered, leading us to conclude that recurrence is quasi-periodic. The observation of unimodal time dependence is persistent across an observationally based sensitivity analysis that critically examines alternative interpretations of the geologic record. The results support formal forecast efforts that use renewal models to estimate probabilities of future earthquakes on the southern San Andreas fault. Only four intervals (15%) from the record are longer than the present open interval, highlighting the current hazard posed by this fault.

  12. Using UAVSAR to Estimate Creep Along the Superstition Hills Fault, Southern California

    Science.gov (United States)

    Donnellan, A.; Parker, J. W.; Pierce, M.; Wang, J.

    2012-12-01

    UAVSAR data were first acquired over the Salton Trough region, just north of the Mexican border in October 2009. Second passes of data were acquired on 12 and 13 April 2010, about one week following the 5 April 2010 M 7.2 El Mayor - Cucapah earthquake. The earthquake resulted in creep on several faults north of the main rupture, including the Yuha, Imperial, and Superstition Hills faults. The UAVSAR platform acquires data about every six meters in swaths about 15 km wide. Tropospheric effects and residual aircraft motion contribute to error in the estimation of surface deformation in the Repeat Pass Interferometry products. The Superstition Hills fault shows clearly in the associated radar interferogram; however, error in the data product makes it difficult to infer deformation from long profiles that cross the fault. Using the QuakeSim InSAR Profile tool we extracted line of site profiles on either side of the fault delineated in the interferogram. We were able to remove much of the correlated error by differencing profiles 250 m on either side of the fault. The result shows right-lateral creep of 1.5±.4 mm along the northern 7 km of the fault in the interferogram. The amount of creep abruptly changes to 8.4±.4 mm of right lateral creep along at least 9 km of the fault covered in the image to the south. The transition occurs within less than 100 m along the fault. We also extracted 2 km long line of site profiles perpendicular to this section of the fault. Averaging these profiles shows a step across the fault of 14.9±.3 mm with greater creep on the order of 20 mm on the northern two profiles and lower creep of about 10 mm on the southern two profiles. Nearby GPS stations P503 and P493 are consistent with this result. They also confirm that the creep event occurred at the time of the El Mayor - Cucapah earthquake. By removing regional deformation resulting from the main rupture we were able to invert for the depth of creep from the surface. Results indicate

  13. Tectonic geomorphology of large normal faults bounding the Cuzco rift basin within the southern Peruvian Andes

    Science.gov (United States)

    Byers, C.; Mann, P.

    2015-12-01

    The Cuzco basin forms a 80-wide, relatively flat valley within the High Andes of southern Peru. This larger basin includes the regional capital of Cuzco and the Urubamba Valley, or "Sacred Valley of the Incas" favored by the Incas for its mild climate and broader expanses of less rugged and arable land. The valley is bounded on its northern edge by a 100-km-long and 10-km-wide zone of down-to-the-south systems of normal faults that separate the lower area of the down-dropped plateau of central Peru and the more elevated area of the Eastern Cordillera foldbelt that overthrusts the Amazon lowlands to the east. Previous workers have shown that the normal faults are dipslip with up to 600 m of measured displacements, reflect north-south extension, and have Holocene displacments with some linked to destructive, historical earthquakes. We have constructed topographic and structural cross sections across the entire area to demonstrate the normal fault on a the plateau peneplain. The footwall of the Eastern Cordillera, capped by snowcapped peaks in excess of 6 km, tilts a peneplain surface northward while the hanging wall of the Cuzco basin is radially arched. Erosion is accelerated along the trend of the normal fault zone. As the normal fault zone changes its strike from east-west to more more northwest-southeast, normal displacement decreases and is replaced by a left-lateral strike-slip component.

  14. Fault-controlled development of shallow hydrothermal systems: Structural and mineralogical insights from the Southern Andes

    Science.gov (United States)

    Roquer, T.; Arancibia, G.; Rowland, J. V.; Iturrieta, P. C.; Morata, D.; Cembrano, J. M.

    2017-12-01

    Paleofluid-transporting systems can be recognized as meshes of fracture-filled veins in eroded zones of extinct hydrothermal systems. Here we conducted meso-microstructural analysis and mechanical modeling from two exhumed exposures of the faults governing regional tectonics of the Southern Andes: the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). A total of 107 fractures in both exposures were analyzed. The ATF specific segment shows two tectonic solutions that can be modeled as Andersonian and non-Andersonian tectonic regimes: (1) shear (mode II/III) failure occurs at differential stresses > 28 MPa and fluid pressures 85-98% lithostatic in the non-Andersonian regime. Additionally, the LOFS exposure cyclically fails in extension (mode I) or extension + shear (modes I + II/III) in the Andersonian regime, at differential stresses 40-80% lithostatic. In areas of spatial interaction between ATF and LOFS, these conditions might favor: (1) the storage of overpressured fluids in hydrothermal systems associated with the ATF faults, and (2) continuous fluid flow through vertical conduits in the LOFS faults. These observations suggest that such intersections are highly probable locations for concentrated hydrothermal activity, which must be taken into consideration for further geothermal exploration. ACKNOWLEDGEMENTS. PhD CONICYT grants, Centro de Excelencia en Geotermia de los Andes (CEGA-FONDAP/CONICYT Project #15090013), FONDECYT Project #1130030 and Project CONICYT REDES #140036.

  15. Rapid finite-fault inversions in Southern California using Cybershake Green's functions

    Science.gov (United States)

    Thio, H. K.; Polet, J.

    2017-12-01

    We have developed a system for rapid finite fault inversion for intermediate and large Southern California earthquakes using local, regional and teleseismic seismic waveforms as well as geodetic data. For modeling the local seismic data, we use 3D Green's functions from the Cybershake project, which were made available to us courtesy of the Southern California Earthquake Center (SCEC). The use of 3D Green's functions allows us to extend the inversion to higher frequency waveform data and smaller magnitude earthquakes, in addition to achieving improved solutions in general. The ultimate aim of this work is to develop the ability to provide high quality finite fault models within a few hours after any damaging earthquake in Southern California, so that they may be used as input to various post-earthquake assessment tools such as ShakeMap, as well as by the scientific community and other interested parties. Additionally, a systematic determination of finite fault models has value as a resource for scientific studies on detailed earthquake processes, such as rupture dynamics and scaling relations. We are using an established least-squares finite fault inversion method that has been applied extensively both on large as well as smaller regional earthquakes, in conjunction with the 3D Green's functions, where available, as well as 1D Green's functions for areas for which the Cybershake library has not yet been developed. We are carrying out validation and calibration of this system using significant earthquakes that have occurred in the region over the last two decades, spanning a range of locations and magnitudes (5.4 and higher).

  16. Impact of a Large San Andreas Fault Earthquake on Tall Buildings in Southern California

    Science.gov (United States)

    Krishnan, S.; Ji, C.; Komatitsch, D.; Tromp, J.

    2004-12-01

    In 1857, an earthquake of magnitude 7.9 occurred on the San Andreas fault, starting at Parkfield and rupturing in a southeasterly direction for more than 300~km. Such a unilateral rupture produces significant directivity toward the San Fernando and Los Angeles basins. The strong shaking in the basins due to this earthquake would have had a significant long-period content (2--8~s). If such motions were to happen today, they could have a serious impact on tall buildings in Southern California. In order to study the effects of large San Andreas fault earthquakes on tall buildings in Southern California, we use the finite source of the magnitude 7.9 2001 Denali fault earthquake in Alaska and map it onto the San Andreas fault with the rupture originating at Parkfield and proceeding southward over a distance of 290~km. Using the SPECFEM3D spectral element seismic wave propagation code, we simulate a Denali-like earthquake on the San Andreas fault and compute ground motions at sites located on a grid with a 2.5--5.0~km spacing in the greater Southern California region. We subsequently analyze 3D structural models of an existing tall steel building designed in 1984 as well as one designed according to the current building code (Uniform Building Code, 1997) subjected to the computed ground motion. We use a sophisticated nonlinear building analysis program, FRAME3D, that has the ability to simulate damage in buildings due to three-component ground motion. We summarize the performance of these structural models on contour maps of carefully selected structural performance indices. This study could benefit the city in laying out emergency response strategies in the event of an earthquake on the San Andreas fault, in undertaking appropriate retrofit measures for tall buildings, and in formulating zoning regulations for new construction. In addition, the study would provide risk data associated with existing and new construction to insurance companies, real estate developers, and

  17. Frictional Properties of Shionohira Fault Gouge (Part 2) -A Comparison with Kuruma Fault Gouge at the Southern Extension of Shionohira Fault-

    Science.gov (United States)

    Seshimo, K.; Kazuhiro, A.; Yukumo, T.; Masakazu, N.; Shimamoto, T.; Ma, S.; Yao, L.; Kametaka, M.

    2016-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (the largest aftershock of the 2011 off the Pacific coast of Tohoku Earthquake) formed co-seismic surface ruptures in NNW-SSE direction in Iwaki City, Fukushima Prefecture, Japan, named Shionohira Fault (hereafter called "active segment"). A N-S trending geological fault with lineaments (Kuruma Fault) along the southern extension of Shionohira Fault showed no surface ruptures (hereafter called "non-active segment"). The current report discusses differences of active and non-active segments by conducting low to high-velocity friction experiments on the gouge from shallow borehole cores. All experiments used a rotary-shear low to high-velocity frictional testing apparatus at the State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. The apparatus can produce slip rates of 0.2 microns/s to 2.1 mm/s under dry and wet conditions at room temperature and at normal stresses of mostly 1.38MPa. Experiments were performed under drained condition using gouges sealed by teflon sleeves. Non-active segment samples were taken from shallow borehole cores at depths 20.90 20.95m of Minakami-kita outcrop, and those for active segment at depths 12.82 12.87m of Shionohira outcrop and 5.96 6.00m of Betto outcrop. Three slip behaviors were recognized based on velocity dependence of steady-state friction coefficient: almost no velocity dependence for low velocity-regime of below 10 to 100 microns/s; clear velocity strengthening for intermediate velocity-regime of 100 microns/s to 1 mm/s; and significant velocity weakening for high velocity-regime of above 1 to 10 mm/s. Steady-state friction coefficients of dry gouges were 0.6 to 1.0 at low to intermediate slip velocity, and about 0.1 at high slip velocity. Wet gouges, however, of both Betto and Shionohira outcrop samples and Betto borehole core sample measured below 0.2 at low slip velocity although core samples of Shionohira and Minakami

  18. Southern San Andreas Fault evaluation field activity: approaches to measuring small geomorphic offsets--challenges and recommendations for active fault studies

    Science.gov (United States)

    Scharer, Katherine M.; Salisbury, J. Barrett; Arrowsmith, J. Ramon; Rockwell, Thomas K.

    2014-01-01

    In southern California, where fast slip rates and sparse vegetation contribute to crisp expression of faults and microtopography, field and high‐resolution topographic data (fault, analyze the offset values for concentrations or trends along strike, and infer that the common magnitudes reflect successive surface‐rupturing earthquakes along that fault section. Wallace (1968) introduced the use of such offsets, and the challenges in interpreting their “unique complex history” with offsets on the Carrizo section of the San Andreas fault; these were more fully mapped by Sieh (1978) and followed by similar field studies along other faults (e.g., Lindvall et al., 1989; McGill and Sieh, 1991). Results from such compilations spurred the development of classic fault behavior models, notably the characteristic earthquake and slip‐patch models, and thus constitute an important component of the long‐standing contrast between magnitude–frequency models (Schwartz and Coppersmith, 1984; Sieh, 1996; Hecker et al., 2013). The proliferation of offset datasets has led earthquake geologists to examine the methods and approaches for measuring these offsets, uncertainties associated with measurement of such features, and quality ranking schemes (Arrowsmith and Rockwell, 2012; Salisbury, Arrowsmith, et al., 2012; Gold et al., 2013; Madden et al., 2013). In light of this, the Southern San Andreas Fault Evaluation (SoSAFE) project at the Southern California Earthquake Center (SCEC) organized a combined field activity and workshop (the “Fieldshop”) to measure offsets, compare techniques, and explore differences in interpretation. A thorough analysis of the measurements from the field activity will be provided separately; this paper discusses the complications presented by such offset measurements using two channels from the San Andreas fault as illustrative cases. We conclude with best approaches for future data collection efforts based on input from the Fieldshop.

  19. Southern San Andreas Fault seismicity is consistent with the Gutenberg-Richter magnitude-frequency distribution

    Science.gov (United States)

    Page, Morgan T.; Felzer, Karen

    2015-01-01

    The magnitudes of any collection of earthquakes nucleating in a region are generally observed to follow the Gutenberg-Richter (G-R) distribution. On some major faults, however, paleoseismic rates are higher than a G-R extrapolation from the modern rate of small earthquakes would predict. This, along with other observations, led to formulation of the characteristic earthquake hypothesis, which holds that the rate of small to moderate earthquakes is permanently low on large faults relative to the large-earthquake rate (Wesnousky et al., 1983; Schwartz and Coppersmith, 1984). We examine the rate difference between recent small to moderate earthquakes on the southern San Andreas fault (SSAF) and the paleoseismic record, hypothesizing that the discrepancy can be explained as a rate change in time rather than a deviation from G-R statistics. We find that with reasonable assumptions, the rate changes necessary to bring the small and large earthquake rates into alignment agree with the size of rate changes seen in epidemic-type aftershock sequence (ETAS) modeling, where aftershock triggering of large earthquakes drives strong fluctuations in the seismicity rates for earthquakes of all magnitudes. The necessary rate changes are also comparable to rate changes observed for other faults worldwide. These results are consistent with paleoseismic observations of temporally clustered bursts of large earthquakes on the SSAF and the absence of M greater than or equal to 7 earthquakes on the SSAF since 1857.

  20. Late Quaternary activity along the Scorciabuoi Fault (Southern Italy as inferred from electrical resistivity tomographies

    Directory of Open Access Journals (Sweden)

    A. Loperte

    2007-06-01

    Full Text Available The Scorciabuoi Fault is one of the major tectonic structures affecting the Southern Apennines, Italy. Across its central sector, we performed several electrical resistivity tomographies with different electrode spacing (5 and 10 m and using a multielectrode system with 32 electrodes. All tomographies were acquired with two different arrays, the dipole-dipole and the Wenner-Schlumberger. We also tested the different sensitivity of the two arrays with respect to the specific geological conditions and research goals. Detailed geological mapping and two boreholes were used to calibrate the electrical stratigraphy. In all but one tomography (purposely performed off the fault trace, we could recognise an abrupt subvertical lateral variation of the main sedimentary bodies showing the displacement and sharp thickening of the two youngest alluvial bodies in the hanging-wall block. These features are interpreted as evidence of synsedimentary activity of the Scorciabuoi Fault during Late Pleistocene and possibly as recently as Holocene and allow accurate location of the fault trace within the Sauro alluvial plain.

  1. Lateral extrusion of Tunisia : Contribution of Jeffara Fault (southern branch) and Petroleum Implications

    Science.gov (United States)

    Ghedhoui, R.; Deffontaines, B.; Rabia, M. C.

    2012-04-01

    Contrasting to the northward African plate motion toward Eurasia and due to its geographic position in the North African margin, since early cretaceous, Tunisia seems to be submitted to an eastward migration. The aim of this work is to study the southern branch of this inferred tectonic splay that may guide the Tunisian extrusion characterised to the east by the Mediterranean sea as a free eastern boundary. The Jeffara Fault zone (southern Tunisia), represent a case example of such deformation faced by Tunisia. Helped by the results of previous researchers (Bouaziz, 1995 ; Rabiaa, 1998 ; Touati et Rodgers, 1998 ; Sokoutis D. et al., 2000 ; Bouaziz et al., 2002 ; Jallouli et al., 2005 ; Deffontaines et al., 2008…), and new evidences developed in this study, we propose a geodynamic Tunisian east extrusion model, due to such the northern African plate migration to the Eurasian one. In this subject, structural geomorphology is undertaken herein based on both geomorphometric drainage network analysis (Deffontaines et al., 1990), the Digital Terrain Model photo-interpretation (SRTM) combined with photo-interpretation of detailed optical images (Landsat ETM+), and confirmed by field work and numerous seismic profiles at depth. All these informations were then integrated within a GIS (Geodatabase) (Deffontaines 1990 ; Deffontaines et al. 1994 ; Deffontaines, 2000 ; Slama, 2008 ; Deffontaines, 2008) and are coherent with the eastern extrusion of the Sahel block. We infer that the NW-SE Gafsa-Tozeur, which continue to the Jeffara major fault zone acting as a transtensive right lateral motion since early cretaceous is the southern branch of the Sahel block extrusion. Our structural analyses prove the presence of NW-SE right lateral en-echelon tension gashes, NW-SE aligned salt diapirs, numerous folds offsets, en-echelon folds, and so on that parallel this major NW-SE transtensive extrusion fault zone.These evidences confirm the fact that the NW-SE Jeffara faults correspond

  2. Fault Creep along the Southern San Andreas from Interferometric Synthetic Aperture Radar, Permanent Scatterers, and Stacking

    Science.gov (United States)

    Lyons, Suzanne; Sandwell, David

    2003-01-01

    Interferometric synthetic aperture radar (InSAR) provides a practical means of mapping creep along major strike-slip faults. The small amplitude of the creep signal (less than 10 mm/yr), combined with its short wavelength, makes it difficult to extract from long time span interferograms, especially in agricultural or heavily vegetated areas. We utilize two approaches to extract the fault creep signal from 37 ERS SAR images along the southem San Andreas Fault. First, amplitude stacking is utilized to identify permanent scatterers, which are then used to weight the interferogram prior to spatial filtering. This weighting improves correlation and also provides a mask for poorly correlated areas. Second, the unwrapped phase is stacked to reduce tropospheric and other short-wavelength noise. This combined processing enables us to recover the near-field (approximately 200 m) slip signal across the fault due to shallow creep. Displacement maps fiom 60 interferograms reveal a diffuse secular strain buildup, punctuated by localized interseismic creep of 4-6 mm/yr line of sight (LOS, 12-18 mm/yr horizontal). With the exception of Durmid Hill, this entire segment of the southern San Andreas experienced right-lateral triggered slip of up to 10 cm during the 3.5-year period spanning the 1992 Landers earthquake. The deformation change following the 1999 Hector Mine earthquake was much smaller (4 cm) and broader than for the Landers event. Profiles across the fault during the interseismic phase show peak-to-trough amplitude ranging from 15 to 25 mm/yr (horizontal component) and the minimum misfit models show a range of creeping/locking depth values that fit the data.

  3. Geological Identification of Seismic Source at Opak Fault Based on Stratigraphic Sections of the Southern Mountains

    Directory of Open Access Journals (Sweden)

    Hita Pandita

    2016-08-01

    Full Text Available Earthquake is one of the unpredicted natural disasters on our earth. Despite of the absence of high-accuracy method to precisely predict the occurrence of earthquake, numerous studies have been carried out by seismologists to find it. One of the efforts to address the vulnerability of a region to earthquakes is by recognizing the type of rock as the source of the earthquake. Opak Fault is an active fault which was thought to be the source of earthquakes in Yogyakarta and adjacent areas. This study aimed to determine the seismic source types of rocks in Yogyakarta and adjacent areas. The methods were by measuring stratigraphic sections and the layer thickness in the western part of Southern Mountains. Field study was done in 6 (six research sites. Results of stratigraphic measurement indicated the sedimentary rocks in the Southern Mountains was 3.823 km in thick, while the bedrock was more than 1.042 km in thick. Based on the result, the rock types as the seismic source were thought to originate from the continental crust rocks formed of granite and metamorphic complex.

  4. Two-Phase Exhumation of the Santa Rosa Mountains: Low- and High-Angle Normal Faulting During Initiation and Evolution of the Southern San Andreas Fault System

    Science.gov (United States)

    Mason, Cody C.; Spotila, James A.; Axen, Gary; Dorsey, Rebecca J.; Luther, Amy; Stockli, Daniel F.

    2017-12-01

    Low-angle detachment fault systems are important elements of oblique-divergent plate boundaries, yet the role detachment faulting plays in the development of such boundaries is poorly understood. The West Salton Detachment Fault (WSDF) is a major low-angle normal fault that formed coeval with localization of the Pacific-North America plate boundary in the northern Salton Trough, CA. Apatite U-Th/He thermochronometry (AHe; n = 29 samples) and thermal history modeling of samples from the Santa Rosa Mountains (SRM) reveal that initial exhumation along the WSDF began at circa 8 Ma, exhuming footwall material from depths of >2 to 3 km. An uplifted fossil (Miocene) helium partial retention zone is present in the eastern SRM, while a deeper crustal section has been exhumed along the Pleistocene high-angle Santa Rosa Fault (SFR) to much higher elevations in the southwest SRM. Detachment-related vertical exhumation rates in the SRM were 0.15-0.36 km/Myr, with maximum fault slip rates of 1.2-3.0 km/Myr. Miocene AHe isochrons across the SRM are consistent with northeast crustal tilting of the SRM block and suggest that the post-WSDF vertical exhumation rate along the SRF was 1.3 km/Myr. The timing of extension initiation in the Salton Trough suggests that clockwise rotation of relative plate motions that began at 8 Ma is associated with initiation of the southern San Andreas system. Pleistocene regional tectonic reorganization was contemporaneous with an abrupt transition from low- to high-angle faulting and indicates that local fault geometry may at times exert a fundamental control on rock uplift rates along strike-slip fault systems.

  5. Stress near geometrically complex strike-slip faults - Application to the San Andreas fault at Cajon Pass, southern California

    Science.gov (United States)

    Saucier, Francois; Humphreys, Eugene; Weldon, Ray, II

    1992-01-01

    A model is presented to rationalize the state of stress near a geometrically complex major strike-slip fault. Slip on such a fault creates residual stresses that, with the occurrence of several slip events, can dominate the stress field near the fault. The model is applied to the San Andreas fault near Cajon Pass. The results are consistent with the geological features, seismicity, the existence of left-lateral stress on the Cleghorn fault, and the in situ stress orientation in the scientific well, found to be sinistral when resolved on a plane parallel to the San Andreas fault. It is suggested that the creation of residual stresses caused by slip on a wiggle San Andreas fault is the dominating process there.

  6. Using faults for PSHA in a volcanic context: the Etna case (Southern Italy)

    Science.gov (United States)

    Azzaro, Raffaele; D'Amico, Salvatore; Gee, Robin; Pace, Bruno; Peruzza, Laura

    2016-04-01

    At Mt. Etna volcano (Southern Italy), recurrent volcano-tectonic earthquakes affect the urbanised areas, with an overall population of about 400,000 and with important infrastructures and lifelines. For this reason, seismic hazard analyses have been undertaken in the last decade focusing on the capability of local faults to generate damaging earthquakes especially in the short-term (30-5 yrs); these results have to be intended as complementary to the regulatory seismic hazard maps, and devoted to establish priority in the seismic retrofitting of the exposed municipalities. Starting from past experience, in the framework of the V3 Project funded by the Italian Department of Civil Defense we performed a fully probabilistic seismic hazard assessment by using an original definition of seismic sources and ground-motion prediction equations specifically derived for this volcanic area; calculations are referred to a new brand topographic surface (Mt. Etna reaches more than 3,000 m in elevation, in less than 20 km from the coast), and to both Poissonian and time-dependent occurrence models. We present at first the process of defining seismic sources that includes individual faults, seismic zones and gridded seismicity; they are obtained by integrating geological field data with long-term (the historical macroseismic catalogue) and short-term earthquake data (the instrumental catalogue). The analysis of the Frequency Magnitude Distribution identifies areas in the volcanic complex, with a- and b-values of the Gutenberg-Richter relationship representative of different dynamic processes. Then, we discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults estimated by using a purely geologic approach. This analysis has been carried out through the software code FISH, a Matlab® tool developed to turn fault data representative of the seismogenic process into hazard models. The utilization of a magnitude-size scaling relationship

  7. Neutron Science TeraGrid Gateway

    International Nuclear Information System (INIS)

    Lynch, Vickie E.; Chen, Meili; Cobb, John W.; Kohl, James Arthur; Miller, Stephen D.; Speirs, David A.; Vazhkudai, Sudharshan S.

    2010-01-01

    The unique contributions of the Neutron Science TeraGrid Gateway (NSTG) are the connection of national user facility instrument data sources to the integrated cyberinfrastructure of the National Science FoundationTeraGrid and the development of a neutron science gateway that allows neutron scientists to use TeraGrid resources to analyze their data, including comparison of experiment with simulation. The NSTG is working in close collaboration with the Spallation Neutron Source (SNS) at Oak Ridge as their principal facility partner. The SNS is a next-generation neutron source. It has completed construction at a cost of $1.4 billion and is ramping up operations. The SNS will provide an order of magnitude greater flux than any previous facility in the world and will be available to all of the nation's scientists, independent of funding source, on a peer-reviewed merit basis. With this new capability, the neutron science community is facing orders of magnitude larger data sets and is at a critical point for data analysis and simulation. There is a recognized need for new ways to manage and analyze data to optimize both beam time and scientific output. The TeraGrid is providing new capabilities in the gateway for simulations using McStas and a fitting service on distributed TeraGrid resources to improved turnaround. NSTG staff are also exploring replicating experimental data in archival storage. As part of the SNS partnership, the NSTG provides access to gateway support, cyberinfrastructure outreach, community development, and user support for the neutron science community. This community includes not only SNS staff and users but extends to all the major worldwide neutron scattering centers.

  8. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China

    Science.gov (United States)

    Yu, Jing-xing; Zheng, Wen-jun; Zhang, Pei-zhen; Lei, Qi-yun; Wang, Xu-long; Wang, Wei-tao; Li, Xin-nan; Zhang, Ning

    2017-11-01

    The Hexi Corridor and the southern Gobi Alashan are composed of discontinuous a set of active faults with various strikes and slip motions that are located to the north of the northern Tibetan Plateau. Despite growing understanding of the geometry and kinematics of these active faults, the late Quaternary deformation pattern in the Hexi Corridor and the southern Gobi Alashan remains controversial. The active E-W trending Taohuala Shan-Ayouqi fault zone is located in the southern Gobi Alashan. Study of the geometry and nature of slip along this fault zone holds crucial value for better understanding the regional deformation pattern. Field investigations combined with high-resolution imagery show that the Taohuala Shan fault and the E-W trending faults within the Ayouqi fault zone (F2 and F5) are left-lateral strike-slip faults, whereas the NW or WNW-trending faults within the Ayouqi fault zone (F1 and F3) are reverse faults. We collected Optically Stimulated Luminescence (OSL) and cosmogenic exposure age dating samples from offset alluvial fan surfaces, and estimated a vertical slip rate of 0.1-0.3 mm/yr, and a strike-slip rate of 0.14-0.93 mm/yr for the Taohuala Shan fault. Strata revealed in a trench excavated across the major fault (F5) in the Ayouqi fault zone and OSL dating results indicate that the most recent earthquake occurred between ca. 11.05 ± 0.52 ka and ca. 4.06 ± 0.29 ka. The geometry and kinematics of the Taohuala Shan-Ayouqi fault zone enable us to build a deformation pattern for the entire Hexi Corridor and the southern Gobi Alashan, which suggest that this region experiences northeastward oblique extrusion of the northern Tibetan Plateau. These left-lateral strike-slip faults in the region are driven by oblique compression but not associated with the northeastward extension of the Altyn Tagh fault.

  9. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    Science.gov (United States)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  10. Understanding strain transfer and basin evolution complexities in the Salton pull-apart basin near the Southern San Andreas Fault

    Science.gov (United States)

    Kell, A. M.; Sahakian, V. J.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Baskin, R. L.; Barth, M.; Hole, J. A.; Stock, J. M.; Fuis, G. S.

    2015-12-01

    Active source seismic data in the Salton Sea provide insight into the complexity of the pull-apart system development. Seismic reflection data combined with tomographic cross sections give constraints on the timing of basin development and strain partitioning between the two dominant dextral faults in the region; the Imperial fault to the southwest and the Southern San Andreas fault (SSAF) to the northeast. Deformation associated with this step-over appears young, having formed in the last 20-40 k.a. The complexity seen in the Salton Sea is similar to that seen in pull-apart basins worldwide. In the southern basin of the Salton Sea, a zone of transpression is noted near the southern termination of the San Andreas fault, though this stress regime quickly transitions to a region of transtension in the northern reaches of the sea. The evolution seen in the basin architecture is likely related to a transition of the SSAF dying to the north, and giving way to youthful segments of the Brawley seismic zone and Imperial fault. Stratigraphic signatures seen in seismic cross-sections also reveal a long-term component of slip to the southwest on a fault 1-2 km west of the northeastern Salton Sea shoreline. Numerous lines of evidence, including seismic reflection data, high-resolution bathymetry within the Salton Sea, and folding patterns in the Borrego Formation to the east of the sea support an assertion of a previously unmapped fault, the Salton Trough fault (STF), parallel to the SAF and just offshore within the Salton Sea. Seismic observations are seen consistently within two datasets of varying vertical resolutions, up to depths of 4-5 km, suggesting that this fault strand is much longer-lived than the evolution seen in the southern sub-basin. The existence of the STF unifies discrepancies between the onshore seismic studies and data collected within the sea. The STF likely serves as the current bounding fault to the active pull-apart system, as it aligns with the "rung

  11. Geomorphological and structural characterization of the southern Weihe Graben, central China: Implications for fault segmentation

    Science.gov (United States)

    Cheng, Yali; He, Chuanqi; Rao, Gang; Yan, Bing; Lin, Aiming; Hu, Jianmin; Yu, Yangli; Yao, Qi

    2018-01-01

    The Cenozoic graben systems around the tectonically stable Ordos Block, central China, have been considered as ideal places for investigating active deformation within continental rifts, such as the Weihe Graben at the southern margin with high historical seismicity (e.g., 1556 M 8.5 Huaxian great earthquake). However, previous investigations have mostly focused on the active structures in the eastern and northern parts of this graben. By contrast, in the southwest, tectonic activity along the northern margin of the Qinling Mountains has not been systematically investigated yet. In this study, based on digital elevation models (DEMs), we carried out geomorphological analysis to evaluate the relative tectonic activity along the whole South Border Fault (SBF). On the basis of field observations, high resolution DEMs acquired by small unmanned aerial vehicles (sUVA) using structure-for-motion techniques, radiocarbon (14C) age dating, we demonstrate that: 1) Tectonic activity along the SBF changes along strike, being higher in the eastern sector. 2) Seven major segment boundaries have been assigned, where the fault changes its strike and has lower tectonic activity. 3) The fault segment between the cities of Huaxian and Huayin characterized by almost pure normal slip has been active during the Holocene. We suggest that these findings would provide a basis for further investigating on the seismic risk in densely-populated Weihe Graben. Table S2. The values and classification of geomorphic indices obtained in this study. Fig. S1. Morphological features of the stream long profiles (Nos. 1-75) and corresponding SLK values. Fig. S2. Comparison of geomorphological parameters acquired from different DEMs (90-m SRTM and 30-m ASTER GDEM): (a) HI values; (b) HI linear regression; (c) mean slope of drainage basin; (d) mean slope linear regression.

  12. Evidence for a twelfth large earthquake on the southern hayward fault in the past 1900 years

    Science.gov (United States)

    Lienkaemper, J.J.; Williams, P.L.; Guilderson, T.P.

    2010-01-01

    We present age and stratigraphic evidence for an additional paleoearthquake at the Tyson Lagoon site. The acquisition of 19 additional radiocarbon dates and the inclusion of this additional event has resolved a large age discrepancy in our earlier earthquake chronology. The age of event E10 was previously poorly constrained, thus increasing the uncertainty in the mean recurrence interval (RI), a critical factor in seismic hazard evaluation. Reinspection of many trench logs revealed substantial evidence suggesting that an additional earthquake occurred between E10 and E9 within unit u45. Strata in older u45 are faulted in the main fault zone and overlain by scarp colluviums in two locations.We conclude that an additional surfacerupturing event (E9.5) occurred between E9 and E10. Since 91 A.D. (??40 yr, 1??), 11 paleoearthquakes preceded the M 6:8 earthquake in 1868, yielding a mean RI of 161 ?? 65 yr (1??, standard deviation of recurrence intervals). However, the standard error of the mean (SEM) is well determined at ??10 yr. Since ~1300 A.D., the mean rate has increased slightly, but is indistinguishable from the overall rate within the uncertainties. Recurrence for the 12-event sequence seems fairly regular: the coefficient of variation is 0.40, and it yields a 30-yr earthquake probability of 29%. The apparent regularity in timing implied by this earthquake chronology lends support for the use of time-dependent renewal models rather than assuming a random process to forecast earthquakes, at least for the southern Hayward fault.

  13. Virtual Experiments on the Neutron Science TeraGrid Gateway

    International Nuclear Information System (INIS)

    Lynch, Vickie E; Cobb, John W; Farhi, Emmanuel N; Miller, Stephen D; Taylor, M

    2008-01-01

    The TeraGrid's outreach effort to the neutron science community is creating an environment that is encouraging the exploration of advanced cyberinfrastructure being incorporated into facility operations in a way that leverages facility operations to multiply the scientific output of its users, including many NSF supported scientists in many disciplines. The Neutron Science TeraGrid Gateway serves as an exploratory incubator for several TeraGrid projects. Virtual neutron scattering experiments from one exploratory project will be highlighted

  14. Character and Implications of a Newly Identified Creeping Strand of the San Andreas fault NE of Salton Sea, Southern California

    Science.gov (United States)

    Janecke, S. U.; Markowski, D.

    2015-12-01

    The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella

  15. Late oligocene and miocene faulting and sedimentation, and evolution of the southern Rio Grande rift, New Mexico, USA

    Science.gov (United States)

    Mack, Greg H.; Seager, William R.; Kieling, John

    1994-08-01

    The distribution of nonmarine lithofacies, paleocurrents, and provenance data are used to define the evolution of late Oligocene and Miocene basins and complementary uplifts in the southern Rio Grande rift in the vicinity of Hatch, New Mexico, USA. The late Oligocene-middle Miocene Hayner Ranch Formation, which consists of a maximum of 1000 m of alluvial-fan, alluvial-flat, and lacustrine-carbonate lithofacies, was deposited in a narrow (12 km), northwest-trending, northeast-tilted half graben, whose footwall was the Caballo Mountains block. Stratigraphic separation on the border faults of the Caballo Mountains block was approximately 1615 m. An additional 854 m of stratigraphic separation along the Caballo Mountains border faults occurred during deposition of the middle-late Miocene Rincon Valley Formation, which is composed of up to 610 m of alluvial-fan, alluvial-flat, braided-fluvial, and gypsiferous playa lithofacies. Two new, north-trending fault blocks (Sierra de las Uvas and Dona Ana Mountains) and complementary west-northwest-tilted half graben also developed during Rincon Valley time, with approximately 549 m of stratigraphic separation along the border fault of the Sierra de las Uvas block. In latest Miocene and early Pliocene time, following deposition of the Rincon Valley Formation, movement continued along the border faults of the Caballo Mountains, Dona Ana Mountains, and Sierra de las Uvas blocks, and large parts of the Hayner Ranch and Rincon Valley basins were segmented into smaller fault blocks and basins by movement along new, largely north-trending faults. Analysis of the Hayner Ranch and Rincon Valley Formations, along with previous studies of the early Oligocene Bell Top Formation and late Pliocene-early Pleistocene Camp Rice Formation, indicate that the traditional two-stage model for development of the southern Rio Grande rift should be abandoned in favor of at least four episodes of block faulting beginning 35 Ma ago. With the exception of

  16. Estimation of Seismic Ground Motions and Attendant Potential Human Fatalities from Scenario Earthquakes on the Chishan Fault in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Kun-Sung Liu

    2017-01-01

    Full Text Available The purpose of this study is to estimate maximum ground motions in southern Taiwan as well as to assess potential human fatalities from scenario earthquakes on the Chishan active faults in this area. The resultant Shake Map patterns of maximum ground motion in a case of Mw 7.2 show the areas of PGA above 400 gals are located in the northeastern, central and northern parts of southwestern Kaohsiung as well as the southern part of central Tainan, as shown in the regions inside the yellow lines in the corresponding figure. Comparing cities with similar distances located in Tainan, Kaohsiung, and Pingtung to the Chishan fault, the cities in Tainan area have relatively greater PGA and PGV, due to large site response factors in Tainan area. Furthermore, seismic hazards in terms of PGA and PGV in the vicinity of the Chishan fault are not completely dominated by the Chishan fault. The main reason is that some areas located in the vicinity of the Chishan fault are marked with low site response amplification values from 0.55 - 1.1 and 0.67 - 1.22 for PGA and PGV, respectively. Finally, from estimation of potential human fatalities from scenario earthquakes on the Chishan active fault, it is noted that potential fatalities increase rapidly in people above age 45. Total fatalities reach a high peak in age groups of 55 - 64. Another to pay special attention is Kaohsiung City has more than 540 thousand households whose residences over 50 years old. In light of the results of this study, I urge both the municipal and central governments to take effective seismic hazard mitigation measures in the highly urbanized areas with a large number of old buildings in southern Taiwan.

  17. Fault fluid evolution at the outermost edges of the southern Apennines fold-and-thrust belt, Italy

    Science.gov (United States)

    Agosta, Fabrizio; Belviso, Claudia; Cavalcante, Francesco; Vita Petrullo, Angela

    2017-04-01

    This work focuses on the structural architecture and mineralization of a high-angle, extensional fault zone that crosscuts the Middle Pleistocene tuffs and pyroclastites of the Vulture Volcano, southern Italy. This fault zone is topped by a few m-thick travertine deposit formed by precipitation, in a typical lacustrine depositional environment, from a fault fluid that included a mixed, biogenic- and mantle-derived CO2. The detailed analysis of its different mineralization can shed new lights into the shallow crustal fluid flow that took place during deformation of the outer edge of the southern Apennines fold-and-thrust belt. In fact, the study fault zone is interpreted as a shallow-seated, tear fault associated with a shallow thrust fault displacing the most inner portion of the Bradano foredeep basin infill, and was thus active during the latest stages of contractional deformation. Far from the fault zone, the fracture network is made up of three high-angle joint sets striking N-S, E-W and NW-SE, respectively. The former two sets can be interpreted as the older structural elements that pre-dated the latter one, which is likely due to the current stress state that affects the whole Italian peninsula. In the vicinity of the fault zone, a fourth joint high-angle set striking NE-SW is also present, which becomes the most dominant fracture set within the study footwall fault damage zone. Detailed X-ray diffraction analysis of the powder obtained from hand specimens representative of the multiple mineralization present within the fault zone, and in the surrounding volcanites, are consistent with circulation of a fault fluid that modified its composition with time during the latest stages of volcanic activity and contractional deformation. Specifically, veins infilled with and slickenside coated by jarosite, Opal A and/or goethite are found in the footwall fault damage zone. Based upon the relative timing of formation of the aforementioned joint sets, deciphered after

  18. Geologic map and cross sections of the Embudo Fault Zone in the Southern Taos Valley, Taos County, New Mexico

    Science.gov (United States)

    Bauer, Paul W.; Kelson, Keith I.; Grauch, V.J.S.; Drenth, Benjamin J.; Johnson, Peggy S.; Aby, Scott B.; Felix, Brigitte

    2016-01-01

    The southern Taos Valley encompasses the physiographic and geologic transition zone between the Picuris Mountains and the San Luis Basin of the Rio Grande rift. The Embudo fault zone is the rift transfer structure that has accommodated the kinematic disparities between the San Luis Basin and the Española Basin during Neogene rift extension. The eastern terminus of the transfer zone coincides with the intersection of four major fault zones (Embudo, Sangre de Cristo, Los Cordovas, and Picuris-Pecos), resulting in an area of extreme geologic and hydrogeologic complexities in both the basin-fill deposits and the bedrock. Although sections of the Embudo fault zone are locally exposed in the bedrock of the Picuris Mountains and in the late Cenozoic sedimentary units along the top of the Picuris piedmont, the full proportions of the fault zone have remained elusive due to a pervasive cover of Quaternary surficial deposits. We combined insights derived from the latest geologic mapping of the area with deep borehole data and high-resolution aeromagnetic and gravity models to develop a detailed stratigraphic/structural model of the rift basin in the southern Taos Valley area. The four fault systems in the study area overlap in various ways in time and space. Our geologic model states that the Picuris-Pecos fault system exists in the basement rocks (Picuris formation and older units) of the rift, where it is progressively down dropped and offset to the west by each Embudo fault strand between the Picuris Mountains and the Rio Pueblo de Taos. In this model, the Miranda graben exists in the subsurface as a series of offset basement blocks between the Ponce de Leon neighborhood and the Rio Pueblo de Taos. In the study area, the Embudo faults are pervasive structures between the Picuris Mountains and the Rio Pueblo de Taos, affecting all geologic units that are older than the Quaternary surficial deposits. The Los Cordovas faults are thought to represent the late Tertiary to

  19. Changes in state of stress on the southern san andreas fault resulting from the california earthquake sequence of april to june 1992.

    Science.gov (United States)

    Jaumé, S C; Sykes, L R

    1992-11-20

    The April to June 1992 Landers earthquake sequence in southern California modified the state of stress along nearby segments of the San Andreas fault, causing a 50-kilometer segment of the fault to move significantly closer to failure where it passes through a compressional bend near San Gorgonio Pass. The decrease in compressive normal stress may also have reduced fluid pressures along that fault segment. As pressures are reequilibrated by diffusion, that fault segment should move closer to failure with time. That fault segment and another to the southeast probably have not ruptured in a great earthquake in about 300 years.

  20. Sawtooth segmentation and deformation processes on the southern San Andreas fault, California

    Science.gov (United States)

    Bilham, R.; Williams, P.

    1985-01-01

    Five contiguous 12-13 km fault segments form a sawtooth geometry on the southernmost San Andreas fault. The kinematic and morphologic properties of each segment depend on fault strike, despite differences of strike between segments of as little as 3 degrees. Oblique slip (transpression) of fault segments within the Indio Hills, Mecca Hills and Durmid Hill results from an inferred 8:1 ratio of dextral slip to convergence across the fault zone. Triggered slip and creep are confined almost entirely to transpressive segments of the fault. Durmid Hill has been formed in the last 28 + or - 6 ka by uplift at an average rate of 3 + or - 1 mm/a.

  1. Geophysical methods for identification of active faults between the Sannio-Matese and Irpinia areas of the Southern Apennines.

    Science.gov (United States)

    Gaudiosi, Germana; Nappi, Rosa; Alessio, Giuliana; Cella, Federico; Fedi, Maurizio; Florio, Giovanni

    2014-05-01

    The Southern Apennines is one of the Italian most active areas from a geodynamic point of view since it is characterized by occurrence of intense and widely spread seismic activity. Most seismicity of the area is concentrated along the chain, affecting mainly the Irpinia and Sannio-Matese areas. The seismogenetic sources responsible for the destructive events of 1456, 1688, 1694, 1702, 1732, 1805, 1930, 1962 and 1980 (Io = X-XI MCS) occurred mostly on NW-SE faults, and the relative hypocenters are concentrated within the upper 20 km of the crust. Structural observations on the Pleistocene faults suggest normal to sinistral movements for the NW-SE trending faults and normal to dextral for the NE-SW trending structures. The available focal mechanisms of the largest events show normal solutions consistent with NE-SW extension of the chain. After the 1980 Irpinia large earthquake, the release of seismic energy in the Southern Apennines has been characterized by occurrence of moderate energy sequences of main shock-aftershocks type and swarm-type activity with low magnitude sequences. Low-magnitude (Md<5) historical and recent earthquakes, generally clustered in swarms, have commonly occurred along the NE-SW faults. This paper deals with integrated analysis of geological and geophysical data in GIS environment to identify surface, buried and hidden active faults and to characterize their geometry. In particular we have analyzed structural data, earthquake space distribution and gravimetric data. The main results of the combined analysis indicate good correlation between seismicity and Multiscale Derivative Analysis (MDA) lineaments from gravity data. Furthermore 2D seismic hypocentral locations together with high-resolution analysis of gravity anomalies have been correlated to estimate the fault systems parameters (strike, dip direction and dip angle) through the application of the DEXP method (Depth from Extreme Points).

  2. Proterozoic structure, cambrian rifting, and younger faulting as revealed by a regional seismic reflection network in the Southern Illinois Basin

    Science.gov (United States)

    Potter, C.J.; Drahovzal, James A.; Sargent, M.L.; McBride, J.H.

    1997-01-01

    Four high-quality seismic reflection profiles through the southern Illinois Basin, totaling 245 km in length, provide an excellent regional subsurface stratigraphic and structural framework for evaluation of seismic risk, hydrocarbon occurrence, and other regional geologic studies. These data provide extensive subsurface information on the geometry of the intersection of the Cambrian Reelfoot and Rough Creek rifts, on extensive Proterozoic reflection sequences, and on structures (including the Fluorspar Area Fault Complex and Hicks Dome) that underlie a transitional area between the well-defined New Madrid seismic zone (to the southwest) and a more diffuse area of seismicity in the southern Illinois Basin. Our principal interpretations from these data are listed here in order of geologic age, from oldest to youngest: 1. Prominent Proterozoic layering, possibly equivalent to Proterozoic (???1 Ga) Middle Run Formation clastic strata and underlying (1.3-1.5 Ga) volcanic rocks of the East Continent rift basin, has been strongly deformed, probably as part of the Grenville foreland fold and thrust belt. 2. A well-defined angular unconformity is seen in many places between Proterozoic and Cambrian strata; a post-Grenville Proterozoic sequence is also apparent locally, directly beneath the base of the Cambrian. 3. We infer a major reversal in Cambrian rift polarity (accommodation zone) in the Rough Creek Graben in western Kentucky. 4. Seismic facies analysis suggests the presence of basin-floor fan complexes at and near the base of the Cambrian interval and within parts of a Proterozoic post-Grenville sequence in several parts of the Rough Creek Graben. 5. There is an abrupt pinchout of the Mount Simon Sandstone against crystalline basement beneath the Dale Dome (near the Texaco no. 1 Cuppy well, Hamilton County) in southeastern Illinois, and a more gradual Mount Simon pinchout to the southeast. 6. Where crossed by the seismic reflection line in southeast Illinois, some

  3. Seismic properties of lawsonite eclogites from the southern Motagua fault zone, Guatemala

    Science.gov (United States)

    Kim, Daeyeong; Wallis, Simon; Endo, Shunsuke; Ree, Jin-Han

    2016-05-01

    We present new data on the crystal preferred orientation (CPO) and seismic properties of omphacite and lawsonite in extremely fresh eclogite from the southern Motagua fault zone, Guatemala, to discuss the seismic anisotropy of subducting oceanic crust. The CPO of omphacite is characterized by (010)[001], and it shows P-wave seismic anisotropies (AVP) of 1.4%-3.2% and S-wave seismic anisotropies (AVS) of 1.4%-2.7%. Lawsonite exhibits (001) planes parallel to the foliation and [010] axes parallel to the lineation, and seismic anisotropies of 1.7%-6.6% AVP and 3.4%-14.7% AVS. The seismic anisotropy of a rock mass consisting solely of omphacite and lawsonite is 1.2%-4.1% AVP and 1.8%-6.8% AVS. For events that propagate more or less parallel to the maximum extension direction, X, the fast S-wave velocity (VS) polarization is parallel to the Z in the Y-Z section (rotated from the X-Z section), causing trench-normal seismic anisotropy for orthogonal subduction. Based on the high modal abundance and strong fabric of lawsonite, the AVS of eclogites is estimated as ~ 11.7% in the case that lawsonite makes up ~ 75% of the rock mass. On this basis, we suggest that lawsonite in both blueschist and eclogite may play important roles in the formation of complex pattern of seismic anisotropy observed in NE Japan: weak trench-parallel anisotropy in the forearc basin domains and trench-normal anisotropy in the backarc region.

  4. Change in failure stress on the southern san andreas fault system caused by the 1992 magnitude = 7.4 landers earthquake.

    Science.gov (United States)

    Stein, R S; King, G C; Lin, J

    1992-11-20

    The 28 June Landers earthquake brought the San Andreas fault significantly closer to failure near San Bernardino, a site that has not sustained a large shock since 1812. Stress also increased on the San Jacinto fault near San Bernardino and on the San Andreas fault southeast of Palm Springs. Unless creep or moderate earthquakes relieve these stress changes, the next great earthquake on the southern San Andreas fault is likely to be advanced by one to two decades. In contrast, stress on the San Andreas north of Los Angeles dropped, potentially delaying the next great earthquake there by 2 to 10 years.

  5. The geometry of pull-apart basins in the southern part of Sumatran strike-slip fault zone

    Science.gov (United States)

    Aribowo, Sonny

    2018-02-01

    Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

  6. Earthquake Swarm Along the San Andreas Fault near Palmdale, Southern California, 1976 to 1977.

    Science.gov (United States)

    McNally, K C; Kanamori, H; Pechmann, J C; Fuis, G

    1978-09-01

    Between November 1976 and November 1977 a swarm of small earthquakes (local magnitude foreshock sequences, such as tight clustering of hypocenters and time-dependent rotations of stress axes inferred from focal mechanisms. However, because of our present lack of understanding of the processes that precede earthquake faulting, the implications of the swarm for future large earthquakes on the San Andreas fault are unknown.

  7. The hydraulic structure of the Gole Larghe Fault Zone (Italian Southern Alps) through the seismic cycle

    Science.gov (United States)

    Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.

    2017-12-01

    The 600 m-thick, strike slip Gole Larghe Fault Zone (GLFZ) experienced several hundred seismic slip events at c. 8 km depth, well-documented by numerous pseudotachylytes, was then exhumed and is now exposed in beautiful and very continuous outcrops. The fault zone was also characterized by hydrous fluid flow during the seismic cycle, demonstrated by alteration halos and precipitation of hydrothermal minerals in veins and cataclasites. We have characterized the GLFZ with > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed us obtaining 3D Discrete Fracture Network (DFN) models, based on robust probability density functions for parameters of fault and fracture sets, and simulating the fault zone hydraulic properties. In addition, the correlation between evidences of fluid flow and the fault/fracture network parameters have been studied with a geostatistical approach, allowing generating more realistic time-varying permeability models of the fault zone. Based on this dataset, we have developed a FEM hydraulic model of the GLFZ for a period of some tens of years, covering one seismic event and a postseismic period. The higher permeability is attained in the syn- to early post-seismic period, when fractures are (re)opened by off-fault deformation, then permeability decreases in the postseismic due to fracture sealing. The flow model yields a flow pattern consistent with the observed alteration/mineralization pattern and a marked channelling of fluid flow in the inner part of the fault zone, due to permeability anisotropy related to the spatial arrangement of different fracture sets. Amongst possible seismological applications of our study, we will discuss the possibility to evaluate the coseismic fracture intensity due to off-fault damage, and the heterogeneity and evolution of mechanical parameters due to fluid-rock interaction.

  8. Low-Frequency Earthquakes Associated with the Late-Interseismic Central Alpine Fault, Southern Alps, New Zealand

    Science.gov (United States)

    Baratin, L. M.; Chamberlain, C. J.; Townend, J.; Savage, M. K.

    2016-12-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the state of stress of this major transpressive margin prior to a large (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated large rupture. We initially work with a continous seismic dataset collected between 2009 and 2012 from an array of short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine. This method allows the detection of similar signals and establishes LFE families with common locations. We thus generate a 36 month catalogue of 10718 LFEs. The detections are then combined for each LFE family using phase-weighted stacking to yield a signal with the highest possible signal to noise ratio. We found phase-weighted stacking to be successful in increasing the number of LFE detections by roughly 20%. Phase-weighted stacking also provides cleaner phase arrivals of apparently impulsive nature allowing more precise phase and polarity picks. We then compute improved non-linear earthquake locations using a 3D velocity model. We find LFEs to occur below the seismogenic zone at depths of 18-34 km, locating on or near the proposed deep extent of the Alpine Fault. Our next step is to estimate seismic source parameters by implementing a moment tensor inversion technique. Our focus is currently on generating a more extensive catalogue (spanning the years 2009 to 2016) using synthetic waveforms as primary templates, with which to detect LFEs. Initial testing shows that this technique paired up with phase-weighted stacking increases the number of LFE families and overall detected events roughly sevenfold. This catalogue should provide new insight into the geometry of the Alpine Fault and the prevailing stress

  9. Investigating Strain Transfer Along the Southern San Andreas Fault: A Geomorphic and Geodetic Study of Block Rotation in the Eastern Transverse Ranges, Joshua Tree National Park, CA

    Science.gov (United States)

    Guns, K. A.; Bennett, R. A.; Blisniuk, K.

    2017-12-01

    To better evaluate the distribution and transfer of strain and slip along the Southern San Andreas Fault (SSAF) zone in the northern Coachella valley in southern California, we integrate geological and geodetic observations to test whether strain is being transferred away from the SSAF system towards the Eastern California Shear Zone through microblock rotation of the Eastern Transverse Ranges (ETR). The faults of the ETR consist of five east-west trending left lateral strike slip faults that have measured cumulative offsets of up to 20 km and as low as 1 km. Present kinematic and block models present a variety of slip rate estimates, from as low as zero to as high as 7 mm/yr, suggesting a gap in our understanding of what role these faults play in the larger system. To determine whether present-day block rotation along these faults is contributing to strain transfer in the region, we are applying 10Be surface exposure dating methods to observed offset channel and alluvial fan deposits in order to estimate fault slip rates along two faults in the ETR. We present observations of offset geomorphic landforms using field mapping and LiDAR data at three sites along the Blue Cut Fault and one site along the Smoke Tree Wash Fault in Joshua Tree National Park which indicate recent Quaternary fault activity. Initial results of site mapping and clast count analyses reveal at least three stages of offset, including potential Holocene offsets, for one site along the Blue Cut Fault, while preliminary 10Be geochronology is in progress. This geologic slip rate data, combined with our new geodetic surface velocity field derived from updated campaign-based GPS measurements within Joshua Tree National Park will allow us to construct a suite of elastic fault block models to elucidate rates of strain transfer away from the SSAF and how that strain transfer may be affecting the length of the interseismic period along the SSAF.

  10. Seismicity, fault plane solutions, depth of faulting, and active tectonics of the Andes of Peru, Ecuador, and southern Colombia

    Science.gov (United States)

    Suarez, G.; Molnar, P.; Burchfiel, B. C.

    1983-01-01

    The long-period P waveforms observed for 17 earthquakes in the Peruvian Andes during 1963-1976 are compared with synthetic waveforms to obtain fault-plane solutions and focal depths. The morphological units of the Peruvian Andes are characterized: coastal plains, Cordillera Occidental, altiplano and central high plateau, Cordillera Oriental, and sub-Andes. The data base and analysis methodology are discussed, and the results are presented in tables, diagrams, graphs, maps, and photographs illustrating typical formations. Most of the earthquakes are shown to occur in the transition zone from the sub-Andes to the Cordillera Oriental under formations of about 1 km elevation at focal depths of 10-38 km. It is suggested that the sub-Andean earthquakes reflect hinterland deformation of a detached fold and thrust belt, perhaps like that which occurred in parts of the Canadian Rockies. From the total crustal shortening evident in Andean morphology and the shortening rate of the recent earthquakes it is estimated that the topography and crustal root of the Andes have been formed during the last 90-135 Myr.

  11. The ShakeOut scenario: A hypothetical Mw7.8 earthquake on the Southern San Andreas Fault

    Science.gov (United States)

    Porter, K.; Jones, L.; Cox, D.; Goltz, J.; Hudnut, K.; Mileti, D.; Perry, S.; Ponti, D.; Reichle, M.; Rose, A.Z.; Scawthorn, C.R.; Seligson, H.A.; Shoaf, K.I.; Treiman, J.; Wein, A.

    2011-01-01

    In 2008, an earthquake-planning scenario document was released by the U.S. Geological Survey (USGS) and California Geological Survey that hypothesizes the occurrence and effects of a Mw7.8 earthquake on the southern San Andreas Fault. It was created by more than 300 scientists and engineers. Fault offsets reach 13 m and up to 8 m at lifeline crossings. Physics-based modeling was used to generate maps of shaking intensity, with peak ground velocities of 3 m/sec near the fault and exceeding 0.5 m/sec over 10,000 km2. A custom HAZUS??MH analysis and 18 special studies were performed to characterize the effects of the earthquake on the built environment. The scenario posits 1,800 deaths and 53,000 injuries requiring emergency room care. Approximately 1,600 fires are ignited, resulting in the destruction of 200 million square feet of the building stock, the equivalent of 133,000 single-family homes. Fire contributes $87 billion in property and business interruption loss, out of the total $191 billion in economic loss, with most of the rest coming from shakerelated building and content damage ($46 billion) and business interruption loss from water outages ($24 billion). Emergency response activities are depicted in detail, in an innovative grid showing activities versus time, a new format introduced in this study. ?? 2011, Earthquake Engineering Research Institute.

  12. Fault tectonics and earthquake hazards in parts of southern California. [penninsular ranges, Garlock fault, Salton Trough area, and western Mojave Desert

    Science.gov (United States)

    Merifield, P. M. (Principal Investigator); Lamar, D. L.; Gazley, C., Jr.; Lamar, J. V.; Stratton, R. H.

    1976-01-01

    The author has identified the following significant results. Four previously unknown faults were discovered in basement terrane of the Peninsular Ranges. These have been named the San Ysidro Creek fault, Thing Valley fault, Canyon City fault, and Warren Canyon fault. In addition fault gouge and breccia were recognized along the San Diego River fault. Study of features on Skylab imagery and review of geologic and seismic data suggest that the risk of a damaging earthquake is greater along the northwestern portion of the Elsinore fault than along the southeastern portion. Physiographic indicators of active faulting along the Garlock fault identifiable in Skylab imagery include scarps, linear ridges, shutter ridges, faceted ridges, linear valleys, undrained depressions and offset drainage. The following previously unrecognized fault segments are postulated for the Salton Trough Area: (1) An extension of a previously known fault in the San Andreas fault set located southeast of the Salton Sea; (2) An extension of the active San Jacinto fault zone along a tonal change in cultivated fields across Mexicali Valley ( the tonal change may represent different soil conditions along opposite sides of a fault). For the Skylab and LANDSAT images studied, pseudocolor transformations offer no advantages over the original images in the recognition of faults in Skylab and LANDSAT images. Alluvial deposits of different ages, a marble unit and iron oxide gossans of the Mojave Mining District are more readily differentiated on images prepared from ratios of individual bands of the S-192 multispectral scanner data. The San Andreas fault was also made more distinct in the 8/2 and 9/2 band ratios by enhancement of vegetation differences on opposite sides of the fault. Preliminary analysis indicates a significant earth resources potential for the discrimination of soil and rock types, including mineral alteration zones. This application should be actively pursued.

  13. Southern San Andreas Fault Slip History Refined Using Pliocene Colorado River Deposits in the Western Salton Trough

    Science.gov (United States)

    Dorsey, R. J.; Bennett, S. E. K.; Housen, B. A.

    2016-12-01

    Tectonic reconstructions of Pacific-North America plate motion in the Salton Trough region (Bennett et al., 2016) are constrained by: (1) late Miocene volcanic rocks that record 255 +/-10 km of transform offset across the northern Gulf of California since 6 Ma (average 42 mm/yr; Oskin and Stock, 2003); and (2) GPS data that show modern rates of 50-52 mm/yr between Pacific and North America plates, and 46-48 mm/yr between Baja California (BC) and North America (NAM) (Plattner et al., 2007). New data from Pliocene Colorado River deposits in the Salton Trough provide an important additional constraint on the geologic history of slip on the southern San Andreas Fault (SAF). The Arroyo Diablo Formation (ADF) in the San Felipe Hills SW of the Salton Sea contains abundant cross-bedded channel sandstones deformed in the dextral Clark fault zone. The ADF ranges in age from 4.3 to 2.8 Ma in the Fish Creek-Vallecito basin, and in the Borrego Badlands its upper contact with the Borrego Formation is 2.9 Ma based on our new magnetostratigraphy. ADF paleocurrent data from a 20-km wide, NW-oriented belt near Salton City record overall transport to the SW (corrected for bedding dip, N=165), with directions ranging from NW to SE. Spatial domain analysis reveals radial divergence of paleoflow to the: W and NW in the NW domain; SW in the central domain; and S in the SE domain. Data near Borrego Sink, which restores to south of Salton City after removing offset on the San Jacinto fault zone, show overall transport to the SE. Pliocene patterns of radial paleoflow divergence strongly resemble downstream bifurcation of fluvial distributary channels on the modern Colorado River delta SW of Yuma, and indicate that Salton City has translated 120-130 km NW along the SAF since 3 Ma. We propose a model in which post-6 Ma BC-NAM relative motion gradually accelerated to 50 mm/yr by 4 Ma, continued at 50 mm/yr from 4-1 Ma, and decreased to 46 mm/yr from 1-0 Ma (split equally between the SAF and

  14. Holocene slip rates along the San Andreas Fault System in the San Gorgonio Pass and implications for large earthquakes in southern California

    Science.gov (United States)

    Heermance, Richard V.; Yule, Doug

    2017-06-01

    The San Gorgonio Pass (SGP) in southern California contains a 40 km long region of structural complexity where the San Andreas Fault (SAF) bifurcates into a series of oblique-slip faults with unknown slip history. We combine new 10Be exposure ages (Qt4: 8600 (+2100, -2200) and Qt3: 5700 (+1400, -1900) years B.P.) and a radiocarbon age (1260 ± 60 years B.P.) from late Holocene terraces with scarp displacement of these surfaces to document a Holocene slip rate of 5.7 (+2.7, -1.5) mm/yr combined across two faults. Our preferred slip rate is 37-49% of the average slip rates along the SAF outside the SGP (i.e., Coachella Valley and San Bernardino sections) and implies that strain is transferred off the SAF in this area. Earthquakes here most likely occur in very large, throughgoing SAF events at a lower recurrence than elsewhere on the SAF, so that only approximately one third of SAF ruptures penetrate or originate in the pass.Plain Language SummaryHow large are earthquakes on the southern San Andreas Fault? The answer to this question depends on whether or not the earthquake is contained only along individual fault sections, such as the Coachella Valley section north of Palm Springs, or the rupture crosses multiple sections including the area through the San Gorgonio Pass. We have determined the age and offset of faulted stream deposits within the San Gorgonio Pass to document slip rates of these faults over the last 10,000 years. Our results indicate a long-term slip rate of 6 mm/yr, which is almost 1/2 of the rates east and west of this area. These new rates, combined with faulted geomorphic surfaces, imply that large magnitude earthquakes must occasionally rupture a 300 km length of the San Andreas Fault from the Salton Sea to the Mojave Desert. Although many ( 65%) earthquakes along the southern San Andreas Fault likely do not rupture through the pass, our new results suggest that large >Mw 7.5 earthquakes are possible on the southern San Andreas Fault and likely

  15. Imaging 2D structures by the CSAMT method: application to the Pantano di S. Gregorio Magno faulted basin (Southern Italy)

    International Nuclear Information System (INIS)

    Troiano, Antonio; Di Giuseppe, Maria Giulia; Petrillo, Zaccaria; Patella, Domenico

    2009-01-01

    A controlled source audiofrequency magnetotelluric (CSAMT) survey has been undertaken in the Pantano di San Gregorio Magno faulted basin, an earthquake prone area of Southern Apennines in Italy. A dataset from 11 soundings, distributed along a nearly N-S 780 m long profile, was acquired in the basin's easternmost area, where the fewest data are available as to the faulting shallow features. A preliminary skew analysis allowed a prevailing 2D nature of the dataset to be ascertained. Then, using a single-site multi-frequency approach, Dantzig's simplex algorithm was introduced for the first time to estimate the CSAMT decomposition parameters. The simplex algorithm, freely available online, proved to be fast and efficient. By this approach, the TM and TE mode field diagrams were obtained and a N35°W ± 10° 2D strike mean direction was estimated along the profile, in substantial agreement with the fault traces within the basin. A 2D inversion of the apparent resistivity and phase curves at seven almost noise-free sites distributed along the central portion of the profile was finally elaborated, reinforced by a sensitivity analysis, which allowed the best resolved portion of the model to be imaged from the first few meters of depth down to a mean depth of 300 m b.g.l. From the inverted section, the following features have been outlined: (i) a cover layer with resistivity in the range 3–30 Ω m ascribed to the Quaternary lacustrine clayey deposits filling the basin, down to an average depth of about 35 m b.g.l., underlain by a structure with resistivity over 50 Ω m up to about 600 Ω m, ascribed to the Mesozoic carbonate bedrock; (ii) a system of two normal faults within the carbonate basement, extending down to the maximum best resolved depth of the order of 300 m b.g.l.; (iii) two wedge-shaped domains separating the opposite blocks of the faults with resistivity ranging between 30 Ω m and 50 Ω m and horizontal extent of the order of some tens of metres, likely

  16. Post 4 Ma initiation of normal faulting in southern Tibet. Constraints from the Kung Co half graben

    Science.gov (United States)

    Mahéo, G.; Leloup, P. H.; Valli, F.; Lacassin, R.; Arnaud, N.; Paquette, J.-L.; Fernandez, A.; Haibing, L.; Farley, K. A.; Tapponnier, P.

    2007-04-01

    The timing of E-W extension of the Tibetan plateau provides a test of mechanical models of the geodynamic evolution of the India-Asia convergence zone. In this work we focus on the Kung Co half graben (Southern Tibet, China), bounded by an active N-S normal fault with a minimum vertical offset of 1600 m. To estimate the onset of normal faulting we combined high and medium temperature (U-Pb, Ar/Ar) and low temperature ((U-Th)/He) thermochronometry of the Kung Co pluton, a two-mica granite of the northern Himalayan granitic belt that outcrop in the footwall of the fault. Biotite and muscovite Ar/Ar ages , are close from each other [˜ 16 Ma ± 0.2 (Ms) and ˜ 15 ± 0.4 Ma (Bt)], which is typical of fast cooling. The zircon and apatite (U-Th)/He ages range from 11.3 to 9.6 Ma and 9.9 to 3.7 Ma respectively. These He ages are indicative of (1) fast initial cooling, from 11.3 to ˜ 9 Ma, gradually decreasing with time and (2) a high geothermal gradient (˜ 400 °C/km), close to the surface at ˜ 10 Ma. The Kung Co pluton was emplaced at about 22 Ma (U-Pb on zircon) at less than 10 km depth and 520-545 °C. Subsequent to its shallow emplacement, the pluton underwent fast thermal re-equilibration ending around 7.5 Ma, followed by a period of slow cooling caused either by the end of the thermal re-equilibration or by very slow exhumation (0.02-0.03 mm/yr) from ˜ 7.5 Ma to at least 4 Ma. In either case the data suggest that the exhumation rate increased after 4 Ma. We infer this increase to be related to the initiation of the Kung Co normal fault. A critical examination of previously published data show that most ˜ N-S Tibetan normal faults may have formed less than 5 Ma ago rather than in the Miocene as assumed by several authors. Such a young age implies that E-W extension is not related to the Neogene South Tibetan magmatism (25 to 8 Ma). Consequently, models relating E-W extension to magmatism, such as convective removal of the lower lithosphere, may be inappropriate

  17. Seismicity preliminary results in a geothermal and volcano activity area: study case Liquiñe-Ofqui fault system in Southern Andes, Chile

    Science.gov (United States)

    Estay, N. P.; Yáñez Morroni, G.; Crempien, J. G. F.; Roquer, T.

    2017-12-01

    Fluid transport through the crust takes place in domains with high permeability. For this reason, fault damage zones are a main feature where fluids may circulate unimpeded, since they have much larger permeability than normal country rocks. With the location of earthquakes, it is possible to infer fault geometry and stress field of the crust, therefore we can determine potential places where fluid circualtion is taking place. With that purpose, we installed a seismic network in an active volcanic-geothermal system, the Liquiñe-Ofqui Fault System (LOFS), located in Puyuhuapi, Southern Andes (44°-45°S). This allowed to link epicentral seismicity, focal mechanisms and surface expression of fluid circulation (hot-springs and volcanos). The LOFS is composed by two NS-striking dextral master faults, and several secondary NE-striking dextral and normal faults. Surface manifestation of fluid circulation in Puyuhuapi area are: 1) six hot-springs, most of them spatially associated with different mapped faults; 2) seven minor eruptive centers aligned over a 10-km-along one of the master NS-striking fault, and; 3) the Melimouyu strato-volcano without any spatial relationship with mapped faults. The network consists of 6 short period seismometers (S31f-2.0a sensor of IESE, with natural frequency of 2Hz), that were installed between July 2016 and August 2017; also 4 permanent broad-band seismometers (Guralp 6TD/ CD 24 sensor) which belong to the Volcano Observatory of Southern Andes (OVDAS). Preliminary results show a correlation between seismicity and surface manifestation of fluid circulation. Seismicity has a heterogeneous distribution: most of the earthquake are concentrated is the master NS-striking fault with fluid circulation manifestations; however along the segments without surface manifestation of fluids do not have seismicity. These results suggest that fluid circulation mostly occur in areas with high seismicity, and thus, the increment in fluid pressure enhances

  18. The Evolution from Late Miocene West Salton Detachment Faulting to Cross-Cutting Pleistocene Oblique Strike-Slip Faults in the SW Salton Trough, Southern California

    OpenAIRE

    Steely, Alexander N.

    2006-01-01

    Field studies in the southwest Salton Trough between Yaqui Ridge and Borrego Mountain show that the West Salton detachment fault was active during the Pliocene and may have initiated during the latest Miocene. At Yaqui Ridge dominantly east-directed extension is recorded by slickenlines on the NW-striking detachment fault, and shows that the fault is actually a low-angle dextral oblique strike-slip fault. Crustal inheritance is responsible for the position of the fault at Yaqui Ridge, which r...

  19. Study of fault configuration related mysteries through multi seismic attribute analysis technique in Zamzama gas field area, southern Indus Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Shabeer Ahmed Abbasi

    2016-03-01

    Full Text Available Seismic attribute analysis approach has been applied for the interpretation and identification of fault geometry of Zamzama Gas Field. Zamzama gas field area, which lies in the vicinity of Kirthar fold and thrust belt, Southern Indus Basin of Pakistan. The Zamzama fault and its related structure have been predicted by applying the Average Energy Attribute, Instantaneous Frequency Attribute, relative Acoustic Impedance Attribute and Chaotic Reflection Attribute on the seismic line GHPK98A.34. The results have been confirmed by applying the spectral decomposition attribute on the same seismic line that reveal the geometric configuration of Zamzama structure. The fault is reverse and started from 0 s and ended at the depth of 2.5 s on the vertical seismic section. Hanging wall moves up along the fault plane under the action of eastward oriented stress, which formed a large north–south oriented and eastward verging thrusted anticline.

  20. Pleistocene Brawley and Ocotillo Formations: Evidence for initial strike-slip deformation along the San Felipe and San Jacinto fault zonez, Southern California

    Science.gov (United States)

    Kirby, S.M.; Janecke, S.U.; Dorsey, R.J.; Housen, B.A.; Langenheim, V.E.; McDougall, K.A.; Steeley, A.N.

    2007-01-01

    We examine the Pleistocene tectonic reorganization of the Pacific-North American plate boundary in the Salton Trough of southern California with an integrated approach that includes basin analysis, magnetostratigraphy, and geologic mapping of upper Pliocene to Pleistocene sedimentary rocks in the San Felipe Hills. These deposits preserve the earliest sedimentary record of movement on the San Felipe and San Jacinto fault zones that replaced and deactivated the late Cenozoic West Salton detachment fault. Sandstone and mudstone of the Brawley Formation accumulated between ???1.1 and ???0.6-0.5 Ma in a delta on the margin of an arid Pleistocene lake, which received sediment from alluvial fans of the Ocotillo Formation to the west-southwest. Our analysis indicates that the Ocotillo and Brawley formations prograded abruptly to the east-northeast across a former mud-dominated perennial lake (Borrego Formation) at ???1.1 Ma in response to initiation of the dextral-oblique San Felipe fault zone. The ???25-km-long San Felipe anticline initiated at about the same time and produced an intrabasinal basement-cored high within the San Felipe-Borrego basin that is recorded by progressive unconformities on its north and south limbs. A disconformity at the base of the Brawley Formation in the eastern San Felipe Hills probably records initiation and early blind slip at the southeast tip of the Clark strand of the San Jacinto fault zone. Our data are consistent with abrupt and nearly synchronous inception of the San Jacinto and San Felipe fault zones southwest of the southern San Andreas fault in the early Pleistocene during a pronounced southwestward broadening of the San Andreas fault zone. The current contractional geometry of the San Jacinto fault zone developed after ???0.5-0.6 Ma during a second, less significant change in structural style. ?? 2007 by The University of Chicago. All rights reserved.

  1. Petrogenesis of cataclastic rocks within the San Andreas fault zone of Southern California U.S.A.

    Science.gov (United States)

    Lawford Anderson, J.; Osborne, Robert H.; Palmer, Donald F.

    1980-08-01

    This paper petrologically characterizes cataclastic rocks derived from four sites within the San Andreas fault zone of southern California. In this area, the fault traverses an extensive plutonic and metamorphic terrane and the principal cataclastic rock formed at these upper crustal levels is unindurated gouge derived from a range of crystalline rocks including diorite, tonalite, granite, aplite, and pegmatite. The mineralogical nature of this gouge is decidedly different from the "clay gouge" reported by Wu (1975) for central California and is essentially a rock flour with a quartz, feldspar, biotite, chlorite, amphibole, epidote and oxide mineralogy representing the milled-down equivalent of the original rock. Clay development is minor (less than 4 wt. %) to nonexistent and is exclusively kaolinite. Alterations involve hematitic oxidation, chlorite alteration on biotite and amphibole, and local introduction of calcite. Electron microprobe analysis showed that in general the major minerals were not reequilibrated with the pressure—temperature regime imposed during cataclasis. Petrochemically, the form of cataclasis that we have investigated is largely an isochemical process. Some hydration occurs but the maximum amount is less than 2.2% added H 2O. Study of a 375 m deep core from a tonalite pluton adjacent to the fault showed that for Si, Al, Ti, Fe, Mg, Mn, K, Na, Li, Rb, and Ba, no leaching and/or enrichment occurred. Several samples experienced a depletion in Sr during cataclasis while lesser number had an enrichment of Ca (result of calcite veining). Texturally, the fault gouge is not dominated by clay-size material but consists largely of silt and fine sand-sized particles. An intriguing aspect of our work on the drill core is a general decrease in particulate size with depth (and confining pressure) with the predominate shifting sequentially from fine sand to silt-size material. The original fabric of these rocks is commonly not disrupted during the

  2. GPR Imaging of Fault Related Folds in a Gold-Bearing Metasedimentary Sequence, Carolina Terrane, Southern Appalachian Mountains

    Science.gov (United States)

    Diemer, J. A.; Bobyarchick, A. R.

    2015-12-01

    The Carolina terrane comprises Ediacaran to earliest Paleozoic mixed magmatic and sedimentary assemblages in the central and eastern Piedmont of the Southern Appalachian Mountains. The terrane was primarily deformed during the Late Ordovician Cherokee orogeny, that reached greenschist facies metamorphism. The Albemarle arc, a younger component of the Carolina terrane, contains volcanogenic metasedimentary rocks with intercalated mainly rhyolitic volcanic rocks. Regional inclined to overturned folds with axial planar cleavage verge southeast. At mesoscopic scales (exposures of a few square meters), folds sympathetic with regional folds are attenuated or truncated by ductile shear zones or contractional faults. Shear and fault zones are most abundant near highly silicified strataform zones in metagraywacke of the Tillery Formation; these zones are also auriferous. GPR profiles were collected across strike of two silicified, gold-bearing zones and enclosing metagraywacke to characterize the scale and extent of folding in the vicinity of ore horizons. Several GSSI SIR-3000 / 100 MHz monostatic GPR profiles were collected in profiles up to 260 meters long. In pre-migration lines processed for time zero and background removal, several clusters of shallow, rolling sigmoidal reflectors appeared separated by sets of parallel, northwest-dipping reflective discontinuities. These features are inferred to be reverse faults carrying contractional folds. After migration with an average velocity of 0.105 m/ns, vertical heights of the inferred folds became attenuated but not removed, and contractional fault reflections remained prominent. After migration, a highly convex-up cluster of reflections initially assumed to be a fold culmination resolved to an elliptical patch of high amplitudes. The patch is likely an undisclosed shaft or covered trench left by earlier gold prospecting. In this survey, useful detail appeared to a depth of 7.5 meters, and only a few gently inclined

  3. New evidence for Oligocene to Recent slip along the San Juan fault, a terrane-bounding structure within the Cascadia forearc of southern British Columbia, Canada

    Science.gov (United States)

    Harrichhausen, N.; Morell, K. D.; Regalla, C.; Lynch, E. M.

    2017-12-01

    Active forearc deformation in the southern Cascadia subduction zone is partially accommodated by faults in the upper crust in both Washington state and Oregon, but until recently, these types of active forearc faults have not been documented in the northern part of the Cascadia forearc on Vancouver Island, British Columbia. Here we present new evidence for Quaternary slip on the San Juan fault that indicates that this terrane-bounding structure has been reactivated since its last documented slip in the Eocene. Field work targeted by newly acquired hi-resolution lidar topography reveals a deformed debris flow channel network developed within colluvium along the central portion of the San Juan fault, consistent with a surface-rupturing earthquake with 1-2 m of offset since deglaciation 13 ka. Near the western extent of the San Juan fault, marine sediments are in fault contact with mélange of the Pandora Peak Unit. These marine sediments are likely Oligocene or younger in age, given their similarity in facies and fossil assemblages to nearby outcrops of the Carmanah Group sediments, but new dating using strontium isotope stratigraphy will confirm this hypothesis. If these sediments are part of the Carmanah Group, they occur further east and at a higher elevation than previously documented. The presence of Oligocene or younger marine sediments, more than 400 meters above current sea level, requires a substantial amount of Neogene rock uplift that could have been accommodated by slip on the San Juan fault. A preliminary analysis of fault slickensides indicates a change in slip sense from left-lateral to normal along the strike of the fault. Until further mapping and analysis is completed, however, it remains unclear whether this kinematic change reflects spatial and/or temporal variability. These observations suggest that the San Juan fault is likely part of a network of active faults accommodating forearc strain on Vancouver Island. With the recent discovery of

  4. NW transverse fault system in Southern Bogota, Colombia: New seismologic and structural evidences derived from focal mechanisms and stress field determination

    Science.gov (United States)

    Angel Amaya, J.; Fierro Morales, J.; Ordoñez Potes, M.; Blanco, M.

    2012-12-01

    We present new seismological, morphotectonic and structural data of the Southern Bogota area. The goals of the study were to characterize the NW transverse fault system and to evaluate its effect on seismic wave's generation and propagation. The data set included epicenters of the RSNC (Red Sismologica Nacional de Colombia) catalog over the period 1993-2012, historical description of seismic events (period 1644-1921), structural field data (scale 1:100000) and remote sensors interpretation. The methodology included the structural analysis of over 476 faults having a known sense of offset by using a least squares iterative inversion outlined by Angelier (1984) to determinate the mean deviatoric principal stress tensor. Preliminary conclusions showed that both propagation medium and direction are determined by the structural and mechanic conditions of the Southern Bogota Shear Zone (SBSZ) defined by Fierro & Angel, (2008) as a NW-SE oblique-slip fault zone within sinistral and normal regimes. Based on both data sources (focal mechanism and field structural data) we attempted to reconstruct the stress field starting with a strike slip faulting stress regime (S2 vertical), the solution yielded a ENE-WSW orientation for horizontal principal stress (S1). It is hypothesized that the NW oblique-slip fault zone may generate and/or propagate seismic waves, as a local source, implying local hazard to Bogota the capital city of Colombia with over 8 million habitants.

  5. Photomosaics and event evidence from the Frazier Mountain paleoseismic site, trench 1, cuts 5–24, San Andreas Fault Zone, southern California (2010–2012)

    Science.gov (United States)

    Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.

    2015-08-24

    The Frazier Mountain paleoseismic site is located within the northern Big Bend of the southern San Andreas Fault (lat 34.8122° N., lon 118.9034° W.), in a small structural basin formed by the fault (fig. 1). The site has been the focus of over a decade of paleoseismic study due to high stratigraphic resolution and abundant dateable material. Trench 1 (T1) was initially excavated as a 50-m long, fault-perpendicular trench crossing the northern half of the basin (Lindvall and others, 2002; Scharer and others, 2014a). Owing to the importance of a high-resolution trench site at this location on a 200-km length of the fault with no other long paleoseismic records, later work progressively lengthened and deepened T1 in a series of excavations, or cuts, that enlarged the original excavation. Scharer and others (2014a) provide the photomosaics and event evidence for the first four cuts, which largely show the upper section of the site, represented by alluvial deposits that date from about A.D. 1500 to present. Scharer and others (2014b) discuss the earthquake evidence and dating at the site within the context of prehistoric rupture lengths and magnitudes on the southern San Andreas Fault. Here we present the photomosaics and event evidence for a series of cuts from the lower section, covering sediments that were deposited from about A.D. 500 to 1500 (fig. 2).

  6. Glacier ice mass fluctuations and fault instability in tectonically active Southern Alaska

    Science.gov (United States)

    Sauber, Jeanne M.; Molnia, Bruce F.

    2004-07-01

    change during the 1899-1979 time period to calculate the change in the fault stability margin (FSM) prior to the 1979 St. Elias earthquake. Our results suggest that a cumulative decrease in the fault stability margin at seismogenic depths, due to ice wastage over 80 years, was large, up to ˜2 MPa. Ice wastage would promote thrust faulting in events such as the 1979 earthquake and subsequent aftershocks.

  7. Normal Fault and Tensile Fissure Network Development Around an Off-Axis Silica-Rich Volcanic Dome of the Alarcon Rise, Southern Gulf of California

    Science.gov (United States)

    Contreras, J.; Vega-Ramirez, L. A.; Spelz, R. M.; Portner, R. A.; Clague, D. A.

    2017-12-01

    The Monterey Bay Aquarium Research Institute collected in 2012 and 2015 high-resolution (1 m horizontal/0.2 m vertical) bathymetry data in the southern Gulf of California using an autonomous underwater vehicle (AUV) that bring to light an extensive array of normal faults and fissures cutting lava domes and smaller volcanic cones, pillow mounds and lava sheet flows of variable compositions along the Alarcon rise. Active faulting and fissure growth in the transition between the neovolcanic zone and adjacent axial summit trough, in a 6.9 x 1.5 km2 area at the NE segment of the rise, developed at some point between 6 Ka B.P. (14C) and the present time. We performed a population analysis of fracture networks imaged by the AUV that reveal contrasting scaling attributes between mode I (opening) and mode III (shearing) extensional structures. Opening-mode fractures are spatially constrained to narrow bands 400 m wide. The youngest set developed on pillow lavas 800 yr old (14C) of the neovolcanic zone. Regions of normal fault propagation by anti-plane shearing alternate with the tensile-fracture growth areas. This provides evidence for permutations in space of the stress field across the ridge axis. Moreover, fault-length frequency plots for both fracture networks show that opening-mode fractures are best fit using an exponential relationship whereas normal faults are best fit using a power-law relationship. These size distributions indicate tensile fractures rapidly reached a saturated state in which large fractures (102 m) accommodate most of the strain and appear to be constrained to a thin mechanical/thermal layer. Faults, by contrast, have slowly evolved to a state of self-organization characterized by growth by linkage with neighboring faults in the strike direction forming fault arrays with a maximum length of 2km. We also analyzed the development of faults in the vicinity of an off-axis rhyolitic dome. We find that faults have asymmetric, half-restricted slip

  8. Finite-fault slip model of the 2016 Mw 7.5 Chiloé earthquake, southern Chile, estimated from Sentinel-1 data

    Science.gov (United States)

    Xu, Wenbin

    2017-05-01

    Subduction earthquakes have been widely studied in the Chilean subduction zone, but earthquakes occurring in its southern part have attracted less research interest primarily due to its lower rate of seismic activity. Here I use Sentinel-1 interferometric synthetic aperture radar (InSAR) data and range offset measurements to generate coseismic crustal deformation maps of the 2016 Mw 7.5 Chiloé earthquake in southern Chile. I find a concentrated crustal deformation with ground displacement of approximately 50 cm in the southern part of the Chiloé island. The best fitting fault model shows a pure thrust-fault motion on a shallow dipping plane orienting 4° NNE. The InSAR-determined moment is 2.4 × 1020 Nm with a shear modulus of 30 GPa, equivalent to Mw 7.56, which is slightly lower than the seismic moment. The model shows that the slip did not reach the trench, and it reruptured part of the fault that ruptured in the 1960 Mw 9.5 earthquake. The 2016 event has only released a small portion of the accumulated strain energy on the 1960 rupture zone, suggesting that the seismic hazard of future great earthquakes in southern Chile is high.

  9. Constant Fault Slip-Rates Over Hundreds of Millenia Constrained By Deformed Quaternary Palaeoshorelines: the Vibo and Capo D'Orlando Faults, Southern Italy.

    Science.gov (United States)

    Meschis, M.; Roberts, G.; Robertson, J.; Houghton, S.; Briant, R. M.

    2017-12-01

    Whether slip-rates on active faults accumulated over multiple seismic events is constant or varying over tens to hundreds of millenia timescales is an open question that can be addressed through study of deformed Quaternary palaeoshorelines. It is important to know the answer so that one can judge whether shorter timescale measurements (e.g. Holocene palaeoseismology or decadal geodesy) are suitable for determining earthquake recurrence intervals for Probabilistic Seismic Hazard Assessment or more suitable for studying temporal earthquake clustering. We present results from the Vibo Fault and the Capo D'Orlando Fault, that lie within the deforming Calabrian Arc, which has experienced damaging seismic events such as the 1908 Messina Strait earthquake ( Mw 7) and the 1905 Capo Vaticano earthquake ( Mw 7). These normal faults deform uplifted Late Quaternary palaeoshorelines, which outcrop mainly within their hangingwalls, but also partially in their footwalls, showing that a regional subduction and mantle-related uplift outpaces local fault-related subsidence. Through (1) field and DEM-based mapping of palaeoshorelines, both up flights of successively higher, older inner edges, and along the strike of the faults, and (2) utilisation of synchronous correlation of non-uniformly-spaced inner edge elevations with non-uniformly spaced sea-level highstand ages, we show that slip-rates decrease towards fault tips and that slip-rates have remained constant since 340 ka (given the time resolution we obtain). The slip-rates for the Capo D'Orlando Fault and Vibo Fault are 0.61mm/yr and 1mm/yr respectively. We show that the along-strike gradients in slip-rate towards fault tips differ for the two faults hinting at fault interaction and also discuss this in terms of other regions of extension like the Gulf of Corinth, Greece, where slip-rate has been shown to change through time through the Quaternary. We make the point that slip-rates may change through time as fault systems grow

  10. Active tectonics of the onshore Hengchun Fault using UAS DSM combined with ALOS PS-InSAR time series (Southern Taiwan)

    Science.gov (United States)

    Deffontaines, Benoit; Chang, Kuo-Jen; Champenois, Johann; Lin, Kuan-Chuan; Lee, Chyi-Tyi; Chen, Rou-Fei; Hu, Jyr-Ching; Magalhaes, Samuel

    2018-03-01

    Characterizing active faults and quantifying their activity are major concerns in Taiwan, especially following the major Chichi earthquake on 21 September 1999. Among the targets that still remain poorly understood in terms of active tectonics are the Hengchun and Kenting faults (Southern Taiwan). From a geodynamic point of view, the faults affect the outcropping top of the Manila accretionary prism of the Manila subduction zone that runs from Luzon (northern Philippines) to Taiwan. In order to better locate and quantify the location and quantify the activity of the Hengchun Fault, we start from existing geological maps, which we update thanks to the use of two products derived from unmanned aircraft system acquisitions: (1) a very high precision (the studied area. Moreover, the superimposition of the resulting structural sketch map with new Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) results obtained from PALSAR ALOS images, validated by Global Positioning System (GPS) and leveling data, allows the characterization and quantification of the surface displacements during the monitoring period (2007-2011). We confirm herein the geometry, characterization and quantification of the active Hengchun Fault deformation, which acts as an active left-lateral transpressive fault. As the Hengchun ridge was the location of one of the last major earthquakes in Taiwan (26 December 2006, depth: 44 km, ML = 7.0), Hengchun Peninsula active tectonics must be better constrained in order if possible to prevent major destructions in the near future.

  11. San Andreas Fault, Southern California , Radar Image, Wrapped Color as Height

    Science.gov (United States)

    2000-01-01

    This topographic radar image vividly displays California's famous San Andreas Fault along the southwestern edge of the Mojave Desert, 75 kilometers (46 miles) north of downtown Los Angeles. The entire segment of the fault shown in this image last ruptured during the Fort Tejon earthquake of 1857. This was one of the greatest earthquakes ever recorded in the U.S., and it left an amazing surface rupture scar over 350 kilometers in length along the San Andreas. Were the Fort Tejon shock to happen today, the damage would run into billions of dollars, and the loss of life would likely be substantial, as the communities of Wrightwood, Palmdale, and Lancaster (among others) all lie upon or near the 1857 rupture area. The Lancaster/Palmdale area appears as bright patches just below the center of the image and the San Gabriel Mountains fill the lower left half of the image. At the extreme lower left is Pasadena. High resolution topographic data such as these are used by geologists to study the role of active tectonics in shaping the landscape, and to produce earthquake hazard maps.This image combines two types of data from the Shuttle Radar Topography Mission. The image brightness corresponds to the strength of the radar signal reflected from the ground, while colors show the elevation as measured by SRTM. Each cycle of colors (from pink through blue back to pink) represents an equal amount of elevation difference (400 meters, or 1300 feet) similar to contour lines on a standard topographic map. This image contains about 2400 meters (8000 feet) of total relief.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an

  12. Intra-arc Seismicity: Geometry and Kinematic Constraints of Active Faulting along Northern Liquiñe-Ofqui and Andean Transverse Fault Systems [38º and 40ºS, Southern Andes

    Science.gov (United States)

    Sielfeld, G.; Lange, D.; Cembrano, J. M.

    2017-12-01

    Intra-arc crustal seismicity documents the schizosphere tectonic state along active magmatic arcs. At oblique-convergent margins, a significant portion of bulk transpressional deformation is accommodated in intra-arc regions, as a consequence of stress and strain partitioning. Simultaneously, crustal fluid migration mechanisms may be controlled by the geometry and kinematics of crustal high strain domains. In such domains shallow earthquakes have been associated with either margin-parallel strike-slip faults or to volcano-tectonic activity. However, very little is known on the nature and kinematics of Southern Andes intra-arc crustal seismicity and its relation with crustal faults. Here we present results of a passive seismicity study based on 16 months of data collected from 33 seismometers deployed along the intra-arc region of Southern Andes between 38˚S and 40˚S. This region is characterized by a long-lived interplay among margin-parallel strike-slip faults (Liquiñe-Ofqui Fault System, LOFS), second order Andean-transverse-faults (ATF), volcanism and hydrothermal activity. Seismic signals recorded by our network document small magnitude (0.2P and 2,796 S phase arrival times have been located with NonLinLoc. First arrival polarities and amplitude ratios of well-constrained events, were used for focal mechanism inversion. Local seismicity occurs at shallow levels down to depth of ca. 16 km, associated either with stratovolcanoes or to master, N10˚E, and subsidiary, NE to ENE, striking branches of the LOFS. Strike-slip focal mechanisms are consistent with the long-term kinematics documented by field structural-geology studies. Unexpected, well-defined NW-SE elongated clusters are also reported. In particular, a 72-hour-long, N60˚W-oriented seismicity swarm took place at Caburgua Lake area, describing a ca. 36x12x1km3 faulting crustal volume. Results imply a unique snapshot on shallow crustal tectonics, contributing to the understanding of faulting processes

  13. Fault zone architecture, San Jacinto fault zone, southern California: evidence for focused fluid flow and heat transfer in the shallow crust

    Science.gov (United States)

    Morton, N.; Girty, G. H.; Rockwell, T. K.

    2011-12-01

    We report results of a new study of the San Jacinto fault zone architecture in Horse Canyon, SW of Anza, California, where stream incision has exposed a near-continuous outcrop of the fault zone at ~0.4 km depth. The fault zone at this location consists of a fault core, transition zone, damage zone, and lithologically similar wall rocks. We collected and analyzed samples for their bulk and grain density, geochemical data, clay mineralogy, and textural and modal mineralogy. Progressive deformation within the fault zone is characterized by mode I cracking, subsequent shearing of already fractured rock, and cataclastic flow. Grain comminution advances towards the strongly indurated cataclasite fault core. Damage progression towards the core is accompanied by a decrease in bulk and grain density, and an increase in porosity and dilational volumetric strain. Palygorskite and mixed-layer illite/smectite clay minerals are present in the damage and transition zones and are the result of hydrolysis reactions. The estimated percentage of illite in illite/smectite increases towards the fault core where the illite/smectite to illite conversion is complete, suggesting elevated temperatures that may have reached 150°C. Chemical alteration and elemental mass changes are observed throughout the fault zone and are most pronounced in the fault core. We conclude that the observed chemical and mineralogical changes can only be produced by the interaction of fractured wall rocks and chemically active fluids that are mobilized through the fault zone by thermo-pressurization during and after seismic events. Based on the high element mobility and absence of illite/smectite in the fault core, we expect that greatest water/rock ratios occur within the fault core. These results indicate that hot pore fluids circulate upwards through the fractured fault core and into the surrounding damage zone. Though difficult to constrain, the site studied during this investigation may represent the top

  14. Investigating the ancient landscape and Cenozoic drainage development of southern Yukon (Canada), through restoration modeling of the Cordilleran-scale Tintina Fault.

    Science.gov (United States)

    Hayward, N.; Jackson, L. E.; Ryan, J. J.

    2017-12-01

    This study of southern Yukon (Canada) challenges the notion that the landscape in the long-lived, tectonically active, northern Canadian Cordillera is implicitly young. The impact of Cenozoic displacement along the continental- scale Tintina Fault on the development of the Yukon River and drainage basins of central Yukon is investigated through geophysical and hydrological modeling of digital terrain model data. Regional geological evidence suggests that the age of the planation of the Yukon plateaus is at least Late Cretaceous, rather than Neogene as previously concluded, and that there has been little penetrative deformation or net incision in the region since the late Mesozoic. The Tintina Fault has been interpreted as having experienced 430 km of dextral displacement, primarily during the Eocene. However, the alignment of river channels across the fault at specific displacements, coupled with recent seismic events and related fault activity, indicate that the fault may have moved in stages over a longer time span. Topographic restoration and hydrological models show that the drainage of the Yukon River northwestward into Alaska via the ancestral Kwikhpak River was only possible at restored displacements of up to 50-55 km on the Tintina Fault. We interpret the published drainage reversals convincingly attributed to the effects of Pliocene glaciation as an overprint on earlier Yukon River reversals or diversions attributed to tectonic displacements along the Tintina Fault. At restored fault displacements of between 230 and 430 km, our models illustrate that paleo Yukon River drainage conceivably may have flowed eastward into the Atlantic Ocean via an ancestral Liard River, which was a tributary of the paleo Bell River system. The revised drainage evolution if correct requires wide-reaching reconsideration of surficial geology deposits, the flow direction and channel geometries of the region's ancient rivers, and importantly, exploration strategies of placer gold

  15. A new perspective on the geometry of the San Andreas Fault in southern California and its relationship to lithospheric structure

    Science.gov (United States)

    Fuis, Gary S.; Scheirer, Daniel S.; Langenheim, Victoria; Kohler, Monica D.

    2012-01-01

    The widely held perception that the San Andreas fault (SAF) is vertical or steeply dipping in most places in southern California may not be correct. From studies of potential‐field data, active‐source imaging, and seismicity, the dip of the SAF is significantly nonvertical in many locations. The direction of dip appears to change in a systematic way through the Transverse Ranges: moderately southwest (55°–75°) in the western bend of the SAF in the Transverse Ranges (Big Bend); vertical to steep in the Mojave Desert; and moderately northeast (37°–65°) in a region extending from San Bernardino to the Salton Sea, spanning the eastern bend of the SAF in the Transverse Ranges. The shape of the modeled SAF is crudely that of a propeller. If confirmed by further studies, the geometry of the modeled SAF would have important implications for tectonics and strong ground motions from SAF earthquakes. The SAF can be traced or projected through the crust to the north side of a well documented high‐velocity body (HVB) in the upper mantle beneath the Transverse Ranges. The north side of this HVB may be an extension of the plate boundary into the mantle, and the HVB would appear to be part of the Pacific plate.

  16. San Andreas Fault, Southern California, Shaded relief, wrapped color as height

    Science.gov (United States)

    2000-01-01

    This topographic image vividly displays California's famous San Andreas Fault along the southwestern edge of the Mojave Desert, 75 kilometers (46 miles) north of downtown Los Angeles. The entire segment of the fault shown in this image last ruptured during the Fort Tejon earthquake of 1857. This was one of the greatest earthquakes ever recorded in the U.S., and it left an amazing surface rupture scar over 350 kilometers in length along the San Andreas. Were the Fort Tejon shock to happen today, the damage would run into billions of dollars, and the loss of life would likely be substantial, as the communities of Wrightwood, Palmdale, and Lancaster (among others) all lie upon or near the 1857 rupture area. The San Gabriel Mountains fill the lower left half of the image. At the extreme lower left is Pasadena. High resolution topographic data such as these are used by geologists to study the role of active tectonics in shaping the landscape, and to produce earthquake hazard maps.This image was generated using topographic data from the Shuttle Radar Topography Mission. Colors show the elevation as measured by SRTM. Each cycle of colors (from pink through blue back to pink) represents an equal amount of elevation difference (400 meters, or 1300 feet) similar to contour lines on a standard topographic map. This image contains about 2400 meters (8000 feet) of total relief. For the shading, a computer-generated artificial light source illuminates the elevation data to produce a pattern of light and shadows. Slopes facing the light appear bright, while those facing away are shaded. Shaded relief maps are commonly used in applications such as geologic mapping and land use planning.The Shuttle Radar Topography Mission (SRTM), launched on February 11,2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three

  17. The fault pattern in the northern Negev and southern Coastal Plain of Israel and its hydrogeological implications for groundwater flow in the Judea Group aquifer

    Science.gov (United States)

    Weinberger, G.; Rosenthal, E.

    1994-03-01

    On the basis of a broadly expanding data base, the hydrogeological properties of the Judea Group sequence in the northern Negev and southern Coastal Plain of Israel have been reassessed. The updated subsurface model is based on data derived from water- and oil-wells and on recent large-scale geophysical investigations. A new regional pattern of the reassessed geological through the subsurface of the study area has been revealed. In view of the reassessed geological and hydrological subsurface setting, it appears that the Judea Group aquifer should not be regarded as one continuous and undisturbed hydrological unit; owing to the occurrence of regional faults, its subaquifers are locally interconnected. These subaquifers, which contain mainly high-quality water, are juxtaposed, as a result of faulting, against Kurnub Group sandstones containing brackish paleowater. The latter Group is faulted against late Jurassic formations containing highly saline groundwater. In the Beer Sheva area, the Judea Group aquifer is vertically displaced against the Senonian and Eocene Mt. Scopus and Avdat Groups, which also contain brackish and saline water. In the southern Coastal Plain, major faults locally dissect also the Pleistocene Kurkar Group, facilitating inflow of Mg-rich groundwater deriving from Judea Group dolomites. The new geological evidence and its hydrogeological implications provide new solutions for previously unexplained salinization phenomena.

  18. EFEK DENSITAS BAHAN BAKAR TERHADAP PARAMETER KOEFISIEN REAKTIVITAS TERAS RRI

    Directory of Open Access Journals (Sweden)

    Rokhmadi Rokhmadi

    2015-03-01

    Full Text Available Manfaat yang luas penggunaan reaktor riset membuat banyak negara membangun reaktor riset baru. Kecenderungan saat ini adalah tipe reaktor serbaguna (MPR dengan teras yang kompak untuk mendapatkan fluks neutron yang tinggi dengan daya yang relatif rendah. Reaktor riset yang ada di Indonesia usianya sudah tua semuanya. Oleh karena itu diperlukan desain reaktor riset baru sebagai alternatif, disebut reaktor riset inovatif (RRI, kelak pengganti reaktor riset yang sudah ada. Tujuan dari riset ini untuk melengkapi data desain RRI sebagai salah satu persyaratan untuk perizinan desain. Perhitungan dilakukan untuk memperoleh nilai koefisien reaktivitas teras RRI dengan konfigurasi teras setimbang yang optimal dengan konfigurasi teras 5×5 dan daya 20 MW, memiliki panjang operasi satu siklus lebih dari 40 hari. Perhitungan koefisien reaktivitas teras RRI dilakukan untuk bahan bakar baru U-9Mo-Al dengan kerapatan bervariasi. Perhitungan dilakukan dengan paket program WIMSD-5B dan BATAN-FUEL. Hasil pehitungan digunakan untuk melengkapi data desain konseptual teras yang menunjukkan bahwa teras setimbang reaktor RRI dengan konfigurasi 5×5, tingkat muat 235U sebesar 450 g, 550 g dan 700 g memiliki nilai koefisien reaktivitas temperatur bahan bakar, temperatur moderator, densitas moderator dan void semuanya negatif dan nilainya sangat bervariasi. Hal ini sudah memenuhi kriteria keselamatan desain konseptual teras RRI. Kata kunci: desain konseptual, bahan bakar uranium-molibdenum, koefisien reaktivitas, WIMS, BATANFUEL   The multipurpose of research reactor utilization make many countries build the new reserach reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research reactor in Indonesia right now is already 25 year old. Therefor, it is needed to design a new research reactor as a alternative called it innovative research reactor (IRR and then as

  19. Soft sediment deformation associated with the East Patna Fault south of the Ganga River, northern India: Influence of the Himalayan tectonics on the southern Ganga plain

    Science.gov (United States)

    Verma, Aditya K.; Pati, Pitambar; Sharma, Vijay

    2017-08-01

    The geomorphic, tectonic and seismic aspects of the Ganga plain have been studied by several workers in the recent decades. However, the northern part of this tectonically active plain has been the prime focus in most of the studies. The region to the south of the Ganga River requires necessary attention, especially, regarding the seismic activities. The region lying immediately south of the Outer Himalayas (i.e. the Ganga plain) responds to the stress regime of the Himalayan Frontal Thrust Zone by movement along the existing basement faults (extending from the Indian Peninsula) and creating new surface faults within the sediment cover as well. As a result, several earthquakes have been recorded along these basement faults, such as the great earthquakes of 1934 and 1988 associated with the East Patna Fault. Large zones of ground failure and liquefaction in north Bihar (close to the Himalayan front), have been recorded associated with these earthquakes. The present study reports the soft sediment deformation structures from the south Bihar associated with the prehistoric earthquakes near the East Patna Fault for the first time. The seismites have been observed in the riverine sand bed of the Dardha River close to the East Patna Fault. Several types of liquefaction-induced deformation structures such as pillar and pocket structure, thixotropic wedge, liquefaction cusps and other water escape structures have been identified. The location of the observed seismites within the deformed zone of the East Patna Fault clearly indicates their formation due to activities along this fault. However, the distance of the liquefaction site from the recorded epicenters suggests its dissociation with the recorded earthquakes so far and hence possibly relates to any prehistoric seismic event. The occurrence of the earthquakes of a magnitude capable of forming liquefaction structure in the southern Ganga plain indicates the transfer of stress regime far from the Himalayan front into

  20. Width and dip of the southern San Andreas Fault at Salt Creek from modeling of geophysical data

    Science.gov (United States)

    Langenheim, Victoria; Athens, Noah D.; Scheirer, Daniel S.; Fuis, Gary S.; Rymer, Michael J.; Goldman, Mark R.; Reynolds, Robert E.

    2014-01-01

    We investigate the geometry and width of the southernmost stretch of the San Andreas Fault zone using new gravity and magnetic data along line 7 of the Salton Seismic Imaging Project. In the Salt Creek area of Durmid Hill, the San Andreas Fault coincides with a complex magnetic signature, with high-amplitude, short-wavelength magnetic anomalies superposed on a broader magnetic anomaly that is at least 5 km wide centered 2–3 km northeast of the fault. Marine magnetic data show that high-frequency magnetic anomalies extend more than 1 km west of the mapped trace of the San Andreas Fault. Modeling of magnetic data is consistent with a moderate to steep (> 50 degrees) northeast dip of the San Andreas Fault, but also suggests that the sedimentary sequence is folded west of the fault, causing the short wavelength of the anomalies west of the fault. Gravity anomalies are consistent with the previously modeled seismic velocity structure across the San Andreas Fault. Modeling of gravity data indicates a steep dip for the San Andreas Fault, but does not resolve unequivocally the direction of dip. Gravity data define a deeper basin, bounded by the Powerline and Hot Springs Faults, than imaged by the seismic experiment. This basin extends southeast of Line 7 for nearly 20 km, with linear margins parallel to the San Andreas Fault. These data suggest that the San Andreas Fault zone is wider than indicated by its mapped surface trace.

  1. Effects of faults as barriers or conduits to displaced brine flow on a putative CO2 storage site in the Southern North Sea

    Science.gov (United States)

    Hannis, Sarah; Bricker, Stephanie; Williams, John

    2013-04-01

    The Bunter Sandstone Formation in the Southern North Sea is a potential reservoir being considered for carbon dioxide storage as a climate change mitigation option. A geological model of a putative storage site within this saline aquifer was built from 3D seismic and well data to investigate potential reservoir pressure changes and their effects on fault movement, brine and CO2 migration as a result of CO2 injection. The model is located directly beneath the Dogger Bank Special Area of Conservation, close to the UK-Netherlands median line. Analysis of the seismic data reveals two large fault zones, one in each of the UK and Netherlands sectors, many tens of kilometres in length, extending from reservoir level to the sea bed. Although it has been shown that similar faults compartmentalise gas fields elsewhere in the Netherlands sector, significant uncertainty remains surrounding the properties of the faults in our model area; in particular their cross- and along-fault permeability and geomechanical behaviour. Despite lying outside the anticipated CO2 plume, these faults could provide potential barriers to pore fluid migration and pressure dissipation, until, under elevated pressures, they provide vertical migration pathways for brine. In this case, the faults will act to enhance injectivity, but potential environmental impacts, should the displaced brine be expelled at the sea bed, will require consideration. Pressure gradients deduced from regional leak-off test data have been input into a simple geomechanical model to estimate the threshold pressure gradient at which faults cutting the Mesozoic succession will fail, assuming reactivation of fault segments will cause an increase in vertical permeability. Various 4D scenarios were run using a single-phase groundwater modelling code, calibrated to results from a multi-phase commercial simulator. Possible end-member ranges of fault parameters were input to investigate the pressure change with time and quantify brine

  2. Continuation, south of Oaxaca City (southern Mexico) of the Oaxaca-Juarez terrane boundary and of the Oaxaca Fault. Based in MT, gravity and magnetic studies

    Science.gov (United States)

    Campos-Enriquez, J. O.; Corbo, F.; Arzate-Flores, J.; Belmonte-Jimenez, S.; Arango-Galván, C.

    2010-12-01

    The Oaxaca Fault represents Tertiary extensional reactivation of the Juarez shear zone constituting the boundary-suture between the Oaxaca and Juarez terranes (southern Mexico). South of Oaxaca City, the fault trace disappears and there are not clear evidences for its southward continuation at depth. The crust in southern México has been studied through seismic refraction, and seismological and magnetotelluric (MT) studies. The refraction studies did not image the Oaxaca Fault. However, previous regional MT studies suggest that the Oaxaca-Juarez terrane boundary lies to the east of the Zaachila and Mitla sub-basins, which implies sinistral displacement along the Donaji Fault. Campos-Enriquez et al. (2009) established the shallow structure of the Oaxaca-Juarez terrane boundary based in detailed gravity and magnetic studies. This study enabled: 1) to establish the shallow structure of the composite depression comprising three N-S sub-basins: the northern Etla and southern Zaachila sub-basins separated by the Atzompa sub-basin. According to the Oaxaca-Juarez terrane boundary is displaced sinistrally ca. 20 km along the E-W Donají Fault, which defines the northern boundary of the Zaachila sub-basin. At the same time,, the Oaxaca Fault may either continue unbroken southwards along the western margin of a horst in the Zaachila sub-basin or be offset along with the terrane boundary. This model implies that originally the suture was continuous south of the Donaji Fault. A constraint for the accreation of the Oaxaca and Juarez terranes. Thirty MT soundings were done in the area of the Central Valleys, Oaxaca City (southern Mexico). In particular we wanted to image the possible southward continuation of the Oaxaca Fault. 22 Mt sounding are located along two NE-SW profiles to the northern and to the south of the City of Oaxaca. To the north of Oaxaca City, the electrical resistivity distribution obtained show a clear discontinuity across the superficial trace of the Oaxaca

  3. Modularized Parallel Neutron Instrument Simulation on the TeraGrid

    International Nuclear Information System (INIS)

    Chen, Meili; Cobb, John W.; Hagen, Mark E.; Miller, Stephen D.; Lynch, Vickie E.

    2007-01-01

    In order to build a bridge between the TeraGrid (TG), a national scale cyberinfrastructure resource, and neutron science, the Neutron Science TeraGrid Gateway (NSTG) is focused on introducing productive HPC usage to the neutron science community, primarily the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL). Monte Carlo simulations are used as a powerful tool for instrument design and optimization at SNS. One of the successful efforts of a collaboration team composed of NSTG HPC experts and SNS instrument scientists is the development of a software facility named PSoNI, Parallelizing Simulations of Neutron Instruments. Parallelizing the traditional serial instrument simulation on TeraGrid resources, PSoNI quickly computes full instrument simulation at sufficient statistical levels in instrument de-sign. Upon SNS successful commissioning, to the end of 2007, three out of five commissioned instruments in SNS target station will be available for initial users. Advanced instrument study, proposal feasibility evaluation, and experiment planning are on the immediate schedule of SNS, which pose further requirements such as flexibility and high runtime efficiency on fast instrument simulation. PSoNI has been redesigned to meet the new challenges and a preliminary version is developed on TeraGrid. This paper explores the motivation and goals of the new design, and the improved software structure. Further, it describes the realized new features seen from MPI parallelized McStas running high resolution design simulations of the SEQUOIA and BSS instruments at SNS. A discussion regarding future work, which is targeted to do fast simulation for automated experiment adjustment and comparing models to data in analysis, is also presented

  4. Fault-controlled permeability and fluid flow in low-porosity crystalline rocks: an example from naturally fractured geothermal systems in the Southern Andes

    Science.gov (United States)

    Arancibia, G.; Roquer, T.; Sepúlveda, J.; Veloso, E. A.; Morata, D.; Rowland, J. V.

    2017-12-01

    Fault zones can control the location, emplacement, and evolution of economic mineral deposits and geothermal systems by acting as barriers and/or conduits to crustal fluid flow (e.g. magma, gas, oil, hydro-geothermal and groundwater). The nature of the fault control permeability is critical in the case of fluid flow into low porosity/permeability crystalline rocks, since structural permeability provides the main hydraulic conductivity to generate a natural fractured system. However, several processes accompanying the failure of rocks (i.e. episodic permeability given by cycling ruptures, mineral precipitation from fluids in veins, dissolution of minerals in the vicinity of a fracture) promote a complex time-dependent and enhancing/reducing fault-controlled permeability. We propose the Southern Volcanic Zone (Southern Andes, Chile) as a case study to evaluate the role of the structural permeability in low porosity crystalline rocks belonging to the Miocene North Patagonian Batholith. Recently published studies propose a relatively well-constrained first-order role of two active fault systems, the arc-parallel (NS to NNE trending) Liquiñe Ofqui Fault System and the arc-oblique (NW trending) Andean Transverse Fault Zones, in fluid flow at crustal scales. We now propose to examine the Liquiñe ( 39°S) and Maihue ( 40°S) areas as sites of interaction between these fault systems, in order to evaluate a naturally fractured geothermal system. Preliminary results indicate upwelling of thermal water directly from fractured granite or from fluvial deposits overlying granitoids. Measured temperatures of thermal springs suggest a low- to medium-enthalpy system, which could potentially be harnessed for use in geothermal energy applications (e.g. heating, wood dryer and green house), which are much needed in Southern Chile. Future work will aim to examine the nature of structural permeability from the regional to the microscopic scale connecting the paleo- and current- fluid

  5. The Neutron Science TeraGrid Gateway, a TeraGrid Science Gateway to Support the Spallation Neutron Source

    International Nuclear Information System (INIS)

    Cobb, John W.; Geist, Al; Kohl, James Arthur; Miller, Stephen D; Peterson, Peter F.; Pike, Gregory; Reuter, Michael A; Swain, William; Vazhkudai, Sudharshan S.; Vijayakumar, Nithya N.

    2006-01-01

    The National Science Foundation's (NSF's) Extensible Terascale Facility (ETF), or TeraGrid (1) is entering its operational phase. An ETF science gateway effort is the Neutron Science TeraGrid Gateway (NSTG.) The Oak Ridge National Laboratory (ORNL) resource provider effort (ORNL-RP) during construction and now in operations is bridging a large scale experimental community and the TeraGrid as a large-scale national cyberinfrastructure. Of particular emphasis is collaboration with the Spallation Neutron Source (SNS) at ORNL. The U.S. Department of Energy's (DOE's) SNS (2) at ORNL will be commissioned in spring of 2006 as the world's brightest source of neutrons. Neutron science users can run experiments, generate datasets, perform data reduction, analysis, visualize results; collaborate with remotes users; and archive long term data in repositories with curation services. The ORNL-RP and the SNS data analysis group have spent 18 months developing and exploring user requirements, including the creation of prototypical services such as facility portal, data, and application execution services. We describe results from these efforts and discuss implications for science gateway creation. Finally, we show incorporation into implementation planning for the NSTG and SNS architectures. The plan is for a primarily portal-based user interaction supported by a service oriented architecture for functional implementation

  6. The Palos Verdes Fault offshore southern California: late Pleistocene to present tectonic geomorphology, seascape evolution and slip rate estimate based on AUV and ROV surveys

    Science.gov (United States)

    Brothers, Daniel S.; Conrad, James E.; Maier, Katherine L.; Paull, Charles K.; McGann, Mary L.; Caress, David W.

    2015-01-01

    The Palos Verdes Fault (PVF) is one of few active faults in Southern California that crosses the shoreline and can be studied using both terrestrial and subaqueous methodologies. To characterize the near-seafloor fault morphology, tectonic influences on continental slope sedimentary processes and late Pleistocene to present slip rate, a grid of high-resolution multibeam bathymetric data, and chirp subbottom profiles were acquired with an autonomous underwater vehicle (AUV) along the main trace of PVF in water depths between 250 and 600 m. Radiocarbon dates were obtained from vibracores collected using a remotely operated vehicle (ROV) and ship-based gravity cores. The PVF is expressed as a well-defined seafloor lineation marked by subtle along-strike bends. Right-stepping transtensional bends exert first-order control on sediment flow dynamics and the spatial distribution of Holocene depocenters; deformed strata within a small pull-apart basin record punctuated growth faulting associated with at least three Holocene surface ruptures. An upper (shallower) landslide scarp, a buried sedimentary mound, and a deeper scarp have been right-laterally offset across the PVF by 55 ± 5, 52 ± 4 , and 39 ± 8 m, respectively. The ages of the upper scarp and buried mound are approximately 31 ka; the age of the deeper scarp is bracketed to 17–24 ka. These three piercing points bracket the late Pleistocene to present slip rate to 1.3–2.8 mm/yr and provide a best estimate of 1.6–1.9 mm/yr. The deformation observed along the PVF is characteristic of strike-slip faulting and accounts for 20–30% of the total right-lateral slip budget accommodated offshore Southern California.

  7. A record of large earthquakes during the past two millennia on the southern Green Valley Fault, California

    Science.gov (United States)

    Lienkaemper, James J.; Baldwin, John N.; Turner, Robert; Sickler, Robert R.; Brown, Johnathan

    2013-01-01

    We document evidence for surface-rupturing earthquakes (events) at two trench sites on the southern Green Valley fault, California (SGVF). The 75-80-km long dextral SGVF creeps ~1-4 mm/yr. We identify stratigraphic horizons disrupted by upward-flowering shears and in-filled fissures unlikely to have formed from creep alone. The Mason Rd site exhibits four events from ~1013 CE to the Present. The Lopes Ranch site (LR, 12 km to the south) exhibits three events from 18 BCE to Present including the most recent event (MRE), 1610 ±52 yr CE (1σ) and a two-event interval (18 BCE-238 CE) isolated by a millennium of low deposition. Using Oxcal to model the timing of the 4-event earthquake sequence from radiocarbon data and the LR MRE yields a mean recurrence interval (RI or μ) of 199 ±82 yr (1σ) and ±35 yr (standard error of the mean), the first based on geologic data. The time since the most recent earthquake (open window since MRE) is 402 yr ±52 yr, well past μ~200 yr. The shape of the probability density function (pdf) of the average RI from Oxcal resembles a Brownian Passage Time (BPT) pdf (i.e., rather than normal) that permits rarer longer ruptures potentially involving the Berryessa and Hunting Creek sections of the northernmost GVF. The model coefficient of variation (cv, σ/μ) is 0.41, but a larger value (cv ~0.6) fits better when using BPT. A BPT pdf with μ of 250 yr and cv of 0.6 yields 30-yr rupture probabilities of 20-25% versus a Poisson probability of 11-17%.

  8. An integrated geodetic and seismic study of the Cusco Fault system in the Cusco Region-Southern Peru

    Science.gov (United States)

    Norabuena, E. O.; Tavera, H. J.

    2017-12-01

    The Cusco Fault system is composed by six main faults (Zurite, Tamboray, Qoricocha, Tambomachay, Pachatusan, and Urcos) extending in a NW-SE direction over the Cusco Region in southeastern Peru. From these, the Tambomachay is a normal fault of 20 km length, strikes N120°E and bounds a basin filled with quaternary lacustrine and fluvial deposits. Given its 5 km distance to Cusco, an historical and Inca's archeological landmark, it represents a great seismic hazard for its more than 350,000 inhabitants. The Tambomachay fault as well as the other secondary faults have been a source of significant seismic activity since historical times being the more damaging ones the Cusco earthquakes of 1650, 1950 and more recently April 1986 (M 5.8). Previous geological studies indicate that at the beginning of the Quaternary the fault showed a transcurrent mechanism leading to the formation of the Cusco basin. However, nowadays its mechanism is normal fault and scarps up to 22m can be observed. We report the current dynamics of the Tambomachay fault and secondary faults based on seismic activity imaged by a network of 29 broadband stations deployed in the Cusco Region as well as the deformation field inferred from GPS survey measurements carried out between 2014 and 2016.

  9. Structural Controls on Helium, Nitrogen and Carbon Isotope Signatures in Geothermal Fluids Along the Liquiñe-Ofqui Fault System, Southern Chile.

    Science.gov (United States)

    Tardani, D.; Reich, M.; Roulleau, E.; Sano, Y.; Takahata, N.; Perez-Flores, P.; Sanchez-Alfaro, P.; Cembrano, J. M.; Arancibia, G.

    2016-12-01

    There is a general agreement that fault-fracture meshes exert a primary control on fluid flow in both volcanic/magmatic and geothermal/hydrothermal systems. In the Southern Volcanic Zone (SVZ) of the Chilean Andes, both volcanism and hydrothermal activity are spatially controlled by the Liquiñe-Ofqui Fault System (LOFS), an intra-arc, strike-slip fault, and by the Arc-oblique Long-lived Basement Fault System (ALFS), a set of transpressive NW-striking faults. However, the role that principal and subsidiary fault systems exert on magma degassing, hydrothermal fluid flow and fluid compositions remains poorly constrained. In this study we report new helium, carbon and nitrogen isotope data (3He/4He, d13C-CO2 and d15N) of a suite of fumarole and hot spring gas samples from 23 volcanic/geothermal localities that are spatially associated with either the LOFS or the ALFS in the central part of the SVZ. The dataset is characterized by a wide range of 3He/4He ratios (3.39 Ra to 7.53 Ra, where Ra = (3He/4He)air), d13C-CO2 values (-7.44‰ to -49.41‰) and d15N values (0.02‰to 4.93‰). The regional variations in 3He/4He, d13C-CO2 and d15N values are consistent with those reported for 87Sr/86Sr in lavas along the studied segment, which are controlled by the regional faults distribution. Two samples associated with the northern transtensional termination of the LOFS are the only datapoints showing pure MORB-like helium signatures. Whereas, towards the south the mantle-derived helium mixed with radiogenic component derived from magmatic assimilation of 4He-rich country rocks or contamination during the passage of the fluids through the upper crust. The degree of 4He contamination is related with the faults controlling the occurrence of volcanic and geothermal systems, with the most contaminated values associated with NW-striking structures. This is confirmed by d15N values that show increased mixing with crustal sediments and meteoric waters along NW faults (AFLS), while d13

  10. GPS measurements of crustal deformation across the southern Arava Valley section of the Dead Sea Fault and implications to regional seismic hazard assessment

    Science.gov (United States)

    Hamiel, Yariv; Masson, Frederic; Piatibratova, Oksana; Mizrahi, Yaakov

    2018-01-01

    Detailed analysis of crustal deformation along the southern Arava Valley section of the Dead Sea Fault is presented. Using dense GPS measurements we obtain the velocities of new near- and far-field campaign stations across the fault. We find that this section is locked with a locking depth of 19.9 ± 7.7 km and a slip rate of 5.0 ± 0.8 mm/yr. The geodetically determined locking depth is found to be highly consistent with the thickness of the seismogenic zone in this region. Analysis of instrumental seismic record suggests that only 1% of the total seismic moment accumulated since the last large event occurred about 800 years ago, was released by small to moderate earthquakes. Historical and paleo-seismic catalogs of this region together with instrumental seismic data and calculations of Coulomb stress changes induced by the 1995 Mw 7.2 Nuweiba earthquake suggest that the southern Arava Valley section of the Dead Sea Fault is in the late stage of the current interseismic period.

  11. Subsurface geometry of the San Andreas fault in southern California: Results from the Salton Seismic Imaging Project (SSIP) and strong ground motion expectations

    Science.gov (United States)

    Fuis, Gary S.; Bauer, Klaus; Goldman, Mark R.; Ryberg, Trond; Langenheim, Victoria; Scheirer, Daniel S.; Rymer, Michael J.; Stock, Joann M.; Hole, John A.; Catchings, Rufus D.; Graves, Robert; Aagaard, Brad T.

    2017-01-01

    The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a fault‐crossing profile just north of the Salton Sea, sedimentary basin depth reaches 4 km southwest of the SAF. On our line 6, a fault‐crossing profile at the north end of the Coachella Valley, sedimentary basin depth is ∼2–3  km">∼2–3  km and centered on the central, most active trace of the SAF. Subsurface geometry of the SAF and nearby faults along these two lines is determined using a new method of seismic‐reflection imaging, combined with potential‐field studies and earthquakes. Below a 6–9 km depth range, the SAF dips ∼50°–60°">∼50°–60° NE, and above this depth range it dips more steeply. Nearby faults are also imaged in the upper 10 km, many of which dip steeply and project to mapped surface fault traces. These secondary faults may join the SAF at depths below about 10 km to form a flower‐like structure. In Appendix D, we show that rupture on a northeast‐dipping SAF, using a single plane that approximates the two dips seen in our study, produces shaking that differs from shaking calculated for the Great California ShakeOut, for which the southern SAF was modeled as vertical in most places: shorter‐period (TTfault.

  12. Regional Tectonic Control of Tertiary Mineralization and Recent Faulting in the Southern Basin-Range Province, an Application of ERTS-1 Data

    Science.gov (United States)

    Bechtold, I. C.; Liggett, M. A.; Childs, J. F.

    1973-01-01

    Research based on ERTS-1 MSS imagery and field work in the southern Basin-Range Province of California, Nevada and Arizona has shown regional tectonic control of volcanism, plutonism, mineralization and faulting. This paper covers an area centered on the Colorado River between 34 15' N and 36 45' N. During the mid-Tertiary, the area was the site of plutonism and genetically related volcanism fed by fissure systems now exposed as dike swarms. Dikes, elongate plutons, and coeval normal faults trend generally northward and are believed to have resulted from east-west crustal extension. In the extensional province, gold silver mineralization is closely related to Tertiary igneous activity. Similarities in ore, structural setting, and rock types define a metallogenic district of high potential for exploration. The ERTS imagery also provides a basis for regional inventory of small faults which cut alluvium. This capability for efficient regional surveys of Recent faulting should be considered in land use planning, geologic hazards study, civil engineering and hydrology.

  13. Application of deep geophysical data to the discussion on the relationship between deep faults, concealed over thrust napped structure and uranium metallogenesis in central-southern Jiangxi

    International Nuclear Information System (INIS)

    Jiang Jinyuan; Qi Liang

    1999-01-01

    Based on the comparative analysis and study on 10 profiles of telluric electromagnetic sounding (MT) and regional gravimetric, magnetic data and Moho surface, the deep geological-tectonic pattern of the central-southern Jiangxi is discussed. It is suggested that: the studied region belongs to the Soyth-China block; in the area along Pingxiang-Guangfeng, at the border with Yangzi block an approximately EW-trending mantle concave-mantle slope zone occurs; the NNE-NE trending mantle uplift-mantle slope-mantle concave structure is developed within the South-China block; deep fault zones are represented by variation sites of Moho surface. Then, a series of deep structures is inferred including the approximately EW-striking Pingxian-Guangfeng deep fault zone, the NNE-striking Fuzhou-Anyuan deep fault zone, the NNE-trending Fengcheng-Dayu deep fault zone, as well as the NE-striking Yudu-Ningdu over thrust napped and sliding thrust structural systems, the approximately E W-trending Le'an-Nancheng over thrust napped structural systems etc. According to the distribution of known uranium mineralizations it is confirmed that close time-space relation exists between the uranium metallogenesis and variations of Moho surface, and over thrust napped structures, providing clues for locating concealed uranium deposits

  14. Digital Material Appearance: the Curse of Tera-Bytes

    Czech Academy of Sciences Publication Activity Database

    Haindl, Michal; Filip, Jiří; Vávra, Radomír

    2012-01-01

    Roč. 2012, č. 90 (2012), s. 49-50 ISSN 0926-4981 R&D Projects: GA MŠk(CZ) LG11009; GA ČR GA102/08/0593; GA ČR GAP103/11/0335 Grant - others:CESNET(CZ) 360/2009 Institutional support: RVO:67985556 Keywords : surface material appearance * BTF modelling * visual texture Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2012/RO/haindl-digital material appearance the curse of tera-bytes.pdf

  15. Quaternary landscape development, alluvial fan chronology and erosion of the Mecca Hills at the southern end of the San Andreas Fault zone

    Science.gov (United States)

    Gray, Harrison J.; Owen, Lewis A.; Dietsch, Craig; Beck, Richard A.; Caffee, Marc A.; Finkelman, Robert B.; Mahan, Shannon

    2014-01-01

    Quantitative geomorphic analysis combined with cosmogenic nuclide 10Be-based geochronology and denudation rates have been used to further the understanding of the Quaternary landscape development of the Mecca Hills, a zone of transpressional uplift along the southern end of the San Andreas Fault, in southern California. The similar timing of convergent uplifts along the San Andreas Fault with the initiation of the sub-parallel San Jacinto Fault suggest a possible link between the two tectonic events. The ages of alluvial fans and the rates of catchment-wide denudation have been integrated to assess the relative influence of climate and tectonic uplift on the development of catchments within the Mecca Hills. Ages for major geomorphic surfaces based on 10Be surface exposure dating of boulders and 10Be depth profiles define the timing of surface stabilization to 2.6 +5.6/–1.3 ka (Qyf1 surface), 67.2 ± 5.3 ka (Qvof2 surface), and 280 ± 24 ka (Qvof1 surface). Comparison of 10Be measurements from active channel deposits (Qac) and fluvial terraces (Qt) illustrate a complex history of erosion, sediment storage, and sediment transport in this environment. Beryllium-10 catchment-wide denudation rates range from 19.9 ± 3.2 to 149 ± 22.5 m/Ma and demonstrate strong correlations with mean catchment slope and with total active fault length normalized by catchment area. The lack of strong correlation with other geomorphic variables suggests that tectonic uplift and rock weakening have the greatest control. The currently measured topography and denudation rates across the Mecca Hills may be most consistent with a model of radial topographic growth in contrast to a model based on the rapid uplift and advection of crust.

  16. KARAKTERISTIK REAKTIVITAS TERAS KERJA RSG-GAS SELAMA 30 TAHUN BEROPERASI

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2017-06-01

    Full Text Available RSG-GAS, mulai dari komisioning, operasi teras kerja hingga kini telah 30 tahun beroperasi sehingga perlu dilakukan evaluasi keselamatan parameter neutroniknya. Untuk tujuan keselamatan telah dilakukan berbagai aktivitas penelitian, baik yang berhubungan dengan operasi, keselamatan, maupun dalam rangka penggunaan reaktor. Analisis dan pengelolaan besaran reaktivitas yang menunjang keselamatan operasi reaktor sangat penting dilakukan karena besaran ini mempengaruhi desain, kendali dan jadual operasi reaktor. Besaran tersebut dapat ditentukan melalui pengukuran reaktivitas batang kendali dan eksperimen pemuatan bahan bakar di dalam teras. Pengukuran reaktivitas batang kendali yang dilakukan pada setiap awal siklus teras (dengan kondisi teras dingin dan bersih, bebas pengaruh xenon, menghasilkan nilai reaktivitas batang kendali yang dapat digunakan untuk menentukan nilai reaktivitas lainnya seperti reaktivitas lebih, reaktivitas padam dan reaktivitas total. Pengelolaan reaktivitas teras telah dilakukan dengan baik selama 30 tahun dalam rangka mendukung operasi reaktor untuk keperluan penelitian dan iradiasi target.

  17. Detecting Faults in Southern California using Computer-Vision Techniques and Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Interferometry

    Science.gov (United States)

    Barba, M.; Rains, C.; von Dassow, W.; Parker, J. W.; Glasscoe, M. T.

    2013-12-01

    Knowing the location and behavior of active faults is essential for earthquake hazard assessment and disaster response. In Interferometric Synthetic Aperture Radar (InSAR) images, faults are revealed as linear discontinuities. Currently, interferograms are manually inspected to locate faults. During the summer of 2013, the NASA-JPL DEVELOP California Disasters team contributed to the development of a method to expedite fault detection in California using remote-sensing technology. The team utilized InSAR images created from polarimetric L-band data from NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) project. A computer-vision technique known as 'edge-detection' was used to automate the fault-identification process. We tested and refined an edge-detection algorithm under development through NASA's Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) project. To optimize the algorithm we used both UAVSAR interferograms and synthetic interferograms generated through Disloc, a web-based modeling program available through NASA's QuakeSim project. The edge-detection algorithm detected seismic, aseismic, and co-seismic slip along faults that were identified and compared with databases of known fault systems. Our optimization process was the first step toward integration of the edge-detection code into E-DECIDER to provide decision support for earthquake preparation and disaster management. E-DECIDER partners that will use the edge-detection code include the California Earthquake Clearinghouse and the US Department of Homeland Security through delivery of products using the Unified Incident Command and Decision Support (UICDS) service. Through these partnerships, researchers, earthquake disaster response teams, and policy-makers will be able to use this new methodology to examine the details of ground and fault motions for moderate to large earthquakes. Following an earthquake, the newly discovered faults can

  18. Structural and metamorphic evolution of the Orocopia Schist and related rocks, southern California: Evidence for late movement on the Orocopia fault

    Science.gov (United States)

    Jacobson, Carl E.; Dawson, M. Robert

    1995-08-01

    The Pelona, Orocopia, and Rand Schists (POR schists) of southern California and southwesternmost Arizona are late Mesozoic or early Tertiary subduction complexes that underlie Precambrian to Mesozoic continental basement along the low-angle Vincent-Chocolate Mountains (VCM) fault system. The VCM faults are often considered to be remnants of the original subduction zone, but recent work indicates that many have undergone substantial postsubduction reactivation. In the Orocopia Mountains, for example, the Orocopia Schist exhibits an exceptionally complex structural and metamorphic history due to multiple periods of movement along the Orocopia fault. Structures in the schist include isoclinal folds with axial-planar schistosity, open-to-tight folds that fold schistosity, penetrative stretching lineations, and crenulation lineations, all of which show a nearly 360° range in trend. Folds and lineations that trend approximately NE-SW occur throughout the schist and are thought to be part of an early phase of deformation related to subduction. Folds of this orientation show no consistent vergence. Folds and lineations that trend approximately NW-SE are concentrated near the Orocopia fault and are interpreted to have formed during exhumation of the schist. The NW-SE trending folds, and shear indicators in late-stage mylonite at the top of the schist, consistently verge NE. The exhumation event culminated in emplacement of the schist against brittlely deformed upper plate. Exhumation of the Orocopia Schist was accompanied by retrograde replacement of garnet, biotite, epidote, and calcic amphibole by chlorite, calcite, and sericite. Matrix amphibole has a lower Na/Al ratio than amphibole inclusions in albite, consistent with a late-stage decrease in pressure. As NE vergence in the Orocopia Mountains is associated with exhumation of the schist, the NE movement along other segments of the VCM fault may also be late and therefore have no bearing on the facing direction of the

  19. Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California

    Science.gov (United States)

    Goebel, T. H. W.; Hauksson, E.; Plesch, A.; Shaw, J. H.

    2017-06-01

    A key parameter in engineering seismology and earthquake physics is seismic stress drop, which describes the relative amount of high-frequency energy radiation at the source. To identify regions with potentially significant stress drop variations, we perform a comparative analysis of source parameters in the greater San Gorgonio Pass (SGP) and Ventura basin (VB) in southern California. The identification of physical stress drop variations is complicated by large data scatter as a result of attenuation, limited recording bandwidth and imprecise modeling assumptions. In light of the inherently high uncertainties in single stress drop measurements, we follow the strategy of stacking large numbers of source spectra thereby enhancing the resolution of our method. We analyze more than 6000 high-quality waveforms between 2000 and 2014, and compute seismic moments, corner frequencies and stress drops. Significant variations in stress drop estimates exist within the SGP area. Moreover, the SGP also exhibits systematically higher stress drops than VB and shows more scatter. We demonstrate that the higher scatter in SGP is not a generic artifact of our method but an expression of differences in underlying source processes. Our results suggest that higher differential stresses, which can be deduced from larger focal depth and more thrust faulting, may only be of secondary importance for stress drop variations. Instead, the general degree of stress field heterogeneity and strain localization may influence stress drops more strongly, so that more localized faulting and homogeneous stress fields favor lower stress drops. In addition, higher loading rates, for example, across the VB potentially result in stress drop reduction whereas slow loading rates on local fault segments within the SGP region result in anomalously high stress drop estimates. Our results show that crustal and fault properties systematically influence earthquake stress drops of small and large events and should

  20. Structure of the San Andreas Fault Zone in the Salton Trough Region of Southern California: A Comparison with San Andreas Fault Structure in the Loma Prieta Area of Central California

    Science.gov (United States)

    Fuis, G. S.; Catchings, R.; Scheirer, D. S.; Goldman, M.; Zhang, E.; Bauer, K.

    2016-12-01

    The San Andreas fault (SAF) in the northern Salton Trough, or Coachella Valley, in southern California, appears non-vertical and non-planar. In cross section, it consists of a steeply dipping segment (75 deg dip NE) from the surface to 6- to 9-km depth, and a moderately dipping segment below 6- to 9-km depth (50-55 deg dip NE). It also appears to branch upward into a flower-like structure beginning below about 10-km depth. Images of the SAF zone in the Coachella Valley have been obtained from analysis of steep reflections, earthquakes, modeling of potential-field data, and P-wave tomography. Review of seismological and geodetic research on the 1989 M 6.9 Loma Prieta earthquake, in central California (e.g., U.S. Geological Survey Professional Paper 1550), shows several features of SAF zone structure similar to those seen in the northern Salton Trough. Aftershocks in the Loma Prieta epicentral area form two chief clusters, a tabular zone extending from 18- to 9-km depth and a complex cluster above 5-km depth. The deeper cluster has been interpreted to surround the chief rupture plane, which dips 65-70 deg SW. When double-difference earthquake locations are plotted, the shallower cluster contains tabular subclusters that appear to connect the main rupture with the surface traces of the Sargent and Berrocal faults. In addition, a diffuse cluster may surround a steep to vertical fault connecting the main rupture to the surface trace of the SAF. These interpreted fault connections from the main rupture to surface fault traces appear to define a flower-like structure, not unlike that seen above the moderately dipping segment of the SAF in the Coachella Valley. But importantly, the SAF, interpreted here to include the main rupture plane, appears segmented, as in the Coachella Valley, with a moderately dipping segment below 9-km depth and a steep to vertical segment above that depth. We hope to clarify fault-zone structure in the Loma Prieta area by reanalyzing active

  1. The TeraGyroid Experiment – Supercomputing 2003

    Directory of Open Access Journals (Sweden)

    R.J. Blake

    2005-01-01

    Full Text Available Amphiphiles are molecules with hydrophobic tails and hydrophilic heads. When dispersed in solvents, they self assemble into complex mesophases including the beautiful cubic gyroid phase. The goal of the TeraGyroid experiment was to study defect pathways and dynamics in these gyroids. The UK's supercomputing and USA's TeraGrid facilities were coupled together, through a dedicated high-speed network, into a single computational Grid for research work that peaked around the Supercomputing 2003 conference. The gyroids were modeled using lattice Boltzmann methods with parameter spaces explored using many 1283 and 3grid point simulations, this data being used to inform the world's largest three-dimensional time dependent simulation with 10243-grid points. The experiment generated some 2 TBytes of useful data. In terms of Grid technology the project demonstrated the migration of simulations (using Globus middleware to and fro across the Atlantic exploiting the availability of resources. Integration of the systems accelerated the time to insight. Distributed visualisation of the output datasets enabled the parameter space of the interactions within the complex fluid to be explored from a number of sites, informed by discourse over the Access Grid. The project was sponsored by EPSRC (UK and NSF (USA with trans-Atlantic optical bandwidth provided by British Telecommunications.

  2. Subsurface geometry of the San Andreas fault in southern California: Results from the Salton Seismic Imaging Project (SSIP) and strong ground motion expectations

    Science.gov (United States)

    Fuis, Gary S.; Bauer, Klaus; Goldman, Mark R.; Ryberg, Trond; Langenheim, Victoria; Scheirer, Daniel S.; Rymer, Michael J.; Stock, Joann M.; Hole, John A.; Catchings, Rufus D.; Graves, Robert; Aagaard, Brad T.

    2017-01-01

    The San Andreas fault (SAF) is one of the most studied strike‐slip faults in the world; yet its subsurface geometry is still uncertain in most locations. The Salton Seismic Imaging Project (SSIP) was undertaken to image the structure surrounding the SAF and also its subsurface geometry. We present SSIP studies at two locations in the Coachella Valley of the northern Salton trough. On our line 4, a fault‐crossing profile just north of the Salton Sea, sedimentary basin depth reaches 4 km southwest of the SAF. On our line 6, a fault‐crossing profile at the north end of the Coachella Valley, sedimentary basin depth is ∼2–3  km">∼2–3  km and centered on the central, most active trace of the SAF. Subsurface geometry of the SAF and nearby faults along these two lines is determined using a new method of seismic‐reflection imaging, combined with potential‐field studies and earthquakes. Below a 6–9 km depth range, the SAF dips ∼50°–60°">∼50°–60° NE, and above this depth range it dips more steeply. Nearby faults are also imaged in the upper 10 km, many of which dip steeply and project to mapped surface fault traces. These secondary faults may join the SAF at depths below about 10 km to form a flower‐like structure. In Appendix D, we show that rupture on a northeast‐dipping SAF, using a single plane that approximates the two dips seen in our study, produces shaking that differs from shaking calculated for the Great California ShakeOut, for which the southern SAF was modeled as vertical in most places: shorter‐period (TT<1  s) shaking is increased locally by up to a factor of 2 on the hanging wall and is decreased locally by up to a factor of 2 on the footwall, compared to shaking calculated for a vertical fault.

  3. Stratigraphic record of Pliocene-Pleistocene basin evolution and deformation within the Southern San Andreas Fault Zone, Mecca Hills, California

    Science.gov (United States)

    McNabb, James C.; Dorsey, Rebecca J.; Housen, Bernard A.; Dimitroff, Cassidy W.; Messé, Graham T.

    2017-11-01

    A thick section of Pliocene-Pleistocene nonmarine sedimentary rocks exposed in the Mecca Hills, California, provides a record of fault-zone evolution along the Coachella Valley segment of the San Andreas fault (SAF). Geologic mapping, measured sections, detailed sedimentology, and paleomagnetic data document a 3-5 Myr history of deformation and sedimentation in this area. SW-side down offset on the Painted Canyon fault (PCF) starting 3.7 Ma resulted in deposition of the Mecca Conglomerate southwest of the fault. The lower member of the Palm Spring Formation accumulated across the PCF from 3.0 to 2.6 Ma during regional subsidence. SW-side up slip on the PCF and related transpressive deformation from 2.6 to 2.3 Ma created a time-transgressive angular unconformity between the lower and upper members of the Palm Spring Formation. The upper member accumulated in discrete fault-bounded depocenters until initiation of modern deformation, uplift, and basin inversion starting at 0.7 Ma. Some spatially restricted deposits can be attributed to the evolution of fault-zone geometric complexities. However, the deformation events at ca. 2.6 Ma and 0.7 Ma are recorded regionally along 80 km of the SAF through Coachella Valley, covering an area much larger than mapped fault-zone irregularities, and thus require regional explanations. We therefore conclude that late Cenozoic deformation and sedimentation along the SAF in Coachella Valley has been controlled by a combination of regional tectonic drivers and local deformation due to dextral slip through fault-zone complexities. We further propose a kinematic link between the 2.6-2.3 Ma angular unconformity and a previously documented but poorly dated reorganization of plate-boundary faults in the northern Gulf of California at 3.3-2.0 Ma. This analysis highlights the potential for high-precision chronologies in deformed terrestrial deposits to provide improved understanding of local- to regional-scale structural controls on basin

  4. World: 2508 nuclear tera-watts hour in 1999

    International Nuclear Information System (INIS)

    Anon.

    2000-01-01

    In 1999, the nuclear power plants have produced 2508 tera-watts hour, that is to say 16% of the normal electricity production or 35% of the European electric production. At the end of 1999, 443 reactors were in operation, 53 were in building and 13 put in an order in the world. 5 reactors have been coupled to the network in South Korea, in France, in India, in Slovakia and 2 have been definitively stopped (Kazakhstan and Sweden). 1999 has seen the beginning of construction for 8 reactors (China, South Korea, Japan and Taiwan). The nuclear power has covered 40 % of needs for 8 countries: France (75%), Lithuania (73%) Belgium (58%), Sweden (46%), Slovakia (45%), Ukraine (43.5%), South Korea ( 43%), Bulgaria ( 41.5%). 18 countries have used nuclear energy to cover at least 25% of their needs. (N.C.)

  5. A New Estimate for Total Offset on the Southern San Andreas Fault: Implications for Cumulative Plate Boundary Shear in the Northern Gulf of California

    Science.gov (United States)

    Darin, M. H.; Dorsey, R. J.

    2012-12-01

    Development of a consistent and balanced tectonic reconstruction for the late Cenozoic San Andreas fault (SAF) in southern California has been hindered for decades by incompatible estimates of total dextral offset based on different geologic cross-fault markers. The older estimate of 240-270 km is based on offset fluvial conglomerates of the middle Miocene Mint Canyon and Caliente Formations west of the SAF from their presumed source area in the northern Chocolate Mountains NE of the SAF (Ehlig et al., 1975; Ehlert, 2003). The second widely cited offset marker is a distinctive Triassic megaporphyritic monzogranite that has been offset 160 ± 10 km between Liebre Mountain west of the SAF and the San Bernadino Mountains (Matti and Morton, 1993). In this analysis we use existing paleocurrent data and late Miocene clockwise rotation in the eastern Transverse Ranges (ETR) to re-assess the orientation of the piercing line used in the 240 km-correlation, and present a palinspastic reconstruction that satisfies all existing geologic constraints. Our reconstruction of the Mint Canyon piercing line reduces the original estimate of 240-270 km to 195 ± 15 km of cumulative right-lateral slip on the southern SAF (sensu stricto), which is consistent with other published estimates of 185 ± 20 km based on correlative basement terranes in the Salton Trough region. Our estimate of ~195 km is consistent with the lower estimate of ~160 km on the Mojave segment because transform-parallel extension along the southwestern boundary of the ETR during transrotation produces ~25-40 km of displacement that does not affect offset markers of the Liebre/San Bernadino correlation located northwest of the ETR rotating domain. Reconciliation of these disparate estimates places an important new constraint on the total plate boundary shear that is likely accommodated in the adjacent northern Gulf of California. Global plate circuit models require ~650 km of cumulative Pacific-North America (PAC

  6. Breaching of strike-slip faults and flooding of pull-apart basins to form the southern Gulf of California seaway from 8 to 6 Ma

    Science.gov (United States)

    Umhoefer, P. J.; Skinner, L. A.; Oskin, M. E.; Dorsey, R. J.; Bennett, S. E. K.; Darin, M. H.

    2017-12-01

    Studies from multiple disciplines delineate the development of the oblique-divergent Pacific - North America plate boundary in the southern Gulf of California. Integration of onshore data from the Loreto - Santa Rosalia margin with offshore data from the Pescadero, Farallon, and Guaymas basins provides a detailed geologic history. Our GIS-based paleotectonic maps of the plate boundary from 9 to 6 Ma show that evolution of pull-apart basins led to the episodic northwestward encroachment of the Gulf of California seaway. Because adjacent pull-apart basins commonly have highlands between them, juxtaposition of adjacent basin lows during translation and pull apart lengthening played a critical role in seaway flooding. Microfossils and volcanic units date the earliest marine deposits at 9(?) - 8 Ma at the mouth of the Gulf. By ca. 8 Ma, the seaway had flooded north to the Pescadero basin, while the Loreto fault and the related fault-termination basin was proposed to have formed along strike at the plate margin. East of Loreto basin, a short topographic barrier between the Pescadero and Farallon pull-apart basins suggests that the Farallon basin was either a terrestrial basin, or if breaching occurred, it may contain 8 Ma salt or marine deposits. This early southern seaway formed along a series of pull-apart basins within a narrow belt of transtension structurally similar to the modern Walker Lane in NV and CA. At ca. 7 Ma, a series of marine incursions breached a 75-100 km long transtensional fault barrier between the Farallon and Guaymas basins offshore Bahía Concepción. Repeated breaching events and the isolation of the Guaymas basin in a subtropical setting formed a 2 km-thick salt deposit imaged in offshore seismic data, and thin evaporite deposits in the onshore Santa Rosalia basin. Lengthening of the Guaymas, Yaqui, and Tiburon basins caused breaches of the intervening Guaymas and Tiburón transforms by 6.5-6.3 Ma, forming a permanent 1500 km-long marine seaway

  7. ANALISIS POLA MANAJEMEN BAHAN BAKAR DESAIN TERAS REAKTOR RISET TIPE MTR

    Directory of Open Access Journals (Sweden)

    Lily Suparlina

    2015-03-01

    Full Text Available Parameter neutronik dibutuhkan dalam mendesain teras reaktor riset. Reaktor riset jenis MTR (Material Testing Reactor sangat diminati karena dapat digunakan baik untuk riset dan juga produksi radio isotop. Reaktor riset yang ada saat ini sudah tua sehingga dibutuhkan desain reaktor yang mempunyai teras kompak. Desain teras reaktor riset yang sudah ada saat ini belum cukup memadai untuk memenuhi persyaratan di dalam UCD yang telah ditetapkan yaitu fluks neutron termal di teras 1x1015 n/cm2s, oleh karena itu perlu dibuat desain teras reaktor baru sebagai alternatif yang kompak dan dapat menghasilkan fluks neutron tinggi. Telah dilakukan perhitungan dan analisis terhadap manajemen bahan bakar desain teras kompak dengan konfigurasi teras 5x5, berbahan bakar U9Mo-Al dan tinggi teras aktif 70 cm. Tujuan dari riset ini untuk memperoleh fluks neutron di teras memenuhi kebutuhan seperti yang telah ditetapkan di UCD dengan panjang siklus operasi minimum 20 hari pada daya 50 MW. Perhitungan dilakukan dengan menggunakan paket program komputer WIMSD-5B untuk menggenerasi tampang lintang makroskopik bahan bakar dan Batan-FUEL untuk memperoleh nilai parameter neutronik serta Batan-3DIFF untuk perhitungan nilai reaktivitas batang kendali. Perhitungan parameter neutronik teras reaktor riset ini dilakukan untuk bahan bakar U-9Mo-Al dengan tingkat muat bervariasi dan 2 macam pola pergantian bahan bakar yaitu teras segar dan teras setimbang. Hasil analisis menunjukkan bahwa pada teras segar, tingkat muat 235U sebesar 360 gram, 390 gram dan 450 gram memenuhi kriteria keselamatan dan kriteria penerimaan di UCD dengan nilai fluks neutron termal di teras lebih dari 1x1015 n/cm2s dan panjang siklus >20 hari, sedangkan pada teras setimbang panjang siklus dapat terpenuhi hanya untuk tingkat muat 450 gram. Kata kunci: desain teras reaktor, bahan bakar UMo, pola bahan bakar, WIMS, BATAN-FUEL   Research reactor core design needs neutronics parameter calculation use computer

  8. Argonne Natl Lab receives TeraFLOP Cluster Linux NetworX

    CERN Multimedia

    2002-01-01

    " Linux NetworX announced today it has delivered an Evolocity II (E2) Linux cluster to Argonne National Laboratory that is capable of performing more than one trillion calculations per second (1 teraFLOP)" (1/2 page).

  9. An improved low-frequency earthquakes catalogue in the vicinity of the late-interseismic central Alpine Fault, Southern Alps, New Zealand

    Science.gov (United States)

    Baratin, Laura-May; Chamberlain, Calum J.; Townend, John; Savage, Martha K.

    2017-04-01

    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the state of stress of this major transpressive margin prior to a large (≥M8) earthquake. Here, we use recently detected tectonic tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated large rupture. We initially work with a continous seismic dataset collected between 2009 and 2012 from an array of short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates, found through visual inspection within previously identified tectonic tremor, are used in an iterative matched-filter and stacking routine. This method allows the detection of similar signals and establishes LFE families with common locations. We thus generate a 36 month catalogue of 10718 LFEs. The detections are then combined for each LFE family using phase-weighted stacking to yield a signal with the highest possible signal to noise ratio. We found phase-weighted stacking to be successful in increasing the number of LFE detections by roughly 20%. Phase-weighted stacking also provides cleaner phase arrivals of apparently impulsive nature allowing more precise phase picks. We then compute non-linear earthquake locations using a 3D velocity model and find LFEs to occur below the seismogenic zone at depths of 18-34 km, locating on or near the proposed deep extent of the Alpine Fault. To gain insight into deep fault slip behaviour, a detailed study of the spatial-temporal evolution of LFEs is required. We thus generate a more extensive catalogue of LFEs spanning the years 2009 to 2016 using a different technique to detect LFEs more efficiently. This time 638 synthetic waveforms are used as primary templates in the match-filter routine. Of those, 38 templates yield no detections over our 7-yr study period. The remaining 600 templates end up detecting between 370

  10. Interaction of the san jacinto and san andreas fault zones, southern california: triggered earthquake migration and coupled recurrence intervals.

    Science.gov (United States)

    Sanders, C O

    1993-05-14

    Two lines of evidence suggest that large earthquakes that occur on either the San Jacinto fault zone (SJFZ) or the San Andreas fault zone (SAFZ) may be triggered by large earthquakes that occur on the other. First, the great 1857 Fort Tejon earthquake in the SAFZ seems to have triggered a progressive sequence of earthquakes in the SJFZ. These earthquakes occurred at times and locations that are consistent with triggering by a strain pulse that propagated southeastward at a rate of 1.7 kilometers per year along the SJFZ after the 1857 earthquake. Second, the similarity in average recurrence intervals in the SJFZ (about 150 years) and in the Mojave segment of the SAFZ (132 years) suggests that large earthquakes in the northern SJFZ may stimulate the relatively frequent major earthquakes on the Mojave segment. Analysis of historic earthquake occurrence in the SJFZ suggests little likelihood of extended quiescence between earthquake sequences.

  11. A low-temperature ductile shear zone: The gypsum-dominated western extension of the brittle Fella-Sava Fault, Southern Alps.

    Science.gov (United States)

    Bartel, Esther Maria; Neubauer, Franz; Heberer, Bianca; Genser, Johann

    2014-12-01

    Based on structural and fabric analyses at variable scales we investigate the evaporitic gypsum-dominated Comeglians-Paularo shear zone in the Southern Alps (Friuli). It represents the lateral western termination of the brittle Fella-Sava Fault. Missing dehydration products of gypsum and the lack of annealing indicate temperatures below 100 °C during development of the shear zone. Despite of such low temperatures the shear zone clearly exhibits mylonitic flow, thus evidencing laterally coeval activity of brittle and viscous deformation. The dominant structures within the gypsum rocks of the Lower Bellerophon Formation are a steeply to gently S-dipping foliation, a subhorizontal stretching lineation and pure shear-dominated porphyroclast systems. A subordinate simple shear component with dextral displacement is indicated by scattered σ-clasts. Both meso- and microscale structures are characteristic of a subsimple shear type of deformation with components of both coaxial and non-coaxial strain. Shortening in a transpressive regime was accommodated by right-lateral displacement and internal pure shear deformation within the Comeglians-Paularo shear zone. The shear zone shows evidence for a combination of two stretching faults, where stretching occurred in the rheologically weaker gypsum member and brittle behavior in enveloping lithologies.

  12. High performance simulation for the Silva project using the tera computer

    Energy Technology Data Exchange (ETDEWEB)

    Bergeaud, V.; La Hargue, J.P.; Mougery, F. [CS Communication and Systemes, 92 - Clamart (France); Boulet, M.; Scheurer, B. [CEA Bruyeres-le-Chatel, 91 - Bruyeres-le-Chatel (France); Le Fur, J.F.; Comte, M.; Benisti, D.; Lamare, J. de; Petit, A. [CEA Saclay, 91 - Gif sur Yvette (France)

    2003-07-01

    In the context of the SILVA Project (Atomic Vapor Laser Isotope Separation), numerical simulation of the plant scale propagation of laser beams through uranium vapour was a great challenge. The PRODIGE code has been developed to achieve this goal. Here we focus on the task of achieving high performance simulation on the TERA computer. We describe the main issues for optimizing the parallelization of the PRODIGE code on TERA. Thus, we discuss advantages and drawbacks of the implemented diagonal parallelization scheme. As a consequence, it has been found fruitful to fit out the code in three aspects: memory allocation, MPI communications and interconnection network bandwidth usage. We stress out the interest of MPI/IO in this context and the benefit obtained for production computations on TERA. Finally, we shall illustrate our developments. We indicate some performance measurements reflecting the good parallelization properties of PRODIGE on the TERA computer. The code is currently used for demonstrating the feasibility of the laser propagation at a plant enrichment level and for preparing the 2003 Menphis experiment. We conclude by emphasizing the contribution of high performance TERA simulation to the project. (authors)

  13. High performance simulation for the Silva project using the tera computer

    International Nuclear Information System (INIS)

    Bergeaud, V.; La Hargue, J.P.; Mougery, F.; Boulet, M.; Scheurer, B.; Le Fur, J.F.; Comte, M.; Benisti, D.; Lamare, J. de; Petit, A.

    2003-01-01

    In the context of the SILVA Project (Atomic Vapor Laser Isotope Separation), numerical simulation of the plant scale propagation of laser beams through uranium vapour was a great challenge. The PRODIGE code has been developed to achieve this goal. Here we focus on the task of achieving high performance simulation on the TERA computer. We describe the main issues for optimizing the parallelization of the PRODIGE code on TERA. Thus, we discuss advantages and drawbacks of the implemented diagonal parallelization scheme. As a consequence, it has been found fruitful to fit out the code in three aspects: memory allocation, MPI communications and interconnection network bandwidth usage. We stress out the interest of MPI/IO in this context and the benefit obtained for production computations on TERA. Finally, we shall illustrate our developments. We indicate some performance measurements reflecting the good parallelization properties of PRODIGE on the TERA computer. The code is currently used for demonstrating the feasibility of the laser propagation at a plant enrichment level and for preparing the 2003 Menphis experiment. We conclude by emphasizing the contribution of high performance TERA simulation to the project. (authors)

  14. Re-investigation of slip rate along the southern part of the Sumatran Fault Zone using SuMo GPS network

    Science.gov (United States)

    Hermawan, I.; Lubis, A. M.; Sahputra, R.; Hill, E.; Sieh, K.; Feng, L.; Salman, R.; Hananto, N.

    2015-12-01

    The Sumatran Fault Zone (SFZ) accommodates a significant component of the strike-slip motion of oblique convergence along the Sumatra subduction zone. Previous studies have suggested that the slip rates of the SFZ increase from south to north. However, recent work shows that the slip rates may not vary along the SFZ [Bradley et al., 2015]. New data are needed to help confirm these results, and to assess slip-rate variability and fault segmentation in more detail. This information is vital for seismic hazard assessment for the region. We have therefore installed and operated the SuMo (Sumatran Fault Monitoring) network, a dense GPS campaign network focused around the SFZ. From 2013-2015 we selected and installed 32 GPS monuments over the southern part of the SFZ. The network comprises of three transects. The first transect is around the location of the great 1900 earthquake, at the Musi segment. Two transects cover the Manna segment, which saw its last great earthquake in 1893, and the Kumering segment, which saw two great earthquakes in 1933 (M 7.5) and 1994 (M 7.0). We have now conducted three GPS campaign surveys for these stations (3-4 days of measurement for each occupation site), and established 5 semi-permanent cGPS stations in the area. The processed data show that the campaigns sites are still too premature to be used for estimating slip rates, but from the preliminary results for the semi-permanent stations we may see our first signal of deformation. More data from future survey campaigns will help us to estimated revised slip rates. In addition to the science goals for our project, we are this year starting a project called "SuMo Goes to School," which will aim to disseminate information on our science to the schools that house the SuMo GPS stations. The SuMo project also achieves capacity building by training students from Bengkulu University in geodesy and campaign GPS survey techniques.

  15. Geomorphic and geologic evidence for slip along the San Bernardino strand of the San Andreas Fault System through the San Gorgonio Pass structural knot, southern California

    Science.gov (United States)

    Kendrick, K. J.; Matti, J. C.

    2017-12-01

    The San Gorgonio Pass (SGP) region of southern California represents an extraordinarily complex section of the San Andreas Fault (SAF) zone, often referred to as a structural knot. Complexity is expressed both structurally and geomorphically, and arises because multiple strands of the SAF have evolved here in Quaternary time. Our integration of geologic and geomorphic analyses led to recognition of multiple fault-bounded blocks characterized by crystalline rocks that have similar physical properties. Hence, any morphometric differences in hypsometric analysis, slope, slope distribution, texture, and stream-power measurements and discontinuities reflect landscape response to tectonic processes rather than differences in lithology. We propose that the differing morphometry of the two blocks on either side of the San Bernardino strand (SBS) of the SAF, the high-standing Kitching Peak block to the east and the lower, more subdued Pisgah Peak block to the west, strongly suggests that the blocks experienced different uplift histories. This difference in uplift histories, in turn suggests that dextral slip occurred over a long time interval on the SBS—despite long-lived controversy raised by the fact that, at the surface, a throughgoing trace of the SBS is not present at this location. A different tectonic history between the two blocks is consistent with the gravity data which indicate that low-density rocks underthrusting the Kitching Peak block are absent below the Pisgah Peak block (Langenheim et al., 2015). Throughgoing slip on the SBS implied by geomorphic differences between the two blocks is also consistent with displaced geologic and geomorphic features. We find compelling evidence for discrete offsets of between 0.6 and 6 km of dextral slip on the SBS, including offset of fluvial and landslide deposits, and beheaded drainages. Although we lack numerical age control for the offset features, the degree of soil development associated with displaced landforms

  16. 25 CFR 224.40 - How does the Act or a TERA affect the Secretary's trust responsibility?

    Science.gov (United States)

    2010-04-01

    ... or other Federal law. (c) The Act and this part preserve the Secretary's trust responsibility to... 25 Indians 1 2010-04-01 2010-04-01 false How does the Act or a TERA affect the Secretary's trust... DETERMINATION ACT General Provisions § 224.40 How does the Act or a TERA affect the Secretary's trust...

  17. 100 Years of Accumulated Deformation at Depth Observed in the Elizabeth Lake Tunnel, Southern San Andreas Fault

    Science.gov (United States)

    Telling, J. W.; Tayyebi, A.; Hudnut, K. W.; Davis, C. A.; Glennie, C. L.

    2017-12-01

    The Elizabeth Lake Tunnel was completed in 1911 to convey water from the Owens Valley to Los Angeles, CA. The tunnel is approximately 8-km long and crosses the San Andreas Fault (SAF) at a depth of 90 m below the surface, measured near the tunnel mid-point. If present, a tectonic signal recorded by warping or offset of this tunnel could provide an opportunity to examine the deformation at depth in this location during the 100 years since the tunnel was constructed. A temporary closure of the tunnel for inspection and repair allowed the entire 8-km length to be surveyed using terrestrial laser scanning, providing a complete high-resolution 3D model of the tunnel. Since a high-resolution survey of the tunnel after its construction is not available for comparison, we assume that the tunnel was originally straight; this assumption is substantiated by records that indicate that the two halves of the tunnel, dug from opposite ends, met within 2.9 cm in the XY-plane and 1.6 cm in the Z-direction, at an off-fault location. Our results show 20 cm of right-lateral horizontal deformation near the estimated location of the tunnel's intersection with SAF, which agrees with the SAF sense of motion. The zone of deviation is approximately 300 m south of the SAF surface trace, and is about 350 m south of where the two tunneling crews met. This observed offset is consistent with either steady-state creep of about 2 mm/yr or possibly residual afterslip following the 1857 earthquake (that may be negligible at present). The full tectonic strain accumulation at this location would be five to ten times higher than observed, so clearly the observed deformation is only part of the expected full tectonic signal. In addition to the 20 cm short-wavelength deflection, we are examining for possible subtle longer wavelength deformation of the tunnel. The lidar model also shows significantly higher density of apparent cracking in the tunnel walls near this intercept point.

  18. Structural features of the southern Tulum Fault System, western central Argentina, through gravimetric data and geomorphologic analyses

    Science.gov (United States)

    Rodríguez, Aixa I.; Christiansen, Rodolfo O.; Suvires, Graciela M.; Lince Klinger, Federico; Martinez, M. Patricia

    2016-12-01

    A gravimetric analysis over the Tulum Valley was made. This data was used to reveal the structural setting of the Tulum Fault System situated in the southeastern part of San Juan province in the arid western part of Argentina. This system is the boundary between two geological provinces, the eastern Precordillera Oriental and the Sierras Pampeanas Occidentales. Gravity data was processed using upward continuation and vertical derivative filters and all the results were compared with the geomorphological and the drainage systems maps of the area. Our assessment confirms the presence of two structures in the Pampeano basement with positive anomalies similar to those found in Valdivia and Barboza hills, two important depocenters with low gravimetric gradients separated by a zone with higher gravity anomalies than the depocenters to the east and west. In view of this, a structural map is proposed for the area. This system is important not only because it is the boundary between two geological provinces and has significance regarding regional tectonic issues but also because it controls the surface drainage, soils distribution and groundwater flow of the Tulum basin conditioning the land use distribution.

  19. TeraTools: Multiparameter data acquisition software for the Windows 95/NT OS

    International Nuclear Information System (INIS)

    Piercey, R.B.

    1997-01-01

    TeraTools, a general purpose, multiparameter, data acquisition application for Windows 95NT is described. It is based on the Kmax architecture which has been used since 1986 on the Macintosh computer at numerous industrial, education, and research sites world-wide. TeraTools includes high-level support for industry-standard modular instrumentation; a built-in scripting language; drivers for commercially available interfaces; hooks for external code extensions; event file sorting and replay; and a full set of histogramming and display tools. The environment is scalable and may be applied to problems involving a few parameters or many parameters

  20. Comparison of different digital elevation models and satellite imagery for lineament analysis: Implications for identification and spatial arrangement of fault zones in crystalline basement rocks of the southern Black Forest (Germany)

    Science.gov (United States)

    Meixner, J.; Grimmer, J. C.; Becker, A.; Schill, E.; Kohl, T.

    2018-03-01

    GIS-based remote sensing techniques and lineament mapping provide additional information on the spatial arrangement of faults and fractures in large areas with variable outcrop conditions. Due to inherent censoring and truncation bias mapping of lineaments is still a challenging task. In this study we show how statistical evaluations help to improve the reliability of lineament mappings by comparing two digital elevation models (ASTER, LIDAR) and satellite imagery data sets in the seismically active southern Black Forest. A statistical assessment of the orientation, average length, and the total length of mapped lineaments reveals an impact of the different resolutions of the data sets that allow to define maximum (censoring bias) and minimum (truncation bias) observable lineament length for each data set. The increase of the spatial resolution of the digital elevation model from 30 m × 30 m to 5 m × 5 m results in a decrease of total lineament length by about 40% whereby the average lineament lengths decrease by about 60%. Lineament length distributions of both data sets follow a power law distribution as documented elsewhere for fault and fracture systems. Predominant NE-, N-, NNW-, and NW-directions of the lineaments are observed in all data sets and correlate with well-known, mappable large-scale structures in the southern Black Forest. Therefore, mapped lineaments can be correlated with faults and hence display geological significance. Lineament density in the granite-dominated areas is apparently higher than in the gneiss-dominated areas. Application of a slip- and dilation tendency analysis on the fault pattern reveals largest reactivation potentials for WNW-ESE and N-S striking faults as strike-slip faults whereas normal faulting may occur along NW-striking faults within the ambient stress field. Remote sensing techniques in combination with highly resolved digital elevation models and a slip- and dilation tendency analysis thus can be used to quickly get

  1. TeraHertz Time Domain Spectroscopy of Astrophysical Analog Materials

    Science.gov (United States)

    Blake, Geoffrey

    The section of the electromagnetic spectrum extending roughly from wavelengths of 3 millimeters to 30 microns is commonly known as the far-infrared or TeraHertz (THz) region. It contains the great majority of the photons emitted by the universe, and THz observations of molecules and dust are able penetrate deeply into molecular clouds, thus revealing the full history of star and planet formation. Accordingly, the successful deployments of the Herschel and SOFIA observatories, and the emerging capabilities of ALMA, are both revolutionizing our understanding of THz astrophysics and placing stringent demands on the generation of accurate laboratory data on the relevant gas phase and solid state materials detected. With APRA support, we have constructed a combined high bandwidth and high spectral resolution femtosecond THz Time Domain Spectroscopy (THz TDS) system and an FT-IR spectrometer, and coupled these instruments to a high vacuum chamber and cryostat and to gas phase cells including a molecular beam system. We have investigated solid materials from room temperature to 10 K, and can examine both refractory matter such as silicates and molecular ices. For the latter, we have demonstrated that the THz bands observed are uniquely sensitive to both the molecular structure of the ice and its thermal history, and thus that THz observations can provide novel insight into the dominant condensable materials in dense, cold regions. In the gas phase we can record doppler-limited data over at least a decade in bandwidth. While quite capable, the high vacuum cryostat can only study thick samples, especially ices, due to the fairly rapid adsorption of gases onto surfaces at low temperature under such conditions. It is therefore not possible to examine highly layered/structured samples or reactive species. We therefore propose here to upgrade the chamber/cryostat to ultrahigh vacuum, and implement additional sample preparation and characterization tools. With such modifications

  2. Fault zone architecture of the San Jacinto fault zone in Horse Canyon, southern California: A model for focused post-seismic fluid flow and heat transfer in the shallow crust

    Science.gov (United States)

    Morton, Nissa; Girty, Gary H.; Rockwell, Thomas K.

    2012-05-01

    We report results of a new study of the architecture of the San Jacinto fault zone in Horse Canyon, California, where stream incision has exposed a nearly continuous outcrop of the fault zone at ~ 0.4 km depth. The fault zone at this location consists of a fault core, transition zone, damage zone, and tonalitic wall rocks. We collected and analyzed samples for their bulk and grain density, geochemical data, clay mineralogy, and textural and modal mineralogy. Progressive deformation within the fault zone is characterized by mode I cracking, subsequent shearing of already fractured rock, and cataclastic flow. Grain comminution advances towards the strongly indurated cataclasite fault core. Damage progression towards the core is accompanied by a decrease in bulk and grain density, and an increase in porosity and dilational volumetric strain. Palygorskite and mixed-layer illite/smectite clay minerals are present in the damage and transition zones and are the result of hydrolysis reactions. The estimated percentage of illite in illite/smectite increases towards the fault core where the illite/smectite to illite conversion is complete, suggesting elevated temperatures that may have reached 150 °C. Chemical alteration and elemental mass changes are observed throughout the fault zone and are most pronounced in the fault core. We conclude that the observed chemical and mineralogical changes can only be produced by the interaction of fractured wall rocks and chemically active fluids that are mobilized through the fault zone by thermo-pressurization during and after seismic events. Based on the high element mobility and absence of illite/smectite in the fault core, we expect that the greatest water/rock ratios occur within the fault core. These results indicate that hot pore fluids circulate upwards through the fractured fault core and into the surrounding damage zone. Though difficult to constrain, we speculate that the site studied during this investigation may represent

  3. Late Quaternary slip history of the Mill Creek strand of the San Andreas fault in San Gorgonio Pass, southern California: The role of a subsidiary left-lateral fault in strand switching

    Science.gov (United States)

    Kendrick, Katherine J.; Matti, Jonathan; Mahan, Shannon

    2015-01-01

    The fault history of the Mill Creek strand of the San Andreas fault (SAF) in the San Gorgonio Pass region, along with the reconstructed geomorphology surrounding this fault strand, reveals the important role of the left-lateral Pinto Mountain fault in the regional fault strand switching. The Mill Creek strand has 7.1–8.7 km total slip. Following this displacement, the Pinto Mountain fault offset the Mill Creek strand 1–1.25 km, as SAF slip transferred to the San Bernardino, Banning, and Garnet Hill strands. An alluvial complex within the Mission Creek watershed can be linked to palinspastic reconstruction of drainage segments to constrain slip history of the Mill Creek strand. We investigated surface remnants through detailed geologic mapping, morphometric and stratigraphic analysis, geochronology, and pedogenic analysis. The degree of soil development constrains the duration of surface stability when correlated to other regional, independently dated pedons. This correlation indicates that the oldest surfaces are significantly older than 500 ka. Luminescence dates of 106 ka and 95 ka from (respectively) 5 and 4 m beneath a younger fan surface are consistent with age estimates based on soil-profile development. Offset of the Mill Creek strand by the Pinto Mountain fault suggests a short-term slip rate of ∼10–12.5 mm/yr for the Pinto Mountain fault, and a lower long-term slip rate. Uplift of the Yucaipa Ridge block during the period of Mill Creek strand activity is consistent with thermochronologic modeled uplift estimates.

  4. AMP: a science-driven web-based application for the TeraGrid

    Science.gov (United States)

    Woitaszek, M.; Metcalfe, T.; Shorrock, I.

    The Asteroseismic Modeling Portal (AMP) provides a web-based interface for astronomers to run and view simulations that derive the properties of Sun-like stars from observations of their pulsation frequencies. In this paper, we describe the architecture and implementation of AMP, highlighting the lightweight design principles and tools used to produce a functional fully-custom web-based science application in less than a year. Targeted as a TeraGrid science gateway, AMP's architecture and implementation are intended to simplify its orchestration of TeraGrid computational resources. AMP's web-based interface was developed as a traditional standalone database-backed web application using the Python-based Django web development framework, allowing us to leverage the Django framework's capabilities while cleanly separating the user interface development from the grid interface development. We have found this combination of tools flexible and effective for rapid gateway development and deployment.

  5. Geophysical and isotopic mapping of preexisting crustal structures that influenced the location and development of the San Jacinto fault zone, southern California

    Science.gov (United States)

    Langenheim, V.E.; Jachens, R.C.; Morton, D.M.; Kistler, R.W.; Matti, J.C.

    2004-01-01

    We examine the role of preexisting crustal structure within the Peninsular Ranges batholith on determining the location of the San Jacinto fault zone by analysis of geophysical anomalies and initial strontium ratio data. A 1000-km-long boundary within the Peninsular Ranges batholith, separating relatively mafic, dense, and magnetic rocks of the western Peninsular Ranges batholith from the more felsic, less dense, and weakly magnetic rocks of the eastern Peninsular Ranges batholith, strikes north-northwest toward the San Jacinto fault zone. Modeling of the gravity and magnetic field anomalies caused by this boundary indicates that it extends to depths of at least 20 km. The anomalies do not cross the San Jacinto fault zone, but instead trend northwesterly and coincide with the fault zone. A 75-km-long gradient in initial strontium ratios (Sri) in the eastern Peninsular Ranges batholith coincides with the San Jacinto fault zone. Here rocks east of the fault are characterized by Sri greater than 0.706, indicating a source of largely continental crust, sedimentary materials, or different lithosphere. We argue that the physical property contrast produced by the Peninsular Ranges batholith boundary provided a mechanically favorable path for the San Jacinto fault zone, bypassing the San Gorgonio structural knot as slip was transferred from the San Andreas fault 1.0-1.5 Ma. Two historical M6.7 earthquakes may have nucleated along the Peninsular Ranges batholith discontinuity in San Jacinto Valley, suggesting that Peninsular Ranges batholith crustal structure may continue to affect how strain is accommodated along the San Jacinto fault zone. ?? 2004 Geological Society of America.

  6. Performing three-dimensional neutral particle transport calculations on tera scale computers

    International Nuclear Information System (INIS)

    Woodward, C.S.; Brown, P.N.; Chang, B.; Dorr, M.R.; Hanebutte, U.R.

    1999-01-01

    A scalable, parallel code system to perform neutral particle transport calculations in three dimensions is presented. To utilize the hyper-cluster architecture of emerging tera scale computers, the parallel code successfully combines the MPI message passing and paradigms. The code's capabilities are demonstrated by a shielding calculation containing over 14 billion unknowns. This calculation was accomplished on the IBM SP ''ASCI-Blue-Pacific computer located at Lawrence Livermore National Laboratory (LLNL)

  7. Fault-related dolomitization in the Vajont Limestone (Southern Alps, Italy): photogrammetric 3D outcrop reconstruction, visualization with textured surfaces, and structural analysis

    OpenAIRE

    Bistacchi, Andrea; Balsamo, Fabrizio; Storti, Fabrizio; Mozafari, Mahtab; Swennen, Rudy; Solum, John; Taberner, Conxita

    2013-01-01

    The Vajont Gorge (Dolomiti Bellunesi, Italy) provides spectacular outcrops of Jurassic limestones (Vajont Limestone Formation) in which Mesozoic and Alpine faults and fracture corridors are continuously exposed. Some of these faults acted as conduits for fluids, resulting in structurally-controlled dolomitization of the Vajont Limestone, associated with significant porosity increase. We carried out a 3D surface characterization of the outcrops, combining high resolution topography and imaging...

  8. VERIFIKASI PAKET PROGRAM MVP-II DAN SRAC2006 PADA KASUS TERAS REAKTOR VERA BENCHMARK.

    Directory of Open Access Journals (Sweden)

    Jati Susilo

    2015-03-01

    Full Text Available Dalam penelitian ini dilakukan verifikasi perhitungan benchmark VERA pada kasus Zero Power Physical Test (ZPPT teras reaktor Watts Bar 1. Reaktor tersebut merupakan jenis PWR kelas 1000 MWe yang didesain oleh Westinghouse, tersusun dari 193 perangkat bahan bakar 17×17 dengan 3 jenis pengkayaan UO2 yaitu 2,1wt%, 2,619wt% dan 3,1wt%. Perhitungan nilai k-eff dan distribusi faktor daya dilakukan pada siklus operasi pertama teras dengan kondisi beginning of cycle (BOC dan hot zero power (HZP. Posisi batang kendali dibedakan menjadi uncontrolled (semua batang kendali berada di luar teras, dan controlled (batang kendali Bank D didalam teras. Paket program komputer yang digunakan dalam perhitungan adalah MVP-II dan SRAC2006 modul CITATION dengan data pustaka tampang lintang ENDF/B-VII.0. Hasil perhitungan menunjukkan bahwa perbedaan nilai k-eff teras pada kondisi controlled dan uncontrolled antara referensi dengan MVP-II (-0,07% dan -0,014% dan SRAC2006 (0,92% dan 0,99% sangat kecil atau masih dibawah 1%. Perbedaan faktor daya maksimum teras pada kondisi controlled dan uncontrolled dengan referensi dengan MVP-II adalah 0,38% dan 1,53%, sedangkan dengan SRAC2006 adalah 1,13% dan -2,45%. Dapat dikatakan bahwa kedua paket program komputer menunjukkan hasil perhitungan yang sesuai dengan nilai referensi. Dalam hal penentuan kekritisan teras, maka hasil perhitungan MVP-II lebih konservatif dibandingkan dengan SRAC2006. Kata kunci : MVP-II, SRAC2006, PWR, VERA   In this research, verification calculation for VERA core physics benchmark on the Zero Power Physical Test (ZPPT of the nuclear reactor Watts Bar 1. The reactor is a 1000 MWe class of PWR designed by Westinghouse, arranged from 193 unit of 17×17 fuel assembly consisting 3 type enrichment of UO2 that are 2.1wt%, 2.619wt% and 3.1wt%. Core power factor distribution and k-eff calculation has been done for the first cycle operation of the core at beginning of cycle (BOC and hot zero power (HZP. In this

  9. GEO-ARKEOLOGI TERAS PURBA BENGAWAN SOLO DI SEKITAR KABUPATEN BOJONEGORO, JAWA TIMUR The Geo-archaeology of Ancient Terrace of Bengawan Solo in Bojonegoro Surrounding Regency, East Java

    Directory of Open Access Journals (Sweden)

    Johan Arif

    2016-07-01

    Abstrak Pemetaan teras purba Bengawan Solo merupakan kajian geo-arkeologi tahap awal yang dilakukan di beberapa lokasi di wilayah kabupaten Bojonegoro, Jawa Timur. Permasalahannya adalah ditemukannya indikasi keberadaan peralatan batu paleolitik dan fosil-fosil vertebrata di beberapa teras purba di wilayah ini. Oleh karena itu, tujuan dari kegiatan ini adalah mendapatkan gambaran sebaran teras purba Bengawan Solo berumur Kuarter serta memberikan usulan kepada para ahli arkeologi dalam merancang kegiatan pencarian sisa-sisa budaya manusia antara lain peralatan batu paleolitik maupun sisa-sisa fosil rangka manusia dan hewan pada suatu teras purba. Metode yang dipakai di dalam penelitian ini adalah metode pemetaan geologi, deskripsi profil sedimen, pengambilan contoh-contoh sedimen (termasuk fosil hewan untuk keperluan analisa sedimentologi dan analisa kimia. Di daerah penelitian yang terletak di kabupaten Bojonegoro dijumpai tiga teras yaitu Teras Menden (berumur sub-Resen, Jipangulu (berumur Holosen Awal dan Ngandong (berumur Plestosen Atas. Teras Menden dijumpai di Payaman, Teras Jipangulu di Prangi dan Wotangare dan Teras Ngandong dijumpai di Prangi dan di desa Kedung. Berdasarkan bukti stratigrafinya ketiga teras tersebut disusun oleh lapisan pasir ukuran kasar hingga kerikilan di bagian bawah dan berubah menjadi pasir lempungan dan lempung pasiran di bagian atas. Fenomena ini menunjukkan bahwa ketiga teras tersebut dibentuk oleh sungai yang berkelok-kelok yaitu Bengawan Solo purba. Kedudukan masing-masing teras purba di daerah penelitian yang diukur dari Bengawan Solo adalah 2-3 m (Teras Menden, 5-7 m (Teras Jipangulu dan >8 m (Teras Ngandong. Berdasarkan hasil kajian teras purba ini diusulkan agar para ahli arkeologi lebih memfokuskan kepada perlapisan sedimen yang berukuran kasar dalam sistem endapan sungai purba berumur Kuarter untuk mencari sisa-sisa budaya manusia paleolitikum seperti peralatan batu maupun sisa-sisa fosil rangka manusia dan hewan.   Kata

  10. Faults Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  11. Fault-related CO2 degassing, geothermics, and fluid flow in southern California basins---Physiochemical evidence and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Boles, James R. [Univ. of California, Santa Barbara, CA (United States); Garven, Grant [Tufts Univ., Medford, MA (United States)

    2015-08-04

    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  12. Fault-Related CO2 Degassing, Geothermics, and Fluid Flow in Southern California Basins--Physiochemical Evidence and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Garven, Grant [Tufts Univ., Medford, MA (United States)

    2015-08-11

    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  13. Structural and stratigraphic constraints on tsunamigenic rupture along the frontal Sunda megathrust from MegaTera bathymetric and seismic reflection data

    Science.gov (United States)

    Bradley, K. E.; Qin, Y.; Villanueva-Robles, F.; Hananto, N.; Leclerc, F.; Singh, S. C.; Tapponnier, P.; Sieh, K.; Wei, S.; Carton, H. D.; Permana, H.; Avianto, P.; Nugroho, A. B.

    2017-12-01

    The joint EOS/IPG/LIPI 2015 MegaTera expedition collected high-resolution seismic reflection profiles and bathymetric data across the Sunda trench, updip of the Mw7.7, 2010 Mentawai tsunami-earthquake rupture patch. These data reveal rapid lateral variations in both the stratigraphic level of the frontal Sunda megathrust and the vergence of frontal ramp faults. The stratigraphic depth of the megathrust at the deformation front correlates with ramp-thrust vergence and with changes in the basal friction angle inferred by critical-taper wedge theory. Where ramp thrusts verge uniformly seaward and have an average dip of 30°, the megathrust decollement resides atop a high-amplitude reflector that marks the inferred top of pelagic sediments. Where ramp thrusts are bi-vergent (similar throw on both landward- and seaward-vergent faults) and have an average dip of 42°, the decollement is higher, within the incoming clastic sequence, above a seismically transparent unit inferred to represent distal fan muds. Where ramp thrusts are uniformly landward vergent, the decollement sits directly on top of the oceanic crust that forms the bathymetrically prominent, subducting Investigator Ridge. The two, separate regions of large tsunamigenic ground-surface uplift during the 2010 tsunami earthquake that have been inferred from joint inversions of seismic, GPS, and tsunami data (e.g. Yue et al., 2014; Satake et al., 2013) correspond to the areas of frontal bi-vergence in the MegaTera data. We propose that enhanced surface uplift and tsunamigenesis during this event occurred when rupture propagated onto areas where the decollement sits directly above the basal muds of the incoming clastic sequence. Thus we hypothesize that frontal bi-vergence may mark areas of enhanced tsunami hazard posed by small magnitude, shallow megathrust ruptures that propagate to the trench. [Yue, H. et al., 2014, Rupture process of the…, JGR 119 doi:10.1002/2014JB011082; Satake, K. et al., 2013, Tsunami

  14. Late Quaternary eruption of the Ranau Caldera and new geological slip rates of the Sumatran Fault Zone in Southern Sumatra, Indonesia

    Science.gov (United States)

    Natawidjaja, Danny Hilman; Bradley, Kyle; Daryono, Mudrik R.; Aribowo, Sonny; Herrin, Jason

    2017-12-01

    Over the last decade, studies of natural hazards in Sumatra have focused primarily on great earthquakes and associated tsunamis produced by rupture of the Sunda megathrust. However, the Sumatran Fault and the active volcanic arc present proximal hazards to populations on mainland Sumatra. At present, there is little reliable information on the maximum magnitudes and recurrence intervals of Sumatran Fault earthquakes, or the frequency of paroxysmal caldera-forming (VEI 7-8) eruptions. Here, we present new radiocarbon dates of paleosols buried under the voluminous Ranau Tuff that constrain the large caldera-forming eruption to around 33,830-33,450 calender year BP (95% probability). We use the lateral displacement of river channels incised into the Ranau Tuff to constrain the long-term slip rate of two segments of the Sumatran Fault. South of Ranau Lake, the Kumering segment preserves isochronous right-lateral channel offsets of approximately 350 ± 50 m, yielding a minimum slip rate of 10.4 ± 1.5 mm/year for the primary active fault trace. South of Suoh pull-apart depression, the West Semangko segment offsets the Semangko River by 230 ± 60 m, yielding an inferred slip rate of 6.8 ± 1.8 mm/year. Compared with previous studies, these results indicate more recent high-volume volcanism in South Sumatra and increased seismic potency of the southernmost segments of the Sumatran Fault Zone.

  15. Acoustic surveys of the southern extension of the Tomikawa fault off Kamiiso in Hakodate bay, southwest Hokkaido; Hakodatewan Kamiisooki ni okeru Tomikawa danso enchobu no onpa tansa

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Y; Sagayama, T; Osawa, M; Hamada, S; Suga, [Hokkaido Geological Survey, Sapporo (Japan)

    1997-10-22

    With an objective to identify extension into sea area of the Tomikawa fault in southwest Hokkaido, an acoustic survey was carried out off Kamiiso in Hakodate Bay. Using a sound wave exploring machine transmitting frequencies from 5.5 to 8.5 kHz, the acoustic survey was conducted on a workboat cruising at speeds of 4 to 6 knots. The courses of traverse were set on the sea area off from Kamiiso Tomikawa Town to Moheji Town based on the sediment distribution map and the geological map. A total of 17 courses were set: 16 in the east to west direction so as to cross the extension of active faults on the land, and one in the south to north direction. The east-west courses had a length of about 2 km with the line interval of about 300 m, while the south-north course extended nearly parallel with the coast line over a distance of 4.8 km. As a result of the present investigation, verification was given on existence of boundary faces with different sediment structures and displacement falling eastward on several courses of traverse running from east to west. If the locations of these boundary faces are connected, its strike agrees well with the strike of the Tomikawa fault on the land. From the fact that its extension is linked to the end section of the fault, a possibility was shown that the land fault may be extending into the sea area. 8 refs., 4 figs.

  16. Fault finder

    Science.gov (United States)

    Bunch, Richard H.

    1986-01-01

    A fault finder for locating faults along a high voltage electrical transmission line. Real time monitoring of background noise and improved filtering of input signals is used to identify the occurrence of a fault. A fault is detected at both a master and remote unit spaced along the line. A master clock synchronizes operation of a similar clock at the remote unit. Both units include modulator and demodulator circuits for transmission of clock signals and data. All data is received at the master unit for processing to determine an accurate fault distance calculation.

  17. Loading of the San Andreas fault by flood-induced rupture of faults beneath the Salton Sea

    Science.gov (United States)

    Brothers, Daniel; Kilb, Debi; Luttrell, Karen; Driscoll, Neal W.; Kent, Graham

    2011-01-01

    The southern San Andreas fault has not experienced a large earthquake for approximately 300 years, yet the previous five earthquakes occurred at ~180-year intervals. Large strike-slip faults are often segmented by lateral stepover zones. Movement on smaller faults within a stepover zone could perturb the main fault segments and potentially trigger a large earthquake. The southern San Andreas fault terminates in an extensional stepover zone beneath the Salton Sea—a lake that has experienced periodic flooding and desiccation since the late Holocene. Here we reconstruct the magnitude and timing of fault activity beneath the Salton Sea over several earthquake cycles. We observe coincident timing between flooding events, stepover fault displacement and ruptures on the San Andreas fault. Using Coulomb stress models, we show that the combined effect of lake loading, stepover fault movement and increased pore pressure could increase stress on the southern San Andreas fault to levels sufficient to induce failure. We conclude that rupture of the stepover faults, caused by periodic flooding of the palaeo-Salton Sea and by tectonic forcing, had the potential to trigger earthquake rupture on the southern San Andreas fault. Extensional stepover zones are highly susceptible to rapid stress loading and thus the Salton Sea may be a nucleation point for large ruptures on the southern San Andreas fault.

  18. ANALISIS PENGARUH DENSITAS BAHAN BAKAR SILISIDA TERHADAP PARAMETER KINETIK TERAS REAKTOR RSG-GAS

    Directory of Open Access Journals (Sweden)

    Tukiran s

    2016-11-01

    Full Text Available Saat ini RSG-GAS menggunakan elemen bakar silisida 2,96 g U/cc. Untuk meningkatkan waktu operasi reaktor maka akan direncanakan untuk mengganti elemen bakar silisida dengan kerapatan yang lebih tinggi. Keuntungan reaktor dengan bahan bakar kerapatan tinggi adalah dapat lebih efektif dan efisien. Maka perlu dilakukan perhitungan parameter kinetik teras silisida kerapatan tinggi mengingat pengaruhnya sangat penting untuk keselamatan operasi reaktor. Parameter kinetik yang dihitung yaitu fraksi neutron kasip efektif, konstanta peluruhan neutron kasip, umur neutron serempak yang merupakan faktor utama dalam kontrol dan keselamatan. Bahan bakar silisida tipe pelat dengan densitas 2,96 - 4,8 gU/cm3 digunakan pada teras RSG-GAS untuk menganalisis perhitungan parameter kinetik. Perhitungan sel dilakukan dengan paket program WIMSD-5B dan paket program Batan-2DIFF digunakan untuk perhitungan teras. Hasil perhitungan menunjukkan bahwa harga fraksi neutron kasip turun dengan naiknya densitas bahan bakar. Turunnya nilai parameter kinetik ini tidak mengganggu pergantian bahan bakar ke densitas yang lebih tinggi. Turunnya nilai parameter kinetik rata-rata dari densitas 2,96 gU/cm3 ke 3,55 gU/cm3 adalah 1,3 % sedangkan dari densitas 2,96 gU/cm3 ke 4,8 gU/cm3 adalah 2,2 % . Sehingga jika dilakukan pergantian bahan bakar maka ditinjau dari segi neutronik dan parameter kinetiknya tidak akan mengalami perubahan dalam pola operasi reaktor atau manajemen bahan bakar dan tidak akan berpengaruh terhadap keselamatan operasi reaktor.

  19. Development of compact synchrotron radiation facilities TELL-TERAS, NIJI-I∼IV, at ETL

    International Nuclear Information System (INIS)

    Tomimasu, T.

    1990-01-01

    At the Electrotechnical Laboratory (ETL) four compact storage rings, TERAS, NIJI-I∼III, have been already constructed and a compact storage ring, NIJI-IV, with long straight sections for a free electron laser (FEL) experiment will be completed in 1990. The 0.8-GeV ETL storage ring is called TERAS; Tsukuba Electron Ring for Accelerating and Storage. TERAS has been operated since Oct. 1981 for researches on radiometric standards, dissociative photoionization, photodissociation of sulfur containing molecules, solid state physics, ULSI lithography, generation of polarized SR and gamma-rays and for FEL experiment using an transverse optical klystron (TOK). A 10-T three pole wiggler will be installed in 1991 at the straight section where the TOK is installed. NIJI-I is a 0.27-GeV compact ring. NIJI is a Japanese verb meaning 'rainbow' in English. It has been operated from Feb. 1986 to March 1989 for machine study of beam storage higher than 0.5 A at low energies below 0.15-GeV. NIJI-II is a 0.6-GeV conventional type compact ring. It has been operated in Aug. 1989 and will be used for chemical vapor deposition (CVD) and polarized SR experiments. NIJI-III is a 0.62-GeV superconducting type ring. It will be used for ULSI lithography experiments. Before the superconducting coils are installed, NIJI-III with conventional type magnets has been already constructed and operated in June 1989. NIJI-III with the superconducting ones is now operated in June 1990. NIJI-IV is a 0.5-GeV conventional type compact ring with straight sections longer than 7m where a 6.2-m long TOK is installed to achieve UV FEL experiment. (author)

  20. ANALISIS EFEK KECELAKAAN WATER INGRESS TERHADAP REAKTIVITAS DOPPLER TERAS RGTT200K

    Directory of Open Access Journals (Sweden)

    Zuhair Zuhair

    2015-03-01

    Full Text Available Dalam high temperature reactor, koefisien reaktivitas temperatur yang didesain negatif menjamin reaksi fisi dalam teras tetap berada di bawah kendali dan panas peluruhan tidak akan pernah melelehkan bahan bakar yang menyebabkan terlepasnya zat radioaktif ke lingkungan. Namun masuknya air (water ingress ke dalam teras reaktor akibat pecahnya tabung penukar panas generator uap, yang dikenal sebagai salah satu kecelakaan dasar desain, dapat mengintroduksi reaktivitas positif dengan potensi bahaya lainnya seperti korosi grafit dan kerusakan material struktur reflektor. Makalah ini akan menganalisis efek kecelakaan water ingress terhadap reaktivitas Doppler teras RGTT200K. Kapabilitas koefisien reaktivitas Doppler untuk mengkompensasi reaktivitas positif yang timbul selama kecelakaan water ingress akan diuji melalui serangkaian perhitungan dengan program MCNPX dan pustaka ENDF/B-VII untuk perubahan temperatur bahan bakar dari 800K hingga 1800K. Tiga opsi kernel bahan bakar UO2, ThO2/UO2 dan PuO2 dengan tiga model kisi bahan bakar pebble di teras reaktor diterapkan untuk kondisi water ingress dengan densitas air dari 0 hingga 1.000 kg/m3. Hasil perhitungan memperlihatkan koefisien reaktivitas Doppler tetap negatif untuk seluruh opsi bahan bakar yang dipertimbangkan bahkan untuk posibilitas water ingress yang besar. Efek water ingress lebih kuat pada model kisi dengan fraksi packing lebih rendah karena lebih banyak volume yang tersedia untuk air yang memasuki teras reaktor. Efek water ingress juga lebih kuat di teras uranium dibandingkan teras thorium dan plutonium sebagai konsekuensi dari fenomena Doppler dimana absorpsi neutron di daerah resonansi 238U lebih besar daripada 232Th dan 240Pu. Secara keseluruhan dapat disimpulkan bahwa, koefisien Doppler teras RGTT200K mampu mengkompensasi insersi reaktivitas yang diintroduksi oleh kecelakaan water ingress. Teras RGTT200K dengan bahan bakar UO2, ThO2/UO2 dan PuO2 dapat mempertahankan fitur keselamatan

  1. TeraSCREEN: multi-frequency multi-mode Terahertz screening for border checks

    Science.gov (United States)

    Alexander, Naomi E.; Alderman, Byron; Allona, Fernando; Frijlink, Peter; Gonzalo, Ramón; Hägelen, Manfred; Ibáñez, Asier; Krozer, Viktor; Langford, Marian L.; Limiti, Ernesto; Platt, Duncan; Schikora, Marek; Wang, Hui; Weber, Marc Andree

    2014-06-01

    The challenge for any security screening system is to identify potentially harmful objects such as weapons and explosives concealed under clothing. Classical border and security checkpoints are no longer capable of fulfilling the demands of today's ever growing security requirements, especially with respect to the high throughput generally required which entails a high detection rate of threat material and a low false alarm rate. TeraSCREEN proposes to develop an innovative concept of multi-frequency multi-mode Terahertz and millimeter-wave detection with new automatic detection and classification functionalities. The system developed will demonstrate, at a live control point, the safe automatic detection and classification of objects concealed under clothing, whilst respecting privacy and increasing current throughput rates. This innovative screening system will combine multi-frequency, multi-mode images taken by passive and active subsystems which will scan the subjects and obtain complementary spatial and spectral information, thus allowing for automatic threat recognition. The TeraSCREEN project, which will run from 2013 to 2016, has received funding from the European Union's Seventh Framework Programme under the Security Call. This paper will describe the project objectives and approach.

  2. Constraints on Shallow Crustal Structure across the San Andreas Fault Zone, Coachella Valley, Southern California: Results from the Salton Seismic Imaging Project (SSIP)

    Science.gov (United States)

    Hernandez, A.; Persaud, P.; Bauer, K.; Stock, J. M.; Fuis, G. S.; Hole, J. A.; Goldman, M.

    2015-12-01

    The strong influence of basin structure and crustal heterogeneities on seismic wave propagation suggests that these factors should be included in calculations of strong ground shaking. Knowledge of the shallow subsurface is thus essential for an accurate seismic hazard estimate for the densely populated Coachella Valley, the region north of the potential M7.8 rupture near the Salton Sea. Using SSIP data, we analyzed first arrivals from nine 65-911 kg explosive shots recorded along a profile in the Coachella Valley in order to evaluate the interpretation of our 2D tomographic results and give added details on the structural complexity of the shallow crust. The line extends 37 km from the Peninsular Ranges to the Little San Bernardino Mountains crossing the major strands of the San Andreas Fault Zone. We fit traveltime curves to our picks with forward modeling ray tracing, and determined 1D P-wave velocity models for traveltime arrivals east and west of each shot, and a 2D model for the line. We also inferred the geometry of near-vertical faults from the pre-stack line migration method of Bauer et al. (2013). In general, the 1D models east of individual shots have deeper basement contacts and lower apparent velocities, ~5 km/s at 4 km depth, whereas the models west of individual shots have shallower basement and velocities up to 6 km/s at 2 km depth. Mismatches in basement depths (assuming 5-6 km/s) between individual 1D models indicate a shallowly dipping basement, deepening eastward towards the Banning Fault and shoaling abruptly farther east. An east-dipping structure in the 2D model also gives a better fit than horizontal layers. Based on high velocity zones derived from traveltimes at 9-20 km from the western end of the line, we included an offset from ~2 km to 4 km depth near the middle of the line, which significantly improved the 2D model fit. If fault-related, this offset could represent the Garnet Hill Fault if it continues southward in the subsurface.

  3. DESAIN KONSEPTUAL TERAS REAKTOR RISET INOVATIF BERBAHAN BAKAR URANIUM MOLIBDENUM DARI ASPEK NEUTRONIK

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2015-03-01

    Full Text Available Manfaat yang luas dari penggunaan reaktor riset membuat banyak negara membangun reaktor riset baru. Kecenderungan saat ini adalah reaktor tipe reaktor serbaguna (MPR dengan teras yang kompak untuk mendapatkan fluks neutron yang tinggi dengan daya yang relatif sedang atau rendah. Reaktor riset yang ada di Indonesia yang paling muda usianya sudah berumur 25 tahun. Oleh karena itu diperlukan desain reaktor riset baru sebagai alternatif, disebut reaktor riset inovatif (RRI, kelak pengganti reaktor riset yang sudah ada. Tujuan dari riset ini mendapatkan konfigurasi teras setimbang reaktor riset yang optimal dengan kriteria memiliki fluks neutron termal minimum sebesar 2,5x1014 n/cm2 s pada daya 20 MW (minimum, memiliki panjang operasi satu siklus lebih dari 40 hari dan penggunaan bahan bakar yang paling efisien. Desain neutronik dilakukan untuk bahan bakar baru U-9Mo-Al dengan kerapatan bervariasi dan jenis reflektor yang bervariasi. Desain dilakukan dengan paket program WIMSD-5B dan BATAN-FUEL. Hasil desain konseptual menyajikan 4 konfigurasi teras yaitu 5×5, 5×7, 6×5 dan 6×6. Hasil optimasi menunjukkan bahwa teras setimbang reaktor RRI dengan konfigurasi 5×5, tingkat muat 235U sebesar 450 g, reflektor berilium, fluks neutron termal maksimum di daerah reflektor sebesar 3,33×1014 neutron cm-2s-1 dan panjang siklus 57 hari merupakan desain teras reaktor riset inovatif yang paling optimal. Kata kunci: desain konseptual, bahan bakar uranium-molibdenum,berilium, D2O, WIMS, BATAN-FUEL   The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research newest reactor in Indonesia right now is already 25 year old. Therefore, it is needed to design a new research reactor, called innovative research reactor (IRR and then as an alternative to replace the old

  4. PEMODELAN TERAS UNTUK ANALISIS PERHITUNGAN KONSTANTA MULTIPLIKASI REAKTOR HTR-PROTEUS

    Directory of Open Access Journals (Sweden)

    Zuhair Zuhair

    2015-04-01

    Full Text Available PTRKN sebagai salah satu unit kerja di BATAN dengan tugas pokok dan fungsi yang berkaitan erat dengan teknologi reaktor dan keselamatan nuklir, menaruh perhatian khusus pada konsep reaktor pebble bed. Dalam makalah ini pemodelan reaktor pebble bed HTR-PROTEUS dilakukan dengan program transport Monte Carlo MCNP5. Partikel bahan bakar berlapis TRISO dimodelkan secara detail dan eksak dimana distribusi acak partikel ini dalam bola bahan bakar didekati menggunakan array teratur kisi SC dengan fraksi packing 5,76% tanpa zona eksklusif. Model teras pebble bed didekati dengan memanfaatkan kisi teratur dari bola yang disusun sebagai kisi BCC berdasarkan sel berulang yang digenerasi dari sejumlah sel satuan. Hasil perhitungan MCNP5 memperlihatkan kesesuaian yang sangat baik dengan eksperimen, walaupun teras HTR-PROTEUS diprediksi lebih reaktif daripada pengukuran, khususnya di teras 4.2 dan 4.3. Pustaka ENDF/B-VI menunjukkan konsistensi dengan estimasi keff paling akurat dibandingkan pustaka ENDF/B-V, terutama ENDF/B-VI (66c. Deviasi estimasi keff yang dihitung dengan eksperimen dikaitkan sebagai konsekuensi dari komposisi reflektor grafit yang dispesifikasikan. Komparasi yang dibuat memperlihatkan bahwa MCNP5 menghasilkan keff teras HTR-PROTEUS lebih presisi daripada hasil dari MCNP4B dan MCNPBALL. Hasil ini menyimpulkan bahwa, sukses metodologi pemodelan ini menjustifikasi aplikasi MCNP5 untuk analisis reaktor pebble bed lainnya. Kata kunci: pemodelan teras HTR-PROTEUS, konstanta multiplikasi, MCNP5   PTRKN as a working unit in BATAN whose main duties and functions are related to reactor technology and nuclear safety, consern attention to pebble bed reactor concept. In this paper modeling of HTR-PROTEUS pebble bed reactor was done using Monte Carlo transport code MCNP5. The TRISO coated fuel particle is modeled in detailed and exact manner where random distributions of these particles in fuel pebble is approximated by using regular array of SC lattice

  5. Birth and demise of a Middle Jurassic isolated shallow-marine carbonate platform on a tilted fault block: Example from the Southern Iberian continental palaeomargin

    Science.gov (United States)

    Navarro, V.; Ruiz-Ortiz, P. A.; Molina, J. M.

    2012-08-01

    Subbetic Middle Jurassic oolitic limestones of the Jabalcuz Formation crop out in San Cristóbal hill, near Jaén city (Andalucía, Spain), between hemipelagic limestone and marl successions. The Jabalcuz limestones range in facies from calcareous breccias and micritic limestones to white cross-bedded oolitic limestones. Recent erosion has exhumed a Jurassic isolated shallow-water carbonate platform on the San Cristóbal hill. This shallow platform developed on a tilted fault block. An almost continuous, laterally extensive outcrop reveals tectono-sedimentary features distinctive of block-tilting in the different margins of the fault block. The studied sections represent various palaeogeographic positions in the ancient shallow-water carbonate platform and basin transition. This exceptional outcrop allows to decipher the triggering mechanisms of the birth, evolution, and drowning of this Jurassic isolated shallow-water carbonate platform. Two shallowing-upward depositional sequences separated by flooding surfaces can be distinguished on two different sides of the fault block. In the southeastern part of the outcrop, proximal sections grade vertically from distal talus fault breccias, with bivalve and serpulid buildup intercalations, to white cross-bedded oolitic limestones defining the lowermost depositional sequence. Upwards, overlying a flooding surface, the second sequence with oolitic limestones prograding over micritic deposits is recorded. In the southwest, oolitic, peloidal, and more distal micritic facies alternate, with notable southeastern progradation of oolitic facies in the upper part of the section, which represents the upper depositional sequence. The top of this second depositional sequence is another flooding surface recorded by the sedimentation of marls with radiolarians from the overlying formation. In the northwestern outcrops, the two depositional sequences are also almost completely preserved and can be differentiated. A 100 m

  6. Multi-temporal InSAR for Deformation Monitoring of the Granada and Padul Faults and the Surrounding Area (Betic Cordillera, Southern Spain)

    NARCIS (Netherlands)

    Sousa, J.J.; Ruiz, A.M.; Hooper, A.J.; Hanssen, R.F.; Perski, Z.; Bastos, L.C.; Gil, A.J.; Galindo-Zaldivar, J.; Sanz de Galdeano, C.; Alfaro, P.; Garrido, M.S.; Armenteros, J.A.; Gimenez, E.; Aviles, M.

    2014-01-01

    The quantification of low rate active tectonic structures is a major target of geodetic and geological studies to improve the knowledge of seismic hazards. The central Betic Cordillera (southern Spain) is affected by moderately active tectonic structures and seismicity. Part of this seismic activity

  7. Stratigraphy of amethyst geode-bearing lavas and fault-block structures of the Entre Rios mining district, Paraná volcanic province, southern Brazil

    Directory of Open Access Journals (Sweden)

    LÉO A. HARTMANN

    2014-03-01

    Full Text Available The Entre Rios mining district produces a large volume of amethyst geodes in underground mines and is part of the world class deposits in the Paraná volcanic province of South America. Two producing basalt flows are numbered 4 and 5 in the lava stratigraphy. A total of seven basalt flows and one rhyodacite flow are present in the district. At the base of the stratigraphy, beginning at the Chapecó river bed, two basalt flows are Esmeralda, low-Ti type. The third flow in the sequence is a rhyodacite, Chapecó type, Guarapuava subtype. Above the rhyodacite flow, four basalt flows are Pitanga, high-Ti type including the two mineralized flows; only the topmost basalt in the stratigraphy is a Paranapanema, intermediate-Ti type. Each individual flow is uniquely identified from its geochemical and gamma-spectrometric properties. The study of several sections in the district allowed for the identification of a fault-block structure. Blocks are elongated NW and the block on the west side of the fault was downthrown. This important structural characterization of the mining district will have significant consequences in the search for new amethyst geode deposits and in the understanding of the evolution of the Paraná volcanic province.

  8. Photomosaics and event evidence from the Frazier Mountain paleoseismic site, trench 1, cuts 1–4, San Andreas Fault Zone, southern California (2007–2009)

    Science.gov (United States)

    Scharer, Katherine M.; Fumal, Tom E.; Weldon, Ray J.; Streig, Ashley R.

    2014-01-01

    The Frazier Mountain paleoseismic site is located at the northwest end of the Mojave section of the San Andreas Fault, in a small, closed depression at the base of Frazier Mountain near Tejon Pass, California (lat 34.8122° N., long 118.9034° W.). The site was known to contain a good record of earthquakes due to previous excavations by Lindvall and others (2002). This report provides data resulting from four nested excavations, or cuts, along trench 1 (T1) in 2007 and 2009 at the Frazier Mountain site. The four cuts were excavated progressively deeper and wider in an orientation perpendicular to the San Andreas Fault, exposing distal fan and marsh sediments deposited since ca. A.D. 1200. The results of the trenching show that earthquakes that ruptured the site have repeatedly produced a small depression or sag on the surface, which is subsequently infilled with sand and silt deposits. This report provides high-resolution photomosaics and logs for the T1 cuts, a detailed stratigraphic column for the deposits, and a table summarizing all of the evidence for ground rupturing paleoearthquakes logged in the trenches.

  9. Fault diagnosis

    Science.gov (United States)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  10. ANALISIS KONDISI TERAS REAKTOR DAYA MAJU AP1000 PADA KECELAKAAN SMALL BREAK LOCA

    Directory of Open Access Journals (Sweden)

    Andi Sofrany Ekariansyah

    2015-06-01

    Full Text Available ABSTRAK ANALISIS KONDISI TERAS REAKTOR DAYA MAJU AP1000 PADA KECELAKAAN SMALL BREAK LOCA. Kecelakaan yang diakibatkan oleh kehilangan pendingin (loss of coolant accident / LOCA dari sistem reaktor merupakan kejadian dasar desain yang tetap diantisipasi dalam desain reaktor daya yang mengadopsi teknologi Generasi II hingga IV. LOCA ukuran kecil (small break LOCA memiliki dampak yang lebih signifikan terhadap keselamatan dibandingkan LOCA ukuran besar (large break LOCA seperti terlihat pada kejadian Three-Mile Island (TMI. Fokus makalah adalah pada analisis small break LOCA pada reaktor daya maju Generasi III+ yaitu AP1000 dengan mensimulasikan tiga kejadian pemicu yaitu membukanya katup Automatic Depressurization System (ADS secara tak disengaja, putusnya salah satu pipa Direct Vessel Injection (DVI secara double-ended, dan putusnya pipa lengan dingin dengan diameter bocoran 10 inci. Metode yang digunakan adalah simulasi kejadian pada model AP1000 yang dikembangkan secara mandiri menggunakan program perhitungan RELAP5/SCDAP/Mod3.4. Dampak yang ingin dilihat adalah kondisi teras selama terjadinya small break LOCA yang terdiri dari pembentukan mixture level dan transien temperatur kelongsong bahan bakar. Hasil simulasi menunjukkan bahwa mixture level untuk semua kejadian small break LOCA berada di atas tinggi teras aktif yang menunjukkan tidak terjadinya core uncovery. Adanya mixture level berpengaruh pada transien temperatur kelongsong yang menurun dan menunjukkan pendinginan bahan bakar yang efektif. Hasil di atas juga identik dengan hasil perhitungan program lain yaitu NOTRUMP. Keefektifan pendinginan teras juga disebabkan oleh berfungsinya injeksi pendingin melalui fitur keselamatan pasif yang menjadi ciri reaktor daya AP1000. Secara keseluruhan, hasil analisis menunjukkan model AP1000 yang telah dikembangkan dengan RELAP5 dapat digunakan untuk keperluan analisis kecelakaan dasar desain pada reaktor daya maju AP1000. Kata kunci: analisis

  11. On the distinction of tectonic and nontectonic faulting in palaeoseismological research: a case study from the southern Marmara region of Turkey

    Science.gov (United States)

    Özaksoy, Volkan

    2017-12-01

    This study reports on spectacular deformation structures, including arrays of striated thrusts, discovered by excavation work in Holocene deposits in vicinity of a major neotectonic strike-slip fault in one of the tectonically most active regions of Turkey. The deformation structures were initially considered an evidence of sub-recent tectonic activity, but their detailed multidisciplinary study surprisingly revealed that the deformation of the clay-rich soil and its strongly weathered Jurassic substrate was of nontectonic origin, caused by argilliturbation. This phenomenon of vertisol self-deformation is well-known to pedologists, but may easily be mistaken for tectonic deformation by geologists less familiar with pedogenic processes. The possibility of argilliturbation thus needs to be taken into consideration in palaeoseismological field research wherever the deformed substrate consists of clay-rich muddy deposits. The paper reviews a range of specific diagnostic features that can serve as field criteria for the recognition of nontectonic deformation structures induced by argilliturbation in mud-dominated geological settings.

  12. Records of continental slope sediment flow morphodynamic responses to gradient and active faulting from integrated AUV and ROV data, offshore Palos Verdes, southern California Borderland

    Science.gov (United States)

    Maier, Katherine L.; Brothers, Daniel; Paull, Charles K.; McGann, Mary; Caress, David W.; Conrad, James E.

    2016-01-01

    Variations in seabed gradient are widely acknowledged to influence deep-water deposition, but are often difficult to measure in sufficient detail from both modern and ancient examples. On the continental slope offshore Los Angeles, California, autonomous underwater vehicle, remotely operated vehicle, and shipboard methods were used to collect a dense grid of high-resolution multibeam bathymetry, chirp sub-bottom profiles, and targeted sediment core samples that demonstrate the influence of seafloor gradient on sediment accumulation, depositional environment, grain size of deposits, and seafloor morphology. In this setting, restraining and releasing bends along the active right-lateral Palos Verdes Fault create and maintain variations in seafloor gradient. Holocene down-slope flows appear to have been generated by slope failure, primarily on the uppermost slope (~ 100–200 m water depth). Turbidity currents created a low relief (water depositional systems. These results help to bridge gaps in scale between existing deep-sea and experimental datasets and may provide constraints for future numerical modeling studies.

  13. Which fault destroyed Fes city (Morocco) in 1755? A new insight from the Holocene deformations observed along the southern border of Gibraltar arc

    Science.gov (United States)

    Poujol, Antoine; Ritz, Jean-François; Vernant, Philippe; Huot, Sebastien; Maate, Soufian; Tahayt, Abdelilah

    2017-08-01

    In this paper, we present the first estimate of the Holocene deformation along the southern front of Gibraltar arc (Morocco) and the first field constraints on the local 1755 CE Fes-Meknes surface rupturing earthquake which could be associated to the "Great Lisbon Earthquake" (M > 8.5) in November 1st, 1755. Using satellite imagery, aerial photographs and field investigations, we carried out a morphotectonic study along the 150 km-long Southern Rif Front (SRF) to identify the most recent evidences of tectonic activity. Analyzed offset alluvial deposits confirm that (i) the last 5 ka cumulative deformation leading to a slip rate of 3.5 ± 1 mm/yr for this segment of the SRF is consistent with the GPS derived horizontal shortening rate of 2-4 mm/yr and (ii) a recent major earthquake ruptured a 30 km-long segment along the SRF. Based on deposits dating and historical seismicity we propose that this seismic event occurred in 1755 as a local earthquake. Even though this 1755 local event cannot be considered as a strong aftershock of the main Lisbon seismic event (M > 8.5), their temporal closeness, their occurrence under the same convergent stress regime ( NNW-SSE-oriented compression) and the fact that Fes-Meknes area was strongly shaken during the Lisbon earthquake, raises the question of the possible triggering of the Fes earthquake. Anyway, our new results suggest that most of the Nubia-Rif belt convergence is accommodated by the SRF, making it potentially the most destructive structure of the Rif.

  14. TERA-MIR radiation: materials, generation, detection and applications III (Conference Presentation)

    Science.gov (United States)

    Pereira, Mauro F.

    2016-10-01

    This talk summarizes the achievements of COST ACTION MP1204 during the last four years. [M.F. Pereira, Opt Quant Electron 47, 815-820 (2015).]. TERA-MIR main objectives are to advance novel materials, concepts and device designs for generating and detecting THz and Mid Infrared radiation using semiconductor, superconductor, metamaterials and lasers and to beneficially exploit their common aspects within a synergetic approach. We used the unique networking and capacity-building capabilities provided by the COST framework to unify these two spectral domains from their common aspects of sources, detectors, materials and applications. We created a platform to investigate interdisciplinary topics in Physics, Electrical Engineering and Technology, Applied Chemistry, Materials Sciences and Biology and Radio Astronomy. The main emphasis has been on new fundamental material properties, concepts and device designs that are likely to open the way to new products or to the exploitation of new technologies in the fields of sensing, healthcare, biology, and industrial applications. End users are: research centres, academic, well-established and start-up Companies and hospitals. Results are presented along our main lines of research: Intersubband materials and devices with applications to fingerprint spectroscopy; Metamaterials, photonic crystals and new functionalities; Nonlinearities and interaction of radiation with matter including biomaterials; Generation and Detection based on Nitrides and Bismides. The talk is closed by indicating the future direction of the network that will remain active beyond the funding period and our expectations for future joint research.

  15. High sensitivity broadband 360GHz passive receiver for TeraSCREEN

    Science.gov (United States)

    Wang, Hui; Oldfield, Matthew; Maestrojuán, Itziar; Platt, Duncan; Brewster, Nick; Viegas, Colin; Alderman, Byron; Ellison, Brian N.

    2016-05-01

    TeraSCREEN is an EU FP7 Security project aimed at developing a combined active, with frequency channel centered at 360 GHz, and passive, with frequency channels centered at 94, 220 and 360 GHz, imaging system for border controls in airport and commercial ferry ports. The system will include automatic threat detection and classification and has been designed with a strong focus on the ethical, legal and practical aspects of operating in these environments and with the potential threats in mind. Furthermore, both the passive and active systems are based on array receivers with the active system consisting of a 16 element MIMO FMCW radar centered at 360 GHz with a bandwidth of 30 GHz utilizing a custom made direct digital synthesizer. The 16 element passive receiver system at 360 GHz uses commercial Gunn diode oscillators at 90 GHz followed by custom made 90 to 180 GHz frequency doublers supplying the local oscillator for 360 GHz sub-harmonic mixers. This paper describes the development of the passive antenna module, local oscillator chain, frequency mixers and detectors used in the passive receiver array of this system. The complete passive receiver chain is characterized in this paper.

  16. The doping concentration and physical properties measurement of silicon water using tera hertz wave

    International Nuclear Information System (INIS)

    Park, Sung Hyeon; Oh, Gyung Hwan; Kim, Hak Sung

    2017-01-01

    In this study, a tera hertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of 30° were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from 10"1"4 to 10"1"8 in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer

  17. A collaborative network middleware project by Lambda Station, TeraPaths, and Phoebus

    International Nuclear Information System (INIS)

    Bobyshev, A.; Bradley, S.; Crawford, M.; DeMar, P.; Katramatos, D.; Shroff, K.; Swany, M.; Yu, D.

    2010-01-01

    The TeraPaths, Lambda Station, and Phoebus projects, funded by the US Department of Energy, have successfully developed network middleware services that establish on-demand and manage true end-to-end, Quality-of-Service (QoS) aware, virtual network paths across multiple administrative network domains, select network paths and gracefully reroute traffic over these dynamic paths, and streamline traffic between packet and circuit networks using transparent gateways. These services improve network QoS and performance for applications, playing a critical role in the effective use of emerging dynamic circuit network services. They provide interfaces to applications, such as dCache SRM, translate network service requests into network device configurations, and coordinate with each other to setup up end-to-end network paths. The End Site Control Plane Subsystem (ESCPS) builds upon the success of the three projects by combining their individual capabilities into the next generation of network middleware. ESCPS addresses challenges such as cross-domain control plane signalling and interoperability, authentication and authorization in a Grid environment, topology discovery, and dynamic status tracking. The new network middleware will take full advantage of the perfSONAR monitoring infrastructure and the Inter-Domain Control plane efforts and will be deployed and fully vetted in the Large Hadron Collider data movement environment.

  18. The doping concentration and physical properties measurement of silicon water using tera hertz wave

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Hyeon; Oh, Gyung Hwan; Kim, Hak Sung [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul(Korea, Republic of)

    2017-02-15

    In this study, a tera hertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of 30° were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from 10{sup 14} to 10{sup 18} in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer.

  19. Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults

    Science.gov (United States)

    Parsons, T.; Stein, R.S.; Simpson, R.W.; Reasenberg, P.A.

    1999-01-01

    We present a new three-dimensional inventory of the southern San Francisco Bay area faults and use it to calculate stress applied principally by the 1989 M = 7.1 Loma Prieta earthquake and to compare fault seismicity rates before and after 1989. The major high-angle right-lateral faults exhibit a different response to the stress change than do minor oblique (right-lateral/thrust) faults. Seismicity on oblique-slip faults in the southern Santa Clara Valley thrust belt increased where the faults were unclamped. The strong dependence of seismicity change on normal stress change implies a high coefficient of static friction. In contrast, we observe that faults with significant offset (>50-100 km) behave differently; microseismicity on the Hayward fault diminished where right-lateral shear stress was reduced and where it was unclamped by the Loma Prieta earthquake. We observe a similar response on the San Andreas fault zone in southern California after the Landers earthquake sequence. Additionally, the offshore San Gregorio fault shows a seismicity rate increase where right-lateral/oblique shear stress was increased by the Loma Prieta earthquake despite also being clamped by it. These responses are consistent with either a low coefficient of static friction or high pore fluid pressures within the fault zones. We can explain the different behavior of the two styles of faults if those with large cumulative offset become impermeable through gouge buildup; coseismically pressurized pore fluids could be trapped and negate imposed normal stress changes, whereas in more limited offset faults, fluids could rapidly escape. The difference in behavior between minor and major faults may explain why frictional failure criteria that apply intermediate coefficients of static friction can be effective in describing the broad distributions of aftershocks that follow large earthquakes, since many of these events occur both inside and outside major fault zones.

  20. Research of fault activity in Japan

    International Nuclear Information System (INIS)

    Nohara, T.; Nakatsuka, N.; Takeda, S.

    2004-01-01

    Six hundreds and eighty earthquakes causing significant damage have been recorded since the 7. century in Japan. It is important to recognize faults that will or are expected to be active in future in order to help reduce earthquake damage, estimate earthquake damage insurance and siting of nuclear facilities. Such faults are called 'active faults' in Japan, the definition of which is a fault that has moved intermittently for at least several hundred thousand years and is expected to continue to do so in future. Scientific research of active faults has been ongoing since the 1930's. Many results indicated that major earthquakes and fault movements in shallow crustal regions in Japan occurred repeatedly at existing active fault zones during the past. After the 1995 Southern Hyogo Prefecture Earthquake, 98 active fault zones were selected for fundamental survey, with the purpose of efficiently conducting an active fault survey in 'Plans for Fundamental Seismic Survey and Observation' by the headquarters for earthquake research promotion, which was attached to the Prime Minister's office of Japan. Forty two administrative divisions for earthquake disaster prevention have investigated the distribution and history of fault activity of 80 active fault zones. Although earthquake prediction is difficult, the behaviour of major active faults in Japan is being recognised. Japan Nuclear Cycle Development Institute (JNC) submitted a report titled 'H12: Project to Establish the. Scientific and Technical Basis for HLW Disposal in Japan' to the Atomic Energy Commission (AEC) of Japan for official review W. The Guidelines, which were defined by AEC, require the H12 Project to confirm the basic technical feasibility of safe HLW disposal in Japan. In this report the important issues relating to fault activity were described that are to understand the characteristics of current fault movements and the spatial extent and magnitude of the effects caused by these movements, and to

  1. Optimal fault signal estimation

    NARCIS (Netherlands)

    Stoorvogel, Antonie Arij; Niemann, H.H.; Saberi, A.; Sannuti, P.

    2002-01-01

    We consider here both fault identification and fault signal estimation. Regarding fault identification, we seek either exact or almost fault identification. On the other hand, regarding fault signal estimation, we seek either $H_2$ optimal, $H_2$ suboptimal or Hinfinity suboptimal estimation. By

  2. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems. These ...

  3. New active faults on Eurasian-Arabian collision zone: Tectonic activity of Özyurt and Gülsünler faults (Eastern Anatolian Plateau, Van-Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Dicle, S.; Üner, S.

    2017-11-01

    The Eastern Anatolian Plateau emerges from the continental collision between Arabian and Eurasian plates where intense seismicity related to the ongoing convergence characterizes the southern part of the plateau. Active deformation in this zone is shared by mainly thrust and strike-slip faults. The Özyurt thrust fault and the Gülsünler sinistral strike-slip fault are newly determined fault zones, located to the north of Van city centre. Different types of faults such as thrust, normal and strike-slip faults are observed on the quarry wall excavated in Quaternary lacustrine deposits at the intersection zone of these two faults. Kinematic analysis of fault-slip data has revealed coeval activities of transtensional and compressional structures for the Lake Van Basin. Seismological and geomorphological characteristics of these faults demonstrate the capability of devastating earthquakes for the area.

  4. New active faults on Eurasian-Arabian collision zone: Tectonic activity of Özyurt and Gülsünler faults (Eastern Anatolian Plateau, Van-Turkey)

    International Nuclear Information System (INIS)

    Dicle, S.; Üner, S.

    2017-01-01

    The Eastern Anatolian Plateau emerges from the continental collision between Arabian and Eurasian plates where intense seismicity related to the ongoing convergence characterizes the southern part of the plateau. Active deformation in this zone is shared by mainly thrust and strike-slip faults. The Özyurt thrust fault and the Gülsünler sinistral strike-slip fault are newly determined fault zones, located to the north of Van city centre. Different types of faults such as thrust, normal and strike-slip faults are observed on the quarry wall excavated in Quaternary lacustrine deposits at the intersection zone of these two faults. Kinematic analysis of fault-slip data has revealed coeval activities of transtensional and compressional structures for the Lake Van Basin. Seismological and geomorphological characteristics of these faults demonstrate the capability of devastating earthquakes for the area.

  5. A case for historic joint rupture of the San Andreas and San Jacinto faults

    OpenAIRE

    Lozos, Julian C.

    2016-01-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data...

  6. Summary: beyond fault trees to fault graphs

    International Nuclear Information System (INIS)

    Alesso, H.P.; Prassinos, P.; Smith, C.F.

    1984-09-01

    Fault Graphs are the natural evolutionary step over a traditional fault-tree model. A Fault Graph is a failure-oriented directed graph with logic connectives that allows cycles. We intentionally construct the Fault Graph to trace the piping and instrumentation drawing (P and ID) of the system, but with logical AND and OR conditions added. Then we evaluate the Fault Graph with computer codes based on graph-theoretic methods. Fault Graph computer codes are based on graph concepts, such as path set (a set of nodes traveled on a path from one node to another) and reachability (the complete set of all possible paths between any two nodes). These codes are used to find the cut-sets (any minimal set of component failures that will fail the system) and to evaluate the system reliability

  7. Role of seismogenic processes in fault-rock development: An example from Death Valley, California

    Science.gov (United States)

    Pavlis, Terry L.; Serpa, Laura F.; Keener, Charles

    1993-03-01

    Fault rocks developed along the Mormon Point turtleback of southern Death Valley suggest that a jog in the oblique-slip Death Valley fault zone served as an ancient seismic barrier, where dominantly strike-slip ruptures were terminated at a dilatant jog. Dramatic spatial variations in fault-rock thickness and type within the bend are interpreted as the products of: (1) fault "overshoot," in which planar ruptures bypass the intersection of the two faults composing the bend and slice into the underlying footwall; and (2) implosion brecciation, in which coseismic ruptures arrested at a releasing bend in the fault lead to catastrophic collapse brecciation, fluid influx, and mineralization.

  8. Fault tree handbook

    International Nuclear Information System (INIS)

    Haasl, D.F.; Roberts, N.H.; Vesely, W.E.; Goldberg, F.F.

    1981-01-01

    This handbook describes a methodology for reliability analysis of complex systems such as those which comprise the engineered safety features of nuclear power generating stations. After an initial overview of the available system analysis approaches, the handbook focuses on a description of the deductive method known as fault tree analysis. The following aspects of fault tree analysis are covered: basic concepts for fault tree analysis; basic elements of a fault tree; fault tree construction; probability, statistics, and Boolean algebra for the fault tree analyst; qualitative and quantitative fault tree evaluation techniques; and computer codes for fault tree evaluation. Also discussed are several example problems illustrating the basic concepts of fault tree construction and evaluation

  9. High-efficiency space-based software radio architectures & algorithms (a minimum size, weight, and power TeraOps processor)

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Mark Edward [Los Alamos National Laboratory; Baker, Zachary K [Los Alamos National Laboratory; Stettler, Matthew W [Los Alamos National Laboratory; Pigue, Michael J [Los Alamos National Laboratory; Schmierer, Eric N [Los Alamos National Laboratory; Power, John F [Los Alamos National Laboratory; Graham, Paul S [Los Alamos National Laboratory

    2009-01-01

    Los Alamos has recently completed the latest in a series of Reconfigurable Software Radios, which incorporates several key innovations in both hardware design and algorithms. Due to our focus on satellite applications, each design must extract the best size, weight, and power performance possible from the ensemble of Commodity Off-the-Shelf (COTS) parts available at the time of design. In this case we have achieved 1 TeraOps/second signal processing on a 1920 Megabit/second datastream, while using only 53 Watts mains power, 5.5 kg, and 3 liters. This processing capability enables very advanced algorithms such as our wideband RF compression scheme to operate remotely, allowing network bandwidth constrained applications to deliver previously unattainable performance.

  10. The relationship of near-surface active faulting to megathrust splay fault geometry in Prince William Sound, Alaska

    Science.gov (United States)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Northrup, C.; Pratt, T. L.

    2010-12-01

    We interpret regionally extensive, active faults beneath Prince William Sound (PWS), Alaska, to be structurally linked to deeper megathrust splay faults, such as the one that ruptured in the 1964 M9.2 earthquake. Western PWS in particular is unique; the locations of active faulting offer insights into the transition at the southern terminus of the previously subducted Yakutat slab to Pacific plate subduction. Newly acquired high-resolution, marine seismic data show three seismic facies related to Holocene and older Quaternary to Tertiary strata. These sediments are cut by numerous high angle normal faults in the hanging wall of megathrust splay. Crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A distinct boundary coinciding beneath the Hinchinbrook Entrance causes a systematic fault trend change from N30E in southwestern PWS to N70E in northeastern PWS. The fault trend change underneath Hinchinbrook Entrance may occur gradually or abruptly and there is evidence for similar deformation near the Montague Strait Entrance. Landward of surface expressions of the splay fault, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes. Surface exposures of Tertiary rocks throughout PWS along with new apatite-helium dates suggest long-term and regional uplift with localized, fault-controlled subsidence.

  11. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out...... that there is a separation be-tween the feedback controller and the fault tolerant part. The closed loop feedback properties are handled by the nominal feedback controller and the fault tolerant part is handled by the design of the Youla parameter. The design of the fault tolerant part will not affect the design...... of the nominal feedback con-troller....

  12. DESAIN TERAS PLTN JENIS PEBBLE BED MODULAR REACTOR (PBMR MENGGUNAKAN PAKET PROGRAM MCNP-5 PADA KONDISI BEGINNING OF LIFE

    Directory of Open Access Journals (Sweden)

    Ralind Re Marla

    2015-03-01

    Full Text Available Telah dilakukan desain teras Pembangkit Listrik Tenaga Nuklir (PLTN untuk jenis Pebble Bed Modular Reactor (PBMR dengan daya 70 MWe untuk keperluan proses smelter pada keadaan beginning of life (BOL. Analisis ini bertujuan untuk mengetahui persen pengkayaan, distribusi suhu dan nilai keselamatan dengan koefisien reaktivitas teras yang negatif pada reaktor jenis PBMR apabila daya reaktor 70 MWe. Analisis menggunakan program Monte Carlo N-Particle-5 (MCNP5 dan dari hasil analisis ini diharapkan dapat memenuhi syarat dalam mendukung program percepatan pembangunan kelistrikan batubara 10.000 MWe khususnya untuk proses smelter, yang tersebar merata di wilayah Indonesia. Hasil penelitian menunjukkan bahwa, faktor perlipatan efektif (k-eff Reaktor jenis PBMR daya 70 MWe mengalami kondisi kritis pada pengkayaan 5,626 % dengan nilai faktor perlipatan efektif 1,00031±0,00087 dan nilai koefisien reaktivitas suhu pada -10,0006 pcm/K. Dari hasil analisis daat disimpulkan bahwa reaktor jenis PBMR daya 70 MWe adalah aman.   ABSTRACT The core design of Nuclear Power Plant for Pebble Bed Modular Reactor (PBMR type with 70 MWe capacity power in Beginning of Life (BOL has been performed. The aim of this analysis, to know percent enrichment, temperature distribution and safety value by negative temperature coefficient at type PBMR if reactor power become lower equal to 70 MWe. This analysis was expected become one part of overview project development the power plant with 10.000 MWe of total capacity, spread evenly in territory of Indonesia especially to support of smelter industries. The results showed that, effective multiplication factor (keff with power 70 MWe critical condition at enrichment 5,626 %is 1,00031±0,00087, based on enrichment result, a value of the temperature coefficient reactivity is - 10,0006 pcm/K. Based on the results of these studies, it can beconcluded that the PBMR 70 MWe design is theoritically safe.

  13. Multi-Fault Rupture Scenarios in the Brawley Seismic Zone

    Science.gov (United States)

    Kyriakopoulos, C.; Oglesby, D. D.; Rockwell, T. K.; Meltzner, A. J.; Barall, M.

    2017-12-01

    Dynamic rupture complexity is strongly affected by both the geometric configuration of a network of faults and pre-stress conditions. Between those two, the geometric configuration is more likely to be anticipated prior to an event. An important factor in the unpredictability of the final rupture pattern of a group of faults is the time-dependent interaction between them. Dynamic rupture models provide a means to investigate this otherwise inscrutable processes. The Brawley Seismic Zone in Southern California is an area in which this approach might be important for inferring potential earthquake sizes and rupture patterns. Dynamic modeling can illuminate how the main faults in this area, the Southern San Andreas (SSAF) and Imperial faults, might interact with the intersecting cross faults, and how the cross faults may modulate rupture on the main faults. We perform 3D finite element modeling of potential earthquakes in this zone assuming an extended array of faults (Figure). Our results include a wide range of ruptures and fault behaviors depending on assumptions about nucleation location, geometric setup, pre-stress conditions, and locking depth. For example, in the majority of our models the cross faults do not strongly participate in the rupture process, giving the impression that they are not typically an aid or an obstacle to the rupture propagation. However, in some cases, particularly when rupture proceeds slowly on the main faults, the cross faults indeed can participate with significant slip, and can even cause rupture termination on one of the main faults. Furthermore, in a complex network of faults we should not preclude the possibility of a large event nucleating on a smaller fault (e.g. a cross fault) and eventually promoting rupture on the main structure. Recent examples include the 2010 Mw 7.1 Darfield (New Zealand) and Mw 7.2 El Mayor-Cucapah (Mexico) earthquakes, where rupture started on a smaller adjacent segment and later cascaded into a larger

  14. Design of fault simulator

    Energy Technology Data Exchange (ETDEWEB)

    Gabbar, Hossam A. [Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology (UOIT), Ontario, L1H 7K4 (Canada)], E-mail: hossam.gabbar@uoit.ca; Sayed, Hanaa E.; Osunleke, Ajiboye S. [Okayama University, Graduate School of Natural Science and Technology, Division of Industrial Innovation Sciences Department of Intelligent Systems Engineering, Okayama 700-8530 (Japan); Masanobu, Hara [AspenTech Japan Co., Ltd., Kojimachi Crystal City 10F, Kojimachi, Chiyoda-ku, Tokyo 102-0083 (Japan)

    2009-08-15

    Fault simulator is proposed to understand and evaluate all possible fault propagation scenarios, which is an essential part of safety design and operation design and support of chemical/production processes. Process models are constructed and integrated with fault models, which are formulated in qualitative manner using fault semantic networks (FSN). Trend analysis techniques are used to map real time and simulation quantitative data into qualitative fault models for better decision support and tuning of FSN. The design of the proposed fault simulator is described and applied on experimental plant (G-Plant) to diagnose several fault scenarios. The proposed fault simulator will enable industrial plants to specify and validate safety requirements as part of safety system design as well as to support recovery and shutdown operation and disaster management.

  15. Iowa Bedrock Faults

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  16. Layered Fault Management Architecture

    National Research Council Canada - National Science Library

    Sztipanovits, Janos

    2004-01-01

    ... UAVs or Organic Air Vehicles. The approach of this effort was to analyze fault management requirements of formation flight for fleets of UAVs, and develop a layered fault management architecture which demonstrates significant...

  17. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  18. Fault tolerant computing systems

    International Nuclear Information System (INIS)

    Randell, B.

    1981-01-01

    Fault tolerance involves the provision of strategies for error detection damage assessment, fault treatment and error recovery. A survey is given of the different sorts of strategies used in highly reliable computing systems, together with an outline of recent research on the problems of providing fault tolerance in parallel and distributed computing systems. (orig.)

  19. Fault zone hydrogeology

    Science.gov (United States)

    Bense, V. F.; Gleeson, T.; Loveless, S. E.; Bour, O.; Scibek, J.

    2013-12-01

    Deformation along faults in the shallow crust (research effort of structural geologists and hydrogeologists. However, we find that these disciplines often use different methods with little interaction between them. In this review, we document the current multi-disciplinary understanding of fault zone hydrogeology. We discuss surface- and subsurface observations from diverse rock types from unlithified and lithified clastic sediments through to carbonate, crystalline, and volcanic rocks. For each rock type, we evaluate geological deformation mechanisms, hydrogeologic observations and conceptual models of fault zone hydrogeology. Outcrop observations indicate that fault zones commonly have a permeability structure suggesting they should act as complex conduit-barrier systems in which along-fault flow is encouraged and across-fault flow is impeded. Hydrogeological observations of fault zones reported in the literature show a broad qualitative agreement with outcrop-based conceptual models of fault zone hydrogeology. Nevertheless, the specific impact of a particular fault permeability structure on fault zone hydrogeology can only be assessed when the hydrogeological context of the fault zone is considered and not from outcrop observations alone. To gain a more integrated, comprehensive understanding of fault zone hydrogeology, we foresee numerous synergistic opportunities and challenges for the discipline of structural geology and hydrogeology to co-evolve and address remaining challenges by co-locating study areas, sharing approaches and fusing data, developing conceptual models from hydrogeologic data, numerical modeling, and training interdisciplinary scientists.

  20. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2002-01-01

    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  1. Plate rotations, fault slip rates, fault locking, and distributed deformation in northern Central America from 1999-2017 GPS observations

    Science.gov (United States)

    Ellis, A. P.; DeMets, C.; Briole, P.; Cosenza, B.; Flores, O.; Guzman-Speziale, M.; Hernandez, D.; Kostoglodov, V.; La Femina, P. C.; Lord, N. E.; Lasserre, C.; Lyon-Caen, H.; McCaffrey, R.; Molina, E.; Rodriguez, M.; Staller, A.; Rogers, R.

    2017-12-01

    We describe plate rotations, fault slip rates, and fault locking estimated from a new 100-station GPS velocity field at the western end of the Caribbean plate, where the Motagua-Polochic fault zone, Middle America trench, and Central America volcanic arc faults converge. In northern Central America, fifty-one upper-plate earthquakes caused approximately 40,000 fatalities since 1900. The proximity of main population centers to these destructive earthquakes and the resulting loss of human life provide strong motivation for studying the present-day tectonics of Central America. Plate rotations, fault slip rates, and deformation are quantified via a two-stage inversion of daily GPS position time series using TDEFNODE modeling software. In the first stage, transient deformation associated with three M>7 earthquakes in 2009 and 2012 is estimated and removed from the GPS position time series. In Stage 2, linear velocities determined from the corrected GPS time series are inverted to estimate deformation within the western Caribbean plate, slip rates along the Motagua-Polochic faults and faults in the Central America volcanic arc, and the gradient of extension in the Honduras-Guatemala wedge. Major outcomes of the second inversion include the following: (1) Confirmation that slip rates on the Motagua fault decrease from 17-18 mm/yr at its eastern end to 0-5 mm/yr at its western end, in accord with previous results. (2) A transition from moderate subduction zone locking offshore from southern Mexico and parts of southern Guatemala to weak or zero coupling offshore from El Salvador and parts of Nicaragua along the Middle America trench. (3) Evidence for significant east-west extension in southern Guatemala between the Motagua fault and volcanic arc. Our study also shows evidence for creep on the eastern Motagua fault that diminishes westward along the North America-Caribbean plate boundary.

  2. Evaluation of the Sebia Capillarys 3 Tera and the Bio-Rad D-100 Systems for the Measurement of Hemoglobin A1c.

    Science.gov (United States)

    Herpol, Margaux; Lanckmans, Katrien; Van Neyghem, Stefaan; Clement, Pascale; Crevits, Stefanie; De Crem, Kim; Gorus, Frans K; Weets, Ilse

    2016-07-01

    We evaluated the Bio-Rad (Irvine, CA) D-100 and the Sebia (Lisses, France) Capillarys 3 Tera for the measurement of hemoglobin A1c (HbA1c) in venous blood samples. Whole-blood samples and control material were analyzed with the D-100 and Capillarys 3 Tera and compared with our routine method, HLC-723G7 (Tosoh, Tokyo, Japan). An evaluation protocol to test precision, trueness, linearity, carryover, and selectivity was set up according to Clinical and Laboratory Standards Institute guidelines. The results were presented in National Glycohemoglobin Standardization Program and International Federation of Clinical Chemistry (IFCC) units. Both systems showed excellent precision (total coefficients of variation hemoglobin (≤0.5 mmol/L potassium cyanate), hemoglobin variants, bilirubin (≤15 mg/dL), and triglycerides (≤3,360 mg/dL). The Bio-Rad D-100 and the Sebia Capillarys 3 Tera instruments performed well for the determination of HbA1c in terms of quality criteria as well as for sample throughput. © American Society for Clinical Pathology, 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. The continuation of the Kazerun fault system across the Sanandaj-Sirjan zone (Iran)

    Science.gov (United States)

    Safaei, Homayon

    2009-08-01

    The Kazerun (or Kazerun-Qatar) fault system is a north-trending dextral strike-slip fault zone in the Zagros mountain belt of Iran. It probably originated as a structure in the Panafrican basement. This fault system played an important role in the sedimentation and deformation of the Phanerozoic cover sequence and is still seismically active. No previous studies have reported the continuation of this important and ancient fault system northward across the Sanandaj-Sirjan zone. The Isfahan fault system is a north-trending dextral strike-slip fault across the Sanandaj-Sirjan zone that passes west of Isfahan city and is here recognized for the first time. This important fault system is about 220 km long and is seismically active in the basement as well as the sedimentary cover sequence. This fault system terminates to the south near the Main Zagros Thrust and to the north at the southern boundary of the Urumieh-Dokhtar zone. The Isfahan fault system is the boundary between the northern and southern parts of Sanandaj-Sirjan zone, which have fundamentally different stratigraphy, petrology, geomorphology, and geodynamic histories. Similarities in the orientations, kinematics, and geologic histories of the Isfahan and Kazerun faults and the way they affect the magnetic basement suggest that they are related. In fact, the Isfahan fault is a continuation of the Kazerun fault across the Sanandaj-Sirjan zone that has been offset by about 50 km of dextral strike-slip displacement along the Main Zagros Thrust.

  4. The Queen Charlotte-Fairweather Fault Zone - Geomorphology of a submarine transform fault, offshore British Columbia and southeastern Alaska

    Science.gov (United States)

    Walton, M. A. L.; Barrie, V.; Greene, H. G.; Brothers, D. S.; Conway, K.; Conrad, J. E.

    2017-12-01

    The Queen Charlotte-Fairweather (QC-FW) Fault Zone is the Pacific - North America transform plate boundary and is clearly seen for over 900 km on the seabed as a linear and continuous feature from offshore central Haida Gwaii, British Columbia to Icy Point, Alaska. Recently (July - September 2017) collected multibeam bathymetry, seismic-reflection profiles and sediment cores provide evidence for the continuous strike-slip morphology along the continental shelfbreak and upper slope, including a linear fault valley, offset submarine canyons and gullies, and right-step offsets (pull apart basins). South of central Haida Gwaii, the QC-FW is represented by several NW-SE to N-S trending faults to the southern end of the islands. Adjacent to the fault at the southern extreme and offshore Dixon Entrance (Canada/US boundary) are 400 to 600 m high mud volcanos in 1000 to 1600 m water depth that have plumes extending up 700 m into the water column and contain extensive carbonate crusts and chemosynthetic communities within the craters. In addition, gas plumes have been identified that appear to be directly associated with the fault zone. Surficial Quaternary sediments within and adjacent to the central and southern fault date either to the deglaciation of this region of the Pacific north coast (16,000 years BP) or to the last interstadial period ( 40,000 years BP). Sediment accumulation is minimal and the sediments cored are primarily hard-packed dense sands that appear to have been transported along the fault valley. The majority of the right-lateral slip along the entire QC-FW appears to be accommodated by the single fault north of the convergence at its southern most extent.

  5. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2006-01-01

    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...... is investigated. Conditions are given for closed-loop stability in case of false alarms or missing fault detection/isolation....

  6. BEDA PENGARUH ARKUS KAKI TERHADAP KESEIMBANGAN STATIS ANAK USIA 9-12 TAHUN DI SD NEGERI MOJOLEGI, TERAS, BOYOLALI

    Directory of Open Access Journals (Sweden)

    M. Syafi’i

    2016-12-01

    Full Text Available Tujuan penelitian ini adalah untuk mengetahui perbedaan  normal foot dan flat foot terhadap keseimbangan statis pada anak usia 9-12 tahun. Sejumlah 60 subyek sehat, terbagi menjadi dua kelompok. Masing- masing kelompok 30 orang. Kelompok I adalah Kelompok dengan kondisi arkus normal dan kelompok II adalah kondisi arkus flat foot. Dilakukan di SD Negeri Mojolegi, Teras, Boyolali. Dengan menggunakan alat ukur Wet Test dan One Legged Stance Test. Penelitian ini merupakan non eksperimental cross sectional design. Masing-masing kelompok diuji normalitas data dengan Kolmogorov-Smirnov Test pada Kelompok I menujukkan nilai p>0,05 maka data berdistribusi normal dan Kelompok II menunjukkan nilai p>0,05 maka data berdistribusi normal. Pada kedua kelompok diuji hipotesis dengan Independent T Test dengan hasil p<0,05 maka terdapat perbedaan yang signifikan antara kondisi arkus normal dan kondisi arkus flatfoot dalam mempertahankan keseimbangan statis. Berdasarkan  analisis  statistik penelitian yang telah dilakukan dapat disimpulkan bahwa terdapat perbedaan yang signifikan antara kondisi arkus normal dan kondisi arkus flatfoot dalam mempertahankan posisi keseimbangan statis.

  7. The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California

    Science.gov (United States)

    Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria

    2017-01-01

    The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ∼100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras

  8. Fault tree graphics

    International Nuclear Information System (INIS)

    Bass, L.; Wynholds, H.W.; Porterfield, W.R.

    1975-01-01

    Described is an operational system that enables the user, through an intelligent graphics terminal, to construct, modify, analyze, and store fault trees. With this system, complex engineering designs can be analyzed. This paper discusses the system and its capabilities. Included is a brief discussion of fault tree analysis, which represents an aspect of reliability and safety modeling

  9. How do normal faults grow?

    OpenAIRE

    Blækkan, Ingvild; Bell, Rebecca; Rotevatn, Atle; Jackson, Christopher; Tvedt, Anette

    2018-01-01

    Faults grow via a sympathetic increase in their displacement and length (isolated fault model), or by rapid length establishment and subsequent displacement accrual (constant-length fault model). To test the significance and applicability of these two models, we use time-series displacement (D) and length (L) data extracted for faults from nature and experiments. We document a range of fault behaviours, from sympathetic D-L fault growth (isolated growth) to sub-vertical D-L growth trajectorie...

  10. Characterization of leaky faults

    International Nuclear Information System (INIS)

    Shan, Chao.

    1990-05-01

    Leaky faults provide a flow path for fluids to move underground. It is very important to characterize such faults in various engineering projects. The purpose of this work is to develop mathematical solutions for this characterization. The flow of water in an aquifer system and the flow of air in the unsaturated fault-rock system were studied. If the leaky fault cuts through two aquifers, characterization of the fault can be achieved by pumping water from one of the aquifers, which are assumed to be horizontal and of uniform thickness. Analytical solutions have been developed for two cases of either a negligibly small or a significantly large drawdown in the unpumped aquifer. Some practical methods for using these solutions are presented. 45 refs., 72 figs., 11 tabs

  11. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  12. Fault Management Metrics

    Science.gov (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  13. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...

  14. Fault Analysis in Cryptography

    CERN Document Server

    Joye, Marc

    2012-01-01

    In the 1970s researchers noticed that radioactive particles produced by elements naturally present in packaging material could cause bits to flip in sensitive areas of electronic chips. Research into the effect of cosmic rays on semiconductors, an area of particular interest in the aerospace industry, led to methods of hardening electronic devices designed for harsh environments. Ultimately various mechanisms for fault creation and propagation were discovered, and in particular it was noted that many cryptographic algorithms succumb to so-called fault attacks. Preventing fault attacks without

  15. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2005-01-01

    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR......) part. The FTC architecture can be applied for additive faults, parametric faults, and for system structural changes. Only parametric faults will be considered in this paper. The main focus in this paper is on the use of the new approach of active fault diagnosis in connection with FTC. The active fault...... diagnosis approach is based on including an auxiliary input in the system. A fault signature matrix is introduced in connection with AFD, given as the transfer function from the auxiliary input to the residual output. This can be considered as a generalization of the passive fault diagnosis case, where...

  16. Neotectonics of the southern Amargosa Desert, Nye County, Nevada and Inyo County, California

    International Nuclear Information System (INIS)

    Donovan, D.E.

    1991-05-01

    A complex pattern of active faults occurs in the southern Amargosa Desert, southern Nye, County, Nevada. These faults can be grouped into three main fault systems: (1) a NE-striking zone of faults that forms the southwest extension of the left-lateral Rock Valley fault zone, in the much larger Spotted Range-Mine Mountain structural zone, (2) a N-striking fault zone coinciding with a NNW-trending alignment of springs that is either a northward continuation of a fault along the west side of the Resting Spring Range or a N-striking branch fault of the Pahrump fault system, and (3) a NW-striking fault zone which is parallel to the Pahrump fault system, but is offset approximately 5 km with a left step in southern Ash Meadows. These three fault zones suggest extension is occurring in an E-W direction, which is compatible with the ∼N10W structural grain prevalent in the Death Valley extensional region to the west

  17. Deeper penetration of large earthquakes on seismically quiescent faults.

    Science.gov (United States)

    Jiang, Junle; Lapusta, Nadia

    2016-06-10

    Why many major strike-slip faults known to have had large earthquakes are silent in the interseismic period is a long-standing enigma. One would expect small earthquakes to occur at least at the bottom of the seismogenic zone, where deeper aseismic deformation concentrates loading. We suggest that the absence of such concentrated microseismicity indicates deep rupture past the seismogenic zone in previous large earthquakes. We support this conclusion with numerical simulations of fault behavior and observations of recent major events. Our modeling implies that the 1857 Fort Tejon earthquake on the San Andreas Fault in Southern California penetrated below the seismogenic zone by at least 3 to 5 kilometers. Our findings suggest that such deeper ruptures may occur on other major fault segments, potentially increasing the associated seismic hazard. Copyright © 2016, American Association for the Advancement of Science.

  18. Quaternary Fault Lines

    Data.gov (United States)

    Department of Homeland Security — This data set contains locations and information on faults and associated folds in the United States that are believed to be sources of M>6 earthquakes during the...

  19. Fault Length Vs Fault Displacement Evaluation In The Case Of Cerro Prieto Pull-Apart Basin (Baja California, Mexico) Subsidence

    Science.gov (United States)

    Glowacka, E.; Sarychikhina, O.; Nava Pichardo, F. A.; Farfan, F.; Garcia Arthur, M. A.; Orozco, L.; Brassea, J.

    2013-05-01

    The Cerro Prieto pull-apart basin is located in the southern part of San Andreas Fault system, and is characterized by high seismicity, recent volcanism, tectonic deformation and hydrothermal activity (Lomnitz et al, 1970; Elders et al., 1984; Suárez-Vidal et al., 2008). Since the Cerro Prieto geothermal field production started, in 1973, significant subsidence increase was observed (Glowacka and Nava, 1996, Glowacka et al., 1999), and a relation between fluid extraction rate and subsidence rate has been suggested (op. cit.). Analysis of existing deformation data (Glowacka et al., 1999, 2005, Sarychikhina 2011) points to the fact that, although the extraction changes influence the subsidence rate, the tectonic faults control the spatial extent of the observed subsidence. Tectonic faults act as water barriers in the direction perpendicular to the fault, and/or separate regions with different compaction, and as effect the significant part of the subsidence is released as vertical displacement on the ground surface along fault rupture. These faults ruptures cause damages to roads and irrigation canals and water leakage. Since 1996, a network of geotechnical instruments has operated in the Mexicali Valley, for continuous recording of deformation phenomena. To date, the network (REDECVAM: Mexicali Valley Crustal Strain Measurement Array) includes two crackmeters and eight tiltmeters installed on, or very close to, the main faults; all instruments have sampling intervals in the 1 to 20 minutes range. Additionally, there are benchmarks for measuring vertical fault displacements for which readings are recorded every 3 months. Since the crackmeter measures vertical displacement on the fault at one place only, the question appears: can we use the crackmeter data to evaluate how long is the lenth of the fractured fault, and how quickly it grows, so we can know where we can expect fractures in the canals or roads? We used the Wells and Coppersmith (1994) relations between

  20. Fault lubrication during earthquakes.

    Science.gov (United States)

    Di Toro, G; Han, R; Hirose, T; De Paola, N; Nielsen, S; Mizoguchi, K; Ferri, F; Cocco, M; Shimamoto, T

    2011-03-24

    The determination of rock friction at seismic slip rates (about 1 m s(-1)) is of paramount importance in earthquake mechanics, as fault friction controls the stress drop, the mechanical work and the frictional heat generated during slip. Given the difficulty in determining friction by seismological methods, elucidating constraints are derived from experimental studies. Here we review a large set of published and unpublished experiments (∼300) performed in rotary shear apparatus at slip rates of 0.1-2.6 m s(-1). The experiments indicate a significant decrease in friction (of up to one order of magnitude), which we term fault lubrication, both for cohesive (silicate-built, quartz-built and carbonate-built) rocks and non-cohesive rocks (clay-rich, anhydrite, gypsum and dolomite gouges) typical of crustal seismogenic sources. The available mechanical work and the associated temperature rise in the slipping zone trigger a number of physicochemical processes (gelification, decarbonation and dehydration reactions, melting and so on) whose products are responsible for fault lubrication. The similarity between (1) experimental and natural fault products and (2) mechanical work measures resulting from these laboratory experiments and seismological estimates suggests that it is reasonable to extrapolate experimental data to conditions typical of earthquake nucleation depths (7-15 km). It seems that faults are lubricated during earthquakes, irrespective of the fault rock composition and of the specific weakening mechanism involved.

  1. Vipava fault (Slovenia

    Directory of Open Access Journals (Sweden)

    Ladislav Placer

    2008-06-01

    Full Text Available During mapping of the already accomplished Razdrto – Senožeče section of motorway and geologic surveying of construction operations of the trunk road between Razdrto and Vipava in northwestern part of External Dinarides on the southwestern slope of Mt. Nanos, called Rebrnice, a steep NW-SE striking fault was recognized, situated between the Predjama and the Ra{a faults. The fault was named Vipava fault after the Vipava town. An analysis of subrecent gravitational slips at Rebrnice indicates that they were probably associated with the activity of this fault. Unpublished results of a repeated levelling line along the regional road passing across the Vipava fault zone suggest its possible present activity. It would be meaningful to verify this by appropriate geodetic measurements, and to study the actual gravitational slips at Rebrnice. The association between tectonics and gravitational slips in this and in similar extreme cases in the areas of Alps and Dinarides points at the need of complex studying of geologic proceses.

  2. Gravitational dislocations of sedimentary deposits in southern UkSSR

    Energy Technology Data Exchange (ETDEWEB)

    Belokrys, L S

    1980-01-01

    Characteristics of several types of dislocations are presented: pseudosynclines in Pontian deposits, and fracture dislocations; brachy-syncline subsidence folds; protrusion folds and their relics (easily diagnosed landslide faults). It is shown that two circumstances govern local folding and fracture faults in horizontally bedded sedimentary deposits in the southern Ukraine: 1) the alternation of competent and incompetent deposits in the fault, 2) the increasing unevenness of the static burden on the plastic layers as the erosion network grows. These faults are undoubtedly linked with geomorphological, not tectonic, elements.

  3. Optimization of a coherent synchrotron radiation source in the Tera-hertz range for high-resolution spectroscopy of molecules of astrophysical interest

    International Nuclear Information System (INIS)

    Barros, J.

    2012-01-01

    Fourier Transform spectroscopy is the most used multiplex tool for high-resolution measurements in the infrared range. Its extension to the Tera-hertz domain is of great interest for spectroscopic studies of interstellar molecules. This application is however hampered by the lack of dedicated, broadband sources with a sufficient intensity and stability. In this work, Coherent Synchrotron Radiation (CSR) was used as a source for molecular spectroscopy at high resolution on the AILES infrared and Tera-hertz beamline of SOLEIL synchrotron. The beamline being optimized for far-infrared, we could characterize the properties of CSR and compare them to the incoherent synchrotron radiation. A double detection system allowed to correct the effect of the source-related instabilities, hence to significantly increase the signal-to-noise ratio. Pure rotational spectra were measured using these developments. The case of the propynal molecule, for which a refined set of rotational and centrifugal distortion constants was calculated, proves the complementarity between CSR and the classical microwave or infrared sources. (author)

  4. Fault morphology of the lyo Fault, the Median Tectonic Line Active Fault System

    OpenAIRE

    後藤, 秀昭

    1996-01-01

    In this paper, we investigated the various fault features of the lyo fault and depicted fault lines or detailed topographic map. The results of this paper are summarized as follows; 1) Distinct evidence of the right-lateral movement is continuously discernible along the lyo fault. 2) Active fault traces are remarkably linear suggesting that the angle of fault plane is high. 3) The lyo fault can be divided into four segments by jogs between left-stepping traces. 4) The mean slip rate is 1.3 ~ ...

  5. Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves

    Science.gov (United States)

    Allam, A. A.; Schulte-Pelkum, V.; Ben-Zion, Y.; Tape, C.; Ruppert, N.; Ross, Z. E.

    2017-11-01

    We examine the structure of the Denali fault system in the crust and upper mantle using double-difference tomography, P-wave receiver functions, and analysis (spatial distribution and moveout) of fault zone head waves. The three methods have complementary sensitivity; tomography is sensitive to 3D seismic velocity structure but smooths sharp boundaries, receiver functions are sensitive to (quasi) horizontal interfaces, and fault zone head waves are sensitive to (quasi) vertical interfaces. The results indicate that the Mohorovičić discontinuity is vertically offset by 10 to 15 km along the central 600 km of the Denali fault in the imaged region, with the northern side having shallower Moho depths around 30 km. An automated phase picker algorithm is used to identify 1400 events that generate fault zone head waves only at near-fault stations. At shorter hypocentral distances head waves are observed at stations on the northern side of the fault, while longer propagation distances and deeper events produce head waves on the southern side. These results suggest a reversal of the velocity contrast polarity with depth, which we confirm by computing average 1D velocity models separately north and south of the fault. Using teleseismic events with M ≥ 5.1, we obtain 31,400 P receiver functions and apply common-conversion-point stacking. The results are migrated to depth using the derived 3D tomography model. The imaged interfaces agree with the tomography model, showing a Moho offset along the central Denali fault and also the sub-parallel Hines Creek fault, a suture zone boundary 30 km to the north. To the east, this offset follows the Totschunda fault, which ruptured during the M7.9 2002 earthquake, rather than the Denali fault itself. The combined results suggest that the Denali fault zone separates two distinct crustal blocks, and that the Totschunda and Hines Creeks segments are important components of the fault and Cretaceous-aged suture zone structure.

  6. Geophysical Characterization of the Hilton Creek Fault System

    Science.gov (United States)

    Lacy, A. K.; Macy, K. P.; De Cristofaro, J. L.; Polet, J.

    2016-12-01

    The Long Valley Caldera straddles the eastern edge of the Sierra Nevada Batholith and the western edge of the Basin and Range Province, and represents one of the largest caldera complexes on Earth. The caldera is intersected by numerous fault systems, including the Hartley Springs Fault System, the Round Valley Fault System, the Long Valley Ring Fault System, and the Hilton Creek Fault System, which is our main region of interest. The Hilton Creek Fault System appears as a single NW-striking fault, dipping to the NE, from Davis Lake in the south to the southern rim of the Long Valley Caldera. Inside the caldera, it splays into numerous parallel faults that extend toward the resurgent dome. Seismicity in the area increased significantly in May 1980, following a series of large earthquakes in the vicinity of the caldera and a subsequent large earthquake swarm which has been suggested to be the result of magma migration. A large portion of the earthquake swarms in the Long Valley Caldera occurs on or around the Hilton Creek Fault splays. We are conducting an interdisciplinary geophysical study of the Hilton Creek Fault System from just south of the onset of splay faulting, to its extension into the dome of the caldera. Our investigation includes ground-based magnetic field measurements, high-resolution total station elevation profiles, Structure-From-Motion derived topography and an analysis of earthquake focal mechanisms and statistics. Preliminary analysis of topographic profiles, of approximately 1 km in length, reveals the presence of at least three distinct fault splays within the caldera with vertical offsets of 0.5 to 1.0 meters. More detailed topographic mapping is expected to highlight smaller structures. We are also generating maps of the variation in b-value along different portions of the Hilton Creek system to determine whether we can detect any transition to more swarm-like behavior towards the North. We will show maps of magnetic anomalies, topography

  7. The Cottage Grove fault system (Illinois Basin): Late Paleozoic transpression along a Precambrian crustal boundary

    Science.gov (United States)

    Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.

    2004-01-01

    The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.

  8. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  9. Armenia-To Trans-Boundary Fault: AN Example of International Cooperation in the Caucasus

    Science.gov (United States)

    Karakhanyan, A.; Avagyan, A.; Avanesyan, M.; Elashvili, M.; Godoladze, T.; Javakishvili, Z.; Korzhenkov, A.; Philip, S.; Vergino, E. S.

    2012-12-01

    Studies of a trans-boundary active fault that cuts through the border of Armenia to Georgia in the area of the Javakheti volcanic highland have been conducted since 2007. The studies have been implemented based on the ISTC 1418 and NATO SfP 983284 Projects. The Javakheti Fault is oriented to the north-northwest and consists of individual segments displaying clear left-stepping trend. Fault mechanism is represented by right-lateral strike-slip with normal-fault component. The fault formed distinct scarps, deforming young volcanic and glacial sediments. The maximum-size displacements are recorded in the central part of the fault and range up to 150-200 m by normal fault and 700-900 m by right-lateral strike-slip fault. On both flanks, fault scarps have younger appearance, and displacement size there decreases to tens of meters. Fault length is 80 km, suggesting that maximum fault magnitude is estimated at 7.3 according to the Wells and Coppersmith (1994) relation. Many minor earthquakes and a few stronger events (1088, Mw=6.4, 1899 Mw=6.4, 1912, Mw=6.4 and 1925, Mw=5.6) are associated with the fault. In 2011/2012, we conducted paleoseismological and archeoseismological studies of the fault. By two paleoseismological trenches were excavated in the central part of the fault, and on its northern and southern flanks. The trenches enabled recording at least three strong ancient earthquakes. Presently, results of radiocarbon age estimations of those events are expected. The Javakheti Fault may pose considerable seismic hazard for trans-boundary areas of Armenia and Georgia as its northern flank is located at the distance of 15 km from the Baku-Ceyhan pipeline.

  10. Fault Detection for Industrial Processes

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang

    2012-01-01

    Full Text Available A new fault-relevant KPCA algorithm is proposed. Then the fault detection approach is proposed based on the fault-relevant KPCA algorithm. The proposed method further decomposes both the KPCA principal space and residual space into two subspaces. Compared with traditional statistical techniques, the fault subspace is separated based on the fault-relevant influence. This method can find fault-relevant principal directions and principal components of systematic subspace and residual subspace for process monitoring. The proposed monitoring approach is applied to Tennessee Eastman process and penicillin fermentation process. The simulation results show the effectiveness of the proposed method.

  11. Fault tree analysis

    International Nuclear Information System (INIS)

    1981-09-01

    Suggestion are made concerning the method of the fault tree analysis, the use of certain symbols in the examination of system failures. This purpose of the fault free analysis is to find logical connections of component or subsystem failures leading to undesirable occurrances. The results of these examinations are part of the system assessment concerning operation and safety. The objectives of the analysis are: systematical identification of all possible failure combinations (causes) leading to a specific undesirable occurrance, finding of reliability parameters such as frequency of failure combinations, frequency of the undesirable occurrance or non-availability of the system when required. The fault tree analysis provides a near and reconstructable documentation of the examination. (orig./HP) [de

  12. Self-constrained inversion of microgravity data along a segment of the Irpinia fault

    Science.gov (United States)

    Lo Re, Davide; Florio, Giovanni; Ferranti, Luigi; Ialongo, Simone; Castiello, Gabriella

    2016-01-01

    A microgravity survey was completed to precisely locate and better characterize the near-surface geometry of a recent fault with small throw in a mountainous area in the Southern Apennines (Italy). The site is on a segment of the Irpinia fault, which is the source of the M6.9 1980 earthquake. This fault cuts a few meter of Mesozoic carbonate bedrock and its younger, mostly Holocene continental deposits cover. The amplitude of the complete Bouguer anomaly along two profiles across the fault is about 50 μGal. The data were analyzed and interpreted according to a self-constrained strategy, where some rapid estimation of source parameters was later used as constraint for the inversion. The fault has been clearly identified and localized in its horizontal position and depth. Interesting features in the overburden have been identified and their interpretation has allowed us to estimate the fault slip-rate, which is consistent with independent geological estimates.

  13. New evidence on the state of stress of the san andreas fault system.

    Science.gov (United States)

    Zoback, M D; Zoback, M L; Mount, V S; Suppe, J; Eaton, J P; Healy, J H; Oppenheimer, D; Reasenberg, P; Jones, L; Raleigh, C B; Wong, I G; Scotti, O; Wentworth, C

    1987-11-20

    Contemporary in situ tectonic stress indicators along the San Andreas fault system in central California show northeast-directed horizontal compression that is nearly perpendicular to the strike of the fault. Such compression explains recent uplift of the Coast Ranges and the numerous active reverse faults and folds that trend nearly parallel to the San Andreas and that are otherwise unexplainable in terms of strike-slip deformation. Fault-normal crustal compression in central California is proposed to result from the extremely low shear strength of the San Andreas and the slightly convergent relative motion between the Pacific and North American plates. Preliminary in situ stress data from the Cajon Pass scientific drill hole (located 3.6 kilometers northeast of the San Andreas in southern California near San Bernardino, California) are also consistent with a weak fault, as they show no right-lateral shear stress at approximately 2-kilometer depth on planes parallel to the San Andreas fault.

  14. Computer hardware fault administration

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  15. Fault Tolerant Computer Architecture

    CERN Document Server

    Sorin, Daniel

    2009-01-01

    For many years, most computer architects have pursued one primary goal: performance. Architects have translated the ever-increasing abundance of ever-faster transistors provided by Moore's law into remarkable increases in performance. Recently, however, the bounty provided by Moore's law has been accompanied by several challenges that have arisen as devices have become smaller, including a decrease in dependability due to physical faults. In this book, we focus on the dependability challenge and the fault tolerance solutions that architects are developing to overcome it. The two main purposes

  16. Fault tolerant linear actuator

    Science.gov (United States)

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  17. Which Fault Segments Ruptured in the 2008 Wenchuan Earthquake and Which Did Not? New Evidence from Near‐Fault 3D Surface Displacements Derived from SAR Image Offsets

    KAUST Repository

    Feng, Guangcai; Jonsson, Sigurjon; Klinger, Yann

    2017-01-01

    The 2008 Mw 7.9 Wenchuan earthquake ruptured a complex thrust‐faulting system at the eastern edge of the Tibetan plateau and west of Sichuan basin. Though the earthquake has been extensively studied, several details about the earthquake, such as which fault segments were activated in the earthquake, are still not clear. This is in part due to difficult field access to the fault zone and in part due to limited near‐fault observations in Interferometric Synthetic Aperture Radar (InSAR) observations because of decorrelation. In this study, we address this problem by estimating SAR image offsets that provide near‐fault ground displacement information and exhibit clear displacement discontinuities across activated fault segments. We begin by reanalyzing the coseismic InSAR observations of the earthquake and then mostly eliminate the strong ionospheric signals that were plaguing previous studies by using additional postevent images. We also estimate the SAR image offsets and use their results to retrieve the full 3D coseismic surface displacement field. The coseismic deformation from the InSAR and image‐offset measurements are compared with both Global Positioning System and field observations. The results indicate that our observations provide significantly better information than previous InSAR studies that were affected by ionospheric disturbances. We use the results to present details of the surface‐faulting offsets along the Beichuan fault from the southwest to the northeast and find that there is an obvious right‐lateral strike‐slip component (as well as thrust faulting) along the southern Beichuan fault (in Yingxiu County), which was strongly underestimated in earlier studies. Based on the results, we provide new evidence to show that the Qingchuan fault was not ruptured in the 2008 Wenchuan earthquake, a topic debated in field observation studies, but show instead that surface faulting occurred on a northward extension of the Beichuan fault during

  18. Which Fault Segments Ruptured in the 2008 Wenchuan Earthquake and Which Did Not? New Evidence from Near‐Fault 3D Surface Displacements Derived from SAR Image Offsets

    KAUST Repository

    Feng, Guangcai

    2017-03-15

    The 2008 Mw 7.9 Wenchuan earthquake ruptured a complex thrust‐faulting system at the eastern edge of the Tibetan plateau and west of Sichuan basin. Though the earthquake has been extensively studied, several details about the earthquake, such as which fault segments were activated in the earthquake, are still not clear. This is in part due to difficult field access to the fault zone and in part due to limited near‐fault observations in Interferometric Synthetic Aperture Radar (InSAR) observations because of decorrelation. In this study, we address this problem by estimating SAR image offsets that provide near‐fault ground displacement information and exhibit clear displacement discontinuities across activated fault segments. We begin by reanalyzing the coseismic InSAR observations of the earthquake and then mostly eliminate the strong ionospheric signals that were plaguing previous studies by using additional postevent images. We also estimate the SAR image offsets and use their results to retrieve the full 3D coseismic surface displacement field. The coseismic deformation from the InSAR and image‐offset measurements are compared with both Global Positioning System and field observations. The results indicate that our observations provide significantly better information than previous InSAR studies that were affected by ionospheric disturbances. We use the results to present details of the surface‐faulting offsets along the Beichuan fault from the southwest to the northeast and find that there is an obvious right‐lateral strike‐slip component (as well as thrust faulting) along the southern Beichuan fault (in Yingxiu County), which was strongly underestimated in earlier studies. Based on the results, we provide new evidence to show that the Qingchuan fault was not ruptured in the 2008 Wenchuan earthquake, a topic debated in field observation studies, but show instead that surface faulting occurred on a northward extension of the Beichuan fault during

  19. Crustal structure of norther Oaxaca terrane; The Oaxaca and caltepec faults, and the Tehuacan Valley. A gravity study.

    Science.gov (United States)

    Campos-Enriquez, J. O.; Alatorre-Zamora, M. A.; Ramón, V. M.; Belmonte, S.

    2014-12-01

    Northern Oaxaca terrane, southern Mexico, is bound by the Caltepec and Oaxaca faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacan depression. Several gravity profiles across these faults and the Oaxaca terrane (including the Tehuacan Valley) enables us to establish the upper crustal structure of this region. Accordingly, the Oaxaca terrane is downward displaced to the east in two steps. First the Santa Lucia Fault puts into contact the granulitic basamental rocks with Phanerozoic volcanic and sedimentary rocks. Finally, the Gavilan Fault puts into contact the Oaxaca terrane basement (Oaxaca Complex) into contact with the volcano-sedimentary infill of the valley. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex?). A structural high at the western Tehuacan depression accomadates the east dipping faults (Santa Lucia and Gavilan faults) and the west dipping faults of the Oaxaca Fault System. To the west of this high structural we have the depper depocenters. The Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. The faults are regional tectonic structures. They seem to continue northwards below the Trans-Mexican Volcanic Belt. A major E-W to NE-SW discontinuity on the Oaxaca terrane is inferred to exist between profiles 1 and 2. The Tehuacan Valley posses a large groundwater potential.

  20. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn

    2013-01-01

    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes...

  1. Fault management and systems knowledge

    Science.gov (United States)

    2016-12-01

    Pilots are asked to manage faults during flight operations. This leads to the training question of the type and depth of system knowledge required to respond to these faults. Based on discussions with multiple airline operators, there is agreement th...

  2. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2002-03-01

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene

  3. Fault diagnosis of induction motors

    CERN Document Server

    Faiz, Jawad; Joksimović, Gojko

    2017-01-01

    This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.

  4. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2002-03-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene.

  5. Introduction to fault tree analysis

    International Nuclear Information System (INIS)

    Barlow, R.E.; Lambert, H.E.

    1975-01-01

    An elementary, engineering oriented introduction to fault tree analysis is presented. The basic concepts, techniques and applications of fault tree analysis, FTA, are described. The two major steps of FTA are identified as (1) the construction of the fault tree and (2) its evaluation. The evaluation of the fault tree can be qualitative or quantitative depending upon the scope, extensiveness and use of the analysis. The advantages, limitations and usefulness of FTA are discussed

  6. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2013-01-01

    In the recent years the wind turbine industry has focused on optimizing the cost of energy. One of the important factors in this is to increase reliability of the wind turbines. Advanced fault detection, isolation and accommodation are important tools in this process. Clearly most faults are deal...... scenarios. This benchmark model is used in an international competition dealing with Wind Farm fault detection and isolation and fault tolerant control....

  7. Rapid Response Fault Drilling Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Demian M. Saffer

    2009-09-01

    Full Text Available New information about large earthquakes can be acquired by drilling into the fault zone quickly following a large seismic event. Specifically, we can learn about the levels of friction and strength of the fault which determine the dynamic rupture, monitor the healing process of the fault, record the stress changes that trigger aftershocks and capture important physical and chemical properties of the fault that control the rupture process. These scientific and associated technical issues were the focus of a three-day workshop on Rapid Response Fault Drilling: Past, Present, and Future, sponsored by the International Continental Scientific Drilling Program (ICDP and the Southern California Earthquake Center (SCEC. The meeting drewtogether forty-four scientists representing ten countries in Tokyo, Japan during November 2008. The group discussed the scientific problems and how they could be addressed through rapid response drilling. Focused talks presented previous work on drilling after large earthquakes and in fault zones in general, as well as the state of the art of experimental techniques and measurement strategies. Detailed discussion weighed the tradeoffs between rapid drilling andthe ability to satisfy a diverse range of scientific objectives. Plausible drilling sites and scenarios were evaluated. This is a shortened summary of the workshop report that discusses key scientific questions, measurement strategies, and recommendations. This report can provide a starting point for quickly mobilizing a drilling program following future large earthquakes. The full report can be seen at http://www.pmc.ucsc.edu/~rapid/.

  8. Southern Appalachian Regional Seismic Network

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M. [Memphis State Univ., TN (United States). Center for Earthquake Research and Information

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern.

  9. Southern Appalachian Regional Seismic Network

    International Nuclear Information System (INIS)

    Chiu, S.C.C.; Johnston, A.C.; Chiu, J.M.

    1994-08-01

    The seismic activity in the southern Appalachian area was monitored by the Southern Appalachian Regional Seismic Network (SARSN) since late 1979 by the Center for Earthquake Research and Information (CERI) at Memphis State University. This network provides good spatial coverage for earthquake locations especially in east Tennessee. The level of activity concentrates more heavily in the Valley and Ridge province of eastern Tennessee, as opposed to the Blue Ridge or Inner Piedmont. The large majority of these events lie between New York - Alabama lineament and the Clingman/Ocoee lineament, magnetic anomalies produced by deep-seated basement structures. Therefore SARSN, even with its wide station spacing, has been able to define the essential first-order seismological characteristics of the Southern Appalachian seismic zone. The focal depths of the southeastern U.S. earthquakes concentrate between 8 and 16 km, occurring principally beneath the Appalachian overthrust. In cross-sectional views, the average seismicity is shallower to the east beneath the Blue Ridge and Piedmont provinces and deeper to the west beneath the Valley and Ridge and the North American craton. Results of recent focal mechanism studies by using the CERI digital earthquake catalog between October, 1986 and December, 1991, indicate that the basement of the Valley and Ridge province is under a horizontal, NE-SW compressive stress. Right-lateral strike-slip faulting on nearly north-south fault planes is preferred because it agrees with the trend of the regional magnetic anomaly pattern

  10. Row fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2008-10-14

    An apparatus, program product and method checks for nodal faults in a row of nodes by causing each node in the row to concurrently communicate with its adjacent neighbor nodes in the row. The communications are analyzed to determine a presence of a faulty node or connection.

  11. Fault isolation techniques

    Science.gov (United States)

    Dumas, A.

    1981-01-01

    Three major areas that are considered in the development of an overall maintenance scheme of computer equipment are described. The areas of concern related to fault isolation techniques are: the programmer (or user), company and its policies, and the manufacturer of the equipment.

  12. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S. A.

    This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...

  13. Fault-Related Sanctuaries

    Science.gov (United States)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  14. Geology and structure of the North Boqueron Bay-Punta Montalva Fault System

    Science.gov (United States)

    Roig Silva, Coral Marie

    The North Boqueron Bay-Punta Montalva Fault Zone is an active fault system that cuts across the Lajas Valley in southwestern Puerto Rico. The fault zone has been recognized and mapped based upon detailed analysis of geophysical data, satellite images and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (ML < 5.0) with numerous locally felt earthquakes. Focal mechanism solutions and structural field data suggest strain partitioning with predominantly east-west left-lateral displacements with small normal faults oriented mostly toward the northeast. Evidence for recent displacement consists of fractures and small normal faults oriented mostly northeast found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, Areas of preferred erosion, within the alluvial fan, trend toward the west-northwest parallel to the on-land projection of the North Boqueron Bay Fault. Beyond the faulted alluvial fan and southeast of the Lajas Valley, the Northern Boqueron Bay Fault joins with the Punta Montalva Fault. The Punta Montalva Fault is defined by a strong topographic WNW lineament along which stream channels are displaced left laterally 200 meters and Miocene strata are steeply tilted to the south. Along the western end of the fault zone in northern Boqueron Bay, the older strata are only tilted 3° south and are covered by flat lying Holocene sediments. Focal mechanisms solutions along the western end suggest NW-SE shortening, which is inconsistent with left lateral strain partitioning along the fault zone. The limited deformation of older strata and inconsistent strain partitioning may be explained by a westerly propagation of the fault system from the southwest end. The limited geomorphic structural expression along the North Boqueron Bay Fault segment

  15. Geometry and kinematics of adhesive wear in brittle strike-slip fault zones

    Science.gov (United States)

    Swanson, Mark T.

    2005-05-01

    Detailed outcrop surface mapping in Late Paleozoic cataclastic strike-slip faults of coastal Maine shows that asymmetric sidewall ripouts, 0.1-200 m in length, are a significant component of many mapped faults and an important wall rock deformation mechanism during faulting. The geometry of these structures ranges from simple lenses to elongate slabs cut out of the sidewalls of strike-slip faults by a lateral jump of the active zone of slip during adhesion along a section of the main fault. The new irregular trace of the active fault after this jump creates an indenting asperity that is forced to plow through the adjoining wall rock during continued adhesion or be cut off by renewed motion along the main section of the fault. Ripout translation during adhesion sets up the structural asymmetry with trailing extensional and leading contractional ends to the ripout block. The inactive section of the main fault trace at the trailing end can develop a 'sag' or 'half-graben' type geometry due to block movement along the scallop-shaped connecting ramp to the flanking ripout fault. Leading contractional ramps can develop 'thrust' type imbrication and forces the 'humpback' geometry to the ripout slab due to distortion of the inactive main fault surface by ripout translation. Similar asymmetric ripout geometries are recognized in many other major crustal scale strike-slip fault zones worldwide. Ripout structures in the 5-500 km length range can be found on the Atacama fault system of northern Chile, the Qujiang and Xiaojiang fault zones in western China, the Yalakom-Hozameen fault zone in British Columbia and the San Andreas fault system in southern California. For active crustal-scale faults the surface expression of ripout translation includes a coupled system of extensional trailing ramps as normal oblique-slip faults with pull-apart basin sedimentation and contractional leading ramps as oblique thrust or high angle reverse faults with associated uplift and erosion. The

  16. Mechanisms of unsteady shallow creep on major crustal faults

    Science.gov (United States)

    Jiang, J.; Fialko, Y. A.

    2017-12-01

    A number of active crustal faults are associated with geodetically detectable shallow creep, while other faults appear to be locked all the way to the surface over the interseismic period. Faults that exhibit shallow creep also often host episodic accelerated creep events. Examples include the Ismetpasa segment of the North Anatolian Fault (NAF) in Turkey and the Southern San Andreas and Superstition Hills (SHF) faults in Southern California. Recent geodetic observations indicate that shallow creep events can involve large fault sections (tens of km long) and persist throughout different stages of a seismic cycle. A traditional interpretation of shallow creep in terms of a velocity-strengthening (VS) layer atop the seismogenic velocity-weakening (VW) zone fails to explain episodic creep events. Wei et al. (2013) proposed that such events can be due to a thin VW layer within the VS shallow crust, implying rather special structural and lithologic conditions. We explore the rheologic controls on aseismic episodic slip and its implications for seismic faulting in the framework of laboratory rate-and-state friction. Observations of co-, post- and inter-seismic slip from the NAF and SHF are used to infer depth-dependent frictional properties in a 2D fault model. In particular, creep events with displacements on the order of millimeters and periods of months are reproduced in a model having monotonic depth variations in rate-and-state parameters. Such a model includes a velocity-neutral (VN) layer sandwiched between the surface layer with VS frictional properties, constrained by observed postseismic afterslip, and a deeper VW layer that largely controls the recurrence of major earthquakes. With the presence of the VN layer, the amount of surface-breaching coseismic slip critically depends on how dynamic weakening varies with depth in the seismogenic layer. Observations of limited surface slip during prior events on the NAF and SHF suggest that coseismic fault weakening is

  17. A case for historic joint rupture of the San Andreas and San Jacinto faults

    Science.gov (United States)

    Lozos, Julian C.

    2016-01-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data and historic observations for the ~M7.5 earthquake of 8 December 1812 are best explained by a rupture that begins on the San Jacinto fault and propagates onto the San Andreas fault. This precedent carries the implications that similar joint ruptures are possible in the future and that the San Jacinto fault plays a more significant role in seismic hazard in southern California than previously considered. My work also shows how physics-based modeling can be used for interpreting paleoseismic data sets and understanding prehistoric fault behavior. PMID:27034977

  18. A case for historic joint rupture of the San Andreas and San Jacinto faults.

    Science.gov (United States)

    Lozos, Julian C

    2016-03-01

    The San Andreas fault is considered to be the primary plate boundary fault in southern California and the most likely fault to produce a major earthquake. I use dynamic rupture modeling to show that the San Jacinto fault is capable of rupturing along with the San Andreas in a single earthquake, and interpret these results along with existing paleoseismic data and historic damage reports to suggest that this has likely occurred in the historic past. In particular, I find that paleoseismic data and historic observations for the ~M7.5 earthquake of 8 December 1812 are best explained by a rupture that begins on the San Jacinto fault and propagates onto the San Andreas fault. This precedent carries the implications that similar joint ruptures are possible in the future and that the San Jacinto fault plays a more significant role in seismic hazard in southern California than previously considered. My work also shows how physics-based modeling can be used for interpreting paleoseismic data sets and understanding prehistoric fault behavior.

  19. LAMPF first-fault identifier for fast transient faults

    International Nuclear Information System (INIS)

    Swanson, A.R.; Hill, R.E.

    1979-01-01

    The LAMPF accelerator is presently producing 800-MeV proton beams at 0.5 mA average current. Machine protection for such a high-intensity accelerator requires a fast shutdown mechanism, which can turn off the beam within a few microseconds of the occurrence of a machine fault. The resulting beam unloading transients cause the rf systems to exceed control loop tolerances and consequently generate multiple fault indications for identification by the control computer. The problem is to isolate the primary fault or cause of beam shutdown while disregarding as many as 50 secondary fault indications that occur as a result of beam shutdown. The LAMPF First-Fault Identifier (FFI) for fast transient faults is operational and has proven capable of first-fault identification. The FFI design utilized features of the Fast Protection System that were previously implemented for beam chopping and rf power conservation. No software changes were required

  20. Elasto-plastic deformation and plate weakening due to normal faulting in the subducting plate along the Mariana Trench

    Science.gov (United States)

    Zhou, Zhiyuan; Lin, Jian

    2018-06-01

    We investigated variations in the elasto-plastic deformation of the subducting plate along the Mariana Trench through an analysis of flexural bending and normal fault characteristics together with geodynamic modeling. Most normal faults were initiated at the outer-rise region and grew toward the trench axis with strikes mostly subparallel to the local trench axis. The average trench relief and maximum fault throws were measured to be significantly greater in the southern region (5 km and 320 m, respectively) than the northern and central regions (2 km and 200 m). The subducting plate was modeled as an elasto-plastic slab subjected to tectonic loading at the trench axis. The calculated strain rates and velocities revealed an array of normal fault-like shear zones in the upper plate, resulting in significant faulting-induced reduction in the deviatoric stresses. We then inverted for solutions that best fit the observed flexural bending and normal faulting characteristics, revealing normal fault penetration to depths of 21, 20, and 32 km beneath the seafloor for the northern, central, and southern regions, respectively, which is consistent with the observed depths of the relocated normal faulting earthquakes in the central Mariana Trench. The calculated deeper normal faults of the southern region might lead to about twice as much water being carried into the mantle per unit trench length than the northern and central regions. We further calculated that normal faulting has reduced the effective elastic plate thickness Te by up to 52% locally in the southern region and 33% in both the northern and central regions. The best-fitting solutions revealed a greater apparent angle of the pulling force in the southern region (51-64°) than in the northern (22-35°) and central (20-34°) regions, which correlates with a general southward increase in the seismically-determined dip angle of the subducting slab along the Mariana Trench.

  1. Crustal Deformation across the Jericho Valley Section of the Dead Sea Fault as Resolved by Detailed Field and Geodetic Observations

    Science.gov (United States)

    Hamiel, Yariv; Piatibratova, Oksana; Mizrahi, Yaakov; Nahmias, Yoav; Sagy, Amir

    2018-04-01

    Detailed field and geodetic observations of crustal deformation across the Jericho Fault section of the Dead Sea Fault are presented. New field observations reveal several slip episodes that rupture the surface, consist with strike slip and extensional deformation along a fault zone width of about 200 m. Using dense Global Positioning System measurements, we obtain the velocities of new stations across the fault. We find that this section is locked for strike-slip motion with a locking depth of 16.6 ± 7.8 km and a slip rate of 4.8 ± 0.7 mm/year. The Global Positioning System measurements also indicate asymmetrical extension at shallow depths of the Jericho Fault section, between 0.3 and 3 km. Finally, our results suggest the vast majority of the sinistral slip along the Dead Sea Fault in southern Jorden Valley is accommodated by the Jericho Fault section.

  2. The Bocono Fault Zone, Western Venezuela

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, C. (I.V.I.C., Caracas (Venezuela)); Estevez, R. (Universidad de los Andes, Merida (Venezuela)); Henneberg, H.G. (Universidad del Zulia, Maracaibo (Venezuela))

    1993-02-01

    The Bocono Fault Zone, the western part of the Bocono Moron-El Pilar Fault System of the southern Caribbean plate boundary, consists of aligned valleys, linear depressions, pull-apart basins and other morphological features, which extend for about 500 km in a N45[degrees]E direction, between the Tachira depression (Venezuela-Colombia border) and the Caribbean Sea. It crosses obliquely the Cordillera de Merida and cuts across the Caribbean Mountains, two different geologic provinces of Late Tertiary-Quaternary and Late Cretaceous-Early Tertiary age, respectively. Therefore, the maximum age that can be assigned to the Bocono Fault Zone is Late Tertiary (probably Pliocene). A total maximum right-lateral offset rate of 3.3 mm/a. The age of the sedimentary fill o[approximately] the La Gonzalez pull-apart basin suggests that the 7-9 km right-lateral offset necessary to produce it took place in Middle to Late Pleistocene time. The majority of seismic events are well aligned with the main fault trace; minor events are distributed in a belt several kilometers wide. Focal depth is typically 15 km and focal mechanisms indicate an average east-west compression across the zone. Return periods of 135-460 a (Richter M = 8), 45-70 a (M = 7), and 7-15 a (M = 6) have been calculated. Geodetic studies of several sites along the zone indicate compressive and right-lateral components; at Mucubaji the rate of right-lateral displacement observed is about 1 mm every 5 months (15 a of measurements).

  3. Fault-tolerant computing systems

    International Nuclear Information System (INIS)

    Dal Cin, M.; Hohl, W.

    1991-01-01

    Tests, Diagnosis and Fault Treatment were chosen as the guiding themes of the conference. However, the scope of the conference included reliability, availability, safety and security issues in software and hardware systems as well. The sessions were organized for the conference which was completed by an industrial presentation: Keynote Address, Reconfiguration and Recover, System Level Diagnosis, Voting and Agreement, Testing, Fault-Tolerant Circuits, Array Testing, Modelling, Applied Fault Tolerance, Fault-Tolerant Arrays and Systems, Interconnection Networks, Fault-Tolerant Software. One paper has been indexed separately in the database. (orig./HP)

  4. Fault rocks and uranium mineralization

    International Nuclear Information System (INIS)

    Tong Hangshou.

    1991-01-01

    The types of fault rocks, microstructural characteristics of fault tectonite and their relationship with uranium mineralization in the uranium-productive granite area are discussed. According to the synthetic analysis on nature of stress, extent of crack and microstructural characteristics of fault rocks, they can be classified into five groups and sixteen subgroups. The author especially emphasizes the control of cataclasite group and fault breccia group over uranium mineralization in the uranium-productive granite area. It is considered that more effective study should be made on the macrostructure and microstructure of fault rocks. It is of an important practical significance in uranium exploration

  5. Network Fault Diagnosis Using DSM

    Institute of Scientific and Technical Information of China (English)

    Jiang Hao; Yan Pu-liu; Chen Xiao; Wu Jing

    2004-01-01

    Difference similitude matrix (DSM) is effective in reducing information system with its higher reduction rate and higher validity. We use DSM method to analyze the fault data of computer networks and obtain the fault diagnosis rules. Through discretizing the relative value of fault data, we get the information system of the fault data. DSM method reduces the information system and gets the diagnosis rules. The simulation with the actual scenario shows that the fault diagnosis based on DSM can obtain few and effective rules.

  6. Using marine magnetic survey data to identify a gold ore-controlling fault: a case study in Sanshandao fault, eastern China

    Science.gov (United States)

    Yan, Jiayong; Wang, Zhihui; Wang, Jinhui; Song, Jianhua

    2018-06-01

    The Jiaodong Peninsula has the greatest concentration of gold ore in China and is characterized by altered tectonite-type gold ore deposits. This type of gold deposit is mainly formed in fracture zones and is strictly controlled by faults. Three major ore-controlling faults occur in the Jiaodong Peninsula—the Jiaojia, Zhaoping and Sanshandao faults; the former two are located on land and the latter is located near Sanshandao and its adjacent offshore area. The discovery of the world’s largest marine gold deposit in northeastern Sanshandao indicates that the shallow offshore area has great potential for gold prospecting. However, as two ends of the Sanshandao fault extend to the Bohai Sea, conventional geological survey methods cannot determine the distribution of the fault and this is constraining the discovery of new gold deposits. To explore the southwestward extension of the Sanshandao fault, we performed a 1:25 000 scale marine magnetic survey in this region and obtained high-quality magnetic survey data covering 170 km2. Multi-scale edge detection and three-dimensional inversion of magnetic anomalies identify the characteristics of the southwestward extension of the Sanshandao fault and the three-dimensional distribution of the main lithologies, providing significant evidence for the deployment of marine gold deposit prospecting in the southern segment of the Sanshandao fault. Moreover, three other faults were identified in the study area and faults F2 and F4 are inferred as ore-controlling faults: there may exist other altered tectonite-type gold ore deposits along these two faults.

  7. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada

    Science.gov (United States)

    López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.

    1994-01-01

    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  8. Miocene Tectonics at the Pannonian - Carpathian Transition: The Bogdan Voda - Dragos Voda fault system, northern Romania

    Science.gov (United States)

    Tischler, M.; Gröger, H.; Marin, M.; Schmid, S. M.; Fügenschuh, B.

    2003-04-01

    Tertiary tectonics in the Pannonian-Carpathian transition zone was dominated by opposed rotations of Alcapa and Tisza-Dacia, separated by the Mid-Hungarian lineament (MHL). While in the Pannonian basin the MHL is well known from geophysical and borehole data, its northeastern continuation remains a matter of discussion. Our field based study, located in the Maramures mountains of northern Romania, provides new kinematic data from the Bogdan Voda fault, a first order candidate for the prolongation of the MHL to the northeast. In the Burdigalian, the Pienides (unmetamorphic flysch nappes) were emplaced onto the autochthonous Paleogene flysch units. Kinematic data consistently indicate top to the SE-directed thrusting of the Pienides and selected imbrications in the autochthonous units. Between Langhian and Tortonian these thrust contacts were offset by the E-W trending Bogdan Voda fault and its eastern continuation, the Dragos-Voda fault. These two faults share a common polyphase history, at least since the Burdigalian. Kinematic data derived from mesoscale faults indicate sinistral strike-slip displacement, in good agreement with kinematics inferred from map view. The NE-SW trending Greben fault, another fault of regional importance, was coevally active as a normal fault. From stratigraphic arguments major activity of this fault system is constrained to the time interval between 16.4-10 Ma. While deformation is strongly concentrated in the sedimentary units, the easterly located basement units are affected by abundant minor faults of similar kinematics covering a wide area. These SW-NE trending strike slip faults feature a normal component and resemble an imbricate fan geometry. Since Burdigalian thrusting is consistently SE-directed on either side of the Bogdan-Dragos Voda fault, major post-Burdigalian differential rotations can be excluded for the northern and southern block respectively. Hydrothermal veins within Pannonian volcanic units are aligned along the

  9. Expression of San Andreas fault on Seasat radar image

    Science.gov (United States)

    Sabins, F. F., Jr.; Blom, R.; Elachi, C.

    1980-01-01

    A Seasat image (23.5 cm wavelength) of the Durmid Hills in southern California, the San Andreas Fault was analyzed. It is shown that a prominent southeast trending tonal lineament exists that is bright on the southwest side and dark on the northeast side. The cause of the contrasting signatures on opposite sides of the lineament was determined and the geologic signficance of the lineament was evaluated.

  10. Fault Slip Partitioning in the Eastern California Shear Zone-Walker Lane Belt: Pliocene to Late Pleistocene Contraction Across the Mina Deflection

    Science.gov (United States)

    Lee, J.; Stockli, D.; Gosse, J.

    2007-12-01

    Two different mechanisms have been proposed for fault slip transfer between the subparallel NW-striking dextral- slip faults that dominant the Eastern California Shear Zone (ECSZ)-Walker Lane Belt (WLB). In the northern WLB, domains of sinistral-slip along NE-striking faults and clockwise block rotation within a zone of distributed deformation accommodated NW-dextral shear. A somewhat modified version of this mechanism was also proposed for the Mina deflection, southern WLB, whereby NE-striking sinistral faults formed as conjugate faults to the primary zone of NW-dextral shear; clockwise rotation of the blocks bounding the sinistral faults accommodated dextral slip. In contrast, in the northern ECSZ and Mina deflection, domains of NE-striking pure dip-slip normal faults, bounded by NW-striking dextral-slip faults, exhibited no rotation; the proposed mechanism of slip transfer was one of right-stepping, high angle normal faults in which the magnitude of extension was proportional to the amount of strike-slip motion transferred. New geologic mapping, tectonic geomorphologic, and geochronologic data from the Queen Valley area, southern Mina deflection constrain Pliocene to late Quaternary fault geometries, slip orientations, slip magnitudes, and slip rates that bear on the mechanism of fault slip transfer from the relatively narrow northern ECSZ to the broad deformation zone that defines the Mina deflection. Four different fault types and orientations cut across the Queen Valley area: (1) The NE-striking normal-slip Queen Valley fault; (2) NE-striking sinistral faults; (3) the NW-striking dextral Coyote Springs fault, which merges into (4) a set of EW-striking thrust faults. (U-Th)/He apatite and cosmogenic radionuclide data, combined with magnitude of fault offset measurements, indicate a Pliocene to late Pleistocene horizontal extension rate of 0.2-0.3 mm/yr across the Queen Valley fault. Our results, combined with published slip rates for the dextral White Mountain

  11. Differential Extension, Displacement Transfer, and the South to North Decrease in Displacement on the Furnace Creek - Fish Lake Valley Fault System, Western Great Basin.

    Science.gov (United States)

    Katopody, D. T.; Oldow, J. S.

    2015-12-01

    The northwest-striking Furnace Creek - Fish Lake Valley (FC-FLV) fault system stretches for >250 km from southeastern California to western Nevada, forms the eastern boundary of the northern segment of the Eastern California Shear Zone, and has contemporary displacement. The FC-FLV fault system initiated in the mid-Miocene (10-12 Ma) and shows a south to north decrease in displacement from a maximum of 75-100 km to less than 10 km. Coeval elongation by extension on north-northeast striking faults within the adjoining blocks to the FC-FLV fault both supply and remove cumulative displacement measured at the northern end of the transcurrent fault system. Elongation and displacement transfer in the eastern block, constituting the southern Walker Lane of western Nevada, exceeds that of the western block and results in the net south to north decrease in displacement on the FC-FLV fault system. Elongation in the eastern block is accommodated by late Miocene to Pliocene detachment faulting followed by extension on superposed, east-northeast striking, high-angle structures. Displacement transfer from the FC-FLV fault system to the northwest-trending faults of the central Walker Lane to the north is accomplished by motion on a series of west-northwest striking transcurrent faults, named the Oriental Wash, Sylvania Mountain, and Palmetto Mountain fault systems. The west-northwest striking transcurrent faults cross-cut earlier detachment structures and are kinematically linked to east-northeast high-angle extensional faults. The transcurrent faults are mapped along strike for 60 km to the east, where they merge with north-northwest faults forming the eastern boundary of the southern Walker Lane. The west-northwest trending transcurrent faults have 30-35 km of cumulative left-lateral displacement and are a major contributor to the decrease in right-lateral displacement on the FC-FLV fault system.

  12. Faults in Linux

    DEFF Research Database (Denmark)

    Palix, Nicolas Jean-Michel; Thomas, Gaël; Saha, Suman

    2011-01-01

    In 2001, Chou et al. published a study of faults found by applying a static analyzer to Linux versions 1.0 through 2.4.1. A major result of their work was that the drivers directory contained up to 7 times more of certain kinds of faults than other directories. This result inspired a number...... of development and research efforts on improving the reliability of driver code. Today Linux is used in a much wider range of environments, provides a much wider range of services, and has adopted a new development and release model. What has been the impact of these changes on code quality? Are drivers still...... a major problem? To answer these questions, we have transported the experiments of Chou et al. to Linux versions 2.6.0 to 2.6.33, released between late 2003 and early 2010. We find that Linux has more than doubled in size during this period, but that the number of faults per line of code has been...

  13. The Sorong Fault Zone, Indonesia: Mapping a Fault Zone Offshore

    Science.gov (United States)

    Melia, S.; Hall, R.

    2017-12-01

    The Sorong Fault Zone is a left-lateral strike-slip fault zone in eastern Indonesia, extending westwards from the Bird's Head peninsula of West Papua towards Sulawesi. It is the result of interactions between the Pacific, Caroline, Philippine Sea, and Australian Plates and much of it is offshore. Previous research on the fault zone has been limited by the low resolution of available data offshore, leading to debates over the extent, location, and timing of movements, and the tectonic evolution of eastern Indonesia. Different studies have shown it north of the Sula Islands, truncated south of Halmahera, continuing to Sulawesi, or splaying into a horsetail fan of smaller faults. Recently acquired high resolution multibeam bathymetry of the seafloor (with a resolution of 15-25 meters), and 2D seismic lines, provide the opportunity to trace the fault offshore. The position of different strands can be identified. On land, SRTM topography shows that in the northern Bird's Head the fault zone is characterised by closely spaced E-W trending faults. NW of the Bird's Head offshore there is a fold and thrust belt which terminates some strands. To the west of the Bird's Head offshore the fault zone diverges into multiple strands trending ENE-WSW. Regions of Riedel shearing are evident west of the Bird's Head, indicating sinistral strike-slip motion. Further west, the ENE-WSW trending faults turn to an E-W trend and there are at least three fault zones situated immediately south of Halmahera, north of the Sula Islands, and between the islands of Sanana and Mangole where the fault system terminates in horsetail strands. South of the Sula islands some former normal faults at the continent-ocean boundary with the North Banda Sea are being reactivated as strike-slip faults. The fault zone does not currently reach Sulawesi. The new fault map differs from previous interpretations concerning the location, age and significance of different parts of the Sorong Fault Zone. Kinematic

  14. Geochemistry, mineralization, structure, and permeability of a normal-fault zone, Casino mine, Alligator Ridge district, north central Nevada

    Science.gov (United States)

    Hammond, K. Jill; Evans, James P.

    2003-05-01

    We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as

  15. Seismic Slip on an Oblique Detachment Fault at Low Angles

    Science.gov (United States)

    Janecke, S. U.; Steely, A. N.; Evans, J. P.

    2008-12-01

    Pseudotachylytes are one of the few accepted indicators of seismic slip along ancient faults. Low-angle normal faults have produced few large earthquakes in historic times and low-angle normal faults (detachment faults) are typically severely misoriented relative to a vertical maximum compressive stress. As a result many geoscientists question whether low-angle normal faults produce earthquakes at low angles. Relationships in southern California show that a major low-angle normal-oblique fault slipped at low angles and produced large earthquakes. The exhumed Late Cenozoic West Salton detachment fault preserves spectacular fault- related pseudotachylytes along its fault plane and injected into its hanging wall and footwall. Composite pseudotachylyte zones are up to 1.25 m thick and persists over lateral distances of at least 10's of meters. Pseudotachylyte is common in most thin sections of damaged fault rocks with more than 20% (by volume) of cataclasite. We recognized the presence of original melt using numerous criteria: abundant spherulites in thin sections, injection structures at both the thin-section and outcrop scale, black aphanitic textures, quenched vein margins, variations in microcrystallite textures and/or size with respect to the vein margin, and glassy textures in hand sample. Multiple earthquakes are inferred to produce the layered "stratigraphy" in some exposures of pseudotachylytes. We infer that the West Salton detachment fault formed and slipped at low angles because it nearly perfectly reactivates a Cretaceous ductile thrust system at the half km scale and dips between 10 and 45 degrees. The about 30 degree NNE dip of the detachment fault on the north side of Yaqui Ridge is likely steeper than its dip during detachment slip because there is local steepening on the flanks of the Yaqui Ridge antiform in a contractional stepover of a crosscutting Quaternary San Felipe dextral fault zone. These relationships indicate a low dip on the detachment

  16. ESR dating of fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2003-02-01

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene

  17. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  18. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2003-02-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene.

  19. Real-time fault diagnosis and fault-tolerant control

    OpenAIRE

    Gao, Zhiwei; Ding, Steven X.; Cecati, Carlo

    2015-01-01

    This "Special Section on Real-Time Fault Diagnosis and Fault-Tolerant Control" of the IEEE Transactions on Industrial Electronics is motivated to provide a forum for academic and industrial communities to report recent theoretic/application results in real-time monitoring, diagnosis, and fault-tolerant design, and exchange the ideas about the emerging research direction in this field. Twenty-three papers were eventually selected through a strict peer-reviewed procedure, which represent the mo...

  20. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed Mohsen Hassan

    2017-05-31

    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  1. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed Mohsen Hassan; Hanafy, Sherif; Guo, Bowen; Kosmicki, Maximillian Sunflower

    2017-01-01

    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  2. Aerial photographic interpretation of lineaments and faults in late Cenozoic deposits in the eastern parts of the Saline Valley 1:100, 000 quadrangle, Nevada and California, and the Darwin Hills 1:100, 000 quadrangle, California

    International Nuclear Information System (INIS)

    Reheis, M.C.

    1991-01-01

    Faults and fault-related lineaments in Quaternary and late Tertiary deposits in the southern part of the Walker Lane are potentially active and form patterns that are anomalous compared to those in most other areas of the Great Basin. Two maps at a scale of 1:100,000 summarize information about lineaments and faults in the area around and southwest of the Death Valley-Furnace Creek fault system based on extensive aerial-photo interpretation, limited field interpretation, limited field investigations, and published geologic maps. There are three major fault zones and two principal faults in the Saline Valley and Darwin Hills 1:100,000 quadrangles. (1) The Death Valley-Furnace Creek fault system and (2) the Hunter Mountain fault zone are northwest-trending right-lateral strike-slip fault zones. (3) The Panamint Valley fault zone and associated Towne Pass and Emigrant faults are north-trending normal faults. The intersection of the Hunter Mountain and Panamint Valley fault zones is marked by a large complex of faults and lineaments on the floor of Panamint Valley. Additional major faults include (4) the north-northwest-trending Ash Hill fault on the west side of Panamint Valley, and (5) the north-trending range-front Tin Mountain fault on the west side of the northern Cottonwood Mountains. The most active faults at present include those along the Death Valley-Furnace Creek fault system, the Tin Mountain fault, the northwest and southeast ends of the Hunter Mountain fault zone, the Ash Hill fault, and the fault bounding the west side of the Panamint Range south of Hall Canyon. Several large Quaternary landslides on the west sides of the Cottonwood Mountains and the Panamint Range apparently reflect slope instability due chiefly to rapid uplift of these ranges. 16 refs

  3. Levelling Profiles and a GPS Network to Monitor the Active Folding and Faulting Deformation in the Campo de Dalias (Betic Cordillera, Southeastern Spain)

    Science.gov (United States)

    Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; Gil, Antonio José; Borque, María Jesús; de Lacy, María Clara; Pedrera, Antonio; López-Garrido, Angel Carlos; Alfaro, Pedro; García-Tortosa, Francisco; Ramos, Maria Isabel; Rodríguez-Caderot, Gracia; Rodríguez-Fernández, José; Ruiz-Constán, Ana; de Galdeano-Equiza, Carlos Sanz

    2010-01-01

    The Campo de Dalias is an area with relevant seismicity associated to the active tectonic deformations of the southern boundary of the Betic Cordillera. A non-permanent GPS network was installed to monitor, for the first time, the fault- and fold-related activity. In addition, two high precision levelling profiles were measured twice over a one-year period across the Balanegra Fault, one of the most active faults recognized in the area. The absence of significant movement of the main fault surface suggests seismogenic behaviour. The possible recurrence interval may be between 100 and 300 y. The repetitive GPS and high precision levelling monitoring of the fault surface during a long time period may help us to determine future fault behaviour with regard to the existence (or not) of a creep component, the accumulation of elastic deformation before faulting, and implications of the fold-fault relationship. PMID:22319309

  4. Fault zone architecture of a major oblique-slip fault in the Rawil depression, Western Helvetic nappes, Switzerland

    Science.gov (United States)

    Gasser, D.; Mancktelow, N. S.

    2009-04-01

    solution seams and veins and in the sandstones of coarse breccia and veins. Later, straight, sharp fault planes cross-cut all these features. In all lithologies, common veins and calcite-cemented fault rocks indicate the strong involvement of fluids during faulting. Today, the southern Rawil depression and the Rhone Valley belong to one of the seismically most active regions in Switzerland. Seismogenic faults interpreted from earthquake focal mechanisms strike ENE-WSW to WNW-ESE, with dominant dextral strike-slip and minor normal components and epicentres at depths of the current stress field inferred from the current seismicity. This implies that the same mechanisms that formed these fault zones in the past may still persist at depth. The Rezli fault zone allows the detailed study of a fossil fault zone that can act as a model for processes still occurring at deeper levels in this seismically active region.

  5. Tsunamis effects at coastal sites due to offshore faulting

    International Nuclear Information System (INIS)

    Miloh, T.; Striem, H.L.

    1976-07-01

    Unusual waves (tsunamis) triggered by submarine tectonic activity such as a fault displacement in the sea bottom may have considerable effect on a coastal site. The possiblity of such phenomena to occur at the southern coast of Israel due to a series of shore-parallel faults, about twenty kilometers offshore, is examined in this paper. The analysis relates the energy or the momentum imparted to the body of water due to a fault displacement of the sea bottom to the energy or the momentum of he water waves thus created. The faults off the Ashdod coast may cause surface waves with amplitudes of about five metres and periods of about one third of an hour. It is also considered that because of the downward movement of the faulted blocks a recession of the sea level rather than a flooding would be the first and the predominant effect at the shore, and this is in agreement with some historical reports. The analysis here presented might be of interest to those designing coastal power plants. (author)

  6. Space-time evolution of cataclasis in carbonate fault zones

    Science.gov (United States)

    Ferraro, Francesco; Grieco, Donato Stefano; Agosta, Fabrizio; Prosser, Giacomo

    2018-05-01

    The present contribution focuses on the micro-mechanisms associated to cataclasis of both calcite- and dolomite-rich fault rocks. This work combines field and laboratory data of carbonate fault cores currently exposed in central and southern Italy. By first deciphering the main fault rock textures, their spatial distribution, crosscutting relationships and multi-scale dimensional properties, the relative timing of Intragranular Extensional Fracturing (IEF), chipping, and localized shear is inferred. IEF was predominant within already fractured carbonates, forming coarse and angular rock fragments, and likely lasted for a longer period within the dolomitic fault rocks. Chipping occurred in both lithologies, and was activated by grain rolling forming minute, sub-rounded survivor grains embedded in a powder-like carbonate matrix. The largest fault zones, which crosscut either limestones or dolostones, were subjected to localized shear and, eventually, to flash temperature increase which caused thermal decomposition of calcite within narrow (cm-thick) slip zones. Results are organized in a synoptic panel including the main dimensional properties of survivor grains. Finally, a conceptual model of the time-dependent evolution of cataclastic deformation in carbonate rocks is proposed.

  7. Wilshire fault: Earthquakes in Hollywood?

    Science.gov (United States)

    Hummon, Cheryl; Schneider, Craig L.; Yeats, Robert S.; Dolan, James F.; Sieh, Kerry E.; Huftile, Gary J.

    1994-04-01

    The Wilshire fault is a potentially seismogenic, blind thrust fault inferred to underlie and cause the Wilshire arch, a Quaternary fold in the Hollywood area, just west of downtown Los Angeles, California. Two inverse models, based on the Wilshire arch, allow us to estimate the location and slip rate of the Wilshire fault, which may be illuminated by a zone of microearthquakes. A fault-bend fold model indicates a reverse-slip rate of 1.5-1.9 mm/yr, whereas a three-dimensional elastic-dislocation model indicates a right-reverse slip rate of 2.6-3.2 mm/yr. The Wilshire fault is a previously unrecognized seismic hazard directly beneath Hollywood and Beverly Hills, distinct from the faults under the nearby Santa Monica Mountains.

  8. What is Fault Tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Frei, C. W.; Kraus, K.

    2000-01-01

    Faults in automated processes will often cause undesired reactions and shut-down of a controlled plant, and the consequences could be damage to the plant, to personnel or the environment. Fault-tolerant control is the synonym for a set of recent techniques that were developed to increase plant...... availability and reduce the risk of safety hazards. Its aim is to prevent that simple faults develop into serious failure. Fault-tolerant control merges several disciplines to achieve this goal, including on-line fault diagnosis, automatic condition assessment and calculation of remedial actions when a fault...... is detected. The envelope of the possible remedial actions is wide. This paper introduces tools to analyze and explore structure and other fundamental properties of an automated system such that any redundancy in the process can be fully utilized to enhance safety and a availability....

  9. Optimalisasi Prestasi Belajar Materi Elektromagnet dengan Menggunakan Pendekatan Eksperimen dalam Pembelajaran IPA pada Peserta Didik Kelas IX A SMP Negeri 3 Teras Semester Gasal Kabupaten Boyolali Tahun Pelajaran 2011/2012

    OpenAIRE

    Budiharjo Budiharjo

    2015-01-01

    This research purpose is to describe about effort to increase learning achievement giving task autonomous structure in learning electromagnet material of the student’s class IX A SMP Negeri 3 Teras Boyolali regency semester 2011/2012. Subject and data source of the research the students class IX A sum 40 students. Collecting data method uses observation, documentation and test. Analysis data uses critic and comparative. Reaching indicator uses KKM 63 and complete target 100%. Research procedu...

  10. Earthquake geology and paleoseismology of major strands of the San Andreas fault system: Chapter 38

    Science.gov (United States)

    Rockwell, Thomas; Scharer, Katherine M.; Dawson, Timothy E.

    2016-01-01

    The San Andreas fault system in California is one of the best-studied faults in the world, both in terms of the long-term geologic history and paleoseismic study of past surface ruptures. In this paper, we focus on the Quaternary to historic data that have been collected from the major strands of the San Andreas fault system, both on the San Andreas Fault itself, and the major subparallel strands that comprise the plate boundary, including the Calaveras-Hayward- Rogers Creek-Maacama fault zone and the Concord-Green Valley-Bartlett Springs fault zone in northern California, and the San Jacinto and Elsinore faults in southern California. The majority of the relative motion between the Pacific and North American lithospheric plates is accommodated by these faults, with the San Andreas slipping at about 34 mm/yr in central California, decreasing to about 20 mm/yr in northern California north of its juncture with the Calaveras and Concord faults. The Calaveras-Hayward-Rogers Creek-Maacama fault zone exhibits a slip rate of 10-15 mm/yr, whereas the rate along the Concord-Green Valley-Bartlett Springs fault zone is lower at about 5 mm/yr. In southern California, the San Andreas exhibits a slip rate of about 35 mm/yr along the Mojave section, decreasing to as low as 10-15 mm/yr along its juncture with the San Jacinto fault, and about 20 mm/yr in the Coachella Valley. The San Jacinto and Elsinore fault zones exhibit rates of about 15 and 5 mm/yr, respectively. The average recurrence interval for surface-rupturing earthquakes along individual elements of the San Andreas fault system range from 100-500 years and is consistent with slip rate at those sites: higher slip rates produce more frequent or larger earthquakes. There is also evidence of short-term variations in strain release (slip rate) along various fault sections, as expressed as “flurries” or clusters of earthquakes as well as periods of relatively fewer surface ruptures in these relatively short records. This

  11. Advanced cloud fault tolerance system

    Science.gov (United States)

    Sumangali, K.; Benny, Niketa

    2017-11-01

    Cloud computing has become a prevalent on-demand service on the internet to store, manage and process data. A pitfall that accompanies cloud computing is the failures that can be encountered in the cloud. To overcome these failures, we require a fault tolerance mechanism to abstract faults from users. We have proposed a fault tolerant architecture, which is a combination of proactive and reactive fault tolerance. This architecture essentially increases the reliability and the availability of the cloud. In the future, we would like to compare evaluations of our proposed architecture with existing architectures and further improve it.

  12. Final Technical Report: PV Fault Detection Tool.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  13. Structural character of the northern segment of the Paintbrush Canyon fault, Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Dickerson, R.P.; Spengler, R.W.

    1994-01-01

    Detailed mapping of exposed features along the northern part of the Paintbrush Canyon fault was initiated to aid in construction of the computer-assisted three-dimensional lithostratigraphic model of Yucca Mountain, to contribute to kinematic reconstruction of the tectonic history of the Paintbrush Canyon fault, and to assist in the interpretation of geophysical data from Midway Valley. Yucca Mountain is segmented into relatively intact blocks of east-dipping Miocene volcanic strata, bounded by north-striking, west-dipping high-angle normal faults. The Paintbrush Canyon fault, representing the easternmost block-bounding normal fault, separates Fran Ridge from Midway Valley and continues northward across Yucca Wash to at least the southern margin of the Timber Mountain Caldera complex. South of Yucca Wash, the Paintbrush Canyon Fault is largely concealed beneath thick Quaternary deposits. Bedrock exposures to the north reveal a complex fault, zone, displaying local north- and west-trending grabens, and rhombic pull-apart features. The fault scarp, discontinuously exposed along a mapped length of 8 km north of Yucca Wash, dips westward by 41 degrees to 74 degrees. Maximum vertical offset of the Rhyolite of Comb Peak along the fault measures about 210 m in Paintbrush Canyon and, on the basis of drill hole information, vertical offset of the Topopoah Spring Tuff is about 360 m near the northern part of Fran Ridge. Observed displacement along the fault in Paintbrush Canyon is down to the west with a component of left-lateral oblique slip. Unlike previously proposed tectonic models, strata adjacent to the fault dip to the east. Quaternary deposits do not appear displaced along the fault scarp north of Yucca Wash, but are displaced in trenches south of Yucca Wash

  14. Fault current limiter

    Science.gov (United States)

    Darmann, Francis Anthony

    2013-10-08

    A fault current limiter (FCL) includes a series of high permeability posts for collectively define a core for the FCL. A DC coil, for the purposes of saturating a portion of the high permeability posts, surrounds the complete structure outside of an enclosure in the form of a vessel. The vessel contains a dielectric insulation medium. AC coils, for transporting AC current, are wound on insulating formers and electrically interconnected to each other in a manner such that the senses of the magnetic field produced by each AC coil in the corresponding high permeability core are opposing. There are insulation barriers between phases to improve dielectric withstand properties of the dielectric medium.

  15. Fault Management Design Strategies

    Science.gov (United States)

    Day, John C.; Johnson, Stephen B.

    2014-01-01

    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  16. Preliminary paleoseismic observations along the western Denali fault, Alaska

    Science.gov (United States)

    Koehler, R. D.; Schwartz, D. P.; Rood, D. H.; Reger, R.; Wolken, G. J.

    2013-12-01

    The Denali fault in south-central Alaska, from Mt. McKinley to the Denali-Totschunda fault branch point, accommodates ~9-12 mm/yr of the right-lateral component of oblique convergence between the Pacific/Yakutat and North American plates. The eastern 226 km of this fault reach was part of the source of the 2002 M7.9 Denali fault earthquake. West of the 2002 rupture there is evidence of two large earthquakes on the Denali fault during the past ~550-700 years but the paleoearthquake chronology prior to this time is largely unknown. To better constrain fault rupture parameters for the western Denali fault and contribute to improved seismic hazard assessment, we performed helicopter and ground reconnaissance along the southern flank of the Alaska Range between the Nenana Glacier and Pyramid Peak, a distance of ~35 km, and conducted a site-specific paleoseismic study. We present a Quaternary geologic strip map along the western Denali fault and our preliminary paleoseismic results, which include a differential-GPS survey of a displaced debris flow fan, cosmogenic 10Be surface exposure ages for boulders on this fan, and an interpretation of a trench across the main trace of the fault at the same site. Between the Nenana Glacier and Pyramid Peak, the Denali fault is characterized by prominent tectonic geomorphic features that include linear side-hill troughs, mole tracks, anastamosing composite scarps, and open left-stepping fissures. Measurements of offset rills and gullies indicate that slip during the most recent earthquake was between ~3 and 5 meters, similar to the average displacement in the 2002 earthquake. At our trench site, ~ 25 km east of the Parks Highway, a steep debris fan is displaced along a series of well-defined left-stepping linear fault traces. Multi-event displacements of debris-flow and snow-avalanche channels incised into the fan range from 8 to 43 m, the latter of which serves as a minimum cumulative fan offset estimate. The trench, excavated into

  17. Development of a Methodology for Hydrogeological Characterization of Faults: Progress of the Project in Berkeley, California

    Science.gov (United States)

    Goto, J.; Moriya, T.; Yoshimura, K.; Tsuchi, H.; Karasaki, K.; Onishi, T.; Ueta, K.; Tanaka, S.; Kiho, K.

    2010-12-01

    The Nuclear Waste Management Organization of Japan (NUMO), in collaboration with Lawrence Berkeley National Laboratory (LBNL), has carried out a project to develop an efficient and practical methodology to characterize hydrologic property of faults since 2007, exclusively for the early stage of siting a deep underground repository. A preliminary flowchart of the characterization program and a classification scheme of fault hydrology based on the geological feature have been proposed. These have been tested through the field characterization program on the Wildcat Fault in Berkeley, California. The Wildcat Fault is a relatively large non-active strike-slip fault which is believed to be a subsidiary of the active Hayward Fault. Our classification scheme assumes the contrasting hydrologic features between the linear northern part and the split/spread southern part of the Wildcat Fault. The field characterization program to date has been concentrated in and around the LBNL site on the southern part of the fault. Several lines of electrical and reflection seismic surveys, and subsequent trench investigations, have revealed the approximate distribution and near-surface features of the Wildcat Fault (see also Onishi, et al. and Ueta, et al.). Three 150m deep boreholes, WF-1 to WF-3, have been drilled on a line normal to the trace of the fault in the LBNL site. Two vertical holes were placed to characterize the undisturbed Miocene sedimentary formations at the eastern and western sides of the fault (WF-1 and WF-2 respectively). WF-2 on the western side intersected the rock formation, which was expected only in WF-1, and several of various intensities. Therefore, WF-3, originally planned as inclined to penetrate the fault, was replaced by the vertical hole further to the west. It again encountered unexpected rocks and faults. Preliminary results of in-situ hydraulic tests suggested that the transmissivity of WF-1 is ten to one hundred times higher than WF-2. The monitoring

  18. Accelerometer having integral fault null

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-08-01

    An improved accelerometer is introduced. It comprises a transducer responsive to vibration in machinery which produces an electrical signal related to the magnitude and frequency of the vibration; and a decoding circuit responsive to the transducer signal which produces a first fault signal to produce a second fault signal in which ground shift effects are nullified.

  19. Three dimensional investigation on the oceanic active fault. A demonstration survey

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Okamoto, Yukinobu; Ikehara, Ken; Kuramoto, Shinichi; Sato, Mikio; Arai, Kosaku [Geological Survey of Japan, Tsukuba, Ibaraki (Japan)

    2000-02-01

    In order to upgrade activity and likelihood ratio on active potential evaluation of the water active fault with possibility of severe effect on nuclear facilities, by generally applying the conventional procedures to some areas and carrying out a demonstration survey, a qualitative upgrading on survey to be conducted by the executives was planned. In 1998 fiscal year, among the water active faults classified to the trench and the inland types, three dimensional survey on the inland type water active fault. The survey was carried out at the most southern part of aftershock area in the 1983 Nihonkai-Chubu earthquake, which is understood to be a place changing shallow geological structure (propagation of fault) from an old report using the sonic survey. As a result, a geological structure thought to be an active fault at a foot of two ridge topographies was found. Each fault was thought to be a reverse fault tilt to its opposite direction and an active fault cutting to its sea bottom. (G.K.)

  20. Three dimensional investigation on the oceanic active fault. A demonstration survey

    International Nuclear Information System (INIS)

    Nakao, Seizo; Kishimoto, Kiyoyuki; Okamoto, Yukinobu; Ikehara, Ken; Kuramoto, Shinichi; Sato, Mikio; Arai, Kosaku

    2000-01-01

    In order to upgrade activity and likelihood ratio on active potential evaluation of the water active fault with possibility of severe effect on nuclear facilities, by generally applying the conventional procedures to some areas and carrying out a demonstration survey, a qualitative upgrading on survey to be conducted by the executives was planned. In 1998 fiscal year, among the water active faults classified to the trench and the inland types, three dimensional survey on the inland type water active fault. The survey was carried out at the most southern part of aftershock area in the 1983 Nihonkai-Chubu earthquake, which is understood to be a place changing shallow geological structure (propagation of fault) from an old report using the sonic survey. As a result, a geological structure thought to be an active fault at a foot of two ridge topographies was found. Each fault was thought to be a reverse fault tilt to its opposite direction and an active fault cutting to its sea bottom. (G.K.)

  1. 3D Constraints On Fault Architecture and Strain Distribution of the Newport-Inglewood Rose Canyon and San Onofre Trend Fault Systems

    Science.gov (United States)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.

    2017-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) Fault is a dextral strike-slip system that is primarily offshore for approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC Fault Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC Fault is the San Onofre Trend (SOT) along the continental slope. Previous work concluded that this is part of a strike-slip system that eventually merges with the NIRC Fault. Others have interpreted this system as deformation associated with the Oceanside Blind Thrust Fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D Parallel Cable (P-Cable) seismic surveys of the NIRC and SOT faults as part of the Southern California Regional Fault Mapping project. Analysis of stratigraphy and 3D mapping of this new data has yielded a new kinematic fault model of the area that provides new insight on deformation caused by interactions in both compressional and extensional regimes. For the first time, we can reconstruct fault interaction and investigate how strain is distributed through time along a typical strike-slip margin using 3D constraints on fault

  2. Fault isolatability conditions for linear systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step. A simple example demonstrates how to turn the algebraic necessary and sufficient conditions into explicit algorithms for designing filter banks, which...

  3. ESR dating of the fault rocks

    International Nuclear Information System (INIS)

    Lee, Hee Kwon

    2005-01-01

    We carried out ESR dating of fault rocks collected near the nuclear reactor. The Upcheon fault zone is exposed close to the Ulzin nuclear reactor. The space-time pattern of fault activity on the Upcheon fault deduced from ESR dating of fault gouge can be summarised as follows : this fault zone was reactivated between fault breccia derived from Cretaceous sandstone and tertiary volcanic sedimentary rocks about 2 Ma, 1.5 Ma and 1 Ma ago. After those movements, the Upcheon fault was reactivated between Cretaceous sandstone and fault breccia zone about 800 ka ago. This fault zone was reactivated again between fault breccia derived form Cretaceous sandstone and Tertiary volcanic sedimentary rocks about 650 ka and after 125 ka ago. These data suggest that the long-term(200-500 k.y.) cyclic fault activity of the Upcheon fault zone continued into the Pleistocene. In the Ulzin area, ESR dates from the NW and EW trend faults range from 800 ka to 600 ka NE and EW trend faults were reactivated about between 200 ka and 300 ka ago. On the other hand, ESR date of the NS trend fault is about 400 ka and 50 ka. Results of this research suggest the fault activity near the Ulzin nuclear reactor fault activity continued into the Pleistocene. One ESR date near the Youngkwang nuclear reactor is 200 ka

  4. Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions

    Directory of Open Access Journals (Sweden)

    Fan Xiao

    2015-09-01

    Full Text Available During non-severe fault conditions, crowbar protection is not activated and the rotor windings of a doubly-fed induction generator (DFIG are excited by the AC/DC/AC converter. Meanwhile, under asymmetrical fault conditions, the electrical variables oscillate at twice the grid frequency in synchronous dq frame. In the engineering practice, notch filters are usually used to extract the positive and negative sequence components. In these cases, the dynamic response of a rotor-side converter (RSC and the notch filters have a large influence on the fault current characteristics of the DFIG. In this paper, the influence of the notch filters on the proportional integral (PI parameters is discussed and the simplified calculation models of the rotor current are established. Then, the dynamic performance of the stator flux linkage under asymmetrical fault conditions is also analyzed. Based on this, the fault characteristics of the stator current under asymmetrical fault conditions are studied and the corresponding analytical expressions of the stator fault current are obtained. Finally, digital simulation results validate the analytical results. The research results are helpful to meet the requirements of a practical short-circuit calculation and the construction of a relaying protection system for the power grid with penetration of DFIGs.

  5. The significance of strike-slip faulting in the basement of the Zagros fold and thrust belt

    Energy Technology Data Exchange (ETDEWEB)

    Hessami, K.; Koyi, H.A.; Talbot, C.J. [Uppsala University (Sweden). Institute of Earth Sciences

    2000-01-01

    Lateral offsets in the pattern of seismicity along the Zagros fold and thrust belt indicate that transverse faults segmenting the Arabian basement are active deep-seated strike-slip faults. The dominant NW-SE trending features of the belt have undergone repeated horizontal displacements along these transverse faults. These reactivated basement faults, which are inherited from the Pan-African construction phase, controlled both deposition of the Phanerozoic cover before Tertiary-Recent deformation of the Zagros and probably the entrapment of hydrocarbons on the NE margin of Arabia and in the Zagros area. We have used observations of faulting recognized on Landsat satellite images, in conjunction with the spatial distribution of earthquakes and their focal mechanism solutions, to infer a tectonic model for the Zagros basement. Deformation in the NW Zagros appears to be concentrated on basement thrusts and a few widely-spaced north-south trending strike-slip faults which separate major structural segments. In the SE Zagros, two main structural domains can be distinguished. A domain of NNW-trending right-lateral faults in the northern part of the SE Zagros implies that fault-bounded blocks are likely to have rotated anticlockwise about vertical axes relative to both Arabia and Central Iran. In contrast, the predominance of NNE-trending left-lateral faults in the southern part of the SE Zagros implies that fault-bounded blocks may have rotated clockwise about vertical axes. We propose a tectonic model in which crustal blocks bounded by strike-slip faults in a zone of simple shear rotate about vertical axes relative to both Arabia and Central Iran. The presence of domains of strike-slip and thrust faulting in the Zagros basement suggest that some of the convergence between Arabia and Central Iran is accommodated by rotation and possible lateral movement of crust along the belt by strike-slip faults, as well as by obvious crustal shortening and thickening along thrust

  6. Low strength of deep San Andreas fault gouge from SAFOD core.

    Science.gov (United States)

    Lockner, David A; Morrow, Carolyn; Moore, Diane; Hickman, Stephen

    2011-04-07

    The San Andreas fault accommodates 28-34 mm yr(-1) of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming San Andreas fault at a vertical depth of 2.7 km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the San Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the San Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms. The combination of these measurements of fault core strength with borehole observations yields a self-consistent picture of the stress state of the San Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust. ©2011 Macmillan Publishers Limited. All rights reserved

  7. Effect of fault roughness on aftershock distribution and post co-seismic strain accumulation.

    Science.gov (United States)

    Aslam, K.; Daub, E. G.

    2017-12-01

    We perform physics-based simulations of earthquake rupture propagation on geometrically complex strike-slip faults. We consider many different realization of the fault roughness and obtain heterogeneous stress fields by performing dynamic rupture simulation of large earthquakes. We calculate the Coulomb failure function (CFF) for all these realizations so that we can quantify zones of stress increase/shadows surrounding the main fault and compare our results to seismic catalogs. To do this comparison, we use relocated earthquake catalogs from Northern and Southern California. We specify the range of fault roughness parameters based on past observational studies. The Hurst exponent (H) varies in range from 0.5 to 1 and RMS height to wavelength ratio ( RMS deviation of a fault profile from planarity) has values between 10-2 to 10-3. For any realization of fault roughness, the Probability density function (PDF) values relative to the mean CFF change show a wider spread near the fault and this spread squeezes into a narrow band as we move away from fault. For lower value of RMS ratio ( 10-3), we see bigger zones of stress change near the hypocenter and for higher value of RMS ratio ( 10-2), we see alternate zones of stress increase/decrease surrounding the fault to have comparable lengths. We also couple short-term dynamic rupture simulation with long-term tectonic modelling. We do this by giving the stress output from one of the dynamic rupture simulation (of a single realization of fault roughness) to long term tectonic model (LTM) as initial condition and then run LTM over duration of seismic cycle. This short term and long term coupling enables us to understand how heterogeneous stresses due to fault geometry influence the dynamics of strain accumulation in the post-seismic and inter-seismic phase of seismic cycle.

  8. Arc fault detection system

    Science.gov (United States)

    Jha, K.N.

    1999-05-18

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard. 1 fig.

  9. Arc fault detection system

    Science.gov (United States)

    Jha, Kamal N.

    1999-01-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  10. Probabilistic assessment of faults

    International Nuclear Information System (INIS)

    Foden, R.W.

    1987-01-01

    Probabilistic safety analysis (PSA) is the process by which the probability (or frequency of occurrence) of reactor fault conditions which could lead to unacceptable consequences is assessed. The basic objective of a PSA is to allow a judgement to be made as to whether or not the principal probabilistic requirement is satisfied. It also gives insights into the reliability of the plant which can be used to identify possible improvements. This is explained in the article. The scope of a PSA and the PSA performed by the National Nuclear Corporation (NNC) for the Heysham II and Torness AGRs and Sizewell-B PWR are discussed. The NNC methods for hazards, common cause failure and operator error are mentioned. (UK)

  11. Sedimentary evidence of historical and prehistorical earthquakes along the Venta de Bravo Fault System, Acambay Graben (Central Mexico)

    Science.gov (United States)

    Lacan, Pierre; Ortuño, María; Audin, Laurence; Perea, Hector; Baize, Stephane; Aguirre-Díaz, Gerardo; Zúñiga, F. Ramón

    2018-03-01

    The Venta de Bravo normal fault is one of the longest structures in the intra-arc fault system of the Trans-Mexican Volcanic Belt. It defines, together with the Pastores Fault, the 80 km long southern margin of the Acambay Graben. We focus on the westernmost segment of the Venta de Bravo Fault and provide new paleoseismological information, evaluate its earthquake history, and assess the related seismic hazard. We analyzed five trenches, distributed at three different sites, in which Holocene surface faulting offsets interbedded volcanoclastic, fluvio-lacustrine and colluvial deposits. Despite the lack of known historical destructive earthquakes along this fault, we found evidence of at least eight earthquakes during the late Quaternary. Our results indicate that this is one of the major seismic sources of the Acambay Graben, capable of producing by itself earthquakes with magnitudes (MW) up to 6.9, with a slip rate of 0.22-0.24 mm yr- 1 and a recurrence interval between 1940 and 2390 years. In addition, a possible multi-fault rupture of the Venta de Bravo Fault together with other faults of the Acambay Graben could result in a MW > 7 earthquake. These new slip rates, earthquake recurrence rates, and estimation of slips per event help advance our understanding of the seismic hazard posed by the Venta de Bravo Fault and provide new parameters for further hazard assessment.

  12. Transpressive mantle uplift at large offset oceanic transform faults

    Science.gov (United States)

    Maia, M.; Briais, A.; Brunelli, D.; Ligi, M.; Sichel, S. E.; Campos, T.

    2017-12-01

    Large-offset transform faults deform due to changes in plate motions and local processes. At the St. Paul transform, in the Equatorial Atlantic, a large body of ultramafic rocks composed of variably serpentinized and mylonitized peridotites is presently being tectonically uplifted. We recently discovered that the origin of the regional mantle uplift is linked to long-standing compressive stresses along the transform fault (1). A positive flower structure, mainly made of mylonitized mantle rocks, can be recognized on the 200 km large push-up ridge. Compressive earthquakes mechanisms reveal seismically active thrust faults on the southern flank of the ridge . The regional transpressive stress field affects a large portion of the ridge segment south of the transform, as revealed by the presence of faults and dykes striking obliquely to the direction of the central ridge axis. A smaller thrust, affecting recent sediments, was mapped south of this segment, suggesting a regional active compressive stress field. The transpressive stress field is interpreted to derive from the propagation of the Mid-Atlantic Ridge (MAR) segment into the transform domain as a response to the enhanced melt supply at the ridge axis. The propagation forced the migration and segmentation of the transform fault southward and the formation of restraining step-overs. The process started after a counterclockwise change in plate motion at 11 Ma initially resulting in extensive stress of the transform domain. A flexural transverse ridge formed in response. Shortly after plate reorganization, the MAR segment started to propagate southwards due to the interaction of the ridge and the Sierra Leone thermal anomaly. 1- Maia et al., 2016. Extreme mantle uplift and exhumation along a transpressive transform fault Nat. Geo. doi:10.1038/ngeo2759

  13. Neotectonics of the San Andreas Fault system, basin and range province juncture

    Science.gov (United States)

    Estes, J. E.; Crowell, J. C.

    1982-01-01

    The development, active processes, and tectonic interplay of the southern San Andreas fault system and the basin and range province were studied. The study consist of data acquisition and evaluation, technique development, and image interpretation and mapping. Potentially significant geologic findings are discussed.

  14. Absolute age determination of quaternary faults

    International Nuclear Information System (INIS)

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik

    2000-03-01

    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results

  15. Absolute age determination of quaternary faults

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik [Korea Basic Science Institute, Seoul (Korea, Republic of)] (and others)

    2000-03-15

    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results.

  16. Comparison of Cenozoic Faulting at the Savannah River Site to Fault Characteristics of the Atlantic Coast Fault Province: Implications for Fault Capability

    International Nuclear Information System (INIS)

    Cumbest, R.J.

    2000-01-01

    This study compares the faulting observed on the Savannah River Site and vicinity with the faults of the Atlantic Coastal Fault Province and concludes that both sets of faults exhibit the same general characteristics and are closely associated. Based on the strength of this association it is concluded that the faults observed on the Savannah River Site and vicinity are in fact part of the Atlantic Coastal Fault Province. Inclusion in this group means that the historical precedent established by decades of previous studies on the seismic hazard potential for the Atlantic Coastal Fault Province is relevant to faulting at the Savannah River Site. That is, since these faults are genetically related the conclusion of ''not capable'' reached in past evaluations applies.In addition, this study establishes a set of criteria by which individual faults may be evaluated in order to assess their inclusion in the Atlantic Coast Fault Province and the related association of the ''not capable'' conclusion

  17. Subaru FATS (fault tracking system)

    Science.gov (United States)

    Winegar, Tom W.; Noumaru, Junichi

    2000-07-01

    The Subaru Telescope requires a fault tracking system to record the problems and questions that staff experience during their work, and the solutions provided by technical experts to these problems and questions. The system records each fault and routes it to a pre-selected 'solution-provider' for each type of fault. The solution provider analyzes the fault and writes a solution that is routed back to the fault reporter and recorded in a 'knowledge-base' for future reference. The specifications of our fault tracking system were unique. (1) Dual language capacity -- Our staff speak both English and Japanese. Our contractors speak Japanese. (2) Heterogeneous computers -- Our computer workstations are a mixture of SPARCstations, Macintosh and Windows computers. (3) Integration with prime contractors -- Mitsubishi and Fujitsu are primary contractors in the construction of the telescope. In many cases, our 'experts' are our contractors. (4) Operator scheduling -- Our operators spend 50% of their work-month operating the telescope, the other 50% is spent working day shift at the base facility in Hilo, or day shift at the summit. We plan for 8 operators, with a frequent rotation. We need to keep all operators informed on the current status of all faults, no matter the operator's location.

  18. Why the 2002 Denali fault rupture propagated onto the Totschunda fault: implications for fault branching and seismic hazards

    Science.gov (United States)

    Schwartz, David P.; Haeussler, Peter J.; Seitz, Gordon G.; Dawson, Timothy E.

    2012-01-01

    The propagation of the rupture of the Mw7.9 Denali fault earthquake from the central Denali fault onto the Totschunda fault has provided a basis for dynamic models of fault branching in which the angle of the regional or local prestress relative to the orientation of the main fault and branch plays a principal role in determining which fault branch is taken. GeoEarthScope LiDAR and paleoseismic data allow us to map the structure of the Denali-Totschunda fault intersection and evaluate controls of fault branching from a geological perspective. LiDAR data reveal the Denali-Totschunda fault intersection is structurally simple with the two faults directly connected. At the branch point, 227.2 km east of the 2002 epicenter, the 2002 rupture diverges southeast to become the Totschunda fault. We use paleoseismic data to propose that differences in the accumulated strain on each fault segment, which express differences in the elapsed time since the most recent event, was one important control of the branching direction. We suggest that data on event history, slip rate, paleo offsets, fault geometry and structure, and connectivity, especially on high slip rate-short recurrence interval faults, can be used to assess the likelihood of branching and its direction. Analysis of the Denali-Totschunda fault intersection has implications for evaluating the potential for a rupture to propagate across other types of fault intersections and for characterizing sources of future large earthquakes.

  19. Architecture of thrust faults with alongstrike variations in fault-plane dip: anatomy of the Lusatian Fault, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Coubal, Miroslav; Adamovič, Jiří; Málek, Jiří; Prouza, V.

    2014-01-01

    Roč. 59, č. 3 (2014), s. 183-208 ISSN 1802-6222 Institutional support: RVO:67985831 ; RVO:67985891 Keywords : fault architecture * fault plane geometry * drag structures * thrust fault * sandstone * Lusatian Fault Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.405, year: 2014

  20. Active Tectonics Revealed by River Profiles along the Puqu Fault

    Directory of Open Access Journals (Sweden)

    Ping Lu

    2015-04-01

    Full Text Available The Puqu Fault is situated in Southern Tibet. It is influenced by the eastward extrusion of Northern Tibet and carries the clockwise rotation followed by the southward extrusion. Thus, the Puqu Fault is bounded by the principal dynamic zones and the tectonic evolution remains active alongside. This study intends to understand the tectonic activity in the Puqu Fault Region from the river profiles obtained from the remotely sensed satellite imagery. A medium resolution Digital Elevation Model (DEM, 20 m was generated from an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER stereo pair of images and the stream network in this region was extracted from this DEM. The indices of slope and drainage area were subsequently calculated from this ASTER DEM. Based on the stream power law, the area-slope plots of the streams were delineated to derive the indices of channel concavity and steepness, which are closely related to tectonic activity. The results show the active tectonics varying significantly along the Puqu Fault, although the potential influence of glaciations may exist. These results are expected to be useful for a better understanding of tectonic evolution in Southeastern Tibet.

  1. Fault Features Extraction and Identification based Rolling Bearing Fault Diagnosis

    International Nuclear Information System (INIS)

    Qin, B; Sun, G D; Zhang L Y; Wang J G; HU, J

    2017-01-01

    For the fault classification model based on extreme learning machine (ELM), the diagnosis accuracy and stability of rolling bearing is greatly influenced by a critical parameter, which is the number of nodes in hidden layer of ELM. An adaptive adjustment strategy is proposed based on vibrational mode decomposition, permutation entropy, and nuclear kernel extreme learning machine to determine the tunable parameter. First, the vibration signals are measured and then decomposed into different fault feature models based on variation mode decomposition. Then, fault feature of each model is formed to a high dimensional feature vector set based on permutation entropy. Second, the ELM output function is expressed by the inner product of Gauss kernel function to adaptively determine the number of hidden layer nodes. Finally, the high dimension feature vector set is used as the input to establish the kernel ELM rolling bearing fault classification model, and the classification and identification of different fault states of rolling bearings are carried out. In comparison with the fault classification methods based on support vector machine and ELM, the experimental results show that the proposed method has higher classification accuracy and better generalization ability. (paper)

  2. Southern blotting.

    Science.gov (United States)

    Brown, T

    2001-05-01

    Southern blotting is the transfer of DNA fragments from an electrophoresis gel to a membrane support (the properties and advantages of the different types of membrane, transfer buffer, and transfer method are discussed in detail), resulting in immobilization of the DNA fragments, so the membrane carries a semipermanent reproduction of the banding pattern of the gel. After immobilization, the DNA can be subjected to hybridization analysis, enabling bands with sequence similarity to a labeled probe to be identified. This appendix describes Southern blotting via upward capillary transfer of DNA from an agarose gel onto a nylon or nitrocellulose membrane, using a high-salt transfer buffer to promote binding of DNA to the membrane. With the high-salt buffer, the DNA becomes bound to the membrane during transfer but not permanently immobilized. Immobilization is achieved by UV irradiation (for nylon) or baking (for nitrocellulose). A Support Protocol describes how to calibrate a UV transilluminator for optimal UV irradiation of a nylon membrane. An alternate protocol details transfer using nylon membranes and an alkaline buffer, and is primarily used with positively charged nylon membranes. The advantage of this combination is that no post-transfer immobilization step is required, as the positively charged membrane binds DNA irreversibly under alkaline transfer conditions. The method can also be used with neutral nylon membranes but less DNA will be retained. A second alternate protocol describes a transfer method based on a different transfer-stack setup. The traditional method of upward capillary transfer of DNA from gel to membrane described in the first basic and alternate protocols has certain disadvantages, notably the fact that the gel can become crushed by the weighted filter papers and paper towels that are laid on top of it. This slows down the blotting process and may reduce the amount of DNA that can be transferred. The downward capillary method described in

  3. Evidence of a tectonic transient within the Idrija fault system in Western Slovenia

    Science.gov (United States)

    Vičič, Blaž; Costa, Giovanni; Aoudia, Abdelkrim

    2017-04-01

    Western Slovenia and North-eastern Italy are areas of medium rate seismicity with rare historic earthquakes of higher magnitudes. From mainly reverse component faulting in north-western part of the region where 1976 Friuli earthquakes took place, tectonic regime changes to mostly strike-slip faulting in the Dinaric region, continuing towards southeast. In the northern part of the Idrija fault system, which represent the broader Dinaric strike-slip system there were two strong earthquakes in the recent times - Mw=5.6 1998 and Mw=5.2 2004 earthquakes. Further to the south, along the Idrija fault system, Idrija fault is the causative fault of 1511 Mw=6.8 earthquake. The southeastern most part of the Idrija fault system produced a Mw=5.2 earthquake in 1926 and few historic Mw>4 earthquakes. Since 2004 Mw=5.2 earthquake, no stronger earthquakes were recorded in the region covered by dense seismic network. Seismicity is mostly concentrated in Friuli region and north-western part of Idrija fault system - mostly on the Ravne fault which is the causative fault for the 1998 and 2004 earthquakes. In the central part of the fault system no strong or moderate earthquakes were recorded, except of an earthquake along the Idrija fault in 2014 of magnitude 3.4. Low magnitude background seismicity is burst like with no apparent temporal or spatial distribution. Seismicity of the southern part of Idrija fault system is again a bit higher than in the central part of the fault system with earthquakes up to Mw=4.4 that happened in 2014. In this study, detailed analysis of the seismicity is performed with manual relocation of the seismicity in the period between 2006 and 2016. With manual inspection of the waveform data, slight temporal clustering of seismicity is observed. We use a template algorithm method to increase the detection rate of the seismicity. Templates of seismicity in the north-western and south-eastern part of Idrija fault system are created. The continuous waveform data

  4. 20 CFR 410.561b - Fault.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Fault. 410.561b Section 410.561b Employees' Benefits SOCIAL SECURITY ADMINISTRATION FEDERAL COAL MINE HEALTH AND SAFETY ACT OF 1969, TITLE IV-BLACK LUNG BENEFITS (1969- ) Payment of Benefits § 410.561b Fault. Fault as used in without fault (see § 410...

  5. Fault Detection for Diesel Engine Actuator

    DEFF Research Database (Denmark)

    Blanke, M.; Bøgh, S.A.; Jørgensen, R.B.

    1994-01-01

    Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur.......Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur....

  6. 22 CFR 17.3 - Fault.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Fault. 17.3 Section 17.3 Foreign Relations...) § 17.3 Fault. A recipient of an overpayment is without fault if he or she performed no act of... agency may have been at fault in initiating an overpayment will not necessarily relieve the individual...

  7. Active fault diagnosis by temporary destabilization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    An active fault diagnosis method for parametric or multiplicative faults is proposed. The method periodically adds a term to the controller that for a short period of time renders the system unstable if a fault has occurred, which facilitates rapid fault detection. An illustrative example is given....

  8. From fault classification to fault tolerance for multi-agent systems

    CERN Document Server

    Potiron, Katia; Taillibert, Patrick

    2013-01-01

    Faults are a concern for Multi-Agent Systems (MAS) designers, especially if the MAS are built for industrial or military use because there must be some guarantee of dependability. Some fault classification exists for classical systems, and is used to define faults. When dependability is at stake, such fault classification may be used from the beginning of the system's conception to define fault classes and specify which types of faults are expected. Thus, one may want to use fault classification for MAS; however, From Fault Classification to Fault Tolerance for Multi-Agent Systems argues that

  9. The Singu basalts (Myanmar): new constraints for the amount of recent offset on the Sagaing fault

    International Nuclear Information System (INIS)

    Bertrand, G.; Rangin, C.

    1998-01-01

    The recent Singu basaltic flows (Mandalay district, Myanmar) are offset by the dextral Sagaing fault. 40 K- 40 Ar ages of five of the youngest flows forming the southern border of this plateau range from 0.25 to 0.31 My. The right lateral offset of the volcanic field, observed on satellite images, is 6.5 km north and 2.7 km south of the border of the plateau. Considering an initial regular elliptical shape of the plateau, we propose, for the Sagaing fault, a velocity of between 10±1 and 23±3 mn.y -1 . This fault would then accommodate, al most, only two thirds of the India-Sundaland relative motion, the remaining part being distributed along other faults in Myanmar. (authors)

  10. Differential Fault Analysis on CLEFIA

    Science.gov (United States)

    Chen, Hua; Wu, Wenling; Feng, Dengguo

    CLEFIA is a new 128-bit block cipher proposed by SONY corporation recently. The fundamental structure of CLEFIA is a generalized Feistel structure consisting of 4 data lines. In this paper, the strength of CLEFIA against the differential fault attack is explored. Our attack adopts the byte-oriented model of random faults. Through inducing randomly one byte fault in one round, four bytes of faults can be simultaneously obtained in the next round, which can efficiently reduce the total induce times in the attack. After attacking the last several rounds' encryptions, the original secret key can be recovered based on some analysis of the key schedule. The data complexity analysis and experiments show that only about 18 faulty ciphertexts are needed to recover the entire 128-bit secret key and about 54 faulty ciphertexts for 192/256-bit keys.

  11. Fault Tolerant External Memory Algorithms

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Brodal, Gerth Stølting; Mølhave, Thomas

    2009-01-01

    Algorithms dealing with massive data sets are usually designed for I/O-efficiency, often captured by the I/O model by Aggarwal and Vitter. Another aspect of dealing with massive data is how to deal with memory faults, e.g. captured by the adversary based faulty memory RAM by Finocchi and Italiano....... However, current fault tolerant algorithms do not scale beyond the internal memory. In this paper we investigate for the first time the connection between I/O-efficiency in the I/O model and fault tolerance in the faulty memory RAM, and we assume that both memory and disk are unreliable. We show a lower...... bound on the number of I/Os required for any deterministic dictionary that is resilient to memory faults. We design a static and a dynamic deterministic dictionary with optimal query performance as well as an optimal sorting algorithm and an optimal priority queue. Finally, we consider scenarios where...

  12. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2009-05-05

    A method determines a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  13. Dynamic Models of Earthquake Rupture along branch faults of the Eastern San Gorgonio Pass Region in CA using Complex Fault Structure

    Science.gov (United States)

    Douilly, R.; Oglesby, D. D.; Cooke, M. L.; Beyer, J. L.

    2017-12-01

    Compilation of geomorphic and paleoseismic data have illustrated that the right-lateral Coachella segment of the southern San Andreas Fault is past its average recurrence time period. On its western edge, this fault segment is split into two branches: the Mission Creek strand, and the Banning fault strand, of the San Andreas. Depending on how rupture propagates through this region, there is the possibility of a through-going rupture that could lead to the channeling of damaging seismic energy into the Los Angeles Basin. The fault structures and rupture scenarios on these two strands are potentially very different, so it is important to determine which strand is a more likely rupture path, and under which circumstances rupture will take either one. In this study, we focus on the effect of different assumptions about fault geometry and stress pattern on the rupture process to test those scenarios and thus investigate the most likely path of a rupture that starts on the Coachella segment. We consider two types of fault geometry based on the SCEC Community Fault Model and create a 3D finite element mesh. These two meshes are then incorporated into the finite element method code FaultMod to compute a physical model for the rupture dynamics. We use the slip-weakening friction law, and we consider different assumptions of background stress such as constant tractions, regional stress regimes of different orientations, heterogeneous off-fault stresses and the results of long-term stressing rates from quasi-static crustal deformation models that consider time since last event on each fault segment. Both the constant and regional stress distribution show that it is more likely for the rupture to branch from the Coachella segment to the Mission Creek compared to the Banning fault segment. For the regional stress distribution, we encounter cases of super-shear rupture for one type of fault geometry and sub-shear rupture for the other one. The fault connectivity at this branch

  14. Geological Mapping and Investigation into a Proposed Syn-rift Alluvial Fan Deposit in the Kerpini Fault Block, Greece.

    OpenAIRE

    Hadland, Sindre

    2016-01-01

    Master's thesis in Petroleum geosciences engineering The Kerpini Fault Block is located in the southern part of the Gulf of Corinth rift system. The rift system consists of several east-west orientated half-grabens with associated syn-rift sediments. Kerpini Fault Block is one of the southernmost half-grabens within the rift systems, and is composed of several different stratigraphic units. The stratigraphic framework consists of a complex interaction of several stratigraphic units. One of...

  15. Deformation around basin scale normal faults

    International Nuclear Information System (INIS)

    Spahic, D.

    2010-01-01

    Faults in the earth crust occur within large range of scales from microscale over mesoscopic to large basin scale faults. Frequently deformation associated with faulting is not only limited to the fault plane alone, but rather forms a combination with continuous near field deformation in the wall rock, a phenomenon that is generally called fault drag. The correct interpretation and recognition of fault drag is fundamental for the reconstruction of the fault history and determination of fault kinematics, as well as prediction in areas of limited exposure or beyond comprehensive seismic resolution. Based on fault analyses derived from 3D visualization of natural examples of fault drag, the importance of fault geometry for the deformation of marker horizons around faults is investigated. The complex 3D structural models presented here are based on a combination of geophysical datasets and geological fieldwork. On an outcrop scale example of fault drag in the hanging wall of a normal fault, located at St. Margarethen, Burgenland, Austria, data from Ground Penetrating Radar (GPR) measurements, detailed mapping and terrestrial laser scanning were used to construct a high-resolution structural model of the fault plane, the deformed marker horizons and associated secondary faults. In order to obtain geometrical information about the largely unexposed master fault surface, a standard listric balancing dip domain technique was employed. The results indicate that for this normal fault a listric shape can be excluded, as the constructed fault has a geologically meaningless shape cutting upsection into the sedimentary strata. This kinematic modeling result is additionally supported by the observation of deformed horizons in the footwall of the structure. Alternatively, a planar fault model with reverse drag of markers in the hanging wall and footwall is proposed. Deformation around basin scale normal faults. A second part of this thesis investigates a large scale normal fault

  16. Qademah Fault Passive Data

    KAUST Repository

    Hanafy, Sherif M.

    2014-01-01

    OBJECTIVE: In this field trip we collect passive data to 1. Convert passive to surface waves 2. Locate Qademah fault using surface wave migration INTRODUCTION: In this field trip we collected passive data for several days. This data will be used to find the surface waves using interferometry and then compared to active-source seismic data collected at the same location. A total of 288 receivers are used. A 3D layout with 5 m inline intervals and 10 m cross line intervals is used, where we used 12 lines with 24 receivers at each line. You will need to download the file (rec_times.mat), it contains important information about 1. Field record no 2. Record day 3. Record month 4. Record hour 5. Record minute 6. Record second 7. Record length P.S. 1. All files are converted from original format (SEG-2) to matlab format P.S. 2. Overlaps between records (10 to 1.5 sec.) are already removed from these files

  17. Exposing the faults

    International Nuclear Information System (INIS)

    Richardson, P.J.

    1989-01-01

    UK NIREX, the body with responsibility for finding an acceptable strategy for deposition of radioactive waste has given the impression throughout its recent public consultation that the problem of nuclear waste is one of public and political acceptability, rather than one of a technical nature. However the results of the consultation process show that it has no mandate from the British public to develop a single, national, deep repository for the burial of radioactive waste. There is considerable opposition to this method of managing radioactive waste and suspicion of the claims by NIREX concerning the supposed integrity and safety of this deep burial option. This report gives substance to those suspicions and details the significant areas of uncertainty in the concept of effective geological containment of hazardous radioactive elements, which remain dangerous for tens of thousands of years. Because the science of geology is essentially retrospective rather than predictive, NIREX's plans for a single, national, deep 'repository' depend heavily upon a wide range of assumptions about the geological and hydrogeological regimes in certain areas of the UK. This report demonstrates that these assumptions are based on a limited understanding of UK geology and on unvalidated and simplistic theoretical models of geological processes, the performance of which can never be directly tested over the long time-scales involved. NIREX's proposals offer no guarantees for the safe and effective containment of radioactivity. They are deeply flawed. This report exposes the faults. (author)

  18. Fault-tolerant rotary actuator

    Science.gov (United States)

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  19. Static Decoupling in fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    1998-01-01

    An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index......An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index...

  20. Diagnosis and fault-tolerant control

    CERN Document Server

    Blanke, Mogens; Lunze, Jan; Staroswiecki, Marcel

    2016-01-01

    Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant contro...

  1. Probabilistic Seismic Hazard Analysis of Victoria, British Columbia, Canada: Considering an Active Leech River Fault

    Science.gov (United States)

    Kukovica, J.; Molnar, S.; Ghofrani, H.

    2017-12-01

    The Leech River fault is situated on Vancouver Island near the city of Victoria, British Columbia, Canada. The 60km transpressional reverse fault zone runs east to west along the southern tip of Vancouver Island, dividing the lithologic units of Jurassic-Cretaceous Leech River Complex schists to the north and Eocene Metchosin Formation basalts to the south. This fault system poses a considerable hazard due to its proximity to Victoria and 3 major hydroelectric dams. The Canadian seismic hazard model for the 2015 National Building Code of Canada (NBCC) considered the fault system to be inactive. However, recent paleoseismic evidence suggests there to be at least 2 surface-rupturing events to have exceeded a moment magnitude (M) of 6.5 within the last 15,000 years (Morell et al. 2017). We perform a Probabilistic Seismic Hazard Analysis (PSHA) for the city of Victoria with consideration of the Leech River fault as an active source. A PSHA for Victoria which replicates the 2015 NBCC estimates is accomplished to calibrate our PSHA procedure. The same seismic source zones, magnitude recurrence parameters, and Ground Motion Prediction Equations (GMPEs) are used. We replicate the uniform hazard spectrum for a probability of exceedance of 2% in 50 years for a 500 km radial area around Victoria. An active Leech River fault zone is then added; known length and dip. We are determining magnitude recurrence parameters based on a Gutenberg-Richter relationship for the Leech River fault from various catalogues of the recorded seismicity (M 2-3) within the fault's vicinity and the proposed paleoseismic events. We seek to understand whether inclusion of an active Leech River fault source will significantly increase the probabilistic seismic hazard for Victoria. Morell et al. 2017. Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada. GSA Today, 27, doi: 10.1130/GSATG291A.1

  2. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake

    KAUST Repository

    Calais, Éric

    2010-10-24

    On 12 January 2010, a Mw7.0 earthquake struck the Port-au-Prince region of Haiti. The disaster killed more than 200,000 people and caused an estimated $8 billion in damages, about 100% of the country?s gross domestic product. The earthquake was initially thought to have ruptured the Enriquillog-Plantain Garden fault of the southern peninsula of Haiti, which is one of two main strike-slip faults inferred to accommodate the 2cmyr -1 relative motion between the Caribbean and North American plates. Here we use global positioning system and radar interferometry measurements of ground motion to show that the earthquake involved a combination of horizontal and contractional slip, causing transpressional motion. This result is consistent with the long-term pattern of strain accumulation in Hispaniola. The unexpected contractional deformation caused by the earthquake and by the pattern of strain accumulation indicates present activity on faults other than the Enriquillog-Plantain Garden fault. We show that the earthquake instead ruptured an unmapped north-dipping fault, called the Léogâne fault. The Léogâne fault lies subparallel tog-but is different fromg-the Enriquillog-Plantain Garden fault. We suggest that the 2010 earthquake may have activated the southernmost front of the Haitian fold-and-thrust belt as it abuts against the Enriquillog-Plantain Garden fault. As the Enriquillog-Plantain Garden fault did not release any significant accumulated elastic strain, it remains a significant seismic threat for Haiti and for Port-au-Prince in particular. © 2010 Macmillan Publishers Limited. All rights reserved.

  3. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake

    KAUST Repository

    Calais, É ric; Freed, Andrew M.; Mattioli, Glen S.; Amelung, Falk; Jonsson, Sigurjon; Jansma, Pamela E.; Hong, Sanghoon; Dixon, Timothy H.; Pré petit, Claude; Momplaisir, Roberte

    2010-01-01

    On 12 January 2010, a Mw7.0 earthquake struck the Port-au-Prince region of Haiti. The disaster killed more than 200,000 people and caused an estimated $8 billion in damages, about 100% of the country?s gross domestic product. The earthquake was initially thought to have ruptured the Enriquillog-Plantain Garden fault of the southern peninsula of Haiti, which is one of two main strike-slip faults inferred to accommodate the 2cmyr -1 relative motion between the Caribbean and North American plates. Here we use global positioning system and radar interferometry measurements of ground motion to show that the earthquake involved a combination of horizontal and contractional slip, causing transpressional motion. This result is consistent with the long-term pattern of strain accumulation in Hispaniola. The unexpected contractional deformation caused by the earthquake and by the pattern of strain accumulation indicates present activity on faults other than the Enriquillog-Plantain Garden fault. We show that the earthquake instead ruptured an unmapped north-dipping fault, called the Léogâne fault. The Léogâne fault lies subparallel tog-but is different fromg-the Enriquillog-Plantain Garden fault. We suggest that the 2010 earthquake may have activated the southernmost front of the Haitian fold-and-thrust belt as it abuts against the Enriquillog-Plantain Garden fault. As the Enriquillog-Plantain Garden fault did not release any significant accumulated elastic strain, it remains a significant seismic threat for Haiti and for Port-au-Prince in particular. © 2010 Macmillan Publishers Limited. All rights reserved.

  4. Alpine Fault, New Zealand, SRTM Shaded Relief and Colored Height

    Science.gov (United States)

    2005-01-01

    The Alpine fault runs parallel to, and just inland of, much of the west coast of New Zealand's South Island. This view was created from the near-global digital elevation model produced by the Shuttle Radar Topography Mission (SRTM) and is almost 500 kilometers (just over 300 miles) wide. Northwest is toward the top. The fault is extremely distinct in the topographic pattern, nearly slicing this scene in half lengthwise. In a regional context, the Alpine fault is part of a system of faults that connects a west dipping subduction zone to the northeast with an east dipping subduction zone to the southwest, both of which occur along the juncture of the Indo-Australian and Pacific tectonic plates. Thus, the fault itself constitutes the major surface manifestation of the plate boundary here. Offsets of streams and ridges evident in the field, and in this view of SRTM data, indicate right-lateral fault motion. But convergence also occurs across the fault, and this causes the continued uplift of the Southern Alps, New Zealand's largest mountain range, along the southeast side of the fault. Two visualization methods were combined to produce this image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast (image top to bottom) direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations. Elevation data used in this image were acquired by the Shuttle Radar Topography Mission aboard the Space Shuttle Endeavour, launched on Feb. 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect 3-D measurements of the Earth's surface. To collect the 3-D data

  5. Aeromagnetic anomalies over faulted strata

    Science.gov (United States)

    Grauch, V.J.S.; Hudson, Mark R.

    2011-01-01

    High-resolution aeromagnetic surveys are now an industry standard and they commonly detect anomalies that are attributed to faults within sedimentary basins. However, detailed studies identifying geologic sources of magnetic anomalies in sedimentary environments are rare in the literature. Opportunities to study these sources have come from well-exposed sedimentary basins of the Rio Grande rift in New Mexico and Colorado. High-resolution aeromagnetic data from these areas reveal numerous, curvilinear, low-amplitude (2–15 nT at 100-m terrain clearance) anomalies that consistently correspond to intrasedimentary normal faults (Figure 1). Detailed geophysical and rock-property studies provide evidence for the magnetic sources at several exposures of these faults in the central Rio Grande rift (summarized in Grauch and Hudson, 2007, and Hudson et al., 2008). A key result is that the aeromagnetic anomalies arise from the juxtaposition of magnetically differing strata at the faults as opposed to chemical processes acting at the fault zone. The studies also provide (1) guidelines for understanding and estimating the geophysical parameters controlling aeromagnetic anomalies at faulted strata (Grauch and Hudson), and (2) observations on key geologic factors that are favorable for developing similar sedimentary sources of aeromagnetic anomalies elsewhere (Hudson et al.).

  6. Passive fault current limiting device

    Science.gov (United States)

    Evans, Daniel J.; Cha, Yung S.

    1999-01-01

    A passive current limiting device and isolator is particularly adapted for use at high power levels for limiting excessive currents in a circuit in a fault condition such as an electrical short. The current limiting device comprises a magnetic core wound with two magnetically opposed, parallel connected coils of copper, a high temperature superconductor or other electrically conducting material, and a fault element connected in series with one of the coils. Under normal operating conditions, the magnetic flux density produced by the two coils cancel each other. Under a fault condition, the fault element is triggered to cause an imbalance in the magnetic flux density between the two coils which results in an increase in the impedance in the coils. While the fault element may be a separate current limiter, switch, fuse, bimetal strip or the like, it preferably is a superconductor current limiter conducting one-half of the current load compared to the same limiter wired to carry the total current of the circuit. The major voltage during a fault condition is in the coils wound on the common core in a preferred embodiment.

  7. RECENT GEODYNAMICS OF FAULT ZONES: FAULTING IN REAL TIME SCALE

    Directory of Open Access Journals (Sweden)

    Yu. O. Kuzmin

    2014-01-01

    Full Text Available Recent deformation processes taking place in real time are analyzed on the basis of data on fault zones which were collected by long-term detailed geodetic survey studies with application of field methods and satellite monitoring.A new category of recent crustal movements is described and termed as parametrically induced tectonic strain in fault zones. It is shown that in the fault zones located in seismically active and aseismic regions, super intensive displacements of the crust (5 to 7 cm per year, i.e. (5 to 7·10–5 per year occur due to very small external impacts of natural or technogenic / industrial origin.The spatial discreteness of anomalous deformation processes is established along the strike of the regional Rechitsky fault in the Pripyat basin. It is concluded that recent anomalous activity of the fault zones needs to be taken into account in defining regional regularities of geodynamic processes on the basis of real-time measurements.The paper presents results of analyses of data collected by long-term (20 to 50 years geodetic surveys in highly seismically active regions of Kopetdag, Kamchatka and California. It is evidenced by instrumental geodetic measurements of recent vertical and horizontal displacements in fault zones that deformations are ‘paradoxically’ deviating from the inherited movements of the past geological periods.In terms of the recent geodynamics, the ‘paradoxes’ of high and low strain velocities are related to a reliable empirical fact of the presence of extremely high local velocities of deformations in the fault zones (about 10–5 per year and above, which take place at the background of slow regional deformations which velocities are lower by the order of 2 to 3. Very low average annual velocities of horizontal deformation are recorded in the seismic regions of Kopetdag and Kamchatka and in the San Andreas fault zone; they amount to only 3 to 5 amplitudes of the earth tidal deformations per year.A ‘fault

  8. Purires and Picagres faults and its relationship with the 1990 Puriscal seismic sequence

    International Nuclear Information System (INIS)

    Montero, Walter; Rojas, Wilfredo

    2014-01-01

    The system of active faults in the region between the southern flank of the Montes del Aguacate and the northwest flank of the Talamanca mountain range was re-evaluated and defined in relation to the seismic activity that occurred between the end of March 1990 and the beginning of 1991. Aerial photographs of different scales of the Instituto Geografico Nacional de Costa Rica, aerial photographs of scale 1: 40000 of the TERRA project, of the Centro Nacional Geoambiental and infrared photos of scale 1: 40000 of the Mission CARTA 2003, of the Programa Nacional de Investigaciones Aerotransportadas y Sensores Remotos (PRIAS) were reviewed. Morphotectonic, structural and geological information related to the various faults was obtained with field work. A set of faults within the study area were determined with the neotectonic investigation. Several of these faults continue outside the zone both to the northwest within the Montes del Aguacate, and to the southeast to the NW foothills of the Cordillera de Talamanca. The superficial focus seismicity (<20 km), which occurred in the Puriscal area during 1990, was revised from previous studies, whose base information comes from the Red Sismologica Nacional (RSN, UCR-ICE). The relationship between the superficial seismic sequence and the defined faults was determined, allowing to conclude that the main seismic sources that originated the seismicity were the Purires and Picagres faults. A minor seismicity was related to the faults Jaris, Bajos de Jorco, Zapote and Junquillo [es

  9. Hydrogeochemistry Characteristics and Daily Variation of Geothermal Water in the Moxi Fault,Southwest of China

    Science.gov (United States)

    Qi, Jihong; Xu, Mo; An, Chenjiao; Zhang, Yunhui; Zhang, Qiang

    2017-04-01

    The Xianshuihe Fault with frequent earthquakes activities is the regional deep fault in China. The Moxi Fault is the southern part of the Xianshuihe Fault, where the strong activities of geothermal water could bring abundant information of deep crust. In this article, some typical geothermal springs were collected along the Moxi fault from Kangding to Shimian. Using the the Na-K-Mg equilibrium diagram, it explains the state of water-rock equilibrium, and estimates the reservoir temperature basing appropriate geothermometers. Basing on the relationship between the enthalpy and chlorine concentration of geothermal water, it analyze the mixing progress of thermal water with shallow groundwater. Moreover, the responses of variation of geothermal water to the solid tides are considered to study the hydrothermal activities of this fault. The Guanding in Kangding are considered as the center of the geothermal system, and the hydrothermal activities decrease southward extending. Geothermal water maybe is heated by the deep heat source of the Himalayan granites, while the springs in the south area perform the mixture with thermal water in the sub-reservoir of the Permian crystalline limestone. It improves the research of hydrothermal activities in the Moxi Fault, meanwhile using the variation of geothermal water maybe become a important method to study the environment of deep earth in the future.

  10. Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone.

    Science.gov (United States)

    Tsunomori, Fumiaki; Shimodate, Tomoya; Ide, Tomoki; Tanaka, Hidemi

    2017-06-01

    Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Fault Activity in the Terrebonne Trough, Southeastern Louisiana: A Continuation of Salt-Withdrawal Fault Activity from the Miocene into the late Quaternary and Implication for Subsidence Hot-Spots

    Science.gov (United States)

    Akintomide, A. O.; Dawers, N. H.

    2017-12-01

    The observed displacement along faults in southeastern Louisiana has raised questions about the kinematic history of faults during the Quaternary. The Terrebonne Trough, a Miocene salt withdrawal basin, is bounded by the Golden Meadow fault zone on its northern boundary; north dipping, so-called counter-regional faults, together with a subsurface salt ridge, define its southern boundary. To date, there are relatively few published studies on fault architecture and kinematics in the onshore area of southeastern Louisiana. The only publically accessible studies, based on 2d seismic reflection profiles, interpreted faults as mainly striking east-west. Our interpretation of a 3-D seismic reflection volume, located in the northwestern Terrebonne Trough, as well as industry well log correlations define a more complex and highly-segmented fault architecture. The northwest striking Lake Boudreaux fault bounds a marsh on the upthrown block from Lake Boudreaux on the downthrown block. To the east, east-west striking faults are located at the Montegut marsh break and north of Isle de Jean Charles. Portions of the Lake Boudreaux and Isle de Jean Charles faults serve as the northern boundary of the Madison Bay subsidence hot-spot. All three major faults extend to the top of the 3d seismic volume, which is inferred to image latest Pleistocene stratigraphy. Well log correlation using 11+ shallow markers across these faults and kinematic techniques such as stratigraphic expansion indices indicate that all three faults were active in the middle(?) and late Pleistocene. Based on expansion indices, both the Montegut and Isle de Jean Charles faults were active simultaneously at various times, but with different slip rates. There are also time intervals when the Lake Boudreaux fault was slipping at a faster rate compared to the east-west striking faults. Smaller faults near the margins of the 3d volume appear to relate to nearby salt stocks, Bully Camp and Lake Barre. Our work to date

  12. Automatic reconstruction of fault networks from seismicity catalogs including location uncertainty

    International Nuclear Information System (INIS)

    Wang, Y.

    2013-01-01

    provide the best agreement with independently observed focal mechanisms. Tests on synthetic catalogues allow qualification of the performance of the fitting method and of the various validation procedures. The ACLUD method is able to provide solutions that are close to the expected ones, especially for the BIC and focal mechanism-based techniques. The clustering method complemented by the validation step based on focal mechanisms provides good solutions even in the presence of a significant spatial background seismicity rate. As the new clustering method is able to deal with most of the information contained in modern earthquake catalogues, the geometry of the local station network may improve or alter the reconstruction of the underlying fault system. This is illustrated by using the highest-quality data selected using station network criteria which results in reconstructed fault planes of higher quality and accuracy. Using lower-quality data can lead to unstable and unreliable fault networks and may introduce artefacts, in particular in regions of a complex fault structure. The results highlight the need to carefully assess the quality and reliability of reconstructed fault networks from real data that unavoidably involve the clustering of data of heterogeneous quality. Based on realistic tests with synthetic fault network structures, the results also stress the importance of accounting for under-sampled sub-fault structures as well as for spatially-inhomogeneous location uncertainties. The fault reconstruction method is applied to two real datasets at two very different spatial scales, i.e. the 1992 Landers M7 earthquake sequence in Southern California, and the Basel (Switzerland) induced seismicity sequence. In both case studies, fault network results reasonably compare with independent structural analysis data, suggesting highly complex fault structures for both, at the scale of the Landers earthquake covering a volume of about 70,000 km 3 and in the volume of the

  13. Crustal-scale tilting of the central Salton block, southern California

    Science.gov (United States)

    Dorsey, Rebecca; Langenheim, Victoria

    2015-01-01

    The southern San Andreas fault system (California, USA) provides an excellent natural laboratory for studying the controls on vertical crustal motions related to strike-slip deformation. Here we present geologic, geomorphic, and gravity data that provide evidence for active northeastward tilting of the Santa Rosa Mountains and southern Coachella Valley about a horizontal axis oriented parallel to the San Jacinto and San Andreas faults. The Santa Rosa fault, a strand of the San Jacinto fault zone, is a large southwest-dipping normal fault on the west flank of the Santa Rosa Mountains that displays well-developed triangular facets, narrow footwall canyons, and steep hanging-wall alluvial fans. Geologic and geomorphic data reveal ongoing footwall uplift in the southern Santa Rosa Mountains, and gravity data suggest total vertical separation of ∼5.0–6.5 km from the range crest to the base of the Clark Valley basin. The northeast side of the Santa Rosa Mountains has a gentler topographic gradient, large alluvial fans, no major active faults, and tilted inactive late Pleistocene fan surfaces that are deeply incised by modern upper fan channels. Sediments beneath the Coachella Valley thicken gradually northeast to a depth of ∼4–5 km at an abrupt boundary at the San Andreas fault. These features all record crustal-scale tilting to the northeast that likely started when the San Jacinto fault zone initiated ca. 1.2 Ma. Tilting appears to be driven by oblique shortening and loading across a northeast-dipping southern San Andreas fault, consistent with the results of a recent boundary-element modeling study.

  14. Fault Management Guiding Principles

    Science.gov (United States)

    Newhouse, Marilyn E.; Friberg, Kenneth H.; Fesq, Lorraine; Barley, Bryan

    2011-01-01

    Regardless of the mission type: deep space or low Earth orbit, robotic or human spaceflight, Fault Management (FM) is a critical aspect of NASA space missions. As the complexity of space missions grows, the complexity of supporting FM systems increase in turn. Data on recent NASA missions show that development of FM capabilities is a common driver for significant cost overruns late in the project development cycle. Efforts to understand the drivers behind these cost overruns, spearheaded by NASA's Science Mission Directorate (SMD), indicate that they are primarily caused by the growing complexity of FM systems and the lack of maturity of FM as an engineering discipline. NASA can and does develop FM systems that effectively protect mission functionality and assets. The cost growth results from a lack of FM planning and emphasis by project management, as well the maturity of FM as an engineering discipline, which lags behind the maturity of other engineering disciplines. As a step towards controlling the cost growth associated with FM development, SMD has commissioned a multi-institution team to develop a practitioner's handbook representing best practices for the end-to-end processes involved in engineering FM systems. While currently concentrating primarily on FM for science missions, the expectation is that this handbook will grow into a NASA-wide handbook, serving as a companion to the NASA Systems Engineering Handbook. This paper presents a snapshot of the principles that have been identified to guide FM development from cradle to grave. The principles range from considerations for integrating FM into the project and SE organizational structure, the relationship between FM designs and mission risk, and the use of the various tools of FM (e.g., redundancy) to meet the FM goal of protecting mission functionality and assets.

  15. Non-Andersonian conjugate strike-slip faults: Observations, theory, and tectonic implications

    International Nuclear Information System (INIS)

    Yin, A; Taylor, M H

    2008-01-01

    Formation of conjugate strike-slip faults is commonly explained by the Anderson fault theory, which predicts a X-shaped conjugate fault pattern with an intersection angle of ∼30 degrees between the maximum compressive stress and the faults. However, major conjugate faults in Cenozoic collisional orogens, such as the eastern Alps, western Mongolia, eastern Turkey, northern Iran, northeastern Afghanistan, and central Tibet, contradict the theory in that the conjugate faults exhibit a V-shaped geometry with intersection angles of 60-75 degrees, which is 30-45 degrees greater than that predicted by the Anderson fault theory. In Tibet and Mongolia, geologic observations can rule out bookshelf faulting, distributed deformation, and temporal changes in stress state as explanations for the abnormal fault patterns. Instead, the GPS-determined velocity field across the conjugate fault zones indicate that the fault formation may have been related to Hagen-Poiseuille flow in map view involving the upper crust and possibly the whole lithosphere based on upper mantle seismicity in southern Tibet and basaltic volcanism in Mongolia. Such flow is associated with two coeval and parallel shear zones having opposite shear sense; each shear zone produce a set of Riedel shears, respectively, and together the Riedel shears exhibit the observed non-Andersonian conjugate strike-slip fault pattern. We speculate that the Hagen-Poiseuille flow across the lithosphere that hosts the conjugate strike-slip zones was produced by basal shear traction related to asthenospheric flow, which moves parallel and away from the indented segment of the collisional fronts. The inferred asthenospheric flow pattern below the conjugate strike-slip fault zones is consistent with the magnitude and orientations of seismic anisotropy observed across the Tibetan and Mongolian conjugate fault zones, suggesting a strong coupling between lithospheric deformation and asthenospheric flow. The laterally moving

  16. Non-Andersonian conjugate strike-slip faults: Observations, theory, and tectonic implications

    Energy Technology Data Exchange (ETDEWEB)

    Yin, A [Department of Earth and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, Los Angeles, CA 90025-1567 (United States); Taylor, M H [Department of Geology, University of Kansas, 1475 Jayhawk Blvd., Lawrence, KS 66044 (United States)], E-mail: yin@ess.ucla.edu

    2008-07-01

    Formation of conjugate strike-slip faults is commonly explained by the Anderson fault theory, which predicts a X-shaped conjugate fault pattern with an intersection angle of {approx}30 degrees between the maximum compressive stress and the faults. However, major conjugate faults in Cenozoic collisional orogens, such as the eastern Alps, western Mongolia, eastern Turkey, northern Iran, northeastern Afghanistan, and central Tibet, contradict the theory in that the conjugate faults exhibit a V-shaped geometry with intersection angles of 60-75 degrees, which is 30-45 degrees greater than that predicted by the Anderson fault theory. In Tibet and Mongolia, geologic observations can rule out bookshelf faulting, distributed deformation, and temporal changes in stress state as explanations for the abnormal fault patterns. Instead, the GPS-determined velocity field across the conjugate fault zones indicate that the fault formation may have been related to Hagen-Poiseuille flow in map view involving the upper crust and possibly the whole lithosphere based on upper mantle seismicity in southern Tibet and basaltic volcanism in Mongolia. Such flow is associated with two coeval and parallel shear zones having opposite shear sense; each shear zone produce a set of Riedel shears, respectively, and together the Riedel shears exhibit the observed non-Andersonian conjugate strike-slip fault pattern. We speculate that the Hagen-Poiseuille flow across the lithosphere that hosts the conjugate strike-slip zones was produced by basal shear traction related to asthenospheric flow, which moves parallel and away from the indented segment of the collisional fronts. The inferred asthenospheric flow pattern below the conjugate strike-slip fault zones is consistent with the magnitude and orientations of seismic anisotropy observed across the Tibetan and Mongolian conjugate fault zones, suggesting a strong coupling between lithospheric deformation and asthenospheric flow. The laterally moving

  17. Fault geometry and earthquake mechanics

    Directory of Open Access Journals (Sweden)

    D. J. Andrews

    1994-06-01

    Full Text Available Earthquake mechanics may be determined by the geometry of a fault system. Slip on a fractal branching fault surface can explain: 1 regeneration of stress irregularities in an earthquake; 2 the concentration of stress drop in an earthquake into asperities; 3 starting and stopping of earthquake slip at fault junctions, and 4 self-similar scaling of earthquakes. Slip at fault junctions provides a natural realization of barrier and asperity models without appealing to variations of fault strength. Fault systems are observed to have a branching fractal structure, and slip may occur at many fault junctions in an earthquake. Consider the mechanics of slip at one fault junction. In order to avoid a stress singularity of order 1/r, an intersection of faults must be a triple junction and the Burgers vectors on the three fault segments at the junction must sum to zero. In other words, to lowest order the deformation consists of rigid block displacement, which ensures that the local stress due to the dislocations is zero. The elastic dislocation solution, however, ignores the fact that the configuration of the blocks changes at the scale of the displacement. A volume change occurs at the junction; either a void opens or intense local deformation is required to avoid material overlap. The volume change is proportional to the product of the slip increment and the total slip since the formation of the junction. Energy absorbed at the junction, equal to confining pressure times the volume change, is not large enongh to prevent slip at a new junction. The ratio of energy absorbed at a new junction to elastic energy released in an earthquake is no larger than P/µ where P is confining pressure and µ is the shear modulus. At a depth of 10 km this dimensionless ratio has th value P/µ= 0.01. As slip accumulates at a fault junction in a number of earthquakes, the fault segments are displaced such that they no longer meet at a single point. For this reason the

  18. Fault Analysis in Solar Photovoltaic Arrays

    Science.gov (United States)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  19. Radial basis function neural network in fault detection of automotive ...

    African Journals Online (AJOL)

    Radial basis function neural network in fault detection of automotive engines. ... Five faults have been simulated on the MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor faults ... Keywords: Automotive engine, independent RBFNN model, RBF neural network, fault detection

  20. Alboran Basin, southern Spain - Part I: Geomorphology

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A. [Secretaria General de Pesca Maritima, Corazon de Maria, 8, 28002 Madrid (Spain); Ballesteros, M.; Rivera, J.; Acosta, J. [Instituto Espanol de Oceanografia, Corazon de Maria, 8, 28002 Madrid (Spain); Montoya, I. [Universidad Juan Carlos I, Campus de Mostoles, Madrid (Spain); Uchupi, E. [Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2008-01-15

    Bathymetric, 3D relief and shaded relief maps created from multibeam echo-sounding data image the morphology of the Alboran Basin, a structural low along the east-west-trending Eurasian-African plates boundary. Topographic features in the basin are the consequence of volcanism associated with Miocene rifting, rift and post-rift sedimentation, and recent faulting resulting from the convergence of the African-Eurasian plates. Pleistiocene glacially induced regressions/transgressions when the sea level dropped to about 150 m below its present level gas seeps and bottom currents. Recent faulting and the Pleistocene transgressions/regressions led to mass-wasting, formation of turbidity currents and canyon erosion on the basin's slopes. Recent fault traces at the base of the northern basin slope have also served as passageways for thermogenic methane, the oxidation of which by bacteria led to the formation of carbonate mounds along the fault intercepts on the sea floor. Expulsion of thermogenic or biogenic gas has led to the formation of pockmarks; erosion by bottom currents has resulted in the formation of moats around seamounts and erosion of the seafloor of the Alboran Ridge and kept the southern edge of the 36 10'N high sediment free. (author)

  1. Postcrystalline deformation of the Pelona Schist bordering Leona Valley, southern California

    Science.gov (United States)

    Evans, James George

    1978-01-01

    Detailed structural investigations in part of the Leona Valley segment of the San Andreas fault zone, 5-16 km west of Palm dale, focused on the postcrystalline deformation of the block of Mesozoic(?) Pelona Schist underlying Portal and Ritter Ridges. The early fabric of the schist is modified and in places obliterated by cataclasis along shear zones near the San Andreas fault and the Hitchbrook fault, a major west-striking branch of the San Andreas fault system. Anastomosing shear foliations, fabric elements of the postcrystalline deformation, intersect at small angles to one another and are generally vertical or steeply dipping to the north-northeast; they are subparallel to the Hitchbrook fault. Many of these shear foliations are nearly parallel to the compositional layering and schistosity, which commonly dip at moderately steep angles to the northwest. Folds in the shear foliation, commonly intrafolial, generally plunge at moderately steep angles to the north-northeast or are nearly vertical. Other folds, various in form, have axes parallel to the intersections of the early schistosity and the shear foliations and plunge in many other directions. Faults, roughly similar in orientation to the shear foliations, have orientations subparallel to large-scale structures and structural features in the Leona Valley area and in southern California: the San Andreas fault zone in Leona Valley, the Hitchbrook fault, the Garlock fault zone, steep northward-striking faults, the San Andreas fault zone north and south of the Transverse Ranges, and the generally northwest-dipping early compositional layering of the schist. Slickensides on some of the minor faults indicate that the latest movements on the steep faults are predominantly strike slip with indications of less common episodes of predominantly dip slip. The low-angle faults have oblique slip with a large dip component.

  2. Incipient Evolution of the Eastern California Shear Zone through a Transpressional Zone along the San Andreas Fault in the San Bernardino Mountains, California

    Science.gov (United States)

    Cochran, W. J.; Spotila, J. A.

    2017-12-01

    Measuring long-term accumulation of strike-slip displacements and transpressional uplift is difficult where strain is accommodated across wide shear zones, as opposed to a single major fault. The Eastern California Shear Zone (ECSZ) in southern California accommodates dextral shear across several strike-slip faults, and is potentially migrating and cutting through a formerly convergent zone of the San Bernardino Mountains (SBM). The advection of crust along the San Andreas fault to the SE has forced these two tectonic regimes into creating a nexus of interacting strike-slip faults north of San Gorgonio Pass. These elements make this region ideal for studying complex fault interactions, evolving fault geometries, and deformational overprinting within a wide shear zone. Using high-resolution topography and field mapping, this study aims to test whether diffuse, poorly formed strike-slip faults within the uplifted SBM block are nascent elements of the ECSZ. Topographic resolution of ≤ 1m was achieved using both lidar and UAV surveys along two Quaternary strike-slip faults, namely the Lake Peak fault and Lone Valley faults. Although the Lone Valley fault cuts across Quaternary alluvium, the geomorphic expression is obscured, and may be the result of slow slip rates. In contrast, the Lake Peak fault is located high elevations north of San Gorgonio Peak in the SBM, and displaces Quaternary glacial deposits. The deposition of large boulders along the escarpment also obscures the apparent magnitude of slip along the fault. Although determining fault offset is difficult, the Lake Peak fault does display evidence for minor right-lateral displacement, where the magnitude of slip would be consistent with individual faults within the ECSZ (i.e. ≤ 1 mm/yr). Compared to the preservation of displacement along strike-slip faults located within the Mojave Desert, the upland region of the SBM adds complexity for measuring fault offset. The distribution of strain across the entire

  3. Dealing with completeness, structural hierarchy, and seismic coupling issues: three major challenges for #Fault2SHA

    Science.gov (United States)

    Valensise, Gianluca; Barba, Salvatore; Basili, Roberto; Bonini, Lorenzo; Burrato, Pierfrancesco; Carafa, Michele; Kastelic, Vanja; Fracassi, Umberto; Maesano, Francesco Emanuele; Tarabusi, Gabriele; Tiberti, Mara Monica; Vannoli, Paola

    2016-04-01

    The vast majority of active faulting studies are performed at the scale of individual, presumably seismogenic faults or fault strands. Most SHA approaches and models, however, require homogeneus information on potential earthquake sources over the entire tectonic domain encompassing the site(s) of interest. Although it is out of question that accurate SHA must rely on robust investigations of individual potential earthquake sources, it is only by gathering this information in regionally extensive databases that one can address some of the most outstanding issues in the use of #Fault2SHA. We will briefly recall three issues that are particularly relevant in the investigation of seismogenic faulting in southern Europe. A fundamental challenge is the completeness of the geologic record of active faulting. In most tectonic environments many potential seismogenic faults are blind or hidden, or deform the lower crust without leaving a discernible signal at the surface, or occur offshore, or slip so slowly that nontectonic erosional-depositional processes easily outpace their surface effects. Investigating only well-expressed faults is scientifically rewarding but also potentially misleading as it draws attention on the least insidious faults, leading to a potential underestimation of the regional earthquake potential. A further issue concerns the hierarchy of fault systems. Most active faults do not comprise seismogenic sources per se but are part of larger systems, and slip only in conjunction with the master fault of each system. In the most insidious cases, only secondary faults are expressed at the surface while the master fault lies hidden beneath them. This may result in an overestimation of the true number of seismogenic sources that occur in each region and in a biased identification of the characteristics of the main player in each system. Recent investigations of geologic and geodetic vs earthquake release budgets have shown that the "seismic coupling", which

  4. How Might Draining Lake Campotosto Affect Stress and Seismicity on the Monte Gorzano Normal Fault, Central Italy?

    Science.gov (United States)

    Verdecchia, A.; Deng, K.; Harrington, R. M.; Liu, Y.

    2017-12-01

    It is broadly accepted that large variations of water level in reservoirs may affect the stress state on nearby faults. While most studies consider the relationship between lake impoundment and the occurrence of large earthquakes or seismicity rate increases in the surrounding region, very few examples focus on the effects of lake drainage. The second largest reservoir in Europe, Lake Campotosto, is located on the hanging wall of the Monte Gorzano fault, an active normal fault responsible for at least two M ≥ 6 earthquakes in historical times. The northern part of this fault ruptured during the August 24, 2016, Mw 6.0 Amatrice earthquake, increasing the probability for a future large event on the southern section where an aftershock sequence is still ongoing. The proximity of the Campotosto reservoir to the active fault aroused general concern with respect to the stability of the three dams bounding the reservoir if the southern part of the Monte Gorzano fault produces a moderate earthquake. Local officials have proposed draining the reservoir as hazard mitigation strategy to avoid possible future catastrophes. In efforts to assess how draining the reservoir might affect earthquake nucleation on the fault, we use a finite-element poroelastic model to calculate the evolution of stress and pore pressure in terms of Coulomb stress changes that would be induced on the Monte Gorzano fault by emptying the Lake Campotosto reservoir. Preliminary results show that an instantaneous drainage of the lake will produce positive Coulomb stress changes, mostly on the shallower part of the fault (0 to 2 km), while a stress drop of the order of 0.2 bar is expected on the Monte Gorzano fault between 0 and 8 km depth. Earthquake hypocenters on the southern portion of the fault currently nucleate between 5 and 13 km depth, with activity distributed nearby the reservoir. Upcoming work will model the effects of varying fault geometry and elastic parameters, including geological

  5. Application of fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, A.

    2007-11-30

    This report presents the results of a study commissioned by the Department for Business, Enterprise and Industry (BERR; formerly the Department of Trade and Industry) into the application of fault current limiters in the UK. The study reviewed the current state of fault current limiter (FCL) technology and regulatory position in relation to all types of current limiters. It identified significant research and development work with respect to medium voltage FCLs and a move to high voltage. Appropriate FCL technologies being developed include: solid state breakers; superconducting FCLs (including superconducting transformers); magnetic FCLs; and active network controllers. Commercialisation of these products depends on successful field tests and experience, plus material development in the case of high temperature superconducting FCL technologies. The report describes FCL techniques, the current state of FCL technologies, practical applications and future outlook for FCL technologies, distribution fault level analysis and an outline methodology for assessing the materiality of the fault level problem. A roadmap is presented that provides an 'action agenda' to advance the fault level issues associated with low carbon networks.

  6. Fault trees for diagnosis of system fault conditions

    International Nuclear Information System (INIS)

    Lambert, H.E.; Yadigaroglu, G.

    1977-01-01

    Methods for generating repair checklists on the basis of fault tree logic and probabilistic importance are presented. A one-step-ahead optimization procedure, based on the concept of component criticality, minimizing the expected time to diagnose system failure is outlined. Options available to the operator of a nuclear power plant when system fault conditions occur are addressed. A low-pressure emergency core cooling injection system, a standby safeguard system of a pressurized water reactor power plant, is chosen as an example illustrating the methods presented

  7. Identifying Conventionally Sub-Seismic Faults in Polygonal Fault Systems

    Science.gov (United States)

    Fry, C.; Dix, J.

    2017-12-01

    Polygonal Fault Systems (PFS) are prevalent in hydrocarbon basins globally and represent potential fluid pathways. However the characterization of these pathways is subject to the limitations of conventional 3D seismic imaging; only capable of resolving features on a decametre scale horizontally and metres scale vertically. While outcrop and core examples can identify smaller features, they are limited by the extent of the exposures. The disparity between these scales can allow for smaller faults to be lost in a resolution gap which could mean potential pathways are left unseen. Here the focus is upon PFS from within the London Clay, a common bedrock that is tunnelled into and bears construction foundations for much of London. It is a continuation of the Ieper Clay where PFS were first identified and is found to approach the seafloor within the Outer Thames Estuary. This allows for the direct analysis of PFS surface expressions, via the use of high resolution 1m bathymetric imaging in combination with high resolution seismic imaging. Through use of these datasets surface expressions of over 1500 faults within the London Clay have been identified, with the smallest fault measuring 12m and the largest at 612m in length. The displacements over these faults established from both bathymetric and seismic imaging ranges from 30cm to a couple of metres, scales that would typically be sub-seismic for conventional basin seismic imaging. The orientations and dimensions of the faults within this network have been directly compared to 3D seismic data of the Ieper Clay from the offshore Dutch sector where it exists approximately 1km below the seafloor. These have typical PFS attributes with lengths of hundreds of metres to kilometres and throws of tens of metres, a magnitude larger than those identified in the Outer Thames Estuary. The similar orientations and polygonal patterns within both locations indicates that the smaller faults exist within typical PFS structure but are

  8. Fault-tolerant architecture: Evaluation methodology

    International Nuclear Information System (INIS)

    Battle, R.E.; Kisner, R.A.

    1992-08-01

    The design and reliability of four fault-tolerant architectures that may be used in nuclear power plant control systems were evaluated. Two architectures are variations of triple-modular-redundant (TMR) systems, and two are variations of dual redundant systems. The evaluation includes a review of methods of implementing fault-tolerant control, the importance of automatic recovery from failures, methods of self-testing diagnostics, block diagrams of typical fault-tolerant controllers, review of fault-tolerant controllers operating in nuclear power plants, and fault tree reliability analyses of fault-tolerant systems

  9. Fault Isolation for Shipboard Decision Support

    DEFF Research Database (Denmark)

    Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam

    2010-01-01

    Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation of a containe......Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation...... to the quality of decisions given to navigators....

  10. An architecture for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2005-01-01

    degradation in the sense of guaranteed degraded performance. A number of fault diagnosis problems, fault tolerant control problems, and feedback control with fault rejection problems are formulated/considered, mainly from a fault modeling point of view. The method is illustrated on a servo example including......A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...

  11. Fault estimation - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, J.; Niemann, Hans Henrik

    2002-01-01

    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis problems are reformulated in the so-called standard problem set-up introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis...... problems can be solved by standard optimization techniques. The proposed methods include (1) fault diagnosis (fault estimation, (FE)) for systems with model uncertainties; FE for systems with parametric faults, and FE for a class of nonlinear systems. Copyright...

  12. Deciphering Stress State of Seismogenic Faults in Oklahoma and Kansas Based on High-resolution Stress Maps

    Science.gov (United States)

    Qin, Y.; Chen, X.; Haffener, J.; Trugman, D. T.; Carpenter, B.; Reches, Z.

    2017-12-01

    Induced seismicity in Oklahoma and Kansas delineates clear fault trends. It is assumed that fluid injection reactivates faults which are optimally oriented relative to the regional tectonic stress field. We utilized recently improved earthquake locations and more complete focal mechanism catalogs to quantitatively analyze the stress state of seismogenic faults with high-resolution stress maps. The steps of analysis are: (1) Mapping the faults by clustering seismicity using a nearest-neighbor approach, manually picking the fault in each cluster and calculating the fault geometry using principal component analysis. (2) Running a stress inversion with 0.2° grid spacing to produce an in-situ stress map. (3) The fault stress state is determined from fault geometry and a 3D Mohr circle. The parameter `understress' is calculated to quantify the criticalness of these faults. If it approaches 0, the fault is critically stressed; while understress=1 means there is no shear stress on the fault. Our results indicate that most of the active faults have a planar shape (planarity>0.8), and dip steeply (dip>70°). The fault trends are distributed mainly in conjugate set ranges of [50°,70°] and [100°,120°]. More importantly, these conjugate trends are consistent with mapped basement fractures in southern Oklahoma, suggesting similar basement features from regional tectonics. The fault length data shows a loglinear relationship with the maximum earthquake magnitude with an expected maximum magnitude range from 3.2 to 4.4 for most seismogenic faults. Based on 3D local Mohr circle, we find that 61% of the faults have low understress (0.5) are located within highest-rate injection zones and therefore are likely to be influenced by high pore pressure. The faults that hosted the largest earthquakes, M5.7 Prague and M5.8 Pawnee are critically stressed (understress 0.2). These differences may help in understanding earthquake sequences, for example, the predominantly aftershock

  13. Static stress changes associated with normal faulting earthquakes in South Balkan area

    Science.gov (United States)

    Papadimitriou, E.; Karakostas, V.; Tranos, M.; Ranguelov, B.; Gospodinov, D.

    2007-10-01

    Activation of major faults in Bulgaria and northern Greece presents significant seismic hazard because of their proximity to populated centers. The long recurrence intervals, of the order of several hundred years as suggested by previous investigations, imply that the twentieth century activation along the southern boundary of the sub-Balkan graben system, is probably associated with stress transfer among neighbouring faults or fault segments. Fault interaction is investigated through elastic stress transfer among strong main shocks ( M ≥ 6.0), and in three cases their foreshocks, which ruptured distinct or adjacent normal fault segments. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We explore the interaction between normal faults in the study area by resolving changes of Coulomb failure function ( ΔCFF) since 1904 and hence the evolution of the stress field in the area during the last 100 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong earthquakes and the slow tectonic stress buildup associated with major fault segments. We evaluate if these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. Our modeling results show that the generation of each strong event enhanced the Coulomb stress on along-strike neighbors and reduced the stress on parallel normal faults. We extend the stress calculations up to present and provide an assessment for future seismic hazard by identifying possible sites of impending strong earthquakes.

  14. Integrated fault tree development environment

    International Nuclear Information System (INIS)

    Dixon, B.W.

    1986-01-01

    Probabilistic Risk Assessment (PRA) techniques are utilized in the nuclear industry to perform safety analyses of complex defense-in-depth systems. A major effort in PRA development is fault tree construction. The Integrated Fault Tree Environment (IFTREE) is an interactive, graphics-based tool for fault tree design. IFTREE provides integrated building, editing, and analysis features on a personal workstation. The design philosophy of IFTREE is presented, and the interface is described. IFTREE utilizes a unique rule-based solution algorithm founded in artificial intelligence (AI) techniques. The impact of the AI approach on the program design is stressed. IFTREE has been developed to handle the design and maintenance of full-size living PRAs and is currently in use

  15. Update: San Andreas Fault experiment

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.

    1984-01-01

    Satellite laser ranging techniques are used to monitor the broad motion of the tectonic plates comprising the San Andreas Fault System. The San Andreas Fault Experiment, (SAFE), has progressed through the upgrades made to laser system hardware and an improvement in the modeling capabilities of the spaceborne laser targets. Of special note is the launch of the Laser Geodynamic Satellite, LAGEOS spacecraft, NASA's only completely dedicated laser satellite in 1976. The results of plate motion projected into this 896 km measured line over the past eleven years are summarized and intercompared.

  16. Faulting at Mormon Point, Death Valley, California: A low-angle normal fault cut by high-angle faults

    Science.gov (United States)

    Keener, Charles; Serpa, Laura; Pavlis, Terry L.

    1993-04-01

    New geophysical and fault kinematic studies indicate that late Cenozoic basin development in the Mormon Point area of Death Valley, California, was accommodated by fault rotations. Three of six fault segments recognized at Mormon Point are now inactive and have been rotated to low dips during extension. The remaining three segments are now active and moderately to steeply dipping. From the geophysical data, one active segment appears to offset the low-angle faults in the subsurface of Death Valley.

  17. Fault-tolerant system for catastrophic faults in AMR sensors

    NARCIS (Netherlands)

    Zambrano Constantini, A.C.; Kerkhoff, Hans G.

    Anisotropic Magnetoresistance angle sensors are widely used in automotive applications considered to be safety-critical applications. Therefore dependability is an important requirement and fault-tolerant strategies must be used to guarantee the correct operation of the sensors even in case of

  18. The Non-Regularity of Earthquake Recurrence in California: Lessons From Long Paleoseismic Records in Simple vs Complex Fault Regions (Invited)

    Science.gov (United States)

    Rockwell, T. K.

    2010-12-01

    A long paleoseismic record at Hog Lake on the central San Jacinto fault (SJF) in southern California documents evidence for 18 surface ruptures in the past 3.8-4 ka. This yields a long-term recurrence interval of about 210 years, consistent with its slip rate of ~16 mm/yr and field observations of 3-4 m of displacement per event. However, during the past 3800 years, the fault has switched from a quasi-periodic mode of earthquake production, during which the recurrence interval is similar to the long-term average, to clustered behavior with the inter-event periods as short as a few decades. There are also some periods as long as 450 years during which there were no surface ruptures, and these periods are commonly followed by one to several closely-timed ruptures. The coefficient of variation (CV) for the timing of these earthquakes is about 0.6 for the past 4000 years (17 intervals). Similar behavior has been observed on the San Andreas Fault (SAF) south of the Transverse Ranges where clusters of earthquakes have been followed by periods of lower seismic production, and the CV is as high as 0.7 for some portions of the fault. In contrast, the central North Anatolian Fault (NAF) in Turkey, which ruptured in 1944, appears to have produced ruptures with similar displacement at fairly regular intervals for the past 1600 years. With a CV of 0.16 for timing, and close to 0.1 for displacement, the 1944 rupture segment near Gerede appears to have been both periodic and characteristic. The SJF and SAF are part of a broad plate boundary system with multiple parallel strands with significant slip rates. Additional faults lay to the east (Eastern California shear zone) and west (faults of the LA basin and southern California Borderland), which makes the southern SAF system a complex and broad plate boundary zone. In comparison, the 1944 rupture section of the NAF is simple, straight and highly localized, which contrasts with the complex system of parallel faults in southern

  19. Subduction in the Southern Caribbean

    Science.gov (United States)

    Levander, A.; Schmitz, M.; Bezada, M.; Masy, J.; Niu, F.; Pindell, J.

    2012-04-01

    The southern Caribbean is bounded at either end by subduction zones: In the east at the Lesser Antilles subduction zone the Atlantic part of the South American plate subducts beneath the Caribbean. In the north and west under the Southern Caribbean Deformed Belt accretionary prism, the Caribbean subducts under South America. In a manner of speaking, the two plates subduct beneath each other. Finite-frequency teleseismic P-wave tomography confirms this, imaging the Atlantic and the Caribbean subducting steeply in opposite directions to transition zone depths under northern South America (Bezada et al, 2010). The two subduction zones are connected by the El Pilar-San Sebastian strike-slip fault system, a San Andreas scale system. A variety of seismic probes identify where the two plates tear as they begin to subduct (Niu et al, 2007; Clark et al., 2008; Miller et al. 2009; Masy et al, 2009). The El Pilar system forms at the southeastern corner of the Antilles subduction zone by the Atlantic tearing from South America. The deforming plate edges control mountain building and basin formation at the eastern end of the strike-slip system. In northwestern South America the Caribbean plate tears, its southernmost element subducting at shallow angles under northernmost Colombia and then rapidly descending to transition zone depths under Lake Maracaibo (Bezada et al., 2010). We believe that the flat slab produces the Merida Andes, the Perija, and the Santa Marta ranges. The southern edge of the nonsubducting Caribbean plate underthrusts northern Venezuela to about the width of the coastal mountains (Miller et al., 2009). We infer that the underthrust Caribbean plate supports the coastal mountains, and controls continuing deformation.

  20. Fault Management Assistant (FMA), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — S&K Aerospace (SKA) proposes to develop the Fault Management Assistant (FMA) to aid project managers and fault management engineers in developing better and more...

  1. SDEM modelling of fault-propagation folding

    DEFF Research Database (Denmark)

    Clausen, O.R.; Egholm, D.L.; Poulsen, Jane Bang

    2009-01-01

    and variations in Mohr-Coulomb parameters including internal friction. Using SDEM modelling, we have mapped the propagation of the tip-line of the fault, as well as the evolution of the fold geometry across sedimentary layers of contrasting rheological parameters, as a function of the increased offset......Understanding the dynamics and kinematics of fault-propagation-folding is important for evaluating the associated hydrocarbon play, for accomplishing reliable section balancing (structural reconstruction), and for assessing seismic hazards. Accordingly, the deformation style of fault-propagation...... a precise indication of when faults develop and hence also the sequential evolution of secondary faults. Here we focus on the generation of a fault -propagated fold with a reverse sense of motion at the master fault, and varying only the dip of the master fault and the mechanical behaviour of the deformed...

  2. A summary of the active fault investigation in the extension sea area of Kikugawa fault and the Nishiyama fault , N-S direction fault in south west Japan

    Science.gov (United States)

    Abe, S.

    2010-12-01

    In this study, we carried out two sets of active fault investigation by the request from Ministry of Education, Culture, Sports, Science and Technology in the sea area of the extension of Kikugawa fault and the Nishiyama fault. We want to clarify the five following matters about both active faults based on those results. (1)Fault continuity of the land and the sea. (2) The length of the active fault. (3) The division of the segment. (4) Activity characteristics. In this investigation, we carried out a digital single channel seismic reflection survey in the whole area of both active faults. In addition, a high-resolution multichannel seismic reflection survey was carried out to recognize the detailed structure of a shallow stratum. Furthermore, the sampling with the vibrocoring to get information of the sedimentation age was carried out. The reflection profile of both active faults was extremely clear. The characteristics of the lateral fault such as flower structure, the dispersion of the active fault were recognized. In addition, from analysis of the age of the stratum, it was recognized that the thickness of the sediment was extremely thin in Holocene epoch on the continental shelf in this sea area. It was confirmed that the Kikugawa fault extended to the offing than the existing results of research by a result of this investigation. In addition, the width of the active fault seems to become wide toward the offing while dispersing. At present, we think that we can divide Kikugawa fault into some segments based on the distribution form of the segment. About the Nishiyama fault, reflection profiles to show the existence of the active fault was acquired in the sea between Ooshima and Kyushu. From this result and topographical existing results of research in Ooshima, it is thought that Nishiyama fault and the Ooshima offing active fault are a series of structure. As for Ooshima offing active fault, the upheaval side changes, and a direction changes too. Therefore, we

  3. 31 CFR 29.522 - Fault.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 1 2010-07-01 2010-07-01 false Fault. 29.522 Section 29.522 Money... Overpayments § 29.522 Fault. (a) General rule. A debtor is considered to be at fault if he or she, or any other... requirement. (3) The following factors may affect the decision as to whether the debtor is or is not at fault...

  4. Active faults and historical earthquakes in the Messina Straits area (Ionian Sea

    Directory of Open Access Journals (Sweden)

    A. Polonia

    2012-07-01

    Full Text Available The Calabrian Arc (CA subduction complex is located at the toe of the Eurasian Plate in the Ionian Sea, where sediments resting on the lower plate have been scraped off and piled up in the accretionary wedge due to the African/Eurasian plate convergence and back arc extension. The CA has been struck repeatedly by destructive historical earthquakes, but knowledge of active faults and source parameters is relatively poor, particularly for seismogenic structures extending offshore. We analysed the fine structure of major tectonic features likely to have been sources of past earthquakes: (i the NNW–SSE trending Malta STEP (Slab Transfer Edge Propagator fault system, representing a lateral tear of the subduction system; (ii the out-of-sequence thrusts (splay faults at the rear of the salt-bearing Messinian accretionary wedge; and (iii the Messina Straits fault system, part of the wide deformation zone separating the western and eastern lobes of the accretionary wedge.

    Our findings have implications for seismic hazard in southern Italy, as we compile an inventory of first order active faults that may have produced past seismic events such as the 1908, 1693 and 1169 earthquakes. These faults are likely to be source regions for future large magnitude events as they are long, deep and bound sectors of the margin characterized by different deformation and coupling rates on the plate interface.

  5. Modeling earthquake sequences along the Manila subduction zone: Effects of three-dimensional fault geometry

    Science.gov (United States)

    Yu, Hongyu; Liu, Yajing; Yang, Hongfeng; Ning, Jieyuan

    2018-05-01

    To assess the potential of catastrophic megathrust earthquakes (MW > 8) along the Manila Trench, the eastern boundary of the South China Sea, we incorporate a 3D non-planar fault geometry in the framework of rate-state friction to simulate earthquake rupture sequences along the fault segment between 15°N-19°N of northern Luzon. Our simulation results demonstrate that the first-order fault geometry heterogeneity, the transitional-segment (possibly related to the subducting Scarborough seamount chain) connecting the steeper south segment and the flatter north segment, controls earthquake rupture behaviors. The strong along-strike curvature at the transitional-segment typically leads to partial ruptures of MW 8.3 and MW 7.8 along the southern and northern segments respectively. The entire fault occasionally ruptures in MW 8.8 events when the cumulative stress in the transitional-segment is sufficiently high to overcome the geometrical inhibition. Fault shear stress evolution, represented by the S-ratio, is clearly modulated by the width of seismogenic zone (W). At a constant plate convergence rate, a larger W indicates on average lower interseismic stress loading rate and longer rupture recurrence period, and could slow down or sometimes stop ruptures that initiated from a narrower portion. Moreover, the modeled interseismic slip rate before whole-fault rupture events is comparable with the coupling state that was inferred from the interplate seismicity distribution, suggesting the Manila trench could potentially rupture in a M8+ earthquake.

  6. Constraining fault interpretation through tomographic velocity gradients: application to northern Cascadia

    Directory of Open Access Journals (Sweden)

    K. Ramachandran

    2012-02-01

    Full Text Available Spatial gradients of tomographic velocities are seldom used in interpretation of subsurface fault structures. This study shows that spatial velocity gradients can be used effectively in identifying subsurface discontinuities in the horizontal and vertical directions. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity models have an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. An interpretational approach utilizing spatial velocity gradients applied to northern Cascadia shows that subsurface faults that are not clearly interpretable from velocity model plots can be identified by sharp contrasts in velocity gradient plots. This interpretation resulted in inferring the locations of the Tacoma, Seattle, Southern Whidbey Island, and Darrington Devil's Mountain faults much more clearly. The Coast Range Boundary fault, previously hypothesized on the basis of sedimentological and tectonic observations, is inferred clearly from the gradient plots. Many of the fault locations imaged from gradient data correlate with earthquake hypocenters, indicating their seismogenic nature.

  7. H infinity Integrated Fault Estimation and Fault Tolerant Control of Discrete-time Piecewise Linear Systems

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Bak, Thomas

    2012-01-01

    In this paper we consider the problem of fault estimation and accommodation for discrete time piecewise linear systems. A robust fault estimator is designed to estimate the fault such that the estimation error converges to zero and H∞ performance of the fault estimation is minimized. Then, the es...

  8. Cell boundary fault detection system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Pinnow, Kurt Walter [Rochester, MN; Ratterman, Joseph D [Rochester, MN; Smith, Brian Edward [Rochester, MN

    2011-04-19

    An apparatus and program product determine a nodal fault along the boundary, or face, of a computing cell. Nodes on adjacent cell boundaries communicate with each other, and the communications are analyzed to determine if a node or connection is faulty.

  9. RESULTS, RESPONSIBILITY, FAULT AND CONTROL

    Directory of Open Access Journals (Sweden)

    Evgeniy Stoyanov

    2016-09-01

    Full Text Available The paper focuses on the responsibility arising from the registered financial results. The analysis of this responsibility presupposes its evaluation and determination of the role of fault in the formation of negative results. The search for efficiency in this whole process is justified by the understanding of the mechanisms that regulate the behavior of economic actors.

  10. Fault detection using (PI) observers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, J.; Shafai, B.

    1997-01-01

    The fault detection and isolation (FDI) problem in connection with Proportional Integral (PI) Observers is considered in this paper. A compact formulation of the FDI design problem using PI observers is given. An analysis of the FDI design problem is derived with respectt to the time domain...

  11. Quaternary Activity of the Monastir and Grombalia Fault Systems in the North‒Eastern Tunisia (Seismotectonic Implication)

    Science.gov (United States)

    Ghribi, R.; Zaatra, D.; Bouaziz, S.

    2018-01-01

    The Monastir and Grombalia fault systems consist of three strands that the northern segment corresponds to Hammamet and Grombalia faults. The southern strand represents Monastir Fault also referred to as the Skanes-Khnis Fault. These NW-trends are observed continuously in the major outcropping features of north-eastern Tunisia including both the Cap Bon peninsula and the Sahel domain. Along the Hammamet Fault, the north-eastern strand of Grombalia fault system, left lateral drainage offset of amount 220 m is found in Fawara valley. To the South, the left lateral movement is occurred along the Monastir Fault based on 180 m of Tyrrhenian terrace displacement. Field observations supported by satellite images suggest that the Monastir and Grombalia fault systems appear to slip mostly laterally with components of normal dip slip. Assuming the development of the stream networks during the Riss-Würm interglacial (115000-125000 years) and the age of the Tyrrhenian terrace (121 ± 10 ka), the strike slip rates of the Hammamet and Monastir faults are calculated in the range of 1.5-1.8 mm/yr. There vertical slip rates are estimated to be 0.06 and 0.26 mm/yr, respectively. These data are consistent with the displacement rate in the Pelagian shelf (1-2 mm/yr) but they are below the convergence rate of African-Eurasian plates (8 mm/yr). Our seismotectonics study reveals that a maximum earthquake of Mw = 6.5 could occur every 470 years in the Hammamet fault zone and Mw = 6-every 263 years in the Monastir fault zone.

  12. Exact, almost and delayed fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    Considers the problem of fault detection and isolation while using zero or almost zero threshold. A number of different fault detection and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability conditions are given for the formulated design problems....... The l-step delayed fault detection problem is also considered for discrete-time systems....

  13. 5 CFR 831.1402 - Fault.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Fault. 831.1402 Section 831.1402...) RETIREMENT Standards for Waiver of Overpayments § 831.1402 Fault. A recipient of an overpayment is without fault if he/she performed no act of commission or omission which resulted in the overpayment. The fact...

  14. 40 CFR 258.13 - Fault areas.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Fault areas. 258.13 Section 258.13... SOLID WASTE LANDFILLS Location Restrictions § 258.13 Fault areas. (a) New MSWLF units and lateral expansions shall not be located within 200 feet (60 meters) of a fault that has had displacement in Holocene...

  15. On the "stacking fault" in copper

    NARCIS (Netherlands)

    Fransens, J.R.; Pleiter, F

    2003-01-01

    The results of a perturbed gamma-gamma angular correlations experiment on In-111 implanted into a properly cut single crystal of copper show that the defect known in the literature as "stacking fault" is not a planar faulted loop but a stacking fault tetrahedron with a size of 10-50 Angstrom.

  16. 20 CFR 255.11 - Fault.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Fault. 255.11 Section 255.11 Employees... § 255.11 Fault. (a) Before recovery of an overpayment may be waived, it must be determined that the overpaid individual was without fault in causing the overpayment. If recovery is sought from other than the...

  17. 5 CFR 845.302 - Fault.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 2 2010-01-01 2010-01-01 false Fault. 845.302 Section 845.302... EMPLOYEES RETIREMENT SYSTEM-DEBT COLLECTION Standards for Waiver of Overpayments § 845.302 Fault. A recipient of an overpayment is without fault if he or she performed no act of commission or omission that...

  18. Fault-related clay authigenesis along the Moab Fault: Implications for calculations of fault rock composition and mechanical and hydrologic fault zone properties

    Science.gov (United States)

    Solum, J.G.; Davatzes, N.C.; Lockner, D.A.

    2010-01-01

    The presence of clays in fault rocks influences both the mechanical and hydrologic properties of clay-bearing faults, and therefore it is critical to understand the origin of clays in fault rocks and their distributions is of great importance for defining fundamental properties of faults in the shallow crust. Field mapping shows that layers of clay gouge and shale smear are common along the Moab Fault, from exposures with throws ranging from 10 to ???1000 m. Elemental analyses of four locations along the Moab Fault show that fault rocks are enriched in clays at R191 and Bartlett Wash, but that this clay enrichment occurred at different times and was associated with different fluids. Fault rocks at Corral and Courthouse Canyons show little difference in elemental composition from adjacent protolith, suggesting that formation of fault rocks at those locations is governed by mechanical processes. Friction tests show that these authigenic clays result in fault zone weakening, and potentially influence the style of failure along the fault (seismogenic vs. aseismic) and potentially influence the amount of fluid loss associated with coseismic dilation. Scanning electron microscopy shows that authigenesis promotes that continuity of slip surfaces, thereby enhancing seal capacity. The occurrence of the authigenesis, and its influence on the sealing properties of faults, highlights the importance of determining the processes that control this phenomenon. ?? 2010 Elsevier Ltd.

  19. Architecting Fault-Tolerant Software Systems

    NARCIS (Netherlands)

    Sözer, Hasan

    2009-01-01

    The increasing size and complexity of software systems makes it hard to prevent or remove all possible faults. Faults that remain in the system can eventually lead to a system failure. Fault tolerance techniques are introduced for enabling systems to recover and continue operation when they are

  20. Machine Learning of Fault Friction

    Science.gov (United States)

    Johnson, P. A.; Rouet-Leduc, B.; Hulbert, C.; Marone, C.; Guyer, R. A.

    2017-12-01

    We are applying machine learning (ML) techniques to continuous acoustic emission (AE) data from laboratory earthquake experiments. Our goal is to apply explicit ML methods to this acoustic datathe AE in order to infer frictional properties of a laboratory fault. The experiment is a double direct shear apparatus comprised of fault blocks surrounding fault gouge comprised of glass beads or quartz powder. Fault characteristics are recorded, including shear stress, applied load (bulk friction = shear stress/normal load) and shear velocity. The raw acoustic signal is continuously recorded. We rely on explicit decision tree approaches (Random Forest and Gradient Boosted Trees) that allow us to identify important features linked to the fault friction. A training procedure that employs both the AE and the recorded shear stress from the experiment is first conducted. Then, testing takes place on data the algorithm has never seen before, using only the continuous AE signal. We find that these methods provide rich information regarding frictional processes during slip (Rouet-Leduc et al., 2017a; Hulbert et al., 2017). In addition, similar machine learning approaches predict failure times, as well as slip magnitudes in some cases. We find that these methods work for both stick slip and slow slip experiments, for periodic slip and for aperiodic slip. We also derive a fundamental relationship between the AE and the friction describing the frictional behavior of any earthquake slip cycle in a given experiment (Rouet-Leduc et al., 2017b). Our goal is to ultimately scale these approaches to Earth geophysical data to probe fault friction. References Rouet-Leduc, B., C. Hulbert, N. Lubbers, K. Barros, C. Humphreys and P. A. Johnson, Machine learning predicts laboratory earthquakes, in review (2017). https://arxiv.org/abs/1702.05774Rouet-LeDuc, B. et al., Friction Laws Derived From the Acoustic Emissions of a Laboratory Fault by Machine Learning (2017), AGU Fall Meeting Session S025

  1. Fault diagnosis and fault-tolerant control based on adaptive control approach

    CERN Document Server

    Shen, Qikun; Shi, Peng

    2017-01-01

    This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .

  2. Passive bookshelf faulting driven by gravitational spreading as the cause of the tiger-stripe-fracture formation and development in the South Polar Terrain of Enceladus

    Science.gov (United States)

    Yin, A.; Pappalardo, R. T.

    2013-12-01

    Detailed photogeologic mapping of the tiger-stripe fractures in the South Polar Terrain (SPT) of Enceladus indicates that these structures are left-slip faults and terminate at hook-shaped fold-thrust zones and/or Y-shaped horsetail splay-fault zones. The semi-square-shaped tectonic domain that hosts the tiger-stripe faults is bounded by right-slip and left-slip faults on the north and south edges and fold-thrust and extensional zones on the western and eastern edges. We explain the above observations by a passive bookshelf-faulting model in which individual tiger-stripe faults are bounded by deformable wall rocks accommodating distributed deformation. Based on topographic data, we suggest that gravitational spreading had caused the SPT to spread unevenly from west to east. This process was accommodated by right-slip and left-slip faulting on the north and south sides and thrusting and extension along the eastern and southern margins of the tiger-stripe tectonic domain. The uneven spreading, expressed by a gradual northward increase in the number of extensional faults and thrusts/folds along the western and eastern margins, was accommodated by distributed right-slip simple shear across the whole tiger-stripe tectonic domain. This mode of deformation in turn resulted in the development of a passive bookshelf-fault system characterized by left-slip faulting on individual tiger-stripe fractures.

  3. Frictional melt generated by the 2008 Mw 7.9 Wenchuan earthquake and its faulting mechanisms

    Science.gov (United States)

    Wang, H.; Li, H.; Si, J.; Sun, Z.; Zhang, L.; He, X.

    2017-12-01

    Fault-related pseudotachylytes are considered as fossil earthquakes, conveying significant information that provide improved insight into fault behaviors and their mechanical properties. The WFSD project was carried out right after the 2008 Wenchuan earthquake, detailed research was conducted in the drilling cores. 2 mm rigid black layer with fresh slickenlines was observed at 732.6 m in WFSD-1 cores drilled at the southern Yingxiu-Beichuan fault (YBF). Evidence of optical microscopy, FESEM and FIB-TEM show it's frictional melt (pseudotachylyte). In the northern part of YBF, 4 mm fresh melt was found at 1084 m with similar structures in WFSD-4S cores. The melts contain numerous microcracks. Considering that (1) the highly unstable property of the frictional melt (easily be altered or devitrified) under geological conditions; (2) the unfilled microcracks; (3) fresh slickenlines and (4) recent large earthquake in this area, we believe that 2-4 mm melt was produced by the 2008 Wenchuan earthquake. This is the first report of fresh pseudotachylyte with slickenlines in natural fault that generated by modern earthquake. Geochemical analyses show that fault rocks at 732.6 m are enriched in CaO, Fe2O3, FeO, H2O+ and LOI, whereas depleted in SiO2. XRF results show that Ca and Fe are enriched obviously in the 2.5 cm fine-grained fault rocks and Ba enriched in the slip surface. The melt has a higher magnetic susceptibility value, which may due to neoformed magnetite and metallic iron formed in fault frictional melt. Frictional melt visible in both southern and northern part of YBF reveals that frictional melt lubrication played a major role in the Wenchuan earthquake. Instead of vesicles and microlites, numerous randomly oriented microcracks in the melt, exhibiting a quenching texture. The quenching texture suggests the frictional melt was generated under rapid heat-dissipation condition, implying vigorous fluid circulation during the earthquake. We surmise that during

  4. Mapping offshore portions of the Khlong Marui and Ranong faults in Thailand: Implications for seismic hazards in the Thai peninsula

    Science.gov (United States)

    Ramirez, H.; Furlong, K.; Pananont, P.; Krastel, S.; Nhongkai, S. N.

    2017-12-01

    Thailand experiences Mw 10.1016/S0191- 8141(01)00080-3 Watkinson, I., Elders, C., & Hall, R. (2008). The kinematic history of the Khlong Marui and Ranong Faults, southern Thailand. Journal of Structural Geology, 30, 1554-1571. http://doi.org/10.1016/j.jsg.2008.09.001

  5. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia

    2015-01-01

    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  6. Focused exhumation along megathrust splay faults in Prince William Sound, Alaska

    Science.gov (United States)

    Haeussler, Peter J.; Armstrong, Phillip A; Liberty, Lee M; Ferguson, Kelly M; Finn, Shaun P; Arkle, Jeannette C; Pratt, Thomas L.

    2015-01-01

    Megathrust splay faults are a common feature of accretionary prisms and can be important for generating tsunamis during some subduction zone earthquakes. Here we provide new evidence from Alaska that megathrust splay faults have been conduits for focused exhumation in the last 5 Ma. In most of central Prince William Sound, published and new low-temperature thermochronology data indicate little to no permanent rock uplift over tens of thousands of earthquake cycles. However, in southern Prince William Sound on Montague Island, apatite (U–Th)/He ages are as young as 1.1 Ma indicating focused and rapid rock uplift. Montague Island lies in the hanging wall of the Patton Bay megathrust splay fault system, which ruptured during the 1964 M9.2 earthquake and produced ∼9 m of vertical uplift. Recent geochronology and thermochronology studies show rapid exhumation within the last 5 Ma in a pattern similar to the coseismic uplift in the 1964 earthquake, demonstrating that splay fault slip is a long term (3–5 my) phenomena. The region of slower exhumation correlates with rocks that are older and metamorphosed and constitute a mechanically strong backstop. The region of rapid exhumation consists of much younger and weakly metamorphosed rocks, which we infer are mechanically weak. The region of rapid exhumation is separated from the region of slow exhumation by the newly identified Montague Strait Fault. New sparker high-resolution bathymetry, seismic reflection profiles, and a 2012 Mw4.8 earthquake show this feature as a 75-km-long high-angle active normal fault. There are numerous smaller active normal(?) faults in the region between the Montague Strait Fault and the splay faults. We interpret this hanging wall extension as developing between the rapidly uplifting sliver of younger and weaker rocks on Montague Island from the essentially fixed region to the north. Deep seismic reflection profiles show the splay faults root into the subduction megathrust where there

  7. Active fault traces along Bhuj Fault and Katrol Hill Fault, and ...

    Indian Academy of Sciences (India)

    face, passing through the alluvial-colluvial fan at location 2. The gentle warping of the surface was completely modified because of severe cultivation practice. Therefore, it was difficult to confirm it in field. To the south ... scarp has been modified by present day farming. At location 5 near Wandhay village, an active fault trace ...

  8. Novel neural networks-based fault tolerant control scheme with fault alarm.

    Science.gov (United States)

    Shen, Qikun; Jiang, Bin; Shi, Peng; Lim, Cheng-Chew

    2014-11-01

    In this paper, the problem of adaptive active fault-tolerant control for a class of nonlinear systems with unknown actuator fault is investigated. The actuator fault is assumed to have no traditional affine appearance of the system state variables and control input. The useful property of the basis function of the radial basis function neural network (NN), which will be used in the design of the fault tolerant controller, is explored. Based on the analysis of the design of normal and passive fault tolerant controllers, by using the implicit function theorem, a novel NN-based active fault-tolerant control scheme with fault alarm is proposed. Comparing with results in the literature, the fault-tolerant control scheme can minimize the time delay between fault occurrence and accommodation that is called the time delay due to fault diagnosis, and reduce the adverse effect on system performance. In addition, the FTC scheme has the advantages of a passive fault-tolerant control scheme as well as the traditional active fault-tolerant control scheme's properties. Furthermore, the fault-tolerant control scheme requires no additional fault detection and isolation model which is necessary in the traditional active fault-tolerant control scheme. Finally, simulation results are presented to demonstrate the efficiency of the developed techniques.

  9. Continuous Fine-Fault Estimation with Real-Time GNSS

    Science.gov (United States)

    Norford, B. B.; Melbourne, T. I.; Szeliga, W. M.; Santillan, V. M.; Scrivner, C.; Senko, J.; Larsen, D.

    2017-12-01

    Thousands of real-time telemetered GNSS stations operate throughout the circum-Pacific that may be used for rapid earthquake characterization and estimation of local tsunami excitation. We report on the development of a GNSS-based finite-fault inversion system that continuously estimates slip using real-time GNSS position streams from the Cascadia subduction zone and which is being expanded throughout the circum-Pacific. The system uses 1 Hz precise point position streams computed in the ITRF14 reference frame using clock and satellite orbit corrections from the IGS. The software is implemented as seven independent modules that filter time series using Kalman filters, trigger and estimate coseismic offsets, invert for slip using a non-negative least squares method developed by Lawson and Hanson (1974) and elastic half-space Green's Functions developed by Okada (1985), smooth the results temporally and spatially, and write the resulting streams of time-dependent slip to a RabbitMQ messaging server for use by downstream modules such as tsunami excitation modules. Additional fault models can be easily added to the system for other circum-Pacific subduction zones as additional real-time GNSS data become available. The system is currently being tested using data from well-recorded earthquakes including the 2011 Tohoku earthquake, the 2010 Maule earthquake, the 2015 Illapel earthquake, the 2003 Tokachi-oki earthquake, the 2014 Iquique earthquake, the 2010 Mentawai earthquake, the 2016 Kaikoura earthquake, the 2016 Ecuador earthquake, the 2015 Gorkha earthquake, and others. Test data will be fed to the system and the resultant earthquake characterizations will be compared with published earthquake parameters. Seismic events will be assumed to occur on major faults, so, for example, only the San Andreas fault will be considered in Southern California, while the hundreds of other faults in the region will be ignored. Rake will be constrained along each subfault to be

  10. Depositional history and fault-related studies, Bolinas Lagoon, California

    Science.gov (United States)

    Berquist, Joel R.

    1978-01-01

    Studies of core sediments and seismic reflection profiles elucidate the structure and depositional history of Bolinas Lagoon, Calif., which covers 4.4 km 2 and lies in the San Andreas fault zone at the southeast corner of the Point Reyes Peninsula 20 km northwest of San Francisco. The 1906 trace of the San Andreas fault crosses the west side of the lagoon and was determined from (1) tectonically caused salt-marsh destruction indicated by comparison of 1854 and 1929 U.S. Coast and Geodetic Survey (U.S.C. & G.S.) topographic surveys, (2) formation of a tidal channel along the border of destroyed salt marshes, and (3) azimuths of the trend of the fault measured in 1907. Subsidence in the lagoon of 30 cm occurred east of the San Andreas fault in 1906. Near the east shore, seismic-reflection profiling indicates the existence of a graben fault that may connect to a graben fault on the Golden Gate Platform. Comparison of radiocarbon dates on shells and plant debris from boreholes drilled on Stinson Beach spit with a relative sea-level curve constructed for southern San Francisco Bay indicates 5.8 to more than 17.9 m of tectonic subsidence of sediments now located 33 m below mean sea level. Cored sediments indicate a marine transgression dated at 7770?65 yrs B.P. overlying freshwater organic-rich lake deposits. Fossil pollen including 2 to 8 percent Picea (spruce) indicate a late Pleistocene (?)-Early Holocene climate, cooler, wetter, and foggier than at present. Above the transgression are discontinuous and interfingering sequences of transgressive-regressive marine, estuarine, and barrier sediments that reflect rapid lateral and vertical shifts of successive depositional environments. Fossil megafauna indicate (1) accumulation in a protected, shallow-water estuary or bay, and (2) that the lagoon was probably continuously shallow and never a deep-water embayment. Analysis of grain-size parameters, pollen frequencies, and organic remains from a core near the north end of

  11. Managing Space System Faults: Coalescing NASA's Views

    Science.gov (United States)

    Muirhead, Brian; Fesq, Lorraine

    2012-01-01

    Managing faults and their resultant failures is a fundamental and critical part of developing and operating aerospace systems. Yet, recent studies have shown that the engineering "discipline" required to manage faults is not widely recognized nor evenly practiced within the NASA community. Attempts to simply name this discipline in recent years has been fraught with controversy among members of the Integrated Systems Health Management (ISHM), Fault Management (FM), Fault Protection (FP), Hazard Analysis (HA), and Aborts communities. Approaches to managing space system faults typically are unique to each organization, with little commonality in the architectures, processes and practices across the industry.

  12. Synthesis of Fault-Tolerant Embedded Systems

    DEFF Research Database (Denmark)

    Eles, Petru; Izosimov, Viacheslav; Pop, Paul

    2008-01-01

    This work addresses the issue of design optimization for fault- tolerant hard real-time systems. In particular, our focus is on the handling of transient faults using both checkpointing with rollback recovery and active replication. Fault tolerant schedules are generated based on a conditional...... process graph representation. The formulated system synthesis approaches decide the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors, such that multiple transient faults are tolerated, transparency requirements...

  13. Diagnosis and Fault-tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan

    the applicability of the presented methods. The theoretical results are illustrated by two running examples which are used throughout the book. The book addresses engineering students, engineers in industry and researchers who wish to get a survey over the variety of approaches to process diagnosis and fault......The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process...

  14. Computer aided construction of fault tree

    International Nuclear Information System (INIS)

    Kovacs, Z.

    1982-01-01

    Computer code CAT for the automatic construction of the fault tree is briefly described. Code CAT makes possible simple modelling of components using decision tables, it accelerates the fault tree construction process, constructs fault trees of different complexity, and is capable of harmonized co-operation with programs PREPandKITT 1,2 for fault tree analysis. The efficiency of program CAT and thus the accuracy and completeness of fault trees constructed significantly depends on the compilation and sophistication of decision tables. Currently, program CAT is used in co-operation with programs PREPandKITT 1,2 in reliability analyses of nuclear power plant systems. (B.S.)

  15. Active fault detection in MIMO systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...... from auxiliary input to residual outputs. The analysis is based on a singular value decomposition of these transfer functions Based on this analysis, it is possible to design auxiliary input as well as design of the associated residual vector with respect to every single parametric fault in the system...... such that it is possible to detect these faults....

  16. Deformation associated with continental normal faults

    Science.gov (United States)

    Resor, Phillip G.

    Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master

  17. Fault plane orientations of deep earthquakes in the Izu-Bonin-Marianas subduction zone system

    Science.gov (United States)

    Myhill, R.; Warren, L. M.

    2011-12-01

    We present the results of directivity analysis on 45 deep earthquakes within the Izu-Bonin-Marianas subduction zone between 1993 and 2011. The age of the subducting Pacific plate increases from north to south along the trench, from 120 Ma offshore Tokyo to over 150 Ma east of the Mariana Islands. The dip of the deep slab generally increases from north to south, and is steep to overturned beneath the southern Bonin Islands and Marianas. Between 34 and 26 degrees north, a peak in seismicity at 350-450 km depth marks a decrease in dip as the slab approaches the base of the upper mantle. We observe directivity for around 60 percent of the analysed earthquakes, and use the propagation characteristics to find the best fitting rupture vector. In 60-70 percent of cases with well constrained rupture directivity, the best fitting rupture vector allows discrimination of the fault plane and the auxiliary plane of the focal mechanism. The identified fault planes between 100 km and 500 km are predominantly near-horizontal or south-southwest dipping. Rotated into the plane of the slab, the fault plane poles form a single cluster, since the more steeply dipping fault planes are found within more steeply dipping sections of slab. The dominance of near-horizontal fault planes at intermediate depth agrees with results from previous studies of the Tonga and Middle-America subduction zones. However, the presence of a single preferred fault plane orientation for large deep-focus earthquakes has not been previously reported, and contrasts with the situation for deep-focus earthquakes in the Tonga-Kermadec subduction system. Ruptures tend to propagate away from the top surface of the slab. We discuss potential causes of preferred fault plane orientations within subducting slabs in the light of existing available data, and the implications for mechanisms of faulting at great depths within the Earth.

  18. Active normal faults and submarine landslides in the Keelung Shelf off NE Taiwan

    Directory of Open Access Journals (Sweden)

    Ching-Hui Tsai

    2018-01-01

    Full Text Available The westernmost Okinawa Trough back-arc basin is located to the north of the Ryukyu islands and is situated above the northward dipping Ryukyu subducted slab. In the northern continental margin of the Okinawa Trough, the continental slope between the Keelung Valley and the Mein-Hua Submarine Canyon shows a steep angle and future slope failures are expected. The question is how slope failures will proceed? A sudden deep-seated slump or landslide would probably cause local tsunami and hit northern coast of Taiwan. To understand the probable submarine landslides, we conducted multi-channel seismic reflection, sub-bottom profilers, and multi-beam bathymetry surveys off NE Taiwan. Two general trends of shallow crustal faults are observed. The NE-SW trending faults generally follow the main structural trend of the Taiwan mountain belt. These faults are products of inversion tectonics of reverse faults from the former collisional thrust faults to post-collisional normal faults. Another trend of roughly E-W faults is consistent with the current N-S extension of the southern Okinawa Trough. The fault offsets in the eastern portion of the study area are more pronounced. No obvious basal surface of sliding is found beneath the continental margin. We conclude that the movement of the submarine landslides in the Keelung Shelf off northeastern Taiwan could be in a spread type. The submarine landslides mainly occur in the continental slope area and it is more obvious in the east than in the west of the Keelung Shelf.

  19. Crustal structure and fault geometry of the 2010 Haiti earthquake from temporary seismometer deployments

    Science.gov (United States)

    Douilly, Roby; Haase, Jennifer S.; Ellsworth, William L.; Bouin, Marie‐Paule; Calais, Eric; Symithe, Steeve J.; Armbruster, John G.; Mercier de Lépinay, Bernard; Deschamps, Anne; Mildor, Saint‐Louis; Meremonte, Mark E.; Hough, Susan E.

    2013-01-01

    Haiti has been the locus of a number of large and damaging historical earthquakes. The recent 12 January 2010 Mw 7.0 earthquake affected cities that were largely unprepared, which resulted in tremendous losses. It was initially assumed that the earthquake ruptured the Enriquillo Plantain Garden fault (EPGF), a major active structure in southern Haiti, known from geodetic measurements and its geomorphic expression to be capable of producing M 7 or larger earthquakes. Global Positioning Systems (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data, however, showed that the event ruptured a previously unmapped fault, the Léogâne fault, a north‐dipping oblique transpressional fault located immediately north of the EPGF. Following the earthquake, several groups installed temporary seismic stations to record aftershocks, including ocean‐bottom seismometers on either side of the EPGF. We use data from the complete set of stations deployed after the event, on land and offshore, to relocate all aftershocks from 10 February to 24 June 2010, determine a 1D regional crustal velocity model, and calculate focal mechanisms. The aftershock locations from the combined dataset clearly delineate the Léogâne fault, with a geometry close to that inferred from geodetic data. Its strike and dip closely agree with the global centroid moment tensor solution of the mainshock but with a steeper dip than inferred from previous finite fault inversions. The aftershocks also delineate a structure with shallower southward dip offshore and to the west of the rupture zone, which could indicate triggered seismicity on the offshore Trois Baies reverse fault. We use first‐motion focal mechanisms to clarify the relationship of the fault geometry to the triggered aftershocks.

  20. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone

    2007-01-01

    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilledcores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System.

  1. Numerical modelling of the mechanical and fluid flow properties of fault zones - Implications for fault seal analysis

    NARCIS (Netherlands)

    Heege, J.H. ter; Wassing, B.B.T.; Giger, S.B.; Clennell, M.B.

    2009-01-01

    Existing fault seal algorithms are based on fault zone composition and fault slip (e.g., shale gouge ratio), or on fault orientations within the contemporary stress field (e.g., slip tendency). In this study, we aim to develop improved fault seal algorithms that account for differences in fault zone

  2. Dukovany NPP - Safely 16 TERA

    International Nuclear Information System (INIS)

    Vlcek, J.

    2008-01-01

    In this presentation increasing of power output of the Dukovany NPP is reviewed. To operate all Dukovany Units safely with the perspective of long-term operation (LTO) of 50 - 60 years it is proposed.

  3. Development of methods for evaluating active faults

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The report for long-term evaluation of active faults was published by the Headquarters for Earthquake Research Promotion on Nov. 2010. After occurrence of the 2011 Tohoku-oki earthquake, the safety review guide with regard to geology and ground of site was revised by the Nuclear Safety Commission on Mar. 2012 with scientific knowledges of the earthquake. The Nuclear Regulation Authority established on Sep. 2012 is newly planning the New Safety Design Standard related to Earthquakes and Tsunamis of Light Water Nuclear Power Reactor Facilities. With respect to those guides and standards, our investigations for developing the methods of evaluating active faults are as follows; (1) For better evaluation on activities of offshore fault, we proposed a work flow to date marine terrace (indicator for offshore fault activity) during the last 400,000 years. We also developed the analysis of fault-related fold for evaluating of blind fault. (2) To clarify the activities of active faults without superstratum, we carried out the color analysis of fault gouge and divided the activities into thousand of years and tens of thousands. (3) To reduce uncertainties of fault activities and frequency of earthquakes, we compiled the survey data and possible errors. (4) For improving seismic hazard analysis, we compiled the fault activities of the Yunotake and Itozawa faults, induced by the 2011 Tohoku-oki earthquake. (author)

  4. ESR dating of the fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2004-01-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs, grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Ulzin nuclear reactor. ESR signals of quartz grains separated from fault rocks collected from the E-W trend fault are saturated. This indicates that the last movement of these faults had occurred before the quaternary period. ESR dates from the NW trend faults range from 300ka to 700ka. On the other hand, ESR date of the NS trend fault is about 50ka. Results of this research suggest that long-term cyclic fault activity near the Ulzin nuclear reactor continued into the pleistocene.

  5. Dating the past 7000 years of major earthquakes on the Alpine Fault, New Zealand

    International Nuclear Information System (INIS)

    Clark, KJ.; Biasi, G.

    2009-01-01

    The Alpine Fault, New Zealand, is a major plate boundary fault that accommodates two thirds of the motion between the Australian and Pacific plates. The Hokuri Stream locality at the southern end of the Alpine Fault has the potential to contain a long record of earthquakes. The field component of this study involved the description, measurement and sampling of multiple river bank outcrops of the Hokuri sedimentary sequence. Sampling was undertaken by two approaches: discrete sediment sampling and continuous push-core sampling. Radiocarbon samples were processed at the Rafter Radiocarbon Laboratory, New Zealand. 123 samples were dated and the most commonly dated organic fractions were individual leaves, reeds, and seeds. 15 refs., 6 figs.

  6. Fault Recoverability Analysis via Cross-Gramian

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    2016-01-01

    Engineering systems are vulnerable to different kinds of faults. Faults may compromise safety, cause sub-optimal operation and decline in performance if not preventing the whole system from functioning. Fault tolerant control (FTC) methods ensure that the system performance maintains within...... with feedback control. Fault recoverability provides important and useful information which could be used in analysis and design. However, computing fault recoverability is numerically expensive. In this paper, a new approach for computation of fault recoverability for bilinear systems is proposed...... approach for computation of fault recoverability is proposed which reduces the computational burden significantly. The proposed results are used for an electro-hydraulic drive to reveal the redundant actuating capabilities in the system....

  7. Active fault diagnosis by controller modification

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    2010-01-01

    Two active fault diagnosis methods for additive or parametric faults are proposed. Both methods are based on controller reconfiguration rather than on requiring an exogenous excitation signal, as it is otherwise common in active fault diagnosis. For the first method, it is assumed that the system...... considered is controlled by an observer-based controller. The method is then based on a number of alternate observers, each designed to be sensitive to one or more additive faults. Periodically, the observer part of the controller is changed into the sequence of fault sensitive observers. This is done...... in a way that guarantees the continuity of transition and global stability using a recent result on observer parameterization. An illustrative example inspired by a field study of a drag racing vehicle is given. For the second method, an active fault diagnosis method for parametric faults is proposed...

  8. Improved DFIG Capability during Asymmetrical Grid Faults

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2015-01-01

    In the wind power application, different asymmetrical types of the grid fault can be categorized after the Y/d transformer, and the positive and negative components of a single-phase fault, phase-to-phase fault, and two-phase fault can be summarized. Due to the newly introduced negative and even...... the natural component of the Doubly-Fed Induction Generator (DFIG) stator flux during the fault period, their effects on the rotor voltage can be investigated. It is concluded that the phase-to-phase fault has the worst scenario due to its highest introduction of the negative stator flux. Afterwards......, the capability of a 2 MW DFIG to ride through asymmetrical grid faults can be estimated at the existing design of the power electronics converter. Finally, a control scheme aimed to improve the DFIG capability is proposed and the simulation results validate its feasibility....

  9. Fault kinematics and localised inversion within the Troms-Finnmark Fault Complex, SW Barents Sea

    Science.gov (United States)

    Zervas, I.; Omosanya, K. O.; Lippard, S. J.; Johansen, S. E.

    2018-04-01

    The areas bounding the Troms-Finnmark Fault Complex are affected by complex tectonic evolution. In this work, the history of fault growth, reactivation, and inversion of major faults in the Troms-Finnmark Fault Complex and the Ringvassøy Loppa Fault Complex is interpreted from three-dimensional seismic data, structural maps and fault displacement plots. Our results reveal eight normal faults bounding rotated fault blocks in the Troms-Finnmark Fault Complex. Both the throw-depth and displacement-distance plots show that the faults exhibit complex configurations of lateral and vertical segmentation with varied profiles. Some of the faults were reactivated by dip-linkages during the Late Jurassic and exhibit polycyclic fault growth, including radial, syn-sedimentary, and hybrid propagation. Localised positive inversion is the main mechanism of fault reactivation occurring at the Troms-Finnmark Fault Complex. The observed structural styles include folds associated with extensional faults, folded growth wedges and inverted depocentres. Localised inversion was intermittent with rifting during the Middle Jurassic-Early Cretaceous at the boundaries of the Troms-Finnmark Fault Complex to the Finnmark Platform. Additionally, tectonic inversion was more intense at the boundaries of the two fault complexes, affecting Middle Triassic to Early Cretaceous strata. Our study shows that localised folding is either a product of compressional forces or of lateral movements in the Troms-Finnmark Fault Complex. Regional stresses due to the uplift in the Loppa High and halokinesis in the Tromsø Basin are likely additional causes of inversion in the Troms-Finnmark Fault Complex.

  10. Constraining Basin Depth and Fault Displacement in the Malombe Basin Using Potential Field Methods

    Science.gov (United States)

    Beresh, S. C. M.; Elifritz, E. A.; Méndez, K.; Johnson, S.; Mynatt, W. G.; Mayle, M.; Atekwana, E. A.; Laó-Dávila, D. A.; Chindandali, P. R. N.; Chisenga, C.; Gondwe, S.; Mkumbwa, M.; Kalaguluka, D.; Kalindekafe, L.; Salima, J.

    2017-12-01

    The Malombe Basin is part of the Malawi Rift which forms the southern part of the Western Branch of the East African Rift System. At its southern end, the Malawi Rift bifurcates into the Bilila-Mtakataka and Chirobwe-Ntcheu fault systems and the Lake Malombe Rift Basin around the Shire Horst, a competent block under the Nankumba Peninsula. The Malombe Basin is approximately 70km from north to south and 35km at its widest point from east to west, bounded by reversing-polarity border faults. We aim to constrain the depth of the basin to better understand displacement of each border fault. Our work utilizes two east-west gravity profiles across the basin coupled with Source Parameter Imaging (SPI) derived from a high-resolution aeromagnetic survey. The first gravity profile was done across the northern portion of the basin and the second across the southern portion. Gravity and magnetic data will be used to constrain basement depths and the thickness of the sedimentary cover. Additionally, Shuttle Radar Topography Mission (SRTM) data is used to understand the topographic expression of the fault scarps. Estimates for minimum displacement of the border faults on either side of the basin were made by adding the elevation of the scarps to the deepest SPI basement estimates at the basin borders. Our preliminary results using SPI and SRTM data show a minimum displacement of approximately 1.3km for the western border fault; the minimum displacement for the eastern border fault is 740m. However, SPI merely shows the depth to the first significantly magnetic layer in the subsurface, which may or may not be the actual basement layer. Gravimetric readings are based on subsurface density and thus circumvent issues arising from magnetic layers located above the basement; therefore expected results for our work will be to constrain more accurate basin depth by integrating the gravity profiles. Through more accurate basement depth estimates we also gain more accurate displacement

  11. The 2014 Mw6.9 Gokceada and 2017 Mw6.3 Lesvos Earthquakes in the Northern Aegean Sea: The Transition from Right-Lateral Strike-Slip Faulting on the North Anatolian Fault to Extension in the Central Aegean

    Science.gov (United States)

    Cetin, S.; Konca, A. O.; Dogan, U.; Floyd, M.; Karabulut, H.; Ergintav, S.; Ganas, A.; Paradisis, D.; King, R. W.; Reilinger, R. E.

    2017-12-01

    The 2014 Mw6.9 Gokceada (strike-slip) and 2017 Mw6.3 Lesvos (normal) earthquakes represent two of the set of faults that accommodate the transition from right-lateral strike-slip faulting on the North Anatolian Fault (NAF) to normal faulting along the Gulf of Corinth. The Gokceada earthquake was a purely strike-slip event on the western extension of the NAF where it enters the northern Aegean Sea. The Lesvos earthquake, located roughly 200 km south of Gokceada, occurred on a WNW-ESE-striking normal fault. Both earthquakes respond to the same regional stress field, as indicated by their sub-parallel seismic tension axis and far-field coseismic GPS displacements. Interpretation of GPS-derived velocities, active faults, crustal seismicity, and earthquake focal mechanisms in the northern Aegean indicates that this pattern of complementary faulting, involving WNW-ESE-striking normal faults (e.g. Lesvos earthquake) and SW-NE-striking strike-slip faults (e.g. Gokceada earthquake), persists across the full extent of the northern Aegean Sea. The combination of these two "families" of faults, combined with some systems of conjugate left-lateral strike-slip faults, complement one another and culminate in the purely extensional rift structures that form the large Gulfs of Evvia and Corinth. In addition to being consistent with seismic and geodetic observations, these fault geometries explain the increasing velocity of the southern Aegean and Peloponnese regions towards the Hellenic subduction zone. Alignment of geodetic extension and seismic tension axes with motion of the southern Aegean towards the Hellenic subduction zone suggests a direct association of Aegean extension with subduction, possibly by trench retreat, as has been suggested by prior investigators.

  12. 222Radon Concentration Measurements biased to Cerro Prieto Fault for Verify its Continuity to the Northwest of the Mexicali Valley.

    Science.gov (United States)

    Lazaro-Mancilla, O.; Lopez, D. L.; Reyes-Lopez, J. A.; Carreón-Diazconti, C.; Ramirez-Hernandez, J.

    2009-05-01

    The need to know the exact location in the field of the fault traces in Mexicali has been an important affair due that the topography in this valley is almost flat and fault traces are hidden by plow zone, for this reason, the southern and northern ends of the San Jacinto and Cerro Prieto fault zones, respectively, are not well defined beneath the thick sequence of late Holocene Lake Cahuilla deposits. The purpose of this study was to verify if Cerro Prieto fault is the continuation to the southeast of the San Jacinto Fault proposed by Hogan in 2002 who based his analysis on pre-agriculture geomorphy, relocation and analysis of regional microseismicity, and trench exposures from a paleoseismic site in Laguna Xochimilco, Mexicali. In this study, four radon (222Rn) profiles were carried out in the Mexicali Valley, first, to the SW-NE of Cerro Prieto Volcano, second, to the W-E along the highway Libramiento San Luis Río Colorado-Tecate, third, to the W-E of Laguna Xochimilco and fourth, to the W-E of the Colonia Progreso. The Radon results allow us to identify in the Cerro Prieto profile four regions where the values exceed 100 picocuries per liter (pCi/L), these regions can be associated to fault traces, one of them associated to the Cerro Prieto Fault (200 pCi/L) and other related with Michoacán de Ocampo Fault (450 pCi/L). The profile Libramiento San Luis Río Colorado-Tecate, show three regions above 100 pCi/L, two of them related to the same faults. In spite of the results of the Laguna Xochimilco, site used by Hogan (2002), the profile permit us observe three regions above the 100 pCi/L, but we can associate only one of the regions above this level to the Michoacán de Ocampo Fault, but none region to the Cerro Prieto Fault. Finally in spite of the Colonia Progreso is the shortest profile with only five stations, it shows one region with a value of 270 pCi/L that we can correlate with the Cerro Prieto Fault. The results of this study allow us to think in the

  13. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System

    Science.gov (United States)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal

    2017-10-01

    possible along the northern segments of the Chaman Fault zone. Geomorphic data suggest that the Chaman Fault along southern part is not very active now but may have gone through high tectonic activity in the past.

  14. Long-term changes to river regimes prior to late Holocene coseismic faulting, Canterbury, New Zealand

    Science.gov (United States)

    Campbell, Jocelyn K.; Nicol, Andrew; Howard, Matthew E.

    2003-09-01

    Two sites are described from range front faults along the foothills of the Southern Alps of New Zealand, where apparently a period of 200-300 years of accelerated river incision preceded late Holocene coseismic ruptures, each probably in excess of M w 7.5. They relate to separate fault segments and seismic events on a transpressive system associated with fault-driven folding, but both show similar evidence of off-plane aseismic deformation during the downcutting phase. The incision history is documented by the ages, relative elevations and profiles of degradation terraces. The surface dating is largely based on the weathering rind technique of McSaveney (McSaveney, M.J., 1992. A Manual for Weathering-rind Dating of Grey Sandstones of the Torlesse Supergroup, New Zealand. 92/4, Institute of Geological and Nuclear Sciences), supported by some consistent radiocarbon ages. On the Porters Pass Fault, drainage from Red Lakes has incised up to 12 m into late Pleistocene recessional outwash, but the oldest degradation terrace surface T I is dated at only 690±50 years BP. The upper terraces T I and T II converge uniformly downstream right across the fault trace, but by T III the terrace has a reversed gradient upstream. T II and T III break into multiple small terraces on the hanging wall only, close to the fault trace. Continued backtilting during incision caused T IV to diverge downstream relative to the older surfaces. Coseismic faulting displaced T V and all the older terraces by a metre high reverse scarp and an uncertain right lateral component. This event cannot be younger than a nearby ca. 500 year old rock avalanche covering the trace. The second site in the middle reaches of the Waipara River valley involves the interaction of four faults associated with the Doctors Anticline. The main river and tributaries have incised steeply into a 2000 year old mid-Holocene, broad, degradation surface downcutting as much as 55 m. Beginning approximately 600 years ago

  15. Superconducting dc fault current limiter

    International Nuclear Information System (INIS)

    Cointe, Y.

    2007-12-01

    Within the framework of the electric power market liberalization, DC networks have many interests compared to alternative ones, but their protections need to use new systems. Superconducting fault current limiters enable by an overstepping of the critical current to limit the fault current to a preset value, lower than the theoretical short-circuit current. For these applications, coated conductors offer excellent opportunities. We worked on the implementation of these materials and built a test bench. We carried out limiting experiments to estimate the quench homogeneity at various short-circuit parameters. An important point is the temperature measurement by deposited sensors on the ribbon, results are in good correlation with the theoretical models. Improved quench behaviours for temperatures close to the critical temperature have been confirmed. Our results enable to better understand the limitation mechanisms of coated conductors. (author)

  16. Perspective View, San Andreas Fault

    Science.gov (United States)

    2000-01-01

    The prominent linear feature straight down the center of this perspective view is California's famous San Andreas Fault. The image, created with data from NASA's Shuttle Radar Topography Mission (SRTM), will be used by geologists studying fault dynamics and landforms resulting from active tectonics. This segment of the fault lies west of the city of Palmdale, Calif., about 100 kilometers (about 60 miles) northwest of Los Angeles. The fault is the active tectonic boundary between the North American plate on the right, and the Pacific plate on the left. Relative to each other, the Pacific plate is moving away from the viewer and the North American plate is moving toward the viewer along what geologists call a right lateral strike-slip fault. Two large mountain ranges are visible, the San Gabriel Mountains on the left and the Tehachapi Mountains in the upper right. Another fault, the Garlock Fault lies at the base of the Tehachapis; the San Andreas and the Garlock Faults meet in the center distance near the town of Gorman. In the distance, over the Tehachapi Mountains is California's Central Valley. Along the foothills in the right hand part of the image is the Antelope Valley, including the Antelope Valley California Poppy Reserve. The data used to create this image were acquired by SRTM aboard the Space Shuttle Endeavour, launched on February 11, 2000.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour

  17. Nuclear power plant pressurizer fault diagnosis using fuzzy signed-digraph and spurious faults elimination methods

    International Nuclear Information System (INIS)

    Park, Joo Hyun

    1994-02-01

    In this work, the Fuzzy Signed Digraph(FSD) method which has been researched for the fault diagnosis of industrial process plant systems is improved and applied to the fault diagnosis of the Kori-2 nuclear power plant pressurizer. A method for spurious faults elimination is also suggested and applied to the fault diagnosis. By using these methods, we could diagnose the multi-faults of the pressurizer and could also eliminate the spurious faults of the pressurizer caused by other subsystems. Besides the multi-fault diagnosis and system-wide diagnosis capabilities, the proposed method has many merits such as real-time diagnosis capability, independency of fault pattern, direct use of sensor values, and transparency of the fault propagation to the operators

  18. Nuclear power plant pressurizer fault diagnosis using fuzzy signed-digraph and spurious faults elimination methods

    International Nuclear Information System (INIS)

    Park, Joo Hyun; Seong, Poong Hyun

    1994-01-01

    In this work, the Fuzzy Signed Digraph (FSD) method which has been researched for the fault diagnosis of industrial process plant systems is improved and applied to the fault diagnosis of the Kori-2 nuclear power plant pressurizer. A method for spurious faults elimination is also suggested and applied to the fault diagnosis. By using these methods, we could diagnose the multi-faults of the pressurizer and could also eliminate the spurious faults of the pressurizer caused by other subsystems. Besides the multi-fault diagnosis and system-wide diagnosis capabilities, the proposed method has many merits such as real-time diagnosis capability, independency of fault pattern, direct use of sensor values, and transparency of the fault propagation to the operators. (Author)

  19. SAR-revealed slip partitioning on a bending fault plane for the 2014 Northern Nagano earthquake at the northern Itoigawa-Shizuoka tectonic line

    Science.gov (United States)

    Kobayashi, Tomokazu; Morishita, Yu; Yarai, Hiroshi

    2018-05-01

    By applying conventional cross-track synthetic aperture radar interferometry (InSAR) and multiple aperture InSAR techniques to ALOS-2 data acquired before and after the 2014 Northern Nagano, central Japan, earthquake, a three-dimensional ground displacement field has been successfully mapped. Crustal deformation is concentrated in and around the northern part of the Kamishiro Fault, which is the northernmost section of the Itoigawa-Shizuoka tectonic line. The full picture of the displacement field shows contraction in the northwest-southeast direction, but northeastward movement along the fault strike direction is prevalent in the northeast portion of the fault, which suggests that a strike-slip component is a significant part of the activity of this fault, in addition to a reverse faulting. Clear displacement discontinuities are recognized in the southern part of the source region, which falls just on the previously known Kamishiro Fault trace. We inverted the SAR and GNSS data to construct a slip distribution model; the preferred model of distributed slip on a two-plane fault surface shows a combination of reverse and left-lateral fault motions on a bending east-dipping fault surface with a dip of 30° in the shallow part and 50° in the deeper part. The hypocenter falls just on the estimated deeper fault plane where a left-lateral slip is inferred, whereas in the shallow part, a reverse slip is predominant, which causes surface ruptures on the ground. The slip partitioning may be accounted for by shear stress resulting from a reverse fault slip with left-lateral component at depth, for which a left-lateral slip is suppressed in the shallow part where the reverse slip is inferred. The slip distribution model with a bending fault surface, instead of a single fault plane, produces moment tensor solution with a non-double couple component, which is consistent with the seismically estimated mechanism.

  20. Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake

    Science.gov (United States)

    Barnhart, William; Briggs, Richard; Reitman, Nadine G.; Gold, Ryan D.; Hayes, Gavin

    2015-01-01

    Deformation is commonly accommodated by strain partitioning on multiple, independent strike-slip and dip-slip faults in continental settings of oblique plate convergence. As a corollary, individual faults tend to exhibit one sense of slip – normal, reverse, or strike-slip – until whole-scale changes in boundary conditions reactivate preexisting faults in a new deformation regime. In this study, we show that a single continental fault may instead partition oblique strain by alternatively slipping in a strike-slip or a dip-slip sense during independent fault slip events. We use 0.5 m resolution optical imagery and sub-pixel correlation analysis of the 200+ km 200+km"> 2013 Mw7.7 Balochistan, Pakistan earthquake to document co-seismic surface slip characteristics and Quaternary tectonic geomorphology along the causative Hoshab fault. We find that the 2013 earthquake, which involved a ∼6:1 strike-slip to dip-slip ratio, ruptured a structurally segmented fault. Quaternary geomorphic indicators of gross fault-zone morphology reveal both reverse-slip and strike-slip deformation in the rupture area of the 2013 earthquake that varies systematically along fault strike despite nearly pure strike-slip motion in 2013. Observations of along-strike variations in range front relief and geomorphic offsets suggest that the Hoshab fault accommodates a substantial reverse component of fault slip in the Quaternary, especially along the southern section of the 2013 rupture. We surmise that Quaternary bimodal slip along the Hoshab fault is promoted by a combination of the arcuate geometry of the Hoshab fault, the frictional weakness of the Makran accretionary prism, and time variable loading conditions from adjacent earthquakes and plate interactions.

  1. Watching Faults Grow in Sand

    Science.gov (United States)

    Cooke, M. L.

    2015-12-01

    Accretionary sandbox experiments provide a rich environment for investigating the processes of fault development. These experiments engage students because 1) they enable direct observation of fault growth, which is impossible in the crust (type 1 physical model), 2) they are not only representational but can also be manipulated (type 2 physical model), 3) they can be used to test hypotheses (type 3 physical model) and 4) they resemble experiments performed by structural geology researchers around the world. The structural geology courses at UMass Amherst utilize a series of accretionary sandboxes experiments where students first watch a video of an experiment and then perform a group experiment. The experiments motivate discussions of what conditions they would change and what outcomes they would expect from these changes; hypothesis development. These discussions inevitably lead to calculations of the scaling relationships between model and crustal fault growth and provide insight into the crustal processes represented within the dry sand. Sketching of the experiments has been shown to be a very effective assessment method as the students reveal which features they are analyzing. Another approach used at UMass is to set up a forensic experiment. The experiment is set up with spatially varying basal friction before the meeting and students must figure out what the basal conditions are through the experiment. This experiment leads to discussions of equilibrium and force balance within the accretionary wedge. Displacement fields can be captured throughout the experiment using inexpensive digital image correlation techniques to foster quantitative analysis of the experiments.

  2. A fault detection and diagnosis in a PWR steam generator

    International Nuclear Information System (INIS)

    Park, Seung Yub

    1991-01-01

    The purpose of this study is to develop a fault detection and diagnosis scheme that can monitor process fault and instrument fault of a steam generator. The suggested scheme consists of a Kalman filter and two bias estimators. Method of detecting process and instrument fault in a steam generator uses the mean test on the residual sequence of Kalman filter, designed for the unfailed system, to make a fault decision. Once a fault is detected, two bias estimators are driven to estimate the fault and to discriminate process fault and instrument fault. In case of process fault, the fault diagnosis of outlet temperature, feed-water heater and main steam control valve is considered. In instrument fault, the fault diagnosis of steam generator's three instruments is considered. Computer simulation tests show that on-line prompt fault detection and diagnosis can be performed very successfully.(Author)

  3. Fault tolerant operation of switched reluctance machine

    Science.gov (United States)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and

  4. Robust Mpc for Actuator–Fault Tolerance Using Set–Based Passive Fault Detection and Active Fault Isolation

    Directory of Open Access Journals (Sweden)

    Xu Feng

    2017-03-01

    Full Text Available In this paper, a fault-tolerant control (FTC scheme is proposed for actuator faults, which is built upon tube-based model predictive control (MPC as well as set-based fault detection and isolation (FDI. In the class of MPC techniques, tubebased MPC can effectively deal with system constraints and uncertainties with relatively low computational complexity compared with other robust MPC techniques such as min-max MPC. Set-based FDI, generally considering the worst case of uncertainties, can robustly detect and isolate actuator faults. In the proposed FTC scheme, fault detection (FD is passive by using invariant sets, while fault isolation (FI is active by means of MPC and tubes. The active FI method proposed in this paper is implemented by making use of the constraint-handling ability of MPC to manipulate the bounds of inputs.

  5. Characterization of the Highway 95 Fault in lower Fortymile Wash using electrical and electromagnetic methods, Nye County, Nevada

    Science.gov (United States)

    Macy, Jamie P.; Kryder, Levi; Walker, Jamieson

    2012-01-01

    The Highway 95 Fault is a buried, roughly east-west trending growth fault at the southern extent of Yucca Mountain and Southwestern Nevada Volcanic Field. Little is known about the role of this fault in the movement of groundwater from the Yucca Mountain area to downgradient groundwater users in Amargosa Valley. The U.S. Geological Survey (USGS) Arizona Water Science Center (AZWSC), in cooperation with the Nye County Nuclear Waste Repository Project Office (NWRPO), has used direct current (DC) resistivity, controlled-source audio magnetotelluric (CSAMT), and transient electromagnetics (TEM) to better understand the fault. These geophysical surveys were designed to look at structures buried beneath the alluvium, following a transect of wells for lithologic control. Results indicate that the fault is just north of U.S. Highway 95, between wells NC-EWDP-2DB and -19D, and south of Highway 95, east of well NC-EWDP-2DB. The Highway 95 Fault may inhibit shallow groundwater movement by uplifting deep Paleozoic carbonates, effectively reducing the overlying alluvial aquifer thickness and restricting the movement of water. Upward vertical hydraulic gradients in wells proximal to the fault indicate that upward movement is occurring from deeper, higher-pressure aquifers.

  6. Regional Characteristics of Stress State of Main Seismic Active Faults in Mid-Northern Part of Sichuan-Yunnan Block

    Science.gov (United States)

    Weiwei, W.; Yaling, W.

    2017-12-01

    We restore the seismic source spectrums of 1012 earthquakes(2.0 ≤ ML ≤ 5.0) in the mid-northern part of Sichuan-Yunnan seismic block(26 ° N-33 ° N, 99 ° E-104 ° E),then calculate the source parameters.Based on the regional seismic tectonic background, the distribution of active faults and seismicity, the study area is divided into four statistical units (Z1 Jinshajiang and Litang fault zone, Z2 Xianshuihe fault zone, Z3 Anninghe-Zemuhe fault zone, Z4 Lijiang-Xiaojinhe fault zone). Seismic source stress drop results show the following, (1)The stress at the end of the Jinshajiang fault is low, strong earthquake activity rare.Stress-strain loading deceases gradually from northwest to southeast along Litang fault, the northwest section which is relatively locked is more likely to accumulate strain than southeast section. (2)Stress drop of Z2 is divided by Kangding, the southern section is low and northern section is high. Southern section (Kangding-Shimian) is difficult to accumulate higher strain in the short term, but in northern section (Garzê-Kangding), moderate and strong earthquakes have not filled the gaps of seismic moment release, there is still a high stress accumulation in partial section. (3)High stress-drop events were concentrated on Z3, strain accumulation of this unit is strong, and stress level is the highest, earthquake risk is high. (4)On Z4, stress drop characteristics of different magnitude earthquakes are not the same, which is related to complex tectonic setting, the specific reasons still need to be discussed deeply.The study also show that, (1)Stress drops display a systematic change with different faults and locations, high stress-drop events occurs mostly on the fault intersection area. Faults without locking condition and mainly creep, are mainly characterized by low stress drop. (2)Contrasting to what is commonly thought that "strike-slip faults are not easy to accumulate stress ", Z2 and Z3 all exhibit high stress levels, which

  7. Building the Southern California Earthquake Center

    Science.gov (United States)

    Jordan, T. H.; Henyey, T.; McRaney, J. K.

    2004-12-01

    Kei Aki was the founding director of the Southern California Earthquake Center (SCEC), a multi-institutional collaboration formed in 1991 as a Science and Technology Center (STC) under the National Science Foundation (NSF) and the U. S. Geological Survey (USGS). Aki and his colleagues articulated a system-level vision for the Center: investigations by disciplinary working groups would be woven together into a "Master Model" for Southern California. In this presentation, we will outline how the Master-Model concept has evolved and how SCEC's structure has adapted to meet scientific challenges of system-level earthquake science. In its first decade, SCEC conducted two regional imaging experiments (LARSE I & II); published the "Phase-N" reports on (1) the Landers earthquake, (2) a new earthquake rupture forecast for Southern California, and (3) new models for seismic attenuation and site effects; it developed two prototype "Community Models" (the Crustal Motion Map and Community Velocity Model) and, perhaps most important, sustained a long-term, multi-institutional, interdisciplinary collaboration. The latter fostered pioneering numerical simulations of earthquake ruptures, fault interactions, and wave propagation. These accomplishments provided the impetus for a successful proposal in 2000 to reestablish SCEC as a "stand alone" center under NSF/USGS auspices. SCEC remains consistent with the founders' vision: it continues to advance seismic hazard analysis through a system-level synthesis that is based on community models and an ever expanding array of information technology. SCEC now represents a fully articulated "collaboratory" for earthquake science, and many of its features are extensible to other active-fault systems and other system-level collaborations. We will discuss the implications of the SCEC experience for EarthScope, the USGS's program in seismic hazard analysis, NSF's nascent Cyberinfrastructure Initiative, and other large collaboratory programs.

  8. Guatemala paleoseismicity: from Late Classic Maya collapse to recent fault creep

    Science.gov (United States)

    Brocard, Gilles; Anselmetti, Flavio S.; Teyssier, Christian

    2016-11-01

    We combine ‘on-fault’ trench observations of slip on the Polochic fault (North America-Caribbean plate boundary) with a 1200 years-long ‘near-fault’ record of seismo-turbidite generation in a lake located within 2 km of the fault. The lake record indicates that, over the past 12 centuries, 10 earthquakes reaching ground-shaking intensities ≥ VI generated seismo-turbidites in the lake. Seismic activity was highly unevenly distributed over time and noticeably includes a cluster of earthquakes spread over a century at the end of the Classic Maya period. This cluster may have contributed to the piecemeal collapse of the Classic Maya civilization in this wet, mountainous southern part of the Maya realm. On-fault observations within 7 km of the lake show that soils formed between 1665 and 1813 CE were displaced by the Polochic fault during a long period of seismic quiescence, from 1450 to 1976 CE. Displacement on the Polochic fault during at least the last 480 years included a component of slip that was aseismic, or associated with very light seismicity (magnitude 1 ky) punctuated by destructive earthquake clusters.

  9. The transtensional offshore portion of the northern San Andreas fault: Fault zone geometry, late Pleistocene to Holocene sediment deposition, shallow deformation patterns, and asymmetric basin growth

    Science.gov (United States)

    Beeson, Jeffrey W.; Johnson, Samuel Y.; Goldfinger, Chris

    2017-01-01

    We mapped an ~120 km offshore portion of the northern San Andreas fault (SAF) between Point Arena and Point Delgada using closely spaced seismic reflection profiles (1605 km), high-resolution multibeam bathymetry (~1600 km2), and marine magnetic data. This new data set documents SAF location and continuity, associated tectonic geomorphology, shallow stratigraphy, and deformation. Variable deformation patterns in the generally narrow (∼1 km wide) fault zone are largely associated with fault trend and with transtensional and transpressional fault bends.We divide this unique transtensional portion of the offshore SAF into six sections along and adjacent to the SAF based on fault trend, deformation styles, seismic stratigraphy, and seafloor bathymetry. In the southern region of the study area, the SAF includes a 10-km-long zone characterized by two active parallel fault strands. Slip transfer and long-term straightening of the fault trace in this zone are likely leading to transfer of a slice of the Pacific plate to the North American plate. The SAF in the northern region of the survey area passes through two sharp fault bends (∼9°, right stepping, and ∼8°, left stepping), resulting in both an asymmetric lazy Z–shape sedimentary basin (Noyo basin) and an uplifted rocky shoal (Tolo Bank). Seismic stratigraphic sequences and unconformities within the Noyo basin correlate with the previous 4 major Quaternary sea-level lowstands and record basin tilting of ∼0.6°/100 k.y. Migration of the basin depocenter indicates a lateral slip rate on the SAF of 10–19 mm/yr for the past 350 k.y.Data collected west of the SAF on the south flank of Cape Mendocino are inconsistent with the presence of an offshore fault strand that connects the SAF with the Mendocino Triple Junction. Instead, we suggest that the SAF previously mapped onshore at Point Delgada continues onshore northward and transitions to the King Range thrust.

  10. Fuzzy fault diagnosis system of MCFC

    Institute of Scientific and Technical Information of China (English)

    Wang Zhenlei; Qian Feng; Cao Guangyi

    2005-01-01

    A kind of fault diagnosis system of molten carbonate fuel cell (MCFC) stack is proposed in this paper. It is composed of a fuzzy neural network (FNN) and a fault diagnosis element. FNN is able to deal with the information of the expert knowledge and the experiment data efficiently. It also has the ability to approximate any smooth system. FNN is used to identify the fault diagnosis model of MCFC stack. The fuzzy fault decision element can diagnose the state of the MCFC generating system, normal or fault, and can decide the type of the fault based on the outputs of FNN model and the MCFC system. Some simulation experiment results are demonstrated in this paper.

  11. Fault diagnosis based on controller modification

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2015-01-01

    Detection and isolation of parametric faults in closed-loop systems will be considered in this paper. A major problem is that a feedback controller will in general reduce the effects from variations in the systems including parametric faults on the controlled output from the system. Parametric...... faults can be detected and isolated using active methods, where an auxiliary input is applied. Using active methods for the diagnosis of parametric faults in closed-loop systems, the amplitude of the applied auxiliary input need to be increased to be able to detect and isolate the faults in a reasonable......-parameterization (after Youla, Jabr, Bongiorno and Kucera) for the controller, it is possible to modify the feedback controller with a minor effect on the closed-loop performance in the fault-free case and at the same time optimize the detection and isolation in a faulty case. Controller modification in connection...

  12. A setup for active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    A setup for active fault diagnosis (AFD) of parametric faults in dynamic systems is formulated in this paper. It is shown that it is possible to use the same setup for both open loop systems, closed loop systems based on a nominal feedback controller as well as for closed loop systems based...... on a reconfigured feedback controller. This will make the proposed AFD approach very useful in connection with fault tolerant control (FTC). The setup will make it possible to let the fault diagnosis part of the fault tolerant controller remain unchanged after a change in the feedback controller. The setup for AFD...... is based on the YJBK (after Youla, Jabr, Bongiorno and Kucera) parameterization of all stabilizing feedback controllers and the dual YJBK parameterization. It is shown that the AFD is based directly on the dual YJBK transfer function matrix. This matrix will be named the fault signature matrix when...

  13. Fault displacement along the Naruto-South fault, the Median Tectonic Line active fault system in the eastern part of Shikoku, southwestern Japan

    OpenAIRE

    高田, 圭太; 中田, 高; 後藤, 秀昭; 岡田, 篤正; 原口, 強; 松木, 宏彰

    1998-01-01

    The Naruto-South fault is situated of about 1000m south of the Naruto fault, the Median Tectonic Line active fault system in the eastern part of Shikoku. We investigated fault topography and subsurface geology of this fault by interpretation of large scale aerial photographs, collecting borehole data and Geo-Slicer survey. The results obtained are as follows; 1) The Naruto-South fault runs on the Yoshino River deltaic plain at least 2.5 km long with fault scarplet. the Naruto-South fault is o...

  14. Using tensorial electrical resistivity survey to locate fault systems

    International Nuclear Information System (INIS)

    Monteiro Santos, Fernando A; Plancha, João P; Marques, Jorge; Perea, Hector; Cabral, João; Massoud, Usama

    2009-01-01

    This paper deals with the use of the tensorial resistivity method for fault orientation and macroanisotropy characterization. The rotational properties of the apparent resistivity tensor are presented using 3D synthetic models representing structures with a dominant direction of low resistivity and vertical discontinuities. It is demonstrated that polar diagrams of the elements of the tensor are effective in delineating those structures. As the apparent resistivity tensor shows great inefficacy in investigating the depth of the structures, it is advised to accomplish tensorial surveys with the application of other geophysical methods. An experimental example, including tensorial, dipole–dipole and time domain surveys, is presented to illustrate the potentiality of the method. The dipole–dipole model shows high-resistivity contrasts which were interpreted as corresponding to faults crossing the area. The results from the time domain electromagnetic (TEM) sounding show high-resistivity values till depths of 40–60 m at the north part of the area. In the southern part of the survey area the soundings show an upper layer with low-resistivity values (around 30 Ω m) followed by a more resistive bedrock (resistivity >100 Ω m) at a depth ranging from 15 to 30 m. The soundings in the central part of the survey area show more variability. A thin conductive overburden is followed by a more resistive layer with resistivity in the range of 80–1800 Ω m. The north and south limits of the central part of the area as revealed by TEM survey are roughly E–W oriented and coincident with the north fault scarp and the southernmost fault detected by the dipole–dipole survey. The pattern of the polar diagrams calculated from tensorial resistivity data clearly indicates the presence of a contact between two blocks at south of the survey area with the low-resistivity block located southwards. The presence of other two faults is not so clear from the polar diagram patterns, but

  15. Faulting and groundwater in a desert environment: constraining hydrogeology using time-domain electromagnetic data

    Science.gov (United States)

    Bedrosian, Paul A.; Burgess, Matthew K.; Nishikawa, Tracy

    2013-01-01

    Within the south-western Mojave Desert, the Joshua Basin Water District is considering applying imported water into infiltration ponds in the Joshua Tree groundwater sub-basin in an attempt to artificially recharge the underlying aquifer. Scarce subsurface hydrogeological data are available near the proposed recharge site; therefore, time-domain electromagnetic (TDEM) data were collected and analysed to characterize the subsurface. TDEM soundings were acquired to estimate the depth to water on either side of the Pinto Mountain Fault, a major east-west trending strike-slip fault that transects the proposed recharge site. While TDEM is a standard technique for groundwater investigations, special care must be taken when acquiring and interpreting TDEM data in a twodimensional (2D) faulted environment. A subset of the TDEM data consistent with a layered-earth interpretation was identified through a combination of three-dimensional (3D) forward modelling and diffusion time-distance estimates. Inverse modelling indicates an offset in water table elevation of nearly 40 m across the fault. These findings imply that the fault acts as a low-permeability barrier to groundwater flow in the vicinity of the proposed recharge site. Existing production wells on the south side of the fault, together with a thick unsaturated zone and permeable near-surface deposits, suggest the southern half of the study area is suitable for artificial recharge. These results illustrate the effectiveness of targeted TDEM in support of hydrological studies in a heavily faulted desert environment where data are scarce and the cost of obtaining these data by conventional drilling techniques is prohibitive.

  16. Computer modelling of superconductive fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.A.; Campbell, A.M.; Coombs, T.A.; Cardwell, D.A.; Storey, R.J. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Hancox, J. [Rolls Royce, Applied Science Division, Derby (United Kingdom)

    1998-05-01

    Investigations are being carried out on the use of superconductors for fault current limiting applications. A number of computer programs are being developed to predict the behavior of different `resistive` fault current limiter designs under a variety of fault conditions. The programs achieve solution by iterative methods based around real measured data rather than theoretical models in order to achieve accuracy at high current densities. (orig.) 5 refs.

  17. Fault Diagnosis in Deaerator Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    S Srinivasan

    2007-01-01

    Full Text Available In this paper a fuzzy logic based fault diagnosis system for a deaerator in a power plant unit is presented. The system parameters are obtained using the linearised state space deaerator model. The fuzzy inference system is created and rule base are evaluated relating the parameters to the type and severity of the faults. These rules are fired for specific changes in system parameters and the faults are diagnosed.

  18. Qademah Fault Seismic Data Set - Northern Part

    KAUST Repository

    Hanafy, Sherif M.

    2015-01-01

    Objective: Is the Qademah fault that was detected in 2010 the main fault? We collected a long 2D profile, 526 m, where the fault that was detected in 2010 is at around 300 m. Layout: We collected 264 CSGs, each has 264 receivers. The shot and receiver interval is 2 m. We also collected an extra 48 CSGs with offset = 528 to 622 m with shot interval = 2 m. The receivers are the same as the main survey.

  19. Distributed bearing fault diagnosis based on vibration analysis

    Science.gov (United States)

    Dolenc, Boštjan; Boškoski, Pavle; Juričić, Đani

    2016-01-01

    Distributed bearing faults appear under various circumstances, for example due to electroerosion or the progression of localized faults. Bearings with distributed faults tend to generate more complex vibration patterns than those with localized faults. Despite the frequent occurrence of such faults, their diagnosis has attracted limited attention. This paper examines a method for the diagnosis of distributed bearing faults employing vibration analysis. The vibrational patterns generated are modeled by incorporating the geometrical imperfections of the bearing components. Comparing envelope spectra of vibration signals shows that one can distinguish between localized and distributed faults. Furthermore, a diagnostic procedure for the detection of distributed faults is proposed. This is evaluated on several bearings with naturally born distributed faults, which are compared with fault-free bearings and bearings with localized faults. It is shown experimentally that features extracted from vibrations in fault-free, localized and distributed fault conditions form clearly separable clusters, thus enabling diagnosis.

  20. Identifiability of Additive Actuator and Sensor Faults by State Augmentation

    Science.gov (United States)

    Joshi, Suresh; Gonzalez, Oscar R.; Upchurch, Jason M.

    2014-01-01

    A class of fault detection and identification (FDI) methods for bias-type actuator and sensor faults is explored in detail from the point of view of fault identifiability. The methods use state augmentation along with banks of Kalman-Bucy filters for fault detection, fault pattern determination, and fault value estimation. A complete characterization of conditions for identifiability of bias-type actuator faults, sensor faults, and simultaneous actuator and sensor faults is presented. It is shown that FDI of simultaneous actuator and sensor faults is not possible using these methods when all sensors have unknown biases. The fault identifiability conditions are demonstrated via numerical examples. The analytical and numerical results indicate that caution must be exercised to ensure fault identifiability for different fault patterns when using such methods.