Sample records for teras fault southern

  1. New insights on Southern Coyote Creek Fault and Superstition Hills Fault (United States)

    van Zandt, A. J.; Mellors, R. J.; Rockwell, T. K.; Burgess, M. K.; O'Hare, M.


    Recent field work has confirmed an extension of the southern Coyote Creek (CCF) branch of the San Jacinto fault in the western Salton trough. The fault marks the western edge of an area of subsidence caused by groundwater extraction, and field measurements suggest that recent strike-slip motion has occurred on this fault as well. We attempt to determine whether this fault connects at depth with the Superstition Hills fault (SHF) to the southeast by modeling observed surface deformation between the two faults measured by InSAR. Stacked ERS (descending) InSAR data from 1992 to 2000 is initially modeled using a finite fault in an elastic half-space. Observed deformation along the SHF and Elmore Ranch fault is modeled assuming shallow (< 5 km) creep. We test various models to explain surface deformation between the two faults.

  2. Mapping PetaSHA Applications to TeraGrid Architectures (United States)

    Cui, Y.; Moore, R.; Olsen, K.; Zhu, J.; Dalguer, L. A.; Day, S.; Cruz-Atienza, V.; Maechling, P.; Jordan, T.


    accomplishments using the optimized code include the M7.8 ShakeOut rupture scenario, as part of the southern San Andreas Fault evaluation SoSAFE. The ShakeOut simulation domain is the same as used for the SCEC TeraShake simulations (600 km by 300 km by 80 km). However, the higher resolution of 100 m with frequency content up to 1 Hz required 14.4 billion grid points, eight times more than the TeraShake scenarios. The simulation used 2000 TACC Dell linux Lonestar processors and took 56 hours to compute 240 seconds of wave propagation. The pre-processing input partition, as well as post-processing analysis has been performed on the SDSC IBM Datastar p655 and p690. In addition, as part of the SCEC DynaShake computational platform, the SGSN capability was used to model dynamic rupture propagation for the ShakeOut scenario that match the proposed surface slip and size of the event. Mapping applications to different architectures require coordination of many areas of expertise in hardware and application level, an outstanding challenge faced on the current petascale computing effort. We believe our techniques as well as distributed data management through data grids have provided a practical example of how to effectively use multiple compute resources, and our results will benefit other geoscience disciplines as well.

  3. How fault evolution changes strain partitioning and fault slip rates in Southern California: Results from geodynamic modeling (United States)

    Ye, Jiyang; Liu, Mian


    In Southern California, the Pacific-North America relative plate motion is accommodated by the complex southern San Andreas Fault system that includes many young faults (western Transverse Ranges and along the dextral faults across the Mojave Desert, where numerous damaging earthquakes occurred in recent years.

  4. Complex Paleotopography and Faulting near the Elsinore Fault, Coyote Mountains, southern California (United States)

    Brenneman, M. J.; Bykerk-Kauffman, A.


    The Coyote Mountains of southern California are bounded on the southwest by the Elsinore Fault, an active dextral fault within the San Andreas Fault zone. According to Axen and Fletcher (1998) and Dorsey and others (2011), rocks exposed in these mountains comprise a portion of the hanging wall of the east-vergent Salton Detachment Fault, which was active from the late Miocene-early Pliocene to Ca. 1.1-1.3 Ma. Detachment faulting was accompanied by subsidence, resulting in deposition of a thick sequence of marine and nonmarine sedimentary rocks. Regional detachment faulting and subsidence ceased with the inception of the Elsinore Fault, which has induced uplift of the Coyote Mountains. Detailed geologic mapping in the central Coyote Mountains supports the above interpretation and adds some intriguing details. New discoveries include a buttress unconformity at the base of the Miocene/Pliocene section that locally cuts across strata at an angle so high that it could be misinterpreted as a fault. We thus conclude that the syn-extension strata were deposited on a surface with very rugged topography. We also discovered that locally-derived nonmarine gravel deposits exposed near the crest of the range, previously interpreted as part of the Miocene Split Mountain Group by Winker and Kidwell (1996), unconformably overlie units of the marine Miocene/Pliocene Imperial Group and must therefore be Pliocene or younger. The presence of such young gravel deposits on the crest of the range provides evidence for its rapid uplift. Additional new discoveries flesh out details of the structural history of the range. We mapped just two normal faults, both of which were relatively minor, thus supporting Axen and Fletcher's assertion that the hanging wall block of the Salton Detachment Fault had not undergone significant internal deformation during extension. We found abundant complex synthetic and antithetic strike-slip faults throughout the area, some of which offset Quaternary alluvial

  5. Hydraulic structure of a fault zone at seismogenic depths (Gole Larghe Fault Zone, Italian Southern Alps) (United States)

    Bistacchi, Andrea; Mittempergher, Silvia; Di Toro, Giulio; Smith, Steve; Garofalo, Paolo; Vho, Alice


    The Gole Larghe Fault Zone (GLFZ, Italian Southern Alps) was exhumed from c. 8 km depth, where it was characterized by seismic activity (pseudotachylytes), but also by hydrous fluid flow (alteration halos and precipitation of hydrothermal minerals in veins and cataclasites). Thanks to glacier-polished outcrops exposing the fault zone over a continuous area > 1 km2, the fault zone architecture has been quantitatively described with an unprecedented detail (Bistacchi 2011, PAGEOPH; Smith 2013, JSG; Mittempergher 2016, this meeting), providing a rich dataset to generate 3D Discrete Fracture Network (DFN) models and simulate the fault zone hydraulic properties. Based on field and microstructural evidence, we infer that the opening and closing of fractures resulted in a toggle-switch mechanism for fluid flow during the seismic cycle: higher permeability was obtained in the syn- to early post-seismic period, when the largest number of fractures was (re)opened by off-fault deformation, then permeability dropped due to hydrothermal mineral precipitation and fracture sealing. Since the fracture network that we observe now in the field is the result of the cumulative deformation history of the fault zone, which probably includes thousands of earthquakes, a fundamental parameter that cannot be directly evaluated in the field is the fraction of fractures-faults that were open immediately after a single earthquake. Postseismic permeability has been evaluated in a few cases in the world thanks to seismological evidences of fluid migration along active fault systems. Therefore, we were able to develop a parametric hydraulic model of the GLFZ and calibrate it, varying the fraction of faults/fractures that were open in the postseismic period, to obtain on one side realistic fluid flow and permeability values, and on the other side a flow pattern consistent with the observed alteration/mineralization pattern. The fraction of open fractures is very close to the percolation threshold

  6. TERA - Fondazione per Adroterapia Oncologica

    CERN Multimedia

    VOXEL Comunicazione, Novarra


    Con Prof. Gianpiero Tosi, I.E.O. Istituto Europeo di Oncologica Milano, Prof. Luca Gionini, Presidente A.I.R.O. Università di Firenze, Prof. Ugo Amaldi, Presidente Fondazione TERA, CERN Ginevra - Università di Milano

  7. TERA for Rotating Equipment Selection


    Khan, Raja S. R.


    This thesis looks at creating a multidisciplinary simulation tool for rotating plant equipment selection, specifically gas turbines, for the liquefaction of natural gas (LNG). This is a collaborative project between Shell Global Solutions and Cranfield University in the UK. The TERA LNG tool uses a Techno-economic, Environmental and Risk Analysis (TERA) approach in order to satisfy the multidisciplinary nature of the investigation. The benefits of the tool are to act as an aid ...

  8. Pliocene onset of widespread normal faulting in the southern Puna Plateau, southern central Andes, NW Argentina (United States)

    Montero Lopez, M. C.; Hongn, F. D.; Marrett, R.; Seggiaro, R.; Strecker, M. R.


    Normal faults are often observed in many compressional Cenozoic mountain belts and paleotectonic settings and have been associated with a late-stage development in orogen evolution. Often, such normal faults are found in high-elevation sectors in the orogen interior and may form graben, closely spaced arrays or they are kinematically linked with strike-slip faults. In contrast, at lower elevations and in the adjacent foreland regions coeval shortening may be sustained. This situation typifies the active tectonics of the southern central Andes of NW Argentina characterized by the Puna Plateau (22° to 27° S lat), the world’s second largest orogenic plateau with an average elevation of 3.7 km and the adjacent Andean foreland. The Puna contains neotectonic landforms that host widespread active normal faults, closely associated with mafic centres. In contrast, the shortening continued in the foreland. The onset of the extensional kinematic in the Puna has been inferred to be Quaternary in age as many mafic volcanic manifestations were generated during the ultimate 2 Ma. However, our new structural observations and Ar/Ar dating of volcanic deposits and dykes suggests that widespread extension in the Puna started much earlier. We are able to show that the southern margin of the Puna is characterized by extensional structures at different length scales, including extensional fractures, sometimes hosting dykes, as well as normal fault arrays that cut volcanic edifices and flows, visible on satellite imagery. Fault kinematic analysis and an assessment of dyke and fracture orientations documents that the region at about 27°S lat is affected by N-S extension. This must be a regional phenomenon as similar observations can be made in areas farther north as well. Our geochronology work on lava flows and dykes in this region suggests that an extensional regime may have been in existence by 7-6 Ma and extensional processes were well underway by 4 Ma. The often observed

  9. Building the TeraGrid. (United States)

    Beckman, Peter H


    On 1 October 2004, the most ambitious high-performance Grid project in the United States-the TeraGrid-became fully operational. Resources at nine sites--the San Diego Supercomputer Center, the California Institute of Technology, the National Center for Supercomputing Applications, the University of Chicago/Argonne National Laboratory, Pittsburgh Supercomputing Center, Texas Advanced Computing Center, Purdue University, Indiana University and Oak Ridge National Laboratory-were joined via an ultra-fast optical network, unified policies and security procedures and a sophisticated distributed computing software environment. Funded by the National Science Foundation, the TeraGrid enables scientists and engineers to combine distributed, multiple data sources with computation at any of the sites or link massively parallel computer simulations to extreme-resolution visualizations at remote sites. A single shared utility lets multiple resources be easily leveraged and provides improved access to advanced computational capabilities. One of the demonstrations of this new model for using distributed resources, Teragyroid, linked the infrastructure of the TeraGrid with computing resources in the United Kingdom via a transatlantic data fibre link. Once connected, the software framework of the RealityGrid project was used to successfully explore lattice-Boltzmann simulations involving lattices of over one billion sites.

  10. Teras, mille armid ei roosteta / Ain Alvela

    Index Scriptorium Estoniae

    Alvela, Ain, 1967-


    Roostevaba terase kasutamine. Vt. samas: Roostevaba teras; Raual kolmekordne hinnavahe; Terase roostekindlust parandab legeerimine; Paide veetorud peavad kestma 25 aastat. Diagramm: Terasetootmine maailmas. Kommenteerib Taavi Pauri

  11. Fault Zone Architecture and Mineralogy: Implications in Fluid Flow and Permeability in Crustal Scale Fault Zones in the Southern Andes. (United States)

    Roquer, T.; Terrón, E.; Perez-Flores, P.; Arancibia, G.; Cembrano, J. M.


    Fluid flow in the upper crust is controlled by the permeability and interconnection of fractures in the fault zones. The permeability within the fault zone is determined by its activity, architecture and, in particular, by the mineralogy of the core and the damage zone. Whereas the permeability structure of a fault zone can be defined by the volume proportion of the core with respect to the damage zone, the relationship between the mineralogy and permeability along fault zones still remains obscure. This work examines structural and mineralogical data to show the relationship between the mineral composition of the fault zone with its permeability in the Liquiñe-Ofqui Fault System (LOFS) and the Arc-oblique Long-lived Fault Systems (ALFS), Southern Chile. The LOFS is an active ca. 1200 km long strike-slip Cenozoic intra-arc structure that strikes NNE in its master traces and NE in its subsidiary traces, with dextral and dextral-normal movement mostly developed in the last 6 My. Although the LOFS and the ALFS cross-cut each other, the ALFS is an apparently older basement fault system where seismic and field evidences record sinistral, sinistral-normal and sinistral-reverse movements. One 22-m-long NE transect was mapped orthogonal to a segment of the ALFS, where host rocks are Miocene andesitic rocks. Structural and XRD sampling were conducted in the core and damage zone. Structural mapping shows a multiple core, NW-striking fault zone with foliated gouge and an asymmetric damage zone, where the hanging wall has significantly higher mesoscopic fracture density than the footwall. The hanging wall is characterized by NW-striking, steeply dipping veins. Preliminary XRD results indicate the presence of homogenously distributed Ca-rich zeolite (mainly laumontite) in the core and the veins of the damage zone, which could indicate that the core acted as a conduit for low-temperature (ca. 220°C) fluids.

  12. Fault Trends and the Evolution of the Pacific-North America Transform in Southern California (United States)

    Legg, M. R.; Kamerling, M. J.


    The Pacific-North America (PAC-NOAM) transform boundary evolved during the past 30 Ma, lengthening more than 1000 km and spanning a zone exceeding 200-km across southern California. The relative plate motion vector has been estimated using seafloor magnetic anomaly patterns. Orientations of major transform fault segments within this boundary provide direct evidence of the relative motion at the time these faults formed, where the faults preserve their original orientations. Avoiding areas of known vertical-axis block rotations, we find at least three major fault trends that document past and present tectonic kinematics. A northwest trend of 330 degrees is related to subduction trends in the forearc region that defined the late Mesozoic and early Tertiary coastline and has subsequently controlled the orientation of oblique rifting during the Neogene initiation and growth of the PAC-NOAM transform. This trend is manifest in the San Diego Trough and adjacent coastal rifts and associated fault zones including the Coronado Bank and Newport-Inglewood. The middle Miocene transform orientation appears to be 300-310 degrees, which imparted extensional character to faults reactivated with older subduction trends. Major faults inferred to represent Neogene transform fault segments with this trend include the Whittier, Palos Verdes Hills, Santa Cruz-Catalina Ridge, Catalina Escarpment, and possibly the Mojave segment of the San Andreas fault. In late Miocene time, the plate motion vector rotated clockwise eventually achieving its modern orientation of about 320 degrees. Active faulting showing pure strike-slip character on the San Clemente - San Isidro fault zone and the Imperial Fault show this trend, as do transform faults in the northern Gulf of California. An intermediate trend is apparent in some areas along the San Clemente fault zone in the Borderland, and along the Elsinore and San Jacinto fault zones, which transect the Peninsular Ranges. The intermediate trends may

  13. Geomorphic evidence of Quaternary tectonics within an underlap fault zone of southern Apennines, Italy (United States)

    Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo


    A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.

  14. Strike-slip faulting in the Inner California Borderlands, offshore Southern California. (United States)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Sahakian, V. J.; Holmes, J. J.; Klotsko, S.; Kell, A. M.; Wesnousky, S. G.


    In the Inner California Borderlands (ICB), offshore of Southern California, modern dextral strike-slip faulting overprints a prominent system of basins and ridges formed during plate boundary reorganization 30-15 Ma. Geodetic data indicate faults in the ICB accommodate 6-8 mm/yr of Pacific-North American plate boundary deformation; however, the hazard posed by the ICB faults is poorly understood due to unknown fault geometry and loosely constrained slip rates. We present observations from high-resolution and reprocessed legacy 2D multichannel seismic (MCS) reflection datasets and multibeam bathymetry to constrain the modern fault architecture and tectonic evolution of the ICB. We use a sequence stratigraphy approach to identify discrete episodes of deformation in the MCS data and present the results of our mapping in a regional fault model that distinguishes active faults from relict structures. Significant differences exist between our model of modern ICB deformation and existing models. From east to west, the major active faults are the Newport-Inglewood/Rose Canyon, Palos Verdes, San Diego Trough, and San Clemente fault zones. Localized deformation on the continental slope along the San Mateo, San Onofre, and Carlsbad trends results from geometrical complexities in the dextral fault system. Undeformed early to mid-Pleistocene age sediments onlap and overlie deformation associated with the northern Coronado Bank fault (CBF) and the breakaway zone of the purported Oceanside Blind Thrust. Therefore, we interpret the northern CBF to be inactive, and slip rate estimates based on linkage with the Holocene active Palos Verdes fault are unwarranted. In the western ICB, the San Diego Trough fault (SDTF) and San Clemente fault have robust linear geomorphic expression, which suggests that these faults may accommodate a significant portion of modern ICB slip in a westward temporal migration of slip. The SDTF offsets young sediments between the US/Mexico border and the

  15. Neogene folding and faulting in southern Monterey Bay, Central California, USA (United States)

    Gardner-Taggart, J. M.; Greene, H. Gary; Ledbetter, M.T.


    The goal of this study was to determine the Neogene structural history of southern Monterey Bay by mapping and correlating the shallow tectonic structures with previously identified deeper occurring structures. Side scan sonographs and Uniboom seismic reflection profiles collected in the region suggest that deformation associated with both compressional and transcurrent movement is occurring. Strike-slip movement between the North American and Pacific plates started as subduction ceased 21 Ma, creating the San Andreas fault system. Clockwise rotation of the Pacific plate occurred between 3.4 and 3.9 Ma causing orthogonal convergence between the two plates. This plate rotation is responsible for compressional Neogene structures along the central California coast. Structures exhibit transpressional tectonic characteristics such as thrust faulting, reverse faulting and asymmetrical folding. Folding and faulting are confined to middle Miocene and younger strata. Shallow Mesozoic granitic basement rocks either crop out or lie near the surface in most of the region and form a possible de??collement along which the Miocene Monterey Formation has decoupled and been folded. Over 50% of the shallow faults strike normal (NE-SW) to the previously identified faults. Wrench fault tectonics complicated by compression, gradual uplift of the basement rocks, and a change in plate convergence direction are responsible for the observed structures in southern Monterey Bay. ?? 1993.

  16. Viscoelastic coupling model of the San Andreas fault along the big bend, southern California (United States)

    Savage, J.C.; Lisowski, M.


    The big bend segment of the San Andreas fault is the 300-km-long segment in southern California that strikes about N65??W, roughly 25?? counterclockwise from the local tangent to the small circle about the Pacific-North America pole of rotation. The broad distribution of deformation of trilateration networks along this segment implies a locking depth of at least 25 km as interpreted by the conventional model of strain accumulation (continuous slip on the fault below the locking depth at the rate of relative plate motion), whereas the observed seismicity and laboratory data on fault strength suggest that the locking depth should be no greater than 10 to 15 km. The discrepancy is explained by the viscoelastic coupling model which accounts for the viscoelastic response of the lower crust. Thus the broad distribution of deformation observed across the big bend segment can be largely associated with the San Andreas fault itself, not subsidiary faults distributed throughout the region. The Working Group on California Earthquake Probabilities [1995] in using geodetic data to estimate the seismic risk in southern California has assumed that strain accumulated off the San Andreas fault is released by earthquakes located off the San Andreas fault. Thus they count the San Andreas contribution to total seismic moment accumulation more than once, leading to an overestimate of the seismicity for magnitude 6 and greater earthquakes in their Type C zones.

  17. Coulomb stress changes imparted by simulated M>7 earthquakes to major fault surfaces in Southern California (United States)

    Rollins, J. C.; Ely, G. P.; Jordan, T. H.


    To study static stress interactions between faults in southern California and identify cases where one large earthquake could trigger another, we select fourteen M>7 events simulated by the SCEC/CME CyberShake project and calculate the Coulomb stress changes those events impart to major fault surfaces in the UCERF2 fault model for the region. CyberShake simulates between 6 and 32 slip distributions for each event at a slip sampling resolution of 1 km, and we calculate stress changes on fault surfaces at the same resolution, a level of detail which is unprecedented in studies of stress transfer and which allows us to study the way that variabilities in slip on the source can affect imparted stress changes. We find that earthquakes rupturing the southern San Andreas fault generally decrease Coulomb stress on right-lateral faults in the Los Angeles basin, while M>7 events on the San Jacinto, Elsinore, Newport-Inglewood and Palos Verdes faults generally decrease stress on parallel right-lateral faults but increase Coulomb stress on the Mojave or San Bernardino sections of the San Andreas. Stress interactions between strike-slip and thrust faults and between the San Andreas and Garlock faults depend on the rupture area of the source. Coulomb stress changes imparted by simulated SAF events to locations on the San Jacinto and Garlock faults within ~8 km of the San Andreas appear to be influenced more by the nearby distribution of high and low slip on the San Andreas than by the overall slip distribution across the entire rupture. Using a simplified model, we calculate that an area of no slip surrounded by high slip on a rupture imparts strong Coulomb stress increases ≤7 km to either side of the source fault, possibly explaining the apparent ~8-km range of influence of local slip on the San Andreas. Additionally, we devise a method for evaluating uncertainty values in Coulomb stress changes caused by uncertainties in the strike, dip and rake of the receiver fault. These

  18. Large-scale hydraulic structure of a seismogenic fault at 10 km depth (Gole Larghe Fault Zone, Italian Southern Alps) (United States)

    Bistacchi, Andrea; Di Toro, Giulio; Smith, Steve; Mittempergher, Silvia; Garofalo, Paolo


    The definition of hydraulic properties of fault zones is a major issue in structural geology, seismology, and in several applications (hydrocarbons, hydrogeology, CO2 sequestration, etc.). The permeability of fault rocks can be measured in laboratory experiments, but its upscaling to large-scale structures is not straightforward. For instance, typical permeability of fine-grained fault rock samples is in the 10-18-10-20 m2 range, but, according to seismological estimates, the large-scale permeability of active fault zones can be as high as 10-10 m2. Solving this issue is difficult because in-situ measurements of large-scale permeability have been carried out just at relatively shallow depths - mainly in oil wells and exceptionally in active tectonic settings (e.g. SAFOD at 3 km), whilst deeper experiments have been performed only in the stable continental crust (e.g. KTB at 9 km). In this study, we apply discrete fracture-network (DFN) modelling techniques developed for shallow aquifers (mainly in nuclear waste storage projects like Yucca Mountain) and in the oil industry, in order to model the hydraulic structure of the Gole Larghe Fault Zone (GLFZ, Italian Southern Alps). This fault, now exposed in world-class glacier-polished outcrops, has been exhumed from ca. 8 km, where it was characterized by a well-documented seismic activity, but also by hydrous fluid flow evidenced by alteration halos and precipitation of hydrothermal minerals in veins and along cataclasites. The GLFZ does not show a classical seal structure that in other fault zones corresponds to a core zone characterized by fine-grained fault rocks. However, permeability is heterogeneous and the permeability tensor is strongly anisotropic due to fracture preferential orientation. We will show with numerical experiments that this hydraulic structure results in a channelized fluid flow (which is consistent with the observed hydrothermal alteration pattern). This results in a counterintuitive situation

  19. The buried southern continuation of the Oaxaca-Juarez terrane boundary and Oaxaca Fault, southern Mexico: Magnetotelluric constraints (United States)

    Campos-Enriquez, J. O.; Corbo-Camargo, F.; Arzate-Flores, J.; Keppie, J. D.; Arango-Galván, C.; Unsworth, M.; Belmonte-Jiménez, S. I.


    Thirty magnetotelluric soundings were made along two NW-SE profiles to the north and south of Oaxaca City in southern Mexico. The profiles crossed the N-S Oaxaca Fault and the Oaxaca-Juarez terrane boundary defined by the Juarez mylonitic complex. Dimensionality analysis of the MT data showed that the subsurface resistivity structure is 2D or 3D. The Oaxaca and correlative Guichicovi terranes consist of ca. 1-1.4 Ga granulitic continental crust overlain by Phanerozoic sedimentary rocks, characterized by high and low resistivities, respectively. The Juarez terrane consists of oceanic Mesozoic metavolcanic and metasedimentary rocks, characterized by a low to medium resistivity layer, that is approximately 10 km thick. The Oaxaca Fault is a Cenozoic aged, normal fault that reactivated the dextral and thrust Juarez mylonitic complex north of Oaxaca City: its location south of Oaxaca City is uncertain. In the southern profile, the MT data show a ca. 20-50 km wide, west-dipping, relatively low resistivity zone material that extends through the entire crust. This is inferred to be the Juarez terrane bounded on either side by the ca. 1-1.4 Ga granulites. The Oaxaca Fault is imaged only by a major electrical resistivity discontinuity (low to the west, high to the east) along both the western border of the Juarez mylonitic complex (northern profile) and the San Miguel de la Cal mountains (southern profile) suggesting continuity.

  20. Faulted Tell and ancient road by the Dead Sea Transform in southern Turkey (United States)

    Altunel, E.; Meghraoui, M.; Akyuz, S.; Karabacak, V.; Bertrand, S.; Yalciner, C.; Ferry, M.; Munschy, M.


    We investigate the northern end of the Dead Sea Transform Fault (DSTF) in the Amik Basin using paleoseismology, archeoseismology and geophysical prospecting. The DSFZ is one of the major continental faults where large historical earthquakes occurred, some of them were associated with surface ruptures. The Amik Basin has a large number of archaeological sites where some ancient man-made structures are located on the fault zone. The fault appears as a prominent scarp located immediately south of the basin and offsets large and small streams showing a range of 650 +-10 m to 14 +-0.5 m of left-lateral displacement. Aerial photographs and field observations indicate that the fault also affects Holocene lacustrine deposits of the basin and form a North-South trending morphological scarp. Archeological sites are largely spread in the area and the fault crosses the approximately 6500 BC old Sicantarla Tell and related walls. A total left-lateral offset of 40 +-5 m measured from the detailed morphology of the Tell and 43 +-1.5 m from a magnetic survey illustrates the cumulative left-lateral movement along the fault and provide with an average 5 mm/yr slip rate for the late Holocene. Field studies also showed that an ancient road with nearby Hittites inscriptions (around 2000 BC) is left-laterally offset by 25 +-2 m along the DSTF and provide with an average 6.2 mm/yr slip rate. In addition, paleoseismic trenching at three locations between the Tell and the southern fault trace expose the fault zone and successive most recent faulting events including the AD 1408 large earthquake. The faulted archeological sites and geomorphology offer the possibility to document successive coseismic ruptures and constitute a real archive of large earthquakes along the DSTF.

  1. Structural Inversion of the Palos Verdes Fault, Southern California, and its Implications for Seismic Hazards Assessment (United States)

    Brankman, C. M.; Shaw, J. H.


    The Palos Verdes Fault (PVF) defines the western margin of the Los Angeles basin, and is regarded as a likely source of moderate to large earthquakes that would affect the coastal metropolitan regions of southern California. In most hazard compilations, the PVF is generally considered to be a vertical, predominantly right-lateral, strike-slip fault system that extends continuously from the Santa Monica thrust southward across Santa Monica Bay, crossing the Palos Verdes Peninsula and continuing southeast across the Inner Borderlands to the area of Coronado Banks. A restraining bend where the fault dips steeply to the southwest generates uplift and folding of the Palos Verdes Peninsula. However, previous studies documenting the activity, slip rate, and slip sense of the PVF have used shallow subsurface excavations and high-frequency seismic data, which have generally limited observations to the upper kilometer of the crust. We use an extensive grid of petroleum industry seismic reflection data and well logs to define the three-dimensional subsurface geometry of the PVF in the region south of the Palos Verdes Peninsula. Our seismic data cover the complete offshore extent of the fault, from Santa Monica Bay to the Coronado Banks, and provide direct constraints on the fault geometry extending down to about 5km depth. We use the shapes of folded strata imaged in the seismic data and penetrated by wells to invert for permissible geometries of the fault as it extends to the base of the seismogenic crust. Our data and structural analyses indicate that the PVF developed by Pliocene inversion of a Miocene normal fault system. The fault has a significant component of reverse slip and southwesterly dip at depth along its extent. Oblique displacement on the fault appears to be partitioned at shallow levels into nearly pure right-lateral strike slip on near-vertical faults and contractional folding above gently to moderately dipping blind-thrust fault splays. These observations

  2. Semi-automatic mapping of fault rocks on a Digital Outcrop Model, Gole Larghe Fault Zone (Southern Alps, Italy) (United States)

    Mittempergher, Silvia; Vho, Alice; Bistacchi, Andrea


    A quantitative analysis of fault-rock distribution in outcrops of exhumed fault zones is of fundamental importance for studies of fault zone architecture, fault and earthquake mechanics, and fluid circulation. We present a semi-automatic workflow for fault-rock mapping on a Digital Outcrop Model (DOM), developed on the Gole Larghe Fault Zone (GLFZ), a well exposed strike-slip fault in the Adamello batholith (Italian Southern Alps). The GLFZ has been exhumed from ca. 8-10 km depth, and consists of hundreds of individual seismogenic slip surfaces lined by green cataclasites (crushed wall rocks cemented by the hydrothermal epidote and K-feldspar) and black pseudotachylytes (solidified frictional melts, considered as a marker for seismic slip). A digital model of selected outcrop exposures was reconstructed with photogrammetric techniques, using a large number of high resolution digital photographs processed with VisualSFM software. The resulting DOM has a resolution up to 0.2 mm/pixel. Most of the outcrop was imaged using images each one covering a 1 x 1 m2 area, while selected structural features, such as sidewall ripouts or stepovers, were covered with higher-resolution images covering 30 x 40 cm2 areas.Image processing algorithms were preliminarily tested using the ImageJ-Fiji package, then a workflow in Matlab was developed to process a large collection of images sequentially. Particularly in detailed 30 x 40 cm images, cataclasites and hydrothermal veins were successfully identified using spectral analysis in RGB and HSV color spaces. This allows mapping the network of cataclasites and veins which provided the pathway for hydrothermal fluid circulation, and also the volume of mineralization, since we are able to measure the thickness of cataclasites and veins on the outcrop surface. The spectral signature of pseudotachylyte veins is indistinguishable from that of biotite grains in the wall rock (tonalite), so we tested morphological analysis tools to discriminate

  3. Slip triggered on southern California faults by the 1992 Joshua Tree, Landers, and big bear earthquakes (United States)

    Bodin, Paul; Bilham, Roger; Behr, Jeff; Gomberg, Joan; Hudnut, Kenneth W.


    Five out of six functioning creepmeters on southern California faults recorded slip triggered at the time of some or all of the three largest events of the 1992 Landers earthquake sequence. Digital creep data indicate that dextral slip was triggered within 1 min of each mainshock and that maximum slip velocities occurred 2 to 3 min later. The duration of triggered slip events ranged from a few hours to several weeks. We note that triggered slip occurs commonly on faults that exhibit fault creep. To account for the observation that slip can be triggered repeatedly on a fault, we propose that the amplitude of triggered slip may be proportional to the depth of slip in the creep event and to the available near-surface tectonic strain that would otherwise eventually be released as fault creep. We advance the notion that seismic surface waves, perhaps amplified by sediments, generate transient local conditions that favor the release of tectonic strain to varying depths. Synthetic strain seismograms are presented that suggest increased pore pressure during periods of fault-normal contraction may be responsible for triggered slip, since maximum dextral shear strain transients correspond to times of maximum fault-normal contraction.

  4. Paleoseismology of the Southern Section of the Black Mountains and Southern Death Valley Fault Zones, Death Valley, United States (United States)

    Sohn, Marsha S.; Knott, Jeffrey R.; Mahan, Shannon


    The Death Valley Fault System (DVFS) is part of the southern Walker Lane–eastern California shear zone. The normal Black Mountains Fault Zone (BMFZ) and the right-lateral Southern Death Valley Fault Zone (SDVFZ) are two components of the DVFS. Estimates of late Pleistocene-Holocene slip rates and recurrence intervals for these two fault zones are uncertain owing to poor relative age control. The BMFZ southernmost section (Section 1W) steps basinward and preserves multiple scarps in the Quaternary alluvial fans. We present optically stimulated luminescence (OSL) dates ranging from 27 to 4 ka of fluvial and eolian sand lenses interbedded with alluvial-fan deposits offset by the BMFZ. By cross-cutting relations, we infer that there were three separate ground-rupturing earthquakes on BMFZ Section 1W with vertical displacement between 5.5 m and 2.75 m. The slip-rate estimate is ∼0.2 to 1.8 mm/yr, with an earthquake recurrence interval of 4,500 to 2,000 years. Slip-per-event measurements indicate Mw 7.0 to 7.2 earthquakes. The 27–4-ka OSL-dated alluvial fans also overlie the putative Cinder Hill tephra layer. Cinder Hill is offset ∼213 m by SDVFZ, which yields a tentative slip rate of 1 to 8 mm/yr for the SDVFZ.

  5. How do "ghost transients" from past earthquakes affect GPS slip rate estimates on southern California faults? (United States)

    Hearn, E. H.; Pollitz, F. F.; Thatcher, W. R.; Onishi, C. T.


    In this study, we investigate the extent to which viscoelastic velocity perturbations (or "ghost transients") from individual fault segments can affect elastic block model-based inferences of fault slip rates from GPS velocity fields. We focus on the southern California GPS velocity field, exploring the effects of known, large earthquakes for two end-member rheological structures. Our approach is to compute, at each GPS site, the velocity perturbation relative to a cycle average for earthquake cycles on particular fault segments. We then correct the SCEC CMM4.0 velocity field for this perturbation and invert the corrected field for fault slip rates. We find that if asthenosphere viscosities are low (3 × 1018 Pa s), the current GPS velocity field is significantly perturbed by viscoelastic earthquake cycle effects associated with the San Andreas Fault segment that last ruptured in 1857 (Mw = 7.9). Correcting the GPS velocity field for this perturbation (or "ghost transient") adds about 5 mm/a to the SAF slip rate along the Mojave and San Bernardino segments. The GPS velocity perturbations due to large earthquakes on the Garlock Fault (most recently, events in the early 1600s) and the White Wolf Fault (most recently, the Mw = 7.3 1952 Kern County earthquake) are smaller and do not influence block-model inverted fault slip rates. This suggests that either the large discrepancy between geodetic and geologic slip rates for the Garlock Fault is not due to a ghost transient or that un-modeled transients from recent Mojave earthquakes may influence the GPS velocity field.

  6. Aseismic Slip Events along the Southern San Andreas Fault System Captured by Radar Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, P


    A seismic slip is observed along several faults in the Salton Sea and southernmost Landers rupture zone regions using interferometric synthetic aperture radar (InSAR) data spanning different time periods between 1992 and 1997. In the southernmost Landers rupture zone, projecting south from the Pinto Mountain Fault, sharp discontinuities in the interferometric phase are observed along the sub-parallel Burnt Mountain and Eureka Peak Faults beginning three months after the Landers earthquake and is interpreted to be post-Landers after-slip. Abrupt phase offsets are also seen along the two southernmost contiguous 11 km Durmid Hill and North Shore segments of the San Andreas Fault with an abrupt termination of slip near the northern end of the North Shore Segment. A sharp phase offset is seen across 20 km of the 30 km-long Superstition Hills Fault before phase decorrelation in the Imperial Valley along the southern 10 km of the fault prevents coherent imaging by InSAR. A time series of deformation interferograms suggest most of this slip occurred between 1993 and 1995 and none of it occurred between 1992 and 1993. A phase offset is also seen along a 5 km central segment of the Coyote Creek fault that forms a wedge with an adjoining northeast-southwest trending conjugate fault. Most of the slip observed on the southern San Andreas and Superstition Hills Faults occurred between 1993 and 1995--no slip is observed in the 92-93 interferograms. These slip events, especially the Burnt Mountain and Eureka Peak events, are inferred to be related to stress redistribution from the June, 1992 M{sub w} = 7.3 Landers earthquake. Best-fit elastic models of the San Andreas and Superstition Hills slip events suggest source mechanisms with seismic moments over three orders of magnitude larger than a maximum possible summation of seismic moments from all seismicity along each fault segment during the entire 4.8-year time interval spanned by the InSAR data. Aseismic moment releases of this

  7. How does the 2010 El Mayor - Cucapah Earthquake Rupture Connect to the Southern California Plate Boundary Fault System (United States)

    Donnellan, A.; Ben-Zion, Y.; Arrowsmith, R.


    The Pacific - North American plate boundary in southern California is marked by several major strike slip faults. The 2010 M7.2 El Mayor - Cucapah earthquake ruptured 120 km of upper crust in Baja California to the US-Mexico border. The earthquake triggered slip along an extensive network of faults in the Salton Trough from the Mexican border to the southern end of the San Andreas fault. Earthquakes >M5 were triggered in the gap between the Laguna Salada and Elsinore faults at Ocotillo and on the Coyote Creek segment of the San Jacinto fault 20 km northwest of Borrego Springs. UAVSAR observations, collected since October of 2009, measure slip associated with the M5.7 Ocotillo aftershock with deformation continuing into 2014. The Elsinore fault has been remarkably quiet, however, with only M5.0 and M5.2 earthquakes occurring on the Coyote Mountains segment of the fault in 1940 and 1968 respectively. In contrast, the Imperial Valley has been quite active historically with numerous moderate events occurring since 1935. Moderate event activity is increasing along the San Jacinto fault zone (SJFZ), especially the trifurcation area, where 6 of 12 historic earthquakes in this 20 km long fault zone have occurred since 2000. However, no recent deformation has been detected using UAVSAR measurements in this area, including the recent M5.2 June 2016 Borrego earthquake. Does the El Mayor - Cucapah rupture connect to and transfer stress primarily to a single southern California fault or several? What is its role relative to the background plate motion? UAVSAR observations indicate that the southward extension of the Elsinore fault has recently experienced the most localized deformation. Seismicity suggests that the San Jacinto fault is more active than neighboring major faults, and geologic evidence suggests that the Southern San Andreas fault has been the major plate boundary fault in southern California. Topographic data with 3-4 cm resolution using structure from motion from

  8. The Tera Multithreaded Architecture and Unstructured Meshes (United States)

    Bokhari, Shahid H.; Mavriplis, Dimitri J.


    The Tera Multithreaded Architecture (MTA) is a new parallel supercomputer currently being installed at San Diego Supercomputing Center (SDSC). This machine has an architecture quite different from contemporary parallel machines. The computational processor is a custom design and the machine uses hardware to support very fine grained multithreading. The main memory is shared, hardware randomized and flat. These features make the machine highly suited to the execution of unstructured mesh problems, which are difficult to parallelize on other architectures. We report the results of a study carried out during July-August 1998 to evaluate the execution of EUL3D, a code that solves the Euler equations on an unstructured mesh, on the 2 processor Tera MTA at SDSC. Our investigation shows that parallelization of an unstructured code is extremely easy on the Tera. We were able to get an existing parallel code (designed for a shared memory machine), running on the Tera by changing only the compiler directives. Furthermore, a serial version of this code was compiled to run in parallel on the Tera by judicious use of directives to invoke the "full/empty" tag bits of the machine to obtain synchronization. This version achieves 212 and 406 Mflop/s on one and two processors respectively, and requires no attention to partitioning or placement of data issues that would be of paramount importance in other parallel architectures.

  9. Morphotectonics of the Padul-Nigüelas Fault Zone, southern Spain

    Directory of Open Access Journals (Sweden)

    Jochen Hürtgen


    Full Text Available The Padul-Nigüelas Fault Zone (PNFZ is situated at the south-western mountain front of the Sierra Nevada (southern Spain in the Internal Zone of the Betic Cordilleras and belongs to a NW-SE trending system of normal faults dipping SW. The PNFZ constitutes a major tectonic and lithological boundary in the Betics, and separates the metamorphic units of the Alpujárride Complex from Upper Tertiary to Quaternary deposits. Due to recent seismicity and several morphological and geological indicators, such as preserved fault scarps, triangular facets, deeply incised valleys and faults in the colluvial wedges, the PNFZ is suspected to be a tectonically active feature of the south-eastern Granada Basin. We performed morphotectonic GIS analyses based on digital elevation models (DEM, cell size: 10 m to obtain tectonic activity classes for each outcropping segment of the PNFZ. We have determined the following geomorphic indices: mountain front sinuosity, stream-length gradient index, concavity index and valley floor width to height ratio. The results show a differentiation in the states of activity along the fault zone strike. The western and eastern segments of the PNFZ indicate a higher tectonic activity compared to the center of the fault zone. We discuss and critically examine the comparability and reproducibility of geomorphic analyses, concluding that careful interpretation is necessary, if no ground-truthing can be performed.

  10. Faults (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  11. Southern East Siberia Pliocene–Quaternary faults: Database, analysis and inference

    Directory of Open Access Journals (Sweden)

    Oksana V. Lunina


    Full Text Available This paper presents the first release of an Informational System (IS devoted to the systematic collection of all available data relating to Pliocene–Quaternary faults in southern East Siberia, their critical analysis and their seismotectonic parameterization. The final goal of this project is to form a new base for improving the assessment of seismic hazard and other natural processes associated with crustal deformation. The presented IS has been exploited to create a relational database of active and conditionally active faults in southern East Siberia (between 100°–114° E and 50°–57° N whose central sector is characterized by the highly seismic Baikal rift zone. The information within the database for each fault segment is organized as distinct but intercorrelated sections (tables, texts and pictures, etc. and can be easily visualized as HTML pages in offline browsing. The preliminary version of the database distributed free on disk already highlights the general fault pattern showing that the Holocene and historical activity is quite uniform and dominated by NE–SW and nearly E–W trending faults; the former with a prevailing dip-slip normal kinematics, while the latter structures are left-lateral strike-slip and oblique-slip (with different proportion of left-lateral and normal fault slip components. These faults are mainly concentrated along the borders of the rift basins and are the main sources of moderate-to-strong (M ≥ 5.5 earthquakes on the southern sectors of East Siberia in recent times. As a whole, based on analyzing the diverse fault kinematics and their variable spatial distribution with respect to the overall pattern of the tectonic structures formed and/or activated during the late Pliocene–Quaternary, we conclude they were generated under a regional stress field mainly characterized by a relatively uniform NW–SE tension, but strongly influenced by the irregular hard boundary of the old Siberian craton. The

  12. Annual Variation of Seismicity due to Surface Loads in Normal Fault Systems in Southern Tibet (United States)

    Tian, Y.; Luo, Y.; Li, Y.; Wang, X.; Zhang, J.


    It had been found that there are seasonal variations of seismicity related to surface hydrology at Main Himalaya Thrust (MHT) fault. In this work, we analyzed the historical micro-earthquakes recorded by China Digital Seismograph Network (CSDN) in normal faulting systems in southern Tibet, to test whether such a phenomenon exist here and to figure out the possible modulation mechanism. There are several N-S striking normal fault systems (e.g. Yadong-Gulu, Shenza-Dingjie rifts) across the southern Tibetan plateau, which are supposed to accommodate the crust extension induced by Indo-Eurasia collision. The quake catalog covers the time span of 2008-2014. All quake events are relocated using the double-differencing method. The catalog was then declustered using CLUSTER2000 ( The declustered catalog was then averaged for one-month period. The monthly catalog shows that the number of earthquake is maximum during the winter months (from January to March), although the maximum values do not agree for individual years (Fig. 1). Such a variation is similar to that found at MHT. Contrary to the situation at MHT (thrust fault), we found it might be explained directly by surface mass redistributions. The contemporary continuous GPS observations confirm that Tibetan plateau crust moves up and down periodically and reaches its lowest position in summer under the surface hydrological load. According to the Coulomb failure criterion (S=τ-μ(σn-pf) , where S is Coulomb Stress, σn is normal stress, τ is shear stress), an increase of mass load in summer in Tibet will cause an increase in normal stress at the (gently dipping) fault plane and accordingly a decrease in Coulomb stress, which thus inhibits the occurrence of quakes on those normal fault planes.

  13. Measurement of Anomalous Radon Gas Emanation Across the Yammouneh Fault in Southern Lebanon: A Possible Approach to Earthquake Prediction

    National Research Council Canada - National Science Library

    Kobeissi, Mohammed A; Gomez, Francisco; Tabet, Charles


    ... from south to north, striking in a restraining bend around 25–30°NE. The major structural feature in Lebanon is the Yammouneh Fault, which reaches to Syria and southern Turkey in a north–south direction...

  14. Vertical slip rates of active faults of southern Albania inferred from river terraces

    Directory of Open Access Journals (Sweden)

    Oswaldo Guzmán


    Full Text Available Fluvial terraces of Shkumbin, Devoll, Osum and Vjosa rivers (southern Albania and northwestern Greece are studied in order to quantify the vertical slip rates of the large active faults of the Dinaric-Albanic-Hellenic Alpine fold belt. The spatial and temporal variations of the incision rates along these rivers were estimated from the geomorphological mapping of the Quaternary sediments, the geometry and the dating of the terraces. Eleven terraces levels were identified in Albania from 68 geochronological ages already published or acquired for this work. The five lower terraces of the four studied rivers are well dated (10 new and 23 already published ages. These terraces are younger than 30 ka and their remnants are numerous. Their restoration allows estimating the regional trend of incision rate and the identification of local shifts. We argue that these shifts are linked to the active tectonics when they coincide with the faults already mapped by previous authors. Vertical slip rates for eight active faults in southern Albania are thus estimated for the last 19 ka and vary from ~0.1 to ~2 mm/a. The Lushnje Tepelene Thrust, that extends more than 120 kilometers, has a throw rate that varies from 0.2 to 0.8 mm/a, whereas the active faults of the extensional domain are segmented but are very active, with throw rates reaching locally 2 mm/a.

  15. Mechanical analysis of fault activation in southern Longmen Shan fold-and- thrust belt (United States)

    Zhang, Zhen; Zhang, Huai; Wang, Liangshu; Shi, Yaolin; Leroy, Yves M.


    A mixed fault activation mode with obvious hinterland rupture in the southern Longmen Shan, the eastern margin of Tibetan Plateau, is revealed by recent 2008 Mw7.9 Wenchuan and 2013 Mw6.6 Lushan earthquakes together with GPS measurements. How to systematically understand the coexistence and competition mechanisms of fault activation, especially the principal-subordinate relationship on deformation absorption, in essence, involves mechanical onset analysis of this fold- and-thrust belt. However, due to the two-décollement- level thrust system with active 'flat-ramp- flat' geometry décollement, the predication of fault activation in the LMS has beyond the scope of Critical Coulomb wedge theory, not to mention the synchronous listric-type splay fault rupturing in the Beichuan fault (BCF) and Pengguan fault (PGF). For that purpose, we adopted maximum strength theorem, the kinematic approach of limit analysis, to deal with mechanical analysis of fault activation. Four end-member failure modes, or collapse mechanisms (CMs) in classical limit analysis, are proposed corresponding to the rupture of BCF, PGF, Range Frontal Blind Fault (RFBF) and the rupture of the flat-ramp- flat décollement into Sichuan Basin via RFBF. By selecting the available CMs via finite element limit analysis, the listric geometry of BCF and PGF is demonstrated to the dominant factor in trapping deformation in the hinterland. To activate the high-angle Beichuan splay fault, low cohesion and low friction angle on the BCF are combined effects on the rupturing of BCF. The change in cohesion and friction on BCF eventually forms the transition state between high angle BCF and low-angle PGF. Besides, due to the existence of low frictional upper décollement layer in Sichuan Basin (the Triassic evaporate layer), small amount of deformation is attracted into the Sichuan Basin forming small-scale thrusting folding. Moreover, favorable deformation migration toward Sichuan Basin is jointly influenced by

  16. Tectonic geomorphology of large normal faults bounding the Cuzco rift basin within the southern Peruvian Andes (United States)

    Byers, C.; Mann, P.


    The Cuzco basin forms a 80-wide, relatively flat valley within the High Andes of southern Peru. This larger basin includes the regional capital of Cuzco and the Urubamba Valley, or "Sacred Valley of the Incas" favored by the Incas for its mild climate and broader expanses of less rugged and arable land. The valley is bounded on its northern edge by a 100-km-long and 10-km-wide zone of down-to-the-south systems of normal faults that separate the lower area of the down-dropped plateau of central Peru and the more elevated area of the Eastern Cordillera foldbelt that overthrusts the Amazon lowlands to the east. Previous workers have shown that the normal faults are dipslip with up to 600 m of measured displacements, reflect north-south extension, and have Holocene displacments with some linked to destructive, historical earthquakes. We have constructed topographic and structural cross sections across the entire area to demonstrate the normal fault on a the plateau peneplain. The footwall of the Eastern Cordillera, capped by snowcapped peaks in excess of 6 km, tilts a peneplain surface northward while the hanging wall of the Cuzco basin is radially arched. Erosion is accelerated along the trend of the normal fault zone. As the normal fault zone changes its strike from east-west to more more northwest-southeast, normal displacement decreases and is replaced by a left-lateral strike-slip component.

  17. Geophysical evidence for wedging in the San Gorgonio Pass structural knot, southern San Andreas fault zone, southern California (United States)

    Langenheim, V.E.; Jachens, R.C.; Matti, J.C.; Hauksson, E.; Morton, D.M.; Christensen, A.


    Geophysical data and surface geology define intertonguing thrust wedges that form the upper crust in the San Gorgonio Pass region. This picture serves as the basis for inferring past fault movements within the San Andreas system, which are fundamental to understanding the tectonic evolution of the San Gorgonio Pass region. Interpretation of gravity data indicates that sedimentary rocks have been thrust at least 5 km in the central part of San Gorgonio Pass beneath basement rocks of the southeast San Bernardino Mountains. Subtle, long-wavelength magnetic anomalies indicate that a magnetic body extends in the subsurface north of San Gorgonio Pass and south under Peninsular Ranges basement, and has a southern edge that is roughly parallel to, but 5-6 km south of, the surface trace of the Banning fault. This deep magnetic body is composed either of upper-plate rocks of San Gabriel Mountains basement or rocks of San Bernardino Mountains basement or both. We suggest that transpression across the San Gorgonio Pass region drove a wedge of Peninsular Ranges basement and its overlying sedimentary cover northward into the San Bernardino Mountains during the Neogene, offsetting the Banning fault at shallow depth. Average rates of convergence implied by this offset are broadly consistent with estimates of convergence from other geologic and geodetic data. Seismicity suggests a deeper detachment surface beneath the deep magnetic body. This interpretation suggests that the fault mapped at the surface evolved not only in map but also in cross-sectional view. Given the multilayered nature of deformation, it is unlikely that the San Andreas fault will rupture cleanly through the complex structures in San Gorgonio Pass. ?? 2005 Geological Society of America.

  18. Recent deformation on the San Diego Trough and San Pedro Basin fault systems, offshore Southern California: Assessing evidence for fault system connectivity. (United States)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.


    The seismic hazard posed by offshore faults for coastal communities in Southern California is poorly understood and may be considerable, especially when these communities are located near long faults that have the ability to produce large earthquakes. The San Diego Trough fault (SDTF) and San Pedro Basin fault (SPBF) systems are active northwest striking, right-lateral faults in the Inner California Borderland that extend offshore between San Diego and Los Angeles. Recent work shows that the SDTF slip rate accounts for 25% of the 6-8 mm/yr of deformation accommodated by the offshore fault network, and seismic reflection data suggest that these two fault zones may be one continuous structure. Here, we use recently acquired CHIRP, high-resolution multichannel seismic (MCS) reflection, and multibeam bathymetric data in combination with USGS and industry MCS profiles to characterize recent deformation on the SDTF and SPBF zones and to evaluate the potential for an end-to-end rupture that spans both fault systems. The SDTF offsets young sediments at the seafloor for 130 km between the US/Mexico border and Avalon Knoll. The northern SPBF has robust geomorphic expression and offsets the seafloor in the Santa Monica Basin. The southern SPBF lies within a 25-km gap between high-resolution MCS surveys. Although there does appear to be a through-going fault at depth in industry MCS profiles, the low vertical resolution of these data inhibits our ability to confirm recent slip on the southern SPBF. Empirical scaling relationships indicate that a 200-km-long rupture of the SDTF and its southern extension, the Bahia Soledad fault, could produce a M7.7 earthquake. If the SDTF and the SPBF are linked, the length of the combined fault increases to >270 km. This may allow ruptures initiating on the SDTF to propagate within 25 km of the Los Angeles Basin. At present, the paleoseismic histories of the faults are unknown. We present new observations from CHIRP and coring surveys at

  19. Fine-scale fault structures revealed by earthquake relocations near the Leech River Fault, southern Vancouver Island (United States)

    Li, G.; Liu, Y.; Regalla, C.; Morell, K. D.


    We present results of microseismic relocations that delineate potentially seismogenic structures along the Leech River Fault (LRF), southern Vancouver Island. The potential seismic activity of the LRF in particular has been the focus of many recent investigations, given its proximity to Victoria, the capitol of British Columbia. We investigate the seismic evidence of subsurface structures near the LRF by relocating 1528 earthquakes reported by Canadian National Seismograph Network (CNSN) catalog from 1985 to 2015 using the HypoDD [Waldhauser, F., 2001] method. This relocation procedure reveals two general northeast dipping structures representing the subsurface fractured deformation zone beneath the LRF and the San Juan Islands area, respectively. The subsurface structure underlying the LRF extends about 30 km along the LRF strike and has a dip of about 45o, which is generally consistent with fault dip inferred from seismic imaging [Green et al., 1987]. In addition, we use the k-mean++ clustering algorithm [Lloyd, 1982; Arthur et al., 2007] to select 5-subclusters for individual relocations in order to investigate possible finer faulting structures. The relocated sub-cluster seismicity, combined with earthquake focal mechanism solutions from previous studies, delineates the subsurface geometry of minor faults near the LRF. Relocation results also show the eastern segment is seismically active while the western segment lacks seismicity. We suggest two potential explanations for this marked variation in seismic behavior. First, seismicity might reflect variations in the regionals tress field [Balfour et al., 2011]. The orientation of the maximum horizontal compressive stress near the LRF is 10-30° clockwise from the strike of eastern segment, which would promote right lateral slip, but is nearly orthogonal to the strike of the western segment, which would inhibit slip. Second, foliations and mylonitic fabric are generally stronger, more developed, and exist over a

  20. Comparison of Geodetic and Late Pleistocene Slip Rates for the Southern Dead Sea Fault System (United States)

    Cochran, W. J.; Gomez, F.; Abu Rajab, J. S.; Al-Tarazi, E.


    Comparisons of short-term (geodetic) and Late Quaternary slip rates have been used to assess time-variable fault kinematics along various active faults, globally. Differences between such types slip rates may have implications for crustal rheology and/or temporal variations in plate motion. This research aims to compare the geodetically-derived slip rates with slip rates based on Late Pleistocene landforms along the southern Dead Sea fault system (DSFS). The DSFS is an active, left-lateral transform that accommodates differential movement between the Arabian and Sinai plates. A number of slip rates have been previously reported ranging from 2 to 6mm/yr. However, comparison of various slip rates requires ensuring that associated uncertainties are assessed using a standard. New GPS velocities from Jordan are combined with other available GPS data, and are used to model slip rates using elastic block models. Resulting slip rates are 4.3 to 5.3 mm/yr with fault locking depths of 8 - 15 km. Late Pleistocene rates are assessed from published observations, as well as new data. New mapping of offset alluvial fans in the southern Wadi Araba was facilitated by multi-spectral imagery and high-resolution digital elevation model. These fans correlate with regional aggradation events, with the resulting Late Pleistocene slip rates ranging from 4.2 to 5.1 mm/yr. Statistically, the geodetic and neotectonic slip rates are identical. Additionally, a 3-dimensional slip vector for the last earthquake in the northern Wadi Araba is constructed using close-range photogrammetry of a faulted Byzantine aqueduct that indicates both horizontal and vertical displacements. Previous studies suggested characteristic earthquake slip, so slip rates and this slip vector provide a means of assessing mean EQ recurrence interval, as well as the role of earthquakes in constructing the long-term topography along this part of the transform.

  1. Frictional Properties of Shionohira Fault Gouge (Part 2) -A Comparison with Kuruma Fault Gouge at the Southern Extension of Shionohira Fault- (United States)

    Seshimo, K.; Kazuhiro, A.; Yukumo, T.; Masakazu, N.; Shimamoto, T.; Ma, S.; Yao, L.; Kametaka, M.


    The April 11, 2011 Fukushima-ken Hamadori Earthquake (the largest aftershock of the 2011 off the Pacific coast of Tohoku Earthquake) formed co-seismic surface ruptures in NNW-SSE direction in Iwaki City, Fukushima Prefecture, Japan, named Shionohira Fault (hereafter called "active segment"). A N-S trending geological fault with lineaments (Kuruma Fault) along the southern extension of Shionohira Fault showed no surface ruptures (hereafter called "non-active segment"). The current report discusses differences of active and non-active segments by conducting low to high-velocity friction experiments on the gouge from shallow borehole cores. All experiments used a rotary-shear low to high-velocity frictional testing apparatus at the State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. The apparatus can produce slip rates of 0.2 microns/s to 2.1 mm/s under dry and wet conditions at room temperature and at normal stresses of mostly 1.38MPa. Experiments were performed under drained condition using gouges sealed by teflon sleeves. Non-active segment samples were taken from shallow borehole cores at depths 20.90 20.95m of Minakami-kita outcrop, and those for active segment at depths 12.82 12.87m of Shionohira outcrop and 5.96 6.00m of Betto outcrop. Three slip behaviors were recognized based on velocity dependence of steady-state friction coefficient: almost no velocity dependence for low velocity-regime of below 10 to 100 microns/s; clear velocity strengthening for intermediate velocity-regime of 100 microns/s to 1 mm/s; and significant velocity weakening for high velocity-regime of above 1 to 10 mm/s. Steady-state friction coefficients of dry gouges were 0.6 to 1.0 at low to intermediate slip velocity, and about 0.1 at high slip velocity. Wet gouges, however, of both Betto and Shionohira outcrop samples and Betto borehole core sample measured below 0.2 at low slip velocity although core samples of Shionohira and Minakami

  2. Improved alignment of the Hengchun Fault (southern Taiwan) based on fieldwork, structure-from-motion, shallow drilling, and levelling data (United States)

    Giletycz, Slawomir Jack; Chang, Chung-Pai; Lin, Andrew Tien-Shun; Ching, Kuo-En; Shyu, J. Bruce H.


    The fault systems of Taiwan have been repeatedly studied over many decades. Still, new surveys consistently bring fresh insights into their mechanisms, activity and geological characteristics. The neotectonic map of Taiwan is under constant development. Although the most active areas manifest at the on-land boundary of the Philippine Sea Plate and Eurasia (a suture zone known as the Longitudinal Valley), and at the southwestern area of the Western Foothills, the fault systems affect the entire island. The Hengchun Peninsula represents the most recently emerged part of the Taiwan orogen. This narrow 20-25 km peninsula appears relatively aseismic. However, at the western flank the peninsula manifests tectonic activity along the Hengchun Fault. In this study, we surveyed the tectonic characteristics of the Hengchun Fault. Based on fieldwork, four years of monitoring fault displacement in conjunction with levelling data, core analysis, UAV surveys and mapping, we have re-evaluated the fault mechanisms as well as the geological formations of the hanging and footwall. We surveyed features that allowed us to modify the existing model of the fault in two ways: 1) correcting the location of the fault line in the southern area of the peninsula by moving it westwards about 800 m; 2) defining the lithostratigraphy of the hanging and footwall of the fault. A bathymetric map of the southern area of the Hengchun Peninsula obtained from the Atomic Energy Council that extends the fault trace offshore to the south distinctively matches our proposed fault line. These insights, coupled with crust-scale tomographic data from across the Manila accretionary system, form the basis of our opinion that the Hengchun Fault may play a major role in the tectonic evolution of the southern part of the Taiwan orogen.

  3. A Low Velocity Zone along the Chaochou Fault in Southern Taiwan: Seismic Image Revealed by a Linear Seismic Array

    Directory of Open Access Journals (Sweden)

    Hsin-Chieh Pu


    Full Text Available The Chaochou fault is one of the major boundary faults in southern Taiwan where strong convergence has taken place between the Eurasian and Philippine Sea plates. The surface fault trace between the Pingtung plain and the Central Range follows a nearly N-S direction and stretches to 80 km in length. In order to examine the subsurface structures along the Chaochou fault, a linear seismic array with 14 short-period stations was deployed across the fault to record seismic data between August and December 2001. Detailed examination of seismic data generated by 10 local earthquakes and recorded by the linear array has shown that the incidence angles of the first P-waves recorded by several seismic stations at the fault zone were significantly larger than those located farther away from the fault zone. This difference might reflect the lateral variation of velocity structures across the Chaochou fault. Further examination of ray-paths of seismic wave propagation indicates that a low-velocity zone along the Chaochou fault is needed to explain the significant change in incidence angles across the fault zone. Although we do not have adequate information to calculate the exact geometry of the fault zone well, the variation in incidence angles across the fault can be explained by the existence of a low-velocity zone that is about 3 km in width on the surface and extends downward to a depth of 5 km. The low-velocity zone along the Chaochou fault might imply that the fault system consists of several splay faults on the hanging wall in the Central Range.

  4. Late Quaternary activity along the Scorciabuoi Fault (Southern Italy as inferred from electrical resistivity tomographies

    Directory of Open Access Journals (Sweden)

    A. Loperte


    Full Text Available The Scorciabuoi Fault is one of the major tectonic structures affecting the Southern Apennines, Italy. Across its central sector, we performed several electrical resistivity tomographies with different electrode spacing (5 and 10 m and using a multielectrode system with 32 electrodes. All tomographies were acquired with two different arrays, the dipole-dipole and the Wenner-Schlumberger. We also tested the different sensitivity of the two arrays with respect to the specific geological conditions and research goals. Detailed geological mapping and two boreholes were used to calibrate the electrical stratigraphy. In all but one tomography (purposely performed off the fault trace, we could recognise an abrupt subvertical lateral variation of the main sedimentary bodies showing the displacement and sharp thickening of the two youngest alluvial bodies in the hanging-wall block. These features are interpreted as evidence of synsedimentary activity of the Scorciabuoi Fault during Late Pleistocene and possibly as recently as Holocene and allow accurate location of the fault trace within the Sauro alluvial plain.

  5. Permian magmatism, Permian detachment faulting, and Alpine thrusting in the Orobic Anticline, southern Alps, Italy (United States)

    Pohl, Florian; Froitzheim, Niko; Geisler-Wierwille, Thorsten; Schlöder, Oliver


    Lombardo. It is therefore an Alpine structure. (4) Several south-directed Alpine thrusts duplicate the lithostratigraphy, including the detachment, and are related to the Orobic thrust further north. They also offset the Biandino Fault. U-Pb zircon ages measured with LA-ICP-MS (work in progress) will further clarify the temporal relations between the intrusions, volcanics, and the shear zones. Froitzheim, N., Derks, J.F., Walter, J.M. & Sciunnach, D. 2008. Evolution of an Early Permian extensional detachment fault from synintrusive, mylonitic flow to brittle faulting (Grassi Detachment Fault, Orobic Anticline, southern Alps, Italy) Geological Society, London, Special Publications, 298; 69-82. doi:10.1144/SP298.4 Thöni, M., Mottana, A., Delitala, M. C., De Capitani, L. & Liborio, G. 1992. The Val Biandino composite pluton: A late Hercynian intrusion into the South-Alpine metamorphic basement of the Alps (Italy). Neues Jahrbuch für Mineralogie-Monatshefte, 12, 545-554. Sciunnach, D. 2001. Early Permian palaeofaults at the western boundary of the Collio Basin (Valsassina, Lombardy). Natura Bresciana. Annuario del Museo Civico di Scienze Naturali, Brescia, Monografia, 25, 37-43.

  6. Subsurface fault geometries in Southern California illuminated through Full-3D Seismic Waveform Tomography (F3DT) (United States)

    Lee, En-Jui; Chen, Po


    More precise spatial descriptions of fault systems play an essential role in tectonic interpretations, deformation modeling, and seismic hazard assessments. The recent developed full-3D waveform tomography techniques provide high-resolution images and are able to image the material property differences across faults to assist the understanding of fault systems. In the updated seismic velocity model for Southern California, CVM-S4.26, many velocity gradients show consistency with surface geology and major faults defined in the Community Fault Model (CFM) (Plesch et al. 2007), which was constructed by using various geological and geophysical observations. In addition to faults in CFM, CVM-S4.26 reveals a velocity reversal mainly beneath the San Gabriel Mountain and Western Mojave Desert regions, which is correlated with the detachment structure that has also been found in other independent studies. The high-resolution tomographic images of CVM-S4.26 could assist the understanding of fault systems in Southern California and therefore benefit the development of fault models as well as other applications, such as seismic hazard analysis, tectonic reconstructions, and crustal deformation modeling.

  7. The southern Sierra Nevada Frontal Fault Zone: what longitudinal stream profiles tell us about fault evolution and the presence of relay zone structures (United States)

    Koehler, K.; Krugh, W. C.


    The mechanical linkage of normal faults can result in spatial variations in fault displacement. In this study we use ArcGIS®, Matlab®, and software from to perform stream profile analysis along the southern Sierra Nevada Frontal Fault Zone (SNFFZ). This work aims to constrain the pattern of rock uplift and identify potential relay zone structures associated with fault evolution. Stream profile analysis is suitable for this investigation since the fluvial network upholds a continuous connection to the driving forces of tectonics. For this study we expect to find higher channel steepness indices and rates of rock uplift where the processes of mechanical fault linkage have occurred most recently. Using a 10m digital elevation model from the USGS, watershed boundaries and longitudinal stream profiles were extracted for divide reaching, and select non-divide reaching, drainages along the footwall of the southern SNFFZ. The relationship between channel slope and contributing drainage area for each watershed was then used to determine an average channel concavity, and to specify a regional reference concavity of θref = 0.695. This information was used to calculate the normalized steepness index for each watershed. Preliminary findings, using an initial θref = 0.45, indicated that the max channel steepness occurs at Cottonwood Creek, which drains much of the relay zone, with ksn values decreasing in both directions along strike. With further analyses using θref = 0.695, it is evident that anomalous values of ksn are present around the Cottonwood Creek drainage, and near Sawmill Creek to the north. Knickpoint examination shows that a prominent trend exists within the southern catchments, while north of Cottonwood Creek knickpoint elevations are highly erratic. Interpretation of this suggests that the southern knickpoints hold greater value for tectonic analyses. The findings of this study provide evidence that relay zone structures are potentially

  8. The January 25th, 2014 Kebumen earthquake: A normal faulting in subduction zone of Southern Java (United States)

    Serhalawan, Yopi Ruben; Sianipar, Dimas; Suardi, Iman


    Normal faulting mechanism of earthquake in subduction zone is quite interested to study further. We investigated the Kebumen, January 25, 2014 earthquake sequences by retrieving focal mechanisms using full moment tensor inversion. We used BMKG seismic data from stations in the vicinity of Central Java region for these inversions. Then we correlated the static coulomb stress change by the mainshock to the aftershocks. We found that mainshock is a normal faulting earthquake with nodal plane 1; strike 283, dip 22 and rake -100; nodal plane 2 with strike 113, dip 68 and rake -86. Using distribution analysis of high precision aftershocks after relocated; we considered that the reliable fault plane was nodal plane 1 with strike trending SE-NW. The focal mechanisms provide an estimate of the local stress field in the Wadati-Beniof Zone of Southern Java subduction zone. There is also conclution stating that the mainshock may trigger the aftershocks mainly in three zones, i.e. in continental crustal, upper mantle and on the oceanic slab. This is visually showed that the high quality aftershocks located in positive zones of static coulomb stress change.

  9. Geological Identification of Seismic Source at Opak Fault Based on Stratigraphic Sections of the Southern Mountains

    Directory of Open Access Journals (Sweden)

    Hita Pandita


    Full Text Available Earthquake is one of the unpredicted natural disasters on our earth. Despite of the absence of high-accuracy method to precisely predict the occurrence of earthquake, numerous studies have been carried out by seismologists to find it. One of the efforts to address the vulnerability of a region to earthquakes is by recognizing the type of rock as the source of the earthquake. Opak Fault is an active fault which was thought to be the source of earthquakes in Yogyakarta and adjacent areas. This study aimed to determine the seismic source types of rocks in Yogyakarta and adjacent areas. The methods were by measuring stratigraphic sections and the layer thickness in the western part of Southern Mountains. Field study was done in 6 (six research sites. Results of stratigraphic measurement indicated the sedimentary rocks in the Southern Mountains was 3.823 km in thick, while the bedrock was more than 1.042 km in thick. Based on the result, the rock types as the seismic source were thought to originate from the continental crust rocks formed of granite and metamorphic complex.

  10. The TeraShake Computational Platform for Large-Scale Earthquake Simulations (United States)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  11. Using faults for PSHA in a volcanic context: the Etna case (Southern Italy) (United States)

    Azzaro, Raffaele; D'Amico, Salvatore; Gee, Robin; Pace, Bruno; Peruzza, Laura


    At Mt. Etna volcano (Southern Italy), recurrent volcano-tectonic earthquakes affect the urbanised areas, with an overall population of about 400,000 and with important infrastructures and lifelines. For this reason, seismic hazard analyses have been undertaken in the last decade focusing on the capability of local faults to generate damaging earthquakes especially in the short-term (30-5 yrs); these results have to be intended as complementary to the regulatory seismic hazard maps, and devoted to establish priority in the seismic retrofitting of the exposed municipalities. Starting from past experience, in the framework of the V3 Project funded by the Italian Department of Civil Defense we performed a fully probabilistic seismic hazard assessment by using an original definition of seismic sources and ground-motion prediction equations specifically derived for this volcanic area; calculations are referred to a new brand topographic surface (Mt. Etna reaches more than 3,000 m in elevation, in less than 20 km from the coast), and to both Poissonian and time-dependent occurrence models. We present at first the process of defining seismic sources that includes individual faults, seismic zones and gridded seismicity; they are obtained by integrating geological field data with long-term (the historical macroseismic catalogue) and short-term earthquake data (the instrumental catalogue). The analysis of the Frequency Magnitude Distribution identifies areas in the volcanic complex, with a- and b-values of the Gutenberg-Richter relationship representative of different dynamic processes. Then, we discuss the variability of the mean occurrence times of major earthquakes along the main Etnean faults estimated by using a purely geologic approach. This analysis has been carried out through the software code FISH, a Matlab® tool developed to turn fault data representative of the seismogenic process into hazard models. The utilization of a magnitude-size scaling relationship

  12. Origin of active blind-thrust faults in the southern Inner California Borderlands (United States)

    Rivero-Ramirez, Carlos Alberto

    This dissertation describes the origins, three-dimensional geometry, slip history and present activity of a regional system of blind-thrust faults located in the Inner California Borderlands, and analyses the new earthquake scenarios they imply for the nearby coastal region of southern California. Chapter 1 is an overview of the main observations and inferences derived from geophysical data (seismic reflection profiles, well information, and seismicity) and coastal tectonics studies that are used to document the reactivation of two regional, low-angle Miocene detachments---the Oceanside and the Thirtymile faults. These active blind-thrusts comprise the Inner California Blind-Thrust System. The paper is co-authored by Prof. John H. Shaw (Harvard University) and Prof. Karl Muller (University of Colorado), and was published in the journal Geology. In this paper we associate the 1986 (ML 5.3) Oceanside earthquake and uplift of coastal marine terraces with activity on these blind-thrust faults, demonstrating their current activity and earthquake potential. We also describe the structural interactions of the blind-thrust system with regional strike-slip fault zones, and propose new earthquake hazards scenarios for the Inner California Borderlands based on these interactions. Chapter 2 presents a methodology used to generate regional 3D velocity models that allows converting seismic reflection data and derived geological surfaces into the depth domain. This chapter is co-authored with Dr. Peter Suss (University of Tubingen) and Prof. John H. Shaw (Harvard University), who developed aspects of the methodology used here in their velocity modeling of the Los Angeles basin. In our study, geologic constraints are employed to guide the interpolation of velocity structure in the Inner California Borderlands, yielding a comprehensive 3D velocity model that is consistent with the structural and stratigraphic architectures of the offshore basins. The need to properly scale time

  13. Cenozoic faults and faulting phases in the western Tarim Basin (NW China): Effects of the collisions on the southern margin of the Eurasian Plate (United States)

    Li, Yue-Jun; Zhang, Qiang; Zhang, Guang-Ya; Tian, Zuo-Ji; Peng, Geng-Xin; Qiu, Bin; Huang, Zhi-Bin; Luo, Jun-Cheng; Wen, Lei; Zhao, Yan; Jia, Tie-Gan


    The Bachu Rise in the western Tarim Basin is the fore-bulge of the Kunlun late Cenozoic intra-continental foreland basin system formed under the far-field effect of India-Asia collision. Cenozoic faults and faulting are abnormally developed in the Bachu Rise and its adjacent area. Taking the Niaoshan-Gudongshan area on the southern boundary of the Bachu Rise as the key study area, 5 Cenozoic faulting phases were identified in the Bachu Rise and its adjacent area after careful seismic interpretation. They are end Cretaceous ∼ beginning Paleogene (ca. 65 Ma) décollement-thrusting, end Paleogene ∼ beginning Neogene (ca. 23 Ma) décollement-thrusting, end Miocene ∼ beginning Pliocene (ca. 5 Ma) basement-involved thrusting, late Pliocene ∼ early Pleistocene (ca. 3-2 Ma) normal faulting, middle Pleistocene ∼ Holocene (ca. <1.5 Ma) décollement-thrusting and strike-slip faulting. The Middle Cambrian and Paleogene gypsum-salt layers serve as the two main décollement layers in the study area. Thrusting of ca. 65 Ma was under the far-field effect of the collision between Lhasa (part of the Cimmerian Continent) and Asia; and the other 4 Cenozoic faulting phases were all under the far-field effect of the India-Asia collision. The late Cenozoic faulting is characterized by pulse thrust. There is one tectonic pause between each two successive thrust pulses. The compressive tectonic stress is weaker and even evolved into a slight tensional tectonic stress and forms normal fault in the tectonic pauses.

  14. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China (United States)

    Yu, Jing-xing; Zheng, Wen-jun; Zhang, Pei-zhen; Lei, Qi-yun; Wang, Xu-long; Wang, Wei-tao; Li, Xin-nan; Zhang, Ning


    The Hexi Corridor and the southern Gobi Alashan are composed of discontinuous a set of active faults with various strikes and slip motions that are located to the north of the northern Tibetan Plateau. Despite growing understanding of the geometry and kinematics of these active faults, the late Quaternary deformation pattern in the Hexi Corridor and the southern Gobi Alashan remains controversial. The active E-W trending Taohuala Shan-Ayouqi fault zone is located in the southern Gobi Alashan. Study of the geometry and nature of slip along this fault zone holds crucial value for better understanding the regional deformation pattern. Field investigations combined with high-resolution imagery show that the Taohuala Shan fault and the E-W trending faults within the Ayouqi fault zone (F2 and F5) are left-lateral strike-slip faults, whereas the NW or WNW-trending faults within the Ayouqi fault zone (F1 and F3) are reverse faults. We collected Optically Stimulated Luminescence (OSL) and cosmogenic exposure age dating samples from offset alluvial fan surfaces, and estimated a vertical slip rate of 0.1-0.3 mm/yr, and a strike-slip rate of 0.14-0.93 mm/yr for the Taohuala Shan fault. Strata revealed in a trench excavated across the major fault (F5) in the Ayouqi fault zone and OSL dating results indicate that the most recent earthquake occurred between ca. 11.05 ± 0.52 ka and ca. 4.06 ± 0.29 ka. The geometry and kinematics of the Taohuala Shan-Ayouqi fault zone enable us to build a deformation pattern for the entire Hexi Corridor and the southern Gobi Alashan, which suggest that this region experiences northeastward oblique extrusion of the northern Tibetan Plateau. These left-lateral strike-slip faults in the region are driven by oblique compression but not associated with the northeastward extension of the Altyn Tagh fault.

  15. Estimates of fault-slip rates in southern California by using non-block viscoelastic sheet models (United States)

    Chuang, R. Y.; Johnson, K. M.


    Fault slip rate estimates from geodetic data are becoming increasingly important for earthquake hazard studies. In order to estimate fault slip rates, GPS-constrained kinematic models such as elastic block models are widely used. However, kinematic block models are inherently non-unique and provide limited insight into the mechanics of deformation. In addition, assumed discrete tectonic blocks may not exist everywhere as not every region of the western US displays mature, through-going geologic structures that naturally divide the crust into tectonic blocks. For example, the eastern California shear zone and regions of the Basin and Range Province are best described as broad zones of interacting, discontinuous fault strands. We build a mechanical model of present-day surface motions in which deformation is a response to plate boundary forces, gravitational loading, and rheological properties of the lithosphere. To model long-term fault-slip rates in the southwestern US, we populate an elastico-visco thin sheet (plane stress) with thin viscous shear zones (faults) and impose far-field plate motions and gravitational loading to compute the long-term fault slip rates and crustal motions. The mechanical model inherently allows slips along through-going and discontinuous faults and the viscosity of the lithospheric sheet relaxes unreasonable stress build-up. The fault zone viscosity provides resistance and directly relates stress to slip rates. We incorporate static stress on the fault due to regional gravitational potential energy derived from Flesch et al. (2007). We calculate long-term fault-slip rates in southern California and incorporate backslip as interseismic deformation due to locking of faults to compare the total present-day deformation field (long-term plus intersesismic) with the GPS-derived velocity field.

  16. Gas Resource Potential of Volcanic Reservoir in Yingtai Fault Depression of Southern Songliao Basin,China (United States)

    Zheng, M.


    There are 2 kinds of volcanic reservoir of gas resource in the Yingtai fault depression, southern Songliao basin,China: volcanic lava reservoir in the Yingcheng-1formation and sedimentary pryoclastics rock of the Yingcheng-2 formation. Based on analysis of the 2 kinds of gas pool features and controlling factors, distribution of each kind has been studied. The resources of these gas reservoirs have been estimated by Delphi method and volumetric method, respectively. The results of resources assessment show the total volcanic gas resources of the Yingtai depression is rich, and the resource proving rate is low, with the remaining gas resource in volcanic reservoir accounting for more than 70%. Thus there will be great exploration potential in the volcanic reservoir in the future gas exploration of this area.

  17. Geomorphological and structural characterization of the southern Weihe Graben, central China: Implications for fault segmentation (United States)

    Cheng, Yali; He, Chuanqi; Rao, Gang; Yan, Bing; Lin, Aiming; Hu, Jianmin; Yu, Yangli; Yao, Qi


    The Cenozoic graben systems around the tectonically stable Ordos Block, central China, have been considered as ideal places for investigating active deformation within continental rifts, such as the Weihe Graben at the southern margin with high historical seismicity (e.g., 1556 M 8.5 Huaxian great earthquake). However, previous investigations have mostly focused on the active structures in the eastern and northern parts of this graben. By contrast, in the southwest, tectonic activity along the northern margin of the Qinling Mountains has not been systematically investigated yet. In this study, based on digital elevation models (DEMs), we carried out geomorphological analysis to evaluate the relative tectonic activity along the whole South Border Fault (SBF). On the basis of field observations, high resolution DEMs acquired by small unmanned aerial vehicles (sUVA) using structure-for-motion techniques, radiocarbon (14C) age dating, we demonstrate that: 1) Tectonic activity along the SBF changes along strike, being higher in the eastern sector. 2) Seven major segment boundaries have been assigned, where the fault changes its strike and has lower tectonic activity. 3) The fault segment between the cities of Huaxian and Huayin characterized by almost pure normal slip has been active during the Holocene. We suggest that these findings would provide a basis for further investigating on the seismic risk in densely-populated Weihe Graben. Table S2. The values and classification of geomorphic indices obtained in this study. Fig. S1. Morphological features of the stream long profiles (Nos. 1-75) and corresponding SLK values. Fig. S2. Comparison of geomorphological parameters acquired from different DEMs (90-m SRTM and 30-m ASTER GDEM): (a) HI values; (b) HI linear regression; (c) mean slope of drainage basin; (d) mean slope linear regression.

  18. Evidence for a twelfth large earthquake on the southern hayward fault in the past 1900 years (United States)

    Lienkaemper, J.J.; Williams, P.L.; Guilderson, T.P.


    We present age and stratigraphic evidence for an additional paleoearthquake at the Tyson Lagoon site. The acquisition of 19 additional radiocarbon dates and the inclusion of this additional event has resolved a large age discrepancy in our earlier earthquake chronology. The age of event E10 was previously poorly constrained, thus increasing the uncertainty in the mean recurrence interval (RI), a critical factor in seismic hazard evaluation. Reinspection of many trench logs revealed substantial evidence suggesting that an additional earthquake occurred between E10 and E9 within unit u45. Strata in older u45 are faulted in the main fault zone and overlain by scarp colluviums in two locations.We conclude that an additional surfacerupturing event (E9.5) occurred between E9 and E10. Since 91 A.D. (??40 yr, 1??), 11 paleoearthquakes preceded the M 6:8 earthquake in 1868, yielding a mean RI of 161 ?? 65 yr (1??, standard deviation of recurrence intervals). However, the standard error of the mean (SEM) is well determined at ??10 yr. Since ~1300 A.D., the mean rate has increased slightly, but is indistinguishable from the overall rate within the uncertainties. Recurrence for the 12-event sequence seems fairly regular: the coefficient of variation is 0.40, and it yields a 30-yr earthquake probability of 29%. The apparent regularity in timing implied by this earthquake chronology lends support for the use of time-dependent renewal models rather than assuming a random process to forecast earthquakes, at least for the southern Hayward fault.

  19. Quaternary Faults and Basin-fill Sediments of the Las Vegas Basin, Southern Nevada (United States)

    Taylor, W. J.; Fossett, E.; Luke, B.; Snelson, C.; Rasmussen, T.; McCallen, D.; Rodgers, A.; Louie, J.


    The N-S elongated extensional Las Vegas basin, southern Nevada, contains 100's of meters of Cenozoic basin-fill sediments that are cut by several Quaternary (Q) faults. These faults define or influence the basin geometry. The basin is generally an asymmetrical half graben defined by the W-dipping, Q Frenchman Mountain fault (FMF) along its E side and a series of smaller offset E-dipping faults to the W. The N terminus of the basin is controlled by the Las Vegas Valley shear zone, along which the majority of the offset occurred prior to the Q. Here, we asses the influence of the Q faults on the distribution of the sedimentary units. Well, exposure, seismic reflection and seismic refraction data show that sedimentary units of different grain sizes or seismic velocity dominate different parts of the basin. Sections dominated by coarse clastic deposits occupy a narrow area along the E side of the basin. Coarse clastic sediments are mixed with finer grained sediments in a broader area along the W side of the basin. Based on provenance and alluvial fan distribution, the coarse deposits along the E side of the basin appear to be trapped in close proximity to the W-dipping FMF. The coarse-grained deposits along the opposite, W side of the basin, are sourced from the nearby Spring Mountains. Because of the structural asymmetry of the basin, these sediments traveled farther from their source area than those on the E side. Some of these E-dipping faults influence the depth to Paleozoic bedrock and some faults form small sub-basins filled with finer grained sediments. Along a WNW trend near the center of the basin and near the present-day Las Vegas Wash, a change in the grain size distribution occurs up stratgraphic section: continuous clay layers are less common and coarse-grained deposits are more common. This difference may reflect a change from internal drainage early in the basin history to external drainage through the Las Vegas Wash in the latter history of the basin

  20. Character and Implications of a Newly Identified Creeping Strand of the San Andreas fault NE of Salton Sea, Southern California (United States)

    Janecke, S. U.; Markowski, D.


    The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella

  1. Is the Vincent fault in southern California the Laramide subduction zone megathrust? (United States)

    Xia, H.; Platt, J. P.


    The Vincent fault (VF) in the San Gabriel Mountains, southern California separates a Meso-Proterozoic gneiss complex and Mesozoic granitoid rocks in the upper plate from the ocean-affiliated Late Cretaceous Pelona schist in the lower plate, and it has been widely interpreted as the original Laramide subduction megathrust. A 500 to 1000 m thick mylonite zone, consisting of a low-stress (LS) section at the bottom, a high-stress (HS) section at the top, and a weakly deformed section in between, is developed above the VF. Our kinematic, thermobarometric and geochronological analysis of the mylonite zone indicates that the VF is a normal fault. Shear sense indicators including asymmetric porphyroblasts, quartz new grain fabric, mineral fish, and quartz CPO from the HS and the LS sections exhibit a top-to-SE sense of shear on the SW-dipping mylonitic foliation, which is contrary to what one would expect for the Laramide subduction megathrust. A few samples from the LS section were overprinted by HS microstructure, implying that the LS mylonites predate the HS mylonites. TitaniQ thermometer and Si-in-muscovite barometer show that the P-T conditions are 389 ± 6 °C, 5 kbar for the LS mylonites and 329 ± 6 °C, 2.4 kbar for HS mylonites. Considering the temporal sequence of HS and LS mylonites, they are likely to be formed during exhumation. A comparison with the lower plate leads to the same conclusion. The top 80-100 m of the Pelona schist underneath the VF is folded and also mylonitized, forming the Narrows synform and S3 simultaneously. Our previous study found that S3 of the Pelona schist has a top-to-SE sense of shear and similar P-T conditions as the LS mylonite in the upper plate, so S3 of the Pelona schist is likely to be formed together with the LS mylonites in the upper plate. While mylonitization of Pelona schist (S3) overprinted both the subduction-related S1 fabric and the return-flow-related S2 fabric, it is reasonable to argue that the mylonite zone above

  2. Active Strike-Slip Faulting in the Inner Continental Borderland, Southern California: Results From New High-Resolution Seismic Reflection Data (United States)

    Conrad, J. E.; Ryan, H. F.; Sliter, R. W.


    The inner Continental Borderland offshore of southern California accommodates about 7 mm/yr of slip between the North American and Pacific plates. Nearly half of this total has previously been thought to be taken up on the Palos Verdes (PV) and Coronado Bank (CB) fault zones, which have been modeled as a single, continuous fault zone in recent seismic hazard assessments for southern California. Although these faults lie roughly on strike with each other, a connection between these faults has not been clearly demonstrated. Newly acquired high-resolution seismic reflection data indicate that the PV fault terminates southwest of Lasuen Knoll in a horsetail splay that becomes progressively buried to the south. The lack of a connection between the PV and CB fault zones implies that a significant amount of slip must be taken up elsewhere in the inner Continental Borderland. Two other significant offshore faults, the San Diego Trough (SDT) and San Pedro Basin (SPB) fault zones, lie about 10-15 km southwest of and sub parallel to the trace of the PV and CB faults. The SDT fault zone extends from south of the Mexican border near Punta Santo Tomas for about 150 km northward to near Crespi Knoll. The SPB fault zone extends northward from off Santa Catalina Island to near Point Dume. The new seismic reflection data reveal a previously unmapped but apparently active fault zone along strike and in the area between the known strands of the SDT and the SPB fault zones. This newly recognized fault links the SDT and SPB faults, forming a continuous, active fault zone that extends about 250 km along the inner Continental Borderland. Although there are no slip rate data available for this fault zone, its overall length, continuity, and active character suggest that a significant portion of the plate motion that occurs offshore is accommodated along the SDT-SPB fault zone, which may pose a more significant seismic hazard than previously recognized.

  3. Estimation of Seismic Ground Motions and Attendant Potential Human Fatalities from Scenario Earthquakes on the Chishan Fault in Southern Taiwan

    Directory of Open Access Journals (Sweden)

    Kun-Sung Liu


    Full Text Available The purpose of this study is to estimate maximum ground motions in southern Taiwan as well as to assess potential human fatalities from scenario earthquakes on the Chishan active faults in this area. The resultant Shake Map patterns of maximum ground motion in a case of Mw 7.2 show the areas of PGA above 400 gals are located in the northeastern, central and northern parts of southwestern Kaohsiung as well as the southern part of central Tainan, as shown in the regions inside the yellow lines in the corresponding figure. Comparing cities with similar distances located in Tainan, Kaohsiung, and Pingtung to the Chishan fault, the cities in Tainan area have relatively greater PGA and PGV, due to large site response factors in Tainan area. Furthermore, seismic hazards in terms of PGA and PGV in the vicinity of the Chishan fault are not completely dominated by the Chishan fault. The main reason is that some areas located in the vicinity of the Chishan fault are marked with low site response amplification values from 0.55 - 1.1 and 0.67 - 1.22 for PGA and PGV, respectively. Finally, from estimation of potential human fatalities from scenario earthquakes on the Chishan active fault, it is noted that potential fatalities increase rapidly in people above age 45. Total fatalities reach a high peak in age groups of 55 - 64. Another to pay special attention is Kaohsiung City has more than 540 thousand households whose residences over 50 years old. In light of the results of this study, I urge both the municipal and central governments to take effective seismic hazard mitigation measures in the highly urbanized areas with a large number of old buildings in southern Taiwan.

  4. Fault fluid evolution at the outermost edges of the southern Apennines fold-and-thrust belt, Italy (United States)

    Agosta, Fabrizio; Belviso, Claudia; Cavalcante, Francesco; Vita Petrullo, Angela


    This work focuses on the structural architecture and mineralization of a high-angle, extensional fault zone that crosscuts the Middle Pleistocene tuffs and pyroclastites of the Vulture Volcano, southern Italy. This fault zone is topped by a few m-thick travertine deposit formed by precipitation, in a typical lacustrine depositional environment, from a fault fluid that included a mixed, biogenic- and mantle-derived CO2. The detailed analysis of its different mineralization can shed new lights into the shallow crustal fluid flow that took place during deformation of the outer edge of the southern Apennines fold-and-thrust belt. In fact, the study fault zone is interpreted as a shallow-seated, tear fault associated with a shallow thrust fault displacing the most inner portion of the Bradano foredeep basin infill, and was thus active during the latest stages of contractional deformation. Far from the fault zone, the fracture network is made up of three high-angle joint sets striking N-S, E-W and NW-SE, respectively. The former two sets can be interpreted as the older structural elements that pre-dated the latter one, which is likely due to the current stress state that affects the whole Italian peninsula. In the vicinity of the fault zone, a fourth joint high-angle set striking NE-SW is also present, which becomes the most dominant fracture set within the study footwall fault damage zone. Detailed X-ray diffraction analysis of the powder obtained from hand specimens representative of the multiple mineralization present within the fault zone, and in the surrounding volcanites, are consistent with circulation of a fault fluid that modified its composition with time during the latest stages of volcanic activity and contractional deformation. Specifically, veins infilled with and slickenside coated by jarosite, Opal A and/or goethite are found in the footwall fault damage zone. Based upon the relative timing of formation of the aforementioned joint sets, deciphered after

  5. "Ghost transients" in the southern California GPS velocity field: An investigation using finite-fault earthquake cycle models (United States)

    Hearn, E. H.; Pollitz, F. F.; Thatcher, W. R.; Onishi, C. T.


    Elastic block models are generally used to infer slip rates on fault segments in tectonically complex areas, such as southern California (e.g. McCaffrey, 2005; Meade et al., 2005). These models implicitly assume steady-state deformation. However, owing to viscoelastic effects of past large earthquakes, deformation rates and patterns around major faults are expected to vary with time. Where viscoelasticity has been incorporated into block models, differences in inferred slip rates have resulted (Johnson et al., 2007). Here, we investigate the extent to which viscoelastic velocity perturbations (or "ghost transients") from individual earthquakes can affect elastic block model-based inferences of fault slip rates from GPS velocity fields. We focus on the southern California GPS velocity field, exploring the effects of known, large earthquakes for end-member rheological structures. For selected faults, an idealized earthquake history is constructed, consisting of a sequence of periodic, identical repeating slip events. For each earthquake, we first calculate average velocities and time-dependent perturbations relative to this average at all GPS sites in the neighborhood of an earthquake. (We deal with perturbations because to recover the velocities, we would have to compute and sum cycle-average velocities and perturbations for all fault segments in the region.) Next, we invert two GPS velocity fields for slip rates using a block modeling approach: one field that has been corrected for the perturbation, and one which has not, and we compare the resulting slip rates. For now, the viscoelastic models are simple (layers with linear rheologies), and locking depth is fixed in the block models. We find that if asthenosphere viscosities are low enough (3 x 10**18 Pa-s) the current GPS velocity field is significantly perturbed by the 1857 M 7.9 San Andreas Fault (SAF) earthquake sequence; that is, current strain rates around the SAF are lower than their average values

  6. Spatial/temporal patterns of Quaternary faulting in the southern limb of the Yellowstone-Snake River Plain seismic parabola, northeastern Basin and Range margin

    Energy Technology Data Exchange (ETDEWEB)

    McCalpin, J.P. (GEO-HAZ Consultants, Estes Park, CO (United States))


    During the period 1986--1991, 11 backhoe trenches were excavated across six Quaternary faults on the northeastern margin of the Basin and Range province. These faults comprise the southern limb of a parabola of Quaternary faults and historic moderate-magnitude earthquakes which is roughly symmetrical about the Snake River Plain, and heads at the Yellowstone hot spot. Fifteen Holocene paleoseismic events have been bracketed by radiocarbon or thermoluminescence ages. On the six central faults, the latest rupture event occurred in a relatively short time interval between 3 ka and 6 ka. The period between 6 ka and the end of the latest glaciation (ca. 15 ka) was a period of relative tectonic quiescence on the central faults, but not on the two end faults with higher slip rates (Wasatch and Teton faults). Southward-younging of events in the 3--6 ka period may indicate that temporally-clustered faulting was initiated at the Yellowstone hot spot. Faults at the same latitude, such as the Star Valley-Grey's River pair of faults, or the East Cache-Bear Lake-Rock Creek system of faults, show nearly identical timing of latest rupture events within the pairs or systems. Faults at common latitudes probably sole into the same master decollement, and thus are linked mechanically like dominoes. The timing of latest ruptures indicates that faulting on the westernmost fault preceded faulting on successively more eastern faults by a few hundred years. This timing suggests that slip on the westernmost faults mechanically unloaded the system, causing tectonic instabilities farther east.

  7. Late Pleistocene-Holocene evolution of the southern Marmara shelf and sub-basins: middle strand of the North Anatolian fault, southern Marmara Sea, Turkey (United States)

    Vardar, Denizhan; Öztürk, Kurultay; Yaltırak, Cenk; Alpar, Bedri; Tur, Hüseyin


    Although there are many research studies on the northern and southern branches of the North Anatolian fault, cutting through the deep basins of the Sea of Marmara in the north and creating a series of pull-apart basins on the southern mainland, little data is available about the geometrical and kinematical characteristics of the middle strand of the North Anatolian fault. The first detailed geometry of the middle strand of the North Anatolian fault along the southern Marmara shelf, including the Gemlik and Bandırma Bay, will be given in this study, by a combined interpretation of different seismic data sets. The characteristic features of its segments and their importance on the paleogeographic evolution of the southern shelf sub-basins were defined. The longest one of these faults, the Armutlu-Bandırma segment, is a 75-km long dextral strike-slip fault which connects the W-E trending Gençali segment in the east and NE-SW trending Kapıdağ-Edincik segment in the west. In this context, the Gemlik Bay opened as a pull-apart basin under the control of the middle strand whilst a new fault segment developed during the late Pleistocene, cutting through the eastern rim of the bay. In this region, a delta front forming the paleoshoreline of the Gemlik paleolake was cut and shifted approximately 60 ± 5 m by the new segment. The same offset on this fault was also measured on a natural scarp of acoustic basement to the west and integrated with this paleoshoreline forming the slightly descending topset-foreset reflections of the delta front. Therefore the new segment is believed to be active at least for the last 30,000 years. The annual lateral slip rate representing this period of time will be 2 mm, which is quite consistent with modern GPS measurements. Towards the west, the Bandırma Bay is a rectangular transpressional basin whilst the Erdek Bay is a passive basin under the control of NW-SE trending faults. When the water level of the paleo-Marmara lake dropped down


    Energy Technology Data Exchange (ETDEWEB)

    Hickman, John; Leetaru, Hannes


    The presence of known faults near potential geologic CO2 sequestration sites significantly raises the uncertainty of having a sufficient seal to prevent leakage along the fault plane from the intended reservoir. In regions where relocating a large sequestration project a considerable distance away from any known faults is impractical, a detailed analysis of the sealing potential of any faults within the projected future injection plume must be performed. In order to estimate the sealing potential of faults within the Late Cambrian-Early Ordovician Knox Supergroup in the Illinois Basin, two well-based cross sections were produced across two different regional fault systems (Rough Creek Fault Zone in Kentucky, and the unnamed core fault of the LaSalle Anticlinorium in Illinois) to calculate subsurface stratigraphic juxtapositions across each fault zone. Using this stratigraphic and lithologic data, three different algorithms were used to calculate the sealing potential of a theoretical Knox reservoir at each section location. These results indicate a high probability for sealing within the Rough Creek Fault Zone, but a much lower probability for a continuous seal within the LaSalle Anticlinorium.

  9. Carlsbad, San Onofre, and San Mateo Fault Zones: Possible Right-Lateral Offset Along the Slope-Basin Transition, Offshore Southern California (United States)

    Conrad, J. E.; Dartnell, P.; Sliter, R. W.; Ryan, H. F.; Maier, K. L.; Brothers, D. S.


    Several poorly understood faults are exposed along the mid- and lower slope offshore southern California from Encinitas to San Clemente. From south to north, these faults have been referred to as the Carlsbad, San Onofre, and San Mateo fault zones, which are generally characterized as nearly vertical to steeply east-dipping faults with a reverse slip component. The U.S. Geological Survey collected high-resolution seismic reflection and bathymetric data from 2009-2012 to better characterize these faults. From offshore Encinitas to Oceanside, these data reveal a complex and variable fault zone that structurally controls the slope-basin transition. In this area, the faults show both reverse as well as normal offset, but may also include an unknown amount of strike-slip offset. North of Oceanside, however, faulting shows clear evidence of right-lateral slip, offsetting submarine channels near the base of the slope by approximately 60 m. North of these offset channels, the base of the slope bends about 30° to the west, following the trend of the San Mateo fault zone, but fault strands on strike with those that offset the channels trend obliquely up slope, appearing to merge with the Newport-Inglewood fault zone (NIFZ) on the shelf. These fault strands consist of several en echelon left-stepping segments separated by "pop-up" structures, which imply a significant component of right-lateral offset along this fault zone, and thus may serve to transfer right-lateral slip from faults along the base of the slope to the NIFZ. This fault zone also separates structures associated with the San Mateo fold and thrust belt to the west from undeformed slope sediments to the east. The existence of significant right-lateral slip on faults along the slope and slope-basin transition has implications for assessing seismic hazards associated with the NIFZ, and also provides constraints on possible reverse motion on the hypothesized Oceanside Thrust.

  10. Application of Phase-Weighted Stacking to Low-Frequency Earthquakes near the Alpine Fault, Central Southern Alps, New Zealand (United States)

    Baratin, L. M.; Townend, J.; Chamberlain, C. J.; Savage, M. K.


    Characterising seismicity in the vicinity of the Alpine Fault, a major transform boundary late in its typical earthquake cycle, may provide constraints on the state of stress preceding a large earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated major rupture. We work with a continuous seismic dataset collected between 2009 and 2012 from a network of short-period seismometers, the Southern Alps Microearthquake Borehole Array (SAMBA). Fourteen primary LFE templates have been used to scan the dataset using a matched-filter technique based on an iterative cross-correlation routine. This method allows the detection of similar signals and establishes LFE families with common hypocenter locations. The detections are then combined for each LFE family using phase-weighted stacking (Thurber et al., 2014) to produce a signal with the highest possible signal to noise ratio. We find this method to be successful in increasing the number of LFE detections by roughly 10% in comparison with linear stacking. Our next step is to manually pick polarities on first arrivals of the phase-weighted stacked signals and compute preliminary locations. We are working to estimate LFE focal mechanism parameters and refine the focal mechanism solutions using an amplitude ratio technique applied to the linear stacks. LFE focal mechanisms should provide new insight into the geometry and rheology of the Alpine Fault and the stress field prevailing in the central Southern Alps.

  11. Tectonic geomorphology and paleoseismology of strike-slip faults in Jamaica: Implications for distribution of strain and seismic hazard along the southern edge of the Gonave microplate (United States)

    Koehler, R. D.; Mann, P.; Brown, L. A.


    The east-west, left lateral strike-slip fault system forming the southern edge of the Gonave microplate crosses the110-km-long and 70-km-wide island of Jamaica. GPS measurements in the northeastern Caribbean are supportive of the microplate interpretation and indicate that ~ half of the Caribbean-North America left-lateral plate motion (8-14 mm/yr) is carried by the Plantain Garden (PGFZ) and associated faults in Jamaica. We performed Neotectonic mapping of the Plantain Garden fault along the southern rangefront of the Blue Mountains and conducted a paleoseismic study of the fault at Morant River. Between Holland Bay and Morant River, the fault is characterized by a steep, faceted, linear mountain front, prominent linear valleys and depressions, shutter ridges, and springs. At the eastern end of the island, the PGFZ is characterized by a left-stepping fault geometry that includes a major, active hot spring. The river cut exposure at Morant River exposes a 1.5-m-wide, sub-vertical fault zone juxtaposing sheared alluvium and faulted Cretaceous basement rocks. This section is overlain by an, unfaulted 3-m-thick fluvial terrace inset into a late Pleistocene terrace that is culturally modified. Upward fault terminations indicate the occurrence of three paleoearthquakes that occurred prior to deposition of the flat lying inset terrace around 341-628 cal yr BP. At this time, our radiocarbon results suggest that we can rule out the PGFZ as the source of the 1907 Kingston earthquake 102 years ago, as well as, the 1692 event that destroyed Port Royal 317 years ago and produced a major landslide at Yallahs. Pending OSL ages will constrain the age of the penultimate and most recent ruptures. Gently to steeply dipping rocks as young as Pliocene exposed in roadcuts within the low coastal hills south of and parallel to the Plantain Garden fault may indicate active folding and blind thrust faulting. These structures are poorly characterized and may accommodate an unknown amount of

  12. Low-Frequency Earthquakes Associated with the Late-Interseismic Central Alpine Fault, Southern Alps, New Zealand (United States)

    Baratin, L. M.; Chamberlain, C. J.; Townend, J.; Savage, M. K.


    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the state of stress of this major transpressive margin prior to a large (≥M8) earthquake. Here, we use recently detected tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated large rupture. We initially work with a continous seismic dataset collected between 2009 and 2012 from an array of short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates are used in an iterative matched-filter and stacking routine. This method allows the detection of similar signals and establishes LFE families with common locations. We thus generate a 36 month catalogue of 10718 LFEs. The detections are then combined for each LFE family using phase-weighted stacking to yield a signal with the highest possible signal to noise ratio. We found phase-weighted stacking to be successful in increasing the number of LFE detections by roughly 20%. Phase-weighted stacking also provides cleaner phase arrivals of apparently impulsive nature allowing more precise phase and polarity picks. We then compute improved non-linear earthquake locations using a 3D velocity model. We find LFEs to occur below the seismogenic zone at depths of 18-34 km, locating on or near the proposed deep extent of the Alpine Fault. Our next step is to estimate seismic source parameters by implementing a moment tensor inversion technique. Our focus is currently on generating a more extensive catalogue (spanning the years 2009 to 2016) using synthetic waveforms as primary templates, with which to detect LFEs. Initial testing shows that this technique paired up with phase-weighted stacking increases the number of LFE families and overall detected events roughly sevenfold. This catalogue should provide new insight into the geometry of the Alpine Fault and the prevailing stress

  13. Dislocation model for aseismic fault slip in the transverse ranges of Southern California (United States)

    Cheng, A.; Jackson, D. D.; Matsuura, M.


    Geodetic data at a plate boundary can reveal the pattern of subsurface displacements that accompany plate motion. These displacements are modelled as the sum of rigid block motion and the elastic effects of frictional interaction between blocks. The frictional interactions are represented by uniform dislocation on each of several rectangular fault patches. The block velocities and fault parameters are then estimated from geodetic data. Bayesian inversion procedure employs prior estimates based on geological and seismological data. The method is applied to the Transverse Ranges, using prior geological and seismological data and geodetic data from the USGS trilateration networks. Geodetic data imply a displacement rate of about 20 mm/yr across the San Andreas Fault, while the geologic estimates exceed 30 mm/yr. The prior model and the final estimates both imply about 10 mm/yr crustal shortening normal to the trend of the San Andreas Fault. Aseismic fault motion is a major contributor to plate motion. The geodetic data can help to identify faults that are suffering rapid stress accumulation; in the Transverse Ranges those faults are the San Andreas and the Santa Susana.

  14. The Design of the Special Magnets for PIMMS/TERA

    CERN Document Server

    Borburgh, J; Fowler, A; Hourican, M; Metzmacher, K D; Sermeus, L


    In the framework of a collaboration agreement with the TERA Foundation, CERN provided the design, drawings and engineering specifications for two kickers, one chopper and three bumper magnets as well as three magnetic and two electrostatic septa, power supplies for the electrostatic septa, kickers and bumpers including control electronics for the PIMMS/TERA proton and carbon ion medical synchrotron. The first application will be in the Italian National Centre for Hadrontherapy, to be constructed in Pavia. The main features of the devices are described along with the strategic design choices, directed by the demand for very high reliability and minimum maintenance.

  15. The ShakeOut scenario: A hypothetical Mw7.8 earthquake on the Southern San Andreas Fault (United States)

    Porter, K.; Jones, L.; Cox, D.; Goltz, J.; Hudnut, K.; Mileti, D.; Perry, S.; Ponti, D.; Reichle, M.; Rose, A.Z.; Scawthorn, C.R.; Seligson, H.A.; Shoaf, K.I.; Treiman, J.; Wein, A.


    In 2008, an earthquake-planning scenario document was released by the U.S. Geological Survey (USGS) and California Geological Survey that hypothesizes the occurrence and effects of a Mw7.8 earthquake on the southern San Andreas Fault. It was created by more than 300 scientists and engineers. Fault offsets reach 13 m and up to 8 m at lifeline crossings. Physics-based modeling was used to generate maps of shaking intensity, with peak ground velocities of 3 m/sec near the fault and exceeding 0.5 m/sec over 10,000 km2. A custom HAZUS??MH analysis and 18 special studies were performed to characterize the effects of the earthquake on the built environment. The scenario posits 1,800 deaths and 53,000 injuries requiring emergency room care. Approximately 1,600 fires are ignited, resulting in the destruction of 200 million square feet of the building stock, the equivalent of 133,000 single-family homes. Fire contributes $87 billion in property and business interruption loss, out of the total $191 billion in economic loss, with most of the rest coming from shakerelated building and content damage ($46 billion) and business interruption loss from water outages ($24 billion). Emergency response activities are depicted in detail, in an innovative grid showing activities versus time, a new format introduced in this study. ?? 2011, Earthquake Engineering Research Institute.

  16. Aasta terasehitis 2001 : "Teras eesti kaasaegses arhitektuuris / Laila Põdra

    Index Scriptorium Estoniae

    Põdra, Laila, 1967-


    Peaauhind: Keila Tervisekeskus (arhitektid Ain Padrik, Kristi Alamaa, konstruktsioonide projekt: A-Grupp). Eripreemiad: arhitekt Indrek Allmanni paariselamu "Oma pesa" ja Maru Konstruktsioonid Saku Suurhalli katusekonstruktsioonide teostamise eest.A-Grupp (inseneribüroo)..Maru Konstruktsioonid (inseneribüroo).Teras eesti kaasaegses arhitektuuris, arhitektuurinäitus (2002 : Tallinn).Aasta terasehitis, konkurss (2001)

  17. Fault zone characteristics and basin complexity in the southern Salton Trough, California (United States)

    Persaud, Patricia; Ma, Yiran; Stock, Joann M.; Hole, John A.; Fuis, Gary S.; Han, Liang


    Ongoing oblique slip at the Pacific–North America plate boundary in the Salton Trough produced the Imperial Valley (California, USA), a seismically active area with deformation distributed across a complex network of exposed and buried faults. To better understand the shallow crustal structure in this region and the connectivity of faults and seismicity lineaments, we used data primarily from the Salton Seismic Imaging Project to construct a three-dimensional P-wave velocity model down to 8 km depth and a velocity profile to 15 km depth, both at 1 km grid spacing. A VP = 5.65–5.85 km/s layer of possibly metamorphosed sediments within, and crystalline basement outside, the valley is locally as thick as 5 km, but is thickest and deepest in fault zones and near seismicity lineaments, suggesting a causative relationship between the low velocities and faulting. Both seismicity lineaments and surface faults control the structural architecture of the western part of the larger wedge-shaped basin, where two deep subbasins are located. We estimate basement depths, and show that high velocities at shallow depths and possible basement highs characterize the geothermal areas.

  18. Holocene slip rates along the San Andreas Fault System in the San Gorgonio Pass and implications for large earthquakes in southern California (United States)

    Heermance, Richard V.; Yule, Doug


    The San Gorgonio Pass (SGP) in southern California contains a 40 km long region of structural complexity where the San Andreas Fault (SAF) bifurcates into a series of oblique-slip faults with unknown slip history. We combine new 10Be exposure ages (Qt4: 8600 (+2100, -2200) and Qt3: 5700 (+1400, -1900) years B.P.) and a radiocarbon age (1260 ± 60 years B.P.) from late Holocene terraces with scarp displacement of these surfaces to document a Holocene slip rate of 5.7 (+2.7, -1.5) mm/yr combined across two faults. Our preferred slip rate is 37-49% of the average slip rates along the SAF outside the SGP (i.e., Coachella Valley and San Bernardino sections) and implies that strain is transferred off the SAF in this area. Earthquakes here most likely occur in very large, throughgoing SAF events at a lower recurrence than elsewhere on the SAF, so that only approximately one third of SAF ruptures penetrate or originate in the pass.Plain Language SummaryHow large are earthquakes on the southern San Andreas Fault? The answer to this question depends on whether or not the earthquake is contained only along individual fault sections, such as the Coachella Valley section north of Palm Springs, or the rupture crosses multiple sections including the area through the San Gorgonio Pass. We have determined the age and offset of faulted stream deposits within the San Gorgonio Pass to document slip rates of these faults over the last 10,000 years. Our results indicate a long-term slip rate of 6 mm/yr, which is almost 1/2 of the rates east and west of this area. These new rates, combined with faulted geomorphic surfaces, imply that large magnitude earthquakes must occasionally rupture a 300 km length of the San Andreas Fault from the Salton Sea to the Mojave Desert. Although many ( 65%) earthquakes along the southern San Andreas Fault likely do not rupture through the pass, our new results suggest that large >Mw 7.5 earthquakes are possible on the southern San Andreas Fault and likely

  19. Effects of Faults on Petroleum Fluid Dynamics, Borderland Basins of Southern California (United States)

    Jung, B.; Garven, G.; Boles, J. R.


    Multiphase flow modeling provides a useful quantitative tool for understanding crustal processes such as petroleum migration in geological systems, and also for characterizing subsurface environmental issues such as carbon sequestration in sedimentary basins. However, accurate modeling of multi-fluid behavior is often difficult because of the various coupled and nonlinear physics affecting multiphase fluid saturation and migration, including effects of capillarity and relative permeability, anisotropy and heterogeneity of the medium, and the effects of pore pressure, composition, and temperature on fluid properties. Regional fault structures also play a strong role in controlling fluid pathlines and mobility, so considering hydrogeologic effects of these structures is critical for testing exploration concepts, and for predicting the fate of injected fluids. To address these issues on spatially large and long temporal scales, we have developed a 2-D multiphase fluid flow model, coupled to heat flow, using a hybrid finite element and finite volume method. We have had good success in applying the multiphase flow model to fundamental issues of long-distance petroleum migration and accumulation in the Los Angeles basin, which is intensely faulted and disturbed by transpressional tectonic stresses, and host to the world's richest oil accumulation. To constrain the model, known subsurface geology and fault structures were rendered using geophysical logs from industry exploration boreholes and published seismic profiles. Plausible multiphase model parameters were estimated, either from known fault permeability measurements in similar strata in the Santa Barbara basin, and from known formation properties obtained from numerous oil fields in the Los Angeles basin. Our simulations show that a combination of continuous hydrocarbon generation and primary migration from upper Miocene source rocks in the central LA basin synclinal region, coupled with a subsiding basin fluid

  20. Post 4 Ma initiation of normal faulting in southern Tibet. Constraints from the Kung Co half graben (United States)

    Mahéo, G.; Leloup, P. H.; Valli, F.; Lacassin, R.; Arnaud, N.; Paquette, J.-L.; Fernandez, A.; Haibing, L.; Farley, K. A.; Tapponnier, P.


    The timing of E-W extension of the Tibetan plateau provides a test of mechanical models of the geodynamic evolution of the India-Asia convergence zone. In this work we focus on the Kung Co half graben (Southern Tibet, China), bounded by an active N-S normal fault with a minimum vertical offset of 1600 m. To estimate the onset of normal faulting we combined high and medium temperature (U-Pb, Ar/Ar) and low temperature ((U-Th)/He) thermochronometry of the Kung Co pluton, a two-mica granite of the northern Himalayan granitic belt that outcrop in the footwall of the fault. Biotite and muscovite Ar/Ar ages , are close from each other [˜ 16 Ma ± 0.2 (Ms) and ˜ 15 ± 0.4 Ma (Bt)], which is typical of fast cooling. The zircon and apatite (U-Th)/He ages range from 11.3 to 9.6 Ma and 9.9 to 3.7 Ma respectively. These He ages are indicative of (1) fast initial cooling, from 11.3 to ˜ 9 Ma, gradually decreasing with time and (2) a high geothermal gradient (˜ 400 °C/km), close to the surface at ˜ 10 Ma. The Kung Co pluton was emplaced at about 22 Ma (U-Pb on zircon) at less than 10 km depth and 520-545 °C. Subsequent to its shallow emplacement, the pluton underwent fast thermal re-equilibration ending around 7.5 Ma, followed by a period of slow cooling caused either by the end of the thermal re-equilibration or by very slow exhumation (0.02-0.03 mm/yr) from ˜ 7.5 Ma to at least 4 Ma. In either case the data suggest that the exhumation rate increased after 4 Ma. We infer this increase to be related to the initiation of the Kung Co normal fault. A critical examination of previously published data show that most ˜ N-S Tibetan normal faults may have formed less than 5 Ma ago rather than in the Miocene as assumed by several authors. Such a young age implies that E-W extension is not related to the Neogene South Tibetan magmatism (25 to 8 Ma). Consequently, models relating E-W extension to magmatism, such as convective removal of the lower lithosphere, may be inappropriate

  1. Long-term slip rate of the southern San Andreas Fault, from 10Be-26Al surface exposure dating of an offset alluvial fan

    Energy Technology Data Exchange (ETDEWEB)

    der Woerd, J v; Klinger, Y; Sieh, K; Tapponnier, P; Ryerson, F; M?riaux, A


    We determine the long-term slip rate of the southern San Andreas Fault in the southeastern Indio Hills using {sup 10}Be and {sup 26}Al isotopes to date an offset alluvial fan surface. Field mapping complemented with topographic data, air photos and satellite images allow to precisely determine piercing points across the fault zone that are used to measure an offset of 565 {+-} 80 m. A total of twenty-six quartz-rich cobbles from three different fan surfaces were collected and dated. The tight cluster of nuclide concentrations from 19 samples out of 20 from the offset fan surface implies a simple exposure history, negligible prior exposure and erosion, and yield an age of 35.5 {+-} 2.5 ka. The long-term slip rate of the San Andreas Fault south of Biskra Palms is thus 15.9 {+-} 3.4 mm/yr. This rate is about 10 mm/yr slower than geological (0-14 ka) and short-term geodetic estimates for this part of the San Andreas Fault implying changes in slip rate or in faulting behavior. This result puts new constraints on the slip rate of the San Jacinto and on the Eastern California Shear Zone for the last 35 ka. Our study shows that more sites along the major faults of southern California need to be targeted to better constrain the slip-rates over different time scales.

  2. Seismotectonics of southern Haiti: A new faulting model for the 12 January 2010 M7.0 earthquake (United States)

    Saint Fleur, Newdeskarl; Feuillet, Nathalie; Grandin, Raphaël.; Jacques, Eric; Weil-Accardo, Jennifer; Klinger, Yann


    The prevailing consensus is that the 2010 Mw7.0 Haiti earthquake left the Enriquillo-Plantain Garden strike-slip fault (EPGF) unruptured but broke unmapped blind north dipping thrusts. Using high-resolution topography, aerial images, bathymetry, and geology, we identified previously unrecognized south dipping NW-SE striking active thrusts in southern Haiti. One of them, Lamentin thrust, cuts across the crowded city of Carrefour, extends offshore into Port-au-Prince Bay, and connects at depth with the EPGF. We propose that both faults broke in 2010. The rupture likely initiated on the thrust and propagated further along the EPGF due to unclamping. This scenario is consistent with geodetic, seismological, and field data. The 2010 earthquake increased the stress toward failure on the unruptured segments of the EPGF and on neighboring thrusts, significantly increasing the seismic hazard in the Port-au-Prince urban area. The numerous active thrusts recognized in that area must be considered for future evaluation of the seismic hazard.

  3. Study of fault configuration related mysteries through multi seismic attribute analysis technique in Zamzama gas field area, southern Indus Basin, Pakistan

    Directory of Open Access Journals (Sweden)

    Shabeer Ahmed Abbasi


    Full Text Available Seismic attribute analysis approach has been applied for the interpretation and identification of fault geometry of Zamzama Gas Field. Zamzama gas field area, which lies in the vicinity of Kirthar fold and thrust belt, Southern Indus Basin of Pakistan. The Zamzama fault and its related structure have been predicted by applying the Average Energy Attribute, Instantaneous Frequency Attribute, relative Acoustic Impedance Attribute and Chaotic Reflection Attribute on the seismic line GHPK98A.34. The results have been confirmed by applying the spectral decomposition attribute on the same seismic line that reveal the geometric configuration of Zamzama structure. The fault is reverse and started from 0 s and ended at the depth of 2.5 s on the vertical seismic section. Hanging wall moves up along the fault plane under the action of eastward oriented stress, which formed a large north–south oriented and eastward verging thrusted anticline.

  4. Pleistocene Brawley and Ocotillo Formations: Evidence for initial strike-slip deformation along the San Felipe and San Jacinto fault zonez, Southern California (United States)

    Kirby, S.M.; Janecke, S.U.; Dorsey, R.J.; Housen, B.A.; Langenheim, V.E.; McDougall, K.A.; Steeley, A.N.


    We examine the Pleistocene tectonic reorganization of the Pacific-North American plate boundary in the Salton Trough of southern California with an integrated approach that includes basin analysis, magnetostratigraphy, and geologic mapping of upper Pliocene to Pleistocene sedimentary rocks in the San Felipe Hills. These deposits preserve the earliest sedimentary record of movement on the San Felipe and San Jacinto fault zones that replaced and deactivated the late Cenozoic West Salton detachment fault. Sandstone and mudstone of the Brawley Formation accumulated between ???1.1 and ???0.6-0.5 Ma in a delta on the margin of an arid Pleistocene lake, which received sediment from alluvial fans of the Ocotillo Formation to the west-southwest. Our analysis indicates that the Ocotillo and Brawley formations prograded abruptly to the east-northeast across a former mud-dominated perennial lake (Borrego Formation) at ???1.1 Ma in response to initiation of the dextral-oblique San Felipe fault zone. The ???25-km-long San Felipe anticline initiated at about the same time and produced an intrabasinal basement-cored high within the San Felipe-Borrego basin that is recorded by progressive unconformities on its north and south limbs. A disconformity at the base of the Brawley Formation in the eastern San Felipe Hills probably records initiation and early blind slip at the southeast tip of the Clark strand of the San Jacinto fault zone. Our data are consistent with abrupt and nearly synchronous inception of the San Jacinto and San Felipe fault zones southwest of the southern San Andreas fault in the early Pleistocene during a pronounced southwestward broadening of the San Andreas fault zone. The current contractional geometry of the San Jacinto fault zone developed after ???0.5-0.6 Ma during a second, less significant change in structural style. ?? 2007 by The University of Chicago. All rights reserved.

  5. Tectonic implications of the microearthquake seismicity and fault plane solutions in southern Peru (United States)

    Grange, F.; Hatzfeld, D.; Cunningham, P.; Molnar, P.; Roecker, S. W.; Suarez, G.; Rodrigues, A.; Ocola, L.


    Because the contortion in the seismic zone in southern Peru is aligned approximately parallel to the direction of relative plate motion, rather than perpendicular to the coast of Peru, the position of the contortion need not migrate with respect to the overriding South American plate as the Nazca plate subducts beneath it, and the flow in the surrounding asthenosphere could be in a steady state. In addition, the position of the contortion defines the northern boundary of the volcanic arc in southern Peru. The inference that a wedge of asthenospheric material must overlie the downgoing slab for subduction-related volcanism to occur is thereby strengthened.

  6. NW transverse fault system in Southern Bogota, Colombia: New seismologic and structural evidences derived from focal mechanisms and stress field determination (United States)

    Angel Amaya, J.; Fierro Morales, J.; Ordoñez Potes, M.; Blanco, M.


    We present new seismological, morphotectonic and structural data of the Southern Bogota area. The goals of the study were to characterize the NW transverse fault system and to evaluate its effect on seismic wave's generation and propagation. The data set included epicenters of the RSNC (Red Sismologica Nacional de Colombia) catalog over the period 1993-2012, historical description of seismic events (period 1644-1921), structural field data (scale 1:100000) and remote sensors interpretation. The methodology included the structural analysis of over 476 faults having a known sense of offset by using a least squares iterative inversion outlined by Angelier (1984) to determinate the mean deviatoric principal stress tensor. Preliminary conclusions showed that both propagation medium and direction are determined by the structural and mechanic conditions of the Southern Bogota Shear Zone (SBSZ) defined by Fierro & Angel, (2008) as a NW-SE oblique-slip fault zone within sinistral and normal regimes. Based on both data sources (focal mechanism and field structural data) we attempted to reconstruct the stress field starting with a strike slip faulting stress regime (S2 vertical), the solution yielded a ENE-WSW orientation for horizontal principal stress (S1). It is hypothesized that the NW oblique-slip fault zone may generate and/or propagate seismic waves, as a local source, implying local hazard to Bogota the capital city of Colombia with over 8 million habitants.

  7. Basin geometry and cumulative offsets in the Eastern Transverse Ranges, southern California: Implications for transrotational deformation along the San Andreas fault system (United States)

    Langenheim, V.E.; Powell, R.E.


    The Eastern Transverse Ranges, adjacent to and southeast of the big left bend of the San Andreas fault, southern California, form a crustal block that has rotated clockwise in response to dextral shear within the San Andreas system. Previous studies have indicated a discrepancy between the measured magnitudes of left slip on through-going east-striking fault zones of the Eastern Transverse Ranges and those predicted by simple geometric models using paleomagnetically determined clockwise rotations of basalts distributed along the faults. To assess the magnitude and source of this discrepancy, we apply new gravity and magnetic data in combination with geologic data to better constrain cumulative fault offsets and to define basin structure for the block between the Pinto Mountain and Chiriaco fault zones. Estimates of offset from using the length of pull-apart basins developed within left-stepping strands of the sinistral faults are consistent with those derived by matching offset magnetic anomalies and bedrock patterns, indicating a cumulative offset of at most ???40 km. The upper limit of displacements constrained by the geophysical and geologic data overlaps with the lower limit of those predicted at the 95% confidence level by models of conservative slip located on margins of rigid rotating blocks and the clockwise rotation of the paleomagnetic vectors. Any discrepancy is likely resolved by internal deformation within the blocks, such as intense deformation adjacent to the San Andreas fault (that can account for the absence of basins there as predicted by rigid-block models) and linkage via subsidiary faults between the main faults. ?? 2009 Geological Society of America.

  8. Pliocene transpressional modification of depositional basins by convergent thrusting adjacent to the "Big Bend" of the San Andreas fault: An example from Lockwood Valley, southern California (United States)

    Kellogg, K.S.; Minor, S.A.


    The "Big Bend" of the San Andreas fault in the western Transverse Ranges of southern California is a left stepping flexure in the dextral fault system and has long been recognized as a zone of relatively high transpression compared to adjacent regions. The Lockwood Valley region, just south of the Big Bend, underwent a profound change in early Pliocene time (???5 Ma) from basin deposition to contraction, accompanied by widespread folding and thrusting. This change followed the recently determined initiation of opening of the northern Gulf of California and movement along the southern San Andreas fault at about 6.1 Ma, with the concomitant formation of the Big Bend. Lockwood Valley occupies a 6-km-wide, fault-bounded structural basin in which converging blocks of Paleoproterozoic and Cretaceous crystalline basement and upper Oligocene and lower Miocene sedimentary rocks (Plush Ranch Formation) were thrust over Miocene and Pliocene basin-fill sedimentary rocks (in ascending order, Caliente Formation, Lockwood Clay, and Quatal Formation). All the pre-Quatal sedimentary rocks and most of the Pliocene Quatal Formation were deposited during a mid-Tertiary period of regional transtension in a crustal block that underwent little clockwise vertical-axis rotation as compared to crustal blocks to the south. Ensuing Pliocene and Quaternary transpression in the Big Bend region began during deposition of the poorly dated Quatal Formation and was marked by four converging thrust systems, which decreased the areal extent of the sedimentary basin and formed the present Lockwood Valley structural basin. None of the thrusts appears presently active. Estimated shortening across the center of the basin was about 30 percent. The fortnerly defined eastern Big Pine fault, now interpreted to be two separate, oppositely directed, contractional reverse or thrust faults, marks the northwestern structural boundary of Lockwood Valley. The complex geometry of the Lockwood Valley basin is similar

  9. Pliocene transpressional modification of depositional basins by convergent thrusting adjacent to the ``Big Bend'' of the San Andreas fault: An example from Lockwood Valley, southern California (United States)

    Kellogg, Karl S.; Minor, Scott A.


    The "Big Bend" of the San Andreas fault in the western Transverse Ranges of southern California is a left stepping flexure in the dextral fault system and has long been recognized as a zone of relatively high transpression compared to adjacent regions. The Lockwood Valley region, just south of the Big Bend, underwent a profound change in early Pliocene time (˜5 Ma) from basin deposition to contraction, accompanied by widespread folding and thrusting. This change followed the recently determined initiation of opening of the northern Gulf of California and movement along the southern San Andreas fault at about 6.1 Ma, with the concomitant formation of the Big Bend. Lockwood Valley occupies a 6-km-wide, fault-bounded structural basin in which converging blocks of Paleoproterozoic and Cretaceous crystalline basement and upper Oligocene and lower Miocene sedimentary rocks (Plush Ranch Formation) were thrust over Miocene and Pliocene basin-fill sedimentary rocks (in ascending order, Caliente Formation, Lockwood Clay, and Quatal Formation). All the pre-Quatal sedimentary rocks and most of the Pliocene Quatal Formation were deposited during a mid-Tertiary period of regional transtension in a crustal block that underwent little clockwise vertical-axis rotation as compared to crustal blocks to the south. Ensuing Pliocene and Quaternary transpression in the Big Bend region began during deposition of the poorly dated Quatal Formation and was marked by four converging thrust systems, which decreased the areal extent of the sedimentary basin and formed the present Lockwood Valley structural basin. None of the thrusts appears presently active. Estimated shortening across the center of the basin was about 30 percent. The formerly defined eastern Big Pine fault, now interpreted to be two separate, oppositely directed, contractional reverse or thrust faults, marks the northwestern structural boundary of Lockwood Valley. The complex geometry of the Lockwood Valley basin is similar

  10. Seismic hazard in low slip rate crustal faults, estimating the characteristic event and the most hazardous zone: study case San Ramón Fault, in southern Andes (United States)

    Estay, Nicolás P.; Yáñez, Gonzalo; Carretier, Sebastien; Lira, Elias; Maringue, José


    Crustal faults located close to cities may induce catastrophic damages. When recurrence times are in the range of 1000-10 000 or higher, actions to mitigate the effects of the associated earthquake are hampered by the lack of a full seismic record, and in many cases, also of geological evidences. In order to characterize the fault behavior and its effects, we propose three different already-developed time-integration methodologies to define the most likely scenarios of rupture, and then to quantify the hazard with an empirical equation of peak ground acceleration (PGA). We consider the following methodologies: (1) stream gradient and (2) sinuosity indexes to estimate fault-related topographic effects, and (3) gravity profiles across the fault to identify the fault scarp in the basement. We chose the San Ramón Fault on which to apply these methodologies. It is a ˜ 30 km N-S trending fault with a low slip rate (0.1-0.5 mm yr-1) and an approximated recurrence of 9000 years. It is located in the foothills of the Andes near the large city of Santiago, the capital of Chile (> 6 000 000 inhabitants). Along the fault trace we define four segments, with a mean length of ˜ 10 km, which probably become active independently. We tested the present-day seismic activity by deploying a local seismological network for 1 year, finding five events that are spatially related to the fault. In addition, fault geometry along the most evident scarp was imaged in terms of its electrical resistivity response by a high resolution TEM (transient electromagnetic) profile. Seismic event distribution and TEM imaging allowed the constraint of the fault dip angle (˜ 65°) and its capacity to break into the surface. Using the empirical equation of Chiou and Youngs (2014) for crustal faults and considering the characteristic seismic event (thrust high-angle fault, ˜ 10 km, Mw = 6.2-6.7), we estimate the acceleration distribution in Santiago and the hazardous zones. City domains that are under

  11. Finite-fault slip model of the 2016 Mw 7.5 Chiloé earthquake, southern Chile, estimated from Sentinel-1 data (United States)

    Xu, Wenbin


    Subduction earthquakes have been widely studied in the Chilean subduction zone, but earthquakes occurring in its southern part have attracted less research interest primarily due to its lower rate of seismic activity. Here I use Sentinel-1 interferometric synthetic aperture radar (InSAR) data and range offset measurements to generate coseismic crustal deformation maps of the 2016 Mw 7.5 Chiloé earthquake in southern Chile. I find a concentrated crustal deformation with ground displacement of approximately 50 cm in the southern part of the Chiloé island. The best fitting fault model shows a pure thrust-fault motion on a shallow dipping plane orienting 4° NNE. The InSAR-determined moment is 2.4 × 1020 Nm with a shear modulus of 30 GPa, equivalent to Mw 7.56, which is slightly lower than the seismic moment. The model shows that the slip did not reach the trench, and it reruptured part of the fault that ruptured in the 1960 Mw 9.5 earthquake. The 2016 event has only released a small portion of the accumulated strain energy on the 1960 rupture zone, suggesting that the seismic hazard of future great earthquakes in southern Chile is high.

  12. Anomalies in the Ionosphere around the Southern faults of Haiti near the 2010 Earthquake (United States)

    Cornely, P.; Daniell, R. E.


    In the last few decades, research on earthquake prediction has resulted in the recognition that there may exist many earthquake precursors in the lithosphere, atmosphere and ionosphere. The ionosphere is naturally perturbed by solar and geomagnetic disturbances and it is difficult to extract the variations connected with earthquakes particularly for the equatorial and high latitude ionosphere. Several researchers have contending theories on the mechanisms associated with pre-earthquake signals. The basic premise is that a thin layer of particles created before earthquakes due to ions originating from the earth's crust travel to the earth's surface and begin radiating from the earth's surface due to strong electric fields Namgaladze et al., [2009]. The ions can then travel from above earth's surface to the ionosphere where they can create ionospheric disturbances. When solar and geomagnetic disturbances can be ruled out, the effects of pre-seismic activities in the ionosphere can be assessed using fluctuations in the ionospheric electron density in the vicinity of fault lines. The Parameterized Ionospheric Model (PIM) is a fast global ionospheric model which produces electron density profiles (EDPs) between 90 and 25000 km altitude, which corresponds to critical altitudes of the ionosphere Daniell et al., [1995]. Since PIM only simulates a statistical mean ionosphere, sudden variations in ionospheric electron density will not be represented in the models, which make PIM ideal for background electron density predictions. The background predictions can then removed from the actual electron density data which could provide means for identifying pre-seismic electron density perturbations.

  13. Soft sediment deformation associated with the East Patna Fault south of the Ganga River, northern India: Influence of the Himalayan tectonics on the southern Ganga plain (United States)

    Verma, Aditya K.; Pati, Pitambar; Sharma, Vijay


    The geomorphic, tectonic and seismic aspects of the Ganga plain have been studied by several workers in the recent decades. However, the northern part of this tectonically active plain has been the prime focus in most of the studies. The region to the south of the Ganga River requires necessary attention, especially, regarding the seismic activities. The region lying immediately south of the Outer Himalayas (i.e. the Ganga plain) responds to the stress regime of the Himalayan Frontal Thrust Zone by movement along the existing basement faults (extending from the Indian Peninsula) and creating new surface faults within the sediment cover as well. As a result, several earthquakes have been recorded along these basement faults, such as the great earthquakes of 1934 and 1988 associated with the East Patna Fault. Large zones of ground failure and liquefaction in north Bihar (close to the Himalayan front), have been recorded associated with these earthquakes. The present study reports the soft sediment deformation structures from the south Bihar associated with the prehistoric earthquakes near the East Patna Fault for the first time. The seismites have been observed in the riverine sand bed of the Dardha River close to the East Patna Fault. Several types of liquefaction-induced deformation structures such as pillar and pocket structure, thixotropic wedge, liquefaction cusps and other water escape structures have been identified. The location of the observed seismites within the deformed zone of the East Patna Fault clearly indicates their formation due to activities along this fault. However, the distance of the liquefaction site from the recorded epicenters suggests its dissociation with the recorded earthquakes so far and hence possibly relates to any prehistoric seismic event. The occurrence of the earthquakes of a magnitude capable of forming liquefaction structure in the southern Ganga plain indicates the transfer of stress regime far from the Himalayan front into

  14. A new perspective on the geometry of the San Andreas Fault in southern California and its relationship to lithospheric structure (United States)

    Fuis, Gary S.; Scheirer, Daniel S.; Langenheim, Victoria; Kohler, Monica D.


    The widely held perception that the San Andreas fault (SAF) is vertical or steeply dipping in most places in southern California may not be correct. From studies of potential‐field data, active‐source imaging, and seismicity, the dip of the SAF is significantly nonvertical in many locations. The direction of dip appears to change in a systematic way through the Transverse Ranges: moderately southwest (55°–75°) in the western bend of the SAF in the Transverse Ranges (Big Bend); vertical to steep in the Mojave Desert; and moderately northeast (37°–65°) in a region extending from San Bernardino to the Salton Sea, spanning the eastern bend of the SAF in the Transverse Ranges. The shape of the modeled SAF is crudely that of a propeller. If confirmed by further studies, the geometry of the modeled SAF would have important implications for tectonics and strong ground motions from SAF earthquakes. The SAF can be traced or projected through the crust to the north side of a well documented high‐velocity body (HVB) in the upper mantle beneath the Transverse Ranges. The north side of this HVB may be an extension of the plate boundary into the mantle, and the HVB would appear to be part of the Pacific plate.

  15. Use of GRASP, a finite element program, to model faulted gas reservoir of the southern North Sea Basin

    Energy Technology Data Exchange (ETDEWEB)

    Collins, P.A.; Goldwater, M.H.; Taylor, B.A.


    This study describes a single-phase, 2-dimensional reservoir simulation program called GRASP (gas reservoir areal simulation program) and its use in modeling gas reservoirs in the southern North Sea. The design of the program is outlined, placing special emphasis on those features which have proved to be of greatest value during its application to various gas fields. These include the ability to describe pressure discontinuities across faults and overlapping gas-bearing strata within the context of a 2-dimensional model. The provision of a network analysis model to describe the surface gathering system allows the program to be used either for history matching or for predicting the future reservoir behavior. In the latter case, facilities are provided which allow the consequences of different operating strategies to be investigated. GRASP has been designed, not as a research tool, but as a practical aid to reservoir analysis. Most published applications of finite element methods have considered only small regular reservoirs. In the present study, particular attention is directed toward the difficulties encountered in designing a program capable of describing large, realistic reservoirs. 14 references.

  16. Continuation, south of Oaxaca City (southern Mexico) of the Oaxaca-Juarez terrane boundary and of the Oaxaca Fault. Based in MT, gravity and magnetic studies (United States)

    Campos-Enriquez, J. O.; Corbo, F.; Arzate-Flores, J.; Belmonte-Jimenez, S.; Arango-Galván, C.


    The Oaxaca Fault represents Tertiary extensional reactivation of the Juarez shear zone constituting the boundary-suture between the Oaxaca and Juarez terranes (southern Mexico). South of Oaxaca City, the fault trace disappears and there are not clear evidences for its southward continuation at depth. The crust in southern México has been studied through seismic refraction, and seismological and magnetotelluric (MT) studies. The refraction studies did not image the Oaxaca Fault. However, previous regional MT studies suggest that the Oaxaca-Juarez terrane boundary lies to the east of the Zaachila and Mitla sub-basins, which implies sinistral displacement along the Donaji Fault. Campos-Enriquez et al. (2009) established the shallow structure of the Oaxaca-Juarez terrane boundary based in detailed gravity and magnetic studies. This study enabled: 1) to establish the shallow structure of the composite depression comprising three N-S sub-basins: the northern Etla and southern Zaachila sub-basins separated by the Atzompa sub-basin. According to the Oaxaca-Juarez terrane boundary is displaced sinistrally ca. 20 km along the E-W Donají Fault, which defines the northern boundary of the Zaachila sub-basin. At the same time,, the Oaxaca Fault may either continue unbroken southwards along the western margin of a horst in the Zaachila sub-basin or be offset along with the terrane boundary. This model implies that originally the suture was continuous south of the Donaji Fault. A constraint for the accreation of the Oaxaca and Juarez terranes. Thirty MT soundings were done in the area of the Central Valleys, Oaxaca City (southern Mexico). In particular we wanted to image the possible southward continuation of the Oaxaca Fault. 22 Mt sounding are located along two NE-SW profiles to the northern and to the south of the City of Oaxaca. To the north of Oaxaca City, the electrical resistivity distribution obtained show a clear discontinuity across the superficial trace of the Oaxaca

  17. Long-Term Slip Rate on the Southern San Andreas Fault Determined by Th-230/U Dating of Pedogenic Carbonate. (United States)

    Fletcher, K. E.; Johnson, G.; Kendrick, K. J.; Hudnut, K. W.; Sharp, W. D.


    Determinations of long-term slip rates are limited, in part, by our ability to accurately estimate the age of offset landforms. U-series dating on pedogenic carbonate provides a relatively novel way of dating landforms, with strengths that complement more widely applied cosmogenic (CRN) techniques. We present new Th-230/U dates for pedogenic carbonate coatings on pebbles of the Biskra Palms fan, near Indio, California, which is offset by the southern San Andreas fault. Small, carefully chosen samples of dense pedogenic carbonate analyzed by mass spectrometry, have 3-10 ppm uranium and low common thorium (Th-232), making them highly favorable for U-series dating. Only minor corrections for initial Th-230 are necessary, and are made using Th-232 as an index isotope with propagation of uncertainties. Samples of early-formed carbonate collected from depths of about 2 m in fan soils typically consist of dense coatings 200-500 microns thick. Such coatings from 6 pebbles from 3 different locations within the fan yield apparent ages between 30 ± 2 ka and 46 ± 2 ka (all errors 2 sigma), with a median age of 38.4 ka (n= 11). Each age averages over the sampled interval of coating growth, hence the spread of ages reflects clast-to-clast variation in coating accumulation rates. All ages are therefore minimum ages for the stabilization of the fan because the time lag between stabilization and carbonate pedogenesis at Biskra Palms is, as yet, unknown. Sub-samples of individual clast-coatings yield ages in good agreement-- e.g., 45.0 ± 0.8 ka, 46.0 ± 1.8 ka, 44.8 ± 1.0 ka, 45.7 ± 0.9 ka (MSWD = 0.88), demonstrating closed U-Th systems. Van der Woerd et al (2006) reported an average CRN age of 35.5 ± 2.5 ka for the fan surface and an offset of 565 ± 80 m, for a slip rate of 15.9 ± 3.4 mm/a. Using their offset, and our oldest mean age of 45.3 ± 0.5 Ma (n=4, ages above) as the minimum landform age, we estimate a maximum slip rate of 12.5 ± 1.8 mm/a. This maximum average

  18. The TeraGyroid Experiment – Supercomputing 2003

    Directory of Open Access Journals (Sweden)

    R.J. Blake


    Full Text Available Amphiphiles are molecules with hydrophobic tails and hydrophilic heads. When dispersed in solvents, they self assemble into complex mesophases including the beautiful cubic gyroid phase. The goal of the TeraGyroid experiment was to study defect pathways and dynamics in these gyroids. The UK's supercomputing and USA's TeraGrid facilities were coupled together, through a dedicated high-speed network, into a single computational Grid for research work that peaked around the Supercomputing 2003 conference. The gyroids were modeled using lattice Boltzmann methods with parameter spaces explored using many 1283 and 3grid point simulations, this data being used to inform the world's largest three-dimensional time dependent simulation with 10243-grid points. The experiment generated some 2 TBytes of useful data. In terms of Grid technology the project demonstrated the migration of simulations (using Globus middleware to and fro across the Atlantic exploiting the availability of resources. Integration of the systems accelerated the time to insight. Distributed visualisation of the output datasets enabled the parameter space of the interactions within the complex fluid to be explored from a number of sites, informed by discourse over the Access Grid. The project was sponsored by EPSRC (UK and NSF (USA with trans-Atlantic optical bandwidth provided by British Telecommunications.

  19. Faulting, volcanism, and basin development along the western margin of the southern San Luis Basin segment of the Rio Grande rift, New Mexico and Colorado (United States)

    Turner, K. J.; Thompson, R. A.; Cosca, M. A.; Drenth, B.; Lee, J.; Budahn, J. R.


    The San Luis Basin segment of the northern Rio Grande rift, straddling the Colorado-New Mexico border, is an asymmetrical graben where the major basin-bounding fault is on the east side. In contrast, the west side is a basin-directed dip slope surface cut by north to northwest trending faults with predominantly down-to-southwest displacement. Around 26 Ma, initial rift-related faulting formed broad, shallow basins coincident with basaltic volcanism of the Hinsdale Formation. Later episodes of rifting produced deep and narrow sub-basins generally along the eastern boundary. Basin-fill deposits along the western margin are generally thin. However, in the northern Tusas Mountains, gravity data identifies a small, yet deep, sub-basin that may contain 750 m of basin-filling Los Pinos Formation based on thickness projections derived from mapping. The Los Pinos Formation is overlain by early rift-related Hinsdale Formation basalt flows indicating this sub-basin formed as part of early rifting; the sub-basin may be a southern extension of the Monte Vista graben to the north. The stratigraphic section along the western boundary includes Precambrian basement up to volcanic rocks of the Taos Plateau volcanic field (~5-2Ma). Dips on the early-rift Miocene to Oligocene Hinsdale Formation lavas (3-5 degrees) reflect the cumulative eastward tilting corresponding to continued basin subsidence. Shallower dips (1-2 degrees) on early Pliocene volcanic rocks suggest continued subsidence up to about 3 Ma, or younger. Down-to-southwest faults accommodating eastward tilting are mostly in areas west of Pliocene volcanic rocks; individual faults offset Hinsdale Formation and older rocks by up to 200 m. The few observed faults in the Pliocene volcanic rocks have minor offset. Numerous volcanic vents are in close proximity to the faults along the western boundary. Volcanoes are commonly low to medium relief shield volcanoes with basaltic andesite composition capped by late stage cinder cones

  20. The Palos Verdes Fault offshore Southern California: Late Pleistocene to present tectonic geomorphology, seascape evolution, and slip rate estimate based on AUV and ROV surveys (United States)

    Brothers, Daniel S.; Conrad, James E.; Maier, Katherine L.; Paull, Charles K.; McGann, Mary; Caress, David W.


    The Palos Verdes Fault (PVF) is one of few active faults in Southern California that crosses the shoreline and can be studied using both terrestrial and subaqueous methodologies. To characterize the near-seafloor fault morphology, tectonic influences on continental slope sedimentary processes and late Pleistocene to present slip rate, a grid of high-resolution multibeam bathymetric data, and chirp subbottom profiles were acquired with an autonomous underwater vehicle (AUV) along the main trace of PVF in water depths between 250 and 600 m. Radiocarbon dates were obtained from vibracores collected using a remotely operated vehicle (ROV) and ship-based gravity cores. The PVF is expressed as a well-defined seafloor lineation marked by subtle along-strike bends. Right-stepping transtensional bends exert first-order control on sediment flow dynamics and the spatial distribution of Holocene depocenters; deformed strata within a small pull-apart basin record punctuated growth faulting associated with at least three Holocene surface ruptures. An upper (shallower) landslide scarp, a buried sedimentary mound, and a deeper scarp have been right-laterally offset across the PVF by 55 ± 5, 52 ± 4 , and 39 ± 8 m, respectively. The ages of the upper scarp and buried mound are approximately 31 ka; the age of the deeper scarp is bracketed to 17-24 ka. These three piercing points bracket the late Pleistocene to present slip rate to 1.3-2.8 mm/yr and provide a best estimate of 1.6-1.9 mm/yr. The deformation observed along the PVF is characteristic of strike-slip faulting and accounts for 20-30% of the total right-lateral slip budget accommodated offshore Southern California.

  1. The Palos Verdes Fault offshore southern California: late Pleistocene to present tectonic geomorphology, seascape evolution and slip rate estimate based on AUV and ROV surveys (United States)

    Brothers, Daniel S.; Conrad, James E.; Maier, Katherine L.; Paull, Charles K.; McGann, Mary L.; Caress, David W.


    The Palos Verdes Fault (PVF) is one of few active faults in Southern California that crosses the shoreline and can be studied using both terrestrial and subaqueous methodologies. To characterize the near-seafloor fault morphology, tectonic influences on continental slope sedimentary processes and late Pleistocene to present slip rate, a grid of high-resolution multibeam bathymetric data, and chirp subbottom profiles were acquired with an autonomous underwater vehicle (AUV) along the main trace of PVF in water depths between 250 and 600 m. Radiocarbon dates were obtained from vibracores collected using a remotely operated vehicle (ROV) and ship-based gravity cores. The PVF is expressed as a well-defined seafloor lineation marked by subtle along-strike bends. Right-stepping transtensional bends exert first-order control on sediment flow dynamics and the spatial distribution of Holocene depocenters; deformed strata within a small pull-apart basin record punctuated growth faulting associated with at least three Holocene surface ruptures. An upper (shallower) landslide scarp, a buried sedimentary mound, and a deeper scarp have been right-laterally offset across the PVF by 55 ± 5, 52 ± 4 , and 39 ± 8 m, respectively. The ages of the upper scarp and buried mound are approximately 31 ka; the age of the deeper scarp is bracketed to 17–24 ka. These three piercing points bracket the late Pleistocene to present slip rate to 1.3–2.8 mm/yr and provide a best estimate of 1.6–1.9 mm/yr. The deformation observed along the PVF is characteristic of strike-slip faulting and accounts for 20–30% of the total right-lateral slip budget accommodated offshore Southern California.

  2. A record of large earthquakes during the past two millennia on the southern Green Valley Fault, California (United States)

    Lienkaemper, James J.; Baldwin, John N.; Turner, Robert; Sickler, Robert R.; Brown, Johnathan


    We document evidence for surface-rupturing earthquakes (events) at two trench sites on the southern Green Valley fault, California (SGVF). The 75-80-km long dextral SGVF creeps ~1-4 mm/yr. We identify stratigraphic horizons disrupted by upward-flowering shears and in-filled fissures unlikely to have formed from creep alone. The Mason Rd site exhibits four events from ~1013 CE to the Present. The Lopes Ranch site (LR, 12 km to the south) exhibits three events from 18 BCE to Present including the most recent event (MRE), 1610 ±52 yr CE (1σ) and a two-event interval (18 BCE-238 CE) isolated by a millennium of low deposition. Using Oxcal to model the timing of the 4-event earthquake sequence from radiocarbon data and the LR MRE yields a mean recurrence interval (RI or μ) of 199 ±82 yr (1σ) and ±35 yr (standard error of the mean), the first based on geologic data. The time since the most recent earthquake (open window since MRE) is 402 yr ±52 yr, well past μ~200 yr. The shape of the probability density function (pdf) of the average RI from Oxcal resembles a Brownian Passage Time (BPT) pdf (i.e., rather than normal) that permits rarer longer ruptures potentially involving the Berryessa and Hunting Creek sections of the northernmost GVF. The model coefficient of variation (cv, σ/μ) is 0.41, but a larger value (cv ~0.6) fits better when using BPT. A BPT pdf with μ of 250 yr and cv of 0.6 yields 30-yr rupture probabilities of 20-25% versus a Poisson probability of 11-17%.

  3. SCEC Earthworks: A TeraGrid Science Gateway (United States)

    Francoeur, H.; Muench, J.; Okaya, D.; Maechling, P.; Deelman, E.; Mehta, G.


    SCEC Earthworks is a scientific gateway designed to provide community wide access to the TeraGrid. Earthworks provides its users with a portal based interface for easily running anelastic wave propagation (AWM) simulations. Using Gridsphere and several portlets developed as a collaborative effort with IRIS, Earthworks enables users to run simulations without any knowledge of the underlying workflow technology needed to utilize the TeraGrid. The workflow technology behind Earthworks has been developed as a collaborative effort between SCEC and the Information Sciences Institute (ISI). Earthworks uses a complex software stack to translate abstract workflows defined by the user into a series of jobs that run on a number of computational resources. These computational resources include a combination of servers provided by SCEC, USC High Performance Computing Center and NSF TeraGrid supercomputer facilities. Workflows are constructed after input from the user is passed via a Java based interface to the Earthworks backend, where a DAX (directed acyclic graph in XML) is generated. This DAX describes each step of the workflow including its inputs, outputs, and arguments, as well as the parent child relationships between each process. The DAX is then handed off to the Virtual Data System (VDS) and Pegasus provided by ISI, which translate it from an abstract workflow to a concrete workflow by filling in logical file and application names with their physical path and location. This newly created DAG (directed acyclic graph) is handed off to the Condor scheduler. The bottom part of the software stack is a Globus installation at each site the provides local transfer and resource management capabilities. Resources across different sites are transparently managed and tracked by VDS which allows greater flexibility in running the workflows. After a workflow is completed, products and metadata are registered with integrated data management tools. This allows for metadata querying

  4. Geoelectrical behavior of a Fault Zone: the meaning of the electrical resistivity of metric-scale segments of the Liquiñe-Ofqui and the Arc-oblique Long-lived Fault Systems, Southern Andes (United States)

    Roquer, T.; Arancibia, G.; Yanez, G. A.; Estay, N.; Rowland, J. V.; Figueroa, R.; Iturrieta, P. C.


    The geoelectrical behavior of blind fault zones has been studied by different authors at decametric-to-kilometric scales, and inferred to reveal the dimensions of the main structural domains of a fault zone (core vs. damage zone). However, there is still a lack in the application of electrical methods in exposed fault zones, despite the importance of validating the inferences based on electrical measurements with direct geologic observation. In this study we correlate the results of structural mapping and geoelectrical measurements in two metric-scale, very well exposed segments of the Liquiñe-Ofqui Fault System (LOFS) and the Arc-oblique Long-lived Fault System (ALFS), Southern Andes. The LOFS is an active dextral and dextral-normal ca. 1200-km-long Cenozoic intra-arc structure that strikes NNE to NE. Although the LOFS and the ALFS cross-cut each other, the ALFS is an apparently older basement NW-striking fault system where mainly sinistral movement is recorded. Two 22-m-long transects were mapped revealing in both examples a simple core and an assymetric damage zone with more frequency of fractures in the hanging wall than in the footwall. The LOFS outcrop showed a WNW-striking, 65°S-dipping core; the ALFS, a NW-striking, 60°SW-dipping core. A 2D direct-current electrical survey was made at each locality, orthogonal to the respective strike of the core. The field installation of the electrical survey used two electrode configurations for each outcrop: (1) electrodes were put in a vertical wall of rock, which gives a resistivity profile in plan view; and (2) electrodes were put in the ground, which gives a cross-section resistivity profile. The combined structural and electrical results suggest that: (1) it is possible to discriminate the geoelectrical response of the main metric-scale structural domains: the core and the fractured damage zones are relative conductors (20-200 ohm-m), whereas the less fractured damage zones are relative resistive volumes (500

  5. The crab pulsar at tera-electron-volts energies

    Energy Technology Data Exchange (ETDEWEB)

    Carreto Fidalgo, David [Universidad Complutense, Madrid (Spain); Galindo, Daniel; Zanin, Roberta [Universitat de Barcelona, ICC IEEC-UB, Barcelona (Spain); Ona Wilhelmi, Emma de [Institute of Space Sciences, Barcelona (Spain); Rodriguez Garcia, Jezabel [Max-Planck-Institut fuer Physik, Muenchen (Germany); Inst. de Astrofisica de Canarias, La Laguna Tenerife (Spain); Dazzi, Francesco [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration


    MAGIC is a system of two 17 m-diameter Imaging Atmospheric Cherenkov Telescopes (IACTs) located at the Roque de los Muchachos observatory (ORM, 28.8 N, 17.8 W, 2200 m a.s.l.) on the Canary island of La Palma. This system has observed the most energetic ever detected pulsed gamma-ray from an astrophysical source, 2 Tera-electron-Volt emission from the Crab pulsar. Such measurements shed light on the particle acceleration mechanism of pulsars, pointing to Inverse Compton scattering of IR-X-ray photons at a distance bigger than 25 stellar radii from the neutron star. These are highly relevant results, since they challenge all the existing theoretical models as none of them can reproduce all the constrains that this observation has imposed.

  6. Detecting Significant Stress Drop Variations in Large Micro-Earthquake Datasets: A Comparison Between a Convergent Step-Over in the San Andreas Fault and the Ventura Thrust Fault System, Southern California (United States)

    Goebel, T. H. W.; Hauksson, E.; Plesch, A.; Shaw, J. H.


    A key parameter in engineering seismology and earthquake physics is seismic stress drop, which describes the relative amount of high-frequency energy radiation at the source. To identify regions with potentially significant stress drop variations, we perform a comparative analysis of source parameters in the greater San Gorgonio Pass (SGP) and Ventura basin (VB) in southern California. The identification of physical stress drop variations is complicated by large data scatter as a result of attenuation, limited recording bandwidth and imprecise modeling assumptions. In light of the inherently high uncertainties in single stress drop measurements, we follow the strategy of stacking large numbers of source spectra thereby enhancing the resolution of our method. We analyze more than 6000 high-quality waveforms between 2000 and 2014, and compute seismic moments, corner frequencies and stress drops. Significant variations in stress drop estimates exist within the SGP area. Moreover, the SGP also exhibits systematically higher stress drops than VB and shows more scatter. We demonstrate that the higher scatter in SGP is not a generic artifact of our method but an expression of differences in underlying source processes. Our results suggest that higher differential stresses, which can be deduced from larger focal depth and more thrust faulting, may only be of secondary importance for stress drop variations. Instead, the general degree of stress field heterogeneity and strain localization may influence stress drops more strongly, so that more localized faulting and homogeneous stress fields favor lower stress drops. In addition, higher loading rates, for example, across the VB potentially result in stress drop reduction whereas slow loading rates on local fault segments within the SGP region result in anomalously high stress drop estimates. Our results show that crustal and fault properties systematically influence earthquake stress drops of small and large events and should


    Directory of Open Access Journals (Sweden)

    Lily Suparlina


    Full Text Available Parameter neutronik dibutuhkan dalam mendesain teras reaktor riset. Reaktor riset jenis MTR (Material Testing Reactor sangat diminati karena dapat digunakan baik untuk riset dan juga produksi radio isotop. Reaktor riset yang ada saat ini sudah tua sehingga dibutuhkan desain reaktor yang mempunyai teras kompak. Desain teras reaktor riset yang sudah ada saat ini belum cukup memadai untuk memenuhi persyaratan di dalam UCD yang telah ditetapkan yaitu fluks neutron termal di teras 1x1015 n/cm2s, oleh karena itu perlu dibuat desain teras reaktor baru sebagai alternatif yang kompak dan dapat menghasilkan fluks neutron tinggi. Telah dilakukan perhitungan dan analisis terhadap manajemen bahan bakar desain teras kompak dengan konfigurasi teras 5x5, berbahan bakar U9Mo-Al dan tinggi teras aktif 70 cm. Tujuan dari riset ini untuk memperoleh fluks neutron di teras memenuhi kebutuhan seperti yang telah ditetapkan di UCD dengan panjang siklus operasi minimum 20 hari pada daya 50 MW. Perhitungan dilakukan dengan menggunakan paket program komputer WIMSD-5B untuk menggenerasi tampang lintang makroskopik bahan bakar dan Batan-FUEL untuk memperoleh nilai parameter neutronik serta Batan-3DIFF untuk perhitungan nilai reaktivitas batang kendali. Perhitungan parameter neutronik teras reaktor riset ini dilakukan untuk bahan bakar U-9Mo-Al dengan tingkat muat bervariasi dan 2 macam pola pergantian bahan bakar yaitu teras segar dan teras setimbang. Hasil analisis menunjukkan bahwa pada teras segar, tingkat muat 235U sebesar 360 gram, 390 gram dan 450 gram memenuhi kriteria keselamatan dan kriteria penerimaan di UCD dengan nilai fluks neutron termal di teras lebih dari 1x1015 n/cm2s dan panjang siklus >20 hari, sedangkan pada teras setimbang panjang siklus dapat terpenuhi hanya untuk tingkat muat 450 gram. Kata kunci: desain teras reaktor, bahan bakar UMo, pola bahan bakar, WIMS, BATAN-FUEL   Research reactor core design needs neutronics parameter calculation use computer

  8. The interplay between fault-fracture networks activity, fluid flow and mineralization in the Andes: A case study in the Tolhuaca geothermal system, southern Chile (United States)

    Sanchez, P.; Perez-Flores, P.; Reich, M.; Arancibia, G.; Cembrano, J. M.


    The nature of the interplay between active tectonics and fluid flow is a key feature to better understand the chemical evolution of fluids in geothermal and hydrothermal systems. The prominent hydrothermal, tectonic and volcanic activity of the Southern Andes volcanic zone (SVZ) makes it one of the best natural laboratories to address this issue. In the northern termination of the Liquiñe-Ofqui Fault System (LOFS), tectonic and volcanic processes interact to define the geothermal field of Tolhuaca. The objective of our current research is to assess the nature of the interplay between brittle deformation and chemical evolution of fluids and mineral paragenesis. Tol-1 is a vertical 1.080 m deep borehole which could yield relevant information regarding the evolution of the Tolhuaca geothermal system. The methodology to achieve our objective includes the structural and geochemical analysis of oriented faults, fault-veins and veins -former pathways- in the core. Structural mapping at the regional scale will help to identify the main structural system, which accommodates the regional stresses, and promotes fluid migration, accumulation and arrest. Fluid inclusions analysis by microthermometry, LA-ICP-MS and Raman spectroscopy will allow a better understanding of the feedback between the fluid flow episodes and the mineralization. More than 120 structural measurements of faults, veins and fault-veins were performed (strike, dip, rake -when available-). Forty seven samples were taken for thin & fluid inclusions sections. Detailed mapping of structures including dip and kinematic indicators from mineral sealing was synthesized in a structural log of Tol-1 core. Our preliminary results show that there is a strong correlation between abundance of structures and rock type. Lava intervals exhibit more intense fracturing and veining than tuff and volcaniclastic intervals. In the upper 300 m of the core, structures are primarily steeply dipping with a dominant normal sense of

  9. Large-Scale Multiphase Flow Modeling of Hydrocarbon Migration and Fluid Sequestration in Faulted Cenozoic Sedimentary Basins, Southern California (United States)

    Jung, B.; Garven, G.; Boles, J. R.


    Major fault systems play a first-order role in controlling fluid migration in the Earth's crust, and also in the genesis/preservation of hydrocarbon reservoirs in young sedimentary basins undergoing deformation, and therefore understanding the geohydrology of faults is essential for the successful exploration of energy resources. For actively deforming systems like the Santa Barbara Basin and Los Angeles Basin, we have found it useful to develop computational geohydrologic models to study the various coupled and nonlinear processes affecting multiphase fluid migration, including relative permeability, anisotropy, heterogeneity, capillarity, pore pressure, and phase saturation that affect hydrocarbon mobility within fault systems and to search the possible hydrogeologic conditions that enable the natural sequestration of prolific hydrocarbon reservoirs in these young basins. Subsurface geology, reservoir data (fluid pressure-temperature-chemistry), structural reconstructions, and seismic profiles provide important constraints for model geometry and parameter testing, and provide critical insight on how large-scale faults and aquifer networks influence the distribution and the hydrodynamics of liquid and gas-phase hydrocarbon migration. For example, pore pressure changes at a methane seepage site on the seafloor have been carefully analyzed to estimate large-scale fault permeability, which helps to constrain basin-scale natural gas migration models for the Santa Barbara Basin. We have developed our own 2-D multiphase finite element/finite IMPES numerical model, and successfully modeled hydrocarbon gas/liquid movement for intensely faulted and heterogeneous basin profiles of the Los Angeles Basin. Our simulations suggest that hydrocarbon reservoirs that are today aligned with the Newport-Inglewood Fault Zone were formed by massive hydrocarbon flows from deeply buried source beds in the central synclinal region during post-Miocene time. Fault permeability, capillarity

  10. The VITROVAC Cavity for the TERA/PIMMS Medical Synchrotron

    CERN Document Server

    Crescenti, M; Primadei, G; Etzkorn, F J; Schnase, A; Fougeron, C


    A proton and light-ion medical synchrotron is characterised by a large frequency swing for the RF between the injection and the top energy. For this purpose, a VITROVAC®-loaded RF cavity has been developed for the Proton-Ion Medical Machine Study (PIMMS) at CERN, and for TERA, the Italian project of a proton and light-ion synchrotron for cancer therapy, based on the PIMMS study. The main features are a large frequency swing, particularly extended to the low frequency range, a very large relative permeability and a low Q factor. The total power needed is less than 100 kW, while a very small bias power is required for the frequency tuning. The main mechanical characteristics are compactness (less than 1.5 m), and simplicity of construction. As a result, the requirements of the medical synchrotron are comfortably satisfied, namely: 0.4 to 3 MHz swing, 3 kV peak voltage at a repetition rate of less than 1 s.

  11. Stratigraphic record of Pliocene-Pleistocene basin evolution and deformation within the Southern San Andreas Fault Zone, Mecca Hills, California (United States)

    McNabb, James C.; Dorsey, Rebecca J.; Housen, Bernard A.; Dimitroff, Cassidy W.; Messé, Graham T.


    A thick section of Pliocene-Pleistocene nonmarine sedimentary rocks exposed in the Mecca Hills, California, provides a record of fault-zone evolution along the Coachella Valley segment of the San Andreas fault (SAF). Geologic mapping, measured sections, detailed sedimentology, and paleomagnetic data document a 3-5 Myr history of deformation and sedimentation in this area. SW-side down offset on the Painted Canyon fault (PCF) starting 3.7 Ma resulted in deposition of the Mecca Conglomerate southwest of the fault. The lower member of the Palm Spring Formation accumulated across the PCF from 3.0 to 2.6 Ma during regional subsidence. SW-side up slip on the PCF and related transpressive deformation from 2.6 to 2.3 Ma created a time-transgressive angular unconformity between the lower and upper members of the Palm Spring Formation. The upper member accumulated in discrete fault-bounded depocenters until initiation of modern deformation, uplift, and basin inversion starting at 0.7 Ma. Some spatially restricted deposits can be attributed to the evolution of fault-zone geometric complexities. However, the deformation events at ca. 2.6 Ma and 0.7 Ma are recorded regionally along 80 km of the SAF through Coachella Valley, covering an area much larger than mapped fault-zone irregularities, and thus require regional explanations. We therefore conclude that late Cenozoic deformation and sedimentation along the SAF in Coachella Valley has been controlled by a combination of regional tectonic drivers and local deformation due to dextral slip through fault-zone complexities. We further propose a kinematic link between the 2.6-2.3 Ma angular unconformity and a previously documented but poorly dated reorganization of plate-boundary faults in the northern Gulf of California at 3.3-2.0 Ma. This analysis highlights the potential for high-precision chronologies in deformed terrestrial deposits to provide improved understanding of local- to regional-scale structural controls on basin

  12. An improved low-frequency earthquakes catalogue in the vicinity of the late-interseismic central Alpine Fault, Southern Alps, New Zealand (United States)

    Baratin, Laura-May; Chamberlain, Calum J.; Townend, John; Savage, Martha K.


    Characterising the seismicity associated with slow deformation in the vicinity of the Alpine Fault may provide constraints on the state of stress of this major transpressive margin prior to a large (≥M8) earthquake. Here, we use recently detected tectonic tremor and low-frequency earthquakes (LFEs) to examine how slow tectonic deformation is loading the Alpine Fault toward an anticipated large rupture. We initially work with a continous seismic dataset collected between 2009 and 2012 from an array of short-period seismometers, the Southern Alps Microearthquake Borehole Array. Fourteen primary LFE templates, found through visual inspection within previously identified tectonic tremor, are used in an iterative matched-filter and stacking routine. This method allows the detection of similar signals and establishes LFE families with common locations. We thus generate a 36 month catalogue of 10718 LFEs. The detections are then combined for each LFE family using phase-weighted stacking to yield a signal with the highest possible signal to noise ratio. We found phase-weighted stacking to be successful in increasing the number of LFE detections by roughly 20%. Phase-weighted stacking also provides cleaner phase arrivals of apparently impulsive nature allowing more precise phase picks. We then compute non-linear earthquake locations using a 3D velocity model and find LFEs to occur below the seismogenic zone at depths of 18-34 km, locating on or near the proposed deep extent of the Alpine Fault. To gain insight into deep fault slip behaviour, a detailed study of the spatial-temporal evolution of LFEs is required. We thus generate a more extensive catalogue of LFEs spanning the years 2009 to 2016 using a different technique to detect LFEs more efficiently. This time 638 synthetic waveforms are used as primary templates in the match-filter routine. Of those, 38 templates yield no detections over our 7-yr study period. The remaining 600 templates end up detecting between 370

  13. First paleoseismological assessment of active deformation along the eastern front of the southern Alps (NE Italy, Friuli). Insights on the 1511 earthquake causative fault. (United States)

    Falcucci, Emanuela; Eliana Poli, Maria; Galadini, Fabrizio; Paiero, Giovanni; Scardia, Giancarlo; Zanferrari, Adriano


    seismic event, which is one of the largest events that struck Northern Italy in the past millennium, has been tentatively attributed to the activation of Idrija fault system (Fizko et al., 2005). However, no paleoseismological evidence of this has been provided to date, the damage distribution of this event suggests its seismogenic source to be located at the easternmost portion of the Julian Prealps, and our investigations indicate that the ESC has been probably involved in the seismotectonic framework of the 1511 seismic event. The present study provides information useful for updating and improving the knowledge on active faulting of the NE sector of the ESC and provides geological insights, substantiated by paleoseismological investigations performed for the first time along the front of the ESC, about one of the most problematic seismotectonic issues of Northern Italy, i.e. the 1511 earthquake. References Galadini et al. (2005). Seismogenic sources potentially responsible for earthquakes with M≥6 in the eastern Southern Alps (Thiene-Udine sector, NE Italy). G. J. I, 161, 739-762. Locati et al. (2011). DBMI11, the 2011 version of the Italian Macroseismic Database. Milano, Bologna, Fitzko et al. (2005). Constrains on the location and mechanism of the 1511 Western-Slovenia earthquake from active tectonics and modeling of macroseismic data. Tectonophysis, 404, 77-90.


    Directory of Open Access Journals (Sweden)

    Lily Suparlina


    Full Text Available Penggunaan bahan bakar tingkat muat tinggi dapat memperpanjang siklus operasi reaktor sampai 40 hari. Telah dilakukan perancangan konversi teras dari silisida tingkat muat rendah menuju tingkat muat tinggi. Manajemen konversi teras dari teras silisida tingkat muat 2,96 gU/cm3 menuju teras silisida 4,8 gU/cm3 dilakukan secara bertahap dengan melakukan perhitungan manajemen bahan bakar dalam teras yang menggunakan paket program perhitungan 2 dimensi Batan-FUEL. Penggantian bahan bakar di teras menggunakan pola pergeseran bahan bakar 5/1 yaitu setiap awal siklus terjadi penggantian 5 buah elemen bahan bakar standar dan 1 buah elemen bahan bakar kendali. Dengan mempertahankan konfigurasi teras yang sudah ada, konversi teras dapat dilakukan melalui simulasi teras campuran 2,96 gU/cm3 - 4,8 gU/cm3 dengan memperhatikan batasan keselamatan reaktor yang dipersyaratkan. Oleh karena itu tujuan dari penelitian ini adalah untuk merancang teras campuran yang akan menghasilkan parameter neutronik yang aman pada teras penuh pertama silisida tingkat muat tinggi. Dalam perancangan ini digunakan batang kendali pengaman untuk menambah margin padam yang berkurang akibat pemuatan bahan bakar tingkat muat tinggi. Hasil analisis menunjukkan bahwa konversi teras silisida tingkat muat 2,96 gU/cm3 menuju 4,8 gU/cm3 dapat dilakukan melalui teras campuran tidak langsung dalam 2 tahap yaitu konversi teras silisida 2,96 gU/cm3 - 3,55 gU/cm3 dan konversi teras silisida 3,55 gU/cm3 - 4,8 gU/cm3 dengan performa yang baik. Keuntungan utama dari penggunaan bahan bakar silisida tingkat muat tinggi 4,8 gU/cm3 dibanding teras silisida tingkat muat rendah 2,96 gU/cm3 pada teras RSG-GAS ialah bahwa panjang siklus operasi dapat lebih panjang 18 hari sehingga dapat menghemat penggunaan bahan bakar. Kata kunci : silisida, BKP, teras campuran, pola 5/1, Batan-FUEL   The usage of high density fuel can extend the reactor operation up to 40 days. Designing of low to high density silicide

  15. 40 CFR 725.255 - Information to be included in the TERA. (United States)


    ... TERA must submit phenotypic and ecological characteristics information required in § 725.155(d)(3) as..., geographical, physical, chemical, and biological features, proximity to human habitation or activity, and... notification. (2) Information on monitoring, confinement, mitigation, and emergency termination procedures. (i...

  16. An early modern human from the Peştera cu Oase, Romania

    NARCIS (Netherlands)

    Trinkaus, Erik; Moldovan, Oana; Milota, Ştefan; Bîlgǎr, Adrian; Sarcina, Laurenţiu; Athreya, Sheela; Bailey, Shara E.; Rodrigo, Ricardo; Mircea, Gherase; Higham, Thomas; Bronk Ramsey, Christopher; Van der Plicht, Johannes


    The 2002 discovery of a robust modern human mandible in the Peştera cu Oase, southwestern Romania, provides evidence of early modern humans in the lower Danubian Corridor. Directly accelerator mass spectrometry radiocarbon (14C)-dated to 34,00036,000 14C years B.P., the Oase 1 mandible is the oldest


    Directory of Open Access Journals (Sweden)

    Suwoto Suwoto


    Full Text Available Teras reaktor RDE (Reaktor Daya Eksperimental berbentuk silinder non anular, mengadopsi teknologi HTGR (High Temperature Gas-cooled Reactor berbahan bakar kernel partikel berlapis TRISO dalam bentuk bola (pebble dan berpendingin gas helium. Desain teras reaktor RDE ini mengadopsi teknologi reaktor temperatur tinggi HTGR dengan keselamatan inherent pasif yang sangat aman. Temperatur keluaran panas gas helium teras reaktor RDE dirancang pada kisaran 700°C dengan temperatur masukan sekitar 250°C. Di samping menghasilkan listrik, reaktor RDE didisain menghasilkan panas temperatur tinggi yang dapat digunakan untuk keperluan kogenerasi lainnya (penelitian panas proses lainnya. Bahan bakar pada RDE berbentuk bola yang berisikan kernel partikel berlapis TRISO yang berupa uranium oksida (UO2 berpengkayaan 17%. Lapisan TRISO terdiri 4 lapisan yaitu lapisan karbon penyangga berpori, lapisan karbon pirolitik bagian dalam (IPyC, Inner Pyrolitic Carbon, lapisan Silikon Karbida (SiC dan lapisan pirolitik karbon bagian luar (OPyC, OuterPyrolitic Carbon. Analisis kuat sumber dan perhitungan awal laju dosis neutron pada teras RDE dilakukan menggunakan program Monte Carlo MCNP5v1.2. Pemodelan heterogenitas ganda pada bahan bakar kernel partikel berlapis TRISO dan pada bahan bakar bola pada teras RDE. Dengan memanfaatkan program EGS99304, jumlah struktur group energi yaitu 640 (SAND-II group structure digunakan dalam perhitungan spektrum neutron pada reaktor RDE. Teras reaktor RDE dibagi dalam 100 zona (10 arah radial dan 10 arah aksial. Analisis hasil perhitungan menunjukkan bahwa kuat sumber neutron reaktor RDE sebesar 8,47027X1017 neutron/sekon. Distribusi laju dosis neutron ditentukan menggunakan faktor konversi fluks ke dosis neurton dari International Commission on Radiological Protection, ICRP dan NCRP. Hasil perhitungan awal laju dosis neutron dengan faktor konversi ICRP-21 dan NCRP-38 untuk pekerja radiasi pada arah radial di perisai biologis sudah


    Directory of Open Access Journals (Sweden)

    Iman Kuntoro


    Full Text Available Dalam rangka meningkatkan efisiensi penggunaan bahan bakar reaktor RSG-GAS telah dilakukan studi penentuan teras kompak. Hasil perhitungan parameter neutronik menunjukkan bahwa teras kompak dengan menutup empat fasilitas iradiasi (IP dengan elemen bakar dapat meningkatkan siklus operasi 23,6 %. Selanjutnya perlu dilakukan penentuan parameter kinetik dan analisis transien teras kompak untuk mengetahui keselamatan operasi reaktor. Perhitungan dilakukan dengan menggunakan program WIMS/D4 untuk generasi konstanta difusi sel elemen bakar dan MTRDYN untuk menentukan parameter kinetik dan analisis transien. Hasil perhitungan menunjukkan bahwa harga fraksi neutron kasip total teras kompak naik 2 % dan umur neutron serempak turun 8,3 % dibandingkan dengan teras setimbang. Temperatur maksimum bahan bakar saat transien pada daya awal 1 W adalah 71,64 0C dan pada daya 1 MW adalah 129,60 0C. Hasil ini menunjukkan bahwa teras kompak RSG-GAS aman digunakan sebagai teras alternatif. Kata kunci: parameter kinetik, transien, reaktor   For increasing the efficiency of fuel element of the RSG-GAS reactor, some alternative configuration has been searched to obtain a compact core configuration. Calculation result of the neutronics parameters that the compact core with insertion fuel element to all irradiation facility (IP can increase operation cycle length to about 23.6 %. Then, it is necessary to calculate the kinetic parameters and transient analysis of the compact core to verify the reactor operation safety. Calculations were performed by means of WIMS/D4 and MTRDYN code for generation of cell diffusion constants and for kinetic parameters and transient analysis respectively. The result showed that the total delayed neutron fraction of compact core increases by 2 % and the prompt neutron lifetime decreases 8.3 % compared to the equilibrium core. Maximum temperature of the fuel element at transient at initial power of 1 W is 71.64 0C and at the power 1 MW is 126

  19. Estimation of Maximum Ground Motions in the Form of ShakeMaps and Assessment of Potential Human Fatalities from Scenario Earthquakes on the Chishan Active Fault in southern Taiwan (United States)

    Liu, Kun Sung; Huang, Hsiang Chi; Shen, Jia Rong


    Historically, there were many damaging earthquakes in southern Taiwan during the last century. Some of these earthquakes had resulted in heavy loss of human lives. Accordingly, assessment of potential seismic hazards has become increasingly important in southern Taiwan, including Kaohsiung, Tainan and northern Pingtung areas since the Central Geological Survey upgraded the Chishan active fault from suspected fault to Category I in 2010. In this study, we first estimate the maximum seismic ground motions in term of PGA, PGV and MMI by incorporating a site-effect term in attenuation relationships, aiming to show high seismic hazard areas in southern Taiwan. Furthermore, we will assess potential death tolls due to large future earthquakes occurring on Chishan active fault. As a result, from the maximum PGA ShakeMap for an Mw7.2 scenario earthquake on the Chishan active fault in southern Taiwan, we can see that areas with high PGA above 400 gals, are located in the northeastern, central and northern parts of southwestern Kaohsiung as well as the southern part of central Tainan. In addition, comparing the cities located in Tainan City at similar distances from the Chishan fault have relatively greater PGA and PGV than those in Kaohsiung City and Pingtung County. This is mainly due to large site response factors in Tainan. On the other hand, seismic hazard in term of PGA and PGV, respectively, show that they are not particular high in the areas near the Chishan fault. The main reason is that these areas are marked with low site response factors. Finally, the estimated fatalities in Kaohsiung City at 5230, 4285 and 2786, respectively, for Mw 7.2, 7.0 and 6.8 are higher than those estimated for Tainan City and Pingtung County. The main reason is high population density above 10000 persons per km2 are present in Fongshan, Zuoying, Sanmin, Cianjin, Sinsing, Yancheng, Lingya Districts and between 5,000 and 10,000 persons per km2 are present in Nanzih and Gushan Districts in

  20. Evaluasi Parameter Desain Termohidrolika Teras dan Sub Kanal PLTN AP1000 Pada Kondisi Tunak

    Directory of Open Access Journals (Sweden)

    Muh. Darwis Isnaini


    sepanjang bejana teras sebesar 271,53 kPa (deviasi -1,26%, dengan distribusi laju alir melalui teras aktif sebesar 48.537,9 ton/jam (deviasi 0,19%, melalui guide thimble dan core barrel sebesar 2944,8 ton/jam (deviasi -3,05% dan melalui core shroud sebesar 283,2 ton/jam (deviasi 9,98%. Perhitungan penurunan tekanan teras aktif dengan CAUDVAP, COBRA-EN dan RELAP5 adalah 76,01 kPa, 73,78 kPa dan 73,3 kPa. Perbedaan ini disebabkan karena perubahan luasan dari bagian penyangga teras ke bagian perangkat bahan bakar tidak diperhitungkan di dalam kode COBRA-EN dan RELAP5. Hasil perhitungan termohidrolika teras (analisis kanal dengan COBRA-EN diperoleh bahwa temperatur meat perangkat bahan bakar berkisar antara 507,95 – 945,45oC, temperatur permukaan kelongsong bahan bakar 302,15 – 338,75oC dan DNBR minimum berkisar 2,23 – 6,07. Adapun analisis subkanal terpanas dengan COBRA-EN dan RELAP5 diperoleh temperatur pendingin keluaran masing-masing diperoleh 329,42 oC (deviasi 1,47% dan 324,51 oC (deviasi -0,05%, fluks kalor maksimum masing-masing diperoleh 1634,13 kW/m2 (deviasi -0,04% dan 1601,0 kW/m2 (deviasi -2,06%. Keseluruhan parameter termohidrolika yang didapat dari hasil perhitungan, dibandingkan dengan data desain menunjukkan tidak adanya perbedaan yang berarti, sehingga dapat disimpulkan bahwa perhitungan menggunakan kode CAUDVAP, COBRA-EN dan RELAP5 tersebut valid.

  1. Detection of small earthquakes with dense array data: example from the San Jacinto fault zone, southern California (United States)

    Meng, Haoran; Ben-Zion, Yehuda


    We present a technique to detect small earthquakes not included in standard catalogues using data from a dense seismic array. The technique is illustrated with continuous waveforms recorded in a test day by 1108 vertical geophones in a tight array on the San Jacinto fault zone. Waveforms are first stacked without time-shift in nine non-overlapping subarrays to increase the signal-to-noise ratio. The nine envelope functions of the stacked records are then multiplied with each other to suppress signals associated with sources affecting only some of the nine subarrays. Running a short-term moving average/long-term moving average (STA/LTA) detection algorithm on the product leads to 723 triggers in the test day. Using a local P-wave velocity model derived for the surface layer from Betsy gunshot data, 5 s long waveforms of all sensors around each STA/LTA trigger are beamformed for various incident directions. Of the 723 triggers, 220 are found to have localized energy sources and 103 of these are confirmed as earthquakes by verifying their observation at 4 or more stations of the regional seismic network. This demonstrates the general validity of the method and allows processing further the validated events using standard techniques. The number of validated events in the test day is >5 times larger than that in the standard catalogue. Using these events as templates can lead to additional detections of many more earthquakes.

  2. Endovascular abdominal aortic aneurysm sizing and case planning using the TeraRecon Aquarius workstation. (United States)

    Lee, W Anthony


    The gold standard for preoperative evaluation of an aortic aneurysm is a computed tomography angiogram (CTA). Three-dimensional reconstruction and analysis of the computed tomography data set is enormously helpful, and even sometimes essential, in proper sizing and planning for endovascular stent graft repair. To a large extent, it has obviated the need for conventional angiography for morphologic evaluation. The TeraRecon Aquarius workstation (San Mateo, Calif) represents a highly sophisticated but user-friendly platform utilizing a combination of task-specific hardware and software specifically designed to rapidly manipulate large Digital Imaging and Communications in Medicine (DICOM) data sets and provide surface-shaded and multiplanar renderings in real-time. This article discusses the basics of sizing and planning for endovascular abdominal aortic aneurysm repair and the role of 3-dimensional analysis using the TeraRecon workstation.

  3. The seismogenic Gole Larghe Fault Zone (Italian Southern Alps): quantitative 3D characterization of the fault/fracture network, mapping of evidences of fluid-rock interaction, and modelling of the hydraulic structure through the seismic cycle (United States)

    Bistacchi, A.; Mittempergher, S.; Di Toro, G.; Smith, S. A. F.; Garofalo, P. S.


    The Gole Larghe Fault Zone (GLFZ) was exhumed from 8 km depth, where it was characterized by seismic activity (pseudotachylytes) and hydrous fluid flow (alteration halos and precipitation of hydrothermal minerals in veins and cataclasites). Thanks to glacier-polished outcrops exposing the 400 m-thick fault zone over a continuous area > 1.5 km2, the fault zone architecture has been quantitatively described with an unprecedented detail, providing a rich dataset to generate 3D Discrete Fracture Network (DFN) models and simulate the fault zone hydraulic properties. The fault and fracture network has been characterized combining > 2 km of scanlines and semi-automatic mapping of faults and fractures on several photogrammetric 3D Digital Outcrop Models (3D DOMs). This allowed obtaining robust probability density functions for parameters of fault and fracture sets: orientation, fracture intensity and density, spacing, persistency, length, thickness/aperture, termination. The spatial distribution of fractures (random, clustered, anticlustered…) has been characterized with geostatistics. Evidences of fluid/rock interaction (alteration halos, hydrothermal veins, etc.) have been mapped on the same outcrops, revealing sectors of the fault zone strongly impacted, vs. completely unaffected, by fluid/rock interaction, separated by convolute infiltration fronts. Field and microstructural evidence revealed that higher permeability was obtained in the syn- to early post-seismic period, when fractures were (re)opened by off-fault deformation. We have developed a parametric hydraulic model of the GLFZ and calibrated it, varying the fraction of faults/fractures that were open in the post-seismic, with the goal of obtaining realistic fluid flow and permeability values, and a flow pattern consistent with the observed alteration/mineralization pattern. The fraction of open fractures is very close to the percolation threshold of the DFN, and the permeability tensor is strongly anisotropic


    Directory of Open Access Journals (Sweden)

    Jati Susilo


    Full Text Available Dalam penelitian ini dilakukan verifikasi perhitungan benchmark VERA pada kasus Zero Power Physical Test (ZPPT teras reaktor Watts Bar 1. Reaktor tersebut merupakan jenis PWR kelas 1000 MWe yang didesain oleh Westinghouse, tersusun dari 193 perangkat bahan bakar 17×17 dengan 3 jenis pengkayaan UO2 yaitu 2,1wt%, 2,619wt% dan 3,1wt%. Perhitungan nilai k-eff dan distribusi faktor daya dilakukan pada siklus operasi pertama teras dengan kondisi beginning of cycle (BOC dan hot zero power (HZP. Posisi batang kendali dibedakan menjadi uncontrolled (semua batang kendali berada di luar teras, dan controlled (batang kendali Bank D didalam teras. Paket program komputer yang digunakan dalam perhitungan adalah MVP-II dan SRAC2006 modul CITATION dengan data pustaka tampang lintang ENDF/B-VII.0. Hasil perhitungan menunjukkan bahwa perbedaan nilai k-eff teras pada kondisi controlled dan uncontrolled antara referensi dengan MVP-II (-0,07% dan -0,014% dan SRAC2006 (0,92% dan 0,99% sangat kecil atau masih dibawah 1%. Perbedaan faktor daya maksimum teras pada kondisi controlled dan uncontrolled dengan referensi dengan MVP-II adalah 0,38% dan 1,53%, sedangkan dengan SRAC2006 adalah 1,13% dan -2,45%. Dapat dikatakan bahwa kedua paket program komputer menunjukkan hasil perhitungan yang sesuai dengan nilai referensi. Dalam hal penentuan kekritisan teras, maka hasil perhitungan MVP-II lebih konservatif dibandingkan dengan SRAC2006. Kata kunci : MVP-II, SRAC2006, PWR, VERA   In this research, verification calculation for VERA core physics benchmark on the Zero Power Physical Test (ZPPT of the nuclear reactor Watts Bar 1. The reactor is a 1000 MWe class of PWR designed by Westinghouse, arranged from 193 unit of 17×17 fuel assembly consisting 3 type enrichment of UO2 that are 2.1wt%, 2.619wt% and 3.1wt%. Core power factor distribution and k-eff calculation has been done for the first cycle operation of the core at beginning of cycle (BOC and hot zero power (HZP. In this


    Directory of Open Access Journals (Sweden)

    Endiah Puji Hastuti


    Full Text Available ABSTRAK OPTIMASI DESAIN TERMOHIDROLIKA TERAS DAN SISTEM PENDINGIN REAKTOR RISET INOVATIF DAYA TINGGI. Implementasi reaktor inovasi telah diterapkan pada berbagai reaktor riset baru yang saat ini sedang dibangun.  Pada saat ini BATAN sedang merancang desain konseptual reaktor riset daya tinggi yang telah masuk pada tahap optimasi desain. Spesifikasi desain konseptual reaktor riset inovatif adalah reaktor tipe kolam berpendingin air dan reflektor D2O. Teras reaktor memiliki kisi 5x5 dengan 16 bahan bakar dan 4 batang kendali. Teras reaktor berada di dalam tabung berisi D2O yang berfungsi sebagai posisi iradiasi. Daya reaktor 50 MW didesain untuk membangkitkan fluks neutron termal sebesar 5x1014 n/cm2s. Teras reaktor berbentuk kompak dan menggunakan bahan bakar U9Mo-Al dengan tingkat muat uranium 7-9 gU/cm3. Desain termohidrolika yang mencakup pemodelan, perhitungan dan analisis kecukupan pendingin dibuat sinergi dengan desain fisika teras agar keselamatan reaktor terjamin. Makalah ini bertujuan menyampaikan hasil analisis perhitungan termohidrolika teras dan sistem reaktor riset inovatif pada kondisi tunak. Analisis dilakukan menggunakan program perhitungan yang telah tervalidasi, masing-masing adalah Caudvap, PARET-ANL, Fluent dan ChemCad 6.4.1. Hasil perhitungan menunjukkan bahwa pembangkitan panas yang tinggi dapat dipindahkan tanpa menyebabkan pendidihan dengan menerapkan desain teras reaktor bertekanan, di samping itu desain awal komponen utama sistem pembuangan panas yang terintegrasi telah dilakukan, sehingga konseptual desain termohidrolika RRI-50 dapat diselesaikan. Kata kunci : reaktor riset inovatif, Caudvap, PARET-ANL, Fluent, ChemCad 6.4.1.   ABSTRACT THERMALHYDRAULIC DESIGN AND COOLING SYSTEM OPTIMIZATION OF THE HIGH POWER INOVATIVE RESEARCH REACTOR. Reactor innovation has been implemented in a variety of new research reactors that currently are being built. At this time BATAN is designing a conceptual design of the high power

  6. GEO-ARKEOLOGI TERAS PURBA BENGAWAN SOLO DI SEKITAR KABUPATEN BOJONEGORO, JAWA TIMUR The Geo-archaeology of Ancient Terrace of Bengawan Solo in Bojonegoro Surrounding Regency, East Java

    Directory of Open Access Journals (Sweden)

    Johan Arif


    Abstrak Pemetaan teras purba Bengawan Solo merupakan kajian geo-arkeologi tahap awal yang dilakukan di beberapa lokasi di wilayah kabupaten Bojonegoro, Jawa Timur. Permasalahannya adalah ditemukannya indikasi keberadaan peralatan batu paleolitik dan fosil-fosil vertebrata di beberapa teras purba di wilayah ini. Oleh karena itu, tujuan dari kegiatan ini adalah mendapatkan gambaran sebaran teras purba Bengawan Solo berumur Kuarter serta memberikan usulan kepada para ahli arkeologi dalam merancang kegiatan pencarian sisa-sisa budaya manusia antara lain peralatan batu paleolitik maupun sisa-sisa fosil rangka manusia dan hewan pada suatu teras purba. Metode yang dipakai di dalam penelitian ini adalah metode pemetaan geologi, deskripsi profil sedimen, pengambilan contoh-contoh sedimen (termasuk fosil hewan untuk keperluan analisa sedimentologi dan analisa kimia. Di daerah penelitian yang terletak di kabupaten Bojonegoro dijumpai tiga teras yaitu Teras Menden (berumur sub-Resen, Jipangulu (berumur Holosen Awal dan Ngandong (berumur Plestosen Atas. Teras Menden dijumpai di Payaman, Teras Jipangulu di Prangi dan Wotangare dan Teras Ngandong dijumpai di Prangi dan di desa Kedung. Berdasarkan bukti stratigrafinya ketiga teras tersebut disusun oleh lapisan pasir ukuran kasar hingga kerikilan di bagian bawah dan berubah menjadi pasir lempungan dan lempung pasiran di bagian atas. Fenomena ini menunjukkan bahwa ketiga teras tersebut dibentuk oleh sungai yang berkelok-kelok yaitu Bengawan Solo purba. Kedudukan masing-masing teras purba di daerah penelitian yang diukur dari Bengawan Solo adalah 2-3 m (Teras Menden, 5-7 m (Teras Jipangulu dan >8 m (Teras Ngandong. Berdasarkan hasil kajian teras purba ini diusulkan agar para ahli arkeologi lebih memfokuskan kepada perlapisan sedimen yang berukuran kasar dalam sistem endapan sungai purba berumur Kuarter untuk mencari sisa-sisa budaya manusia paleolitikum seperti peralatan batu maupun sisa-sisa fosil rangka manusia dan hewan.   Kata

  7. Faults Images (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...


    Directory of Open Access Journals (Sweden)

    Zuhair Zuhair


    Full Text Available Dalam high temperature reactor, koefisien reaktivitas temperatur yang didesain negatif menjamin reaksi fisi dalam teras tetap berada di bawah kendali dan panas peluruhan tidak akan pernah melelehkan bahan bakar yang menyebabkan terlepasnya zat radioaktif ke lingkungan. Namun masuknya air (water ingress ke dalam teras reaktor akibat pecahnya tabung penukar panas generator uap, yang dikenal sebagai salah satu kecelakaan dasar desain, dapat mengintroduksi reaktivitas positif dengan potensi bahaya lainnya seperti korosi grafit dan kerusakan material struktur reflektor. Makalah ini akan menganalisis efek kecelakaan water ingress terhadap reaktivitas Doppler teras RGTT200K. Kapabilitas koefisien reaktivitas Doppler untuk mengkompensasi reaktivitas positif yang timbul selama kecelakaan water ingress akan diuji melalui serangkaian perhitungan dengan program MCNPX dan pustaka ENDF/B-VII untuk perubahan temperatur bahan bakar dari 800K hingga 1800K. Tiga opsi kernel bahan bakar UO2, ThO2/UO2 dan PuO2 dengan tiga model kisi bahan bakar pebble di teras reaktor diterapkan untuk kondisi water ingress dengan densitas air dari 0 hingga 1.000 kg/m3. Hasil perhitungan memperlihatkan koefisien reaktivitas Doppler tetap negatif untuk seluruh opsi bahan bakar yang dipertimbangkan bahkan untuk posibilitas water ingress yang besar. Efek water ingress lebih kuat pada model kisi dengan fraksi packing lebih rendah karena lebih banyak volume yang tersedia untuk air yang memasuki teras reaktor. Efek water ingress juga lebih kuat di teras uranium dibandingkan teras thorium dan plutonium sebagai konsekuensi dari fenomena Doppler dimana absorpsi neutron di daerah resonansi 238U lebih besar daripada 232Th dan 240Pu. Secara keseluruhan dapat disimpulkan bahwa, koefisien Doppler teras RGTT200K mampu mengkompensasi insersi reaktivitas yang diintroduksi oleh kecelakaan water ingress. Teras RGTT200K dengan bahan bakar UO2, ThO2/UO2 dan PuO2 dapat mempertahankan fitur keselamatan

  9. Tera-scalable Algorithms for Variable-Density Elliptic Hydrodynamics with Spectral Accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Cook, A W; Cabot, W H; Welcome, M L; Williams, P L; Miller, B J; de Supinski, B R; Yates, R K


    A hybrid spectral/compact solver for variable-density viscous incompressible flow is described. Parallelization strategies for the FFTs and band-diagonal matrices are discussed and compared. Transpose methods are found to be highly competitive with direct block parallel methods when the problem is scaled to tens of thousands of processors. Various mapping strategies for the IBM BlueGene/L torus configuration of processors are explored. By optimizing the communication, we have achieved virtually perfect scaling to 32768 nodes. Furthermore, communication rates come very close to the theoretical peak speed of the BlueGene/L network with sustained computation in the TeraFLOPS range.

  10. Fault Estimation

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.


    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...

  11. TeraSCREEN: multi-frequency multi-mode Terahertz screening for border checks (United States)

    Alexander, Naomi E.; Alderman, Byron; Allona, Fernando; Frijlink, Peter; Gonzalo, Ramón; Hägelen, Manfred; Ibáñez, Asier; Krozer, Viktor; Langford, Marian L.; Limiti, Ernesto; Platt, Duncan; Schikora, Marek; Wang, Hui; Weber, Marc Andree


    The challenge for any security screening system is to identify potentially harmful objects such as weapons and explosives concealed under clothing. Classical border and security checkpoints are no longer capable of fulfilling the demands of today's ever growing security requirements, especially with respect to the high throughput generally required which entails a high detection rate of threat material and a low false alarm rate. TeraSCREEN proposes to develop an innovative concept of multi-frequency multi-mode Terahertz and millimeter-wave detection with new automatic detection and classification functionalities. The system developed will demonstrate, at a live control point, the safe automatic detection and classification of objects concealed under clothing, whilst respecting privacy and increasing current throughput rates. This innovative screening system will combine multi-frequency, multi-mode images taken by passive and active subsystems which will scan the subjects and obtain complementary spatial and spectral information, thus allowing for automatic threat recognition. The TeraSCREEN project, which will run from 2013 to 2016, has received funding from the European Union's Seventh Framework Programme under the Security Call. This paper will describe the project objectives and approach.

  12. Mosaicos de la Villa Astur-Romana de Camarzana de Tera (Zamora

    Directory of Open Access Journals (Sweden)

    F. Regueras Grande


    Full Text Available Estudio de mosaicos de la villa tardorromana de Camarzana de Tera (Zamora, conocida desde 1861, pero excavada sólo recientemente (2007- 2008. Conjunto de teselados de gran interés iconográfico (rapto de Europa, Ariadna dormida, Orfeo y los animales, varias escenas de cacería, panteras báquicas, viñas con perdices picoteando racimos, cuatro caballos con epígrafes. Lamentablemente su estado de conservación es alarmante y en la actualidad se encuentran tapados con tierra. Datación inconcreta en el siglo IV, más debido a criterios estilísticos —y ciertos registros materiales— que estratigráficos, inexistentes.A study of tessellated pavements in the late Roman Villa of Camarzana de Tera (Zamora, whose existence is known since 1861 but only recently excavated (2007- 2008. It’s an important set of roman mosaics of great iconographic value (Europa’s kidnapping, Ariane sleeping, Orpheus and the animals, several hunting scenes, Bacchic panthers, partridges pecking at grapes in a vineyard, four horses with epigraphs. Unfortunately, their condition is quite alarming as they are covered by a thin layer of soil. Hard to date exactly, IV century, due to style and some material criteria rather than stratigraphic ones, which are nonexistent.


    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti


    Full Text Available Manfaat yang luas dari penggunaan reaktor riset membuat banyak negara membangun reaktor riset baru. Kecenderungan saat ini adalah reaktor tipe reaktor serbaguna (MPR dengan teras yang kompak untuk mendapatkan fluks neutron yang tinggi dengan daya yang relatif sedang atau rendah. Reaktor riset yang ada di Indonesia yang paling muda usianya sudah berumur 25 tahun. Oleh karena itu diperlukan desain reaktor riset baru sebagai alternatif, disebut reaktor riset inovatif (RRI, kelak pengganti reaktor riset yang sudah ada. Tujuan dari riset ini mendapatkan konfigurasi teras setimbang reaktor riset yang optimal dengan kriteria memiliki fluks neutron termal minimum sebesar 2,5x1014 n/cm2 s pada daya 20 MW (minimum, memiliki panjang operasi satu siklus lebih dari 40 hari dan penggunaan bahan bakar yang paling efisien. Desain neutronik dilakukan untuk bahan bakar baru U-9Mo-Al dengan kerapatan bervariasi dan jenis reflektor yang bervariasi. Desain dilakukan dengan paket program WIMSD-5B dan BATAN-FUEL. Hasil desain konseptual menyajikan 4 konfigurasi teras yaitu 5×5, 5×7, 6×5 dan 6×6. Hasil optimasi menunjukkan bahwa teras setimbang reaktor RRI dengan konfigurasi 5×5, tingkat muat 235U sebesar 450 g, reflektor berilium, fluks neutron termal maksimum di daerah reflektor sebesar 3,33×1014 neutron cm-2s-1 dan panjang siklus 57 hari merupakan desain teras reaktor riset inovatif yang paling optimal. Kata kunci: desain konseptual, bahan bakar uranium-molibdenum,berilium, D2O, WIMS, BATAN-FUEL   The multipurpose of research reactor utilization make many countries build the new research reactor. Trend of this reactor for this moment is multipurpose reactor type with a compact core to get high neutron flux at the low or medium level of power. The research newest reactor in Indonesia right now is already 25 year old. Therefore, it is needed to design a new research reactor, called innovative research reactor (IRR and then as an alternative to replace the old


    Directory of Open Access Journals (Sweden)

    Susyadi Susyadi


    Full Text Available ABSTRAK INVESTIGASI KARAKTERISTIK TERMOHIDROLIKA TERAS REAKTOR DAYA KECIL DENGAN PENDINGINAN SIRKULASI ALAM MENGGUNAKAN RELAP5. Reaktor modular daya-kecil (small modular reactor, SMR memiliki prospek tinggi untuk dibangun di Indonesia. Keluaran dayanya yang relatif kecil dan disainnya yang kompak serta dapat dikonstruksi secara modular memberikan keunggulan fleksibilitas pembangunan yang lebih baik dibanding reaktor konvensional berdaya besar. Disain sistem reaktor kategori ini sangat bervariasi, salah satu diantaranya adalah jenis reaktor air tekan (pressurized water reactor, PWR yang menerapkan sirkulasi alamiah pada sistem pendingin primernya. Selain itu reaktor ini juga memiliki teras (core lebih pendek dibanding PWR konvensional. Dari kedua perbedaan tersebut maka terdapat kemungkinan perbedaan pola perpindahan panas yang dapat berimplikasi terhadap keselamatan secara keseluruhan. Oleh karena itu, pada penelitian ini dilakukan investigasi terhadap karakteristik termohidrolika teras reaktor tersebut khususnya karakteristik temperatur fluida dan bahan bakar serta laju alir fluidanya. Tujuannya adalah untuk mengetahui perbedaan marjin keselamatan temperatur teras reaktor bila dibanding dengan PWR konvensional. Investigasi dilakukan dengan menggunakan program RELAP5, dimana secara parsial teras reaktor dimodelkan menggunakan model-model generik yang ada pada program dan dilakukan beberapa perhitungan kondisi tunak. Hasil perhitungan menunjukkan bahwa saat beroperasi pada daya nominalnya, reaktor modular ini memiliki margin temperatur pendidihan sebesar 2K lebih baik dibanding reaktor konvensional. Selain itu, keunggulan marjin keselamatan reaktor modular daya-kecil ini juga ditunjukkan dari naiknya laju alir mengikuti kenaikan dayanya yang berarti memiliki sifat keselamatan yang melekat (inherent safety. Kata kunci: reaktor modular daya-kecil, PWR, sirkulasi alam, RELAP5, termohidrolika   ABSTRACT INVESTIGATION ON CORE THERMAL HYDRAULIC


    Directory of Open Access Journals (Sweden)

    Sudjatmi K A


    Full Text Available ABSTRAK Analisis Konveksi Alam Teras Reaktor Triga Berbahan Bakar Tipe Pelat MENGGUNAKAN COOLOD-N2. Rencana penghentian produksi elemen bakar jenis TRIGA oleh produsen elemen bakar reaktor TRIGA, sudah seharusnya diantisipasi oleh badan pengoperasi reaktor TRIGA untuk menggantikan elemen bakar tipe silinder tersebut dengan tipe pelat yang tersedia di pasaran. Pada penelitian ini dilakukan perhitungan untuk model teras reaktor dengan spesifikasi utama menggunakan bahan bakar U3Si2Al dengan pengayaan uranium  sebesar 19,75% dan tingkat muat 2,96 gU/cm3. Analisis dilakukan menggunakan program COOLOD-N2 yang tervalidasi pada konfigurasi teras TRIGA konversi berbahan bakar tipe pelat, yang tersusun atas 16 elemen bakar, 4 elemen kendali dan 1 fasilitas iradiasi yang terletak tepat di tengah teras. Hasil analisis menunjukkan bahwa dengan temperatur pendingin masuk ke teras sebesar 37oC, dan rasio faktor puncak daya radial ≤ 1,92 maka daya maksimum yang dapat dioperasikan pada moda operasi konveksi bebas adalah 600 kW. Karakteristik termohidrolika yang diperoleh antara lain adalah temperatur pendingin di sisi outlet, kelongsong dan meat masing-masing sebesar 82,39oC, 108,88oC, dan 109,02oC, pada ΔTONB (Temperature Onset of Nucleate Boiling =7,18oC dan nilai OFIR (Onset of flow instability ratio =1,03 Hasil yang diperoleh dari perhitungan ini diharapkan dapat dijadikan acuan untuk menentukan tingkat daya reaktor TRIGA berbahan bakar pelat. Kata kunci: TRIGA Konversi, COOLOD-N2, karakteristik termohidrolika, konveksi alam, elemen bakar tipe pelat.   ABSTRACT ANALYSIS OF NATURAL CONVECTION IN TRIGA REACTOR CORE PLATE TYPES FUELED USING COOLOD-N2. Any pretensions to stop the production of TRIGA fuel elements by TRIGA reactor fuel elements manufacturer should be anticipated by the operating agency of TRIGA reactor to replace the cylinder type fuel element with plate type fuel element that available on the market. In this study, the calculation of U3Si2

  16. Fault-Related CO2 Degassing, Geothermics, and Fluid Flow in Southern California Basins--Physiochemical Evidence and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Garven, Grant [Tufts Univ., Medford, MA (United States)


    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  17. Fault-related CO2 degassing, geothermics, and fluid flow in southern California basins---Physiochemical evidence and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Boles, James R. [Univ. of California, Santa Barbara, CA (United States); Garven, Grant [Tufts Univ., Medford, MA (United States)


    Our studies have had an important impact on societal issues. Experimental and field observations show that CO2 degassing, such as might occur from stored CO2 reservoir gas, can result in significant stable isotopic disequilibrium. In the offshore South Ellwood field of the Santa Barbara channel, we show how oil production has reduced natural seep rates in the area, thereby reducing greenhouse gases. Permeability is calculated to be ~20-30 millidarcys for km-scale fault-focused fluid flow, using changes in natural gas seepage rates from well production, and poroelastic changes in formation pore-water pressure. In the Los Angeles (LA) basin, our characterization of formation water chemistry, including stable isotopic studies, allows the distinction between deep and shallow formations waters. Our multiphase computational-based modeling of petroleum migration demonstrates the important role of major faults on geological-scale fluid migration in the LA basin, and show how petroleum was dammed up against the Newport-Inglewood fault zone in a “geologically fast” interval of time (less than 0.5 million years). Furthermore, these fluid studies also will allow evaluation of potential cross-formational mixing of formation fluids. Lastly, our new study of helium isotopes in the LA basin shows a significant leakage of mantle helium along the Newport Inglewood fault zone (NIFZ), at flow rates up to 2 cm/yr. Crustal-scale fault permeability (~60 microdarcys) and advective versus conductive heat transport rates have been estimated using the observed helium isotopic data. The NIFZ is an important deep-seated fault that may crosscut a proposed basin decollement fault in this heavily populated area, and appears to allow seepage of helium from the mantle sources about 30 km beneath Los Angeles. The helium study has been widely cited in recent weeks by the news media, both in radio and on numerous web sites.

  18. Late Quaternary eruption of the Ranau Caldera and new geological slip rates of the Sumatran Fault Zone in Southern Sumatra, Indonesia (United States)

    Natawidjaja, Danny Hilman; Bradley, Kyle; Daryono, Mudrik R.; Aribowo, Sonny; Herrin, Jason


    Over the last decade, studies of natural hazards in Sumatra have focused primarily on great earthquakes and associated tsunamis produced by rupture of the Sunda megathrust. However, the Sumatran Fault and the active volcanic arc present proximal hazards to populations on mainland Sumatra. At present, there is little reliable information on the maximum magnitudes and recurrence intervals of Sumatran Fault earthquakes, or the frequency of paroxysmal caldera-forming (VEI 7-8) eruptions. Here, we present new radiocarbon dates of paleosols buried under the voluminous Ranau Tuff that constrain the large caldera-forming eruption to around 33,830-33,450 calender year BP (95% probability). We use the lateral displacement of river channels incised into the Ranau Tuff to constrain the long-term slip rate of two segments of the Sumatran Fault. South of Ranau Lake, the Kumering segment preserves isochronous right-lateral channel offsets of approximately 350 ± 50 m, yielding a minimum slip rate of 10.4 ± 1.5 mm/year for the primary active fault trace. South of Suoh pull-apart depression, the West Semangko segment offsets the Semangko River by 230 ± 60 m, yielding an inferred slip rate of 6.8 ± 1.8 mm/year. Compared with previous studies, these results indicate more recent high-volume volcanism in South Sumatra and increased seismic potency of the southernmost segments of the Sumatran Fault Zone.

  19. Finding faults

    Energy Technology Data Exchange (ETDEWEB)

    Barber, J.; Duke, J. [Surpac Minex Group (Australia)


    The Surpac Minex Group has been building a geologic model to represent the coal seam structure at the Carbones del Cerrejon LLC mine in north eastern Colombia which is bonded by major reserve and normal faults. This is being achieved through a new software faulting tool. The tool combines existing Minex modelling with new fault interpretation tools. New software that permits 3-D photogrammetry and seismic data can also be incorporated. 6 figs.

  20. Sistema de información geográfica del Ayuntamiento de Bétera basado en software libre


    García Benlloch, Antonio


    El sistema de información geográfica del Ayuntamiento de Bétera nace con la necesidad de obtener una cartografía única y accesible a técnicos ubicados en distintos departamentos o edificios, ciudadanos, empresas y administraciones públicas

  1. From velocity and attenuation tomography to rock physical modeling: Inferences on fluid-driven earthquake processes at the Irpinia fault system in southern Italy (United States)

    Amoroso, O.; Russo, G.; De Landro, G.; Zollo, A.; Garambois, S.; Mazzoli, S.; Parente, M.; Virieux, J.


    We retrieve 3-D attenuation images of the crustal volume embedding the fault system associated with the destructive Ms 6.9, 1980 Irpinia earthquake by tomographic inversion of t* measurements. A high QP anomaly is found to be correlated with the 1980 fault geometry, while the QS model shows regional-scale variations related to the NE edge of the uplifted pre-Tertiary limestone. An upscaling strategy is used to infer rock properties such as porosity, consolidation, type of fluid mixing, and relative saturation percentage at 8-10 km fault depth. We constrain the porosity and consolidation in the ranges 4-5% and 5-9, respectively, with the possible fluid mixes being both brine-CO2 and CH4-CO2. The consolidation parameter range indicates high pore pressures at the same depths. These results support the evidence for a fracture system, highly saturated in gases and a seismicity triggering mechanism at the fault zone, which is strongly controlled by fluid-induced pore pressure changes.

  2. Fast variability of tera-electron volt gamma rays from the radio galaxy M87. (United States)

    Aharonian, F; Akhperjanian, A G; Bazer-Bachi, A R; Beilicke, M; Benbow, W; Berge, D; Bernlöhr, K; Boisson, C; Bolz, O; Borrel, V; Braun, I; Brown, A M; Bühler, R; Büsching, I; Carrigan, S; Chadwick, P M; Chounet, L-M; Coignet, G; Cornils, R; Costamante, L; Degrange, B; Dickinson, H J; Djannati-Ataï, A; Drury, L O'c; Dubus, G; Egberts, K; Emmanoulopoulos, D; Espigat, P; Feinstein, F; Ferrero, E; Fiasson, A; Fontaine, G; Funk, Seb; Funk, S; Füssling, M; Gallant, Y A; Giebels, B; Glicenstein, J F; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Kendziorra, E; Kerschhaggl, M; Khélifi, B; Komin, Nu; Konopelko, A; Kosack, K; Lamanna, G; Latham, I J; Le Gallou, R; Lemière, A; Lemoine-Goumard, M; Lenain, J-P; Lohse, T; Martin, J M; Martineau-Huynh, O; Marcowith, A; Masterson, C; Maurin, G; McComb, T J L; Moulin, E; de Naurois, M; Nedbal, D; Nolan, S J; Noutsos, A; Orford, K J; Osborne, J L; Ouchrif, M; Panter, M; Pelletier, G; Pita, S; Pühlhofer, G; Punch, M; Ranchon, S; Raubenheimer, B C; Raue, M; Rayner, S M; Reimer, A; Ripken, J; Rob, L; Rolland, L; Rosier-Lees, S; Rowell, G; Sahakian, V; Santangelo, A; Saugé, L; Schlenker, S; Schlickeiser, R; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Sol, H; Spangler, D; Spanier, F; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J-P; Terrier, R; Tluczykont, M; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Völk, H J; Wagner, S J; Ward, M


    The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central black hole. We thus can exclude several other sites and processes of the gamma-ray production. The observations confirm that TeV gamma rays are emitted by extragalactic sources other than blazars, where jets are not relativistically beamed toward the observer.


    Directory of Open Access Journals (Sweden)

    Zuhair .


    Full Text Available Konsep sistem energi VHTR baik yang berbahan bakar pebble (VHTR pebble bed maupun blok prismatik (VHTR prismatik menarik perhatian fisikawan reaktor nuklir. Salah satu kelebihan teknologi bahan bakar bola adalah menawarkan terobosan teknologi pengisian bahan bakar tanpa harus menghentikan produksi listrik. Selain itu, partikel bahan bakar pebble dengan kernel uranium oksida (UO2 atau uranium oksikarbida (UCO yang dibalut TRISO dan pelapisan silikon karbida (SiC dianggap sebagai opsi utama dengan pertimbangan performa tinggi pada burn-up bahan bakar dan temperatur tinggi. Makalah ini mendiskusikan pemodelan dan perhitungan transport Monte Carlo dalam teras HTR pebble bed. HTR pebble bed adalah reaktor berpendingin gas temperatur tinggi dan bermoderator grafit dengan kemampuan kogenerasi. Perhitungan dikerjakan dengan program MCNP5 pada temperatur 1200 K. Pustaka data nuklir energi kontinu ENDF/B-V dan ENDF/B-VI dimanfaatkan untuk melengkapi analisis. Hasil perhitungan secara keseluruhan menunjukkan konsistensi dengan nilai keff yang hampir sama untuk pustaka data nuklir yang digunakan. Pustaka ENDF/B-VI (66c selalu memproduksi keff lebih besar dibandingkan ENDF/B-V (50c maupun ENDF/B-VI (60c dengan bias kurang dari 0,25%. Kisi BCC memprediksi keff hampir selalu lebih kecil daripada kisi lainnya, khususnya FCC. Nilai keff kisi BCC lebih dekat dengan kisi FCC dengan bias kurang dari 0,19% sedangkan dengan kisi SH bias perhitungannya kurang dari 0,22%. Fraksi packing yang sedikit berbeda (BCC= 61%, SH= 60,459% tidak membuat bias perhitungan menjadi berbeda jauh. Estimasi keff ketiga model kisi menyimpulkan bahwa model BCC lebih bisa diadopsi dalam perhitungan HTR pebble bed dibandingkan model FCC dan SH. Verifikasi hasil estimasi ini perlu dilakukan dengan simulasi Monte Carlo atau bahkan program deterministik lainnya guna optimisasi perhitungan teras reaktor temperatur tinggi.   Kata-kunci: kernel, TRISO, bahan bakar pebble, HTR pebble bed

  4. Fault diagnosis (United States)

    Abbott, Kathy


    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  5. Photon transport of the superradiant TeraFERMI THz beamline at the FERMI free-electron laser. (United States)

    Svetina, Cristian; Mahne, Nicola; Raimondi, Lorenzo; Perucchi, Andrea; Di Pietro, Paola; Lupi, Stefano; Schmidt, Bernhard; Zangrando, Marco


    TeraFERMI is the new terahertz (THz) beamline for pump-probe studies on the femtosecond time-scale, under construction at the FERMI free-electron laser (FEL) facility in Trieste, Italy. The beamline will take advantage of the coherent radiation emitted by the spent electrons from the FEL undulators, before being dumped. This will result in short, coherent, high-power THz pulses to be used as a pump beam, in order to modulate structural properties of matter, thereby inducing phase transitions. The TeraFERMI beamline collects THz radiation in the undulator hall and guides it along a beam pipe which is approximately 30 m long, extending across the safety hutch and two shielding walls. Here the optical design, which will allow the efficient transport of the emitted THz radiation in the experimental hall, is presented.

  6. Result of alpha track detection of radon in soil gas in the Khlong Marui Fault Zone, Southern Thailand: A possible earthquake precursor

    Directory of Open Access Journals (Sweden)

    Tripob Bhongsuwan


    Full Text Available Measurements of radon concentration in soil gas were conducted at ten stations (ST1-ST10, located mainly in theKhlong Marui Fault Zone, Thap Put District, Phang Nga Province over a period from 28 January to 25 April, 2007. The resultsof the radon concentration were presented as the variation of cumulative alpha track over a week period. At Station ST10 theradon concentrations are in general higher than those at other stations for every week. Two significant radon anomalies werefound to have the concentration above the mean value plus one standard deviation. During the period of monitoring thelocal and regional earthquake activities were observed showing patterns consistent with the occurrence of the radon anomalies.The maximum radon concentration is interpreted to be related to a possible influence of the pressure and stress increasedin the subsurface. An increase in the number of earthquakes is observed correlating to a lower radon concentration when thesubsurface pressure dropped due to tectonic stress release by seismic activities. Therefore, it would be possible to use thevariation of soil gas radon concentration as an earthquake precursor in the Khlong Marui Fault Zone.

  7. Stratigraphy of amethyst geode-bearing lavas and fault-block structures of the Entre Rios mining district, Paraná volcanic province, southern Brazil

    Directory of Open Access Journals (Sweden)



    Full Text Available The Entre Rios mining district produces a large volume of amethyst geodes in underground mines and is part of the world class deposits in the Paraná volcanic province of South America. Two producing basalt flows are numbered 4 and 5 in the lava stratigraphy. A total of seven basalt flows and one rhyodacite flow are present in the district. At the base of the stratigraphy, beginning at the Chapecó river bed, two basalt flows are Esmeralda, low-Ti type. The third flow in the sequence is a rhyodacite, Chapecó type, Guarapuava subtype. Above the rhyodacite flow, four basalt flows are Pitanga, high-Ti type including the two mineralized flows; only the topmost basalt in the stratigraphy is a Paranapanema, intermediate-Ti type. Each individual flow is uniquely identified from its geochemical and gamma-spectrometric properties. The study of several sections in the district allowed for the identification of a fault-block structure. Blocks are elongated NW and the block on the west side of the fault was downthrown. This important structural characterization of the mining district will have significant consequences in the search for new amethyst geode deposits and in the understanding of the evolution of the Paraná volcanic province.

  8. A collaborative network middleware project by Lambda Station, TeraPaths, and Phoebus

    Energy Technology Data Exchange (ETDEWEB)

    Bobyshev, A.; /Fermilab; Bradley, S.; /Brookhaven; Crawford, M.; /Fermilab; DeMar, P.; /Fermilab; Katramatos, D.; /Brookhaven; Shroff, K.; /Brookhaven; Swany, M.; /Delaware U.; Yu, D.; /Brookhaven


    The TeraPaths, Lambda Station, and Phoebus projects, funded by the US Department of Energy, have successfully developed network middleware services that establish on-demand and manage true end-to-end, Quality-of-Service (QoS) aware, virtual network paths across multiple administrative network domains, select network paths and gracefully reroute traffic over these dynamic paths, and streamline traffic between packet and circuit networks using transparent gateways. These services improve network QoS and performance for applications, playing a critical role in the effective use of emerging dynamic circuit network services. They provide interfaces to applications, such as dCache SRM, translate network service requests into network device configurations, and coordinate with each other to setup up end-to-end network paths. The End Site Control Plane Subsystem (ESCPS) builds upon the success of the three projects by combining their individual capabilities into the next generation of network middleware. ESCPS addresses challenges such as cross-domain control plane signalling and interoperability, authentication and authorization in a Grid environment, topology discovery, and dynamic status tracking. The new network middleware will take full advantage of the perfSONAR monitoring infrastructure and the Inter-Domain Control plane efforts and will be deployed and fully vetted in the Large Hadron Collider data movement environment.

  9. The doping concentration and physical properties measurement of silicon water using tera hertz wave

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung Hyeon; Oh, Gyung Hwan; Kim, Hak Sung [Dept. of Mechanical Convergence Engineering, Hanyang University, Seoul(Korea, Republic of)


    In this study, a tera hertz time domain spectroscopy (THz-TDS) imaging technique was used to measure doping concentration and physical properties (such as refractive index and permittivity) of the doped silicon (Si) wafers. The transmission and reflection modes with an incidence angle of 30° were employed to determine the physical properties of the doped Si wafers. The doping concentrations of the prepared Si wafers were varied from 10{sup 14} to 10{sup 18} in both N-type and P-type cases. Finally, the correlation between the doping concentration and the power of the THz wave was determined by measuring the powers of the transmitted and reflected THz waves of the doped Si wafers. Additionally, the doped thickness, the refractive index, and permittivity of each doped Si wafer were calculated using the THz time domain waveform. The results indicate that the THz-TDS imaging technique is potentially a promising technique to measure the doping concentration as well as other optical properties (such as the refractive index and permittivity) of the doped Si wafer.

  10. TERA-MIR radiation: materials, generation, detection and applications III (Conference Presentation) (United States)

    Pereira, Mauro F.


    This talk summarizes the achievements of COST ACTION MP1204 during the last four years. [M.F. Pereira, Opt Quant Electron 47, 815-820 (2015).]. TERA-MIR main objectives are to advance novel materials, concepts and device designs for generating and detecting THz and Mid Infrared radiation using semiconductor, superconductor, metamaterials and lasers and to beneficially exploit their common aspects within a synergetic approach. We used the unique networking and capacity-building capabilities provided by the COST framework to unify these two spectral domains from their common aspects of sources, detectors, materials and applications. We created a platform to investigate interdisciplinary topics in Physics, Electrical Engineering and Technology, Applied Chemistry, Materials Sciences and Biology and Radio Astronomy. The main emphasis has been on new fundamental material properties, concepts and device designs that are likely to open the way to new products or to the exploitation of new technologies in the fields of sensing, healthcare, biology, and industrial applications. End users are: research centres, academic, well-established and start-up Companies and hospitals. Results are presented along our main lines of research: Intersubband materials and devices with applications to fingerprint spectroscopy; Metamaterials, photonic crystals and new functionalities; Nonlinearities and interaction of radiation with matter including biomaterials; Generation and Detection based on Nitrides and Bismides. The talk is closed by indicating the future direction of the network that will remain active beyond the funding period and our expectations for future joint research.

  11. An early modern human from the Peştera cu Oase, Romania (United States)

    Trinkaus, Erik; Moldovan, Oana; Milota, ştefan; Bîlgăr, Adrian; Sarcina, Laurenţiu; Athreya, Sheela; Bailey, Shara E.; Rodrigo, Ricardo; Mircea, Gherase; Higham, Thomas; Ramsey, Christopher Bronk; van der Plicht, Johannes


    The 2002 discovery of a robust modern human mandible in the Peştera cu Oase, southwestern Romania, provides evidence of early modern humans in the lower Danubian Corridor. Directly accelerator mass spectrometry radiocarbon (14C)-dated to 34,000–36,000 14C years B.P., the Oase 1 mandible is the oldest definite early modern human specimen in Europe and provides perspectives on the emergence and evolution of early modern humans in the northwestern Old World. The moderately long Oase 1 mandible exhibits a prominent tuber symphyseos and overall proportions that place it close to earlier Upper Paleolithic European specimens. Its symmetrical mandibular incisure, medially placed condyle, small superior medial pterygoid tubercle, mesial mental foramen, and narrow corpus place it closer to early modern humans among Late Pleistocene humans. However, its cross-sectional symphyseal orientation is intermediate between late archaic and early modern humans, the ramus is exceptionally wide, and the molars become progressively larger distally with exceptionally large third molars. The molar crowns lack derived Neandertal features but are otherwise morphologically undiagnostic. However, it has unilateral mandibular foramen lingular bridging, an apparently derived Neandertal feature. It therefore presents a mosaic of archaic, early modern human and possibly Neandertal morphological features, emphasizing both the complex population dynamics of modern human dispersal into Europe and the subsequent morphological evolution of European early modern humans. PMID:14504393

  12. Late Triassic–early Jurassic block tilting along E–W faults, in southern Tunisia: New interpretation of the Tebaga of Medenine


    camille raulin


    The Tebaga of Medenine is a puzzling structure situated at the northern edge of the Jeffara plain in southern Tunisia. It presents the unique outcropping marine Permian sequence in Africa as well as spectacular angular unconformities related to Mesozoic tectono sedimentary events. Many hypotheses have been proposed to explain this structure but some questions still remain. We present the result of an integrated study of the Mesozoic tectonic evolution of the region based on new field work and...

  13. On the distinction of tectonic and nontectonic faulting in palaeoseismological research: a case study from the southern Marmara region of Turkey (United States)

    Özaksoy, Volkan


    This study reports on spectacular deformation structures, including arrays of striated thrusts, discovered by excavation work in Holocene deposits in vicinity of a major neotectonic strike-slip fault in one of the tectonically most active regions of Turkey. The deformation structures were initially considered an evidence of sub-recent tectonic activity, but their detailed multidisciplinary study surprisingly revealed that the deformation of the clay-rich soil and its strongly weathered Jurassic substrate was of nontectonic origin, caused by argilliturbation. This phenomenon of vertisol self-deformation is well-known to pedologists, but may easily be mistaken for tectonic deformation by geologists less familiar with pedogenic processes. The possibility of argilliturbation thus needs to be taken into consideration in palaeoseismological field research wherever the deformed substrate consists of clay-rich muddy deposits. The paper reviews a range of specific diagnostic features that can serve as field criteria for the recognition of nontectonic deformation structures induced by argilliturbation in mud-dominated geological settings.

  14. Records of continental slope sediment flow morphodynamic responses to gradient and active faulting from integrated AUV and ROV data, offshore Palos Verdes, southern California Borderland (United States)

    Maier, Katherine L.; Brothers, Daniel; Paull, Charles K.; McGann, Mary; Caress, David W.; Conrad, James E.


    Variations in seabed gradient are widely acknowledged to influence deep-water deposition, but are often difficult to measure in sufficient detail from both modern and ancient examples. On the continental slope offshore Los Angeles, California, autonomous underwater vehicle, remotely operated vehicle, and shipboard methods were used to collect a dense grid of high-resolution multibeam bathymetry, chirp sub-bottom profiles, and targeted sediment core samples that demonstrate the influence of seafloor gradient on sediment accumulation, depositional environment, grain size of deposits, and seafloor morphology. In this setting, restraining and releasing bends along the active right-lateral Palos Verdes Fault create and maintain variations in seafloor gradient. Holocene down-slope flows appear to have been generated by slope failure, primarily on the uppermost slope (~ 100–200 m water depth). Turbidity currents created a low relief (sediment waves (λ = ~ 100 m, h ≤ 2 m), and a series of depocenters that have accumulated up to 4 m of Holocene sediment. Sediment waves increase in wavelength and decrease in wave height with decreasing gradient. Integrated analysis of high-resolution datasets provides quantification of morphodynamic sensitivity to seafloor gradients acting throughout deep-water depositional systems. These results help to bridge gaps in scale between existing deep-sea and experimental datasets and may provide constraints for future numerical modeling studies.

  15. Which fault destroyed Fes city (Morocco) in 1755? A new insight from the Holocene deformations observed along the southern border of Gibraltar arc (United States)

    Poujol, Antoine; Ritz, Jean-François; Vernant, Philippe; Huot, Sebastien; Maate, Soufian; Tahayt, Abdelilah


    In this paper, we present the first estimate of the Holocene deformation along the southern front of Gibraltar arc (Morocco) and the first field constraints on the local 1755 CE Fes-Meknes surface rupturing earthquake which could be associated to the ;Great Lisbon Earthquake; (M > 8.5) in November 1st, 1755. Using satellite imagery, aerial photographs and field investigations, we carried out a morphotectonic study along the 150 km-long Southern Rif Front (SRF) to identify the most recent evidences of tectonic activity. Analyzed offset alluvial deposits confirm that (i) the last 5 ka cumulative deformation leading to a slip rate of 3.5 ± 1 mm/yr for this segment of the SRF is consistent with the GPS derived horizontal shortening rate of 2-4 mm/yr and (ii) a recent major earthquake ruptured a 30 km-long segment along the SRF. Based on deposits dating and historical seismicity we propose that this seismic event occurred in 1755 as a local earthquake. Even though this 1755 local event cannot be considered as a strong aftershock of the main Lisbon seismic event (M > 8.5), their temporal closeness, their occurrence under the same convergent stress regime ( NNW-SSE-oriented compression) and the fact that Fes-Meknes area was strongly shaken during the Lisbon earthquake, raises the question of the possible triggering of the Fes earthquake. Anyway, our new results suggest that most of the Nubia-Rif belt convergence is accommodated by the SRF, making it potentially the most destructive structure of the Rif.


    Directory of Open Access Journals (Sweden)

    Anis Rohanda


    Full Text Available Teras reaktor merupakan tempat terjadinya reaksi pembelahan (fisi yang terkendali. Komponen reaktor seperti bahan bakar, kelongsong (cladding dan air pendingin memiliki peranan penting dalam keberlangsungan reaksi fisi. Reaksi fisi mengakibatkan terbentuknya sejumlah nuklida hasil fisi dan hasil aktivasi. Hasil fisi berasal dari reaksi tangkapan neutron termal dengan bahan fisil sedangkan hasil aktivasi berasal dari interaksi bahan non fisil seperti material kelongsong dan pendingin oleh neutron dan gamma. Pada setiap pengoperasian suatu reaktor, informasi perubahan massa bahan fisil dan non fisil sangat berguna untuk manajemen bahan bakar dalam teras, seperti pengaturan reaktivitas, optimasi dan pemuatan bahan bakar. Untuk itu perlu dilakukan penelitian mengenai perubahan bahan fisil dan non fisil tersebut dalam teras reaktor. Hal ini dapat dilakukan dengan mengamati perubahan massa dari material dalam teras reaktor. Penelitian ini memiliki tujuan untuk mengetahui perubahan massa unsur penyusun material dalam teras, seperti massa dari unsur penyusun elemen bahan bakar nuklir, kelongsong dan air pendingin setelah digunakan dalam teras. Dari perubahan massa tersebut dapat diketahui fraksi bakar atau tingkat konsumsi bahan bakar yang digunakan. Penelitian dilakukan pada basis reaktor PLTN tipe PWR buatan pabrikan asal Amerika Serikat berdaya 1000 MWe dengan menggunakan code penghitung inventori hasil fisi ORIGEN-ARP 5.1, yaitu versi terbaru dari ORIGEN dengan library khusus reaktor daya. Hasil analisis menunjukkan bahwa bahan fisil U-235 mengalami pengurangan massa hingga 58% atau lebih dari separuhnya dari massa U-235 awal untuk tiap kali siklus operasi. Bahan fertil U-238 hanya mengalami pengurangan massa sekitar 2% dari massa awalnya tiap kali siklus operasi. Lain halnya dengan bahan non fisil yang mengalami perubahan massa yang berbeda-beda untuk tiap kali siklus operasinya yang tergantung pada tampang lintang aktivasi serta laju peluruhan dan

  17. The electrical resistivity signature of a fault controlling gold mineralization and the implications for Mesozoic mineralization: a case study from the Jiaojia Fault, eastern China (United States)

    Zhang, Kun; Lü, Qingtian; Yan, Jiayong; Hu, Hao; Fu, GuangMing


    We use 3D audio magnetotelluric method to the south segment of Jiaojia fault belt, and obtain the 3D electrical model of this area. Regional geophysical data were combined in an analysis of strata and major structural distribution in the study area, and included the southern segment of the Jiaojia fault zone transformed into two fault assemblages. Together with the previous studies of the ore-controlling action of the Jiaojia fault belt and deposit characteristics, the two faults are considered to be favorable metallogenic provinces, because some important features coupled with them, such as the subordinate fault intersection zone and several fault assemblages in one fault zone. It was also suggested the control action of later fault with reversed downthrows to the ore distribution. These studies have enabled us to predict the presence of two likely target regions of mineralization, and are prospecting breakthrough in the southern section of Jiaojia in the Shandong Peninsula, China.

  18. Surface breakthrough of a basement fault by repeated seismic slip episodes: The Ostler Fault, South Island, New Zealand (United States)

    Ghisetti, Francesca C.; Gorman, Andrew R.; Sibson, Richard H.


    The Ostler Fault is one of the major active reverse faults in the piedmont of the Southern Alps, SE of the Alpine Fault. We present a new geological and morphotectonic map of the southern Ostler Fault, integrated with two seismic reflection profiles across the active central segments of the fault. Segmented, subparallel scarps define a N-S belt (˜40 km long and 2-3 km wide) of pure reverse faults, which upthrow and back-tilt a panel of Plio-Pleistocene terrestrial units (2.4-1.0 Ma) plus the overlying glacial outwash (chronology of newly faulted markers, and tectonically controlled diversion of paleodrainages, all indicate progressive S to N breakthrough of the surface trace of the Ostler Fault in the last 2.4 Ma. The new seismic data define a main fault segment dipping 50°-60°W to depths of ˜1.5 km, with a vertical throw of 800 m, and a shortening of ˜30%. The fault geometry and kinematics and the subsurface data favor the interpretation that the Ostler Fault propagated updip across the Plio-Quaternary terrestrial sequence as the emerging, high-angle splay of an inherited Late Cretaceous-Paleocene normal fault, that underwent repeated cycles of compressional reactivation in the last 2.4 Ma.

  19. Optimal fault signal estimation

    NARCIS (Netherlands)

    Stoorvogel, Antonie Arij; Niemann, H.H.; Saberi, A.; Sannuti, P.


    We consider here both fault identification and fault signal estimation. Regarding fault identification, we seek either exact or almost fault identification. On the other hand, regarding fault signal estimation, we seek either $H_2$ optimal, $H_2$ suboptimal or Hinfinity suboptimal estimation. By

  20. Differential Expression of HERV-K (HML-2 Proviruses in Cells and Virions of the Teratocarcinoma Cell Line Tera-1

    Directory of Open Access Journals (Sweden)

    Neeru Bhardwaj


    Full Text Available Human endogenous retrovirus (HERV-K (HML-2 proviruses are among the few endogenous retroviral elements in the human genome that retain coding sequence. HML-2 expression has been widely associated with human disease states, including different types of cancers as well as with HIV-1 infection. Understanding of the potential impact of this expression requires that it be annotated at the proviral level. Here, we utilized the high throughput capabilities of next-generation sequencing to profile HML-2 expression at the level of individual proviruses and secreted virions in the teratocarcinoma cell line Tera-1. We identified well-defined expression patterns, with transcripts emanating primarily from two proviruses located on chromosome 22, only one of which was efficiently packaged. Interestingly, there was a preference for transcripts of recently integrated proviruses, over those from other highly expressed but older elements, to be packaged into virions. We also assessed the promoter competence of the 5’ long terminal repeats (LTRs of expressed proviruses via a luciferase assay following transfection of Tera-1 cells. Consistent with the RNASeq results, we found that the activity of most LTRs corresponded to their transcript levels.

  1. Fault creep rates of the Chaman fault (Afghanistan and Pakistan) inferred from InSAR (United States)

    Barnhart, William D.


    The Chaman fault is the major strike-slip structural boundary between the India and Eurasia plates. Despite sinistral slip rates similar to the North America-Pacific plate boundary, no major (>M7) earthquakes have been documented along the Chaman fault, indicating that the fault either creeps aseismically or is at a late stage in its seismic cycle. Recent work with remotely sensed interferometric synthetic aperture radar (InSAR) time series documented a heterogeneous distribution of fault creep and interseismic coupling along the entire length of the Chaman fault, including an 125 km long creeping segment and an 95 km long locked segment within the region documented in this study. Here I present additional InSAR time series results from the Envisat and ALOS radar missions spanning the southern and central Chaman fault in an effort to constrain the locking depth, dip, and slip direction of the Chaman fault. I find that the fault deviates little from a vertical geometry and accommodates little to no fault-normal displacements. Peak-documented creep rates on the fault are 9-12 mm/yr, accounting for 25-33% of the total motion between India and Eurasia, and locking depths in creeping segments are commonly shallower than 500 m. The magnitude of the 1892 Chaman earthquake is well predicted by the total area of the 95 km long coupled segment. To a first order, the heterogeneous distribution of aseismic creep combined with consistently shallow locking depths suggests that the southern and central Chaman fault may only produce small to moderate earthquakes (

  2. Fault zone fabric and fault weakness

    NARCIS (Netherlands)

    Collettini, C.; Niemeijer, A.; Viti, C.; Marone, C.


    Geological and geophysical evidence suggests that some crustal faults are weak1–6 compared to laboratory measurements of frictional strength7. Explanations for fault weakness include the presence of weak minerals4, high fluid pressures within the fault core8,9 and dynamic processes such as

  3. Paleoearthquakes on the Anninghe and Zemuhe fault along the southeastern margin of the Tibetan Plateau and implications for fault rupture behavior at fault bends on strike-slip faults (United States)

    Wang, Hu; Ran, Yongkang; Chen, Lichun; Li, Yanbao


    Fault bends can serve as fault segment boundaries and are used in seismic hazard assessment. Recent studies addressing whether rupture propagation would be arrested at such structural complexities have commonly focused on computational modeling. However, multi-cycle paleoseismic rupture observations through fault bends have seldom been reported. In this study, we used trenching and radiocarbon dating to reveal paleoseismic rupture histories on the southern segment of the Anninghe fault (ANHF) along the southeastern margin of the Tibetan Plateau to explore multi-cycle surface rupture behavior at an extensional fault bend (with an angle of about 30°) at Xichang between the ANHF and Zemuhe fault (ZMHF). Specifically, nine trenches were opened in a fault depression at Maoheshan site and five paleoseismic events were identified. These have been named E1 through E5 respectively corresponding to events at 1400-935 BCE, 420-875 CE, 830-1360 CE, 1295-1715 CE, and 1790 CE-Present. After comparison with the historical records of earthquakes around Xichang and previous paleoseismic results, we suggest that the five seismic events are constrained at: 1365 BCE-935 BCE, 814 CE, 950 CE- 1145 CE, 1536 CE and 1850 CE, respectively. The average recurrence interval of earthquakes along the southern segment of the ANHF is about 700-800 yr. Furthermore, the evidence indicates that surface-faulting events along the southern segment of the ANHF appear to be unevenly spaced in time. Moreover, based on comparisons of seismic events along the ANHF and ZMHF, we find that two fault segments simultaneous ruptured during the 814 CE and 1850 CE earthquakes, event E3 and the 1536 CE earthquake ruptured the ANHF but not rupture the ZMHF. We suggest that the Xichang fault bend is not a persistent fault boundary, indicating that extensional fault bends with an angle of about 30° may not effectively terminate seismic ruptures on strike-slip faults.

  4. Perspective View, Garlock Fault (United States)


    California's Garlock Fault, marking the northwestern boundary of the Mojave Desert, lies at the foot of the mountains, running from the lower right to the top center of this image, which was created with data from NASA's shuttle Radar Topography Mission (SRTM), flown in February 2000. The data will be used by geologists studying fault dynamics and landforms resulting from active tectonics. These mountains are the southern end of the Sierra Nevada and the prominent canyon emerging at the lower right is Lone Tree canyon. In the distance, the San Gabriel Mountains cut across from the leftside of the image. At their base lies the San Andreas Fault which meets the Garlock Fault near the left edge at Tejon Pass. The dark linear feature running from lower right to upper left is State Highway 14 leading from the town of Mojave in the distance to Inyokern and the Owens Valley in the north. The lighter parallel lines are dirt roads related to power lines and the Los Angeles Aqueduct which run along the base of the mountains.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed


    Directory of Open Access Journals (Sweden)

    Slamet Parmanto


    Full Text Available Telah dilakukan penelitian terhadap teras reaktor Pebble Bed Modular Reactor (PBMR dengan daya 100 Mwe berbahan bakar UO2. Reaktor ini menggunakan moderator grafit dan helium sebagai pendingin. Studi down scale dilakukan tanpa mengubah geometri teras maupun geometri bahan bakar. Parameter yang dianalisis adalah kritikalitas teras, reaktivitas lebih, koefisien reaktivitas temperatur bahan bakar, moderator dan pendingin serta nilai ekonomis bahan bakar. Dari penelitian ini diharapkan diperoleh desain bahan bakar yang bernilai ekonomis dan memiliki fitur keselamatan melekat. Penelitian dilakukan dengan menggunakan program SRAC 2003. Hasil yang diperoleh adalah desain bahan bakar UO2 berbentuk pebble dengan pengkayaan 10% U235 dan 90 ppm racun dapat bakar Gd2O3. Nilai faktor multipilkasi effektif keff pada beginning of life (BOL adalah 1,01115 dan menjadi 1,00588 setelah 2658 hari operasi reaktor (EOL. Koefisien reaktivitas temperatur total diperoleh sebesar - 3,25900E-05 ∆k/k/K saat BOL dan -1,10615E-04 ∆k/k/K saat end of life (EOL. Reaktor ini memenuhi karakteristik keselamatan melekat ditandai dengan nilai koefisien reaktivitas temperatur yang negatif. Kata kunci: PBMR, desain bahan bakar, faktor multipilkasi effektif, reaktivitas lebih, koefisien reaktivitas temperatur.   Research of Pebble Bed Modular Reactor (PBMR 100 MWe which used UO2 fuel has been done. This reactor uses graphite as moderator and helium as coolant. Down scale studies performed without changing the core and fuel geometry. The parameter being analyzed were core criticality, excess reactivity, fuel, moderator, coolant temperature reactivity coefficient, and fuel economy. This research is expected to obtain the design that has fuel economy and inherent safety features. In this research, we have employed SRAC 2003 code. The calculation show that the UO2 pebble fuel design with 10% enrichment of U235 and 90 ppm burnable poison of Gd2O3 results in the effective multiplication


    Directory of Open Access Journals (Sweden)

    Agustina Mega


    Full Text Available Telah dilakukan desain High Temperature Fast Reactor (HTFR tipe pebble dengan bahan bakar uranium plutonium nitrida berpendingin Pb-Bi. Parameter yang dianalisis adalah kritikalitas teras, koefisien reaktivitas temperatur bahan bakar, koefisien reaktivitas void pendingin dan kemampuan breeding reaktor. Perhitungan dilakukan dengan paket program SRAC2K3. Dari penelitian ini diharapkan diperoleh desain teras berumur lama dan memiliki fitur keselamatan melekat. Dari penelitian ini diperoleh desain reaktor dengan diameter 520 cm dan tinggi 480 cm. Bahan bakar berbentuk pebble dengan 63 % UN-37 % PuN pada zona core dan 95,5 % UN-4,5 % PuN pada zona blanket. Reaktor tidak kritis setelah kurang lebih 800 hari dan keff pada BoL 1,078223 dan keff setelah 800 hari adalah 0,986379. Dari penelitian ini diperoleh koefisien reaktivitas temperatur bahan bakar sebesar -2,190014E-05 pada saat BoL dan -1,390773E-05 setelah 800 hari serta koefisien reaktivitas void pendingin sebesar -2,160402E-04/% void pada saat BoL dan setelah 800 hari sebesar -2,942364E-03/% void. Reaktor merupakan jenis fast breeder ditandai dengan naiknya densitas plutonium 239. Kata kunci : desain, teras, HTFR, keselamatan, umur, koefisien reaktivitas.   Design of pebble bed type High Temperature Fast Reactor (HTFR with uranium plutonium nitride fuel and Pb-Bi cooled has been done. The parameters being analyzed were core criticality, fuel temperature coefficient, void coefficient and reactor breeding ability. Calculation was done by using SRAC2K3 computer code. This research is expected to obtaine the design with long life core and inherent safety features. This research obtained core design with a diameter of 520 cm and 480 cm core high. Shaped pebble fuel bed with the 63 % UN-37 % PUN on core zone and 95.5 % UN-4.5 % Pu on blanket zone and keff value is 1.078223 with approximately 800 day of core life. The fuel temperature coefficient is -2.190014E-05 at BOL and is 1.390773E-05 at EOL and

  7. The northwest trending north Boquerón Bay-Punta Montalva Fault Zone; A through going active fault system in southwestern Puerto Rico (United States)

    Roig‐Silva, Coral Marie; Asencio, Eugenio; Joyce, James


    The North Boquerón Bay–Punta Montalva fault zone has been mapped crossing the Lajas Valley in southwest Puerto Rico. Identification of the fault was based upon detailed analysis of geophysical data, satellite images, and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (local magnitude greater than 5.0) with numerous locally felt earthquakes. Focal mechanism solutions suggest strain partitioning with predominantly east–west left-lateral displacements with small normal faults striking mostly toward the northeast. Northeast-trending fractures and normal faults can be found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, an east–west-trending 30-km-long fault-controlled depression. Areas of preferred erosion within the alluvial fan trend toward the west-northwest parallel to the onland projection of the North Boquerón Bay fault. The North Boquerón Bay fault aligns with the Punta Montalva fault southeast of the Lajas Valley. Both faults show strong southward tilting of Miocene strata. On the western end, the Northern Boquerón Bay fault is covered with flat-lying Holocene sediments, whereas at the southern end the Punta Montalva fault shows left-lateral displacement of stream drainage on the order of a few hundred meters.

  8. High-efficiency space-based software radio architectures & algorithms (a minimum size, weight, and power TeraOps processor)

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Mark Edward [Los Alamos National Laboratory; Baker, Zachary K [Los Alamos National Laboratory; Stettler, Matthew W [Los Alamos National Laboratory; Pigue, Michael J [Los Alamos National Laboratory; Schmierer, Eric N [Los Alamos National Laboratory; Power, John F [Los Alamos National Laboratory; Graham, Paul S [Los Alamos National Laboratory


    Los Alamos has recently completed the latest in a series of Reconfigurable Software Radios, which incorporates several key innovations in both hardware design and algorithms. Due to our focus on satellite applications, each design must extract the best size, weight, and power performance possible from the ensemble of Commodity Off-the-Shelf (COTS) parts available at the time of design. In this case we have achieved 1 TeraOps/second signal processing on a 1920 Megabit/second datastream, while using only 53 Watts mains power, 5.5 kg, and 3 liters. This processing capability enables very advanced algorithms such as our wideband RF compression scheme to operate remotely, allowing network bandwidth constrained applications to deliver previously unattainable performance.

  9. New active faults on Eurasian-Arabian collision zone: Tectonic activity of Özyurt and Gülsünler faults (Eastern Anatolian Plateau, Van-Turkey)

    Energy Technology Data Exchange (ETDEWEB)

    Dicle, S.; Üner, S.


    The Eastern Anatolian Plateau emerges from the continental collision between Arabian and Eurasian plates where intense seismicity related to the ongoing convergence characterizes the southern part of the plateau. Active deformation in this zone is shared by mainly thrust and strike-slip faults. The Özyurt thrust fault and the Gülsünler sinistral strike-slip fault are newly determined fault zones, located to the north of Van city centre. Different types of faults such as thrust, normal and strike-slip faults are observed on the quarry wall excavated in Quaternary lacustrine deposits at the intersection zone of these two faults. Kinematic analysis of fault-slip data has revealed coeval activities of transtensional and compressional structures for the Lake Van Basin. Seismological and geomorphological characteristics of these faults demonstrate the capability of devastating earthquakes for the area.

  10. Paleoseismologic evidence for large-magnitude (Mw 7.5-8.0) earthquakes on the Ventura blind thrust fault: Implications for multifault ruptures in the Transverse Ranges of southern California (United States)

    McAuliffe, Lee J.; Dolan, James F.; Rhodes, Edward J.; Hubbard, Judith; Shaw, John H.; Pratt, Thomas L.


    Detailed analysis of continuously cored boreholes and cone penetrometer tests (CPTs), high-resolution seismic-reflection data, and luminescence and 14C dates from Holocene strata folded above the tip of the Ventura blind thrust fault constrain the ages and displacements of the two (or more) most recent earthquakes. These two earthquakes, which are identified by a prominent surface fold scarp and a stratigraphic sequence that thickens across an older buried fold scarp, occurred before the 235-yr-long historic era and after 805 ± 75 yr ago (most recent folding event[s]) and between 4065 and 4665 yr ago (previous folding event[s]). Minimum uplift in these two scarp-forming events was ∼6 m for the most recent earthquake(s) and ∼5.2 m for the previous event(s). Large uplifts such as these typically occur in large-magnitude earthquakes in the range of Mw7.5–8.0. Any such events along the Ventura fault would likely involve rupture of other Transverse Ranges faults to the east and west and/or rupture downward onto the deep, low-angle décollements that underlie these faults. The proximity of this large reverse-fault system to major population centers, including the greater Los Angeles region, and the potential for tsunami generation during ruptures extending offshore along the western parts of the system highlight the importance of understanding the complex behavior of these faults for probabilistic seismic hazard assessment.

  11. The relationship of near-surface active faulting to megathrust splay fault geometry in Prince William Sound, Alaska (United States)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Northrup, C.; Pratt, T. L.


    We interpret regionally extensive, active faults beneath Prince William Sound (PWS), Alaska, to be structurally linked to deeper megathrust splay faults, such as the one that ruptured in the 1964 M9.2 earthquake. Western PWS in particular is unique; the locations of active faulting offer insights into the transition at the southern terminus of the previously subducted Yakutat slab to Pacific plate subduction. Newly acquired high-resolution, marine seismic data show three seismic facies related to Holocene and older Quaternary to Tertiary strata. These sediments are cut by numerous high angle normal faults in the hanging wall of megathrust splay. Crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A distinct boundary coinciding beneath the Hinchinbrook Entrance causes a systematic fault trend change from N30E in southwestern PWS to N70E in northeastern PWS. The fault trend change underneath Hinchinbrook Entrance may occur gradually or abruptly and there is evidence for similar deformation near the Montague Strait Entrance. Landward of surface expressions of the splay fault, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes. Surface exposures of Tertiary rocks throughout PWS along with new apatite-helium dates suggest long-term and regional uplift with localized, fault-controlled subsidence.

  12. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik


    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  13. Iowa Bedrock Faults (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  14. Layered Fault Management Architecture

    National Research Council Canada - National Science Library

    Sztipanovits, Janos


    ... UAVs or Organic Air Vehicles. The approach of this effort was to analyze fault management requirements of formation flight for fleets of UAVs, and develop a layered fault management architecture which demonstrates significant...

  15. Software fault tolerance


    Kazinov, Tofik Hasanaga; Mostafa, Jalilian Shahrukh


    Because of our present inability to produce errorfree software, software fault tolerance is and will contiune to be an important consideration in software system. The root cause of software design errors in the complexity of the systems. This paper surveys various software fault tolerance techniquest and methodologies. They are two gpoups: Single version and Multi version software fault tolerance techniques. It is expected that software fault tolerance research will benefit from this research...

  16. Cheias e escassez de água no Alto Alentejo. O exemplo da Bacia Vertente da Ribeira de Tera

    Directory of Open Access Journals (Sweden)

    Catarina Ramos


    Full Text Available FLOODS AND DRYNESS IN ALENTEJO. THE CASE OF THE DRAINAGE BASIN OF RIBEIRA DE TERA (PORTUGAL - The drainage basin of Ribeira de Tera belongs to the Hydrographic Basin of the River Tagus, and it is located in one of the driest areas of Portugal: Alentejo.The geological formations of the drainage basin have a very reduced permeability, resulting in drastically worsening of the consequences of low and irregular rainfall. The drainage basin is much affected by the dryness, since the rainfall is absent during more than 3/4 of the days of the year and, for more than half of the years (58%, the precipitation does not even reach 700 mm/year. Every stream of the drainage basin is therefore temporary, including its main channel, which stays dry an average of 133 days/year.The early 70's mark a change in the stream's behaviour. The fluvial discharges have been decreasing, and the drought continues throughout the Autumn. The number of flood days is decreasing distinctly, but the flood's magnitude has increased, due to the decrease of floods with low peak flows. These changes in the fluvial regime are directly connected with the precipitation decrease trend and with the construction of dozens of small-sized dams in an attempt to retain the water for irrigation and for the cattle. These small-sized dams are empty by the end of the Summer and they retain the water from the small Autumn floods.The carbonated metamorphic formations occupy 4% of the area of the drainage basin. They constitute its aquifer reservoir. These rocks, together with the volcanic metamorphic ones, supply 65% of the springs of the drainage basin. This aquifer is exposed to great anthropic pressure, not only because it supplies several human activities which develop around the most important population nucleus of the drainage basin (City of Estremoz, but also because it supports one of the rare industries in the region: the marble extraction.From the environemental point of view, the

  17. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.


    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out that there...

  18. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik


    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  19. Identification of Lembang fault, West-Java Indonesia by using controlled source audio-magnetotelluric (CSAMT) (United States)

    Sanny, Teuku A.


    The objective of this study is to determine boundary and how to know surrounding area between Lembang Fault and Cimandiri fault. For the detailed study we used three methodologies: (1). Surface deformation modeling by using Boundary Element method and (2) Controlled Source Audiomagneto Telluric (CSAMT). Based on the study by using surface deformation by using Boundary Element Methods (BEM), the direction Lembang fault has a dominant displacement in east direction. The eastward displacement at the nothern fault block is smaller than the eastward displacement at the southern fault block which indicates that each fault block move in left direction relative to each other. From this study we know that Lembang fault in this area has left lateral strike slip component. The western part of the Lembang fault move in west direction different from the eastern part that moves in east direction. Stress distribution map of Lembang fault shows difference between the eastern and western segments of Lembang fault. Displacement distribution map along x-direction and y-direction of Lembang fault shows a linement oriented in northeast-southwest direction right on Tangkuban Perahu Mountain. Displacement pattern of Cimandiri fault indicates that the Cimandiri fault is devided into two segment. Eastern segment has left lateral strike slip component while the western segment has right lateral strike slip component. Based on the displacement distribution map along y-direction, a linement oriented in northwest-southeast direction is observed at the western segment of the Cimandiri fault. The displacement along x-direction and y-direction between the Lembang and Cimandiri fault is nearly equal to zero indicating that the Lembang fault and Cimandiri Fault are not connected to each others. Based on refraction seismic tomography that we know the characteristic of Cimandiri fault as normal fault. Based on CSAMT method th e lembang fault is normal fault that different of dip which formed as

  20. Magnetic fabric of brittle fault rocks (United States)

    Pomella, Hannah


    The anisotropy of magnetic susceptibility (AMS) has been recognized as a highly sensitive indicator of rock fabric and is widely employed in the field of structural geology. Brittle faults are often characterized by fault breccia and gouge, fault rocks with clast-in-matrix textures. A noteworthy property of both gouge and breccia is the often observed presence of a fabric that is defined by the preferred orientation of clasts and grains in the matrix. In the very fine-grained gouge and in the matrix of the breccia the fabric is not visible in the field or in thin sections but can probably be detected by AMS analyses. For the present study different kinds of brittle fault rocks have been sampled on two faults with known tectonic settings, in order to allow for a structural interpretation of the measured AMS signal. The measurements were carried out with an AGICO MFK1-FA Kappabridge and a CS4 furnace apparatus at the Institute of Geology, University of Innsbruck. Fault gouge was sampled on the Naif fault located in the Southern Alps, E of Meran, South Tyrol, Italy. Along this fault the Permian Granodiorite overthrusts the Southalpine basement and its Permomesozoic cover. The Neoalpine thrust fault is characterised by a wide cataclastic zone and an up to 1 m thick fault gouge. The gouge was sampled using paleomagnetic sample boxes. Heating experiments indicate that the magnetic fabric is dominated by paramagnetic minerals (>95%). The samples provide a magnetic susceptibility in the range of +10*E-5 [SI]. The K-min axis of the magnetic ellipsoid corresponds approximately to the pol of the fault plane measured in the field. However the whole magnetic ellipsoid shows a variation in the inclination compared to the structural data. Fine-grained ultracataclasites were sampled on the Assergi fault, located in the Abruzzi Apennines, NE of L'Aquila, Italy. This normal fault was active in historical time and crosscuts limestones as well as talus deposits. An up to 20 cm thick

  1. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems....... These inputs are disturbance inputs, reference inputs and auxilary inputs. The diagnosis of the system is derived by an evaluation of the signature from the inputs in the residual outputs. The changes of the signatures form the external inputs are used for detection and isolation of the parametric faults....

  2. Mechanical Analysis of Fault Interaction in the Puente Hills Region, Los Angeles Basin, California (United States)

    Griffith, W. A.; Cooke, M.


    A three-dimensional model of the Puente Hills thrust system (PHT) and the Whittier fault has been constructed using published cross sections, surface trace maps [Shaw (1999); Shaw and Suppe (1996); Wright (1991)] and products of the Southern California Earthquake Center. This study utilizes boundary element method models to validate the proposed fault geometry of the Puente Hills region via investigating fault interaction. The interaction between PHT and Whittier faults is evaluated within an elastic half-space under horizontal contraction and evidenced by slip rates on faults, strain energy density (SED), and Navier-Coulomb stress (NC) throughout the host rock. Modeled slip rates are compared to paleoseismic estimates to validate the proposed fault configuration while maps of SED and NC highlight regions of high strain in the host rock and likely faulting. Subsequently, the sensitivity of SED and NC distribution to changes in fault geometry illuminate the nature of fault interaction within this complex system of interacting faults. We explore interaction of faults within the PHT region using two sets of models. The first examines slip rates and SED and NC distribution within a local model of the PHT region while the second set incorporates the PHT faults within the context of the Los Angeles basin. Both sets explore the response of the fault system to systematic addition of faults. Adding faults within regions of high SED and NC does not influence slip on neighboring faults; however the addition of fault surfaces in regions of low/moderate SED and NC reduces slip along adjacent faults. The sensitivity of fault slip rates to direction of remote contraction in the Los Angeles Basin is examined with contraction directions of 036, 017, and 006.5 [Bawden (2001), Argus (1999), and Feigl (1993)]. Furthermore, variations on intersection geometry between the PHT and Whittier fault are explored. Portions of the PHT and Whittier faults show reasonable match to available

  3. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob


    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... can occur simultaneously, whereas faults belonging to different fault sets appear disjoint in time. The proposed fault detection and isolation (FDI) scheme consists of three steps. A fault detection (FD) step is followed by a fault set isolation (FSI) step. Here the fault set is isolated wherein...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step....

  4. Secondary Normal Faulting Near the Terminus of a Strike-Slip Fault Segment in the Lake Mead Fault System, SE Nevada (United States)

    Marshall, S. T.; Kattenhorn, S. A.


    The 95 km long Lake Mead Fault System (LMFS), located about 50 km east of Las Vegas and about 100 km west of the relatively undeformed Colorado Plateau, consists of a group of NE/SW-trending Miocene left-lateral strike-slip faults with a total offset of 65-110 km. Previous work suggests that the LMFS acted as a transform zone to accommodate differential extension between the southern Basin and Range to the north and the metamorphic core complexes of the Colorado River extensional corridor to the south. Studies of individual faults of the LMFS have shown that strike-slip faulting was the dominant mode of deformation while normal faulting, pull-apart basins, and push up structures formed as localized secondary structures related to strike-slip faults. This study focuses on the portion of the LMFS west of the Overton Arm of Lake Mead, which consists of the Bitter Spring Valley Fault (BSVF) and the Hamblin Bay Fault (HBF). Both faults have estimated offsets of 20-60 km, but past mapping efforts have been inconsistent with respect to the BSVF trace locations and degree of fault complexity. In order to demonstrate that the apparent complexity of the BSVF is the result of segmentation and secondary normal faults associated with individual segments, we focused field mapping efforts on an apparent segment of the BSVF near Pinto Ridge, located southwest of the Echo Hills and about 5 km NW of the more prominent HBF. We have identified nine normal faults that initiate near the SW tip of a segment of the BSVF and die out to the south before reaching the HBF. The offset on all these faults is a maximum at their northern intersection with the BSVF, then steadily decreases to zero away from the BSVF. These normal faults range from 0.6 km-2.25 km in length and have variable fault trace patterns. The normal fault originating closest to the SW tip of the BSVF segment curves with increasing distance away towards parallelism with the BSVF. The eight other normal faults are all oriented

  5. Fracture density and spacing along Washita Valley fault, Arbuckle Mountains, Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Ferebee, C.D.; Tapp, J.B. (Univ. of Tulsa, OK (USA))


    The authors document fracture density and spacing associated with the Washita Valley fault, a major strike-slip fault. The Washita Valley fault strikes northwest-southeast with up to 80 mi of exposure in southern Oklahoma and may be an early bounding fault of the Southern Oklahoma aulacogen (Ardmore/Marietta basins). Horizontal displacement on the fault has been estimated to be up to 40 mi, with vertical displacement on the order of 10,000 ft. Samples collected from traverses across the Washita Valley fault have been analyzed. The traverses cross the fault at different stratigraphic levels from Proterozoic igneous basement, through the Cambrian-Ordovician Arbuckle Group, Ordovician Simpson and Viola Groups, to the Silurian-Devonian Hunton Group. Several types of fracture systems are documented that reflect mechanical stratigraphy, burial depth during deformation, and episodic movement on the fault. The fractures in the study area include open fracture systems, calcite-filled fractures, tension gashes, and fractures related to pressure solution. The samples were cut parallel to the strike of the fault, vertical-normal to the fault, and horizontal-normal to the fault. These cuts allow examination of the total fracture strain, characterization of the fractures, and statistical analysis of fracture density. From these data, fracture density is shown to decrease exponentially moving away from the primary fault zone. The increased understanding of fracture patterns and characteristics will assist future exploration and development programs involving carbonate reservoirs associated with strike-slip systems.

  6. The fluid budget of a continental plate boundary fault: Quantification from the Alpine Fault, New Zealand (United States)

    Menzies, Catriona D.; Teagle, Damon A. H.; Niedermann, Samuel; Cox, Simon C.; Craw, Dave; Zimmer, Martin; Cooper, Matthew J.; Erzinger, Jörg


    Fluids play a key role in modifying the chemical and physical properties of fault zones, which may prime them for repeated rupture by the generation of high pore fluid pressures and precipitation of commonly weak, secondary minerals. Fluid flow paths, sources and fluxes, and the permeability evolution of fault zones throughout their seismic cycles remain poorly constrained, despite their importance to understanding fault zone behaviour. Here we use geochemical tracers of fluid-rock exchange to determine budgets for meteoric, metamorphic and mantle fluids on a major compressional tectonic plate boundary. The Alpine Fault marks the transpressional Pacific-Australian plate boundary through South Island, New Zealand and appears to fail in regular (329 ± 68 yrs) large earthquakes (Mw ∼ 8) with the most recent event in 1717 AD. Significant convergent motion has formed the Southern Alps and elevated geothermal gradients in the hangingwall, which drive crustal fluid flow. Along the Alpine Fault the Alpine Schist of the Pacific Plate is thrust over radiogenic metasedimentary rocks on the Australian plate. The absence of highly radiogenic (87Sr/86Sr > 0.7200) strontium isotope ratios of hangingwall hot springs and hydrothermal minerals formed at a range of depths in the Alpine Fault damage zone indicates that the fluid flow is restricted to the hangingwall by a cross-fault fluid flow barrier throughout the seismogenic crust. Helium isotope ratios measured in hot springs near to the Alpine Fault (0.15-0.81 RA) indicate the fault is a crustal-scale feature that acts as a conduit for fluids from the mantle. Rock-exchanged oxygen, but meteoric water-like hydrogen isotope signatures of hydrothermal veins indicate that partially rock-exchanged meteoric fluids dominate down to the top of the brittle to ductile transition zone at ∼6 km. Geochemical tracer transport modelling suggests only ∼0.02 to 0.05% of total rainfall west of the Main Divide penetrates to depth, yet this

  7. Characteristics of block strain and fault movement in the Sichuan-Yunnan region before and after Wenchuan earthquake

    Directory of Open Access Journals (Sweden)

    Zhao Jing


    Full Text Available Deformation characteristics of the Sichuan-Yunnan region during the two periods 1999—2007 and 2007—2009 are analyzed with a block deformation model and GPS velocity profiles. The results show that the direction of the principal compressive strain rate of the Northwest-Sichuan block - the Mid-Yunnan block - the Southwest-Yunnan block was characterized by a clockwise rotation from north to south. The Anninghe and the Zemuhe faults had some shear-strain accumulation. The southern segment of the Xiaojiang fault had mainly strike-slip movement, while the northern segment was mainly accumulating strain. The 2008 Ms8. 0 Wenchuan earthquake had some influence on the mid-southern segment of the Lijiang-Xiaojinhe fault, the Anninghe fault and the Jinshajiang fault, but not the Zemuhe fault, the Xiaojiang fault and the Red River fault as much.

  8. Database and Map of Quaternary Faults and Folds in Peru and its Offshore Region (United States)

    Machare, Jose; Fenton, Clark H.; Machette, Michael N.; Lavenu, Alain; Costa, Carlos; Dart, Richard L.


    This publication consists of a main map of Quaternary faults and fiolds of Peru, a table of Quaternary fault data, a region inset map showing relative plate motion, and a second inset map of an enlarged area of interest in southern Peru. These maps and data compilation show evidence for activity of Quaternary faults and folds in Peru and its offshore regions of the Pacific Ocean. The maps show the locations, ages, and activity rates of major earthquake-related features such as faults and fault-related folds. These data are accompanied by text databases that describe these features and document current information on their activity in the Quaternary.

  9. Fault slip rates from three-dimensional models of the Los Angeles metropolitan area, California (United States)

    Cooke, Michele L.; Marshall, Scott T.


    We present results from the first mechanical model of active tectonics in the Los Angeles region to use non-planar, geologically representative fault surfaces compiled by the Southern California Earthquake Center Community Fault Model. The fault slip rates from our three-dimensional model match well the available geologic slip rates. Discrepancies in reverse slip along the Upper Elysian Park fault and strike-slip along the Raymond fault may reflect imprecise knowledge of local fault geometry. Discrepancy in the average dip slip rate along the Palos Verdes fault reveals variations in dip slip along that surface; model predictions at the location of the geological investigation have good match to geologic data. The validated model is used to estimate dip and strike slip rates for 26 active faults in the Los Angeles metropolitan region, many of which are otherwise unconstrained by geologic evidence.

  10. How Faults Shape the Earth. (United States)

    Bykerk-Kauffman, Ann


    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  11. Behavior of Repeating Earthquake Sequences in Central California and the Implications for Subsurface Fault Creep

    Energy Technology Data Exchange (ETDEWEB)

    Templeton, D C; Nadeau, R; Burgmann, R


    Repeating earthquakes (REs) are sequences of events that have nearly identical waveforms and are interpreted to represent fault asperities driven to failure by loading from aseismic creep on the surrounding fault surface at depth. We investigate the occurrence of these REs along faults in central California to determine which faults exhibit creep and the spatio-temporal distribution of this creep. At the juncture of the San Andreas and southern Calaveras-Paicines faults, both faults as well as a smaller secondary fault, the Quien Sabe fault, are observed to produce REs over the observation period of March 1984-May 2005. REs in this area reflect a heterogeneous creep distribution along the fault plane with significant variations in time. Cumulative slip over the observation period at individual sequence locations is determined to range from 5.5-58.2 cm on the San Andreas fault, 4.8-14.1 cm on the southern Calaveras-Paicines fault, and 4.9-24.8 cm on the Quien Sabe fault. Creep at depth appears to mimic the behaviors seen of creep on the surface in that evidence of steady slip, triggered slip, and episodic slip phenomena are also observed in the RE sequences. For comparison, we investigate the occurrence of REs west of the San Andreas fault within the southern Coast Range. Events within these RE sequences only occurred minutes to weeks apart from each other and then did not repeat again over the observation period, suggesting that REs in this area are not produced by steady aseismic creep of the surrounding fault surface.

  12. Paleomagnetic, structural, and stratigraphic constraints on transverse fault kinematics during basin inversion: The Pamplona Fault (Pyrenees, north Spain) (United States)

    LarrasoañA, Juan Cruz; ParéS, Josep MaríA.; MilláN, HéCtor; Del Valle, JoaquíN.; Pueyo, Emilio Luis


    The Pamplona Fault in the Pyrenees is a major transverse structure that has been classically interpreted as a strike-slip fault. However, lack of consensus concerning the sense of movement casts doubt on its actual kinematics and, as a consequence, its role in the Cenozoic evolution of the Pyrenees remains controversial. In order to assess its kinematics, we have conducted a paleomagnetic, structural, and stratigraphic study focused on the Mesozoic and Tertiary sedimentary rocks that outcrop around the southern segment of the fault. Restoration of balanced cross sections allows us to examine the present-day spatial relationship of the sedimentary sequences on both sides of the fault and to reconstruct the geometry of the extensional basins formed during Mesozoic rifting episodes in the Bay of Biscay and Pyrenean domains. Paleomagnetic results indicate that no significant tectonic rotations occurred around the fault during Tertiary inversion of the Pyrenees. The lack of tectonic rotations and revaluation of previous hypotheses argues against a strike-slip movement of the fault. We propose a new model in which the Pamplona Fault is treated as a large-scale "hanging wall drop" fault whose kinematics was determined by variations in the geometry and thickness of Mesozoic sequences on both sides of the fault. These variations influenced the geometry of the thrust sheet developed during Tertiary compression. We are unaware of any other transverse fault that has been interpreted in this fashion; thus the Pamplona Fault serves as a case study for the evolution of transverse faults involved in basin inversion processes.

  13. Uncovering dynamic fault trees

    NARCIS (Netherlands)

    Junges, Sebastian; Guck, Dennis; Katoen, Joost P.; Stoelinga, Mariëlle Ida Antoinette

    Fault tree analysis is a widespread industry standard for assessing system reliability. Standard (static) fault trees model the failure behaviour of systems in dependence of their component failures. To overcome their limited expressive power, common dependability patterns, such as spare management,

  14. The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California (United States)

    Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria


    The Evergreen basin is a 40-km-long, 8-km-wide Cenozoic sedimentary basin that lies mostly concealed beneath the northeastern margin of the Santa Clara Valley near the south end of San Francisco Bay (California, USA). The basin is bounded on the northeast by the strike-slip Hayward fault and an approximately parallel subsurface fault that is structurally overlain by a set of west-verging reverse-oblique faults which form the present-day southeastward extension of the Hayward fault. It is bounded on the southwest by the Silver Creek fault, a largely dormant or abandoned fault that splays from the active southern Calaveras fault. We propose that the Evergreen basin formed as a strike-slip pull-apart basin in the right step from the Silver Creek fault to the Hayward fault during a time when the Silver Creek fault served as a segment of the main route by which slip was transferred from the central California San Andreas fault to the Hayward and other East Bay faults. The dimensions and shape of the Evergreen basin, together with palinspastic reconstructions of geologic and geophysical features surrounding it, suggest that during its lifetime, the Silver Creek fault transferred a significant portion of the ∼100 km of total offset accommodated by the Hayward fault, and of the 175 km of total San Andreas system offset thought to have been accommodated by the entire East Bay fault system. As shown previously, at ca. 1.5–2.5 Ma the Hayward-Calaveras connection changed from a right-step, releasing regime to a left-step, restraining regime, with the consequent effective abandonment of the Silver Creek fault. This reorganization was, perhaps, preceded by development of the previously proposed basin-bisecting Mount Misery fault, a fault that directly linked the southern end of the Hayward fault with the southern Calaveras fault during extinction of pull-apart activity. Historic seismicity indicates that slip below a depth of 5 km is mostly transferred from the Calaveras

  15. Geodynamics of the Dead Sea Fault: Do active faulting and past earthquakes determine the seismic gaps? (United States)

    Meghraoui, Mustapha


    The ~1000-km-long North-South trending Dead Sea transform fault (DSF) presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short term slip rates along the DSF. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. However, recent GPS results showing ~2.5 mm/yr velocity rate of the northern DSF appears to be quite different than the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern where the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this paper, we discuss the role of the DSF in the regional geodynamics and its implication on the identification of seismic gaps.

  16. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S.A.

    failures. It is often feasible to increase availability for these control loops by designing the control system to perform on-line detection and reconfiguration in case of faults before the safety system makes a close-down of the process. A general development methodology is given in the thesis......This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...... that carried the control system designer through the steps necessary to consider fault handling in an early design phase. It was shown how an existing control loop with interface to the plant wide control system could be extended with three additional modules to obtain fault tolerance: Fault detection...

  17. Solar system fault detection (United States)

    Farrington, R.B.; Pruett, J.C. Jr.


    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  18. Soil-gas helium and surface-waves detection of fault zones in ...

    Indian Academy of Sciences (India)

    gas helium; surface-waves; faults and fractures; groundwater; granite basement. ... Soil-gas helium emanometry has been utilized in Wailapally watershed,near Hyderabad in southern India,for the detection of fracture and fault zones in a granite ...

  19. On Ultrafast Time-Domain TeraHertz Spectroscopy in the Condensed Phase: Linear Spectroscopic Measurements of Hydrogen-Bond Dynamics of Astrochemical Ice Analogs and Nonlinear TeraHertz Kerr Effect Measurements of Vibrational Quantum Beats (United States)

    Allodi, Marco A.

    Much of the chemistry that affects life on planet Earth occurs in the condensed phase. The TeraHertz (THz) or far-infrared (far-IR) region of the electromagnetic spectrum (from 0.1 THz to 10 THz) has been shown to provide unique possibilities in the study of condensed-phase processes. The goal of this work is to expand the possibilities available in the THz region and undertake new investigations of fundamental interest to chemistry. Since we are fundamentally interested in condensed-phase processes, this thesis focuses on two areas where THz spectroscopy can provide new understanding: astrochemistry and solvation science. To advance these fields, we had to develop new instrumentation that would enable the experiments necessary to answer new questions in either astrochemistry or solvation science. We first developed a new experimental setup capable of studying astrochemical ice analogs in both the TeraHertz (THz), or far-Infrared (far-IR), region (0.3 - 7.5 THz; 10 - 250 wavenumbers) and the mid-IR (400 - 4000 wavenumbers). The importance of astrochemical ices lies in their key role in the formation of complex organic molecules, such as amino acids and sugars in space. Thus, the instruments are capable of performing variety of spectroscopic studies that can provide especially relevant laboratory data to support astronomical observations from telescopes such as the Herschel Space Telescope, the Stratospheric Observatory for Infrared Astronomy (SOFIA), and the Atacama Large Millimeter Array (ALMA). The experimental apparatus uses a THz time-domain spectrometer, with a 1750/875 nm plasma source and a GaP detector crystal, to cover the bandwidth mentioned above with 10 GHz (0.3 wavenumber) resolution. Using the above instrumentation, experimental spectra of astrochemical ice analogs of water and carbon dioxide in pure, mixed, and layered ices were collected at different temperatures under high-vacuum conditions with the goal of investigating the structure of the ice

  20. Paleoseismic study of the South Lajas fault: First documentation of an onshore Holocene fault in Puerto Rico (United States)

    Prentice, C.S.; Mann, P.


    The island of Puerto Rico is located within the complex boundary between the North America and Caribbean plates. The relative motion along this boundary is dominantly left-lateral strike slip, but compression and extension are locally significant. Although tectonic models proposed for the region suggest the presence of onshore active faults in Puerto Rico, no faults with Holocene displacement have been documented on the island before this study. Current seismic hazard assessments primarily consider only the impact of distant, offshore seismic sources because onshore fault hazard is unknown. Our mapping and trenching studies demonstrate Holocene surface rupture on a previously undocumented fault in southwestern Puerto Rico. We excavated a trench across a scarp near the southern edge of the Lajas Valley that exposed a narrow fault zone disrupting alluvial deposits. Structural relations indicate valley-side-down fault slip, with a component of strike-slip motion. Radiocarbon analyses of organic material collected from the sediments suggest that the most recent surface rupture occurred during the past 5000 yr, but no minimum age has yet been established. This fault may be part of a larger fault zone that extends from the western end of the Lajas Valley toward Ponce, the second largest city in Puerto Rico. ?? 2005 Geological Society of America.

  1. Observations and modeling of shallow fault creep along the San Andreas Fault system (United States)

    Wei, Meng

    This dissertation focuses on observations and modeling of fault creep in California aiming to understand the relationship between creep and earthquakes and assess the earthquake hazards in California. Chapter 1 gives an introduction of fault creep research in California, geodetic methods used to measure fault creep, and mechanism of fault creep. Chapter 2 documents an investigate on a creep event on the Supersitition Hills Fault in Southern California and the spatial and temporal variations in slip history between 1992 and 2008 using ERS, and Envisat Satellite data confirming that the fault creep is confined within the sediments layer and is probably due to the low normal stress in unconsolidated sediments. Chapter 3 presents a study on triggered slip on faults in the Salton Trough by the 2010 El Mayor-Cucapah Mw 7.2 earthquake. Chapter 4 compiles geodetic data and investigates the relationship between shallow stress accumulating rate and creep rate. Chapter 5 and 6 explores two technical projects related to fault creep observations in California. Chapter 5 analyzes decorrelation of L-band and C-band interferograms in California with implications for future fault creep study. Chapter 6 proposes an optimal way to combine GPS and InSAR to measure interseismic deformation, including fault creep. The proposed method is compared with other method and the improvements are observed. Chapter 7 presents the conclusions of the previous six chapters. Chapter 8 presents my work in the first two years in graduate school, which is not related to fault creep. We compute global maps of surface minus basal heat flow that show qualitative agreement with heat flow based on the inverse square root of age relation. In the beginning of each chapter, I provide you an earthquake safety tip. I borrowed them from an interesting website for your safety and interests. Hopefully it could be one more motivation to read through my thesis. I didn't bother to invent them, as Ralph Waldo Emerson

  2. Fault Management Metrics (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig


    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  3. Fault-tolerant design

    CERN Document Server

    Dubrova, Elena


    This textbook serves as an introduction to fault-tolerance, intended for upper-division undergraduate students, graduate-level students and practicing engineers in need of an overview of the field.  Readers will develop skills in modeling and evaluating fault-tolerant architectures in terms of reliability, availability and safety.  They will gain a thorough understanding of fault tolerant computers, including both the theory of how to design and evaluate them and the practical knowledge of achieving fault-tolerance in electronic, communication and software systems.  Coverage includes fault-tolerance techniques through hardware, software, information and time redundancy.  The content is designed to be highly accessible, including numerous examples and exercises.  Solutions and powerpoint slides are available for instructors.   ·         Provides textbook coverage of the fundamental concepts of fault-tolerance; ·         Describes a variety of basic techniques for achieving fault-toleran...

  4. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...

  5. Structure of the Newport-Inglewood/Rose Canyon and Palos Verdes Fault Zones and Implications for Current Fault Models (United States)

    Sahakian, V. J.; Bormann, J. M.; Klotsko, S.; Holmes, J. J.; Driscoll, N. W.; Harding, A. J.; Kent, G.; Wesnousky, S. G.


    Faulting in the Inner California Borderlands is complex. In the past, this region has undergone various deformational events such as extensional and rotational deformation to variable strike-slip deformation; this has imparted the geomorphology and fault structures observed offshore Southern California. Several hypotheses have been proposed to explain the current fault structures and the hazards they pose to populated coastal regions. The geometry and architecture of these structures can have significant implications for ground motions in the event of a rupture, and therefore impact working models of hazard assessment. Here, focusing on the Newport-Inglewood/Rose Canyon (NI/RC) and Palos Verdes (PV) fault zones, we use new and existing multibeam, CHIRP and Multi-Channel Seismic (MCS) data to describe the geometry of the fault system. We interpret reprocessed (prestack time migration) MCS data collected in 1979, 1986, and 2006 as well as newly acquired high-res MCS datasets collected offshore San Diego County. Combining these high and intermediate resolution datasets with very high resolution CHIRP data, we define structures that show distinct changes in the style of deformation through time, and place constraints on the segmentation of faults in this system. The timing of the most recent deformation on the NI/RC appears to vary along-strike. Likewise, the NI/RC fault's dip direction and angle appears to vary along-strike, and these changes in dip seem to mark the boundaries of restraining and releasing bends. Additionally, the NI/RC fault appears to die away to the north, possibly partitioning its strain on to the PV fault. We will present interpretations of the faults' current deformational activity as well as likelihood of rupture propagating across releasing/restraining bends, and discuss how this impacts current fault models that are employed for hazard assessment for Los Angeles and San Diego counties.

  6. Fault Analysis in Cryptography

    CERN Document Server

    Joye, Marc


    In the 1970s researchers noticed that radioactive particles produced by elements naturally present in packaging material could cause bits to flip in sensitive areas of electronic chips. Research into the effect of cosmic rays on semiconductors, an area of particular interest in the aerospace industry, led to methods of hardening electronic devices designed for harsh environments. Ultimately various mechanisms for fault creation and propagation were discovered, and in particular it was noted that many cryptographic algorithms succumb to so-called fault attacks. Preventing fault attacks without

  7. Geomorphic expression of strike-slip faults: field observations vs. analog experiments: preliminary results (United States)

    Hsieh, S. Y.; Neubauer, F.; Genser, J.


    The aim of this project is to study the surface expression of strike-slip faults with main aim to find rules how these structures can be extrapolated to depth. In the first step, several basic properties of the fault architecture are in focus: (1) Is it possible to define the fault architecture by studying surface structures of the damage zone vs. the fault core, particularly the width of the damage zone? (2) Which second order structures define the damage zone of strike-slip faults, and how relate these to such reported in basement fault strike-slip analog experiments? (3) Beside classical fault bend structures, is there a systematic along-strike variation of the damage zone width and to which properties relates the variation of the damage zone width. We study the above mentioned properties on the dextral Altyn fault, which is one of the largest strike-slip on Earth with the advantage to have developed in a fully arid climate. The Altyn fault includes a ca. 250 to 600 m wide fault valley, usually with the trace of actual fault in its center. The fault valley is confined by basement highs, from which alluvial fans develop towards the center of the fault valley. The active fault trace is marked by small scale pressure ridges and offset of alluvial fans. The fault valley confining basement highs are several kilometer long and ca. 0.5 to 1 km wide and confined by rotated dextral anti-Riedel faults and internally structured by a regular fracture pattern. Dextral anti-Riedel faults are often cut by Riedel faults. Consequently, the Altyn fault comprises a several km wide damage zone. The fault core zone is a barrier to fluid flow, and the few springs of the region are located on the margin of the fault valley implying the fractured basement highs as the reservoir. Consequently, the southern Silk Road was using the Altyn fault valley. The preliminary data show that two or more orders of structures exist. Small-scale develop during a single earthquake. These finally

  8. Quaternary Fault Lines (United States)

    Department of Homeland Security — This data set contains locations and information on faults and associated folds in the United States that are believed to be sources of M>6 earthquakes during the...

  9. Fault lubrication during earthquakes. (United States)

    Di Toro, G; Han, R; Hirose, T; De Paola, N; Nielsen, S; Mizoguchi, K; Ferri, F; Cocco, M; Shimamoto, T


    The determination of rock friction at seismic slip rates (about 1 m s(-1)) is of paramount importance in earthquake mechanics, as fault friction controls the stress drop, the mechanical work and the frictional heat generated during slip. Given the difficulty in determining friction by seismological methods, elucidating constraints are derived from experimental studies. Here we review a large set of published and unpublished experiments (∼300) performed in rotary shear apparatus at slip rates of 0.1-2.6 m s(-1). The experiments indicate a significant decrease in friction (of up to one order of magnitude), which we term fault lubrication, both for cohesive (silicate-built, quartz-built and carbonate-built) rocks and non-cohesive rocks (clay-rich, anhydrite, gypsum and dolomite gouges) typical of crustal seismogenic sources. The available mechanical work and the associated temperature rise in the slipping zone trigger a number of physicochemical processes (gelification, decarbonation and dehydration reactions, melting and so on) whose products are responsible for fault lubrication. The similarity between (1) experimental and natural fault products and (2) mechanical work measures resulting from these laboratory experiments and seismological estimates suggests that it is reasonable to extrapolate experimental data to conditions typical of earthquake nucleation depths (7-15 km). It seems that faults are lubricated during earthquakes, irrespective of the fault rock composition and of the specific weakening mechanism involved.

  10. Structural character of the Ghost Dance Fault, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Spengler, R.W. [Geological Survey, Denver, CO (United States); Braun, C.A.; Linden, R.M.; Martin, L.G.; Ross-Brown, D.M.; Blackburn, R.L. [SAIC, Golden, CO (United States)


    Detailed structural mapping of an area that straddles the southern part of the Ghost Dance Fault has revealed the presence of several additional subparallel to anastomosing faults. These faults, mapped at a scale of 1:240, are: (1) dominantly north-trending, (2) present on both the upthrown and downthrown sides of the surface trace of the Ghost Dance fault, (3) near-vertical features that commonly offset strata down to the west by 3 to 6 m (10 to 20 ft), and (4) commonly spaced 15 to 46 m (50 to 150 ft) apart. The zone also exhibits a structural fabric, containing an abundance of northwest-trending fractures. The width of the zone appears to be at least 213 m (700 ft) near the southernmost boundary of the study area but remains unknown near the northern extent of the study area, where the width of the study area is only 183 m (600 ft).

  11. Paleoseismicity on the Dense Network of Holocene Submarine Faults in Beppu Bay, Southwest Japan (United States)

    Shimazaki, K.; Matsuoka, H.; Okamura, M.; Chida, N.


    Beppu Bay, approximately 30 km by 15 km in size, contains a complex network of Holocene submarine faults whose total length amounts to 230km. They are normal dip-slip fault with left-lateral strike-slip component. The maximum vertical offset accumulated in the past 7,300 years exceeds 20 m. A detailed study on paleoseismicity on one of the faults shows a feature of the time-predictable recurrence, i.e., the larger the vertical offset, the longer the following inter-event time. Branching features can be often recognized near the end of fault and the consistency in branching direction of neighboring faults suggest repeated rupture propagation in the same direction. A detailed examination of high-resolution seismic profiling of branch indicates a repeat of branching and a slow transition of rupture from an old branch to a new one. The central Beppu-Bay fault running WNW to ESE in the center of the bay forms the northern boundary of the major graben structure of the bay. The Asamigawa fault in the west of the bay, running parallel to the central Beppu-Bay fault, has been considered as the southern boundary, but its eastern continuation was not clear. Recent seismic profiling carried out by Chida et al. (2003) showed an existence of Holocene normal fault beneath the city of Oita whose population is 440,000 and interpreted it as a part of the southern boundary. Our high-resolution shallow-water profiling survey revealed the submarine portion of the southern boundary fault, filling a gap between two subaerial faults. We continuously sample marine sediments down to a subbottom depth of 20m by piston coring and correlate specific features of sediment, 20 volcanic ash layers, a few features of magnetic susceptibility and coarse fraction together with C-14 ages of echinoids, pelecypods, and plant remains on the both sides of a targe fault to estimate the date and vertical offset of paleoearthquakes.

  12. Kinematics and paleoseismology of the Vernon Fault, Marlborough Fault System, New Zealand: Implications for contractional fault bend deformation, earthquake triggering, and the record of Hikurangi subduction earthquakes (United States)

    Bartholomew, Timothy D.; Little, Timothy A.; Clark, Kate J.; Van Dissen, Russ; Barnes, Philip M.


    The ~40 km long Vernon Fault, in the Marlborough Fault System of New Zealand, is characterized by dextral slip with subordinate reverse slip and exhibits abrupt variations in strike of up to 90°. Onshore fieldwork, paleoseismic trenching, and offshore high-frequency seismic reflection data are integrated together to identify the kinematics and paleoseismic history of three sections of the fault: (1) the NNE striking Vernon Hills section which branches off from the Awatere Fault; (2) the NE striking Big Lagoon section which borders Big Lagoon to the south and extends ~9 km offshore to the east; and (3) the E-W striking Wairau Basin section, which is entirely submarine. The Vernon Fault can be shown to have a dextral slip rate of 0.8-4.9 mm/yr with a preferred estimate of 0.9 mm/yr (on the Big Lagoon section). We infer that a further unrecognized 3-4 mm/yr of dextral slip has been accommodated off fault as a result of accumulated slip on small and/or blind reverse faults adjacent to a 6 km wide restraining bend in the main fault. The onshore and offshore paleoseismic records are in good agreement. These indicate three to five events at eight sites and a mean recurrence interval of 3.9 ± 1.2 ka over the past ~16 kyr, with the last event taking place at ~3.3 ka. Earthquakes on the Vernon Fault are responsible for Holocene subsidence rate of Big Lagoon over the last ~13 ka. Most of the subsidence of this lagoon has been the result of surface deformation related with southern Hikurangi megathrust earthquakes.

  13. Late Quaternary faulting in the Sevier Desert driven by magmatism (United States)

    Stahl, T.; Niemi, N. A.


    Seismic hazard in continental rifts varies as a function of strain accommodation by tectonic or magmatic processes. The nature of faulting in the Sevier Desert, located in eastern Basin and Range of central Utah, and how this faulting relates to the Sevier Desert Detachment low-angle normal fault, have been debated for nearly four decades. Here, we show that the geodetic signal of extension across the eastern Sevier Desert is best explained by magma-assisted rifting associated with Plio-Pleistocene volcanism. GPS velocities from 14 continuous sites across the region are best-fit by interseismic strain accumulation on the southern Wasatch Fault at c. 3.4 mm yr−1 with a c. 0.5 mm yr−1 tensile dislocation opening in the eastern Sevier Desert. The characteristics of surface deformation from field surveys are consistent with dike-induced faulting and not with faults soling into an active detachment. Geologic extension rates of c. 0.6 mm yr−1 over the last c. 50 kyr in the eastern Sevier Desert are consistent with the rates estimated from the geodetic model. Together, these findings suggest that Plio-Pleistocene extension is not likely to have been accommodated by low-angle normal faulting on the Sevier Desert Detachment and is instead accomplished by strain localization in a zone of narrow, magma-assisted rifting. PMID:28290529

  14. Late Quaternary faulting in the Sevier Desert driven by magmatism. (United States)

    Stahl, T; Niemi, N A


    Seismic hazard in continental rifts varies as a function of strain accommodation by tectonic or magmatic processes. The nature of faulting in the Sevier Desert, located in eastern Basin and Range of central Utah, and how this faulting relates to the Sevier Desert Detachment low-angle normal fault, have been debated for nearly four decades. Here, we show that the geodetic signal of extension across the eastern Sevier Desert is best explained by magma-assisted rifting associated with Plio-Pleistocene volcanism. GPS velocities from 14 continuous sites across the region are best-fit by interseismic strain accumulation on the southern Wasatch Fault at c. 3.4 mm yr-1 with a c. 0.5 mm yr-1 tensile dislocation opening in the eastern Sevier Desert. The characteristics of surface deformation from field surveys are consistent with dike-induced faulting and not with faults soling into an active detachment. Geologic extension rates of c. 0.6 mm yr-1 over the last c. 50 kyr in the eastern Sevier Desert are consistent with the rates estimated from the geodetic model. Together, these findings suggest that Plio-Pleistocene extension is not likely to have been accommodated by low-angle normal faulting on the Sevier Desert Detachment and is instead accomplished by strain localization in a zone of narrow, magma-assisted rifting.

  15. Late Quaternary faulting in the Sevier Desert driven by magmatism (United States)

    Stahl, T.; Niemi, N. A.


    Seismic hazard in continental rifts varies as a function of strain accommodation by tectonic or magmatic processes. The nature of faulting in the Sevier Desert, located in eastern Basin and Range of central Utah, and how this faulting relates to the Sevier Desert Detachment low-angle normal fault, have been debated for nearly four decades. Here, we show that the geodetic signal of extension across the eastern Sevier Desert is best explained by magma-assisted rifting associated with Plio-Pleistocene volcanism. GPS velocities from 14 continuous sites across the region are best-fit by interseismic strain accumulation on the southern Wasatch Fault at c. 3.4 mm yr-1 with a c. 0.5 mm yr-1 tensile dislocation opening in the eastern Sevier Desert. The characteristics of surface deformation from field surveys are consistent with dike-induced faulting and not with faults soling into an active detachment. Geologic extension rates of c. 0.6 mm yr-1 over the last c. 50 kyr in the eastern Sevier Desert are consistent with the rates estimated from the geodetic model. Together, these findings suggest that Plio-Pleistocene extension is not likely to have been accommodated by low-angle normal faulting on the Sevier Desert Detachment and is instead accomplished by strain localization in a zone of narrow, magma-assisted rifting.

  16. Time-Domain TeraHertz Spectroscopy and Observational Probes of Prebiotic Interstellar Gas and Ice Chemistry (United States)

    McGuire, Brett Andrew

    ruled out a gas-phase route to the synthesis of the simplest amino acid in the ISM. A molecular mystery in the case of the carrier of a series of transitions was resolved using observational data toward a large number of sources, confirming the identity of this important carbon-chemistry intermediate B11244 as l-C3H+ and identifying it in at least two new environments. Finally, the doubly-nitrogenated molecule carbodiimide HNCNH was identified in the ISM for the first time through maser emission features in the centimeter-wavelength regime. In the laboratory, a TeraHertz Time-Domain Spectrometer was constructed to obtain the experimental spectra necessary to search for solid-phase species in the ISM in the THz region of the spectrum. These investigations have shown a striking dependence on large-scale, long-range (i.e. lattice) structure of the ices on the spectra they present in the THz. A database of molecular spectra has been started, and both the simplest and most abundant ice species, which have already been identified, as well as a number of more complex species, have been studied. The exquisite sensitivity of the THz spectra to both the structure and thermal history of these ices may lead to better probes of complex chemical and dynamical evolution in interstellar environments.

  17. Direct observation of fault zone structure and mechanics in three-dimensions: A study of the SEMP fault system, Austria (United States)

    Frost, Erik Karl

    Outcrops of the Salzach-Ennstal-Mariazell-Puchberg (SEMP) fault system exhumed from depths of ˜4--17 km allow for the direct observation of fault zone structures throughout the crust, and provide insights into the way this fault, and perhaps others, distributes strain in three dimensions. At Gstatterboden, exhumed from ˜4--8 km, grain size distributions and small fault data reveal the presence of a 10-m-wide high-strain core towards which strain localized during fault evolution. Brittle fracture was accommodated via constrained comminution, which only occurs in strain-weakening rheologies and favors localization. Exposures of the SEMP at Lichtensteinklamm and Kitzlochklamm, exhumed from ˜12 km depth, bracket the brittle ductile transition. At these outcrops, the SEMP is characterized by a ˜70-m-wide, cataclastic fault core that has been altered to clays that transitions downward into a wide, ductile shear zone that has accommodated only minor amounts of strain, placing the majority of displacement on the razor-sharp fault contact. Deformation mechanisms transition from cataclasis and minor amounts of dislocation creep in calcite, to dislocation creep in quartz and calcite occurring against a background of fault-normal solution mass transfer. The ductile/ductile-brittle Rinderkarsee shear zone, exhumed from ˜17 km, marks the SEMP's continuation into the Tauern Window and is composed of three distinct shear zones. The southern, 100-m-wide shear zone has accommodated the most strain, and shows evidence for creep-accommodated grain boundary sliding in feldspar and quartz, while incipient shear zones contain ductile quartz and brittle-feldspars that undergo dislocation creep as fluids alter Kspar to muscovite, which localizes strain along felspar grain boundaries, encouraging ductility. These findings are compared to results from other faults exhumed from similar depth ranges, highlighting fundamental fault zone structures and characteristics.

  18. Ten kilometer vertical Moho offset and shallow velocity contrast along the Denali fault zone from double-difference tomography, receiver functions, and fault zone head waves (United States)

    Allam, A. A.; Schulte-Pelkum, V.; Ben-Zion, Y.; Tape, C.; Ruppert, N.; Ross, Z. E.


    We examine the structure of the Denali fault system in the crust and upper mantle using double-difference tomography, P-wave receiver functions, and analysis (spatial distribution and moveout) of fault zone head waves. The three methods have complementary sensitivity; tomography is sensitive to 3D seismic velocity structure but smooths sharp boundaries, receiver functions are sensitive to (quasi) horizontal interfaces, and fault zone head waves are sensitive to (quasi) vertical interfaces. The results indicate that the Mohorovičić discontinuity is vertically offset by 10 to 15 km along the central 600 km of the Denali fault in the imaged region, with the northern side having shallower Moho depths around 30 km. An automated phase picker algorithm is used to identify 1400 events that generate fault zone head waves only at near-fault stations. At shorter hypocentral distances head waves are observed at stations on the northern side of the fault, while longer propagation distances and deeper events produce head waves on the southern side. These results suggest a reversal of the velocity contrast polarity with depth, which we confirm by computing average 1D velocity models separately north and south of the fault. Using teleseismic events with M ≥ 5.1, we obtain 31,400 P receiver functions and apply common-conversion-point stacking. The results are migrated to depth using the derived 3D tomography model. The imaged interfaces agree with the tomography model, showing a Moho offset along the central Denali fault and also the sub-parallel Hines Creek fault, a suture zone boundary 30 km to the north. To the east, this offset follows the Totschunda fault, which ruptured during the M7.9 2002 earthquake, rather than the Denali fault itself. The combined results suggest that the Denali fault zone separates two distinct crustal blocks, and that the Totschunda and Hines Creeks segments are important components of the fault and Cretaceous-aged suture zone structure.

  19. The San Andreas Fault 'Supersite' (Invited) (United States)

    Hudnut, K. W.


    An expanded and permanent Supersite has been proposed to the Committee on Earth Observation Satellites (CEOS) for the San Andreas Fault system, based upon the successful initial Group on Earth Observations (GEO) Geohazard Supersite for the Los Angeles region from 2009-2013. As justification for the comprehensive San Andreas Supersite, consider the earthquake history of California, in particular the devastating M 7.8 San Francisco earthquake of 1906, which occurred along the San Andreas Fault, as did an earthquake of similar magnitude in 1857 in southern California. Los Angeles was only a small town then, but now the risk exposure has increased for both of California's megacities. Between the San Francisco and Los Angeles urban areas lies a section of the San Andreas Fault known to creep continually, so it has relatively less earthquake hazard. It used to be thought of as capable of stopping earthquakes entering it from either direction. Transitional behavior at either end of the creeping section is known to display a full range of seismic to aseismic slip events and accompanying seismicity and strain transient events. Because the occurrence of creep events is well documented by instrumental networks such as CISN and PBO, the San Andreas Supersite can be expected to be especially effective. A good baseline level of geodetic data regarding past events and strain accumulation and release exists. Many prior publications regarding the occurrence of geophysical phenomena along the San Andreas Fault system mean that in order to make novel contributions, state-of-the-art science will be required within this Supersite region. In more recent years, the 1989 Loma Prieta earthquake struck adjacent to the San Andreas Fault and caused the most damage along the western side of the San Francisco Bay Area. More recently, the concern has focused on the potential for future events along the Hayward Fault along the eastern side of San Francisco Bay. In Southern California, earthquakes

  20. Splay Faults and Associated Mass Transport Deposits in the Manila Accretionary Wedge near Taiwan: Implications for Geohazards (United States)

    Lin, A. T.; Liu, C. S.; Dirgantara, F.


    Plate interface megathrusts are major seismogenic faults in subduction zone, capable of generating great earthquakes with widespread submarine landslides and damaging tsunami. Upward branching of megathrusts results in splay faults in the accretionary wedge. Reflection seismic data across the accretionary wedge off southern Taiwan, reveal at least two strands of splay faults as well as multiple stacked mass transport deposits (MTDs) nearby the faults. With the help of sediment coring and age datings in the vicinity of the splay fault, implications for temporal evolution of the mass wasting processes and episodic activities of splay faults are discussed in this paper. Seismic data show two branches of arcward and gently-dipping splay faults with two slope basins lying in the footwall and hangingwall of the faults, respectively. The older and buried splay fault is inactive as the fault tip is covered by up to 1000 m thick sediments in the footwall slope basin, indicating that it ceased to be active around 0.5 Ma ago. Repeated slip of this fault prior to ~0.5 Ma ago may also result in 4 stacked and multiple mass transport deposits (MTDs) of up to 700-m thick found in vicinity of this fault. This fossil splay fault is characterized by reflection polarity similar to that of seafloor, indicative of low water saturation along the fault zone and hence not an active fluid conduit. The younger and overlying splay fault cuts through the seafloor and the emergent fault tip lying at the toe of steep slope (~ 15 degree) with significant slope break. There is also a 500-m horizontal offset, between the buried paleo-seafloor in the footwall and the present-day seafloor on the hangingwall. The reflection polarity of this fault zone is reversed to that of seafloor, indicating fluid rich for this fault patch. These lines of evidence suggest that this young splay fault is an active fault with active fluid circulation along the fault. Our results indicate that the old splay fault

  1. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  2. Neotectonics of the southern Amargosa Desert, Nye County, Nevada and Inyo County, California

    Energy Technology Data Exchange (ETDEWEB)

    Donovan, Diane E. [Univ. of Nevada, Reno, NV (United States)


    A complex pattern of active faults occurs in the southern Amargosa Desert, southern Nye, County, Nevada. These faults can be grouped into three main fault systems: (1) a NE-striking zone of faults that forms the southwest extension of the left-lateral Rock Valley fault zone, in the much larger Spotted Range-Mine Mountain structural zone, (2) a N-striking fault zone coinciding with a NNW-trending alignment of springs that is either a northward continuation of a fault along the west side of the Resting Spring Range or a N-striking branch fault of the Pahrump fault system, and (3) a NW-striking fault zone which is parallel to the Pahrump fault system, but is offset approximately 5 km with a left step in southern Ash Meadows. These three fault zones suggest extension is occurring in an E-W direction, which is compatible with the ~N10W structural grain prevalent in the Death Valley extensional region to the west.

  3. Latest extension of the Laujar fault in a convergence setting (Sierra Nevada, Betic Cordillera) (United States)

    Martínez-Martos, Manuel; Galindo-Zaldívar, Jesus; Sanz de Galdeano, Carlos; García-Tortosa, Francisco Juan; Martínez-Moreno, Francisco José; Ruano, Patricia; González-Castillo, Lourdes; Azañón, José Miguel


    The present-day relief of the Betic Cordillera formed since the Late Miocene through the regional N-S to NW-SE Africa-Eurasia convergence that developed large folds. The Laujar Fault Zone is a south-dipping E-W oriented structure located at the northern boundary of the Alpujarran Corridor Neogene intramontane basin, which separates Sierra Nevada and Sierra de Gador antiforms, in the Internal Zones of the Betic Cordillera. The fault zone acted in a first stage as a dextral strike-slip fault. Currently it moves as a normal fault evidenced by striated calcretes, also in agreement with regional continuous GPS (CGPS) data that support the hypothesis of an active N-S extension in the fault area. In order to analyse the deep geometry of the Laujar Fault Zone, we combined several geophysical techniques (gravity, magnetic, electric resistivity tomography and audio-magnetotelluric data) with field geological observations. Fault surfaces seem to join at a southward-dipping shallow detachment level, including faults covered by the sedimentary infill. The fault zone was developed in a previously weakened area by wrench faults parallel to the Alpujarran Corridor. The recent normal activity of this fault zone may be a consequence of a change in the Africa-Eurasia convergence orientation, which implies a decrease in the N-S compression component. This structure along the southern limb of Sierra Nevada antiform evidences the gravitational collapse of previously thickened crust in a regional compressional context simultaneous to metamorphic core uplift.

  4. Faults in Linux

    DEFF Research Database (Denmark)

    Palix, Nicolas Jean-Michel; Thomas, Gaël; Saha, Suman


    a major problem? To answer these questions, we have transported the experiments of Chou et al. to Linux versions 2.6.0 to 2.6.33, released between late 2003 and early 2010. We find that Linux has more than doubled in size during this period, but that the number of faults per line of code has been......In 2001, Chou et al. published a study of faults found by applying a static analyzer to Linux versions 1.0 through 2.4.1. A major result of their work was that the drivers directory contained up to 7 times more of certain kinds of faults than other directories. This result inspired a number...... decreasing. And, even though drivers still accounts for a large part of the kernel code and contains the most faults, its fault rate is now below that of other directories, such as arch (HAL) and fs (file systems). These results can guide further development and research efforts. To enable others...

  5. The Cottage Grove fault system (Illinois Basin): Late Paleozoic transpression along a Precambrian crustal boundary (United States)

    Duchek, A.B.; McBride, J.H.; Nelson, W.J.; Leetaru, H.E.


    The Cottage Grove fault system in southern Illinois has long been interpreted as an intracratonic dextral strike-slip fault system. We investigated its structural geometry and kinematics in detail using (1) outcrop data, (2) extensive exposures in underground coal mines, (3) abundant borehole data, and (4) a network of industry seismic reflection profiles, including data reprocessed by us. Structural contour mapping delineates distinct monoclines, broad anticlines, and synclines that express Paleozoic-age deformation associated with strike slip along the fault system. As shown on seismic reflection profiles, prominent near-vertical faults that cut the entire Paleozoic section and basement-cover contact branch upward into outward-splaying, high-angle reverse faults. The master fault, sinuous along strike, is characterized along its length by an elongate anticline, ???3 km wide, that parallels the southern side of the master fault. These features signify that the overall kinematic regime was transpressional. Due to the absence of suitable piercing points, the amount of slip cannot be measured, but is constrained at less than 300 m near the ground surface. The Cottage Grove fault system apparently follows a Precambrian terrane boundary, as suggested by magnetic intensity data, the distribution of ultramafic igneous intrusions, and patterns of earthquake activity. The fault system was primarily active during the Alleghanian orogeny of Late Pennsylvanian and Early Permian time, when ultramatic igneous magma intruded along en echelon tensional fractures. ?? 2004 Geological Society of America.

  6. Fault Detection for Industrial Processes

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang


    Full Text Available A new fault-relevant KPCA algorithm is proposed. Then the fault detection approach is proposed based on the fault-relevant KPCA algorithm. The proposed method further decomposes both the KPCA principal space and residual space into two subspaces. Compared with traditional statistical techniques, the fault subspace is separated based on the fault-relevant influence. This method can find fault-relevant principal directions and principal components of systematic subspace and residual subspace for process monitoring. The proposed monitoring approach is applied to Tennessee Eastman process and penicillin fermentation process. The simulation results show the effectiveness of the proposed method.

  7. What is Fault Tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Frei, C. W.; Kraus, K.


    availability and reduce the risk of safety hazards. Its aim is to prevent that simple faults develop into serious failure. Fault-tolerant control merges several disciplines to achieve this goal, including on-line fault diagnosis, automatic condition assessment and calculation of remedial actions when a fault......Faults in automated processes will often cause undesired reactions and shut-down of a controlled plant, and the consequences could be damage to the plant, to personnel or the environment. Fault-tolerant control is the synonym for a set of recent techniques that were developed to increase plant...

  8. 3D Dynamic Rupture Simulations Across Interacting Faults: the Mw7.0, 2010, Haiti Earthquake (United States)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.; Aagaard, B.


    The mechanisms controlling rupture propagation between fault segments during an earthquake are key to the hazard posed by fault systems. Rupture initiation on a fault segment sometimes transfers to a larger fault, resulting in a significant event (e.g.i, 2002 M7.9Denali and 2010 M7.1 Darfield earthquakes). In other cases rupture is constrained to the initial segment and does not transfer to nearby faults, resulting in events of moderate magnitude. This is the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigatethe rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacenent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a Finite Element Model to simulate the nucleation and propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence. The best-fit simulation is in remarkable agreement with several finite fault inversions and predicts ground displacement in very good agreement with geodetic and geological observations. The two slip patches inferred from finite-fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure. Although our simulation results replicate well the ground deformation consistent with the geodetic surface observation but convolving the ground motion with the soil amplification from the microzonation study will correctly account for the heterogeneity of the PGA throughout the rupture area.

  9. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn


    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes...... the challenge model and the requirements for challenge participants. In addition, it motivates many of the faults by citing publications that give field data from wind turbine control tests....

  10. Constraining fault growth rates and fault evolution in New Zealand


    Lamarche, G.; Bull, J. M.; Barnes, P.M.; Taylor, S.K.; Horgan, H.


    Understanding how faults propagate, grow and interact in fault systems is important because they are primarily responsible for the distribution of strain in the upper crust. They localise deformation and stress release, often producing surface displacements that control sedimentation and fluid flow either by acting as conduits or barriers. Identifying fault spatial distribution, quantifying activity, evaluating linkage mechanism, and estimating fault growth rates are key components in seismic...

  11. The Quaternary Silver Creek Fault Beneath the Santa Clara Valley, California (United States)

    Wentworth, Carl M.; Williams, Robert A.; Jachens, Robert C.; Graymer, Russell W.; Stephenson, William J.


    a negative flower structure. This structure implies some continuing strike slip on the Silver Creek Fault in the late Quaternary as well, with a transtensional component but no dip slip. Our only basis for estimating the rate of this later Quaternary strike slip on the Silver Creek Fault is to assume continuation of the inferred early Quaternary rate of less than 2 mm/yr. Faulting evident in a detailed seismic reflection profile across the Silver Creek Fault extends up to the limit of data at a depth of 50 m and age of about 140 ka, and the course of Coyote Creek suggests Holocene capture in a structural depression along the fault. No surface trace is evident on the alluvial plain, however, and convincing evidence of Holocene offset is lacking. Few instrumentally recorded earthquakes are located near the fault, and those that are near its southern end represent cross-fault shortening, not strike slip. The fault might have been responsible, however, for two poorly located moderate earthquakes that occurred in the area in 1903. Its southeastern end does mark an abrupt change in the pattern of abundant instrumentally recorded earthquakes along the Calaveras Fault-in both its strike and in the depth distribution of hypocenters-that could indicate continuing influence by the Silver Creek Fault. In the absence of convincing evidence to the contrary, and as a conservative estimate, we presume that the Silver Creek Fault has continued its strike-slip movement through the Holocene, but at a very slow rate. Such a slow rate would, at most, yield very infrequent damaging earthquakes. If the 1903 earthquakes did, in fact, occur on the Silver Creek Fault, they would have greatly reduced the short-term future potential for large earthquakes on the fault.

  12. Computer hardware fault administration (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.


    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  13. Fault Tolerant Computer Architecture

    CERN Document Server

    Sorin, Daniel


    For many years, most computer architects have pursued one primary goal: performance. Architects have translated the ever-increasing abundance of ever-faster transistors provided by Moore's law into remarkable increases in performance. Recently, however, the bounty provided by Moore's law has been accompanied by several challenges that have arisen as devices have become smaller, including a decrease in dependability due to physical faults. In this book, we focus on the dependability challenge and the fault tolerance solutions that architects are developing to overcome it. The two main purposes

  14. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik


    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR) ...

  15. Which Fault Segments Ruptured in the 2008 Wenchuan Earthquake and Which Did Not? New Evidence from Near‐Fault 3D Surface Displacements Derived from SAR Image Offsets

    KAUST Repository

    Feng, Guangcai


    The 2008 Mw 7.9 Wenchuan earthquake ruptured a complex thrust‐faulting system at the eastern edge of the Tibetan plateau and west of Sichuan basin. Though the earthquake has been extensively studied, several details about the earthquake, such as which fault segments were activated in the earthquake, are still not clear. This is in part due to difficult field access to the fault zone and in part due to limited near‐fault observations in Interferometric Synthetic Aperture Radar (InSAR) observations because of decorrelation. In this study, we address this problem by estimating SAR image offsets that provide near‐fault ground displacement information and exhibit clear displacement discontinuities across activated fault segments. We begin by reanalyzing the coseismic InSAR observations of the earthquake and then mostly eliminate the strong ionospheric signals that were plaguing previous studies by using additional postevent images. We also estimate the SAR image offsets and use their results to retrieve the full 3D coseismic surface displacement field. The coseismic deformation from the InSAR and image‐offset measurements are compared with both Global Positioning System and field observations. The results indicate that our observations provide significantly better information than previous InSAR studies that were affected by ionospheric disturbances. We use the results to present details of the surface‐faulting offsets along the Beichuan fault from the southwest to the northeast and find that there is an obvious right‐lateral strike‐slip component (as well as thrust faulting) along the southern Beichuan fault (in Yingxiu County), which was strongly underestimated in earlier studies. Based on the results, we provide new evidence to show that the Qingchuan fault was not ruptured in the 2008 Wenchuan earthquake, a topic debated in field observation studies, but show instead that surface faulting occurred on a northward extension of the Beichuan fault during

  16. Detecting Possible Fault Zone Head Waves Along the Longmenshan Fault Zone Using Aftershocks of the 2013 Mw6.7 Lushan Earthquake (United States)

    Daniels, C.; Peng, Z.; Li, Z.; Ross, Z. E.; Wu, J.; Su, J.; Zhang, H.; Pei, S.


    Fault zone head waves (FZHWs) are subtle refracted waves propagated along bi-material fault interfaces and recorded at stations at slower side of the fault. FZHWs are typically observed in association with mature strike-slip faults or subduction zones, where two sides exhibit a noticeable P-wave velocity difference. So far FZHWs have not been observed along continental thrust faults. In this study we search for possible FZHWs using abundant aftershock observations following the 2013 Mw6.7 Lushan earthquake. This event occurred along the southern portion of the Longmenshan Fault Zone that separated the Tibetan Plateau and Sichuan Basin in Western China. Recent P-wave tomographic studies have found clear velocity contrasts along this fault, suggesting that events occurred at the fault boundary are capable of producing FZHW-like signals. We are in the process of analyzing 4100 aftershocks recorded by 28 temporary stations deployed between April 24 to May 19 2013. We use both visual inspections and automatic FZHW pickers to identify weak precursory-type signals before sharp direct P wave arrivals. Next, we align them on the P-wave onset, and examine the moveout between the time delays of P and weak arrivals and distance along the fault strike. So far we find that many stations on both sides of the fault recorded possible evidence of FZHWs, but we do not find clear moveout with along-strike distances. Our next step is to combine this dataset with another larger dataset recorded by both permanent and temporary stations, and use automatic FZHW pickers to quantify the existences of FZHWs in this region. A systematic detection of FZHW along continental thrust faults could provide new insights on the fault geometry and high-resolution fault interface properties at seismogenic depth.

  17. Crustal structure of norther Oaxaca terrane; The Oaxaca and caltepec faults, and the Tehuacan Valley. A gravity study. (United States)

    Campos-Enriquez, J. O.; Alatorre-Zamora, M. A.; Ramón, V. M.; Belmonte, S.


    Northern Oaxaca terrane, southern Mexico, is bound by the Caltepec and Oaxaca faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacan depression. Several gravity profiles across these faults and the Oaxaca terrane (including the Tehuacan Valley) enables us to establish the upper crustal structure of this region. Accordingly, the Oaxaca terrane is downward displaced to the east in two steps. First the Santa Lucia Fault puts into contact the granulitic basamental rocks with Phanerozoic volcanic and sedimentary rocks. Finally, the Gavilan Fault puts into contact the Oaxaca terrane basement (Oaxaca Complex) into contact with the volcano-sedimentary infill of the valley. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex?). A structural high at the western Tehuacan depression accomadates the east dipping faults (Santa Lucia and Gavilan faults) and the west dipping faults of the Oaxaca Fault System. To the west of this high structural we have the depper depocenters. The Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. The faults are regional tectonic structures. They seem to continue northwards below the Trans-Mexican Volcanic Belt. A major E-W to NE-SW discontinuity on the Oaxaca terrane is inferred to exist between profiles 1 and 2. The Tehuacan Valley posses a large groundwater potential.

  18. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)


    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene.

  19. Fault diagnosis of induction motors

    CERN Document Server

    Faiz, Jawad; Joksimović, Gojko


    This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.

  20. Fault management and systems knowledge (United States)


    Pilots are asked to manage faults during flight operations. This leads to the training question of the type and depth of system knowledge required to respond to these faults. Based on discussions with multiple airline operators, there is agreement th...

  1. Improving Multiple Fault Diagnosability using Possible Conflicts (United States)

    National Aeronautics and Space Administration — Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can...

  2. Normal Fault Growth on Mars (United States)

    Morris, A. P.; Wyrick, D. Y.; Ferrill, D. A.


    Displacement versus length relationships of faults on Earth and Mars have been used to describe and interpret the evolution of faults and fault systems, infer differences in the relative strengths of strata, and evaluate variations in fault-system response to differences in gravity from planet to planet. In this presentation, we focus on maximum throw versus trace length (Dmax/L) of continuously mappable faults and Dmax/L of individual fault segments. Fault analyses on Mars have the advantage of a planetary surface devoid of vegetation and largely unaffected by weathering and erosion. Areas on the flanks of Alba Patera, Mars, were chosen because they are well imaged by all generations of data coverage, contain fault systems that have a range of developmental characteristics, and formed in a relatively simple tectonic setting dominated by extension. Footwall and hanging wall cutoff traces of more than 300 faults were interpreted using Viking imagery and ArcGIS software. Throw was obtained by calculating the elevation difference between adjacent footwall and hanging wall points using Mars Orbiter Laser Altimeter data. Throw versus along-strike trace length plots were constructed for each interpreted fault. Single fault segments are defined as having one well-defined displacement maximum bounded by two near-zero displacement minima. Segments within a multi-segment fault were identified by counting displacement maxima along the fault trace. The number of segments incorporated into multi-segment faults is positively correlated with the fault trace length. In a plot of Dmax versus L, whole faults are distributed approximately along a locus of Dmax = K × Ln, where K = 5 × 10-4 to 5 × 10-2 and n = 1. This is in agreement with previous studies of faults on Mars. Single fault segments form a distinct population whose distribution is described approximately by the same equation but where K = 1.7 × 10-3. Dmax/L ratios for multi-segment faults represent an apparently self

  3. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob


    In the recent years the wind turbine industry has focused on optimizing the cost of energy. One of the important factors in this is to increase reliability of the wind turbines. Advanced fault detection, isolation and accommodation are important tools in this process. Clearly most faults are deal...... scenarios. This benchmark model is used in an international competition dealing with Wind Farm fault detection and isolation and fault tolerant control....

  4. The engine fuel system fault analysis (United States)

    Zhang, Yong; Song, Hanqiang; Yang, Changsheng; Zhao, Wei


    For improving the reliability of the engine fuel system, the typical fault factor of the engine fuel system was analyzed from the point view of structure and functional. The fault character was gotten by building the fuel system fault tree. According the utilizing of fault mode effect analysis method (FMEA), several factors of key component fuel regulator was obtained, which include the fault mode, the fault cause, and the fault influences. All of this made foundation for next development of fault diagnosis system.

  5. Formal fault tree semantics


    Schellhorn, Gerhard


    Formal fault tree semantics / G. Schellhorn, A. Thums, and W. Reif. - In: IDPT : Proceedings of the Sixth World Conference on Integrated Design and Process Technology : June 23 - 27, 2003, Pasadena, California / SDPS, Society for Design & Process Science. - 2002. - 1CD-ROM

  6. Diagnosing Intermittent Faults

    NARCIS (Netherlands)

    Van Gemund, A.J.C.; Abreu, R.F.; Zoeteweij, P.


    In this working report we outline how to determine the intermittency parameters gj from the activity matrix A (context: DX’08 paper Abreu, Zoeteweij, Van Gemund). We start with the single fault (SF) case and show that averaging over the error vector e is the exact way. We also show that in this way

  7. Network Power Fault Detection


    Siviero, Claudio


    Network power fault detection. At least one first network device is instructed to temporarily disconnect from a power supply path of a network, and at least one characteristic of the power supply path of the network is measured at a second network device connected to the network while the at least one first network device is temporarily disconnected from the network

  8. Detecting Faults from Encoded Information

    NARCIS (Netherlands)

    Persis, Claudio De


    The problem of fault detection for linear continuous-time systems via encoded information is considered. The encoded information is received at a remote location by the monitoring deiice and assessed to infer the occurrence of the fault. A class of faults is considered which allows to use a simple

  9. Fault-Related Sanctuaries (United States)

    Piccardi, L.


    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  10. Rapid Response Fault Drilling Past, Present, and Future

    Directory of Open Access Journals (Sweden)

    Demian M. Saffer


    Full Text Available New information about large earthquakes can be acquired by drilling into the fault zone quickly following a large seismic event. Specifically, we can learn about the levels of friction and strength of the fault which determine the dynamic rupture, monitor the healing process of the fault, record the stress changes that trigger aftershocks and capture important physical and chemical properties of the fault that control the rupture process. These scientific and associated technical issues were the focus of a three-day workshop on Rapid Response Fault Drilling: Past, Present, and Future, sponsored by the International Continental Scientific Drilling Program (ICDP and the Southern California Earthquake Center (SCEC. The meeting drewtogether forty-four scientists representing ten countries in Tokyo, Japan during November 2008. The group discussed the scientific problems and how they could be addressed through rapid response drilling. Focused talks presented previous work on drilling after large earthquakes and in fault zones in general, as well as the state of the art of experimental techniques and measurement strategies. Detailed discussion weighed the tradeoffs between rapid drilling andthe ability to satisfy a diverse range of scientific objectives. Plausible drilling sites and scenarios were evaluated. This is a shortened summary of the workshop report that discusses key scientific questions, measurement strategies, and recommendations. This report can provide a starting point for quickly mobilizing a drilling program following future large earthquakes. The full report can be seen at

  11. 2009 fault tolerance for extreme-scale computing workshop, Albuquerque, NM - March 19-20, 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Katz, D. S.; Daly, J.; DeBardeleben, N.; Elnozahy, M.; Kramer, B.; Lathrop, S.; Nystrom, N.; Milfeld, K.; Sanielevici, S.; Scott, S.; Votta, L.; Louisiana State Univ.; Center for Exceptional Computing; LANL; IBM; Univ. of Illinois; Shodor Foundation; Pittsburgh Supercomputer Center; Texas Advanced Computing Center; ORNL; Sun Microsystems


    This is a report on the third in a series of petascale workshops co-sponsored by Blue Waters and TeraGrid to address challenges and opportunities for making effective use of emerging extreme-scale computing. This workshop was held to discuss fault tolerance on large systems for running large, possibly long-running applications. The main point of the workshop was to have systems people, middleware people (including fault-tolerance experts), and applications people talk about the issues and figure out what needs to be done, mostly at the middleware and application levels, to run such applications on the emerging petascale systems, without having faults cause large numbers of application failures. The workshop found that there is considerable interest in fault tolerance, resilience, and reliability of high-performance computing (HPC) systems in general, at all levels of HPC. The only way to recover from faults is through the use of some redundancy, either in space or in time. Redundancy in time, in the form of writing checkpoints to disk and restarting at the most recent checkpoint after a fault that cause an application to crash/halt, is the most common tool used in applications today, but there are questions about how long this can continue to be a good solution as systems and memories grow faster than I/O bandwidth to disk. There is interest in both modifications to this, such as checkpoints to memory, partial checkpoints, and message logging, and alternative ideas, such as in-memory recovery using residues. We believe that systematic exploration of these ideas holds the most promise for the scientific applications community. Fault tolerance has been an issue of discussion in the HPC community for at least the past 10 years; but much like other issues, the community has managed to put off addressing it during this period. There is a growing recognition that as systems continue to grow to petascale and beyond, the field is approaching the point where we don

  12. New High-Resolution 3D Seismic Imagery of Deformation and Fault Architecture Along Newport-Inglewood/Rose Canyon Fault in the Inner California Borderlands (United States)

    Holmes, J. J.; Bormann, J. M.; Driscoll, N. W.; Kent, G.; Harding, A. J.; Wesnousky, S. G.


    The tectonic deformation and geomorphology of the Inner California Borderlands (ICB) records the transition from a convergent plate margin to a predominantly dextral strike-slip system. Geodetic measurements of plate boundary deformation onshore indicate that approximately 15%, or 6-8 mm/yr, of the total Pacific-North American relative plate motion is accommodated by faults offshore. The largest near-shore fault system, the Newport-Inglewood/Rose Canyon (NI/RC) fault complex, has a Holocene slip rate estimate of 1.5-2.0 mm/yr, according to onshore trenching, and current models suggest the potential to produce an Mw 7.0+ earthquake. The fault zone extends approximately 120 km, initiating from the south near downtown San Diego and striking northwards with a constraining bend north of Mt. Soledad in La Jolla and continuing northwestward along the continental shelf, eventually stepping onshore at Newport Beach, California. In late 2013, we completed the first high-resolution 3D seismic survey (3.125 m bins) of the NI/RC fault offshore of San Onofre as part of the Southern California Regional Fault Mapping project. We present new constraints on fault geometry and segmentation of the fault system that may play a role in limiting the extent of future earthquake ruptures. In addition, slip rate estimates using piercing points such as offset channels will be explored. These new observations will allow us to investigate recent deformation and strain transfer along the NI/RC fault system.

  13. Delineation of faults, fractures, foliation, and ground-water-flow zones in fractured-rock, on the southern part of Manhattan, New York, through use of advanced borehole-geophysical techniques (United States)

    Stumm, Frederick; Chu, Anthony; Monti, Jack


    Advanced borehole-geophysical techniques were used to assess the geohydrology of crystalline bedrock in 20 boreholes on the southern part of Manhattan Island, N.Y., in preparation for construction of a third water tunnel for New York City. The borehole-logging techniques included natural gamma, single-point resistance, short-normal resistivity, mechanical and acoustic caliper, magnetic susceptibility, borehole-fluid temperature and resistivity, borehole-fluid specific conductance, dissolved oxygen, pH, redox, heatpulse flowmeter (at selected boreholes), borehole deviation, acoustic and optical televiewer, and borehole radar (at selected boreholes). Hydraulic head and specific-capacity test data were collected from 29 boreholes. The boreholes penetrated gneiss, schist, and other crystalline bedrock that has an overall southwest to northwest-dipping foliation. Most of the fractures penetrated are nearly horizontal or have moderate- to high-angle northwest or eastward dip azimuths. Foliation dip within the potential tunnel-construction zone is northwestward and southeastward in the proposed North Water-Tunnel, northwestward to southwestward in the proposed Midtown Water-Tunnel, and northwestward to westward dipping in the proposed South Water-Tunnel. Fracture population dip azimuths are variable. Heat-pulse flowmeter logs obtained under pumping and nonpumping (ambient) conditions, together with other geophysical logs, indicate transmissive fracture zones in each borehole. The 60-megahertz directional borehole-radar logs delineated the location and orientation of several radar reflectors that did not intersect the projection of the borehole.Fracture indexes range from 0.12 to 0.93 fractures per foot of borehole. Analysis of specific-capacity tests from each borehole indicated that transmissivity ranges from 2 to 459 feet squared per day; the highest transmissivity is at the Midtown Water-Tunnel borehole (E35ST-D).

  14. Modeling fluid flow and heat transfer at Basin and Range faults: preliminary results for Leach hot springs, Nevada (United States)

    López, Dina L.; Smith, Leslie; Storey, Michael L.; Nielson, Dennis L.


    The hydrothermal systems of the Basin and Range Province are often located at or near major range bounding normal faults. The flow of fluid and energy at these faults is affected by the advective transfer of heat and fluid from an to the adjacent mountain ranges and valleys, This paper addresses the effect of the exchange of fluid and energy between the country rock, the valley fill sediments, and the fault zone, on the fluid and heat flow regimes at the fault plane. For comparative purposes, the conditions simulated are patterned on Leach Hot Springs in southern Grass Valley, Nevada. Our simulations indicated that convection can exist at the fault plane even when the fault is exchanging significant heat and fluid with the surrounding country rock and valley fill sediments. The temperature at the base of the fault decreased with increasing permeability of the country rock. Higher groundwater discharge from the fault and lower temperatures at the base of the fault are favored by high country rock permabilities and fault transmissivities. Preliminary results suggest that basal temperatures and flow rates for Leach Hot Springs can not be simulated with a fault 3 km deep and an average regional heat flow of 150 mW/m2 because the basal temperature and mass discharge rates are too low. A fault permeable to greater depths or a higher regional heat flow may be indicated for these springs.

  15. Fault linkage and continental breakup (United States)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia


    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part

  16. Fault zone architecture of a major oblique-slip fault in the Rawil depression, Western Helvetic nappes, Switzerland (United States)

    Gasser, D.; Mancktelow, N. S.


    solution seams and veins and in the sandstones of coarse breccia and veins. Later, straight, sharp fault planes cross-cut all these features. In all lithologies, common veins and calcite-cemented fault rocks indicate the strong involvement of fluids during faulting. Today, the southern Rawil depression and the Rhone Valley belong to one of the seismically most active regions in Switzerland. Seismogenic faults interpreted from earthquake focal mechanisms strike ENE-WSW to WNW-ESE, with dominant dextral strike-slip and minor normal components and epicentres at depths of < 15 km. All three Neogene fault sets (2-4) could have been active under the current stress field inferred from the current seismicity. This implies that the same mechanisms that formed these fault zones in the past may still persist at depth. The Rezli fault zone allows the detailed study of a fossil fault zone that can act as a model for processes still occurring at deeper levels in this seismically active region.

  17. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)


    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene.

  18. Seismic Slip on an Oblique Detachment Fault at Low Angles (United States)

    Janecke, S. U.; Steely, A. N.; Evans, J. P.


    Pseudotachylytes are one of the few accepted indicators of seismic slip along ancient faults. Low-angle normal faults have produced few large earthquakes in historic times and low-angle normal faults (detachment faults) are typically severely misoriented relative to a vertical maximum compressive stress. As a result many geoscientists question whether low-angle normal faults produce earthquakes at low angles. Relationships in southern California show that a major low-angle normal-oblique fault slipped at low angles and produced large earthquakes. The exhumed Late Cenozoic West Salton detachment fault preserves spectacular fault- related pseudotachylytes along its fault plane and injected into its hanging wall and footwall. Composite pseudotachylyte zones are up to 1.25 m thick and persists over lateral distances of at least 10's of meters. Pseudotachylyte is common in most thin sections of damaged fault rocks with more than 20% (by volume) of cataclasite. We recognized the presence of original melt using numerous criteria: abundant spherulites in thin sections, injection structures at both the thin-section and outcrop scale, black aphanitic textures, quenched vein margins, variations in microcrystallite textures and/or size with respect to the vein margin, and glassy textures in hand sample. Multiple earthquakes are inferred to produce the layered "stratigraphy" in some exposures of pseudotachylytes. We infer that the West Salton detachment fault formed and slipped at low angles because it nearly perfectly reactivates a Cretaceous ductile thrust system at the half km scale and dips between 10 and 45 degrees. The about 30 degree NNE dip of the detachment fault on the north side of Yaqui Ridge is likely steeper than its dip during detachment slip because there is local steepening on the flanks of the Yaqui Ridge antiform in a contractional stepover of a crosscutting Quaternary San Felipe dextral fault zone. These relationships indicate a low dip on the detachment

  19. Geochemistry, mineralization, structure, and permeability of a normal-fault zone, Casino mine, Alligator Ridge district, north central Nevada (United States)

    Hammond, K. Jill; Evans, James P.


    We examine the geochemical signature and structure of the Keno fault zone to test its impact on the flow of ore-mineralizing fluids, and use the mined exposures to evaluate structures and processes associated with normal fault development. The fault is a moderately dipping normal-fault zone in siltstone and silty limestone with 55-100 m of dip-slip displacement in north-central Nevada. Across-strike exposures up to 180 m long, 65 m of down-dip exposure and 350 m of along-strike exposure allow us to determine how faults, fractures, and fluids interact within mixed-lithology carbonate-dominated sedimentary rocks. The fault changes character along strike from a single clay-rich slip plane 10-20 mm thick at the northern exposure to numerous hydrocarbon-bearing, calcite-filled, nearly vertical slip planes in a zone 15 m wide at the southern exposure. The hanging wall and footwall are intensely fractured but fracture densities do not vary markedly with distance from the fault. Fault slip varies from pure dip-slip to nearly pure strike-slip, which suggests that either slip orientations may vary on faults in single slip events, or stress variations over the history of the fault caused slip vector variations. Whole-rock major, minor, and trace element analyses indicate that Au, Sb, and As are in general associated with the fault zone, suggesting that Au- and silica-bearing fluids migrated along the fault to replace carbonate in the footwall and adjacent hanging wall rocks. Subsequent fault slip was associated with barite and calcite and hydrocarbon-bearing fluids deposited at the southern end of the fault. No correlation exists at the meter or tens of meter scale between mineralization patterns and fracture density. We suggest that the fault was a combined conduit-barrier system in which the fault provides a critical connection between the fluid sources and fractures that formed before and during faulting. During the waning stages of deposit formation, the fault behaved as

  20. Real-time fault diagnosis and fault-tolerant control


    Gao, Zhiwei; Ding, Steven X.; Cecati, Carlo


    This "Special Section on Real-Time Fault Diagnosis and Fault-Tolerant Control" of the IEEE Transactions on Industrial Electronics is motivated to provide a forum for academic and industrial communities to report recent theoretic/application results in real-time monitoring, diagnosis, and fault-tolerant design, and exchange the ideas about the emerging research direction in this field. Twenty-three papers were eventually selected through a strict peer-reviewed procedure, which represent the mo...

  1. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed Mohsen Hassan


    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  2. Descripción y Propiedades Psicométricas del Test de Evaluación del Rendimiento Académico (TERA

    Directory of Open Access Journals (Sweden)

    Teresa Rivas Moya


    Full Text Available Se presenta la descripción y los resultados de validez de contenido, generalizabilidad y validez de criterio obtenidos con las puntuaciones del Test de Evaluación del Rendimiento Académico (TERA para los niveles de 5, 6 ,7 años. Evalúa las ejecuciones en lenguaje oral, lenguaje escrito y razonamiento matemático. Cada test contiene veinticuatro ítems con dos categorías de respuesta. Los ítems representan objetivos curriculares establecidos en las escuelas para estas edades. Se administra a 75 participantes que fueron instruidos con un programa durante tres años y 26 participantes que no fueron instruidos. Los participantes pertenecen a colegios de zonas de nivel sociocultural medio-bajo de la provincia de Málaga y no presentan handicaps físicos, psíquicos o sensoriales. Los resultados muestran (a alta concordancia objetivos-ítems, (b alto grado de generalizabilidad de las puntuaciones y (c moderado o bajo índice de validez de criterio en relación al punto de corte establecido.

  3. Final Technical Report: PV Fault Detection Tool.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  4. Seismological Studies for Tensile Faults

    Directory of Open Access Journals (Sweden)

    Gwo-Bin Ou


    Full Text Available A shear slip fault, an equivalence of a double couple source, has often been assumed to be a kinematic source model in ground motion simulation. Estimation of seismic moment based on the shear slip model indicates the size of an earthquake. However, if the dislocation of the hanging wall relative to the footwall includes not only a shear slip tangent to the fault plane but also expansion and compression normal to the fault plane, the radiating seismic waves will feature differences from those out of the shear slip fault. Taking account of the effects resulting from expansion and compression to a fault plane, we can resolve the tension and pressure axes as well as the fault plane solution more exactly from ground motions than previously, and can evaluate how far a fault zone opens or contracts during a developing rupture. In addition to a tensile angle and Poisson¡¦s ratio for the medium, a tensile fault with five degrees of freedom has been extended from the shear slip fault with only three degrees of freedom, strike, dip, and slip.

  5. SEISMOLOGY: Watching the Hayward Fault. (United States)

    Simpson, R W


    The Hayward fault, located on the east side of the San Francisco Bay, represents a natural laboratory for seismologists, because it does not sleep silently between major earthquakes. In his Perspective, Simpson discusses the study by Bürgmann et al., who have used powerful new techniques to study the fault. The results indicate that major earthquakes cannot originate in the northern part of the fault. However, surface-rupturing earthquakes have occurred in the area, suggesting that they originated to the north or south of the segment studied by Bürgmann et al. Fundamental questions remain regarding the mechanism by which plate tectonic stresses are transferred to the Hayward fault.

  6. Advanced cloud fault tolerance system (United States)

    Sumangali, K.; Benny, Niketa


    Cloud computing has become a prevalent on-demand service on the internet to store, manage and process data. A pitfall that accompanies cloud computing is the failures that can be encountered in the cloud. To overcome these failures, we require a fault tolerance mechanism to abstract faults from users. We have proposed a fault tolerant architecture, which is a combination of proactive and reactive fault tolerance. This architecture essentially increases the reliability and the availability of the cloud. In the future, we would like to compare evaluations of our proposed architecture with existing architectures and further improve it.

  7. Physical fault tolerance of nanoelectronics. (United States)

    Szkopek, Thomas; Roychowdhury, Vwani P; Antoniadis, Dimitri A; Damoulakis, John N


    The error rate in complementary transistor circuits is suppressed exponentially in electron number, arising from an intrinsic physical implementation of fault-tolerant error correction. Contrariwise, explicit assembly of gates into the most efficient known fault-tolerant architecture is characterized by a subexponential suppression of error rate with electron number, and incurs significant overhead in wiring and complexity. We conclude that it is more efficient to prevent logical errors with physical fault tolerance than to correct logical errors with fault-tolerant architecture.

  8. An Overview of Transmission Line Protection by Artificial Neural Network: Fault Detection, Fault Classification, Fault Location, and Fault Direction Discrimination

    Directory of Open Access Journals (Sweden)

    Anamika Yadav


    Full Text Available Contemporary power systems are associated with serious issues of faults on high voltage transmission lines. Instant isolation of fault is necessary to maintain the system stability. Protective relay utilizes current and voltage signals to detect, classify, and locate the fault in transmission line. A trip signal will be sent by the relay to a circuit breaker with the purpose of disconnecting the faulted line from the rest of the system in case of a disturbance for maintaining the stability of the remaining healthy system. This paper focuses on the studies of fault detection, fault classification, fault location, fault phase selection, and fault direction discrimination by using artificial neural networks approach. Artificial neural networks are valuable for power system applications as they can be trained with offline data. Efforts have been made in this study to incorporate and review approximately all important techniques and philosophies of transmission line protection reported in the literature till June 2014. This comprehensive and exhaustive survey will reduce the difficulty of new researchers to evaluate different ANN based techniques with a set of references of all concerned contributions.

  9. Fault Tolerant Distributive Processing (United States)

    Quesnell, Harris


    A fault tolerant design used to enhanced the survivability of a distributive processing system is described. Based on physical limitations, mission duration and maintenance support, the approach has emphasized functional redundancy in place of the traditional hardware or software level redundancy. A top down architecture within the system's hierarchy allows sharing of common resources. Various techniques used to enhance the survivability of the hardware at the equipment, module and component level were analyzed. The intent of the on going work is to demonstrate the ability of a distributive processing system to maintain itself for a long period of time.

  10. Numerical investigations of fault-induced seawater circulation in the Seferihisar-Balçova Geothermal system, western Turkey (United States)

    Magri, F.; Akar, T.; Gemici, U.; Pekdeger, A.


    The Seferihisar-Balçova Geothermal system (SBG), Turkey, is characterized by temperature and hydrochemical anomalies along the faults: thermal waters in northern Balçova are heated meteoric freshwater, whereas the hot springs of the southern Seferihisar region have a strong seawater contribution. Previous numerical simulations of fluid flow and heat transport indicated that focused upsurge of hot water in faults induces a convective-like flow motion in surrounding units. Salt transport is fully coupled to thermally driven flow to study whether fault-induced convection cells could be responsible for seawater encroachment in the SBG. Isotope data are presented to support the numerical findings. The results show that fault-induced convection cells generate seawater plumes that extend from the seafloor toward the faults. At fault intersections, seawater mixes with rising hot thermal waters. The resulting saline fluids ascend to the surface along the fault, driven by buoyant forces. In Balçova, thick alluvium, minor faults and regional flow prevent ascending salty water from spreading at the surface, whereas the weak recharge flow in the thin alluvium of the southern SBG is not sufficient to flush the ascending hot salty waters. These mechanisms could develop in any faulted geothermal system, with implications for minerals and energy migration in sedimentary basins.

  11. Spatio-temporal mapping of plate boundary faults in California using geodetic imaging (United States)

    Donnellan, Andrea; Arrowsmith, Ramon; DeLong, Stephen B.


    The Pacific–North American plate boundary in California is composed of a 400-km-wide network of faults and zones of distributed deformation. Earthquakes, even large ones, can occur along individual or combinations of faults within the larger plate boundary system. While research often focuses on the primary and secondary faults, holistic study of the plate boundary is required to answer several fundamental questions. How do plate boundary motions partition across California faults? How do faults within the plate boundary interact during earthquakes? What fraction of strain accumulation is relieved aseismically and does this provide limits on fault rupture propagation? Geodetic imaging, broadly defined as measurement of crustal deformation and topography of the Earth’s surface, enables assessment of topographic characteristics and the spatio-temporal behavior of the Earth’s crust. We focus here on crustal deformation observed with continuous Global Positioning System (GPS) data and Interferometric Synthetic Aperture Radar (InSAR) from NASA’s airborne UAVSAR platform, and on high-resolution topography acquired from lidar and Structure from Motion (SfM) methods. Combined, these measurements are used to identify active structures, past ruptures, transient motions, and distribution of deformation. The observations inform estimates of the mechanical and geometric properties of faults. We discuss five areas in California as examples of different fault behavior, fault maturity and times within the earthquake cycle: the M6.0 2014 South Napa earthquake rupture, the San Jacinto fault, the creeping and locked Carrizo sections of the San Andreas fault, the Landers rupture in the Eastern California Shear Zone, and the convergence of the Eastern California Shear Zone and San Andreas fault in southern California. These examples indicate that distribution of crustal deformation can be measured using interferometric synthetic aperture radar (InSAR), Global Navigation

  12. Three-dimensional dynamic rupture simulations across interacting faults: The Mw7.0, 2010, Haiti earthquake (United States)

    Douilly, R.; Aochi, H.; Calais, E.; Freed, A. M.


    The mechanisms controlling rupture propagation between fault segments during a large earthquake are key to the hazard posed by fault systems. Rupture initiation on a smaller fault sometimes transfers to a larger fault, resulting in a significant event (e.g., 2002 M7.9 Denali USA and 2010 M7.1 Darfield New Zealand earthquakes). In other cases rupture is constrained to the initial fault and does not transfer to nearby faults, resulting in events of more moderate magnitude. This was the case of the 1989 M6.9 Loma Prieta and 2010 M7.0 Haiti earthquakes which initiated on reverse faults abutting against a major strike-slip plate boundary fault but did not propagate onto it. Here we investigate the rupture dynamics of the Haiti earthquake, seeking to understand why rupture propagated across two segments of the Léogâne fault but did not propagate to the adjacent Enriquillo Plantain Garden Fault, the major 200 km long plate boundary fault cutting through southern Haiti. We use a finite element model to simulate propagation of rupture on the Léogâne fault, varying friction and background stress to determine the parameter set that best explains the observed earthquake sequence, in particular, the ground displacement. The two slip patches inferred from finite fault inversions are explained by the successive rupture of two fault segments oriented favorably with respect to the rupture propagation, while the geometry of the Enriquillo fault did not allow shear stress to reach failure.

  13. Late Quaternary Deformation Along the Wairarapa Fault, North Island, New Zealand (United States)

    Schermer, E. R.; Little, T. A.


    The Wairarapa fault, one of the largest active faults in the hanging wall of the Hikurangi subduction margin, New Zealand, averaged 16m dextral slip during the M >8.1 1855 earthquake. Previous workers inferred that uplift of 2.7m at the coast, observed by a surveyor in 1855, occurred on the southern continuation of the Wairarapa fault, the Wharekauhau (WH) thrust. New mapping, stratigraphic, and paloseismologic results from the WH thrust suggest the pattern of surface rupture in 1855 and earlier earthquakes was significantly different than previously inferred, requiring a more complex model for seismic hazard and tectonic evolution of the region. Detailed mapping indicates that the coastal segment of the WH thrust did not rupture the surface in 1855. The thrust, a major range-bounding fault, emplaces Mesozoic graywacke over ~80-100 ka last- interglacial marine, and lacustrine rocks, and in part coeval to younger alluvial gravels. Fault activity is indicated by facies and thickness changes. This older sequence is tilted and overlapped unconformably by a silt layer and much less deformed alluvial fan gravels that range in age from >22ka to ages record a period of fault inactivity from 14 - 9 ka (calib yrs BP). The abandoned, overlapping fan surface is slightly deformed across the fault (15 m of folding- related throw). We infer that the thrust has propagated eastward in the subsurface, uplifting the abandoned WH fault, an inference that is supported by the pattern of Holocene incision. The only recent faulting consists of subvertical en echelon segments that have undergone minor dip-slip and dextral slip. A trench excavated across the fault scarp in late Holocene gravels suggests that the only fault along the trace of the WH thrust that broke within 3 m of the surface in 1855 was a minor strike-slip fault splay. New14C ages are consistent with the most recent event occurring in 1855 and suggest one earlier event. The range-bounding trace of the WH thrust appears to

  14. Late Cenozoic extensional faulting in Central-Western Peloponnesus, Greece (United States)

    Skourtsos, E.; Fountoulis, I.; Mavroulis, S.; Kranis, H.


    A series of forearc-dipping, orogen-parallel extensional faults are found in the central-western Peloponnesus, (south-western Aegean) which control the western margin of Mt Mainalon. The latter comprises HP/LT rocks of the Phyllites-Quartzites Unit (PQ), overlain by the carbonates and flysch of the Tripolis Unit while the uppermost nappe is the Pindos Unit, a sequence of Mesozoic pelagic sequence, topped by a Paleocene flysch. Most of the extensional structures were previously thought of as the original thrust between the Pindos and Tripolis Units. However, the cross-cutting relationships among these structures indicate that these are forearc (SW-dipping) extensional faults, downthrowing the Pindos thrust by a few tens or hundreds of meters each, rooting onto different levels of the nappe pile. In SW Mainalon the lowermost of the extensional faults is a low-angle normal fault dipping SW juxtaposing the metamorphic rocks of the PQ Unit against the non-metamorphic sequence of the Tripolis Unit. High-angle normal faults, found further to the west, have truncated or even sole onto the low-angle ones and control the eastern margin of the Quaternary Megalopolis basin. All these extensional structures form the eastern boundary of a series of Neogene-Quaternary tectonic depressions, which in turn are separated by E-W horsts. In the NW, these faults are truncated by NE to NNE-striking, NW-dipping faults, which relay the whole fault activity to the eastern margin of the Pyrgos graben. The whole extensional fault architecture has resulted (i) in the Pindos thrust stepping down from altitudes higher than 1000 m in Mainalon in the east, to negative heights in North Messinia and Southern Ilia in the west; and (ii) the gradual disappearance of the Phyllite-Quartzite metamorphics of Mainalon towards the west. The combination of these extensional faults (which may reach down to the Ionian décollement) with the low-angle floor thrusts of the Pindos, Tripolis and Ionian Units leads

  15. The role of thrust faulting in the formation of the eastern Alaska Range: Thermochronological constraints from the Susitna Glacier Thrust Fault region of the intracontinental strike-slip Denali Fault system (United States)

    Riccio, Steven J.; Fitzgerald, Paul G.; Benowitz, Jeff A.; Roeske, Sarah M.


    Horizontal-slip along restraining bends of strike-slip faults is often partitioned into a vertical component via splay faults. The active Susitna Glacier Thrust Fault (SGTF), as shown by its initiation of the 2002 M7.9 Denali Fault earthquake, lies south of, and intersects the dextral strike-slip Denali Fault. Geochronology and thermochronology data from samples across the SGTF constrain the region's tectonic history and the role of thrusting in the formation of the eastern Alaska Range south of the Denali fault. U-Pb zircon ages indicate intrusion of plutons in the footwall (~57 Ma) and hanging wall (~98 Ma). These U-Pb zircon ages correlate to those from the Ruby Batholith/Kluane Terrane ~400 km east along the Denali Fault, supporting geologic correlations and hence constraints on long-term slip rates. 40Ar/39Ar mica and K-feldspar data from footwall and hanging wall samples (~54 to ~46 Ma) reflect cooling following magmatism and/or regional Eocene metamorphism related to ridge subduction. Combined with apatite fission track data (ages 43-28 Ma) and thermal models, both sides of the SGTF acted as a coherent block during the Eocene and early Oligocene. Contrasting apatite (U-Th)/He ages across the Susitna Glacier (~25 Ma footwall, ~15 Ma hanging wall) suggest initiation of faulting during the middle Miocene. Episodic cooling and exhumation is related to thrusting on known or hypothesized faults that progressively activate due to varying partition of strain along the Denali Fault associated with changing kinematics and plate interaction (Yakutat microplate collision, flat-slab subduction and relative plate motion change) at the southern Alaskan plate margin.

  16. Central Asia Active Fault Database (United States)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah


    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  17. Fault Monitooring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens


    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to line breakage...... and risky abortion of an oil-loading operation. With signicant drift forces from waves, non-Gaussian elements dominate in residuals and fault diagnosis need be designed using dedicated change detection for the type of distribution encountered. In addition to dedicated diagnosis, an optimal position...... algorithm is proposed to accommodate buoyancy element failure and keep the mooring system in a safe state. Detection properties and fault-tolerant control are demonstrated by high delity simulations...

  18. Structure and flow properties of syn-rift border faults: The interplay between fault damage and fault-related chemical alteration (Dombjerg Fault, Wollaston Forland, NE Greenland) (United States)

    Kristensen, Thomas B.; Rotevatn, Atle; Peacock, David C. P.; Henstra, Gijs A.; Midtkandal, Ivar; Grundvåg, Sten-Andreas


    Structurally controlled, syn-rift, clastic depocentres are of economic interest as hydrocarbon reservoirs; understanding the structure of their bounding faults is of great relevance, e.g. in the assessment of fault-controlled hydrocarbon retention potential. Here we investigate the structure of the Dombjerg Fault Zone (Wollaston Forland, NE Greenland), a syn-rift border fault that juxtaposes syn-rift deep-water hanging-wall clastics against a footwall of crystalline basement. A series of discrete fault strands characterize the central fault zone, where discrete slip surfaces, fault rock assemblages and extreme fracturing are common. A chemical alteration zone (CAZ) of fault-related calcite cementation envelops the fault and places strong controls on the style of deformation, particularly in the hanging-wall. The hanging-wall damage zone includes faults, joints, veins and, outside the CAZ, disaggregation deformation bands. Footwall deformation includes faults, joints and veins. Our observations suggest that the CAZ formed during early-stage fault slip and imparted a mechanical control on later fault-related deformation. This study thus gives new insights to the structure of an exposed basin-bounding fault and highlights a spatiotemporal interplay between fault damage and chemical alteration, the latter of which is often underreported in fault studies. To better elucidate the structure, evolution and flow properties of faults (outcrop or subsurface), both fault damage and fault-related chemical alteration must be considered.

  19. Fault Management Design Strategies (United States)

    Day, John C.; Johnson, Stephen B.


    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  20. A Novel Approach to the Quantitation of Coeluting Cantharidin and Deuterium Labelled Cantharidin in Blister Beetles (Coleop-tera: Meloidae

    Directory of Open Access Journals (Sweden)

    MR Nikbakhtzadeh


    Full Text Available Blister beetles (Coleoptera: Meloidae are the main natural source of cantharidin, but the compound titre is depended on several factors including, age, sex and mating status of the insects. In order to eliminate such uncertainty factors in physio¬logical and chemical studies deuterium labelled cantharidin (D2C with no natural abundance is normally introduced into the beetles' body to use it as a model for studying the cantharidin behaviour in vivo. Experiments were achieved on Mylabris quadripunctata (Col.: Meloidae from Southern France and the beetles were exposed to an artificial diet containing a de¬fined amount of D2C. On the other hand, because of the high similarity between the two compounds they cannot be well quantified by gas chromatography. In order to remove the burden, MRM technique was used for the first time which could successfully create well-defined cantharidin and D2C peaks and hence a precise measurement. MRM technique was exam¬ined using a GC-MS Varian Saturn which collected MS/MS data of more than one compound in the same time window of the chromatogram. It is especially useful when coeluting compounds have different parent ions, i.e. m/z 84 for D2C (coelut¬ing isotopically-labelled compound and m/z 82 for cantharidin (beetle-originated compound. Using the routine GC-MS runs, measurement accuracy may be significantly reduced because the D2C peak is covered by the cantharidin huge peak while MRM could reveal the two coincided peaks of cantharidin and D2C. Therefore MRM is hereby introduced as the method of choice to separate cantharidin from D2C with high sensitivity and thus provide a precise base of quantitation.

  1. Fault tolerance in "multiprocessor systems

    Indian Academy of Sciences (India)

    puter architecture; [multiprocessor systems; reconfiguration; system- level diagnosis; VLSI processor arrays. 1. Introduction. Fault-tolerant computing can be defined as the ability to execute specified algorithms correctly inspite of the presence of faults. The complexity of supersystems and the increasing use of such computer ...

  2. Tectonic deformation in southern California (United States)

    Jackson, David D.


    Our objectives were to use modem geodetic data, especially those derived from space techniques like Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), and the Global Positioning System (GPS) to infer crustal deformation in southern California and relate it to plate tectonics and earthquake hazard. To do this, we needed to collect some original data, write computer programs to determine positions of survey markers from geodetic observables, interpret time dependent positions in terms of velocity and earthquake caused episodic displacements, and construct a model to explain these velocities and displacements in terms of fault slip and plate movements.

  3. Slip on faults in the Imperial Valley Triggered by the 4 April 2010 Mw 7.2 El Major earthquake as revealed by InSAR (United States)

    Wei, M.; Sandwell, D. T.; Fialko, Y.; Bilham, R. G.


    Radar interferometry (InSAR) reveals surface slip on multiple faults in the Imperial Valley triggered by the 2010 Baja M7.2 earthquake. Co-seismic offsets occurred on the San Andreas, Superstition Hills, Imperial, Elmore Ranch, Wienert, Coyote Creek, Elsinore, Yuha Wells, and several minor faults near the town of Ocotillo at the northern end of the mainshock rupture. We documented right-lateral slip (Hills (≤ 50 mm) and Durmid Hill (≤ 10 mm) respectively, and 23 km of the Superstition Hills Fault (≤ 37 mm). Field measurements of slip on the Superstition Hills Fault agree with InSAR and creepmeter measurements to within a few millimeters. Dislocation models of the InSAR data on the Superstition Hills Fault confirm that creep in this sequence, as in previous slip events, is confined to shallow depths (Black solid lines are major faults. Yellow solid lines are faults with observed offsets. Dashed black lines are National and State borders. White star is the epicenter of the 2010 April 4th El Major earthquake. Red dots are aftershocks within one month after the main rupture with magnitude greater than 5, blue 4-5, and green 3-4. Earthquake data are from the Southern California Earthquake Center. Fault names are abbreviated as follows: ERF, Elmore Ranch fault; SHF, Superstition Hills fault; SMF, Superstition Mountains fault; WF, Wienert fault; YWF, Yuha Wells Fault.

  4. Seasonal Creep on Longitudinal Valley Fault, Taiwan: Fault Hydrology before and after the 2003 Chengkung Earthquake (United States)

    Randolph-Flagg, N. G.; Huang, M. H.; Lee, J. C.; Manga, M.; Mu, C. H.; Burgmann, R.


    We present hydrologic, geodetic, and seismic data on the Longitudinal Valley Fault (LVF) in eastern Taiwan- the plate boundary between the Eurasian plate and the Philippine Sea plate. Based on creepmeter data and Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), most creep on the southern LVF (averaging 2 cm/yr) is seasonal with elastic strain building during the autumn/winter and released in creep events during the rainy spring/summer. Results from PSInSAR, GPS, and leveling suggest seasonal creep extends locally to > 200 m depth and we highlight the spatial distribution of this seasonal creep. The seasonality implies a relationship between hydrology (either through pore pressure diffusion or loading) and tectonic deformation. The timing of creep correlates with rain although the interannual variations in creep amplitude do not correlate with interannual changes in well levels or precipitation. This implies a more complicated coupling between hydrology and deformation within the fault zone. To understand the hydrologic process, we use a 2D poroelastic model to track pore fluid pressure changes within the fault zone to understand this seasonal behavior. We then use mud volcanoes and hot springs thermobarometers to further constrain the depth and rate of fluid flow around the Longitudinal Valley. We use these simulations to understand the fault zone hydrology when there are no significant earthquakes. Creep accelerated after the 2003 Mw 6.8 Chengkung Earthquake in SE Taiwan. Correcting for post-seismic afterslip, the amplitude of creep seasonality also increased for the three years after the earthquake suggesting a change in hydrologic properties. We compare changes in well levels and seismic velocity in the shallow crust near the LVF using ambient noise cross-correlation analysis to further understand these changes. The seasonal creep on the LVF and the dense geodetic, seismic, and hydrologic network make this a unique opportunity to probe

  5. Fault tolerant control for switched linear systems

    CERN Document Server

    Du, Dongsheng; Shi, Peng


    This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.  

  6. Fault2SHA- A European Working group to link faults and Probabilistic Seismic Hazard Assessment communities in Europe (United States)

    Scotti, Oona; Peruzza, Laura


    assessment in Europe. Europe is a country dominated by slow deforming regions where the long histories of seismicity are the main source of information to infer fault behaviour. Geodetic studies, geomorphological studies as well as paleoseismological studies are welcome complementary data that are slowly filling in the database but are at present insufficient, by themselves, to allow characterizing faults. Moreover, Europe is characterized by complex fault systems (Upper Rhine Graben, Central and Southern Apennines, Corinth, etc.) and the degree of uncertainty in the characterization of the faults can be very different from one country to the other. This requires developing approaches and concepts that are adapted to the European context. It is thus the specificity of the European situation that motivates the creation of a predominantly European group where field geologists, fault modellers and fault-PSHA practitioners may exchange and learn from each other's experience.

  7. Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions

    Directory of Open Access Journals (Sweden)

    Fan Xiao


    Full Text Available During non-severe fault conditions, crowbar protection is not activated and the rotor windings of a doubly-fed induction generator (DFIG are excited by the AC/DC/AC converter. Meanwhile, under asymmetrical fault conditions, the electrical variables oscillate at twice the grid frequency in synchronous dq frame. In the engineering practice, notch filters are usually used to extract the positive and negative sequence components. In these cases, the dynamic response of a rotor-side converter (RSC and the notch filters have a large influence on the fault current characteristics of the DFIG. In this paper, the influence of the notch filters on the proportional integral (PI parameters is discussed and the simplified calculation models of the rotor current are established. Then, the dynamic performance of the stator flux linkage under asymmetrical fault conditions is also analyzed. Based on this, the fault characteristics of the stator current under asymmetrical fault conditions are studied and the corresponding analytical expressions of the stator fault current are obtained. Finally, digital simulation results validate the analytical results. The research results are helpful to meet the requirements of a practical short-circuit calculation and the construction of a relaying protection system for the power grid with penetration of DFIGs.

  8. Constraining fault growth rates and fault evolution in New Zealand (United States)

    Lamarche, Geoffroy; Bull, Jonathan M.; Barnes, Phil M.; Taylor, Susanna K.; Horgan, Huw


    Understanding how faults propagate, grow, and interact in fault systems is important because they are primarily responsible for distributing strain in the upper crust. They localize deformation and stress release, often producing surface displacements that control sedimentation and fluid flow, either by acting as conduits or barriers. Identifying fault spatial distribution, quantifying activity, evaluating linkage mechanisms, and estimating fault growth rates are key components in seismic risk evaluation. Scientists from the National Institute of Water and Atmospheric Research (NIWA), New Zealand, and the Southampton Oceanography Centre, United Kingdom, are working on a collaborative project that aims to improve understanding of faulting processes in the Earth's crust.The program comprises two research cruises to survey the Whakatane Graben, New Zealand, which is a zone of intense seismicity active extensional faulting, and rapid subsidence within the back-arc region of the Pacific-Australia plate boundary zone (Figure 1). Few places in the world offer the same opportunity to study the mechanisms by which major crustal faults have grown from small- to large-scale structures capable of generating moderate to large-magnitude earthquakes.

  9. Active fault traces along Bhuj Fault and Katrol Hill Fault, and ...

    Indian Academy of Sciences (India)

    observed on the left bank of a stream cutting the terrace. Faulting is well revealed by 10–30 cm thick gouge. Lack of any corroborating evidence show- ing displacement of Quaternary deposits makes it difficult to decipher the active nature of the fault. However, the probability cannot be ruled- out. In the outlet of the small ...

  10. Dynamics of Earthquake Faults

    CERN Document Server

    Carlson, J M; Shaw, B E


    We present an overview of our ongoing studies of the rich dynamical behavior of the uniform, deterministic Burridge--Knopoff model of an earthquake fault. We discuss the behavior of the model in the context of current questions in seismology. Some of the topics considered include: (1) basic properties of the model, such as the magnitude vs. frequency distribution and the distinction between small and large events; (2) dynamics of individual events, including dynamical selection of rupture propagation speeds; (3) generalizations of the model to more realistic, higher dimensional models; (4) studies of predictability, in which artificial catalogs generated by the model are used to test and determine the limitations of pattern recognition algorithms used in seismology.

  11. Low strength of deep San Andreas fault gouge from SAFOD core (United States)

    Lockner, David A.; Morrow, Carolyn A.; Moore, Diane E.; Hickman, Stephen H.


    The San Andreas fault accommodates 28–34 mm yr−1 of right lateral motion of the Pacific crustal plate northwestward past the North American plate. In California, the fault is composed of two distinct locked segments that have produced great earthquakes in historical times, separated by a 150-km-long creeping zone. The San Andreas Fault Observatory at Depth (SAFOD) is a scientific borehole located northwest of Parkfield, California, near the southern end of the creeping zone. Core was recovered from across the actively deforming San Andreas fault at a vertical depth of 2.7 km (ref. 1). Here we report laboratory strength measurements of these fault core materials at in situ conditions, demonstrating that at this locality and this depth the San Andreas fault is profoundly weak (coefficient of friction, 0.15) owing to the presence of the smectite clay mineral saponite, which is one of the weakest phyllosilicates known. This Mg-rich clay is the low-temperature product of metasomatic reactions between the quartzofeldspathic wall rocks and serpentinite blocks in the fault2, 3. These findings provide strong evidence that deformation of the mechanically unusual creeping portions of the San Andreas fault system is controlled by the presence of weak minerals rather than by high fluid pressure or other proposed mechanisms1. The combination of these measurements of fault core strength with borehole observations1, 4, 5 yields a self-consistent picture of the stress state of the San Andreas fault at the SAFOD site, in which the fault is intrinsically weak in an otherwise strong crust.

  12. Structural geometry and gravity constraints on the Palos Verdes and Cabrillo faults (United States)

    Cengelcik, Yeliz

    The thesis presents and evaluates five new gravity constrained structural cross-sections about the Palos Verdes and Cabrillo faults of southern California. They both have been active since the Miocene, however the Palos Verdes fault zone is considered to be a greater seismic hazard. Using geologic, gravity and seismic data we present new interpretations about the geometry of the Palos Verdes and Cabrillo faults. In the San Pedro and Los Angeles Harbor region approximately125 new gravity data were collected with a Worden gravimeter and new structural cross-sections were constructed by using data of our gravity surveying. The collected data displays a Simple Bouguer gravity anomaly high near the Cabrillo fault and northwards toward the Palos Verdes fault there is an approximately 30 mGal decrease. The Palos Verdes fault itself is characterized by an inflection in the gravity data and a relatively flat zone immediately to the north. This shelf in the gravity data is important because the highly productive Wilmington Oil Field is located in this area and it is likely a product of the particular geometry in the region. The Palos Verdes fault also forms the edge of the larger Los Angeles Basin. Our basic interpretation is that the Palos Verdes and Cabrillo faults are primarily strike slip faults. However, a horst-like block between the two faults has been uplifted and horizontally shortened. Our main interpretation is that Catalina Schist basement uplift and subsequent basin fill to the north is responsible for the large negative gravity anomalies associated with the Palos Verdes fault.

  13. Slip deficit and location of seismic gaps along the Dead Sea Fault (United States)

    Meghraoui, Mustapha; Toussaint, Renaud; Ferry, Matthieu; Nguema-Edzang, Parfait


    The Dead Sea Fault (DSF), a ~ 1000-km-long North-South trending transform fault presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short-term slip rates along the Dead Sea fault. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these long-term estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. Indeed, recent GPS results showing 3 +-0.5 mm/yr velocity rate of the northern DSF appear to be in contradiction with the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern with the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this contribution, we present the calculated seismic slip deficit along the fault segments and discuss the identification of seismic gaps and the implication for the seismic hazard assessment.

  14. Multiple Generations of Faulting: A Kinematic Analysis of the Lagarfljót Region, Northeast Iceland (United States)

    Runnals, K.; Karson, J. A.; Fiorentino, A. J., II


    The North American/Eurasian plate boundary in Iceland is structurally diverse with oblique rifts, volcanic fissure swarms, and transform zones. Lagarfljót is a lake located in the Tertiary flood basalts of East Iceland that range in age from ~7 to 3 Ma. The lake is approximately 50 km E of the actively spreading, NS-trending, Northern Rift Zone (NVZ), and occupies a northeast-trending depression in an area of strong NS lineaments. A flexure zone runs N-S across the southern part of the lake, and predates an angular unconformity in the regional lava pile. Exposures in cliffs along the lakeshore and stream cuts above unveil a series of dikes and faults that can be correlated with the lineaments, and indicate a complicated tectonic history. Fault zones are characterized by fault breccia, cataclasite and gouge with well-developed slickenlines and clear shear-sense indicators. Fault gouge in individual shear zones ranges from centimeters to meters in thickness. Cross cutting relationships define the relative ages of 2 families of structures, with both post-dating the flexure. The older generation of faults are NS-striking, dextral, strike-slip faults. These are cut by NE-striking, normal faults. The normal faults are almost exclusively located along or near the margins of large dikes or swarms of dikes ranging from 1 - 5 m wide. Displacements along individual normal faults range from centimeters up to 8 m. Some faults cut the lavas above the unconformity and locally rotated structures suggest that limited tilting of the lava pile occurred during faulting. These findings may be related to larger scale processes of propagation and relocation of the NVZ.

  15. Absolute age determination of quaternary faults

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik [Korea Basic Science Institute, Seoul (Korea, Republic of)] (and others)


    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results.

  16. Imaging the North Anatolian Fault using the scattered teleseismic wavefield (United States)

    Thompson, D. A.; Rost, S.; Houseman, G. A.; Cornwell, D. G.; Turkelli, N.; Teoman, U.; Kahraman, M.; Altuncu Poyraz, S.; Gülen, L.; Utkucu, M.; Frederiksen, A. W.; Rondenay, S.


    The North Anatolian Fault Zone (NAFZ) is a major continental strike-slip fault system, similar in size and scale to the San Andreas system, that extends ˜1200 km across Turkey. In 2012, a new multidisciplinary project (FaultLab) was instigated to better understand deformation throughout the entire crust in the NAFZ, in particular the expected transition from narrow zones of brittle deformation in the upper crust to possibly broader shear zones in the lower crust/upper mantle and how these features contribute to the earthquake loading cycle. This contribution will discuss the first results from the seismic component of the project, a 73 station network encompassing the northern and southern branches of the NAFZ in the Sakarya region. The Dense Array for North Anatolia (DANA) is arranged as a 6×11 grid with a nominal station spacing of 7 km, with a further 7 stations located outside of the main grid. With the excellent resolution afforded by the DANA network, we will present images of crustal structure using the technique of teleseismic scattering tomography. The method uses a full waveform inversion of the teleseismic scattered wavefield coupled with array processing techniques to infer the properties and location of small-scale heterogeneities (with scales on the order of the seismic wavelength) within the crust. We will also present preliminary results of teleseismic scattering migration, another powerful method that benefits from the dense data coverage of the deployed seismic network. Images obtained using these methods together with other conventional imaging techniques will provide evidence for how the deformation is distributed within the fault zone at depth, providing constraints that can be used in conjunction with structural analyses of exhumed fault segments and models of geodetic strain-rate across the fault system. By linking together results from the complementary techniques being employed in the FaultLab project, we aim to produce a comprehensive

  17. Coulomb stress change on surrounding faults by the January 12, 2010, Haiti earthquake (United States)

    Symithe, S. J.; Calais, E.; Freed, A. M.; Haase, J. S.


    The M7 January 12, 2010, Haiti earthquake occurred on the previously unmapped Léogâne Fault, a transpressional fault located very close to the Enriquillo Plantain Garden Fault (EPGF), the major fault system and primary seismic hazard in southern Haiti. How the rupture of the Léogâne fault influenced stresses on the Enriquillo Fault - especially toward Port-au-Prince - as well as on other regional faults is critical to understanding how seismic hazard in this heavily populated region has been altered as a result of the devastating 2010 earthquake. We calculated Coulomb Failure Stress (CFS) changes in the region surrounding the M7 January 12, 2010, Haiti earthquake using dislocation theory, assuming elastic properties for the region. We considered two possible slip models, the simple single-fault slip model proposed by Calais et al. (2010) and the more complex model by Hayes et al. (2010), which involves three subfaults. We resolve CFS changes on the Léogâne rupture plane itself, as well as on regional faults such as the Enriquillo, Neiba-Matheux, and Trois Baies faults. We find that the aftershock distribution is well explained by CFS changes caused by the coseismic rupture, in particular the cluster of reverse faulting events to the west of the rupture, offshore, coincident with the Trois Baies fault. This fault therefore appears to have been triggered by the January 2010 event. The aftershock distribution in the rupture area clearly outlines the Léogâne fault (see Douilly et al., this meeting) but shows no clear evidence of activity on the other subfaults suggested by Hayes et al. (2010). Both slip models imply a ~1 bar increase of CFS bar on the Enriquillo fault to the west and east of the January 2010 rupture. For the Calais et al. (2010) model, CFS changes are higher to the east if the Enriquillo Fault is modeled with a dip of 65° and a rake 20°, as suggested by some geological observations, compared to a purely strike-slip vertical fault, as often

  18. Architecture of thrust faults with alongstrike variations in fault-plane dip: anatomy of the Lusatian Fault, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Coubal, Miroslav; Adamovič, Jiří; Málek, Jiří; Prouza, V.


    Roč. 59, č. 3 (2014), s. 183-208 ISSN 1802-6222 Institutional support: RVO:67985831 ; RVO:67985891 Keywords : fault architecture * fault plane geometry * drag structures * thrust fault * sandstone * Lusatian Fault Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.405, year: 2014

  19. Deep Fault Drilling Project—Alpine Fault, New Zealand

    Directory of Open Access Journals (Sweden)

    Rupert Sutherland


    Full Text Available The Alpine Fault, South Island, New Zealand, constitutes a globally significant natural laboratory for research into how active plate-bounding continental faults work and, in particular, how rocks exposed at the surface today relate to deep-seated processes of tectonic deformation, seismogenesis, and mineralization. The along-strike homogeneity of the hanging wall, rapid rate of dextral-reverse slip on an inclined fault plane, and relatively shallow depths to mechanical and chemical transitions make the Alpine Fault and the broader South Island plate boundary an important international site for multi-disciplinary research and a realistic target for an ambitious long-term program of scientific drilling investigations.

  20. Fault Monitoring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens


    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to mooring line...... breakage and a high-risk abortion of an oil-loading operation. With significant drift forces from waves, non-Gaussian elements dominate forces and the residuals designed for fault diagnosis. Hypothesis testing need be designed using dedicated change detection for the type of distribution encountered....... In addition to dedicated diagnosis, an optimal position algorithm is proposed to accommodate buoyancy element failure and keep the mooring system in a safe state. Furthermore, even in the case of line breakage, this optimal position strategy could be utilised to avoid breakage of a second mooring line...

  1. TEM prospection on quaternary faults: the case of San Ramón Fault (SRF), Central Chile (United States)

    Estay, N. P.; Yanez, G. A.; Maringue, J. I.


    Quaternary faults are relevant study objects in geosciences to better estimation of seismic risk. Nowadays main efforts are focused on the improvement of paleoseismology and geophysics techniques. At this regard, we present here a TEM prospection of the San Ramón quaternary fault in the southern Andes. This fault has no record of historic activation, however, given its proximity to the Chilean capital, hazardous estimate is mandatory. Evidences of the SRF are restricted to geomorphologic features, and associated secondary faults on the hanging wall block, but any outcrop of the main fault have been identified. To observe the main fault in the basement rock, cover by a 30-100 m sedimentary basin, we carried out a TEM experiment. The best advantage of the TEM methodology compared to other near-surface electrical methods is it capacity to reach greater penetration depth compared to its spatial sampling rate. Taking this advantage, we define a 25x25 m transmitter loop (Tx) and 5x5 m receiver loop (Rx), allowing the suitable resolution to observe the fault core. To reach a deeper penetration depth but keeping high resolution of the shallow parts, we made two complementary measurements, the first with one-turn transmitter loop, and the second with 4-turn transmitter loops, to resolve the early and late times properly. As result we define vertical profiles of 100-150m depth, and including 48 measures (24 of one-turn transmitter loop, and 24 of four-turn transmitter loop), the resulting pseudo 2D image is a 500m profile with depth extent of 150m. In this section we can observe different resistivity domain, with a horizontal continuity in many measures. The experiment allows to cross the sedimentary cover, and observe the top of the basement rock. In the rock domain, it can be observed a high resistivity body, interpreted as a pristine rock, and some extremely low resistivity bodies, that are interpreted as a fractured rock saturated with water, and eventually mapping a

  2. Method of locating ground faults (United States)

    Patterson, Richard L. (Inventor); Rose, Allen H. (Inventor); Cull, Ronald C. (Inventor)


    The present invention discloses a method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  3. Hydrogeological Studies to Identify the Trend of Concealed Section of the North Tabriz Fault (Iran). (United States)

    Rajabpour, Hossein; Vaezihir, Abdorreza


    The North Tabriz Fault (NTF) is the predominant regional-scale tectonic structure in the northwest of Iran. In the east side of the city of Tabriz, a portion of the fault trend has been completely concealed by recent sediments and urbanization. In this paper, some hydrogeological methods are used to locate the concealed sector. As is clear from the pumping tests results, despite the fact that the northern observation wells were closer to the pumping wells than the southern ones, they have not been affected by pumping. Conversely, all southern wells were affected by pumping and displayed decline of the water table. In addition, obvious differences in groundwater levels combined with clear differences in groundwater quality within a short distance across the probable fault trend are sufficient reasons for the presence of the fault that behaves as a barrier to groundwater lateral flows. Significant change in the elevation of the bedrock base of the aquifer over less than 200 m suggests that the fault has near vertical dip. These results indicate that the inferred trend of the NTF closely conforms to its actual trend. Therefore, the hydrogeological studies can be complementary tools to determine the position and trend of concealed faults. © 2016, National Ground Water Association.

  4. The rift-like structure and asymmetry of the Dead Sea Fault

    NARCIS (Netherlands)

    Smit, J.H.W.; Brun, J.P.; Cloetingh, S.A.P.L.; Ben-Avraham, Z.


    Whereas the Dead Sea Fault is a major continental transform, active since ca. 13-18 Ma ago, it has a rift-like morphology along its southern part. It has been argued that this results from a transtensional component active since 5 Ma ago, due to a regional plate kinematics change. We present the

  5. Fault Features Extraction and Identification based Rolling Bearing Fault Diagnosis (United States)

    Qin, B.; SUN, G. D.; ZHANG, L. Y.; WANG, J. G.; HU, J.


    For the fault classification model based on extreme learning machine (ELM), the diagnosis accuracy and stability of rolling bearing is greatly influenced by a critical parameter, which is the number of nodes in hidden layer of ELM. An adaptive adjustment strategy is proposed based on vibrational mode decomposition, permutation entropy, and nuclear kernel extreme learning machine to determine the tunable parameter. First, the vibration signals are measured and then decomposed into different fault feature models based on variation mode decomposition. Then, fault feature of each model is formed to a high dimensional feature vector set based on permutation entropy. Second, the ELM output function is expressed by the inner product of Gauss kernel function to adaptively determine the number of hidden layer nodes. Finally, the high dimension feature vector set is used as the input to establish the kernel ELM rolling bearing fault classification model, and the classification and identification of different fault states of rolling bearings are carried out. In comparison with the fault classification methods based on support vector machine and ELM, the experimental results show that the proposed method has higher classification accuracy and better generalization ability.

  6. Active fault diagnosis by temporary destabilization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob


    An active fault diagnosis method for parametric or multiplicative faults is proposed. The method periodically adds a term to the controller that for a short period of time renders the system unstable if a fault has occurred, which facilitates rapid fault detection. An illustrative example is given....

  7. Fault isolatability conditions for linear systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik


    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...

  8. Active Fault Diagnosis by Temporary Destabilization

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik


    An active fault diagnosis method for parametric or multiplicative faults is proposed. The method periodically adds a term to the controller that for a short period of time renders the system unstable if a fault has occurred, which facilitates rapid fault detection. An illustrative example is given....

  9. Fault Detection for Diesel Engine Actuator

    DEFF Research Database (Denmark)

    Blanke, M.; Bøgh, S.A.; Jørgensen, R.B.


    Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur.......Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur....

  10. Map and Database of Probable and Possible Quaternary Faults in Afghanistan (United States)

    Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.


    The U.S. Geological Survey (USGS) with support from the U.S. Agency for International Development (USAID) mission in Afghanistan, has prepared a digital map showing the distribution of probable and suspected Quaternary faults in Afghanistan. This map is a key component of a broader effort to assess and map the country's seismic hazards. Our analyses of remote-sensing imagery reveal a complex array of tectonic features that we interpret to be probable and possible active faults within the country and in the surrounding border region. In our compilation, we have mapped previously recognized active faults in greater detail, and have categorized individual features based on their geomorphic expression. We assigned mapped features to eight newly defined domains, each of which contains features that appear to have similar styles of deformation. The styles of deformation associated with each domain provide insight into the kinematics of the modern tectonism, and define a tectonic framework that helps constrain deformational models of the Alpine-Himalayan orogenic belt. The modern fault movements, deformation, and earthquakes in Afghanistan are driven by the collision between the northward-moving Indian subcontinent and Eurasia. The patterns of probable and possible Quaternary faults generally show that much of the modern tectonic activity is related to transfer of plate-boundary deformation across the country. The left-lateral, strike-slip Chaman fault in southeastern Afghanistan probably has the highest slip rate of any fault in the country; to the north, this slip is distributed onto several fault systems. At the southern margin of the Kabul block, the style of faulting changes from mainly strike-slip motion associated with the boundary between the Indian and Eurasian plates, to transpressional and transtensional faulting. North and northeast of the Kabul block, we recognized a complex pattern of potentially active strike-slip, thrust, and normal faults that form a

  11. Integrated Seismic Imaging of the Carlsberg Fault in the Copenhagen City Center (United States)

    Nielsen, L.; Thybo, H.; Jorgensen, M. I.


    Images of the Carlsberg Fault in the area of the Copenhagen city center, Denmark, are obtained from normal incidence and refraction seismic data collected along a 3 km long E-W trending profile, which is oriented approximately perpendicular to the strike of the fault. The integrated seismic data set provides the most detailed images to 500 m depth so far obtained of this fault. The fault zone appears as a flower structure in the normal incidence section, and an abrupt change in the P-wave velocity structure across the fault zone further indicates that significant lateral movements have taken place along the fault. Vertical movements of up to 90 m are evident in the fault zone. Even the shallowest layers that can be imaged by the seismic data (approximately 30 m depth) are clearly vertically offset by the fault. In order to constrain the strike of the fault zone through the Copenhagen area we use shots detonated inside the fault zone, which are recorded by geophones distributed along arcs of circles situated up to 7 km away from the shots. Ground penetrating radar measurements are conducted to image the fault structures in the topmost 10 m. Geodetic measurements conducted in the Copenhagen area during the last 165 years indicate that the fault may still be active with horizontal displacements of about 5 cm over a 73-year period. Small cracks in walls and displacements of buildings may further indicate that the fault is still playing an active role in forming the Copenhagen area. However, no earthquakes are detected along the fault, and the seismicity of the study area is very weak. The formation of the Carlsberg Fault may be related to extensional stresses in a strike-slip system associated with the Sorgenfrei-Tornquist zone, which is situated only 40 km east of the study area. The Sorgenfrei-Tornquist zone is a major tectonic element in southern Scandinavia where it is situated close to the boarder between the Danish Basin to the southwest and the Baltic Shield to

  12. Multi-method Feasibility Study of Geophysical Methods to Accurately Delineate the Mt. General Fault in Hinkley, CA (United States)

    Jordan, J. J.; Grannell, R.; Martin, A. J.


    Barstow, California is in the immediate vicinity of the dextral Mt. General, Lenwood and Harper Lake faults.These faults exhibit a lack of surface expression common to faults in the Central Mojave, in which the faults are occluded by Quaternary alluvial fill resulting in large sections of the fault strand to be inferred near high risk localities. The three quaternary right-lateral strike slip faults belong to the Lenwood-Lockhart and Harper Lake fault zones. These fault zones associated with the Eastern California Shear Zone, a predominantly discontinuous northwest striking dextral shear zone that accommodates approximately 25% of interplate motion along the Pacific and North American plate boundary from the San Andreas bend on the south and Walker Lane shear zone to the northwest. The proximity of the inferred fault to high density population centers and critical infrastructure pose considerable risk to the inhabitants of Southern California, where precise knowledge of fault locations is critical. A feasibility study using various complementary geophysical methods was conducted to assess which, if any, provide the highest likelihood in accurately delineating a fault trace in the subsurface. The study focused on the Mt. General fault in Hinkley, CA. Two-dimensional gravity, magnetic, seismic refraction, and electrical resistivity along the same bounded location were collected, modeled, and interpreted. Gravity and magnetic results revealed anomalies across the inferred fault. Likewise, a seismic refraction model show a clear velocity contrast. Additionally, the electrical resistivity model showed a decrease in resistivity across the fault zone implying a groundwater barrier, complementing results from the other methods. Furthermore, overlaying the profiles shows clear evidence of a fault scarp. The success of the feasibility study in delineating the Mt. General fault zone shows that adopting a multi-method approach to the Lenwood-Lockhart and Harper Lake fault zone

  13. Fault Tolerant External Memory Algorithms

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Brodal, Gerth Stølting; Mølhave, Thomas


    bound on the number of I/Os required for any deterministic dictionary that is resilient to memory faults. We design a static and a dynamic deterministic dictionary with optimal query performance as well as an optimal sorting algorithm and an optimal priority queue. Finally, we consider scenarios where......Algorithms dealing with massive data sets are usually designed for I/O-efficiency, often captured by the I/O model by Aggarwal and Vitter. Another aspect of dealing with massive data is how to deal with memory faults, e.g. captured by the adversary based faulty memory RAM by Finocchi and Italiano....... However, current fault tolerant algorithms do not scale beyond the internal memory. In this paper we investigate for the first time the connection between I/O-efficiency in the I/O model and fault tolerance in the faulty memory RAM, and we assume that both memory and disk are unreliable. We show a lower...

  14. Static Decoupling in fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik


    An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index...

  15. Slow Active Intraplate Faults: The Paleoseismology Of The Irtysh Fault Zone, Eastern Kazakhstan (United States)

    Baize, S.; Reicherter, K. R.; Avagyan, A.; Belyashov, A.; Pestov, E.; Eutizio, V.; Arakelyan, A.


    The Asian plate interiors are known to host strong earthquakes with magnitudes up to M 8, especially around the border area between Mongolia, Russia, Kazakhstan and China. Their recurrence times are long, because of the low slip rates of faults smaller than 1 mm/yr. Geodynamically, our study region in eastern Kazakhstan is set in the frame of the Indian-Eurasian collision zone situated on the Eurasian craton. Major plate tectonic forces are induced by the indentation of the Indian plate into Eurasia. As a consequence, in the foreland a set of very long and large strike-slip fault zones developed, the western of which all have in common a dextral sense of shear. The more than 250 km long Irtysh Fault Zone (IFZ) marks a major tectonic block boundary separating two different units with granitoid intrusions, Silurian-Devonian magmatic rocks, and, thick deposits of Late Paleozoic age with coal measures of the Carboniferous and Permian. The formation of the IFZ probably dates back into Paleozoic times, it was repeatedly reactivated in later times. The IFZ is one potential source of large earthquakes in easternmost Kazakhstan. Tectonic-morphological analyses revealed the occurrence of a set of lineaments offsetting or deflecting streamlets and lithology. Geophysical data (GPR and seismics) helped to identify fault strands and trenching sites. Across three main segments, all longer than 50 km, a series of paleoseismic trenches was excavated. Within the trenches, faulted Holocene-Late Pleistocene deposits with organic soils, loess layers and colluvium directly overlying the Paleozoic rocks were encountered and 14C-dated. Astonishingly, no older Pleistocene rocks have been found suggesting complete erosion during/after glacial periods. Our findings lead to the conclusions that the IFZ and all segments are clearly active during the Holocene with surface ruptures displacements of around 2.0±0.2 meters, suggesting events with a magnitude around M≈7 along the individual

  16. Diagnosis and fault-tolerant control

    CERN Document Server

    Blanke, Mogens; Lunze, Jan; Staroswiecki, Marcel


    Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant contro...

  17. Transpressional rupture of an unmapped fault during the 2010 Haiti earthquake

    KAUST Repository

    Calais, Éric


    On 12 January 2010, a Mw7.0 earthquake struck the Port-au-Prince region of Haiti. The disaster killed more than 200,000 people and caused an estimated $8 billion in damages, about 100% of the country?s gross domestic product. The earthquake was initially thought to have ruptured the Enriquillog-Plantain Garden fault of the southern peninsula of Haiti, which is one of two main strike-slip faults inferred to accommodate the 2cmyr -1 relative motion between the Caribbean and North American plates. Here we use global positioning system and radar interferometry measurements of ground motion to show that the earthquake involved a combination of horizontal and contractional slip, causing transpressional motion. This result is consistent with the long-term pattern of strain accumulation in Hispaniola. The unexpected contractional deformation caused by the earthquake and by the pattern of strain accumulation indicates present activity on faults other than the Enriquillog-Plantain Garden fault. We show that the earthquake instead ruptured an unmapped north-dipping fault, called the Léogâne fault. The Léogâne fault lies subparallel tog-but is different fromg-the Enriquillog-Plantain Garden fault. We suggest that the 2010 earthquake may have activated the southernmost front of the Haitian fold-and-thrust belt as it abuts against the Enriquillog-Plantain Garden fault. As the Enriquillog-Plantain Garden fault did not release any significant accumulated elastic strain, it remains a significant seismic threat for Haiti and for Port-au-Prince in particular. © 2010 Macmillan Publishers Limited. All rights reserved.

  18. Application of geodetic leveling data on recent fault activity in Central Alborz, Iran (United States)

    Saberi, Ehsan; Yassaghi, Ali; Djamour, Yahya


    In this paper, geodetic leveling data in three lines across the Central Alborz range have been utilized to analyse recent activities of the range major faults. These data gathered by National Cartographic Center of Iran in three times during the past 22-32 yr. Mathematical modeling is applied to remove systematic errors from the raw leveling data. The vertical movement (uplift or subsidence) rate is estimated from height differences of benchmarks during geodetic leveling data times. The results show that the average uplift in Central Alborz during data times varies from 17.0 ± 0.9 to 18.1 ± 0.9 mm in the hangingwall of the major North Tehran and Mosha faults, respectively. The lower values of the uplift across the faults are taken as an account for the faults locking during the data times and their possible seismic potential. Evaluation of the uplift rate for the major faults under study in Central Alborz indicates the reduction of vertical uplift from west to east along the main proven faults like the Mosha Fault. The rate of uplift in the hangingwall of the Mosha Fault decreases from 0.921 ± 0.283 (mm yr-1) (20.3 ± 0.905 mm 22 yr-1) in west to the rate of 0.508 ± 0.228 (mm yr-1) (11.7 ± 1.031 (mm 23 yr-1)) in east. The unusual subsidence anomalous in some benchmarks is considered as the effect of geological features such as Karst phenomena. Moreover, comparison on the rate of vertical movement across the Central Alborz shows the greater uplift in the southern flank (10.4 ± 0.9 mm) with respect to its northern flank (6.3 ± 0.9 mm) during the data times. This interpretation is in agreement with Global Positioning System studies that indicates a progress of young deformation in Central Alborz toward the range southern hillside.

  19. Radon concentration distributions in shallow and deep groundwater around the Tachikawa fault zone. (United States)

    Tsunomori, Fumiaki; Shimodate, Tomoya; Ide, Tomoki; Tanaka, Hidemi


    Groundwater radon concentrations around the Tachikawa fault zone were surveyed. The radon concentrations in shallow groundwater samples around the Tachikawa fault segment are comparable to previous studies. The characteristics of the radon concentrations on both sides of the segment are considered to have changed in response to the decrease in groundwater recharge caused by urbanization on the eastern side of the segment. The radon concentrations in deep groundwater samples collected around the Naguri and the Tachikawa fault segments are the same as those of shallow groundwater samples. However, the radon concentrations in deep groundwater samples collected from the bedrock beside the Naguri and Tachikawa fault segments are markedly higher than the radon concentrations expected from the geology on the Kanto plane. This disparity can be explained by the development of fracture zones spreading on both sides of the two segments. The radon concentration distribution for deep groundwater samples from the Naguri and the Tachikawa fault segments suggests that a fault exists even at the southern part of the Tachikawa fault line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Detailed fault structure of the 2000 Western Tottori, Japan, earthquake sequence (United States)

    Fukuyama, E.; Ellsworth, W.L.; Waldhauser, F.; Kubo, A.


    We investigate the faulting process of the aftershock region of the 2000 western Tottori earthquake (Mw 6.6) by combining aftershock hypocenters and moment tensor solutions. Aftershock locations were precisely determined by the double difference method using P- and S-phase arrival data of the Japan Meteorological Agency unified catalog. By combining the relocated hypocenters and moment tensor solutions of aftershocks by broadband waveform inversion of FREESIA (F-net), we successfully resolved very detailed fault structures activated by the mainshock. The estimated fault model resolves 15 individual fault segments that are consistent with both aftershock distribution and focal mechanism solutions. Rupture in the mainshock was principally confined to the three fault elements in the southern half of the zone, which is also where the earliest aftershocks concentrate. With time, the northern part of the zone becomes activated, which is also reflected in the postseismic deformation field. From the stress tensor analysis of aftershock focal mechanisms, we found a rather uniform stress field in the aftershock region, although fault strikes were scattered. The maximum stress direction is N107??E, which is consistent with the tectonic stress field in this region. In the northern part of the fault, where no slip occurred during the mainshock but postseismic slip was observed, the maximum stress direction of N130??E was possible as an alternative solution of stress tensor inversion.

  1. Fault Analysis in Solar Photovoltaic Arrays (United States)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  2. Detecting Blind Fault with Fractal and Roughness Factors from High Resolution LiDAR DEM at Taiwan (United States)

    Cheng, Y. S.; Yu, T. T.


    There is no obvious fault scarp associated with blind fault. The traditional method of mapping this unrevealed geological structure is the cluster of seismicity. Neither the seismic event nor the completeness of cluster could be captured by network to chart the location of the entire possible active blind fault within short period of time. High resolution DEM gathered by LiDAR could denote actual terrain information despite the existence of plantation. 1-meter interval DEM of mountain region at Taiwan is utilized by fractal, entropy and roughness calculating with MATLAB code. By jointing these handing, the regions of non-sediment deposit are charted automatically. Possible blind fault associated with Chia-Sen earthquake at southern Taiwan is served as testing ground. GIS layer help in removing the difference from various geological formation, then multi-resolution fractal index is computed around the target region. The type of fault movement controls distribution of fractal index number. The scale of blind fault governs degree of change in fractal index. Landslide induced by rainfall and/or earthquake possesses larger degree of geomorphology alteration than blind fault; special treatment in removing these phenomena is required. Highly weathered condition at Taiwan should erase the possible trace remained upon DEM from the ruptured of blind fault while reoccurrence interval is higher than hundreds of years. This is one of the obstacle in finding possible blind fault at Taiwan.

  3. Fault Management Guiding Principles (United States)

    Newhouse, Marilyn E.; Friberg, Kenneth H.; Fesq, Lorraine; Barley, Bryan


    Regardless of the mission type: deep space or low Earth orbit, robotic or human spaceflight, Fault Management (FM) is a critical aspect of NASA space missions. As the complexity of space missions grows, the complexity of supporting FM systems increase in turn. Data on recent NASA missions show that development of FM capabilities is a common driver for significant cost overruns late in the project development cycle. Efforts to understand the drivers behind these cost overruns, spearheaded by NASA's Science Mission Directorate (SMD), indicate that they are primarily caused by the growing complexity of FM systems and the lack of maturity of FM as an engineering discipline. NASA can and does develop FM systems that effectively protect mission functionality and assets. The cost growth results from a lack of FM planning and emphasis by project management, as well the maturity of FM as an engineering discipline, which lags behind the maturity of other engineering disciplines. As a step towards controlling the cost growth associated with FM development, SMD has commissioned a multi-institution team to develop a practitioner's handbook representing best practices for the end-to-end processes involved in engineering FM systems. While currently concentrating primarily on FM for science missions, the expectation is that this handbook will grow into a NASA-wide handbook, serving as a companion to the NASA Systems Engineering Handbook. This paper presents a snapshot of the principles that have been identified to guide FM development from cradle to grave. The principles range from considerations for integrating FM into the project and SE organizational structure, the relationship between FM designs and mission risk, and the use of the various tools of FM (e.g., redundancy) to meet the FM goal of protecting mission functionality and assets.

  4. Refining interseismic fault slip and shallow creep on the Hayward and Calaveras Faults, California, using UAVSAR, satellite InSAR and GPS data (United States)

    Farge, G.; Delbridge, B. G.; Materna, K.; Johnson, C. W.; Chaussard, E.; Jones, C. E.; Burgmann, R.


    Understanding the role of the Hayward/Calaveras fault junction in major earthquake ruptures in the East San Francisco Bay Area is a major challenge in trying to assess the regional seismic hazard. We use updated GPS velocities, and surface geodetic measurements from both traditional space-based InSAR and the NASA JPL's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) system to quantify the deep long-term interseismic deformation and shallow temporally variable fault creep. Here, we present a large data set of interseismic deformation over the Hayward/Calaveras fault system, combining far-field deformation from 1992-2011 ERS and Envisat InSAR data, near-field deformation from 2009-2016 UAVSAR data and 1997-2016 regional GPS measurements from the Bay Area Velocity Unification model (BAVU4) in both near-field and far field. We perform a joint inversion of the data to obtain the long-term slip on deep through-going dislocations and the distribution of shallow creep on a 3D model of the Hayward and Calaveras faults. Spatially adaptative weights are given to each data set in order to account for its importance in constraining slip at different depths. The coherence and resolution of the UAVSAR data allow us to accurately resolve the near-field fault deformation, thus providing stronger constraints on the location of active strands of the southern Hayward and Calaveras faults and their shallow interseismic creep distribution.

  5. Field Evidences for Fault Surface Lubrication by Friction-Induced Melts During Coseismic Slip (United States)

    di Toro, G.; Teza, G.


    Lubrication by friction-induced melts has been proposed as a mechanism for fault weakening during earthquakes. Field evidence for melt lubrication of the fault surfaces is lacking, however, although the andesitic/basaltic composition (i.e. low-viscosity melts) of the matrix of many tectonic pseudotachylytes (solidified friction-induced melts) suggests low dynamic shear strength during coseismic slip. The Gole Larghe Fault Zone is an exhumed seismic source crosscutting the Adamello tonalites (Italian Southern Alps) and is exposed in a glacially polished area. In the fault zone, displacement is partitioned in more than 100 subparallel faults. Fault rocks are an association of pseudotachylytes and cataclasites produced at 6-8 km depth and 250-300 oC. Given the large extent of the outcrop and the large number of structural markers within the tonalites, it has been possible to reproduce the 2D profile (i.e. intersection of the fault surface with the outcrop surface) of 25 different pseudotachylyte-bearing faults and to relate the fault profile with the displacement accommodated by each fault. Two lines of field evidence suggest that shear strength is low during coseismic slip: 1) A maximum shear stress of only 20 MPa has been estimated from the amount of mechanical work converted to heat during coseismic slip to produce the measured volume of pseudotachylyte in single-jerk faults. Although a shear strength of 20 MPa is a minimum estimate since part of the displacement has been accommodated without production of pseudotachylytes, such strengths are very small considering the depth where seismic faulting has occurred. 2) The fractal dimension (measured with a box-counting method) of the 2D profile of pseudotachylyte-bearing faults increases from 1.0 to a constant value of 1.15 with increasing displacement. In experimentally generated friction melts, the fractal dimension of molten surfaces increases from 1.0 to 1.1 when, with increasing slip, a steady state value for the

  6. Rectifier Fault Diagnosis and Fault Tolerance of a Doubly Fed Brushless Starter Generator


    Liwei Shi; Zhou Bo


    This paper presents a rectifier fault diagnosis method with wavelet packet analysis to improve the fault tolerant four-phase doubly fed brushless starter generator (DFBLSG) system reliability. The system components and fault tolerant principle of the high reliable DFBLSG are given. And the common fault of the rectifier is analyzed. The process of wavelet packet transforms fault detection/identification algorithm is introduced in detail. The fault tolerant performance and output voltage experi...

  7. Fault detection and isolation for complex system (United States)

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi


    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  8. Seismic constraints on the architecture of the Newport-Inglewood/Rose Canyon fault: Implications for the length and magnitude of future earthquake ruptures (United States)

    Sahakian, Valerie; Bormann, Jayne; Driscoll, Neal; Harding, Alistair; Kent, Graham; Wesnousky, Steve


    The Newport-Inglewood/Rose Canyon (NIRC) fault zone is an active strike-slip fault system within the Pacific-North American plate boundary in Southern California, located in close proximity to populated regions of San Diego, Orange, and Los Angeles counties. Prior to this study, the NIRC fault zone's continuity and geometry were not well constrained. Nested marine seismic reflection data with different vertical resolutions are employed to characterize the offshore fault architecture. Four main fault strands are identified offshore, separated by three main stepovers along strike, all of which are 2 km or less in width. Empirical studies of historical ruptures worldwide show that earthquakes have ruptured through stepovers with this offset. Models of Coulomb stress change along the fault zone are presented to examine the potential extent of future earthquake ruptures on the fault zone, which appear to be dependent on the location of rupture initiation and fault geometry at the stepovers. These modeling results show that the southernmost stepover between the La Jolla and Torrey Pines fault strands may act as an inhibitor to throughgoing rupture due to the stepover width and change in fault geometry across the stepover; however, these results still suggest that rupture along the entire fault zone is possible.

  9. Active faulting in the Inner California Borderlands: new constraints from high-resolution multichannel seismic and multibeam bathymetric data. (United States)

    Bormann, J. M.; Holmes, J. J.; Sahakian, V. J.; Klotsko, S.; Kent, G.; Driscoll, N. W.; Harding, A. J.; Wesnousky, S. G.


    Geodetic data indicate that faults offshore of Southern California accommodate 6-8 mm/yr of dextral Pacific-North American relative plate motion. In the Inner California Borderlands (ICB), modern strike-slip deformation is overprinted on topography formed during plate boundary reorganization 30-15 Ma. Despite its proximity to urban Southern California, the hazard posed by active faults in the ICB remains poorly understood. We acquired a 4000-line-km regional grid of high-resolution, 2D multichannel seismic (MCS) reflection data and multibeam bathymetry to examine the fault architecture and tectonic evolution of the ICB. We interpret the MCS data using a sequence stratigraphic approach to establish a chronostratigraphy and identify discrete episodes of deformation. We present our results in a regional fault model that distinguishes active deformation from older structures. Significant differences exist between our model of ICB deformation and existing models. Mounting evidence suggests a westward temporal migration of slip between faults in the ICB. In the eastern ICB, slip on the Newport-Inglewood/Rose Canyon fault and the neighboring Coronado Bank fault (CBF) diminishes to the north and appears to decrease over time. Undeformed Late Pliocene sediments overlie the northern extent of the CBF and the breakaway zone of the purported Oceanside Blind Thrust. Therefore, CBF slip rate estimates based on linkage with the Palos Verdes fault to the north are unwarranted. Deformation along the San Mateo, San Onofre, and Carlsbad trends is best explained as localized deformation resulting from geometrical complexities in a dextral strike-slip fault system. In the western ICB, the San Diego Trough fault (SDTF) offsets young sediments between the US/Mexico border and the eastern margin of Avalon Knoll, where the fault is spatially coincident with the San Pedro Basin fault (SPBF). Farther west, the San Clemente fault (SCF) has a strong linear bathymetric expression. The length

  10. Where's the Hayward Fault? A Green Guide to the Fault (United States)

    Stoffer, Philip W.


    This report describes self-guided field trips to one of North America?s most dangerous earthquake faults?the Hayward Fault. Locations were chosen because of their easy access using mass transit and/or their significance relating to the natural and cultural history of the East Bay landscape. This field-trip guidebook was compiled to help commemorate the 140th anniversary of an estimated M 7.0 earthquake that occurred on the Hayward Fault at approximately 7:50 AM, October 21st, 1868. Although many reports and on-line resources have been compiled about the science and engineering associated with earthquakes on the Hayward Fault, this report has been prepared to serve as an outdoor guide to the fault for the interested public and for educators. The first chapter is a general overview of the geologic setting of the fault. This is followed by ten chapters of field trips to selected areas along the fault, or in the vicinity, where landscape, geologic, and man-made features that have relevance to understanding the nature of the fault and its earthquake history can be found. A glossary is provided to define and illustrate scientific term used throughout this guide. A ?green? theme helps conserve resources and promotes use of public transportation, where possible. Although access to all locations described in this guide is possible by car, alternative suggestions are provided. To help conserve paper, this guidebook is available on-line only; however, select pages or chapters (field trips) within this guide can be printed separately to take along on an excursion. The discussions in this paper highlight transportation alternatives to visit selected field trip locations. In some cases, combinations, such as a ride on BART and a bus, can be used instead of automobile transportation. For other locales, bicycles can be an alternative means of transportation. Transportation descriptions on selected pages are intended to help guide fieldtrip planners or participants choose trip

  11. Neogene contraction between the San Andreas fault and the Santa Clara Valley, San Francisco Bay region, California (United States)

    McLaughlin, R.J.; Langenheim, V.E.; Schmidt, K.M.; Jachens, R.C.; Stanley, R.G.; Jayko, A.S.; McDougall, K.A.; Tinsley, J.C.; Valin, Z.C.


    In the southern San Francisco Bay region of California, oblique dextral reverse faults that verge northeastward from the San Andreas fault experienced triggered slip during the 1989 M7.1 Loma Prieta earthquake. The role of these range-front thrusts in the evolution of the San Andreas fault system and the future seismic hazard that they may pose to the urban Santa Clara Valley are poorly understood. Based on recent geologic mapping and geophysical investigations, we propose that the range-front thrust system evolved in conjunction with development of the San Andreas fault system. In the early Miocene, the region was dominated by a system of northwestwardly propagating, basin-bounding, transtensional faults. Beginning as early as middle Miocene time, however, the transtensional faulting was superseded by transpressional NE-stepping thrust and reverse faults of the range-front thrust system. Age constraints on the thrust faults indicate that the locus of contraction has focused on the Monte Vista, Shannon, and Berrocal faults since about 4.8 Ma. Fault slip and fold reconstructions suggest that crustal shortening between the San Andreas fault and the Santa Clara Valley within this time frame is ~21%, amounting to as much as 3.2 km at a rate of 0.6 mm/yr. Rates probably have not remained constant; average rates appear to have been much lower in the past few 100 ka. The distribution of coseismic surface contraction during the Loma Prieta earthquake, active seismicity, late Pleistocene to Holocene fluvial terrace warping, and geodetic data further suggest that the active range-front thrust system includes blind thrusts. Critical unresolved issues include information on the near-surface locations of buried thrusts, the timing of recent thrust earthquake events, and their recurrence in relation to earthquakes on the San Andreas fault.

  12. Exhumation of the Deylaman fault trend and its effects on the deformation style of the western Alborz belt in Iran (United States)

    Hakimi Asiabar, Saeid; Bagheriyan, Siyamak


    The Alborz range in northern Iran stretches along the southern coast of the Caspian Sea and finally runs northeast and merges into the Pamir mountains in Afghanistan. Alborz mountain belt is a doubly vergent orogen formed along the northern edge of the Iranian plateau in response to the closure of the Neo-Tethys ocean and continental collision between Arabia and Eurasia. The south Caspian depression—the Alborz basin of Mesozoic age (with W-E trend) in northern Iran—inverted in response to the Arabia-Eurasia collision. Pre-existing extensional faults of the south Caspian-Alborz system preferentially reactivated as contractional faults because of tectonic inversion. These contractional structures tend to run parallel to the trends of pre-existing extensional faults and acquire W and WNW-ESE orientations across the previous accommodation zones that were imposed by the reactivation of adjacent extensional faults with different directions. The NNE to N dipping faults show evidences of reactivation. The Deylaman fault is one of the important faults of western Alborz in Iran and is an example of inversion tectonic style of deformation in the western Alborz mountain range. The Deylaman fault, with an E-W trend, contains three discontinuous fault segments in the area under investigation. These fault segments have evidence of oblique right-lateral reverse motion and links eastward to the dextral Kandavan thrust. The importance of this fault is due to its effect on sedimentation of several rock units from the Jurassic to Neogene in western Alborz; the rock facies on each side of this fault are very different and illustrate different parts of tectonic history.

  13. First evidences of fast creeping on a long-lasting quiescent earthquake normal-fault in the Mediterranean (United States)

    Sabadini, Roberto; Aoudia, Abdelkrim; Barzaghi, Riccardo; Crippa, Bruno; Marotta, Anna Maria; Borghi, Alessandra; Cannizzaro, Letizia; Calcagni, Laura; Via, Giorgio Dalla; Rossi, Grazia; Splendore, Raffaele; Crosetto, Michele


    A key issue in our understanding of the earthquake cycle and seismic hazard is the behaviour of an active fault during the interseismic phase. Locked and creeping faults represent two end-members of mechanical behaviours that are given two extreme rupturing hazard levels, that is, high and low, respectively. Geophysical and space geodetic analyses are carried out over the Pollino Range, an extensional environment within the Africa-Eurasia plate boundary, to disclose the behaviour of the long-lasting quiescent Castrovillari normal fault. Fault trenching evidenced at least four large earthquakes (6.5-7.0 Mw) in the past and an elapsed time of 1200 yr since the last event. Inversion of Differential Interferometric Synthetic Aperture Radar and Global Positioning System over a decade shows fast creeping at all depths of the fault plane. The velocity-strengthening creeping zone reaches maximum rates 20 mm yr-1 against an average rate of about 3-9 mm yr-1. It limits the southern-weakening locked part of the fault. An essential condition for the generation of a large earthquake on the Castrovillari fault, as has occurred in the past, is a rupture through the velocity-strengthening zone. The Castrovillari fault yields the best evidence for being both a strong and weak fault during its earthquake cycle. Creeping at rates faster than its tectonically driven ones, it must thus consist of a mix of unstable and conditionally stable patches ready to sustain a sizeable earthquake. Quantifying and mapping the slip rate over the fault plane is important because they influence fault moment budget estimate and helps to constrain constitutive laws of fault zones. Aseismic slip also redistributes stress in the crust, thereby affecting the locations of future earthquakes.

  14. Fault Recoverability Analysis via Cross-Gramian

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza


    with feedback control. Fault recoverability provides important and useful information which could be used in analysis and design. However, computing fault recoverability is numerically expensive. In this paper, a new approach for computation of fault recoverability for bilinear systems is proposed......Engineering systems are vulnerable to different kinds of faults. Faults may compromise safety, cause sub-optimal operation and decline in performance if not preventing the whole system from functioning. Fault tolerant control (FTC) methods ensure that the system performance maintains within...

  15. An architecture for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob


    A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...... for additive faults, parametric faults, and for system structural changes. The modeling for each of these fault classes is described. The method allows to design for passive as well as for active fault handling. Also, the related design method can be fitted either to guarantee stability or to achieve graceful...

  16. Fault Isolation for Shipboard Decision Support

    DEFF Research Database (Denmark)

    Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam


    Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation of a containe......Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation...

  17. Fault-tolerant Supervisory Control

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh

    of this work has been to develop and employ concepts and methods that are suitable for use in different automation processes, with applicability in various industrial fields. The requirements for high productivity and quality has resulted in employing additional instrumentation and use of more sophisticated...... control algorithms. The drawback is, however, that these control systems have become more vulnerable to even simple faults in instrumentation. On the other hand, due to cost-optimality requirements, an extensive use of hardware redundancy has been prohibited. Nevertheless, the dependency and availability...... could be increased through enhancing control systems' ability to on-line perform fault detection and reconfiguration when a fault occurs and before a safety system shuts-down the entire process. The main contributions of this research effort are development and experimentation with methodologies...

  18. Near-Surface Fault Structures of the Seulimuem Segment Based on Electrical Resistivity Model (United States)

    Ismail, Nazli; Yanis, Muhammad; Idris, Syafrizal; Abdullah, Faisal; Hanafiah, Bukhari


    The Great Sumatran Fault (GSF) system is arc-parallel strike-slip fault system along the volcanic front related to the oblique subduction of the oceanic Indo-Australian plate. Large earthquakes along the southern GSF since 1892 have been reported, but the Seulimuem segment at the northernmost Sumatran has not produced large earthquakes in the past 100 years. The 200-km-long segment is considered to be a seismic gap. Detailed geological study of the fault and thus its surface trace locations, late Quaternary slip rate, and rupture history are urgently needed for earthquake disaster mitigation in the future. However, finding a suitable area for paleoseismic trenching is an obstacle when the fault traces are not clearly shown on the surface. We have conducted geoelectrical measurement in Lamtamot area of Aceh Besar District in order to locate the fault line for paleoseismic excavation. Apparent resistivity data were collected along 40 m profile parallel to the planned trenching site. The 2D electrical resistivity model provided evidence of some resistivity anomalies by high lateral contrast. This anomaly almost coincides with the topographic scarp which is modified by agriculture on the surface at the northern part of Lamtamot. The steep dipping electrical contrast may correspond to a fault. However, the model does not resolve well evidences from minor faults that can be related to the presence of surface ruptures. A near fault paleoseismic investigation requires trenching across the fault in order to detect and analyze the geological record of the past large earthquakes along the Seulimuem segment.

  19. Geometry and subsurface lithology of southern Death Valley basin, California, based on refraction analysis of multichannel seismic data (United States)

    Geist, Eric L.; Brocher, Thomas M.


    The shallow structure and subsurface lithology of southern Death Valley basin in eastern California were studied using refraction analysis of multichannel seismic reflection data acquired by COCORP. Two-dimensional velocity models of the upper 3 km of southern Death Valley were derived from iterative fitting of first-arrival travel-times on common-shot and common-receiver gathers. The structural basement beneath southern Death Valley, defined by rocks having velocities greater than 4.0 km/s, is asymmetric and dips gently to the east where it is terminated by a steeply dipping fault which parallels the Black Mountain range front and has normal, down-to-the-west displacement. Numerous other faults that have normal components of displacement obliquely cross the seismic lines and indicate that the southern Death Valley basin formed from the divergent wrench system of the southern Death Valley fault zone.

  20. Fault-tolerant system for catastrophic faults in AMR sensors

    NARCIS (Netherlands)

    Zambrano Constantini, A.C.; Kerkhoff, Hans G.

    Anisotropic Magnetoresistance angle sensors are widely used in automotive applications considered to be safety-critical applications. Therefore dependability is an important requirement and fault-tolerant strategies must be used to guarantee the correct operation of the sensors even in case of

  1. Solar Dynamic Power System Fault Diagnosis (United States)

    Momoh, James A.; Dias, Lakshman G.


    The objective of this research is to conduct various fault simulation studies for diagnosing the type and location of faults in the power distribution system. Different types of faults are simulated at different locations within the distribution system and the faulted waveforms are monitored at measurable nodes such as at the output of the DDCU's. These fault signatures are processed using feature extractors such as FFT and wavelet transforms. The extracted features are fed to a clustering based neural network for training and subsequent testing using previously unseen data. Different load models consisting of constant impedance and constant power are used for the loads. Open circuit faults and short circuit faults are studied. It is concluded from present studies that using features extracted from wavelet transforms give better success rates during ANN testing. The trained ANN's are capable of diagnosing fault types and approximate locations in the solar dynamic power distribution system.

  2. Finite Fault Database (ANSS ComCat) (United States)

    U.S. Geological Survey, Department of the Interior — A Finite Fault is a modeled representation of the spatial extent, amplitude and duration of fault rupture (slip) of an earthquake, and is generated via the inversion...

  3. Quantifying Fault Networks on Alba Patera, Mars (United States)

    Wyrick, D. Y.; Ferrill, D. A.; Morris, A. P.; Sims, D. W.; Franklin, N. M.


    Newly developed terrestrial approaches were applied to martian fault networks to quantify the extent and degree of fault network connectivity. These techniques will provide key constraints for martian hydrological models.

  4. New mapping and structural constraints on the Queen Charlotte-Fairweather Fault system, southeast Alaska (United States)

    Levoir, M. A.; Roland, E. C.; Gulick, S. P.; Haeussler, P. J.; Christeson, G. L.; Van Avendonk, H. J.


    The dextral Queen Charlotte-Fairweather Fault lies along the western margin of Canada and southeastern Alaska, a transform plate boundary accommodating motion between the North American and Pacific Plates. The Fairweather Fault is the northern extension of the Queen Charlotte Fault and has numerous and complex splays, including the Chichagof-Baranof Fault, the Peril Strait Fault, the Chatham Strait Fault, and the Icy Point-Lituya Bay Fault. Except for a few small areas, these fault systems have not been mapped in detail. We present updated geometries and fault maps of the entirety of the strike-slip system using seismic reflection and bathymetric data, including a 2004 seismic reflection survey (EW0408), 2005 United Nations Commission on Law of the Sea multibeam bathymetry, and legacy data from the U.S. Geological Survey (USGS) and the National Geophysical Data Center. This work is highly relevant for earthquake hazard research and mitigation in southeast Alaska. Several large (> Mw 7.0) earthquakes have occurred along this margin in the last century, impacting communities of southeastern Alaska and western Canada. Two large, recent events include 1) a Mw 7.7 earthquake that took place on 28 October 2012 near the Haida Gwaii Islands offshore of western Canada, and 2) a Mw 7.5 event which occurred on 05 January 2013, 330 km to the northwest and offshore of Craig, Alaska. Interestingly, the Haida Gwaii earthquake ruptured as a thrust event and the Craig earthquake ruptured with a near-vertical dextral strike-slip mechanism. Since a change in Pacific Plate motion around 4 million years ago, the southern Queen Charlotte Fault system has been obliquely converging at a rate of 20 mm/year, with the boundary accommodating about 80 km of perpendicular motion over that time. This convergence explains the Haida Gwaii thrust earthquake, but leaves questions about the along-strike fault structure. Two opposing end-member theories suggest convergence is accommodated by either: 1

  5. A summary of the active fault investigation in the extension sea area of Kikugawa fault and the Nishiyama fault , N-S direction fault in south west Japan (United States)

    Abe, S.


    In this study, we carried out two sets of active fault investigation by the request from Ministry of Education, Culture, Sports, Science and Technology in the sea area of the extension of Kikugawa fault and the Nishiyama fault. We want to clarify the five following matters about both active faults based on those results. (1)Fault continuity of the land and the sea. (2) The length of the active fault. (3) The division of the segment. (4) Activity characteristics. In this investigation, we carried out a digital single channel seismic reflection survey in the whole area of both active faults. In addition, a high-resolution multichannel seismic reflection survey was carried out to recognize the detailed structure of a shallow stratum. Furthermore, the sampling with the vibrocoring to get information of the sedimentation age was carried out. The reflection profile of both active faults was extremely clear. The characteristics of the lateral fault such as flower structure, the dispersion of the active fault were recognized. In addition, from analysis of the age of the stratum, it was recognized that the thickness of the sediment was extremely thin in Holocene epoch on the continental shelf in this sea area. It was confirmed that the Kikugawa fault extended to the offing than the existing results of research by a result of this investigation. In addition, the width of the active fault seems to become wide toward the offing while dispersing. At present, we think that we can divide Kikugawa fault into some segments based on the distribution form of the segment. About the Nishiyama fault, reflection profiles to show the existence of the active fault was acquired in the sea between Ooshima and Kyushu. From this result and topographical existing results of research in Ooshima, it is thought that Nishiyama fault and the Ooshima offing active fault are a series of structure. As for Ooshima offing active fault, the upheaval side changes, and a direction changes too. Therefore, we

  6. Stress transfer to the Denali and other regional faults from the M 9.2 Alaska earthquake of 1964 (United States)

    Bufe, C.G.


    Stress transfer from the great 1964 Prince William Sound earthquake is modeled on the Denali fault, including the Denali-Totschunda fault segments that ruptured in 2002, and on other regional fault systems where M 7.5 and larger earthquakes have occurred since 1900. The results indicate that analysis of Coulomb stress transfer from the dominant earthquake in a region is a potentially powerful tool in assessing time-varying earthquake hazard. Modeled Coulomb stress increases on the northern Denali and Totschunda faults from the great 1964 earthquake coincide with zones that ruptured in the 2002 Denali fault earthquake, although stress on the Susitna Glacier thrust plane, where the 2002 event initiated, was decreased. A southeasterlytrending Coulomb stress transect along the right-lateral Totschunda-Fairweather-Queen Charlotte trend shows stress transfer from the 1964 event advancing slip on the Totschunda, Fairweather, and Queen Charlotte segments, including the southern Fairweather segment that ruptured in 1972. Stress transfer retarding right-lateral strike slip was observed from the southern part of the Totschunda fault to the northern end of the Fairweather fault (1958 rupture). This region encompasses a gap with shallow thrust faulting but with little evidence of strike-slip faulting connecting the segments to the northwest and southeast. Stress transfer toward failure was computed on the north-south trending right-lateral strike-slip faults in the Gulf of Alaska that ruptured in 1987 and 1988, with inhibitory stress changes at the northern end of the northernmost (1987) rupture. The northern Denali and Totschunda faults, including the zones that ruptured in the 2002 earthquakes, follow very closely (within 3%), for about 90??, an arc of a circle of radius 375 km. The center of this circle is within a few kilometers of the intersection at depth of the Patton Bay fault with the Alaskan megathrust. This inferred asperity edge may be the pole of counterclockwise

  7. Quaternary basin formation along the Dien Bien Phu fault zone and its neotectonic implication of northwestern Vietnam (United States)

    Lai, K.; Chen, Y.; Chung, L.; Li, P.; Lam, D.


    The Dien Bien Phu (DBP) fault zone is one of the most conspicuous fault systems in the Indochina, extending over a distance of 150 km from Yunnan, China through the NW Vietnam into Laos. Recent Global Positioning system (GPS) data in China yielded that the present clockwise rotation of the southeastern Tibet block geologically corresponds to a region of left-lateral strike-slip faults, such as the Xianshuihe-Xiaojang fault and Dien Bien Phu fault, which appear to have accommodated clockwise rotation; whereas other GPS data from the network of Southeast Asia proposed that Indochina constitutes a stable tectonic block moving approximately east with respect to Eurasia. Although above GPS data show insignificant differential motion along DBP fault, active sinistral slip can be identified by clear geomorphic features, focal solutions and seismicity distribution in a NNE-striking zone parallel to the fault zone. Mapping of surface fault traces along the DBP fault zone using field outcrops, geophysical data, and geomorphologic features recognized by the aerial photos, SRTM, ASTER imageries and derived digital elevation models shows that virtually all active faults are reactivated structures sub-parallel to chronostratigraphic boundary. Along the DBF fault, three larger basins have been developed by different kinematics from north to south. The northern one at Chan Nua is rhomboidal in shape with a dimension of 2.5 km?.5 km, which can be defined as a pull-apart basin resulted by the strike-slip motion of the DBP fault. The fault configuration associated with the central one changes to two parallel sinistral and sinistral-normal faults forming a narrow subsiding weak zone (10 km?.5 km) filled with Quaternary deposits. The southern one is, however, created by that the main DBP fault bends the strike from NNE to NE where branches out a sinistral- normal fault with N-striking controlling a half-graben basin (17 km? km) filled with Quaternary deposits about 200 m in depth above

  8. Stability of stacking faults in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Dranova, Z.I.; Ksenofontov, V.A.; Kul' ko, V.B.; Mikhailovskii, I.M.


    The atomic configuration of planar lattice defects in tungsten was investigated by field-ion microscopy and thermal etching. Stable stacking faults were observed throughout the investigated temperature range 78--1700/sup 0/K. These faults were studied by field-ion microscopy and mathematical modeling methods. It was found that the existence of stacking faults in bcc crystals was not associated with the action of strong omnidirectional tensile stresses. The crystallographic characteristics of the faults were determined.

  9. Offset of latest pleistocene shoreface reveals slip rate on the Hosgri strike-slip fault, offshore central California (United States)

    Johnson, Samuel Y.; Hartwell, Stephen R.; Dartnell, Peter


    The Hosgri fault is the southern part of the regional Hosgri–San Gregorio dextral strike‐slip fault system, which extends primarily in the offshore for about 400 km in central California. Between Morro Bay and San Simeon, high‐resolution multibeam bathymetry reveals that the eastern strand of the Hosgri fault is crossed by an ∼265  m wide slope interpreted as the shoreface of a latest Pleistocene sand spit. This sand spit crossed an embayment and connected a western fault‐bounded bedrock peninsula and an eastern bedrock highland, a paleogeography resembling modern coastal geomorphology along the San Andreas fault. Detailed analysis of the relict shoreface with slope profiles and slope maps indicates a lateral slip rate of 2.6±0.9  mm/yr, considered a minimum rate for the Hosgri given the presence of an active western strand. This slip rate indicates that the Hosgri system takes up the largest share of the strike‐slip fault budget and is the most active strike‐slip fault west of the San Andreas fault in central California. This result further demonstrates the value and potential of high‐resolution bathymetry in characterization of active offshore faults.

  10. Fault Detection for Nonlinear Systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.H.


    The paper describes a general method for designing fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension of methods based...

  11. Fault Tolerance Using Group Communication

    NARCIS (Netherlands)

    Kaashoek, M.F.; Tanenbaum, A.S.

    We propose group communication as an efficient mechanism to support fault tolerance. Our approach is based on an efficient reliable broadcast protocol that requires on average only two messages per broadcast. To illustrate our approach we will describe how the task bag model can be made

  12. Tsunamis and splay fault dynamics (United States)

    Wendt, J.; Oglesby, D.D.; Geist, E.L.


    The geometry of a fault system can have significant effects on tsunami generation, but most tsunami models to date have not investigated the dynamic processes that determine which path rupture will take in a complex fault system. To gain insight into this problem, we use the 3D finite element method to model the dynamics of a plate boundary/splay fault system. We use the resulting ground deformation as a time-dependent boundary condition for a 2D shallow-water hydrodynamic tsunami calculation. We find that if me stress distribution is homogeneous, rupture remains on the plate boundary thrust. When a barrier is introduced along the strike of the plate boundary thrust, rupture propagates to the splay faults, and produces a significantly larger tsunami man in the homogeneous case. The results have implications for the dynamics of megathrust earthquakes, and also suggest mat dynamic earthquake modeling may be a useful tool in tsunami researcn. Copyright 2009 by the American Geophysical Union.

  13. Fault detection using (PI) observers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, J.; Shafai, B.

    The fault detection and isolation (FDI) problem in connection with Proportional Integral (PI) Observers is considered in this paper. A compact formulation of the FDI design problem using PI observers is given. An analysis of the FDI design problem is derived with respectt to the time domain...... properties. A method for design of PI observers applied to FDI is given....

  14. Actuator Fault Detection and Diagnosis for Quadrotors

    NARCIS (Netherlands)

    Lu, P.; Van Kampen, E.J.; Yu, B.


    This paper presents a method for fault detection and diagnosis of actuator loss of effectiveness for a quadrotor helicopter. This paper not only considers the detection of the actuator loss of effectiveness faults, but also addresses the diagnosis of the faults. The detection and estimation of the

  15. High temperature superconducting fault current limiter (United States)

    Hull, John R.


    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  16. Engine gearbox fault diagnosis using empirical mode ...

    Indian Academy of Sciences (India)

    Kiran Vernekar

    A LabVIEW software Virtual Instrument (VI) program was developed to ... study. Artificial faults were generated at different locations of the bearing and they are bearing outer race, inner race, inner and outer race together fault and rolling element (ball) fault. ... validation information of original signal were decom- posed using ...

  17. On the "stacking fault" in copper

    NARCIS (Netherlands)

    Fransens, J.R.; Pleiter, F


    The results of a perturbed gamma-gamma angular correlations experiment on In-111 implanted into a properly cut single crystal of copper show that the defect known in the literature as "stacking fault" is not a planar faulted loop but a stacking fault tetrahedron with a size of 10-50 Angstrom.

  18. Active fault detection in MIMO systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...

  19. Fault estimation - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, J.; Niemann, Hans Henrik


    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis problems are reformulated in the so-called standard problem set-up introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...

  20. The minimum scale of grooving on faults

    NARCIS (Netherlands)

    Candela, T.; Brodsky, E.E.


    At the field scale, nearly all fault surfaces contain grooves generated as one side of the fault slips past the other. Grooves are so common that they are one of the key indicators of principal slip surfaces. Here, we show that at sufficiently small scales, grooves do not exist on fault surfaces. A

  1. Fundamental problems in fault detection and identification

    DEFF Research Database (Denmark)

    Saberi, A.; Stoorvogel, A. A.; Sannuti, P.


    A number of different fundamental problems in fault detection and fault identification are formulated in this paper. The fundamental problems include exact, almost, generic and class-wise fault detection and identification. Necessary and sufficient conditions for the solvability of the fundamental...

  2. Exact, almost and delayed fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.


    Considers the problem of fault detection and isolation while using zero or almost zero threshold. A number of different fault detection and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability conditions are given for the formulated design problems....... The l-step delayed fault detection problem is also considered for discrete-time systems....

  3. Fault diagnosis and fault-tolerant control based on adaptive control approach

    CERN Document Server

    Shen, Qikun; Shi, Peng


    This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .

  4. Thermal regimes in the detachment fault environment as deduced from fluid inclusions (United States)

    Beane, R. E.; Wilkins, J., Jr.; Heidrick, T. L.


    Extensional tectonism, which dominates middle- and late-Tertiary geology in western Arizona, southeastern California, and southern Nevada, is characterized by normal regionally extensive, low-angle detachment faults. The decollement movement of Fupper plate rocks relative to lower plate assemblages created extensive zones of dilatency, including synthetic and antithetic listric normal faults, tear faults, tectonic crush breccias, shatter breccias, and gash veins in lithologic units above and below the detachment. The tectonically enhanced permeability above and below the detachment fault permitted mass migration of large volumes of hydrothermal solutions along the fault zone during and following upper plate movement. Major quantities of MgO, CaO, K2O, FeO/Fe2O3, SiO2 and CO2 were added to rocks in and near the detachment and related structures. Also introduced were varying amounts of trace elements including Mn, Cu, S, Mo, Ba, Au, Pb, Zn, U and/or Ag. Minerals containing fluid incusions were collected from all of these loci at locations in detachment faulted terranes in western Arizona and southeastern California.

  5. Seismic evidence of Quaternary faulting in the Benton Hills area, southeast Missouri (United States)

    Palmer, J.R.; Shoemaker, M.; Hoffman, D.; Anderson, N.L.; Vaughn, J.D.; Harrison, R.W.


    Two reflection seismic profiles at English Hill, across the southern edge of the Benton Hills escarpment, southeast Missouri, establish that geologic structures at English Hill are of tectonic origin. The lowland area to the south of the escarpment is relatively undisturbed. The geology at English Hill is structurally complex, and reflection seismic and geologic data indicate extensive and episodic faulting of Paleozoic, Cretaceous, Tertiary, and Quaternary strata. The individual faults have near-vertical fault surfaces with maximum vertical separations on the order of 15 m. They appear to be clustered in north-northeast trending zones that essentially parallel one of the dominant Benton Hills structural trends. These observations suggest that previously mapped Quaternary faults at English Hill are deep-seated and tectonic in origin. This paper documents recent faulting at English Hill and is the first time late Quaternary, surface-rupture faulting has been recognized in the middle Mississippi River Valley region outside of the New Madrid seismic zone. This has important implications for earthquake assessment in the midcontinent.

  6. Constraining fault interpretation through tomographic velocity gradients: application to northern Cascadia

    Directory of Open Access Journals (Sweden)

    K. Ramachandran


    Full Text Available Spatial gradients of tomographic velocities are seldom used in interpretation of subsurface fault structures. This study shows that spatial velocity gradients can be used effectively in identifying subsurface discontinuities in the horizontal and vertical directions. Three-dimensional velocity models constructed through tomographic inversion of active source and/or earthquake traveltime data are generally built from an initial 1-D velocity model that varies only with depth. Regularized tomographic inversion algorithms impose constraints on the roughness of the model that help to stabilize the inversion process. Final velocity models obtained from regularized tomographic inversions have smooth three-dimensional structures that are required by the data. Final velocity models are usually analyzed and interpreted either as a perturbation velocity model or as an absolute velocity model. Compared to perturbation velocity model, absolute velocity models have an advantage of providing constraints on lithology. Both velocity models lack the ability to provide sharp constraints on subsurface faults. An interpretational approach utilizing spatial velocity gradients applied to northern Cascadia shows that subsurface faults that are not clearly interpretable from velocity model plots can be identified by sharp contrasts in velocity gradient plots. This interpretation resulted in inferring the locations of the Tacoma, Seattle, Southern Whidbey Island, and Darrington Devil's Mountain faults much more clearly. The Coast Range Boundary fault, previously hypothesized on the basis of sedimentological and tectonic observations, is inferred clearly from the gradient plots. Many of the fault locations imaged from gradient data correlate with earthquake hypocenters, indicating their seismogenic nature.

  7. East-west extension and Holocene normal-fault scarps in the Hellenic arc (United States)

    Armijo, R.; Lyon-Caen, H.; Papanastassiou, D.


    Examination of surface fault traces with Spot images and in the field corroborates the inference that the active tectonics of southern Peloponnesus and Crete are dominated by approximately north-south normal faulting and approximately east-west extension. The heights of Holocene normal-fault scarps yield first-order regional estimates of fault slip rates between 0.1 and 2-3 mm/yr. Most of the surface scarps probably ruptured during past earthquakes, such as that which destroyed Sparta in 464 B.C. On the Sparta fault the Holocene average slip rate and the recurrence time of large earthquakes may be ˜1 mm/yr and 3000 yr, respectively. The regional pattern of Quaternary faulting suggests that the east-west extension near the Hellenic subduction zone is fast (about 5%-10%/m.y.). The change from north-south to east-west extension in the late Pliocene (˜2-4 Ma) implies that the Aegean is starting to collide with the northern margin of Africa.

  8. Constraints from Mesozoic siliciclastic cover rocks and satellite image analysis on the slip history of regional E-W faults in the southeast Western Desert, Egypt (United States)

    Tewksbury, Barbara J.; Mehrtens, Charlotte J.; Gohlke, Steven A.; Tarabees, Elhamy A.; Hogan, John P.


    In the southeast Western Desert of Egypt, a prominent set of E-W faults and co-located domes and basins involve sedimentary cover rock as young as the early Eocene. Although earlier Mesozoic slip on faults in southern Egypt has been widely mentioned in the literature and attributed to repeated reactivation of basement faults, evidence is indirect and based on the idea that regional stresses associated with tectonic events in the Syrian Arc would likely have reactivated basement faults in south Egypt in dextral strike slip during the Mesozoic as well as the Cenozoic. Here, we present direct evidence from the rock record for the sequence of development of features along these faults. Southwest of Aswan, a small structural dome in Mesozoic Nubia facies rocks occurs where the Seiyal Fault bends northward from west to east. The dome is cut by strands of the Seiyal Fault and a related set of cataclastic deformation bands showing dominantly right lateral strike slip, as well as by younger calcite veins with related patchy poikilotopic cement. High resolution satellite image analysis of the remote southwest Kharga Valley shows a similar sequence of events: older structural domes and basins located where E-W faults bend northward from west to east, right lateral offset of domes and basins along the E-W faults, and two sets of deformation band faults that lack co-located domes and basins. We suggest that field data, image analysis, and burial depth estimates are best explained by diachronous development of features along the E-W fault system. We propose that Late Mesozoic right lateral strike slip produced domes and basins in Nubia facies rocks in stepover regions above reactivated basement faults. We further suggest that the extensively linked segments of the E-W fault system in Nubia facies rocks, plus the deformation band systems, formed during the late Eocene when basement faults were again reactivated in dominantly right lateral strike slip.

  9. Alboran Basin, southern Spain - Part I: Geomorphology

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A. [Secretaria General de Pesca Maritima, Corazon de Maria, 8, 28002 Madrid (Spain); Ballesteros, M.; Rivera, J.; Acosta, J. [Instituto Espanol de Oceanografia, Corazon de Maria, 8, 28002 Madrid (Spain); Montoya, I. [Universidad Juan Carlos I, Campus de Mostoles, Madrid (Spain); Uchupi, E. [Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)


    Bathymetric, 3D relief and shaded relief maps created from multibeam echo-sounding data image the morphology of the Alboran Basin, a structural low along the east-west-trending Eurasian-African plates boundary. Topographic features in the basin are the consequence of volcanism associated with Miocene rifting, rift and post-rift sedimentation, and recent faulting resulting from the convergence of the African-Eurasian plates. Pleistiocene glacially induced regressions/transgressions when the sea level dropped to about 150 m below its present level gas seeps and bottom currents. Recent faulting and the Pleistocene transgressions/regressions led to mass-wasting, formation of turbidity currents and canyon erosion on the basin's slopes. Recent fault traces at the base of the northern basin slope have also served as passageways for thermogenic methane, the oxidation of which by bacteria led to the formation of carbonate mounds along the fault intercepts on the sea floor. Expulsion of thermogenic or biogenic gas has led to the formation of pockmarks; erosion by bottom currents has resulted in the formation of moats around seamounts and erosion of the seafloor of the Alboran Ridge and kept the southern edge of the 36 10'N high sediment free. (author)

  10. Fault Diagnosis in HVAC Chillers (United States)

    Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann


    Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.

  11. Fault-Tolerant Heat Exchanger (United States)

    Izenson, Michael G.; Crowley, Christopher J.


    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  12. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia


    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  13. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone


    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilledcores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System.

  14. Numerical modelling of the mechanical and fluid flow properties of fault zones - Implications for fault seal analysis

    NARCIS (Netherlands)

    Heege, J.H. ter; Wassing, B.B.T.; Giger, S.B.; Clennell, M.B.


    Existing fault seal algorithms are based on fault zone composition and fault slip (e.g., shale gouge ratio), or on fault orientations within the contemporary stress field (e.g., slip tendency). In this study, we aim to develop improved fault seal algorithms that account for differences in fault zone

  15. Synthesis of Fault-Tolerant Embedded Systems

    DEFF Research Database (Denmark)

    Eles, Petru; Izosimov, Viacheslav; Pop, Paul


    This work addresses the issue of design optimization for fault- tolerant hard real-time systems. In particular, our focus is on the handling of transient faults using both checkpointing with rollback recovery and active replication. Fault tolerant schedules are generated based on a conditional...... process graph representation. The formulated system synthesis approaches decide the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors, such that multiple transient faults are tolerated, transparency requirements...

  16. Static stress transfer within the Cephalonia Transfer Fault Zone (CTFZ) during the 2014 seismic sequence in Cephalonia and the 2015 earthquake in Lefkada (United States)

    Sboras, Sotiris; Chatzipetros, Alexandros; Pavlides, Spyros; Karastathis, Vassilis; Papadopoulos, Gerassimos


    The 2014 seismic sequence in Cephalonia and the following 2015 earthquake in Lefkada Islands, Greece, showed that the Cephalonia Transfer Fault Zone (CTFZ), which runs along the western coasts of both islands, comprises a wide fault zone of parallel to sub-parallel fault segments. The January-February 2014 sequence of Cephalonia consisted of three moderate to strong events. According to published focal mechanisms, the first strongest shock (January 26, Mw 6.1) was produced by a W-dipping, oblique (right-lateral reverse) fault, the second (January 26, Mw 5.3) by a ENE-dipping, pure reverse fault and the third by a ESE-dipping, almost pure right-lateral strike slip fault. The November 17 2015 (Mw 6.4) Lefkada earthquake was produced by a WNW-dipping, roughly vertical, almost pure right-lateral strike-slip fault. None of the shocks above produced any direct coseismic ground rupture, while published relocated hypocentral locations for the Cephalonia sequence revealed various depths indicating a complex fault pattern. Based on published seismological, geological and satellite data (i.e. InSAR), the respective seismic sources were modelled in order to calculate the static stress changes i) during the Cephalonia and Lefkada sequences, and ii) after the sequences for the surrounding faults from the Greek Database of Seismogenic Sources (GreDaSS). Results showed that the February 3 2014 Cephalonia fault was variously affected by the rupture of the two January 26 faults. Stress change distribution on the fault plane showed that both stress drop and rise occurred. The November 17 2015 Lefkada fault was slightly loaded after the rupture of the whole Cephalonia fault system due to the great distance. The post-sequence stress changes variously affect the surrounding faults: the southern segment of the CTFZ is relieved from stresses, while the central ones show a mixed situation. The large northern segment, offshore from Lefkada Island, is mainly under stress drop. Stress drop is

  17. Segmentation and step-overs along strike-slip fault systems in the inner California borderlands: Implications for fault architecture and basin formation (United States)

    Maloney, J. M.; Driscoll, N. W.; Kent, G.; Brothers, D. S.


    Reprocessed, industry multichannel seismic reflection data and high resolution Chirp data were examined to characterize the geometry and recency of faulting in the inner California borderlands (ICB). Two end-member models have been proposed to explain the deformation observed in the ICB. One model invokes reactivation of detachment faults by the Oceanside Blind Thrust (OBT) to explain the deformation and margin architecture (e.g., San Mateo/Carlsbad Trend). In contrast, the other model explains the deformation by step-overs along the strike-slip fault systems. Several observations in both the southern and central portions of the ICB are more consistent with the step-over model than the regional blind thrust model. For example, regions in the ICB exhibit both tensional and compressional structures across the margin, which are more readily explained by the strike-slip model. Localized compression and extension occurs as predicted at fault bends and step-overs. Furthermore, strike slip fault systems that bound extensional regions (i.e., San Diego Bay) exhibit localized normal deformation as they approach the releasing step-overs. In addition, onlapping turbidites reveal that the deformation becomes younger toward the east, an observation not consistent with a westward verging blind thrust fault system. Finally, rotational deformation previously attributed to a splay off the OBT instead appears to be a southward transported gravitational slide deposit. In summary, the nested high-resolution Chirp and MCS data have provided new constraints on ICB tectonic deformation and margin architecture, which are best explained by step-overs on strike slip fault systems.

  18. Crátera de bronce con lucha de aqueos y troyanos alrededor del cadáver de Patroclo en el Instituto de Valencia de don Juan en Madrid

    Directory of Open Access Journals (Sweden)



    Full Text Available En el año 1958 publicamos un breve trabajo en el Boletín del Seminario de Estudios de Arte y Arqueología, 24, 1958, 5 ss., sobre esta interesante pieza. Hoy volvemos a revisar su estudio, ya que la escena en ella desarrollada no es un combate de gladiadores, sino la lucha entre aqueos y troyanos en torno al cadáver de Patroclo, descrita por Homero en Ilíada 17, 233 ss. Dada la importancia de la composición, debida principalmente a la rareza de ella en el arte romano, juzgamos de cierto interés rectificar la interpretación propuesta y analiza nuevamente esta crátera de bronce. Antes de examinar los paralelos, haremos una breve descripción de las figuras.

  19. Ab initio design of fabrication process and shape control of self-organized Tera-bit-density nano-magnets in dilute magnetic semiconductors by two-dimensional spinodal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, T.; Sato, K.; Katayama-Yoshida, H. [The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 5670047 (Japan); Dederichs, P.H. [Institut fuer Festkoerperforschung, Forschungszentrum Juelich, 52425 Juelich (Germany)


    A new fabrication process in a bottom-up nanotechnology to realize self-organized Tera-bit-density nanomagnets is designed based on ab initio calculations of the effective pair interactions between magnetic impurities in dilute magnetic semiconductors (DMS) and on Monte Carlo simulation of layer-by-layer crystal growth. We show that growth positions, shape and density of quasi-one-dimensional nano-magnets in the DMS can be controlled by the nano-scale seeding on the semiconductor substrate and the vapor pressure or concentration of the doped magnetic impurities under the thermal non-equilibrium crystal growth condition, such as molecular-beam epitaxy, metal-organic vapor phase epitaxy or metal-organic chemical vapor deposition. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. ESR dating of the fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)


    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs, grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Ulzin nuclear reactor. ESR signals of quartz grains separated from fault rocks collected from the E-W trend fault are saturated. This indicates that the last movement of these faults had occurred before the quaternary period. ESR dates from the NW trend faults range from 300ka to 700ka. On the other hand, ESR date of the NS trend fault is about 50ka. Results of this research suggest that long-term cyclic fault activity near the Ulzin nuclear reactor continued into the pleistocene.

  1. A Quaternary fault database for central Asia (United States)

    Mohadjer, Solmaz; Ehlers, Todd Alan; Bendick, Rebecca; Stübner, Konstanze; Strube, Timo


    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic, and structural characteristics, short descriptions, narrative comments, and references to peer-reviewed publications. The interactive map displays 1196 fault traces and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 123 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. All data are accessible for viewing and download via This work has implications for seismic hazard studies in central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  2. Tool for Viewing Faults Under Terrain (United States)

    Siegel, Herbert, L.; Li, P. Peggy


    Multi Surface Light Table (MSLT) is an interactive software tool that was developed in support of the QuakeSim project, which has created an earthquake- fault database and a set of earthquake- simulation software tools. MSLT visualizes the three-dimensional geometries of faults embedded below the terrain and animates time-varying simulations of stress and slip. The fault segments, represented as rectangular surfaces at dip angles, are organized into collections, that is, faults. An interface built into MSLT queries and retrieves fault definitions from the QuakeSim fault database. MSLT also reads time-varying output from one of the QuakeSim simulation tools, called "Virtual California." Stress intensity is represented by variations in color. Slips are represented by directional indicators on the fault segments. The magnitudes of the slips are represented by the duration of the directional indicators in time. The interactive controls in MSLT provide a virtual track-ball, pan and zoom, translucency adjustment, simulation playback, and simulation movie capture. In addition, geographical information on the fault segments and faults is displayed on text windows. Because of the extensive viewing controls, faults can be seen in relation to one another, and to the terrain. These relations can be realized in simulations. Correlated slips in parallel faults are visible in the playback of Virtual California simulations.

  3. Holocene surface-faulting earthquakes at the Spring Lake and North Creek Sites on the Wasatch Fault Zone: Evidence for complex rupture of the Nephi Segment (United States)

    Duross, Christopher; Hylland, Michael D.; Hiscock, Adam; Personius, Stephen; Briggs, Richard; Gold, Ryan D.; Beukelman, Gregg; McDonald, Geg N; Erickson, Ben; McKean, Adam; Angster, Steve; King, Roselyn; Crone, Anthony J.; Mahan, Shannon


    The Nephi segment of the Wasatch fault zone (WFZ) comprises two fault strands, the northern and southern strands, which have evidence of recurrent late Holocene surface-faulting earthquakes. We excavated paleoseismic trenches across these strands to refine and expand their Holocene earthquake chronologies; improve estimates of earthquake recurrence, displacement, and fault slip rate; and assess whether the strands rupture separately or synchronously in large earthquakes. Paleoseismic data from the Spring Lake site expand the Holocene record of earthquakes on the northern strand: at least five to seven earthquakes ruptured the Spring Lake site at 0.9 ± 0.2 ka (2σ), 2.9 ± 0.7 ka, 4.0 ± 0.5 ka, 4.8 ± 0.8 ka, 5.7 ± 0.8 ka, 6.6 ± 0.7 ka, and 13.1 ± 4.0 ka, yielding a Holocene mean recurrence of ~1.2–1.5 kyr and vertical slip rate of ~0.5–0.8 mm/yr. Paleoseismic data from the North Creek site help refine the Holocene earthquake chronology for the southern strand: at least five earthquakes ruptured the North Creek site at 0.2 ± 0.1 ka (2σ), 1.2 ± 0.1 ka, 2.6 ± 0.9 ka, 4.0 ± 0.1 ka, and 4.7 ± 0.7 ka, yielding a mean recurrence of 1.1–1.3 kyr and vertical slip rate of ~1.9–2.0 mm/yr. We compare these Spring Lake and North Creek data with previous paleoseismic data for the Nephi segment and report late Holocene mean recurrence intervals of ~1.0–1.2 kyr for the northern strand and ~1.1–1.3 kyr for the southern strand. The northern and southern strands have similar late Holocene earthquake histories, which allow for models of both independent and synchronous rupture. However, considering the earthquake timing probabilities and per-event vertical displacements, we have the greatest confidence in the simultaneous rupture of the strands, including rupture of one strand with spillover rupture to the other. Ultimately, our results improve the surface-faulting earthquake history of the Nephi segment and enhance our understanding of how structural barriers

  4. Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM (United States)

    Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin


    Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.

  5. Crustal structure and fault geometry of the 2010 Haiti earthquake from temporary seismometer deployments (United States)

    Douilly, Roby; Haase, Jennifer S.; Ellsworth, William L.; Bouin, Marie‐Paule; Calais, Eric; Symithe, Steeve J.; Armbruster, John G.; Mercier de Lépinay, Bernard; Deschamps, Anne; Mildor, Saint‐Louis; Meremonte, Mark E.; Hough, Susan E.


    Haiti has been the locus of a number of large and damaging historical earthquakes. The recent 12 January 2010 Mw 7.0 earthquake affected cities that were largely unprepared, which resulted in tremendous losses. It was initially assumed that the earthquake ruptured the Enriquillo Plantain Garden fault (EPGF), a major active structure in southern Haiti, known from geodetic measurements and its geomorphic expression to be capable of producing M 7 or larger earthquakes. Global Positioning Systems (GPS) and Interferometric Synthetic Aperture Radar (InSAR) data, however, showed that the event ruptured a previously unmapped fault, the Léogâne fault, a north‐dipping oblique transpressional fault located immediately north of the EPGF. Following the earthquake, several groups installed temporary seismic stations to record aftershocks, including ocean‐bottom seismometers on either side of the EPGF. We use data from the complete set of stations deployed after the event, on land and offshore, to relocate all aftershocks from 10 February to 24 June 2010, determine a 1D regional crustal velocity model, and calculate focal mechanisms. The aftershock locations from the combined dataset clearly delineate the Léogâne fault, with a geometry close to that inferred from geodetic data. Its strike and dip closely agree with the global centroid moment tensor solution of the mainshock but with a steeper dip than inferred from previous finite fault inversions. The aftershocks also delineate a structure with shallower southward dip offshore and to the west of the rupture zone, which could indicate triggered seismicity on the offshore Trois Baies reverse fault. We use first‐motion focal mechanisms to clarify the relationship of the fault geometry to the triggered aftershocks.

  6. Active fault diagnosis by controller modification

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik


    Two active fault diagnosis methods for additive or parametric faults are proposed. Both methods are based on controller reconfiguration rather than on requiring an exogenous excitation signal, as it is otherwise common in active fault diagnosis. For the first method, it is assumed that the system...... in a way that guarantees the continuity of transition and global stability using a recent result on observer parameterization. An illustrative example inspired by a field study of a drag racing vehicle is given. For the second method, an active fault diagnosis method for parametric faults is proposed...... considered is controlled by an observer-based controller. The method is then based on a number of alternate observers, each designed to be sensitive to one or more additive faults. Periodically, the observer part of the controller is changed into the sequence of fault sensitive observers. This is done...

  7. Diagnosis and Fault-tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan

    The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process...... the applicability of the presented methods. The theoretical results are illustrated by two running examples which are used throughout the book. The book addresses engineering students, engineers in industry and researchers who wish to get a survey over the variety of approaches to process diagnosis and fault...... that can be used to ensure fault tolerance. Design methods for diagnostic systems and fault-tolerant controllers are presented for processes that are described by analytical models, by discrete-event models or that can be dealt with as quantised systems. Four case studies on pilot processes show...

  8. Rapid creation and destruction of sedimentary basins on mature strike-slip faults: an example from the offshore Alpine Fault, New Zealand (United States)

    Barnes, Philip M.; Sutherland, Rupert; Davy, Bryan; Delteil, Jean


    Seismic reflection profiles and multibeam bathymetric data are integrated to analyse the structure of the 25 km-long strike-slip Dagg Basin associated with the marine section of the Alpine Fault, Fiordland, New Zealand. The basin is developing in almost 3000 m water depth at a releasing bend, whilst contemporaneous transpression results in inversion of its southern end. Fiord-derived glacio-marine sediments flooded the basin during the last glaciation, and provide a stratigraphic framework for structural analysis. Geometrical analysis enables an estimation of 450-1650 m of dextral displacement on the Alpine Fault at the releasing bend since the development of an unconformity estimated to have formed at between 30 and 110 ka. This implies a dextral slip rate ranging from a possible minimum of 4 mm/yr to the maximum of 35 mm/yr constrained by the Pacific-Australian plate motion rate. Despite total dextral displacement of 480 km on the Alpine Fault zone and a growth history spanning 15-20 Myr, this geomorphically well expressed and structurally complex strike-slip basin developed and evolved rapidly during the late Pleistocene, and thus represents only the latest phase in the evolution of the Alpine Fault. Upward splaying structures within the fault zone exhibit a rapid spatial evolution in Pleistocene strata, which may reflect the interactions between high fault slip rate, voluminous sedimentation supply, inherited structural complexities in the basement rocks and deeper cover sequence, and interactions between adjacent faults. The present through-going releasing bend at the northern end of the basin may have evolved from a more complex pull-apart basin that developed between separate segments of the Alpine Fault. The results from Dagg Basin illustrate the rates at which structural complexities and sedimentary basins can develop within highly active, very mature, through-going continental wrench faults. Strike slip basins on the scale of 40-80 km 2 on such faults may

  9. Active tectonic deformation of the western Indian plate boundary: A case study from the Chaman Fault System (United States)

    Crupa, Wanda E.; Khan, Shuhab D.; Huang, Jingqiu; Khan, Abdul S.; Kasi, Aimal


    possible along the northern segments of the Chaman Fault zone. Geomorphic data suggest that the Chaman Fault along southern part is not very active now but may have gone through high tectonic activity in the past.

  10. A possible link between faulting, cryptodomes and lateral collapses at Vesuvius Volcano (Italy) (United States)

    Milia, Alfonsa; Torrente, Maurizio Maria; Bellucci, Francesca


    Vesuvius is an active volcano that has been affected by late Quaternary lateral collapses and tectonic faults. Cryptodomes and two debris avalanche, 18 ka-old DA1 and 3.5 ka-old DA2, were previously documented off Vesuvius and for the younger avalanche a link between onshore and offshore stratigraphy was reconstructed. The interpretation of seismic reflection profiles off Vesuvius, borehole stratigraphies, onshore and geomorphological data allowed to recognise the relationships among debris avalanches, criptodomes and faulting. Stratigraphic data reveal a remarkable difference between the architecture of the northern and southern volcano sectors that is compatible with the occurrence of the DA1 debris avalanche in the southern volcano sector. A contour map and a three-dimensional model of a surface merging the morphology of the top of the Somma lavas, in the northern volcano sector, with that of the top of the DA1 debris avalanche, in the southern volcano sector, were reconstructed. We present a new lateral collapse model of Vesuvius Volcano and document the relevance of inherited tectonic faults in guiding collapse geometry. It is possible that the SW-directed collapse (DA1) was driven towards the hangingwall blocks of NW-SE normal faults, while the propagation of the W-directed collapse (DA2) can be ascribed to the activity of the E-W strike-slip fault. Because of their distal location a minor role of cryptodome intrusion on collapses of Vesuvius can be postulated. The detailed analysis of substrate and edifice structure presented here establishes clear connexion between substrate tectonics and lateral collapse. This approach broadens the horizons of volcanic hazard assessment of Vesuvius.

  11. Inverter Ground Fault Overvoltage Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Andy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chebahtah, Justin [SolarCity Corporation, San Mateo, CA (United States); Wang, Trudie [SolarCity Corporation, San Mateo, CA (United States); McCarty, Michael [SolarCity Corporation, San Mateo, CA (United States)


    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  12. The 2011 Hawthorne, Nevada, Earthquake Sequence; Shallow Normal Faulting (United States)

    Smith, K. D.; Johnson, C.; Davies, J. A.; Agbaje, T.; Knezevic Antonijevic, S.; Kent, G.


    Range front fault at this latitude. At least two faults have been imaged within the sequence; these structures are at shallow depth (3-6 km), strike NE, and dip ~NW. Prior to temporary station installation event depths were poorly constrained, with the nearest network station 25 km from the source area. Early sequence moment tensor solutions show depths are on the order of 2-6 km and locations using the near source stations also confirm the shallow depths of the Hawthorne sequence. S-P times of 0.5 sec and less have been observed on a near-source station, illustrating extremely shallow source depths for some events. Along with the 2011 Hawthorne activity, very shallow depths in Nevada have been observed from near source stations in the 2008 west Reno earthquake sequence (primarily strike-slip faulting; main shock Mw 5.0) and the 1993 Rock Valley sequence in southern NNSS (strike-slip faulting; main shock Mw 4.0). These shallow sequences tend to include high rates of low magnitude earthquakes continuing over several months duration.

  13. Local Stress fields and paleo-fluid distribution within a transtensional duplex: An example from the northern termination of the Liquiñe-Ofqui Fault System. (United States)

    Perez-Flores, P.; Cembrano, J. M.; Sanchez-Alfaro, P.


    The northern termination of Liquiñe-Ofqui Fault System (LOFS) is characterized by major NNE-striking dextral strike-slip faults and several second and third-order NE-to-ENE-striking oblique-slip faults. This geometry forms a transtensional duplex structure. The LOFS has a complex crosscutting relationship with inherited NW-striking structures of the Arc-oblique long-lived Fault System (ALFS). We conducted a structural mapping of fault and vein populations at key structural sites representative of each regional structural system. Field observations were combined with different methods of inversion of fault-slip heterogeneous data and with the use of different open-source computer programs that calculate resolved stress tensors and P-T axes for each structural site in order to unravel the significance of this complex architecture. The results of the inversion of fault-slip analysis show that a transtensional strike-slip regime, with NE-SW-trending subhorizontal σ1, predominate in the first and second order faults in the northern termination of the duplex. A more local tensional regime was calculated for the same area. The inversion solutions are compatible with NE-trending subvertical veins system and dilational jogs and breccia. In contrast, within the central area of the duplex fault slip inversion of fault populations shows both transpressional and compressional regimes. The first tectonic regime is compatible with ENE-striking veins and dikes. In the southern part of the duplex, fault populations are compatible with either a local transtensional stress field with an ESE-trending subhorizontal σ1 or with a tensional regime with a SW-trending, steeply plunging σ1. Our results show the complexity in the nature and spatial distribution of stress fields within strike-slip duplexes and its role in the geometrical distribution of paleo-fluid flow, part of which may account for the reactivation of inherited faults or strain incompatibilities at fault intersections.

  14. New fault tolerant matrix converter

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Edorta; Andreu, Jon; Kortabarria, Inigo; Ormaetxea, Enekoitz; Alegria, Inigo Martinez de; Martin, Jose Luis [Department of Electronics and Telecommunications, University of the Basque Country, Alameda de Urquijo s/n, E-48013 Bilbao (Spain); Ibanez, Pedro [TECNALIA, Energy Unit, Parque Tecnologico de Zamudio, E-48170 Bizkaia (Spain)


    The matrix converter (MC) presents a promising topology that will have to overcome certain barriers (protection systems, durability, the development of converters for real applications, etc.) in order to gain a foothold in the industry. In some applications, where continuous operation must be insured in the case of a system failure, improved reliability of the converter is of particular importance. In this sense, this article focuses on the study of a fault tolerant MC. The fault tolerance of a converter is characterized by its total or partial response in the case of a breakage of any of its components. Taking into consideration that virtually no work has been done on fault tolerant MCs, this paper describes the most important studies in this area. Moreover, a new method is proposed for detecting the breakage of MC semiconductors. Likewise, a new variation of SVM modulation with failure tolerance capacity is presented. This guarantees the continuous operation of the converter and the pseudo-optimum control of a PMSM. This paper also proposes a novel MC topology, which allows the flexible reconfiguration of this converter, when one or several of its semiconductors are damaged. In this way, the MC can continue operating at 100% of its performance without having to double its resources. In this way, it can be said that the solution described in this article represents a step forward towards the development of reliable matrix converters for real applications. (author)

  15. Fault tolerant operation of switched reluctance machine (United States)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and

  16. Cataclastic faults along the SEMP fault system (Eastern Alps, Austria) — A contribution to fault zone evolution, internal structure and paleo-stresses (United States)

    Hausegger, Stefan; Kurz, Walter


    In this study three different sites along the ENE-trending, sinistral Salzach-Ennstal-Mariazell-Puchberg [SEMP] fault zone were investigated with respect to brittle fault zone evolution and fault re-activation. All sites crop out in Triassic carbonates (Ladinian Wetterstein limestone/-dolomite). Simultaneously (re-) activated faults were investigated with focus on fault-slip data and structural inventory of each individual fault zone. Configuration of (internal) structural elements, fault core thickness, strike direction and slip sense in addition to particle analysis of fault core cataclasites add up to three different fault types (Fault Types I, II and III). Fault Type I is classified by a complex internal fault core structure with thicknesses up to several 10s of meters and generally evolve in a strike direction of maximum shear stress (τmax). Type II faults, characterized by cataclastic fault cores with thicknesses up to 1 m, as well as Type III faults (thin solitary cataclastic layers) evolve sub-parallel to the main fault direction and in orientation according to R, R' or X shear fractures with variable (σn/τ) ratio. Progressive development from Type III to Type II and Type I faults is consistent with increasing displacement and increasing fault core width. Fault type classification and related paleostress analysis provide evidence from field observation compared to theoretical and analog models of Mohr-Coulomb fracture evolution.

  17. Fault Diagnosis and Fault Tolerant Control with Application on a Wind Turbine Low Speed Shaft Encoder

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Sardi, Hector Eloy Sanchez; Escobet, Teressa


    . This sensor has to be correct as blade pitch actions should be different at different azimuth angle as the wind speed varies within the rotor field due to different phenomena. A scheme detecting faults in this sensor has previously been designed for the application of a high end fault diagnosis and fault...... tolerant control of wind turbines using a benchmark model. In this paper, the fault diagnosis scheme is improved and integrated with a fault accommodation scheme which enables and disables the individual pitch algorithm based on the fault detection. In this way, the blade and tower loads are not increased...

  18. Present-day strain partitioning and strain transfer across the Fairweather and Denali Faults in SW Yukon - SE Alaska (United States)

    Mazzotti, S.; Marechal, A.; Elliott, J.; Freymueller, J. T.; Schmidt, M.


    In SW Yukon - SE Alaska, the present-day Pacific - North America relative motion is highly oblique to the main plate boundary, resulting in strong strain partitioning tectonics that link the Aleutian subduction to the west to Queen-Charlotte transform to the south. This transition region is also the site of present-day orogeny and accretion of the allochthonous Yakutat Terrane to the Northern Cordillera. We present results from new campaign and permanent GPS stations deployed in SW Yukon, combined with STEEP data from SE Alaska, straddling the Fairweather and Denali Faults. GPS data are processed with the NRCan PPP software to derive long-term velocities and are corrected for transient effects primarily due to Glacial Isostatic Adjustment to recent ice mass loss. In the southern region (from Yakutat, AK to Whitehorse, YK), our preferred model gives slip rates of 49.9 +/- 2.6 mm/a on the Fairweather Fault and 1.1 +/- 1.0 mm/a on the Denali Fault; i.e., over 95% the Pacific - North America strike-slip motion is accommodated on the main plate-boundary fault. However, the fault-normal component is strongly partitioned, with ~25% of the Pacific - North America convergence transferred inland, into the Yukon and Northern Cordillera. This strain transfer could explain the seismicity observed in the Mackenzie Mountains 500 - 800 km from the coast. In the northern region (from Yakutat, AK to Beaver Creek, YK), the Pacific - North America convergence is strongly partitioned, with less than ~60% accommodated on the Chugach-St. Elias Fault and the residual motion distributed between the Pamplona thrust zone to the south (~15%) and internal shortening of the St. Elias Mountains to the north (~25%), where few faults and little seismicity are observed. The new GPS data also helps address the activity and slip rate of a potential "Connector Fault" that would link the Fairweather and Totschunda Faults, bypassing the Denali Fault in SW Yukon.

  19. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California (United States)

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.


    extensional stresses on built structures within the fault zone. Such differential movement and resulting distortion of built structures appear to have occurred between fault traces at the gatewell near the southern end of San Andreas Lake during the 1906 San Francisco earthquake (Schussler, 1906). In addition to the three fault traces within the main 1906 surface rupture zone, our data indicate at least one additional fault trace (or zone) about 80 meters northeast of the main 1906 surface rupture zone. Because ground shaking also can damage structures, we used fault-zone guided waves to investigate ground shaking within the fault zones relative to ground shaking outside the fault zones. Peak ground velocity (PGV) measurements from our guided-wave study indicate that ground shaking is greater at each of the surface fault traces, varying with the frequency of the seismic data and the wave type (P versus S). S-wave PGV increases by as much as 5–6 times at the fault traces relative to areas outside the fault zone, and P-wave PGV increases by as much as 3–10 times. Assuming shaking increases linearly with increasing earthquake magnitude, these data suggest strong shaking may pose a significant hazard to built structures that extend across the fault traces. Similarly complex fault structures likely underlie other strike-slip faults (such as the Hayward, Calaveras, and Silver Creek Faults) that intersect structures of the water delivery system, and these fault structures similarly should be investigated.

  20. Fault Diagnosis and Fault-tolerant Control of Modular Multi-level Converter High-voltage DC System

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Wang, Chao


    device fault, DC line faults as well as AC grid faults. Special attention is given to the comparison of the corresponding fault diagnosis and fault-tolerant control approaches. Further, focus is dedicated to control/protection strategies and topologies with fault ride-though capability for MMC...... of failures and lower the reliability of the MMC-HVDC system. Therefore, research on the fault diagnosis and fault-tolerant control of MMC-HVDC system is of great significance in order to enhance the reliability of the system. This paper provides a comprehensive review of fault diagnosis and fault handling...... strategies of MMC-HVDC systems for the most common faults happened in MMC-HVDC systems covering MMC faults, DC side faults as well as AC side faults. An important part of this paper is devoted to a discussion of the vulnerable spots as well as failure mechanism of the MMC-HVDC system covering switching...

  1. Characterization of the Highway 95 Fault in lower Fortymile Wash using electrical and electromagnetic methods, Nye County, Nevada (United States)

    Macy, Jamie P.; Kryder, Levi; Walker, Jamieson


    The Highway 95 Fault is a buried, roughly east-west trending growth fault at the southern extent of Yucca Mountain and Southwestern Nevada Volcanic Field. Little is known about the role of this fault in the movement of groundwater from the Yucca Mountain area to downgradient groundwater users in Amargosa Valley. The U.S. Geological Survey (USGS) Arizona Water Science Center (AZWSC), in cooperation with the Nye County Nuclear Waste Repository Project Office (NWRPO), has used direct current (DC) resistivity, controlled-source audio magnetotelluric (CSAMT), and transient electromagnetics (TEM) to better understand the fault. These geophysical surveys were designed to look at structures buried beneath the alluvium, following a transect of wells for lithologic control. Results indicate that the fault is just north of U.S. Highway 95, between wells NC-EWDP-2DB and -19D, and south of Highway 95, east of well NC-EWDP-2DB. The Highway 95 Fault may inhibit shallow groundwater movement by uplifting deep Paleozoic carbonates, effectively reducing the overlying alluvial aquifer thickness and restricting the movement of water. Upward vertical hydraulic gradients in wells proximal to the fault indicate that upward movement is occurring from deeper, higher-pressure aquifers.

  2. Fault Diagnosis and Fault Handling for Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren

    Unmanned Aerial vehicles (UAVs) or drones are used increasingly for missions where piloted aircraft are unsuitable. The unmanned aircraft has a number of advantages with respect to size, weight and manoeuvrability that makes it possible for them to solve tasks that an aircraft previously has been...... to another type of aircraft with different parameters. Amongst the main findings of this research project is a method to handle faults on the UAV’s pitot tube, which measures the aircraft speed. A set of software redundancies based on GPS velocity information and engine thrust are used to detect abnormal...

  3. Applying wavelet entropy principle in fault classification

    Energy Technology Data Exchange (ETDEWEB)

    El Safty, S.; El-Zonkoly, A. [Arab Academy for Science and Technology, Miami, Alexandria, P.O.1029 (Egypt)


    The ability to detect and classify the type of fault plays a great role in the protection of power system. This procedure is required to be precise with no time consumption. In this paper detection of fault type has been implemented using wavelet analysis together with wavelet entropy principle. The simulation of power system is carried out using PSCAD/EMTDC. Different types of faults were studied obtaining various current waveforms. These current waveforms were decomposed using wavelet analysis into different approximation and details. The wavelet entropies of such decompositions are analyzed reaching a successful methodology for fault classification. The suggested approach is tested using different fault types and proven successful identification for the type of fault. (author)

  4. Late Quaternary Activity and Seismogenic Potential of the Gonave Microplate: Plantain Garden Strike-Slip Fault Zone of Eastern Jamaica (United States)

    Mann, P.; Prentice, C.; King, W.; Demets, C.; Wiggins-Grandison, M.; Benford, B.


    At the longitude of Jamaica, Caribbean (Carib)-North America (Noam) plate motion of 19 ± 2 mm/a is carried by two parallel, left-lateral strike-slip faults, the Oriente fault zone, immediately south of Cuba, and the Enriquillo-Plantain Garden fault zone (EPGFZ), which lies 100-150 km further south. It has been postulated that the lithosphere between these faults constitutes an independent Gonave microplate that has formed in response to the ongoing collision between the leading edge of Carib in Hispaniola and the Bahama carbonate platform. GPS measurements in Jamaica and Hispanola is supportive of the microplate hypothesis and indicates that roughly half of Carib-Noam plate motion (8-14 mm/a) is carried by the EPGFZ of southern Hispaniola and eastern Jamaica. This study applies geomorphic and paleoseismic methods as a direct test of the activity and amount of microplate motion carried on the Plantain Garden fault segment of eastern Hispaniola and how this motion is distributed across a large restraining bend that has formed the island of Jamaica since the late Miocene. The EPFZ curves gently to the northeast and forming a steep mountain front to the Blue Mountains restraining bend with elevations up to 2200 m. Geomorphic fault-related features along the mountain front fault zone include left-laterally deflected rivers and streams, but no small scale features indicative of Holocene activity. River and stream deflections range from 0.1 to 0.5 km. We identified and trenched the most active trace of the mountain front fault at the Morant River where the fault is characterized by a 1.5-m-wide sub-vertical fault zone juxtaposing sheared alluvium and fault Cretaceous basement rocks This section is overlain by a 6-m-thick fluvial terrace. Trenching in the unfaulted terrace immediately overlying the fault trace revealed radiocarbon and OSL ages ranging from 20 to 21 ka that are consistent with a prominent unfaulted alluvial fan along the projection of this fault 1.5 km to

  5. Active fault diagnosis in closed-loop systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad


    Active fault diagnosis (AFD) of parametric faults is considered in connection with closed loop feedback systems. AFD involves auxiliary signals applied on the closed loop system. A fault signature matrix is introduced in connection with AFD and it is shown that if a limited number of faults can...... occur in the system, a fault separation in the fault signature matrix can be obtained. Then the single elements in the matrix only depend of a reduced number of parametric faults. This can directly be applied for fault isolation. If it is not possible to obtain this separation, it is shown how the fault...... signature matrix can be applied for a dynamical fault isolation, i.e. fault isolation based on the dynamic characteristic of the fault signature matrix as function of the different parametric faults....

  6. An Active Fault-Tolerant Control Method Ofunmanned Underwater Vehicles with Continuous and Uncertain Faults

    Directory of Open Access Journals (Sweden)

    Daqi Zhu


    Full Text Available This paper introduces a novel thruster fault diagnosis and accommodation system for open-frame underwater vehicles with abrupt faults. The proposed system consists of two subsystems: a fault diagnosis subsystem and a fault accommodation sub-system. In the fault diagnosis subsystem a ICMAC(Improved Credit Assignment Cerebellar Model Articulation Controllers neural network is used to realize the on-line fault identification and the weighting matrix computation. The fault accommodation subsystem uses a control algorithm based on weighted pseudo-inverse to find the solution of the control allocation problem. To illustrate the proposed method effective, simulation example, under multi-uncertain abrupt faults, is given in the paper.

  7. The transtensional offshore portion of the northern San Andreas fault: Fault zone geometry, late Pleistocene to Holocene sediment deposition, shallow deformation patterns, and asymmetric basin growth (United States)

    Beeson, Jeffrey W.; Johnson, Samuel Y.; Goldfinger, Chris


    We mapped an ~120 km offshore portion of the northern San Andreas fault (SAF) between Point Arena and Point Delgada using closely spaced seismic reflection profiles (1605 km), high-resolution multibeam bathymetry (~1600 km2), and marine magnetic data. This new data set documents SAF location and continuity, associated tectonic geomorphology, shallow stratigraphy, and deformation. Variable deformation patterns in the generally narrow (∼1 km wide) fault zone are largely associated with fault trend and with transtensional and transpressional fault bends.We divide this unique transtensional portion of the offshore SAF into six sections along and adjacent to the SAF based on fault trend, deformation styles, seismic stratigraphy, and seafloor bathymetry. In the southern region of the study area, the SAF includes a 10-km-long zone characterized by two active parallel fault strands. Slip transfer and long-term straightening of the fault trace in this zone are likely leading to transfer of a slice of the Pacific plate to the North American plate. The SAF in the northern region of the survey area passes through two sharp fault bends (∼9°, right stepping, and ∼8°, left stepping), resulting in both an asymmetric lazy Z–shape sedimentary basin (Noyo basin) and an uplifted rocky shoal (Tolo Bank). Seismic stratigraphic sequences and unconformities within the Noyo basin correlate with the previous 4 major Quaternary sea-level lowstands and record basin tilting of ∼0.6°/100 k.y. Migration of the basin depocenter indicates a lateral slip rate on the SAF of 10–19 mm/yr for the past 350 k.y.Data collected west of the SAF on the south flank of Cape Mendocino are inconsistent with the presence of an offshore fault strand that connects the SAF with the Mendocino Triple Junction. Instead, we suggest that the SAF previously mapped onshore at Point Delgada continues onshore northward and transitions to the King Range thrust.

  8. Fault Diagnosis in Deaerator Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    S Srinivasan


    Full Text Available In this paper a fuzzy logic based fault diagnosis system for a deaerator in a power plant unit is presented. The system parameters are obtained using the linearised state space deaerator model. The fuzzy inference system is created and rule base are evaluated relating the parameters to the type and severity of the faults. These rules are fired for specific changes in system parameters and the faults are diagnosed.

  9. On concentrated solute sources in faulted aquifers (United States)

    Robinson, N. I.; Werner, A. D.


    Finite aperture faults and fractures within aquifers (collectively called 'faults' hereafter) theoretically enable flowing water to move through them but with refractive displacement, both on entry and exit. When a 2D or 3D point source of solute concentration is located upstream of the fault, the plume emanating from the source relative to one in a fault-free aquifer is affected by the fault, both before it and after it. Previous attempts to analyze this situation using numerical methods faced challenges in overcoming computational constraints that accompany requisite fine mesh resolutions. To address these, an analytical solution of this problem is developed and interrogated using statistical evaluation of solute distributions. The method of solution is based on novel spatial integral representations of the source with axes rotated from the direction of uniform water flow and aligning with fault faces and normals. Numerical exemplification is given to the case of a 2D steady state source, using various parameter combinations. Statistical attributes of solute plumes show the relative impact of parameters, the most important being, fault rotation, aperture and conductivity ratio. New general observations of fault-affected solution plumes are offered, including: (a) the plume's mode (i.e. peak concentration) on the downstream face of the fault is less displaced than the refracted groundwater flowline, but at some distance downstream of the fault, these realign; (b) porosities have no influence in steady state calculations; (c) previous numerical modeling results of barrier faults show significant boundary effects. The current solution adds to available benchmark problems involving fractures, faults and layered aquifers, in which grid resolution effects are often barriers to accurate simulation.

  10. Stability of fault during fluid injection (United States)

    Passelegue, Francois; Brantut, Nicolas; Mitchell, Tom


    Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Our result suggest that the stability of the fault is not only a function of the fluid pressure required to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by fluid pressures that are locally much higher than expected from a static Coulomb stress analysis. These results could explain the "large" magnitude human-induced earthquakes recently observed in Basel (Mw 3.6, 2006) and in Oklahoma (Mw 5.6, 2016).

  11. Estimating Fault Displacement from the 1999 Hector Mine Earthquake Using LIDAR (United States)

    Borsa, A. A.; Minster, J.; Hudnut, K. W.


    The 1999 Hector Mine Earthquake generated visible surface faulting along almost 60km of sparsely vegetated, undeveloped desert terrain. Six months after the earthquake, the entire length of the Hector Mine fault zone was mapped with a scanning laser altimeter as part of a joint experiment between the U.S. Geological Survey, the Southern California Earthquake Center and the commercial firm, Aerotec LLC. This data set has recently been recalibrated and validated with respect to GPS-measured ground control to provide a high-resolution, geodetic-quality digital elevation model (DEM) that can be used for applications requiring precise knowledge of the faulted terrain within a half-kilometer swath along the Hector Mine surface rupture. We show the various methods of calibration used and the improvements to the DEM that result. We then use this recalibrated DEM to estimate vertical and horizontal displacement at several diagnostic locations along the fault. Having a quantitative representation of the post-earthquake faulted terrain allows us to bring signal-processing techniques to bear on this problem, and we compare our results to those made by the USGS using conventional surveying techniques and to recently published Hector Mine displacement estimates from InSAR.

  12. Guatemala paleoseismicity: from Late Classic Maya collapse to recent fault creep (United States)

    Brocard, Gilles; Anselmetti, Flavio S.; Teyssier, Christian


    We combine ‘on-fault’ trench observations of slip on the Polochic fault (North America-Caribbean plate boundary) with a 1200 years-long ‘near-fault’ record of seismo-turbidite generation in a lake located within 2 km of the fault. The lake record indicates that, over the past 12 centuries, 10 earthquakes reaching ground-shaking intensities ≥ VI generated seismo-turbidites in the lake. Seismic activity was highly unevenly distributed over time and noticeably includes a cluster of earthquakes spread over a century at the end of the Classic Maya period. This cluster may have contributed to the piecemeal collapse of the Classic Maya civilization in this wet, mountainous southern part of the Maya realm. On-fault observations within 7 km of the lake show that soils formed between 1665 and 1813 CE were displaced by the Polochic fault during a long period of seismic quiescence, from 1450 to 1976 CE. Displacement on the Polochic fault during at least the last 480 years included a component of slip that was aseismic, or associated with very light seismicity (magnitude 1 ky) punctuated by destructive earthquake clusters.

  13. The Suckling Hills Fault, Kayak Island Zone, and accretion of the Yakutat microplate, Alaska (United States)

    Chapman, James B.; Worthington, Lindsay L.; Pavlis, Terry L.; Bruhn, Ronald L.; Gulick, Sean P.


    The Suckling Hills and Kayak Island are isolated mountain blocks located along strike from each other within the foreland of the St. Elias orogen in southern Alaska. These blocks preserve an erosional surface that was deformed by slip on northwest-dipping reverse faults in the Pleistocene. We suggest that the Suckling Hills Fault and Kayak Island Zone form a segmented fault network that links with the Bering Glacier structure to the north. This fault network separates the central Yakataga fold and thrust belt from complex, multiply deformed structures in the western syntaxis. Ongoing accretion of the Yakutat microplate to North America results in translation of structures of the fold and thrust belt into the western syntaxis. The composite Suckling Hills Fault, Kayak Island Zone, and Bering Glacier structure may have formed because the older structures of the fold and thrust belt were unfavorably oriented within the western syntaxis region. This pattern of deformation provides a template for understanding the complex deformation within the core of the western syntaxis and predicts refolding and straightening of the western syntaxis margin with continued accretion. This study provides an analog for structural overprinting and changing deformation patterns through time in orogenic corners.

  14. Active fault diagnosis in closed-loop uncertain systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik


    Fault diagnosis of parametric faults in closed-loop uncertain systems by using an auxiliary input vector is considered in this paper, i.e. active fault diagnosis (AFD). The active fault diagnosis is based directly on the socalled fault signature matrix, related to the YJBK (Youla, Jabr, Bongiorno...

  15. Faults and Diagnosis Systems in Power Converters

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Choi, Uimin


    frequently. Therefore, it is important to monitor the power device and capacitor fault to increase the reliability of power electronics. In this chapter, the diagnosis methods for power device fault will be discussed by dividing into open- and short-circuit faults. Then, the condition monitoring methods...... efforts have been put into making these systems better in terms of reliability in order to achieve high power source availability, reduce the cost of energy and also increase the reliability of overall systems. Among the components used in power converters, a power device and a capacitor fault occurs most...

  16. Soil radon levels across the Amer fault

    Energy Technology Data Exchange (ETDEWEB)

    Font, Ll. [Grup de Fisica de les Radiacions, Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)], E-mail:; Baixeras, C.; Moreno, V. [Grup de Fisica de les Radiacions, Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Bach, J. [Unitat de Geodinamica externa, Departament de Geologia, Edifici Cs, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)


    Soil radon levels have been measured across the Amer fault, which is located near the volcanic region of La Garrotxa, Spain. Both passive (LR-115, time-integrating) and active (Clipperton II, time-resolved) detectors have been used in a survey in which 27 measurement points were selected in five lines perpendicular to the Amer fault in the village area of Amer. The averaged results show an influence of the distance to the fault on the mean soil radon values. The dynamic results show a very clear seasonal effect on the soil radon levels. The results obtained support the hypothesis that the fault is still active.

  17. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qing, E-mail:; Dong, Daoyi, E-mail:; Petersen, Ian R., E-mail: [School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600 (Australia); Rabitz, Herschel, E-mail: [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)


    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  18. Transition Fault and the Yakutat-Pacific-North American Triple Junction (United States)

    Gulick, S. P.; Christeson, G. L.; Norton, I. O.; Pavlis, T. L.; Reece, R.; van Avendonk, H.; Worthington, L. L.


    In the Gulf of Alaska the Pacific Plate, Yakutat Terrane, and North American Plate interact in a complexly deformed zone on the continental slope near Kayak Island. This zone can be viewed as a fault-trench-trench (FTT) triple junction that can only be stable if the two trench segments are aligned. In this case the trench segments are: the deformation front along which the Pacific Plate subducts beneath North America (the Aleutian Trench) and the deformation front along which the Yakutat Terrane subducts at a more westerly direction (when compared to the Pacific subduction) beneath North America (the Pamplona Zone). These two deformation fronts are, to a first order, locally aligned. The complex member of the system is the Transition Fault which is a long-lived strike-slip fault separating the 15-30 km thick Yakutat oceanic plateau crust from the 5-7 km thick Pacific Plate crust, which is itself deforming along the north-south trending Gulf of Alaska Shear Zone (GASZ). A series of seismic reflection profiles crossing the Transition Fault allow us to examine the evolution of deformation as a function of proximity to the triple junction. East of the triple junction and the GASZ, the Transition Fault is a single near vertical strike-slip zone. Moving west to the area where the GASZ interacts with the Transition Fault, three seismic profiles show that the Fault bifurcates into a southern transpressional strand with a few 100 meters of seafloor relief and a northern strike-slip dominated strand. West of the GASZ and within the region proximal to the triple junction, two seismic lines show that the Transition Fault is expressed as a southern transpressional structure with significant amounts shortening (seafloor expression increased to ~1.8 km) and a northern dominantly strike-slip fault with minor transpression. Mapping the top of basement shows that the southern arm lies within and deforms the Pacific oceanic crust with the top of ocean crust reflection to the north

  19. Fault distribution to the west of Songliao Basin by means of gravity analysis (United States)

    Chen, Jun; Li, Shizhen; Zhou, Xingui


    Our study area is located to the west of Songliao Basin, northeastern China. Its tectonic setting includes three parts, the Argun block, the Higgnan block and the Songnen block from north to south. It belongs to the northeastern Asia orogenic zone surrounded by the Siberia plate, the North China plate and the Pacific plate. As the global feature, the gravity anomaly values increase from west to east, and from southwest to northeast. The minimum value is 5mGal, and the maximum value is 5mGal. In the southwestern region, the variation range is from -87mGal to 65mGal. But in the northeastern region, it is between -65mGal and 55mGal. In the central region, the gravity anomaly values are between -55mGal and 25mGal, and the gravity anomaly gradient is bigger than that in other regions. In the eastern region, gravity anomaly values are bigger than those in other regions, and the gravity anomaly characteristics is complicated. There are gravity anomaly gradient belts, anomaly direction changes, distortion of contour lines, broaden or narrowed of the closed contour lines. Gravity anomaly data can be used for study of tectonics division and regional geological structures. The gravity anomaly data has been processed using many methods. Firstly, analytic upward- continuation and apparent-depth filtering were used to separate the gravity anomaly field with different depth and different scale. Then, horizontal derivatives, vertical derivatives, analytical signal calculation, small sub-domain filtering were used to increase the gravity resolution for fault discrimination. Through the interpretation of different depth and different scale gravity anomalies, we mapped the fault distribution of the study area. There are four types of faults with different trends, which are north east-east(NEE), near west-east(WE), north-east(NE) and north-west(NW). The NE and NW trending faults are distributed in the whole region. The WE trending faults are located mainly in the southern region of

  20. 3-D fault development in a geothermal system in the German Molasse Basin (United States)

    Ziesch, Jennifer; Tanner, David C.; Wawerzinek, Britta; Lüschen, Ewald; Krawczyk, Charlotte M.; Buness, Hermann; Thomas, Rüdiger


    The southern German Molasse Basin is one of the most promising areas for geothermal exploration in Germany. We aim for an optimized reservoir exploration for deep geothermal facilities in the Bavarian realm. To do this, we analyse seismic faults to characterise potential pathways between the Malm and its overburden, which consists of Molasse sediments. A 3-D seismic survey (27 km_2) was interpreted as part of the research project GeoParaMoL (Geophysical Parameters for facies interpretation and Modelling of Long-term behaviour), in the study area at Unterhaching, Munich, Germany. GeoParaMoL is a partner project of GRAME, which aims to explore the hydrothermal Malm carbonate reservoir (at a depth of ca. 3 km) as a source for deep geothermal energy. First, we interpreted five seismic horizons and over 20 major faults. Here we present preliminary results of the derived 3-D structural model. We determined fault geometries and displacement profiles using isopach and juxtaposition maps. We observe two different tectonic events: The faults within the Molasse sediments are unrelated to the faults of the underlying Malm carbonate platform. The faults within the Malm carbonate platform propagated up to the Top Eocene horizon (Lithothamien carbonates). The faults within the younger Miocene sediments developed subsequently. They dip, in part, with opposing dip direction, but mostly with the same strike. This basic information will be further used to predict fluid pathways by carrying out retro-deformation in the study area to help understand the structural development and regional tectonics. This work will support exploration of geothermal reservoirs in general. This project is funded by the Federal Ministry for Economic Affairs and Energy (BMWi).

  1. Field Evidence for a Low Permeability, High Storage Fault Core at the Santa Susana Field Laboratory (United States)

    Allègre, V.; Brodsky, E. E.; Parker, B. L.; Cherry, J. A.


    In situ measurements of hydrogeologic properties within fault zones are few, in part because of the challenges of measuring the scale-dependent quantities in fractured rock reservoirs. This work aims to fill the gap by utilizing a combination of tidal, barometric and seismic response analyses on pressure head time-series from the Santa Susana Field Laboratory in Southern California. The techniques sample different effective volumes and so allow us to investigate the scale-dependent structure near fault zones. Permeability and specific storage were inverted from tidal response at 14 locations, and specific storage was also computed from barometric efficiencies at 10 locations. In addition, we computed hydro-seismic transfer functions after nine local earthquakes and teleseismic events. We found that permeability computed from tidal response are quite homogeneous within about one and a half orders of magnitude over the site regardless of the presence of moderate to large faults. This result is consistent with the earlier aquifer tests using standard methods. The tidal responses also showed higher variability of specific storage inside the fault zones suggesting that fault damage zone generates a storage architecture. The storage from the tidal responses can be consistently interpreted for the tidal, barometric and seismic responses. However, the observations require that the permeability inside the fault zones at the spatial scale of the seismic response (~meters) is much lower than at the spatial scale of the tidal response (~10's of meters). The result suggests possible sensitivity to the low permeability fault core, which has been historically difficult to measure at the field scale.

  2. Current microseismicity and generating faults in the Gyeongju area, southeastern Korea (United States)

    Han, Minhui; Kim, Kwang-Hee; Son, Moon; Kang, Su Young


    A study of microseismicity in a 15 × 20 km2 subregion of Gyeongju, southeastern Korea, establishes a direct link between minor earthquakes and known fault structures. The study area has a complex history of tectonic deformation and has experienced large historic earthquakes, with small earthquakes recorded since the beginning of modern instrumental monitoring. From 5 years of continuously recorded local seismic data, 311 previously unidentified microearthquakes can be reliably located using the double-difference algorithm. These newly discovered events occur in linear streaks that can be spatially correlated with active faults, which could pose a serious hazard to nearby communities. At-risk infrastructure includes the largest industrial park in South Korea, nuclear power plants, and disposal facilities for radioactive waste. The current work suggests that the southern segment of the Yeonil Tectonic Line and segments of the Seokup and Waup Basin boundary faults are active. For areas with high rates of microseismic activity, reliably located hypocenters are spatially correlated with mapped faults; in less active areas, earthquake clusters tend to occur at fault intersections. Microearthquakes in stable continental regions are known to exist, but have been largely ignored in assessments of seismic hazard because their magnitudes are well below the detection thresholds of seismic networks. The total number of locatable microearthquakes could be dramatically increased by lowering the triggering thresholds of network detection algorithms. The present work offers an example of how microearthquakes can be reliably detected and located with advanced techniques. This could make it possible to create a new database to identify subsurface fault geometries and modes of fault movement, which could then be considered in the assessments of seismic hazard in regions where major earthquakes are rare.

  3. Faulting and groundwater in a desert environment: constraining hydrogeology using time-domain electromagnetic data (United States)

    Bedrosian, Paul A.; Burgess, Matthew K.; Nishikawa, Tracy


    Within the south-western Mojave Desert, the Joshua Basin Water District is considering applying imported water into infiltration ponds in the Joshua Tree groundwater sub-basin in an attempt to artificially recharge the underlying aquifer. Scarce subsurface hydrogeological data are available near the proposed recharge site; therefore, time-domain electromagnetic (TDEM) data were collected and analysed to characterize the subsurface. TDEM soundings were acquired to estimate the depth to water on either side of the Pinto Mountain Fault, a major east-west trending strike-slip fault that transects the proposed recharge site. While TDEM is a standard technique for groundwater investigations, special care must be taken when acquiring and interpreting TDEM data in a twodimensional (2D) faulted environment. A subset of the TDEM data consistent with a layered-earth interpretation was identified through a combination of three-dimensional (3D) forward modelling and diffusion time-distance estimates. Inverse modelling indicates an offset in water table elevation of nearly 40 m across the fault. These findings imply that the fault acts as a low-permeability barrier to groundwater flow in the vicinity of the proposed recharge site. Existing production wells on the south side of the fault, together with a thick unsaturated zone and permeable near-surface deposits, suggest the southern half of the study area is suitable for artificial recharge. These results illustrate the effectiveness of targeted TDEM in support of hydrological studies in a heavily faulted desert environment where data are scarce and the cost of obtaining these data by conventional drilling techniques is prohibitive.

  4. Pumping-Test Evaluation of Fault-Zone Hydraulic Properties in a Fractured Sandstone (United States)

    Johnson, N. M.


    Subzones of both reduced and enhanced permeability are often ascribed to fault zones, consistent with a fault-core/damage-zone conceptualization, with associated implications for assessing potential contaminant transport. Within this context, a 31-day pumping test was conducted in relation to a relatively minor, 2000 m long fault zone cutting fractured Cretaceous sandstone interbedded with siltstone and shale at a groundwater remediation site in the Simi Hills of southern California during March-April 2013. Our objective was to evaluate the potential hydrogeologic influence of the fault zone on groundwater movement across and along it by observing the spatial patterns of drawdown and estimated hydraulic properties. A 122 m deep open borehole was pumped at a constant rate of approximately 112 L/min while monitoring hydraulic heads in 14 observation wells, two completed with multi-level systems, within 750 m of the pumping well. Hydraulic heads were monitored for more than 9 months before, during, and after the test. Prior to the test, we used the site's three-dimensional, equivalent-porous-media groundwater flow model to anticipate the potential response of alternative fault-zone permeability structures. The results suggest that the fault zone may be slightly more permeable (by a factor of about 2 or less) and less confined than the fractured sandstone away from the fault, and is not a significant barrier to groundwater flow across it. Within the areal extent of observed drawdown, the site's hydrostratigraphic structures exhibited a relatively greater hydraulic influence. The pattern and magnitude of observed drawdown lie within the range of pre-test model simulations, and the test results are now being used to revise and recalibrate the model.

  5. Pulverization Texturein Fault Damage Zones: A result of Implosion Damage or Dynamic Compressive Stresses? (United States)

    Rockwell, T. K.; Girty, G.; Whearty, J.; Mitchell, T. M.


    Micro-brecciation, or pulverization, is recognized as a fundamental component of the architecture and damage products of many large faults, although the precise mechanisms to produce this damage are debated, with both compressive and tensile mechanisms proposed. We characterized several sites along the San Jacinto fault, southern California, where the total depth of exhumation for the life history of the fault can be determined, to study the confining stresses required for pulverization. In basement rock near Anza, where exhumation is less than 100 m, granitic dikes injected into schist of the Burnt Valley Complex are pulverized out to several meters from the fault core, whereas the schist is brecciated at the macro-scale and contains narrow centimeter-thick seams of black cataclasite. Similar relationships are observed in Horse Canyon, which is exhumed about 400 m below a regional Tertiary erosion surface, where granitic dikes emplaced into schist are pulverized out to distances of several tens of meters from the fault core. These observations imply that very low confining stress is required for micro-brecciation in granitic rock. Unconsolidated sandstones (alluvial fan deposits) along the SJF in Rock House Canyon are undeformed where the deposits are exhumed by about 70 m, but show incipient pulverization (high-density, sub-grain cracking) at 120 m depth of exhumation. Cracks oriented perpendicular to the fault formed in individual quartz and feldspar grains out to a few meters from the fault core. These observations suggest that the confining stress required for onset of pulverization in unconsolidated deposits is on the order of 2-2.5 MPa. As the tensile strength of quartz is an order of magnitude higher than these confining stresses, the most likely mechanism that is producing this damage is dynamic compressive stresses during passage of the rupture front.

  6. Strike-slip and extensional tectonics of the Tan-Lu fault zone (eastern China) from the Cretaceous to Cenozoic (United States)

    Zhang, Y. Q.; Shi, W.; Dong, S. W.


    The Tan-Lu fault zone which extends NNE-SSW more than 3000 km forms conspicuous geological feature along the northeastern margin of the Asia continent. Since its recognition by air-magnetic anomaly in 1957, this fault zone has become the subject of live debate. Most studies were mainly focused on the amount and age of the sinistral offsets along its middle and southern segments. It has been generally thought that the Tan-Lu fault zone was initiated as a transform fault during the Triassic collision between the South and North China Blocks and that it was strongly activated during the Cretaceous and Cenozoic time period. Some authors proposed that the Tan-Lu fault is part of a wide wrench fault system along the north-eastern Asia continent and that sinistral movement along this fault system accommodated oblique convergence between the Pacific oceanic plate and the Asia continent. Some others considered that the Tan-Lu fault belongs to the rifting system of eastern China. Based on field analysis of slip vector data from different rock units of the Cretaceous basins along the middle Tan-Lu fault zone (Shandong Province, eastern China), we document polyphase tectonic stress fields and address the changes in the sense of motion of the Tan-Lu fault zone during the Cretaceous and Cenozoic. The Cretaceous deformation history of the Tan-Lu fault zone can be divided into four main stages. The first stage during the lowermost Cretaceous was dominated by N-S extension, which is responsible for the formation of the Jiaolai basin. We interpret this extension to be related to dextral strike-slip pull-apart opening guided by the Tan-Lu fault zone. The second stage during the middle Early Cretaceous was overwhelmingly rift-dominated, and characterized by widespread intermediate volcanism, normal faulting and basin subsidence. It was at this stage that the Tan-Lu-parallel Yi-Shu Rift was initiated by E-W to WNW-ESE extension. The tectonic regime changed during the late Early

  7. Fault detection and fault-tolerant control for nonlinear systems

    CERN Document Server

    Li, Linlin


    Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes. Contents Overview of FD and FTC Technology Configuration of Nonlinear Observer-Based FD Systems Design of L2 nonlinear Observer-Based FD Systems Design of Weighted Fuzzy Observer-Based FD Systems FTC Configurations for Nonlinear Systems< Application to Benchmark Processes Target Groups Researchers and students in the field of engineering with a focus on fault diagnosis and fault-tolerant control fields The Author Dr. Linlin Li completed her dissertation under the supervision of Prof. Steven X. Ding at the Faculty of Engineering, University of Duisburg-Essen, Germany...

  8. Seismostratigraphy and tectonic architecture of the Carboneras Fault offshore based on multiscale seismic imaging: Implications for the Neogene evolution of the NE Alboran Sea (United States)

    Moreno, Ximena; Gràcia, Eulàlia; Bartolomé, Rafael; Martínez-Loriente, Sara; Perea, Héctor; de la Peña, Laura Gómez; Iacono, Claudio Lo; Piñero, Elena; Pallàs, Raimon; Masana, Eulàlia; Dañobeitia, Juan José


    In the SE Iberian Margin, which hosts the convergent boundary between the European and African Plates, Quaternary faulting activity is dominated by a large left-lateral strike-slip system referred to as the Eastern Betic Shear Zone. This active fault system runs along more than 450 km and it is characterised by low to moderate magnitude shallow earthquakes, although large historical events have also occurred. The Carboneras Fault is the longest structure of the Eastern Betic Shear Zone, and its southern termination extends further into the Alboran Sea. Previously acquired high-resolution data (i.e. swath-bathymetry, TOBI sidescan sonar and sub-bottom profiler) show that the offshore Carboneras Fault is a NE-SW-trending upwarped zone of deformation with a length of 90 km long and a width of 0.5 to 2 km, which shows geomorphic features typically found in subaerial strike-slip faults, such as deflected drainage, pressure ridges and "en echelon" folds. However, the neotectonic, depth architecture, and Neogene evolution of Carboneras Fault offshore are still poorly known. In this work we present a multiscale seismic imaging of the Carboneras Fault (i.e. TOPAS, high-resolution multichannel-seismic reflection, and deep penetration multichannel-seismic reflection) carried out during three successive marine cruises, from 2006 to 2010. The new dataset allowed us to define a total of seven seismostratigraphic units (from Tortonian to Late Quaternary) above the basement, to characterise the tectonic architecture and structural segmentation of the Carboneras Fault, and to estimate its maximum seismic potential. We finally discuss the role of the basement in the present-day tectonic evolution of the Carboneras Fault, and explore the northern and southern terminations of the fault and how the strain is transferred to nearby structures.

  9. Rectifier Fault Diagnosis and Fault Tolerance of a Doubly Fed Brushless Starter Generator

    Directory of Open Access Journals (Sweden)

    Liwei Shi


    Full Text Available This paper presents a rectifier fault diagnosis method with wavelet packet analysis to improve the fault tolerant four-phase doubly fed brushless starter generator (DFBLSG system reliability. The system components and fault tolerant principle of the high reliable DFBLSG are given. And the common fault of the rectifier is analyzed. The process of wavelet packet transforms fault detection/identification algorithm is introduced in detail. The fault tolerant performance and output voltage experiments were done to gather the energy characteristics with a voltage sensor. The signal is analyzed with 5-layer wavelet packets, and the energy eigenvalue of each frequency band is obtained. Meanwhile, the energy-eigenvalue tolerance was introduced to improve the diagnostic accuracy. With the wavelet packet fault diagnosis, the fault tolerant four-phase DFBLSG can detect the usual open-circuit fault and operate in the fault tolerant mode if there is a fault. The results indicate that the fault analysis techniques in this paper are accurate and effective.

  10. Quantification of Fault-Zone Plasticity Effects with Spontaneous Rupture Simulations (United States)

    Roten, D.; Olsen, K. B.; Day, S. M.; Cui, Y.


    Previous studies have shown that plastic yielding in crustal rocks in the fault zone may impose a physical limit to extreme ground motions. We explore the effects of fault-zone non-linearity on peak ground velocities (PGVs) by simulating a suite of surface-rupturing strike-slip earthquakes in a medium governed by Drucker-Prager plasticity using the AWP-ODC finite-difference code. Our simulations cover magnitudes ranging from 6.5 to 8.0, three different rock strength models, and average stress drops of 3.5 and 7.0 MPa, with a maximum frequency of 1 Hz and a minimum shear-wave velocity of 500 m/s. Friction angles and cohesions in our rock models are based on strength criteria which are frequently used for fractured rock masses in civil and mining engineering. For an average stress drop of 3.5 MPa, plastic yielding reduces near-fault PGVs by 15-30% in pre-fractured, low strength rock, but less than 1% in massive, high-quality rock. These reductions are almost insensitive to magnitude. If the stress drop is doubled, plasticity reduces near-fault PGVs by 38-45% and 5-15% in rocks of low and high strength, respectively. Because non-linearity reduces slip rates and static slip near the surface, plasticity acts in addition to, and may partially be emulated by, a shallow velocity-strengthening layer. The effects of plasticity are exacerbated if a fault damage zone with reduced shear-wave velocities and reduced rock strength is present. In the linear case, fault-zone trapped waves result in higher near-surface peak slip rates and ground velocities compared to simulations without a low-velocity zone. These amplifications are balanced out by fault-zone plasticity if rocks in the damage zone exhibit low-to-moderate strength throughout the depth extent of the low-velocity zone (˜5 km). We also perform dynamic non-linear simulations of a high stress drop (8 MPa) M 7.8 earthquake rupturing the southern San Andreas fault along 250 km from Indio to Lake Hughes. Non-linearity in the

  11., the First Online Repository for Neotectonic Faults in the Chilean Andes (United States)

    Aron, F.; Salas, V.; Bugueño, C. J.; Hernández, C.; Leiva, L.; Santibanez, I.; Cembrano, J. M.


    We introduce the site, created and maintained by undergraduate students and researchers at the Catholic University of Chile. Though the web page seeks to inform and educate the general public about potentially seismogenic faults of the country, layers of increasing content complexity allow students, researchers and educators to consult the site as a scientific tool as well. This is the first comprehensive, open access database on Chilean geologic faults; we envision that it may grow organically with contributions from peer scientists, resembling the SCEC community fault model for southern California. Our website aims at filling a gap between science and society providing users the opportunity to get involved by self-driven learning through interactive education modules. The main page highlights recent developments and open questions in Chilean earthquake science. Front pages show first level information of general concepts in earthquake topics such as tectonic settings, definition of geologic faults, and space-time constraints of faults. Users can navigate interactive modules to explore, with real data, different earthquake scenarios and compute values of seismic moment and magnitude. A second level covers Chilean/Andean faults classified according to their geographic location containing at least one of the following parameters: mapped trace, 3D geometry, sense of slip, recurrence times and date of last event. Fault traces are displayed on an interactive map using a Google Maps API. The material is compiled and curated in an effort to present, up to our knowledge, accurate and up to date information. If interested, the user can navigate to a third layer containing more advanced technical details including primary sources of the data, a brief structural description, published scientific articles, and links to other online content complementing our site. Also, geographically referenced fault traces with attributes (kml, shapefiles) and fault 3D

  12. Provenance of alluvial fan deposits to constrain the mid-term offsets along a strike-slip active fault: the Elsinore fault in the Coyote Mountains, Imperial Valley, California. (United States)

    Masana, Eulalia; Stepancikova, Petra; Rockwell, Thomas


    The lateral variation in rates along a fault and its constancy along time is a matter of discussion. To give light to this discussion, short, mid and long term offset distribution along a fault is needed. Many studies analyze the short-term offset distribution along a strike-slip fault that can be obtained by the analysis of offset features imprinted in the morphology of the near-fault area. We present an example on how to obtain the mid- to long-term offset values based on the composition of alluvial fans that are offset by the fault. The study area is on the southern tip of the Elsinore fault, which controls the mountain front of the Coyote Mountains (California). The Elsinore-Laguna Salada fault is part of the San Andreas fault (SAF) system, extending 250 km from the Los Angeles Basin southeastward into the Gulf of California, in Mexico. The slip-rate on the southern Elsinore fault is believed to be moderate based on recent InSAR observations, although a recent study near Fossil Canyon (southern Coyote Mountains) suggests a rate in the range of 1-2 mm/yr. For this study we processed the airborne LiDAR dataset (EarthScope Southern & Eastern California, SoCal) to map short to mid-term alluvial offsets. We reprocessed the point clouds to produce DEMs with 0.5m and 0.25m grids and we varied the insolation angles to illuminate the various fault strands and the offset features. We identified numerous offset features, such as rills, channel bars, channel walls, alluvial fans, beheaded channels and small erosional basins that varied in displacement from 1 to 350 m. For the mid- to long-term offsets of the alluvial fans we benefited from the diverse petrological composition of their sources. Moreover, we recognized that older alluvium, which is offset by greater amounts, is in some cases buried beneath younger alluvial fan deposits and separated by buried soils. To determine the source canyon of various alluvial elements, we quantified the clast assemblage of each source

  13. Large seismic faults in the Hellenic arc

    Directory of Open Access Journals (Sweden)

    B. S. Papazachos


    Full Text Available Using information concerning reliable fault plane solutions, spatial distribution of strong earthquakes (Ms³ 6.0 as well as sea bottom and coastal topography, properties of the seismic faults (orientation, dimension, type of faulting were determined in seven shallow (h < 40 km seismogenic regions along the convex part of thc Hellenic arc (Hellenic trench and in four seismogenic regions of intermediate depth earthquakes (h = 40-100 km along the concave part of this arc. Except for the northwesternmost part of the Hellenic trench, where the strike-slip Cephalonia transform fault dominates, all other faults along this trench are low angle thrust faults. III thc western part of the trench (Zante-west Crete faults strike NW-SE and dip NE, while in its eastern part (east Crete-Rhodos faults strike WNW-ESE and dip NNE. Such system of faulting can be attributed to an overthrust of the Aegean lithosphere on the eastern Mediterranean lithosphere. The longest of these faults (L = 300 km is that which produced the largest known shallow earthquake in the Mediterranean area (21 July 365, Ms = 8.3 which is located near the southwestern coast of Crete. The second longest such fault (L = l 70 km is that which produced a large earthquake (December 1303, Ms = 8.0 in the easternmost part of the trench (east of Rhodos island. Both earthquakes were associated with gigantic tsunamis which caused extensive damage in the coast of many Eastern Mediterranean countries. Seismic faults of the intermediate depth earthquakes in the shallow part of the Benioff zone (h = 40- 100 km are of strike-slip type, with a thrust component. The orientations of these faults vary along the concave part of the arc in accordance with a subduction of remnants of all old lithospheric slab from the convex side (Mediterranean to the concave side (Aegean of thc Hellenic arc. The longest of these faults (L = 220 km is that which produced the largest known intermediate depth earthquake in the

  14. Low-angle normal faults in the south-central Brooks Range fold and thrust belt, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Gottschalk, R.R.; Oldow, J.S.


    A north-south structural transect through the south-central Brooks Range, Alaska, exposes three lithologically distinct, fault-bounded packages of rock, all regionally metamorphosed during the Late Jurassic to Early Cretaceous contractional deformation that formed much of the Brooks Range fold and thrust belt. These are, from south to north and structurally highest to lowest, (1) the prehnite-pumpellyite facies ophiolitic rocks of the Angayucham terrane, (2) the low-grade metasedimentary rocks of the Rosie Creek allochthon, and (3) pumpellyite-actinolite to glaucophane-epidote facies metamorphic rocks of the schist belt. The presence of rocks metamorphosed and deformed at shallow levels of the fold and thrust belt (the Angayucham terrane and Rosie Creek allochthon) lying structurally above rocks representing the deepest exposed levels of the fold and thrust belt (the schist belt) indicates that the imbricate stack is disrupted by south-dipping, low-angle normal faults along the southern margin of the Brooks Range. The authors propose that normal faults developed in response to the uplift of the schist belt and the overlying metasedimentary and ophiolitic allochthons by north-directed thrusting in the late Early Cretaceous. Thrusting resulting in the oversteepening of the imbricate stack, causing compensatory normal faulting along the southern flank of the ramp structure. Normal faults may have provided at least local structural control of the locus of Albian and younger sedimentation in the Koyukuk basin. 34 references.

  15. The Seismotectonic Model of Southern Africa (United States)

    Midzi, Vunganai; Mulabisana, Thifelimbulu; Manzunzu, Brassnavy


    Presented in this report is a summary of the major structures and seismotectonic zones in Southern Africa (Botswana, Lesotho, Namibia, South Africa and Swaziland), which includes available information on fault plane solutions and stress data. Reports published by several experts contributed much to the prepared zones. The work was prepared as part of the requirements for the SIDA/IGCP Project 601 titled "Seismotectonics and Seismic Hazards in Africa" as well as part of the seismic source characterisation of the GEM-Africa Seismic hazard study. The seismic data used are part of the earthquake catalogue being prepared for the GEM-Africa project, which includes historical and instrumental records as collected from various agencies. Seventeen seismic zones/sources were identified and demarcated using all the available information. Two of the identiied sources are faults with reliable evidence of their activity. Though more faults have been identified in unpublished material as being active, more work is being carried out to obtain information that can be used to characterise them before they are included in the seismotectonic model. Explanations for the selected boundaries of the zones are also given in the report. It should be noted that this information is the first draft of the seismic source zones of the region. Futher interpreation of the data is envisaged which might result in more than one version of the zones.

  16. Tectonic tremor and LFEs on a reverse fault in Taiwan (United States)

    Aguiar, Ana C.; Chao, Kevin; Beroza, Gregory C.


    We compare low-frequency earthquakes (LFEs) from triggered and ambient tremor under the southern Central Range, Taiwan. We apply the PageRank algorithm used by Aguiar and Beroza (2014) that exploits the repetitive nature of the LFEs to find repeating LFEs in both ambient and triggered tremor. We use these repeaters to create LFE templates and find that the templates created from both tremor types are very similar. To test their similarity, we use both interchangeably and find that most of both the ambient and triggered tremor match the LFE templates created from either data set, suggesting that LFEs for both events have a common origin. We locate the LFEs by using local earthquake P wave and S wave information and find that LFEs from triggered and ambient tremor locate to between 20 and 35 km on what we interpret as the deep extension of the Chaochou-Lishan Fault.

  17. Megathrust splay faults, forearc basins, and segment boundaries related to the Kodiak Islands segment of the Alaska subduction zone (United States)

    Ramos, M. D.; Liberty, L. M.


    We have compiled and interpreted a comprehensive upper-crustal seismic reflection dataset revealing spatiotemporal Cenozoic deformation across the Kodiak forearc and accretionary prism. Pervasive splay faults and forearc basin growth and positioning with respect to the prism record both accreting and eroding margin episodes through time. Seafloor bathymetry, in conjunction with seismic reflection data, show that post-glacial splay fault motion can exceed 40 meters offshore Kodiak Island. We observe considerable differences in splay fault uplift rates and activation spanning the near-shore region to the continental shelf, with significant tsunamigenic fault motion from the 1964 Great Alaska Earthquake concentrated along the Kodiak Island shelf fault zone system. We utilize potential fields data to highlight the continuity of megathrust splay faults that span the southern Gulf of Alaska and to identify geophysical signatures of segment boundaries that represent subducting Pacific plate morphology which may define megathrust rupture limits. Constraints on interseismic deformation from compiled geodetic GPS, focal mechanism, and earthquake datasets reveal the seismotectonic character of the Kodiak segment and are consistent with the structural heterogeneity at both the plate interface and upper plate. Upper plate geometry of the Kodiak segment shows Holocene fault motion has been accommodated along distinct fault zone segments. This knowledge informs tsunami risk modelers to allow for different alternatives of coseismic splay fault uplift during megathrust rupture. Our results suggest growth of forearc structures is contemporaneous with the subduction of major Pacific plate morphologies and provide clear geophysical evidence that can explain the persistence of the Kodiak segment, which is a major step towards a composite Alaska subduction zone deformation model.

  18. Landslides and megathrust splay faults captured by the late Holocene sediment record of eastern Prince William Sound, Alaska (United States)

    Finn, S.P.; Liberty, Lee M.; Haeussler, Peter J.; Pratt, Thomas L.


    We present new marine seismic‐reflection profiles and bathymetric maps to characterize Holocene depositional patterns, submarine landslides, and active faults beneath eastern and central Prince William Sound (PWS), Alaska, which is the eastern rupture patch of the 1964 Mw 9.2 earthquake. We show evidence that submarine landslides, many of which are likely earthquake triggered, repeatedly released along the southern margin of Orca Bay in eastern PWS. We document motion on reverse faults during the 1964 Great Alaska earthquake and estimate late Holocene slip rates for these growth faults, which splay from the subduction zone megathrust. Regional bathymetric lineations help define the faults that extend 40–70 km in length, some of which show slip rates as great as 3.75  mm/yr. We infer that faults mapped below eastern PWS connect to faults mapped beneath central PWS and possibly onto the Alaska mainland via an en echelon style of faulting. Moderate (Mw>4) upper‐plate earthquakes since 1964 give rise to the possibility that these faults may rupture independently to potentially generate Mw 7–8 earthquakes, and that these earthquakes could damage local infrastructure from ground shaking. Submarine landslides, regardless of the source of initiation, could generate local tsunamis to produce large run‐ups along nearby shorelines. In a more general sense, the PWS area shows that faults that splay from the underlying plate boundary present proximal, perhaps independent seismic sources within the accretionary prism, creating a broad zone of potential surface rupture that can extend inland 150 km or more from subduction zone trenches.


    Directory of Open Access Journals (Sweden)

    S. A. Bornyakov


    Full Text Available Based on the results of a laboratory simulation of the seismic fault reactivation by “stick-slip” process, it was shown that the system of two blocks just before an impulse offset goes through the meta-instable dynamic state, with early and late stages of meta-instability [Ma et al., 2012]. In the first stage the offset begins in slow stationary mode with slow stresses relaxation on contact between blocks. In the second stage of the “accelerated synergies” strain rate increases and, subsequently, the deformation process through a process of self-organization came to dynamic impulse offset. The experimental results were used for interpretation of the results of spectral analysis of the deformation monitoring data. The data were held within the southern part ofLakeBaikal, where Kultuk earthquake (27.08.2008, Ms=6.1. took place. Its epicenter was located in the South end zone of the main Sayan fault. Monitoring of deformations of rocks was carried out from April to November2008 in tunnel, located at30 km from the epicenter of the earthquake. The time series data was divided into month periods and then the periods were processed by the method of spectral analysis. The results showed that before the earthquake has ordered view spectrogram, whereas in other time intervals, both before and after the earthquake such orderliness in spectrograms is missing. An ordered view spectrograms for deformation monitoring data can be interpreted as a consequence of the self-organiza­tion of deformation process in the transition of seismically active fault into meta-unstable before the Kultuk earthquake.

  20. Review of fault diagnosis and fault-tolerant control for modular multilevel converter of HVDC

    DEFF Research Database (Denmark)

    Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede


    , several typical topologies of MMC-HVDC systems are presented. Then fault types such as capacitor voltage unbalance, unbalance between upper and lower arm voltage are analyzed and the corresponding fault detection and diagnosis approaches are explained. In addition, more attention is dedicated to control......This review focuses on faults in Modular Multilevel Converter (MMC) for use in high voltage direct current (HVDC) systems by analyzing the vulnerable spots and failure mechanism from device to system and illustrating the control & protection methods under failure condition. At the beginning...... strategies, when running in MMC faults or grid faults. This paper ends up with a discussion of other opportunities for future development....

  1. Reverse fault growth and fault interaction with frictional interfaces: insights from analogue models (United States)

    Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio


    The association of faulting and folding is a common feature in mountain chains, fold-and-thrust belts, and accretionary wedges. Kinematic models are developed and widely used to explain a range of relationships between faulting and folding. However, these models may result not to be completely appropriate to explain shortening in mechanically heterogeneous rock bodies. Weak layers, bedding surfaces, or pre-existing faults placed ahead of a propagating fault tip may influence the fault propagation rate itself and the associated fold shape. In this work, we employed clay analogue models to investigate how mechanical discontinuities affect the propagation rate and the associated fold shape during the growth of reverse master faults. The simulated master faults dip at 30° and 45°, recalling the range of the most frequent dip angles for active reverse faults that occurs in nature. The mechanical discontinuities are simulated by pre-cutting the clay pack. For both experimental setups (30° and 45° dipping faults) we analyzed three different configurations: 1) isotropic, i.e. without precuts; 2) with one precut in the middle of the clay pack; and 3) with two evenly-spaced precuts. To test the repeatability of the processes and to have a statistically valid dataset we replicate each configuration three times. The experiments were monitored by collecting successive snapshots with a high-resolution camera pointing at the side of the model. The pictures were then processed using the Digital Image Correlation method (D.I.C.), in order to extract the displacement and shear-rate fields. These two quantities effectively show both the on-fault and off-fault deformation, indicating the activity along the newly-formed faults and whether and at what stage the discontinuities (precuts) are reactivated. To study the fault propagation and fold shape variability we marked the position of the fault tips and the fold profiles for every successive step of deformation. Then we compared

  2. Elastic block and strain modeling of GPS data around the Haiyuan-Liupanshan fault, northeastern Tibetan Plateau (United States)

    Li, Yanchuan; Shan, Xinjian; Qu, Chunyan; Zhang, Yingfeng; Song, Xiaogang; Jiang, Yu; Zhang, Guohong; Nocquet, Jean-Mathieu; Gong, Wenyu; Gan, Weijun; Wang, Chisheng


    Based on the dense GPS velocity field in the northeastern margin of the Tibetan Plateau from 1999 to 2016, we have produced the deformation and strain characteristics of the Haiyuan fault and the Liupanshan fault. Estimated long-term slip rate along the Haiyuan-Liupanshan fault zones show a gradual decrease from 6.4 ± 1.6 mm/yr at the Tuolaishan fault to 2.9 ± 1.2 mm/yr at the Southern Liupanshan fault. Left-lateral thrusting movement was inverted for the Xiangshan-Tianjingshan fault (XS-TJS), which has an average slip rate of 2.1 ± 3.4 mm/yr during the study period. We also calculated the heterogeneous distribution of interseismic coupling along the fault zones. Our result also shows the locking depth of the Tianzhu seismic gap is ∼22 km. The slip rate deficit, the seismic moment accumulation rate, and the Coulomb stress accumulation rate are high on the fault planes, whereas the second invariant of the strain rate is low at the surface. The Liupanshan fault is locked to a depth of ∼23 km, and the corresponding seismic moment accumulation rate on the fault plane is high, while the strain rate at the surface is low. The accumulated strain along the Tianzhu seismic gap and the Liupanshan fault could be balanced by earthquakes with magnitudes of Mw7.9 and Mw7.4, considering the absence of large earthquakes over the last 1000 years and 1400 years respectively. The Haiyuan segments had ruptured during 1920 Haiyuan earthquake, and the estimated locking depth for period 1999-2016 is 5-10 km. Its seismic moment accumulation rate at depth is low and the strain rate at the surface is high. Our result indicates that 70% of the strike-slip along the Haiyuan segments transforms into thrusting along the Liupanshan fault, while the remaining 30% is related to the orogeny of the Liupanshan. For slip between the Haiyuan fault and the XS-TJS, about 27-34% of the slip is partitioned on the XS-TJS.

  3. Slip rate and slip magnitudes of past earthquakes along the Bogd left-lateral strike-slip fault (Mongolia) (United States)

    Prentice, Carol S.; Rizza, M.; Ritz, J.F.; Baucher, R.; Vassallo, R.; Mahan, S.


    5200 yr for past earthquakes along the different segments of the western Bogd Fault. This suggests that the three western segments of the Bogd Fault and the Gurvan Bulag thrust fault (a reverse fault bounding the southern side of the Ih Bogd range that ruptured during the 1957 earthquake) have similar average recurrence times, and therefore may have ruptured together in previous earthquakes as they did in 1957. These results suggest that the western part of the Bogd Fault system, including the Gurvan Bulag thrust fault, usually behaves in a ‘characteristic earthquake’ mode.

  4. Testing Pixel Translation Digital Elevation Models to Reconstruct Slip Histories: An Example from the Agua Blanca Fault, Baja California, Mexico (United States)

    Wilson, J.; Wetmore, P. H.; Malservisi, R.; Ferwerda, B. P.; Teran, O.


    We use recently collected slip vector and total offset data from the Agua Blanca fault (ABF) to constrain a pixel translation digital elevation model (DEM) to reconstruct the slip history of this fault. This model was constructed using a Perl script that reads a DEM file (Easting, Northing, Elevation) and a configuration file with coordinates that define the boundary of each fault segment. A pixel translation vector is defined as a magnitude of lateral offset in an azimuthal direction. The program translates pixels north of the fault and prints their pre-faulting position to a new DEM file that can be gridded and displayed. This analysis, where multiple DEMs are created with different translation vectors, allows us to identify areas of transtension or transpression while seeing the topographic expression in these areas. The benefit of this technique, in contrast to a simple block model, is that the DEM gives us a valuable graphic which can be used to pose new research questions. We have found that many topographic features correlate across the fault, i.e. valleys and ridges, which likely have implications for the age of the ABF, long term landscape evolution rates, and potentially provide conformation for total slip assessments The ABF of northern Baja California, Mexico is an active, dextral strike slip fault that transfers Pacific-North American plate boundary strain out of the Gulf of California and around the "Big Bend" of the San Andreas Fault. Total displacement on the ABF in the central and eastern parts of the fault is 10 +/- 2 km based on offset Early-Cretaceous features such as terrane boundaries and intrusive bodies (plutons and dike swarms). Where the fault bifurcates to the west, the northern strand (northern Agua Blanca fault or NABF) is constrained to 7 +/- 1 km. We have not yet identified piercing points on the southern strand, the Santo Tomas fault (STF), but displacement is inferred to be ~4 km assuming that the sum of slip on the NABF and STF is

  5. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone


    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilled cores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System. The Chelungpu Fault System in Hole-A was encountered at a depth of between 1050 - 1250 m where deformation structures increased. Three major fault zone structures were found at approximate depths of 1111, 1153, and 1221 m. The presence of wide fault rock regions were mostly concentrated in these 3 fault zones. The fault zone at 1111 m mainly consists of a nearly brecciated fracture zone and a clayey fault gouge zone of about 1.05 m in thickness. Fault rocks from the fault zone at 1153 m are characterized by the presence of sand grains in the matrix content, consisting of a 1.1-m thick fault breccia zone and a 0.35-m thick fault gouge zone. The fault zone at 1221 m consists of fault breccia and fault gouge of 1.15 m in total thickness. These are relatively harder and darker in color than the previous 2 fault zones. Each of the 3 fault zones contains a few layers of dark colored rocks of approximately 5 - 80 mm in thickness within the fault breccia and fault gouge zones. These dark colored rocks were found distinctively within the fault rocks. However, there relation to the process of faulting is not clearly understood and shall be discussed in detail with the aid of microscopic observations.

  6. Fault segmentation and fluid flow in the Geneva Basin (France & Switzerland) (United States)

    Cardello, Giovanni Luca; Lupi, Matteo; Makhloufi, Yasin; Do Couto, Damien; Clerc, Nicolas; Sartori, Mario; Samankassou, Elias; Moscariello, Andrea; Gorin, Georges; Meyer, Michel


    The Geneva Basin (GB) is an Oligo-Miocene siliciclastic basin tightened between the Alps and the southern Jura fold-and-thrust belt, whose carbonate reservoir is crossed by faults of uncertain continuity. In the frame of the geothermal exploration of the GB, the associated side risks, i.e., maximum expected earthquake magnitude, and the best suitable geothermal structures need to be determined. The outcropping relieves represent good field analogues of buried structures identified after seismo-stratigraphic analysis. In this frame, we review the regional tectonics to define the i) present-day setting, ii) fault properties and; iii) preferential paths for fluid flow. Field and geophysical data confirmed that during the late Oligocene-early Miocene the Molasse siliciclastic deposits progressively sealed the growing anticlines consisting of Mesozoic carbonates. Those are shaped by a series of fore- and back-thrusts, which we have identified also within the Molasse. As shortening is accommodated by bed-to-bed flexural-slip within shale-rich interlayers, usually having scarce hydraulic inter-connectivity, syn-kinematic mineralization massively concentrates instead within two strike-slip sets. The "wet" faults can be distinguished on the base of: orientation, amount of displacement and fabric. The first set (1) is constituted by left-lateral NNW-striking faults. The most remarkable of those, the Vuache Fault, is about 20 km long, determining a pop-up structure plunging to the SE. Minor structures, up to 5 km long, are the tear-faults dissecting the Salève antiform. In places, those are associated with brittle-ductile transition textures and crack-and-seal mineralization. Set (1) later evolved into discrete and still segmented faulting as it is traced by earthquakes nucleated at less than 5 km of depth (ML 5.3, Epagny 1996). The second set (2) is constituted by W/NW-striking right-lateral faults, up to 10 km long, associated in places with thick polyphase breccia

  7. Dynamic Fluid Flow and Geomechanical Coupling to Assess the CO2 Storage Integrity in Faulted Structures

    Directory of Open Access Journals (Sweden)

    Baroni A.


    Full Text Available The SiteChar research on the Southern Adriatic Sea site focused on the investigation of the geomechanical and hydrodynamic behaviour of the storage complex in the case of CO2 injection in a reservoir consisting of fractured carbonate formations. Special attention was paid to the effects that natural faults and fractures might have on CO2 migration, and the effects that injection might have on the stability of faults. This assessment was originally performed via a hydro-geomechanical one-way coupling which relies on an adequate representation of faults in the model, allowing one to simulate fluid flow along the fault plane and inside faults as well as evolution of the stress state due to CO2 injection. The geological model was populated with petrophysical and geomechanical parameters derived either from laboratory measurements performed on samples from a reservoir analogue, or published literature. Since only sparse data were available, various scenarios were simulated to take into account the uncertainties in the fluid flow and geomechanical properties of the model: the different state of faults (i.e., open or closed and various in situ stress state, commonly named geostatic stresses as the earth’s crust deformation is assumed to be slow regarding the short-term study. Various fluid flow parameters were also considered, although only one set of petrophysical data corresponding to the most realistic ones is considered here. Faults modeled as volumetric elements behave as flow pathways for fluids when they are conductive. The injected CO2 migrates inside and through the Rovesti fault, which is located near the injection well. The fluid flow also induces overpressure in the faults. The overpressure in the Rovesti fault reaches 2.2 MPa while it reaches 4.4 MPa at the bottom hole of the injector. Extending to about 30 km, the pore pressure field reaches the Gondola fault located at 15 km from the injection zone but the overpressure does not exceed

  8. Slip History and Evolution of the Hat Creek Fault, Northern California (United States)

    Walker, E. L.; Kattenhorn, S. A.


    Normal faults commonly exhibit unique surface features in basalt such as vertical scarps and fault-trace monoclines that provide clues to the fault evolution. The Hat Creek fault, 25 km north of Lassen volcano in northern California, is a segmented fault system within Pleistocene and younger basalts. The fault is located along the western boundary of the Modoc plateau in the extended backarc of the Cascades. The fault geometry tells of a varied extensional history that likely reflects a complex interplay between tectonic and magmatic influences. In response, the northern portion of the fault system migrated progressively westward, abandoning older scarps in its wake, whereas the southern portion continues to utilize Pleistocene slip surfaces. This spatial evolution has created three distinct scarps. From oldest (easternmost) to youngest (westernmost), they are informally identified as: the rim (max. throw of 352 m), the pali (max. throw of 174 m), and the active scarp (max. throw of 65 m). The rim is oriented N-S, consistent with the regional E-W extension direction, and consists of 7 predominantly right-stepping segments (NNW oriented) that are physically linked through lower ramp breaches. This geometry implies a clockwise rotation of the stress field after the segments developed, with linkage driven by right-lateral oblique motion. Throw profiles along the rim illustrate mechanical interactions and partitioning of displacement between adjacent segments. The pali is a relatively younger fault plane located up to 3.3 km west of the northern portion of the rim. The pali is oriented NW-SE and consists of 5 left-stepping segments that are physically connected through upper ramp breaches, also consistent with right-lateral oblique motion. The pali likely nucleated along its central segment, where throw is maximized, in response to a magmatic perturbation of the stress field (causing a local NE-SW extension), possibly related to dike injection that culminated in the

  9. Fault permeability models for geothermal doublet designs

    NARCIS (Netherlands)

    Heege, J.H. ter


    The occurrence and properties of natural faults and fractures in geothermal reservoirs are key in determining reservoir flow properties, and thereby the performance of geothermal doublets placed in fractured reservoirs or in the vicinity of fault zones. In this paper, an analytical model is

  10. Training for Skill in Fault Diagnosis (United States)

    Turner, J. D.


    The Knitting, Lace and Net Industry Training Board has developed a training innovation called fault diagnosis training. The entire training process concentrates on teaching based on the experiences of troubleshooters or any other employees whose main tasks involve fault diagnosis and rectification. (Author/DS)

  11. Measurement selection for parametric IC fault diagnosis (United States)

    Wu, A.; Meador, J.


    Experimental results obtained with the use of measurement reduction for statistical IC fault diagnosis are described. The reduction method used involves data pre-processing in a fashion consistent with a specific definition of parametric faults. The effects of this preprocessing are examined.

  12. Fault detection based on microseismic events (United States)

    Yin, Chen


    In unconventional reservoirs, small faults allow the flow of oil and gas as well as act as obstacles to exploration; for, (1) fracturing facilitates fluid migration, (2) reservoir flooding, and (3) triggering of small earthquakes. These small faults are not generally detected because of the low seismic resolution. However, such small faults are very active and release sufficient energy to initiate a large number of microseismic events (MEs) during hydraulic fracturing. In this study, we identified microfractures (MF) from hydraulic fracturing and natural small faults based on microseismicity characteristics, such as the time-space distribution, source mechanism, magnitude, amplitude, and frequency. First, I identified the mechanism of small faults and MF by reservoir stress analysis and calibrated the ME based on the microseismic magnitude. The dynamic characteristics (frequency and amplitude) of MEs triggered by natural faults and MF were analyzed; moreover, the geometry and activity types of natural fault and MF were grouped according to the source mechanism. Finally, the differences among time-space distribution, magnitude, source mechanism, amplitude, and frequency were used to differentiate natural faults and manmade fractures.

  13. Diagnostics Tools Identify Faults Prior to Failure (United States)


    Through the SBIR program, Rochester, New York-based Impact Technologies LLC collaborated with Ames Research Center to commercialize the Center s Hybrid Diagnostic Engine, or HyDE, software. The fault detecting program is now incorporated into a software suite that identifies potential faults early in the design phase of systems ranging from printers to vehicles and robots, saving time and money.

  14. Fault Detection for a Diesel Engine Actuator

    DEFF Research Database (Denmark)

    Blanke, M.; Bøgh, S.A.; Jørgensen, R.B.


    An electro-mechanical position servo is introduced as a benchmark for mode-based Fault Detection and Identification (FDI).......An electro-mechanical position servo is introduced as a benchmark for mode-based Fault Detection and Identification (FDI)....

  15. The Curiosity Mars Rover's Fault Protection Engine (United States)

    Benowitz, Ed


    The Curiosity Rover, currently operating on Mars, contains flight softwar